

C O M P U T A T I O N A L M A T H E M A T I C S S E R I E S

CRYPTANALYSIS
of NUMBER
THEORETIC

CIPHERS

COMPUTATIONAL MATHEMATICS SERIES

Series Editor Mike J. Atallah

Published Titles

Inside the FFT Black Box: Serial and Parallel
Fast Fourier Transform Algorithms

Eleanor Chu and Alan George

Mathematics of Quantum Computation
Ranee K. Brylinski and Goong Chen

Fuzzy Automata and Languages: Theory and Applications
John A/. Mordeson and Davender S. Malik

Cryptanalysis of Number Theoretic Ciphers
Samuel S. Wagstaff, Jr.

C O M P U T A T I O N A L M A T H E M A T I C S S E R I E S

CRYPTANALYSIS
of NUMBER
THEORETIC

CIPHERS

Samuel S. Wagstaff, Jr.

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A C H A P M A N & H A L L B O O K

First published 2003 by Chapman & Hall/CRC

Published 2019 by CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2003 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

ISBN 13: 978-1-58488-153-7 (hbk)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize
to copyright holders if permission to publish in this form has not been obtained. If any copyright material
has not been acknowledged please write and let us know so we may rectify in any future reprint

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides
licenses and registration for a variety of users. For organizations that have been granted a photocopy
license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

VJSit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Library of Congress Cataloging-in-Publication Data

Wagstaff, Samuel S.
Cryptanalysis of number theorectic ciphers / Samuel S. Wagstafff, Jr.

p. cm. - (Computational mathematics)
ISBN 1-58488-153-4
l. Computer security. 2. Cryptography. 3. Number theory. I. Title. II. Computational

mathematics series.

QA 76.9.A25 W33 2002
005.8---<lc21

Library of Congress Card Number 2002034919

2002034919

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com

Preface

This work has its origins in a cryptography course taught by the author many
times during the past twenty years in the Computer Science Department at
Purdue University.

Part I gives the mathematical background for cryptography as well as some
definitions and simple examples from cryptography. The cryptographic defi­
nitions appear in the first chapter.

The second chapter treats some topics from elementary probability theory
which are needed most for cryptanalysis.

Chapters 3 through 7 give a standard first course in elementary number
theory, but with a slant toward computation and with the needs of cryp­
tography always in mind. Thus, Chapter 3, on divisibility, also tells how to
perform arithmetic with large integers and Chapter 4, which is about primes,
discusses the probability that a "random" large integer will have only small
prime factors. This topic is rarely discussed in the chapter on primes in an
elementary number theory book, but is needed to estimate the difficulty of
breaking certain ciphers.

Chapter 5 introduces congruences, which are used in many modern cryp­
tographic algorithms. Chapter 6 proves Fermat's little theorem and Euler's
generalization of it. These important results are used throughout the rest
of the book. This chapter also introduces primitive roots and discrete loga­
rithms, which are needed for many ciphers and protocols.

Chapter 7 deals with the solution of quadratic congruences. We do not prove
the quadratic reciprocity law, but do explain its importance in computation.
We state this law in a form useful for programming rather than in the slick
concise way found in many number theory texts.

Chapter 8 introduces information theory and gives examples of some obso­
lete ciphers.

Chapter 9 offers a selection of topics from modern algebra that are used in
later chapters to make and break various ciphers.

Chapters 10 through 13 treat the complementary problems of factoring
large integers and identifying large primes. Many cryptographic algorithms
begin by choosing large primes. Some ciphers and protocols can be broken by

v

VI Cryptanalysis of Number Theoretic Ciphers

factoring a large integer. Slow but nevertheless important factoring methods
are the topic of Chapter 10. In Chapter 11, the reader learns how to tell
whether a large integer is probably prime, how to give a rigorous proof that a
large number is prime, and how to construct large primes that have an easy
rigorous proof of primality. Chapter 12 deals with the important elliptic curve
groups used in prime proofs, in factoring integers, and directly in ciphers and
protocols. The fastest known factoring algorithms are described in Chapter
13.

Chapter 14 discusses the best ways to break certain ciphers by computing
"discrete logarithms." We describe several good methods for choosing random
numbers in Chapter 15. Cryptographic algorithms that need secret random
integers can be compromised if the numbers are not sufficiently random.

Part II describes a selection of cryptographic algorithms, most of which
use number theory. Chapter 16 presents some single-key ciphers, in which
all keys are supposed to remain secret. Rijndael, the new Advanced Encryp­
tion Standard, is the fastest of these ciphers. The Pollig-Hellman ciphers are
slower, but enjoy special properties which make them useful in certain pro­
tocols. Chapter 17 introduces public-key ciphers, including those of Rivest,
Shamir and Adleman, Massey-Omura, ElGamal, and Rabin-Williams.

Methods of signing messages electronically are presented in Chapter 18.
Chapter 19 explains ways for two users to exchange keys in a secure manner,
so that no one else can discover these keys by eavesdropping on their messages,
and so that the users can be sure that they are talking to each other and not
to an impersonator.

In Chapter 20 we describe simple protocols for playing games, sharing se­
crets, signing documents without seeing them, and establishing one's identity.
The protocols in Chapter 21 are more complicated, and include signing con­
tracts over the Internet, holding an election over the Internet and using digital
"cash" to purchase goods. Chapter 22 explains two complete cryptographic
systems, Kerberos for user authentication and Pretty Good Privacy for secure
electronic mail.

Some attacks on the cryptographic algorithms are discussed as the algo­
rithms are presented in Part II. In Part III, we collect together some general
methods of attack on the cryptographic algorithms of Part II and assess their
effectiveness.

Chapter 23 treats direct attacks in which the attacker has no contact with
the victim and the victim does nothing wrong. These attacks involve a direct
assault on a secret key. They are analogous to the attacker breaking into the
victim's house when he is away and taking his money.

In the attack techniques of Chapter 24, either the victim or his computer
makes an error which allows an attacker to learn a secret key. These methods
are similar to an attacker entering a victim's house and taking his money
when the victim left the door unlocked or the lock is broken.

In the attacks of Chapter 25, the attacker interacts with the victim and
either steals a secret key or makes the victim do something he wishes he had

Preface vu

not done. These attacks are like being mugged or raped.
The second and third parts of the book give copious references to the the­

orems in the first part, so that the reader can learn more about why the
cryptography works and the nature of the attacks on it.

More than 200 interesting exercises test the reader's understanding of the
text. The exercises range in difficulty from nearly trivial to quite challenging.
We hope you enjoy the antics of Alice, Bob, and their gang.

The prerequisites for reading this book are calculus and linear algebra.
From calculus, you should know how to differentiate, integrate, and find ex­
trema. You should be familiar with the logarithm and exponential functions
and with Newton's method for finding zeros of functions. You should know
that sums may be approximated by integrals. You should know the rudi­
ments of set theory, intersections, unions, and subsets. From linear algebra,
you should be familiar with matrices and know how to solve a system of linear
equations in several unknowns. For complete understanding of this book, you
should also be familiar with proof by mathematical induction.

Throughout the book, we use the notation [x\ and \x] to mean the largest
integer < x and the smallest integer > x, respectively.

When a and b are integers with b > 0, we write a mod b for the (non-
negative) remainder when a is divided by b. It is always in the range 0 <
a mod b < b. Since [a/b\ is the integer part of the quotient when a is divided
by b we always have

a = b\a/b\ + (a mod b).

When n is a positive integer, we define "n factorial" to be the product
n! = 1 • 2 • 3 • • • (n — l)n. Also define 0! = 1. When 0 < i < n are integers,
define the binomial coefficient, "n choose ¿," to be

The name comes from the binomial theorem, which says that if n is a
nonnegative integer, then

We write logx to mean the logarithm of x to an unspecified base, log6 x for
the logarithm of x to base ò, and ln:r = loge x for the natural logarithm of x.
We write exp(x) for ex when x is a complicated expression.

Explicit algorithms are written in a simple pseudocode which should be
clear to anyone familiar with a modern computer language like C or Java. We
use 0xl23ABC for the hexadecimal number "123ABC," just as many computer
languages would do.

From computer science, you should know that one can sort a list of n items
with nlogn comparisons.

vin Cryptanalysis of Number Theoretic Ciphers

We should explain the notion of "amortization," which appears in several
algorithms. If one special instruction in a block of repeated instructions is
performed only once in every k repetitions, then the time needed to execute the
block once may be estimated as 1/fc times the time for the special instruction
plus the time needed for the other instructions. We say the time for the special
instruction is amortized over the time for the block of instructions.

I thank Abhilasha Bhargav for drawing some exquisite graphs.
I am grateful to Mikail Atallah, Richard Crandall, Joe Doob, Jason Gower,

Darren King, Peter Montgomery, Stephen Samuels, and Chaogui Zhang for
providing insightful comments on earlier versions of parts of this book or other
information that made the book better.

I wish to thank the hundreds of students who took my cryptography class
during the past twenty years for testing the exercises.

Finally, I thank the Center for Education and Research in Information As­
surance and Security, CERIAS, its sponsors and its director, Professor Eugene
Spafford, for support while this book was being written.

Sam Wagstaff
Purdue University CERIAS
West Lafayette, Indiana
sswOcerias.purdue.edu

mailto:ssw@cerias.purdue.edu

/ dedicate this work to my parents,
Helen and Sam,

who gave me wings and let me fly.

http://taylorandfrancis.com

Contents
I Mathematical Foundations of Cryptanalysis 1

1 Terminology of Cryptography 3
1.1 Notation 3
1.2 Types of Attacks 4
1.3 Public Key Ciphers 6
1.4 Block and Stream Ciphers 7
1.5 Protocols 10
1.6 Exercises 10

2 Probability Theory 13
2.1 Definitions 13
2.2 The Birthday Problem 15
2.3 Random Variables 20
2.4 Exercises 24

3 Divisibility and Arithmetic 27
3.1 Divisibility 27
3.2 Arithmetic with Large Integers 28
3.3 Greatest Common Divisors and the Euclidean Algorithm . . . 36
3.4 Exercises 42

4 Primes 45
4.1 The Fundamental Theorem of Arithmetic 45
4.2 The Distribution of Prime Numbers 49
4.3 Identifying and Finding Primes 51
4.4 The Largest Prime Factor of a Number 54
4.5 Exercises 59

5 Congruences 61
5.1 Simple Properties of Congruences 61
5.2 Linear Congruences 64
5.3 The Chinese Remainder Theorem 69
5.4 Exercises 72

xi

xii Contents

6 Euler's Theorem and Its Consequences 75
6.1 Fermat's Little Theorem 75
6.2 Euler's Theorem 79
6.3 Primitive Roots 86
6.4 Discrete Logarithms 89
6.5 Exercises 91

7 Second Degree Congruences 93
7.1 The Legendre Symbol 94
7.2 The Law of Quadratic Reciprocity 98
7.3 The Jacobi Symbol 100
7.4 Euler Pseudoprimes 103
7.5 Solving Quadratic Congruences Modulo m 104
7.6 Exercises 110

8 Information Theory 111
8.1 Entropy I l l
8.2 Perfect Secrecy 114
8.3 Unicity Distance 115
8.4 Some Obsolete Ciphers 117
8.5 The Entropy of Number Theoretic Ciphers 121
8.6 Exercises 122

9 Groups, Rings and Fields 125
9.1 Groups 125
9.2 Simple Properties of Groups 127
9.3 The Baby-Step-Giant-Step Algorithm 130
9.4 Rings and Fields 132
9.5 Polynomials 133
9.6 Algebraic Number Theory 137
9.7 Exercises 140

10 Exponential Methods of Factoring Integers 143
10.1 Fermat's Difference of Squares Method 143
10.2 Pollard's Rho Method 146
10.3 Pollard's p - 1 Method 149
10.4 Square Form Factorization 151
10.5 Exercises 153

11 Finding Large Primes 155
11.1 Stronger Probable Prime Tests 156
11.2 Lucas Probable Prime Tests 160
11.3 Rigorous Proof of Primality 165
11.4 Prime Proofs for Arbitrary Large Integers 169
11.5 Exercises 169

Contents xiii

12 Elliptic Curves 171
12.1 Definitions and Examples 171
12.2 Factoring with Elliptic Curves 176
12.3 Primality Proving with Elliptic Curves 181
12.4 Exercises 182

13 Subexponential Factoring Algorithms 185
13.1 Factoring with Continued Fractions 185
13.2 The Quadratic Sieve 190
13.3 Variations of the Quadratic Sieve 193

13.3.1 Large Primes 193
13.3.2 Multiple Polynomials 194
13.3.3 The Self-Initializing Quadratic Sieve 195

13.4 The Number Field Sieve 196
13.5 Exercises 201

14 Computing Discrete Logarithms 203
14.1 Shanks' Baby-Step-Giant-Step Method 204
14.2 Pollard's Methods 204

14.2.1 The Rho Method for Discrete Logarithms 204
14.2.2 The Lambda Method for Discrete Logarithms 205

14.3 Discrete Logarithms via Index Calculus 206
14.4 Other Fast Methods for the Group Rm 207
14.5 Exercises 210

15 Random Number Generation 211
15.1 Linear Feedback Shift Registers 212
15.2 A Quadratic Residue Random Number Generator 215
15.3 Hash Functions 216
15.4 Generating Truly Random Numbers 217
15.5 Exercises 218

II The Cryptographic Algorithms 219

16 Private Key Ciphers 221
16.1 Rijndael, the Advanced Encryption Standard 221

16.1.1 Byte Arithmetic in Rijndael 222
16.1.2 Word Arithmetic in Rijndael 224
16.1.3 The Structure of Rijndael 225
16.1.4 The Key Schedule of Rijndael 227
16.1.5 Summary of Rijndael 227

16.2 The Pohlig-Hellman Cipher 228
16.3 Elliptic Curve Pohlig-Hellman 228
16.4 Exercises 230

XIV Contents

17 Public Key Ciphers 231

17.1 Rivest-Shamir-Adleman 231
17.2 Massey-Omura 232
17.3 Elliptic Curve Massey-Omura 233
17.4 ElGamal 233
17.5 Elliptic Curve ElGamal 234
17.6 Rabin-Williams 235
17.7 Exercises 237

18 Signature Algorithms 239
18.1 Rivest-Shamir-Adleman Signatures 239
18.2 ElGamal Signatures 240
18.3 Rabin-Williams Signatures 241
18.4 The Digital Signature Algorithm 242
18.5 Exercises 244

19 Key Exchange Algorithms 245
19.1 Key Exchange Using a Trusted Server 245
19.2 The Diffie-Hellman Key Exchange 248

19.3 The X.509 Key Exchange 249
19.4 Exercises 251

20 Simple Protocols 253
20.1 Bit Commitment 253
20.2 Mental Poker 253
20.3 Oblivious Transfer 255
20.4 Zero-knowledge Proofs 256
20.5 Methods of Sharing Secrets 258

20.5.1 Secret Splitting 258
20.5.2 The Lagrange Interpolating Polynomial Scheme 258
20.5.3 The Asmuth and Bloom Threshold Scheme 260

20.6 Blind Signatures 261
20.7 Exercises 261

21 Complicated Protocols 263
21.1 Contract Signing 263
21.2 Secure Elections 265
21.3 Electronic Cash 268

21.3.1 Electronic Cash According to Chaum 268
21.3.2 Electronic Cash According to Brands 271

21.4 Exercises 274

Contents xv

22 Complete Systems 275
22.1 Kerberos 275
22.2 Pretty Good Privacy 277
22.3 Exercises 278

III Methods of Attack 279

23 Direct Attacks 281
23.1 Try All Keys 281
23.2 Factor a Large Integer 283
23.3 Solve a Discrete Logarithm Problem 284
23.4 Timing Attacks 286
23.5 Exercises 287

24 Exploiting an Error 289
24.1 Key Management 289
24.2 Reuse of a Key 290
24.3 Bad Parameter Choice 291
24.4 Partial Key Exposure 293
24.5 Computer Failure 293
24.6 Exercises 294

25 Active Attacks 297
25.1 Force a User to Make a Mistake 297
25.2 Man-in-the-Middle Attacks 298
25.3 Birthday Attacks 300
25.4 Subliminal Channels 300
25.5 Exercises 301

References 303

Index 311

http://taylorandfrancis.com

Part I

Mathematical Foundations
of Cryptanalysis

http://taylorandfrancis.com

Chapter 1

Terminology of
Cryptography

This chapter introduces the basic facts of cryptography. Refer to Denning
[36] for more basic information on cryptography.

1.1 Notation
Cryptography is the study of secret writing. A cipher is a way of hiding
ordinary text, called plaintext, by transforming it into ciphertext. This
process is called enciphering or encryption of the plaintext into ciphertext.
The reverse process is called deciphering or decryption. The following
figure illustrates this terminology.

Ciphers are divided into two categories: substitution and transposition ci­
phers. Substitution ciphers replace letters or larger blocks with substitutes,
usually of the same length. In a simple substitution cipher, the same al­
phabet is used for plaintext and ciphertext, and a fixed permutation of this
alphabet gives the substitution rule. As an example, suppose the letters of
the alphabet are arranged in a circle (with A following Z) and a message is
encrypted by replacing each plaintext letter by the fifth letter after it in the

3

4 Cryptanalysis of Number Theoretic Ciphers

circle. Thus, the message "SECRET" would be enciphered as "XJHWJY."
Decryption is performed by replacing each ciphertext letter by the fifth letter
before it in the alphabet circle. This type of cipher, in which the alphabet is
rotated, is called a Caesar cipher because Julius Caesar used it.

The letters in the ciphertext of a transposition cipher are the same let­
ters, with the same frequencies, as the letters in the plaintext, but they are
rearranged. A simple example of a transposition cipher uses a matrix. The
plaintext and ciphertext are broken into blocks with length equal to the num­
ber of entries in the matrix. A message is enciphered by writing each block
of plaintext into the matrix by rows and reading a ciphertext block out of the
matrix by columns backwards. For example, suppose we use a 2 x 3 matrix
to encipher the message "SECRET," which has only one block. We form the
matrix

S E C
R E T

and read the ciphertext "CTEESR." Decryption is performed by writing each
ciphertext block into the matrix by columns backwards and reading the plain­
text block by rows.

Product ciphers are created by the composition of several ciphers whose
types alternate between substitution and transposition. Substitution and
transposition ciphers each have certain weaknesses which may be overcome
by composing them in this alternating fashion. To give a simple example,
compose the two ciphers above, using the Caesar cipher first. The plaintext
"SECRET" is first changed into "XJHWJY." This is written into the matrix

X J H
W J Y

and the ciphertext is "HYJJXW." The Data Encryption Standard, DES, and
Rijndael are two well known examples of product ciphers.

Both encryption and decryption are controlled by keys. The key for a
transposition cipher is the fixed permutation of the letters in a block. The
key for a simple substitution cipher is the fixed permutation of the alphabet.
In the simple case of the Caesar cipher, the key is the amount of shift of the
alphabet.

1.2 Types of Attacks
Suppose E and D are the prototype encryption and decryption methods before
the key is specified. When the key is K, the encryption and decryption
functions, obtained by specifying K in E and D, are often written EK and
DK, respectively. Thus we would write C = EK(M) to mean that C is the
ciphertext obtained when the plaintext M is enciphered with key K. Likewise,
M — DK(C) means C was deciphered using the key K to give M.

Terminology of Cryptography 5

A fundamental property shared by all ciphers is that DK(EK(M)) — M
for every M. This equation says that if you encipher a message M with key
K, then you can decipher it, using the same key, and recover M.

In general, a cipher must be easy to use, the functions EK and DK must
be fast for all keys K, and the security of the cipher should depend only
on the secrecy of the keys and not on the secrecy of the methods E and D.
This last requirement is needed because the methods may be public or spies
may acquire them, but keys can and should be changed frequently. In some
ciphers, all keys of a given length are equally good. But in other ciphers,
one must choose a key having special properties in order for it to work or be
secure. The first requirement above implies that it should be easy to select a
key with any required properties.

Crypt analysis is the study of attacks on ciphers. Methods of attack may
be classified into several general types based on what information is known
and what is unknown to the cryptanalyst.

In a ciphertext-only attack, only the ciphertext is known, although often
the language of the plaintext and the type of cipher are also known. The goal
of the cryptanalyst is to find the plaintext and the key. This is the most
difficult type of attack. Sometimes the cryptanalyst has only a string of bits
to work with.

In a known-plaintext attack, the cryptanalyst is given some ciphertext
and the corresponding plaintext. For example, it may be known that all
messages from Alice to Bob begin with a standard header. In this case the
first part of each ciphertext can be deciphered because it is always the same.
The goal is to find the key so that other ciphertext may be deciphered.

In a chosen-plaintext attack, the cryptanalyst may specify some plain­
text, perhaps even a meaningless message, and somehow learn the correspond­
ing ciphertext. This feat may be accomplished by tricking the cipher machine
operator into enciphering a given message or by capturing a cipher chip with
an unreadable key etched into it, for example. The goal is to find the key.

Public-key ciphers, described in the next section, give rise to a chosen-
ciphertext attack, in which the cryptanalyst may specify some ciphertext
and learn the corresponding plaintext. Again the goal is to find the key.
Although the plaintext obtained might not be a meaningful message it may
still aid in finding the key.

A good cipher should resist all of these kinds of attack. Specifically, it should
be computationally infeasible for a cryptanalyst to do any of the following,
no matter how much ciphertext is given.

1. Find M given C.

2. Find DK given C or C and the corresponding M.

3. Construct C so that DK{C) is any meaningful message.

4. Find EK given C or C and the corresponding M.

6 Cryptanalysis of Number Theoretic Ciphers

The first two requirements ensure the secrecy of the cipher and messages
enciphered with it. Requirements 1 and 2 say that a ciphertext-only attack
should be hard. Requirement 2 says that a known-plaintext attack should be
hard.

The last two requirements ensure the authenticity of messages enciphered
with the cipher. Requirement 4 says that no attacker can discover the enci­
phering function, use it to encipher a phony message (such as a bank transfer),
and have the recipient accept it as authentic. Requirement 3 says that no at­
tacker can create ciphertext which would decipher into a meaningful plaintext,
although this plaintext may be strange and even unknown to the attacker.
Both say that if an active attacker replaces one ciphertext with another, the
change will almost certainly be detected.

1.3 Public Key Ciphers
Until the 1970's, cryptographers assumed that if one knew an enciphering
function EK, including its key K, then one could easily deduce the corre­
sponding deciphering function DK- AH ciphers invented until then were of
this type. In 1976, Diffie and Hellman [40] proposed a new type of cipher,
called public-key encryption, for which this drawback did not hold. Un­
til [40] appeared, it was generally assumed that this drawback could not be
removed. Each user of the new cipher would have an enciphering function,
which would be made public, and a deciphering function, which would be kept
secret. When Alice wanted to communicate secretly with Bob, she would find
Bob's public enciphering function in a directory, encrypt her message using
that function, and send it to Bob. Bob could decrypt it because he knew
his secret deciphering function. But no eavesdropper could read the message
because he would not know Bob's secret deciphering function.

In actual public-key ciphers both methods E and D are public and the
same for every user. However, the two functions for one user have different
keys. The encryption key is public and the decryption key is secret. It is not
computationally feasible to deduce the decryption key from the encryption
key, or vice versa. This difference in keys led Simmons to this classification of
ciphers: If the same key is used for both encryption and decryption, the cipher
is called a one-key or symmetric cipher. If two different keys are used, and
neither can be deduced easily from the other, the cipher is called a two-key
or asymmetric cipher. Symmetric ciphers are also called conventional or
secret key ciphers. All public-key ciphers are asymmetric ciphers.

If Alice uses a public-key cipher, her encryption and decryption functions
would be written EA and DA- Here the "A" denotes "Alice," not a key as it
would for be a symmetric cipher. These functions would have the property
that DA(EA(M)) = M for every plaintext M. Likewise, Bob would have the
public enciphering function EB and a secret deciphering function D5 .

Recall that symmetric ciphers provide authentication in addition to secrecy.

Terminology of Cryptography 7

If Alice and Bob share a key K for a one-key cipher, then no one else will know
K. If Bob receives an encrypted message allegedly from Alice and successfully
decrypts it using key K, then Bob can be sure that the message really came
from Alice because only Bob and Alice know K.

Public-key ciphers, as described above, provide secrecy but not authenti­
cation. Suppose Alice, Bob, and others use public-key ciphers. Alice sends a
message M to Bob as EB(M) and Bob deciphers it by applying DB- However,
anyone who knows Bob's public enciphering function EB could write a mes­
sage signed, "from Alice," encipher it with EB and send it to Bob. When Bob
receives an encrypted message allegedly from Alice and successfully decrypts
it using DB, he cannot be sure it came from Alice.

Fortunately, it is easy to add authentication to public-key ciphers. Alice
can "sign" her message to Bob by applying her secret deciphering function
to it. She would send the signed ciphertext C — EB(DA(M)) to Bob, along
with a plaintext note saying that this message came from Alice. Bob would
apply DB to C and obtain DA(M). Then Bob would locate Alice's public key
EA from a secure source and apply EA to DA(M) and obtain M. Note that
we require DB(EB(M)) = M for every M, not just meaningful M. Several
public-key ciphers enjoy this property.

If the plaintext M were not secret, but Alice wanted Bob to be certain that
it came from her, then Alice could merely send DA(M) to Bob, along with
a plaintext note saying it was from her. Then Bob, or anyone else for that
matter, could apply the public EA to DA{M) and read M. In this case, Alice
has signed M but not hidden it. Public-key ciphers separate authentication
from secrecy.

Diffie and Hellman gave no example of the public-key ciphers they proposed.
The first example was given two years later by Rivest, Shamir and Adleman
[97] and is called the RSA cryptosystem. Many more public-key ciphers have
been invented since then.

I.4 Block and Stream Ciphers
Ciphers are classified according to how the key is used to encipher the plaintext
M. Block ciphers break M into blocks M i , M 2 , . . . of equal length and
encipher each block with the same key, so that the ciphertext is EK(M) =
EK(MI)EK(M2) — The transposition cipher which uses a matrix and the
Caesar cipher are examples of block ciphers. The block lengths are 1 letter
for the Caesar cipher and the number of letters that fit in the matrix for the
transposition cipher. DES is a block cipher with a block length of 64 bits.
Usually the block length is several letters.

Stream ciphers have a key expressed as a key stream K = fcifefe
These ciphers break the plaintext M into pieces, M = mira2m3 . . . , which
may be letters or bits, and encipher the z'-th piece m¿ with the i-th. piece ki
of the key, so that the ciphertext is EK(M) = Ekl {mi)Ek2{m2)Ek3{m^)

8 Cryptanalysis of Number Theoretic Ciphers

A stream cipher is called p e r i o d i c if its key repeats after d pieces, for some
fixed d.

E x a m p l e 1.1

Let Ek denote encryption by a Caesar cipher with the alphabet rotated by
k letters, where 1 < k < 26. Let the key K be a sequence of five integers
fci,..., &5, each between 1 and 26. We can create a periodic stream cipher with
period d = 5 by using the five Caesar ciphers Ekl, • •. , Ekb in a round-robin
fashion to encipher the successive letters of the plaintext. If M = mirri2m3 • •.,
then the ciphertext is

EK{M) = Ekl(mi)Ek2(m2) • . . Ek5(m5)Ekl(Tn6)Ek2(m7)....

It is convenient and practical to use the k-th letter of the alphabet to represent
the number k between 1 and 26. Then one must remember only a five-letter
word for the key, rather than five numbers. This cipher (with the key expressed
in letters) is called a Vigenère cipher.

The key stream of a s tream cipher need not be periodic. If it is not periodic,
then it should be as long as the plaintext. A nonperiodic key stream may be
created in two ways: If it is generated in some fashion independent of M , the
cipher is called a s y n c h r o n o u s s t r e a m cipher. But if the key stream is
computed from the ciphertext already produced, the cipher is called a self-
s y n c h r o n o u s s t r e a m cipher .

Example 1.2

To give a simple example of a synchronous stream cipher, let us build on the
Caesar cipher Ek with variable key letter k of the previous example. Suppose
the sender and receiver agree on a standard text and a position in that text.
Let ki be the i-th letter of the standard text, beginning at the position. Then
encipher M = mxrriïmz . . . as EK(M) = Ekl (mi)Ek2(m2)Ek3(rri3) This is
called a running key cipher.

Many stream ciphers exclusive-or the plaintext and key to form the cipher-
text . The exc lus ive -or operation 0 is defined on bits by

0 0 0 = 1 0 1 = 0, and 0 0 1 = 1 0 0 = 1.

Note tha t x 0 y = y 0 x and x 0 (y 0 z) — [x 0 y) 0 z for all x, y and z. Note
also tha t x 0 x = 0 and x 0 0 = x for all x. A useful property of exclusive-or,
which follows from the ones just s tated, is tha t x 0 y 0 y = x for all x and y.
We also write X 0 Y for the bitwise exclusive-or of the bit strings X and Y
having the same length. If M = mim2ms . . . and the key stream is &1&2&3 • • -,
and the pieces ra¿ and ki all have the same length in bits, then one can define
the ciphertext C = C1C2C3 . . . by c¿ = m¿ 0 fc¿ for each i. It follows from the
useful property above tha t the deciphering rule is the same as for enciphering:

Terminology of Cryptography 9

"Exclusive-or with the key." In symbols, this means m¿ = c¿ © fc¿. It is true
because (ra¿ 0 fc¿) 0 ki = m¿.

In other synchronous stream ciphers, the key stream may be produced by
a random number generating procedure or by special hardware. Sometimes
a block cipher is used to generate the key stream. One way this may be
done is to encipher a given block repeatedly. Suppose EK is a block cipher
with key K. Pick a random block #0 and repeatedly encipher it to generate
Bi — EK(BÍ-I) for i > 1. Let ki be the first eight bits of Bi (or however
many bits are needed). Use ki as the key stream for the synchronous stream
cipher. The key to the stream cipher consists of the initial block #0 and the
key K for the block cipher. This method of using a block cipher to produce
a key stream is called output-block feedback mode.

Another way to use a block cipher to produce a key stream is counter
mode. In it, one chooses a random number R which fits in one block of the
block cipher EK- Then ki is the low-order eight bits (or some other selected
bits) of EK(R + i)- The key to the stream cipher is the random number R
and the key K.

Here is a trivial example of a self-synchronous stream cipher to illustrate the
idea. Suppose M — mim2ms . . . , where the pieces m¿ are bytes or characters.
Choose an initial key byte k\ and encipher mi as c\ — mi 0 fci. Now define
ki — Ci-i for i > 1 and encipher with the rule c¿ = m¿ 0 ki = m¿ 0 c¿_i. The
point is that the (nonrepeating) key stream is generated from the previous
ciphertext. Of course, if a cryptanalyst knew the enciphering rule (but not
the key), he could easily decipher all but the first byte of the message by
computing rrii — Ci ® Ci-\ for i > 1.

One can design a slightly better self-synchronous stream cipher by disguis­
ing the previous ciphertext piece c¿_i before using it to encipher the next
plaintext piece. For example, one may let ki = i£#(c¿_i), where EK is a
block cipher. Then the key for the self-synchronous stream cipher consists of
the initial key piece k\ and the key K for the block cipher E. Of course, K is
far more important than hi, because any cryptanalyst who discovers K can
read all but the first message piece mi .

Synchronous stream ciphers are simpler than self-synchronous stream ci­
phers. However, the latter have some advantages over the former. If cipher-
text is broadcast by radio, and interference changes a few bits, then users
of a synchronous stream cipher would have to resynchronize before correct
deciphering could resume. But if a self-synchronous stream cipher were used,
then deciphering could continue with just a few characters lost. If ciphertext
is stored in a file, then the file can be deciphered only from the beginning
when a synchronous stream cipher is used. But a file enciphered with a self-
synchronous stream cipher can be read from any starting point—just start
reading a few characters before the desired portion to get the correct initial
keys—and one could even change the end of the file without disturbing the
rest of it.

10 Cryptanalysis of Number Theoretic Ciphers

1.5 Protocols
Cryptographic ideas are not limited to just enciphering and deciphering text.
We have already mentioned that digital signatures provide authentication.
We will discuss many protocols, which are dialogs using cryptographic tech­
niques to accomplish some purpose. Here are a few examples.

The Diffie-Hellman key exchange protocol allows two users to choose a
common key for a symmetric cipher while someone eavesdrops on them. The
eavesdropper does not learn their key from the messages sent between them.

Electronic cash is a system for purchasing goods electronically that has
many of the same properties as cash. It is not a credit card. You withdraw
electronic cash from your bank account. You can send it securely through
computer networks. You can spend it with a merchant without communica­
tion with the bank during the transaction. Neither the bank nor the merchant
will know who you are. You can spend the money only once.

A zero-knowledge proof is a dialog between two people, the Prover and the
Verifier, in which the Prover convinces the Verifier that she knows a certain
secret, but without revealing to the Verifier (or to an eavesdropper) any part
of the secret. After the protocol concludes, neither the Verifier nor an eaves­
dropper could masquerade as the Prover and convince someone else that they
know the secret.

Other protocols allow users to toss coins, play poker, vote or sign contracts
over computer networks. The goal of these protocols is to make the exchange
just as fair as if the people were together in the same room using coins, cards,
ballots or pens to do these things.

1.6 Exercises
1. In the discussion of "signatures" using public-key ciphers, we said that

if Alice signed a message to Bob, he could verify that it came from
her by obtaining her public key EA from a "secure source." Design a
system that provides a secure source for public keys. Keep in mind that
network addresses can be spoofed, so that if Bob tries to get EA from
Alice's home page he may instead receive a phony EA from Irene the
Impersonator, who actually sent the signed message. If EA were signed
by someone Bob trusted, then he could be certain it is authentic. But
suppose Bob doesn't know Alice or anyone who knows her. Design a
system that provides a chain of signatures of public keys which could be
checked and which provides a secure source for anyone's public key.

2. Your friend has a secret file enciphered with a synchronous stream cipher
using exclusive-or as the cipher function. You would like to read the file.
You have made a copy of the ciphertext. One day your friend mentions
that the "L" key on his terminal sticks, so that sometimes he gets "LL"
when he meant "L." He says this happened once when he originally

Terminology of Cryptography 11

typed the secret file, but that he has just corrected it. You run to your
computer and make a new copy of the ciphertext. It is one character
shorter than the copy you made earlier. Since the two files agree for
the first twelve characters, and differ thereafter, you suspect that the
same key stream was used to encipher the file both times. Assuming
this is the case, how much of the file can you decipher? Give an explicit
algorithm for deciphering the part you can decipher.

3. Derive the decryption function and comment on cryptographic security
of the following encryption scheme: Let a key = feo,..., fe&-i have 6 bits,
and let the bits of plaintext be mo, mi, m<i, The encryption function
produces ciphertext bits Co, ci, C2,..., where c¿ = c¿_i 0 fe¿ mod 6 © m>i
and c_i is understood to be 0. What type of cipher is this?

4. You are the Chief Information Officer of a large organization whose n
members must communicate securely. Your task is to decide whether to
accomplish this goal via symmetric or asymmetric encryption. If sym­
metric encryption is used, each pair of members must share a unique
key, and each member of the pair must store a copy of it on her work­
station. If asymmetric encryption is used, each member must have a
unique public key stored in a public directory on her workstation. For
each type of encryption, how many copies of keys, total for all members,
must be stored somewhere? Which type of encryption will you choose
for your organization?

http://taylorandfrancis.com

Chapter 2

Probability Theory

This chapter introduces some basic ideas from Probability Theory. The no­
tion of probability provides a quantitative measure of our expectation of the
likelihood of future events. See Feller [43] for more information about this
subject.

2.1 Definitions
The reader likely has some experience with games of chance and through them
has acquired an intuitive grasp of the notion of probability. The probability
in this book is discrete.

Suppose an experiment has a set X — { x i , . . . , xn} of n possible outcomes.
Each time the experiment is performed exactly one of the outcomes happens.
Let each outcome be assigned a real number between 0 and 1, called the
probability of that outcome. The sum of the probabilities of all of the
outcomes must be 1. Write p(xi) for the probability of X{. So, 0 < p{x\) < 1
for each i and Y^i=i P(xi) ~ 1-

A subset E of X is called an event. The event E "happens" if the outcome
of the experiment is in E. The probability of an event E is defined to be the
sum of the probabilities of the outcomes in E, that is, p(E) — Y1XGEP(X)'

It is easy to see that 0 < p(E) < 1 and that the probability that E doesn't
happen is 1 — p(E).

In the examples in this book it often occurs that all n outcomes x\ of an
experiment have equal probability. We say the outcomes are equally likely.
In this case, we have p(xi) = 1/n for every i, and if the event E contains
exactly k outcomes, then p(E) = k/n.

When a coin is tossed, there are two possible outcomes, Heads and Tails.
If the coin is evenly balanced and well-tossed, the two outcomes are equally
likely and p(Heads) = p(Tails) = 1/2.

Suppose we are making a known-plaintext attack on a cipher with 1,000,000
possible keys. We are given M and C and must find the key K for which

13

14 Cryptanalysis of Number Theoretic Ciphers

M = DK(C) or C = EK(M) (which are equivalent). If we pick one of the
1,000,000 keys, we can tell whether it is the correct key by testing whether
M — DK{C). If we assume that the keys are equally likely to be chosen, each
key has probability 10~6 of being the correct one.

The event E\ UE2 is the union of the two sets Ei and E2. The event Ei UE2

happens if either of the two events E\ and E2 happens, that is, if the outcome
is in either set. The event E\ D E2 is the intersection of the two sets E\ and
E2. The event E\ H E2 happens if both of the two events E\ and E2 happen,
that is, if the outcome is in both sets.

Events E\ and E2 are called mutually exclusive events if they are dis­
joint sets, that is, E\ fl E2 is empty. If E\ and E2 are disjoint, then the
probability that either E\ or E2 happens is p(E\ UE2) — p{E\) +p(£?2)- As a
simple example of this principle, suppose the keys for the cipher of the preced­
ing paragraph were 6-digit integers. Let us find the probability that the first
digit of the key is either a 2 or a 5. Let E\ be the event, "the first digit is a 2"
and E2 be the event, "the first digit is a 5." Since there are 100,000 six-digit
numbers whose first digit is a 2, p{Ex) = 100,000/1,000,000 = 0.1. Likewise,
p{E2) = 0 . 1 . Since the first digit cannot be both a 2 and a 5, the events are
mutually exclusive and the answer is the sum of these two probabilities, that
is, 0.2.

Suppose E\ and E2 are two events. Suppose p(E2) > 0. We define the
conditional probability of E\ given E2 to be p(Ei\E2) — p{E\f\E<¿) ¡ p{E<¿).
For example, consider the cipher with six-digit integers for keys. Let E\ be
the event, "the first digit is a 2" and E2 be the event, "the first digit is even."
As above, p{E\) = 0.1. Likewise, p{E2) = 1/2 because half of the first digits
are even. However, E\ C E2 because if the first digit is 2, then the first
digit is even. Therefore, E1 n E2 = E1 and p(E1 n E2) = p{Ex) = 0.1. The
conditional probability is p(Ei\Ez) = 0.1/0.5 = 0.2. The formula defining
conditional probability is often used in the form p(E\ flE^) = p(£i | £2)^(^2)•
Note that swapping E\ and E2 givesp(EinE2) — p(E2\Ei)p(Ei). Therefore,
if both p(Ei) > 0 and p(E2) > 0, then p(E2\E1)p(E1) = p(E1\E2)p(E2). We
have proved

THEOREM 2.1 Bayes's theorem
If both p(Ex) > 0 and p(E2) > 0, then

Bayes's theorem provides a good way to compute p(Ei\E2) from p(E2\E\).
Finally, we define independence. Two events E\ and E2 are called inde­

pendent if p{E\\E2) = p(Ei). When both events have positive probability,
Bayes's theorem shows that this equation is equivalent to p(E2¡Ei) = p(E2).
Also, from the form p(Ei n E2) = p(Ei |E2)p(E2), we obtain the symmetric
condition p{Ex H E2) = p{E\) - p(E2) for E1 and E2 to be independent.

Probability Theory 15

The events in the example above are not independent because EiC\E2 = E\
and p{E1 n E2) = p(Ex) = 0.1 / p(E1)p(E2).

Let us use the same cipher with 6-digit integers as keys to give another
example. Assume all 106 keys are equally likely. What is the probability that
the first digit of the key is a 2 and the last digit of the key is a 5? Let E\ be
the event, "the first digit is a 2" and E2 be the event, "the last digit is a 5."
As in the previous paragraph, p{E\) = p(E2) = 0.1 because 100,000 keys have
first digit 2 and the same number have last digit 5. Now 10,000 six-digit keys
have both first digit 2 and last digit 5 because there are 10,000 ways to choose
the other four digits. Therefore, p(Ex n E2) = 104/106 = 0.01 = p{E1)p(E2),
and the events E\ and E2 are independent.

2.2 The Birthday Problem
We begin with some simple results from combinatorial analysis needed to
count outcomes with equal probability.

THEOREM 2.2 Multiple selections
Suppose there are n\ distinct elements a\,..., ani ; n2 distinct elements b\,
. . . , ò n 2 , etc.; up to ns distinct elements x±,...,xna. Then one can form
u\u2 • • • ns ordered s-tuples (a^, 6¿2 , . . . , X{s) containing one element of each
kind.

PROOF Use induction on s. If s = 2, arrange the pairs in a n\ x n2

matrix with entry (a¿, bj) in the z-th row and j-th column. Each pair appears
exactly once and there are n\n2 pairs.

Let s > 2 and suppose the theorem has already been proved for s — 1.
Then one can form n2 - • -ns ordered s — 1-tuples (o¿2, . . . , X{s) containing one
element of each kind other than the first kind. Consider these s — 1-tuples to
be elements of a new kind. By the case s = 2 there are n\ • n2- • -ns pairs
consisting of an a¿ and an element of the new kind. But these pairs are just
ordered s-tuples (a¿x, bi2,..., X{a) containing one element of each kind. I

THEOREM 2.3 Probability of no repetition
If an experiment with n equally likely and independent outcomes is performed
k times, where 1 < k < n, then the probability that all k outcomes differ is

PROOF To count the number of possible outcomes when the experiment
is performed k times, apply the preceding theorem with s = k and n\ =
n2 — • • • = ns = n. The total number of possible outcomes is then nk.

16 Cryptanalysis of Number Theoretic Ciphers

To count the number of outcomes with all k outcomes different when the
experiment is performed k times, apply the preceding theorem with s — k
and n\ = n, ri2 — n — 1, . . . , ns = n — k + 1. This is correct because there
are n allowed outcomes for the first performance of the experiment. Then
its outcome may not be repeated, so there are n — 1 allowed outcomes for
the second performance of the experiment, and so forth. The total number
of possible outcomes without repetition is then n(n — 1)••• (n — fe + 1). The
probability of all outcomes differing is the quotient in the statement of the
theorem. I

We now consider variations of the following problem which have important
applications in certain attacks on cryptographic functions.

What is the smallest positive integer k so that the probability is > 1/2 that
at least two people in a group of k people have the same birthday?

We begin by making a couple of simplifications. First, we ignore Leap
Year's Day and assume every year has 365 days. Then we assume that the
birth rate is constant throughout the year so that every one of the 365 days is
equally likely to be a birthday. We also assume that the birthdays of different
people are independent.

We will first find the probability Q(k) that no two people in a group of k
people have the same birthday, that is, all k people have different birthdays.
We apply Theorem 2.3. The experiment is finding the person's birthday.
There are n = 365 possible outcomes. Repeating the experiment k times
means finding the birthdays of k different people. Theorem 2.3 tells us that
the probability is

Thus, the probability that at least two of the k people have the same birthday
is

The following table shows how P(k) increases.

Probability Theory 17

Table 1. Probability that at least two of k people have the same birthday.

*

2
3
4
5
6
7
8
9
10
11
12
13
14

P(k)

0.0027
0.0082
0.0163
0.0271
0.0404
0.0562
0.0743
0.0946
0.1169
0.1411
0.1670
0.1944
0.2231

k

15
16
17
18
19
20
21
22
23
24
25
26
27

P(k)

0.2529
0.2836
0.3150
0.3469
0.3791
0.4114
0.4436
0.4756
0.5072
0.5383
0.5687
0.5982
0.6268

k

28
29
30
31
32
33
34
35
36
37
38
39
40

P(k)

0.6544
0.6809
0.7063
0.7304
0.7533
0.7749
0.7953
0.8143
0.8321
0.8487
0.8640
0.8782
0.8912

These values (and a few more) are plotted in Figure 2.1.

The table shows that the answer to the question is that 23 is the smallest
size of a group of people so that, with probability > 1/2, at least two have
the same birthday.

Warren Weaver tells a relevant anecdote on page 135 of his book [119].
During World War II, he was explaining the birthday problem to some high-
ranking military men at a dinner. They didn't believe that with only 22

18 Cryptanalysis of Number Theoretic Ciphers

or 23 people in a room, there was a 50% chance of two people having the
same birthday. One officer noted that there were exactly 22 people at their
table and proposed a test of the theory. Each person at the table stated
his birthday. They were all different. Weaver was disappointed. Then their
waitress piped up, "Excuse me, but I am the twenty-third person in this room
and my birthday is May seventeenth, the same as the General over there."

Now we generalize the birthday problem, which is the case n — 365 of the
following problem.

Suppose 1 < k < n and we choose k integers between 1 and n so that
the choices are independent and all n integers are equally likely to be chosen.
What is the probability P(n, k) that at least two of the k integers are the
same? What value of k makes this probability closest to 1/2?

Reasoning just as for birthdays, we find

Write this as

Now we have answered the first question. To answer the second, we must
estimate the probability function P(n,k). To do this, note that 1 — x < e~x

for all x > 0 and 1 — x « e~x when x is small.
This approximation is illustrated by the graph in Figure 2.2.

Figure 2.2 Graphs of y — 1 — x and y = e x.

Probability Theory 19

We will use this approximation for each of the factors 1 — (r/n) in the
product above. We have 1 < r < k - 1; so, we are assuming that every
x — r/n is small. This will be so provided k is small compared to n.

The approximation 1 — (r/n) « e~(r/n) gives

P(n, fc) « 1 - e-1/ne-2/ne-3/n x • • • x e ^ " 1) / "

or
P(n,k) « 1 - e - (l /"+2/n+3/n+.- .+(*-l) /n)

or
P (n , A :) « l - e - ^ - 1) / (2 n) .

We will have P(n, k) = 1/2 when 1/2 = i-e-Hk-i)/(2n) o r 2 = e*(*-i)/(2n)?

that is, when In2 = k(k - l) / (2n).
We make another approximation. When A: is large, the percentage difference

between k and k — 1 is small, and we may approximate k — 1 « k. This gives
fc2 « 2n In 2 or

k « v/2(hi2)ñ « 1.18Vñ.

Note that we have assumed that "k is large" and "k is small compared to
n." This means that n must be quite large for the approximations to work.

For n = 365, we find k « 1.18\/365 « 22.54, or k « 23.
In fact, this is correct, and we see that n = 365 and k — 23 are large enough.
We state the general result as a theorem. The notation "<<" means "is

much less than."

THEOREM 2.4 The birthday paradox
Suppose 1 « k « n and we choose k integers between 1 and n so that

the choices are independent and all n integers are equally likely to be chosen.
The probability P(n,k) that at least two of the k integers are the same is
approximately 1 — e-Hk-i)/(2n) ^ The_vahie of k that makes this probability
closest to 1/2 is approximately ^/2(ln2)n « 1 . 1 8 ^ .

We now study the overlap between two sets. Let 1 < k < n. Suppose
we choose two sets of k integers between 1 and n so that all 2k choices are
independent and all n integers are equally likely to be chosen every time.
What is the probability R(n, k) that the two sets overlap, that is, at least one
of the n values appears in both sets?

We assume k is small enough (k < y/n) so that the k integers chosen from
each set are probably all different. (A few duplicates won't hurt this analysis.)

The probability that one given element of the first set does not match any
element of the second set is (1 — l/n)k.

The probability that the two sets are disjoint is

20 Cryptanalysis of Number Theoretic Ciphers

We will have R(n, k) = 1/2 when
or

We state this result as a theorem.

THEOREM 2.5 Probability of overlapping sets
Suppose 1 « k « n and we choose two sets ofk integers between 1 and n

so that all 2k choices are independent and all n integers are equally likely to be
chosen every time. The probability R(n, k) that the two sets overlap, that is,
at least one of the n values appears in both sets, is approximately l — e~k ¡n.
The value of k that makes this probability closest to 1/2 is approximately
y/(ln2)n « 0 . 8 3 ^ .

2.3 Random Variables
The sample space is the set of all possible outcomes E, each of which has
a probability p(E). A random variable is a real-valued function r defined
on a sample space. If #i , X2, • • • are all of the possible values of r(E) (in this
book, this set will be finite), then the probability distribution of r is the
function / defined by f(xi) = p{r(E) = x¿), the probability that r(E) = x¿.
That is, f(xi) is the sum of p(E) for all outcomes E for which r(E) = X{.
Several random variables r\,..., r& are called mutually independent if for
any possible values 2/i,...,2/jfe that they could assume, then the probability
that Ti{E) = y i for every 1 < i < k equals the product

Example 2.1

Suppose we toss a fair coin n times and observe the sequence of heads and
tails. The sample space has 2n outcomes E, each an n-tuple of heads and tails,
and each having probability 2~n. Define the random variable r(E) to be the
number of heads in outcome E. Then r(E) is always an integer between 0 and
n. The probability distribution / of r is defined for each integer i between 0
and n, and f(i) is the probability that exactly i heads will appear if a coin is
tossed n times. This number is easily computed to be 2 _ n times the number
of ways of choosing i tosses from n tosses to show heads. The latter number is
the binomial coefficient, and so

Probability Theory 21

Statisticians describe a probability distribution of a random variable in
a concise way by giving some typical values of it. One such value is the
median. The median of the probability distribution / of the random variable
r is a value xm assumed by r(E) so that p(r(E) < xm) < 1/2 and also
p(r(E) > xm) < 1/2. That is, the median xm is chosen so that the probability
of r(E) exceeding or falling short of close to 1/2 as possible. The
median is the "middle value" of r(E).

Another typical value of a random variable and one with more useful math­
ematical properties than the median is the mean, or average, or expected
value.

DEFINITION 2.1 The mean or expected value E(r) of a random
variable r with values X\, x<¿,... and probability distribution f is

If F is a real-valued function defined on the real numbers and r is a random
variable, then F(r) is another random variable, having value F(r(E)) on
outcome E. Its expected value is

The t-th. moment of a random variable r is the expected value of rl. The
variance Var(r) of a random variable r with expected value ¡i is the second
moment of r — p, that is,

(The last equation is an easy theorem.) The nonnegative square root of the
variance of r is called the standard deviation of r. It is a measure of how
much r(E) varies from the mean ¡x.

One can prove the following theorem easily from the definitions.

THEOREM 2.6 Mean and variance of linear combinations and sums
If a and b are constants and r and s are random variables, then
1. E(ar + 6) = aE(r) + b
2. Var(ar + b) = a2Var(r)
3. E(r + s) = E(r) + E(s), and
4. ifr and s are mutually independent, then Var(r + s) = Var(r) + Var(s).

A small variance means that large deviations from the mean are unlikely.
The following theorem makes this statement more precise.

22 Cryptanalysis of Number Theoretic Ciphers

THEOREM 2.7 Chebyshev's inequality
Let r be a random variable with mean ¡i and variance v. For any t > 0,

PROOF The variance is defined as a sum

of nonnegative terms. The sum will not increase if we delete from it all terms
for which \r(E) — ¡i\ <t. Hence,

where the Yl' indicates that summation extends only over those i for which
\r(E) — /¿| > t. Then it is clear that

There are several theorems in probability theory called "laws of large num­
bers" that say roughly that if an experiment is performed many times, then
large deviations from the expected value are unlikely. For example, if one
tosses a true coin a million times, then the number of heads obtained will
probably not be far from 500,000. Here is a simple theorem that says this in
a precise way.

THEOREM 2.8 A law of large numbers
Let r i , r 2 , . . . be a sequence of mutually independent random variables with

the same probability distribution, and therefore the same mean ¡i and variance
v. Defíne a new sequence of random variables sn — X^=i ri- Then for every
e > 0, we have

PROOF By Theorem 2.6, E(sn) = n¡i and Var(sn) = nv. By Chebyshev's
inequality, we have for every t > 0,

When t > en, the left side is less than i;/(e2n), which tends to 0 as n —> oo.

Probability Theory 23

Example 2.2

Let us continue with Example 2.1 and compute the statistics just defined. To
determine the median, recall that the binomial coefficients (n) are symmetric
about n/2: (?) = (n™ ¿) • They increase as i increases from 0 to n/2 and decrease
as i increases from n/2 to n. If n is even, there will be one median, namely, n /2 .
If n is odd, there will be two medians, namely, (n ± l) /2 . Thus, the most likely
number of heads when a coin is tossed n times is n/2 (or the nearest integers
to this number if it is not an integer).

The average or mean or expected number of heads h in n tosses is

The mean is essentially equal to the median for this particular probability dis­
tribution.

The variance of the number of heads is

so, the standard deviation is y/n/2.
We can apply the law of large numbers to this problem if we define random

variables n. Let n be defined on the outcome of the ¿-th coin toss with value
1 if a head appears and 0 if a tail appears. Then the random variable sn of
Theorem 2.8 is the random variable h above and the theorem says that for every
e > 0, we have

We end with one more example, one which describes a situation similar to
one we will see in the chapters on quadrat ic residues and elliptic curves.

Example 2.3

Suppose we again toss a fair coin n times and observe the sequence of heads and
tails. The sample space has 2n outcomes E, each an n-tuple of heads and tails,
and each having probability 2~n. Define the random variable r(E) to be the
number of heads in outcome E minus the number of tails. Then r(E) is always
an integer between — n and n. The probability distribution / of r is defined
for each integer i between — n and n, and f(i) is the probability that exactly
i more heads than tails will appear if a coin is tossed n times. (A value i < 0
means that there were |t| more tails than heads.) Suppose that h heads and t
tails appear in one outcome. Then h -M = n and i = r(E) = h — t. We find
that h = (n + ï)/2. (As h is an integer, this shows that n and i are either both
odd or both even. In particular, if n is odd, then i can never be 0 because 0 is

Cryptanalysis of Number Theoretic Ciphers

even.) The probability of having i more heads than tails in n tosses is the same
as the probability of having exactly (n 4- i)/2 heads. As in Example 2.1, this
probability is seen to be f(i) = 2 - n ((n _¿ \ / 2) provided i has the same parity
(odd or even) as n, and f(i) = 0 if i and n have opposite parity.

The median is easily seen to be 0 because of the symmetry property

1. Dice are six-sided cubes with the numbers 1 through 6 on the faces.
When a die is tossed, each of the six numbers has equal probability of
appearing. Suppose two dice are tossed.

a. Wha t is the probability tha t a 2 and 5 will show?

b . W h a t is the probability tha t the sum of the two numbers will be 9?

c. If the sum of the two numbers is 5, what is the probability tha t one
of them will be a 1?

d. Wha t is the probability tha t the two numbers will be different?

e. Find the mean, median, variance and s tandard deviation of the sum
of the two numbers.

If n is even, then 0 will be the only median. If n is odd, both +1 and —1 will
be medians.

The expected value of r is

by the symmetry property. Thus, as common sense suggests, the numbers of
heads and tails will balance on average.

We could have derived the mean from the mean of the number h of heads
computed in Example 2.2 and Theorem 2.6. Since r = 2h — n,

Likewise, the variance of the number of heads minus the number of tails is

so, the standard deviation is y/ñ.
We can apply the law of large numbers to this problem if we define n on the

outcome of the i-th coin toss to have value 1 if a head appears and —1 if a tail
appears. Then the random variable sn of Theorem 2.8 is the random variable
r above and the theorem says that for every e > 0, we have

2.4 Exercises

24

Probability Theory 25

2. A bag contains 1000 white balls labeled 1,2, . . . , 1000 and another bag
contains 1000 black balls labeled 1 ,2 , . . . , 1000.

a. Suppose 20 balls are removed from each bag. What is the probability
that two of the 40 balls have the same label?

b. Approximately what is the least number k of balls you have to remove
from each bag (the same number k of balls from each bag) to make the
probability of getting two balls with the same label greater than 1/2?

3. What is the probability that all the students in a class of 35 have different
birthdays?

4. A professor posts grades for a class using the last four digits of each
student's college identification number. For what size of class is there
an even chance that two students have the same four-digit code?

5. Assuming that each month has the same probability of being born in it,
what is the probability that two people in a family of five were born in
the same month?

6. Assume that the city of Lafayette has 105 people, and that all of these
people walk past a giant bin and each one drops in a slip of paper having
that person's unique identification. The contents of the bin are mixed,
and then all the people march by again, each drawing one slip out of
the bin.

a. What is the (approximate) probability that nobody draws his/her
own slip?

b. Same question as part a., but this time every person puts the slip
back immediately after drawing and reading it.

7. Prove Theorem 2.6.

http://taylorandfrancis.com

Chapter 3

Divisibility and Arithmetic

This chapter concerns the simplest part of number theory, which is the study
of integers or whole numbers. We also tell how to perform arithmetic with the
very large integers used in cryptography. The reader may consult one of the
many excellent number theory texts such as [78], [98] or [51] for more details
or alternate proofs. The text by Rosen [99] has the same computational flavor
as this book.

3.1 Divisibility

DEFINITION 3.1 When a and b are integers and a / O w e say a divides
b, and write a\b, ifb/a is a whole number.

This is nearly the same as saying that a divides b if there is a whole number
k so that b = ka. The only difference is that this definition would allow 0 to
divide 0, while 0 does not divide 0 according to Definition 3.1.

THEOREM 3.1 Transitivity of divisibility
Let a, b and c be integers. If a\b and b\c, then a\c.

PROOF By hypothesis, the two quotients b/a and c/b are whole numbers.
Therefore their product, (b/a) x (c/b) = c/a, is a whole number, which means
that a\c. I

Theorem 3.1 says that the relation "divides" is transitive.

THEOREM 3.2 Divisibility of linear combinations
Let a, b, c, x and y be integers. If a\b and a\c, then a\bx + cy.

27

28 Cryptanalysis of Number Theoretic Ciphers

PROOF We are given that the two quotients b/a and c/a are whole
numbers. Therefore the linear combination (b/a) xx+(c/a) x y — (bx + cy)/a
is a whole number, which means that a\(bx + cy). I

THEOREM 3.3 The division algorithm
Suppose a > 0 and b are two integers. Then there exist two unique integers

q and r such that 0 < r < a and b = aq + r.

PROOF First we show that q and r exist. Let q be the greatest integer
< b/a. Then b/a = q + a, where 0 < a < 1. We have b = a(q + a) = aq + aa.
Now r = aa must be an integer because it is the difference b — aq of two
integers. Also, 0 < r < a because 0 < a < 1.

Now we show that q and r are unique. Suppose that we had b = aq + r
with 0 < r < a and also b = aq' + r' with 0 < r' < a. Subtracting the two
equations and dividing by a gives

q — q' = (r' — r)/a.

Subtracting a > r > 0 from 0 < r' < a and dividing by a gives

- 1 < (r' -r)/a < 1.

But (r' — r)/a = q — q' is an integer and the only integer between —1 and 1

is 0. Therefore q = q' and r = r'. I

Example 3.1

In Theorem 3.3 let a = 17 and ò = 165. Then q = 9 and r = 12. We have

165 = 17x9 + 12.

DEFINITION 3.2 The integers q and r in Theorem 3.3 are called the
quotient and remainder when b is divided by a.

We use the notation [xj, the floor of x, to mean the largest integer < x,
and \x~\, the ceiling of x, to mean the smallest integer > x. Thus, [5J = 5 ,
L3.14J = 3, L-2.7J = - 3 , \S\ = 5, [3.14] = 4 and ["-2.71 = - 2 .

With this notation, the quotient q in the definition and in Theorem 3.3 may
be written q = [b/a\. We also use the notation b mod a for the remainder r.

We say the integer n is even if the remainder is 0 when n is divided by 2,
and call n odd if this remainder is 1.

3.2 Arithmetic with Large Integers
The construction and cryptanalysis of cryptographic algorithms require arith­
metic with large integers. These algorithms will run faster if the basic arith-

Divisibility and Arithmetic 29

metic operations can be performed swiftly. Computer hardware has a fixed
maximum size, such as 231 — 1, for the integers it can handle directly. Cryp­
tographic algorithms use much larger integers than this hardware maximum
value. In this section we explain how computers represent larger integers and
how to perform arithmetic with them efficiently. The reader will find different
presentations of the material of this section in books by Knuth [56], Rosen
[99] and Riesel [96].

Probably because we have ten fingers, we use decimal notation to represent
numbers. The character string "6218" represents the integer 6218 with value
6 x 103 + 2 x 102 + 1 x 101 + 8. Computers usually use binary notation to
represent numbers internally. We hope the use of bases 10 and 2 for positional
number systems are familiar to the reader. In fact any integer > 1 can be
used as a base.

THEOREM 3.4 Positional number systems
Let b be an integer greater than 1. Let n be a positive integer. Then n has

a unique representation in the form

The number b is called the base or radix of the number system. The
numbers di for i = fc, k — 1 , . . . , 0 are called the digits in base b of n. The
left-most digit dk is called the first digit or leading digit or most significant
digit and the right-most digit do is called the last digit or trailing digit or
least significant digit.

PROOF We use the division algorithm (Theorem 3.3) to construct the
representation. First we divide n by b to get n — bqo + do with 0 < do < b— 1.
If qo > 0, divide qo by b to get q0 = bq\ +d i with 0 < d\ < b— 1. Continue this
process with qi = bqi+i + d¿+i and 0 < d¿+i < b - 1 until we get a remainder
qk = 0. This condition must occur eventually since

and every decreasing sequence of positive integers must end. Replace q0 with
bqi + d\ inn — bqo + do to obtain

When we replace qi with bq2 + <¿2 and so on to qk-i = Ob + dk, we get the
representation in the statement of the theorem.

where k is a positive integer, the di are integers in 0 < d¿ < b - 1 and dk ^ 0.

30 Cryptanalysis of Number Theoretic Ciphers

This shows that 6 divides dj — e¿. If we subtract 6 — 1 > ej > 0 from
0 < dj < b — 1, we find — b + 1 < dj — ej < b — 1. The only multiple m of
b in — 6 + 1 < m < b — 1 is m = 0. Therefore, dj = ej. This contradicts
our assumption that the two representations differ. It follows that the base b
representation is unique. I

Some special cases of this representation include decimal (b — 10), binary
(6 = 2), octal (6 = 8) and hexadecimal (6 = 16). The symbols 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, A, B, C, D, E, F are used for the 16 hexadecimal digits. When
several bases are being used, the base 6 in the representation of Theorem 3.4
is indicated as a subscript: n — (dkdk-i • - .dido)b- Binary digits are called
bits.

Integers greater than the natural word size are stored in arrays with a fixed
number of bits per word. It would be wasteful memory usage to store only one
bit per word. On the other hand, it would be difficult to perform arithmetic
on large numbers if each word were filled completely with bits of the large
integer. A standard compromise often uses all but two bits of each word to
store bits of large numbers. For example, many libraries of procedures for
arithmetic with large integers pack 30 bits into each 32-bit word.

Sometimes it is necessary to convert a number from one representation
to another. Most computers use binary to represent numbers within them.
Humans often prefer the decimal form. When a number is input to a computer

so that

and hence

where A; is a positive integer, the d{ and e¿ are integers with 0 < d¿ < 6 - 1 and
0 < e{ < 6 — 1, and we may have added high-order zero digits to make both
sums have k + 1 digits. If the two representations differ, then there is a least
j in 0 < j < k so that dj ^ ej. Subtracting the expressions and factoring out
a V we find

Now we show the representation is unique. Suppose n had the two repre­
sentations

Divisibility and Arithmetic 31

program by a human, it is often converted from decimal to binary. Likewise,
output procedures convert from binary to decimal for human consumption.

It is easy to convert a number from one base to another when both bases
are powers of 2 (or both are powers of some other number). In this case the
bits just need to be regrouped, and this is easily done with shift operations
on a binary computer. For example, to convert a number from binary to
hexadecimal, group the bits in blocks of four bits each, starting from the low-
order bit, and replace 0000 by 0, 0001 by 1, etc., 1110 by E, 1111 by F. It
may be necessary to prepend up to three high-order 0's to form the high-order
block of four bits. To convert from octal to binary, start at the low-order octal
digit and work to the left replacing 0 by 000, 1 by 001, etc., 7 by 111.

Conversion of a number from base B to base b is more complicated when
the two bases are not powers of the same integer. Say the two representations
are

Example 3.2

Convert 991 o from base 10 to base 8.

This table shows the progress of the algorithm as a snapshot taken right after

We are given the digits DK, DK-I, •. -, A) and want to find the digits dk,
dife_i, . . . , do. We assume we can perform arithmetic in one of the two bases.
Humans can do this in base 10, while most computers work in binary. If one
knows how to divide using base B arithmetic, then the conversion algorithm
is repeated division by b as in the first part of the proof of Theorem 3.4.

Here is the algorithm in pseudocode. It is often used to output a binary
number in decimal notation (6 = 10).

[Conversion from base B to base b using base B arithmetic]
Input: DK, DK-\, • • -, Do, the base B digits of n.
Output: dk, dfc-i, . . . , do, the base b digits of n.
Since we can do base B arithmetic, we can work with n as a number

in that base.

i = 0
while (n > 0) {

di — n mod b
n — \n¡b\
i = ¿ + 1
}

32 Cryptanalysis of Number Theoretic Ciphers

the remainder step di — n mod 8.

i n di

0 99 3
1 12 4
2 1 1

Thus, the digits are 1, 4, 3, and we have 991 o = 143s-

If one knows how to add and multiply using base b arithmetic, then the
conversion algorithm is to use base 6 arithmetic to evaluate the polynomial
Z^=o DiB1 in the form

((• - • (DKB + DK-X)B + •••)# + D±)B + D0.

The pseudocode for this algorithm is quite simple. It is used to input
decimal numbers (B = 10) to a program.

[Conversion from base B to base b using base b arithmetic]
Input: DKI DK-I, • -, Do, the base B digits of n.
Output: dfc, dk-i, • •., do? the base b digits of n.
Since we can do base b arithmetic, we can just return n as a number.

n = 0
for (i = K down t o % — 0) {

n = n * B + D¿
}

return n

Example 3.3

Convert 107s from base 8 to base 10.
This table shows the progress of the algorithm as a snapshot taken at the end

of each pass of the for loop. Note that K = 2 because 107s has three digits.

i n Di

2 1 1
1 8 0
0 71 7

Thus, 1078 = 71 io.

The basic operations of arithmetic are addition, subtraction, multiplication
and division. In order to perform these operations on large integers we repre­
sent the numbers in a convenient base with their digits stored in arrays. The
first three operations use the algorithms you learned in elementary school.
The algorithms given here are the "conventional" ones.

Suppose we use base 6 and we wish to add A = J2i=o a^% to B = J2lLo &¿&*-
If k ^ m, prepend enough leading 0 digits to the shorter number to give the

Divisibility and Arithmetic 33

two numbers the same length. After this has been done, assume the problem

is to add A = £? = o a * 6 * t o B = E*=o 6<&i- C a l 1 t h e s u m C = E*=o c¿6 ¿- N o t e

that the sum might have one more digit than the summands. The addition
algorithm is to add corresponding digits of A and B to form each digit of C,
and carry a 1 if the digit sum is > 6. Here is the algorithm.

[Addition: C = A + B using base 6 arithmetic]
Input: The base b digits of A and B.
Output: The base 6 digits of C = A + 5 .

carry = 0
for (Î = 0 t o fe) {

Ci = ai + 6¿+ carry
if (c¿ < 6) { carry = 0 }
e l s e { carry = 1 ; a = Ci — b }
}

Cfc+i = carry

Note that in the second line of the for loop, we must have 0 < c¿ < 26
because 0 < a¿ < 6 — 1, 0 < 6¿ < 6 — 1 and carry is either 0 or 1. Thus we
need to subtract at most one 6 from a (in the e l s e line) to get it into the
legal range for digits. The steps of the for loop are executed no more than
k + 1 times.

Now suppose we wish to subtract B — Y^lLo ^ * fr°m A — S¿=o a^>%- ^
k T¿ m, add enough leading to the shorter number to give the two numbers
the same length. After this has been done, assume the problem is to subtract
B = Yli=o bib1 from A = Yli=o a^%- Assume that A > B. If this is not true,
then the sum is negative with absolute value B — A. We have not discussed
a way to handle signed numbers. If we allow the difference to have a minus
sign, then we should allow A and B to have signs as well. We leave the
problem of arithmetic with signed numbers to the reader. Call the difference
C = J2i=o cibl- The subtraction algorithm is to subtract corresponding digits
of A and B to form each digit of C, and borrow a 1 if the digit difference is
negative. Here is the algorithm in pseudocode.

[Subtraction: C = A - B using base 6 arithmetic]
Input: The base 6 digits of A and B.
Output: The base 6 digits of C = A - B.

borrow = 0
for (i = 0 to k) {

Ci = ai — 6¿— borrow
if (ci < 0) { borrow = 1; c¿ = c¿ + 6 }
e l s e { borrow = 0 }
}

if (borrow ^ 0) Er ror : A < B

34 Cryptanalysis of Number Theoretic Ciphers

Note that in the second line of the for loop, we must have -b < ci < b
because 0 < a¿ < ò — 1, 0 < 6¿ < 6 — 1 and borrow is either 0 or 1. Thus we
need to add at most one b to c¿ (in the if line) to get it into the legal range
for digits. The steps of the for loop are executed no more than k + 1 times.

The product of a fc-digit integer times an m-digit integer has either k + m
or k + m — 1 digits (or is zero). Suppose we wish to multiply A — YIÍZQ

 ai^

times B = X^Lõ1 W -̂ C a l 1 t h e P r o d u c t G = T,i=™~lcibi- N o t e t h a t t h e

high-order digit might be 0. The elementary school method forms partial
products bi x A, shifts their digits into appropriate columns and adds the
shifted partial products. In a computer, it saves space to do the addition
concurrently with the multiplication. Here is the algorithm in pseudocode.

[Multiplication: C = A x B using base b arithmetic]
Input: The base ò digits of A and B.
Output: The base b digits of C — A x B.

carry = 0
for (¿ = 0 t o fc + m - 1) { Ci = 0 }
for (¿ = 0 t o k- 1) {

carry = 0
for (j = 0 t o m - 1) {

t = a i x bj + Ci+j+ carry
d+j — t mod b
carry = [t/b\

c m + i + i = carry }
}

One can show by induction that in the second line of the inner for loop, we
must have 0 < t < b2 because 0 < a¿ < b — 1, 0 < bj < b — 1, 0 < Ci+j
and 0 < carry < b— 1. Each step of the inner for loop is executed km times.

The last operation of arithmetic is division. The elementary school "algo­
rithm" for division is really not an algorithm because one must guess each
digit of the quotient, and sometimes the guess is wrong. One way to improve
the guess is explained in Knuth [56]. The trick is to "normalize" the divisor
by multiplying it by some number d which makes the high-order digit at least
b/2. The dividend is also multiplied by d. After this normalization, the algo­
rithm proceeds much like the elementary school method, with each quotient
digit guessed using the high-order digit(s) of the divisor and current dividend.
Knuth shows that the guesses cannot be wrong by more than 1 or 2. At the
end, divide the remainder by d. This assumes that there is an algorithm for
dividing a multi-digit integer A = Y^i=o a^ ^ a single-digit integer B. The
results are a quotient Q = Yli=o ^% a n d a single-digit remainder r. It is easy
to design such an algorithm by analogy to the multiplication algorithm. Here
is the algorithm in pseudocode:

Divisibility and Arithmetic 35

[Division by a one-digit divisor: Q = A/B using base b arithmetic]
Input: The base b digits of A and B; B has just one digit.
Output: The base b digits of Q = A/B; also return a one-digit

remainder.

r = 0
for (i = k — 1 down to 0) {

t = r x b + ai
Qi = \t/b\
r = t mod b
}

r e t u r n r

The temporary variable t used in the for loop must be able to hold a two-
digit number in base b. Some computers have a hardware instruction which
divides a 64-bit dividend by a 32-bit divisor to produce a 32-bit quotient and
a 32-bit remainder. Such an instruction would be ideal for performing the
last two lines of the for loop together, computing qi and r in one operation.
If the high-order digit qu-i of the quotient is zero, it should be removed. The
division algorithm can be modified easily to return only the quotient or only
the remainder by not storing the unneeded result.

In order to analyze the complexity of algorithms that use arithmetic we
will need to know the time taken by the four arithmetic operations. We do
not concern ourselves with the actual time taken, since this time depends
on the computer hardware. Rather we will count the number of basic steps.
The basic steps we consider are adding, subtracting or multiplying two 1-bit
numbers, or dividing a 2-bit number by a 1-bit number. These are called bit
operations.

Furthermore, we will not worry about the exact count of bit operations.
We will use the big-O notation to approximate the growth rate of the number
of bit operations as the length of the operands grows.

DEFINITION 3.3 If f and g are functions deñned and positive for all
sufficiently large x, then we say f is 0(g) if there is a constant c > 0 so that
f(x) < cg(x) for all sufficiently large x.

The big-0 notation allows us to focus on the general growth rate of a
function and ignore the fine details of its growth. For example, f(x) = 539x4 +
212027z3 - 1852z2 + 178026x - 348561 is 0(g), where g(x) = x4. Suppose
this f(x) is the exact number of steps taken by an algorithm when its input is
x bits long. Then the running time will be roughly a positive constant times
g(x), that is, proportional to the fourth power of the length of the input. This
means that if the length of the input doubles, then the number of steps needed
will be multiplied by about 24 = 16.

36 Cryptanalysis of Number Theoretic Ciphers

We summarize the complexity of arithmetic operations discussed in this
section in this theorem.

THEOREM 3.5 Complexity of arithmetic
One can add or subtract two k-bit integers in O(k) bit operations. One can

multiply two k-bit integers in 0(fc2) bit operations. One can divide a 2k-bit
dividend by a k-bit divisor to produce a k-bit quotient and a k-bit remainder
in 0(k2) bit operations.

PROOF The statements about addition, subtraction and multiplication
are shown by counting the steps in the three algorithms above. The state­
ment about division can be shown the same way, after one writes the division
algorithm. I

The time complexities for addition and subtraction stated in the theorem
are best possible (except for a constant). But one can multiply and divide
faster than the 0(fc2) bit operations mentioned in the theorem. One can mul­
tiply two fc-bit integers, or divide a 2fc-bit dividend by a fc bit divisor, in only
O(fclogfcloglogfc) bit operations, which is not much slower than addition.
However, these fast algorithms do not become become useful or practical un­
til fc is very large—larger than numbers which occur in cryptography, at least
in this book. See Section 4.3.3 of Knuth [56] or Chapter 9 of Crandall and
Pomerance [33] for information about these faster arithmetic algorithms.

DEFINITION 3.4 We say that an algorithm runs in polynomial time
if there is a k and a constant c > 0 so that for every input I of length b bits,
the algorithm on input I ñnishes in no more than cbk bit operations.

Base conversion, addition, subtraction, multiplication and division of inte­
gers can be done by algorithms that run in polynomial time.

3.3 Greatest Common Divisors and the Eu­
clidean Algorithm

Now that we can perform arithmetic with integers of any size, we return to
our study of divisibility.

DEFINITION 3.5 When a and b are integers and not both zero we defíne
the greatest common divisor of a and b, written gcd(a, b), as the largest
integer which divides both a and b. We say that the integers a and b are
relatively prime if their greatest common divisor is 1.

Divisibility and Arithmetic 37

It is clear from the definition that gcd(a, b) = gcd(6, a). One way to compute
the greatest common divisor of two nonzero integers is to list all of their
divisors and choose the largest number which appears in both lists. Since d
divides a if and only if —d divides a, it is enough to list the positive divisors.
For example, to compute gcd(6,9), one finds that the positive divisors of 6
are 1, 2, 3 and 6 and that the positive divisors of 9 are 1, 3 and 9. The
largest number common to both lists is 3, so gcd(6,9) = 3. The following
theorem will help us compute greatest common divisors quickly, even when
we do not know any divisors of the numbers (other than 1). Although the first
equation in the theorem might remind one of the division algorithm, there is
no requirement here that 0 < r < a.

THEOREM 3.6 GCDs and division
If a is a positive integer and b, q and r are integers with b — aq -f r, then

gcd(6,a) =gcd(a , r) .

PROOF Write d = gcd(6, a) and e — gcd(a, r). Since d divides both 6 and
a, it must divide r = 6 — aq, by Theorem 3.2. Then d is a common divisor of
a and r, so d < e since e is the greatest common divisor of a and r. Likewise,
since e divides both a and r, it must divide b because b — aq + r. Then e is a
common divisor of b and a, so e < d. Therefore, d — e. I

A systematic way of computing gcd(a, b) has been known for thousands of
years. It was published as Proposition 2 in Book VII of Euclid's book The
Elements more than 2300 years ago and is called the Euclidean algorithm.

THEOREM 3.7 Simple form of the Euclidean algorithm
Let ro = a and r\ — b be integers with a > b > 0. Apply the division
algorithm (Theorem 3.3) iteratively to obtain

n = n+iqi+x + ri+2 with 0 < r i + 2 < ri+1

for 0 < i < n — 1 and rn+i = 0. Then gcd(a, b) = rn , the last nonzero
remainder.

PROOF First of all, the algorithm will end because we will eventually get
a zero remainder since a = r0 > ri > r2 > • • • > 0; so, there cannot be more
than a nonzero remainders. Applying Theorem 3.6 n times, we find

gcd(a, 6) = gcd(r0, n) = gcd(n, r2) = • • • =

= gcd(rn_i , r n) = gcd(rn,0) = r n .

Hence, gcd(a, b) = rn. I

38 Cryptanalysis of Number Theoretic Ciphers

Example 3.4

Use this theorem to compute the greatest common divisor of 165 and 285.
We find

285 = 1 x 165 + 120

165 = 1 x 120 + 45

120 = 2 x 45 + 30

45 = 1 x 30 + 15

30 = 2 x 15 + 0,

sogcd(165,285) = 15.

This algorithm may be written concisely in pseudocode. We write a mod b
for the remainder r in 0 < r < b when a is divided by the positive integer b.

[Simple form of the Euclidean Algorithm]
Input: Integers a > b > 0.
Output: gcd(a, b).

while (6 > 0) {
r = a mod b
a = b
b = r
}

r e t u r n a

THEOREM 3.8 Division by the GCD
Let g = gcd(a, 6). Then a/g and b/g are relatively prime integers.

PROOF Suppose d is a positive common divisor of a/g and b/g. Then
there are integers m and n such that a/g = md and b/g = ne?, that is, a = gdm
and b = gdn. Hence gd is a common divisor of a and b. Since g is the greatest
common divisor of a and 6, we must have^o? < g, or d < 1. Therefore d = 1
and a/g and b/g are relatively prime. r

The next theorem tells us that we can solve ax + by = 1 for integers x and
y whenever a and b are relatively prime.

THEOREM 3.9 GCD is a linear function
If the integers a and b are not both 0, then there are integers x and y so that

ax -{-by — gcd(a,b).

PROOF At least one positive integer, a2 + 62, has the form ax + by.
Let g be the smallest positive integer of this form, say g = ax -i- by. Any

Divisibility and Arithmetic 39

common divisor of a and b must divide ax + by = g by Theorem 3.2, and
so gcd(a, 6) divides #, which implies that gcd(a,ò) < g. We claim that g
divides a. Suppose not. Then a = gq + r with some 0 < r < g. Note that
r — a — gq — a — q(ax + by) = a{\ — qx) + b(—qy), which contradicts the fact
that g is the least positive integer of the form ax -f by. Hence g divides a.
Similarly, g divides b. Therefore g < gcd(a, ò) and g = gcd(a, b). I

Example 3.5

In Example 3.4, we found that gcd(285,165) = 15. Now let us find x and y
with 285x + 165y = gcd(285,165) = 15.

Beginning with the next to last equation in that example and working back­
wards, we find

15 = 45 - 30 = 45 - (120 - 2 x 45) = 3 x 45 - 120

15 = 3(165 - 120) - 120 = 3 x 165 - 4 x 120

15 = 3 x 165 - 4(285 - 165) = 7 x 165 - 4 x 285.

Thus x = - 4 and y = 7.

This method for finding integers x and y with ax + by = gcd(a, b) is incon­
venient because one must work through the Euclidean algorithm, save all the
steps and then work backwards to the beginning. The next algorithm finds
the same result and requires working through the algorithm only once.

[Extended Euclidean Algorithm]
Input: Integers a > b > 0.
Output: g = gcd(a, b) and x and y with ax + by = gcd(a, b).

x = l; y — 0; g = a; r = 0; s = l ; t — b
while a > 0) {

q = l9/t\
u = x — qr; v = y — qs; w = g — qt
x = r; y = s; g = t
r = u; s — v; t = w
}

r e t u r n (g, x, y)

To see that the algorithm works, focus first on the variables g, t and w. In
the middle of each pass through the while loop, w is set to g mod t. Then
t is copied into g and w is copied into g. This is exactly what happens to
the variables a, b and r in the simple Euclidean algorithm. Since g and t are
initialized to a and 6, and the condition for the while loop to end is the same
in both algorithms, the variable g has the value gcd(a, b) when the algorithm
finishes.

Now prove by induction that at the beginning and end of the while loop,
these two equations hold:

ax + by = g and ar + bs = t.

40 Cryptanalysis of Number Theoretic Ciphers

The induction step is shown by noting that the assignments in the second line
of the while loop subtract q times the second equation from the first one,
forming the equation

a(x - qr) + b(y - qs) = g - qt.

If we apply the extended Euclidean algorithm to Example 3.4, the variables
take on the values in this table.

X

1
0
1

-1
3

-4

y
0
i

-i
2

-5
7

9
285
165
120
45
30
15

r
0
1

-1
3

-4
11

s
1

-1
2

-5
7

-19

t q

165 1
120 1
45 2
30 1
15 2
0

THEOREM 3.10 Product of numbers relatively prime to m
Let a, b and m > 1 be integers. If gcd(a,ra) = gcd(6,m) = 1, then

gcd(aò, m) = 1.

PROOF By Theorem 3.9, there are integers w, x, y, z so that aw + mx =
1 = by + zm. Therefore, (aw)(by) — (1 — mx)(l — mz) — 1 — mv, where
v — x -\- z — mxz. From abwy + mv = 1 and Theorem 3.2 we see that any
common divisor of ab and m must also divide 1. Therefore, gcd(aò, m) = 1.

i
Although it is not easy to determine the average time complexity of the Eu­

clidean algorithm (see Section 4.5.3 of Knuth [56] for the average complexity),
it is fairly easy to give an upper bound on the worst-case complexity using
Fibonacci numbers.

DEFINITION 3.6 The Fibonacci numbers are deñned recursively by
UQ = 0, u\ = 1, and i¿n+i = un + un-i for all n > 1.

The next few Fibonacci numbers after u\ are u<2 = 1, u% — 2, w4 = 3,
i¿5 = 5, UQ — 8, u7 — 13, u8 = 21 and i¿9 = 34.

The next lemma shows that the Fibonacci numbers grow exponentially.

LEMMA 3.1
Let a = (1 + v/5)/2. Then an~2 < un < a*1'1 for all n > 3.

Divisibility and Arithmetic 41

PROOF Use induction on n. The base step is to verify the inequalities
for n = 3 and n = 4, using the fact that a is approximately 1.618. Note that
a is a root of x2 - x - 1 = 0, so a2 = a + 1. Multiply by a n _ 4 and an~3

to get an~2 = an~3 + a n _ 4 and a n _ 1 = an~2 + a n _ 3 . Assume by induction
that the inequalities hold for n — 2 and n — 1:

a n " 4 < tÉn-2 < a n " 3 and an~3 < un-i < an~2.

Add these two inequalities and use the equations for the powers of a and the
definition of un to get an~2 < un < an~1. I

THEOREM 3.11 GCD of consecutive Fibonacci numbers
For n > 1, the Euclidean Algorithm takes exactly n steps to compute the
greatest common divisor ofun+2 and i¿n+i, which is 1.

PROOF Since i¿¿+i = i¿¿ + u¿-i, the quotients in the Euclidean algorithm
for gcd(i/n+2,^n+i) are all 1, and the n steps are:

Un+2 = 1 X U n + i + U n

W n + i = 1 X U n + 16n_i

W4 = l X U 3 | î i 2

ÎI3 = 2 X 1/2-

I
We will show in the middle of the next proof that consecutive Fibonacci

numbers provide the worst case for the Euclidean algorithm. That is, i¿n+2
and un+\ are the smallest two numbers that make the Euclidean algorithm
take n steps.

THEOREM 3.12 Complexity of the Euclidean algorithm, Lamé, 1845
The number of steps (division operations) needed by the Euclidean algorithm

to fínd the greatest common divisor of two positive integers is no more than
ñve times the number of decimal digits in the smaller of the two numbers.

PROOF The Euclidean algorithm takes only one step if the two numbers
are equal. Otherwise, apply the Euclidean algorithm to a = r0 > b = r\ > 0.
Suppose the n steps are

r¿ = ri+iqi+1 + r¿+2 with 0 < ri+2 < ri+i

42 Cryptanalysis of Number Theoretic Ciphers

This shows that i¿n+2 and un+\ are the smallest two numbers that make the
Euclidean algorithm take n steps. By Lemma 3.1, we have wn+i > a n _ 1 for
n > 2, where a = (1 + y/E)/2. Hence, b > an~l. Since log10 a > 0.2, we have

log10 b > {n - 1) log10 a> {n- l) /5 .

Thus, n — 1 < 5 log10 6. Suppose 6 has d decimal digits. Then b < 10fc and
log10 b < k. Hence, n — 1 < 5k and, since n and k are integers, we must have
n < 5fc. I

COROLLARY 3.1
TLe number of bit operations needed by the Euclidean algorithm to find the

greatest common divisor of two positive integers is 0((log2a)3), where a is
the larger of the two numbers.

PROOF By Lamé's theorem, it takes 0(log2a) division operations to
compute the greatest common divisor. The result follows from Theorem 3.5,
which says that each division operation takes 0((log2 a)2) bit operations. I

The corollary shows that the Euclidean algorithm runs in polynomial time.

3.4 Exercises

1. Show that if a\b and c\d, then ac\bd.

2. Convert 0x3EB7 from hexadecimal to decimal.

3. Convert 6291 from decimal to hexadecimal.

4. Prove that an integer n is even if and only if its last decimal digit is
even.

for 0 < i < n — 1 and r n + i = 0. Every quotient qi must be > 1 and the last
one, qn > 2, because r n _ i > rn > r n + i = 0. Hence,

Divisibility and Arithmetic 43

5. Prove that an integer n is divisible by 5 if and only if its last decimal
digit is divisible by 5.

6. Prove that an integer n is divisible by 3 if and only if the sum of its
decimal digits is divisible by 3.

7. Prove that an integer n is divisible by 9 if and only if the sum of its
decimal digits is divisible by 9.

8. Let ra > 1. Prove that an integer n is divisible by 2m if and only if the
integer k consisting of its last m decimal digits is divisible by 2 m . Note
that fc = n m o d l O m .

9. Let m > 1. Prove that an integer n is divisible by 5 m if and only if the
integer k consisting of its last m decimal digits is divisible by 5 m . Note
that k = n mod 10m.

10. Let n = YH=o ¿¿10*. Prove that n is divisible by 11 if and only if the
alternating sum do — d\ + d<¿ — d% + • • • of its decimal digits is divisible
by 11.

11. Modify the algorithm for multiplying integers to make it nearly twice
as fast in the special case A = B, that is, when the algorithm computes
a square C = A2.

12. In this exercise, we show that one can multiply two fc-bit binary numbers
A and B faster than in 0(k2) steps when k is large. Make k even by
prepending a 0 bit, if necessary. We may have to remove two or three
leading 0 bits from the product at the end. Write the numbers in base
b = 2kl2 as A = Aib + A0 and B = Bxb + B0. Prove that

AB = (b2 + b)A1B1 + b(Ax - A0)(B0 - Bx) + (b + 1)A0B0.

This formula shows that the product AB of two A>bit numbers can be
formed by multiplying the three fc/2-bit numbers (A\ — A0)(Bo — Bi),
A\B\ and AQBQ, together with simple shifting and adding operations.
Note that one can multiply a binary number by b or b2 by shifting the
bits by k/2 or k positions. This simple trick can be used recursively.
Let T(k) denote the time needed to multiply two k-bit binary numbers.
The formula shows that T(k) < ST (k/2) + ck, for some constant c.
Show that this inequality implies that T(2l) < c(Sl — 2*), for i > 1.
Deduce from this that T(k) < Sc • 3log2 k = Sckl0^3. Since log2 3 «
1.585 < 2, this method, which is called Karatsuba multiplication, is
faster theoretically than conventional multiplication when k exceeds a
threshold. In practice, when multiplying large numbers with the same
length, one uses the formula recursively down to the threshold.

13. Find the greatest common divisor of 4905 and 32445.

44 Cryptanalysis of Number Theoretic Ciphers

14. Find integers x and y so that 4905x + 32445?/ = gcd(4905,32445).

15. If un is the n-th Fibonacci number, and i and j are two positive integers,
prove that gcd(u¿,Uj) = i¿gCd(¿,j)-

16. When a, 6 and c are nonzero integers, define gcd(a, 6, c) = gcd(gcd(a, b), c).

a. Prove that gcd(a, 6, c) = gcd(a,gcd(6, c)).

b. Extend the extended Euclidean algorithm to one which will find, in
polynomial time, integers x, y and z with ax-\-by -\-cz — gcd(a, 6, c) for
any given nonzero integers a, 6, and c.

Chapter 4

Primes

This chapter introduces the prime numbers, which are the building blocks of
the integers with respect to multiplication. Many cryptographic algorithms
use large prime numbers. To learn more about primes, the reader should
consult books by Riesel [96], Robbins [98], Crandall and Pomerance [33] and
Niven, Zuckerman and Montgomery [78].

4-1 The Fundamental Theorem of Arithmetic

DEFINITION 4.1 A prime number is an integer greater than 1 which
is divisible only by 1 and itself, and by no other positive integer. A composite
number is an integer greater than 1 which is not prime.

A composite number n has a positive divisor other than 1 and itself. This
factor must be less than n and greater than 1.

Example 4.1

The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 and 37.
The first few composite numbers are 4, 6, 8, 9, 10, 12, 14, 15, 16, 18 and 20.
The integers 4 = 2-2, 12 = 2-2-3 and 63 = 3 • 3 • 7 are all composite because
they each have divisors other than 1 and themselves.

Some old texts and tables consider 1 to be a prime number. We do not
do this, nor do we consider 1 to be composite, because then the beautiful
Theorem 4.1 would be false.

LEMMA 4.1

Let a, b and c be positive integers. If a\bc and gcd(a, b) — 1, then a\c.

45

46 Cryptanalysis of Number Theoretic Ciphers

PROOF Since a and b are relatively prime, by Theorem 3.9 there are
integers x and y so that ax + by = gcd(a, b) = 1. Multiply by c to get
axe + bey — c. Now a\axc and a\bcy by Theorem 3.1 and the hypothesis.
Therefore, a divides axe + bey = c by Theorem 3.2. I

LEMMA 4.2
If a prime p divides a product a\a<i • • • a& of positive integers, then it divides

at least one of them.

PROOF We use mathematical induction on the number n of factors.
If n — 1, there is nothing to prove. Assume the statement is true for n
factors. Suppose the prime p divides a product of n + 1 positive integers
aia2 • • • a n a n + i . If p\a\, we are done. Otherwise, p is relatively prime to a\
because p has only the divisors 1 and p, and p doesn't divide a\, so gcd(p, a\) =
1. By Lemma 4.1, p divides the product a^a^ • • • a n a n + i of n factors, and so
p must divide one of these n numbers by the induction hypothesis. I

THEOREM 4.1 Fundamental theorem of arithmetic
Every integer greater than 1 can be written as a product of primes, perhaps

with just one prime, and this product is unique if the primes are written in
nondecreasing order.

PROOF The integer 2 is a prime number and so is the "product" of just
one prime. If some integer cannot be expressed as a product of primes, then
there must be a smallest one with this property. Let n be the least integer
greater than 1 which is not a product of primes. If n were prime, then it would
be the "product" of just one prime. So n must be composite, say, n = aò,
where 1 < a < n and 1 < b < n. Since a and b are smaller than n, it must
be possible to write them as the product of primes. But then n = ab is also
the product of primes. This shows that every integer greater than 1 can be
written as a product of primes.

We now show that this product is unique if the primes are written in non-
decreasing order. Suppose to the contrary that some integer could be written
in two different ways as a product of primes, say

n=pip2'"Pk =q\q2'-qii

where all p¿ and all qj are primes and p\ < pi < • • • < pk and q\ < #2 < • • • <
qi. Cancel any common prime factors to get

PilPi2 '"Pir =qjiqj2 '"Qjsl

where no prime appears on both sides of the equation. There must be at least
one prime factor on each side since we assumed that the two factorizations

Primes 47

where pi,P25 • • • ,Pk are the primes that actually divide n and e¿ > 1 is the
number of factors of pi dividing n. We make the convention that n = 1 has
this representation with the empty product.

Sometimes we allow some exponents e¿ to be 0 in the representation. We
might do this to compare the prime factorizations of two integers. This device
is used to find the greatest common divisors of integers whose factorizations
are known. We begin with a simple example.

Example 4.2

Find the gcd g of 41184 = 25 • 32 • 11 • 13 and 10920 = 23 • 3 • 5 • 7 • 13.
The highest power of 2 that can divide g must divide both numbers; so, it

must be the smaller of 25 and 23, which is 23. Likewise, only one 3 can divide g
since only one 3 divides the second number. The primes 5, 7 and 11 divide only
one of the two numbers, so cannot divide g. A single 13 divides each number,
so 13|p. Now we know all prime divisors of g and g = 23 • 3 • 13 = 312.

THEOREM 4.2 GCD of factored numbers
Let pi, p2, • • • ? Pk be all the primes that divide either of the positive integers

m and n. Write

m = p^pl2 -"Pe
k
k and n = p^pÇ* • • -p{k,

where all exponents e% and fi are > 0. Then

g c d (m , 7 l) =pf*^Mpf»('*>f*) . . .pmin(e f c , / f c) >

PROOF The power of each prime which divides the gcd is the smaller of
the two powers of the prime which divide the two numbers. I

If we allowed 1 to be a prime number, then the fundamental theorem would
fail because n could have two factorizations with different numbers of l 's. We
don't want 1 to be composite, either, because it has no prime divisor.

Suppose the positive integer n is factored into the product of primes, and the
primes are in nondecreasing order. The fundamental theorem of arithmetic
says that this representation is unique. If we collect repeated prime factors
and write them as the power pe of a prime, we have the following standard
representation:

of n differ. By Lemma 4.2, the prime p^ must divide one of the numbers on
the right side, say, Pû|<7jm. But </jm is prime, so pix — qjm and the common
prime factors were not all canceled. This contradiction shows that the prime
factorization of n is unique.

48 Cryptanalysis of Number Theoretic Ciphers

DEFINITION 4.2 The least common multiple of r > 1 positive
integers n i , n 2 , . . . ,nr, denoted lcm(ni,ri2,. . . , n r) , is the smallest positive
integer which is divisible by all of the numbers n i , n 2 , . . . , nr.

The definition makes sense because nin2 • • • nr is one positive integer which
is divisible by all of the numbers n i , r i2 , . . . , n r , so that l cm(ni ,n2 , . . . ,n r)
must be some integer between 1 and niU2 • • • nr. By analogy to Theorem 4.2
one can prove the following result, which we state only for the least common
multiple of two integers.

THEOREM 4.3 LCM of factored numbers
Let p\, p2, • • •, Pk be all the primes that divide either of the positive integers
m and n. Write

m = pl'p? "'Pe
k
k and n = pfpfr --p{\

where all exponents e¿ and fi are > 0. Then

lcm(m,n) = p--(e i , / l) pmax(e 2 , / 2) . ^ (e , / ^

COROLLARY 4.1
For any two positive integers m and n, gcd(m, n)lcm(ra, n) = mn.

PROOF The equation follows from the two theorems just stated and the
fact that min(x, y) + max(x, y) = x + y for any real numbers x and y. I

THEOREM 4.4 LCM of numbers relatively prime in pairs
If u\,..., nr are r positive integers which are relatively prime in pairs, that is,

gcd(ni,rij) = 1 for all 1 < i < j < r, then lcm(ni, 77,2,..., nr) = n\ri2 • • • nr.

PROOF Use induction on r. For r = 2, the statement is just Corol­
lary 4.1. Suppose the statement is true for r — 1. Then we are given that
l cm(ni ,n2 , . . . ,n r _ i) = ni r i2-- -n r_i . We must prove the statement for r.
Write L = lcm(ni,ri2,. . . , ^ r - i) = n\ri2 — -n r _ i . Note that if a prime p di­
vides L, then it must divide n¿ for some 1 < i < r — 1, for otherwise L/p
would be a smaller common multiple for m , . . . , n r _ i , and L is the least one.
If a prime p divided both L and nr, then it would divide both nr and ra¿ for
some 1 < i < r — 1. This cannot happen because nr and n¿ are assumed to be
relatively prime. Therefore, gcd(L,nr) = 1. Now by Corollary 4.1, we have
lcm(ni, r i2 , . . . , nr) = lcm(L, nr) = Lnr = ri\n<i • • • nr. I

The fundamental theorem of arithmetic has many other uses, one more of
which is illustrated in the next example.

Primes 49

Example 4.3

Find all the positive divisors of 364 = 22 •7 • 13.
The only positive divisors of 364 are positive integers whose prime factoriza­

tions contain only the primes 2, 7 and 13, raised to nonnegative integer powers
no higher than 2, 1 and 1, respectively. These divisors are:

1 7 13 7-13 = 91
2 2-7 = 14 2-13 = 26 2-7-13 = 182
22 = 4 22 • 7 = 28 22 • 13 = 52 22 - 7 • 13 = 364

4-2 The Distribution of Prime Numbers
Since some cryptographic algorithms require large prime numbers, we must
investigate whether there are enough of them. The first theorem, which offers
a tiny bit of comfort in this direction, was already known to Euclid more than
2300 years ago. See Euclid's Elements, Book IX, Proposition 20.

THEOREM 4.5 Number of primes is infinite
The number of prime numbers is inñnite.

PROOF Suppose pi,P25 • • • ,Pk were all of the prime numbers. Let n =
Pi * Vi ' ' 'Pk + 1 be 1 plus their product. Then n has a prime divisor p, by
Theorem 4.1. The prime p cannot be one of the primes pi because, if it
were, then it would divide n — p\ • p2 • • -pk — 1 by Theorem 3.2. Therefore
Pi,P2, • • • ,Pk were not all of the primes. I

This theorem is constructive in that it tells us how to find new primes after
we think we know all of them. But the construction is not useful because
it is difficult to factor large integers. We will see in the next section and in
Chapter 11 that there are much easier ways to construct new primes.

The next theorem tells us that there are arbitrarily long gaps between
consecutive primes.

THEOREM 4.6 Long gaps between primes
For every positive integer n, there are n (or more) consecutive composite
positive integers.

PROOF We claim the n consecutive positive integers

(n + 1)! + 2, (n + 1)! + 3 , . . . , (n + 1)! + n + 1

are all composite. For 2 < i < n + 1 we have i\(n + 1)!. Theorem 3.2 implies
that i\(n + 1)! + z, so (n + 1)! + i is composite. I

50 Cryptanalysis of Number Theoretic Ciphers

Example 4.4

There are six consecutive composite numbers beginning with 7! + 2 = 5042.
But the first set of six consecutive composite numbers is 90, 91, 92, 93, 94, 95,
which are much smaller than 5042.

Two primes whose difference is 2 are called twin primes. Some examples
are 3 and 5, 17 and 19, 101 and 103, and 3671 and 3673. Much numerical
evidence suggests that there are infinitely many twin prime pairs. A famous
unsettled conjecture asserts that this is so. Although the gap between consec­
utive primes can be arbitrarily large, as shown by the theorem just proved, the
smallest possible gap which could occur more than once, 2, probably occurs
infinitely often.

A prime p for which 2p+l is also prime is called a Sophie Germain prime.
The first few Sophie Germain primes are 2, 3, 5, 11, 23, 29, 41 and 53. Others
have been found with hundreds or thousands of digits. It is conjectured that
there are infinitely many Sophie Germain primes. Twin primes and Sophie
Germain primes are used in a few cryptographic functions.

DEFINITION 4.3 For positive real numbers x, let n(x) be the number
of prime numbers less than or equal to x.

For example, 7r(l) = 0, 7r(10) = 4 and 7r(100) = 25. The function TT(X) has
been computed for selected x up to about 1020. We know from Theorem 4.5
that TT(X) increases without bound as x —> oo. To use some ciphers, we will
have to choose some large primes, say, 100-digit primes. The growth rate of
TT(X) has a strong effect on the difficulty of finding a large prime. For example,
if TT(X) « y/x, at least for x near 10100, it would be quite hard to find even
one prime with 100 digits. On one hand, this approximation would say that
there are about 1050 primes less than 10100. But another way of looking at
this (false) estimate is that the probability would be roughly 10 - 5 0 that a
randomly chosen 100-digit integer would be prime. That would mean that
we would have to try about 1050 random 100-digit integers to get a prime.
Fortunately for cryptography, TT(X) grows nearly as rapidly as x. The next
theorem relates this growth to the natural logarithm function \nx.

THEOREM 4.7 The prime number theorem
The ratio of TT(X) to x/mx tends to 1 as x goes to inñnity. In symbols,

hm —-¡ = 1.
x->oo x/ mx

The known proofs of the prime number theorem either are very complicated,
although "elementary," or else use advanced mathematics. We do not give a
proof here. The theorem was conjectured by Gauss more than 200 years ago.

Primes 51

It was first proved in 1896 (independently) by J. Hadamard and Ch. J. de la
Vallée-Poussin.

The prime number theorem says that ir(x) œ (x/\nx) and that the per­
centage error in this approximation goes to 0 as # goes to infinity. We
illustrate how good the approximation is at x = 1010. It is known that
TT(1010) = 455052512 and (101 0/ lnl01 0) « 434294482. The ratio of these two
numbers is about 1.048, that is, the approximation is about 5% too small.
Better analytic approximations to 7r(x) are known, but are not needed for
cryptography.

Although x/\nx is only a rough approximation to 7r(x), it tells us immedi­
ately the probability that a random integer n in 1 < n < x is prime. There
are x integers in this range and xj In x of them are prime, so the probabil­
ity is roughly (x/\nx)/x — 1/lnx. Since the function lnx changes slowly
when x is large, 1/lnx is also the probability that a random integer near x
is prime. The probability that a random 100-digit integer is prime is about
l/ln(101 0 0), which is about 1/230. This means that we would have to try
about 230 random 100-digit integers to find one prime. We could shorten
the search by skipping numbers that have small prime divisors. If we just
omit the even numbers, which after 2 cannot be prime, then the probability
of each candidate being prime doubles and we would need to try only about
115 random odd 100-digit integers to find one prime.

There are more precise versions of the prime number theorem than Theorem
4.7. They express TT(X) as a main term (more accurate than x / lnx) plus an
error term, and prove an upper bound on the absolute value of the error term.
The proofs of those versions of the theorem study the zeros of a function
called the Riemann zeta function. The more one knows about these zeros, the
smaller the upper bound on the error term that one can prove. It is known
that the error term in the estimate for 7r(x) cannot be better than about
yfxlnx. The Riemann Hypothesis is a statement about the zeros of the
Riemann zeta function which would imply that the error term in the prime
number theorem is as good as it could be. The statement is a famous unsolved
problem in number theory. If it were proved, there would be many applications
throughout number theory, not just for counting primes. For example, some
fast "algorithms" for identifying primes depend on the Riemann Hypothesis
for their correctness or speed. They might give the wrong answer or run for
a long time if the Riemann Hypothesis were false.

4*3 Identifying and Finding Primes
Now that we know there are plenty of large primes, how do we distinguish
them from composite numbers? This section will not answer that question,
which is deferred to Chapter 11, but will take the first steps in that direction.
The first theorem tells how to tell in 0(^/n) steps whether n is prime or
composite.

52 Cryptanalysis of Number Theoretic Ciphers

THEOREM 4.8 Composites have a divisor below their square root
If the integer n > 1 is composite, then n has a prime divisor p < y/ñ. In other
words, if the integer n > 1 has no prime divisor p < y/ñ, then n is prime.

PROOF Suppose n is composite. Then we can write n — ab, where
a and b are integers greater than 1. Swap a and b, if necessary, to make
1 < a < b < n. Then a < y/n, for if a > y/ñ, then b > a > y/ñ and
n = ab > yfñyfñ = n, which is impossible. By Theorem 4.1, a must have a
prime divisor p < a < y/ñ. By Theorem 3.1, p divides n.

The second statement has the same meaning as the first one. I

The theorem suggests a simple algorithm for testing a small number for
primality and for factoring it if it is composite.

[Factoring and Prime Testing by Trial Division]
Input: A positive integer n to factor or to test for primeness.
Output: Whether n is prime, or one or more prime factors of n.

m = n
p = 2
while (p < y/m) {

if (m mod p = 0) {
Print "n is composite with factor p"
m = m/p
}

else { p = p+ 1 }
}

if (m = n) { P r in t "n i s prime" }
e l s e if (m > 1) { P r in t "The l a s t prime fac to r of n i s m" }

If n is prime, then trial division will take about 0(y/n) steps to prove this
fact. If n is composite, then the number of steps required depends on the size
of the prime divisors of n. If we merely wish to know whether n is prime or
composite, and n is composite, then the algorithm can stop as soon as it finds
the first prime divisor, and the number of steps needed is proportional to the
smallest divisor of n. In case we wish the complete prime factorization of n, let
ni be the largest prime factor of n and ri2 be the second largest prime factor
of n. The trial division algorithm will have to continue at least until it finds
ri2. When this happens, if ri2 > yfñ\, then the while loop will terminate on
its next iteration; otherwise, trial division of n\, the last remaining cofactor,
will have to continue until it is recognized to be prime when the variable p
passes y/ñ{. We have shown that the number of steps the algorithm takes to
factor n completely is 0(max(n2, y/ñi))-

There are some obvious ways to accelerate the algorithm. It is inefficient
to add only 1 to p in the e l s e step, because then we try even numbers p > 3,

Primes 53

which clearly cannot divide the odd remaining cofactor m. In fact, we should
really replace p by the next prime after p in the e l s e step. However, this
would require having a table of primes up to y/n and it might be too expensive
to precompute such a table. Usually, a compromise is made to avoid many
but not all composite trial divisors p. For example, after p = 5, one might
alternately add 2 and 4 in the e l s e step to determine the next p. Then the
sequence of trial divisors would be

p = 2,3,5,7,11,13,17,19,23,25,29,31,35,37,41,43,47,49,...

which excludes all multiples of 2 and 3 except for these numbers themselves.
Theorem 4.8 also suggests a simple algorithm for finding all primes up to

some limit. The algorithm, called a sieve, was known to Eratosthenes more
than 2200 years ago.

[Sieve of Eratosthenes]
Input: A limit n > 2.
Output: A list of all the primes between 2 and n.

Write all the integers between 2 and n in a list.
p = 2
while (p < y/n) {

i = 2p
while (i < ri) {

Cross out i from the list
i — i + p

}
Let p — the next number after p not yet crossed out

}
Pr in t the numbers t h a t were not crossed out .

Let us estimate the time complexity of this algorithm. The inner while loop
is performed once for each prime p < y/n, or fewer than y/n times. We simplify
the analysis by ignoring the restriction that p is prime. This simplification will
make the time estimate larger. For each p, the instructions inside the inner
while loop are performed n/p times because every p-th number is crossed
out. We may estimate the total number of steps for the entire algorithm by
the following sum, and then approximate the sum by an integral:

If we had tested each integer i between 2 and n for primality by trial division,
it would take 0(y/ï) steps to test ¿, for a total of 0{ny/n) steps. Thus, the
sieve of Eratosthenes is much more efficient than trial division for finding all
primes up to some limit. Furthermore, the fact that the operations of adding

54 Cryptanalysis of Number Theoretic Ciphers

and crossing out (setting a byte) are faster than division tips the scale even
more in favor of the sieve of Eratosthenes.

A variation of the sieve of Eratosthenes finds all integers in some interval
which have no prime divisor less than some limit. For example, let L be a 50-
digit integer. One could compute all integers between L and L -f 10000 free of
prime divisors less than 1000 as follows: First, make a list of the primes below
1000, perhaps by the sieve of Eratosthenes. Second, write tokens (bytes in a
computer program) representing the 10001 integers L, L + 1 , . . . , L + 10000.
Third, for each prime p < 1000, find the first integer i > L divisible by p,
and cross out the tokens representing i and each p-th number after i. Finally,
scan the list of tokens and output each i whose token was not crossed out. A
sieve like this one lies at the heart of several of the fastest known algorithms
for factoring large integers.

4*4 The Largest Prime Factor of a Number
For several purposes later in this book we will need to know the approximate
size of the largest prime factor of a "typical" integer n. We need it, together
with the size of the second largest prime factor of n, to estimate the complexity
of the trial division algorithm in the previous section.

DEFINITION 4.4 A positive integer n is called ¿/-smooth if all of its
prime factors are <y.

The de Bruijn [35] function, i¡)(x, y), is defined to be the number of ¿/-smooth
numbers n in 1 < n < x.

For 0 < t < 1 and x > 2, let p(x, t) be the probability that the largest prime
factor of an integer 1 < n < x is less than tx. Then p(x,t) = ip(x,tx)/x. We
might hope that if x ^ y are two large numbers, then p(x,t) « p(y,t) for all
0 < t < 1. If this should happen, then we could define p(t) — limx^00p(x,t)
and say that p(t) is the probability that the largest prime factor of n is less
than tx. It turns out that this is the wrong way to proceed, because p(t) = 1
for all 0 < t < 1. This means that if we choose any fixed t in 0 < t < 1, then
almost all integers n in 1 < n < x have no prime factor larger than tx.

It is better to use a logarithmic scale for the size of the largest prime factor.
Let t > 0. Let p(x,t) be the probability that the largest prime factor of an
integer 1 < n < x is less than xl. Then p(x,t) — ij;(x,xt)/x or, equivalently,
^(x,y) = xp(x, (Iny)/ Inx). Dickman [39] gave a heuristic argument that, for
each t > 0,

F(t) = lim p(x,t) = lim ^(x,xt)/x
x—>-oo x—>-oo

exists, and gave a functional equation for computing F(t). Later, Ramaswami
[94] made Dickman's argument rigorous. Thus, F(i) is the probability that
the largest prime factor of n in 1 < n < x is less than xl. It is clear that

Primes 55

F(t) = 1 for t > 1, because the largest prime factor of any n < x must be
< x < xl. For 0 < t < 1, Dickman's functional equation for F(t) is

(4.1)

His heuristic argument is roughly as follows: Let 0 < s < 1. The number of
integers n < x whose largest prime factor is between xs and xs+ds is xF'{s)ds.
By the prime number theorem, the number of primes in that interval is

For each prime p in this interval, the number of n such that np < x and
the largest prime factor of n is < p is the same as the number of n < xl~s

whose greatest prime factor is < xs = (xl~s)s^l~s\ that is, x1~~sF(s/(l — s)).
Hence,

or F'(s)ds — F(s/(1 — s))ds/s, and we obtain Equation (4.1) by integration.
Equation (4.1) provides an effective way of computing F(t) approximately

by numerical integration. Figure 4.1 shows the graph of F(x).

56 Cryptanalysis of Number Theoretic Ciphers

We will want to use the value of F(t) when t is very close to zero. This
process becomes easier if we invert the argument. Define p(u) — F(l/u) for
u > 0. Figure 4.2 gives the graph of p(u).

THEOREM 4.9 Count of smooth numbers below x
For each ñxed real number u > 0 there is a real number p(u) > 0 so that

lim ip(x,x1/u)/x = p(u)
x—>-oo

and p(u) is the unique continuous function denned by p(u) = 1 for 0 < u < 1
and the functional equation p'(u) — —p(u — l)/u for u > 1.

The functional equation for p(u) is easy to derive from that for F(t). From
Equation (4.1) we find Ff(s) = F(s/(1 - s))/s. (In fact that equation was
the step before Equation (4.1) in the heuristic argument for Equation (4.1).)
Write u = l/s so that we have F(s) — p(l/s) = p(u). Differentiating this
formula gives F'{s) = p'(l/s)(-l/s2) = -p'(u)u2. On the other hand, we
have F(s/(1 - s))/s = p((l - s)/s)/s = up(u - 1). Putting it all together, we
have

-p'(u)u2 = F'(s) = F(s/(1 - s))/s = up(u - 1),

Figure 4.2 p(u) for 0 < u < 7.

Dickman's heuristic theorem, proved by Ramaswami [94], says this:

Primes 57

or p'(u) = -p(u - \)/u for u > 1.

One can find a formula for p(u) for 1 < u < 2: Since p(i¿ - 1) = 1 for u in
this range, the functional equation gives

PROOF The functional equation shows that p(u) is strictly decreasing for
u > 1. This fact and the Theorem imply that up(u) < p(u — 1) for all u > 1.
A simple induction gives p(n) < 1/n! for all n > 1. I

In fact, p(u) goes to zero about as rapidly as the function u~u
1 which is a

moderately good approximation for it when u is large. The following table
illustrates the Corollary and the approximation. See Knuth and Trabb Pardo

However, there is no known closed form for p{u) for u > 2.

It is possible to compute p(u) numerically from the functional equation. It
goes to zero rapidly, as shown by the corollary to this theorem.

THEOREM 4.10 Integral for Dickman p function

P R O O F Since p(v - 1) = 1 for 1 < v < 2, we have

By the functional equation, the latter integral is J" —vp'(v)dv. Integrating
by parts, we obtain

Subtracting the integrals gives

COROLLARY 4.2

For all positive integers n, p(n) < 1/n!.

58 Cryptanalysis of Number Theoretic Ciphers

[57] for more values of p(u).

n

1
2
3
4
5
6
7

p(n)

1.00000000
0.30685282
0.04860839
0.00491093
0.00035472
0.00001965
0.00000087

1/n!

1.00000000
0.50000000
0.16666667
0.04166667
0.00833333
0.00138889
0.00019841

n~n

1.00000000
0.25000000
0.03703704
0.00390625
0.00032000
0.00002143
0.00000121

As a consequence, we have the approximation

iP(x,x^u)^xu-u (4.2)

for each fixed u. To estimate the complexity of certain algorithms, we will
need a formula like (4.2) even when u is not fixed, but increases with x.
Canfield et al. [23] proved that the approximation (4.2) is valid so long as
u < (1 — e) \nx/minx (for any fixed e > 0). This gives a good approximation
to ip(x, y) when y > ln1+e x and x is large.

If y — xxlu, then \ny — ¿ l n x , so u — (\nx)/\ny. We can summarize the
discussion above by saying that

i/)(x,y) œ xp{u) « xu~u,

where u = (In x)/ In y. We can also say that the probability that n is y-smooth
is p(u) « u~u, where u — (Inn)/In?/.

Sometimes we will need to estimate the number of integers < x whose prime
factors are all < z, except for the largest k prime divisors, which must be < ?/,
where y > z. Write the prime factors of n as ni > n^ > ns > . . . , so that n¿
is the z-th largest prime factor of n. If n doesn't have an i-th largest prime
factor, then let n¿ = 1.

DEFINITION 4.5 An integer n is called k-semismooth with respect to
y and z ifni < y and n¿+i < z. Let ipk(x, y> z) denote the number of integers
< x that are k-semismooth with respect to y and z.

By analogy to Theorem 4.9, one can prove this result. See the doctoral
theses of Cavalar [25] and Zhang [131] for a proof.

THEOREM 4.11 Count of semismooth numbers below x
For each integer k > 1 and fíxed real numbers v > u > 0 there is a real

number pu{v,u) > 0 so that

lim ipk(x,x1/u,x1/v)/x = Pk(v,u).

Primes 59

There are formulas, like the functional equation for p(u), for computing
pk(v,u), but their complexity increases rapidly with k.

Example 4.5

In the previous section, we found that the complexity of a simple trial division
algorithm is 0(max(n2, v ^ O) t o factor n completely. For 0 < t < 0.5, this
complexity will be < nl provided that ri2 < n1 and y/nï < nl. The second
inequality may be written as ri\ < n2t. This means that the trial division
algorithm will factor an integer n in 0(n*) steps provided that n is 1-semismooth
with respect to y = n2t and z = n*. By Theorem 4.11, the probability that
this will happen is approximately p i (l / i , l/2t). The following table gives some
values of this function.

u

1
2
3
4
5
6
7

t = 1/u

1.00000000
0.50000000
0.33333333
0.25000000
0.20000000
0.16666667
0.14285714

pi(u,u/2)

1.00000000
1.00000000
0.44731421
0.09639901
0.01241348
0.00109227
0.00007139

See Knuth and Trabb Pardo [57] for more values of pi(w, u/2). This table tells
us that trial division will factor n completely in 0(n°- 2 5) steps with probability
0.0963, and that it will finish in O(n 0 2) steps for about 1.2% of the numbers n.

4-5 Exercises
1. Factor 10988208 and 17535336 each into the product of primes.

2. Find the greatest common divisor and the least common multiple of
2 6 - 3 2 - 5 2 - l l - 1 3 a n d 2 3 - 3 5 - 7 - 1 3 .

3. Prove tha t there are infinitely many primes of the form 4fc + 3. Model
your proof after tha t of Theorem 4.5. Suppose there were only a finite
number of them. Multiply them all and construct a new number which
must be divisible by a different prime of this form. To help the last step
work, prove tha t a product of primes of the form 4k + 1 must have the
same form.

4. Use the sieve of Eratosthenes to find all primes between 0 and 200.

5. Use a variation of the sieve of Eratosthenes to find all primes between
2000 and 2100.

6. Est imate the number of 104-smooth numbers between 1020 - 106 and
102 0.

60 Cryptanalysis of Number Theoretic Ciphers

7. Estimate the number of 105-smooth numbers between 1020 — 106 and
1020.

8. Estimate the number of numbers between 1024 — 106 and 1024 which
will be factored completely by the trial division algorithm by the time
the variable p reaches 104.

9. Use Dickman's theorem to prove that for any 0 < t < 1 we have

lim ip(x,tx)/x = 1.

Chapter 5

Congruences

This chapter introduces the basic facts about congruences. See the number
theory texts [99], [78] and [98] for more about congruences. Gauss introduced
congruences in 1801 in [45]. A congruence is a statement about divisibility. It
is a notation that simplifies reasoning about divisibility. It suggests proofs by
its analogy to equations. Congruences are familiar to us as "clock arithmetic."
Four hours after 10 AM it will be 2 PM. How do we get the 2 from the 10 and
the 4? We add four to ten and then subtract 12. We have used a congruence
modulo 12.

5.1 Simple Properties of Congruences

DEFINITION 5.1 Suppose a and b are integers and m is a positive
integer. If m divides a — b, then we say a is congruent to b modulo m and
write a = b (mod m). If m does not divide a — b, we say a is not congruent
to b modulo m and write a ^ b (mod m). The formula a = b (mod m) is
called a congruence. The integer m is called the modulus (plural moduli)
of the congruence.

Usually we will have m > 1.
Do not confuse the binary operator "mod" in a mod ò, which means the

remainder when a is divided by 6, with the "mod" enclosed in parentheses
together with the modulus of a congruence. These concepts are related as
follows. If m is a positive integer and a and 6 are integers, then a = b (mod m)
if and only if (a mod m) = (b mod m).

We will often use the fact that a = b (mod m) if and only if there is an
integer k so that a = b+km. This fact follows immediately from the definitions
of congruence and divide.

The congruence relation has many similarities to equality. The next theo­
rem says that congruence, like equality, is an equivalence relation.

61

62 Cryptanalysis of Number Theoretic Ciphers

THEOREM 5.1 Congruence is an equivalence relation

Let m be a positive integer. Let a, b and c be integers. Then:

1. a = a (mod ra).

2. Ifa = b (mod m), then b = a (mod ra).

3. Ifa = b (mod m)and b = c (mod ra), then a = c (mod ra).

P R O O F Clearly, m\a — a. Also, m\(a — b) if and only if m\(b — a). Finally,

if m\(a — b) and m\(b - c), then m\(a — c) — (a — b) + (b — c). I

Let ra > 0 be fixed. For each integer a, the set of all integers b = a (mod ra)
is called the congruence class or residue class of a modulo ra. The congru­
ence class of a modulo m consists of all integers in the arithmetic progression
a + dm, where d runs through all integers. Each integer in a congruence class
is a representa t ive of it. If the modulus m is understood and a and b are
in the same congruence class, then each is called a residue of the other. The
smallest nonnegative representative of a congruence class is often used as the
standard representative of it. For example, the standard representative of the
congruence class of 27 (mod 5) is 2. When we study congruences, we regard
all integers in the congruence class of a modulo m as being equivalent. The
next theorem says that it makes sense to perform arithmetic on congruence
classes without worrying about which representatives we choose.

THEOREM 5.2 Arithmetic with congruences
Let a, b, c and d be integers. Let m be a positive integer. Suppose a =

b (mod m) and c = d (mod m). Then

1. a + c = b + d (mod m).

2. a — c = b — d (mod m).

3. ac = bd (mod m).

P R O O F The first two statements are trivial. For the third, let m\(a - b)
and m\(c — d). Then m\c(a — b) + b(c — d) — ac — bd. I

COROLLARY 5.1
Let a and b be integers. Let m be a positive integer. Let f be a polynomial

with integer coefficients. If a = b (mod m), then f(a) = f(b) (mod m).

P R O O F Write f(x) = cnx
n + . . . + c\x + c0, where the c¿ are integers.

Using a = b (mod m) and the last statement of the theorem, we see that
a2 = b2 (mod m), a3 = b3 (mod m), etc. Using the last statement again, we
get cia1 = C{bl (mod m) for each i. Use the first statement n times to add all

Congruences 63

these congruences and get

f(a) - cna
n + . . . + cia + c0 = cnb

n + ... + c\b + c0 = f(b) (mod m).

I

THEOREM 5.3 Divisor of the modulus
Let a and b be integers. Let m and d be positive integers with d\m. If

a = b (mod m), then a = b (mod d).

PROOF We have d\m and m\(a - b). By Theorem 3.1, d\(a - b). I

We saw in Theorem 5.2 that the arithmetic operations of addition, sub­
traction and multiplication for congruences obey the usual rules for the same
operations with integers. However, division does not always work as for inte­
gers. For example, 2 -3 = 6 = 18 = 2-9 (mod 12), but 3 ¿ 9 (mod 12).

In general ac = be (mod m) does not always imply a = b (mod m). We now
investigate when this implication will be true.

LEMMA 5.1
If gcd(a, m) = 1 and 0 < i < j < m, then ai ^ aj (mod m).

PROOF If not, then m\a(i — j). Since gcd(a,ra) = 1, we have m\(i — j) ,
which contradicts the bounds on i and j . I

THEOREM 5.4 Number relatively prime to modulus has an inverse
If gcd(a,ra) = 1, then there is a unique x in 0 < x < m such that ax =

1 (mod m).

PROOF By Lemma 5.1, the function f(i) — (ai mod m) for 1 < i < m — l
is one-to-one, and so the set

{ai mod m\i — 1 , . . . ,m — 1}

is a permutation o f{ l , . . . ,m—1}. Therefore 1 appears exactly once in the first
set, that is, there is exactly one x in 0 < x < m such that ax = 1 (mod m).

I
One can prove Theorem 5.4 from Theorem 3.9 as follows. The latter theo­

rem says that there exist integers x\ and y so that ax\ +my = gcd(a, m) = 1.
Therefore, m divides ax\ — 1 and we have ax\ = 1 (mod m). Now use the
division algorithm (Theorem 3.3) to find integers q and x with 0 < x < m and
x\ — mq + x. Then ax = 1 (mod m). Clearly, x cannot be 0, so 0 < x < m.

64 Cryptanalysis of Number Theoretic Ciphers

Note that the x in this theorem is like "a - 1 , " the reciprocal of a modulo
ra. Sometimes we even use the notation " a - 1 (mod ra)" to mean the x of
Theorem 5.4.

Now we have enough theory to tell when cancellation is allowed in congru­
ences.

THEOREM 5.5 Division in congruences
If m > 1, a, b, c are integers, (c ^ 0), gcd(c, m) — 1, then ac = be (mod m)

implies a = b (mod ra).

PROOF By the previous theorem, there is an x such that ex = 1 (mod ra).
Then ac = be (mod ra) implies acx = bcx (mod ra), which implies a\ =
òl (mod ra), which implies a = b (mod ra). I

DEFINITION 5.2 A set of m integers r i , . . . , r m is a complete set
of residues (CSR) modulo m if every integer is congruent modulo ra to
exactly one of the r¿ 's.

The set { 1 , . . . , ra} is called the standard CSR modulo ra.

Example 5.1

The set {0,. . . , m — 1} is a CSR modulo m, as is the set of all integers between
—ra/2 and ra/2 (including exactly one of these endpoints if ra is even). The set
{-10, 91, -3,13,109} is a CSR modulo 5.

5.2 Linear Congruences
In this section we tell how to solve congruences like ax = b (mod m), where a,
6 and m > 1 are given integers and x is an unknown integer. The solution to
an equation ax = 6, where a ^ 0, is the single number x = a/b. In contrast,
if the congruence ax = b (mod m) has any solution, then infinitely many
integers x satisfy it.

For example, the solution to the congruence 2x = 1 (mod 5) is all integers
of the form x = òk + 3, where k may be any integer, that is, x lies in the
arithmetic progression

. . . , - 1 2 , - 7 , - 2 , 3 , 8 , 1 3 , 1 8 ,

This set of integers may be described compactly as x = 3 (mod 5). We could
have written this solution as x = 28 (mod 5), but we generally use the least
nonnegative residue as the standard representative of its congruence class.

Suppose f(x) is a polynomial with integer coefficients and m > 1. If x0 is an
integer for which / (x 0) = 0 (mod m), then f(xo + km) = 0 (mod m) for every

Congruences 65

integer k by Corollary 5.1. Thus x = xo+km is a solution to f(x) = 0 (mod m)
for every integer k. The whole congruence class (#o (mod m)) satisfies f(x) =
0 (mod ra). However, when considering solutions of congruences we consider
these numbers to be just one solution. By the solution to the congruence
f(x) — 0 (mod m) we mean a list of the different congruence classes which
satisfy it. These may be described by giving one representative from each
class, typically the least nonnegative one.

DEFINITION 5.3 If f(x) is a polynomial with integer coefficients and
m is a positive integer, then the number of solutions to f(x) = 0 (mod ra)
is the number of numbers r in a ñxed CSR modulo m such that f(r) =
0 (mod ra).

By Corollary 5.1, the number of solutions does not depend on which CSR
is used. Also, the number of solutions cannot exceed ra. When m is small we
can solve f(x) = 0 (mod ra) by testing each x between 0 and ra — 1.

Example 5.2

Solve the congruence f(x) = x2 + x + l = 0 (mod 7).
Evaluate f(x) for x = 0 , 1 , . . . , 6. We find that /(2) = 7 = 0 (mod 7) and

/(4) = 21 = 0 (mod 7), but f(x) £ 0 (mod 7) for x = 0,1,3,5,6. Therefore,
the solution to f(x) = x2 4- x + 1 = 0 (mod 7) is x = 2 or 4 (mod 7).

DEFINITION 5.4 Let f(x) = anx
n+an-1x

n-1 + .. .+a0 be a polynomial
with integer coefficients. If m divides every coefficient ai, then the congruence
f(x) = 0 (mod m) has no degree. Otherwise, the degree of the congruence
f(x) = 0 (mod m) is the largest integer d in 0 < d < n for which a¿ ^
0 (mod m).

The degree of the congruence f(x) = 0 (mod m) is not always the same as
the degree of the polynomial f(x). Also, the congruence f(x) = 0 (mod m)
may have different degrees for different m.

Example 5.3

Let f(x) = 10x4 + 8x3 - 20x + 6. Then the polynomial f{x) has degree 4. The
congruence f(x) = 0 (mod m) has degree 4 when m = 3 or m = 7, degree 3
when m = 5 or m = 10, and no degree when m = 2.

The next two theorems tell how to solve a congruence of degree 1.

THEOREM 5.6 Solvability of a linear congruence
Let m > 1, a and b be integers. Then ax = b (mod m) has a solution if and

only if gcd(a, m) divides b.

66 Cryptanalysis of Number Theoretic Ciphers

PROOF The congruence ax = b (mod m) is equivalent to saying that
there is a whole number y so that ax — b — my. Let g = gcd(a, m). Since g\a
and g\m, if there is a solution, then g\b by Theorem 3.2. This proves that if
g does not divide ò, there is no solution.

Conversely, suppose g\b. Suppose b = gt, where t is an integer. By Theorem
3.9, there are integers u and v so that au + mv — g. Multiply by t to get
a(ut) + m(vt) = gt = 6, and x — ut is a solution to ax = b (mod m). If we
divide au + mi; = # by #, we get (a/g)u + (m/g)v — 1, which shows that i¿ is
a solution to (a/g)u = 1 (mod (m/g)). I

THEOREM 5.7 Solutions of a linear congruence
Let m > 1, a and b be integers. Let g — gcd(a,m). If g\b, then ax =

b (mod m) has g solutions. They are

x = -xo + t— (mod m), t = 0 , 1 , . . . yg - 1,
9 9

where xo is any solution of -XQ = 1 (mod y) . This means that

b m
x=-Xo + t—, £ = 0 , 1 , . . . ,

9 9

are all integer solutions x.

PROOF By Theorem 5.6 we know the congruence has a solution. The
last two sentences of the proof of Theorem 5.6 show that one solution is
x = (b/g)xo, where x0 is any solution of (a/g)xo = 1 (mod (m/g)).

Now suppose x — y and x — z are two solutions to ax = b (mod m)
and assume that y and z are the least nonnegative representatives of their
congruence classes. Then ay = az = b (mod m). This means that ay —
az = mk for some integer k. Divide by g to get (a/g)y — (a/g)z — (m/g)k,
which shows that (a/g)y = (a/g)z (mod (m/g)). Now a/g and m/g are
relatively prime by Theorem 3.8; so, by Theorem 5.5 we can cancel them and
get y = z (mod (m/g)). This means that y = z + j(m/g) for some integer j .
Use the division algorithm (Theorem 3.3) to write j — s g -f ¿, where s and t
are integers and 0 < t < g — 1. Then y — z + (sg + t)(m/g) = z + sra + t(m/g)
and we have y = 2 + t(m/g) (mod m). As we let £ run through the g different
values t = 0 ,1 , . . . , p — 1 we get all solutions to ax = b (mod m), one of
which must be the solution x = (b/g)xo we found above. To show that these
solutions are distinct, that is, incongruent modulo m, suppose to the contrary
that z + t(m/g) = z + u(m/g) (mod m), where 0 < i < w < p — 1. Then m
divides t(m/g) - u(m/g) = (t — u)(m/g). Hence g divides (t — i¿), which is
impossible since 0 < u — t < g because 0 <t < u < g — 1. Therefore there are
exactly g distinct solutions, those in the statement of the theorem. I

Congruences 67

Example 5.4

Solve 7x = 3 (mod 12).
We find g — gcd(7,12) = 1 and g\b since 1|3, so there is one solution. Since

7 - 7 = 1 (mod 12), we have xo = 7, and the solution to 7x = 3 (mod 12) is
x = 3 • 7 + 1 • 12 = 21 + 12* = 9 (mod 12).

Example 5.5

Solve 165a: = 100 (mod 285).
In Example 3.4, we calculated that gcd(165, 285) = 15. Since 15 does not

divide 100, the congruence has no solution.

Example 5.6

Solve 165x = 105 (mod 285).
As in the preceding example, we have gcd(165,285) = 15. Since 15|105,

the congruence has fifteen solutions modulo 285. To find them, we first solve
the congruence (165/15)x0 = 1 (mod (285/15)), or l l x 0 = 1 (mod 19). The
extended Euclidean algorithm gives 11(7) + 19(—4) = 1, so xo = 7. Then
x = (105/15) (7) + i(19) = 7 • 7 + 19i. The fifteen solutions are

x = 7, 7 4-19, 7 + 2 • 1 9 , . . . , 7 + 14 • 19,

that is, x = 7 ,26,45,64, . . . , or 273 (mod 285). These solutions are the same
numbers as x = 7 (mod 19).

We can solve a system of two linear congruences, with the same modulus,
in two unknowns by a method much like tha t used to solve two equations in
two unknowns. The difference is tha t we must be more careful when dividing.
Division by a number relatively prime to the common modulus is simple. It is
performed by multiplying by the multiplicative inverse of the divisor modulo
the common modulus. When the divisor has a common factor > 1 with the
modulus, we must use Theorem 5.7. The following examples illustrate what
possibilities exist.

Example 5.7

Solve the system of two linear congruences

5x + 4y = 1 (mod 11)

x + 2y = b (mod 11).

Subtract 2 times the second congruence from the first to get 3x = 1 — 2 •
5 = 2 (mod 11). When we apply Theorem 5.7 to 3x = 2 (mod 11), we find
g = gcd(3,11) = 1|2, so there is one solution. We find xo = 4 (mod 11),
x = 8 (mod 11) and y = 4 (mod 11).

Example 5.8

68 Cryptanalysis of Number Theoretic Ciphers

Solve the system of two linear congruences

5x + 4y = 2 (mod 15)

x + 2y = 5 (mod 15).

Subtract 2 times the second congruence from the first to get 3x = 2 — 2 •
5 = 7 (mod 15). When we apply Theorem 5.7 to 3x = 7 (mod 15), we find
g = gcd(3,15) = 3 does not divide 7, so there is no solution. Hence the system
has no solution either.

Example 5.9

Solve the system of two linear congruences

bx + 4y = 1 (mod 12)

x + 2y = 5 (mod 12).

Subtract 2 times the second congruence from the first to get 3x = 1 — 2 •
5 = 3 (mod 12). When we apply Theorem 5.7 to 3x = 3 (mod 12), we find
g = gcd(3,12) = 3|3, so there are 3 solutions. Here xo is the solution to
(3/3)a?o = 1 (mod (12/3)) or x0 = 1 (mod 4). Then

x = (b/g)x0 + t(m/g) = 1 + t • 4 (t = 0,1, 2) = 1, 5 or 9.

Consider first the case x = 1 (mod 12). With 1 for x the two congruences
become

4y = 1 - 5 - 1 = 8 (mod 12)

2y = 5 - 1 = 4 (mod 12).

The first of these is implied by the second (multiply by 2), but the reverse
implication is false. Apply Theorem 5.7 to the second congruence. We find
g = gcd(2,12) = 2|4, so there are two solutions. Next we compute xo =
1 (mod 6) and y = 2 or 8 (mod 12). If we had applied Theorem 5.7 to the first
congruence, we would find g = gcd(4,12) = 4|8, so there are four solutions. We
get xo = 1 (mod 3) and y = 2, 5, 8 or 11 (mod 12). However, 5 and 11 must
be discarded because they do not satisfy the second congruence. In summary,
two solution pairs to the original system of congruences are (x,y) = (1, 2) and
(x, y) = (1, 8). In a similar fashion, we find that when x = 5 (mod 12) we have
y = 0 or 6 (mod 12) and when x = 9 (mod 12) we have y = 4 or 10 (mod 12).
The system of congruences has six solution pairs modulo 12.

We close this section by showing tha t a congruence modulo a prime may
have no more solutions than its degree. The hypothesis tha t the modulus be
prime is essential, as is shown by the example, f(x) — x2 — 1 =. 0 (mod 8),
which has the four solutions x = 1, 3, 5, 7 (mod 8). In other words, the square
of every odd number is = 1 (mod 8).

Congruences 69

THEOREM 5.8 No more solutions than degree
Let p be prime. Let f(x) be a polynomial with integer coefficients and degree

d modulo p. Then the congruence f(x) = 0 (mod p) has at most d solutions.

P R O O F Use induction on d. If d — 0, then f(x) — a0 ^ 0 (mod p), and
this congruence has no solution. If d — 1, then the congruence has exactly one
solution by Theorem 5.6 and the fact that the modulus is prime. Assume the
theorem is true for all congruences modulo p with degree < d. Suppose that
the congruence / (#) = 0 (mod p) with degree d has more than d solutions.
Let 7*1,..., r^, Vd+i be d + 1 incongruent solutions modulo p. Let the leading
term of f(x) be adXd, where a<¿ ̂ 0 (mod m). Define a new polynomial

g(x) = f{x) - ad(x - n) • • • (x - rd).

Note that the degree, if any, of the congruence g(x) = 0 (mod p) must be
less than d because the terms adx

d cancel in f(x) and ad(x — r\) • • • (x — r¿).
Thus, if the congruence g(x) = 0 (mod p) has a degree, then it must have
fewer than d solutions by the induction hypothesis. But it is easy to see
that this congruence has at least the d solutions r i , . . . , r d . Therefore, the
congruence g(x) = 0 (mod p) has no degree. This means that p divides
every coefficient of g(x), and so g(x) = 0 (mod p) for every x. In particular,
g(rd+i) = 0 (mod p). But also, /(r^+i) = 0 (mod p). Therefore, x = r<i+i is
a solution to the congruence

ad(x - n) • • • (x - rd) = 0 (mod p),

and this contradicts Lemma 4.2. I

5.3 The Chinese Remainder Theorem
The Chinese remainder theorem is a clever, useful and old idea which gets
its name because it first appeared in a book, The Art of War, by Sun Tsu
(or Sun Che, depending on dialect) more than 1500 years ago. It allows
one to deduce an integer from its approximate size and its least nonnegative
remainder modulo m for a few small m. One early application was to count
soldiers by ordering them to, "Count off by sevens," then, "Count off by tens,"
etc., and remember the numbers shouted by the last soldier. Suppose an army
of a few hundred men was assembled and the "Count off" orders showed that
the remainders of the number x of soldiers modulo 7, 10 and 13 were 1, 3 and
8, respectively. Then x satisfies the system of congruences

x = 1 (mod 7)

x = 3 (mod 10) (5.1)

x = 8 (mod 13).

70 Cryptanalysis of Number Theoretic Ciphers

THEOREM 5.9 Chinese remainder theorem
Let ni,..., nr be r positive integers relatively prime in pairs. (That is,

gcd(n¿,n¿) = 1 whenever 1 < i < j < r.) Let a i , . . . , a r be any r integers.
Then the r congruences

x = ai (mod rii)

for i = 1 , . . . , r Lave common solutions. Any two common solutions are con­
gruent modulo n = ni - - -nr.

Note that the hypotheses are satisfied in the example in Congruences (5.1)
above because any two of the moduli 7, 10, 13 are relatively prime. The proof
of the Chinese remainder theorem gives a reasonably efficient algorithm for
computing the common solution.

PROOF For j = 1 , . . . , r, the number n/rij is an integer. We claim that
gcd(n/n¿,rij) = 1. If not, then some prime d would have to divide both n/rij
and Uj. But n/rij is the product of the n¿ for i ^ j , so d would have to divide
some rii for i / j by Lemma 4.2. Then n¿ and rij would not be relatively prime,
contrary to hypothesis. Since gcd(n/rij,nj) = 1, by Theorem 5.4, there is an
integer bj such that (n/nj)bj = 1 (mod Uj). Clearly, (n/rij)bj = 0 (mod n¿) if
i y¿ j because n¿ divides (n/rij). Let XQ = Y,Vj=i(n/nj)^jaj- Let <5¿¿ = 1 if i —

j and = 0 if i ^ j . Then x0 = J27j=i(n/njf)j)aj = Y^j=\ ^ijaj = ai (m°d ni)-
Thus there is a common solution XQ.

If x\ is another common solution, then XQ = a¿ = xi (mod n¿) and thus
^¿|(^o — #i) for each i. Now use the division algorithm (Theorem 3.3) to
divide (xo — x\) by n: (x0 — x\) — qn + r, where 0 < r < n. Suppose r > 0.
Note that n is the least common multiple of n i , . . . , n r , by Theorem 4.4. But
r is a smaller nonnegative common multiple of these numbers, by Theorem
3.2. Therefore, r = 0 and #o = £i (mod n). I

Example 5.10

Solve the problem of counting the soldiers in Congruences (5.1).
We have n\ = 7, ri2 = 10, 713 = 13, ai = 1, a2 = 3, a^ = 8 and n = 910.

Then n/ni = 10-13 = 4 (mod 7). The extended Euclidean algorithm gives òi =
4_ 1 = 2 (mod 7). Likewise, b2 = l - 1 = 1 (mod 10) and 63 = 5 _ 1 = 8 (mod 13).
Then

x = 130 • 2 • 1 + 91 • 1 - 3 + 70 • 8 • 8 = 5013 = 463 (mod 910).

Since there are a few hundred soldiers, there must be exactly 463 of them, as
the next integer solution would be 463 + 910 = 1373.

Here is a simple algorithm based on the proof of the Chinese remainder
theorem.

Congruences 71

[Solve simultaneous congruences via the Chinese remainder theorem]
Input: Integers r > 1, n i , . . . , n r , all > 1, with gcd(n¿,nj) = 1

for 1 < i < j < r, and integers a±,..., ar.
Output: The solution x of x = a¿ (mod n¿) for 1 < i < r.

w = n r = i *»<
for (i = 1 to r) {

mi = n/rii
bi — (rrii mod n¿) - 1 (mod n¿)
Ci=rrti' bi
}

for (i = 1 t o r) {
X — X I G¿ * C¿¿

}
r e t u r n x

Note that if we have many systems of simultaneous congruences to solve
with the same set of moduli ri\,..., n r , and different a\,..., ar, then the first
for loop needs to be performed only once. Of course, the first for loop takes
most of the time because it uses the extended Euclidean algorithm to find the
modular inverses.

THEOREM 5.10 Complexity of Chinese remainder algorithm
The ñrst for loop in the Chinese remainder algorithm takes 0(r(log n)3) bit

operations. The second for loop in the Chinese remainder algorithm takes
0(r(logn)2) bit operations.

PROOF The calculations are performed modulo n or modulo some m <n,
so by Corollary 3.5, each arithmetic operation can be done in 0((logn)2) bit
operations. Each for loop runs from 1 to r. If we ignore the time for the
modular inverses, each loop requires 0(r(logn)2) bit operations. A total of r
modular inverses are performed in the first for loop. By Corollary 3.1 each
takes 0((logn)3) bit operations; so, the total number of bit operations for the
first for loop is 0(r(logn)3) . I

Let the positive integers n\,..., nr be relatively prime in pairs and let
n = ni • • • n r , as in the hypothesis of the Chinese remainder theorem. Let S
be the set of integers between 0 and n — 1 and let T be the set of all r-tuples
(a i , . . . , ar) of integers, where 0 < a¿ < n¿ for 1 < i < r. Both sets S and T
contain n elements. The function f(x) from S into T defined by

f(x) = (x mod ni,..., x mod nr)

x = 0

72 Cryptanalysis of Number Theoretic Ciphers

gives a one-to-one correspondence between the two sets. It is one-to-one
because if

(x mod m , . . . ,£ mod nr) = (2/ mod rai,... ,2/ mod n r) ,

then x = y (mod n) by the Chinese remainder theorem, so that x — y. The
proof of the Chinese remainder theorem and the algorithm above show how
to compute the inverse function to f(x).

One use of the Chinese remainder theorem is to solve congruences modulo
composite numbers when we already know how to solve them modulo prime
powers. For example, in Chapter 7, we will learn how to to find modular
square roots, that is, how to solve congruences like x2 = a (mod </), where q is a
power of a prime. Suppose we wish to solve x2 = a (mod m), where m has the
standard factorization m = pi1 — -p%r. Suppose we can solve x2 = a (mod p\{)
for each i, and that x — a¿ is a solution to this congruence. Since the prime
powers p\{ are relatively prime in pairs, we can use the Chinese remainder
theorem to solve the system x = a¿ (mod p\l) for 1 < i < r and get a solution
x to x2 = a (mod ra). Furthermore, different r-tuples of solutions (a i , . . . , ar)
will give different solutions x.

Another use of the Chinese remainder theorem is to perform complex cal­
culations with large integers. Suppose we wish to compute the determinant of
a square matrix with integer entries. The determinant is an integer. Suppose
we have an upper bound B on its absolute value. (For example, Hadamard
[50] proved that the absolute value of the determinant of a k x k matrix whose
entries are < M cannot exceed B = kk¡2Mk.) Choose moduli n i , . . . , n r of
convenient size and relatively prime in pairs. For example, one might choose
the moduli to be distinct primes slightly less than 230 whose product exceeds
2B. For each i, compute the determinant modulo n¿, for example, by using
Gaussian elimination to transform the matrix into a diagonal matrix. Re­
member that when the algorithm requires dividing by some integer d, one
must instead multiply by d~l (mod n¿). Let a¿ be the value of the determi­
nant modulo n¿. Then use the Chinese remainder theorem to compute the
determinant modulo n = n\ • • -nr. Call the value x, where 0 < x < n. Since
n > 2B > 21 determinant |, we know that if x < n /2 , then the determinant is
x and if x > n /2 , then the determinant is x — n < 0. Note that there are no
congruences in the question or the answer.

5.4 Exercises
1. A computer job starts at 9 PM and runs for 100 hours. At what time

of day will it end?

2. Let m > 1. Prove that a = b (mod m) if and only if a mod m =
b mod m.

3. Write a congruence to say that x — Ylk + 5 for some integer k.

Congruences 73

4. Show that the unit's digit of a square written in decimal must be one of
0, 1, 4, 5, 6 or 9.

5. Which decimal digits can occur as the last digit of the fourth power of
an integer?

6. Find a complete residue system modulo 13 consisting only of multiples
of 5.

7. Write a single congruence equivalent to the pair of congruences x =
3 (mod 5) and x = 4 (mod 6).

8. Solve the congruence 15x = 9 (mod 36).

9. Solve the congruence 9x = 15 (mod 36).

10. Solve the congruence 36x = 9 (mod 15).

11. Solve the system of two congruences 3x + 4y = 2 (mod 7) and lx + 2y =
5 (mod 7).

12. What are the degrees of the congruence 12x3 + 2x — 3 = 0 (mod m)
when m = 2, when m = 3 and when m = 5?

13. Solve the system of simultaneous congruences x = 3 (mod 5), x =
2 (mod 7), x = 1 (mod 8).

14. Find an integer that leaves a remainder of 3 when divided by 6 or 7,
and which is a multiple of 5.

15. For which positive integers m is it true that

l + 2 + 3 + --- + (r a - l) = 0 (mod m)?

16. Let un denote the n-th Fibonacci number. Prove that a multiplicative
inverse of un modulo i¿n+i is (—l)n+lun.

17. Show that the system of congruences x = a¿ (mod n¿), for i = 1 , . . . , r,
has a common solution if and only if gcd(n¿, rij) divides a¿ — a¿ for every
pair (i,j) with 1 < i < j < r. Prove that if a common solution exists,
then it is unique modulo lcm(ni , . . . , nr).

http://taylorandfrancis.com

Chapter 6

Eider's Theorem and Its
Consequences

Fermat's little theorem is a statement about primes that nearly characterizes
them. Euler generalized Fermat's theorem to a statement about any positive
integer. Many interesting properties about congruences follow from Euler's
theorem. See the number theory texts [99], [78] and [98] for more about this
subject.

6.1 Fermat's Little Theorem
This exceedingly useful theorem was proved more than 350 years ago by Pierre
de Fermât.

THEOREM 6.1 Fermat's "little" theorem
Let p be prime and a be an integer that is not a multiple of p. Then ap~x =

1 (mod p).

Fermât proved this theorem before congruences were invented. He expressed
the conclusion by saying that p divides ap~1 — 1 (in French, of course).

PROOF Since gcd(a,p) = 1, as we saw in the proof of Theorem 5.4, the
set {ai mod p; i = 1 , . . . ,p — 1} is a permutation of the set { 1 , . . . ,p — 1}.
Therefore,

75

Now gcd Í nf=i hP) — 1 because p, being prime, has no divisor between 2

and p — 1. Thus, by Theorem 5.5, we can cancel the product (p — 1)! and get

76 Cryptanalysis of Number Theoretic Ciphers

a?-1 = 1 (modp). I

COROLLARY 6.1
Ifp is prime and a is an integer, then oP = a (mod p).

PROOF Ifp does not divide a, then ap~l = 1 (mod p) by Theorem 6.1,
and the corollary follows when we multiply both sides by a. If p does divide
a, then ap = 0 = a (mod p). I

Fermât's little theorem has many uses. It provides an alternate way to
compute the multiplicative inverse a~l of a modulo a prime p: Recall that a - 1

is the residue class modulo p such that a~1a = aa~l = 1 (mod p). It is defined
only when p does not divide a. In that situation we have ap~1 = 1 (mod p)
by Fermat's little theorem. Factoring out one a gives a • ap~2 = 1 (mod p),
whence a~l = ap~2 (mod p).

For large p, computing a~l modp by this formula requires roughly the
same number of bit operations as computing a~l mod p by the extended Eu­
clidean algorithm, provided one uses the following fast exponentiation algo­
rithm, which we state first for integers.

[Fast Exponentiation]
Input: An integer n > 0 and a number a.
Output: The value an.

e — n
V = l
z = a
while (e > 0) {

if (e i s odd) y = y • z
z — z - z
e = Le/2j
}

r e tu rn y

Note that we did not require a to be an integer. We said a is a "number."
In fact, the algorithm works when a is anything that can be multiplied asso-
ciatively, such as a real number or even a matrix. When a is a congruence
class modulo m, we can use the algorithm to compute an mod m while keep­
ing the numbers small (smaller than m, that is), by reducing modulo m after
each multiplication. The modulus m need not be prime in this application.

THEOREM 6.2 Complexity of fast exponentiation
The fast exponentiation algorithm computes an in O(logn) multiplications.

Euler's Theorem and Its Consequences 77

The while loop computes z — a2 for 0 < i < k and multiplies a2 into the
partial product y whenever 6¿ = 1. The instructions inside the while loop
are performed k = |~log2 n\ times. No more than 2log2 n multiplications are
performed. I

If we use this theorem to estimate the number of bit operations needed to
compute a modular inverse modulo p, the number is 0((logp)3), the same
complexity as the extended Euclidean algorithm would take to find the same
inverse. Often, the architecture of the machine will determine which algorithm
is faster.

Fermât 's little theorem shows that powers modulo a prime p are periodic
with period dividing p — 1.

THEOREM 6.3 Powers are periodic modulo a prime
Let p be prime and a, e and f be positive integers such that e = f (mod p— 1)
and p does not divide a. Then ae = a? (mod p).

PROOF Since e = / (mod p — 1), we can write e = f + m(p — 1) for some
integer m. Then, by Fermat's little theorem, av~x = 1 (mod p), and we have

ae = a/+m(p-l) = af (a P - l) m = afim = af (m o d py

I

Theorem 6.3 allows us to find the last digits of powers of integers.

Example 6.1

Find the low-order decimal digit of 31234.
Note that 10 = 2 • 5. We will compute 31234 mod 2 and 31234 mod 5, and

then use the Chinese remainder theorem to combine the residues and find the
digit 31234 mod 10. First, since 3 is odd, any power of it will be odd because
the product of odd numbers is always odd. Hence, 31234 mod 2 = 1. Now,
1234 mod (5 - 1) = 1234 mod 4 = 2. Since 1234 = 2 (mod 4), Theorem 6.3 tells

PROOF The algorithm works by computing z = a2 while simultane­
ously computing the bits of the binary representation of the exponent n (the
statement if (e i s odd) means, "if the next bit is a 1") from low order to
high order, and multiplying the powers a2% selected by the 1 bits into a par­
tial product y. If we write n = J2i=0 &¿2% where each bit 6¿ is 0 or 1, then
k = [log2 n\ and the algorithm computes

78 Cryptanalysis of Number Theoretic Ciphers

us that 31234 = 32 = 9 = 4 (mod 5). Therefore, the low-order decimal digit of
31234 is the least nonnegative solution x to the system

x = 1 (mod 2)

x = 4 (mod 5),

which is easily seen to be x = 9.

Fermât 's little theorem can almost be used to find large primes. The theo­
rem says that if p is prime and p does not divide a, then oP~l = 1 (mod p).
Thus, this theorem gives a test for compositeness: If p is odd and p does not
divide a, and dP~l ^ 1 (mod p), then p is not prime.

If the converse of Fermât's theorem were true, it would give a fast test for
primality. The converse would say, if p is odd and p does not divide a, and
ap~l = 1 (mod p), then p is prime. This converse is not a true statement,
although it is true for most p and most a. If p is a large random odd integer and
a is a random integer i n 2 < a < p — 2, then the congruence ap~1 = 1 (mod p)
almost certainly implies that p is prime. However, later we will see that there
are more reliable tests for primality having the same complexity. In Theorem
6.10, we will prove a true statement quite similar to the false converse.

DEFINITION 6.1 An odd integer p > 2 is called a probable prime to
base a if ap~1 = 1 (mod p). A composite probable prime to base a is called
a pseudoprime to base a.

If one had a list of all base a pseudoprimes < L, then the following instruc­
tions would form a correct primality test for odd integers p < L:

1. Compute r — ap~l mod p.
2. If r / 1, then p is composite.
3. If p appears on the list of pseudoprimes < L, then p is composite.
4. Otherwise, p is prime.
Although this algorithm has occasionally been used, there are much better

tests, some having the same complexity.
There are only three pseudoprimes to base 2 below 1000. The first one is

p — 341 = 11 - 31. By fast exponentiation or otherwise, one finds 2340 =
1 (mod 341).

The second pseudoprime p to base 2 has a remarkable property. This num­
ber is p = 561 = 3 • 11 • 17. Not only is 2560 = 1 (mod 561), but also
a560 = 1 (mod 561) for every integer a with gcd(a, 561) = 1. It is a Carmichael
number.

DEFINITION 6.2 A Carmichael number is an odd composite positive
integer which is a pseudoprime to every base relatively prime to it.

Euler's Theorem and Its Consequences 79

The bad news is that there are infinitely many Carmichael numbers [2]. The
good news is that Carmichael numbers are so rare that if you choose a random
large odd number, it almost certainly will not be a Carmichael number.

6.2 Euler's Theorem
Euler's theorem generalizes Fermât 's little theorem to composite moduli and
is even more useful for cryptography than Fermât's little theorem. For a
composite modulus, the analogue of the exponent p— 1 is the size of a reduced
set of residues.

DEFINITION 6.3 A reduced set of residues (RSR) modulo m is a
set of integers R, each relatively prime to m, so that every integer relatively
prime to m is congruent to exactly one integer in R.

THEOREM 6.4 The GCD depends only on the residue class
Ifa = b (mod m), then gcd(a,ra) = gcd(ò, ra).

PROOF The congruence means that a = b + mq for some integer q. The
theorem then follows from Theorem 3.6. I

In view of Theorem 6.4, one may construct a reduced set of residues by
starting with a complete set of residues and deleting the members which are
not relatively prime to the modulus. If one begins with the standard CSR
{ 1 , . . . ,ra} and deletes the numbers not relatively prime to ra, one gets the
standard RSR, namely the set of all i in 1 < i < m with gcd(i,ra) = 1. All
RSR's modulo m have the same size because the definition gives a one-to-one
correspondence between the elements of two RSR's.

DEFINITION 6.4 The common size of all RSR's modulo m is called the
Euler phi function, <t>{m), of m.

The Euler phi function is sometimes called the totient function.
If we consider the size of the standard RSR, we get this alternate definition:

(f)(m) is the number of i in 1 < i < m with gcd(z, m) = 1.

THEOREM 6.5 A multiple of an RSR is an RSR
Let a be relatively prime to m. Let {ru . . . ,r^(m)} be an RSR modulo m.

Then { a r i , . . . , ar^m^} is also an RSR modulo m.

PROOF We first show that each integer ari is relatively prime to m.

80 Cryptanalysis of Number Theoretic Ciphers

Suppose not. Then gcd(ar¿,ra) > 1 for some ¿. Hence there is a prime p
which divides the gcd, so p divides both m and av{. Since gcd(a, m) = 1 and
p|ra, p cannot divide a. Thus gcd(p, a) = 1 and by Lemma 4.1, p|r¿. Hence
p divides both m and r¿, so p| gcd(ra,r¿) and gcd(ra,r¿) > 1, contrary to the
hypothesis that gcd(r¿, m) = 1 because r¿ is a member of an RSR modulo ra.

So far we know that the elements of {ar\,..., ar^^ } are relatively prime
to m and that the set has the correct size <j)(m) to be an RSR modulo ra. We
need only show that no two members of the set are congruent to each other.
Suppose to the contrary that ari = arj (mod ra). Then Theorem 5.5 shows
that Ti = Tj (mod ra), and soi — j because {r\,..., r^(m)} is an RSR modulo

m. I

Now we can prove the main theorem of this chapter.

THEOREM 6.6 Euler's theorem
Let m > 1 and gcd(a,ra) = 1. Then a^m"> = 1 (mod m).

PROOF Let { r i , . . . ,r^(m)} be an RSR modulo m. By Theorem 6.5, the
set {a r i , . . . ,ar«£(m)} is an RSR modulo m, too. Therefore, for all ¿, there is
a unique j so that r¿ = ar^ (mod m). Then

Since gcd (nf=i r ^ m) = 1J w e c a n cancel, by Theorem 5.5, and get a^(m) =

1 (mod m). I

Euler's theorem has many corollaries. First, we can derive Fermat's little
theorem (Theorem 6.1) as a corollary: If m = p is prime, then (¡>{p) = p — 1
because the numbers 1,2,... ,p — 1 are all relatively prime to p, and so they
form an RSR modulo p. Also since p is prime, the statement "a is relatively
prime to p" has the same meaning as the statement "p does not divide a."
Thus, Euler's theorem for a prime modulus says that if p does not divide a,
then ap~1 = 1 (mod p), which is just Fermat's theorem.

Another corollary gives an alternative to the extended Euclidean algorithm
for computing modular inverses.

COROLLARY 6.2
Suppose m > 1 and gcd(a, m) = 1. Then a ^ m) _ 1 mod m is a multiplicative

inverse of a modulo m.

PROOF We have a (a^^'1 mod m) = a^ m) = 1 (mod m). I

Euler's Theorem and Its Consequences 81

since g^(m) = 1 (mod m), by Euler's theorem. I

This corollary allows us to give a different solution to an earlier example,
this time without using the Chinese remainder theorem.

Example 6.2

Find the low-order decimal digit of 31234.
We need to find the residue 31234 mod 10. It is easy to see that an RSR

modulo 10 is {1,3,7,9} because these four integers are relatively prime to 10,
while the other integers between 1 and 10 are not. Thus, 0(10) = 4. Now
1234 mod 4 = 2, so that 1234 = 2 (mod 4). By Corollary 6.3,

31234 _ 3 2 = g (m o d 1 0 ^

The answer 9 is the same answer we obtained in the previous section.

In order to use Euler's theorem, we must be able to compute <j>(m). The
next two theorems provide a way to do this when we know the factorization
of m.

DEFINITION 6.5 A real-valued function f(x) denned for positive inte­
gers is called multiplicative if f(ab) = f(a)f(b) whenever gcd(a, b) = 1.

DEFINITION 6.6 The Cartesian product of two sets S and T is the
set S x T of all ordered pairs (s, t) with s G S and t G T.

The set S x T is called the Cartesian product because when S and T are
finite sets, the number of elements in S xT equals the product of the number
of elements in S times the number of elements in T. It is called Cartesian
because Descartes invented it.

PROOF We have x = y + k(j)(m) for some integer fc, so

COROLLARY 6.3
Let m > 1, x, y and g be positive integers with gcd(#,ra) = 1. If x =

y (mod (¡>{m)), then gx = gy (mod m).

For large m, computing a - 1 mod m by this formula requires roughly the
same number of bit operations as computing a - 1 mod m by the extended
Euclidean algorithm. However, the latter must be used if <p(m) is unknown.

Here is another corollary of Euler's theorem, useful in cryptography.

82 Cryptanalysis of Number Theoretic Ciphers

THEOREM 6.7 The Euler phi function is multiplicative
The Euler phi function, (¡){x), is multiplicative, that is, (f)(mn) = (¡){m)(j){n)

whenever m and n are relatively prime.

PROOF The statement is trivial if ra = 1 or n — 1. We assume now that
m > 1 and n > 1.

For positive integers &, let R(k) be the standard RSR modulo fc, that is,
the set of all i in 1 < i < k with gcd(i, k) — 1. Note that R(l) — {1}, but k
is not an element of R(k) for k > 1. The size of R(k) is <j>(k).

We will show that (p(mn) — (j)(m)(j)(n) by constructing a one-to-one corre­
spondence between R(mn) and R(m) x R(n). Define a function / from R(mn)
into R(m) x R(n) by

f(x) = (x mod m, x mod n).

We must show that the function is well defined. Suppose x is relatively prime
to mn. Then gcd(#,ra) = 1 and gcd(x mod ra,ra) = gcd(x,ra) = 1. Also,
1 < x mod ra < ra — 1 because m > 1. Therefore, x mod m is in R(m).
Similarly, x mod n is in R(n). Therefore / is well defined.

Now define a function g from R(m) x R(n) to R(mn) as follows. Given a
pair (a, 6) in i2(ra) x R(n), use the Chinese remainder theorem to find the
unique solution x — g((a,b)) to the congruences

x = a (mod ra)

x = b (mod n)

with 0 < x < mn. We now show that x really is an element of R(mn). Note
first that gcd(x,ra) = gcd(a,ra) = 1 because x = a (mod ra) and a is in
R(m). (We have used Theorem 6.4 here.) Similarly, gcd(x,n) = 1. If x were
not in R(mn), then gcd(x,ran) > 1. Suppose a prime p divides gcd(x,ran).
Then p\mn and hence p\m or p\n by Lemma 4.2. If p|ra, then p|gcd(x,ra),
which cannot happen. Likewise, p cannot divide n either. Therefore, x is in
R(mn) and the function g is well defined.

It is clear from their definitions that / and g are inverse functions to each
other. Therefore, R(mn) and R{m) x R(n) have the same size and <j>{mn) =
(f){m)(t){n). I

THEOREM 6.8 Formulas for the Euler <j> function
Let p be prime, and e and ra be positive integers. Then:

1 . </>{p) =p-l,

2. ct>(pe)=Pe-Pe-1,

3. if m = n ÎL iP iS then <Kn) = n L i {pV -ti1"1), and

4. «m) = m n g | m) î p r i m e (l - j) .

Euler's Theorem and Its Consequences 83

Now use Part 2.
4. Factor out p\{ from the i-ih factor in the product in Part 3. These

factors multiply to produce m and the remaining factors give n¿=i (1 "~ h)-

I

The following corollary is just a special case of Part 3 of the theorem, but
it is important for the RSA cipher.

COROLLARY 6.4
Ifp and q are distinct primes, then <j>(pq) = (p — l)(q — 1).

The next corollary leads to a true converse of Fermât 's little theorem.

COROLLARY 6.5
Ifm>l is composite, then (f){m) < m — 2.

PROOF If m is a prime power pe with e > 1, then </>(m) — pe — pe~x <
pe — 2 because p > 2.

If m has at least two different prime factors p and q, then these two primes,
at least, are between 1 and m — 1 and not relatively prime to m, so </>(ra) <
(ra-l)-2. I

DEFINITION 6.7 If m > 1 and gcd(a,m) = 1, then the order of a
modulo m is the smallest positive integer e for which ae = 1 (mod m).

The order e of a modulo m is well defined because, by Euler's theorem,
a<t>(™>) = i (mod m) when gcd(a,ra) = 1, so that 1 < e < 0(m).

Classical number theory books write "a belongs to the exponent e" for "a
has order e."

THEOREM 6.9 Multiples of the order
Let m > 1, gcd(a,ra) = 1 and e be the order of a modulo m. Then the

positive integer x is a solution ofax = l (mod m) if and only if e\x.

PROOF 1. The p — 1 numbers 1 , . . . ,p — 1 are all relatively prime to p.
2. The pe numbers 1 , . . . ,pe are all relatively prime to p except for the pe~l

multiples of p: p, 2p,... ,pe~lp.
3. Using Theorem 6.7 and the fact that powers of different primes are

relatively prime, we have that if m = n¿=i PV 5 ̂ n e n

84 Cryptanalysis of Number Theoretic Ciphers

P R O O F If e|x, say x = ek, then ax = (a6)^ = 1* = 1 (mod m) because
ae = 1 (mod m). Now suppose ax = 1 (mod m). Use the division algorithm,
Theorem 3.3, to write x = eq + r with 0 < r < e. Then ax = aeqJrr =
(ae)9a r = a r (mod m). But ax = 1 (mod m), so a r = 1 (mod m). Since e
is the smallest positive integer for which ae = 1 (mod m) and 0 < r < e, we
must have r = 0. Therefore e\x. I

COROLLARY 6.6
Ifm>l and gcd(a, m) = 1, then tne order of a modulo m divides 4>(m).

P R O O F Euler's theorem tells us that a^(m) = 1 (mod m); so, the order

of a modulo m divides (¡>{m) by Theorem 6.9. I

Now we can give our first prime-proving theorem. It is a true converse to
Fermât's little theorem.

THEOREM 6.10 Lucas-Lehmer m - 1 primality test
Let m > 1 and a be integers such that a171"1 = 1 (mod m), but a^m~~l^p ^

1 (mod m) for every prime p dividing m - 1. Then m is prime.

P R O O F The congruence a m _ 1 = 1 (mod m) and Theorem 6.9 imply that
gcd(a, m) = 1 and the order e of a modulo m divides m — 1. The second
condition, a^m~l^p ^ 1 (mod m) for every prime p dividing m — 1, shows
that e is not a proper divisor of m — 1. Therefore, e must equal m - 1. But by
Corollary 6.6, e divides 4>(m). Hence, m — 1 < <f>{m). But by Corollary 6.5, if
m > 1 is composite, then <j>(m) <m — 2. Thus, m cannot be composite. I

This theorem can be used to prove primeness of almost any prime m for
which we know the factorization of m — 1. If m is an odd prime, then usually
a small prime a can be found quickly which will satisfy all the conditions. The
principal difficulty in using the theorem to prove that a prime m is prime is
not the search for a, but rather finding the factorization of m — 1. If m — 1
has been factored, then one can use this simple algorithm to try to prove it
is prime.

[Lucas-Lehmer m — 1 primality test]
1. Choose a — 2 or choose a random a in 2 < a < m — 1.
2. Compute r = a m _ 1 mod m.
3. If r ^ 1, then m is composite.

4. Check'that a ^ - 1 ^ ^ 1 (mod m) for each prime p dividing m — 1.
5. If all these incongruences are true, then m has been proved prime.

Euler's Theorem and Its Consequences 85

6. If they are not satisfied, then either choose another a (either the next
small prime or a new random 2 < a < m — 1) and go back to Step 2, or else
give up if many a have already been tried.

If m is a large prime, then the expected number of a this algorithm must try
before finding one that works is known to be < 2 In In m. See Theorem 6.18.
If ra is composite, but not a Carmichael number (Definition 6.2), then the
algorithm will almost certainly stop in Step 3. If m is a Carmichael number,
then the algorithm will probably stop when you give up in Step 6.

THEOREM 6.11 Complexity of Lucas-Lehmer m - 1 primality test
If the input m of the Lucas-Lehmer ra — 1 primality test is prime and the com­

plete prime factorization ofm — 1 is given, then the average time complexity
of the algorithm is 0(log4ra(loglogra)) bit operations.

PROOF We have already mentioned that the expected number of a which
must be tried is < 21nlnra and will not prove this here. See Theorem 6.18.
This estimate gives the factor log logra in the theorem statement.

It is easy to see that for each a, most of the work is the calculation of
a(™-i)/p m o c [m in Step 4. Each of these exponentiations takes O(logra)
multiplications by Theorem 6.2, and each multiplication takes 0(log2ra) bit
operations by Theorem 3.5. For each a, the exponentiation must be done for
each prime p dividing m — 1. No integer n can have more than logn prime
divisors because each prime is > 2 and n is the product of its prime divisors,
some of which may be repeated. The total complexity is

O ((log m - 1) (log2 ra) (logra) (log logra)) = O (log4 ra (log logra))

bit operations. I

We finish this section by stating a generalization of the prime number theo­
rem (Theorem 4.7). Sometimes we need a prime that lies in a specific congru­
ence class modulo d, that is, it lies in a specific arithmetic progression a + dn.
If the first term a and common difference d have a common factor > 1, then
every number in the arithmetic progression is divisible by this common factor,
so there cannot be more than one prime.

Example 6.3

In the congruence class 9 mod 12, which is the same as the arithmetic progres­
sion 9 + 12n, every number is divisible by gcd(9,12) = 3, and there are no
primes. The congruence class 3 mod 12 contains only the prime 3 since every
number of the form 3 + Yin is divisible by 3.

But if the first term a and common difference d are relatively prime, then
the arithmetic progression a + dn contains infinitely many primes. In fact,

86 Cryptanalysis of Number Theoretic Ciphers

The theorem says that, roughly speaking, half of the primes are = 1 (mod 4)
and half are = 3 (mod 4).

There is a more precise version of this theorem that expresses 7ra?d(x) as a
main term plus an error term. The extended Riemann Hypothesis, ERH,
is a statement about the zeros of certain functions, which would imply that
the error term in the theorem is as good as possible. The ERH is a famous
unsolved problem in number theory. If proved, the ERH would have many
consequences throughout number theory.

6.3 Primitive Roots
In the previous section, when gcd(a, m) = 1, we defined the order of a modulo
m to be the smallest positive integer e for which ae = 1 (mod TO). We showed
that the order divides </>(ra) and so cannot be larger than </>(ra). Numbers a
whose order modulo m equals </>(ra) have important uses in cryptography.

DEFINITION 6.8 An integer g whose order modulo m is (¡>{m) is called
a primitive root modulo m.

If g is a primitive root modulo TO, then gcd(#,ra) = 1 because the order of
g would be undefined if gcd(#,m) > 1.

Some positive integers TO have primitive roots and some do not.

THEOREM 6.13 Which integers have primitive roots
A positive integer m has a primitive root if and only if m — 2, or 4, or pe or

2pe, where p is an odd prime and e is a positive integer. If m has at least one
primitive root, then it has exactly <j>(<j>(m)) of them.

Some versions of this theorem in number theory texts state that 1 has order

for fixed d every arithmetic progression a + dn which could have infinitely
many primes has asymptotically the same number of primes < x. There are
.(j){d) congruence classes relatively prime to d, one for each element of an RSR
modulo m, and each class has about l/(j)(d) of the primes.

THEOREM 6.12 Dirichlet's theorem, the prime number theorem for arith­
metic progressions
Suppose a and d > 1 are integers with gcd(a, d) = 1. Let 7raid(x) the number

of primes = a (mod d) which are < x, that is, the number of primes of the
form a + dn<x. Then

Euler's Theorem and Its Consequences 87

1 modulo 1, so 1 is a primitive root modulo 1, and 1 is added to the list of the
integers m having primitive roots. We omit the proof of this theorem, which
has many steps. We focus instead on how to find primitive roots.

Consider first the powers of 2. It is easy to see that 1 is a primitive root
modulo 2 and 3 is a primitive root modulo 4. There is no primitive root mod­
ulo 8 because 0(8) = 4 and the possible candidates 3, 5 and 7, for primitive
root modulo 8, all have order 2. Although there is no primitive root modulo
2e for e > 3, the number 5 has order 2e~2 modulo 2e for every e > 3, and this
order is 0(2e)/2 and is as large as possible.

Theorem 6.13 says that every prime p has primitive roots, in fact 0(0(p)) =
0(p— 1) of them. If one proves p to be prime via the Lucas-Lehmer m — 1 test,
Theorem 6.10, then the number a satisfying all the hypotheses is a primitive
root modulo p. The Lucas-Lehmer m — 1 primality test provides an efficient
way of finding primitive roots for large primes. The complexity of this method
of finding primitive roots is given in Theorem 6.11.

If p is an odd prime and g is a primitive root modulo p, then either g or
g + Pi whichever one is odd, is a primitive root modulo pe for every e > 1.
(However, some even numbers are primitive roots modulo pe.) If p is an odd
prime and g is a primitive root modulo p2, then g is a primitive root modulo
pe for every e > 1. If p is an odd prime and g is a primitive root modulo p e ,
then either g or g + p e , whichever one is odd, is a primitive root modulo 2pe

for every e > 1. (Of course, no even number can be a primitive root modulo
2pe.)

Example 6.4

Let p — 3. Then 0(0(3)) = 0(2) = 1; so, there is only one primitive root modulo
3, namely g = 2. Since 2 + 3 = 5 is odd, 5 is a primitive root modulo 3e for all
e > 1. Actually, 2 is a primitive root modulo 9 because 0(9) = 6 and the powers
of 2 modulo 9 are: 2, 4, 8, 7, 5, 1. Therefore, 2 is a primitive root modulo 3e

for every e > 1. Since, 0(0(9)) = 0(6) = 2, we have found all of the primitive
roots modulo 9. They are 2 and 5.

Example 6.5

Let p = 5. Then 0(0(5)) = 0(4) = 2, so there are two primitive roots modulo
5, namely g = 2 and 3. Since 2 + 5 = 7 is odd, 7 is a primitive root modulo 5e

for all e > 1, as is 3.

The following theorems give useful properties of primitive roots. In many
applications of the first three theorems, a will be a primitive root modulo m
and its order h = 0(m).

THEOREM 6.14 Order of a power
If gcd(a, m) = 1 and a has order e modulo m, then ak has order e/ gcd(e, k)

modulo m.

88 Cryptanalysis of Number Theoretic Ciphers

PROOF Let j be the order of ak modulo m. Let d — gcd(e, fc), so we may
write e — bd and k = cd for some integers b and c with gcd(ò, c) = 1. We have

(ak)b = acdb = (abd)c = (ae)c = Ie = 1 (mod m).

Therefore, by Theorem 6.9, j\b. On the other hand, afej = (ak)j = 1 (mod m)
since j is the order of ah. Using Theorem 6.9 once more, we see that e\kj.
This may be written as bd\cdj, so b\cj. But gcd(ò, c) = 1, so b\j by Lemma
4.1. Therefore, j = 6 = e/d = e/ gcd(e, fe). I

The next theorem generalizes Theorem 6.3 and Corollary 6.3. It shows that
if we wish to compute powers of a modulo m, then we should work modulo
the order of a in the exponent.

THEOREM 6.15 Order is the modulus for the exponent
If gcd(a, m) — 1 and a has order e modulo m, then a1 = a-7 (mod m) if and

only if i = j (mod e).

PROOF Suppose first that i = j (mod e). Then i = j + en for some
integer n and we have

a* = aj+en = a^'(ae)n = a ñ n = â ' (mod m).

Conversely, suppose a1 = a-7 (mod m). Interchanging ¿ and j if necessary, we
may assume that i > j , so that i — j > 0. Now gcd(a,ra) = 1 by hypothesis.
Therefore, we may cancel a-7 from each side and obtain a ï _ J = 1 (mod m).
Therefore, by Theorem 6.9, e\(i — j), so i = j (mod e). I

THEOREM 6.16 The power residues are distinct
Suppose gcd(a,m) = 1 and a has order e modulo m. Then the powers

1, a, a 2 , . . . , a e _ 1 are aii different modulo m.

PROOF Suppose a1 = a-7 (mod m) where 0 < ¿ < j < e — 1. Then
¿ = j (mod e) by Theorem 6.15. Hence, e\(j — i), and this cannot happen for
0 < z < j < e — 1 unless i = j . Therefore, the e powers of a must be distinct.

THEOREM 6.IT The powers of a primitive root form an RSR
If g is a primitive root modulo m and gcd(ò, m) = 1, then there is exactly

one exponent k in 0 < k < <f>(m) with gk = b (mod m).

PROOF There cannot be more than one such k by Theorem 6.16. Since
gcd(#,ra) = 1, every power gl is relatively prime to m. Therefore, the <j){m)

Euler's Theorem and Its Consequences 89

numbers gl mod m for i = 0 , 1 , . . . , (f)(m) — 1 are all relatively prime to m.
Thus, they must be contained in an RSR modulo m. They are all different
by Theorem 6.16. There are enough of the powers to form an RSR modulo
ra. Hence they must be an RSR modulo ra, and so every integer b relatively
prime to ra must be congruent to one of them. I

Using analytic number theory to prove a lower bound on (p(p — 1), one can
obtain the following result.

THEOREM 6.18 A lower bound on the number of primitive roots
Ifp > 1012 is prime, then there are at least (p - l)/(2\n\np) primitive roots

modulo p.

See Exercise 4.1 of [33] for an outline of the proof. We used Theorem 6.18
in the proof of Theorem 6.11.

6.4 Discrete Logarithms
If a modulus ra and a primitive root g are fixed, then the exponents on the
powers of g have properties similar to those of logarithms. Number theorists
and cryptographers give different names to these exponents.

DEFINITION 6.9 Let g be a primitive root modulo ra. If the integer b is
relatively prime to ra, then by Theorem 6.17 there is a unique integer k such
that gk = b (mod ra) and 0 < k < (j)(m). This integer k is called (by number
theorists) the index of b to base g modulo ra and (by cryptographers) the
discrete logarithm ofb to base g modulo ra.

The notations k = mdgb and k = I>oggb are used for the index or discrete
logarithm of b to base g modulo ra (which are the same thing). Both notations
suppress the modulus ra, which is assumed to be fixed. We will call k a
discrete logarithm rather than an index. We write "Log" to emphasize that
it is different from ordinary logarithms, which are denoted by "log." In this
notation, we have b = gLog9b (mod m).

Remember that by Theorem 6.13 only the moduli m = 2, 4, pe and 2pe have
primitive roots. Thus, m must be one of these numbers in order for discrete
logarithms modulo m to be defined.

Many useful properties of discrete logarithms are given in the following
theorem. Note their similarity to properties of ordinary logarithms.

THEOREM 6.19 Properties of discrete logarithms
Let g be a primitive root modulo m. Let a and b be integers relatively prime

90 Cryptanalysis of Number Theoretic Ciphers

and Part 3 follows from Theorem 6.15.
4. Let i = Logg(g

k). We have gl = gk (mod m) by the definition of discrete

logarithm. Hence, i — Logg(g
k) = k (mod </>(m)) by Theorem 6.15.

5. Note first that gLo^(ak) = a
k (mod m) and

by definition. Hence, # L o M a) = gk'Lo&ga (mod m), and Part 5 follows from

Theorem 6.15. I

For example, 2 is a primitive root modulo 13. The powers of 2 modulo 13
are given in this table.

¿fc: 0 1 2 3 4 5 6 7 8 9 10 11
2k mod 13: 1 2 4 8 3 6 12 11 9 5 10 7

Therefore, the discrete logarithms modulo 13 are given in this table.

0 : 1 2 3 4 5 6 7 8 9 10 11 12
Log26: 0 1 4 2 9 5 11 3 8 10 7 6

The second table may be formed from the first by sorting the columns in
the first table in increasing order of the numbers in the second row and then
swapping the two rows.

Therefore,

and

P R O O F 1. This is immediate from g° = 1 and g1 = g.
2. Let i = Logpa and j = Loggb. Then 0 < ¿, j < (¡>(m), a = gl (mod m)

and b = gj (mod m). By Theorem 6.15, g% = gj (mod m) if and only if
i = j (mod 0(m)). Then Part 2 follows from the definition.

3. By the definition of discrete logarithm,

to m. Then
1. Loggl = 0 and Loggg = 1,
2. a = b (mod m) if and only ifLogga = Loggb,
3. Logg(ab) = Logga + Logp6 (mod 0(m)),

4. Log5(^
fe) = fc (mod (j)(m)), and

5. Logg(a
k) = fc(Log^a) (mod 0(m)).

Euler's Theorem and Its Consequences 91

6.5 Exercises
1. Find the last digit of the base 13 expansion of 7200. (The exponent 200

is in decimal.)

2. The fast exponentiation algorithm processes the bits of the exponent n
from right to left as it computes an. The following algorithm uses the
same bits from left to right to compute an. Show that it is correct for
n > 2, and compare its complexity to that of fast exponentiation.

[Left to Right Fast Exponentiation]
Input: An integer n > 2 and a number a.
Output: The value an.

wri te n in binary as n = ^i=0 b{2%,
with bi = 0 or 1, and bk

y = a
for (z = k — 1 down to 0) {

y = y2

if (bi = 1) y = y -x
}

return y

= 1

3. Find a reduced residue system modulo 12 consisting entirely of multiples
of 5.

4. Prove that if m > 2, then the sum of the numbers in any reduced residue
system modulo m is a multiple of m.

5. Show that if p and q are distinct primes, then pq~x +qp~1 = 1 (mod pq).

6. Find the last hexadecimal digit of 71234. (The exponent 1234 is in
decimal.)

7. Find the last two decimal digits of 71234.

8. Find <j)(m) for each integer m between 20 and 30.

9. For which positive integers m is (¡>(rn) odd?

10. Solve a quadratic equation to find the primes p and g, given that n =
pq = 4386607 and 0(n) = 4382136.

11. Show that every odd composite integer is a pseudoprime to base 1 and
to base —1.

12. Find a primitive root modulo 19. How many primitive roots modulo 19
are there?

92 Cryptanalysis of Number Theoretic Ciphers

13. Use the Lucas-Lehmer m — 1 primality test to prove that 17 is prime.

14. Use the Lucas-Lehmer m — 1 primality test to prove that 23 is prime.

15. Multiply (7 x 9) mod 13 by adding the discrete logarithms of 7 and 9,
using the tables at the end of Section 6.4.

16. Find Logg(m — 1) when m > 2 and g is a primitive root modulo m.

Chapter 7

Second Degree
Congruences

In Section 5.2, we learned how to solve linear congruences. This chapter in­
troduces quadratic congruences. Some integer factoring algorithms and some
protocols require the rapid solution of quadratic congruences. Certain pri-
mality testing methods become improved by the ability to tell whether some
second degree congruences have solutions, although one need not find them.
See the number theory texts [99], [78] and [98] for more about second degree
congruences.

The most general quadratic congruence is

ax2-\-bx-\-c = 0 (mod m) (7.1)

where a, b and c are integers. If instead we had to solve a quadratic equation
ax2 + bx + c = 0, we could use the quadratic formula

93

(7.2)

Suppose a, b and c are integers and we wish to try to use Formula (7.2) to
solve Congruence (7.1). We could perform the addition, subtraction and mul­
tiplication modulo m in Formula (7.2) without difficulty. We could perform
the division by 2a modulo m provided gcd(2a, m) = 1. (Note that problems
arise here when m is even.) The part of the problem that is new in this chap­
ter is taking a square root modulo m. We must solve y2 = r (mod m), where
r = b2 — Aac. This congruence may be solved by first solving it modulo each
prime power divisor of m and then combining the solutions via the Chinese
remainder theorem. We will see that the solutions modulo a prime power pk

are obtained by first solving z2 = r (mod p) and then "lifting" those solutions
to solutions modulo pk. We begin by studying z2 = r (mod p), where p is
prime.

94 Cryptanalysis of Number Theoretic Ciphers

7.1 The Legendre Symbol
The solution to the congruence x2 = r (mod 2) is simple. There is always one
solution modulo 2. If r = 0, then x = 0 (mod 2). If r = 1, then x = 1 (mod 2).

When p is an odd prime, the congruence x2 = r (mod p) has solutions for
some r and no solution for other r. Consider this table of squares modulo 11:

x : 0 1 2 3 4 5 6 7 8 9 10
x2 mod 1 1 : 0 1 4 9 5 3 3 5 9 4 1

Note that the congruence classes 0, 1, 3, 4, 5, 9 are squares and the classes
2, 6, 7, 8, 10 are not squares modulo 11. The class 0 has only one square
root, but the other classes which are squares each have two square roots. For
example, the solutions to x2 = 3 (mod 11) are x = 5 and 6 (mod 11).

The congruence x2 = 0 (mod p) always has the unique solution x =
0 (mod p) when p is prime. We exclude this special case from the next
definition.

DEFINITION 7.1 If m is a positive integer and r is relatively prime to
m, then we say r is a quadratic residue (QR) modulo m if the congruence
x2 = r (mod m) has a solution, and we say r is a quadratic nonresidue
(QNR) modulo m if the congruence x2 = r (mod m) has no solution.

Thus, 1, 3, 4, 5 and 9 are the quadratic residues modulo 11 and 2, 6, 7, 8
and 10 are the quadratic nonresidues modulo 11.

In fact, 1 is always a quadratic residue modulo ra. It always has 1 and —1
as square roots. When m is prime, there are no other square roots.

THEOREM 7.1 Square roots of 1 modulo p
Ifp is prime, then x2 = 1 (mod p) if and only if x = ±1 (mod p).

PROOF We may write the quadratic congruence as (x — l)(x + 1) =
x2 — 1 = 0 (mod p). It holds if and only \îp\(x—l)(x + l). By Lemma 4.2, this
means either p\(x - 1) or p\(x + 1), that is, x = 1 (mod p) or x = — 1 (mod p).

An alternate proof of Theorem 7.1 uses Theorem 5.8. That theorem says
that the congruence x2 — 1 = 0 (mod p) has no more solutions than its degree.
Clearly, 1 and —1 are solutions. There can be no more solutions.

COROLLARY 7.1
If g is a primitive root modulo an odd prime p, then g^"1)/2 = — 1 (mod p).

Second Degree Congruences 95

PROOF Let x = g^~1^2. Then x2 = ^ _ 1 = 1 (mod p), so by Theorem
7.1, either x = 1 (mod p) or x = —1 (mod p). But if x = 1 (mod p), then g
would not be a primitive root. Therefore, x = - 1 (mod p). I

THEOREM 7.2 There are either 0 or 2 square roots of r modulo p
if p is an odd prime and r is not a multiple of p, then the congruence

x2 = r (mod p) has either no solution or exactly two incongruent solutions
modulo p.

PROOF Suppose x — a is a solution to x2 = r (mod p). Then # = — a is
also a solution because (—a)2 = a2 = r (mod p) and —a^a (mod p) since
the odd prime p does not divide a — (—a) = 2a. (If p|a, then p|a2 and so p|r.)

Suppose 6 were a third solution to x2 = r (mod p). Then b2 = r =
a2 (mod p), so p divides b2 — a2 = (b — a)(b + a). By Lemma 4.2, this means
either p\(b — a) or p\(b + a), that is, ò = a (mod p) or 6 = —a (mod p).

We have shown that if the congruence x2 = r (mod p) has a solution, then
it has exactly two of them. Therefore it has either no solution or exactly two
solutions. I

THEOREM 7.3 Equal numbers of quadratic residues and nonresidues
If p is an odd prime, then there are exactly (p - l) /2 quadratic residues

among 1,2,... ,p — 1, and the same number of quadratic nonresidues.

PROOF Every one of the p — 1 numbers x = 1,2,... ,p - 1 satisfies one
of the congruences x2 = r (mod p), namely, the one with v — x2 mod p.
But by Theorem 7.2, each congruence x2 = r (mod p) has either zero or
two solutions. Therefore, as r goes from 1 to p — 1, half of the congruences
x2 = r (mod p) have two solutions x and the other half have no solution. The
(p — l) /2 values of r (mod p) for which x2 = r (mod p) has two solutions are
the quadratic residues modulo p and the other (p — l) /2 values of r are the
quadratic nonresidues. I

DEFINITION 7.2 Let p be an odd prime and r be an integer. The
Legendre symbol (r/p) is deñned tobe+1 ifr is a quadratic residue modulo
p, — 1 ifr is a quadratic nonresidue modulo p and 0 ifp divides r.

This notation was introduced by the French mathematician A.-M. Legendre
more than 200 years ago.

THEOREM 7.4 Euler's criterion for r being a quadratic residue
Let p be an odd prime and r an integer not divisible by p. Then r^"1^2 mod

96 Cryptanalysis of Number Theoretic Ciphers

P R O O F By Fermât's little theorem, Theorem 6.1, p divides rp x — 1 =
(r(p-i)/2 _ i)(r(p-i)/2 + 1). By Lemma 4.2 p divides either (r ^" 1) / 2 - 1) or
(r(p-!)/2 + i) . However, p cannot divide both of these numbers because in
that case, by Theorem 3.2, it would divide their difference, which is 2, and p
is odd. Thus, r ^ - 1) / 2 = ±1 (mod p).

If r is a quadratic residue modulo p, then by definition there is an a so that
a2 = r (mod p), and we have

r(p-D/2 = (a2)(p-D/2 = flp-l = + 1 (m o d p) j

by Fermat's little theorem. Thus the (p—1)/2 quadratic residues are solutions
to r (p - 1) / 2 = +1 (mod p). As this congruence has degree (p—1)/2, it can have
no more than (p — l) /2 solutions, by Theorem 5.8. Therefore, the (p — l) /2
quadratic nonresidues must be solutions to r(^p~1^2 = — 1 (mod p). I

If one merely wishes to know whether the congruence x2 = a (mod p) has
a solution x, then Euler's criterion, with fast exponentiation to evaluate the
power, provides an ideal solution. For many purposes in cryptography, this
algorithm is sufficient.

COROLLARY 7.2
Let g be a primitive root modulo an odd prime p. Then the quadratic

residues modulo p are the powers of g with even exponents and the quadratic
nonresidues modulo p are the powers of g with odd exponents.

P R O O F By Corollary 7.1, gb-1)/2 = - 1 (mod p). So if i is even, then
(0Í)(p-l)/2 = (_!)< = + l j w h ü e if i i s o d d ? t h e n ^)(p-l)/2 = (_1)* = _1 .

Now apply Euler's criterion, Theorem 7.4. I

COROLLARY 7.3
Every primitive root modulo an odd prime p is a quadratic nonresidue modulo

P-

The following theorem lists some useful properties of the Legendre symbol.

THEOREM 7.5 Properties of the Legendre symbol
Let p be an odd prime and a and b be integers. Then

p = 1 or p — 1. If it is 1, then r is a quadratic residue modulo p, and if it is
p — 1, then r is a quadratic nonresidue modulo p. In terms of the Legendre
symbol,

Second Degree Congruences 97

1. the number of solutions to the congruence x2 = a (mod p) is 1 + (a/p),
2. (a/p) = a^" 1) / 2 {modp),
3. (ab/p) = (a/p)(b/p),
4. ifa = b (mod p), then (a/p) = (b/p),
5. (1/p) = +1 and (-1/p) = (- l) ^ - 1) / 2 , and
6. if p does not divide a, then (a2/p) = +1 and (a2b/p) = (b/p).

PROOF Part 1 is clear from the definition of quadratic residue and
quadratic nonresidue, and from Theorem 7.2. Part 2 follows from Euler's
criterion if gcd(a,p) = 1. If p divides a, then Part 2 is true because both sides
are = 0 (mod p). The other parts follow easily from Part 2. I

One can prove Part 3 directly when (a/p) = (b/p) = +1 as follows: Let
x2 = a (mod p) and y2 = b (mod p). Then z — xy satisfies z2 = ab (mod p).
Similar easy proofs can be given when (a/p) = —(b/p), but not when (a/p) —
(b/p) = - 1 .

In Part 5, observe that (- l) ^ - 1) / 2 = +1 when p = 1 (mod 4) and = - 1
when p = 3 (mod 4), because if p = 4k + 1, then (p — l) /2 = 2k is even, and
if p = 4& + 3, then (p - l) /2 = 2& + 1 is odd.

By Part 5 of Theorem 7.5, the number 1 is the smallest positive quadratic
residue modulo any prime p. Some number theoretic algorithms require us to
find a quadratic nonresidue modulo p. Suppose we try consecutive positive
integers looking for one. How far must we search to find the first quadratic
nonresidue?

THEOREM 7.6 A bound on the least quadratic nonresidue
If p is an odd prime and n is the smallest positive quadratic nonresidue

modulo p, then n < 1 + ^/p.

PROOF Let m = \p/n\ so that (m — l)n < p < mn. Since n > 2 and
p is an odd prime, we actually must have (m — l)n < p < mn. Therefore,
0 < mn — p < n. Since n is the smallest positive quadratic nonresidue, mn—p
must be a quadratic residue modulo p. Thus,

1 = ((mn-p)/p) = (mn/p) = (m/p)(n/p) = (ra /p) (- l) ,

and (m/p) = — 1 by Parts 4 and 3 of Theorem 7.5. This shows that m is a
quadratic nonresidue modulo p, and so m > n. Then

(n - l) 2 < (n - l)n < (m - l)n < p,

and n — 1 < y^p, as required. I

Theorem 7.6 is not the best upper bound on the size of the first quadratic
residue. Burgess [20] has shown that for every e > 0 there is a po(e) so that

98 Cryptanalysis of Number Theoretic Ciphers

the least positive quadratic nonresidue modulo p is < pc+e for all primes
P > Po(t), where c = l/(4i/e) « 0.1516. A similar bound holds for the
number of consecutive integers we must try, beginning at any number, until
we find the first quadratic nonresidue. Even these results seem far from the
truth. Vinogradov conjectured that for every e > 0 there is apo(e) so that the
least positive quadratic nonresidue modulo p is < pe for all primes p > po(e).
Although one cannot prove a good upper bound for the least positive quadratic
nonresidue, the average number of positive integers which must be tried to find
a quadratic nonresidue modulo p is 2, by Theorem 7.3. Indeed, the quadratic
residues and nonresidues seem to be very evenly distributed in the interval
from 1 to p — 1.

7.2 The Law of Quadratic Reciprocity
The Law of Quadratic Reciprocity is a beautiful theorem proved by Gauss
[45] more than 200 years ago. We do not prove it here because all known
proofs are long and complicated.

THEOREM 7.7 Law of Quadratic Reciprocity
If p and q are distinct odd primes, then (p/q) — (q/p) if at least one of p,q

is = 1 (mod 4), but (p/q) = -(q/p) if p = q = 3 (mod 4).

The theorem is often stated in the concise form

(i)(;)=(-i)VV-
It is easy to see that the power of (—1) on the right side is +1 if either p or
q is = 1 (mod 4), and —liîp = q = 3 (mod 4); so, this formula is equivalent
to the statement above. Another way of stating the theorem is that when p
and q are different odd primes, the two congruences

x2 = p (mod q)

y2 = q (mod p)

are either both solvable or neither is solvable in case either p or q is =
1 (mod 4), and exactly one of the two congruences is solvable if p = q =
3 (mod 4).

Most proofs of Theorem 7.7 prove the following theorem on the way.

THEOREM 7.8 Supplement to the Law of Quadratic Reciprocity
Ifp is an odd prime, then the congruence x2 = 2 (mod p) is solvable ifp = 1

or 7 (mod 8), but not solvable ifp = 3 or 5 (mod 8).

Second Degree Congruences 99

Theorem 7.8 has the concise form (2/p) = (- l) (î > " 1) / 8 , which one may
verify by evaluating the exponent modulo 2 for p in the four odd congruence
classes modulo 8. If p is an odd prime number writ ten in binary with the three
low-order bits 62&1&0 (where 60 = 1)? then 2 is a quadrat ic residue modulo p
if and only if 62 = &i •

Recall t ha t Pa r t 5 of Theorem 7.5 says tha t (- 1 / p) = (- l) (i ? - 1) / 2 , tha t is,
the congruence x2 = — 1 (mod p) is solvable when p = 1 (mod 4), but not
when p = 3 (mod 4).

One application of the results just s tated is in evaluating Legendre symbols
by hand with numbers of modest size.

Example 7.1

Is the congruence x2 = —22 (mod 59) solvable?
If we used Euler's criterion, we would have to compute (—22)^59-1^2 mod 59.

This is a simple matter, even without fast exponentiation, on a small computer,
but it is tedious to perform correctly by hand.

By Part 3 of Theorem 7.5, we can write

(zll) = (ziUA) fliy
V 59 7 V 5 9 / V597 V59/

Part 5 of Theorem 7.5 shows that (-1/59) = - 1 . Theorem 7.8 tells us that
(2/59) = - 1 . Theorem 7.7 shows that (11/59) = -(59/11), and then (59/11) =
(4/11) = +1 by Parts 3 and 6 of Theorem 7.5.

Finally, (—22/59) = (—1)(—1)(—(+1)) = —1, so the original congruence has
no solution. Note that we performed no exponentiation at all in this solution.

A more important application of the Law of Quadrat ic Reciprocity is in
determining which primes q are quadrat ic residues modulo a given odd prime
p. Theorem 7.8 tells us tha t the odd primes of the forms Sk -f 1 and Sk + 7
are the ones which have 2 as a quadrat ic residue.

Example 7.2

Which odd primes p have 3 as a quadratic residue?
By the Law of Quadratic Reciprocity, (3/p) = (p / 3) (- l) (p _ 1) / 2 . Now (p/3) =

(1/3) = +1 when p = 1 (mod 3) and (p/3) = (2/3) = - 1 when p = 2 (mod 3).
Also, (- l) ^ " 1) / 2 = +1 when p = 1 (mod 4) and (- l) ^ " 1) / 2 = - 1 when
p = 3 (mod 4). This means that (3/p) = -hi if and only if p = 1 (mod 3)
and p = 1 (mod 4), or p = 2 (mod 3) and p = 3 (mod 4), that is, p = 1 or
11 (mod 12) by the Chinese remainder theorem.

Example 7.3

Which odd primes p have 5 as a quadratic residue?
The Law of Quadratic Reciprocity says that (5/p) = (p/5). The quadratic

residues modulo 5 are 1 and 4; so, the answer is all primes p = 1 or 4 (mod 5).
Since p must be odd, this condition is the same as p = 1 or 9 (mod 10), that is,
all primes whose last decimal digit is 1 or 9.

100 Cryptanalysis of Number Theoretic Ciphers

where the symbols on the right side are Legendre symbols. We allow m — 1,
and deñne (a/1) = 1 for every a.

If gcd(a,ra) > 1, then some prime factor p of m will also divide a and the
Legendre symbol (a/p) in the definition of (a/m) will be 0. Thus, the Jacobi
symbol (a/m) = 0 when a is not relatively prime to m.

The Jacobi symbol shares many properties with the Legendre symbol. Com­
pare the next theorem with Theorem 7.5.

THEOREM 7.9 Properties of the Jacobi symbol
Let m and n be odd positive integers and a and b be integers. Then

1. ifa = b (mod ra), then (a/m) = (b/m),
2. (ab/m) = (a/m)(b/m),
3. (a/mn) = (a/m)(a/n), and
4. if gcd(a,ra) = 1, then (a2/m) = (a/m2) - +1 , (a2b/m) = (b/m) and

(a/(m2n)) = (a/n).

PROOF 1. If a = b (mod m), then a = b (mod p) for every prime
p dividing m. Hence, (a/p) = (b/p) for every p dividing m by Part 4 of
Theorem 7.5. Then (a/m) = (b/m) by Definition 7.3.

2. This formula follows from Definition 7.3 and Part 3 of Theorem 7.5.
3. This formula is immediate from Definition 7.3.

Analogous questions for larger primes may be answered in the same way.
Suppose p is fixed and we ask, which odd primes q have p as a quadratic
residue? We need to evaluate the Legendre symbol (p/q). If p = 1 (mod 4),
then (p/q) = (q/p) and the answer is the primes in (p — l) /2 residues classes
modulo p, namely the ones which are quadratic residues. Since p and q are
odd, this set of residue classes is equivalent to a set of (p—1)/2 residues classes
modulo 2p. If p = 3 (mod 4), then (p/q) = (—l)^-1^2(<z/p), and the answer
is the primes in p — 1 congruence classes modulo 4p, just as in Example 7.2.

Another use of the Law of Quadratic Reciprocity is to evaluate the Ja­
cobi symbol, which leads to an algorithm for computing the Legendre symbol
without factoring the "numerator" and also to improved primality tests.

1.3 The Jacobi Symbol

DEFINITION 7.3 Let m be an odd positive integer with prime factor­
ization m = n¿=i PT and tet a be an integer. The Jacobi symbol (a/m) is
deñned by

Second Degree Congruences 101

4. These formulas follow from Parts 2 and 3 and (—l)2 = 1. I

The next theorem shows that the Jacobi symbol enjoys the same Law of
Quadratic Reciprocity as the Legendre symbol, and leads to an efficient algo­
rithm for computing Legendre symbols.

THEOREM 7.10 Law of Quadratic Reciprocity for Jacobi symbols
l.Ifm is an odd positive integer, then (—1/m) = +1 ifp = 1 (mod 4), and

(-1/ra) = - 1 ifp = - 1 (mod 4).
2. If m is an odd positive integer, then (2/ra) = +1 if p = 1 or 7 (mod 8),

and (2/ra) = - 1 if p = 3 or 5 (mod 8).
3. If m and n are relatively prime positive integers, then (ra/n) = (n/m)

if at least one of m,n is = 1 (mod 4), but (ra/n) = —(n/m) if ra = n =
3 (mod 4).

PROOF Part 5 of Theorem 7.5 says that if p is an odd prime, then
the Legendre symbol (—l/p) = (- l) ^ - 1 ^ 2 . We will show that (-1/ra) =
(—l)(m_1)/2, which is equivalent to the statement in Part 1 above.

Let ra have the prime factorization ra = n¿=i PV • From Definition 7.3, we
have

where s = £ * = 1 e¿(p¿-l)/2 by Euler's criterion. Now ra = JXLiU+G^- 1)) 6 ' •
Because each pi — 1 is even, we have

and

Using these congruences repeatedly, we find

Hence, (ra - l) /2 = s (mod 2) and we have (-1/ra) = (_i)(™-i)/2.
Parts 2 and 3 are proved the same way, except that the modulus 64 replaces

modulus 4 in the proof of Part 2. I

The following algorithm uses Part 2 of Theorem 7.9 and Parts 2 and 3 of
Theorem 7.10 to evaluate a Jacobi symbol. It is a recursive algorithm, which
means that function calls itself with smaller values of its parameters. The first

102 Cryptanalysis of Number Theoretic Ciphers

few instructions check the input data and return special values. The while
loop removes factors of 4 from a. The last few lines use the Law of Quadratic
Reciprocity to reduce the evaluation of (a/m) to that of a Jacobi symbol with
smaller parameters.

[Compute the Jacobi symbol]
Input: An integer a and an odd positive integer m.
Output: The value of the Jacobi symbol (a/m).

Recursive function Jac(a, m)
i f (m i s even or m < 0) Er ror : bad input t o Jac .
if (m = 1) return 1
if (a > m or a < 0) a = a mod m
if (a = 0) return 0
if (a = 1) return 1
while (4 d iv ides a) { a = a/4 }
if (2 d iv ides a) {

if (m E 1 or 7 (mod 8)) { return Jac(a/2,ra) }
else { return — Jac(a/2,ra) }

}
if (a = 1 (mod 4) or m = 1 (mod 4)) { return Jac(m mod a, a) }

e l s e { r e t u r n — Jac(m mod a, a) }

If the algorithm did not remove powers of 2, then the sequence of recursive
calls would take the variables a and m through the same sequences of values
as in the Euclidean algorithm for computing gcd(a, m). With a slightly more
careful analysis (see Theorem 5.9.3 of Bach and Shallit [8]), one can prove
that it is no harder to evaluate the Jacobi symbol (a/m) than to compute
gcd(a,ra). Compare this estimate for the complexity with Theorem 3.12.

THEOREM 7.11 Complexity of evaluating Jacobi symbol

Let a and m be relatively prime integers with 0 < a < m. Then the Ja­
cobi symbol (a/m) can be evaluated, using 0(log3 m) bit operations, by the
algorithm above.

Recall that we can compute a modular inverse in about the same time
using either Euler's theorem or the extended Euclidean algorithm. Similarly,
it takes about as long to evaluate a Legendre symbol by the Euler criterion
as by the algorithm above. Of course, you cannot use the Euler criterion
to evaluate a Jacobi symbol (a/m) when m is composite; you must use the
algorithm above.

Example 7.4

Second Degree Congruences 103

If we knew only about Legendre symbols, then we would have had to factor 133
as the first step, or else use Euler's criterion.

Consider what we have done so far in this chapter. We defined the Legendre
symbol (a/p), which tells when we can solve the congruence x2 = a (mod p).
Then we defined the Jacobi symbol (a/m), which is easier to compute than
the Legendre symbol. In case m is prime, the Jacobi symbol (a/m) is the
same as the Legendre symbol (a/m). Jacobi symbols provide a convenient
way of computing Legendre symbols. But when m is composite, the fact
that the Jacobi symbol (a/m) is -hi does not mean that one can solve the
congruence x2 = a (mod ra). If the congruence is solvable and gcd(a,ra) = 1,
then (a/m) = +1 because the Legendre symbols (a/p) = +1 for every prime
divisor p of ra. This means that if the Jacobi symbol (a/m) = — 1 and
gcd(a,ra) = 1, then a is a quadratic nonresidue modulo m.

The reader may wonder why we didn't define the Jacobi symbol (a/m) to
be -hi or —1 according as the congruence x2 = a (mod m) has a solution or
not. If we had made that definition, then the Jacobi symbol would not satisfy
the Law of Quadratic Reciprocity, and it would be difficult to compute for
large m. For example, (5/9) = (9/5) = -hi. The congruence x2 = 9 (mod 5)
has the solutions x = 2 or 3 (mod 5), but the congruence x2 = 5 (mod 9) has
no solution.

7.4 Euler Pseudoprimes
By Fermât 's little theorem, if the prime p does not divide a, then av~x =
1 (mod p). We mentioned that if m is odd and gcd(a,ra) = 1 and a m _ 1 =
1 (mod ra), then ra is probably prime.

We can devise an analogous probable prime test using Euler's criterion. It
says that if the prime p does not divide a, then a ^ - 1) / 2 = (a/p) (mod p). It

In this example, all of the Jacobi symbols just happened to be Legendre symbols
because the "denominators" are all prime.

Example 7.5

Evaluate the Legendre symbol (133/401).
Here 401 is prime, but 133 is composite. We find

Let us use the algorithm to solve the problem of Example 7.1, namely, compute
the Legendre symbol (—22/59). The algorithm does it this way:

104 Cryptanalysis of Number Theoretic Ciphers

turns out that if m is odd and gcd(a, m) = 1 and aim l^2 = {aim) (mod m),
then m is probably prime.

DEFINITION 7.4 An odd integer m > 2 is called an Euler probable
prime to base a if a (m _ 1) / 2 = {a/m) (mod m) and gcd(a, m) = 1. (The
symbol {a/m) here is Jacobi.) A composite probable prime to base a is called
an Euler pseudoprime to base a.

Every prime p > 2 is an Euler probable prime to every base a which is not
a multiple of p.

THEOREM 7.12 Euler probable primes are probable primes
If m is an Euler probable prime to base a, then m is a probable prime to

base a.

PROOF We have a(m " 1) / 2 = {a/m) (mod m) and gcd(a,ra) = 1 by
hypothesis. The Jacobi symbol {a/m) = ±1 since gcd(a,ra) = 1. Square
both sides of the congruence to get a m _ 1 = 1 (mod p), so m is a probable
prime. I

Thus, every Euler pseudoprime is a pseudoprime (to the same base). How­
ever, some pseudoprimes are not Euler pseudoprimes. For example, 341 =
11 • 31 is a pseudoprime to base 2, but it is not an Euler pseudoprime to base
2 because 2(341"1)/2 - 2170 = +1 (mod 341) while (2/341) = - 1 by Theo­
rem 7.10. Therefore the Euler probable primality test is more discriminating
than the simple probable prime test. The two tests have essentially the same
complexity.

7.5 Solving Quadratic Congruences Modulo m
We now return to the task of solving quadratic congruences modulo m, which
we considered at the beginning of this chapter. So far, we have found an
efficient way, actually two of them, for deciding whether x2 = a (mod p) has
a solution where p is prime. Let us find the solutions x when there are any.
The answer is easy when p is a Blum prime. A Blum prime is a prime
= 3 (mod 4). The name arises because M. Blum used these primes in the
oblivious transfer protocol and in a random number generator.

THEOREM 7.13 Square roots modulo a Blum prime
If p = 3 (mod 4) is prime and a is a quadratic residue modulo p, then the

solutions to x2 = a (mod p) are x = ± (a^p+1^/4) (mod p).

Second Degree Congruences 105

PROOF Note that

x2 = a (p + 1) / 2 = a • a (p -1) / 2 = a(a/p) = a (mod p)

by Euler's criterion and the fact that a is a quadratic residue modulo p. I

What happens if we apply the formula in the theorem when a is a quadratic
nonresidue modulo p? Obviously, we won't get a solution to the congru­
ence, for it has none. When p = 3 (mod 4), (—1/p) — —1, so (-a/p) —
(—l/p)(a/p) = -(a/p). If (a/p) — - 1 , then (-a/p) = +1 , so —a is a
quadratic residue. The numbers x computed by Theorem 7.13 are solutions
to the congruence x2 = — a (mod p), as one can see from the proof of the
Theorem.

Example 7.6

Solve x2 = 6 (mod 47).
We first compute

(6/47) = (2/47X3/47) = (+l)(-l)(47/3) = -(2/3) = - (- 1) = +1,

so 6 is a quadratic residue modulo 47. The solutions are

x = ± (6(47+1)/4) = ± (612) = ±37 (mod 47).

One checks that 372 = 6 (mod 47).

It is slightly harder to find square roots modulo primes p = 5 (mod 8).

THEOREM 7.14 Square roots modulo a prime p = 5 (mod 8)
If p = 5 (mod 8) and a is a quadratic residue modulo p, then the solutions

to x2 = a (mod p) are ±x, where x is computed by this algorithm.

x = a^+3)/8 modp

if (x2£a (modp)) x = x2<<p-1^4 mod p

PROOF Note first that with x = a(*>+3)/8 mod p, we have

xA = a^+3)/2 = aW-W2 = a2(a/p) = a2 (mod p)

by Euler's criterion and the fact that a is a quadratic residue modulo p.
Therefore, x2 = ±a (mod p). If x2 = a (mod p), then the algorithm returns
x. Otherwise, the algorithm multiplies x by 2 ^ - 1 ^ / 4 mod p. Now 2 is a
quadratic nonresidue modulo p by Theorem 7.8, so 2 ^ - 1 ^ 2 = — 1 (mod p).
In this case, we have

x2 = (a<p+3>/8 • 2(*-1>/4)2 = (- a) (- l) = a (mod p).

106 Cryptanâlysis of Number Theoretic Ciphers

i
Example 7.7

Solve x2 = 3 (mod 37).
Let x = 3 (3 7 + 3) / 8 = 35 = 21 (mod 37). Then x2 = 212 = 34 =É 3 (mod 37); so,

we multiply x by 2(37~~1)/4 = 29 = 31 to obtain a new x = 21-31 = 22 (mod 37).
This x works because 222 = 3 (mod 37).

Next we present an algorithm which will find square roots of quadratic
residues modulo any odd prime p. When p ^ 1 (mod 8) it reduces to the
algorithm in one of the last two theorems. The algorithm begins by choosing
a random quadratic nonresidue n modulo p. There is no known determinis­
tic polynomial-time algorithm for finding a quadratic nonresidue n modulo
p. Just try random n and use Euler's criterion to determine (n/p). This
procedure makes the algorithm probabilistic. However, usually it is easy to
find n quickly because half of the integers between 1 and p — 1 are quadratic
nonresidues; so, the expected number of n's that must be tried is 2. The
algorithm uses the quadratic nonresidue n to construct an integer N whose
order is 26, where p — 1 = 2 e / 5 with / odd. The for loop determines the
correct power of N to multiply times the first guess a ^ + 1) / 2 for x to get the
true solution x.

The algorithm returns just one solution x. The other one is — x or p — x. Of
course, one must be sure that a is a quadratic residue modulo p before using
the algorithm.

The average complexity of the algorithm is 0(log3p) bit operations, that
is, averaged over many random primes, but the worst case (when e is large)
is 0(log4p) bit operations plus the time needed to find n.

[Square root of a modulo p]
Input: An odd prime p and an integer a with (a/p) = + 1 .
Output: A solution x to x2 = a (mod p).

Find a (random) quadratic nonresidue n modulo p
Compute e > 0 and odd / so that p — 1 = 2e/
A = a? mod p
N — nf mod p
3=0
for (1 < i < e) {

See Theorem 7.1.3 of Bach and Shallit [8] for a proof that the algorithm
works. The algorithm is similar to Algorithm 2.3.8 of Crandall and Pomerance
[33].

Second Degree Congruences 107

Example 7.8

Solve x2 = 2 (mod 17).
In the algorithm we have p = 17 and a = 2. Note that (2/17) = +1 by

Theorem 7.8. We have p — 1 = 16 = 24, so e = 4 and / = 1. Trying small n,
we find that the first quadratic nonresidue is n = 3, since (3/17) = (17/3) =
(2/3) = - 1 . We find A = af = 21 = 2 and N = nf = 31 = 3. We set ¿ = 0 and
begin the for loop.

When i = 1, the test is whether (2)2 = — 1 (mod 17). This is true and j
becomes 2.

When i = 2, the test is whether (2 • 32)2' = - 1 (mod 17). The left side is
182 = 1 (mod 17), the test fails and j remains 2.

When i = 3, the test is whether (2 • 32)2° = - 1 (mod 17). The left side is
181 = 1 (mod 17), the test fails and j remains 2.

Finally, x = 2 (1 + 1) / 232 / 2 = 2131 = 6 (mod 17). One verifies that 62 =
2 (mod 17), so the solutions are x = ±6 (mod 17).

Now we know how to solve x2 = a (mod m) when m is prime. Next we will
solve this congruence when m is a prime power. The first theorem applies
to a congruence with a general polynomial. It "lifts" zeros of the polynomial
modulo pl to zeros modulo pl+1. The procedure is just like using Newton's
method to refine an approximate zero to a polynomial.

THEOREM 7.15 HensePs lemma
Let p be prime and f(x) be a polynomial with integer coefficients. If f(a) =

0 (mod pl) and / ' (a) ^ 0 (mod p), then there is a unique t so that f(a + tpl) =
0 (modp¿ + 1) .

PROOF Let f(x) have degree d modulo pl+1. Expand f(a + tpl) in a
Taylor series

f(a + tpl) = f(a) + tp'f'ia) + • • • + tdpdif^(a)/d\

Derivatives after the d-th are zero polynomials. We claim that this expansion
reduced modulo p z + 1 is

f(a + tpl) = f(a) + tjPf'ip) (mod p i + 1) . (7.3)

If cxe is a typical term in / (#) , then the corresponding term in f^k\a) is

ce(e-l){e-2)--{e-k + l)ae-k

But e(e — l)(e - 2) • • • (e — k + l)/kl = (e
k) is an integer, so k\ divides e(e —

l)(e — 2) • • • (e — A; + 1). Therefore, in the Taylor expansion above, the term
tkpkifW(a) with 2 < k < d is divisible by p ^ and so by p i + 1 , which proves
congruence 7.3.

108 Cryptanalysis of Number Theoretic Ciphers

Congruence 7.3 shows that if f(a + tpl) = 0 (mod p ï + 1) , then f(a) +
tpif'(a) = 0 (mod pi+1). Since f(a) = 0 (mod pl), this is equivalent to
f'{a)t = —f(a)/pt (mod p), which is a linear congruence in t. By Theorem
5.7, it may have zero, one or p solutions. But when f'(a) ^ 0 (mod p), it has
exactly one solution. I

If f(a) = f'{a) = 0 (mod p), then the root a is called singular. We do not
discuss how to "lift" singular solutions here. See Section 2.6 of [78] to learn
how to do it.

THEOREM 7.16 Solution of x2 = a (mod p¿)
Let a be a quadratic residue modulo an odd prime p. Then for every n > 1

the congruence x2 = a (mod pn) has exactly two solutions, x = ±an (mod pn).
Also, gcd (an,p) = 1.

PROOF Use induction on n. The base step n — 1 holds since a is a
quadratic residue modulo p. The induction hypothesis says x2 = a (mod pn~1)
has only the two solutions x = ± a n - i (mod p n _ 1) , and gcd(an_i,p) =
1. If x is a solution to x2 = a (mod p n) , then it must be a solution to
x2 = a (mod p n _ 1) , and so x = ±a n _ i (mod p n _ 1) . Thus, x = ± (a n _ i +
¿p71"1) (mod p n) . Write / (x) = x2 - a. By Theorem 7.15 if / ; (a n _ i) ^
0 (mod p), there is a unique t so that / (a n - i + ¿pn_1) = 0 (mod p n) . Now
f'(an-i) = 2an-i is not a multiple of p because p is odd and, by induction,
gcd(an_i,p) = 1. Thus, an_i lifts to a unique solution an — an-\ + tpn~l of
x2 = a (mod p n) . The same argument shows that - a n _ i lifts to a unique solu­
tion, which must be — an because (—x)2 = x2 and there are no other solutions.
Finally, gcd(an,p) = 1 because an = an_i (modp) and gcd(an_i,p) = 1. I

Example 7.9

Solve x2 = 2 (mod 172).
We saw in Example 7.8 that the solutions of x2 = 2 (mod 17) are x =

±6 (mod 17). Let us lift the solution 6 (mod 17). Write f(x) = x2 - 2. Then
the solution ai = 6 lifts to a unique solution ai = 6 + 17t where t satisfies

or 2 • 6t = - (6 2 - 2)/17 (mod 17). That is, 12* = - 2 (mod 17), or t =
14 (mod 17). Finally, a2 = 6 + 14 • 17 = 244 = 172 - 45, and the solutions to
x2 = 2 (mod 172) are x = ±45 (mod 289).

Now we can solve x2 = a (mod m) when m is an odd prime power. What
about modulo a power of 2? We cannot use Hensel's lemma to lift a solution of
x2 = a (mod 2l) to a solution modulo 2l+1 because every root b of f(x) = x 2 - a

Second Degree Congruences 109

is singular since f'(x) = 2x = 0 (mod 2). Nevertheless, it is easy to lift a
solution directly.

THEOREM 7.17 Solution of x2 = a (mod 2*)
The solutions to x2 = a (mod 2l), where a is odd, are as follows:

1. If i = l, then a = 1 gives one solution x = 1 (mod 2).
2. If i = 2, t ien a = 1 gives two solutions x = ±1 (mod 4) and a = 3 gives

no solution.
3. If i > 3, then there are four solutions x (mod 22) if a = 1 (mod 8)

and no solution x (mod 2Z) if a ^ 1 (mod 8). If x is one solution, then the
other three are x, x ± 2l . Solutions may he lifted as follows: If y is a
solution to y2 = a (mod 2l), then either x = yorx = y + 2l~l is a solution
tox2 = a (mod2¿ + 1) .

Example 7.10

Solve x1 = 9 (mod 32).
The solutions to x2 = 9 (mod 8) are x = 1,3,5,7 (mod 8). The solution 3

clearly lifts to a solution modulo 16. The solution 1 does not lift, but 1+4 = 5
is a solution modulo 16. The other solutions modulo 16 are 16 — 3 = 13 and
1 6 - 5 = 11.

Of the solutions 3, 5, 11, 13, modulo 16, one find that 3 and 13 lift to solutions
modulo 32, but 5 and 11 do not. However, 5 + 8 = 13 and 11 + 8 = 19 are
solutions. We already knew that 13 was a solution. The fourth solution modulo
32 is 32 - 3 = 29.

Of course, a congruence x2 = a (mod pl) may have solutions when p\a, so
that a is not a quadratic residue modulo p. For example, x2 = 4 (mod 8) has
the obvious solutions x = 2,6 (mod 8) and x2 = 0 (mod 8) has the solutions
x = 0,4 (mod 8). Solutions like this exist when a = 0 (mod pl) or when
a power of p with an even exponent exactly divides a. A congruence of the
latter type may be reduced to one of lower degree. For example, solving x2 =
p2a (mod pb), where gcd(a,p) = 1, is equivalent to solving y2 = a (mod p3)
and letting x = py.

Finally, to solve x2 = a (mod m), solve it first modulo p1 for each prime
power dividing m, and combine the solutions with the Chinese remainder
theorem. One special case is so important in cryptography that we record it
here as a theorem.

THEOREM 7.18 Four square roots modulo pq
Let p and q be distinct odd primes and let a be a quadratic residue modulo

pq. Then there are exactly four solutions to x2 = a (mod pq).

PROOF The hypothesis implies that a is a quadratic residue modulo each

110 Cryptanalysis of Number Theoretic Ciphers

of p and q, so the two congruences x2 = a (mod p) and x2 = a (mod #) each
have two solutions by Theorem 7.2. By the Chinese remainder theorem, each
of the four pairs of solutions gives rise to a solution modulo pq. I

7.6 Exercises
1. Evaluate the Legendre symbols (r/103) for 1 < r < 10. Use Theorem

7.5 to simplify your work.

2. Evaluate the Legendre symbols (10/79), (11/43) and (6/23).

3. Find the smallest positive quadratic nonresidue modulo 71.

4. Prove that if p is an odd prime, then YHZo(r/p) = 0.

5. Find the odd primes that have —2 as a quadratic residue. Express your
answer as a set of congruence classes modulo 8.

6. Find the odd primes that have 7 as a quadratic residue. Express your
answer as a set of congruence classes modulo 28.

7. If a is a quadratic nonresidue modulo each of the odd primes p and
g, what is the Jacobi symbol (a/pq)? How many solutions does x2 =
a (mod pq) have?

8. Show that s 8 = 16 (mod p) has a solution for every prime p. (Hint:
Factor xs — 16 into the product of four quadratic polynomials.)

9. Solves2 = 3 (mod 11).

10. Solves2 = 3 (mod 13).

11. Solves2 = 3 (mod l l 2) .

12. Solve x2 = 3 (mod 143).

13. Solves2 = 4 1 (mod 64).

14. Find all the square roots of 58 modulo 77.

15. Find a quadratic nonresidue modulo the composite integer 4009 without
factoring this modulus.

16. Prove that if p and p-f 2 are twin primes, then (p/(p-\- 2)) = ((p-f- 2)/p).

17. Prove that if p is a Sophie Germain prime, then (p/(2p + 1)) = (-1/p) .

18. Prove that 1 + £ 2 ™ 0 (j^t\ J2 0 0 2) 2003* is not the square of an integer.

Chapter 8

Information Theory

This chapter introduces information theory and its use in analyzing simple
ciphers. See Denning [36] for another view of much of the material in this
chapter. This subject was created by Shannon [106] to give a theoretical
foundation for communication and, in particular, for cryptography. He mea­
sured the secrecy of a cipher by the uncertainty in the plaintext given the
ciphertext. The most secret ciphers are the ones for which an eavesdropper
learns nothing at all about the plaintext by seeing the ciphertext. Most ci­
phers leave some information about the plaintext in the ciphertext. If an
eavesdropper has enough ciphertext, he may obtain enough information to
break the cipher, at least theoretically. Many ciphers can be broken from just
a hundred or so bits of ciphertext. These ciphers are not necessarily insecure,
because an enormous computation might be required to break them, and the
crypt analyst might not have enough resources to do it.

Shannon applied his information theory also to "noisy channels," in which
Alice sends a redundant message to Bob over a communication channel, which
may change the message randomly through imperfections. Bob tries to recover
the original message from its redundancy. Ordinary English is redundant.
One may regard encryption as a kind of "noise" added to a message before
an eavesdropper receives it. The eavesdropper tries to recover the plaintext
from the ciphertext. The same theory of information that predicts how much
noise must be added to a message before Bob can no longer recover it from
its redundancy also predicts how well a cipher protects a message from an
eavesdropper.

8.1 Entropy
The amount of information contained in a message is measured by its entropy.
In other words, entropy measures the uncertainty about a message before it
is received or deciphered. Suppose there are n possible messages # i , . . . , x n

which could be sent. Let pi be the probability that X{ is the message sent,

111

112 Cryptanalysis of Number Theoretic Ciphers

so that pi + • • • + pn — 1. The entropy of the message should depend only
on these probabilities and not on the particular set of messages because if
y i,..., yn were another set of possible messages with the same probability
distribution, then it would have the same uncertainty. Therefore, we may
write H(pi,... ,pn) for the entropy of the set of messages.

In defining entropy, Shannon [106] required that it satisfy three properties.
First, it should be a continuous function of the variables p i , . . . , p n , subject
to Pi + —•+ pn = 1. Second, when the messages are equally likely, that is,
every pi — l /n , H should be an increasing function of n. He required this
property because there is more choice, or uncertainty, when there are more
equally likely messages. The third property said that if the choice of one
among n messages is replaced by two successive choices, first of a subset of
the messages and then a message in the chosen subset, then the entropy of the
set of messages should be a weighted sum of the entropies of the two choices.
For example, if there are four equally likely messages, we may choose one of
them as follows: (1) Choose a subset of the messages, either the first one or
the second one or the last two. (2) If the subset was the last two, choose one
of them. Then the third property would say

Example 8.1

The coefficient of the last term is | because the second choice is made half of
the time.

From these three properties, Shannon [106] proved that the entropy must
be

where K is a positive constant. The constant K may be regarded as a choice
of units for entropy. Choosing K — l / log2 makes the binary digit the unit
of entropy. His theorem motivates the definition of entropy.

DEFINITION 8.1 If X is a message that takes on the value x{ with
probability pi, for i = 1 , . . . , n, then the entropy of X in bits is

We either exclude terms with p¿ = 0 from the sum or else we define 0 log2 0
to be limp_^o+ P log2 P = 0.

The entropy is always nonnegative. It equals 0 if and only if one outcome
is certain.

Information Theory 113

Suppose we toss a coin having probability p of showing heads and 1 — p of
showing tails. Let the message X be the outcome of the coin toss: heads or
tails. Then

This function of p has a maximum of 1 at p — 0.5 and a minimum of 0 when
p = 0 or p = 1. If the coin is true (p = 0.5), then there is one bit of uncertainty
in the outcome. A one-bit message could tell the outcome of the coin toss. But
there is less uncertainty in the outcome as the coin becomes more unbalanced,
with no uncertainty at all if the coin always shows heads.

Note tha t H(X) is the expected value of the random variable

Example 8.2

Suppose X is a random n-bit integer, with all 2n possible integers being equally
likely. Then each message has probability 2~n and the entropy is

This example shows tha t H(X) measures the number of bits of information
we learn when we are told the message X. We learn n bits when we are told
an n-bit number.

The entropy H(X) is the average number of bits needed to encode all pos­
sible messages in an optimal encoding, called a Huf fman code .

Example 8.3

Suppose there are four messages, £i ,£2,#3,#4, with probabilities 1/2, 1/4, 1/8
and 1/8, respectively. The entropy is

A Huffman code for the four messages would use one bit for the first message,
two bits for the second, and three bits each for the third and fourth. For
example, code the messages by the bit strings, 0, 10, 110, 111. Then the
average length of the bit string to reveal which x% was sent is

the same as H{X).

In cryptography, we measure the entropy of ciphertext and keys, as well as
of plaintext. We can define the cond i t i ona l en tropy of one of these items

114 Cryptanalysis of Number Theoretic Ciphers

The joint entropy H(X, Y) is the entropy of the pair (X,Y).
With these definitions, one can prove the following facts about entropy:

1. H(X,Y) = H(X) + H(Y\X). This formula says that joint uncertainty
of the pair (X, Y) equals the uncertainty of X plus the uncertainty of
F , given that X is known.

2. H(Y\X) < H(Y), with equality if and only if X and Y are independent.
This inequality tells us that the uncertainty about Y, given that X is
known, is no greater than the uncertainty about Y. But if X and Y
are independent events, then the uncertainty about Y, given that X is
known, is the same as the uncertainty about Y. This means that X
can only tell us information about Y\ learning X cannot make us more
uncertain about Y.

3. H(X,Y) < H(X) + H(Y). This says that the uncertainty in the pair
(X, Y) is no more than the sum of the uncertainties in X and Y sepa­
rately.

4. H(X) < log2 n, where n is the number of possible X's. We have equality
if and only if the n X's are equally likely.

Example 8.4

Suppose X and Y each can be one of four equally likely messages, and each Y
message limits X to one of two equally likely messages. (For instance, Yi might
say, aX is Xi or X4.") Then each p(X\Y) is 1/2 or 0, so

H(X|y) = 4[(l/4).2(l/2)log22] = l.

8.2 Perfect Secrecy
Let M, C and K represent plaintext, ciphertext and keys, respectively.

DEFINITION 8.2 A cipher has perfect secrecy if H{M\C) = H(M).

This definition, taken from Shannon [107], says that if a cipher has perfect
secrecy, then an eavesdropper is just as uncertain about the plaintext after
seeing the ciphertext as he was before seeing the ciphertext. He learns nothing
at all about the plaintext from the ciphertext.

given another one. For example, the conditional entropy of the key K given
the ciphertext C is

Information Theory 115

Perfect secrecy is clearly a desirable property for a cipher. Few ciphers enjoy
perfect secrecy. However, one fairly simple cipher does have the property.

DEFINITION 8.3 A one-time pad is a synchronous stream cipher with
a truly random key stream.

One-time pads are so called because, in early versions of this cipher, the
sender and receiver would have identical pads of paper with random key char­
acters printed on them. After using each sheet to encipher or decipher a
message, the cryptographer would destroy the sheet. It is important that
each page of key characters be used only once, because if one were reused, a
cryptanalyst could gain information about the plaintexts by comparing the
two ciphertexts.

The Vernam cipher is a one-time pad that uses the exclusive-or operation
© to encipher (and decipher). If ra¿, fc¿ and c¿ are the i-th characters of
plaintext, key and ciphertext, respectively, then c¿ = m¿©&¿ and ra¿ = c¿©fc¿.
If two plaintexts, m i , m 2 , . . . and m^, ra2,..., were both enciphered using the
same random key stream, and a cryptanalyst obtained the two ciphertexts
ci, C2,... and c[, c 2 , . . . , then he could compute c¿ © c[= ra¿ © ra¿, which is
essentially a running key cipher (see Example 1.2 and Section 8.4) and easy
to break.

Modern one-time pads have the keys written on magnetic or optical media
that are destroyed after use. In advance of the communication, two copies
of the random key stream must be created and distributed to the sender and
receiver. Assuming the key is not reused, the one-time pad achieves perfect
secrecy because, given any M and C, there is always a key stream K that will
encipher M as C, so that every C occurs with equal probability, assuming
the keys are equally likely. Hence, p(M = m\C = c) = p(M = m) and so
H{M\C) = H{M).

If a cipher has perfect secrecy, then there must be at least as many keys as
plaintexts. Otherwise, there would be some pairs m, c with no key to decipher
c into m. Then p(M = m\C = c) = 0 for these particular m and c, and so
H(M\C) < H(M), which would violate the definition of perfect secrecy.

8.3 Unicity Distance
How much information can be contained in a string of n letters of English? If
we allow any string of n letters, then there are 26n possible strings. If they are
equally likely, then the entropy of such a string is log2 26n = nlog2 26. Thus,
the amount of information per letter is R = log2 26 « 4.7. This is called the
absolute rate of English. In general, the absolute rate of a language with
a letters in its alphabet is the maximum number of bits per letter in a string,
namely, R = log2 a. The absolute rate would be higher if we counted spaces

116 Cryptanalysis of Number Theoretic Ciphers

and punctuation as "letters" of the alphabet.
How much information is contained per letter in a meaningful string of

letters of English? If we could list all meaningful n-letter strings X of English
and determine the probability of each, then we could compute H(X) and the
number of bits of information per letter would be H(X)/n. Finally, we could
define the rate of English to be limn^oo H(X)/n. For any language, we define
the rate of the language for messages X of length n as rn — H(X)/n and
the rate of the language to be r = lmin^oo rn. This is the average number
of bits of entropy per letter in meaningful messages. Although we cannot
compute H(X)/n for n of any interesting length, Shannon [108] proposed a
way to estimate r for English and found that r « 1 bit per letter.

The redundancy of a language is defined to be D — R — r. The redun­
dancy of English is about 3.7 bits per letter. With these definitions we see
that there are 2Rn = 26n n-letter messages, of which 2rn are meaningful and
2Rn — 2rn are meaningless.

A cipher is unconditionally secure if H(K\C) does not go to 0 as the
length of C increases without bound. For example, a one-time pad is uncon­
ditionally secure. Let us consider ciphers that do not have this property.

DEFINITION 8.4 If the conditional entropy H(K\C) goes to 0 as the
length of C increases, then the cipher is theoretically breakable, and the
unicity distance is the shortest length n of C for which H(K\C) < 1.

If H(K\C) < 1, then there is no more than 1 bit of uncertainty about the
key, that is, the key has one of two possible values. Then, any given ciphertext
can be deciphered in at most two different ways, and a crypt analyst aware of
the nature of the communication should be able to decide which of the two
possible plaintexts was sent.

For most ciphers we can only estimate the unicity distance. We now derive
a useful approximation to it.

We assume that all 2rn meaningful n-letter messages have equal probability
2~ r n , and that all meaningless messages have probability 0. Here we are
assuming the equally-likely case, which maximizes entropy and is the worst
case.

We assume that there are 2H^K^ keys, and they are equally likely. That is,
p(K = k) = 2~H^ for each key k.

A r a n d o m cipher is one in which the decipherment DK{C) is an inde­
pendent random variable uniformly distributed over all 2Rn messages, both
meaningful and meaningless. This means that for a given k and C, Dk(C) is
as likely to produce one plaintext message as any other. Actually the deci­
pherments are not completely independent because a given key must uniquely
encipher a given message, so that Dk{C) ^ Dk(C) for C ^ C", that is, the
deciphering function Dk is one-to-one for each key.

Assume we have a random cipher and suppose C — Ek(M). A spurious

Information Theory 117

key decipherment or false solution of C is either C = Ek> (M) or C —
Ek" (M;) where M' is meaningful. (We are not concerned with meaningless
false solutions, as they are easily detected.) In the first case (C = Ew{M)),
the key k' may or may not decipher other C enciphered with k. For every
correct decipherment there are 2H^ — 1 other keys, each with probability

q = 2vnl<lRn = 2~Dn

of giving a false solution. Let F be the number of false solutions. Then
F = (2H<<K"> - í)q « 2H^-Dn. When n is large enough so that F < 1,
we have enough ciphertext to break the cipher. At the borderline case where
F = 1, we have H(K) = Dn. Thus n = H(K)/D is approximately the unicity
distance.

Example 8.5

DES is a block cipher with 56-bit keys and 64-bit blocks of plain and cipher
text. Now 64 bits is 8 characters. For English, D = 3.7, so n = H(K)/D =
56/3.7 = 15.1 characters, or about two blocks.

8.4 Some Obsolete Ciphers
Kahn [55] tells the fascinating history of cryptography up to 1967, including
tales about many of the ciphers mentioned in this section.

We compute the standard approximation to the unicity distance for several
simple ciphers, and mention techniques for breaking them.

Recall that transposition ciphers rearrange characters or bits. They have a
fixed period, d, say. If we assume that all d\ permutations are equally likely,
which is the worst case, then the unicity distance is

THEOREM 8.1 Stirling's formula
For n > 1, n\ w \/2wñ(n/e)n and log(n!) « nlog(n/e).

See Feller [43], page 50, for a proof.

Use the frequency distribution of pairs or triples of letters to break trans­
position ciphers. The process is called anagramming.

Use frequency counts to distinguish transposition ciphers from substitution
ciphers. With transposition ciphers, the letters of the alphabet have their
normal frequency; with substitution ciphers, they do not.

where we have used Stirling's formula to approximate d\.
For example, with a 3 x 9 matrix we have d—27 and n = 27.9.

118 Cryptãnâlysis of Number Theoretic Ciphers

Recall that substitution ciphers replace (blocks of) characters by other char­
acters. One classification lists four types of substitution ciphers. They are

1. Simple: Replace each ra¿ by c¿.

2. Homophonic: Replace ra¿ by a random one of many possible c¿.

3. Polyalphabetic: Use multiple maps from the plaintext alphabet to the
ciphertext alphabet.

4. Polygram: Make arbitrary substitutions for groups of characters.

1. Simple substitution ciphers replace each ra¿ by c\. Write the enci­
phering function as /(ra) = c. For example, the Caesar cipher rotates the
alphabet: /(ra) = (ra + k) mod n, where n is the alphabet size. For English,
the unicity distance is H(K)/D = (log2 26)/3.2 « 1.5 letters.

If all n! permutations of the alphabet are equally likely (the worst case
for the cryptanalyst) in a simple substitution cipher, then the unicity dis­
tance is \og2(n\)/D. For English, n = 26 and the unicity distance would be
log(26!)/3.2 « 27.6.

These ciphers may be broken with frequency analysis and trial and error.
Some are published in newspapers as puzzles to amuse readers.

In an affine cipher, /(ra) = (am + b) mod n. Break it by guessing some
two-letter pairs and solving two congruences in the two unknowns a and b.
An exercise gives an example of finding the unicity distance. Remember that
a and n must be relatively prime in order for messages to be deciphered.
Therefore, there are <¡>(ri) choices for a and n choices for b.

2. Homophonic substitution ciphers replace ra¿ by a random one of
many possible c¿.

To confound the frequency analysis that succeeds so well for simple substi­
tution ciphers, one might use a ciphertext alphabet larger than the plaintext
alphabet and assign each plaintext letter a to a subset (homophone) f(a)
of the ciphertext alphabet. To permit deciphering, we require that f(a) and
/(&) be disjoint when a / b. Encipher each ra¿ in the plaintext as a randomly
chosen c¿ G /(ra¿).

Usually, the ciphertext alphabet is much larger than the plaintext alphabet
and the size of / (a) is proportional to the frequency of occurrence of a in En­
glish. Then the letters of the ciphertext alphabet have a uniform distribution
in the ciphertext. Use the frequency distribution of pairs of letters to break.

One can define / via a standard text using the number of an instance of
the letter as its cipher.

One can encipher two plaintext messages of equal length together using a
26 x 26 matrix of ciphers. One cannot tell which message it is without the
key.

3. Polyalphabetic substitution ciphers use multiple maps fa from the
plaintext alphabet to the ciphertext alphabet.

Information Theory 119

Suppose we encipher M = mora i . . . as C = /o(^o) / i (^1) • • • • Let n be the
length of the alphabet. The sequence {/¿} may be periodic, perhaps defined
by a keyword K = ko . . . kd-i>

For example, the Vigenère cipher uses /¿(a) = (a + fc¿modd) mod n and
the Beaufort cipher uses /¿(a) = (fc¿ mod d ~ a) mod n. If the period of the
key (the number of letters in the keyword) is d, then the unicity distance is
H(K)/D = log2(n

d)/D = (d/D)\og2n. For English, this is dlog2(26)/3.2 «
I Aid.

There are two basic methods to find the period of periodic polyalphabetic
substitution ciphers, which is the first step in breaking them. The Kasiski
method, due to F. W. Kasiski, looks for repetitions in cipher text. They
might occur at multiples of the period d; so, the period might be a divisor of
the gcd of several of the differences.

W. Friedman [44] invented the Index of Coincidence Method, which
measures frequency variations of letters to guess the approximate size of the
period d. Let {ezo,ai,. • • , a n _ i} be the (plain or ciphertext) alphabet. Let
Fi be the number of times a¿ occurs in a ciphertext of length N. Define the
Index of Coincidence as

Then IC represents the probability that two letters chosen at random in the
ciphertext are the same.

One can estimate IC theoretically in terms of the period d. See Section 2.7
of Barr [10] for the derivation. For English and a polyalphabetic cipher with
period d, the expected value of IC is

Solving for d gives the estimate

For large N, we have d « 0.027/{IC - 0.038).

Example 8.6

Suppose that a Kasiski analysis suggests that the period d of a polyalphabetic
substitution cipher is a divisor of 15 and that the Index of Coincidence of a
large ciphertext sample is 0.043.

The divisors of 15 are 1, 3, 5 and 15. An IC of 0.043 implies a period of
d = 5.4, so d is near 5 or 6. Therefore, the period is probably 5.

Once the period d is determined, the cipher may be broken using frequency
analysis and trial and error. Think of the cipher as d interwoven simple
substitution ciphers.

120 Cryptanalysis of Number Theoretic Ciphers

Polyalphabetic ciphers can also have nonperiodic mapping functions from
the plaintext to ciphertext alphabets. Running key substitution ciphers use
a known text (in a standard book, say) as a key. Encrypt as for a Caesar or
Vigenère cipher, except that the key is not constant or periodic. Since the
key is as long as the message, this cipher may seem to be unbreakable, like
the one-time pad, but it is not if the key is redundant, as in English text.
Roughly speaking, this is so because a large proportion of letters in both key
and plaintext will be high frequency letters (ETAONISRHDL).

Rotor machines produce running key substitution ciphers with large period
d. If there are 26 letters in the alphabet and t rotors, we have d = 26*. The
Enigma was a rotor machine with four rotors used by the Germans in World
War II and broken by Alan Turing using group theory.

The UNIX1 crypt (1) command is a (software) rotor machine with one rotor
having 256 positions. See Reeds and Weinberger [95] for its cryptanalysis.

A one-time pad is another example of a nonperiodic polyalphabetic substi­
tution cipher.

4. Polygram substitution ciphers make arbitrary substitutions for
groups of characters. One example is the Hill cipher, due to Hill [54], which
codes blocks of n letters into column vectors of dimension n. It enciphers a
block of n letters by multiplying it by an n x n matrix to get a vector of n
ciphertext letters. The matrix must be invertible modulo the alphabet size to
permit deciphering.

For example, suppose n — 2 and we encode the alphabet as A= 0, B= 1,

etc. Then the plaintext AT would be encoded as and the plaintext NO

would be encoded as Suppose the key matrix is Then

AT would be enciphered as

which may be converted back into the letters EB. Similarly, NO would be

enciphered as or FL in letters.

Someone who knew the key matrix K could decrypt ciphertext by multiply­
ing the vectors by K~l (mod 26). The matrix may be inverted by the usual
techniques of linear algebra, keeping in mind that any division by d must be
done by multiplying by the multiplicative inverse of d modulo 26. The meth­
ods are similar to those used in Example 5.7. We will illustrate a different
method by inverting K modulo 26 by Cramer's rule. The determinant of K
is 3 • 11 - 18 • 21 EE 19 (mod 26). Now 0(26) = 12, so the inverse of 19 is

iUNIX is a trademark of Bell Labs.

Information Theory 121

which is easy to solve for K using linear algebra.
A ciphertext-only attack is harder. Crypt analysis based on letter frequency

does not work because a Hill cipher encrypts blocks of n letters together. If
n is small, one could use the frequency of n-letter blocks to guess n of the
blocks and then proceed as in the known-plaintext attack above.

8.5 The Entropy of Number Theoretic Ciphers
Plaintext and ciphertext are encoded as numbers when number theoretic ci­
phers are used. These numbers are grouped into large blocks which hold the
codes of many letters and which form numbers modulo some large integer
m. These numbers modulo m are enciphered by computing some function
modulo m. The key is typically a number about the size of m in these ciphers
and its entropy H(K) is roughly log2 ra. The key is chosen large enough so
that one cannot try all the keys, making a brute force ciphertext-only attack
infeasible.

Known-plaintext attacks on number theoretic ciphers are generally thwarted
by making the cryptanalyst solve a hard problem of number theory. When ex­
ponentiation modulo m is used as the enciphering function, the cryptanalyst
must solve a discrete logarithm problem to effect a known-plaintext attack.

It is amusing to note that the key entropy for all public-key ciphers is zero
because one can always compute the secret key from public data. Public-key
ciphers do not rely on large key entropy for their secrecy, but rather on the
difficulty of computing the secret key from public data. The cryptanalyst must
solve a hard number theory problem, like the discrete logarithm problem, to
deduce the secret key from public data.

1911 = 11 (mod 26) by Corollary 6.2. Then by Cramer's rule,

The ciphertext FL would be deciphered as

or NO in letters.
One can break the Hill cipher easily with a known-plaintext attack. If

one knows n plaintext-ciphertext blocks, then one can determine K through

linear algebra. Suppose we didn't know K, but we did know that

(mod 26). These matrix equations are

equivalent to the single equation

(mod 26) and

122 Cryptanalysis of Number Theoretic Ciphers

8.6 Exercises
1. Let X be an integer variable represented with 24 bits. Suppose that the

probability is 1/2 that X is in the range [0,211 - 1], with all such values
being equally likely, and 1/2 that X is in the range [2 n ,2 2 4 — 1], with
all such values being equally likely. Compute the entropy H(X).

2. Suppose that X is one of two messages. Use calculus to prove that
the entropy H(X) is maximal when the two messages are equally likely.
When is the entropy minimal?

3. Prove the four properties of entropy listed at the end of Section 8.1.

4. Let M be a 6-digit number in the range [0,106 - 1] enciphered with a
Caesar-type shifted substitution cipher with key K in the range 0 <
K < 9. For example, if K = 2, then M = 214759 is enciphered as C
= 436971. Compute H(M), H(M\C) and H(K\C), assuming that all
values of M and K are equally likely.

5. Suppose that meaningful English language plaintext messages 1000 let­
ters long are enciphered using keys that are strings of letters. (Here
"letter" means one of the 26 letters A, B, . . . , Z.) Explain why perfect
secrecy can be achieved with keys shorter than 1000 letters long, and
compute the minimum length of keys if perfect secrecy is desired.

6. Let M be a secret message revealing the name of a spy. There are
five suspects: two females, Alice and Bethany, and three males, Chuck,
Dennis and Edgar. Exactly one of the five suspects is the spy. The
message M is correct. Alice, Bethany and Chuck each have probability
0.25 of being the spy while Dennis and Edgar each have probability
0.125 of being the spy.

a. Compute the entropy H(M).

b. Let 5 be a message telling whether the spy is male or female. Com­
pute H(M\S).

7. A secret message was enciphered using the affine substitution cipher
E(x) = (Sx + 24) mod 26. The ciphertext is RT0LK T0IK. Find the
plaintext.

8. Consider an affine substitution cipher using the transformation / (m) =
(k\m -h ko) mod 26. It is suspected that the plaintext letter E (= 4)
corresponds to the ciphertext letter F (= 5) and that the plaintext letter
H (— 7) corresponds to the ciphertext letter W (= 22). Assuming these
correspondences are correct, break the cipher by finding ki and k0.

9. The people on the island of Cobol speak Cobolese. The Cobolese alpha­
bet has 45 letters and the written language has a rate of r = 2.0 bits

Information Theory 123

per letter. For its diplomatic communications, the government of Cobol
uses affine ciphers of the form / (a) = {ak\ + ko) mod 45. Naturally, the
keys ko and k\ are chosen so that the deciphering function f~l is a well
defined function and so that all such keys are equally likely. Determine
the standard approximation to the unicity distance of these ciphers.

10. One hundred characters of ciphertext from a suspected Beaufort cipher
were intercepted by one of your agents. Here is the frequency distribu­
tion of the letters of the alphabet in this sample of ciphertext:

A
2

N
2

B
10

0
10

c
2

P
1

D
5

Q
8

E
3

R
1

F
8

5
8

G
1

T
5

H
2

U
2

I
2

V
1

J
5

W
3

K
1

X
5

L
3

Y
1

M
1

Z
8

a. Compute the Index of Coincidence IC for this sample.

b. What do you think is the period of the key?

11. Suppose that a Kasiski analysis of ciphertext from a Vigenère cipher
identifies these six pairs of repeated sequences of ciphertext letters:

Location of start of
first occurrence

second occurrence
10
34

21
65

37
109

49
105

58
162

72
132

What can you conclude about the period of the Vigenère cipher? Ex­
plain your answer.

12. Consider a synchronous stream cipher (from Shamir [103]) whose i-th
key block is k{ — (¿ + l)d mod n, where the large integer n is public and d
is secret. The i-th message block ra¿ is enciphered as c¿ = ra¿ 0fc¿. Show
that this cipher is vulnerable to a known-plaintext attack. Specifically,
show how to compute ks and k$ from the two pairs (mi, c\) and (7712,02).
Given many plaintext-ciphertext pairs, can a crypt analyst determine d?

13. Consider a synchronous stream cipher (from Shamir [103]) whose i-th
key block is k{ — Sxldi mod n, where n = pq, and the large primes p and
q are secret, S is secret and relatively prime to n, the di are pairwise
relatively prime and also relatively prime to </>(ri), and Sl/di mod n is
the di-th root of S modulo n.

Show how to compute the keys from p, q, 5, and the d¿'s. Explain why
this technique cannot be used to find the square root of S modulo n.

14. A message is enciphered using a product cipher which consists of one Hill
cipher followed by (composed with) another Hill cipher. Each of these
Hill ciphers uses a 2 x 2 matrix which is invertible modulo 26. Does

124 Cryptanalysis of Number Theoretic Ciphers

the product cipher have a well defined inverse (deciphering) function?
If so, is the product cipher more secure, less secure or just as secure as
a single Hill cipher? Justify your answer.

Chapter 9

Groups, Rings and Fields

This chapter considers some topics from modern algebra that have important
uses in cryptography. We begin with group theory. Many cryptographic
functions are computations in groups. Then we study rings, which generalize
the structure of the integers modulo m. We consider fields, which generalize
the integers modulo a prime p. We investigate polynomials and then make a
brief incursion into algebraic number theory, which we need to describe the
number field sieve integer factoring algorithm. Other books that cover the
same material as this chapter are [78] and [53].

9.1 Groups
Operations like addition, multiplication and exponentiation, which combine
two numbers and produce a third number, are called binary operations. A
group is a set with a binary operation satisfying certain properties. In this
section only, the symbol 0 represents a generic binary operation rather than
exclusive-or, which is its meaning in the rest of this book.

DEFINITION 9.1 A group G is a set of elements together with a binary
operation 0 such that

1. The set is closed under the operation, that is, for every a, b in G, a 0 ò
is a unique element of G.

2. The associative law holds, that is, for all a, 6, c in G,

a 0 (b 0 c) = (a 0 b) 0 a

3. The set has a unique identity element e such that a(& e = e® a = a
for every element aofG.

4. Every element a of G has a unique inverse a - 1 in G, with the property
a 0 a - 1 = a - 1 0 a = e.

A group is called commutative or abelian if a 0 b = b 0 a for every pair
of elements a,b ofG.

125

126 Cryptanalysis of Number Theoretic Ciphers

A group is finite if it has only a ñnite number of elements. The number of
elements of a unite group is called the order of the group. If a group has an
inñnite number of elements, it is an infinite group.

Nonabelian groups played an important role in breaking the German Enigma
cipher during World War II. (See [95].) Most groups arising in number theory
are abelian. All groups studied in this book are abelian.

The set of all integers {. . . ,—2,-1,0,1,2, . . .} forms an infinite abelian
group with addition (+) for the binary operation, 0 for the identity, and —a
for the inverse of a. However, this set does not form a group with multipli­
cation as the operation because 1 would have to be the identity and elements
other than ±1 lack inverses in the set.

If m is a positive integer, a complete set of residues modulo m forms an
abelian group with addition modulo m as the binary operation. The identity
is the residue class containing 0. The inverse of the residue class containing a
is the residue class containing —a. The associative law is inherited from the
integers, that is, a + (6 + c) = (a + b) + c implies a + (b + c) = (a + b) +
c (mod m). This group is called the additive group modulo m. Different
CSR's modulo m produce additive groups modulo m with different appearance
but the same structure under the addition operation. Two such groups are
essentially the same; only the elements have been renamed. These groups are
called isomorphic.

DEFINITION 9.2 We call two groups, G with operation 0 and G'
with operation ®, isomorphic and write G = G' if there is a one-to-one
correspondence between the elements of G and those of G' such that if a G G
corresponds to a' G G', then a 0 b corresponds to a' <g>b'.

We will regard isomorphic groups as being the same group. The discussion
above proves this theorem.

THEOREM 9.1 Integers modulo m are a group under addition
A CSR modulo m for a group with addition modulo m as the operation. Any
two CSR's modulo m form isomorphic groups.

At this point we will drop the notation 0 for the binary operation of a
group. When we discuss groups abstractly, we will write the operation as
multiplication and write 1 for the identity element. We write ab for a 0 6, abc
for a 0 (6 0 c) = (a 0 6) 0 c, a2 for a 0 a, etc. We write a1 for the product
of i a's. However, when a group inherits its operation from another group,
then we will write the operation as in the other group. For example, we will
continue to write + for the addition operation in the group of integers modulo
m under addition. When + is the group operation, we will write 2a for a + a,

Groups, Rings and Fields 127

etc., and use 0 for the identity element.
A CSR modulo m does not form a group under multiplication because 0

has no inverse. In addition, if m is composite, then proper factors of m lack
inverses, too.

THEOREM 9.2 RSR modulo m is a group under multiplication
Let m > 1 be an integer. Then any RSR modulo m forms a group with

multiplication modulo m as operation. This group has order (p(m). Different
RSR's modulo m produce isomorphic groups.

This group, denoted i?m, is called the multiplicative group modulo m.

PROOF Write n — </>(m) and let r\,..., rn be an RSR modulo m. The­
orem 3.10 shows that the set is closed under multiplication modulo m. The
associative property is inherited from the integers, that is, a{bc) — (ab)c im­
plies a(bc) = (ab)c (mod m). The identity is the element r¿ = 1 (mod m).
Inverses exist because the congruence VjX = ri (mod m) has a unique solution
by Theorem 5.6. Two different RSR's are congruent, element by element,
modulo m, and this correspondence gives an isomorphism between the two
groups. I

9.2 Simple Properties of Groups

THEOREM 9.3 Cancellation in group equations
In any group, if ab — ac, then b = c. If a is an element of a unite group with

identity 1, then there is a unique smallest positive integer i with a% = 1.

PROOF Multiply ab = ac by a'1 to get a~x{ab) = a~l(ac) . The as­
sociative law and the properties of inverse and identity yield 16 = lc and
b — c. Consider the powers of a: l ,a , a2 ,a3 , Since the group is finite,
there must be a repeated power of the form au = av, where u < v. Write
this as aul — auav~u. By the cancellation property just proved, 1 = av~u.
Hence, a1 — 1 for some positive integer, namely, v — u, and so there must be
a smallest positive integer with this property. I

DEFINITION 9.3 Let a be an element of a group. If there is a positive
integer i with a1 = 1, then a is said to have finite order (even if G is not a
unite group). If a has unite order, then the order of a is the smallest positive
integer i with a1 = 1. The element a has infinite order if there is no positive
integer i with a1 — \. A cyclic group is one that contains an element a whose

128 Cryptanalysis of Number Theoretic Ciphers

powers a1 and a l make up the entire group. An element a with this property
is called a generator of the group and is said to generate the group.

By Theorem 9.3, every element of a finite group has finite order. The
identity element 1 has finite order in every group.

The set of all integers with + for the operation is a cyclic group of infinite
order. It is generated by 1. The "powers" of 1 are 0, ± 1 , ± 2 , — Every
element a ^ 0 of this group has infinite order.

The integers modulo m > 0 with + for the operation form a cyclic group
of order m. The residue class of 1 is a generator.

If m is a positive integer, then all cyclic groups of order m are isomorphic.
If a and b generate two cyclic groups of order m, then the one-to-one corre­
spondence makes a1 correspond with bl for each integer i. Let Cm denote a
cyclic group of order m.

The multiplicative group modulo m, Rm, of Theorem 9.2 may or may not
be cyclic. The order of a in this group is the same as the order of a we defined
in Definition 6.7. A generator for Rm is the same as a primitive root modulo
m. Theorem 6.13 said that m > 1 has a primitive root if and only if m — 2,
4, pe or 2pe, where p is an odd prime and e > 1. The group Rm is cyclic for
the same set of m. When Rm is cyclic we have Rm = C^my

THEOREM 9.4 Lagrange's theorem
The order of an element of a unite group divides the order of the group. Ifn

is the order of the group, then an = 1 for every element a of the group.

PROOF Let a have order i. A proof like that of the second part of
Theorem 9.3 shows that the members of A = {1, a, a 2 , . . . , a 2 - 1 } are i distinct
elements of the group. If A is not the whole group, then the group has another
element a,2. We show that the set B = {0,2,0,2(1,... ,020l~1} contains i new
elements different from the ones in A. First of all, if a^a? — 020k, then
a? = ak by Theorem 9.3, contrary to A having distinct elements. Also, if
a<ia? — afe, then a^ — ak~i and Ü2 would be in A. If A U B is not the whole
group, then the group has another element a3, and one can show that C =
{as, a^a,..., a^a1-1} contains i new elements not in A U B. Since the group
is finite, this process of obtaining new elements a,j must terminate with a last
batch, say the batch of i elements including a&. Then the order of the group
must be n = ik, and the order i of a divides n. Finally, an = (al)k = lk — 1.

I
The theorem just proved implies Euler's theorem. The group Rm has order

n = (f){m). The elements of Rm are integers a relatively prime to m. La­
grange's theorem says that an — 1, that is, a^ m) = 1 (mod m). Lagrange's
theorem has this corollary, which generalizes Corollary 6.2.

Groups, Rings and Fields 129

COROLLARY 9.1
If a is an element of a group of order n, then an~l is the inverse of a.

PROOF We have aan~l — an~la — an — 1 by Lagrange's theorem. I

The fast exponentiation algorithm works in any group, and computes an

with only O (log n) group operations. Corollary 9.1 provides an efficient method
of finding inverses in any group whose order is known.

If G and H are two groups, we can define a group operation on the set
of ordered pairs (g^h) of elements of the two groups by (</i,fci) • (g2,h2) =
(9192, hih2), where gi G G and hi H. The set of ordered pairs with this
operation forms a group G® H, called the direct product of G and H. The
identity in the direct product is (IQ, 1#) and the inverse of (g, h) is (g~l, ft-1),
with the obvious notation. In a similar way, we may form the direct product of
three or even more groups by defining a group operation on the set of ordered
triples or quadruples, etc.

A theorem of group theory says that every finite abelian group is isomorphic
to a direct product of cyclic groups. We can find this direct product for the
group Rm. Let m = p\x --pe

k
k be the standard factorization of m. The

Chinese remainder theorem implies that

Rm ¥ Rpe± <g>... <g> Rpej,.

If p is an odd prime, then Rpe = C^pe^ is cyclic. When p = 2, we have
R2 = Ci and R4 = C2- One can show that R2e = C2 0 C2e-i for e > 3. (In
fact, (—1) generates C2 and 5 generates C2e-2. That is, one can show that
every odd number is = ±(5k) (mod 2e) for some A;.) Thus, Rm is expressed
as the direct product of k or k + 1 cyclic groups, depending on the power of
2 dividing m.

DEFINITION 9.4 A subgroup of a group is a subset of the group that
forms a group with the same binary operation.

The associative law holds automatically for a subset of a group. To verify
that a subset 5 is a subgroup, one must check that the identity element is in
5, that a~l is in S whenever a is in 5 and that ab is in S whenever a and 6
are in S. A subgroup of an abelian group is automatically abelian. It is easy
to see that a subgroup of a cyclic group is cyclic.

The real Lagrange's theorem states that the order of a subgroup of a group
G divides the order of G. Theorem 9.4 is the special case for the cyclic
subgroup generated by a. The real Lagrange's theorem may be proved by a
slightly more complicated argument than the proof of Theorem 9.4.

130 Cryptanalysis of Number Theoretic Ciphers

9.3 The Baby-Step-Giant-Step Algorithm
When we say we are "given a group," we mean that we have a way to represent
group elements by strings of symbols, we know which string represents the
identity and we have algorithms to decide whether two strings represent the
same group element, to compute the string which represents the product of
elements represented by two given strings and to find the inverse of any given
element. We shall assume these algorithms are efficient. This is true for
groups used in cryptography. The complexity of other group algorithms is
measured in units of these group operations.

This section considers the following problem. Given a finite cyclic group G
with generator g and an element b of G, find the smallest integer k so that
gk = b. This problem generalizes the discrete logarithm problem for groups
Rm when m has a primitive root. That is why it is called the discrete
logarithm problem for groups.

The simplest algorithm for solving this problem is to compute successively,
g, #2, p 3 , . . . , and compare each power of g with 6, stopping at the first equality.
If G has order n, then this algorithm takes O(n) group operations and 0(1)
space.

If one wished to compute discrete logarithms of group elements very quickly,
one could precompute a table of the discrete logarithm of every element in
G and simply look up the discrete logarithm of a when it was needed. The
precomputation time is O(nlogn) group operations to form the n powers of
g and sort the pairs (gl,i). The main computation takes no group operations
but O(n) space. The time for table lookup is probably O(logn), depending
on the representation of group elements.

Shanks' [105] baby-step-giant-step algorithm computes the discrete log­
arithm of an element of a finite cyclic group with a complexity about mid­
way (on a logarithmic scale) between those of the two simple algorithms just
stated. It does not require that we know the order of the group exactly; an
upper bound on the size is good enough. A slightly different version of this
algorithm appears as Algorithm 5.3.1 in Crandall and Pomerance [33].

[Baby-step-giant-step algorithm for discrete logarithms in a group]
Input: A finite cyclic group G, a generator g, an upper bound n on the order
of G, and an element b of G.
Output: An integer k for which gh = b.

Precomputation:

a= 1
for (i = 0 to L - 1) {

store (a,i) in a Table A
a = a* g
}

sort Table A in order of its first components

L=|V^1

Groups, Rings and Fields 131

Main computation:
h=(9~1)L

a — b
for (j = 0 t o L - 1) {

if (a i s the f i r s t component of a
p a i r (a,i) in Table A) {

wri te "Log of b i s i+jL" and e x i t
}

a = a * /i
}

wri te "Error : n was too smal l . "

The algorithm is called the baby-step-giant-step algorithm because the vari­
able a takes baby steps of length 1 through powers of g in the first for loop
and giant steps of length L through powers of g in the second for loop.

THEOREM 9.5 Complexity of the baby-step-giant-step algorithm

The baby-step-giant-step algorithm correctly fínds the discrete logarithm
of an element b of a unite cyclic group with generator g and order < ra.
The complexity of this algorithm is 0(^/n\ogn) group operations and 0{y/n)
space.

P R O O F Suppose gk = b. Then 0 < k < n and so k is a two-digit number
in base L = \y/ñ] , that is k = i -h jL for some 0 < i,j < L. This means that
b = gk = gi+Li = g^g1*)!, so g{ = bh?, where h = (g1)'1 = (g~l)L. Table
A contains pairs (gs,s) for 0 < s < L. The second for loop forms a = bh1

and searches for this group element as first component of a pair in Table A.
It will certainly find such a pair when t = j because the pair (#% i) is in Table
A and gl = bh?.

The group element h = {g~x)L may be computed in O (logra) group op­
erations by fast exponentiation. We are assuming that we can compute g~l

in one group operation even if we don't know the exact order of the group.
The for loops clearly take O(y/ñlogra) group operations because L < 1 + yjn
and log ra comparisons are needed to seek each a in the sorted Table A in the
second loop. Sorting Table A of length L requires 0(>/ralogra) comparisons
of strings representing group elements. The only large data structure is Table
A, and it occupies 0(^/ñ) space. I

If we wish to compute discrete logarithms modulo a prime p, the baby-step-
giant-step algorithm roughly doubles the length of p for which we can do the
calculation, as compared to the first algorithm in this section.

132 Cryptanalysis of Number Theoretic Ciphers

9.4 Rings and Fields

DEFINITION 9.5 A ring is a set of at least two elements with two binary
operations, addition (+) and multiplication (x), which is an abelian group
with identity zero (0) under addition and whose multiplication is associative
(a x (b x c) = (a x 6) x c) and distributive over addition (a x (b + c) =
(a x 6) + (a x c) and (b + c) x a = (6 x a) + (c x a)). A ring is commutative
ifaxb — bxa for every a and b. If the elements of a ring, other than 0, form
a commutative group under x, then the ring is called a field.

All rings in this book will be commutative and the multiplication will have
an identity which we will write 1 and call the unity of the ring. We will write
multiplication in rings in the usual way and omit the x. The set Z of all
integers with the usual operations is a commutative ring with unity. It is not
a field because most integers have no inverses under multiplication. The set
of all rational numbers Q is a field, as are the set R of all real numbers and
the set C of all complex numbers.

THEOREM 9.6 The integers modulo m are a ring
The set Zm = { 0 , 1 , . . . , m — 1}, with arithmetic defined modulo m, forms a

commutative ring for every integer m > 1. This ring is a held if and only if
m is prime.

PROOF By Theorem 9.1, the set Zm is a group under addition modulo m.
Multiplication modulo m inherits its associative, commutative and distribu­
tive properties from the integers. (For example, a(b -he) = ab + ac (mod m)
because a(b + c) = ab + ac.) This shows that Zm is a commutative ring.

Theorem 9.2 shows that any RSR modulo m forms an abelian group under
multiplication modulo m. If m is prime, then the elements of Zm other than
0 are an RSR, and therefore a commutative group. Thus, Zm is a field if m
is prime. If m is not prime, then m = ij for some 1 < i < j < m and the
congruence ix = 1 (mod m) has no solution, by Theorem 5.6. This shows
that the element i of Z m has no multiplicative inverse in Z m ; so, the set of
nonzero elements of Zm is not a group under multiplication, and Zm is not a
field. I

The set of all 2 x 2 matrices with integer entries is a commutative ring with
unity / , the identity matrix. Likewise, the set of all 2 x 2 matrices with entries
modulo m > 1 is a commutative ring with unity / .

Let R and S be two rings. A homomorphism from R to S is a function
/ from R into S which preserves addition and multiplication. This means
that /(0) = 0, / (l) = 1, f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b) for
all a and b in R. If / is onto, then the ring S is called the homomorphic

Groups, Rings and Fields 133

image of R. For each integer m > 1 there is a homomorphism from Z onto
Zm defined by / (a) = (amodra) , that is, / (a) is the congruence class of
a modulo ra. An isomorphism from R to S is a homomorphism which is
one-to-one and onto, that is, a one-to-one correspondence between rings that
preserves addition and multiplication. We say R and 5 are isomorphic if
there is an isomorphism from one to the other.

9.5 Polynomials
Let F be a ring. A polynomial with coefficients in F is an expression
f(x) = anx

n + an-\x
n~~x + Y a\x + ao, where the coefficients a¿ are in F .

The set of all such polynomials is denoted F[x\. The degree of a polynomial
f(x) is the exponent on the highest power of x having a nonzero coefficient. If
the leading coefficient, an, is ^ 0 in the expression above for f(x), then the
polynomial f(x) has degree n. The coefficient ao of x° is the constant term.
Constant polynomials have degree 0, except for the zero polynomial 0, which
has no degree. A polynomial is monic if its leading coefficient is 1. Two
polynomials are equal if they have the same degree and all corresponding
coefficients are equal.

Polynomials in F[x] may be added and multiplied in a natural way. If
f(x) = anx

n + an-ix
n~l H h a\x + ao and g(x) — bnx

n + &n_i#n _ 1 H h
b\X + bo, then their sum is

f(x) + g(x) = (fl„ + bn)x
n H (ai + bx)x + (a0 + &o)

and their product is

f(x)g(x) = (anbn)x
2n H h (a2&o + ai&i + a0b2)x

2 + (ai&0 + ao&i)# + («oM-

With these operations, F[x] is a commutative ring with unity. The zero
element is the polynomial 0 and the unity is the constant polynomial 1.

From now on in this section, we assume F is a field.

THEOREM 9.7 Division algorithm for polynomials
Let f(x) and g(x) be two polynomials in F[x], where F is a fíeld. If g(x) is

not the zero polynomial, then there exist polynomials q(x) and r(x) in F[x]
with f(x) = q(x)g(x) + r(x) and either r(x) is the zero polynomial or else the
degree ofr(x) is less than the degree of g(x).

The proof is a statement of the long division algorithm you learned for
polynomials in high school.

A zero of a polynomial f(x), or a root of f(x) = 0, is a quantity a,
belonging either to F or to a larger field, for which f(a) = 0.

134 Cryptanalysis of Number Theoretic Ciphers

THEOREM 9.8 The factor theorem
If a e F is a zero of a polynomial f(x) in F[x], where F is a field, then there

is a polynomial q(x) in F[x] for which f(x) = (x — a)q(x).

PROOF By Theorem 9.7 with g(x) — {x - a) , we can write f(x) =
(x - a)q(x) + r(x), for some polynomials q(x) and r(x) in F[x\. If r(x) has
a degree, then it is less than 1, that is, r(x) must be constant. Substituting
x — a shows that this constant must be 0, and the theorem is proved. I

COROLLARY 9.2
The number of zeros of a polynomial in F[x], where F is a field, is no more

than its degree.

PROOF Use induction on the degree. Compare with the proof of Theorem
5.8. I

It is essential that F be a field in this corollary. We saw in Theorem 7.17
that the polynomial x2 — 1 has four zeros in Z%. By Theorem 7.18, if a is a
quadratic residue modulo pq, then x2 — a has four zeros in Zpq.

The division algorithm for polynomials allows us to define divisibility and
greatest common divisors for polynomials, just as we did for integers in Chap­
ter 3. Let F be a field. If f(x) and g(x) are in the polynomial ring F[x] and
/ / 0, then f(x) is called a divisor of g(x) if there is a polynomial q(x) in
F[x] with g{x) = q(x)f{x). We write f(x)\g(x) if this is so. If a G F and
a / 0 , then the constant polynomial a divides every polynomial in F[x]. Also
if a G F and a ^ 0, then f(x)\g(x) if and only if (af(x))\g(x).

A greatest common divisor of two polynomials f(x) and g(x), not both
0, in F[x] is a monic polynomial d(x) of highest degree which divides both
f(x) and g(x). We write d(x) = gcd(f(x),g(x)) in this case.

THEOREM 9.9 GCD is a linear function of polynomials
If the two polynomials f(x) and g(x) in F[x] are not both 0, and d(x) is a

greatest common divisor of f(x) and g(x), then there are polynomials a(x)
and b(x) in F[x] such that a(x)f(x) + b(x)g(x) = d(x).

The theorem may be proved in the same way as Theorem 3.9. A conse­
quence of Theorem 9.9 is that the greatest common divisor of two polynomials
is unique. The analogue of the extended Euclidean algorithm for integers may
be used to compute the greatest common divisor of two polynomials. The only
difference here is that, if the last nonzero remainder is not a monic polyno­
mial, then we must multiply it by the inverse of its leading coefficient to make
it monic.

Groups, Rings and Fields 135

A polynomial p(x) of degree at least one in F[x] is called irreducible (over
F) if it cannot be written as the product of two nonconstant polynomials in
F[x] of lower degree. Irreducible polynomials are analogues of prime num­
bers. The analogue of Lemma 4.2 is this statement: If p(x) is irreducible and
p(x)\f(x)g(x), then either p(x)\f(x) or p(x)\g(x). This can be used to prove
the analogue of Theorem 4.1.

THEOREM 9.10 Factorization of polynomials
Every nonconstant polynomial f(x) in F[x] can be written in the form

f(x) = ap1{x)--pk(x),

where the Pi(x) are irreducible polynomials in F[x].

The irreducible (over Q) factors of the polynomials xn — 1 are called the
cyclotomic polynomials. There is exactly one irreducible monic polynomial
$n(#)j called the n-th cyclotomic polynomial, which divides xn — 1 but no
xk — 1 for 1 < k < n. The coefficients of each $n(x) are integers. The degree of
$n(x) is (¡>(n). One can show that xn — 1 = \[d\n $d{x) (and so ^2d\n (¡>{d) = n).
The zeros of 4>n(x) are the n-th roots of 1 in the complex numbers C which
are not fc-th roots of 1 for any 1 < k < n. These numbers are called the
primitive n-th roots of unity. They are the complex numbers e2irz^n,
where 1 < j < n and gcd(j, n) = 1. The first few cyclotomic polynomials are

$i(x) = x - 1

$2(2) = x + 1

$3(x) =x2 +x + l

$4(x) = x2 + 1

$5(x) = XA + X3 + X2 + X + 1

$6(x) = x2 - x + 1

The notion of divisibility for polynomials allows us to define congruence of
polynomials. Let f(x) be a nonzero polynomial in F[x]. Let a(x) and b(x) be
two polynomials in F[x]. We say a(x) is congruent to b(x) modulo f(x) and
write a(x) = b(x) (mod f(x)) if f(x) divides a(x) — b(x). Congruence defines
an equivalence relation on F[x]. Let [a(x)] be the congruence class containing
the polynomial a(x), that is, [a(x)] = {b(x) F[x]]b(x) = a(x) (mod f(x))}.
Then the formulas

[a(x)] + [b(x)] = [a(x) + b(x)]

[a(x)][b(x)] = [a(x)b(x)]

are well defined rules for addition and multiplication of congruence classes.
The set of congruence classes with these operations forms a commutative ring

136 Cryptanalysis of Number Theoretic Ciphers

with unity. The ring is denoted F[x]/(f(x)). The zero element of the ring is
the class [/(#)] and the unity is the class [1].

If f(x) has degree d > 0, then it is easy to prove, using Theorem 9.7, that
the distinct congruence classes of F[x]/(f(x)) are the classes [a(x)], where
a(x) is an arbitrary polynomial in F[x] of degree < d.

We will construct new fields using the following theorem.

THEOREM 9.11 Fields correspond to irreducible polynomials
Let p(x) be a polynomial in F[x], where F is a ñeld. Then p(x) is irreducible

if and only if the ring F[x]/(p(x)) is a ñeld.

P R O O F Suppose p(x) is irreducible. Let [a(x)] be a nonzero element of
F[x]/(p(x)). Then p(x) does not divide a(x) and so gcd(a(x),p(x)) = 1. By
Theorem 9.9, there are polynomials b(x) and c(x) so that b(x)a(x)+c(x)p(x) —
1. Hence, a(x)b(x) = 1 (mod p(x)), which means [a(x)][6(a:)] = [1]. Thus,
[a(x)] has a multiplicative inverse, and so F[x]/(p(x)) is a field.

Conversely, if p(x) were not irreducible, then the congruence classes of its
factors would not have inverses, so F[x]/(p(x)) would not be a field. I

Theorem 9.11 may be used to construct finite fields of size pe elements for
every prime p and every positive integer e. We know from Theorem 9.6 that
F p = Zp is a field for every prime p. It contains p elements. Let f(x) be
an irreducible polynomial of degree e in Fp[x]. Then Fpe — Fp[x]/(f(x)) is
a field with exactly pe elements, and all finite fields arise this way. One can
prove that there is such an irreducible polynomial for every prime p and every
positive integer e. Let ne denote the number of monic irreducible polynomials
of degree e over F p , where p is prime. Then one can show that ne = (pe —

El<d<e,d\ednd)/e-

Example 9.1

Use f(x) = x8 + xA + x3 + x + 1 in F2IXI to construct a field with 28 elements.
We first show that f(x) is irreducible over F2, the integers modulo 2. Since

the degree of f(x) is 8, if f(x) were not irreducible, then f(x) would be divisible
by an irreducible polynomial of degree 1, 2, 3 or 4. If f(x) had a linear factor
x + a, then / (a) = 0. But /(0) = / (l) = 1 ^ 0 . It is easy to see that the
only irreducible polynomial in F2IXI of degree two is x2 + x + 1. (Note that
x2 + 1 = (x + l)2 .) Similarly, the only irreducible cubic polynomials in F2[x]
are x3 + x2 + 1 and x3 + x + 1. Long division shows that none of these three
trinomials divide f(x). We leave it to the reader to find the three irreducible
polynomials in F2[x] of degree 4 and show they do not divide f(x).

By Theorem 9.11, F2s = F2[x]/(/(o;)) is a field. Its 28 elements are 0 and
the polynomials of degree < 8 with coefficients in F2. The 8 coefficients of such
a polynomial are bits, and the polynomials correspond in a natural way to 8-bit
bytes. Addition in F2s corresponds to the exclusive-or of bytes. To multiply

Groups, Rings and Fields 137

two polynomials in F2s, first multiply them as ordinary polynomials (over Z)
and reduce the coefficients modulo 2. Then divide the product by f(x). The
remainder is the product of the two polynomials in F2s.

One can show that two different irreducible polynomials f(x) and g(x)
in Fp[x\ with the same degree e produce isomorphic fields Fp[x]/(f(x)) and
Fp[x]/(g(x)), which we regard as the same field Fpe.

Note that, when e > 1, Fpe is not isomorphic to Zpe. Both rings contain
pe elements, but Zpe is not a field because, for example, the congruence class
of p has no multiplicative inverse.

Let p be prime and q = pe for some positive integer e. The set of nonzero
elements of Fq forms a group of order q — 1. By Lagrange's theorem, if a G Fq

and a ^ O , then aq~l = 1. In fact, there is an element of order q - 1 in this
group.

THEOREM 9.12 Multiplicative group of a finite field is cyclic
The multiplicative group of a ñnite ñeld is cyclic.

PROOF Let F be the finite field and let G be its multiplicative group.
By Corollary 9.2, for every n > 1 the equation xn = 1 has at most n roots in
F. Let a be an element of G with largest order N. Let b be any element of
G, and call n its order. We will show that G is cyclic by proving that b = aJ

for some integer j .
If n does not divide iV, then there is a prime p and a power q = ps of p

so that q divides n but not N. It is easy to see that the order of abnlq is
lcm(iV, q) > N, which contradicts the definition of N as the largest order of
any element of G. Therefore n divides N.

The equation xn — 1 has the n distinct roots alN^n in G, with 0 < i < n.
Since b satisfies bn = 1, it must be one of these roots, that is 6 = aj with
j = iN/n for some 0 < i < n. I

9.6 Algebraic Number Theory
In this section, we give a brief introduction to algebraic number theory needed
to understand the number field sieve factoring algorithm.

Let Z[x] denote the ring of polynomials with integer coefficients.

DEFINITION 9.6 An algebraic integer of degree d is the zero in the
complex numbers C of a monic polynomial of degree d in Z[x] which is not
the zero of such a polynomial with lower degree.

For example, y/ò and i — i/—Ï are algebraic integers of degree 2. They
are the zeros of the polynomials x2 - 5 and x2 + 1, respectively, but not

138 Cryptanalysis of Number Theoretic Ciphers

the zero of any linear polynomial with integer coefficients. If a and b are
integers, then a + bi is an algebraic integer of degree 2 because it is the zero
of x2 — 2ax + (a2 + b2). Let Z[i] denote the set of all a + bi, where a and b are
integers. This set is called the Gaussian integers. It contains the integers
Z as the subset with 6 = 0 and shares many properties with Z.

A major portion of algebraic number theory studies how algebraic integers
factor. In the Gaussian integers, 3 and 7 cannot be factored, but 2 = (1 +
i)(l — i) and 13 = (3 + 2i)(3 — 2Ï) can be factored, even though they are primes
in Z. The Gaussian integers 3, 7, 1 + i and 3 — 2% are primes in Z[i].

The primes in Z are called rational primes to distinguish them from the
Gaussian integer primes. Likewise, the elements of Z are sometimes called
rational integers to distinguish them from algebraic integers not in Z.

DEFINITION 9.7 A unit of a commutative ring R with unity 1 is an
element having a multiplicative inverse in R. An irreducible element of
R is a nonzero, nonunit element a whose only factorizations in R are the
trivial ones a = uf3 with one factor u being a unit. If a — u/3, where u
is a unit, then a and (3 are called associates. An algebraic integer a has
unique factorization in R if any two factorizations of a into the product of
irreducibles and units are the same except for replacing irreducibles by their
associates and using different units.

The units in Z[i] are +1,—1,-fi and —i. The units in Z are +1 and — 1.
The irreducible elements in Z are the primes p and their associates —p. In
Z[¿], 2 -f i is irreducible and has the associates 2 — i, 1 + 2i and 1 - 2i. The
Gaussian integers have unique factorization. The number 5 can be factored
as (2 + ¿)(2 - z), as (1 + 2i)(l - 2i) and also as (-¿)(2 + ¿)(1 - 2i). All three
of the factorizations are considered the same.

Now let Z[\/—6] denote the set of all numbers of the form a + by/^6, where
a and b are integers. This set forms a commutative ring with unity under
addition and multiplication. Define the norm of a + by/^6 to be N(a +
by/—6) = a2 + 662. We say a + by/^6 is factored if we can write

a + by/-H = (c + c?VC:6)(e + fV^G)

with N(c + dv^-6) > 1 and N(e + fy/—6) > 1. This restriction avoids trivial
factorings. The norm function is completely multiplicative, that is, if a and
(3 are in Z J V ^] , then N(a(3) = N(a)N(/3). It follows that a + byf^i is
factored if a + b^/^E = a(3 with 1 < N(a) < N(a + ò y ^) = a2 + 6b2

and 1 < N((3) < N(a + ò-y/—6). These inequalities show that a number in
Z[^/—6] can break up into only a finite number of factors. Note also that
N(a + b^/^6) > 6 if b / 0. This shows that 2 and 5 are irreducibles; they do
not factor in Z[\/—6]. Now 10 can be factored in two different ways:

10 = 2 • 5 = (2 + V^){2 - \ / ^6) . (9.1)

Groups, Rings and Fields 139

The ring Z[\/—6] does not have unique factorization.

DEFINITION 9.8 A nonzero algebraic integer a divides an algebraic
integer (3 (written a\/3) if there is an algebraic integer 7 so that (3 = aj. A
nonzero algebraic integer a is p r ime if it is not a unit and whenever a|/?7,
either a\/3 or a\"y.

In the integers Z, every irreducible is prime, by Lemma 4.2. In any ring
in which every irreducible is prime, one can prove that factorization into
irreducibles (or primes) is unique; our proof of Theorem 4.1 shows this. Not
every irreducible in Z[V—6] is prime. The four factors of 10 in Equation (9.1)
are irreducible but not prime.

DEFINITION 9.9 An algebraic number of degree d is the zero in the
complex numbers C of a polynomial of degree d in Z[x] which is not the zero
of such a polynomial with lower degree.

This definition is the same as Definition 9.6 of algebraic integer except that
the word "monic" is dropped.

DEFINITION 9.10 If E C F are two ñelds, we call E a subfield ofF,
and F an extension field of E.

DEFINITION 9.11 An algebraic n u m b e r field is an extension held of
Q that contains only algebraic numbers. If a is an algebraic number of degree
d, then the algebraic number field of degree d over Q generated by a
is the smallest extension held Q(a) of Q containing a.

One can show that Q(a) is the intersection of all algebraic number fields
containing a. The monic polynomial in Q[x] of degree d satisfied by a is the
minimal polynomial of a over Q. When considered as a vector space over
Q, Q(a) has dimension d over Q. It is known that every extension field E of
Q that is a finite-dimensional vector space over Q has the form Q(a) for some
algebraic number a. The elements of Q(a) are all sums $^7Ç0

 aja^ where

the aj are in Q. Define Z(a) to be the set of all sums X^=o aja^ where the
cij are in Z.

If a is an algebraic number of degree d, then its conjugates are the d
roots in C of its minimal polynomial. The norm of a, -/V(a), is the product
of its conjugates, and equals (- l) d times the constant term of the minimal
polynomial of a. The norm satisfies N(a(3) — N(a)N(/3). The norm of an
algebraic integer is an integer. The minimal polynomial of an algebraic integer
has integer coefficients.

140 Cryptanalysis of Number Theoretic Ciphers

Let a be an algebraic number. The set of all algebraic integers in Q(a)
forms a ring X called the ring of integers in Q(a). This ring X always
contains the ring Z(a), and may be equal to it.

Example 9.2

The ring Z(-y/Ï3) consists of all numbers a + by/Ï3, where a and b are integers.
However, the ring of integers in Q(vT3) consists of all numbers a+6(1 + VT3)/2,
where a and b are integers. The number (1 + y/VÒ)/2 is an algebraic integer
because it is a zero of the polynomial x2 — x — 3. Clearly, it is in Q(VT3).

If the ring X of integers in Q(a) has unique factorization, then X is called
a unique factorization domain.

9.1 Exercises
1. Which of the following are groups?

a. The even numbers with addition as the operation.

b. The integers with subtraction as the operation.

c. The odd numbers with multiplication as the operation.

d. The rational numbers a/b with b = 1 or 2, with addition as the
operation.

e. The rational numbers a/b with b = 1, 2 or 3, with addition as the
operation.

2. Show that the groups R$ and R$ have the same size, but that they are
not isomorphic.

3. Show that the groups CQ and RQ are isomorphic.

4. Let G be a finite cyclic group generated by g. Let b be an element of G.
Suppose two numbers A < B are known, with B — A small compared
to the order of G, such that there is an integer k in A < k < B for
which gk = b. Modify Shanks' baby-step-giant-step algorithm to create
an algorithm that will discover this k in 0(y/B — A\og(B — A)) group
operations and 0(y/B — A) space.

5. Alice and Bob debate whether Shanks' baby-step-giant-step algorithm
works because of the birthday paradox of Theorem 2.4. Does it?

6. Do the real numbers of the form x + y\/2, where x and y are rational
numbers, form a ring with the usual addition and multiplication? If so,
is this ring a field?

Groups, Rings and Fields 141

7. Let F = F3, the field with three elements. Let f(x) — 2x2 + 1 and g(x) =
x3 + x 2 + 2 be two polynomials in F[x]. Compute d(x) = gcd(f(x),g(x))
and find polynomials a(x) and b(x) so that a(x)f(x) + b(x)g(x) = d(x).

8. In Example 9.1, find the three irreducible polynomials in 1?2[x] of degree
4 and show that they do not divide f(x) = xs + x4 + x3 + x + 1.

9. Find explicit formulas for the cyclotomic polynomials $p(x) and $2p(x),
where p is any odd prime.

10. According to Theorem 9.12, the multiplicative group of the field F2s
constructed in Example 9.1 is cyclic. Find a generator for it.

Chapter 10

Exponential Methods of
Factoring Integers

This chapter introduces methods of factoring integers that are slower than
the fastest known ones. They require time 0(n c) , where c > 0 is a constant,
to factor n. They are called "exponential algorithms" because their time
complexity is exponential in logn, the length of the input, since nc = e c l n n .
We study them because they are fairly simple, some are used as procedures
in faster factoring methods, and because, since they sometimes work sur­
prisingly quickly, we have to avoid numbers they can factor when choosing
cryptographic keys that must not be factored. See the books by Crandall and
Pomerance [33], Cohen [28], and Riesel [96] for more about these factoring
algorithms.

The trial division algorithm from Chapter 4 is an excellent way to factor
fairly small numbers. Example 4.5 shows that it has little chance of factoring
large integers completely, although it almost always finds some small prime
factors of random large integers. Half of all integers have a factor of 2. About
92% of large odd integers have a prime divisor below 1,000,000. Example 4.5
shows that if we don't want someone to factor our secret key, then it must
not have a small prime factor.

Throughout this chapter, n will be the odd composite number to factor.

10.1 FermaVs Difference of Squares Method

This is the second oldest factoring method, after trial division. Fermât tried
to express n as a difference of two squares, x2 — y2, with the pair x, y different
from (n + l) /2 , (n — l) /2 . Any other representation of n as x2 — y2 gives a
nontrivial factorization n— (x — y)(x + y). Clearly, x > ^Jn.

We illustrate the algorithm with n — 481 in the following table. The vari­

es

144 Cryptanalysis of Number Theoretic Ciphers

able x begins with [y/n\ rather than \\/ñ "| to check whether n is a square.

X

21
22
23
24
25

t -

43
45
47
49
51

2x + 1 X2

441
484
529
576
625

r = x2 — n

-40
3
48
95
144 = 122

The last line of the table shows that 481 = 252 - 122 = (25 - 12) (25 +12) .
Why is there a column for 2x + 1 in the table? After the numbers in the

first row have been computed, we can find the new x2 by adding the old 2x +1
to the old x2, since (x +1)2 = x2 + (2a; +1) . Likewise, the next r can be found
by adding the old 2x + 1 to the old r. The column for x is needed only at
the end. It need not be computed at all because it can be found easily from
2x + 1 when the algorithm finishes. This suggests the following algorithm.

[Fermât 's difference of squares factoring algorithm]
Input: An odd composite positive integer n to factor.
Output: The factors a and b of n.

x = [y/n\
t = 2x + l
r — x2 — n
while (r i s not a square) {

r = r + t
t = t + 2
}

x = (t- l) /2
V= [y/r\
r e t u r n the f ac to r s x — y and x + y

In two lines of the algorithm we must find the integer part of the square
root of an integer. A good way to do this is with a modification of Newton's
method. The initial value of x in the algorithm below can be any integer
> y/n, the closer to y/n the better. The value in the first line of the algorithm
is easy to compute on a binary computer.

[Integer part of the square root of a positive integer]
Input: A positive integer n.
Output: x = [y/ñ\.

x — 2r(log2^)/2]

y=L(*+L*/*J)/2j
while (y < x) {

y=l(x+[n/x¡)/2¡

Exponential Methods of Factoring Integers 145

}
return x

It is an easy exercise to show that this algorithm is correct and finishes in
O(loglogn) iterations.

Let us return to Fermat's difference of squares factoring algorithm. The
condition in the while loop may be tested as, "Is r ^ (|_v^\l)2?"> where the
square root is computed by the algorithm just given. However, the rest of
the loop contains only two additions. The integer square root algorithm uses
several divisions and would dominate the time for the loop. Fermât, working
by hand with decimal numbers, solved this problem by recognizing possible
squares by their low-order digits. Every square has last decimal digit 0, 1, 4,
5, 6 or 9. In the example in the table above, r = 3 and 48 cannot be squares
because their last digits are not in the list. Only 22 two-digit numbers may
occur as the last two decimal digits of a square. A binary computer can
test whether r might be a square with the logical operation (r&63) to find
(r mod 64), followed by looking up the remainder in a table of the twelve
possible squares modulo 64. If r passes this test, then look up (r mod pe) in
a table of possible squares modulo pe for a few small odd prime powers pe.
Only in case r passes all these tests need one check "r ^ (Lv^J)2?"- Tricks
like these amortize evaluation of the while condition to a cost comparable to
the cost of the two addition operations inside the loop.

THEOREM 10.1 Complexity of Fermat's factoring algorithm
Let the odd composite positive integer n = ab, where a is the largest divisor

ofn which is < y^ñ. Let k = a/y/ñ, so that 0 < k < 1. Then the while loop
in Fermat's difference of squares factoring algorithm is executed

1 + (1 - k)2y/^/{2k)

times.

P R O O F If a = b, then n is a square, k = 1 and the while loop ends
after the first iteration. In any case, when the algorithm ends, x — y — a and
x + y = 6, that is, x = (a + 6)/2 and y — (b — a)/2. At this time, x = (£ —1)/2,
so¿ = l + a + ò = 1 + a + n/a . The variable ¿ increases by 2 at each iteration,
begins at the first odd number > 2y/n and stops at 1 + a + n/a. Hence, the
while loop is executed

times. I

146 Cryptanalysis of Number Theoretic Ciphers

Theorem 10.1 does not say that the time complexity of Fermât 's algorithm
is 0(y/n) to factor n. In the worst case, n — 3p, for some prime p, we have
k = 3/y/ñ and the while loop is performed essentially n /6 times.

If ^ / ñ - a is 0(nl y / 4) , then the theorem shows that Fermat's algorithm takes
about yjn — a steps. The cryptographic significance of this result is that if
n = pq is public but the primes p and q must stay secret, then one must
not choose p and q too close to each other. If p < q and q — p is small
enough so that an attacker could perform q — p simple operations, then n can
be factored by Fermat's method. As one can build special hardware devices
(called sieves) capable of executing the while loop at high speed, it is best to
require q — p> 1025. See Lehmer [62], [63] and Williams [128] for information
about the construction and use of sieves.

10.2 Pollard's Rho Method
This method is also called the Monte Carlo factoring method because it con­
structs a sequence of random numbers and the city of Monte Carlo is well
known for randomness.

Let n be the composite number to factor and let p be an unknown prime
factor of n. Pollard [85] proposed choosing a random function / from the set
{ 0 , 1 , . . . , n — 1} into itself, picking a random starting number s in the set and
iterating / :

* , / (*) , / (/ (*)) , / (/ (/ (*))) , • • • •

If we consider these numbers modulo the unknown prime p, we get a sequence
of integers in the smaller set { 0 , 1 , . . . ,p — 1}. We know from the birthday
paradox, Theorem 2.4, that some number in the smaller set will be repeated
after about y/p iterations of / . Iiu,v were the iterates of / with u = v (mod p),
then probably gcd(u — v, n) — p because p divides u — v and n and it is unlikely
that any other prime divisor of n divides u — v. But how can we detect this
repeated value when it happens? We don't know p and must iterate / modulo
n. Suppose that f(u) = f(v) (mod p) whenever u = v (mod p).

Write S{ for the z-fold iterate of / starting at s. That is, s0 = s and
Si = f(s{-i) for i > 0. If Si = Sj (mod p), then p divides s¿ — Sj and also
gcd(si — Sj,n). However, we can't compute a gcd for every pair ¿, j < ^fp
because there would be about \{^fp)2 — p/2 pairs and we might as well use
trial division to find p.

There is a beautiful solution to this problem due to Floyd. (See Exercise
6b in Section 3.1 of [56].) The Floyd cycle-finding algorithm computes
two iterates of / together in the same loop, with one instance running twice
as fast as the other. This trick generates sm and S2m together and forms
gcd(s2m — sm,n), hoping to find p. Here is why the trick works. Suppose
Si = Sj (mod p) for some i < j . By the birthday paradox, Theorem 2.4, the
first j for which this congruence holds for some i < j is 0(y/p). Let k = j -i.

*> m , /(/(«)), /(/(/(S))),....

Exponential Methods of Factoring Integers 147

Then for any m > i and t > 0, sm = sm+tk (mod p). When m = k\i/k^\ and
t — \i/k] we have sm = s2 m (mod p) and m < j , so m is 0(v /p) .

What is a good choice for the random function /(#)? It must be easy to
compute modulo n. Low degree polynomials with integer coefficients come to
mind first. They satisfy f(u) = f(v) (mod p) whenever u = v (mod p), by
Corollary 5.1.

One should not use a linear polynomial because they are not random
enough. Consider first f(x) — (x + b) mod n. Then s¿ = s + ib (mod p).
We may suppose that p does not divide 6, since otherwise gcd(6, n) = p fac­
tors n. In this case, we have s¿ = Sj (mod p) if and only if i = j (mod p)
by Theorem 5.5. This means that the sequence {s¿ modp} has period p, and
trial division of n would find p sooner.

Now suppose f(x) = (ax + b) mod n. We may suppose that p does not
divide a — 1, for otherwise gcd(a — l ,n) = p factors n. In this situation,
1 — a has a multiplicative inverse modulo p. An easy induction shows that
si = sa* + 6/(1 — a) (mod p) for ¿ > 0. Then s¿ = Sj (mod p) if and only if
a1 = aj (mod p). lî a happened to be a primitive root modulo p, then this
congruence would hold if and only if i = j (mod p — 1), by Theorem 6.15.
Hence the sequence {s¿ mod p} has period p — 1, and trial division of n would
find p sooner. The same difficulty would arise whenever a happened to have
a large order modulo p, which happens often by Theorem 6.14.

The next simplest functions to compute modulo n are quadratic polyno­
mials. One should avoid f(x) = x2 mod n because this choice gives s¿ =
s2 (mod p). Suppose s is a primitive root modulo p, which has a reasonable
chance of happening. Then S{ = Sj (mod p) if and only if 2Z = V (mod p - 1)
by Theorem 6.15. Write p - 1 = d2h with d odd. Suppose i > h and j > h.
The last congruence is equivalent to 2l~h = 2^~h (mod d). Then s¿ modp
would have a period equal to the order of 2 modulo d, which might easily be
much larger than y/p.

Another quadratic polynomial to avoid is f(x) = (x2 — 2) mod n. By Theo­
rem 7.3, there is a 50% chance that s2 — 4 is a quadratic residue modulo p. If
this happens, then we can solve the congruence r2 - sr + 1 = 0 (mod p), which
has discriminant s2 — 4, and which is equivalent to s = r + (1/r) (mod p). A
simple induction shows that si = r2% + r -^2^ (mod p). Then s¿ = Sj (mod p)
if 2l = 2J (mod p — 1), and we have the same long period problem as with
f(x) = x2 mod m.

Although no one has proved that any polynomials f(x) = (x2 + b) mod n
are random mappings when b ^ 0 or - 2 , experiments suggest that these are
good choices. We avoid terms ax in these polynomials because they make /
harder to evaluate. Here is the algorithm.

[Pollard rho factorization algorithm]
Input: A composite number n to factor.
Output: A proper factor of n, or else "give up."

148 Cryptanalysis of Number Theoretic Ciphers

Choose a random b in 1 <b <n — 3
Choose a random s in 0 < s < n — 1
A = B = s
Define a function f(x) = (x2 + b) mod n

9 = 1
while (<? = 1) {

A = /(A)
B = f(f(B))
g = gcd(A-B,n)
}

if (g < n) { wr i t e "g i s a proper fac to r of n" }
e l s e { e i t h e r give up or t r y again with new s and/or b }

If we reach the last line of the algorithm, it means that g — n, that is, we
have found all prime factors of n together. There is a fair chance that we will
separate them, and find just one of them, if we restart the algorithm with new
random b and s.

The factor g of n written in the next-to-last line is not guaranteed to be
prime. It is possible that we may find two or more prime factors of n together.
One should always test g for primality.

As noted above, assuming / is a random mapping, the complexity of the
Pollard rho method is 0(v/p) steps, where p is the smallest prime factor of n.
Since p < y/n, this complexity is 0 (n 1 / 4) .

Example 10.1

Try Pollard rho factorization of n = 9271 with s = b = 1.
The first 12 iterates are: s0 = 1, si = 2, 5, 26, 677, 4051, s6 = 932, 6422,

4677, 4041, 3451, 5438, s12 = 6626. We have gcd(si2 - s6in) = gcd(6626 -
932, 9271) = 73. The (hidden) values of s¿ mod 73 are shown in the figure
below. The shape is the reason for the algorithm's name.

Exponential Methods of Factoring Integers 149

The most expensive step in the while loop is the gcd. Its cost may be
amortized by adding a new variable C, initialized at 1, replacing the gcd by the
instruction C = C(A — B) mod n, and computing g — gcd(C, n) occasionally.
One strategy performs the gcd only when the iteration number is a Fibonacci
number. This causes gcd's to be done less and less frequently.

The Pollard rho factoring algorithm roughly doubles the size of prime fac­
tors we can discover, as compared to trial division. The Monte Carlo method
will find a 20-digit prime factor of n with about the same work needed to find
a 10-digit factor by trial division.

10.3 Pollard's p-1 Method
Pollard invented two factoring methods in the 1970's. One was the rho method
and the other [84] was the p—1 method. The p— 1 method is based on Fermat's
little theorem (Theorem 6.1), which says that ap~1 = 1 (mod p) when p is
a prime which does not divide a. Thus aL = 1 (mod p) for any multiple L
of p — 1. If also p\n, then p divides gcd(aL — l ,n) . Of course, we cannot
compute aL mod p because p is an unknown prime factor of n. However, we
can compute aL mod n. Pollard's idea is to let L have many divisors of the
form p — 1 and thus try many potential prime factors p of n at once.

The number p — 1, where p is a large prime, seems to factor in the same
way as a random integer of about the same size. In particular, the statements
about smooth numbers in Section 4.4 seem to apply to numbers of the special
form p— 1. If p— 1 is B-smooth, that is, the largest prime factor of p— 1 is < B,
then p— 1 will divide L if L is the product of all primes < Z?, with appropriate
multiplicity. If a prime q < B divides p - 1 , then q cannot divide p-1 more
than loggP — 1 = (logp/ log q) — 1 times. This number is an upper bound on
the "appropriate multiplicity" of q in L. However, large primes rarely divide
large random integers more than one time. A reasonable compromise for L
is to choose a bound B, which tells how much work one is willing to do in
an effort to factor n, and define L to be the least common multiple of the
positive integers up to B. One can show that this L = Y\qe, where q runs
over all primes < B and, for each </, qe is the largest power of q which is < B.
Typically, B is in the millions and L is enormous. There is no need to compute
L. As each qe is formed, one computes a — aq&. Here is the algorithm.

[Simple Pollard p — 1 factorization method, first stage]
Input: A composite positive integer n to factor and a bound B.
Output: A proper factor p of n, or else give up.

Find the primes pi = 2,p25 • • • ,Pk < B
a = 2
for (i = l t o i) {

e = |_(log B)/ log pi J
f=PÏ

150 Cryptanalysis of Number Theoretic Ciphers

a — a^ mod n

}
= g c d (a - l ,n)
if 1 < g < n { p r i n t "g d iv ides n" }
e l s e { give up }

The primes may be found by the sieve of Eratosthenes. Exponentiation
is done by the fast exponentiation algorithm. The gcd should be computed
once every few thousand primes rather than just once at the end, with the
for loop continuing if g — 1. If g = 1 at the end, one can either give up or
try the second stage described below. If g — n, then all prime divisors p of
n have been discovered together. When this happens, if one has saved the
value of a at the previous gcd, one can return to it and compute a gcd after
each exponentiation in an effort to separate the prime divisors p of n. But
even this trick won't work in case p — 1 has the same largest prime divisor q
for every prime factor p of n. This happens, for example, when one tries to
factor 1247 = 29 • 43, since 29 - 1 = 22 • 7 and 43 - 1 = 2 • 3 • 7.

If we use the Pollard p — l algorithm with bound B to try to factor n, and
n has a prime factor p, then the probability that we will find p is roughly
the probability that a number near p is JE?-smooth, which is p((logp)/\ogB)
by Theorem 4.9. But if p — 1 has a prime factor > i?, then we will fail. We
could fail to find a prime factor p as small as p — 2q + 1, where q is the first
prime > B (or > B2l if the second stage is used). On the other hand, the
p—l algorithm occasionally has a spectacular success, like the 30-digit prime
divisor p = 174463386657191516033932614401 of 2740 + 1 found by R. Baillie.
He used B — 500,000 and succeeded because

p - 1 = 28 • 52 • 17 • 37 • 1627 • 5387 • 68111 • 152081 • 477361.

The second stage of the algorithm chooses a second bound B2 > B, perhaps
B2 = 1005, and seeks a factor p of n for which the largest prime factor of
p — 1 is < B2 and the second largest prime factor is < B. In other words,
p — 1 is 1-semismooth with respect to B2 and B in the terminology of Sec­
tion 4.4. Theorem 4.11 predicts that the probability of finding p is about
Pi ((log P) I log B, (log p) / log B2).

Here is one version of the second stage. At the end of the first stage (the
algorithm above), a has the value 2L (mod n). Let qi < q2 < . . . < qt be the
primes between B and B2. The idea is to compute successively 2Lqi (mod n)
and then gcd(2L<?* - l ,n) for 1 < i < k. The first power 2Lqi (mod n) is
computed directly. The differences qi+\ — qi are even numbers and much
smaller than the qi themselves. Precompute 2Ld (mod n) for d = 2 ,4 , . . .
up to a few hundred. To find 2Lqi+1 (mod n) from 2Lqi (mod n), multiply
the latter by 2Ld (mod n), where d = qi+i — (/¿. The amortized cost of
computing 2Lqi (mod n) for 1 < i < k is a single multiplication modulo n.
We can save time on the gcd's by multiplying several values of (2Lqi mod n) — 1

Exponential Methods of Factoring Integers 151

modulo n and taking the gcd of the product with n. R. Brent found the factor
p = 49858990580788843054012690078841 of 2977 - 1 with this method. Since

p - 1 = 23 • 5 .13 .19 • 977 • 1231 • 4643 • 74941 • 1045397 • 11535449,

he must have used B > 1045397 and B2 > 11535449. Many tricks and
variations speed this algorithm, especially its second stage.

The cryptographic significance of Pollard's p — 1 algorithm is that, if we
don't want an adversary to be able to factor a large composite number n,
then each prime factor p of n must have the property that p — 1 contains a
prime factor q so large that it is not feasible to perform q operations.

There is a complementary algorithm, due to Williams [123] and called the
p + 1 factoring method, which discovers a prime divisor p of n provided p + 1
is smooth. Therefore, if a cryptographic key n must not be factored, then
p + 1 must have a large prime factor for each prime factor p of n.

IO.4 Square Form Factorization
A binary quadratic form is a function ax2 + bxy + cy2 of x and y. We
require the coefficients a, 6, c to be integers. It is customary to suppress the
variables and write (a, ò, c) for ax2 -f bxy + cy2. Two quadratic forms are
equivalent if a linear change of variables with determinant 1 changes one
form into the other. A quadratic form (a,b,c) represents an integer m if
there exist integers x and y so that ax2 + bxy + cy2 = m. The discriminant
of (a, 6, c) is D = b2 — 4ac. Equivalent forms have the same discriminant
and represent the same set of integers. The theory of quadratic forms was
developed by Gauss [45].

In order to determine whether two quadratic forms with the same discrim­
inant are equivalent, it is convenient to select one form from each equivalence
class and call it reduced. Then two forms would be equivalent if and only
if their reduced forms are the same. When D < 0, one can define a unique
reduced form in each equivalence class via simple inequalities on the coeffi­
cients. There is a polynomial-time algorithm for computing the reduced form
equivalent to any given quadratic form.

However, when D > 0, it is not possible to define a unique reduced form in
each equivalence class and have an efficient algorithm for finding the reduced
form equivalent to any given one. Instead, simple inequalities define reduced
forms with given discriminant D > 0. (A form (a,6,c) is reduced if \>J~D —
2\a\\ < b < \fD.) Most equivalence classes contain many reduced forms.
Usually, a class contains about \[D different reduced forms, but occasionally
this set is quite small. There is an efficient algorithm for finding a reduced
form equivalent to any given one. The reduced forms in each equivalence
class are arranged in a cycle. There is an efficient algorithm for computing
the "next" reduced form in the cycle after a given one. To decide whether
two quadratic forms with discriminant D > 0 are equivalent, compute the

152 Cryptanalysis of Number Theoretic Ciphers

reduced forms equivalent to each. Beginning with one of the reduced forms,
cycle through the reduced forms, using the "next" algorithm, until you either
find the other reduced form or return to the first one. In the first case, the
original forms are equivalent; in the second case, they are not. All the reduced
forms with discriminant D > 0 have coefficients 0 < |a|, 6, \c\ < \fD.

A square form is a quadratic form (a^b^c) in which a is the square of
an integer: a = r2. If one visits the reduced forms of an equivalence class,
the expected number of iterations of the "next" algorithm between square
forms is typically O(Z)1/4). When a square form is found, it often leads
to a factorization of D as follows. One constructs a form (r, s,t), where
a = r2 in the square form, and visits the successive reduced forms in the
equivalence class of (r, s, t) until one reaches two consecutive reduced forms
(u,v,w), (j,v,k), with the same middle coefficient v. Then u divides D.

D. Shanks devised the following factoring algorithm called the SQUare
FOrm Factorization algorithm, or SQUFOF. Given an odd positive integer
n, let h = [y/ñ\ and c = h2 — n. If c = 0, then n = h2 is a square and we are
done. Otherwise, c < 0 and the form (1,2ft, c) is reduced and has discriminant
D — (2h)2 - Ac = Ah2 - A(h2 — n) = An. Visit the reduced forms equivalent
to this one until a square form is found. Detect squares a efficiently as in
Fermât 's difference of squares method. Use the square form as above to find
a factor u of D — An. If u is odd, it divides n. If u is even, u/2 divides n.

The number of forms visited in the equivalence class of (r, s, i) after the
square form is located is always very close to one-half of the number of forms
tested in the first equivalence class to find the square form. Since the latter
number is O ^ 1 / 4) , or 0(n 1 / 4) , the total number of quadratic forms visited
is 0(n1^), and this is the complexity of SQUFOF.

The algorithm can fail in two ways. The equivalence class of the initial form
may be so small that it contains no reduced square form. In the rare event
that this happens, one can apply the algorithm to 3n or 5n, etc., which have
completely different, and probably larger, equivalence classes.

The other failure possibility is that the factor of n produced by the algo­
rithm may be trivial, with u or u/2 = 1. Shanks found a way to distinguish
between square forms that lead to trivial factors of n and those that lead to
proper factors. If the square form (r2, b, c) leads to a trivial factor, then there
was a form (r,i,j) visited earlier in the equivalence class, in fact, about half
way from the beginning to (r2,6,c). Since r2 < 2y/n, we can detect unpro­
ductive square forms by maintaining a list of a < \/2^fn which occur in forms
(a, 6, c) and ignoring square forms (r2,6, c) with r on the list. This is how the
algorithm is usually implemented (see the versions in Cohen [28], Algorithm
8.7.2 and Riesel [96], pages 190-192), although some square forms with r on
the list do lead to proper factors of n. In unpublished work, Shanks found
necessary and sufficient conditions for a square form to lead to a proper factor
of n.

SQUFOF has the remarkable property that, after the first couple of steps

Exponential Methods of Factoring Integers 153

in factoring n, all arithmetic is performed on integers < 2y/n. Although the
complexity of SQUFOF is 0(n1 / / 4) , the implied constant is tiny. The main loop
uses only a handful of arithmetic operations to pass from one quadratic form to
the next. (See the program in Riesel [96].) If [2y/ñ\ fits in a single-precision
integer variable, then each pass through the main loop takes only about a
dozen machine cycles. On a 32-bit one-gigahertz machine, SQUFOF can
factor almost any 18-digit number in less than a millisecond. In contrast to the
factoring algorithms mentioned earlier in this chapter, the complexity depends
only on the size of n and not on the size of its prime factors. While SQUFOF
is useless in a direct assault on a cryptographic key, it has an important use
in factoring auxiliary numbers arising in more powerful factoring algorithms,
such as the quadratic and number field sieves.

10.5 Exercises
1. Show that the algorithm for the integer part of the square root of a

positive integer is correct and takes O(loglogn) iterations.

2. Find the 22 two-digit numbers that may be the last two decimal digits
of a square.

3. Find the twelve square residues modulo 64.

4. Factor 18779 by Fermat's difference of squares method.

5. Factor 18779 by Pollard's rho method.

6. Factor 18779 by Pollard's p - 1 method.

7. Experiment with simple, easily evaluated random functions other than
f(x) = (x2 + b) mod n in Pollard's rho method.

8. Show that the least common multiple L of the positive integers up to B
is L = Y\pe, where p runs over all primes < B and, for each p, pe is the
largest power of p that is < B.

9. Show that equivalent binary quadratic forms have the same discriminant
and represent the same set of integers.

10. Prove that if a, b and c are integers, D = b2 —Aac > 0 and |y/D — 2\a\ I <
b < y/D, then a and c have opposite signs, b < y/D and \a\ -h \c\ < y/ÏÏ,
so that both \a\ and \c\ are < y/T).

http://taylorandfrancis.com

Chapter 11

Finding Large Primes

Many cryptographic algorithms require prime numbers of a certain size. If the
prime need not be secret, then one can get one from a book or web site. There
are thousands of primes in the Cunningham Project electronic book [18] or the
web site with the full tables from that work, h t tp : / /www.cer ias .purdue .
edu/homes/ssw/cun/ thi rd/ index.html . Alternatively, one can form a ran­
dom large prime by one of the methods for finding secret primes.

One needs a source of random numbers to generate secret random primes.
Some methods for finding them are described in Chapter 15.

Number theorists who identify large primes distinguish between "primality
testing" and "primality proving." There are simple and swift algorithms for
testing large odd numbers for being "probably prime." When used properly,
these "probable primality tests" are nearly infallible, but could say that a
composite number is prime. They never assert that a prime number is com­
posite. Numbers that pass these tests are called "industrial-grade primes."
When a rigorous proof of the primality of a large probable prime is desired,
one must resort to slow, complicated algorithms unless the prime has a special
form which facilitates its primality proof.

Every prime has a short, simple proof of its primality, but it is usually
difficult to discover such a proof when the prime is large. See Theorem 11.16.

There are three ways to find large secret primes for cryptographic use.

1. Test random large numbers and choose the first probable prime. In
other words, use industrial-grade primes.

2. Test random large numbers for being probably prime. When you find
one, prove rigorously that it is prime.

3. Use random numbers to construct a large prime having special form
which permits an easy rigorous proof of its primality.

We consider the first method in the next two sections, and the second and
third methods in the two following sections.

155

http://www.cerias.purdue.edu
http://www.cerias.purdue.edu

156 Cryptanalysis of Number Theoretic Ciphers

11.1 Stronger Probable Prime Tests
Recall that Theorem 6.1, Fermat's little theorem, says that if p is prime and p
does not divide the integer a, then ap~1 = 1 (mod p). The fast exponentiation
algorithm makes the arithmetic of ap~l modp easy. Also in Chapter 6, we
defined a probable prime to base a to be an odd integer n with an~1 =
1 (mod n). Thus, every prime is a probable prime to every base it does not
divide. We defined a pseudoprime to be a composite probable prime. We
noted after Definition 6.1 that if we had a list of all pseudoprimes to some
base a up to some limit L, then we could devise a simple, fast primality
test: An integer n < L is prime if and only if it is a probable prime to
base a and it is not on the list. One difficulty with this test is that lists of
pseudoprimes, to base 2, say, do not reach high enough to encompass the
range of primes of cryptographic interest. A second problem is that there are
too many pseudoprimes to any particular base; the list of all of them would
be too long. One might try to solve this problem with pseudoprime tests to
multiple bases. However, this proposed solution does not work because there
are lots of Carmichael numbers, which are pseudoprimes to every possible
base.

In Chapter 7, we devised a more discriminating probable prime test. An Eu-
ler probable prime to base a was defined as an integer n for which gcd(a, n) = 1
and a(n _ 1) / 2 = (a/n) (mod n). The Jacobi symbol (a/n) = ±1 because
gcd(a,n) = 1. An Euler pseudoprime to base a is a composite Euler probable
prime to base a. We proved in Theorem 7.12 that every Euler probable prime
is a probable prime (to the same base).

Our goal in this section and the next one is to find even more discriminating,
but still rapid, probable prime tests. The first one was inspired by the fast
exponentiation algorithm to compute a n _ 1 mod n.

DEFINITION 11.1 An odd positive integer n, with n - 1 = 2s d, where
d is odd, is a strong probable prime to base a if either ad = 1 (mod n) or
ad'2 = — 1 (mod n) for some 0 < r < s. A strong pseudoprime to base a
is a composite strong probable prime to base a.

The left to right variation of fast exponentiation computes a n _ 1 mod n
by first finding ad mod n, and then squaring the result s times modulo n.
Thus, fast exponentiation automatically produces the remainders, which are
compared to +1 or —1 in the definition.

Every prime p is a strong probable prime to every base a it does not divide
because ap _ 1 = 1 (mod p), by Theorem 6.1, and the only solutions to x2 =
1 (mod p) aie x = ±1 (mod p), by Theorem 7.1.

One can show that there are infinitely many strong pseudoprimes to every
base a > 1. However, they are rarer than Euler pseudoprimes.

The bases +1 and —1 are not interesting because every odd composite

Finding Large Primes 157

integer n is a pseudoprime, an Euler pseudoprime and a strong pseudoprime
to both of these bases.

It is easy to see that every strong probable prime is a probable prime to
the same base, because the definition says that we will get ±1 at some step
before the last step in computing an~l mod n by fast exponentiation, and this
number will be squared at least once.

THEOREM 11.1 Strong probable primes are Euler probable primes
Every strong probable prime is an Euler probable prime to the same base.

Every strong pseudoprime is an Euler pseudoprime to the same base.

Since every prime not dividing a is both a strong probable prime to base
a and an Euler probable prime to base a, the two statements are equivalent.
For a proof of the second statement, see Theorem 3 of [89] or Theorem 9.12
of [99].

In some cases, one can prove that Euler pseudoprimes must be strong pseu­
doprimes.

THEOREM 11.2 Euler pseudoprimes = 3 (mod 4) are strong
If n = 3 (mod 4) is an Euler pseudoprime to base a, then n is a strong

pseudoprime to base a.

PROOF Since n = 3 (mod 4), we have n — 1 = 2d, where d is odd.
Because n is an Euler pseudoprime, we have gcd(a, n) — 1 and ad = (a/n) =
±1 (mod n). Therefore, n satisfies one of the two cases of the definition of
strong pseudoprime, depending on the sign ± 1 . I

THEOREM 11.3 Euler and (a/n) = - 1 imply strong
Ifn is an Euler pseudoprime to base a and (a/n) = — 1, then n is a strong

pseudoprime to base a.

PROOF If n - 1 = 2*d, with d odd, then ar~1(i = a*""1)/2 = (a/n) =
— 1 (mod n) because n is an Euler pseudoprime to base a. Then the second
case of the definition of strong pseudoprime applies t o n . I

Recall that Rn denotes the multiplicative group of congruence classes rela­
tively prime to n.

THEOREM 11.4 Pseudoprime bases form a subgroup of Rn

Let n be an integer greater than 1. The set of all bases 1 < a < n to which
n is a pseudoprime forms a subgroup of Rn under multiplication modulo n.

158 Cryptanalysis of Number Theoretic Ciphers

The set of all bases 1 < a < n to which n is an Euler pseudoprime forms a
subgroup of Rn.

PROOF By Theorem 3.10, if gcd(a,n) = gcd(ò,n), then gcd(afc,n) = 1.
If n is a pseudoprime to bases a and 6, then n is a pseudoprime to base
ab because (ab)n~1 — an~1bn~1 = 1 -1 = 1 (mod n). If n is an Euler
pseudoprime to bases a and b, then n is an Euler pseudoprime to base ab
because (aft)*""1)/2 = a(n-i)/26(n-i)/2 = (a/n)(b/n) = (ab/n) (mod n) by
Part 2 of Theorem 7.9. I

For a Carmichael number n, the group of all pseudoprime bases is all of
Rn. One can prove that for every composite n > 1 there is at least one a in
1 < a < n with gcd(a, n) — 1 so that n is not an Euler pseudoprime to base
a. Hence, the group of all Euler pseudoprime bases for n is always a proper
subgroup of Rn. Since the order of a subgroup divides the order of the whole
group, by Lagrange's theorem, the number of Euler pseudoprime bases for n
must be < half the size of Rn, and we have this theorem.

THEOREM 11.5 Number of Euler pseudoprime bases
If n is an odd composite positive integer, then the number of bases a in

1 < a < n with gcd(a, n) = 1 to which n is an Euler pseudoprime is < </)(n)/2.

This theorem yields the following probabilistic primality test.

[Solovay-Strassen probabilistic primality test]
Input: Two integers n > 1, which is odd, and k > 1.
Output: Either "n is prime" or "n is composite."

for (i = 1 to k) {
Choose a random integer a in 1 < a < n — 1
if (gcd(a, n) > 1) { return "n is composite" }
if (a^-1)/2 ̂ (a/n) (mod n))

{ return "n is composite" }

}
return "n is prime"

THEOREM 11.6 Solovay-Strassen probabilistic primality test
If n is an odd prime, then the algorithm returns "n is prime. " If n is odd

and composite, then the algorithm returns "n is composite" with probability
at least 1 — 2~k. The time complexity of the algorithm is 0((logn)3) bit
operations.

PROOF If n is prime, then gcd(a,n) = 1 because 1 < a < n, and so

Finding Large Primes 159

a(n-i)/2 = (a/n) (mod n) by Euler's criterion. Therefore, the for loop will
finish and the algorithm will return "n is prime."

Now suppose n is composite. If gcd(a, n) > 1 for some chosen a, then the
algorithm returns "n is composite." Otherwise, gcd(a, n) = 1 for every such a,
and each chosen a is in Rn. By Theorem 11.5, for each a in i?n the probability
is < 1/2 that n is an Euler pseudoprime to base a. Hence, the probability that
n is an Euler pseudoprime for every one of the k random bases a is < (l/2)fe.
So the algorithm returns "n is composite" with probability at least 1 — 2~k.

The complexity follows from Corollary 3.1 and Theorems 6.2 and 7.11. I

We can construct a better probabilistic test of primality by using strong
probable primes in place of Euler probable primes in the test above.

THEOREM 11.7 Number of strong pseudoprime bases
For each odd composite integer n, the number of bases to which n is a strong

pseudoprime is < (n — l) /4 .
For each odd composite integer n > 9, the number of bases to which n is a

strong pseudoprime is < </>(n)/4.

For a proof, see Theorem 5.10 of Rosen [99] or Theorem 3.4.4 of Crandall
and Pomerance [33]. The theorem was first proved independently by Monier
[73] and Rabin [93]. Earlier, Miller [72] had proposed a similar but slightly
more complicated test. The set of all bases to which n is a strong pseudoprime
usually does not form a subgroup of Rn. The idea of the proof of the theorem
is to show that this set is a subset of a proper subgroup of the group of Euler
pseudoprime bases for n.

This theorem gives the following improved probabilistic primality test.

[Miller-Rabin probabilistic primality test]
Input: Two integers n > 1, which is odd, and k > 1.
Output: Either "n is prime" or "n is composite."

for (i = 1 to k) {
Choose a random integer a in 1 < a < n — 1
if (a is not a strong probable prime to base a)

{ return "n is composite" }

}
return "n is prime"

One can prove the following theorem in the same way as Theorem 11.6, but
using Theorem 11.7 in place of Theorem 11.5.

THEOREM 11.8 Miller-Rabin probabilistic primality test
If n is an odd prime, then the algorithm returns "n is prime." If n is odd

160 Cryptanalysis of Number Theoretic Ciphers

and composite, then the algorithm returns "n is composite" with probability
at least 1 - 4~k. The time complexity of the algorithm is 0((logn)3) bit
operations.

DEFINITION 11.2 If n is an odd composite integer and 1 < a < n,
then a is called a witness for n ifn is not a strong pseudoprime to base a.

In other words, a is a witness to the compositeness of n; a can testify, via
a strong probable prime test, that n is composite. Theorem 11.7 says that at
least three-fourths of the integers a in 1 < a < n are witnesses for n. How
hard is it to find one witness? Let W(n) be the least witness for n. If we
could prove that W(n) < C for all composite n and some constant C, then
we would have a very simple and fast primality test. Unfortunately, Alford et
al. [3] prove that this is not so.

THEOREM 11.9 The least witness may be large
For inñnitely many odd composite n we have

On the other hand, if you believe the extended Riemann Hypothesis, then
this theorem of Bach [7] is useful.

THEOREM 11.10 The least witness isn't too large
Assuming the extended Riemann Hypothesis, W(n) < 2(Inn)2 for every odd

composite integer n.

If n « 10100, then 2(lnn)2 « 106038. Therefore, you can prove that a
100-digit odd number is prime by doing about 100,000 strong pseudoprime
tests on it, assuming the extended Riemann Hypothesis is valid. This is not
a reasonable way to find a 100-digit prime. Keep reading.

11.2 Lucas Probable Prime Tests
In this section, we develop the theory of binary linear recurrences and a prob­
able prime test using them. The test is based on a generalization of the
following theorem, which we will prove later. See Williams [124] for much
more about primality tests developed by Lucas.

THEOREM 11.11 Divisibility of Fibonacci numbers by primes
If n is prime, U{ is the i-th Fibonacci number and (n/5) is the Legendre

symbol, then n divides î/n__(n/5).

Finding Large Primes 161

Example 11.1

Since (3/5) = - 1 , 3 divides u4 = 3. Since (11/5) = +1, 11 divides mo = 55.
Since (5/5) = 0, 5 divides u*> = 5.

DEFINITION 11.3 The Lucas sequences with parameters P and
Q are the two sequences {un} and {vn} deñned by UQ — 0, u\ = 1, v0 = 2,
vi - P, and un = Pun-i - Qun-2, vn = Pvn-\ - Qvn-2, for n > 2. We
sometimes write un — un(P, Q) and vn = vn(P, Q) to show the dependence on
the parameters P and Q. Let x2 — Px + Q be the recurrence polynomial
associated to the Lucas sequences, let D = P2 — 4Q be the discriminant of
this polynomial and let a and ¡3 be the two zeros of the polynomial.

To get the Fibonacci numbers un , let P = 1 and Q = - 1 . In that case,
vn = vn(l,— 1) are called the Lucas numbers. The recurrence polynomial
is x2 — x — 1, with discriminant D = 5 and roots a, ¡3 — (1 ± \ /5)/2.

In this section, the parameters P and Q will always be integers. In this
situation, all the un and vn are integers. Usually, we will also assume that
D — P2 — 4Q is not a square. This implies that D ^ 0, so a / /?. From the
equation (x — a)(x - (3) — x2 — Px + Q, we see that a + (3 = P and a/3 = Q.
If we let a = (P + y/D)/2 and ¡3 = (P - \/D)/2, then a-0 = VÊ- It is easy
to show by induction on n that

for n > 0. These formulas are called the generalized Binet equations, and
provide an alternate definition of the Lucas sequences.

There is a natural way to compute Lucas sequences using 2 x 2 matrices.

Define and, for Then

A simple induction shows that An = LnAo for n > 0, where L°

means the identity matrix. This is not just a pretty formula. It provides a
quick way to compute un and vn when n is huge. The fast exponentiation
algorithm of Chapter 6 applies to anything we can multiply associatively,
including matrices. Thus, Theorem 6.2 says that we can compute Ln in our
formula with only O(logn) matrix multiplications. If we wish to compute
un mod m or vn mod m, we should reduce each matrix entry modulo m as it
is computed. This will keep the numbers small (< m2) even if n has hundreds
of digits.

We need the formulas in the next theorem to prove the generalization of
Theorem 11.11.

162 Cryptanalysis of Number Theoretic Ciphers

THEOREM 11.12 Lucas sequences in terms of binomial coefficients
For integers n >0 we have

PROOF Begin with the formula for un in terms of the two roots of the
recurrence polynomial.

Apply the binomial theorem to the two binomial powers and get

When i is even, the terms cancel, but they add when i is

odd. Hence

We obtain the first formula when we cancel one VD and divide by 2. The
second formula is proved the same way, starting from vn — an + (3n. I

The next theorem generalizes Theorem 11.11 and proves it.

THEOREM 11*13 Divisibility properties of Lucas sequences
Ifp is an odd prime not dividing PQ, then

UP-(D/P) = 0 (modp),

Up = (D/p) (mod p) and

vp = v\ — P (mod p).

If also gcd(p, D) — 1, then

PROOF First let n = p in the formula for un in Theorem 11.12. Note that
since p is prime, it divides every binomial coefficient (^) with 1 < i < n - 1.

Finding Large Primes 163

The only remaining term with odd i in the sum is the one with i — p. Also,
2 P _ 1 = 1 (mod p) by Fermat's little theorem. We find

by Euler's criterion. This proves the second formula.
To prove the first one, let n = p+1 in the formula for un in Theorem 11.12.

Since p is prime, it divides the binomial coefficients (p^"1) with 2 < i < p — 1.
The only odd i not in this interval are i = 1 and i = p, so the sum reduces to
two terms. We have 2P = 2 (mod p) by Fermat's little theorem. We find

2u. P+i = (p + l)PpD° + (p + l j p 1 ! ^ - 1) / 2 = P (l + (P>/p)) (mod p),

where we have again used Euler's criterion and also Pp = P (mod p) by
Fermat's little theorem. If (D/p) = —1, we see immediately that p divides
up+i = up_(D/py If (D/p) = + 1 , then we have 2up+i = 2P (mod p), so
Up+i = P (mod p). By the second formula, which we proved above, up =
(D/p) = -hi (mod p). Substituting into the recurrence formula, up+i =
Pup — Qup-i, we find P = P (+ l) — Quv-\ (mod p). This yields Qup-\ =
0 (mod p). Since gcd(p, Q) = 1 we can divide by Q and find that p divides
Up.! = up_(D/py The other two congruences are proved the same way, using
the formula for vn in Theorem 11.12. I

Two matrices are congruent modulo n if their corresponding entries are
congruent modulo n. Let I denote the 2 x 2 identity matrix.

Let L =

THEOREM 11.14 Fermat's little theorem for Lucas sequences
"p -Q]

\ be the matrix used to compute the Lucas sequences with

parameters P and Q. Let D = P2 -4Q. Let p be a prime not dividing 2PQD.
If (D/p) = +1 , then U*'1 = I (mod p). In any case, l / " 1 = J (mod p).

PROOF Suppose (D/p) = +1 . Then Theorem 11.13 says that

But also Ap-i — Lv 1A$. Since AQ has determinant 2, it is invertible mod­
ulo the odd prime p. Therefore, L p _ 1 = i" (mod p). We have Lp _ 1 =
(¿P- i jP+i = jp+i = / (m o d p) .

Now suppose (D/p) = — 1. In this case, Theorem 11.13 says that

164 Cryptanalysis of Number Theoretic Ciphers

Since AQ is invertible modulo p, with inverse (mod p), we

find that (mod p) and (mod p).

Then (mod p) by Fermât's little theorem.

Why did we call this theorem, "Fermat's little theorem for Lucas sequences?"
Fermât 's little theorem says that if you raise a, relatively prime to a prime
p, to the power p — 1 modulo p, you will get the identity element 1 of Rp.
The theorem says that if you raise L, which describes a Lucas sequence, to
the power p2 — 1 modulo the prime p, relatively prime to 2PQD, you will
get the identity element / in the cyclic group of powers of L modulo p. Note
that p2 — 1 is the order of the multiplicative group of the field Fp2 with p2

elements, and this group is also cyclic by Theorem 9.12. If the matrix L were
an element of Fp2, the last statement of the theorem would follow from La­
grange's theorem. The connection between Lucas sequences and this field is
shown on page 132 of [33], where the first formula of Theorem 11.13 is proved
as Theorem 3.5.3.

The four congruences of Theorem 11.13 are valid at least for all primes
p not dividing 2PQD. In fact, when p is allowed to be composite, but
gcd(p,2PQD) = 1, any two of the congruences imply the other two. Baillie
and Wagstaff [9] found that they seldom hold when p is an odd composite
number. They focussed on the first congruence when they made this defini­
tion.

DEFINITION 11.4 A Lucas probable prime with parameters P
and Q is an integer n > 1 with gcd(n, 2PQD) — 1 and un_(D/n) = 0 (mod n),
where D — P2 — AQ. A Lucas pseudoprime with parameters P and Q
is a composite Lucas probable prime with the same parameters.

Baillie and Wagstaff [9] showed that Lucas pseudoprimes are rare and de­
fined Lucas analogues of Euler and strong pseudoprimes.

The bases a = ±1 are avoided in probable prime tests because every odd
number is a probable prime to these bases. Likewise, the parameters (P, Q) =
(1,1) and (—1,1) must be avoided in Lucas probable prime tests because every
odd n satisfies i¿n-(£>/n) = 0 (mod n) with either of these choices.

We mentioned that D should not be a square. In fact, D should not even
be a quadratic residue modulo n in a Lucas probable prime test on n. For if
D = b2 (mod n), then (D/n) = +1 , P = b + 2 (mod n),Q = b+l (mod n),
a = Q (mod p), f3 = 1 (mod p), and un-\ = (Q71'1 — l)/b (mod n); so, the
Lucas test is an ordinary probable prime test in disguise. The complexity of
a Lucas probable prime test is several times that of a probable prime test; so,
one might as well perform a probable prime test with base a = b + 1 rather

Finding Large Primes 165

than a Lucas probable prime test with D = b2 (mod n).
Selfridge [89] proposed the following method of choosing the parameters for

a Lucas probable prime test that avoids the problem of D being a quadratic
residue modulo n. Let D be the first member of the sequence 5, —7,9, - 1 1 ,
13, - 1 5 , . . . for which the Jacobi symbol (D/n) — - 1 . Let P — 1 and Q =
(1 - D)/á. It is known (page 1416 of [9]) that the expected number of D's
which must be tried, before a suitable one is found, is about 1.8. When n = 2
or 3 (mod 5), the first discriminant, D — 5, is chosen and the Lucas sequence
is the Fibonacci numbers.

Pinch [82] has computed the pseudoprimes to base 2 up to 1013. With
Selfridge's parameter choices for the Lucas sequence, not a single known strong
pseudoprime to base 2 is also a Lucas pseudoprime. In fact, Pomerance,
Selfridge and Wagstaff [89] made this conjecture.

CONJECTURE
No odd composite positive integer is both a strong pseudoprime to base 2

and a Lucas pseudoprime with Selfridge's choice of parameters P and Q.

In 1980, they [89] offered $30 for a proof or disproof of the conjecture, and
have since raised this reward to $620. The conjecture is certainly true for all
integers < 1013.

A simplified version of the conjecture asserts that there is no composite
number n whose last decimal digit is 3 or 7, which is strong pseudoprime to
base 2 and which divides the Fibonacci number un+i.

Those cryptographers satisfied with "industrial-grade primes" should select
strong probable primes to base 2 which are also Lucas probable primes, as in
the Conjecture. The tests are simple, elegant and provide the added benefit
that if you are the first to detect a failure of the conjecture, then you will
collect $620.

11.3 Rigorous Proof of Primality
Recall the Lucas-Lehmer primality test.

THEOREM 11.15 Lucas-Lehmer n - 1 primality test = Theorem 6.10
Let n > 1 and a be integers such that a n _ 1 = 1 (mod n). If a^n_1^p ^
1 (mod n) holds for every prime p dividing n — 1, then n is prime.

Suppose we had proved that n is prime via this theorem and we wished to
convince someone else that n is prime. How little information can we provide
and still make the verification easy? We would certainly provide the primitive
root a for n and reveal the prime factorization of n — 1. But the certificate
of primality for n would not be complete until we gave certificates for the
primality of each of the prime factors of n — 1 as well. This certificate would
have a tree structure. Each node would contain a prime n and a primitive

166 Cryptanalysis of Number Theoretic Ciphers

root a for n. Each node (n, a) would have a child node, with the same format,
for each distinct prime divisor of n - 1. As we must stop somewhere, let us
assume that everyone knows that 2 is prime. How large could the tree be?
Let N(n) be the number of nodes in the tree that certifies the primality of
n. Let M(n) be the total number of multiplications modulo a number < n
a verifier would have to perform to check the certificate using Theorem 6.10.
Pratt proved the following theorem.

THEOREM 11.16 Every prime has a succinct certificate
With the notation above, for every odd prime n we have N(n) < log2 n and

M(n)<2(log 2 n) 2 .

For details of the proof, see Pratt [90] or Bach and Shallit [8].
Theorem 6.10 may be used iteratively to construct large, random primes.

[Really simple large prime generation algorithm]
Begin with a prime p\. Let i — \. Repeat Steps 1 through 5 until p¿ is large

enough.
1. Let k be a random small integer and let n = 2kpi + 1.
2. If 2 n _ 1 ^ 1 (mod n), then n is composite by Fermat's little theorem, so

return to Step 1.
3. Otherwise, n is probably prime, so try to prove n is prime using the

Lucas-Lehmer theorem just stated. Note that n — 1 = 2kpi is easy to factor
completely because it has the known prime factor p¿, which should be removed
first, and because k is small. Try the primes < 30 for possible values of a.

4. If you succeed in finding an a which satisfies the conditions of the theo­
rem, then n is proved prime. Let p¿+i = n and i = i + 1 and go to Step 1.

5. Otherwise, try a new random k. (Go to Step 1.)

During the construction of the last pi one may have to restrict the size of
k to produce a prime of the required size. Typical sizes for k before the last
Pi might be 10 or 15 decimal digits—small enough to factor easily by trial
division.

There are several enhancements to Theorem 6.10 that accelerate this algo­
rithm. The first is that one can use different a's for different prime factors p
of n — 1, provided one checks a n _ 1 = 1 (mod n) once for each a used. The
proof of this version of the theorem is the same as for Theorem 6.10. Note
that if more than a is used, then no a is guaranteed to be a primitive root
modulo n. If you want to construct a large prime pi and a primitive root a
for it, then you must use the original version of the Lucas-Lehmer theorem to
show pi is prime, although you may use the more flexible version in the prime
proofs of pj with j < i.

Suppose the prime pi must be secret, and is a factor of a public key. The
algorithm has the advantage that p¿ will be immune to discovery by the Pollard
p — 1 method, because pi — 1 has the large prime factor Pi-\.

Finding Large Primes 167

However, the algorithm is slow because it builds up primes little by little.
The next theorem, which may be viewed as another enhancement of Theorem
6.10, allows one to jump ahead to larger primes much faster because it requires
only a partial factorization of n — 1.

THEOREM 11.17 Pocklington-Lehmer theorem
Let n be odd and n — 1 = FR, where the complete factorization of F is

known. Suppose that for every prime p dividing F there is an integer a such
that a n _ 1 = 1 (mod n) and gcd(a^n _ 1^p — l ,n) = 1. Then every prime factor
ofn is = 1 (mod F).

If also F > v^ï, then n is prime.

PROOF Let F — YIPT be- the standard factorization of F , and let a¿ be
the integer a for pi in the hypothesis. Let p be a prime divisor of n and let fi
be the order of a¿ modulo p. Then /¿ divides p — 1. Since a™"1 = 1 (mod n),
we have fi divides n — 1. But gcd(a\n~ *'Pi — l,p) = 1, so fi does not divide
(n — l)/pi. Hence, pf divides /¿. Therefore, p\{ divides p — 1 for each z, and
so F must divide p—1.

Suppose F > yjn. Then every prime factor p of n must be greater than
F > ^/ñ, and so n is prime by Theorem 4.8. I

Of course, the a's in the theorem need not be primitive roots modulo n in
case n turns out to be prime.

This theorem allows us to construct a new prime with about twice as many
digits as the previous one.

[Doubling the size of a random prime]
Input: A prime p.
Output: A prime n near p2.

repeat {
let k be a random integer between p/2 and p.
n = 2kp + 1
i f 2 n _ 1 ^ 1 (mod n) r e s t a r t t h i s loop.
t r y t o prove n i s prime v ia Theorem 11.17.
if you succeed, end the loop.
} u n t i l n i s prime

By the prime number theorem, the expected number of iterations of the
loop needed to find a prime n is about In p.

In applying Theorem 11.17 in the algorithm above, let F = p and R = 2k.
It may seem strange to put the known factor 2 into i?, but it would take
longer to check the hypotheses of Theorem 11.17 if we put the 2 in F. For
the integer a of the theorem, try the ten primes < 30.

168 Cryptanalysis of Number Theoretic Ciphers

To construct a large prime near X, begin with a known prime near the
2*-th root of X, for some convenient ¿, and apply the algorithm i times with
the known prime as the first input, and each subsequent input equal to the
previous output. Adjust k in the final iteration of the loop to make the last n
just the right size. The large prime p will have a rigorous proof of its primality
and p — 1 will have a large prime factor to make p immune to discovery by
the Pollard p — 1 method. If you wish to make p impossible to find by the
p + 1 method, then try to factor p + 1 and reject p unless you can factor it
completely and show that p + 1 has just one large probable prime factor.

There are theorems analogous to Theorems 6.10 and 11.17 in which n can
be proved prime provided n + 1 can be factored completely or partly. Lucas
sequences replace powers of a in these results.

In the following theorems, if n is the odd number to be proved prime, then
we let Un be the set of all Lucas sequences {un} for which the Jacobi symbol
(D/n) = —1. The theorems are proved in [17]. Theorem 11.19 was first
proved by Morrison [76].

THEOREM 11.18 Primality test with n + 1 completely factored
Let n > 1 be odd. If for each prime p dividing n + 1, there exists a Lucas

sequence {un} in Un for which n divides un+\ but not ii(n+i)/p, then n is
prime.

THEOREM 11.10 Primality test with n + 1 partly factored
Let n be odd and n + 1 = FR, where the complete factorization of F is

known. Suppose that for every prime p dividing F there is a Lucas sequence
{un} in Un for which n divides un+\ and gcd(u(n+1)/p,n) = 1. Then every
prime factor qofn is = (D/q) (mod F).

If also F > y/n + 1, then n is prime.

Theorems like 11.17 and 11.19 can be enhanced by letting F be smaller
when a lower bound is known on the prime divisors of R. Each theorem
has another version which proves that n is prime provided F > nly/3. These
two theorems may be combined into a theorem that asserts that if we have a
completely factored divisor F > n1//3 of n2 — 1, then we can rigorously decide
in polynomial time whether n is prime. See [17] for details. These theorems
suffice to give a quick proof of primality of almost any prime < 1050. See
Appendix B of the Cunningham Project [18] for thousands of examples.

Note that n — 1 and n + 1 are the first two cyclotomic polynomials evaluated
at x = n. Williams and his associates [126], [127], [125], [121] have general­
ized the theorems above to some higher cyclotomic polynomials, proving that
one can rigorously decide in polynomial time whether n is prime, given a
sufficiently large completely factored divisor of

(n - l)(n + l)(n2 + l)(n2 - n + l)(n2 + n + 1).

Finding Large Primes 169

11.4 Prime Proofs for Arbitrary Large Inte-
gers

There are two types of practical algorithms for proving primality of large
primes without special form. These algorithms can show that a 100-digit
prime is prime in a few seconds or less. They take a few hours for 1000-
digit primes, which are larger than primes currently used in cryptography.
However, all of these algorithms are complicated.

One collection of these algorithms generalizes the theorems of Williams,
mentioned at the end of the previous section, to even higher cyclotomic poly­
nomials. Adleman, Pomerance and Rumely [1] invented an algorithm of this
sort that correctly decides whether n is prime in < (l n n) c l n l n l n n steps for
some constant c > 0. They offer a simple, practical, probabilistic version as
well as a more complicated deterministic version. The probabilistic version al­
ways gives the correct answer; its random choices affect only the running time.
Both versions were soon improved. Lenstra [66] simplified the deterministic
version, while Cohen and Lenstra [29] made the probabilistic version faster.
These algorithms, which use cyclotomy, all have superpolynomial complexity,
although the exponent on In n grows so slowly (In In In n) that the algorithms
nearly run in polynomial time. Because of their complexity, the cyclotomy
algorithms lost favor in the 1990's when practical elliptic curve prime proving
algorithms were invented. In 1998, Mihãilescu [71] found further improve­
ments in cyclotomy prime proving algorithms. Although his new algorithm
still has superpolynomial running time, it is faster than elliptic curve methods
for primes having no more than a few thousand decimal digits. Prime proofs
using cyclotomy do not have useful succinct certificates. One must redo most
of the calculation to verify a prime proof of this type.

Elliptic curve prime proving algorithms can prove n is prime in expected
polynomial time 0((logn)6) and are described in Chapter 12. Elliptic curve
prime proofs do have succinct certificates. Such a proof can be verified in
much less time than it took to discover it.

Note: As I write this, a new prime proving algorithm has just been an­
nounced by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. If it turns
out to be correct, its complexity will be provably polynomial time. Their
algorithm uses simple mathematics compared to cyclotomy or elliptic curves.

11.5 Exercises
1. The year is 2020. As the Chief Scientist of a large computer security

company, you are implementing a new cryptosystem that uses 1000-digit
primes as keys. The algorithm chooses a random 1000-digit integer R
and then tests R + l, R + 2, . . . , for being prime until it finds the first
prime number R + k greater than R. What is the average (or expected)
number of integers R + i the algorithm tests for being prime?

170 Cryptanalysis of Number Theoretic Ciphers

2. Show that if n is an Euler pseudoprime to base 2 and n = 5 (mod 8),
then n is a strong pseudoprime to base 2.

3. Show that if n is an Euler pseudoprime to base 3 and n = 5 (mod 12),
then n is a strong pseudoprime to base 3.

4. Find a composite number n and two bases a and b so that n is a strong
pseudoprime to base a and to base 6, but not to base ab.

5. Prove that if n is a strong pseudoprime to base a, then n is a strong
pseudoprime to base a1 for every integer i.

6. Prove the formula for vn in Theorem 11.12.

7. Prove the formulas for vn in Theorem 11.13.

8. Prove that every odd n satisfies un-(£>/n) = 0 (mod n) with either of
the parameter sets (P, Q) = (1,1) and (—1,1).

9. Prove that if you are given a large odd composite integer n and an integer
a so that n is a pseudoprime to base a, but not a strong pseudoprime
to base a, then you can factor n in polynomial time.

10. Show that if the conjecture of Section 11.2 is true and n is a composite
number with last decimal digit 3 or 7, then either n is not a strong
pseudoprime to base 2 or n does not divide the Fibonacci number i¿n+i.

11. Many cryptographic algorithms require primes 2 m bits long for some
particular m. For large k, not a power of 2, there are almost certainly
many primes with k bits in their binary representation, exactly two of
which are 0 bits. (See Wagstaff [117].) Prove that for all m > 1 there is
no prime with 2m bits in its binary representation, exactly two of which
are 0 bits.

Chapter 12

Elliptic Curves

Elliptic curves are abelian groups created by defining a binary operation on
the points of the graph of certain polynomial equations in two variables. These
groups have several properties that make them useful in cryptography. One
can test equality and perform the group operation on pairs of points efficiently.
When the coefficients of the polynomial are integers, we can study the points
whose coordinates are also integers, if any. Reducing the coefficients and
points modulo a prime p produces an interesting finite abelian group whose
order is near p. Choosing random coefficients results in groups with random
orders near p. There is an integer factoring algorithm that finds the unknown
factor p provided the order of an elliptic curve group is smooth, just as the
Pollardp—1 algorithm finds p when p — 1 is smooth. There is a probabilistic
algorithm for proving p is prime that generalizes the Lucas-Lehmer primality
test by replacing p—1 with the order of an elliptic curve group modulo p.
Finally, an elliptic curve group may be used directly in cryptographic algo­
rithms in many of the same ways the multiplicative group of integers modulo
p can be used. In these applications, the discrete logarithm problem is harder
for elliptic curve groups than for the integers modulo p, permitting smaller
parameters and faster algorithms. We will say more about this version of the
discrete logarithm problem in Chapter 14.

See [58], [111] and [78] for alternate treatments of elliptic curves, with ap­
plications to factoring, prime proving and cryptography.

12.1 Definitions and Examples
Let f(x,y) be a polynomial in two variables. The degree of a term cxmyn

with constant c / 0 is m + n. The degree of the polynomial f(x,y) is the
highest degree of any of its terms. Let f(x,y) have degree d. A straight line
ax + by + c = 0 intersects the graph of f(x, y) = 0 in at most d points because
if we solve for x in the equation for the line and substitute for x in / (# , y) — 0,
we get a polynomial equation of degree d in y, and it has at most d zeros,

111

172 Cryptanâlysis of Number Theoretic Ciphers

each of which gives a unique value for x when substituted into the equation
for the line.

We wish to define a group operation on the graph of f(x,y) = 0. First
we must give a rule for specifying a third point on the graph from two given
points. One way of defining such a rule is to draw a straight line through the
two given points and look for a third point of intersection of the line and the
graph. From the discussion of intersections of straight lines and graphs above,
we see that this is most likely to work when the degree of / (x , y) is 3. In that
case, the straight line through two points of the graph will intersect it in at
most one more point.

We can ensure that there is exactly one more point of intersection if we
count the intersections with multiplicity. If the straight line and the graph
are tangent at point P , then P counts as two points of intersection. If the
straight line and the graph are tangent at a point P of inflection of the graph,
then P counts as three points of intersection. For ax -f by + c = 0 to be the
equation of a straight line, at least one of a, b must be / 0. Suppose the
straight line ax + by + c = 0 with b =¿ 0 intersects the graph of f(x, y) = 0 in
two points P and Q. Then f(x,(—ax — c)/b) = 0 is a cubic equation in x and
we know it has two real roots, namely, the ^-coordinates of P and Q. In this
situation, the cubic equation has exactly one more root, the x-coordinate of
a third point of intersection R. We can find the y-coordinate of R from the
equation of the straight line.

The binary operation 0 defined by P 0 Q = R turns out not to define
a group on the graph, but a simple modification does work. To keep the
formulas for the binary operation simple, we will restrict f(x,y) to have the
form y2 — (x3 +ax + b), which is called the Weierstrass form of the elliptic
curve.

Figure 12.1 Graphs of y2 — x3 - 5x and y2 — x3 + 8.

Elliptic Curves 173

DEFINITION 12.1 An elliptic curve is the graph E or Ea¿ of an
equation y2 = x3 + ax + b, where x, y, a and b are real numbers, rational
numbers or integers modulo m > 1. The set E also contains a point at
infinity, denoted oo.

The point oo is not a point on the graph of y2 — x3 + ax + b. It will be the
identity of the elliptic curve group. The points of E, other than oo, look like
one of the graphs in Figure 12.1.

The discriminant b2 — 4ac vanishes when the quadratic equation ax2 + bx +
c = 0 has a repeated root. For the cubic equation x3 + ax + b = 0, the
discriminant is 4a3 + 27b2. It vanishes when the cubic has a repeated root.
We will assume that that this discriminant is ^ 0, so that the cubic does
not have a repeated root. Thus, we are excluding elliptic curves like those in
Figure 12.2, which have a "double point" and a "cusp."

If P = (x, y) lies on the graph of y2 = x3 + ax + 6, we define —P = (x, —y),
that is, — P is P reflected in the x-axis.

Given two points P and <2, on the graph but not on the same vertical line,
define P + Q = —R, where R is the third point on the straight line through
P and Q.

If P and Q are distinct points on the graph and on the same vertical line,
then they must have the form (x, ±y), that is, Q = —P, and we define P+Q =
oo, the identity element of the group.

Figure 12.2 Graphs of y2 — x3 - 3x + 2 and y2 = x3.

174 Cryptanalysis of Number Theoretic Ciphers

Also, P + oo = oo + P = Pfor any element P of the elliptic curve (including
oo).

To add a point P ^ oo to itself, draw the tangent line to the graph at P.
If the tangent line is vertical, then P = (#,0) and we define P + P = oo.
If the tangent line is not vertical, then it intersects the graph in exactly one
more point P , and we define P + P = —R. (If P is a point of inflection, then
R = P.)

The addition rule may be expressed a s P + Q-fP = ooif and only if P, Q, R
are on the same straight line.

THEOREM 12.1 An elliptic curve is a group

An elliptic curve E with the addition operation + forms an abelian group
with identity oo. The inverse of P is —P.

PROOF The operation + is well defined and assigns an element P+Q of E
to every pair or elements P, Q of E. It is easy to check that oo is the identity,
that the inverse of P is — P and that P + Q — Q + P . The associative law
(P + Q) + R = P + (Q + R) may be verified by a long and tedious calculation
using the addition formulas that follow. I

There are several short proofs of the associative law, but each requires
knowledge of some hard mathematics, like algebraic geometry. See Silverman
[111] for a proof.

Let E be defined by y2 = x3 + ax + b. Let P = (xi, y±) and Q = (#2,2/2)- ^
#i = x2 and 2/1 = —2/2, then P — —Q and P + Q = 00. Otherwise, let s be the
slope 5 = (2/2 — yi)/(x2 — x\) of the line through P and <2 when P / Q, and
let s be the slope s = (3#? + a)/(2yi) of the tangent line to y2 — x3 -\- ax -\-b
at P when P = Q. Then P + Q = (#3,2/3), where x3 = s2 — 2x\ and
2/3 = s(x1 -x3) - 2 / 1 .

Example 12.1

On the elliptic curve y2 = x3 — 5x, add the points P = (—1, 2) and Q = (0, 0).
Using the formula above, we find that the slope is s = (0 — 2)/(0 — (—1)) =

- 2 . Then x3 = (-2) 2 - (-1) - 0 = 5 and y3 = (- 2) (- l - 5) - 2 = 10, so
P 4- Q — (5,10). One should check the arithmetic by verifying that the sum is
a point on the curve. Here the check is 102 = 53 — 5 • 5.

Example 12.2

On the elliptic curve y2 = x3 + 8, compute P + P, where P = (1,3).

We use the second formula for the slope because P = Q. We have s = (3-12 +
0)/(2 • 3) = 1/2, x3 = (1/2)2 - 1 - 1 = - 7 / 4 and y3 = (1/2)(1 - (-7/4)) - 3 =
- 1 3 / 8 , so P + P = (-7 /4 , -13 /8) .

Elliptic Curves 175

Note that if a and b and the coordinates of points P and Q on the elliptic
curve Ea,b are rational numbers, then the coordinates of P + Q will be rational
numbers (unless P + Q = oo). Therefore, if a and b and the coordinates of
points P and Q on the elliptic curve Ea¿ are integers modulo m, then the
coordinates of P + Q will be integers modulo m, unless P + Q — oo, provided
that any division needed to add points is by a number relatively prime to m.
The modulus m cannot be even because we have to divide by 2 in the formula
for the slope s when P — Q. The condition on the discriminant becomes
4a3 4- 27i>2 ^ 0 (mod m). Of course, the graph is not a curve in the plane; it
is just a set of pairs of numbers modulo m.

Let us look at the points of the elliptic curve y2 = x3 + 3x + 4 (mod 7).

x (x3 + 3x + 4) mod 7 y

0 4 2,5
1 1 1,6
2 4 2,5
3 5 none
4 3 none
5 4 2,5
6 0 0

There are ten points on this elliptic curve, counting oo.

Example 12.3

Add the points (1,1) + (2, 5) on the curve whose points were just listed.
We have s = (5 - l)/(2 - 1) = 4, x3 = 42 - 1 - 2 = 13 = 6 (mod 7) and

Î/3 = 4(1 - 6) - 1 = 0 (mod 7), so the sum is (6,0).

Example 12.4

Double the point (2, 2) on the same curve.
We must add (2, 2) + (2, 2). We have s = (3 • 22 + 3)/(2 • 2) = 2 (mod 7),

x3 = 22 - 2 - 2 = 0 (mod 7) and ys = 2(2 - 0) - 1 = 2 (mod 7), so the sum is
(0,2).

There is a simple formula for the number of points on an elliptic curve
modulo a prime.

THEOREM 12.2 The number of points on an elliptic curve
The number N of points on the elliptic curve y2 = x3 + ax + b (mod p) is

N = p + 1 + YH=o((x3 + ax + fy/p), where (r/p) is the Legendre symbol.

PROOF Each x between 0 and p — 1 gives one value x3 + ax + b. The
number of y between 0 and p — 1 with y2 = x3 + ax + b (mod p) is 0, 1, or 2

176 Cryptanalysis of Number Theoretic Ciphers

Theorem 7.3 says that there are as many quadratic residues as quadratic
nonresidues in the interval 1 < r < p — 1. Thus the Legendre symbol in
Theorem 12.2 will be +1 about as often as it will be —1. Hence, we expect
the number of points on a random elliptic curve modulo p to be close to p + 1 .
H. Hasse proved that this is so.

THEOREM 12.3 Hasse's theorem
Let the elliptic curve E modulo a prime p have N points. Then

p + 1 - 2y/p < N < p + 1 + 2y/p.

We omit the proof, which is hard. See Section V.l of Silverman [111] for a
proof. Deuring [38] proved that every integer N in p+1 — 2y/p < N < p+1 +
2yjp actually occurs as the order of an elliptic curve y2 = x3 + ax + b (mod p)
for some pair a, b. Lenstra [67] showed that the orders of these elliptic curves
are well distributed in the interval when random pairs a, b are chosen.

In certain cases, we can determine the order of an elliptic curve without
computation. For example, if p = 3 (mod 4) and b — 0, then the curve Ea$
modulo p has exactly p + 1 points.

Now that we have a rich family of abelian groups modulo primes, we can
ask about their structure. A theorem of Casseis [24] implies that elliptic curve
groups modulo a prime p are either cyclic or the direct product of two cyclic
groups. In the latter case, the order of the smaller cyclic group divides both
p— 1 and the order of the larger cyclic group.

When P is a point on an elliptic curve and A: is a positive integer we write
kP for the sum P + P+- + Poîk P 's . We also define OP = oo and kP =
(—k)(—P) when A: is a negative integer. The fast exponentiation algorithm,
with multiplication replaced by addition of points of an elliptic curve, provides
a speedy way to compute kP. It takes O (log |fc|) group operations to find kP
when k ^ 0.

12.2 Factoring with Elliptic Curves
In 1985, H. W. Lenstra, Jr. invented an ingenious new factoring algorithm
which uses elliptic curves. Recall that Pollard's p — 1 factoring algorithm
performs a calculation (aL mod n) in the integers modulo n which mirrors a

according as x3 + ax + b is a quadratic nonresidue, is = 0, or is a quadratic
residue, all modulo p, by Part 1 of Theorem 7.5. Counting oo, we have

Elliptic Curves 177

hidden calculation (aL modp) in the multiplicative group Rp. The factor p
of n is discovered when the order p — 1 of the group Rp divides L. The p — 1
algorithm fails to find p if p— 1 happens to have a large prime divisor. Lenstra's
idea is to replace the group Rp with an elliptic curve group Ea¿ modulo p.
By Hasse's theorem, the two groups have roughly the same size. But there is
only one group Rp and there are many elliptic curve groups modulo p. If the
order of Rp has a large prime factor, we are stuck. But if the order of Ea¿
modulo p has a large prime factor, we just change a and b and try another
elliptic curve group.

In Pollard's p — 1 algorithm, we raise a random number a to the L power
modulo n and the factor p appears as gcd(aL — l ,n) . In Lenstra's elliptic
curve method, or ECM, we multiply a random point P on an elliptic curve
times the integer L, that is, we add P to itself L times, and the factor p
appears when we use the extended Euclidean algorithm to try to compute a
multiplicative inverse modulo n as part of the slope calculation. Here is the
algorithm.

[Simple elliptic curve factorization method, first stage]
Input: A composite positive integer n to factor and a bound B.
Output: A proper factor p of n, or else give up.

Find the primes p\ — 2,p2,... ,Pk < B
Choose a random e l l i p t i c curve Ea¿ modulo n

and a random point P ^ oo on i t
g = gcd(4a3 + 27ò2,n)
if (g — ri) choose a new curve and point P
i f (<7 > 1) r epor t the f ac to r g of n and stop
for (i = 1 to k) {

e=\{\ogB)l\ogPi-\
P = (PI)P or e l s e f ind a f ac to r g of n
}

Give up or t r y another random curve

Whenever we compute a multiple hP we reduce the coordinates modulo n.
Imagine that the coordinates are also reduced modulo p, a prime divisor of n.
Here is why the algorithm works. If the order of the elliptic curve modulo p
divides L, then LP — oo by Lagrange's theorem. Since P ^ oo, at some point
during the calculation we must have P\ + P% — oo for two points P\, P<¿ ^ oo
working with coordinates modulo p. According to the formulas for addition of
points, the only way this could happen is if Pi = — P2, that is, P\ = (x,y) and
P2 = (x, — y), working with x and y modulo p. It could happen that Pi = - P 2

with coordinates modulo n, but only if that equation held with coordinates
modulo q for every prime factor q of n, which is unlikely if n has more than
one large prime factor. It is much more likely that Pi ^ — P2 with coordinates
modulo n. Write Pi = (xi,i/i) and P2 = (#2,2/2) w ^ n coordinates modulo n.

178 Cryptanâlysis of Number Theoretic Ciphers

We have x\ = X2 (mod p) because P\ = — P2 with modulo p coordinates. If
x\ T¿ x2, then we will try to compute the slope s — (2/2 - 2/i)/(#2 _ #1) and
discover the factor p when we attempt to find the inverse of X2 — x\ modulo n
because gcd(x2 — #i ,n) > 1. And if x\ — x2, but 2/1 / —2/2, then 2/1 = 2/2, and
so Pi = P2. In this case we are doubling ("squaring") the point Pi during
the fast "exponentiation." We must have 2/1 ^ 0 because 2/1 / —2/2 = ~2/i-
However, Pi = —P2 with modulo p coordinates. Since also Pi = P2, we must
have 2 / i=0 (modp). But 2/1 ̂ —2/2 and we use the formula s = (3a?f+a)/(22/i)
to compute the slope. When we use the extended Euclidean algorithm to try
to find an inverse of 2yi, we will discover p because p divides both 2/1 and n.
See Proposition VI.3.1 of Koblitz [58] for more details of why the algorithm
works.

Technically, the "elliptic curve modulo n" is really not an elliptic curve
because the addition of points is not defined for every pair of points. This
is why we use the condition gcd(4a3 + 27b2, ri) = 1 in the algorithm. This
condition ensures that 4a3 + 21b2 ^ 0 (mod q) for each prime divisor q of n,
so that Ea¿ is a valid elliptic curve (without repeated zeros of x3 + ax + b)
modulo each q.

If we make some reasonable assumptions, we can determine the complexity
of the elliptic curve method. To factor large numbers n, the basic algorithm for
one curve, given above, is repeated until a factor p is found. If the probability
is 1/ra that p will be discovered by one instance of the algorithm, then the
expected number of curves that must be tried is m. The factor p is discovered
by the algorithm if the order N of the elliptic curve modulo p is P-smooth.
(This is actually not quite true because some prime Pi < B might divide N
to a higher power than the exponent e tried in the algorithm. But such bad
luck is very rare and the statement is essentially true.) The Hasse interval
p+ 1 — 2^/p < N < p + 1 + 2y/p is too short to prove that any TV in it is
P-smooth. The principal assumption we make is that the probability that
N is P-smooth is u~u, where u = (l np) / lnP , which would follow from a
theorem of Canfield et al. [23], if N could be chosen from a longer interval
(p/2 < N < 3p/2, say) than the Hasse interval.

We will also assume that the optimal value of P is used in the algorithm.
This is a problem because the optimal value depends on p, which is unknown.
However, if the algorithm is used with slowly increasing values of P , the effect
is the same as if the optimal P were used. This is how people actually use the
algorithm. See Silverman and Wagstaff [112] for advice about how to increase
P gradually.

THEOREM 12.4 Complexity of elliptic curve method
Let n be a positive integer with an unknown prime factor p. Let B be

the optimal bound for fínding p by the elliptic curve algorithm. Assume
that a random elliptic curve Ea¿ modulo p with 4a3 + 27b2 ^ 0 (mod p)
has a B-smooth order with probability u~u, where u = (Inp)/ In P . Defíne

Elliptic Curves 179

L(x) = exp(\/(ln x) In In x).

Then £ = L(py2/2. The expected total number of group additions per­
formed when the elliptic curve algorithm is used to discover p is L(p)y^2. The
expected total work needed to discover one prime factor of n is L(n) group
additions.

P R O O F By the prime number theorem, there are about B/ In B primes
< B. For nearly all of these primes 0, the largest power qe < B has e = 1.
The fast "exponentiation" used to compute (qe)P takes about logB group
additions. Hence the total count of group additions per curve with bound B
is about (B/ In B) In B = B.

Since the probability of finding p with any single curve is u~u, the expected
number of curves required is l/u~u = uu. Therefore, if we use bound B
in the algorithm, the total number of group operations needed to find p is
f{B) = Buu. We must find the B which minimizes f(B).

Let a — (lnjB)/lnL(p) so that B — (L(p))a. We will express f(B) in terms
of a. We have InB = a\nL(p) = a^/(\np)\n\np, so

Like the Pollard p — 1 algorithm that inspired it, Lenstra's elliptic curve
algorithm admits a second stage. The second stage of the algorithm chooses a

and In u = \ In lnp — | In In \np — In a s¿ | In lnp since the other two terms are
small compared to \ In In p. Hence,

Therefore, t¿w = ewlnM « Lip)1^2^ and the function we seek to minimize is

Since L(p) is a positive constant (for p > ee), the minimum of f(B) will occur
when a H- l/(2a) is minimal. It is an easy calculus exercise to show that the
minimum of a + 1 /(2a) occurs when a = A/2 /2 , and the minimum value is
>/2. Therefore, the optimal B is L(p)^^2. With this I?, the expected total
number of group additions is f(B) = L(p)y^.

Let p be the smallest prime factor of n. Then p < y^ñ, lnp < (1/2) Inn and
lnlnp < lnlnn, so the expected total number of group additions is

180 Cryptanalysis of Number Theoretic Ciphers

second bound B2 > B, perhaps B2 = 100B. At the end of the first stage (the
algorithm above), the variable P is the point Q equal to L times the original
point P . Let qi < q2 < . . . < qt be the primes between B and B2. The idea is
to compute successively (Lqi)P for i = 1,2,... t, where P is the original point.
The first point (Lqi)P is computed directly as (qi)Q. The differences <?¿+i -qi
are all even numbers and much smaller than the qi themselves. Precompute
(Ld)P = dQ for d = 2 ,4 , . . . up to a few hundred. To find (Lqi+\)P from
(LqijP, add the latter to (Ld)P = dQ, where d = </¿+i - <?¿. The amortized
cost of computing each (Lqi)P for 1 < i < k is a single addition of two points
on Ea,b'

The second stage finds a factor poïn when the order of the elliptic curve is 1-
semismooth with respect to B2 and B in the terminology of Section 4.4. The
probability of finding p is about pi((logp)/logB, (logp)/\ogB2) per curve,
according to Theorem 4.11.

The cryptographic significance of the elliptic curve method is that, if we
don't want an adversary to be able to factor a large composite number n,
then each prime factor p of n must have the property that there are no B-
smooth integers between p + 1 — 2^/p and p + 1 + 2^/p, where the adversary
is able to perform 0(B) operations. As this goal is impossible to achieve, the
best we can do is make the smallest prime divisor of n as large as possible.
If n must be composite, but we are free to choose the number of its prime
divisors, we should opt for only two of them.

Of the many enhancements of the elliptic curve method, let me mention just
one. Recall that in the Pollard p — 1 method, we may delay computing the
greatest common divisor with n. In fact, the version of the algorithm we stated
had just one gcd at the end. On the other hand, the elliptic curve method
has a gcd hidden in every addition of points. This step slows the algorithm
significantly. We may avoid it by using a different coordinate system. The
system of representing points (x, y) on the curve y2 = x3 + ax -f b is called the
"affine coordinate system" and (x,y) an "affine" point. With "homogeneous"
or "projective coordinates," one lets x = X/Z and y = Y/Z and clears the
denominators, obtaining the equation Y2Z — X3 + aXZ2 + bZ3. Points in
this system are triples [X, Y, Z). When Z ^ O , the point [X, Y, Z] corresponds
to the affine point (X/Z, Y/Z). Any point [X, Y, 0] with Z — 0 represents
oc. One can derive formulas for adding points [Xi,Yi,Zi] and [X2,Y2,Z2]
in the new system as follows. If either Z\ — 0 or Z2 = 0, the sum is the
other point (P + oo = P) . Otherwise, there are formulas for the projective
coordinates of the sum [X3, Y3,Z3] which involve only addition, subtraction
and multiplication modulo p, and which may be derived this way. Formally
add the points (X\IZ\,Y\/Z\) and (X2/Z2, Y2/Z2) using the affine rules given
above. Leave the fractions as fractions. Replace each condition like X\/Z\ —
X2/Z2 by a condition XiZ2 = X2Zi, which avoids division. In the two cases
P+Q and P + P not involving oo, write the formulas for the affine coordinates
as fractions with a common denominator. Let Z3 be the common denominator
and let X3 and Y3 be the two numerators. If one stores intermediate results

Elliptic Curves 181

like X1Z2 - X2Zi to be used later, one can reduce the addition of two points
to only 13 or 14 multiplications, a handful of additions and subtractions and
no divisions modulo p. Other coordinate systems reduce the computational
labor of adding points even further. See Section 7.2 of [33] for more details.
In these systems, one computes gcd(Z, n) once at the end, or more often, to
see whether n has been factored (yet).

12.3 Primality Proving with Elliptic Curves
Elliptic curve prime proving (ECPP) algorithms are the only ones that can
prove a prime is prime in polynomial time. They can prove n is prime in
expected time 0((logn)6). The first such algorithms were published by Gold-
wasser and Kilian [47]. Atkin and Morain [6] made substantial improvements
and made the algorithm practical.

We will describe the original algorithm by Goldwasser and Kilian. The next
theorem is an elliptic curve analogue of Theorem 11.17. (The variables m, s
and P in the next theorem correspond to n — 1, F and a in the Pocklington-
Lehmer theorem.) The words "elliptic curve" are in quotes in the statement
because we don't know that it really is an elliptic curve until after n is proved
prime.

THEOREM 12.5 Goldwasser-Kilian ECPP
Let n be a positive integer relatively prime to 6. Let s and m be positive

integers with s\m. Let E be an uelliptic curve" modulo n. Suppose there is
a point P of E such that we can perform the curve operations to compute
mP and nnd mP = 00, and for every prime p dividing s we can perform the
curve operations to compute (m/p)P and ñnd (m/p)P ^ 00. Then s divides
the order of E modulo any prime divisor ofn.

If also s > (n1/4 + l) 2 , then n is prime.

PROOF Let q be a prime factor of n. The calculations on E modulo n,
when reduced modulo q, show that s divides the order of P on E modulo g,
just as in the proof of Theorem 11.17.

If also s > (n ^ + l) 2 , then the size of E modulo q must also be > (n ^ + l) 2 .
But by Hasse's theorem 12.3, the size of E modulo q is < (y/g+1)2. Therefore,
(y/q+ l) 2 > (n1/4 + l) 2 , so q > >/ñ. Since this is true for every prime factor
q of n, n must be prime. I

The algorithm following Theorem 11.17 applied that theorem with F — p,
a prime slightly larger than y/ñ. We can use Theorem 12.5 in a similar way.
To prove that n is prime, try to find an elliptic curve E modulo n and a point
P on E whose order is p > (n1/4 + l) 2 . This computation shows that if p is
prime, then n is prime. How do we know that p is prime? Apply the theorem

182 Cryptanalysis of Number Theoretic Ciphers

recursively to produce a decreasing sequence of numbers, each of which is
prime if the next smaller one is prime. The sequence ends when it reaches
a number small enough to be proved prime by trial division or some other
method. When the last number is proved prime, the primality of all the other
numbers, including n, is demonstrated.

The one catch in the algorithm is determining the order of P on E. How do
we find the number m in Theorem 12.5? It is supposed to be the order of the
elliptic curve modulo n. If n really is prime, then m is within 2y/n of n + 1
by Hasse's theorem. The formula in Theorem 12.2 is useful only for primes
up to a few million.

There is a variation of Shanks' baby-step-giant-step algorithm which will
find the order m of E modulo n assuming that n is prime. Basically, this
algorithm tries to find a discrete logarithm m of oo in the Hasse interval
n + 1 — 2y/n < m < n + 1 — 2yfn. The giant steps have size ^2^/n. The
algorithm has complexity 0(n1 / 4) group operations and is effective for n up to
about 1030. See Algorithm 7.5.3 of Crandall and Pomerance [33] for details.
There is a twist.

As we wish to apply the elliptic curve prime proving algorithm to n much
larger than 1030, we need a faster way of computing orders of elliptic curves.
Schoof [101] found a beautiful algorithm for computing the order moîE mod­
ulo n which runs in 0((logn)fc) for fixed k. His method determines m mod q
for many small primes q and deduces m via the Chinese remainder theorem,
just as Sun Tsu counted his soldiers. Schoof's algorithm uses division poly­
nomials and is too complicated to present here. See [101] or Algorithm 7.5.6
of [33] for details.

I2.4 Exercises
1. Derive the formulas for adding points (#1,2/1) + (#2,2/2) stated after

Theorem 12.1.

2. Consider the curve y2 = x3 - 7x + 15. Add the points (1,3) + (2,3).
Add the points (1, — 3) + (2,3). Double the point (1,3). Be sure to check
that the given points and your answers all lie on the curve.

3. Consider the curve y2 = x3 + \x + 4 (mod 11). Add the points (1,3) +
(2,3). Add the points (1,8) + (2,3). Double the point (1,3). Find the
order of the point (1,8). Find the number of points on the elliptic curve.
Be sure to check that the given points and your answers all lie on the
curve.

4. Show that the points P = (-3 ,2) , Q = (-1,4) and R = (1,2) are on
the elliptic curve y2 = x3 - 7x + 10. Compute P + Q, 2R, 3R and 4R
on this curve.

Elliptic Curves 183

5. The point (0,16) has finite order on the elliptic curve y2 = x3 + 256 over
the rational numbers. Find its order.

6. Prove that if p is prime, p = 3 (mod 4), and 6 = 0, then the elliptic
curve EQio modulo p has exactly p + 1 points.

7. Find formulas for adding points in homogeneous coordinates [X,Y, Z\.

8. Let g be a quadratic nonresidue modulo the prime p. Let m and n be the
orders of the two elliptic curves y2 = x3 +ax + b and y2 = x3 +g2ax+g3b
modulo p. (The second curve is called the "twist" of the first curve.)
Prove that m + n = 2p + 2.

9. Let P / oo be a point on an elliptic curve over the real numbers.
Give a geometric condition (something involving tangent lines, points
of inflection, etc.) that is equivalent to P being a point of order

a. 2.

b. 3.

c. 4.

10. For the following values of p and B determine the fraction of the integers
between p+\ — 2y/p and p + 1 + 2^/p having no prime divisor greater
than B:

a. p = 109, B = 5.

b. p=127, £ = 17.

http://taylorandfrancis.com

Chapter 13

Subexponential Factoring
Algorithms

This chapter deals with integer factoring algorithms whose complexity grows
more slowly than an exponential function of logn, the length of the input
number n. (An exponential function of logn means a function of the form
exp(clogn) = e c l o g n = nc, for some constant c > 0. The complexity functions
in this chapter have roughly the form exp(eVlogn) for some constant c > 0, or
even slower growth.) We have already mentioned one of these algorithms, the
elliptic curve factoring method, which factors n in about exp(̂ /(ln n) In In n)
steps. The complexity of that algorithm is actually a slowly increasing func­
tion of the prime factor p it discovers. The complexity of the factoring al­
gorithms described in this chapter depends only on n and not on the size of
any prime factor of n. In this respect, they are similar to SQUFOF, whose
complexity is 0(n1/ /4) steps.

The factoring algorithms in this chapter have several other similarities.
They all factor many relatively small auxiliary numbers using the primes in
a fixed set, called a factor base, and they use linear algebra over the field F 2

with two elements to combine the factorizations of the auxiliary numbers to
construct x and y with x2 = y2 (mod n), which gives the factorization of n.

13.1 Factoring with Continued Fractions

This factoring algorithm has been superseded by the algorithms in the follow­
ing sections. We study it here because, historically, it was the first subexpo­
nential integer factoring algorithm and because the later algorithms build on
the ideas invented to make this one work.

The following theorem has been known for a long time.

185

186 Cryptanalysis of Number Theoretic Ciphers

THEOREM 13.1 Factoring by congruent squares

Ifn is a composite positive integer, x and y are integers, and x2 = y2 (mod n),
but x ^ ±y (mod n), then gcd(z - y, n) and gcd(x + y, n) are proper factors
ofn.

PROOF The congruence shows that n divides x2 — y2 = (x — y)(x + y),
while the incongruences imply that n does not divide either x — y or x + y.
Hence, at least one prime factor of n does not divide x — y and so must divide
x + y. Likewise, at least one prime factor of n divides x — y. Therefore both
gcd's are > 1. Neither gcd can equal n because of the incongruences. I

Although we will describe ways to find x and y with x2 = y2 (mod n), it is
difficult to ensure that x ^ ±y (mod n), so we ignore this condition. We can
easily factor even numbers. We can also factor prime powers n by computing
n1/*5 by Newton's method for 2 < k < log2 n. Suppose now that n is odd
and has k > 1 distinct prime factors. Suppose we can find x and y satisfying
x2 = y2 (mod n). Then x2 = y2 (mod pe) for each of the k distinct prime
divisors p of n. The number y2 is clearly a quadratic residue modulo p. By
Theorem 7.16, the congruence z2 = y2 (mod pe) has exactly two solutions z.
Since y and — y are clearly two solutions, z = ±y (mod pe). By the Chinese
remainder theorem, given y, there are 2k solutions x to x2 = y2 (mod n), one
for each choice of the ± sign in each x = ±1/ (mod pe). The solutions with
x = ±y (mod n) are two of these 2k solutions. Therefore, if x and y are chosen
randomly subject to x2 = y2 (mod n), the probability that x ^ ±y (mod n)
is (2* - 2)/2fc = 1 - 2k~1. Since k > 1, the probability is at least 1/2 that a
random congruence x2 = 2/2 (mod n) will yield a factorization of n. We have
proved:

THEOREM 13.2 Each congruence has at least a 1/2 chance of factoring
Ifn is an odd positive integer with at least two different prime factors, and ifx
and y are chosen randomly subject to x2 = y2 (mod n), then, with probability
> 1/2, gcd(# — y, n) is a proper factor ofn.

It would be futile to try to guess integers x and y satisfying x2 = y2 (mod n).
If n is the product of two primes, then for each x only two values of y lead to
a factorization. The continued fraction and quadratic sieve algorithms both
find many "relations" x2 = qi (mod n), where 0 < \qi\ < n. A subset of the
g¿'s is found whose product is a square, say, y2. If we let x be the product of
the corresponding x¿'s, then we have x2 = y2 (mod n).

The idea of using relations x2 = qi (mod n) to help factor n actually goes
back to Legendre [61] in 1830. He observed that if p is any prime factor of n,
then each qi must be a quadratic residue modulo p. For each i he would find
a list of congruence classes modulo qi or 4#¿ containing all primes having qi

Subexponential Factoring Algorithms 187

as a quadratic residue, just as we did in Examples 7.2 and 7.3. He used the
arithmetic progressions to limit his search for a factor of n by trial division,
testing only primes in the possible congruence classes. Each qi that was not
a square times some other qj eliminated half of the remaining eligible primes.
This scheme works fine if you are using pencil and paper to factor a ten-
digit integer. The sieves we mentioned in the discussion of Fermât's method
are ideal hardware devices for finding primes that lie in specified congruence
classes modulo various small primes qi. But even though the fastest sieves
today [128] process billions of candidate factors per second, they are still
using trial division and cannot compete with the methods in this chapter for
factoring numbers of cryptographic interest.

Seventy-five years ago, Kraitchik obtained relations by ad hoc means. He
[60], page 201, tried to factor n = 193541963777 and found the relations

4399352 = 28 • 72 • 67 (mod n)

16092 • 72 • 67 = 4494902 (mod n).

He multiplied the two congruences, canceled the 72 • 67 and got

(439935 • 1609)2 = (24 • 449490)2 (mod n),

from which the factorization of n is easy to deduce.
Although, Kraitchik's methods were ad hoc, they do suggest a way to find

a subset of a given set of relations x\ = q\ (mod n) for which the product of
the qi is a square. If the numbers qi have been factored completely, we can
try to match the primes in the relations so that each appears an even number
of times in the relations we select. Suppose pi,...,Pk are all of the primes
which appear in the factorizations of all the qi. We can write the z'-th relation
as

x\ = qi = vTvT * • 'VT (mod n),

where we allow e¿j = 0 if pj does not divide g¿. Think of the list of exponents
as a vector Vi = (e¿i, e¿2,. . . , e¿¿), and let Vi represent the z-th relation. These
vectors are added when two relations are multiplied to form a new relation.
Such a vector represents a relation with a square right side if and only if each
component of the vector is even, because a positive integer is a square if and
only if every prime that divides it does so an even number of times.

To select a subset of the q^s whose product is a square, we can write a
system of k congruences modulo 2, one for each prime pj. Let Z{ = 1 if the
z-th relation is to be selected and z\ = 0 if it is not selected. Then the system
of congruences is J2i zieij = 0 (mod 2) for 1 < j < k. If we have only a
few relations and many primes, it is unlikely that there will be a nontrivial
solution. But if there are more relations than primes, then we certainly will
have a solution with some Zi = 1.

Since we are concerned only with the parity of the components of the expo­
nent vectors, we may regard Vi as a vector of dimension k over the field F2 of

188 Cryptanalysis of Number Theoretic Ciphers

integers modulo 2. Then the system of congruences becomes the homogeneous
system of linear equations YJÍ zieij = 0 for 1 < j < fc. We may use techniques
of linear algebra, such as Gaussian elimination, to solve this system.

With these preliminaries, we now head towards the continued fraction in­
teger factoring algorithm. A simple continued fraction is an expression of
the form

which we will denote by [qo, 01,02,03, • • •, Qk]- The numbers qi, except for the
last one, qk, are required to be integers. Every real number x has a simple
continued expansion which may be computed by this algorithm:

i = 0
0o = [x\
x — x — qo
while (x > 0) {

i = i + l
Qi = \M%\
x — x — qi

}

The algorithm terminates if and only if x is a rational number. If x = a/b,
then the qi are the quotients in the Euclidean algorithm for gcd(a, 6).

Given a finite simple continued fraction [00,01,02, ••• , 0&], with all qi in­
tegers, we can find its value Ak/Bk as a rational number by clearing the
denominators starting from the end and working backwards. We can also find
Ak/Bk by working forwards, using the formulas A-i — 1, i?_i = 0, A§ — q0,
B0 = 1 and A¿ = 0¿A¿_i + A¿_2, 2?¿ = 0 ^ - 1 + £¿-2 for i = 1,2,. . . , k.

Continued fractions have an important application in finding rational num­
bers a/b which closely approximate real numbers x. With Ak and Bk as above,
one can prove that

for every k > 0. See Theorem 7.11 of [78] for a proof. Also, if A and B are
integers with gcd(A, B) = 1 and

then there is a k > 0 for which A = Ak and B = Bk.
[78] for a proof.

(13.1)

See Theorem 7.14 of

Subexponential Factoring Algorithms 189

When n is not a perfect square, the simple continued fraction expansion of
yjn is infinite because y/n is not a rational number. However, the expansion is
periodic, that is, the g¿'s repeat after a while. Usually, the length of the period
is roughly y/ñ. One would have to know ^/n~ to very high precision to compute
its simple continued fraction by the algorithm above. But, there is a simple
iteration that computes the q^s using only integer arithmetic. Two or three
other integers are computed during the iteration. One of them is an integer
Qi which satisfies A? - nB2 = {—\)%Qi and 0 < Qi < 2^/n. (The numbers
(-l)lQi are the same as the a in SQUFOF, but that algorithm iterates the
continued fraction expansion until a is a square.) If we regard the equation
as a congruence modulo n, we have A? = (—l)lQi (mod n). In other words,
the continued fraction iteration produces a sequence {(—l)*Qi} of quadratic
residues modulo n whose absolute values are < 2y/n\ This is very small
indeed, since the average quadratic residue between 1 and n is about n/2 .

The continued fraction factoring algorithm, CFRAC, first implemented by
Morrison and Brillhart [77], uses the fact that, since the Qi are small, they
are more likely to be smooth than numbers near n/2, say, because u will be
only half as big in Theorem 4.9. The continued fraction expansion for ^Jn
generates the sequences {Qi} and {Ai mod n} and tries to factor each Qi by
trial division using the primes below some bound B, called the factor base. It
saves the ^-smooth Q¿'s, together with the corresponding A^ representing the
relation A? = {—l)lQi (mod n). When enough relations have been collected,
Gaussian elimination is used to find linear dependencies (modulo 2) among
the exponent vectors of the relations. (In linear algebra terminology, we find
a basis for the null space of the linear system.) There are enough relations
when there are more of them than primes in the factor base. Each linear
dependency produces a congruence x2 = y2 (mod n) and a chance to factor
n by Theorem 13.2.

Suppose the prime p divides Qi. The equation A2 — nB2 — {—XfQi shows
that (Ai/Bi)2 = n (mod p), so the Legendre symbol (n/p) is 1 (or 0 if p\n).
The factor base should contain only primes p with (n/p) = 1, that is, about
half of the primes up to B. One might think that the probability that Qi is
£?-smooth would be lessened by having only about half of the possible primes
available. But there is a heuristic argument (see Section 4.5.4 of Knuth [56])
that if p < B does not divide n, then p divides Qi with probability 2/(p + 1)
rather than the expected 1/p. This higher chance of dividing Qi compensates
for the smaller number of useful primes < B and leaves the estimate in The­
orem 4.9 essentially unchanged. Assuming a couple of plausible hypotheses,
Pomerance [87] proved that the time complexity of CFRAC is L(n)^, where
L(x) is defined in Theorem 12.4.

Here is a simple example of CFRAC.

Let us factor n — 13290059. The continued fraction expansion for y/n yields
the relations below, and many others.

190 Cryptanalysis of Number Theoretic Ciphers

i

10
23
26
31
40

Ai mod n

6700527
1914221

11455708
1895246
3213960

(-1) '
+1
- 1
+1
- 1
+1

Qi

1333
226

3286
5650
4558

Qi factored

31-43
2 113

2-31-53
2-5 2 -113
2-43-53

Of course, a square cannot be negative. We handle this requirement by
treating (—1) as another "prime" factor of (—l)lQi. Each relation in the
table above is represented by one row in the next table. Each row holds one
exponent vector V{ modulo 2.

i

10
23
26
31
40

(-1)
0
1
0
1
0

2

0
1
1
1
1

5

0
0
0
0
0

31

1
0
1
0
0

43

1
0
0
0
1

53

0
0
1
0
1

113

0
1
0
1
0

By Gaussian elimination modulo 2, or otherwise, one sees that the rows
with i — 10,26 and 40 are linearly dependent, as are the rows with i — 23
and 31. The first dependency is

(6700527 • 11455708 • 3213960)2 = (2 • 31 • 43 • 53)2 (mod 13290059)

or 1412982 = 1412982 (mod 13290059), which fails to factor n. The second
dependency is

(1914221.1895246)2 = (2 • 5 • 113)2 (mod 13290059)

or 126776052 = 11302 (mod 13290059), which gives the factors

gcd(12677605 - 1130,13290059) = gcd(12676475,13290059) = 4261 and

gcd(12677605 + 1130,13290059) = gcd(12678735,13290059) = 3119.

Smith and Wagstaff [113] and [118] fabricated a special computer for fac­
toring large integers by CFRAC. It had a 128-bit wide main processor with a
bit-slice architecture to generate the Ai and Q¿, and sixteen simple remain­
dering units (the "Mod Squad") to factor sixteen Q^s in parallel.

13.2 The Quadratic Sieve
The quadratic sieve factoring algorithm, QS, is quite similar to CFRAC. The
difference is in the method of producing relations x2 = q (mod n) with q

Subexponential Factoring Algorithms 191

factored completely. CFRAC forms x and q from the continued fraction ex­
pansion of y/ñ and factors q by trial division, a slow process. The quadratic
residues q in CFRAC are likely to be smooth because they are < 2>/ñ.

QS produces x and q with a quadratic polynomial q = f(x) and factors
the g's with a sieve, a much faster process than trial division. The quadratic
polynomial f(x) is chosen so that the g's will be as small as possible. This
means that most of them will be larger than 2i/ñ, but not too many times
larger, so that they are almost as likely to be smooth as the g's in CFRAC.

Let f(x) = x2 — n and s = IV™ I- Consider the numbers / (s) , / (s + l) , f(s +
2), Fermat's factoring method considered the same numbers and sought
f(s + Ï) = y2. As we saw in Theorem 10.1, this could take a long time.
Suppose we could factor some of these numbers, not by trial division, but by
a faster method which would find the 5-smooth numbers quickly. If a prime p
divides some f(x) = x2—n, then x2 = n (mod p), so n is a quadratic residue
modulo p (unless p\n). If there are K primes p < B with (n/p) = +1 and
we can find R > K 5-smooth numbers / (#) , then we will have R relations
involving K primes and linear algebra will give us at least R — K congruences
x2 = y2 (mod n), each of which has probability at least 1/2 of factoring n, by
Theorem 13.2. Typically, R is only K + 10 or K + 20.

How do we find the .B-smooth numbers among f(s), f{s + 1), f(s + 2), . . .?
We sieve them by some primes < B. As with CFRAC, the factor base for
QS consists of the primes p < B for which the Legendre symbol (n/p) = +1 .
Write down the numbers f(s + i) for i in an interval a < i < b of convenient
length, say a few million. The first interval will have a = s. Subsequent
intervals will begin with a equal to the endpoint b of the previous interval.
For each prime p < B, divide out all factors of p from those f(s + i) which p
divides. For which i does p divide f(s H- i)? Since f(x) = x2 — n, p divides
f(x) precisely when x2 = n (mod p). We know from Theorem 7.2 that the
solutions x to this congruence lie in the union of two arithmetic progressions
with common difference p, and we learned how to find the starting points of
these two arithmetic progressions in Section 7.5. If the roots of x2 = n (mod p)
are x\ and #2, then the arithmetic progressions begin with the first numbers
= X\ and X2 (mod p) which are > a. The prime factor p is removed from each
f(s + i) which it divides. There is no trial division. We divide only when we
already know that the remainder will be 0.

The number of sieve operations for a prime p is about 2(b — a) because
exactly two of every p numbers are divided by p. The complexity of the sieve is
^2p<B,P prime | (^ ~ a) ' ^ c a n ^e shown that this sum is 0((b — a) In In B). The
amortized cost of sieving one i value is thus In In B. Trial division would have
taken about 0((6 — a)B/InB) steps to find the ^-smooth numbers between
a and 6, or B/ In B steps per i value. The sieve saves much time.

If one replaces f(s + i) and p by their logarithms, one can replace the
slow division of large numbers with subtraction of small numbers. Initialize
an array F [i] with the logarithm of f(a + i). During the sieve, subtract
logp from F[i] when p divides f(a + i). Most implementations use scaled

192 Cryptanalysis of Number Theoretic Ciphers

approximate logarithms which are integers between 0 and 255, so that fast
integer byte arithmetic may be used. After the sieve, the array is scanned for
small values of F [i] . We do not require that the byte value be zero because of
the approximation of logarithms, because some primes may divide f(a + i) to
a higher power than the first, and because small primes are treated differently.
Really small primes, p < 100, say, are replaced in the factor base by powers
pe and the sieve subtracts logpe whenever pe divides f(a + i). This is done
because the small primes contribute little to the factorization of f(a + i),
unless pe divides f(a + ¿), and sieving by them is expensive. When F[i] is
smaller than a threshold T, we form the integer f(a + i) and try to factor it.
This factoring is facilitated by the fact that we already know the two roots
of f(x) modulo each p in the factor base. We need only compare x (mod p)
with these two numbers to determine whether p divides f(x). The threshold
is adjusted so that we will often succeed in factoring the number completely.
Each success represents a relation, which is saved in a set as a -f i and perhaps
the factorization of f(a + i). When the set contains a few more than K entries,
the sieving stops and linear algebra constructs congruences x2 = y2 (mod n)
which will likely yield a factorization of n.

In the final step of the algorithm, x in x2 = y2 (mod n) is formed as the
product modulo n of the X{ 's on the left sides of the relations x\ = qi (mod n)
which participate in the dependency. The number y2 is the product of the
<7¿'s in the same relations. Here is a good way to compute y. The complete
prime factorization of each qi is known, and only primes from the factor base
appear in these factorizations. For each prime p in the factor base count the
number of times it appears as a factor in any of the q^s. This count must be
an even number 2e because of the linear algebra. Multiply the prime powers
pe modulo n to find y.

The size K of the factor base is about ^n(B) « ^B/lnB and should be
optimized to minimize the total work. We want to choose K small so that
we will need fewer relations to complete the factorizations. But if we choose
K too small, the i?-smooth numbers f(a + i) will be very rare and we will
search for them forever. We must choose K large enough so that jB-smooth
numbers will appear at a steady pace.

In order to determine the complexity of QS, we must estimate the size of
the numbers f{s + i). If 0 < ¿ < M, say, where M is much smaller than ^/n,
we have

f(s + ¿) = (s + i)2 -n = s2 + 2si + i2 - n « 2y/ñi < 2y/nM.

This shows that the numbers we hope are ^-smooth are only about M times
larger than the corresponding numbers in CFRAC. We will estimate the prob­
ability that these numbers are smooth by assuming that they are about the
size of y/ñ. By Theorem 4.9, the probability that f{s + i) is jB-smooth is
about u~u, where u = {\ny/n)/\nB = | (l n n) / l n ^ .

We expect to have to try about uu values of i to get one B-smooth f(s + ¿).
Therefore, we will need to try about M = Kuu values of i to get about K

Subexponential Factoring Algorithms 193

relations. We need just a few more than K relations. Using the complexity
of the sieve mentioned above, we see that the total work to factor n is about
W{B) — Kuu\n\nB. Write L(x) = exp(A/(lnx)lnlnx). An analysis like that
in the proof of Theorem 12.4 shows that the optimal smoothness bound B is
about (L(n))1/2 and that the total work using this B is about W(B) — L(ri).
The total number of values of f(s + i) sieved is about

This analysis ignores the time for the linear algebra needed to find the
dependencies. Ordinary Gaussian elimination takes 0(K3) steps, which is
about (L(n)3/2) and too slow in theory. In practice, Gaussian elimination is
a fine method for finding the relations because the constant implied in 0(K3)
is tiny. One can pack 32 vector components into a 32-bit word and perform
32 subtractions modulo 2 with a single exclusive-or operation. Furthermore,
the matrix of exponents is sparse because few primes divide any particular
f(s + i). One can use "structured" Gaussian elimination (see [79]) to preserve
the sparseness as long as possible. Other sparse matrix methods, like the block
Lanczos method (see [79] and [75]), which run in essentially 0(K2) steps, can
replace Gaussian elimination and preserve the theoretical estimate of L(n) for
the complexity of QS.

13.3 Variations of the Quadratic Sieve
The version of QS described in the previous section was close to the initial
design of Pomerance [87] implemented by Gerver [46]. Several variations on
this basic algorithm accelerate it in practice, although they do not improve
the theoretical complexity below 0(L(n)).

13.3.1 Large Primes

Recall that during the scan after the sieve, the value of f(s 4- i) is factored
by trial division for each i for which F [i] is less than a threshold T, and i is
saved provided f(s + i) was completely factored. These relations are called
fulls. The size K of the factor base would have to be quite large for this to
work well and the sieving process would take a long time. This problem was
solved already in CFRAC. Morrison and Brillhart [77] proposed saving the
relations that have at most one prime factor larger than the largest prime F
in the factor base and smaller than some upper bound P. This technique has
been used in every implementation of the quadratic sieve, even the first one
[46]. These relations with one prime beyond F are called partial relations.
The partial relations are stored and sorted in order of their large primes. Any
two partial relations containing the same large prime can be multiplied, and

194 Cryptanalysis of Number Theoretic Ciphers

the common large prime removed, to form a full relation. It takes no extra
effort to find partial relations when P < F2 since we know that the remaining
cofactor is prime because the trial division has already searched for all possible
prime divisors below its square root. By Theorem 2.4, we will begin to get
partial relations having large primes, which have already appeared as soon as
we have about y/iT(P)/2 relations. Many more duplicate large primes appear
as the number of relations increases above this number. (There is a factor 1/2
inside the square root because large primes p, like those in the factor base,
must satisfy (p/n) — 1, and this equality holds for about half of all primes.)

Another variation, due to A. K. Lenstra and Manasse [65], saves relations
that have at most two large primes less than P and greater than F. This
method takes a small additional effort, since the cofactor remaining after trial
division may have to be factored into the two large primes. Because the
remaining cofactor could also be a single large prime, a probable prime test is
performed to distinguish prime and composite cofactors so that factorization is
attempted only for the composite ones. SQUFOF and ECM are good choices
for factoring these numbers. Relations that contain two large primes are called
partial-partial relations, or pp's, and can be combined with partial and
other partial-partial relations by a graph cycle-finding algorithm to form full
relations [65].

Three large primes, or ppp's, have also been used occasionally. See [68] for
an example.

The quadratic residues factored in partial, partial-partial and ppp relations
are fc-semismooth numbers for k — 1,2,3, respectively. They are counted by
the function i/>k(x,F,B), where x « y'ñ. By Theorem 4.11, the probabil­
ity is about pjfe((lnn)/(21nB),(lnn)/(21nF)) that any particular f(s + i) is
semismooth. Zhang [131] analyzed the use of three large primes in [68].

13.3.2 Multiple Polynomials

As the size of x in the sieve increases, the probability of successfully factoring
f(x) decreases. It was proposed by Davis and Holdridge [34] and Mont­
gomery (see [88]) to use many polynomials for shorter sieve intervals. The
multiple polynomial quadratic sieve (MPQS) is significantly faster than the
single polynomial version but requires expensive multi-precision and modular
inverse operations. One must find the two zeros of f(x) modulo p for each
new polynomial. The algorithm spends much time calculating the new zeros
for each polynomial when compared to the sieving time.

In QS, the relations x2 = q (mod n) with q factored completely are produced
as follows. Let the factor base consist of the first K small primes p i , . . . ,PK
for which n is a quadratic residue. To construct many suitable polynomials,
choose pairs a, b of integers with a = c2 for some integer c,b2 = n (mod a) and
0 < b < a/2. (Of course, (a - b)2 = n (mod a), but it leads to an equivalent

Subexponential Factoring Algorithms 195

will take integer values at every integer t. Since each polynomial of this form
has discriminant n, the factor base is the same for each polynomial, namely the
primes for which n is a quadratic residue. If a value of t is found for which the
right hand side is factored completely, a relation x2 = q (mod n) is produced,
with x = (at + b)c~l (mod n) and q = Q(t) = Y[f=\Pj\ as desired. No trial
division by the primes in the factor base is necessary. A sieve factors millions
of Q(¿)'s at once. Let t\ and t<i be the two solutions of (at + b)2 =n (mod p¿)
in 0 < ¿i, £2 < Pi- This congruence has two solutions because n is a quadratic
residue modulo p¿. Then all solutions of Q(t) = 0 (mod p¿) are ¿i + fcp¿ and
¿2 + &p¿ for A: Z. In most implementations, Q(t) is represented by one byte
Q [t] , initialized at 0, and logp¿ is added to this byte to avoid division of Q(t)
by p¿, a slow operation. The two inner loops are

t = t _ l
while t < upper_l imit

Q[t] = Q[t] + log p_i
t = t + p

end

and a similar loop for the other root of the quadratic congruence. After the
sieve completes, one harvests the relations x2 = q (mod n) from those t for
which Q[t] exceeds a threshold T less than logQ(i). Only at this point is
Q(t) formed and factored, the latter operation being done by trial division
with the primes in the factor base.

13.3.3 The S elf-Initializing Quadratic Sieve

We have seen how to change polynomials easily. It is good to change polynomi­
als because each new one gives us a new set of small numbers to try to factor.
On the other hand, we have to solve the congruences (at-\-b)2 = n (mod p¿) for
each prime p¿ in the factor base for each new polynomial, and this requires a lot
of extended precision arithmetic, which may take as long as the sieving itself.
The next version of the QS algorithm amortizes the root finding over many
polynomials. It was invented independently by Peralta [81] and Alford and
Pomerance [4], who respectively called it the hypercube multiple polynomial
quadratic sieve and the self-initializing quadratic sieve. The algorithm uses
polynomials with two coefficients, a and ò, of the form f(x) = (ax + b)2 — n.
We omit the details of this polynomial construction, but in summary it is:

• a has s prime factors q\ ... qs, where qi is in the factor base, 1 < i < s.

• b is the sum of s values.

polynomial.) Then the quadratic polynomial

196 Cryptânalysis of Number Theoretic Ciphers

• b2 = n (mod a). There exist 2s solutions to this equation by Theo­
rem 7.16, but only 2 S _ 1 are of interest because the other half represent
the negative values of the first 2 S _ 1 values, and would yield duplicate
relations.

• The 2 S _ 1 values of 6 and corresponding zeros of f(x) (mod p) are quickly
computed with a Gray code using single precision addition or subtrac­
tion instead of the multi-precision multiplication and inversion needed
in the original multiple polynomial QS.

The sieving and trial division process of the hypercube multiple polynomial
QS is the same as with the single polynomial QS, except that the hypercube
multiple polynomial QS does not sieve by the prime factors of a.

13.4 The Number Field Sieve
A good general reference for the Number Field Sieve, NFS, is the book [64]
by Lenstra and Lenstra. The book [33] by Crandall and Pomerance has an
excellent treatment of this algorithm.

In the quadratic sieve, we produced many relations x2 = qi (mod n) with qi
factored completely. When we had enough relations, we matched the prime
factors of the qi and selected a subset of them for which the product of the qi
was square. In this way, we found congruences x2 = y2 (mod n) which could
factor n.

Let us now drop the requirement that the left side of a relation must be
square. Let us seek relations r¿ = qi (mod n) in which both r¿ and qi have
been factored completely. We could use linear algebra as in QS to match
the prime factors of r¿ and the prime factors of qi and select a subset of the
relations for which both the product of the r¿'s and the product of the </¿'s
are square. This is fine idea, but unfortunately, no one has been able to make
it work.

NFS tries to make the idea work by letting the numbers on one side of each
relation be algebraic integers from an algebraic number field. The plan is to
match the irreducible factors so that each occurs an even number of times and
the product of the algebraic integers in the selected subset of the relations is
a square in the algebraic number field.

The first difficulty of this approach is in writing a congruence modulo n with
a noninteger on one side. We solve this problem by using a homomorphism
h from the ring of integers of the algebraic number field to Zn , the integers
modulo n. Suppose we have many algebraic integers #¿, each factored into
irreducibles, and also every ft(0¿) factored into the product of primes. Then
we may match the irreducibles and match the primes to choose a subset of
the 6i$ whose product is a square 72 in the ring of algebraic integers and so
that the product of the ft(0¿)'s is a square y2 in the integers. Let x = ^(7),
a residue class modulo n. Since homomorphisms preserve multiplication, we

Subexponential Factoring Algorithms 197

Let the integer y be a square root of the first product. Let 7 G Z[a] be
a square root of the second product. We have h{^2) = y2 (mod n), since
h(a — ba) = a — bm (mod n). Let x = ^(7). Then x2 = ?/2 (mod n), which
will factor n with probability at least 1/2, by Theorem 13.2.

In addition to being irreducible and having a known zero m modulo n,
we want the polynomial f(x) to have "small" coefficients compared to n.
There are several ways one might satisfy all these conditions. In practical
applications, one should choose the degree d of f(x) to be 4 for n near 10100,
5 for n near 10150 and 6 for n near 10200.

The requirements on f(x) are easily met in the Special Number Field Sieve,
SNFS, which factors numbers of the form n = re — s, where r and \s\ are
small positive integers. While numbers of this special form are not likely to
be cryptographic keys, their factorizations arise in many problems in mathe­
matics and have been studied extensively. The numbers in [18], which have
this form, are often used to test new factoring algorithms. Let k be the least
positive integer for which kd > e. Let t — srkd~e. Let f(x) be the polynomial
xd - t. Let m = rk. Then / (m) = rkd - srkd~e = rkd~en = 0 (mod n). See
[42] for some other interesting ways to choose the polynomial.

and

(13.2)

have

The congruence x2 = y2 (mod n) may lead to a factorization of n by Theorem
13.2. In order for this theorem to apply, we assume that n is odd and has at
least two different prime factors.

Now we choose the algebraic number field and construct the homomor-
phism. Let

be an irreducible monic polynomial with integer coefficients and let a be a zero
of / in C. The algebraic number field will be Q(a) and our ring will be the
ring Z[a] of all ^7=0 aja^ where the a,j are integers. This ring is contained
in the ring X of integers of Q(a) . We must also know an integer m for which
f(m) = 0 (mod n). The homomorphism from Z[a] to Zn will be defined by
h(a) = m (mod n). This implies that ^ (^7=0 aja^) — S7=0 ajm^ (mod n).

The numbers 6 will all have the simple form a — ba. We will seek a set S
of pairs (a, 6) of integers such that

198 Cryptanalysis of Number Theoretic Ciphers

In the general ease, called the General Number Field Sieve, GNFS, one
standard approach to finding a good polynomial (of degree 5, say) to factor
n is to let m = [n1/5] and write n = Yll=o ^ m * m ^ a s e m* ^he digits d{ will
be in the interval 0 < d{ < ra, which is small compared to n. Then let the
polynomial be f(x) = Yli=o^xt-

With the choice of f(x) for either the SNFS or the GNFS, we assume /
is irreducible. If / is not irreducible, then we can factor n immediately. If
f(x) — g(x)h(x) in Z[x], then the integer factorization n — g(m)h(m) gives a
nontrivial factorization of n. See Brillhart et al. [16] for details.

We will have two sieves, one for a — bm and one for a — ba. The sieve on
a - 6m is simple. Choose a bound M for a and b. Note that if a and b are
replaced by their negatives, so are a — bm and a — ba, and no new relation is
produced. We eliminate duplicate relations by requiring b > 0. Also, if both
a and b are multiplied by the same integer g > 1, we get a relation which is
just a multiple of the first one, and which does not provide additional help in
forming congruent squares. We avoid these useless relations by requiring that
gcd(o, b) = 1. Then for each fixed 0 < b < M we try to factor the numbers
a — bm for — M < a < M by a sieve much like that of Eratosthenes. During
the scan after the sieve, we ignore otherwise good a's with gcd(a, b) > 1.

The goal of the sieve on the numbers a — ba is to allow us to choose a set
S of pairs (a, b) so that the product in Equation (13.2) is a square. Rather
than try to factor the algebraic integers a — ba, let us work with their norms.
The norm function is multiplicative and the norm of an algebraic integer is an
integer. The norm of a square j 2 is a square because iV(72) = (iV(7))2. Thus,
if the product in Equation (13.2) is a square, then its norm is a square, and
its norm is the product of all N(a — ba) with (a, b) G S. Since the norms are
rational integers, rather than algebraic integers, it is easy to match their prime
factors to form squares. Furthermore, the norm of a — ba is a polynomial in
a and b and therefore something we know how to factor with a sieve.

Let the complex numbers a i , . . . , ^ ^ be all of the zeros of the minimal
polynomial f{x) of a. These numbers are the conjugates of a. The conjugates
of a — ba are a — ba\,..., a — bad, and so

because f(x) = (x — ai) • • • (x — a^). If we define

then N(a-ba) = F(a,b).
We can perform the second sieve this way: For each 0 < b < M, sieve the

polynomial F(a, b) for —M < a < M and find smooth values of N(a — ba). We
want a — bm to be simultaneously smooth, too. For each fixed ò we sieve both
a — bm and F(a, b) and save the pairs (a, b) for which both of these integers

Subexponential Factoring Algorithms 199

are smooth and also gcd(a, b) = 1. The two sieves might have different factor
bases corresponding to different smoothness bounds. The exponent vectors
will have one entry for each prime in each factor base. When we have found
many relations, linear algebra will construct sets of pairs (a, b) for which the
product of a — bm is a square and the product of the norms of a — ba is a
square.

The product of the norms of a — ba is the norm of the product of the a — ba.
Will this product be the square of a number in Z[a] as we require? Not in
general. One problem is that the norm function does not distinguish among
associates. For example, 3 + 2¿ and 3 — 2i are associates in the Gaussian
integers Z[i]. They have the same norm, 13, and

7V((3 - 2i)(3 + 2i)) = N(3 - 2i)N(3 + 2Ï) = 132

is a square although (3 — 2i)(3 + 2i) is not the square of a Gaussian integer.
This problem is easy to solve using data already computed to perform the
sieve. For each prime p in the factor base, let R(p) denote the set of all
0 < r < p with f(r) = 0 (mod p). In the case of the Gaussian integers, the
polynomial is f(x) = #2 + l, so R(2) = {1}, R(7) is empty and i?(13) = {5,8}.
If gcd(a, b) = 1, then p divides F (a, b) if and only if a = br (mod p) for some
r in R(p). For the Gaussian integers, F (a, b) = a2 + b2. We have

N(3 + 2%) = F(3, - 2) = F (- 3 , 2) = 13 = F(3,2) = F (- 3 , - 2) - AT(3 - 2i),

and 3 = 2 -8 (mod 13) while - 3 = 2-5 (mod 13). For another example,

JV(7 - 4t) = F(7,4) = 65 = F(8,1) = N(8 - ¿),

and 7 = 4 - 5 (mod 13), showing that 3 + 2i divides 7 — 4i, while 8 =
1 • 8 (mod 13), showing that 3 — 2% divides 8 — i. We can remember this
information in the exponent vectors. Use one entry for each pair p, r, where p
is a prime in the factor base and r is in R(p). Suppose p divides F(a,b) and
gcd(a, b) = 1. If a ^ br (mod p), then the exponent vector will have entry 0
for the pair p, r. But if a = br (mod p), then the entry for the pair p, r in the
exponent vector will be the exponent on p in the prime factorization of F(a, 6).
Note that the sets R(p) should already be computed during sieve setup. Fix
b and sieve F(a, b) as a polynomial in the single variable a. The a for which
a given prime p divides F (a, b) are the a in the residue class a = br (mod p)
for each r in R(p).

So far, we have solved the problem of the norm function not distinguishing
among associates. The units cause further problems, as do the possible lack of
unique factorization in Z[a] and the fact that Z[a] might be a proper subset of
the ring X of integers in Q(a) . All of these conditions may cause the product
of the a — ba in Formula 13.2 to fail to be the square of a number in Z[a] even
though the product of the norms of a — ba is a square integer. Here is one trick
that solves many of these problems. Remember that if a is a square, then the

200 Cryptanalysis of Number Theoretic Ciphers

Legendre symbol (a/q) — +1 for any prime q not dividing a. The converse
statement is false, of course, but if a is an integer such that (a/q) = +1 for
many primes q, then a is likely to be square. Recall that when we multiply
positive and negative integers to form a square, we include the sign as one
more column, for the "prime" —1. To solve the problem with the square norm
not guaranteeing a square, we add a few more entries to the exponent vectors.
Choose several primes q not in the factor base. For each of these ç's, find a
solution s to f(s) = 0 (mod q) with f'(s) ^ 0 (mod q). For each pair (a, b)
and each prime q, evaluate the Legendre symbol ((a + bs)/q), put its value
(0 for + 1 , 1 for —1) in the exponent vector and extend the linear algebra to
ensure that

for every q. The resulting sets S will very likely produce squares in Formula
13.2.

The final step of the NFS is to find the square roots and then compute
gcd(x — y,n). The square root x in Z may be found just as for QS. But it is
much harder to compute the square root 7 of the product in Formula 13.2. See
Buhler et al. [19], Couveignes [32] and Montgomery [74] for ways of finding
this square root.

Now let us consider why NFS is a fast factoring algorithm. The answer to
this question involves the proper choice of the parameters. In QS, we factor
many numbers near y/n until we can find a subset of them whose product is
square. This size estimate leads to the complexity L(n) for QS. We will show
that in NFS the numbers we try to factor are much smaller than yfñ, so that
it is easier to find enough smooth ones to produce a subset of them whose
product is square.

In the polynomial constructions for SNFS and GNFS above, the number
m was chosen to be near n1^. Let us assume m has this approximate size.
Suppose the absolute values of the coefficients c¿ of f(x) and F(x,y) are also
bounded by n1/0*. Suppose we sieve the rectangle 0 < ò < M, —M<a<M.
Then \a - bm\ < 2n1¡dM and |F(o,6)| < (d+ \)n1'dMd. Requiring that both
a — bm and F(a, b) be smooth for the same pair (a, b) is essentially the same
as requiring that their product be smooth for (a, 6). Hence we seek smooth
numbers bounded above by 2(d + l)n2//dMd+1. Comparing with QS, we see
that if d and M are fixed, then NFS should be faster than QS for large n when

d > 4. Indeed, if d is fixed, the complexity of NFS is essentially L(n)v 4 / d .
A more careful analysis (see Section 6.2.3 of [33]) shows that if one lets d
increase slowly, so that

then the complexity of the number field sieve is

Subexponential Factoring Algorithms 201

for some constant c > 0. The constant c is a bit smaller for SNFS than for
GNFS because the coefficients are smaller.

There are several variations on the basic NFS algorithm. One can use large
primes, as in QS, on either side of the relations. The multiple polynomials,
which work so well in QS, do not work in a practical way for NFS because
each new polynomial defines a new number field and has different root sets
R(p) for each prime p. See Section 6.2.7 of [33] for other variations.

13.5 Exercises
1. Factor Kraitchik's number 193541963777.

2. Devise an algorithm to solve this problem in polynomial time. The input
is a composite integer n, not a power, and a proper factor oof n. The
output consists of two relatively prime integers c, d satisfying n — cd
and 1 < c < n.

3. Given a positive integer n, not a power, and an integer d, let m —
\nl/d\. Write n = Y^i=o ^im% w ^ t n 0 < di < d. Define a polynomial
f(x) — H2i=o d>ix% • Prove that if d is fixed and n is large enough, then
f(x) is monic.

http://taylorandfrancis.com

Chapter 14

Computing Discrete
Logarithms

Many cryptosystems could be broken if we could compute discrete logarithms
quickly, that is, if we could solve the equation ax — b in a large finite field.
For convenience of computation, usually the finite field is either the integers
modulo a prime p or the field with 2n elements.

The discrete logarithm algorithms considered here and in the first two sec­
tions apply in any group. In particular, they are about the best one can do in
elliptic curve groups. The discrete logarithm problem for elliptic curves
is to find an integer x for which Q = xP, where P and Q are two given points
on an elliptic curve E modulo p. It is also given that such an integer x exists,
perhaps because the elliptic curve group is cyclic and P generates it.

The algorithms in the final two sections depend on the notion of smoothness
and solve the discrete logarithm problem only in the group i?p, the integers
modulo a prime p, where one can define smooth numbers. The index calculus
and other fast algorithms for discrete logarithms are much faster than the
methods of Shanks and Pollard. Hence, the group Rp must be much larger
than an elliptic curve group to achieve the same security. A rough rule of
thumb is that Rp with a 1024-bit prime p is about as safe as an elliptic curve
modulo a 128-bit prime.

Consider first the exponential congruence ax = b mod p. By analogy to
ordinary logarithms, we may write x = Loga6 when p is understood from
the context. These discrete logarithms enjoy many properties of ordinary
logarithms, such as Log06c = Logaò + Logac, except that the arithmetic with
logarithms must be done modulo p — 1 because ap _ 1 = 1 mod p. This is
explained in Theorem 6.19. Neglecting powers of logp, the congruence may
be solved in 0(p) time and 0(1) space by raising a to successive powers modulo
p and comparing each with b. It may also be solved in 0(1) time and 0(p)
space by looking up x in a precomputed table of pairs (x,ax modp), sorted
by the second coordinate. The next section explains an intermediate method

203

204 Cryptanalysis of Number Theoretic Ciphers

which takes essentially 0(v/p) time and 0(v/p) space.

14.1 Shanks ' Baby-Step- Giant-Step Method
This algorithm was described for general groups in Section 9.3.

Shanks' baby-step-giant-step algorithm solves the congruence ax = b mod p
in 0(y/p\ogp) time and 0{-s/p) space as follows. Let m = \y/p — 1 ~|. Compute
and sort the m ordered pairs (j, a m j modp), for j from 0 to m — 1, by the
second coordinate. Compute and sort the m ordered pairs (¿, ba~l mod p), for
i from 0 to m — 1, by the second coordinate. Find a pair (j,y) in the first
list and a pair (i,y) in the second list. This search will succeed because every
integer between 0 and p — 1 can be written as a two-digit number ji in base
m. Finally, x — mj -f i mod p—1.

14.2 Pollard's Methods
Pollard [86] invented two methods for finding discrete logarithms analogous
to his rho method for factoring integers. Like Shanks' baby-step-giant-step
algorithm, these algorithms work in any group and have complexity 0{y/p),
where p is the group order. However, their space requirements are tiny.

14-2.1 The Rho Method for Discrete Logarithms

We will describe the rho method for solving the congruence ax = b mod p,
where p is prime, although it works in any group. The method is quite similar
to his rho method for factoring, which is described in Section 10.2 and which
the reader should review before continuing.

We are given a prime p > 3, a primitive root g modulo p and an element h
of Rp, the group of nonzero integers modulo p. We seek the x modulo p — 1
for which gx = h (mod p). The answer x may be written x — Loggh. We use
Theorem 6.19 often in the following.

Define three sequences {x{}, {a¿}, {bi} by x0 = 1, a0 = &o = 0 and
if 0 < xi < p /3 , then £¿+1 = hxi mod p,

a¿+i = 1 + a¿ mod p—1 and 6¿+i = 6¿ mod p — 1 ,
if p /3 < Xi < 2p/3, then x¿+i = x\ modp,

a¿+i = 2di mod p — 1 and 6¿+i = 2o¿ mod p — 1 , and
if 2p/3 < Xi < p, then #¿+1 = #x¿ mod p,

a¿+i = a¿ mod p—1 and 6¿+i = 1 + 6¿ mod p — 1 .
A simple induction argument shows that x¿ = fo0i#òi (mod p).
The mapping a?¿ -» £¿+1 is a random mapping from .ñp to itself. By The­

orem 2.4, after about y/p iterations of the mapping there will be a repeated
value Xi = Xj. As in the Pollard rho factoring method, we can use the Floyd
cycle-finding algorithm to find two repeated values by computing two iterates

Computing Discrete Logarithms 205

of the mapping in the same loop, with one instance running twice as fast as
the other. This gives us a subscript e with x2e — %e-

Now we have a congruence ha2egÒ2e = hüegbe (mod p). As we can easily
find inverses modulo p, this leads at once to a congruence hm = gn (mod p),
where m = ae — a2e (mod p— 1) and n = 62e — &e (mod p - 1). Using Theorem
6.19, we can rewrite this as

mx = mLoggh = n (modp-1). (14.1)

Let d = gcd(m,p— 1). We know that Congruence (14.1) must have a solution
because g is a primitive root modulo p and p does not divide h. By Theorem
5.6, d|n, and by Theorem 5.7, Congruence (14.1) has d solutions, one of which
is the answer x we seek. One can show that d is usually small, say, d = 1 or
2, so we can try all d solutions to Congruence (14.1) and find x.

Example 14.1

Let p = 999959, g = 7 and h = 3. Find x = Loggh.
At e = 1174 we have xe = x2e = 11400, m = 310686 and n = 764000.

Congruence (14.1) becomes 310686x = 764000 (mod 999958). The extended
Euclidean algorithm gives

2 = gcd(310686, 999958) = 148845 • 310686 - 46246 • 999958,

and we find that 32 = 7356324 (mod p) and 3 = ±7178162. Since 3 is a quadratic
residue modulo p and —1 is not, the plus sign is correct and x — Loggh =
178162.

In the setting of an elliptic curve group E, we are given two points P and
Q, are told that Q — xP for some integer x, and must find x. The group is
partitioned into three pieces of roughly equal size. The random mapping of
E -> E takes a point X into X + P , I + 1 or J + Q, according to which
piece of the group contains X. The initial value of the variable point X is the
identity oo. The a¿ and 6¿ are defined just as above. A repeated point yields
an equation mQ = nP, which means that mx = n (mod iV), where TV is the
order of P in E. Since we know that Q = xP, this congruence must have a
solution.

14»2.2 The Lambda Method for Discrete Logarithms

We describe Pollard's lambda method in the general setting of groups. This
method is also called the kangaroo method, since it employs two kangaroos
to hop around in the group.

Let G be a finite cyclic group with generator g and let h be an element of G.
We seek the least positive integer x so that h = gx. Suppose we know that x
lies in the interval a < x < b. Pollard [86] defined two kangaroos, a tame one
T starting at t0 = gb (the upper end point of the interval) and a wild one W

206 Cryptanalysis of Number Theoretic Ciphers

starting at w0 = h (an unknown point in the interval). Define do(T) = &, the
initial distance of T from the origin. Let do(W) = 0, the initial distance of >V
from h. Let S = {gSl, . . . ,pSfe} be a set of jumps. Let G be partitioned into
k pieces and for each a G G, let / (#) , with 1 < f(g) < k, be the number of
the piece to which g belongs. The exponents si should be positive and small
compared b — a. Pollard suggested that s¿ = 2l might be good choices. The
reader should experiment with various choices. Think of the s i as the lengths
of the hops of the kangaroos.

Now let the two kangaroos hop around in the group G. The tame one T hops
from ti to £¿+i = Ug8*^ for i > 0. Keep track of T's distance from the origin
by computing d¿+i(T) = d¿(T) + «/(¿¿J for i > 0. It follows that U — gdi^
for i > 0. After a while T stops and sets a trap at its final location, say tm.
Then the wild kangaroo hops along the path from wi to Wi+i — WigSf{wi) for
i > 0. Keep track of W s distance from the unknown starting position (the
discrete logarithm of h) by computing d¿+i(W) = d¿(W) + Sf(Wi) for ¿ > 0.
Then w¿ = ^ ' (w) fori > 0.

After each hop, we check to see whether W has fallen into the trap by testing
whether Wi — tm. With a good choice of the parameters s¿, it is highly likely
that eventually wn = tm for some n. Then we have x — dm(T) — dn(W).

If we find that dn(W) > dm(T), then >V has passed the trap. In this case,
we start a new wild kangaroo at w0 — hgz for some small integer z > 0 and
hope it falls into the trap.

If the two kangaroos ever land on the same spot (wi — tj), then their paths
will coincide from that point on and W will be trapped. If you draw their
paths going upwards, the paths will form the Greek letter lambda: A. This is
the reason for the name.

The most important property of the jumps sizes s i is their average. Van
Oorschot and Wiener [116] have shown that if the mean value of the s¿ is
about \\/b — a and if T makes about 0.7y/b — a hops before setting the trap,
the running time will be minimal. With these choices, W will hop about
2.7y/b — a times before getting trapped, which happens three-fourths of the
time, or passing the trap. The space requirement is about O(log(6 — a)).

1J^.3 Discrete Logarithms via Index Calculus
There are faster ways to solve ax = b (mod p) using methods similar to the
two integer factoring algorithms QS and NFS. Here is the analogue for QS.
It is called the index calculus method. Choose a factor base of primes
Pi,...,Pfc, usually all primes < B. Perform the following precomputation
which depends on a and p but not on b. For many random values of x, try
to factor ax mod p using the primes in the factor base. Use trial division or
a more powerful method such as Pollard's rho method or the elliptic curve
method. The complexity will be subexponential regardless of the factoring

Computing Discrete Logarithms 207

See Section 6.4 of [33] for more details.

14-4 Other Fast Methods for the Group Rm

There is an algorithm similar to the index calculus method for solving con­
gruences of the form ax = b (mod p) which is analogous to NFS factoring

algorithm used. Save at least k + 20 of the factored residues:

or equivalently

Use linear algebra to solve for the Logap¿. This is not as simple as it sounds
because p — 1 is composite for prime p > 3. Linear algebra is much easier
over a field. Solve the system of congruences modulo each prime q dividing
p— 1. Use Hensel's lemma to lift the solutions to solutions modulo the highest
power qe of q dividing p — 1. Finally, combine the prime power solutions with
the Chinese remainder theorem.

When b is given, perform the following main computation to find Loga6.
Try many random values for s until one is found for which bas mod p can be
factored using only the primes in the factor base. Write it as

or

Substitute the values of Logap¿ found in the precomputation to get Loga6.
Using arguments like those for the running time of the elliptic curve and
quadratic sieve factoring algorithms, one can prove that if a fast factoring
algorithm like the elliptic curve method is used, the precomputation takes
time

while the main computation takes time

208 Cryptanâlysis of Number Theoretic Ciphers

for some constant c > 0.
The Pohlig-Hellman cipher, which we will describe in Chapter 16, could be

broken if one could solve the discrete logarithm problem in Rp quickly. In the
paper [83] in which this cipher was published, Pohlig and Hellman give an
algorithm for computing discrete logarithms modulo a prime p when p — 1 is
jB-smooth and B is small enough so that one can perform 0(B) operations.
Suppose p — 1 = Yli (¡T is the prime factorization of p — 1. For each i we will
find y i so that x = y i (mod q^). Then we will find the common solution to
these congruences by the Chinese remainder theorem.

Let qe be one of the prime power factors. Let us find y so that x =
y (mod qe). As 0 < y < qe, we may write y as an e-digit number in base q:

Solve 2X = 15 (mod 19).

algorithm and runs faster than the index calculus method for large p. See
Gordon [49] for a method with time complexity

We will find t/o, 2/i5 • - • 5 2/e—i in that order to compute y. We have

for some integer Y. Raise both sides of b = ax (mod p) to the power (p— l)/q
and get

We used Fermât's little theorem to get the last congruence. To obtain 2/0,
form the powers (a^p~l^q)n mod p for n = 0 , 1 , . . . , q — 1 until one of them is
congruent to fr^-1)/?. Then y0 is the exponent n that worked.

If q2 divides p - 1, let h = ba~y° = a<?(2/i+y2<?+•••) (m o d p). Raise both
sides to the power (p — l)/q2 and get of ~ ''q = avAv-±)Iq. (m o d p)? where
we have used Fermat's little theorem again. To obtain i/i, form the powers
(a(p-i)/g)" modp for n — 0 , 1 , . . . ,q — 1 until one of them is congruent to

af~ *'q . Then y\ is the exponent n that worked.
If e > 2, repeat this process until all of yo, y\,..., ye-i have been computed.

Then y = y0 + yxq + y2q
2 + • • • ye-iq

e~l.

Example 14.2

Computing Discrete Logarithms 209

This example is trivial, but the method we use to solve the congruence would
work if 19 were replaced by a large prime p such that the largest prime factor
q of p — 1 was small enough so that we could do q operations.

We have 19 - 1 = 2 • 3 2 . It is easy to find x mod 2. We have (19 - l) /2 = 9
and

(_ !) - = 18- = (2*)9 = 159 = 18 = (-1) (mod 19),

so x = i/o = 1 (mod 2).
Now we find x mod 3. We have (19 — l) / 3 = 6 and

T = (26)* = 156 = 11 (mod 19).

We try the powers of 7 (mod 19): 7° = 1, 71 = 7, 72 = 11 (mod 19), and so
x = yo = 2 (mod 3). To compute yi, we let òi = 15 • 2~2 = 181 (mod 19).
Raising both sides to the power (19 — l) / 3 2 = 2, we see

1 = 182 = (26)yi = 7yi (mod 19),

so y i = 0 and x = y = 2 + 0 -3 = 2 (mod 9). Now apply the Chinese remainder
theorem to the pair of congruences x = 1 (mod 2) and x = 2 (mod 9) to obtain
x = 11 (mod 18).

There is one other case in which it is easy to solve a discrete logarithm
problem. If m is Z?-smooth, where B is not too large, then one can solve
ax =b (mod m) . Roughly speaking, solve the congruence modulo each prime
divisor of m and combine the solutions with the Chinese remainder theorem.
For example, suppose m — pqis the product of two primes small enough so
tha t we can solve the congruences aXl = b (mod p) and aX2 = b (mod q).
Then we know tha t x = x\ (mod p — 1) and x = #2 (mod q—1). The Chinese
remainder theorem does not apply directly because p — 1 and q—1 are not
relatively prime. However, if there is a solution #, then the two congruences
must be compatible, and one can solve them with the methods of Exercise 17
of Section 5.4.

Example 14.3

Solve 2X = 35 (mod 1003).

Note that 1003 = 17 • 59. We solve 2Xl = 35 = 1 (mod 17) and find xi =
8 (mod 16). Then we solve 2X2 = 35 (mod 59) and find x2 = 24 (mod 58). The
gcd(16, 58) = 2 divides (24 — 8) = 16, so the two congruences are compatible
and we find x = 24 (mod 464) since lcm(16, 58) = 464.

There is a method of Coppersmith [30] for solving equations of the form
ax = b in the field with 2 n elements tha t is practical for n up to about 1000.

Empirically, it is about as difficult to solve ax = b in the field with pn

elements as it is to factor a general number about as large as pn.

210 Cryptanalysis of Number Theoretic Ciphers

14*5 Exercises
1. Use Shanks' baby-step-giant-step method to solve the discrete logarithm

problem 2X = 82 (mod 107).

2. Use Pollard's rho method to solve the discrete logarithm problem 5* =
20 (mod 103).

3. Use Pollard's lambda method to solve the discrete logarithm problem
2X = 39 (mod 101).

4. Solve the discrete logarithm problem 10^ = 83 (mod 97) by the index
calculus method, using the following information. The factor base con­
sists of the three primes 2, 3, 5. The precomputation, which depends
on 10 and 97, but not on 83, generated many random exponents y and
tried to factor (10y mod 97) using just the primes in the factor base. It
produced these congruences:

101 = 10 = 2 • 5 (mod 97)

102 = 3 (mod 97)

1013 = 15 = 3-5 (mod 97).

The main computation generated many random z and tried to factor
(83 • 10z mod 97) using just the primes in the factor base. After a while,
it found the congruence

83-109 3 = 6 = 2 -3 (mod 97).

Restate these congruences in terms of discrete logarithms modulo 97.
Solve these congruences (modulo 96 = 0(97)) for the discrete logarithm
x of 83. Do not perform any exponentiation modulo 97, except to check
your answer after you find it.

5. Solve the discrete logarithm problem 3X = 282 (mod 391).

6. Devise a probabilistic algorithm to solve the following discrete logarithm
problem in expected time 0(y/n/m) group operations. The input con­
sists of a cyclic group G of order n generated by #, integers m and a
with 2 < m < n and 0 < a < ra, and an element h of G. It is given that
there exists an integer x = a (mod ra) such that h = gx and 0 < x < n,
but x is unknown. The output is x.

Chapter 15

Random Number
Generation

This chapter is the last one in Part I because it nearly fits into Part II. Random
numbers have many uses. They are used in simulation. In cryptography they
are used in stream ciphers and for choosing a secret key.

Some desirable properties a sequence of random numbers might have are:

1. The sequence looks random—it passes statistical tests of randomness.

2. The sequence is unpredictable: knowing the algorithm and previous bits,
one cannot guess the next bit(s), but the sequence can be reproduced.
Such sequences of random numbers might be used as key streams for
stream ciphers.

3. The sequence cannot be reliably reproduced: If you run the random
number generator (RNG) twice with the same input (as closely as pos­
sible), you get two different random sequences. The sequence cannot be
compressed. Sequences of this sort might be used to select a secret key,
like a large prime.

Most computer libraries provide a simple random number generator called
a linear congruential generator. It works this way. Fix a multiplier
a, an increment 6, a modulus m and a seed XQ. Define X{ for i > 1 by
Xi = (axi-i + 6) mod m. The random numbers X{ are periodic and the period
is always < m because each X{ depends only on #¿_i, and all X{ are in the
interval 0 < Xi < m. One example with maximum period uses a — 9301, ò —
49297 and m = 233280. Linear congruential generators pass some statistical
tests, are fine for simulation and are efficient. However, they are worthless for
cryptography because their linearity makes them easy to break.

Other generators for reproducible random numbers are described in the
next two sections. They have been used for cryptography.

211

212 Cryptanalysis of Number Theoretic Ciphers

15.1 Linear Feedback Shift Registers
A linear feedback shift register LFSR is a device that generates a pseu­
dorandom bit stream. It consists of an n-bit shift register and an exclusive-or
gate. Let the vector R = (ro , r i , . . . , r n _ i) hold the bits in the the shift reg­
ister, with 7*0 the bit at the right end. At each clock cycle, the bits in the
register shift one position to the right. The bit r0 is shifted out the right end
and used. The output bit of the exclusive-or gate is shifted into the bit r n _i
at the left end of the register.

The inputs to the exclusive-or gate are several bits selected (tapped) from
fixed bit positions in the register. Let the vector T = (¿i,¿2, • • • , ¿n) specify
the tapped bit positions: U = 1 means "bit rn_¿ was selected" and t{ — 0
means "bit rn_¿ was not selected." Let Mt denote the transpose of the matrix
M. The output of the exclusive-or gate may be regarded as the scalar product

j r2
0 1
1 0
2 1
3 0
4 0
5 1
6 1
7 1

n
1
1
0
1
0
0
1
1

ro

1
1
1
0
1
0
0
1

The period is seven.

The bit stream {rj} must be periodic because eventually the n bits in the
shift register will be duplicated, and the bits rj will repeat from that point.
There are 2n possible contents of the shift register; so, the period certainly

In this section, the sum ^2 means exclusive-or 0 , the sum modulo 2.
Define r¿ for j > n by Vj = (J27=i ̂ irj-i) m ° d 2. Then {rj} for j > 0 is

the sequence of pseudorandom bits generated by the LFSR. This bit stream
is sometimes used as the key of a stream cipher. If the plaintext bit stream
is {rrij} for j > 0, then the ciphertext bit stream is {c¿}, defined for j > 0 by
Cj •— TfTj (¿7 Vj.

Example 15.1

Show the operation of the LFSR with n = 3,T = (1,0,1) and initial R = (1,1,1)
and find the period of its output stream.

We have ro = 1, n = 1, r<i = 1, r$ = 1 • 1 © 0 • 1 0 1 • 1 = 0, etc. The column
ro of this table shows the output stream {rj}.

Random Number Generation 213

cannot exceed that number. However, if the register contains all zero bits,
then every r¿ will be zero since the exclusive-or of zeros is zero. Thus, the
period cannot be more than 2n — 1. If the period has this maximal value, then
every bit pattern, other than all zeros, will appear as the content of the shift
register sometime during each period. One can prove that for every n > 1
there is at least one tap vector T which achieves the maximal period 2n — 1.

Let r(x) = Xir=o rix% m ^ M - The degree of r(x) is, hopefully, defined
and less than n. A useful tool for studying the period of an LFSR is the
generating function G{x) — Y^T=o rj&- Since the coefficients r¿ are 0 or 1,
the sum converges at least for \x\ < 1. We prove first that G(x) is the ratio
of two polynomials. We have

In the last sum, replace Vj by Vj — J^ILi U^j-i and interchange the order of
summation.

Solving for G(x) gives G(x) = s(x)/t(x), where t{x) — 1 — Y^i=i ̂ ^x% an(^

The polynomial t(x) must have degree n in FÏ[X] because if tn = 0, then
the last bit position r$ would serve merely to delay the output of a bit and
would not participate in generating them. The degree of s(x) is less than n
since xlxi~% — #J and 1 < j < n — 1. The polynomial t(x), which may also be
written t(x) = 1 + S lL i ^ix% since - 1 = +1 in F 2 , is called the characteristic
polynomial of the tap sequence. We will assume that t(x) is irreducible. One
can show via the partial fraction decomposition of s(x)/t(x) that if t(x) were
not irreducible, then the LFSR could not have maximal period. See Theorem
2.3 of Golumb [48] for a proof. Since t(x) is irreducible and the degree of s(x)
is less than the degree of t(x) we must have gcd(s(x),t(x)) = 1 and so no
common factors can be canceled in the ratio s(x)/t(x).

214 Cryptanalysis of Number Theoretic Ciphers

Now let p be the minimum period of the LFSR. Then p is the smallest
positive integer such that rp+j = Vj for every j > 0. Then

Therefore, G(x)(l - xp) = Y!j=o rjx3- Recall that G(x) = s(x)/t(x). Hence,
(s(x)/t(x))(l — xp) = Zlj=o rjxJ - The left side must be a polynomial because
the right side is one. Since gcd(s(x),t(x)) — 1, t(x) must divide l-xp = xp + l
in F2[x].

Conversely, it is not hard to show that if t(x) divides xq + 1 for some positive
integer q, then q is a multiple of the period p of the LFSR. See Theorem 2.4 of
Golumb [48] for a proof. Therefore, p is the smallest positive integer for which
t(x) divides the polynomial xp + 1. The condition that t(x) be irreducible is
necessary but not sufficient for the LFSR to have maximal period. A sufficient
condition is that t(x) be primitive.

DEFINITION 15.1 A polynomial t(x) of degree n in F2[x] is called
primitive if it is irreducible, it divides x2 _ 1 + 1, but it does not divide
xd + 1 for any divisor dof2n — l.

One can prove that, for every n > 1, there is a primitive tap polynomial
of degree n. Primitive trinomials xn + xa + 1 are especially popular for use
as the tap polynomial of an LFSR because exclusive-or gates with only two
inputs are much cheaper than those with more than two inputs.

Unfortunately, LFSR's do not produce cryptographically strong random
sequences. If n is a few thousand and t(x) is primitive, the period of the bit
stream is 2n — 1, which is the maximum possible. This huge period gives the
cipher the appearance of security, but the linearity makes it easy to break.

Recall that R = (ro , r i , . . . , r n _ i) is the contents of the LFSR. Let R' =
(r¿, r[,..., r^_x) be the contents of the register after the shift. Then r\ = ri+i
for 0 < i < n - 1 and r ^ = TRK In other words, Rft = HRl mod 2, where
H is the n x n matrix with T as its first row, l's just below the main diagonal
and 0's elsewhere.

Suppose 2n consecutive key bits, r 0 , . . . , r 2 n - i , are known. Let X and Y

Random Number Generation 215

be the n x n matrices

From i?'¿ = HR* mod 2 it follows that Y = fl"X mod 2, so if may be com­
puted from if = y X _ 1 mod 2. The inverse matrix X - 1 mod 2 is easy to
compute by Gaussian elimination for n up to at least 104. The tap vector
T is the first row of H and the initial contents R of the shift register are
(r n _ i , . . . , r 0) .

See Golumb [48] and Ding, Xiao and Shan [41] for more information about
linear feedback shift registers and variations of them. Some variations use
several LFSR's connected by some nonlinear muddle. These are not good
sources of cryptographically secure random numbers either. All can be broken
with linear algebra.

We can compute 2l mod ((p — l)(q — 1)) with only O(logi) multiplications
modulo (p — l)(q— 1). Hence, we can compute Xi with only 0((log¿)(logn)2)
bit operations, rather than the 0(¿(logn)2) bit operations it would take using
the definition. If we used the BBS generator to form a key stream to encipher
a random-access file, we could use this property to decipher the file from any
starting point without forming the key stream from its beginning.

The number —1 is a quadratic nonresidue modulo every Blum prime by
Part 5 of Theorem 7.5. Hence, r is a quadratic residue modulo p if and only
if — r is a quadratic nonresidue modulo p. The same statement holds with
p replaced by q. By Theorem 7.18, every quadratic residue r modulo n has
exactly four square roots x modulo n. The square roots of r modulo p are
±r(p-i)/4 (moci p) by Theorem 7.13, and exactly one of these two numbers
is a quadratic residue. The same is true when p is replaced by q. The four

15.2 A Quadratic Residue Random Number
Generator

Blum, Blum and Shub [11] invented a random bit generator called the BBS
generator. It chooses two Blum primes, that is, primes p = q = 3 (mod 4).
Let n = pq and let s be relatively prime to n. Define xo — s2 mod n and
Xi = x_x mod n for i > 0. The ¿-th pseudorandom bit is the low-order bit 6¿
of#¿.

A simple induction shows that X{ = x^ mod n. It follows from Theorem
6.15 that

216 Cryptanalysis of Number Theoretic Ciphers

square roots x of r modulo n are constructed by using the Chinese remainder
theorem to solve x = one square root modulo p and x = one square root
modulo q. Now x is a quadratic residue modulo n = pq if and only if it is
a quadratic residue modulo p and a quadratic residue modulo q. Therefore,
exactly one of the square roots of a quadratic residue r modulo n is itself a
quadratic residue. Since every X{ in the BBS generator is clearly a quadratic
residue modulo n, we have a way to compute x¿_i from X{. It is the unique
square root of X{ that is a quadratic residue. This shows that if we know the
factorization of n, then we can compute the sequence x¿ backwards.

Conversely, suppose we can compute x¿_i somehow for any given x\. Then
we can factor n. Just pick a t for which the Jacobi symbol (t/n) — — 1. This
t must be a quadratic nonresidue modulo n. Let Xi — t2 mod n. Compute
Xi-i somehow. Then x2_x = xi = t2 (mod n) and gcd(¿ + #¿_i,ra) = p or q
by Theorem 13.1, so n has been factored.

Suppose n is made public, but p and q are kept secret. Then anyone can
use the BBS generator with that modulus n to compute the sequence {xi}
forwards. By what was just proved, one can compute the sequence {#¿}
backwards if and only if they know the factorization of n.

There are (p — l) /2 quadratic residues modulo p and (q — l) /2 quadratic
residues modulo q. Therefore, by Theorem 5.9, there are (p - l)(q — l) /4
quadratic residues modulo n. The mapping x¿ —> Xi+i is a permutation of the
set of quadratic residues modulo n. Blum, Blum and Shub [11] show how to
ensure that the period of the sequence {xi} is long.

They also prove this result. If the factorization of n is unknown, then the key
stream {6¿} is unpredictable in a strong sense. Given k consecutive key bits
6 j , 6 J + i , . . . , &¿+fc_i, one cannot guess the bits bj+k or bj-i with probability
more than 0.5. Although the algorithm is slow, one can accelerate it somewhat
by using the low-order log2 n bits of xi rather than just the low-order bit.

15.3 Hash Functions
A weak hash function is a function h of a message M of arbitrary length
that produces a message digest or hash value h(M), which is a bit string
of fixed length, say, m bits, such that:
1. Given M, it is easy to compute h(M),
2. Given /i0, it is hard to compute any M for which h(M) = /i0, and
3. Given M, it is hard to find M' ¿ M for which fc(M') = h(M).

A strong hash function is a weak hash function that also satisfies:
4. It is hard to find any two messages M' ^ M for which h{M') — h(M).

A common use for hash functions is authentication of messages. Property 3
provides the authentication. Suppose a long message M is not secret, but the
sender wants the recipient to be sure that M was not changed by an active
wiretapper during transmission. Then M would be sent along with a shorter,
signed message containing h(M). The recipient would check the signature,

Random Number Generation 217

compute h(M) from M, and compare this message digest with the signed one.
If they agreed, he would know that M was the same message that was sent.
Usually, h(M) would be either enciphered or transmitted separately from M.

We will use hash functions in the next section as an aid to generating
random numbers. They are also used in many protocols, such as signing
contracts digitally. If the hash function has Property 4, then only h(M) need
be signed, where M is a long text like a contract.

Property 4 protects M against birthday attacks. Let m be the length in
bits of the message digest h(M). Property 4 says that m is large enough so
that one party to a contract cannot compute h(M) for 2 m / 2 messages M,
which would be needed to mount a birthday attack.

A one-way function is a function / which can be computed easily but
which has the property that given any y in the range of / it is infeasible to
compute any x with f(x) = y. One example is a sparse polynomial of high
degree modulo a large prime. See Purdy [91].

Most hash functions are built from a one-way function / which takes one
argument of length b bits and one of length m bits and produces a value of
length m bits. The whole message M is broken into blocks M¿ of length b bits
each. One computes /i¿ = /(M¿,/i¿_i) with some standard initial value ho of
length m bits. The hash value or message digest is the final hi.

Some examples of hash functions are SNEFRU, N-Hash, MD4, MD5 and
SHA. MD5 produces a 128-bit message digest, while SHA's message digest
has 160 bits, and so is even more resistant to birthday attacks.

Both MD5 and SHA begin by padding the message M with a 1 and as many
0's as needed to make the total length = 448 = 512 - 64 (mod 512). The last
64 bits hold the length of the message (in bits) before padding (modulo 264).
This makes the message length a multiple of 512 bits. Call the 512-bit blocks
M 0 , . . . , M L _ i .

MD5 defines h-i to be a 128-bit constant stored in four 32-bit words. SHA
defines ft_i to be a 160-bit constant stored in five 32-bit words. Both compute
hi = f(Mi,hi-i) for 0 < i < L, where the one-way function / is easy to
compute using addition, shift and Boolean operations on 32-bit integers. See
Schneier [100] or Stallings [114] for more about MD5 and SHA.

15.4 Generating Truly Random Numbers
In designing secure random number generators, it is best to assume your
adversary has a copy of your key-generating program, any master key in it,
and knows the time-of-day, process number, machine name, network address,
etc., of your program and its machine.

Use as many of the following sources of randomness as possible: Use the
computer's clocks: UNIX gives seconds since January 1, 1970 (a whole number
plus a fractional part to the microsecond). Also set an alarm and increment a
counter rapidly until interrupted. Then use the low-order bits of the counter.

218 Cryptânalysis of Number Theoretic Ciphers

Use any available special hardware to produce random bits: a Geiger counter
with a speck of plutonium, a capacitor to charge, an unstable oscillator, ther­
mal noise, radio static, /dev/audio with no mike attached, the disk position
or time to read one block. Use random system values such as CPU load and
arrival time of network packets. If there is a user present, have the user pro­
vide randomness by typing on the keyboard, moving the mouse or speaking
into the mike. Hash together, with SHA, say, anything with at least some
randomness.

If the random bits you generate by using the techniques above appear to
be biased, you should make them less biased in one of the following ways.

1. Exclusive-or several such bits together. Say the bit is 0 with probability
1/2 + e and 1 with probability 1/2 — e, for some 0 < e < 1/2. Then the
exclusive-or of two such bits is 0 with probability (l /2+e) 2 + (l /2 —e)2 —
1/2 + 2e2. Then the exclusive-or of four such bits is 0 with probability
1/2 -h 8e4. In the limit when many such bits are exclusive-or'ed, the
probability that the exclusive-or will be 0 will converge to 1/2.

2. Use the biased "random" bits in pairs: If the two bits in a pair are the
same, skip; else output the first bit.

Neither of these techniques works if adjacent bits are correlated.
Use at least two independent sources of random bits. The random num­

bers for generating session keys should come from the timing of the users'
keystrokes. Private keys may be encrypted by a passphrase, a character
string remembered and typed by the user. SHA produces a 160-bit hash
of the passphrase.

15.5 Exercises
1. A linear congruential generator with m = 65537 produces the three

consecutive X{ values 10413, 9953, 14267. Find a and b.

2. Let M = 10001011 and C = 11110011 be corresponding bit streams
in a known-plaintext attack, where the key was generated by a four-bit
LFSR. Find the matrix H and the tap sequence T.

3. The definition of primitive polynomial is redundant. Prove that if t(x)
is an irreducible polynomial of degree n > 1, then t(x) divides x2n~x + 1.
Hint: Apply Lagrange's theorem to x in F2« = F2[a;]/(£(#)).

4. Let n > 1 be an integer. Prove that set of all quadratic residues modulo
n is a group under multiplication modulo n.

5. Design two programs for choosing truly random numbers on your com­
puter, one which accepts randomness input by a user and one which
does not.

Part II

The Cryptographic
Algorithms

http://taylorandfrancis.com

Chapter 16

Private Key Ciphers

In this part of the book we describe many cryptographic functions and algo­
rithms that use number theory.

This chapter describes several private key encryption functions that use
some number theory. There are many other private key encryption functions
that use little or no number theory, such as the Digital Encryption Standard,
DES, and the International Data Encryption Algorithm, IDEA.

Also called symmetric ciphers, private key ciphers feature very fast enci­
phering and deciphering. They are used to transmit lots of data securely
between two people who have previously agreed on a common secret key, or
to encipher the private files of one person. Each encryption function has a
parameter that determines its secrecy, that is, the difficulty of breaking it by
trying all possible keys.

The plaintext input to each cipher must be broken into blocks of fixed
length and the characters encoded as numbers, for example, their ASCII codes.
These numbers are concatenated into one large number M that represents one
block. We assume it is trivial to encode the characters into M and to decode
M back into characters. The descriptions of the ciphers that follow tell how
to encipher M to form the ciphertext C, a number about the same size as M,
and how to decipher C to recover M.

16.1 Rijndael, the Advanced Encryption Stan­
dard

Rijndael, the new Advanced Encryption Standard, AES, was invented by
Joan Daemen and Vincent Rijmen in Belgium. The name Rijndael is pro­
nounced like "Rain Doll" and not like "Region Deal."

Rijndael is a block cipher. The block size and key length can be chosen
independently to be 128, 192 or 256 bits. It has 10, 12 or 14 steps called
rounds, depending on the block and key lengths. It was designed to be

221

222 Cryptanâlysis of Number Theoretic Ciphers

simple, to be resistant against all known attacks and to have fast and compact
code on many platforms. Each round is composed of four basic steps called
layers, which operate either on eight-bit bytes or 32-bit words. We begin by
describing the arithmetic operations for these types of data.

16.1.1 Byte Arithmetic in Rijndael

A byte bybe . . . 6160 is considered to be a polynomial of degree 7 in F2[x], that
is the coefficients are in {0,1}:

b(x) = b7x
7 + b6x

6 + • • • + hx + 60.

For example, the byte 0xB7 = 1 0 1 1 0111 is the polynomial

x7 +x5 +x4 + x2 + £ + 1.

Bytes are added as polynomials in F2[x], which is the same as combining
them with exclusive-or (0) . Addition is associative and commutative. The
identity element is 0x00 = 0. Every byte is its own additive inverse, since
xe>x == 0.

Example 16.1

We have 0xB7 0 0xA5 = 1011 0111 0 1010 0101 = 0001 0010 = 0x12.

Bytes are multiplied as polynomials modulo m(x) = x8 + x4 + x3 + x + 1 =
0x1 IB. Multiplication is associative and commutative. The identity element
is 0x01 = 1. Every nonzero polynomial (byte) has a unique inverse with
respect to this multiplication. The inverse may be computed by the extended
Euclidean algorithm for greatest common divisor of the polynomial with m(x).
This multiplication is denoted •. Thus, Rijndael treats bytes as elements of
the field F2s, discussed in Example 9.1.

Example 16.2

Multiply the bytes 0xB7 • 0xA5 = 1011 0111 • 1010 0101.
Multiplying them as polynomials, we have

To reduce this polynomial modulo m(x) we replace x8 by x4 + x3 + x + 1.

z 1 4 + x u
 +x

10 + x9 + x8+x3 + x + l =

= x1A+x12 + xn+xg + xs + z7 +

x9 + x7 + x6 + xA + a:3 + x2 +

x7 + x5 +xA +x2 + x + l
14 , 11 , 10 , 9 , 8 . 3 . , -,

= X +X + X +X +X +X +X + \.

(x7 + x5 + xA + z2 + x + 1) Or7 + x5 + x2 + 1) =

12 . 10 . 9 . 7 . 6 , 5 . X +X +X +X + X + X +

Private Key Ciphers 223

/ 10 . 9 . 7 . 6\ . 11 , 10 . 9 . 8 , 3 , , -,
(X +X+X+X)+X +X +X +X +X +X + 1
= x11 + x8 + x7 + x6 + x3 + x + 1

= (X7 + X6 + XA + X3) + X8 + X7 + X6 + Z3 + X + 1

= £ + £ + X + 1

= (x4 + x3 + x + 1) + x4 + x + 1

= x3 (mod m(x)).

The polynomial x3 is the byte 0x08, and this is the product.

Multiplication of b(x) by x = 0x02 is a left shift of one bit position, followed
by an exclusive-or with m(x) if and only if the bit shifted out was 1. Therefore,
multiplication of two polynomials may be performed by up to eight left shifts
and conditional exclusive-ors. Let x t ime(^) denote a left shift of the byte z
by one bit position, followed by an exclusive-or with m(x) = 0 x 1 IB if the bit
shifted out of z was a 1 bit. In pseudocode, x t ime(z) is

f u n c t i o n x t i m e (z)
z = 2z
i f (¿ > 2 5 6) { £ = z e 0 x l l B }
r e t u r n z

E x a m p l e 16.3

Multiply the bytes 0xB7 • 0xA5 = 1011 0111 • 1010 0101.
We begin by multiplying 0xB7 by x% for 0 < i < 7, that is, computing 0xB7

•z, where z is a byte having exactly one 1 bit. Of course, 0xB7 • 0x01 = 0xB7.

0xB7 • 0x02 = xtime(B7) = 0x75

0xB7 • 0x04 = xtime(75) = OxEA

0xB7 • 0x08 = xtime(EA) = OxCF

0xB7 • 0x10 = xtime(CF) = 0x85

0xB7 • 0x20 = xtime(85) = 0x11

0xB7 • 0x40 = xt ime(l l) = 0x22

0xB7 • 0x80 = xtime(22) = 0x44.

Now we exclusive-or the needed bytes to form the product. Since

0xA5 = 10100101 = 0x80 0 0x20 0 0x04 0 0x01,

we have

0xB7 • 0xA5 = 0xB7 • (0x80 0 0x20 0 0x04 0 0x01)

= 0xB7 • 0x80 0 0xB7 • 0x20 0 0xB7 • 0x04 0 0xB7 • 0x01

= 0xB7 0 OxEA 0 0x11 0 0x44 = 0x08,

which is the same product we found in the previous example.

224 Cryptanalysis of Number Theoretic Ciphers

16.1.2 Word Arithmetic in Rijndael

Here is how Rijndael operates on thirty-two bit words.
Thirty-two bit words are regarded as four bytes, which are the coefficients of

a polynomial of degree three with coefficients in F2s, that is, cubic polynomials
in F2s[x}.

Addition of two 32-bit words is simple: Add them as polynomials. This
is the same operation as exclusive-or'ing the coefficients and the same as
exclusive-or'ing the two 32-bit words.

Multiplication of two 32-bit words is done by multiplying the polynomials
modulo M(x) = xA + 1. This multiplication is denoted ®. If

a(x) — a^x3 -f a2x
2 + a\x + ao

and
b(x) = fox3 + fox2 + fox + 60,

then
d(x) = a(x) (g> b(x) = d%x3 + d2x

2 + dix + do

may be computed by

do = a0 • bo © «3 • fo ® «2 • fo © «i • fo

dx = a\ • fe0 0 a0 • òi © a3 • fe2 0 a2 • 63

d2 = a2 • fo 0 ai • fo 0 a0 • &2 0 «3 • &3

d3 = a3 • 60 0 Û2 • 61 0 01 • fo 0 a0 • fo

The reason this works is that multiplication of a cubic polynomial by x
modulo M(x) is equivalent to a circular left shift of the bytes of a 32-bit
word:

xa(x) — x{a%x3 + a2x
2 + a\x + ao) =

= CL3X4 + a2x
3 + a\x2 + ao^ =

= a2x
3 + a\x2 + aox + 03 (mod #4 + 1).

E x a m p l e 16.4

Multiply 0xB7A5662F <g> 0x03010102 modulo M{x) = x4 + 1.
We use the formulas above with ao = 0x2F, a\ = 0x66, 0,2 = 0xA5, 03 = 0xB7,

feo = 0x02, fei = 0x01, fo = 0x01 and fo = 0x03. In the formula for do we have

a0 • feo = 0x2F • 0x02 = 0x5E

a3 • fei = 0xB7 • 0x01 = 0xB7

a2 • fo = 0xA5 • 0x01 = 0xA5

ai • 63 = 0x66 • 0x03 = OxAA

Private Key Ciphers 225

and so

do = do • òo 0 a3 • b\ © a<i • 62 © ai • 63

= 0x5E © 0xB7 0 0xA5 0 Ox A A = 0xE6.

Similarly,

d\ — OxCC 0 0x2F 0 0xB7 0 0xF4 = OxAO

d2 = 0x51 0 0x66 0 0x2F 0 0xC2 = OxDA

d3 = 0x75 0 0xA5 0 0x66 0 0x71 = 0xC7.

Finally, 0xB7A5662F <8> 0x03010102 = 0xC7DAA0E6.

16.1.3 The Structure of Rijndael

Rijndael has 10, 12 or 14 rounds, depending on the block and key lengths.
The block length and key length can be chosen independently to be 128, 192
or 256 bits. Let Nb be the length of the block in 32-bit words (Nb = 4, 6 or
8). Let Nk be the length of the key in 32-bit words (Nk = 4, 6 or 8). Let Nr
be the number of rounds. Then Nr = 14 if either Nb or Nk = 8. Otherwise,
Nr = 12 if either Nb or Nk = 6. Finally, Nr = 10 if both Nb and Nk = 4.

Different parts of the Rijndael cipher operate on the intermediate result,
called the Sta te . The State is a rectangular array of bytes with four rows and
Nb columns. The key begins as a rectangular array of bytes with four rows
and Nk columns. The key is expanded and placed in an array W[Nb*(Nr+l)]
of 32-bit words. We will describe the key expansion in the next section.

Each round of Rijndael consists of four different transformations or layers,
expressed here in pseudo C code.

Round(State, RoundKey)

{
ByteSub(State);
ShiftRow(State);

MixColumn(State);

AddRoundKey(St at e, RoundKey);

}

The FinalRound omits the MixColumn. The plaintext is the initial State.
The final State is the ciphertext. The complete Rijndael cipher consists of:

R i jndae l (S t a t e , CipherKey)
{
KeyExpansion(CipherKey, ExpandedKey);
AddRoundKey(St at e, ExpandedKey);

For (i=l; i<Nr; i++) Round(State, ExpandedKey + Nb*i);

FinalRound(State, ExpandedKey + Nb*Nr);

}

226 Cryptanalysis of Number Theoretic Ciphers

Before we describe these transformations, we define a simple substitution
cipher S on bytes. If a is a byte, compute S (a) as follows.

1. First, if a / 0, take the multiplicative inverse of a in F2s, that is, the
inverse with respect to the • multiplication. Map a = 0 to itself. Label
the bits of the resulting byte XJXQXSX^XSX2XIXO-

2. Apply the affine transformation (over F2)

2/o

2/i
2/2
2/3
2/4
2/5
2/6
2/7

10001111
1 10001 1 1
1 1 10001 1
1 11 10001
11111000
01111100
00111110
00011111

x0

Xi

%2

X3

X4

5

x6

x7

+

' l 1

1
0
0
0
1
1
0

Then S(a) is the byte 2/72/62/52/42/32/22/12/o- Each of these two steps performs a
permutation of bytes. There is an inverse function S~l so that S~1(S(a)) = a
for every byte a. In most implementations of Rijndael, the function S and
its inverse are precomputed, so that they may be evaluated by table look-up
during encryption.

Now we describe the round transformations.
ByteSub (Sta te) transforms each byte a in the State by replacing it with

S(a).
ShiftRow (Sta te) is a circular left shift of the rows in the State by various

byte offsets which depend on Nb and on the row. The shift offsets are specified
in this table.

Shift offsets for different rows and block lengths.

Nb

4
6
8

RowO

0
0
0

Rowl

1
1
1

Row2

2
2
3

Row3

3
3
4

In MixColumn(State) the columns of the State are considered to be cu­
bic polynomials with coefficients in F2s and each is multiplied (<g>) modulo
M(x) = xA + 1 with the fixed polynomial

c(x) = 0x03a:3 + 0x01a;2 + OxOlx + 0x02.

The polynomial M(x) — x4 + 1 is not irreducible in F2s[x], so not all cubic
polynomials are invertible modulo M(x). However, the polynomial c(x) is
relatively prime to x4 + 1 and therefore invertible. The inverse operation to
MixColumn (Sta te) is multiplication of each column by

d(x) = OxOBx3 + OxODz2 + 0x09x + OxOE.

Private Key Ciphers 227

AddRoundKey(State, RoundKey) is simply a byte-by-byte exclusive-or of
State with RoundKey. The generation of RoundKey is described in the next
section.

16.1.4 The Key Schedule of Rijndael

Here we tell how the key is expanded and the round keys are produced.
Recall that the key begins as a rectangular array of bytes with four rows

and Nk columns. The key is expanded and placed in an array W[Nb*(Nr+l)]
of 32-bit words.

The first Nk words of the array W are the key. Each subsequent word is
the exclusive-or of the previous word and the word Nk words back in the
array, except that words whose subscript is a multiple of Nk have the previous
word transformed before the exclusive-or. When Nk < 6, the key expansion is
described in this pseudo C code.

For (i = Nk; i < Nb*(Nr + 1) ; i++) {
temp = W[i - 1] ;
if (i °/, Nk == 0) temp = T(temp) ;
W[i] = W[i - Nk] xor temp;
}

Here xor is the exclusive-or operation © and T(w) is a transformation of a
word w described as follows. First, the bytes of w are rotated left one byte
position. Next, S is applied to each of the four bytes. Finally, the high order
byte is exclusive-or'ed with a byte representing the element ^(«/Nk)-1^ where i
is the loop variable i in the pseudocode.

The RoundKey used in the i-th AddRoundKey transformation consists of the
Nb consecutive words of the key array W beginning with W[Nb*i].

16.1.5 Summary of Rijndael

Ideas from finite field theory are used to give a concise and elegant description
of the substitution and transposition of bits and bytes that define Rijndael. It
does not have the linearity that is the weakness of linear feedback shift regis­
ters. See Chapter 5 of Trappe and Washington [115] for another presentation
of Rijndael.

Rijndael is by far the fastest cipher described in this chapter, which is one
reason it was chosen as the new AES to replace DES. Implementations of the
cipher in hardware can encipher and decipher at disk transfer speeds.

We did not describe the deciphering function for Rijndael, which is slightly
slower and more complicated than the enciphering function. One reason it
takes longer is that multiplication (0) by d(x) is slower than multiplication
by c(x). The interested reader can either derive the deciphering function or
look it up on the Web.

228 Cryptanalysis of Number Theoretic Ciphers

16.2 The Pohlig-Hellman Cipher
The Pohlig-Hellman cipher is an example of an exponentiation cipher, one
which uses exponentiation modulo a large number as its encryption function.
Here is how an exponentiation cipher functions.

Choose a large integer n for modulus. Encode plaintext as blocks in 0 <
M < n. Encipher M as C - E(M) = Me mod n. Decipher C as M =
D(C) = Cd mod n.

This works, that is, D(E(M)) = M for all M in 0 < M < n, provided that
ed = 1 (mod 0(n)) since M ^ n) = 1 (mod n), by Euler's theorem. (Proof:
Write ed = t<t>(n) + 1 for some integer t.) This implies that e and d are
relatively prime to <¡>{n).

The Pohlig-Hellman cipher is not a public-key cipher. It is a symmetric
cipher which is used in one of the two following ways.

Let n = p= prime. Then </>(p) — p—1 and ed = 1 (mod p — 1).
Method 1: Keep all of p, e,d secret. All three are the "key." There is just

one user or one pair of users.
Method 2: Let p be public and keep e and d secret. The key is the pair

(e,d). Each user has a secret pair to safeguard her personal secrets. Each
pair of users who wish to communicate choose a common key pair.

Since it may take a while to generate a large prime, Method 2 is more com­
monly used than Method 1. Furthermore, Method 2 has interesting mathe­
matical properties which foster its use in special ways discussed later (Massey-
Omura, mental poker).

Here is the cryptanalysis. For a known-plaintext attack on Method 2, one
is given a prime p, C and M, and must find an exponent e so that C =
Me (mod p), or equivalently, d so that M = Cd (mod p). These problems
are instances of the discrete logarithm problem, in which one is given positive
integers a, b and m, and must find x so that ax = b (mod m). This is a well
known difficult problem in number theory, and ways to solve it are discussed
in Chapter 14.

16.3 Elliptic Curve Pohlig-Hellman
This cipher works just like the Pohlig-Hellman cipher except that the multi­
plicative group Rp of integers modulo p is replaced by an elliptic curve.

Let p be a large prime and let E be an elliptic curve modulo p that has
order N, that is, E has TV points including the identity oo.

We will explain shortly how a plaintext block M might be embedded into
the ^-coordinate of a point P on E. Assume this has been done.

A point P on E is enciphered by adding it to itself e times, using fast
multiplication; the ciphertext point is Q = eP. The latter is deciphered by
multiplying by d: P = dQ.

In order for the deciphering to return to P , the multipliers e and d must
satisfy ed = 1 (mod N), because NP = oo by Lagrange's theorem, and

Private Key Ciphers 229

so cP = P for any c = 1 (mod iV). This implies that e (and d) must be
chosen relatively prime to N. Of course, one should choose a random e in
1 < e < N, relatively prime to N, and then compute d by the extended
Euclidean algorithm.

By Hasse's theorem, N is approximately p. But this approximation is not
good enough. We must know N exactly in order to choose e and d. In typical
cryptographic applications, N and p must be large enough so only Schoof's
algorithm is fast enough to compute N. Schoof's algorithm is complicated.
If you have a program for it, then you are free to choose any elliptic curve E
for the analogue of the Pohlig-Hellman cipher. Otherwise, you must choose
an elliptic curve whose order has been published.

In a known-plaintext attack on this system, one is given E, p, TV (which are
public anyway), P and Q, and one must find e with Q = eP or, equivalently,
d with P — dQ. Either problem is the discrete logarithm problem on the
elliptic curve E, whose solution is discussed in Chapter 14.

Now we deal with the matter of embedding plaintext into points. There are
two methods in common use. Both embed a plaintext M in 0 < M < p into
the x-coordinate of a point P = (#, y) on a given elliptic curve E.

The first method is probabilistic and may fail to embed M with a positive
probability. The overall encryption function must handle this failure grace­
fully. It may

1. skip M,

2. change M in some way, or

3. ask for human assistance in changing M.

In any case, it is easy to make the probability of failure minuscule. Let us
reserve k bits of the ^-coordinate for a small integer. Then the blocks M
must be k bits shorter, that is, 0 < M < p/2k rather than 0 < M < p. The
probability of failure will be only 1 chance in 22 . This is less than one chance
in a billion if k = 5. The x-coordinate will be x — 2kM + ¿, where ¿is a k-bit
integer 0 < i < 2k. When P is recovered during deciphering, M is extracted
from x by M = [x/2h\, which may be done quickly with a right shift of x by
A: bits. Let the elliptic curve have equation y2 = x3 + ax + b (mod p). Choose
i by this algorithm:

for (i = 0 to 2k - 1) {
x = 2kM + i
if (((x3 + ax + b)/p) = +1) { r e t u r n i }
}

r e t u r n "Fa i lu re : could not choose i"

The algorithm returns the first i < 2k, if any, for which the Legendre
symbol ((x3 + ax + b)/p) = +1 . Since the Legendre symbol (r/p) is +1 for

230 Cryptanalysis of Number Theoretic Ciphers

(p — l) /2 values of r modulo p, and since, for each i, the value x3 + ax + b is
more or less random modulo p, the probability that all 2k choices for i yield
((x3 + ax + b)/p) 7̂ +1 is about 2 - 2 , as claimed.

Once we have i with ((x3 + ax + &)/p) = + 1 , where x = 2fcM + i, we find a
square root y oî x modulo p by the methods of Chapter 7 and let P = (x, 2/).
Then F lies on £ .

The second method of embedding plaintext into points is deterministic but
only works for special primes p and elliptic curves E. Plenty of primes and
elliptic curves satisfy the requirements.

Assume that p = 3 (mod 4), that is, p is a Blum prime. For such primes p,
— 1 is a quadratic nonresidue, so (—1/p) = — 1. Let b = 0 in the congruence
defining E, so that E is y2 = x3 + ax (mod p).

Plaintext M is restricted to 0 < M < p/2. Thus, one bit of possible
plaintext storage space is lost. Given M, form t = M 3 + aM mod p. Since
(—1/p) = — 1, exactly one of t and — t is a quadratic residue modulo p by
Theorem 7.5. If (¿/p) = + 1 , let x = M. If (£/p) = - 1 , let x = p - M. Then
((x3 + CLX)IP) — +1 and we can find ?/ with y2 = x3 + ax (mod p) by Theorem
7.13. Let P = (x,2/). When P is recovered during deciphering, look at x. If
x < p/2, then M = x. If x > p/2, then M = p- x.

16.4 Exercises
1. This question concerns the 8-bit and 32-bit arithmetic operations used

in Rijndael.

a. Add the bytes 0xB3 © 0x95.

b. Multiply the bytes 0xB4 • 0x4F.

c. Find the inverse with respect to the • multiplication of the byte 0xB3.

d. Multiply the 32-bit numbers (regarded as cubic polynomials over F2s)
0x21A68490 <g) 0x03010102 (modulo M(x), of course), just as Rijndael's
MixColumnO procedure would multiply them. Your answer should be a
32-bit number, given as hexadecimal digits. (The low-order byte is the
constant term of the cubic polynomial.)

e. Show that d(x) is the inverse of c(x) by multiplying them modulo
M(x) = x4 + 1.

2. We mentioned that the polynomial M(x) = x4 + 1 is not irreducible in
F2s[x]. Factor it.

3. The Pohlig-Hellman cipher with prime modulus p = 2591 and encipher­
ing exponent e — 13 was used to encipher a secret message. Two-letter
blocks were used. Note that the largest block would be 2525 (meaning
ZZ) and this is less than p. Decipher the cipher text 1213 0902 0539
1208 1234 1103 1374.

Chapter 17

Public Key Ciphers

This chapter introduces several public key ciphers. Public-key ciphers are
generally slower than private key ciphers. They are used for short commu­
nications, like a private key for a longer attached ciphertext. In contrast to
private key ciphers, they do not require the exchange or establishment of a
secret key before communication begins.

Another advantage of public key ciphers is that fewer keys are needed when
many users wish to communicate with each other. If n people communicate
with public key cryptography, then there are n public keys, one per person.
If the same n people wished to use private key cryptography, then each would
have to manage n — 1 keys, one for each other user, and there would be a total
of (£) = n(n - l) /2 keys.

11.1 Rivest- Shamir- Adleman
The Rivest-Shamir-Adleman public key cipher, RSA, [97] is another exponen­
tiation cipher. See Section 16.2 for exponentiation ciphers.

Each user of RSA chooses two large primes p and q. She lets n = pq. She
chooses a random e in 1 < e < n - 1 with gcd(e, (f)(n)) = 1. Now </>(n) =
(j>{pq) = (p— l)(q — 1), so she calculates d so that ed = 1 (mod (p— \){q — 1)).
She makes n and e public, but keeps d secret. The factors p and q are not
needed after e and d are computed, but in any case should not be revealed.
The encryption function is E(M) = Me mod n, which anyone can compute,
since n and e are public. The deciphering function is D(C) = Cd mod n.

Since n is public and one can easily compute d from e and the factors of n,
a direct approach to breaking RSA is to factor n. Using the best currently-
known methods, this is about as hard as solving a discrete logarithm problem
with the same sized modulus. For a modulus n of 300 decimal digits, this is
too hard for current algorithms and computers.

It may be possible to break RSA without factoring n. However, it is prob­
ably true that if you know an algorithm that can decipher any ciphertext C

231

232 Cryptanalysis of Number Theoretic Ciphers

with positive probability, then you can use the algorithm to factor n, but no
one has ever proved this statement. If the hypothetical deciphering algorithm
raises C to a fixed power modulo n, then, with high probability, you can factor
n.

17.2 Massey- Omura
One can change the Pohlig-Hellman private-key cipher in Section 16.2 slightly
to create a public-key cipher. This was done [70] by Massey and Omura. Their
system is not used much because it is inefficient. (But the elliptic curve version
is used.)

Consider a Pohlig-Hellman cipher with common prime p. This was called
Method 2 in the previous chapter. Suppose users A and B have encryption
functions EA and EB and decryption functions DA and DB- (SO EA(M) =
M6A modp and DA(C) = CdA modp, where e^d^ = 1 (mod p — 1), etc.)
Since the encryption and decryption functions all consist of exponentiation
modulo a fixed modulus, they all commute, that is, they may be done in any
order and give the same result. For example, EA(DB(X)) — DB{EA(X)) for
every x because both are just x AdB = xdB6A (mod p).

How do A and B use this property as a public-key cipher? The "public key"
is the common prime modulus p. The private keys are all of the exponents
(unlike RSA). If Alice wants to send a message 0 < M < p to Bob, she first
sends EA(M) to Bob. Bob replies by sending EB(EA(M)) to Alice. Then
Alice sends DA(EB(EA(M))) = EB(DA(EA(M))) = EB(M) to Bob. Bob
deciphers the message by applying DB to EB(M).

Note that this requires three messages to pass between Alice and Bob. This
means that they must communicate in close to real time.

An eavesdropper would see the messages r = EA(M), S = EB{EA(M)) and
t = DA{EB(EA(M))) = EB(DA(EA{M))) = EB(M) pass between Alice and
Bob. If the eavesdropper could solve the discrete logarithm problem modulo
p, then he could read M in either of two ways. First, s = reB (mod p). He
knows s, r and p. If he can solve for es, then he can compute ds by the
extended Euclidean algorithm. Then he can compute M = tdB mod p. The
other way to read M is to use the congruence s = t A (mod p) to find e^, by
solving a different discrete logarithm problem. Then compute d A from e^ by
the extended Eulcidean algorithm and find M = rdA (mod p). It is likely that
the two discrete logarithm problems are equally hard. But it is possible that
one of the bases r, t might have a much smaller order modulo p than the other,
and so produce an easier discrete logarithm problem. In a direct attack on
this communication, one should try to solve both problems together. The two
discrete logarithm problems are intertwined. It would be interesting to find
an attack on both of them together, using information from each congruence
to facilitate the solution of the other, so that the total effort is easier than
solving either one separately.

Public Key Ciphers 233

17.3 Elliptic Curve Massey-Omura
Consider an elliptic curve Pohlig-Hellman cipher with elliptic curve E having
N points modulo a prime p. Suppose users A and B have encryption functions
EA and EB and decryption functions DA and DB> (SO EA(P) = CAP on E.
DA(Q) — ÚAQ on E, where e^d^ = 1 (mod TV), etc.) Since the encryption
and decryption functions are all multiplication of integers times points on E,
they all commute, that is, they may be done in any order and give the same
result. For example, EA(DB(P)) — DB(EA(P)) for every P because both are
just eAdBP = OIBCAP-

How do A and B use this property as a public-key cipher? The "public
key" consists of E, N, and p. The private keys are all of the multipliers
eA, d>A, etc. If Alice wants to send a message 0 < M < p to Bob, she first
embeds it in a point P of E, as explained in the previous chapter. She sends
EA(P) to Bob. Bob replies by sending EB{EA(P)) to Alice. Then Alice
sends DA(EB(EA(P))) = EB(DA(EA(P))) = EB(P) to Bob. Bob deciphers
the message by applying DB to EB(P).

Note that this requires three messages to pass between Alice and Bob. This
means that they must communicate in close to real time.

An eavesdropper would see the messages R — EA(P), S = EB(EA(P))

and T = DA(EB(EA(P))) = EB(DA(EA(P))) = EB(P) pass between Alice
and Bob. If the eavesdropper could solve the discrete logarithm problem for
points of E, then he could read P in either of two ways. First, S — e#i2. He
knows 5, i?, E, N, and p. If he can solve for e#, then he can compute ds
by the extended Euclidean algorithm. Then he can compute P = dsT. The
other way to read P is to use the equation S — CAT to find eA, by solving
a different discrete logarithm problem on E. Then compute dA from e^ by
the extended Eulcidean algorithm and find P = d^i?. It is likely that the
two discrete logarithm problems are equally hard. But it is possible that one
of the points i?, T might have a much smaller order on E than the other,
and so produce an easier discrete logarithm problem. In a direct attack on
this communication, one should try to solve both problems together. The two
discrete logarithm problems are intertwined. It would be interesting to find
an attack on both of them together, using information from each congruence
to facilitate the solution of the other, so that the total effort is easier than
solving either one separately.

17.4 ElGamal
The ElGamal public key cryptosystem is defined as follows: Fix a large
prime p which is public. Also public is a primitive root g modulo p in 1 <
g < p. Each user A who wishes to participate in this public-key cryptosystem
chooses a secret a A in 0 < a A < p — 1 and publishes ÒA = gaA mod p. When
a user B wants to send a secret message M i n O < M < p t o ^ 4 , she chooses

234 Cryptanalysis of Number Theoretic Ciphers

a random k in 0 < k < p— 1 and sends to A the pair

C = (gk modp, (MbA) mod p).

The plaintext M is enciphered by multiplying it by bA in the second com­
ponent of C. Note that bk

A = (gaA)k = gaAk (mod p). The first component
of C provides a hint for deciphering M from the second component of C, but
one which is useful only to A. Only A knows the secret key a A , SO only A can
compute (gk)aA = gaAk (mod p). If the multiplicative inverse of this number
is multiplied times the second component, one recovers M:

• (gaAk)~l (Mbk
A) = {g^y1 (MgaAk) = M (mod p).

An eavesdropper who could solve the discrete logarithm problem modulo p
could compute M from C and public data without knowing a A as follows. The
first component of C is h = gk mod p. This number and T — {MbA) mod p are
observed by the eavesdropper. The eavesdropper knows p and g because these
numbers are public. He can also obtain A's public key 6^ from .A's directory,
just as B did. He would solve the discrete logarithm problem gk = h (mod p)
for k and then compute

T (bk
A)~l = (MÒ*) (ft*)"1 = M (modp).

17.5 Elliptic Curve ElGamal
There is an elliptic curve analogue to the ElGamal public key cryptosystem
defined as follows: Fix an elliptic curve E modulo p and a point P0 of large
order on E. All of this data is public. Each user A who wishes to participate in
this public-key cryptosystem chooses a secret a A in 0 < a A < p and publishes
PA = CLAPO on E. When a user B wants to send a secret message M to A, she
first embeds M into a point P of E (explained in the previous chapter). She
chooses a random kinO < k < p and sends to A the pair C = (kPo, kPA+P).

The plaintext P is enciphered by adding the point kPA in the second com­
ponent of C. Note that kPA = k(a,APo) = (kaA)Po- The first component of
C provides a hint for deciphering P from the second component of C, but
one which is useful only to A. Only A knows the secret key a A , SO only A
can compute a,A(kPo) = (kaA)Po> If this point is subtracted from the second
component, one recovers P: kPA+P—(ka,A)Po = (küA)Po+P— {küA)Po — P>

An eavesdropper who could solve the discrete logarithm problem on E could
compute P from C and public data without knowing a A as follows. The first
component of C is P\ = kPo. This and T — kPA + P are observed by the
eavesdropper. The eavesdropper knows p, E and PQ because this information
is public. He can also obtain A's public key PA from ^4's directory, just as B
did. He would solve the elliptic curve discrete logarithm problem kP0 = Pi
for k and then compute T - kPA = (kPA + P) - kPA = P .

Public Key Ciphers 235

17.6 Rabin- Williams
This is a public key cipher invented by Rabin [92]. Each user chooses two
large Blum primes p and q, that is, p = q = 3 (mod 4). The user publishes
the product n = pq as her public key. The factors p and # are her private key.
Someone who wishes to send a plaintext M in 0 < M < n to the user encrypts
M a s C = M2 mod n. The user, knowing the factors of n, can compute the
four square roots of C modulo n by the methods of Chapter 7. If the original
M was written in English, then, with high probability, only one of the four
square roots of C will make sense, and this one is M.

If M were a binary string, then a standard header must be prepended to
M before enciphering to allow the recipient to tell which square root is M.
For example, one might use a two-bit number to indicate which square root
is M: "00" means "the smallest one," "01" means "the second smallest one,"
etc. The enciphering function would have to compute all four square roots to
determine this two-bit number.

Here is a slightly faster and more elegant way to fashion the two bits.
During deciphering, the square roots of M2 are first computed modulo p and
modulo ç, and then they are combined with the Chinese remainder theorem
in the four possible ways. Let the bits indicate whether (i) M mod p < p/2
and whether (ii) M mod q < q/2. These bits are easy to compute during
enciphering and they prevent unnecessary work during deciphering.

Aside from a lack of elegance, the downside of using two bits to distinguish
a square root is that they provide a modicum of information about M to a
cryptanalyst.

Recall that the RSA public key system is probably equivalent to factoring
its modulus, but no one has proved this statement. This equivalence can be
proved for the Rabin cipher.

THEOREM 17.1 Breaking Rabin's cipher is equivalent to factoring n
Breaking the Rabin cipher is equivalent to factoring its modulus n.

PROOF Clearly, anyone who can factor n can decipher any message the
same way the intended recipient can decipher it.

Breaking the Rabin cipher means having an algorithm that will decipher
any message M in a reasonable time. In the first version of the cipher above,
the algorithm would have to return all four square roots of C so that the
human user could decide which one was meaningful. One could factor n by
squaring an arbitrary x modulo n, using the algorithm to find the four square
roots of x2 modulo n, and picking one of them, say, y ^ ±x (mod n). Then
gcd(x + y,ri) = p or q, by Theorem 13.1, and n has been factored.

In the versions of the cipher with two extra bits, square an x modulo n and
use the algorithm one, two or three times, with different two-bit numbers,
until it gives you ay ^ ±x (mod n). Then factor n as before. I

236 Cryptanalysis of Number Theoretic Ciphers

Williams [122] improved Rabin's cipher by eliminating the ambiguity in
deciphering without adding a two-bit number. Williams' cipher also has the
property that breaking it is provably equivalent to factoring the modulus. In
his scheme, the user chooses large primes p = 3 (mod 8) and q = 7 (mod 8).
Let n = pq. Then n = 5 (mod 8). Let d = {(p - l)(q - l) /4 + l) /2 , which is
an integer. The public key is n. The secret key is d. The primes p and q are
not needed after d is computed. They may be discarded, and certainly should
not be revealed. Let (r/n) denote the Jacobi symbol.

The set of allowed plaintext M is not all of 0 < M < n. Let M be the set
of all positive integers M such that 2(2M + 1) < n when ((2M + l) /n) = - 1
and 4(2M + 1) < n when ((2M + l) /n) = +1 . Only M in M are allowed to
be plaintext. This set includes all M in 0 < M < n/S — 1 and some larger M.

Williams defines the following functions for encryption and decryption.
For M e M, let

THEOREM 17.2 Williams' version of Rabin's cipher works
If M G M, then D1(D2(E2(E1(M)))) = M.

If we define E(M) = E2(E1(M)) and D(C) = D1{D2(C)), then the theorem
says that for every M G M, we have D(E(M)) = M. The enciphering
function E is easy to compute by anyone who knows the public key n. The
deciphering function D is easy to compute by anyone who knows the public
key n and the secret key d. The proof of Theorem 17.2 requires one lemma.

LEMMA 17.1
Ifn — pq, where p and q are distinct Blum primes, and (M/n) = 1, then

We have (2/n) = —1 because n = 5 (mod 8), so (Ei(M)/n) = 1 for every
M. It is possible for ((2M + l) /n) = 0, but this event is so unlikely that we
ignore it. Note that the Jacobi symbols are easy to compute.

Define E2(N) = N2 mod n. This is Rabin's enciphering function.
Define D2(C) =Cdmodn.
Finally, let

Public Key Ciphers 237

PROOF Since (M/(pq)) = 1, we have (M/p) = (M/q), by definition of
the Jacobi symbol.

Suppose first that (M/p) = (M/q) = 1. By Euler's criterion, M ^ " 1) / 2 =
1 (modp) and M ^ " 1) / 2 = 1 (mod q). Hence, M ^ " 1 ^ " 1) / 4 = 1 (mod p) and
M (p - l) (g - l) / 4 = ! (m o d g) a n d s o M (p - l) (î - l) / 4 = 1 (m o d ^)

Suppose now that (M/p) = (M/ç) = - 1 . By Euler's criterion, M ^ - 1 ^ 2 =
- 1 (modp) a n d M ^ - 1) / 2 = - 1 (modg). Since (p - l) / 2 a n d (q-l)/2 are odd
numbers (because p = <? = 3 (mod 4)), we have M ^ - 1 ^ - 1) / 4 = — 1 (mod p)
and M ^ " 1) ^ " 1) / 4 EE - 1 (mod q) and so M ^ " 1 ^ " 1) / 4 = - 1 (mod pq). I

Now we prove Theorem 17.2.

PROOF Let M <E M. Let N = EX(M). Then AT is even and 0 < TV < n.
We have (N/n) = 1 because (2/ra) = — 1.

Let L = D2(E2(N)). Then

L = (AT2)d = iV2d = ^(P- i) (g- i) /4+i = ±N (m o d n)

by Lemma 17.1. Also, 0 < L < n. Therefore, since N is always even, if L is
even, then L — N, while if L is odd, then L — n — N.

If L = 0 (mod 4), then 2M + 1 = N/4 and so M = (L/4 - l) /2 = Z?i(L).
We leave the other three cases of L modulo 4 to the reader. I

THEOREM IT.3 Breaking Williams' cipher is equivalent to factoring n
If there is an efficient algorithm A such that for every C of the form C = E(M)
for some M G M, A can compute M given C, then there is an efficient
algorithm for factoring the modulus n.

For a proof, see Williams [122].

17.7 Exercises
1. Alice uses n — 2581 and e^ = 107 for her public RSA key. How would

Bob encipher M = 1619 to send to Alice? Decipher the ciphertext
C = 1674, which Alice received from Chuck.

2. Alice uses the "double RSA" cipher. She makes public a modulus n,
which is the product of two secret primes, and two public encryption
exponents, e\ and e2- She tells people to encipher messages M in 0 <
M < n to her by computing C\ = Mei mod n and then C = C{2 mod n
and sending just C to her.

a. Tell how Alice deciphers C, using her knowledge of the secret prime
factors of n.

238 Cryptanalysis of Number Theoretic Ciphers

b. Is there an easy way to factor n, given e\ and e2?

c. Is the "double RSA" cipher more secure, less secure or just as se­
cure as the regular RSA cipher with the same modulus n but only one
encryption exponent?

d. Chuck got Alice's instructions confused, and enciphered a message
M for Alice using e\ and e<¿ in the reverse order. What happened when
Alice, unaware of Chuck's error, tried to decipher the ciphertext using
her usual procedure? Did she get M or nonsense? If nonsense, could
she recover M anyway?

3. Alice and Bob use the Massey-Omura cipher with common modulus
p — 2591. Alice's secret enciphering exponent is e^ — 107; Bob's is
eB = 257. Compute the deciphering exponents and show the numbers
passed between them when Alice sends Bob the plaintext M — 1234.

4. Alice and Bob use the elliptic curve Massey-Omura cipher with the el­
liptic curve y2 = x3 + 1441# + 611 (mod 2591). Alice's secret enciphering
multiplier is 6A = 107; Bob's is es — 257.

a. Find the number of points on the elliptic curve.

b. Compute the deciphering multipliers d A and cfe.

c. Show the numbers in the messages passed between them when Alice
sends Bob the plaintext P = (1619,2103).

5. A simple version of the ElGamal cipher uses the public common modulus
p = 97 and the primitive root g — 5. Alice participates in this ElGamal
system and uses e^ = 37 as her secret key and ÒA = 9eA mod p = 56 as
her public key. How would Bob encipher M = 82 to send to Alice if he
chose k — 75 for the random number? Show how Alice would decipher
the ciphertext (7,84), which she received from Chuck.

6. Alice uses the Rabin-Williams cipher with public modulus n = 11021.

a. What ciphertext would Bob send to Alice if the plaintext is M — 678?

b. Factor n via Fermât 's difference of squares method.

c. Find Alice's deciphering exponent d.

d. Decipher the ciphertext C = 6525, which Alice received from Chuck.

7. Finish the proof of Theorem 17.2 by showing that D\{L) = M for the
three remaining cases of L modulo 4.

Chapter 18

Signature Algorithms

This chapter defines several signature algorithms. These are methods of "sign­
ing" messages to show their authenticity.

18.1 Rivest-Shamir-Adleman Signatures
RSA has no direct authentication: Anyone can send any message to you and
claim it came from anyone. However, one can sign RSA [97] messages as
follows.

Use the same notation for enciphering and deciphering functions as we did
for Massey-Omura: EA, DB, etc. Alice can sign (and encipher) a message M
to Bob by sending C = EB(DA(M)) to Bob. Bob can decipher C by applying
DB to it (to get DA(M)) and then check the signature by applying EA to the
latter.

Note that Bob's cipher algorithms do not commute with Alice's because
the modulus is different. Thus the order in which Bob applies the operations
to C matters: Bob must use DB first and then EA second.

There is another problem caused by the different moduli. The functions
DA and EA perform arithmetic modulo Alice's modulus TÍA while EB and DB
perform arithmetic modulo Bob's modulus UB- This works fine if UA < TIB,
but part of the message will be lost if UA > TIB •

There are three ways to solve this problem:

1. Re-block the message after DA is applied.

2. Enforce an arbitrary threshold T and let every RSA user A have two
complete sets of RSA keys, one with n ^ < T and one with UA2 > T.
The keys with the smaller modulus TIA1 are used for signing messages
from A and the keys with the larger modulus UA2 are used to encipher
messages going to A.

239

240 Cryptanalysis of Number Theoretic Ciphers

3. A more elegant solution is for Alice to sign (and encipher) a message
M to Bob by sending C = EB(DA(M)) to Bob when HA < n#, and by
sending C = DA(EB(M)) to Bob when HA > n ¿ . In either case, Bob
undoes these operations in reverse order.

In the third method, what if Alice later denies sending M, and Bob goes
to an independent judge to prove that M bears Alice's signature? In the first
case {TÍA < ns), Bob gives the judge M and X = DB(C), the judge computes
M' = EA(X) and tests whether M' — M. If so, the judge rules that Alice
signed M. In the second case (TÍA > KB), Bob gives the judge M and C, the
judge computes X1 = EB(M) and X' = EA(C) and tests whether X' — X.
If so, the judge rules that Alice signed M.

There is a trick that speeds RSA signature generation by a factor of four.
Suppose the modulus is n — pq, where the primes p and q have about the
same length. Let b be the number of bits in n, so that the length of p and
q is about 6/2 bits. If the decryption exponent is d, the plaintext M is
signed as D(M) = Md mod n. According to Theorems 6.2 and 3.5, this
fast exponentiation takes about cb3 bit operations, for some constant c > 0.
The trick replaces this fast exponentiation by two fast exponentiations with
b replaced by 6/2. Let Mp = M mod p, Mq = M mod q, dp — d mod (p - 1)
and dq = d mod (q — 1). The length of each of these four numbers is about 6/2
bits. Compute Sp = Mp

p mod p and Sq = Mq
 q mod q by fast exponentiation.

Each of these exponentiations takes about c(6/2)3 = (c/8)63 bit operations.
Now the signature D(M) = Sp (mod p) and D(M) = Sq (mod q), so D(M)
can be computed from Sp and Sq by the Chinese remainder theorem. In
the application of the Chinese remainder theorem, the inverses p~l mod q
and q~x mod p may be precomputed. The result is that D(M) = (aSp +
bSq) mod n where a and b are precomputed constants. The total number of
bit operations is essentially 2(c/8)ò3 = c63/4, which is one-fourth as many as
for computing D(M) — Md mod n directly. The same trick can be used in
deciphering RSA messages, too, of course. But it can't be used to accelerate
RSA encryption because p and q must be kept secret.

18.2 ElGamal Signatures
In addition to encryption, as explained in Section 17.4, one can sign messages
with the ElGamal scheme. The security depends on the difficulty of the
discrete logarithm problem.

All users have a common large prime p and a primitive root g for p. These
numbers are public. Each user chooses a secret x m. 1 < x < p — 2 and
publishes y — gx mod p. Thus, the public key is p, g and y, while the private
key is x. We explained in Section 17.4 how to encipher a message to the user
with public key y.

This user can sign a plaintext M as follows. Choose a random k in 1 <

Signature Algorithms 241

k < p — 1 and relatively prime to p — 1, and let a — gk mod p. Then solve the
congruence kb = M - xa (mod p-l) for b by Theorem 5.7. This congruence
can be solved since gcd(k,p - 1) = 1. The signature for M is the pair (a, 6).

The recipient verifies the signature by checking whether yaab = gM mod p.
Since y = gx (mod p) and a = gk (mod p), this is equivalent to gxagkb =
gM (mod p). By Theorem 6.3, this will hold provided xa + kb = M (mod p —
1), which is equivalent to the congruence defining b. Hence the signature
verification will succeed if the signature was constructed according to the
rules above. It is reasonable to call (a, b) a "signature" because it is hard to
find a and b satisfying yaab = gM mod p without knowing x.

The random number k must not be revealed since it would allow one to
compute the secret key x from the congruence xa + kb = M (mod p — 1).

Example 18.1

Suppose p = 19, g = 2 and x = 7. Then y = gx mod p = 14. To sign a message
M = 14, the user would choose a random k = 13, say, and let a = gk mod p = 3.
Solve for 6 in 136 = kb = M - xa = 14 - 7 • 3 = 11 (mod p - 1) to get 6 = 5.
The signature for M = 14 is the pair (3, 5). To verify the signature, one checks
the congruence

6 = 214 = gM = abya = 35143 = 15 • 8 = 6 (mod 19).

18.3 Rabin-Williams Signatures
Recall the discussion of the Rabin-Williams cipher in Section 17.6. We will
use the same notation in this section.

Theorem 17.2 says that if M e M, then D1(D2(E2(El(M)))) = M. Since
both of the functions E2 and D2 are exponentiations modulo n, they commute:
E2(D2{C)) = C2dmodn = D2(E2(C)). Therefore, from Theorem 17.2, we
obtain the corollary that if M E A4, then D1(E2(D2(E1(M)))) = M.

This corollary can be used to produce signatures as follows.
Suppose Alice uses EA = E2AE\A and DA — D\AD2A as her enciphering

and deciphering functions. Let Bob use the corresponding functions EB —
E2BE\B and DB = DIBD2B- If Alice wishes to sign and encipher a message
M to Bob, she computes the signature 5 = D2A{E\A{M)) and sends C =
EB(S) to Bob. The mail header tells Bob that this is a signed message from
Alice.

Bob deciphers C by computing L = DB(C). He finishes deciphering it
and checks Alice's signature by computing DIA(E2A(L)) = M. Since only
Alice knows D2A, only she could have signed it. Only Alice could compute
a ciphertext which would decipher through E2A into a meaningful message.
The reason this technique works is the corollary mentioned above.

As with RSA signatures, there may be a problem with the relative size of
the moduli used in E2A and E2B . The signature S might have to be reblocked
if it is too big for EB> Reblocking can be avoided if a threshold T is enforced,

242 Cryptanalysis of Number Theoretic Ciphers

and each user has two sets of Rabin-Williams enciphering and deciphering
algorithms, one with a modulus below T and one with a modulus above T.
Because of the limited message space M of the Rabin-Williams cipher, the
second modulus should exceed 8T + 1.

18.4 The Digital Signature Algorithm
The Digital Signature Standard, DSS, uses the Digital Signature Algorithm,
DSA, to sign the output of hash functions. Compare this with signing a hash
function with RSA.

DSA is a variation of signature schemes of ElGamal and Schnorr.
Here is the notation for DSA.
Let L be a multiple of 64 in the range 512 < L < 1024, p be a prime

of L bits, that is 2L~l < p < 2L and q be a 160-bit prime which divides
p — 1. Let h be a primitive root modulo p in the interval 1 < h < p — 1 and
g = h^p~l^q mod p. Then g has order q modulo p.

DSA assumes that discrete logarithms modulo p are hard to compute.
Several people will use p, g, g as a global public key. Each user of the

DSA chooses a secret private key x in 1 < x < q and publishes a public key
y = gx mod p. Each time a user wants to sign a message M, she chooses a
secret random number k in 1 < k < q and computes SHA of M, called h(M)
below.

Alice signs message M with the pair r, s, where r = (gk mod p) mod g, and
s = [fe~1(ft(M) + xr)] mod q.

If Bob receives the message M' with signature r', s' from Alice, he verifies
her signature by computing w = (s ') - 1 m ° d Q, u\ = [h(M')w] mod g, i¿2 =
(r')w mod q, v = [(gUlyU2) modp) mod <?, and making the test, "Does v =
r'V If this equality holds, then Bob accepts that M' — M is a message
actually sent to him by Alice. Note that y is Alice's public key.

Why does the DSA work? That is, assuming that the message and signature
are received correctly (so M' = M, r' — r and s' — s), why should v — r?
The following three lemmas and theorem prove that this equality should hold.
Note that r doesn't even depend on M.

LEMMA 18.1
Ifa = b (mod q), then ga = gb (mod p).

PROOF Write a = b + qt, where t is an integer. Then

because gq = (/ i ^ " 1) / ^ = h^1 = 1 (mod p), by Fermat's little theorem.

Signature Algorithms 243

LEMMA 18.2
With the notation above, y«rw>> m o d «> = g«xrw^ m o d q) (mod p).

PROOF By definition, y — gx mod p, so

((rw) mod g) ^ gZ((rw) mod q) (m o d pA

Lemma 18.2 follows from Lemma 18.1 and the fact that

x((rw) mod q) = ((xrw) mod q) (mod g).

I

LEMMA 18.3
With the notation above, ((h(M) + xr)w) mod q = k.

PROOF By definition, iu = s _ 1 mod g and s = [fc_1(/i(M) + xr)] mod q.
Therefore, 1 = ws = wk~l(h{M) + xr) mod g (mod </). Since g is prime and
g does not divide k, k = w(h(M) + xr) (mod g). The lemma follows because
1 < fc < g. I

THEOREM 18.1 The Digital Signature Algorithm works
If M is unchanged and really came from Alice, then v = r.

PROOF Using the definition of v and then those of u\ and u<i, we find

i; = ((gUlyU2) modp) mod q

V = (g(HM)w) mod q . y(rw) mod 9 m o d ^ m () d ̂

Lemma 18.2 allows us to replace y by g:

V = (g(h(M)w) mod ç . ^ r u ;) mod g m o d pj m o d g

U = (g(h(M)w) m o d <?+(*™) mod g m o d ^ m () d g

Lemma 18.1 lets us combine terms in the exponent:

v = (g{h{M)w+xrw) mod q m o d p) m o d Q

V = (g«HM)+xr)w) mod q m () d pj m () d ^

Now use Lemma 18.3 and the definition of r:

v = (gk mod p) mod q — r.

I

244 Cryptanalysis of Number Theoretic Ciphers

18.5 Exercises
1. Show that the trick for speeding RSA signature generation produces the

correct signature, and determine the constants a and b in the formula
D(M) = (aSp + bSq) mod n.

2. Can the trick for speeding RSA signature generation be modified slightly
to accelerate Rabin-Williams signature generation? Explain your an­
swer.

3. Consider the following simple signature algorithm which is like DSA
except that it does not require a secret random number.

The public elements are a prime q and a primitive root g for q. There
is a private key x in 1 < x < q and a public key y — gx mod q.

To sign a message M, compute h — h(M) for some hash function h. We
require that gcd(ft, q — 1) = 1. If this is not so, then append the hash
to the message and compute a new hash. Continue this process until a
hash h is computed which is relatively prime to q — 1. Then compute z
satisfying zh = x (mod (q - 1)). The signature for M is s = gz mod q.
The signature is verified by checking whether sh = y (mod q).

a. Show that the latter congruence will hold, provided the signature is
valid.

b. Show that the scheme is unacceptable by describing a simple tech­
nique for forging a user's signature on an arbitrary message.

4. Consider the following signature algorithm. The public elements are
a prime q and a primitive root g for q. Everyone knows and uses the
same q and g. Alice has a secret key x in 1 < x < q and a public key
y = g~x mod q. Let h be a standard hash function. The length in bits
of the prime q is greater than the length of the output of h.

To sign a message M, Alice generates a random integer k in 1 < k <
q — 1 and computes gk mod q. Then she computes c = h(gk mod q; M),
where ";" means concatenation of bit strings. Finally, Alice computes
t — (k + cx) mod (q — 1). She sends the pair (¿, c) as the signature of M.

When Bob receives M and the alleged signature (£, c), he obtains Alice's
public key y from a secure site and computes a — gtyc mod q and tests
whether /¿(a; M) = c. If these are equal, then Bob accepts the signature;
otherwise he rejects it.

a. Show that equality will hold, provided the signature is valid.

b. Compare the efficiency of this signature algorithm with that of DSA.

5. Design an elliptic curve variation of the Digital Signature Algorithm.

Chapter 19

Key Exchange Algorithms

This chapter discusses key exchange algorithms, which are protocols for two
users, Alice and Bob, to agree on a common key or to learn each other's keys
using a communication channel, like the Internet, which may have eavesdrop­
pers or even malicious users who masquerade as others.

19.1 Key Exchange Using a Trusted Server
Here we assume there is a trusted server, Tracy, who helps the other parties
choose a common key K to a symmetric cipher EK>

In the first two protocols, Tracy shares a secret key with Alice and a different
secret key with Bob. A message enciphered with the symmetric cipher EA
can be read only by Alice and Tracy. Likewise, the symmetric cipher EB is
used only for secret communication between Tracy and Bob. These secret
keys were chosen when Tracy met with each party before the protocol begins.
These functions are used only for key distribution and not to send messages
between Alice and Bob.

In these protocols, A represents Alice's name and B represents Bob's name.
The first protocol of this type is called Wide-mouthed Frog. It appeared

in [21] and is about as simple as such a protocol can be.

1. Alice generates a current time stamp ÍA and a common secret key K.
She sends the message A.EA^A^B.K) to Tracy.

2. Tracy knows that the message came from Alice because she sees Alice's
name A in plaintext. She deciphers it with EA and finds Bob's name
B. She checks that the time stamp ÍA is current to ensure that it is
not being replayed by a malicious user. She makes a new current time
stamp ÍB and sends the message EB^B^A^K) to Bob.

3. Bob receives the message, deciphers it, checks that ts is current, sees
Alice's name and begins communicating with her using the secret key
K.

245

246 Cryptanalysis of Number Theoretic Ciphers

No one could pretend to be Alice in Step 1 because they would not know
EA> NO one could pretend to be Tracy in Step 2 because they would not know
EA- NO one could pretend to be Bob in Step 3 because they would not know
EB- The messages could not be replayed later because the enciphered time
stamps in them are generated and checked. No eavesdropper could learn K
because it is enciphered in transit. Tracy could betray Alice and/or Bob in
many ways, but they trust her. The most likely attack would be on Alice's
random key generator. If it were badly designed, an eavesdropper might be
able to guess K.

The next protocol is called Yahalom. It also appeared in [21]. This pro­
tocol and the previous one are mentioned in [22], which presents a way of
analyzing the security of protocols like these using rules of inference as in
mathematical logic.

1. Alice generates a random number, r^, called a nonce because it is used
just for this occasion. She sends the message A, TA to Bob.

2. Bob receives the message, generates his own random number, rg , and
sends Tracy the message B^EB^A^TA^B)-

3. Tracy receives Bob's message, deciphers it, generates a random secret
key K for Bob and Alice to use, and sends Alice the pair of enciphered
messages EA(B,K,rA,rB),EB(A,K).

4. Alice deciphers the first message and checks that TA is the same nonce
she created in Step 1. If it is, she sends Bob the message EB(A, K) and
the message EK^B), which is encrypted with the session key K.

5. Bob decrypts EB(A,K), obtains K, decrypts EK(TB) and checks that
rs is the same number he created in Step 2. Then he begins communi­
cating with Alice using the secret key K.

Although Alice sends her nonce in plaintext in Step 1, it is enciphered in
Steps 2 and 3. An eavesdropper could discover r^, but would gain nothing
from this knowledge because the eavesdropper could not forge the messages in
Steps 2 and 3. Carol could pretend to be Alice in Step 1. If Carol managed to
intercept the messages Tracy sent to Alice in Step 3, she would not be able to
decrypt them, and so she could not perform Step 4. If Carol or someone else
recorded and replayed messages from the protocol, they would not be accepted
as genuine because the nonces would be wrong. Note how the nonces here
play the role of the time stamps in the Wide-mouthed Frog protocol. No
eavesdropper could learn K because it is enciphered in transit. An interesting
feature of this protocol is that, although Alice initiates it, only Bob contacts
Tracy.

The next two key exchange protocols use public-key cryptography. Here
EA, EB and ET are the public encryption functions of Alice, Bob and Tracy,

Key Exchange Algorithms 247

respectively. Let KA>> KB and KT be the respective public keys. Likewise,
DA, DB and DT are the private decryption functions of Alice, Bob and Tracy,
respectively. They are used also for signatures. Tracy maintains a database
containing everyone's public keys, obtained securely before the protocol be­
gins. Everyone knows Tracy's public key KT, SO everyone can verify Tracy's
signature. Alice and Bob may learn each other's public keys during the pro­
tocol, but they communicate later using a symmetric cipher with a random
key K created during the protocol. Symmetric ciphers are much faster than
public-key ciphers.

Here is the key exchange protocol of Denning and Sacco [37].

1. Alice tells Tracy her identity and Bob's in the message A, B.

2. Tracy sends Alice Bob's public key and Alice's own public key, both
signed. That is, she sends Alice the message DT(B,KB),DT(A,KA).

3. Alice verifies the signatures. She chooses a random session key K and
a current time stamp ÎA* She signs these two numbers and enciphers
them with Bob's public key. She sends this message, EB{DA{K,ÍA)),

to Bob together with the two messages she received from Tracy.

4. Bob verifies the signatures on the messages that came from Tracy via
Alice. He uses his private key to decipher the message that originated
with Alice and checks her signature using her public key, which he ex­
tracts from DT{A,KA)- If the time stamp ÎA is still valid, he begins
communicating with Alice using the symmetric cipher with key K.

An eavesdropper could learn from Step 1 that Alice wanted to communicate
secretly with Bob. The eavesdropper could learn Alice and Bob's public keys
from Step 2. But the eavesdropper could not decipher EB(DA(K, ÍA)) because
he would not know DB- Hence the eavesdropper could not discover K or
decipher the rest of the communication between Alice and Bob. There would
be no point to replaying EB(DA(K^A)) later because its time stamp would
be valid only for a short time.

Here is another key exchange protocol, due to Woo and Lam [129] and [130].
It uses nonces instead of time stamps.

1. Alice sends the message A, B to Tracy.

2. Tracy signs Bob's public key and sends it to Alice as the message
DT(KB)-

3. Alice verifies Tracy's signature on the message. She chooses a nonce
TA and sends it with her name to Bob, enciphered with his public key:
EB(A,rA).

4. Bob sends Tracy Alice's name, his name and Alice's nonce enciphered
with Tracy's public key: A, B, ET{VA)'

248 Cryptanalysis of Number Theoretic Ciphers

5. Tracy chooses a random secret key K for Alice and Bob to use in the
symmetric cipher. Tracy sends Bob two messages. The first is DT(KA),

Alice's public key, signed by Tracy. The second is EB(DT(TA,K, A, B)),
which contains Alice's nonce rA, Alice's name, and Bob's name, all
signed by Tracy and enciphered with Bob's public key.

6. Bob deciphers the second message using DB and verifies the signa­
tures on both messages. Then he chooses a nonce r# and sends Al­
ice the signed second message from Step 5 and the new nonce, all en­
ciphered with Alice's public key; that is, he sends Alice the message
EA(DT(rA,K,A,B),rB).

7. Alice deciphers the message using DA. She verifies Tracy's signature
and checks that rA is the same nonce she chose in Step 3. Then she
sends Bob his nonce enciphered with the session key if, EK(TB)-

8. Bob deciphers the message and checks that r# is the same nonce he
chose in Step 6.

An eavesdropper could learn from Step 1 that Alice wanted to communicate
secretly with Bob. The eavesdropper could learn Alice's public key in Step 2
and Bob's public key in Step 5. But the eavesdropper could not decipher any
of the enciphered messages, and so could not see the session key K or either
nonce. Hence the eavesdropper could not decipher the rest of the commu­
nication between Alice and Bob. There would be no point to replaying any
enciphered message because of the nonces in them.

19.2 The Diffie-Hellman Key Exchange
This protocol allows two users to choose a common secret key, for a symmet­
ric cipher like DES or Rijndael, say, while communicating over an insecure
channel, without the aid of a trusted third party.

The two users agree on a common large prime p and a constant value g,
probably a primitive root, which may be publicly known and available to
everyone. The algorithm is most secure when the order of g modulo p is large.

Alice secretly chooses a random xA in 0 < xA < p — 1 and computes
yA = gXA mod p. Bob secretly chooses a random XB in 0 < XB < p — 1 and
computes ys — gXB mod p.

Alice sends yA to Bob. Bob sends ys to Alice. An eavesdropper, knowing p
and #, and seeing yA and ys, cannot compute xA or XB from this data unless
he can solve the discrete logarithm problem quickly.

Alice computes KA — yx
B

A mod p. Bob computes KB — yA
B mod p. Then

KA = y*B* = (g**)** = tf"** = {?*)** = jff = KB (mod p)

and 0 < KA-, KB < p, so KA = KB-

Key Exchange Algorithms 249

Alice and Bob choose certain agreed-upon bits from KA to use as their key
for a single-key cipher like DES or Rijndael.

Although this protocol provides secure communication between Alice and
whomever is at the other end of the communication line, it does not prove
that Bob is the other party. To guarantee that Bob is at the other end, they
would have to use a signature system like RSA or one of the protocols in the
previous section.

There is an elliptic curve variation of the algorithm in which the group Rp

is replaced by an elliptic curve. In it, Alice and Bob agree on an elliptic curve
E — Ea,b modulo a prime p and a point P of high order on E, perhaps a
generator of the group. Let N be the order of the group. The group E and
the point P need not be secret and Alice and Bob do not need to know N
exactly. By Hasse's theorem, TV is approximately p, and that approximation
is good enough.

Alice secretly chooses a random XA in 0 < XA < N and computes PA — XAP
on E. Bob secretly chooses a random XB in 0 < XB < N and computes
PB = xBP on E.

Alice sends PA to Bob. Bob sends PB to Alice. An eavesdropper, knowing
E and P , and seeing PA and Pg, cannot compute XA or XB from this data
unless he can solve the discrete logarithm problem for elliptic curves quickly.

Alice computes KA = XAPB on E. Bob computes KB = XBPA on E. Then

KA = (XA -xB)P = KB.

Alice and Bob choose certain agreed-upon bits from KA to use as their key
for a private key cipher like DES or Rijndael.

Since the discrete logarithm problem is harder to solve for an elliptic curve
than for the multiplicative group of integers modulo p, the modulus of the
elliptic curve may be chosen smaller than the prime p for Rp.

The protocol clearly generalizes to any large group.

19.3 The X.509 Key Exchange
X.509 is a directory authentication service that solves the following problems
without the aid of a trusted third party who communicates with you during
the protocol.

How do you get the public key of someone to whom you wish to send mail?
How do you know it is valid and not a forgery? How can you and another
user agree on a private key to use to communicate over an insecure network?

ITU-T recommendation X.509 defines a framework for provision of authen­
tication services. Each user has a public key certificate issued by a trusted
certification authority CA. The signature of the certificate consists of the hash
codes of its other fields, signed by the CA's private key.

The certificates form a tree-structured hierarchy.

250 Cryptanalysis of Number Theoretic Ciphers

Each certificate contains fields for Version, Serial number, Algorithm for
signature, Name of issuer (CA), Period of validity, Subject name, Subject
public key information, and the Signature of the CA, and perhaps other fields
depending on the version.

Use f inger or f tp or a web browser to obtain the certificate of a user to
whom you wish to send mail via public key cryptography.

Use the "Issuer" field in the certificate to find the certificate for the CA,
etc., to the root (whom everyone trusts) or up to some CA in the chain from
you to the root.

Note that:

• Certificates need not be specially protected since they are unforgeable.

• Any user with access to the public key of the CA can recover the user
public key that was certified.

• No one other than the CA can modify the certificate without the change
being detected.

• CA's may certify each other, to make it easier for users to reach a CA
they trust when obtaining the certificate of a new user.

• To revoke a certificate (for example, if the user's key was compromised),
the CA of that key puts it on a public list, with its serial number and
revocation date.

X.509 also includes three alternative authentication procedures.
Let us use the notation X{M} to mean "X signs M," that is, M followed

by the signed hash code of M. The notation "A -> £:" means "A sends the
following message to B." The ÍA is a time stamp, giving the date and time
the message was sent, TA is a nonce, that is, a random number generated and
used just this one time, sessionkeyAB is the key to a single-key cipher A and
B will use to communicate for a while, and sgnData is the signature of the
message digest of the other fields. Consider the following three messages.

1. A —> B: A{tA, rA, B, sgnData, sessionkeyAB}

2. B —> A: A{tB,rB,A,rA)sgnData,sessionkeyAB}

3. A->B: A{rB}.

Either Message 1, or Messages 1 and 2, or all three messages may be used.
Message 1 establishes the identity of A, that the message was generated by

A, that the message was intended for B, and that the message has not been
changed or sent more than once.

Message 2 establishes the identity of B, that the reply was generated by B,
that the reply was intended for A, and that the reply has not been changed
or sent more than once.

Key Exchange Algorithms 251

The purpose of the third message, if it is used, is to obviate the need to
check time stamps. It is used when synchronized clocks are not available. It
works because both nonces are echoed, so they can be checked to detect replay
attacks.

See Chapter 14 of Stallings [114] for more about X.509.

19.4 Exercises
1. There is a flaw in the key exchange protocol of Denning and Sacco.

Suppose Alice and Bob have a brief secret conversation, so that the
time stamp tA is still valid when they finish. Explain how Bob could
pretend to be Alice and communicate with Carol so that Carol thought
she was talking to Alice. Repair this flaw with a minor change to one
message.

2. Alice and Bob communicate securely every day. Eve knows the param­
eters p and g of the Diffie-Hellman algorithm they use to choose their
daily Rijndael keys. The prime modulus p is so large that Eve cannot
solve discrete logarithm problems modulo p. She has recorded all mes­
sages passing between them, including every y A , ys and the Rijndael-
enciphered traffic. She notices that Alice's random number generator
must be defective, since Alice sends the same y A every day. However,
Bob uses a new ys every day.

Eve tells Bob that she is madly in love with him, is jealous of his daily
secret conversations with Alice, and has recorded today's ciphertext.
Bob recalls that today's conversation with Alice was pretty boring and,
in a moment of weakness, tells Eve today's symmetric key KB (the
whole KB, not just the part used for the Rijndael key) to let her read
today's conversation and put her jealousy to rest.

Given this information, how many days of recorded ciphertext can Eve
decipher?

3. There is a flaw in the three-way authentication procedure for X.509. In
simplest form, the protocol is:

A^B: A{tA,rA,B}
B -> A: B{tB,rB,A,rA}
A-> B : A{rB}.

The X.509 rules state that checking the time stamps ÍA and ¿# is op­
tional for three-way authentication. The time stamps are set to 0 when
they are not used.

a. Explain how an active wiretapper C can impersonate Ato B. Assume
that C is in the hierarchy, can capture messages passing between A and
B, and can cause A to initiate authentication with C.

252 Cryptanalysis of Number Theoretic Ciphers

b. One solution to this problem is to use time stamps. Suggest another
solution, one not using time stamps.

4. Design a variation of the DifRe-Hellman key exchange protocol that will
allow Alice, Bob and Chuck to choose a single common Rijndael key
securely for their mutual communication. There is a public large prime
p and a primitive root g. The three participants choose secret keys a,
6, c, respectively. The common key should be some bits of gabc mod p.
It should not be possible for an eavesdropper, who sees all messages
passing among the three parties, but cannot change them, to deduce
the common key.

Chapter 20

Simple Protocols

This chapter presents a few simple protocols. Some of them make sense; others
may seem strange because they are used as components of larger protocols in
the next chapter.

20.1 Bit Commitment
Alice wants to commit to a "bit" (it can be a string of bits) now so that
she can't change it later, but only Alice knows it for now. She wants to tell
Bob something now that he can remember, and which is connected to the
bit. Later, when Alice reveals the bit, she will tell Bob the bit and more
information which he will see is connected to the bit and what Alice told him
earlier. At that time Bob can check something and be convinced that the bit
Alice has revealed must have been the one she had in mind earlier. He will
know that she could not have changed it.

Alice commits to b by generating two random strings i?i, i?2.
She creates a message, (i?i, R2,6), and computes a hash value of it.
She reveals, that is, tells Bob, the hash value and R\.
When the time comes to reveal 6, Alice shows the message (i?i,i?2,&)-
Bob checks that R\ is the same as it was earlier and verifies the hash value.
Why is R2 needed? Because if b were a short string (literally one bit, say),

then Bob could guess it from the hash value.

20.2 Mental Poker
In the card game of poker, each player is dealt five of the 52 cards. Each
player can see his hand, but not any other player's hand. Players bet based
on their hands. The "best" hand wins. In some variations, some cards are
revealed and some cards may be replaced by cards not yet dealt.

The "e-mail" or "mental" poker protocol requires a fair deal with these

253

254 Cryptanalysis of Number Theoretic Ciphers

properties. Players see their own hands, but not other hands. The hands are
disjoint. All hands are equally likely. A player can "draw" (replace) selected
cards. A player can reveal individual cards one at a time without revealing
other cards. All players can check at the end of the game that there was no
cheating.

We use a variation of the Pohlig-Hellman cipher to implement mental poker.
Assume there are two players, Alice and Bob. (There are similar protocols

for three or more players.)
The players jointly choose a large prime p as modulus. Each secretly chooses

ZA, d A , CB, ds, as in the Pohlig-Hellman cipher. Note that every e and d is
relatively prime to p — 1 because we must have e^d^ = 1 (mod p — 1), etc.
Define EA(M) = MeA modp, etc. Recall that these functions commute:
EA(EB{M)) = EB(EA{M)) for every M, etc. Let M i , . . . , M 5 2 be the en­
coded deck (more if there is a joker).

1. Bob enciphers the cards as d — EB(MÍ) for i = 1 , . . . , 52. Bob sorts the
d as numbers and sends them to Alice. The sorting operation shuffles
the deck so that Alice cannot tell which d represents which M¿.

2. Alice selects five cards Ci at random and sends then to Bob, who de­
crypts them as his hand.

3. Alice selects five more random cards, say C i , . . . , C s (her hand) and
enciphers them as C[— EA(CÍ) for i — 1 , . . . , 5. She sends them to Bob.

4. Bob deciphers the C[. They are still enciphered with EA after he applies
DB to undo EB- He sends the DB(C¡) back to Alice.

5. Alice deciphers the five cards and uses them as her hand. They bet and
play poker. A card is "revealed" by sending both the plain and cipher
text of it to the other player.

6. At the end of the hand, Alice and Bob exchange their keys e^, etc., and
check everything that happened.

Unfortunately, one can cheat in mental poker because the cipher functions
EA, EB, etc., preserve quadratic residues.

THEOREM 20.1 Quadratic residues are preserved
Let 0 < a < n, gcd(a,n) = 1, and gcd(e,0(ra)) = 1. Then a is a quadratic

residue modulo n if and only if ae is a quadratic residue modulo n.

PROOF Let d be the inverse of e modulo (/>(n): ed = 1 (mod (j>{n)). If a is
a quadratic residue modulo n, then there exists an x so that x2 = a (mod n).
Let y = xe mod n. Then

y2 = {xe)2 = {x2)e = ae (mod n).

Simple Protocols 255

This shows that ae is a quadratic residue modulo n. Conversely, if a6 is
a quadratic residue modulo n with y2 = a6 (mod n), then (yd)2 = aed =
a (mod n), so a is a quadratic residue modulo n. I

Alice can use this theorem to cheat: Perhaps most high cards are quadratic
residue and most low cards are quadratic nonresidues. It is like playing with
a deck in which most high cards are "marked." This attack can be foiled by
(a) appending extra bits to each M i or (b) multiplying some of the M¿ by a
fixed quadratic nonresidue in order to make all cards be quadratic residues or
all cards be quadratic nonresidues.

In order for Alice to cheat and in order to foil the attack, one must be able
to distinguish between quadratic residues and quadratic nonresidues modulo
p (at least for prime p) quickly. This is easy. See Theorem 7.11.

20.3 Oblivious Transfer
An application of finding square roots modulo n is the Rabin-Blum oblivious
transfer or coin tossing protocol. In it, Alice reveals a secret to Bob with
probability 1/2.

In the oblivious transfer version, Alice doesn't know whether Bob got the
secret or not (and this outcome must be acceptable to both participants).

In the coin tossing version, Bob tells Alice whether he got the secret. He
wins the coin toss if he did get it; loses otherwise.

Alice's secret is the factorization of a number n = pq which is the product
of two large Blum primes p = q = 3 (mod 4).

1. Alice sends n to Bob.

2. Bob picks a random x in i /ñ < x < n with gcd(#, n) = 1. Bob computes
a — x2 mod n and sends a to Alice.

3. Knowing p and q, Alice computes the four solutions to x2 = a (mod n).
They are x, n — x, y and n — y, for some y. These are just four numbers
to Alice. She doesn't know which ones are x and n — x. She chooses one
of the four numbers at random and sends it to Bob.

4. If Bob receives x or n — x, he learns nothing. But, if Bob receives y or
n — y, he can factor n by computing gcd(# + y,ri) = p o r q.

Why can Bob factor n if he gets y or n — yl He can do so because of
Theorem 13.1.

Here is another way to do the same protocol:
Alice will send Bob one of two messages. Bob will receive one. Alice won't

know which one.

1. Alice generates two RSA public/private key pairs. She sends both public
keys to Bob.

256 Cryptanalysis of Number Theoretic Ciphers

2. Bob chooses a Rijndael key K. He chooses one of Alice's public RSA
keys and enciphers K with it. He sends the encrypted key to Alice
without telling her which of her public keys he used to encipher it.

3. Alice decrypts Bob's key twice, using both of her private RSA keys. In
one case, she gets K. In the other case, she gets garbage that looks like
a Rijndael key. She can't tell which is which.

4. Alice encrypts the two messages with Rijndael, one using K and the
other using the garbage key. She sends both ciphertexts to Bob.

5. Bob tries to decrypt the two ciphertexts using K. He can read one
message; the other is gibberish.

Alice doesn't know which message Bob can read. Alice could cheat unless
we used the next step.

6. Alice gives Bob both of her private RSA keys so that he can verify that
she did not cheat. After all, she could have encrypted the same message
with both keys in Step 4. Then she would know which message Bob
received.

2O.4 Zero-knowledge Proofs
A zero-knowledge proof is a dialog between two people, the Prover (Alice) and
the Verifier (Bob), in which the Prover convinces the Verifier that she knows
a certain secret, but without revealing to the Verifier (or to an eavesdropper)
any part of the secret. After the protocol concludes, neither the Verifier nor
an eavesdropper could masquerade as the Prover to convince someone else
that they know the secret.

There are many different forms of zero-knowledge proof. We describe a
zero-knowledge proof protocol that uses square roots modulo n. One appli­
cation of these protocols is in identification. If Alice can show that she can
compute arbitrary square roots modulo n, a number whose factorization is
known only to her, then she can convince someone at the other end of an
Internet connection that she really is Alice, by Theorem 13.2.

This protocol is closely related to the oblivious transfer protocol. The
difference is that Alice wants to convince Bob that she knows the factors of
n = pq, but does not want to reveal the factors to Bob.

Alice (the Prover) convinces Bob (the Verifier) that she knows the prime
factorization of a large composite number n, but does not give Bob any hint
that would help him find the factors of n. In terms of entropy, this means
that if M is a message that tells the factors of n, and S is the set of messages
exchanged by Alice and Bob during the zero-knowledge proof, then H(M\S) =
H(M). Thus, Bob learns nothing about the factorization of n during the
protocol that he could not have deduced on his own without Alice's help.

Simple Protocols 257

Roughly speaking, Bob gives Alice some quadratic residues modulo n and
Alice replies with their square roots. The difficulty with this simple approach
is that when Alice replies to Bob with a square root, there is a 50% chance that
she will reveal the factorization of n to Bob, as in the first oblivious transfer
protocol. It is known that computing square roots modulo n is polynomial-
time equivalent to factoring n.

Here is a good way to do the zero-knowledge proof protocol:
Alice knows n, p and q. Bob knows n but not p or q.

1. Alice chooses a in y/ñ < a < n and computes b = a2 mod n.

2. At the same time, Bob chooses c in yjn < c < n and computes d =
c2 mod n.

3. Alice sends b to Bob and Bob sends d to Alice.

4. Alice receives d and solves x2 = bd (mod n). (Note that this is possi­
ble because bd is a quadratic residue and she can compute its square
roots since she knows the factors of n.) Let x\ be one solution of this
congruence.

5. At the same time, Bob tosses a fair coin and gets Heads or Tails, each
with probability 1/2. Bob sends H or T to Alice.

6. If Alice receives H, she sends a to Bob. If Alice receives T, she sends x\
to Bob.

7. If Bob sent H to Alice, then he receives a from Alice and checks that
a2 = b (mod n). If Bob sent T to Alice, then he receives x\ from Alice
and checks that x\ = bd (mod n).

Alice and Bob repeat steps 1 through 7 many (20 or 30) times.
If the check in step 7 is always okay, then Bob accepts that Alice knows the

factorization of n.
But if Alice ever fails even one test, then Bob concludes that Alice is lying.
Why does this protocol work? If Alice really knows the factors of n, then

she can compute all the required square roots by the methods of Chapter 7.
If Alice doesn't know the factors of n, then she will not be able to compute
general square roots modulo n. She could fake one of the two square roots,
but not both. In this case, she could give Bob the correct square root only if
she could guess which one he would request. If Bob really tosses a fair coin
to decide which square root to request, then Alice would have to guess the
outcome of each coin toss. There is less than one chance in a million that she
could predict the outcome of twenty coin tosses.

Why does Bob not learn the factors of n? This is so because through­
out the protocol, Bob learns only one square root of any single quadratic
residue. He would have to know two different square roots (not satisfying
ri = —r2 (mod n)) in order to apply Theorem 13.1.

258 Cryptanalysis of Number Theoretic Ciphers

20.5 Methods of Sharing Secrets
An important cipher key K must be protected from (a) accidental or ma­
licious exposure (causing vulnerability) and (b) loss or destruction (causing
inaccessibility).

Both problems may be alleviated by the use of shadows in a threshold
scheme.

For 1 < t < w, a (t,w) threshold scheme is a system of protecting a key
K by breaking it into w shadows (pieces), Ki,...,Kw, in such a way that
(a) it is easy to compute K using knowledge of any t of the shadows if¿, but
(b) it is impossible to compute K because of lack of information if one knows
only t — 1 or fewer of the shadows K{.

The w shadows are given to w users. Since at least t shadows are needed
to find if, no group of fewer than t users can conspire to get the key.

At the same time, if a shadow is lost or destroyed, one can still compute K
so long as at least t valid shadows remain.

The same mathematics can handle more complicated cases in which some
people are more important than others. For example, suppose the secret key
K opens a safe in a bank. Let the policy be that the safe can be opened by (a)
any four tellers, or (b) a manager and two tellers, or (c) two managers, or (d)
the bank president. Then one could use a (4,w) threshold scheme, where w
is large enough. Give each teller one shadow, each manager two shadows and
the president four shadows. The safe can be opened whenever four shadows
are available.

20.5.1 Secret Splitting

The special case of t — w is easy to arrange. In this case the secret is split
among w people and all w must get together to use the secret. This technique
is called secret splitting. A trusted person or program, Tracy, prepares the
w shadows. The first w — 1 people are given random bit strings of the same
length as the secret. The last person receives the exclusive-or of the w - 1
random strings and the secret.

To reconstruct the secret the w people simply exclusive-or their strings.
Each random string appears twice in the final exclusive-or and the secret
appears once in it, so the exclusive-or of all w strings is the secret. If any
w — 1 of the people try to compute the secret, they can't do it because they
lack the missing bit string. Anything they could compute would be as random
as the missing string.

Other forms of secret sharing can be done elegantly with number theory.

20.5.2 The Lagrange Interpolating Polynomial Scheme

Shamir [102] proposed a (¿, w) threshold scheme based on Lagrange interpo­
lating polynomials.

Simple Protocols 259

Indeed, it is easy to see that h(x) is a polynomial of degree no more than
t — 1, and when x — ij each term in the sum has a factor 0 in the product,
except for the j-th term, which has the product equal to 1 and the value Kiá,
so that h(ij) = Kiá, as required.

Shamir's threshold scheme uses Lagrange polynomials modulo p.
The shadows come from a random polynomial of degree t — 1:

h(x) = (o¿_ixí _ 1 + h a\x + ao) mod p

with constant term CLQ = K and random numbers for a¿_ i , . . . , a\.
All arithmetic is done modulo p, where p is a prime number greater than

both K and w. Long keys can be broken into smaller blocks to avoid com­
puting modulo a large prime.

Given the polynomial h(x), the key K is easily computed by K = h(0).
The w shadows are defined as the value of h(x) at w distinct points. For

example, one might let K{ — h(%) for 1 <i<w.
Given t shadows, K^,..., K{t, one may construct h(x) as

i f l

2

3

A-4

^ 5

= ft(l) =
= ft(2) =

= ft(3) =

= h(4) =

= ft(5) =

= (6 + 7 + 10) mod 13 = 10

= (24 + 14 + 10) mod 13 = 9

= (54 + 21 + 10) mod 13 = 7

= (96 + 28 + 10) mod 13 = 4

= (150 + 35 + 10) mod 13 = 0

A polynomial of degree t — 1 is determined by its values at t distinct val­
ues of its argument. In numerical analysis it is shown that given t points
(ii, KÍÍ), . . . , (it, Kit)

 w i t n different x coordinates ij, there is a unique poly­
nomial of degree <t — l passing through them. It is the Lagrange polynomial

If only t — 1 shadows are known, then, for any Ko, one could pick (0, Ko)
as the t-ih point and compute a polynomial ho(x) with Ko = h(0). Hence,
t — 1 shadows reveal nothing about K.

Example 20.1

Let t = 3, w = 5, p = 13, K = 10 and

h(x) = (6x2 + 7x + 10) mod 13,

with random coefficients 6 and 7.
The five shadows are the values of h(x) at x = 1, 2, 3,4, 5:

260 Cryptanalysis of Number Theoretic Ciphers

We can recover h(x) and K = h(0) from any three of the shadows. For
example, using K\, K3 and K5 we have:

hM i n (x - 3) (^ - 5) (x-l)(x-b) i n (^ - l) (^ - 3)
h{x) = 1 0 (l - 3) (l - 5) + 7 (3 - 1) 0 - 5) + ° (5 - l) (5 - 3) m ° d 1 3

= 10(x - 3)(x - 5)/8 + 7(x - l)(x - 5)/(-4) mod 13

= 10(x - 3)(a? - 5)5 + 7(x - l)(x - 5)3 mod 13

= 50(z2 -8x + 15) + 21(x2 - 6x + 5) mod 13

= ll(rr2 + 5a; + 2) + S(x2 + 7x + 5) mod 13

= (19a:2 + lllar + 62) mod 13 = h(x).

20.5.3 The Asmuth and Bloom Threshold Scheme

Asmuth and Bloom [5] based their threshold scheme on the Chinese remainder
theorem.

Let K > 0 be the key. Let p, di,d2,-..,dw be integers such that p > K,
d\ < d<i < • • • < dw, gcd(p, di) = 1 for all i, gcd(d¿, dj) = 1 for all i ^ j , and
d\d2 - • - dt > pdw-t+2dw-t+3 ' ' ' dw.

The gcd requirements guarantee that the integers p, d\, ¿2, • • •, dw are pair-
wise relatively prime. The last condition says that the product of the t small­
est di$ is greater than the product of p and the t — 1 largest d¿'s. Let
n — d\d2- "dt be the product of the t smallest <¿¿'s. Then n/p is greater
than the product of any t — 1 of the d¿'s.

Let r be a random integer in the range 0 < r < n/p. Write K' = K + rp.
Then 0 < K' < n. The w shadows are defined as Ki = K1 mod di for
i — 1 , . . . ,w.

To recover K, it suffices to find K' because K = K' mod p. If ¿ shadows
if¿1,..., Kit are known, then by the Chinese remainder theorem, K1 is known
modulo ri\ = d¿1 • • -o?¿t. Since ni > n > K\ the Chinese remainder theorem
uniquely determines K'.

If only t—1 shadows K\x,..., -^Q^ are known, then K' can only be known
modulo 712 — dix - "dit_1. Because n/77,2 > p (the last condition above) and
gcd(ri2,p) = 1, the numbers x such that x < n and x = K' (mod 712) are nearly
evenly distributed over all the congruence classes modulo p. Therefore, there
is not enough information to determine K'.

Example 20.2

Let K = 3, t = 2, w = 3, p = 5, di = 7, d2 = 9 and d3 = 11. Then
n = d\di = 7-9 = 63 > 5 - 11= pd$ as required.

We need to choose a random number between 0 and (63/5), that is, between
0 and 12. Picking r = 9, we get

K' = K + rp = 3 + 9 - 5 = 48.

Simple Protocols 261

The shadows are Kx = 48 mod 7 = 6, K2 = 48 mod 9 = 3 and K3 = 48 mod
11 = 4.

Given any two of the three shadows, we can compute K. Assume we know
K\ and K3. Then m = di<¿3 = 7 • 11 = 77. The Chinese remainder theorem
produces K' = 48 (mod 77). Finally, K = K' mod p = 48 mod 5 = 3.

20.0 Blind Signatures
Suppose Bob uses RSA for signatures and has public keys n and e, and a
private key d for this purpose. Alice wants Bob to sign a message M, but
Alice doesn't want Bob to see the contents of M. Bob trusts Alice and agrees
to provide a blind signature for M.

Normally, Bob would sign M by computing Md mod n and giving this
number to Alice. But if he did that, he could see what M says.

Instead, Alice chooses a random k in 1 < k < n. She "blinds" (enciphers)
M by computing t = Mke mod n. To Bob, t looks like a random integer. He
cannot compute M from t because he doesn't know k. Bob signs t as

td = (Mke)d = Mdked = Mdk (mod n).

After she leaves Bob with td mod n, Alice "unblinds" (deciphers) the signed
message by computing the multiplicative inverse k~l mod n via the extended
Euclidean algorithm and multiplying:

s = tdk~l mod n = {Mke)dk~l = Mdked'1 = Md (mod n).

Now Alice has Bob's blind signature Md mod n for M, and Bob never saw
M.

This protocol is the electronic equivalent of Alice sealing M inside an en­
velope with a piece of carbon paper, getting Bob to sign the outside of the
envelope, so that the carbon paper copies his signature onto M, and then
Alice opening the envelope later.

20.7 Exercises
1. Alice discovers a wonderful proof of the Riemann Hypothesis. She writes

a manuscript containing her proof, but does not publish it immediately
because she feels the world is not ready for the proof. However, she
wants to be able to claim that she did it first in case someone else finds
a proof later. What short string of letters or numbers could she publish
in a classified advertisement in the New York Times to accomplish this
goal?

2. Design a protocol for mental poker with three players.

262 Cryptanâlysis of Number Theoretic Ciphers

3. The rules of draw poker allow players to discard (some) cards and replace
them. Show that discarding and replacement can be done by a slight
modification of the mental poker protocol.

4. Is there a way that either Alice or Bob could deliberately lose the coin
tossing protocol? Explain your answer.

5. Can Bob deduce Alice's second message when she gives him both of her
private RSA keys in Step 6 of the second oblivious transfer protocol?

6. Consider Shamir's Lagrange interpolating polynomial threshold scheme.
Let t = 4, p = 11, K = 7 and h{x) = (x3 + 10a;2 + 3x + 7) mod 11.
Compute shadows for x = 1, 2, 3, 4, 5, 6 and 7. Reconstruct h(x) from
the shadows for x = 1, 3, 5 and 7.

7. Consider Asmuth and Bloom's key threshold scheme based on the Chi­
nese remainder theorem. Let t — 2, w = 4, p = 5, d\ = 8, d2 — 9,
d3 = 11, d4 = 13. Then n = 8 x 9 = 72. Let K = 3 and r = 10, so that
K1 — 53. Compute the four shadows K\, K2, K% and K4. Reconstruct
K from K\ and K3.

8. Consider Asmuth and Bloom's key threshold scheme based on the Chi­
nese remainder theorem. Suppose keys have three shadows, any two
of which are enough to determine the key. Suppose the key is a non-
negative integer less than p = 5, while the shadows are integers modulo
di = 7, c?2 = 9 and d% = 11. Determine the key K from the two shadows
K\ = 0 and K% = 9. Then find the second shadow K2. Note that the
two given shadows correspond to the first and third moduli 7 and 11.

9. A small bank has an electronic safe which may be opened by certain
combinations of the president, the two managers and the five tellers.
Policy dictates that the safe may be opened if and only if

(a) the bank president decides to open it, or

(b) the two managers both decide to open it, or

(c) all five tellers decide to open it, or

(d) one manager and three tellers decide to open it.

Explain how you would choose the parameters and distribute the shad­
ows of a Lagrange interpolation polynomial key threshold scheme to
meet the requirements of this bank.

Chapter 21

Complicated Protocols

This chapter discusses several complicated protocols. Some of them use pro­
tocols from the previous chapter. See Chapters 5 and 6 of Schneier [100] for
more about these protocols.

21.1 Contract Signing
Alice and Bob want to enter into a contract. They agree on it. Both want to
sign, but neither wishes to sign unless the other signs as well.

The first protocol uses a trusted arbitrator, Tracy.

1. Alice signs a copy of the contract and mails it to Tracy.

2. Bob signs a copy of the contract and mails it to Tracy.

3. Tracy tells both Alice and Bob that the other has signed it.

4. Alice signs two copies of the contract and mails them to Bob.

5. Bob signs both copies, keeps one and mails the other to Alice.

6. Alice and Bob both tell Tracy that they each have a copy of the contract
signed by both of them.

7. Tracy destroys the two copies of the contract that she has.

If Alice didn't sign the contract in Step 4, then Bob could get a copy she had
signed from Tracy. Likewise, if Bob didn't sign it in Step 5, then Alice could
get one he had signed from Tracy.

In the second protocol, Alice and Bob have no arbitrator, but are face-to-
face in a room.

1. Alice signs the first letter of her name on two copies of the contract and
hands them to Bob.

263

264 Cryptanalysis of Number Theoretic Ciphers

2. Bob signs the first letter of his name on both copies and hands them
back to Alice.

3. Alice signs the second letter of her name on both copies and hands them
back to Bob.

4. Bob signs the second letter of his name on both copies and hands them
back to Alice.

5. This continues until both Alice and Bob have signed their entire names.

In the third protocol, Alice and Bob have no arbitrator and are not face-
to-face. In this case, they exchange a series of signed messages of the form,
"I agree that I am bound by the contract with probability p." Suppose that
Alice doesn't want to be bound to the contract with a probability more than
2% higher than the probability Bob is bound to it. Suppose also that Bob
doesn't want to be bound to the contract with a probability more than 3%
higher than the probability Alice is bound to it.

1. Alice and Bob agree on a time by which the signing protocol should be
completed.

2. Alice mails Bob a message with p = 0.02.

3. Bob mails Alice a message with p = 0.05.

4. Alice mails Bob a message with p = 0.07.

5. Bob mails Alice a message with p = 0.10.

6. These steps alternate until both have received messages with p = 1 or
else the time in Step 1 has passed.

In case one of Alice and Bob stopped the protocol before the end, the other
would take the last signed message to a judge, who would choose a random
number between 0 and 1 and compare it to the p in the message to see whether
the contract was valid.

In the fourth protocol, Alice and Bob have no arbitrator, are not face-to-
face, and can't agree on the probabilities above.

1. Alice and Bob randomly select 2n Rijndael keys, in pairs.

2. Alice and Bob generate n pairs of messages: L¿ = "This is the left half
of my signature." Ri = "This is the right half of my signature." Each
message also contains a digital signature of the contract and a time
stamp. The contract is considered signed by a party if both L¿ and Ri
can be produced by the other party for some 1 < i < n.

Complicated Protocols 265

3. Alice and Bob encipher their message pairs using the 2n Rijndael pairs,
the left message with the left key and the right message with the right
key.

4. Alice and Bob mail each other their set of 2n enciphered messages,
making it clear which is which.

5. For 1 < i < n, Alice and Bob mail each other one of the keys in the
i-ih pair by oblivious transfer, omitting Step 6 for the moment. Now
they each have one key in each pair, but neither knows which signature
halves the other can read.

6. Both Alice and Bob decipher the messages they can, using the keys
mailed to them. They check that the messages are valid.

7. Alice and Bob mail each other the first bit of all 2n Rijndael keys. They
check the n first bits they already know.

8. Alice and Bob repeat Step 7 for the second, third, etc., bits, until all
bits of all the Rijndael keys have been exchanged.

9. Alice and Bob decipher the remaining halves of the message pairs and
the contract is signed.

10. Alice and Bob exchange the private RSA keys (Step 6 of the RSA version
of the oblivious transfer protocol) and verify that the other has not
cheated.

If Bob wanted to cheat, he could send garbage in Step 4 or 5, but Alice would
notice this fraud in Step 6.

21.2 Secure Elections
Secure elections should have at least these properties:

1. Only registered voters can vote.

2. No person can vote more than once.

3. No one can determine for whom anyone else voted.

4. Every voter can make sure that his vote has been counted.

5. No person can duplicate any other person's vote.

6. No person can change any other person's vote undetected.

All of the following protocols use a Central Tabulating Facility, CTF. The
following protocol satisfies Property 6, but not much else.

266 Cryptanalysis of Number Theoretic Ciphers

1. Each voter enciphers his vote with the public key of the CTF and mails
it to the CTF.

2. The CTF deciphers the votes, tabulates them, and publishes the results.

There are many problems with this protocol. The CTF can't tell whether
votes come from registered voters or whether registered voters vote more than
once.

Protocol 2 is slightly better.

1. Each voter signs his vote with his private (RSA) key.

2. Each voter enciphers his signed vote with the CTF's public key and
mails it to the CTF.

3. The CTF deciphers all votes, checks signatures, tabulates the votes and
publishes the results.

This protocol satisfies Properties 1, 2 and 6: only registered voters can vote
and no person can vote more than once. Also, no person can change any vote.

The problem is that the CTF knows who voted for whom. The voters must
trust the CTF completely.

Protocol 3 solves many of these problems. The "blinding" mentioned in Step
2 refers to the blind signature protocol described in the previous chapter.

1. Each voter prepares ten sets of messages. Each set contains a valid
vote for each possible outcome. Each message also contains a randomly
generated twenty-digit number.

2. Each voter blinds each of these messages individually and mails them
to the CTF.

3. The CTF checks its list to make sure the voter has not submitted his
blinded votes previously in this election. It randomly chooses nine of
the ten sets of votes and asks the voter to unblind these sets. The voter
does and the CTF checks that these nine sets are properly formed. If
they are, then it individually signs each message in the tenth set. It
mails them back to the voter and stores his name in the list.

4. The voter unblinds the signed tenth set and is left with a set of all
possible votes signed by the CTF. He can tell which is which.

5. The voter chooses one of the possible votes and enciphers it with the
CTF's (second) public key. He mails it to the CTF.

6. The CTF deciphers the votes, checks the signatures, checks its list for
a duplicate twenty-digit number, saves the twenty-digit number in the
database and tabulates the votes. It publishes the results of the election,
along with every twenty-digit number and the vote with it.

Complicated Protocols 267

The blind signature ensures that votes are unique. No one can generate
bogus votes or change votes of others because the CTF's private key is secret.
A malicious CTF cannot determine how people voted. Each voter can confirm
that his vote was tabulated correctly.

However, if the CTF can determine where the votes comes from, it can
link votes with people. Even if it can't do this, it could still generate many
signed valid votes and submit them itself. If Alice discovers that the CTF has
changed her vote, she cannot prove this.

The next protocol has the six properties listed above and these two:

7. A voter can change his mind, that is, delete his old vote and cast a new
one, within a certain time period.

8. If a voter finds that his vote is miscounted, he can correct the problem
without hurting the secrecy of his ballot.

Protocol 4.

1. The CTF publishes a list of all eligible voters.

2. Before a deadline, each voter tells the CTF whether he intends to vote.

3. At this deadline, the CTF publishes a list of all eligible voters who intend
to vote.

4. Each voter receives a unique twenty-digit number / , for example, by
mental poker or blind signature protocol.

5. Each voter generates RSA keys n, e, d with encipher function E and
decipher function D. If his vote is v, he mails the message I,E(I;v)
anonymously to the CTF.

6. The CTF acknowledges getting the vote by publishing E(I,v).

7. Each voter mails the message / , d to the CTF.

8. The CTF deciphers the votes. It can do this since it has received the d
for each vote, so it can compute D(E(I;v)) = I; v. When the election
ends, it publishes the results and, for each different vote, the list of all
E(I; v) that contained that vote.

9. If a voter sees that his vote was not counted properly, he objects by
mailing / , E(I; v), d to the CTF.

10. If a voter wants to change his vote from v to v', he mails I,E(I;vf),d
to the CTF.

268 Cryptanalysis of Number Theoretic Ciphers

Steps 1 through 3 of Protocol 4 are preliminary to the actual voting. They
reduce the ability of the CTF to add fraudulent votes.

If two voters get the same / in Step 4, the CTF discovers this in Step 5.
It creates a new twenty-digit number / ' , chooses one of the two votes, and
publishes I',E(I\v).

The person who cast that vote recognizes it and votes again by repeating
Step 5 with the new I'.

In Step 6, each voter can check that his vote is counted accurately. If not,
he can prove this in Step 9.

One limited problem is that the CTF could make up fraudulent votes for
people who respond in Step 2 but don't actually vote.

A more serious problem is that CTF could neglect to count a vote. Alice
could claim that the CTF deliberately neglected her vote, while the CTF
could claim that she never voted.

21.3 Electronic Cash
Electronic cash or digital cash is not a check, credit card or a debit card.
They leave audit trails. It is as close to cash as can be.

Digital cash is anonymous and untraceable. It can be sent through computer
networks. It can be used off-line, not connected to a bank. It is transferable.
One can make change with it. It can be stolen. It can be spent only once. It
would be used to pay for small things like tolls and food.

We do not achieve all of these goals, but we design electronic cash with
many of these properties. In the next two sections we describe two quite
different forms of digital cash.

21.3.1 Electronic Cash According to Chaum

We begin with a simple protocol for digital cash and follow with a series of
more complicated protocols that fix the problems with the first one.

1. The bank gives Alice a note for $100 (like a money order or cashier's
check) and subtracts $100 from Alice's bank account.

2. Alice spends the note with a merchant.

3. The merchant deposits the note in his bank account.

4. The merchant's bank clears the note with Alice's bank.

This protocol has many problems. As the note is electronic, it can be easily
copied, so Alice could spend it twice. So could the merchant. Also, Alice
could be traced if the bank remembered the serial number of the note.

Complicated Protocols 269

We solve these problems one-by-one, following Chaum [26] and [27]. Pro­
tocol 1 solves the problem of Alice being traced by the bank and makes the
money truly anonymous. The bank has RSA keys n, e, d, as usual.

Protocol 1.

1. Alice makes 100 anonymous money orders for $100 each. She blinds
(enciphers) each one and gives them all to her bank.

2. The bank asks Alice to open 99 of the money orders, randomly chosen,
and verifies that each one is a money order for $100. (If not so, Alice
goes to jail.) To "open" the 99 money orders t, Alice tells the bank M
and k for each. The bank verifies that each t = Mke mod n.

3. The bank put its blind signature on the last, unopened one, returns it
to Alice and deducts $100 from her bank account.

4. Alice unblinds the money order (now signed by the bank) and spends it
with a merchant.

5. The merchant verifies the bank's signature (which can be done without
communication with bank) to make sure it is valid.

6. The merchant takes the money order to his bank, which verifies the
signature and adds $100 to merchant's bank account.

Protocol 1 makes anonymous cash, but cash that can still be spent twice.
Protocol 2 protects the bank from double spending, but doesn't catch the
double spender.

Protocol 2.

1. Alice makes 100 anonymous money orders for $100 each. On each one
she writes a random twenty-digit integer. She blinds each one and gives
all to her bank.

2. The bank asks Alice to open 99 money orders, and verifies that each one
is a money order for $100 and that all 99 twenty-digit integers differ.
(If not, Alice goes to jail.) The bank puts its blind signature on the
last money order, returns it to Alice and deducts $100 from her bank
account.

3. Alice unblinds the money order (now signed by the bank) and spends it
with a merchant. The merchant verifies the bank's signature to make
sure it is valid.

4. The merchant takes the money order to his bank.

270 Cryptanalysis of Number Theoretic Ciphers

5. The merchant's bank verifies the signature, and checks in a database to
make sure that a money order with the same twenty-digit integer has
not been previously spent. If this has not happened, then it adds $100
to the merchant's bank account and records the twenty-digit number
in the database used by all banks. But if the number is already in the
database, then the bank doesn't accept the money order.

With Protocol 2, if Alice tries to spend the money order twice, or if the
merchant tries to deposit it twice (in two different banks, say), the second
bank will know and not accept it. Protocol 3 identifies the cheater.

Protocol 3.

1. Alice makes 100 anonymous money orders for $100 each. On each
one she writes a random twenty-digit integer and 100 pairs of identity
bit strings: (IIL,IIR), • • • > {hooL, IIOOR)- Each part is a bit-committed
packet that Alice can be asked to open, and whose proper opening can
easily be checked. Any pair, (h9L,h9R), s a v

5 reveals Alice's identity
when the two strings are exclusive-or'ed together. But halves from dif­
ferent pairs, such as(l23L,hiR) or (Ii9L,hiL), do not reveal who Alice
is. Alice blinds each money order and gives all 100 of them to her bank.

2. The bank asks Alice to open 99 money orders, and verifies the contents.
If it finds an error, Alice goes to jail. The bank puts its blind signature
on the last money order, returns it to Alice and deducts $100 from her
bank account.

3. Alice unblinds the money order (now signed by the bank) and spends
it with a merchant, who verifies the bank's signature to make sure it is
valid.

4. The merchant asks Alice to randomly reveal either the left or right half
of each of the 100 identity strings. (The merchant chooses the random
numbers.) Alice reveals them.

5. The merchant takes the money order to his bank. The bank verifies the
signature and checks the database for the twenty-digit number. If it is
not found therein, the bank credits the merchant with $100 and records
the money order in the database.

6. If the twenty-digit integer is already in the database, the bank does not
accept the money order. It compares the 100 identity strings on the
money order with those in the database. If they agree, that is, the same
set of left halves has been opened, the bank knows that the merchant
copied the money order. If they differ, a second merchant deposited
the money order earlier and it was Alice who copied. Some of the 100
identity strings will have both halves revealed, so Alice can be identified.
In that case, Alice goes to jail.

Complicated Protocols 271

Protocol 3 is not transferable nor can one make change with this digital
money. We did not achieve all of our goals. But Protocol 3 does some re­
markable things anyway.

Can Alice cheat? She can copy her $100 money order. It works the first
time she spends it. But she gets caught the second time she spends it.

Can she create a money order with a bad identity string? There is one
chance in 100 that she can, not worth going to jail.

Alice can't change the twenty-digit number or the identity strings, because
then the bank's signature would no longer be valid.

Can the merchant cheat? No. If he tries to deposit the money order twice,
he will be caught, and Alice will not be implicated.

Can the merchant and Alice conspire to spend the digital cash twice? No,
because they can't change the twenty-digit number signed by the bank, so the
bank will not have to pay the $100 more than once.

Can Eve copy Alice's money order and spend it first? Yes. It is like cash.
Even worse, if Alice didn't know that Eve copied it and spent it, then Alice
would be caught when she spent it the first time. If Eve spent it twice (or
even more times) before Alice spent it, then Alice would go to jail.

Eve could eavesdrop on communication between Alice and the merchant and
deposit the money (as a merchant) before the merchant deposits it. When
the merchant tries to deposit it, he will be found as a cheater.

Both Alice and the merchant must protect their digital cash as if it were
cash. It must be enciphered when it is sent across the Internet.

The money order in Protocol 3 takes about a megabyte.

21.3.2 Electronic Cash According to Brands

Here is an alternate way of creating digital cash, due to Brands [15]. Trappe
and Washington have an excellent treatment of this protocol in Chapter 9 of
[115]. In addition to the properties of cash in the previous protocol, this one
offers some protection against someone stealing the cash from Alice. If they
do, they won't be able to spend it. The protocol sounds complicated, but
keep in mind that it does everything that Protocol 3 above does, and more.
It also takes far less storage than Protocol 3, only a few kilobytes.

We will call the unit of digital cash a "coin" in this protocol, rather than a
"money order."

A central bank chooses a Sophie Germain prime q. This means that p =
2q + 1 is also prime. The prime p must be large enough so that no one can
solve the discrete logarithm problem modulo p, say, p > 21000. The central
bank also chooses a number g which is the square of a primitive root modulo p.
Then g has order q modulo p, so gl = gj (mod p) if and only if i = j (mod q)
by Theorem 6.15. The central bank chooses two random numbers k\ and
fe, and computes g\ = gkl modp and g2 — g1*2 mod p. It makes public the
numbers p, q, g, g\ and #2- The random numbers k\ and k2 are destroyed. It
also publishes a standard hash function 5, like SHA, and a standard way of

272 Cryptanalysis of Number Theoretic Ciphers

applying it to the concatenation of four or five large integers, so that, given
the numbers, everyone would compute the same message digest of them.

Each bank in the electronic cash system chooses a secret identity number,
x, which it remembers, and publishes the three numbers h — gx mod p, hi =
gf mod p and h2 — g2

 m ° d V o n its Web page.
When Alice opens an account at a bank, she chooses a secret identity num­

ber u. She tells the bank the account number I — g\ mod p. She does not tell
u to anyone, not even the bank. The bank stores / together with information
identifying Alice. It sends z\ — (Ig2)

x to Alice to use when she later creates
coins.

Each merchant chooses an identification number ra, which is registered with
the bank, together with the merchant's name and address.

A coin consists of a 6-tuple (A, B, z, a, 6, r) of integers modulo p or g, and
takes about a kilobyte to store. When Alice wants to withdraw cash from her
bank account she performs the following steps for each coin.

1. Alice identifies herself to the bank and tells it the value of the coin she
wants to withdraw from her account.

2. The bank chooses a random number w modulo </, a new one for each
coin, and sends gw = gw modp and e = {Ig2)w modp to Alice. The bank
keeps w secret and remembers it until Step 4, where it is used again.

3. Alice chooses five secret random numbers s / 0, x\, x2l yi and y2l all
modulo q. She chooses different numbers for each coin. Alice computes

A = (Ig2)
s mod p,

B E f f ^ m o d p ,

z = z[mod p,

a = gif gV2 mod p and

b = esyiAy2 mod p.

The case A = 1 is forbidden. This can happen only when s — 0, which
is not allowed, or when Ig2 = 1 (mod p), which is equivalent to g^u =
g2 (mod p), and this would mean that Alice had solved a discrete logarithm
problem modulo p when she chose u. But the prime p is so large that this
can't happen. Alice computes c = (yi)~1S(A, B, z, a, b) mod q and sends c to
her bank.

4. The bank computes c\ — cx + w mod q and sends c\ to Alice. The bank
destroys w after this use. The bank deducts the value of the coin from Alice's
account.

5. Alice computes r = y\C\ +y2 mod q and the coin (A, £?, z, a, ò, r) is ready.
This may sound complicated, but Alice's wallet computer and the bank's

computer can do it all in less than a second.
Now Alice takes the coin (A, B, z, a, 6, r) , and probably others, to the mer­

chant. Her computer and the merchant's computer perform the following
steps to let Alice spend the coin.

Complicated Protocols 273

1. Alice gives the coin (A,B,z,a,b,r) to the merchant.
2. The merchant tests whether gr = ah

s^B^z^a^ (mod p) and Ar =
bzs(AtB,z,a,b) (m o d p) < if either congruence fails, the coin is invalid, and the
merchant rejects the coin. If both congruences hold, the merchant computes
d — S(^4, i?,ra,¿), where t is a current time stamp. The merchant sends d to
Alice.

3. Alice computes r\ — (dus + x\) mod q and r<¿ — (ds + #2) mod q, where
u is Alice's secret identity number she used to establish her bank account, and
8, xi, and X2 are three of the secret random numbers she chose to generate
this coin. Alice sends r± and 7*2 to the merchant.

4. The merchant checks the congruence g^g^2 = AdB (mod p). If so,
the merchant accepts the coin and the transaction is complete. If not, the
merchant rejects the coin because Alice stole it from someone else.

Some time after the transaction, the merchant tries to deposit the coin in
the bank. He gives it to the bank, together with the triple (7*1,7*2, d). The
bank performs these checks.

First, the bank checks whether the coin (A, B, z, a, 6, r) is already stored in
its database of used coins. If it is not there, the bank checks the same three
congruences that the merchant checked earlier, namely,

gr = ahS(A,B,z,a,b) (m o d p) ?

Ar = bzS(A,B,z,a¿) ^ m () d ^ a n d

g?g?=AdB (modp).

If all three hold, the coin is valid and the bank credits it to the merchant's
account. It enters the coin (A,B,z,a,b,r) and the triple (ri,r2,d) into its
database of used coins.

If the coin (A, B,z,a, ò, r) is already in the bank's database, then it has a
triple (^,7*2,^') stored with it. The bank compares this triple with the triple
(ri,r2,d) just submitted by the merchant. If the triples are the same, then
the merchant must be submitting the same coin again because the merchant's
identification number m and the time stamp t are hashed into d and Alice's
secret u is in r\. If the triples differ, and in particular if V2 ^ r2, then the
bank can compute Alice's secret identity number u from u = (7*1 — r[)(r2 —
r 2) - 1 (mod q). Then it calculates i" = g% modp and learns Alice's identity.
Alice goes to jail.

The difficulty of solving the discrete logarithm problem modulo p prevents
most other possible fraud. The merchant cannot submit a coin twice, once
with the triple (ri,r2,<¿) and once with a phony triple (r*i,r2,(f), because he

can't compute a second triple satisfying g^g^2 = Ad B (mod p). For the
same reason, one merchant cannot deposit a coin in the bank and also spend
the same coin at another merchant. If someone stole a coin from Alice, they
could not spend it because they could not compute 7*1 and 7*2 with g^g^2 =
Ad B (mod p), where d' was given to them by a merchant. Likewise, no

274 Cryptanalysis of Number Theoretic Ciphers

one could forge a bogus coin because they could not compute a number r
satisfying gr = ah

s(A>B>z>a>b) (mod p) and Ar = bzs^B>z^ (mod p). A
person working in the bank and knowing Alice's / could not forge a coin with
Alice's identity because they don't know Alice's secret u, and that number is
needed to produce n . If an evil merchant stole a coin and the triple (ri, r2, d)
from a merchant before that merchant sent it to the bank, then the evil
merchant could successfully deposit it first. This is a problem with real cash,
too.

The transaction between Alice and the merchant is totally anonymous, just
as it would be if real cash were used. Their computers merely exchange num­
bers. Alice's identity I is hidden in one of the numbers, but it cannot be
extracted unless Alice spends the coin twice. The bank knows / . It could
remember that w was a random number used to create a coin for Alice, al­
though it is not supposed to store this number. It might even keep track of c
and c\. With all this knowledge, can it inspect incoming coins and tell which
ones were spent by Alice? Only Alice knows the secret numbers s, x\, x<i,
yi and 2/2 • Therefore, A, B, z, a, b and r, which depend on these five secret
random numbers are just six random numbers to anyone other than Alice.

2I.4 Exercises
1. Explain why the protocols for contract signing work, if they do. What

if one party has much faster computers than the other?

2. Explain why the protocols for elections work, if they do.

3. Make reasonable estimates for the sizes of the numbers used in Chaum's
Protocol 3, and estimate the number of bytes Alice must carry from her
bank to the merchant.

4. In Chaum's Protocol 3, why must Alice bit-commit the halves of the
identity bit strings? After all, if she changed them, the bank's signature
on them would not be valid.

5. Suppose a coin is created properly using the protocol of Brands. Prove
that the three congruences checked by the merchant and the bank will
hold.

6. Explain how someone who knows the bank's secret number x can create
and spend valid coins without even having an account at the bank.
What happens if he spends one of these coins twice?

7. In which digital cash protocols in this chapter can Alice and a Merchant
conspire to cheat the Bank?

Chapter 22

Complete Systems

This chapter introduces two complete systems. See Chapters 14 and 15 of
Stallings [114] for more about these systems.

22.1 Kerberos
Kerberos, developed by Project Athena at MIT, solves this problem: Assume
an open distributed environment. Users at workstations wish to access services
on various servers. Servers wish to restrict access to authorized users and be
able to authenticate users' requests for service. A workstation cannot be
trusted to identify its users correctly.

There are three threats:

1. A user may gain access to a workstation and pretend to be another user
on that workstation.

2. A user may alter the network address of a workstation so that the re­
quests from it appear to come from a different workstation.

3. A user may eavesdrop on exchanges and use a replay attack to gain
entrance to a server or to disrupt operations.

Kerberos addresses these threats by providing a central authentication server,
AS, to authenticate users to servers and servers to users. It requires a user
to prove identity for each service invoked. It also requires that servers prove
their identity to clients.

Kerberos uses only conventional cryptography (DES), no public key cryp­
tography, and is supposed to be:

• Secure: No eavesdropper can impersonate a user.

• Reliable: No one can use any services unless permitted by Kerberos.

275

276 Cryptanalysis of Number Theoretic Ciphers

• Transparent: A user just types a password; all else is hidden.

• Scalable: It can support many clients and servers.

Version 4 was the first full version, and is still in use. Version 5 is the next
full version.

Here is a simple authentication dialogue:
1. C ^ AS: IDc,Pc,IDv

2. AS -> C: Ticket
3. C -+V: IDc, Ticket
where Ticket = EKv [IDC, ADC, IDV\.
AS — authentication server (Kerberos)
C = client
V = server
IDc = identification of user on C
IDy — identification of server V
Pc = password of user on C
ADc = network address of C
Ky — secret key shared by AS and V.
The use of ADc prevents ticket capture and reuse.
The ticket is valid only once and only from workstation C.
There are some problems with this simple dialogue:
1. A user on C must enter her password for each ticket, which is too many

times. It would be better to make the ticket reusable.
2. The plaintext transmission of the password in Step 1. An eavesdropper

could capture it.
These problems are solved by adding a Ticket Granting Server, TGS.
Once per user login session:
1. C -+AS: IDCJDTGS-

2. AS -> C: EKc[TicketTGsl
where TicketTGs = EK^^IDC.ADCJDTGS.TSULTX].

Once per type of service (mail, print, login, etc.):
3. C ->TGS: IDcJDy,TicketTGS.
4. TGS -> C: Tickety.

where Tickety = EKv [IDC, ADC, IDV,TS2, LT2}.
Once per service session:
5. C -+V: IDC,Tickety.
In 1 and 2, no password is sent over the network. Instead, in 2, C asks its

user for a password (Kc) and uses it to decrypt the ticket.
The time stamps and lifetimes prevent reuse by an eavesdropper, unless he

reuses it right away.
There are two problems with the dialogue above:
(a) The lifetime may be too long or too short. The TGS or V should be

able to check that the person using the ticket is the same as the one to whom
it was issued.

Complete Systems 277

(b) Servers should have to prove their identity to users. Otherwise a bogus
server could capture information from an unwary user and deny service.

These problems are solved by the following Kerberos 4 dialogue.
Once per user login session:
1. C^AS: IDOIDTGSITSL

2. AS-+C: EKc[Kc,TGS,IDTGS,TS2,LT2,TicketTGs],
where TicketTGs = EKTGS[KC,TGS, IDC, ADC,IDTGS,TS2, LT2].

Once per type of service:
3. C-+TGS: IDy,TicketTGSiAuthenticatorc,TGSi

where Authenticatorc,TGS — EKC,TGS[IDC,ADC,TSZ}.

4. TGS^C: EKClTGs[Kctv,lbv,TSi,Ticketv],
where Tickety = EKy [Kc,vJDc, ADC, IDV,TS4, LT4].

Once per service session:
5. C —> V: Tickety, Authenticatorc,v,

where Authenticatorc,v = EKC V[^C^ADC,TS^].

G.V-+C: EKc!V[TSb + l].
Now the lifetime is less important and can be made long enough, since

knowledge of KC,TGS and Key prove the user is the grantee of the ticket.
In 6, F proves its identity to C.
Purdue University students Dole and Lodin broke Kerberos 4 a few years

ago.

22.2 Pretty Good Privacy
Pretty Good Privacy, PGP, was written mostly by Phil Zimmermann.

He used the best available crypto algorithms as building blocks to create
a system for enciphering both files and e-mail. It provides confidentiality
and/or authentication. It is independent of operating system and machine.
It has a small number of easy-to-use commands. It is freely available on the
Internet. Authentication is provided by SHA signed by either RSA or DSS.
Confidentiality is provided by encryption using either CAST-128, IDEA or
Triple DES with a one-time key generated by the sender. PGP also provides
ZIP compression, radix-64 conversion (for e-mail), as well as segmentation
and reassembly of long messages.

The signature is generated before compression because:
(a) It is better to sign an uncompressed message so that you can store

only the uncompressed message and signature for later verification. If you
signed a compressed document, you would either have to store the compressed
document or else recompress it at verification time.

(b) The ZIP compression algorithm is not deterministic. Different versions
of ZIP produce different compressed files. Signing after compression would
require the use of just one version of ZIP.

The message is enciphered after compression because the compressed mes­
sage has less redundancy; so, its crypt analysis is harder.

278 Cryptanalysis of Number Theoretic Ciphers

The random numbers for generating session keys come from the timing of
the users' keystrokes.

Users may have more than one set of RSA keys (to change keys or to
communicate with different sets of correspondents, say). Each public key is
identified by its low-order 64 bits in messages sent to the recipient.

Each user of PGP has two data structures to hold keys: one for his own
public/private key pairs and one to store the public keys of other users. These
data structures are called the user's private-key ring and public-key ring.

The private keys are encrypted via a passphrase. SHA produces a 160-
bit hash of the passphrase and 128 of these 160 bits are used as the key for
CAST-128. Private keys are indexed either by their low-order 64 bits or by a
userid.

The public keys are stored in a similar data structure, but which has addi­
tional fields for a time stamp and trust information.

Suppose Alice gets a public key for Bob from a source which has been
compromised by Chuck, so that the key Alice thinks is Bob's really comes
from Chuck. Then Chuck could send a message to Alice signed "Bob" and
Alice would accept it as coming from Bob. Furthermore, Chuck could read
any encrypted message from Alice to Bob.

One way to solve this problem would use X.509. PGP uses the notion of
"trust" instead.

PGP provides a way for a public key to be "signed" by another public key.
It also has a level of "trust" associated to each public key. The higher the
level of trust, the stronger the binding of userid and key. A key that is signed
by trusted keys is also trusted to a degree determined by number and degree
of trust of the trusted keys.

The degrees of trust are: undefined, unknown user, usually not trusted to
sign other keys, usually trusted to sign other keys, always trusted to sign other
keys, and present in the secret key ring (ultimate trust).

If a user wishes to change one of his public keys or if he believes it has
been compromised, then he widely disseminates a Key Revocation Certificate,
signed by the associated private key.

22.3 Exercises
1. Find weaknesses in the Kerberos and PGP protocols.

Part III

Methods of Attack

http://taylorandfrancis.com

Chapter 23

Direct Attacks

This section of the book describes various attacks on the ciphers and protocols
mentioned in Part II. This section is not as long as it might have been since
many attacks were already described when the algorithms were presented in
Part II.

The attacks vary in the information known to the attacker, the compu­
tational power of the attacker and the attacker's goal. If the cryptanalyst
knows only that the ciphertext is a string of bits, then it is hard to make any
progress. We will assume that at least the type of cipher is known, in addition
to some ciphertext. As explained in Chapter 1, this ciphertext-only attack
is the most difficult. In case of a public-key cipher, we will assume that the
public key data are also known.

It is an advantage for the cryptanalyst to know some pairs of plaintext
and ciphertext. Often one can mount this known-plaintext attack by guessing
some of the plaintext, such as a standard header.

The cryptanalyst may get even more help if he can choose plaintext and see
the corresponding ciphertext. This chosen-plaintext attack is always available
with a public-key cipher, and usually doesn't help much in that case.

This chapter introduces some direct attacks, which include the most obvious
kinds of attack. In these attacks a direct assault is made on a secret key or
message.

23.1 Try All Keys
This sounds dumb, and it is dumb, but occasionally it works. Most ciphers
have so many possible keys that it would take too long to try all of them in
a known-plaintext attack.

The Data Encryption Standard, DES, is a block cipher with 56-bit keys.
One can build a special machine with many fast simple processors which can
try all 256 possible keys in a few hours.

If a defect in the key selection algorithm limits the number of possible keys,

281

282 Cryptanalysis of Number Theoretic Ciphers

then one might be able to try all of the possible ones. This is how Bryn Dole
and Steve Lodin [69] broke Kerberos 4.

Recall that Kerberos is a secret key network authentication protocol de­
signed at MIT. See Section 22.1 for a description of the protocol. Its key
distribution server and ticket granting server generate secret keys for the sym­
metric block cipher DES. A user who could guess these keys could intercept
session keys, which are enciphered, and use them to access services without
authorization. DES keys have 56 bits, and 256 keys is too many for one to try
all of them during the lifetime of a session key.

Kerberos 4 generates the 56-bit keys as follows. A pseudorandom number
generator, PRNG, is seeded with a random 32-bit seed and called twice to
produce two 32-bit random numbers. Every eighth bit is set as a parity bit.
This 64-bit quantity is the 56-bit DES key for a session key. Since the key
depends only on the 32-bit seed, the entropy of the 56-bit key K is only
H(K) — 32. This is already a serious problem because one could try all 232

seeds and test each DES key they yield in only a few hours on a workstation.
But the lifetime of a typical session key is a few hours; so, this attack may or
may not work.

But the situation is even worse. The 32-bit seed for the PRNG is formed
as the exclusive-or of five random 32-bit numbers. They are:

1. the time-of-day in seconds since January 1, 1970,

2. the fractional part of the current time in microseconds,

3. the process ID of the Kerberos server process,

4. the cumulative count of session keys produced so far, and

5. the hostid of the machine on which Kerberos is running.

These five quantities have various amounts of entropy from 1 to 20 bits. The
fractional part of the time has the most entropy. It is a random number
modulo 1,000,000. Since the uncertain bits are always in the low-order 20
bit positions and since the five numbers are combined with exclusive-or, the
entropy of the seed for the PRNG is only 20 bits. Therefore, one could
generate and test all 220 possible DES keys in a few seconds. This attack will
succeed easily within the lifetime of the session key.

Rather than forming the exclusive-or of the five random numbers, the key
generator should have computed a hash of their concatenation and chosen the
bits of the session key from the bits of the message digest. Then every bit of
randomness in the numbers would contribute to every bit of the session key.
The PRNG, with its 32-bit seed, should not have been used at all.

This problem was corrected in Kerberos 5.
Another situation in which one can try all keys is when a human chooses

a key. When a cipher program asks a user to type a password and then
converts it into a key, the user often chooses an easy-to-remember word, like a

Direct Attacks 283

word in a dictionary. This oversight happens frequently with login passwords.
One can attack this error by trying all words in a dictionary. One can also try
dictionary words spelled backwards, words with one letter capitalized, pairs of
short words, foreign words, and strings of letters constructed from the letters
in a user's name. One can guess a large percentage of login passwords this
way.

One way to counter this problem is to have a program assign random pass­
words. But these are difficult to remember. Another approach is to use
passphrases. These are easy to remember and the user can type the first let­
ter of each word as he says the passphrase to himself. Another way of using
passphrases is to have the user type the entire passphrase, let a program com­
pute a message digest of it, and use part of the hash value as the key. Keep
in mind that the rate of English is about one bit per letter. This translates
into five or six normal words per 32 bits of key. A 64-bit key should have a
passphrase of at least a dozen words to produce enough key entropy.

23.2 Factor a Large Integer
This attack might work for some public-key systems, like RSA or Rabin-
Williams. Some day a polynomial-time integer factoring algorithm might be
discovered. If that happens, these systems will be out of business.

Usually, the composite numbers n used as public keys are chosen so that
they cannot be factored. Designers of these systems must be aware of all
known integer factoring algorithms and choose keys that will make it impos­
sible to factor n by any of these methods. One requirement is that the prime
factors of n be large so that they cannot be found by trial division or the
Pollard rho method. On the other hand, the larger n is, the slower the enci­
phering function will be, so n should be as small as possible, subject to being
too hard to factor. This size requirement implies that n should have only two
prime factors because if n had three prime factors, then one of them would
have to be less than the cube root of n. If n = pq is the product of two primes,
they must be different because (i) prime powers are easy to detect and factor,
and (ii) the cipher wouldn't work if n — p2.

Thus, if we want n to be difficult to factor, we should choose n — pq where
the primes p and q are close to each other. But if they were too close, Fermât's
difference of squares method could find them. To avoid this attack, choose
\q-p\> 1025.

The primes p and q should also have the property that all four of the
numbers p ± 1, q ± 1 have at least one prime factor > 1020. If either of the
numbers p ± 1 were 1010-smooth, then p could be found by the Pollard p - 1
method or Williams' p + 1 method.

In order to avoid having p discovered by the elliptic curve method one would
have to make certain that no integer N in the Hasse interval p + 1 - 2^/p <
N < p + 1 + 2y/p was 1010-smooth, say. Of course, it is impossible to check

284 Cryptanalysis of Number Theoretic Ciphers

this requirement. The best that one can do is make p > 1080, say. The
largest prime factor ever discovered by ECM has about 55 digits. This record
increases slowly, but will take many years to pass 1080.

The largest number n factored with the quadratic sieve algorithm has 135
decimal digits. If you choose n = pq with q > p > 1080, then n will be too
large to factor with QS.

The general number field sieve has factored n with about 160 decimal dig­
its, and this record is slowly increasing as faster computers are applied to
factoring. To be safe from GNFS, one should choose n > 10200, at least.

The special number field sieve has factored n with about 230 decimal digits,
and by the time this is published, it will probably have factored an integer with
more than 1024 bits, a common size specified for RSA cryptographic keys. Of
course, the SNFS works only for integers with the special form re — s, where
r and |s| are small positive integers. Make sure that your RSA key n is not
of this form. Use a program like this one to test candidate n.

for (e = 2 to 1000) {
r = the nearest integer to the e-th root of n
if (|re -n\< 1000) { print "n is bad"; exit }

}
print "n is good"

Some cryptographic algorithms might be endangered by a sudden increase
in the speed of computers due to new technology. Several computational
paradigms loom on the horizon. Shor [109], [110] has shown how one may
factor large integers using quantum computation. Shamir [104] proposed an
optoelectronic processor for factoring integers via the quadratic or number
field sieve. Paun et al. [80] explain how future computers might work via
chemical reactions of DNA molecules. If any of these technologies succeed, we
could factor integers and/or compute discrete logarithms much faster than we
can with current machines. Only time will tell whether these new methods
will work.

23.3 Solve a Discrete Logarithm Problem
This attack might apply to some private- or public-key systems, like Pohlig-
Hellman or ElGamal, or to a key exchange protocol, like Diffie-Hellman. Some
day faster algorithms for discrete logarithms might be discovered. If that
happens, these systems may be out of business or one may have to use larger
groups. The discrete logarithm problem is to solve for x in the equation
ax = b in some group. The time to solve the problem depends mostly on
the size of the group, although it might be easy for special a and b. Usually,
the size of the group is chosen large enough so that the problem cannot be
solved in reasonable time. But if it is chosen too large, then the algorithm
speed will suffer. Designers of these systems must be aware of all known

Direct Attacks 285

discrete logarithm algorithms and choose the size just large enough so that
the problem cannot be solved by any of these methods.

Three types of groups are used in contemporary cryptography. The com­
plexity of the discrete logarithm problem is quite different in the three types.

The first group of interest is the multiplicative group Rp of integers modulo
p. This group appears in the Pohlig-Hellman and ElGamal ciphers, the ElGa-
mal and Digital Signature Algorithms and the Diffie-Hellman key exchange
protocol. Its discrete logarithm problem is a congruence, ax = b (mod p).
The parameter p is almost always prime in this application because the dis­
crete logarithm problem is hardest in that case. The fastest algorithms for
solving this problem are the index calculus method, which is similar to the
quadratic sieve factoring algorithm, and the number field sieve, which is like
the factoring algorithm of the same name. The complexity of these algorithms
is comparable to that of the similar factoring algorithms when they factor a
composite number of about the same size as p. This means that p should be
larger than about 160 digits to be safe from the index calculus method and
larger than about 200 digits to be safe from the number field sieve method.
Work on these discrete logarithm algorithms has lagged work on the similar
factoring algorithms. The record p's for solving discrete logarithms is quite a
bit smaller than the largest hard numbers factored by these algorithms.

The second group used in cryptography is the group of points on an elliptic
curve modulo a prime p. These groups have roughly p points. But they have
no notion of smoothness, which is what makes the index calculus or number
field sieve work. The product of smooth numbers in Rp is smooth—or con­
gruent to a smooth number, which is all the algorithm wants. One might
think of defining a point on an elliptic curve to be smooth if its coordinates
are small compared to p. But then P + Q need not be smooth when P and
Q are smooth. Therefore, one must use other algorithms to solve the discrete
logarithm problem on an elliptic curve. The other nontrivial algorithms in­
clude Shanks' baby-step-giant-step method and the rho and lambda methods
of Pollard. All three of these algorithms have complexity O(y'p), far slower
than the index calculus and the number field sieve, whose complexities are
L(p) or better, where L(x) = exp(>/(ln x) In In x). A rough comparison of ^Jp
with L(p) shows that the discrete logarithm problem for an elliptic curve mod­
ulo a 160-bit prime is a bit harder to solve than the problem in Rp modulo
a 1024-bit prime. Both problems are too hard to solve with current algo­
rithms and machines. With these parameter choices, encryption by ElGamal
or Pohlig-Hellman would run about 100 times faster in an elliptic curve than
in Rp.

We mentioned the third group commonly used in cryptography briefly at
the end of Chapter 14. It is the multiplicative group of the field F2* with
2n elements. This group is cyclic and arithmetic in it is fast on a binary
computer. Coppersmith [30] found an algorithm for computing discrete loga­
rithms in this field which works for n up to about 1000. It consists of a massive
precomputation, which need be done only once for each n, and a fairly short

286 Cryptanalysis of Number Theoretic Ciphers

main computation to find particular discrete logarithms.

23.4 Timing Attacks
These insidious attacks were discovered by Kocher [59] and apply to nearly all
cryptographic algorithms whose execution time depends on the input value.
This includes most of the ciphers, signature schemes and key exchange pro­
tocols discussed in this book.

In order to perform the attack, you must be able to observe a cipher program
running on your computer and make precise measurements of the time it
takes to run on various inputs. You must also know the input value and the
parameters of the cryptographic algorithm other than the secret key. Someone
with an account on the victim's machine and who could observe incoming
packets could easily obtain the required information.

Let us use RSA as a simple example of a timing attack. The victim has
modulus n, enciphering exponent e and deciphering exponent d. The latter
is secret, while n and e are public. The victim receives ciphertext messages
C and deciphers them by computing M — Cd mod n. Let d — X)i = 0 ^&% ^ e

the binary representation of d. The attacker records many ciphertexts Cj and
the time tj needed to decipher each. He deduces d one bit at a time, from bo
to bk- This is the order in which the bits are used in the fast exponentiation
algorithm. Assume that the first r bits have been computed. We repeat the
fast exponentiation algorithm from Chapter 6, but specialize it here to RSA
decryption.

[Fast Exponentiation for RSA Deciphering]
Input: A modulus n, an exponent d > 0 and a ciphertext C.
Output: The value M = Cd.

e — d
M = 1
z = C
while (e > 0) {

if (e i s odd) M — Mz mod n
z = z2 mod n
e = [e/2]
}

r e t u r n M

Let us suppose that the operation M = Mz mod n takes longer for some
pairs M, z than for other pairs and that the attacker can measure the execution
time of the algorithm accurately enough to notice the difference. Because the
first r bits of d have been computed, the attacker can perform the first r
iterations of the while loop for input Cj and measure its time Cj precisely.
The attacker can also measure the precise time dj the operation M = Mz mod

Direct Attacks 287

n would take, if it were done. He knows whether this particular modular
multiplication is fast or slow compared to the time for average pairs M,z.
Using a formula from statistics, he can predict whether br is 0 or 1. He
compares the two variances v\ = Var(£j — Cj) and v2 = Var(£j — Cj — dj). If
v\ > v2, the bit br is probably 1; but if v\ < v2, then br is probably 0. This
works because of Part 4 of Theorem 2.6. For if the multiplication occurs, it
is reasonable to assume that the time dj it takes and the time tj — Cj — dj for
the part of the fast exponentiation after it are mutually independent, so

Vi = Var(¿7 - Cj) = Var(ij - Cj — dj) + Var(c^) > Var(¿¿ — Cj - dj) = v2.

But if the multiplication does not occur, then the time dj it takes and the time
tj —Cj for the part of the fast exponentiation after it are mutually independent,
so

v2 = Var(£¿ — Cj — dj) = Var(tj — Cj) + Var(—dj) > Var(£j — Cj) =v\.

If a mistake is made, then no further significant differences between v\ and v2

will appear for larger r. In that case, the attacker will notice the error, back
up and correct it. See [59] for more details.

The timing attack works against the Diffie-Hellman key exchange protocol
provided Alice always uses the same random XA , but different primitive roots
g are used each time, and the modulus n is fixed.

23.5 Exercises
1. Read the source code of security programs, like the Secure Socket Layer,

which generate random numbers. Estimate the entropy of these random
numbers and find ways to predict them.

2. Eve routinely records all ciphertext messages sent from Alice to Bob.
Bob uses the RSA cipher with public keys TIB and ejg. One day, Eve
learns from another source that one of the plaintext messages Alice sent
to Bob was not relatively prime to UB (and it was not 0 either). Does
this tidbit help Eve to decipher any of the ciphertext messages?

3. Alice was playing with Bob's RSA public keys and noticed that if she
enciphered a message five times, she always got the message back. That
is, EB(EB(EB(EB(EB(M))))) = M for every M she tried.

a. If Alice intercepted a message C from Carol to Bob enciphered (once,
of course) with Bob's public RSA keys, tell how she could decipher it.

b. What mathematical property of Bob's RSA keys caused this weak­
ness?

c. Without expensive repeated enciphering of lots of messages, how
could Bob have avoided this weakness when he chose his RSA keys?

288 Cryptanalysis of Number Theoretic Ciphers

(By "this weakness" I mean "enciphering any small number of times,
not just five times, and returning to the plaintext.")

4. The timing attack could be thwarted if one could ensure that all modular
multiplication operations, Mz mod n, take exactly the same time. Can
you think of a way to make this happen?

Chapter 24

Exploiting an Error

In this chapter, we explore various ways an attacker might exploit an error
made by the user(s) of a cipher or protocol, or even a hardware or software
error. These errors may or may not relate to number theory. Many attacks
on RSA in this chapter and the previous one are described in Boneh [12].

2^.1 Key Management
We have seen how to choose keys for a number theoretic cipher sufficiently
large so that no one can find them in a direct attack, by factoring a number
or solving a discrete logarithm problem in some group. Although it requires
some hard mathematics to be able to make these choices, this is the easy part.
If you leave your passphrase written on a note on your terminal, it doesn't
matter how large your keys are. If a knowledgeable attacker sees that note, he
can use your cipher program to generate your key the same way the program
generates it when you use it.

If your keys are stored enciphered in a file, and you type a passphrase to
allow your cipher program to access them, then you must choose a passphrase
that is hard to guess, and you must not write it down anywhere. What if you
forget it? Then you will not be able to read your enciphered files or messages.
If this matters to you, then you will have to write your passphrase, or at least
the keys you cannot afford to lose, in some secure location, like on a sheet of
paper kept in a safe. If you forget the combination to the safe, you can cut it
open. If several people need to share secret keys, the methods of Section 20.5
might help.

When generating keys, you must create enough entropy to make all bits
of the key as random as possible. It is not good enough to choose a 32-bit
seed for a random number generator and use its output to produce your key.
Even if your key has 160 bits, it will have no more than 32 bits of entropy. I
once graded a student project which generated 512-bit primes for RSA keys.
The primes it made were all = 1 (mod 2480). The extended-precision integer

289

290 Cryptanalysis of Number Theoretic Ciphers

package used base 230, storing 30 bits per word. The student had formed
random numbers rsOOOOOOOOOOOl in this base as candidate large primes,
putting all the randomness in the high-order 32 bits r s . Strong probable
prime tests are especially fast for numbers p of this form because p — 1 is
divisible by at least 480 twos. But that is no excuse for not making all
fourteen digits random. And one should not call the system random number
generator fourteen times to generate these digits, as there would be no more
entropy in the prime than in the seed for the RNG. The high-order and low-
order bits of a 512-bit random prime must be 1, but the remaining 510 bits
must come from a source with at least 510 bits of entropy.

How do Alice and Bob exchange keys for secure communication over an
insecure medium like the Internet? The best solution is for them to meet and
trade keys before communicating. If that is not possible, then they should
use the X.509 protocol to learn each other's public keys. They should verify
the signatures certifying these keys, which are a part of the protocol. If Alice
uses the Diffie-Hellman key exchange to establish a common private key with
Bob over the Internet, then she will get a secret known only to her and to
whomever is performing the other side of the protocol. The number theory
behind this key exchange does not guarantee that it is Bob.

The protocols and algorithms in this book are secure only if the key remains
secret. If the key is compromised, security is lost. If the stolen or revealed
key was for a symmetric cipher, then Alice must change her key and hope
for the best. But if it was a private key for an asymmetric cryptosystem, the
damage is greater. Alice must quickly change her public key in every location
that stores it and tell everyone who might use it about the new key. These
messages should have a time stamp so that the recipient will know when the
theft happened. Someone who discovered Alice's private key could read her
enciphered mail, sign messages as Alice and literally become Alice. Each time
you use someone's public key you should check to see whether it has been
compromised and revoked.

24-2 Reuse of a Key
A cryptographic key should never be reused after it has been exposed. This
is obvious for most ciphers.

We give a slightly less obvious example for RSA. Suppose Alice uses RSA
modulus n, public encryption exponent e and private decryption exponent d.
If d is exposed, Alice must change n because one can almost certainly factor
n given e and d.

Note first that ed = 1 (mod (j){n)) by construction of the RSA system.
Therefore, ed — 1 = k<j>(n) for some integer k. If we let r = ed — 1, then
whenever gcd(a, n) = 1 we have

ar = aed~l = (a^ (n)) * = 1 (mod n) (24.1)

Exploiting an Error 291

by Euler's theorem. Note that r is even because <f>(n) is even for n > 2.
Now write r = 2sd with d odd. Choose a random a in 1 < o < n - 1.

If gcd(a,n) > 1, then n has been factored and we are done. Otherwise,
compute bi = ard mod n for 0 < i < s. We know that bs = ar mod n = 1
by Congruence (24.1). If for some 0 < i < s we have bi = 1 but &¿_i ^
±1 (mod n), then gcd(fr¿_i — l ,n) is a proper factor of n. If there is no such
¿, try a different random a. The reason this works is that tí¡_± = 1 (mod n),
but 6¿_i ^ ±1 (mod n), so gcd(6¿_i — 1, n) is a proper factor of n by Theorem
13.1. We can argue just as in the proof of Theorem 13.2 that each random a
leads to a factorization of n with probability at least 1/2.

Here is an example of the misuse of RSA. Suppose a trusted central au­
thority chose a fixed modulus n = pq for everyone to use. It would keep the
primes p and q secret, of course, but n would be public. It would provide each
user A with a pair of exponents e^, d A for encryption and decryption. Each
eA would be public, but only user A would know d A- At first glance, this
might seem reasonable since user B could not decipher a message enciphered
with eA because B does not know d A- However, user B knows both es and
ds and, by the argument in the preceding paragraph, this is enough to factor
n. Then user B could compute d A from e^, which is public, and read A's
mail.

24*3 Bad Parameter Choice
There are many ways in which users may choose secret parameters that are
easy for an attacker to guess or compute. As one simple example, suppose
you must choose a random secret 100-digit integer. Suppose you do this
by choosing a random 30-bit integer and multiplying it by 1091. Then your
100-digit number will have at most 30 bits of entropy and will be easy to
guess. Suppose you need a random secret 100-digit prime and construct it
by choosing a random 30-bit integer, multiplying by 1091, and selecting the
first strong probable prime to base 2 greater than the product. Then your
100-digit prime will be insecure because it will have only 30 bits of entropy.

Here are more examples for RSA. The next attack is due to Hastad [52].
The smallest possible value for the public enciphering exponent is e = 3, and
some implementations of RSA use this value of e. Sometimes this is done for
communication between smart cards, which have relatively slow processors,
and larger, faster computers. If the public key for the large machine has e — 3,
then the slow smart card only has to raise M to the third power to encipher it.
The message M might be a credit card number. Now suppose the smart card
is used to make purchases at three different merchants, with public moduli
^i? ^2, ^3- An attacker who could observe the ciphertext transmitted during
these three transactions would know

M 3 mod m , M 3 mod n2 , and M 3 mod n3

292 Cryptanalysis of Number Theoretic Ciphers

and, of course, the three public moduli. If the moduli were not relatively
prime in pairs, then he could factor at least two of them and recover M by
deciphering it the way the merchant's computer did it. If they were relatively
prime in pairs, then the attacker could use the Chinese remainder theorem
to determine M 3 (mod (ni712713)). But 0 < M < n¿ for each ¿, and so
0 < M 3 < nir¿2ri3 and the attacker has found the actual value of M 3 , just as
Sun Tsu found the number of his soldiers. Then the attacker could find M
by computing the cube root of M 3 , for example, by Newton's method. This
attack works not only for e = 3, but for any small e.

Users of RSA might wish to choose a small deciphering exponent d to speed
decryption. Clearly, d must not be so small that one could guess it, but it
must not even be as small as n1/4, as shown by this theorem of Wiener [120],
which uses continued fractions in its proof.

THEOREM 24.1 Small RSA deciphering exponents are bad
Let n = pq, where the primes p and q satisfy q < p < 2q. Let ed =

1 (mod (¡>{n)), where 1 < e < (/>(n) and 1 < d < n 1 / 4 / 3 . An attacker given n
and e can efficiently ñnd d.

This is a case of Inequality (13.1). It shows that k/d is such a close approxi­
mation to the fraction e/n, which is known to the attacker, that it must have
the form Ai/Bi in the continued fraction expansion for e/n. The attacker
computes the continued fraction expansion for e/n, which is fast, and checks
each denominator B{ for being d, that is, he tests whether MeBi = M (mod n)
for a few M. One of them must work. I

As this attack actually works for d slightly larger than ^ n , one must choose
d even larger to be safe. If d > y/ñ, then the attack certainly doesn't work.

P R O O F Since ed = 1 (mod 0(n)), there is an integer k with ed—k(/)(n) =
1. Therefore,

This shows that k/d is an approximation to e/</>(n). The attacker does not
know </>(ri), but may use n as an approximation of it. Since (f)(n) —n— p—q+1
and p + q — 1 < 3^/n, we have 0 < n — </>(ri) < 3y/n. Thus,

But k(/)(n) — ed — 1 < ed < d(/>(n), so k < d < n 1 / 4 /3 and we find

Exploiting an Error 293

24*4 Partial Key Exposure
If some bits of a secret key are revealed, this reduces the key entropy. Then
one might be able to discover it by trying all possible keys having the known
bits. We give more examples for RSA.

The first result in this direction is due to Coppersmith [31].

THEOREM 24.2 One can find p given half its bits
Let n— pq be a b-bit RSA modulus, so that the length of each of the primes

p and q is about 6/2 bits. One can efficiently factor n given either the 6/4
most signiñcant bits ofp or the 6/4 least signiñcant bits of p.

See [31] for a proof. The next theorem, due to Boneh et al. [14], says that if
e is small enough so that an attacker can perform O (e loge) operations, then
an attacker can deduce d from just a few of its bits.

THEOREM 24.3 You can find d from its least significant bits
Let n be an RSA modulus of b bits. Let e and d be the enciphering and

deciphering exponents. Given the 6/4 least signiñcant bits of d, an attacker
can ñnd d in 0(e log e) steps.

PROOF Write n — pq. Since ed = 1 (mod <^(n)), there is an integer k so
that

ed — k(n — p — q + 1) = ed — k(f)(n) = 1.

As d < 0(n), we have 0 < k < e. Multiply the equation by p, replace q by
n/p and reduce modulo 26/4 to get

(ed)p - kp(n -p+l) + kn=p (mod 26 / 4).

In this congruence, the attacker knows n, e and the 6/4 least significant bits of
d. Therefore, he knows the value of ed mod 26/4. For each fc, the congruence
is a quadratic equation in p. For each of the e possible values of fc, the attacker
solves the quadratic congruence using the methods of Chapter 7 and obtains
some candidate values for p mod 26/4. One can show that there are no more
than elog2 e candidate values of p mod 26/4 in total. For each of these values,
the attacker runs the algorithm of Theorem 24.2 and tests whether the output
p actually divides n. This shows that n will be factored after at most 0(e log e)
steps. I

24*5 Computer Failure
Computers occasionally make hardware or software errors. If an error happens
during computation of a cryptographic function, a key may be leaked. We

294 Cryptanalysis of Number Theoretic Ciphers

give an example involving the RSA signature scheme. In it, the attacker will
be able to factor the modulus n, and so be able to sign messages with it, just
like the legitimate user.

Suppose n — pq and the encryption and decryption exponents are e and d.
The public information is n and e, while p, q and d are private. The message
to be signed is M; its signature is S = Md mod n.

We assume the trick described in Section 18.1 is used to speed signature
generation. This trick computes Sp = Md mod p and Sq = Md mod q and
combines them with the Chinese remainder theorem to form S = aSp + bSq.
Suppose an error causes Sp to be incorrect. Suppose the attacker has the cor­
rect signature S as well as the incorrect one S' formed by the Chinese remain­
der theorem using the wrong Sp and the correct Sq. Then S = Sp (modp), S =
Sq (mod q), S' ^ Sp (modp), S' = Sq (mod q) and we have gcd(S-S ' ,n) = q.

A. Lenstra found that this attack works even if the attacker only knows S'
and M, but not S. We have M = Se mod n. In case the error occurred in
computing Sp, we have M = (S')e (mod q) but M ^ (S')e (modp). Therefore,
g c d (M - (S ') e , n) = </.

Boneh et al. [13] describe the attack above and also an attack on RSA
signatures not using the trick, that is, in which S — Md mod n is computed
directly. That attack is less likely, as it requires the attacker to see several
faulty signatures each with one bit flipped somewhere during the computation.

24-6 Exercises

1. What is the flaw in the following solution to a key exposure problem?
Bob accidentally reveals his private RSA key d. Because so many peo­
ple already know his public modulus n and enciphering exponent e, he
decides to keep them. He chooses two new secret primes with product n
and uses them and the old e to compute a new deciphering exponent d'.

2. In the RSA cipher, each user has a public modulus n, a public key e,
and a private key d. Suppose Bob accidentally reveals his private key d.
Because it takes so long to generate large primes, Bob decides to keep
his old modulus n, which is public anyway, and just create a new e and
d. After creating them, he makes the new e public and keeps the new d
secret. Is this choice of RSA parameters safe? Explain your answer.

3. Eve notices that both Alice and Bob use the RSA cipher with the same
modulus n, although they have different public encryption exponents e^
and e#, which happen to be relatively prime. Eve learns through one of
her agents that Chuck has just sent the same plaintext M to both Alice
and Bob via RSA, and she intercepts the two ciphertexts CA and CB>
Explain how Eve can read M, given CA, CB and public data. Can Eve
factor n easily? Explain your answer.

Exploiting an Error 295

4. The 1988 X.509 text says this about choosing secure RSA keys: "It
must be ensured that e > log2 n to prevent attack by taking the e-th
root modulo n to discover the plaintext." The reason given is incorrect,
although it is a good idea to satisfy the inequality. What is wrong with
the reason, and what is the real reason?

5. Alice uses the ElGamal signature scheme with common public modulus p
and primitive root g. Alice has a secret x and publishes y — gx mod p.
She uses a secret random number k to sign one message M. Since k
is used only once, she discards the piece of paper on which she had
written k. The next day Tom, Alice's trash collector, finds the sheet in
her garbage can and realizes its significance. Tom learns M and Alice's
signature for it from Eve, who collects all of Alice's signed messages as
her hobby. Explain how Tom can forge Alice's signature (with different
random fc's) on arbitrary messages.

6. Alice and Bob use the elliptic curve ElGamal public key cipher for their
secret communication. One day, Bob tosses a coin and sends Alice the
enciphered result. Knowing only public data and that the plaintext is
either "Heads" or "Tails," can Eve tell which plaintext it is from the
ciphertext she has intercepted?

7. Alice and Bob use the coin-tossing protocol from Section 20.3. Alice
chooses 100-digit primes p and q as her secret. Because of a defect in his
random number generator, Bob always chooses x in yjn < x < n/1000.
Does this fault matter? Can either Alice or Bob almost always win the
coin toss? Explain your answer. Would the same fault in the random
number generator affect the zero-knowledge proof protocol?

8. Alice and Bob use the elliptic curve Diffie-Hellman key exchange proto­
col to choose random Rijndael keys. The elliptic curve group is public
and has order N near 2160. Because of a defect in her random number
generator, the low-order 100 bits of Alice's random XA are always one,
but the high-order 60 bits are really random. Eve is aware of this de­
fect because she has studied the source code of Alice's random number
generator. Eve records all messages passing between Alice and Bob.
Eve has a computer powerful enough to perform about 230 elliptic curve
group additions in a reasonable time. Explain how Eve can compute,
with high probability, the Rijndael keys chosen by Alice and Bob.

http://taylorandfrancis.com

Chapter 25

Active Attacks

This chapter considers some active attacks in which the attacker takes some
action to fool the victim, causing an error, obtaining a key, or introducing his
own devious message which others accept as authentic.

25.1 Force a User to Make a Mistake
For example, the mistake might expose a flaw in the cryptographic algorithm
or it might make a user reveal part of a key.

Here is an attack on a flaw in one standard zero-knowledge proof protocol.

Alice knows n, p and #, where p and q are large primes and n = pq. Bob
knows n but not p or q. Alice wants to convince Bob that she knows the
factors p, q of n. But she does not want to reveal the factors to him.

1. Alice chooses a in y/n < a < n and computes b = a2 mod n.

2. At the same time, Bob chooses c in ^/n < c < n and computes d =
c2 mod n.

3. Alice sends b to Bob and Bob sends d to Alice.

4. Alice receives d and solves x2 = bd (mod n). (Note that this is possible
because bd is a quadratic residue and she can compute its square root
because she knows the factors of n.) Let x\ be one solution of this
congruence.

5. At the same time, Bob tosses a fair coin and gets Heads or Tails, each
with probability 1/2. Bob sends H or T to Alice.

6. If Alice receives H, she sends a to Bob. If Alice receives T, she sends x\
to Bob.

297

298 Cryptanalysis of Number Theoretic Ciphers

7. If Bob sent H to Alice, then he receives a from Alice and checks that
a2 = b (mod n). If Bob sent T to Alice, then he receives x\ from Alice
and checks that x\ = bd (mod n).

Alice and Bob repeat steps 1 through 7 many (20 or 30) times.
If the check in step 7 is always okay, then Bob accepts that Alice knows the

factorization of n.
But if Alice ever fails even one test, then Bob concludes that Alice is lying.

Bob could cheat by finding the factors of n as follows:
Bob skips Step 2. In Step 3, he waits until he receives b from Alice. He

computes d = b3 mod n, and sends this d to Alice. Note that d is a quadratic
residue modulo n, by Theorem 20.1. In Step 5, Bob sends T to Alice. In
Step 6, Alice sends x\ to Bob, and x\ is a solution to the congruence x2 =
bd = ò4 (mod n). Bob already knows one solution, 62, to this congruence. If
x\ = ±(b2) (mod n), then Bob learns nothing when he receives x\. But if
Alice sends Bob one of the other two square roots of b4 mod n as x\ in Step
6, then Bob can factor n by taking a greatest common divisor, by Theorem
13.1.

Alice could prevent this by checking whether d — b3 mod n. But Bob could
mount a similar attack with d = 65 mod n, d = b7 mod n, etc., and there are
too many possibilities for Alice to check.

One way for Alice to avoid this trap is to wait for d to arrive from Bob
before she sends b to him. (Could Alice cheat in a similar way then? I'm
not sure.) A better way to avoid the problem is for both Alice and Bob to
bit-commit to their quadratic residues before sending them.

25.2 Man-in-the-Middle Attacks
In these attacks, an attacker stands between Alice and Bob. Communication
between them passes through the attacker's computer. He may modify parts
of a message and pass it on to the intended recipient. The result of this devious
action is that the attacker learns something about their communication or else
fools one of them into accepting as authentic a bogus message supposedly from
the other.

Here is a simple example of the man-in-1he-middle attack. Suppose Al­
ice wishes to communicate securely with Bob. She initiates the conversation
by sending Bob a plaintext message with her public key. She expects Bob
to reply with his public key and that they will use their public keys to talk
secretly. However, Mike intercepts Alice's first message, replaces her public
key with his and forwards the message to Bob. Bob receives a message that
claims to be from Alice. It contains a number which is supposed to be her
public key. He replies to Alice with a message containing his public key. Mike
intercepts this message, replaces Bob's public key with his own and forwards

Active Attacks 299

the message to Alice. Then Alice and Bob communicate, but they both un­
knowingly encipher all their messages with Mike's public key. Mike intercepts
all their messages, deciphers them, reenciphers them with the appropriate
public key and forwards the messages to the intended recipient. Mike could
even change the messages if he wished. The clever number theory behind
public key cryptography is worthless against this attack.

This attack would work even if the public keys of Alice and Bob were
stored in a public database, so long as Mike could intercept their queries to
the database. Mike would intercept Alice's request for Bob's public key and
reply with his own public key. He would do the same with Bob's query for
Alice's public key and the attack would continue as before. The attack would
be the same if Alice and Bob stored their public keys on their home pages.
Mike would intercept their browser requests and reply with his own public
key.

The X.509 protocol prevents the man-in-the-middle attack. In it, each
user's public key is signed by a trusted authority, Tracy, perhaps through
a hierarchy of trusted signatures. The signed record contains the identity
of the public key owner in addition to the public key. When Alice requests
Bob's public key and receives a number in reply, that number comes with a
certificate signed by Tracy that this number is Bob's public key. Mike can
intercept Alice's request and Bob's reply, but if he replaces Bob's public key
with his own, either the signature won't match the one on the signed message
or else the message will identify the public key as Mike's—not Bob's.

If Alice and Bob used PGP, they would receive each other's public key from
several sources, each having a level of "trust" or confidence. Mike would have
to compromise all of these sources to perform a man-in-the-middle attack.
And Alice and Bob would likely be informed by PGP that there was little
confidence in each other's public key, so they would realize that a man-in-the-
middle attack could be happening.

Another type of man-in-the-middle attack involves replaying a message
recorded earlier, in the hope that the recipient will believe it was just sent.
For example, suppose Mike creates a phony person called Bob and arranges
for Bob to sell a valuable diamond to Alice. Alice pays for the diamond by a
bank transfer. Mike records the bank transfer, which is enciphered, of course,
and replays it several times to Bob's bank. This causes Bob's bank to credit
the payment to Bob's account several times. Mike withdraws the money
from Bob's account, which Mike created, and retires in Brazil. Banks require
several forms of identification when you open an account, or even access it,
because of attacks like this one. Furthermore, bank transfer orders contain
time stamps and sequence numbers to prevent this type of attack. After the
first bank transfer, Bob's bank would notice that the others were copies of the
first one, and not credit the account multiple times. Whether Alice received
her diamond is another matter.

300 Cryptanalysis of Number Theoretic Ciphers

25.3 Birthday Attacks
Hash functions h(M) may be subject to birthday attacks if the message digest
is too short. Suppose M is a contract that Alice and Bob want to sign. Alice
prepares M and sends it to Bob to sign. Both agree that signing h(M)
electronically binds the contract. Alice prepares two contracts, M which is
fair to Bob, and M' which favors Alice. Let m be the length in bits of the
message digest produced by h. In each contract, Alice finds ra/2 + 5 places
where the text could read in either of two ways, such as changing active voice
to passive. She hashes all 2 m / 2 + 5 versions of both messages and looks for a
match h(M') = h(M) between versions of the two messages. By Theorem
2.5, this is likely to happen because there are 2 m possible message digests and
more than 2 m / 2 versions of each message. She sends M and h(M) to Bob.
Alice and Bob sign h(M). Later, Alice produces M' and Bob's signature on
h(M') — h(M). Bob finds that he has signed a contract favorable to Alice.
This attack can be prevented by choosing m large enough so that Alice can't
compute 2 m / 2 + 5 hash values.

25.4 Subliminal Channels
Several cryptographic algorithms have subliminal channels. These are
covert ways that an attacker can send a second message hidden within a
normal message. A simple example of this is the bit string formed by the
parity of the number of letters in each word of a message. A carefully con­
structed, innocent sounding message may contain another message hidden in
this bit string. As another example, a message may be hidden in certain bits
of a digitized photo. Some cryptographic algorithms known to have sublim­
inal channels are schemes that choose random numbers used just once, such
as the Digital Signature Algorithm and the signature algorithms of ElGamal
and Ong-Schnorr-Shamir.

Here is a subliminal channel for the DSA. Alice is a spy who sends many
plaintext messages to her contact Bob. Alice's employer reviews these mes­
sages to ensure she is not divulging any secrets. All of the messages are signed
by the DSA. Alice and Bob secretly agree on a prime pi, different from any
parameter of the DSA. When Alice signs an innocuous message M, she hides
a subliminal bit in it. If she wants to send a 1 bit, she tries different random
numbers k until the r parameter of the signature is a quadratic residue mod­
ulo p\. For a 0 bit, she makes r a quadratic nonresidue modulo p\. Since half
of the r are quadratic residues and half are quadratic nonresidues, she doesn't
have to try many random k to do this.

Bob checks each DSA signature to be sure the message came from Alice.
Alice's employer could make the same check and find nothing amiss. Bob
would read the subliminal bit in each message by evaluating the Legendre
symbol (r/pi).

In fact, Alice could send several subliminal bits per message. Suppose Bob

Active Attacks 301

and Alice agree on j secret primes p i , . . . ,pj. Then j subliminal bits could be
sent per message, with the ¿-th bit being 0 or 1 according as r is a quadratic
residue or nonresidue modulo p¿. On average, Alice would have to try 2J

values of k to get an r with the required properties, so she can't make j too
big or her employer might wonder why her DSA was so slow. She could choose
j = 16 and send two bytes per message.

An evil implementer of DSA could use the same subliminal channel to
leak Alice's 160-bit private key. Mike sells low-cost DSA chips with a 14-bit
subliminal channel using fourteen primes that only he knows. When the chip
signs a message, the user must supply it with her private 160-bit key x. Alice
buys a DSA chip from Mike and uses it to sign messages. The chip breaks
the 160-bit key x into sixteen ten-bit pieces. It chooses a random four-bit
number e and sends the subliminal message consisting of e and the e-th piece
of x. Mike observes the signature and deduces ten bits of Alice's private key
x. After seeing many of Alice's signatures, he will learn most of the ten-bit
pieces of x. When he knows all but one or two of the pieces he can compute
the remaining bits by trying all possibilities. Then Mike can forge Alice's
signature on messages. Even if Alice or someone else knew that Mike was
stealing DSA private keys this way, they could not prove it unless they knew
Mike's fourteen secret primes.

25.5 Exercises
1. Bob is a bit naive about using RSA. He created a public modulus n

and a public encryption exponent e and made them public. He knew
that he should keep his private decryption exponent d secret. For a long
time no one sent him RSA-enciphered messages. Finally, he received a
ciphertext message C from Alice. He deciphered this to get the plaintext
M, a rather personal note. Evil Eve has intercepted C and would love
to know what Alice said in M. Eve makes Bob feel guilty that his
RSA system was used only once. In response, he agrees to decrypt any
message sent to him, so long as it is not C, and return the answer to
the sender. Eve sends him the ciphertext (IeC mod n). Bob deciphers
this message, puzzles over the apparently meaningless "plaintext," but
sends the latter to Eve as agreed. Explain how this trick allows Eve to
read M.

2. Alice and Bob use the Diffie-Hellman key exchange protocol to establish
a Rijndael key for their daily chat. Explain how Eve can mount a man-
in-the-middle attack and relay all messages between them so that she
can read them, but they won't know that anything is wrong.

3. Write a contract or find an existing one. Find forty places in the text
where you could express something in two different ways without chang­
ing the meaning.

302 Cryptânalysis of Number Theoretic Ciphers

4. Find a subliminal channel in the ElGamal signature scheme.

5. In the DSA subliminal channel, suppose Mike has acquired 25 of Alice's
signatures produced by the chip he sold her. What is the probability
that these signatures reveal to him at least fourteen of the sixteen pieces
of Alice's private key xl

6. Alice and Bob use this simplified version of the zero-knowledge proof
protocol for Alice to convince Bob she knows the factorization of a huge
integer n. Both Alice and Bob know n.

(a) Bob chooses a random x in ^/n < x < n and sends y = x2 mod n
to Alice.

(b) Alice computes the four square roots of y modulo n, picks one, r,
say, and sends it to Bob.

(c) Bob checks whether y = r2 mod n. If this fails, Alice does not
know the factorization of n.

Alice and Bob repeat the three steps thirty times, but stop if the equa­
tion fails in Step (c).

a. Explain why Bob should believe that Alice knows the factors of n if
the check in Step (c) is valid all thirty times.

b. Explain why this is not a zero-knowledge proof protocol.

c. Suppose that no value of y is repeated during the thirty repetitions.
Eve knows n and observes the numbers y and r passed between Alice
and Bob, but cannot see their private data, such as x. Can Eve use this
information to convince Chuck that she, Eve, knows the factorization of
n using the same protocol? Could Eve convince him if she and Chuck use
the full, unsimplified zero-knowledge proof protocol instead? Explain
your answers.

d. Same question as part c , except that one y value was repeated.

References
[1] L. M. Adleman, C. Pomerance, and R. S. Rumely. On distinguishing

prime numbers from composite numbers. Ann. of Math., 117:173-206,
1983.

[2] W. Alford, A. Granville, and C. Pomerance. There are infinitely many
Carmichael numbers. Ann. of Math., 139:703-722, 1994.

[3] W. R. Alford, A. Granville, and C. Pomerance. On the difficulty of
finding reliable witnesses. In L. Adleman and M.-D. Huang, editors,
Algorithmic Number Theory, Proc. ANTS-I, Ithaca, NY, volume 887 of
Lecture Notes in Computer Science, pages 1-16, Springer-Ver lag, Berlin,
1994.

[4] W. R. Alford and C. Pomerance. Implementing the self-initializing
quadratic sieve on a distributed network. In A. van der Poorten, I. Sh-
parlinski, and H. G. Zimmer, editors, Number Theoretic and Algebraic
Methods in Computer Science, pages 163-174, Moscow, 1993.

[5] C. Asmuth and J. Bloom. A modular approach to key safeguarding.
IEEE Trans, on Info. Theory, IT-29(2):208-210, 1983.

[6] A. O. L. Atkin and F. Morain. Elliptic curves and primality proving.
Math. Comp., 61:29-68, 1993.

[7] E. Bach. Analytic Methods in the Analysis and Design of Number-
Theoretic Algorithms. The MIT Press, Cambridge, Massachusetts, 1985.

[8] E. Bach and J. Shallit. Algorithmic Number Theory, Volume I: Efficient
Algorithms. The MIT Press, Cambridge, Massachusetts, 1996.

[9] R. Baillie and S. S. Wagstaff, Jr. Lucas pseudoprimes. Math. Comp.,
35:1391-1417, 1980.

[10] T. H. Barr. An Invitation to Cryptology. Prentice-Hall, Upper Saddle
River, New Jersey, 2002.

[11] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo­
random number generator. SIAM J. Comput., 15:364-383, 1986.

[12] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Amer.
Math. Soc. Notices, 46:202-213, 1999.

[13] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of check­
ing cryptographic protocols for faults. In Advances in Cryptology—
EUROCRYPT '97, volume 1223 of Lecture Notes in Computer Science,
pages 37-51, Springer-Verlag, Berlin, 1997.

[14] D. Boneh, G. Durfee, and Y. Frankel. An attack on RSA given a frac-

303

304 References

tion of the private key bits. In Advances in Cryptology—ASIACRYPT
'98, volume 1514 of Lecture Notes in Computer Science, pages 25-34,
Springer-Verlag, Berlin, 1998.

[15] S. Brands. Untraceable off-line cash in wallets with observers. In Ad­
vances in Cryptology—CRYPTO '93, volume 773 of Lecture Notes in
Computer Science, pages 302-318, Springer-Verlag, Berlin, New York,
1994.

[16] J. Brillhart, M. Filaseta, and A. M. Odlyzko. On an irreducibility
theorem of A. Cohn. Cañad. J. Math., 33:1055-1059, 1981.

[17] J. Brillhart, D. H. Lehmer, and J. L. Selfridge. New primality criteria
and factorizations of 2m ± 1. Math. Comp., 29:620-647, 1975.

[18] John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman,
and S. S. Wagstaff, Jr. Factorizations of bn ± 1, b = 2, 3, 5, 6,
7, 10, 11, 12 up to high powers. Amer. Math. Soc, Providence,
Rhode Island, Third edition, 2002. Electronic book available at
h t t p : //www. ams. org/onlineJbks/conm22.

[19] J. Buhler, H. W. Lenstra, Jr., and C. Pomerance. Factoring integers
with the number field sieve. In A. K. Lenstra and H. W. Lenstra, Jr.,
editors, The Development of the Number Field Sieve, volume 1554 of
Lecture Notes in Mathematics, pages 50-94, Springer-Verlag, Berlin,
New York, 1993.

[20] D. A. Burgess. A note on the distribution of residues and non-residues.
J. London Math. Soc, 38:253-256, 1963.

[21] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication.
Technical Report 39, Digital Equipment Corporation Systems Research
Center, Palo Alto, CA, 1989.

[22] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication.
A CM Trans, on Computer Systems, 8:18-36, February 1990.

[23] E. Canfield, P. Erdõs, and C. Pomerance. On a problem of Oppenheim
concerning "factorisatio numerorum." J. Number Theory, 17:1-28,1983.

[24] J. Casseis. Diophantine equations with special reference to elliptic
curves. J. London Math. Soc, 41:193-291, 1966.

[25] S. Cavalar. On the number field sieve integer factorisation algorithm.
PhD thesis, Leiden University, June 2002.

[26] D. Chaum. Security without identification: Transaction systems to
make Big Brother obsolete. Communications of the ACM, 28:1030-
1044, 1985.

[27] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Ad­
vances in Cryptology—CRYPTO '88, pages 319-327, Springer-Verlag,
Berlin, New York, 1990.

[28] H. Cohen. A Course in Computational Algebraic Number Theory.
Springer-Verlag, New York, 1996.

[29] H. Cohen and H. W. Lenstra, Jr. Primality testing and Jacobi sums.
Math. Comp., 42:297-330, 1984.

[30] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic

http://www.ams.org

References 305

two. IEEE Trans, on Info. Theory, 30:587-594, 1984.
[31] D. Coppersmith. Small solutions to polynomial equations, and low

exponent RSA vulnerabilities. J. Cryptology, 10:233-594, 1997.
[32] J.-M. Couveignes. Computing a square root for the number field sieve.

In A. K. Lenstra and H. W. Lenstra, Jr., editors, The Development of
the Number Field Sieve, volume 1554 of Lecture Notes in Mathematics,
pages 95-102, Springer-Verlag, Berlin, New York, 1993.

[33] R. Crandall and C. Pomerance. Prime Numbers: A Computational
Perspective. Springer-Verlag, New York, 2001.

[34] J. A. Davis and D. B. Holdridge. Factorization using the quadratic sieve
algorithm. In D. Chaum, editor, Advances in Cryptology—CRYPTO
'83, pages 103-113, Plenum Press, New York, 1984.

[35] N. G. de Bruijn. On the number of positive integers < x and free of
prime factors > y. Proc. Kon. Ned. Akad. Wet, A54:50-60, 1951.

[36] D. E. Denning. Cryptography and Data Security. Addison-Wesley, Read­
ing, Massachusetts, 1983.

[37] D. E. Denning and G. M. Sacco. Timestamps in key distribution pro­
tocols. Communications of the ACM, 24:533-536, 1981.

[38] M. Deuring. Die Typen der Multiplikatorenringe elliptischer Funktio-
nenkõrper. Abh. Math. Sem. Hansischen Univ., 14:197-272, 1941.

[39] K. Dickman. On the frequency of numbers containing prime factors of
a certain relative magnitude. Ark. Mat., Astronomi och Fysik, 22A,
10:1-14, 1930.

[40] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Trans, on Info. Theory, IT-22(6):644-654, 1976.

[41] C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers,
Lecture Notes in Computer Science 561. Springer-Verlag, New York,
1991.

[42] R.-M. Elkenbracht-Huizing, P. L. Montgomery, R. D. Silverman, R. K.
Wackerbarth, and S. S. Wagstaff, Jr. The number field sieve on many
computers, volume 19 of CRM Proceedings and Lecture Notes, pages
81-85. Centre de Researches Mathématiques, 1999.

[43] W. Feller. An Introduction to Probability Theory and Its Applications.
John Wiley, New York, 1957.

[44] W. F. Friedman. Elements of Crypt analysis. Aegean Park Press, Laguna
Hills, California, 1976.

[45] C. F. Gauss. Disquisitiones Arithmeticae. Yale University Press, New
Haven, English edition, 1966.

[46] J. L. Gerver. Factoring large numbers with a quadratic sieve. Math.
Comp., 41:287-294, 1983.

[47] S. Goldwasser and J. Kilian. Almost all primes can be quickly certified.
In Proc. Eighteenth Annual ACM Symp. on the Theory of Computing
(STOC), Berkeley, May 28-30, 1986, pages 316-329. ACM, 1986.

[48] S. W. Golumb. Shift Register Sequences. Holden-Day, San Francisco,
California, 1967.

306 References

[49] D. Gordon. Discrete logarithms in GF(p) via the number field sieve.
SIAM J. Discrete Math., 16:124-138, 1993.

[50] J. Hadamard. Résolution d'une question relative aux déterminants.
Bull. Sei. Math. (2), 17:235-246, 1893.

[51] G. H. Hardy and E. M. Wright. An Introduction to the Theory of
Numbers. Clarendon Press, Oxford, England, Fifth edition, 1979.

[52] J. Hastad. Solving simultaneous modular equations of low degree. SIAM
J. Compute 17:336-341, 1988.

[53] I. N. Herstein. Topics in Algebra. Xerox, Lexington, Second edition,
1975.

[54] L. S. Hill. Cryptography in an algebraic alphabet. Amer. Math.
Monthly, 36:306-312, 1929.

[55] D. Kahn. The Codebreakers. Macmillan Co., New York, 1967.
[56] D. E. Knuth. The Art of Computer Programming, Volume 2, Seminu-

merical Algorithms. Addison-Wesley, Reading, Massachusetts, Second
edition, 1981.

[57] D. E. Knuth and L. Trabb Pardo. Analysis of a simple factorization
algorithm. Theoretical Computer Science, 3:321-348, 1976.

[58] N. Koblitz. A Course in Number Theory and Cryptography. Springer-
Verlag, New York, 1987.

[59] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Advances in Cryptology—CRYPTO
'96, volume 1109 of Lecture Notes in Computer Science, pages 104-113,
Springer-Verlag, Berlin, New York, 1996.

[60] M. Kraitchik. Théorie des nombres, Tome IL Gauthiers-Villars, Paris,
France, 1926.

[61] A. M. Legendre. Théorie des nombres, Tome I. Gauthiers-Villars, Paris,
France, 1830.

[62] D. H. Lehmer. A photo-electric number sieve. Amer. Math. Monthly,
40:401-406, 1933.

[63] D. H. Lehmer. An announcement concerning the delay line sieve DLS
127. Math. Comp., 20:645-646, 1966.

[64] A. K. Lenstra and H. W. Lenstra, Jr. The Development of the Number
Field Sieve. Springer-Verlag, New York, 1993.

[65] A. K. Lenstra and M. S. Manasse. Factoring with two large primes.
Math. Comp., 63:785-798, 1994.

[66] H. W. Lenstra, Jr. Primality testing algorithms (after Adleman, Rumley
and Williams). In Seminar Bourbaki 33 (1980/81), Lecture Notes in
Mathematics, volume 901, pages 243-258, Springer-Verlag, Berlin, 1981.

[67] H. W. Lenstra, Jr. Factoring integers with elliptic curves. Ann. of
Math., 126:649-673, 1987.

[68] P. Leyland, A. K. Lenstra, B. Dodson, A. Muffett, and S. S. Wagstaff,
Jr. MPQS with three large primes. In Algorithmic Number Theory,
Proceedings ANTS 2002, volume 2369 of Lecture Notes in Computer
Science, pages 448-462. Springer-Verlag, 2002.

References 307

[69] S. Lodin, B. Dole, and E. H. Spafford. Misplaced trust: Kerberos 4 ran­
dom session keys. In Proc. of Internet Society Symposium on Network
and Distributed System Security, pages 60-70. The Internet Society,
February 1997.

[70] J. L. Massey and J. K. Omura. Method and apparatus for maintaining
the privacy of digital messages conveyed by public transmission. U. S.
Patent # 4,567,600, 28 January 1986.

[71] P. Mihailescu. Cyclotomy primality proving—recent developments. In
Algorithmic Number Theory (Portland, OR, 1998), Lecture Notes in
Computer Science, volume 1423, pages 99-110, Springer-Verlag, Berlin,
1981.

[72] G. Miller. Riemann's hypothesis and tests for primality. J. Comput.
System Sci., 13:300-317, 1976.

[73] L. Monier. Evaluation and comparison of two efficient probabilistic
primality testing algorithms. Theoret. Comput. Sci., 12:97-108, 1980.

[74] P. Montgomery. Square roots of products of algebraic numbers. In
W. Gautschi, editor, Mathematics of Computation 1943-1993, vol­
ume 48 of Proc. Symp. Appl. Math., pages 567-571. Amer. Math. Soc,
1994.

[75] P. Montgomery. A block Lanczos algorithm for finding dependencies
over GF(2). In A. J. Menezes and S. A. Vanstone, editors, Advances in
Cryptology—EUROCRYPT '95, volume 921 of Lecture Notes in Com­
puter Science, pages 106-120, Springer-Verlag, Berlin, 1995.

[76] M. A. Morrison. A note on primality testing using Lucas sequences.
Math. Comp., 29:181-182, 1975.

[77] M. A. Morrison and J. Brillhart. A method of factoring and the factor­
ization of F7. Math. Comp., 29:183-205, 1975.

[78] I. Ni ven, H. S. Zuckerman, and H. L. Montgomery. An Introduction to
the Theory of Numbers. John Wiley, New York, Fifth edition, 1991.

[79] A. M. Odlyzko. Discrete logarithms in finite fields and their crypto­
graphic significance. In T. Beth, N. Cot, and I. Ingemarsson, editors,
Advances in Cryptology—EUROCRYPT '84, volume 209 of Lecture
Notes in Computer Science, pages 224-313, Springer-Ver lag, Berlin,
1985.

[80] G. Paun, G. Rozenberg, and A. Salomaa. DNA Computing: New Com­
puting Paradigms. Springer-Verlag, New York, 1998.

[81] R. Peralta. A quadratic sieve on the n-dimensional cube. In Advances in
Cryptology—CRYPTO '92, volume 740 of Lecture Notes in Computer
Science, pages 324-332, Springer-Verlag, Berlin, New York, 1993.

[82] R. G. E. Pinch. The pseudoprimes to 1013. In Algorithmic Number The­
ory (Leiden, 2000), volume 1838 of Lecture Notes in Computer Science,
pages 459-473. Springer-Verlag, Berlin, 2000.

[83] S. Pohlig and M. Hellman. An improved algorithm for computing loga­
rithms over GF(p) and its cryptographic significance. IEEE Trans, on
Info. Theory, IT-24(1):106-110, 1978.

308 References

[84] J. M. Pollard. Theorems on factorization and primality testing. Proc.
Cambridge Philos. Soc, 76:521-528, 1974.

[85] J. M. Pollard. A Monte Carlo method for factorization. Nordisk Tidskr.
Informationsbehandling (BIT), 15:331-335, 1975.

[86] J. M. Pollard. Monte Carlo methods for index computation (mod p).
Math. Comp., 32:918-924, 1978.

[87] C. Pomerance. Analysis and comparison of some integer factoring al­
gorithms. In H. W. Lenstra, Jr. and R. Tijdeman, editors, Computa­
tional Methods in Number Theory, Part 1, volume 154 of Math. Cen­
trum Tract, pages 89-139, CWI, Amsterdam, 1982.

[88] C. Pomerance. The quadratic sieve factoring algorithm. In T. Beth,
N. Cot, and I. Ingemarsson, editors, Advances in Cryptology—
EUROCRYPT '84, volume 209 of Lecture Notes in Computer Science,
pages 169-182, Springer-Verlag, Berlin, 1985.

[89] C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, Jr. The pseudoprimes
to 25 • 109. Math. Comp., 35:1003-1026, 1980.

[90] V. R. Pratt. Every prime has a succinct certificate. SI AM J. Comput.,
4:214-220, 1975.

[91] G. E. Purdy. A high security log-in procedure. Communications of the
ACM, 17:442-445, August 1974.

[92] M. Rabin. Digitized signatures and public-key functions as intractable
as factoring. Technical Report LCS/TR-212, M.I.T. Lab for Computer
Science, 1979.

[93] M. Rabin. Probabilistic algorithms for testing primality. J. Number
Theory, 12:128-138, 1980.

[94] V. Ramaswami. The number of positive integers < x and free of prime
divisors > xc, and a problem of S. S. Pillai. Duke Math. J., 16:99-109,
1949.

[95] J. A. Reeds and P. J. Weinberger. File security and the UNIX crypt
command. AT&T Tech. J., 63:1673-1683, October, 1984.

[96] H. Riesel. Prime Numbers and Computer Methods of Factorization.
Birkhàuser, Boston, Massachusetts, Second edition, 1994.

[97] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Comm. A. C M.,
21(2):120-126, 1978.

[98] N. Robbins. Beginning Number Theory. Wm. C. Brown, Dubuque,
Iowa, 1993.

[99] K. H. Rosen. Elementary Number Theory and Its Applications.
Addison-Wesley, Reading, Massachusetts, Second edition, 1988.

[100] B. Schneier. Applied Cryptography. Wiley, New York, Second edition,
1996.

[101] R. Schoof. Elliptic curves over finite fields and the computation of
square roots mod p. Math. Comp., 44:483-494, 1985.

[102] A. Shamir. How to share a secret. Communications of the ACM, 24:612-
613, 1979.

References 309

103] A. Shamir. On the Generation of Cryptographically Strong Pseudo­
random Sequences. Dept. of Applied Math., The Weizmann Institute of
Science, Rehovat, Israel, 1981.

104] A. Shamir. Factoring large numbers with the TWINKLE device (ex­
tended abstract). In Ç. Koç and C. Paar, editors, Cryptographic Hard­
ware and Embedded Systems, First International Workshop, CHES '99,
Worcester, MA, volume 1717 of Lecture Notes in Computer Science,
pages 2-12, Springer-Verlag, New York, 1999.

105] D. Shanks. Class number, a theory of factorization, and genera. In
1969 Number Theory Institute, Stony Brook, N.Y., volume 20 of Proc.
Sympos. Pure Math., pages 415-440. Amer. Math. Soc, 1971.

106] C. E. Shannon. A mathematical theory of communication. Bell Syst.
Tech. J., 27:379-423, 623-656, 1948.

107] C. E. Shannon. Communication theory of secrecy systems. Bell Syst.
Tech. J., 28:656-715, 1949.

108] C. E. Shannon. Predilection and entropy of printed English. Bell Syst.
Tech. J., 30:50-64, 1951.

109] P. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings of the Thirty-Fifth Annual Symposium on the
Foundations of Computer Science, pages 124-134, 1994.

[110] P. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SI A M Review, 41:303-332, 1999.

[Ill] J. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, New
York, 1986.

[112] R. D. Silverman and S. S. WagstafF, Jr. A practical analysis of the
elliptic curve factoring algorithm. Math. Comp., 61:445-462, 1993.

[113] J. W. Smith and S. S. Wagstaff, Jr. An extended precision operand com­
puter. In Proc. of the Twenty-First Southeast Region ACM Conference,
pages 209-216, ACM, 1983.

[114] W. Stallings. Cryptography and Network Security, Principles and Prac­
tice. Prentice Hall, Upper Saddle River, New Jersey, Third edition,
2003.

[115] W. Trappe and L. C. Washington. Introduction to Cryptography with
Coding Theory. Prentice Hall, Upper Saddle River, New Jersey, 2002.

[116] P. C. van Oorschot and M. J. Wiener. Parallel collision search with
cryptanalytic applications. Journal of Cryptology, 12:1-28, 1999.

[117] S. S. Wagstaff, Jr. Prime numbers with a fixed number of one bits or
zero bits in their binary representation. Experimental Math., 10:267-
273, 2001.

[118] S. S. Wagstaff, Jr. and J. W. Smith. Methods of factoring large inte­
gers. In D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn, and M. B.
Nathanson, editors, Number Theory, New York, 1984-1985, volume
1240 of Lecture Notes in Mathematics, pages 281-303, Springer-Verlag,
New York, 1987.

[119] W. Weaver. Lady Luck, the Theory of Probability. Anchor Books, Gar-

310 References

den City, New York, 1963.
[120] M. J. Wiener. Cryptanalysis of short RSA secret exponents. IEEE

Trans, on Info. Theory, 36:553-558, 1990.
[121] H. C. Williams. Primality testing on a computer. Ars Combinatoria,

32:127-185, 1978.
[122] H. C. Williams. A modification of the RSA public-key encryption pro­

cedure. IEEE Trans, on Info. Theory, IT-26(6):726-729, 1980.
[123] H. C. Williams. A p + 1 method of factoring. Math. Comp., 39:225-234,

1982.
[124] H. C. Williams. Edouard Lucas and Primality Testing, volume 22 of

Canadian Mathematics Society Series of Monographs and Advanced
Texts. John Wiley & Sons, New York, 1998.

[125] H. C. Williams and R. Holte. Some observations on primality testing.
Math. Comp., 32:905-917, 1978.

[126] H. C. Williams and J. S. Judd. Determination of the primality of N
using factors of iV2 ± 1. Math. Comp., 30:157-172, 1976.

[127] H. C. Williams and J. S. Judd. Some algorithms for primality testing
using generalized Lehmer functions. Math. Comp., 30:867-886, 1976.

[128] H. C. Williams and C D . Patterson. A report on the University of
Manitoba sieve unit. Congressus Numerantium, 37:85-98, 1983.

[129] T. Y. C Woo and S. S. Lam. Authentication for distributed systems.
Computer, 25(l):39-52, January 1992.

[130] T. Y. C Woo and S. S. Lam. "Authentication" revisited. Computer,
25(3):10, March 1992.

[131] C Zhang. An extension of the Dickman function and its application.
PhD thesis, Purdue University, June 2002.

Index
abelian group, 125, 174, 176
absolute rate, 115
addition of large integers, 33
Adleman, L., 7, 169
affine cipher, 118, 122
Agrawal, M., 169
Alford, W., 160, 195
algebraic integer, 137
algebraic number, 139
algebraic number field, 139, 196
amortize, viii, 150, 180, 191, 195
anagramming, 117
Asmuth, C , 260, 262
Asmuth-Bloom threshold scheme,

260, 262
associate, 138, 199
associative law, 125, 174
asymmetric cipher, 6
Atallah, M. J., viii
Atkin, A. 0 . L., 181
attack

chosen-ciphertext, 5
chosen-plaintext, 5
ciphertext-only, 5
plaintext-only, 5

authentication server, 275
authenticity, 6

baby-step-giant-step algorithm, 130,
140, 204, 210, 285

Bach, E., 102, 106, 160, 166
Baillie, R., 150, 164
Barr, T. H., 119
base of number system, 29
Bayes's theorem, 14

BBS generator, 215
Beaufort cipher, 119, 123
belongs to the exponent e, 83
Bhargav, A., viii
big-0 notation, 35
binary mod operator, vii, 61
binary notation, 29
binary operation, 125
binary quadratic form, 151
binary representation, 170
Binet equations, 161
binomial theorem, vii, 162
birthday attack, 300
birthday paradox, 18, 19, 146
bit, 30
bit commitment, 253, 298
blind signature, 261, 266, 267
block cipher, 7, 221
Bloom, J., 260, 262
Blum prime, 104, 215, 235
Blum, L., 215, 216
Blum, M., 104, 215, 216, 255
Boneh, D., 289, 293, 294
Brands, S., 271, 274
Brent, R., 151
Brillhart, J., 189, 193, 198
Buhler, J., 200
Burgess, D. A., 97

Caesar cipher, 4, 118
cancellation in groups, 127
Canfield, E. R., 58
Carmichael number, 78, 85, 156,

158
Cartesian product, 81

311

312 Index

Casseis, J., 176
Cavalar, S., 58
ceiling, vii, 28
CFRAC, 189, 191
characteristic polynomial, 213
Chaum, D., 268, 269, 274
Chinese remainder theorem, 70, 77,

82, 93, 109, 129, 182, 186,
207, 208, 216, 235, 240,
260-262, 292, 294

chosen-ciphertext attack, 5
chosen-plaintext attack, 5, 281
cipher, 3

asymmetric, 6
Caesar, 4
conventional, 6
Hill, 120
one-key, 6
product, 4
public-key, 6
secret key, 6
substitution, 3
symmetric, 6
transposition, 4
two-key, 6

ciphertext, 3
ciphertext-only attack, 5, 281
clock arithmetic, 61, 72
Cobol, 122
Cohen, H., 143, 152, 169
coin toss, 20, 23, 113, 255, 262, 295
commutative group, 125
complete set of residues, 64, 126
complexity

of arithmetic, 36
of Chinese remainder theorem,

71
of difference of squares factor­

ing algorithm, 145
of elliptic curve method, 178
of Euclidean algorithm, 41, 42
of Lucas-Lehmer primality test,

85
composite integer, 45
compositeness test, 78

computer architecture, 77
computer error, 293
conditional entropy, 113
conditional probability, 14, 114
congruence class, 62
congruent, 61
congruent polynomials, 135
conjugate, 139
constant term, 133
continued fraction, 188, 189, 292
continued fraction factoring algo­

rithm, 189
contract signing, 263, 300
conventional cipher, 6
converse of Fermât 's little theorem,

84
conversion of number base, 31, 32
Coppersmith, D., 209, 285, 293
counter mode, 9
Couveignes, J.-M., 200
Crandall, R., viii, 36, 45, 106, 143,

159, 182, 196
crypt analysis, 5
crypt command, 120
CSR, 64, 126
Cunningham Project, 155, 168
cyclic group, 127, 176, 205
cyclotomic polynomial, 135, 168

Daemen, J., 221
Data Encryption Standard, 4, 117,

221, 275, 281
Davis, J. A., 194
de Bruijn, N. G., 54
de la Vallée-Poussin, Ch. J., 51
decimal notation, 29
deciphering, 3
decryption, 3
degree of a polynomial congruence,

65
degree of polynomial, 133, 171
Denning, D. E., I l l , 247
Denning-Sacco key exchange pro­

tocol, 247
DES, 4, 117, 221, 275, 281

Index 313

Descartes, R., 81
determinant, 72, 120, 151, 163
Deuring, M., 176
Dickman rho function, 56
Dickman's theorem, 56
Dickman, K., 54
difference of squares factoring al­

gorithm, 144
Dime, W., 6, 7
Diffie-Hellman key exchange, 248,

285, 287, 290
digital cash, 268
Digital Signature Algorithm, 242,

285, 300
Ding, C , 215
direct product, 129
Dirichlet's theorem, 86
discrete logarithm, 89,130, 203, 242,

284
discriminant, 151, 161, 173, 175
divide, 27, 134
division algorithm, 28, 63
division of large integers, 35
division of polynomials, 133
divisor, 134
Dole, B., 277, 282
Doob, J. L., viii

eavesdropper, 111
ECM, 177, 194
ECM, second stage of, 179
electronic cash, 268
electronic voting, 265
ElGamal cipher, 233, 284, 285
ElGamal signature, 240, 295, 300
elliptic curve, 173, 205, 285

Diffie-Hellman key exchange,
249, 295

ElGamal cipher, 234, 295
Massey-Omura cipher, 233
method, 177, 185, 194, 206,

283
Pohlig-Hellman cipher, 228
prime proving, 181

embedding plaintext, 230

enciphering, 3
encryption, 3
Enigma, 120, 126
entropy, 112, 122, 289, 291
equally likely, 13
equivalence relation, 61
equivalent quadratic forms, 151
Eratosthenes, sieve of, 53
Euclid's Elements, 37, 49
Euclidean algorithm, 37
Euler phi function, 79, 82
Euler probable prime, 104, 156
Euler pseudoprime, 104, 156, 170
Euler's criterion, 95, 99, 103, 159,

163
Euler's theorem, 80, 84, 128, 291
event, 13
exclusive-or, 8
expected value, 21
exponent vector, 187
exponential factoring algorithms, 143-

153
exponentiation cipher, 228, 231
extended Euclidean algorithm, 39,

76, 77, 80, 134, 205, 229,
261

extended Riemann Hypothesis, 86,
160

extension field, 139

factor base, 189, 191
factor theorem, 134
false solution, 117
fast exponentiation, 76, 91, 96, 99,

129, 150, 156, 161, 176,
240, 286

fast multiplication, 36
Feller, W., 117
Fermat's factoring method, 144,145,

187, 191, 283
Fermat's little theorem, 75, 78, 80,

96, 103, 149, 156, 163
Fermât, P., 75, 143
Fibonacci number, 40, 44, 73, 149,

160, 165

314 Index

field, 132
finite field, 136, 203
floor, vii, 28
Floyd cycle-finding algorithm, 146,

204
Floyd, R. W., 146
Friedman, W., 119
full relation, 193
fundamental theorem of arithmetic,

46

Gauss, C. F., 50, 61, 98, 151
Gaussian elimination, 188
Gaussian integer, 138, 199
general NFS, 198
generating function, 213
generator of a group, 128
Gerver, J., 193
Goldwasser, S, 181
Golumb, S. W., 215
Gordon, D., 208
Gower, J., viii
greatest common divisor, 36, 47,

134
group,125
group, cyclic, 127

Hadamard, J., 51, 72
hash function, 216, 300
Hasse interval, 178, 182, 283
Hasse's theorem, 176, 181, 229
Hasse, H., 176
Hastad, J., 291
Hellman, M., 6, 7, 208
Hensel's lemma, 107, 207
Hill cipher, 120, 123
Hill, L. S., 120
Holdridge, D. B., 194
homomorphism, 132
homophonic cipher, 118
Huffman code, 113

identity element, 125
independent, 14
index (= discrete logarithm), 89

index calculus, 206, 207, 210, 285
index of coincidence, 119, 123
industrial-grade prime, 155, 165
integer square root, 144
intersection, 14
inverse of a group element, 125
irreducible, 135, 138
isomorphic, 126
isomorphism, 133

Jacobi symbol, 100, 102, 110, 216

Kahn, D., 117
kangaroo method, 205
Karat suba multiplication, 43
Kasiski method, 119, 123
Kasiski, F. W., 119
Kayal, N., 169
Kerberos, 275, 282
key, 4
key exchange algorithm, 245
key reuse, 290
key revocation, 290
key stream, 7
Kilian, J., 181
King, D., viii
known-plaintext attack, 13, 121, 281
Knuth, D. E., 29, 34, 36, 40, 57,

59, 189
Koblitz, N., 178
Kocher, P. C., 286
Kraitchik, M., 187, 201

Lagrange polynomial, 258, 262
Lagrange's theorem, 128, 129, 158,

164, 177, 218
Lam, S. S., 247
Lame's theorem, 41
law of large numbers, 22
law of quadratic reciprocity, 98
layer, 222
leading coefficient, 133
least common multiple, 48
Legendre symbol, 95, 110, 175,189,

191, 200, 229

Index 315

Legendre, A.-M., 95, 186
Lehmer, D. H., 146
Lenstra, A. K., 194, 196, 294
Lenstra, H. W., Jr., 169, 176, 179,

196
linear congruence, solution to, 66
linear congruential generator, 211,

218
linear feedback shift register, 212
Lodin, S., 277, 282
Lucas numbers, 161
Lucas probable prime, 164, 165
Lucas pseudoprime, 164
Lucas sequence, 161
Lucas, E., 160
Lucas-Lehmer primality test, 84, 87,

92, 165, 171
L(x), 179, 189, 193, 200

man-in-the-middle attack, 298, 301
Manasse, M., 194
Massey, J. L., 232
Massey-Omura cipher, 232, 233
MD5, 217
mean, 21
mental poker, 253, 261, 267
message digest, 216
Mihãilescu, P., 169
Miller, G., 159
Miller-Rabin test, 159
minimal polynomial, 139
Mod Squad, 190
modular inverse, 63, 76
modulus, 61
monic polynomial, 133
Monier, L., 159
Monte Carlo method, 146
Montgomery, H. L., 45
Montgomery, P., viii, 194, 200
Morain, F., 181
Morrison, M., 189, 193
MPQS, 194
multiple selections, 15
multiplication of large integers, 34
multiplicative function, 81

multiplicative group modulo m, 127
mutually exclusive, 14
mutually independent, 20

Newton's method, 186, 292
Niven, L, 45
noisy channel, 111
nonce, 246
norm, 139, 198
number field sieve, 196, 284

oblivious transfer, 255, 262, 265
Omura, J. K., 232
one-key cipher, 6
one-time pad, 115, 120
order of a modulo m, 83
order of a group, 126
order of a group element, 127
order of an elliptic curve modulo p,

175
output-block feedback mode, 9

partial key exposure, 293
partial relation, 193
passphrase, 218, 283, 289
password, 282
Paun, G., 284
Peralta, R., 195
perfect secrecy, 114
periodic stream cipher, 8
PGP, 277, 299
phi function, 79
7T(X), 50

plaintext, 3
plaintext-only attack, 5
Pocklington-Lehmer theorem, 167,

181
Pohlig, S., 208
Pohlig-Hellman cipher, 208, 228, 254,

284, 285
point at infinity, 173
poker, mental, 253, 261, 267
Pollard p - 1 method, 149,168, 171,

176, 177, 179, 283
Pollard lambda method, 205, 210,

285

316 Index

Pollard rho method, 146, 147, 204,
206, 210, 283, 285

Pollard, J. M., 146, 149, 203-205
polyalphabetic cipher, 118
polygram cipher, 120
polynomial, 133
polynomial time, 36, 169
Pomerance, C , 36, 45, 106, 143,

159, 165, 169, 182, 189,
193, 195, 196

positional number system, 29
p + 1 method, 151, 168, 283
Pratt, V., 166
Pretty Good Privacy, 277, 299
primality proving, 155
primality testing, 155
prime generation, 166
prime number, 45
prime number theorem, 50, 55, 85,

167, 179
primitive polynomial, 214, 218
primitive root, 86, 94, 96, 128, 166
probability, 13
probability distribution, 20
probability of no repetition, 15
probability of overlap, 20
probability, conditional, 14
probable prime, 78, 104, 156
product cipher, 4
protocol, 10, 253, 263
pseudoprime, 78, 156
t/>(x,y), 54, 194
public-key cipher, 6, 121, 231
Purdy, G., 217

QS, 190
quadratic

congruence, 93, 293
equation, 173
form, 151
formula, 93
nonresidue, 94, 97
residue, 94, 164, 186, 215, 254,

257, 297
sieve algorithm, 190, 284

quantum computation, 284

Rabin, M., 159, 235, 255
Rabin-Williams cipher, 235, 283
Rabin-Williams signature, 241
radix of number system, 29
Ramaswami, V., 54
random cipher, 116
random number generator, 211
random variable, 20
rate of a language, 116
rational integer, 138
rational prime, 138
recurrence polynomial, 161
reduced quadratic form, 151
reduced set of residues, 79, 127
redundancy of a language, 116
Reeds, J. A., 120
relation, 186, 196
relatively prime, 36
replay attack, 299
residue, 62
residue class, 62
Riemann Hypothesis, 51, 261
Riesel, H., 29, 45, 143, 152, 153
Rijmen, V., 221
Rijndael, 4, 221, 256, 265, 295
ring, 132
Rivest, R. L., 7
Rmi 127, 128, 157, 177, 203, 207,

285
Robbins, N., 45
root of polynomial, 133
Rosen, K. H., 27, 29, 159
rotor machine, 120
round, 221
RSA cipher, 7, 83, 231, 255, 265,

267, 283, 286, 287, 289,
290, 292-294

RSA signature, 239
RSA signature speedup, 240
RSR, 79, 127
Rumely, R., 169
running key cipher, 8, 120

Index 317

Sacco, G. M., 247
sample space, 20
Samuels, S., viii
Saxena, N., 169
Schneier, B., 217, 263
Schoof's algorithm, 229
Schoof, R., 182
secret key cipher, 6
secret splitting, 258
secure election, 265
self-synchronous stream cipher, 8
Selfridge, J. L., 165
semismooth integer, 58, 150, 180,

194
SHA, 217
shadow, 258
Shallit, J., 102, 106, 166
Shamir, A., 7, 123, 258, 262, 284
Shan, W., 215
Shanks, D., 130, 152, 203, 204, 285
Shannon, C. E., I l l , 112, 114, 116
sharing secrets, 258, 289
Shor, P., 284
Shub, M., 215, 216
sieve, 146, 187, 191
sieve of Eratosthenes, 53, 59, 150,

198
signature, 7
signature algorithm, 239
Silverman, J., 176
Silverman, R. D., 178
simple substitution cipher, 118
smart card, 291
Smith, J. W., 190
smooth integer, 54, 150, 178, 189,

191
soldiers, 69
Solovay-Strassen test, 158
solution to congruence, 65, 66
Sophie Germain prime, 50,110, 271
Spafford, E., viii
special NFS, 197
spurious key decipherment, 117
square form, 152
square form factorization, 152

square root modulo a prime, 106
square root modulo a prime power,

108
SQUFOF, 152, 185, 189, 194
Stallings, W., 217, 251, 275
standard representation, 47
State, Rijndael, 225
Stirling's formula, 117
stream cipher, 7
strong probable prime, 156, 290
strong pseudoprime, 156, 170
structure of Rm, 129
subexponential factoring algorithms,

185-201
subfield, 139
subgroup, 129, 158
subliminal channel, 300
substitution cipher, 3, 118
subtraction of large integers, 33
succinct certificate, 166, 169
Sun Tsu = Sun Che, 69, 182, 292
symmetric cipher, 6, 221
synchronous stream cipher, 8
system of linear congruences, 67

theoretically breakable, 116
threshold scheme, 258
timing attack, 286
totient function, 79
Trabb Pardo, L., 58, 59
transposition cipher, 4, 117
Trappe, W., 227, 271
trial division, 52, 143, 149, 191
Turing, A., 120
twin primes, 50, 110
two-key cipher, 6

unconditionally secure, 116
unicity distance, 116
union, 14
unique factorization, 138
unit, 138
unity of a ring, 132
UNIX, 120

van Oorschot, P. C., 206

318

variance, 21, 287
Vernam cipher, 115
Vigenère cipher, 8, 119, 123
Vinogradov, I. M., 98

WagstafF, S. S., Jr., 164, 165, 170,
178, 190

Washington, L. C , 227, 271
Weaver, W., 17
Weinberger, P. J., 120
Wide-mouthed Frog, 245
Wiener, M. J., 206, 292
Williams cipher, 236
Williams, H. C , 146, 151,160,168,

169, 236, 237, 283
witness, 160
Woo, T. Y. C , 247
Woo-Lam key exchange protocol,

247

X.509, 249, 290, 295, 299
Xiao, G., 215

Yahalom, 246

zero of polynomial, 133
zero-knowledge proof, 256, 297, 302
Zhang, C , viii, 58, 194
Zimmermann, P., 277
Z m , 132, 196
Zuckerman, H. S., 45

Index

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Preface
	Dedication
	Contents
	Part I: Mathematical Foundations of Cryptanalysis
	1 Terminology of Cryptography
	1.1 Notation
	1.2 Types of Attacks
	1.3 Public Key Ciphers
	1.4 Block and Stream Ciphers
	1.5 Protocols
	1.6 Exercises

	2 Probability Theory
	2.1 Definitions
	2.2 The Birthday Problem
	2.3 Random Variables
	2.4 Exercises

	3 Divisibility and Arithmetic
	3.1 Divisibility
	3.2 Arithmetic with Large Integers
	3.3 Greatest Common Divisors and the Euclidean Algorithm
	3.4 Exercises

	4 Primes
	4.1 The Fundamental Theorem of Arithmetic
	4.2 The Distribution of Prime Numbers
	4.3 Identifying and Finding Primes
	4.4 The Largest Prime Factor of a Number
	4.5 Exercises

	5 Congruences
	5.1 Simple Properties of Congruences
	5.2 Linear Congruences
	5.3 The Chinese Remainder Theorem
	5.4 Exercises

	6 Euler's Theorem and Its Consequences
	6.1 Fermat's Little Theorem
	6.2 Euler's Theorem
	6.3 Primitive Roots
	6.4 Discrete Logarithms
	6.5 Exercises

	7 Second Degree Congruences
	7.1 The Legendre Symbol
	7.2 The Law of Quadratic Reciprocity
	7.3 The Jacobi Symbol
	7.4 Euler Pseudoprimes
	7.5 Solving Quadratic Congruences Modulo m
	7.6 Exercises

	8 Information Theory
	8.1 Entropy
	8.2 Perfect Secrecy
	8.3 Unicity Distance
	8.4 Some Obsolete Ciphers
	8.5 The Entropy of Number Theoretic Ciphers
	8.6 Exercises

	9 Groups, Rings and Fields
	9.1 Groups
	9.2 Simple Properties of Groups
	9.3 The Baby-Step-Giant-Step Algorithm
	9.4 Rings and Fields
	9.5 Polynomials
	9.6 Algebraic Number Theory
	9.7 Exercises

	10 Exponential Methods of Factoring Integers
	10.1 Fermat's Difference of Squares Method
	10.2 Pollard's Rho Method
	10.3 Pollard's p – 1 Method
	10.4 Square Form Factorization
	10.5 Exercises

	11 Finding Large Primes
	11.1 Stronger Probable Prime Tests
	11.2 Lucas Probable Prime Tests
	11.3 Rigorous Proof of Primality
	11.4 Prime Proofs for Arbitrary Large Integers
	11.5 Exercises

	12 Elliptic Curves
	12.1 Definitions and Examples
	12.2 Factoring with Elliptic Curves
	12.3 Primality Proving with Elliptic Curves
	12.4 Exercises

	13 Subexponential Factoring Algorithms
	13.1 Factoring with Continued Fractions
	13.2 The Quadratic Sieve
	13.3 Variations of the Quadratic Sieve
	13.3.1 Large Primes
	13.3.2 Multiple Polynomials
	13.3.3 The Self-Initializing Quadratic Sieve

	13.4 The Number Field Sieve
	13.5 Exercises

	14 Computing Discrete Logarithms
	14.1 Shanks' Baby-Step-Giant-Step Method
	14.2 Pollard's Methods
	14.2.1 The Rho Method for Discrete Logarithms
	14.2.2 The Lambda Method for Discrete Logarithms

	14.3 Discrete Logarithms via Index Calculus
	14.4 Other Fast Methods for the Group R[sub(m)]
	14.5 Exercises

	15 Random Number Generation
	15.1 Linear Feedback Shift Registers
	15.2 A Quadratic Residue Random Number Generator
	15.3 Hash Functions
	15.4 Generating Truly Random Numbers
	15.5 Exercises

	Part II: The Cryptographic Algorithms
	16 Private Key Ciphers
	16.1 Rijndael, the Advanced Encryption Standard
	16.1.1 Byte Arithmetic in Rijndael
	16.1.2 Word Arithmetic in Rijndael
	16.1.3 The Structure of Rijndael
	16.1.4 The Key Schedule of Rijndael
	16.1.5 Summary of Rijndael

	16.2 The Pohlig-Hellman Cipher
	16.3 Elliptic Curve Pohlig-Hellman
	16.4 Exercises

	17 Public Key Ciphers
	17.1 Rivest-Shamir-Adleman
	17.2 Massey-Omura
	17.3 Elliptic Curve Massey-Omura
	17.4 ElGamal
	17.5 Elliptic Curve ElGamal
	17.6 Rabin-Williams
	17.7 Exercises

	18 Signature Algorithms
	18.1 Rivest-Shamir-Adleman Signatures
	18.2 ElGamal Signatures
	18.3 Rabin-Williams Signatures
	18.4 The Digital Signature Algorithm
	18.5 Exercises

	19 Key Exchange Algorithms
	19.1 Key Exchange Using a Trusted Server
	19.2 The Diffie-Hellman Key Exchange
	19.3 The X.509 Key Exchange
	19.4 Exercises

	20 Simple Protocols
	20.1 Bit Commitment
	20.2 Mental Poker
	20.3 Oblivious Transfer
	20.4 Zero-knowledge Proofs
	20.5 Methods of Sharing Secrets
	20.5.1 Secret Splitting
	20.5.2 The Lagrange Interpolating Polynomial Scheme
	20.5.3 The Asmuth and Bloom Threshold Scheme

	20.6 Blind Signatures
	20.7 Exercises

	21 Complicated Protocols
	21.1 Contract Signing
	21.2 Secure Elections
	21.3 Electronic Cash
	21.3.1 Electronic Cash According to Chaum
	21.3.2 Electronic Cash According to Brands

	21.4 Exercises

	22 Complete Systems
	22.1 Kerberos
	22.2 Pretty Good Privacy
	22.3 Exercises

	Part III: Methods of Attack
	23 Direct Attacks
	23.1 Try All Keys
	23.2 Factor a Large Integer
	23.3 Solve a Discrete Logarithm Problem
	23.4 Timing Attacks
	23.5 Exercises

	24 Exploiting an Error
	24.1 Key Management
	24.2 Reuse of a Key
	24.3 Bad Parameter Choice
	24.4 Partial Key Exposure
	24.5 Computer Failure
	24.6 Exercises

	25 Active Attacks
	25.1 Force a User to Make a Mistake
	25.2 Man-in-the-Middle Attacks
	25.3 Birthday Attacks
	25.4 Subliminal Channels
	25.5 Exercises

	References
	Index

