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Preface 

This work has its origins in a cryptography course taught by the author many 
times during the past twenty years in the Computer Science Department at 
Purdue University. 

Part I gives the mathematical background for cryptography as well as some 
definitions and simple examples from cryptography. The cryptographic defi­
nitions appear in the first chapter. 

The second chapter treats some topics from elementary probability theory 
which are needed most for cryptanalysis. 

Chapters 3 through 7 give a standard first course in elementary number 
theory, but with a slant toward computation and with the needs of cryp­
tography always in mind. Thus, Chapter 3, on divisibility, also tells how to 
perform arithmetic with large integers and Chapter 4, which is about primes, 
discusses the probability that a "random" large integer will have only small 
prime factors. This topic is rarely discussed in the chapter on primes in an 
elementary number theory book, but is needed to estimate the difficulty of 
breaking certain ciphers. 

Chapter 5 introduces congruences, which are used in many modern cryp­
tographic algorithms. Chapter 6 proves Fermat's little theorem and Euler's 
generalization of it. These important results are used throughout the rest 
of the book. This chapter also introduces primitive roots and discrete loga­
rithms, which are needed for many ciphers and protocols. 

Chapter 7 deals with the solution of quadratic congruences. We do not prove 
the quadratic reciprocity law, but do explain its importance in computation. 
We state this law in a form useful for programming rather than in the slick 
concise way found in many number theory texts. 

Chapter 8 introduces information theory and gives examples of some obso­
lete ciphers. 

Chapter 9 offers a selection of topics from modern algebra that are used in 
later chapters to make and break various ciphers. 

Chapters 10 through 13 treat the complementary problems of factoring 
large integers and identifying large primes. Many cryptographic algorithms 
begin by choosing large primes. Some ciphers and protocols can be broken by 
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factoring a large integer. Slow but nevertheless important factoring methods 
are the topic of Chapter 10. In Chapter 11, the reader learns how to tell 
whether a large integer is probably prime, how to give a rigorous proof that a 
large number is prime, and how to construct large primes that have an easy 
rigorous proof of primality. Chapter 12 deals with the important elliptic curve 
groups used in prime proofs, in factoring integers, and directly in ciphers and 
protocols. The fastest known factoring algorithms are described in Chapter 
13. 

Chapter 14 discusses the best ways to break certain ciphers by computing 
"discrete logarithms." We describe several good methods for choosing random 
numbers in Chapter 15. Cryptographic algorithms that need secret random 
integers can be compromised if the numbers are not sufficiently random. 

Part II describes a selection of cryptographic algorithms, most of which 
use number theory. Chapter 16 presents some single-key ciphers, in which 
all keys are supposed to remain secret. Rijndael, the new Advanced Encryp­
tion Standard, is the fastest of these ciphers. The Pollig-Hellman ciphers are 
slower, but enjoy special properties which make them useful in certain pro­
tocols. Chapter 17 introduces public-key ciphers, including those of Rivest, 
Shamir and Adleman, Massey-Omura, ElGamal, and Rabin-Williams. 

Methods of signing messages electronically are presented in Chapter 18. 
Chapter 19 explains ways for two users to exchange keys in a secure manner, 
so that no one else can discover these keys by eavesdropping on their messages, 
and so that the users can be sure that they are talking to each other and not 
to an impersonator. 

In Chapter 20 we describe simple protocols for playing games, sharing se­
crets, signing documents without seeing them, and establishing one's identity. 
The protocols in Chapter 21 are more complicated, and include signing con­
tracts over the Internet, holding an election over the Internet and using digital 
"cash" to purchase goods. Chapter 22 explains two complete cryptographic 
systems, Kerberos for user authentication and Pretty Good Privacy for secure 
electronic mail. 

Some attacks on the cryptographic algorithms are discussed as the algo­
rithms are presented in Part II. In Part III, we collect together some general 
methods of attack on the cryptographic algorithms of Part II and assess their 
effectiveness. 

Chapter 23 treats direct attacks in which the attacker has no contact with 
the victim and the victim does nothing wrong. These attacks involve a direct 
assault on a secret key. They are analogous to the attacker breaking into the 
victim's house when he is away and taking his money. 

In the attack techniques of Chapter 24, either the victim or his computer 
makes an error which allows an attacker to learn a secret key. These methods 
are similar to an attacker entering a victim's house and taking his money 
when the victim left the door unlocked or the lock is broken. 

In the attacks of Chapter 25, the attacker interacts with the victim and 
either steals a secret key or makes the victim do something he wishes he had 
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not done. These attacks are like being mugged or raped. 
The second and third parts of the book give copious references to the the­

orems in the first part, so that the reader can learn more about why the 
cryptography works and the nature of the attacks on it. 

More than 200 interesting exercises test the reader's understanding of the 
text. The exercises range in difficulty from nearly trivial to quite challenging. 
We hope you enjoy the antics of Alice, Bob, and their gang. 

The prerequisites for reading this book are calculus and linear algebra. 
From calculus, you should know how to differentiate, integrate, and find ex­
trema. You should be familiar with the logarithm and exponential functions 
and with Newton's method for finding zeros of functions. You should know 
that sums may be approximated by integrals. You should know the rudi­
ments of set theory, intersections, unions, and subsets. From linear algebra, 
you should be familiar with matrices and know how to solve a system of linear 
equations in several unknowns. For complete understanding of this book, you 
should also be familiar with proof by mathematical induction. 

Throughout the book, we use the notation [x\ and \x] to mean the largest 
integer < x and the smallest integer > x, respectively. 

When a and b are integers with b > 0, we write a mod b for the (non-
negative) remainder when a is divided by b. It is always in the range 0 < 
a mod b < b. Since [a/b\ is the integer part of the quotient when a is divided 
by b we always have 

a = b\a/b\ + (a mod b). 

When n is a positive integer, we define "n factorial" to be the product 
n! = 1 • 2 • 3 • • • (n — l)n. Also define 0! = 1. When 0 < i < n are integers, 
define the binomial coefficient, "n choose ¿," to be 

The name comes from the binomial theorem, which says that if n is a 
nonnegative integer, then 

We write logx to mean the logarithm of x to an unspecified base, log6 x for 
the logarithm of x to base ò, and ln:r = loge x for the natural logarithm of x. 
We write exp(x) for ex when x is a complicated expression. 

Explicit algorithms are written in a simple pseudocode which should be 
clear to anyone familiar with a modern computer language like C or Java. We 
use 0xl23ABC for the hexadecimal number "123ABC," just as many computer 
languages would do. 

From computer science, you should know that one can sort a list of n items 
with nlogn comparisons. 
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We should explain the notion of "amortization," which appears in several 
algorithms. If one special instruction in a block of repeated instructions is 
performed only once in every k repetitions, then the time needed to execute the 
block once may be estimated as 1/fc times the time for the special instruction 
plus the time needed for the other instructions. We say the time for the special 
instruction is amortized over the time for the block of instructions. 

I thank Abhilasha Bhargav for drawing some exquisite graphs. 
I am grateful to Mikail Atallah, Richard Crandall, Joe Doob, Jason Gower, 

Darren King, Peter Montgomery, Stephen Samuels, and Chaogui Zhang for 
providing insightful comments on earlier versions of parts of this book or other 
information that made the book better. 

I wish to thank the hundreds of students who took my cryptography class 
during the past twenty years for testing the exercises. 

Finally, I thank the Center for Education and Research in Information As­
surance and Security, CERIAS, its sponsors and its director, Professor Eugene 
Spafford, for support while this book was being written. 

Sam Wagstaff 
Purdue University CERIAS 
West Lafayette, Indiana 
sswOcerias.purdue.edu 
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Chapter 1 

Terminology of 
Cryptography 

This chapter introduces the basic facts of cryptography. Refer to Denning 
[36] for more basic information on cryptography. 

1.1 Notation 
Cryptography is the study of secret writing. A cipher is a way of hiding 
ordinary text, called plaintext, by transforming it into ciphertext. This 
process is called enciphering or encryption of the plaintext into ciphertext. 
The reverse process is called deciphering or decryption. The following 
figure illustrates this terminology. 

Ciphers are divided into two categories: substitution and transposition ci­
phers. Substitution ciphers replace letters or larger blocks with substitutes, 
usually of the same length. In a simple substitution cipher, the same al­
phabet is used for plaintext and ciphertext, and a fixed permutation of this 
alphabet gives the substitution rule. As an example, suppose the letters of 
the alphabet are arranged in a circle (with A following Z) and a message is 
encrypted by replacing each plaintext letter by the fifth letter after it in the 
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circle. Thus, the message "SECRET" would be enciphered as "XJHWJY." 
Decryption is performed by replacing each ciphertext letter by the fifth letter 
before it in the alphabet circle. This type of cipher, in which the alphabet is 
rotated, is called a Caesar cipher because Julius Caesar used it. 

The letters in the ciphertext of a transposition cipher are the same let­
ters, with the same frequencies, as the letters in the plaintext, but they are 
rearranged. A simple example of a transposition cipher uses a matrix. The 
plaintext and ciphertext are broken into blocks with length equal to the num­
ber of entries in the matrix. A message is enciphered by writing each block 
of plaintext into the matrix by rows and reading a ciphertext block out of the 
matrix by columns backwards. For example, suppose we use a 2 x 3 matrix 
to encipher the message "SECRET," which has only one block. We form the 
matrix 

S E C 
R E T 

and read the ciphertext "CTEESR." Decryption is performed by writing each 
ciphertext block into the matrix by columns backwards and reading the plain­
text block by rows. 

Product ciphers are created by the composition of several ciphers whose 
types alternate between substitution and transposition. Substitution and 
transposition ciphers each have certain weaknesses which may be overcome 
by composing them in this alternating fashion. To give a simple example, 
compose the two ciphers above, using the Caesar cipher first. The plaintext 
"SECRET" is first changed into "XJHWJY." This is written into the matrix 

X J H 
W J Y 

and the ciphertext is "HYJJXW." The Data Encryption Standard, DES, and 
Rijndael are two well known examples of product ciphers. 

Both encryption and decryption are controlled by keys. The key for a 
transposition cipher is the fixed permutation of the letters in a block. The 
key for a simple substitution cipher is the fixed permutation of the alphabet. 
In the simple case of the Caesar cipher, the key is the amount of shift of the 
alphabet. 

1.2 Types of Attacks 
Suppose E and D are the prototype encryption and decryption methods before 
the key is specified. When the key is K, the encryption and decryption 
functions, obtained by specifying K in E and D, are often written EK and 
DK, respectively. Thus we would write C = EK(M) to mean that C is the 
ciphertext obtained when the plaintext M is enciphered with key K. Likewise, 
M — DK(C) means C was deciphered using the key K to give M. 
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A fundamental property shared by all ciphers is that DK(EK(M)) — M 
for every M. This equation says that if you encipher a message M with key 
K, then you can decipher it, using the same key, and recover M. 

In general, a cipher must be easy to use, the functions EK and DK must 
be fast for all keys K, and the security of the cipher should depend only 
on the secrecy of the keys and not on the secrecy of the methods E and D. 
This last requirement is needed because the methods may be public or spies 
may acquire them, but keys can and should be changed frequently. In some 
ciphers, all keys of a given length are equally good. But in other ciphers, 
one must choose a key having special properties in order for it to work or be 
secure. The first requirement above implies that it should be easy to select a 
key with any required properties. 

Crypt analysis is the study of attacks on ciphers. Methods of attack may 
be classified into several general types based on what information is known 
and what is unknown to the cryptanalyst. 

In a ciphertext-only attack, only the ciphertext is known, although often 
the language of the plaintext and the type of cipher are also known. The goal 
of the cryptanalyst is to find the plaintext and the key. This is the most 
difficult type of attack. Sometimes the cryptanalyst has only a string of bits 
to work with. 

In a known-plaintext attack, the cryptanalyst is given some ciphertext 
and the corresponding plaintext. For example, it may be known that all 
messages from Alice to Bob begin with a standard header. In this case the 
first part of each ciphertext can be deciphered because it is always the same. 
The goal is to find the key so that other ciphertext may be deciphered. 

In a chosen-plaintext attack, the cryptanalyst may specify some plain­
text, perhaps even a meaningless message, and somehow learn the correspond­
ing ciphertext. This feat may be accomplished by tricking the cipher machine 
operator into enciphering a given message or by capturing a cipher chip with 
an unreadable key etched into it, for example. The goal is to find the key. 

Public-key ciphers, described in the next section, give rise to a chosen-
ciphertext attack, in which the cryptanalyst may specify some ciphertext 
and learn the corresponding plaintext. Again the goal is to find the key. 
Although the plaintext obtained might not be a meaningful message it may 
still aid in finding the key. 

A good cipher should resist all of these kinds of attack. Specifically, it should 
be computationally infeasible for a cryptanalyst to do any of the following, 
no matter how much ciphertext is given. 

1. Find M given C. 

2. Find DK given C or C and the corresponding M. 

3. Construct C so that DK{C) is any meaningful message. 

4. Find EK given C or C and the corresponding M. 



6 Cryptanalysis of Number Theoretic Ciphers 

The first two requirements ensure the secrecy of the cipher and messages 
enciphered with it. Requirements 1 and 2 say that a ciphertext-only attack 
should be hard. Requirement 2 says that a known-plaintext attack should be 
hard. 

The last two requirements ensure the authenticity of messages enciphered 
with the cipher. Requirement 4 says that no attacker can discover the enci­
phering function, use it to encipher a phony message (such as a bank transfer), 
and have the recipient accept it as authentic. Requirement 3 says that no at­
tacker can create ciphertext which would decipher into a meaningful plaintext, 
although this plaintext may be strange and even unknown to the attacker. 
Both say that if an active attacker replaces one ciphertext with another, the 
change will almost certainly be detected. 

1.3 Public Key Ciphers 
Until the 1970's, cryptographers assumed that if one knew an enciphering 
function EK, including its key K, then one could easily deduce the corre­
sponding deciphering function DK- AH ciphers invented until then were of 
this type. In 1976, Diffie and Hellman [40] proposed a new type of cipher, 
called public-key encryption, for which this drawback did not hold. Un­
til [40] appeared, it was generally assumed that this drawback could not be 
removed. Each user of the new cipher would have an enciphering function, 
which would be made public, and a deciphering function, which would be kept 
secret. When Alice wanted to communicate secretly with Bob, she would find 
Bob's public enciphering function in a directory, encrypt her message using 
that function, and send it to Bob. Bob could decrypt it because he knew 
his secret deciphering function. But no eavesdropper could read the message 
because he would not know Bob's secret deciphering function. 

In actual public-key ciphers both methods E and D are public and the 
same for every user. However, the two functions for one user have different 
keys. The encryption key is public and the decryption key is secret. It is not 
computationally feasible to deduce the decryption key from the encryption 
key, or vice versa. This difference in keys led Simmons to this classification of 
ciphers: If the same key is used for both encryption and decryption, the cipher 
is called a one-key or symmetric cipher. If two different keys are used, and 
neither can be deduced easily from the other, the cipher is called a two-key 
or asymmetric cipher. Symmetric ciphers are also called conventional or 
secret key ciphers. All public-key ciphers are asymmetric ciphers. 

If Alice uses a public-key cipher, her encryption and decryption functions 
would be written EA and DA- Here the "A" denotes "Alice," not a key as it 
would for be a symmetric cipher. These functions would have the property 
that DA(EA(M)) = M for every plaintext M. Likewise, Bob would have the 
public enciphering function EB and a secret deciphering function D5 . 

Recall that symmetric ciphers provide authentication in addition to secrecy. 
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If Alice and Bob share a key K for a one-key cipher, then no one else will know 
K. If Bob receives an encrypted message allegedly from Alice and successfully 
decrypts it using key K, then Bob can be sure that the message really came 
from Alice because only Bob and Alice know K. 

Public-key ciphers, as described above, provide secrecy but not authenti­
cation. Suppose Alice, Bob, and others use public-key ciphers. Alice sends a 
message M to Bob as EB(M) and Bob deciphers it by applying DB- However, 
anyone who knows Bob's public enciphering function EB could write a mes­
sage signed, "from Alice," encipher it with EB and send it to Bob. When Bob 
receives an encrypted message allegedly from Alice and successfully decrypts 
it using DB, he cannot be sure it came from Alice. 

Fortunately, it is easy to add authentication to public-key ciphers. Alice 
can "sign" her message to Bob by applying her secret deciphering function 
to it. She would send the signed ciphertext C — EB(DA(M)) to Bob, along 
with a plaintext note saying that this message came from Alice. Bob would 
apply DB to C and obtain DA(M). Then Bob would locate Alice's public key 
EA from a secure source and apply EA to DA(M) and obtain M. Note that 
we require DB(EB(M)) = M for every M, not just meaningful M. Several 
public-key ciphers enjoy this property. 

If the plaintext M were not secret, but Alice wanted Bob to be certain that 
it came from her, then Alice could merely send DA(M) to Bob, along with 
a plaintext note saying it was from her. Then Bob, or anyone else for that 
matter, could apply the public EA to DA{M) and read M. In this case, Alice 
has signed M but not hidden it. Public-key ciphers separate authentication 
from secrecy. 

Diffie and Hellman gave no example of the public-key ciphers they proposed. 
The first example was given two years later by Rivest, Shamir and Adleman 
[97] and is called the RSA cryptosystem. Many more public-key ciphers have 
been invented since then. 

I.4 Block and Stream Ciphers 
Ciphers are classified according to how the key is used to encipher the plaintext 
M. Block ciphers break M into blocks M i , M 2 , . . . of equal length and 
encipher each block with the same key, so that the ciphertext is EK(M) = 
EK(MI)EK(M2) — The transposition cipher which uses a matrix and the 
Caesar cipher are examples of block ciphers. The block lengths are 1 letter 
for the Caesar cipher and the number of letters that fit in the matrix for the 
transposition cipher. DES is a block cipher with a block length of 64 bits. 
Usually the block length is several letters. 

Stream ciphers have a key expressed as a key stream K = fcifefe 
These ciphers break the plaintext M into pieces, M = mira2m3 . . . , which 
may be letters or bits, and encipher the z'-th piece m¿ with the i-th. piece ki 
of the key, so that the ciphertext is EK(M) = Ekl {mi)Ek2{m2)Ek3{m^) 
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A stream cipher is called p e r i o d i c if its key repeats after d pieces, for some 
fixed d. 

E x a m p l e 1.1 

Let Ek denote encryption by a Caesar cipher with the alphabet rotated by 
k letters, where 1 < k < 26. Let the key K be a sequence of five integers 
fci,..., &5, each between 1 and 26. We can create a periodic stream cipher with 
period d = 5 by using the five Caesar ciphers Ekl, • •. , Ekb in a round-robin 
fashion to encipher the successive letters of the plaintext. If M = mirri2m3 • •., 
then the ciphertext is 

EK{M) = Ekl(mi)Ek2(m2) • . . Ek5(m5)Ekl(Tn6)Ek2(m7).... 

It is convenient and practical to use the k-th letter of the alphabet to represent 
the number k between 1 and 26. Then one must remember only a five-letter 
word for the key, rather than five numbers. This cipher (with the key expressed 
in letters) is called a Vigenère cipher. 

The key stream of a s tream cipher need not be periodic. If it is not periodic, 
then it should be as long as the plaintext. A nonperiodic key stream may be 
created in two ways: If it is generated in some fashion independent of M , the 
cipher is called a s y n c h r o n o u s s t r e a m cipher. But if the key stream is 
computed from the ciphertext already produced, the cipher is called a self-
s y n c h r o n o u s s t r e a m cipher . 

Example 1.2 

To give a simple example of a synchronous stream cipher, let us build on the 
Caesar cipher Ek with variable key letter k of the previous example. Suppose 
the sender and receiver agree on a standard text and a position in that text. 
Let ki be the i-th letter of the standard text, beginning at the position. Then 
encipher M = mxrriïmz . . . as EK(M) = Ekl (mi)Ek2(m2)Ek3(rri3) This is 
called a running key cipher. 

Many stream ciphers exclusive-or the plaintext and key to form the cipher-
text . The exc lus ive -or operation 0 is defined on bits by 

0 0 0 = 1 0 1 = 0, and 0 0 1 = 1 0 0 = 1. 

Note tha t x 0 y = y 0 x and x 0 (y 0 z) — [x 0 y) 0 z for all x, y and z. Note 
also tha t x 0 x = 0 and x 0 0 = x for all x. A useful property of exclusive-or, 
which follows from the ones just s tated, is tha t x 0 y 0 y = x for all x and y. 
We also write X 0 Y for the bitwise exclusive-or of the bit strings X and Y 
having the same length. If M = mim2ms . . . and the key stream is &1&2&3 • • -, 
and the pieces ra¿ and ki all have the same length in bits, then one can define 
the ciphertext C = C1C2C3 . . . by c¿ = m¿ 0 fc¿ for each i. It follows from the 
useful property above tha t the deciphering rule is the same as for enciphering: 
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"Exclusive-or with the key." In symbols, this means m¿ = c¿ © fc¿. It is true 
because (ra¿ 0 fc¿) 0 ki = m¿. 

In other synchronous stream ciphers, the key stream may be produced by 
a random number generating procedure or by special hardware. Sometimes 
a block cipher is used to generate the key stream. One way this may be 
done is to encipher a given block repeatedly. Suppose EK is a block cipher 
with key K. Pick a random block #0 and repeatedly encipher it to generate 
Bi — EK(BÍ-I) for i > 1. Let ki be the first eight bits of Bi (or however 
many bits are needed). Use ki as the key stream for the synchronous stream 
cipher. The key to the stream cipher consists of the initial block #0 and the 
key K for the block cipher. This method of using a block cipher to produce 
a key stream is called output-block feedback mode. 

Another way to use a block cipher to produce a key stream is counter 
mode. In it, one chooses a random number R which fits in one block of the 
block cipher EK- Then ki is the low-order eight bits (or some other selected 
bits) of EK(R + i)- The key to the stream cipher is the random number R 
and the key K. 

Here is a trivial example of a self-synchronous stream cipher to illustrate the 
idea. Suppose M — mim2ms . . . , where the pieces m¿ are bytes or characters. 
Choose an initial key byte k\ and encipher mi as c\ — mi 0 fci. Now define 
ki — Ci-i for i > 1 and encipher with the rule c¿ = m¿ 0 ki = m¿ 0 c¿_i. The 
point is that the (nonrepeating) key stream is generated from the previous 
ciphertext. Of course, if a cryptanalyst knew the enciphering rule (but not 
the key), he could easily decipher all but the first byte of the message by 
computing rrii — Ci ® Ci-\ for i > 1. 

One can design a slightly better self-synchronous stream cipher by disguis­
ing the previous ciphertext piece c¿_i before using it to encipher the next 
plaintext piece. For example, one may let ki = i£#(c¿_i), where EK is a 
block cipher. Then the key for the self-synchronous stream cipher consists of 
the initial key piece k\ and the key K for the block cipher E. Of course, K is 
far more important than hi, because any cryptanalyst who discovers K can 
read all but the first message piece mi . 

Synchronous stream ciphers are simpler than self-synchronous stream ci­
phers. However, the latter have some advantages over the former. If cipher-
text is broadcast by radio, and interference changes a few bits, then users 
of a synchronous stream cipher would have to resynchronize before correct 
deciphering could resume. But if a self-synchronous stream cipher were used, 
then deciphering could continue with just a few characters lost. If ciphertext 
is stored in a file, then the file can be deciphered only from the beginning 
when a synchronous stream cipher is used. But a file enciphered with a self-
synchronous stream cipher can be read from any starting point—just start 
reading a few characters before the desired portion to get the correct initial 
keys—and one could even change the end of the file without disturbing the 
rest of it. 
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1.5 Protocols 
Cryptographic ideas are not limited to just enciphering and deciphering text. 
We have already mentioned that digital signatures provide authentication. 
We will discuss many protocols, which are dialogs using cryptographic tech­
niques to accomplish some purpose. Here are a few examples. 

The Diffie-Hellman key exchange protocol allows two users to choose a 
common key for a symmetric cipher while someone eavesdrops on them. The 
eavesdropper does not learn their key from the messages sent between them. 

Electronic cash is a system for purchasing goods electronically that has 
many of the same properties as cash. It is not a credit card. You withdraw 
electronic cash from your bank account. You can send it securely through 
computer networks. You can spend it with a merchant without communica­
tion with the bank during the transaction. Neither the bank nor the merchant 
will know who you are. You can spend the money only once. 

A zero-knowledge proof is a dialog between two people, the Prover and the 
Verifier, in which the Prover convinces the Verifier that she knows a certain 
secret, but without revealing to the Verifier (or to an eavesdropper) any part 
of the secret. After the protocol concludes, neither the Verifier nor an eaves­
dropper could masquerade as the Prover and convince someone else that they 
know the secret. 

Other protocols allow users to toss coins, play poker, vote or sign contracts 
over computer networks. The goal of these protocols is to make the exchange 
just as fair as if the people were together in the same room using coins, cards, 
ballots or pens to do these things. 

1.6 Exercises 
1. In the discussion of "signatures" using public-key ciphers, we said that 

if Alice signed a message to Bob, he could verify that it came from 
her by obtaining her public key EA from a "secure source." Design a 
system that provides a secure source for public keys. Keep in mind that 
network addresses can be spoofed, so that if Bob tries to get EA from 
Alice's home page he may instead receive a phony EA from Irene the 
Impersonator, who actually sent the signed message. If EA were signed 
by someone Bob trusted, then he could be certain it is authentic. But 
suppose Bob doesn't know Alice or anyone who knows her. Design a 
system that provides a chain of signatures of public keys which could be 
checked and which provides a secure source for anyone's public key. 

2. Your friend has a secret file enciphered with a synchronous stream cipher 
using exclusive-or as the cipher function. You would like to read the file. 
You have made a copy of the ciphertext. One day your friend mentions 
that the "L" key on his terminal sticks, so that sometimes he gets "LL" 
when he meant "L." He says this happened once when he originally 
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typed the secret file, but that he has just corrected it. You run to your 
computer and make a new copy of the ciphertext. It is one character 
shorter than the copy you made earlier. Since the two files agree for 
the first twelve characters, and differ thereafter, you suspect that the 
same key stream was used to encipher the file both times. Assuming 
this is the case, how much of the file can you decipher? Give an explicit 
algorithm for deciphering the part you can decipher. 

3. Derive the decryption function and comment on cryptographic security 
of the following encryption scheme: Let a key = feo,..., fe&-i have 6 bits, 
and let the bits of plaintext be mo, mi, m<i, The encryption function 
produces ciphertext bits Co, ci, C2,..., where c¿ = c¿_i 0 fe¿ mod 6 © m>i 
and c_i is understood to be 0. What type of cipher is this? 

4. You are the Chief Information Officer of a large organization whose n 
members must communicate securely. Your task is to decide whether to 
accomplish this goal via symmetric or asymmetric encryption. If sym­
metric encryption is used, each pair of members must share a unique 
key, and each member of the pair must store a copy of it on her work­
station. If asymmetric encryption is used, each member must have a 
unique public key stored in a public directory on her workstation. For 
each type of encryption, how many copies of keys, total for all members, 
must be stored somewhere? Which type of encryption will you choose 
for your organization? 
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Chapter 2 

Probability Theory 

This chapter introduces some basic ideas from Probability Theory. The no­
tion of probability provides a quantitative measure of our expectation of the 
likelihood of future events. See Feller [43] for more information about this 
subject. 

2.1 Definitions 
The reader likely has some experience with games of chance and through them 
has acquired an intuitive grasp of the notion of probability. The probability 
in this book is discrete. 

Suppose an experiment has a set X — { x i , . . . , xn} of n possible outcomes. 
Each time the experiment is performed exactly one of the outcomes happens. 
Let each outcome be assigned a real number between 0 and 1, called the 
probability of that outcome. The sum of the probabilities of all of the 
outcomes must be 1. Write p(xi) for the probability of X{. So, 0 < p{x\) < 1 
for each i and Y^i=i P(xi) ~ 1-

A subset E of X is called an event. The event E "happens" if the outcome 
of the experiment is in E. The probability of an event E is defined to be the 
sum of the probabilities of the outcomes in E, that is, p(E) — Y1XGEP(X)' 

It is easy to see that 0 < p(E) < 1 and that the probability that E doesn't 
happen is 1 — p(E). 

In the examples in this book it often occurs that all n outcomes x\ of an 
experiment have equal probability. We say the outcomes are equally likely. 
In this case, we have p(xi) = 1/n for every i, and if the event E contains 
exactly k outcomes, then p(E) = k/n. 

When a coin is tossed, there are two possible outcomes, Heads and Tails. 
If the coin is evenly balanced and well-tossed, the two outcomes are equally 
likely and p(Heads) = p(Tails) = 1/2. 

Suppose we are making a known-plaintext attack on a cipher with 1,000,000 
possible keys. We are given M and C and must find the key K for which 

13 



14 Cryptanalysis of Number Theoretic Ciphers 

M = DK(C) or C = EK(M) (which are equivalent). If we pick one of the 
1,000,000 keys, we can tell whether it is the correct key by testing whether 
M — DK{C). If we assume that the keys are equally likely to be chosen, each 
key has probability 10~6 of being the correct one. 

The event E\ UE2 is the union of the two sets Ei and E2. The event Ei UE2 

happens if either of the two events E\ and E2 happens, that is, if the outcome 
is in either set. The event E\ D E2 is the intersection of the two sets E\ and 
E2. The event E\ H E2 happens if both of the two events E\ and E2 happen, 
that is, if the outcome is in both sets. 

Events E\ and E2 are called mutually exclusive events if they are dis­
joint sets, that is, E\ fl E2 is empty. If E\ and E2 are disjoint, then the 
probability that either E\ or E2 happens is p(E\ UE2) — p{E\) +p(£?2)- As a 
simple example of this principle, suppose the keys for the cipher of the preced­
ing paragraph were 6-digit integers. Let us find the probability that the first 
digit of the key is either a 2 or a 5. Let E\ be the event, "the first digit is a 2" 
and E2 be the event, "the first digit is a 5." Since there are 100,000 six-digit 
numbers whose first digit is a 2, p{Ex) = 100,000/1,000,000 = 0.1. Likewise, 
p{E2) = 0 . 1 . Since the first digit cannot be both a 2 and a 5, the events are 
mutually exclusive and the answer is the sum of these two probabilities, that 
is, 0.2. 

Suppose E\ and E2 are two events. Suppose p(E2) > 0. We define the 
conditional probability of E\ given E2 to be p(Ei\E2) — p{E\f\E<¿) ¡ p{E<¿). 
For example, consider the cipher with six-digit integers for keys. Let E\ be 
the event, "the first digit is a 2" and E2 be the event, "the first digit is even." 
As above, p{E\) = 0.1. Likewise, p{E2) = 1/2 because half of the first digits 
are even. However, E\ C E2 because if the first digit is 2, then the first 
digit is even. Therefore, E1 n E2 = E1 and p(E1 n E2) = p{Ex) = 0.1. The 
conditional probability is p(Ei\Ez) = 0.1/0.5 = 0.2. The formula defining 
conditional probability is often used in the form p(E\ flE^) = p(£i | £2)^(^2 )• 
Note that swapping E\ and E2 givesp(EinE2) — p(E2\Ei)p(Ei). Therefore, 
if both p(Ei) > 0 and p(E2) > 0, then p(E2\E1)p(E1) = p(E1\E2)p(E2). We 
have proved 

THEOREM 2.1 Bayes's theorem 
If both p(Ex) > 0 and p(E2) > 0, then 

Bayes's theorem provides a good way to compute p(Ei\E2) from p(E2\E\). 
Finally, we define independence. Two events E\ and E2 are called inde­

pendent if p{E\\E2) = p(Ei). When both events have positive probability, 
Bayes's theorem shows that this equation is equivalent to p(E2¡Ei) = p(E2). 
Also, from the form p(Ei n E2) = p(Ei |E2)p(E2), we obtain the symmetric 
condition p{Ex H E2) = p{E\) - p(E2) for E1 and E2 to be independent. 
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The events in the example above are not independent because EiC\E2 = E\ 
and p{E1 n E2) = p(Ex) = 0.1 / p(E1)p(E2). 

Let us use the same cipher with 6-digit integers as keys to give another 
example. Assume all 106 keys are equally likely. What is the probability that 
the first digit of the key is a 2 and the last digit of the key is a 5? Let E\ be 
the event, "the first digit is a 2" and E2 be the event, "the last digit is a 5." 
As in the previous paragraph, p{E\) = p(E2) = 0.1 because 100,000 keys have 
first digit 2 and the same number have last digit 5. Now 10,000 six-digit keys 
have both first digit 2 and last digit 5 because there are 10,000 ways to choose 
the other four digits. Therefore, p(Ex n E2) = 104/106 = 0.01 = p{E1)p(E2), 
and the events E\ and E2 are independent. 

2.2 The Birthday Problem 
We begin with some simple results from combinatorial analysis needed to 
count outcomes with equal probability. 

THEOREM 2.2 Multiple selections 
Suppose there are n\ distinct elements a\,..., ani ; n2 distinct elements b\, 
. . . , ò n 2 , etc.; up to ns distinct elements x±,...,xna. Then one can form 
u\u2 • • • ns ordered s-tuples (a^, 6¿2 , . . . , X{s ) containing one element of each 
kind. 

PROOF Use induction on s. If s = 2, arrange the pairs in a n\ x n2 

matrix with entry (a¿, bj) in the z-th row and j-th column. Each pair appears 
exactly once and there are n\n2 pairs. 

Let s > 2 and suppose the theorem has already been proved for s — 1. 
Then one can form n2 - • -ns ordered s — 1-tuples (o¿2, . . . , X{s ) containing one 
element of each kind other than the first kind. Consider these s — 1-tuples to 
be elements of a new kind. By the case s = 2 there are n\ • n2- • -ns pairs 
consisting of an a¿ and an element of the new kind. But these pairs are just 
ordered s-tuples (a¿x, bi2,..., X{a ) containing one element of each kind. I 

THEOREM 2.3 Probability of no repetition 
If an experiment with n equally likely and independent outcomes is performed 
k times, where 1 < k < n, then the probability that all k outcomes differ is 

PROOF To count the number of possible outcomes when the experiment 
is performed k times, apply the preceding theorem with s = k and n\ = 
n2 — • • • = ns = n. The total number of possible outcomes is then nk. 
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To count the number of outcomes with all k outcomes different when the 
experiment is performed k times, apply the preceding theorem with s — k 
and n\ = n, ri2 — n — 1, . . . , ns = n — k + 1. This is correct because there 
are n allowed outcomes for the first performance of the experiment. Then 
its outcome may not be repeated, so there are n — 1 allowed outcomes for 
the second performance of the experiment, and so forth. The total number 
of possible outcomes without repetition is then n(n — 1)••• (n — fe + 1). The 
probability of all outcomes differing is the quotient in the statement of the 
theorem. I 

We now consider variations of the following problem which have important 
applications in certain attacks on cryptographic functions. 

What is the smallest positive integer k so that the probability is > 1/2 that 
at least two people in a group of k people have the same birthday? 

We begin by making a couple of simplifications. First, we ignore Leap 
Year's Day and assume every year has 365 days. Then we assume that the 
birth rate is constant throughout the year so that every one of the 365 days is 
equally likely to be a birthday. We also assume that the birthdays of different 
people are independent. 

We will first find the probability Q(k) that no two people in a group of k 
people have the same birthday, that is, all k people have different birthdays. 
We apply Theorem 2.3. The experiment is finding the person's birthday. 
There are n = 365 possible outcomes. Repeating the experiment k times 
means finding the birthdays of k different people. Theorem 2.3 tells us that 
the probability is 

Thus, the probability that at least two of the k people have the same birthday 
is 

The following table shows how P(k) increases. 
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Table 1. Probability that at least two of k people have the same birthday. 

* 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

P(k) 

0.0027 
0.0082 
0.0163 
0.0271 
0.0404 
0.0562 
0.0743 
0.0946 
0.1169 
0.1411 
0.1670 
0.1944 
0.2231 

k 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

P(k) 

0.2529 
0.2836 
0.3150 
0.3469 
0.3791 
0.4114 
0.4436 
0.4756 
0.5072 
0.5383 
0.5687 
0.5982 
0.6268 

k 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

P(k) 

0.6544 
0.6809 
0.7063 
0.7304 
0.7533 
0.7749 
0.7953 
0.8143 
0.8321 
0.8487 
0.8640 
0.8782 
0.8912 

These values (and a few more) are plotted in Figure 2.1. 

The table shows that the answer to the question is that 23 is the smallest 
size of a group of people so that, with probability > 1/2, at least two have 
the same birthday. 

Warren Weaver tells a relevant anecdote on page 135 of his book [119]. 
During World War II, he was explaining the birthday problem to some high-
ranking military men at a dinner. They didn't believe that with only 22 
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or 23 people in a room, there was a 50% chance of two people having the 
same birthday. One officer noted that there were exactly 22 people at their 
table and proposed a test of the theory. Each person at the table stated 
his birthday. They were all different. Weaver was disappointed. Then their 
waitress piped up, "Excuse me, but I am the twenty-third person in this room 
and my birthday is May seventeenth, the same as the General over there." 

Now we generalize the birthday problem, which is the case n — 365 of the 
following problem. 

Suppose 1 < k < n and we choose k integers between 1 and n so that 
the choices are independent and all n integers are equally likely to be chosen. 
What is the probability P(n, k) that at least two of the k integers are the 
same? What value of k makes this probability closest to 1/2? 

Reasoning just as for birthdays, we find 

Write this as 

Now we have answered the first question. To answer the second, we must 
estimate the probability function P(n,k). To do this, note that 1 — x < e~x 

for all x > 0 and 1 — x « e~x when x is small. 
This approximation is illustrated by the graph in Figure 2.2. 

Figure 2.2 Graphs of y — 1 — x and y = e x. 
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We will use this approximation for each of the factors 1 — (r/n) in the 
product above. We have 1 < r < k - 1; so, we are assuming that every 
x — r/n is small. This will be so provided k is small compared to n. 

The approximation 1 — (r/n) « e~(r/n) gives 

P(n, fc) « 1 - e-1/ne-2/ne-3/n x • • • x e ^ " 1 ) / " 

or 
P(n,k) « 1 - e - ( l /"+2/n+3/n+.- .+(*-l) /n) 

or 
P ( n , A : ) « l - e - ^ - 1 ) / ( 2 n ) . 

We will have P(n, k) = 1/2 when 1/2 = i-e-Hk-i)/(2n) o r 2 = e*(*-i)/(2n)? 

that is, when In2 = k(k - l ) / (2n). 
We make another approximation. When A: is large, the percentage difference 

between k and k — 1 is small, and we may approximate k — 1 « k. This gives 
fc2 « 2n In 2 or 

k « v/2(hi2)ñ « 1.18Vñ. 

Note that we have assumed that "k is large" and "k is small compared to 
n." This means that n must be quite large for the approximations to work. 

For n = 365, we find k « 1.18\/365 « 22.54, or k « 23. 
In fact, this is correct, and we see that n = 365 and k — 23 are large enough. 
We state the general result as a theorem. The notation "<<" means "is 

much less than." 

THEOREM 2.4 The birthday paradox 
Suppose 1 « k « n and we choose k integers between 1 and n so that 

the choices are independent and all n integers are equally likely to be chosen. 
The probability P(n,k) that at least two of the k integers are the same is 
approximately 1 — e-Hk-i)/(2n) ^ The_vahie of k that makes this probability 
closest to 1/2 is approximately ^/2(ln2)n « 1 . 1 8 ^ . 

We now study the overlap between two sets. Let 1 < k < n. Suppose 
we choose two sets of k integers between 1 and n so that all 2k choices are 
independent and all n integers are equally likely to be chosen every time. 
What is the probability R(n, k) that the two sets overlap, that is, at least one 
of the n values appears in both sets? 

We assume k is small enough (k < y/n) so that the k integers chosen from 
each set are probably all different. (A few duplicates won't hurt this analysis.) 

The probability that one given element of the first set does not match any 
element of the second set is (1 — l/n)k. 

The probability that the two sets are disjoint is 
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We will have R(n, k) = 1/2 when 
or 

We state this result as a theorem. 

THEOREM 2.5 Probability of overlapping sets 
Suppose 1 « k « n and we choose two sets ofk integers between 1 and n 

so that all 2k choices are independent and all n integers are equally likely to be 
chosen every time. The probability R(n, k) that the two sets overlap, that is, 
at least one of the n values appears in both sets, is approximately l — e~k ¡n. 
The value of k that makes this probability closest to 1/2 is approximately 
y/(ln2)n « 0 . 8 3 ^ . 

2.3 Random Variables 
The sample space is the set of all possible outcomes E, each of which has 
a probability p(E). A random variable is a real-valued function r defined 
on a sample space. If #i , X2, • • • are all of the possible values of r(E) (in this 
book, this set will be finite), then the probability distribution of r is the 
function / defined by f(xi) = p{r(E) = x¿), the probability that r(E) = x¿. 
That is, f(xi) is the sum of p(E) for all outcomes E for which r(E) = X{. 
Several random variables r\,..., r& are called mutually independent if for 
any possible values 2/i,...,2/jfe that they could assume, then the probability 
that Ti{E) = y i for every 1 < i < k equals the product 

Example 2.1 

Suppose we toss a fair coin n times and observe the sequence of heads and 
tails. The sample space has 2n outcomes E, each an n-tuple of heads and tails, 
and each having probability 2~n. Define the random variable r(E) to be the 
number of heads in outcome E. Then r(E) is always an integer between 0 and 
n. The probability distribution / of r is defined for each integer i between 0 
and n, and f(i) is the probability that exactly i heads will appear if a coin is 
tossed n times. This number is easily computed to be 2 _ n times the number 
of ways of choosing i tosses from n tosses to show heads. The latter number is 
the binomial coefficient, and so 
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Statisticians describe a probability distribution of a random variable in 
a concise way by giving some typical values of it. One such value is the 
median. The median of the probability distribution / of the random variable 
r is a value xm assumed by r(E) so that p(r(E) < xm) < 1/2 and also 
p(r(E) > xm) < 1/2. That is, the median xm is chosen so that the probability 
of r(E) exceeding or falling short of close to 1/2 as possible. The 
median is the "middle value" of r(E). 

Another typical value of a random variable and one with more useful math­
ematical properties than the median is the mean, or average, or expected 
value. 

DEFINITION 2.1 The mean or expected value E(r) of a random 
variable r with values X\, x<¿,... and probability distribution f is 

If F is a real-valued function defined on the real numbers and r is a random 
variable, then F(r) is another random variable, having value F(r(E)) on 
outcome E. Its expected value is 

The t-th. moment of a random variable r is the expected value of rl. The 
variance Var(r) of a random variable r with expected value ¡i is the second 
moment of r — p, that is, 

(The last equation is an easy theorem.) The nonnegative square root of the 
variance of r is called the standard deviation of r. It is a measure of how 
much r(E) varies from the mean ¡x. 

One can prove the following theorem easily from the definitions. 

THEOREM 2.6 Mean and variance of linear combinations and sums 
If a and b are constants and r and s are random variables, then 
1. E(ar + 6) = aE(r) + b 
2. Var(ar + b) = a2Var(r) 
3. E(r + s) = E(r) + E(s), and 
4. ifr and s are mutually independent, then Var(r + s) = Var(r) + Var(s). 

A small variance means that large deviations from the mean are unlikely. 
The following theorem makes this statement more precise. 
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THEOREM 2.7 Chebyshev's inequality 
Let r be a random variable with mean ¡i and variance v. For any t > 0, 

PROOF The variance is defined as a sum 

of nonnegative terms. The sum will not increase if we delete from it all terms 
for which \r(E) — ¡i\ <t. Hence, 

where the Yl' indicates that summation extends only over those i for which 
\r(E) — /¿| > t. Then it is clear that 

There are several theorems in probability theory called "laws of large num­
bers" that say roughly that if an experiment is performed many times, then 
large deviations from the expected value are unlikely. For example, if one 
tosses a true coin a million times, then the number of heads obtained will 
probably not be far from 500,000. Here is a simple theorem that says this in 
a precise way. 

THEOREM 2.8 A law of large numbers 
Let r i , r 2 , . . . be a sequence of mutually independent random variables with 

the same probability distribution, and therefore the same mean ¡i and variance 
v. Defíne a new sequence of random variables sn — X^=i ri- Then for every 
e > 0, we have 

PROOF By Theorem 2.6, E(sn) = n¡i and Var(sn) = nv. By Chebyshev's 
inequality, we have for every t > 0, 

When t > en, the left side is less than i;/(e2n), which tends to 0 as n —> oo. 
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Example 2.2 

Let us continue with Example 2.1 and compute the statistics just defined. To 
determine the median, recall that the binomial coefficients (n) are symmetric 
about n/2: (?) = (n™ ¿) • They increase as i increases from 0 to n/2 and decrease 
as i increases from n/2 to n. If n is even, there will be one median, namely, n /2 . 
If n is odd, there will be two medians, namely, ( n ± l ) /2 . Thus, the most likely 
number of heads when a coin is tossed n times is n/2 (or the nearest integers 
to this number if it is not an integer). 

The average or mean or expected number of heads h in n tosses is 

The mean is essentially equal to the median for this particular probability dis­
tribution. 

The variance of the number of heads is 

so, the standard deviation is y/n/2. 
We can apply the law of large numbers to this problem if we define random 

variables n. Let n be defined on the outcome of the ¿-th coin toss with value 
1 if a head appears and 0 if a tail appears. Then the random variable sn of 
Theorem 2.8 is the random variable h above and the theorem says that for every 
e > 0, we have 

We end with one more example, one which describes a situation similar to 
one we will see in the chapters on quadrat ic residues and elliptic curves. 

Example 2.3 

Suppose we again toss a fair coin n times and observe the sequence of heads and 
tails. The sample space has 2n outcomes E, each an n-tuple of heads and tails, 
and each having probability 2~n. Define the random variable r(E) to be the 
number of heads in outcome E minus the number of tails. Then r(E) is always 
an integer between — n and n. The probability distribution / of r is defined 
for each integer i between — n and n, and f(i) is the probability that exactly 
i more heads than tails will appear if a coin is tossed n times. (A value i < 0 
means that there were |t| more tails than heads.) Suppose that h heads and t 
tails appear in one outcome. Then h -M = n and i = r(E) = h — t. We find 
that h = (n + ï)/2. (As h is an integer, this shows that n and i are either both 
odd or both even. In particular, if n is odd, then i can never be 0 because 0 is 
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even.) The probability of having i more heads than tails in n tosses is the same 
as the probability of having exactly (n 4- i)/2 heads. As in Example 2.1, this 
probability is seen to be f(i) = 2 - n ( ( n _¿ \ / 2 ) provided i has the same parity 
(odd or even) as n, and f(i) = 0 if i and n have opposite parity. 

The median is easily seen to be 0 because of the symmetry property 

1. Dice are six-sided cubes with the numbers 1 through 6 on the faces. 
When a die is tossed, each of the six numbers has equal probability of 
appearing. Suppose two dice are tossed. 

a. Wha t is the probability tha t a 2 and 5 will show? 

b . W h a t is the probability tha t the sum of the two numbers will be 9? 

c. If the sum of the two numbers is 5, what is the probability tha t one 
of them will be a 1? 

d. Wha t is the probability tha t the two numbers will be different? 

e. Find the mean, median, variance and s tandard deviation of the sum 
of the two numbers. 

If n is even, then 0 will be the only median. If n is odd, both +1 and —1 will 
be medians. 

The expected value of r is 

by the symmetry property. Thus, as common sense suggests, the numbers of 
heads and tails will balance on average. 

We could have derived the mean from the mean of the number h of heads 
computed in Example 2.2 and Theorem 2.6. Since r = 2h — n, 

Likewise, the variance of the number of heads minus the number of tails is 

so, the standard deviation is y/ñ. 
We can apply the law of large numbers to this problem if we define n on the 

outcome of the i-th coin toss to have value 1 if a head appears and —1 if a tail 
appears. Then the random variable sn of Theorem 2.8 is the random variable 
r above and the theorem says that for every e > 0, we have 

2.4 Exercises 

24 
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2. A bag contains 1000 white balls labeled 1,2, . . . , 1000 and another bag 
contains 1000 black balls labeled 1 ,2 , . . . , 1000. 

a. Suppose 20 balls are removed from each bag. What is the probability 
that two of the 40 balls have the same label? 

b. Approximately what is the least number k of balls you have to remove 
from each bag (the same number k of balls from each bag) to make the 
probability of getting two balls with the same label greater than 1/2? 

3. What is the probability that all the students in a class of 35 have different 
birthdays? 

4. A professor posts grades for a class using the last four digits of each 
student's college identification number. For what size of class is there 
an even chance that two students have the same four-digit code? 

5. Assuming that each month has the same probability of being born in it, 
what is the probability that two people in a family of five were born in 
the same month? 

6. Assume that the city of Lafayette has 105 people, and that all of these 
people walk past a giant bin and each one drops in a slip of paper having 
that person's unique identification. The contents of the bin are mixed, 
and then all the people march by again, each drawing one slip out of 
the bin. 

a. What is the (approximate) probability that nobody draws his/her 
own slip? 

b. Same question as part a., but this time every person puts the slip 
back immediately after drawing and reading it. 

7. Prove Theorem 2.6. 
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Chapter 3 

Divisibility and Arithmetic 

This chapter concerns the simplest part of number theory, which is the study 
of integers or whole numbers. We also tell how to perform arithmetic with the 
very large integers used in cryptography. The reader may consult one of the 
many excellent number theory texts such as [78], [98] or [51] for more details 
or alternate proofs. The text by Rosen [99] has the same computational flavor 
as this book. 

3.1 Divisibility 

DEFINITION 3.1 When a and b are integers and a / O w e say a divides 
b, and write a\b, ifb/a is a whole number. 

This is nearly the same as saying that a divides b if there is a whole number 
k so that b = ka. The only difference is that this definition would allow 0 to 
divide 0, while 0 does not divide 0 according to Definition 3.1. 

THEOREM 3.1 Transitivity of divisibility 
Let a, b and c be integers. If a\b and b\c, then a\c. 

PROOF By hypothesis, the two quotients b/a and c/b are whole numbers. 
Therefore their product, (b/a) x (c/b) = c/a, is a whole number, which means 
that a\c. I 

Theorem 3.1 says that the relation "divides" is transitive. 

THEOREM 3.2 Divisibility of linear combinations 
Let a, b, c, x and y be integers. If a\b and a\c, then a\bx + cy. 

27 
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PROOF We are given that the two quotients b/a and c/a are whole 
numbers. Therefore the linear combination (b/a) xx+(c/a) x y — (bx + cy)/a 
is a whole number, which means that a\(bx + cy). I 

THEOREM 3.3 The division algorithm 
Suppose a > 0 and b are two integers. Then there exist two unique integers 

q and r such that 0 < r < a and b = aq + r. 

PROOF First we show that q and r exist. Let q be the greatest integer 
< b/a. Then b/a = q + a, where 0 < a < 1. We have b = a(q + a) = aq + aa. 
Now r = aa must be an integer because it is the difference b — aq of two 
integers. Also, 0 < r < a because 0 < a < 1. 

Now we show that q and r are unique. Suppose that we had b = aq + r 
with 0 < r < a and also b = aq' + r' with 0 < r' < a. Subtracting the two 
equations and dividing by a gives 

q — q' = (r' — r)/a. 

Subtracting a > r > 0 from 0 < r' < a and dividing by a gives 

- 1 < (r' -r)/a < 1. 

But (r' — r)/a = q — q' is an integer and the only integer between —1 and 1 

is 0. Therefore q = q' and r = r'. I 

Example 3.1 

In Theorem 3.3 let a = 17 and ò = 165. Then q = 9 and r = 12. We have 

165 = 17x9 + 12. 

DEFINITION 3.2 The integers q and r in Theorem 3.3 are called the 
quotient and remainder when b is divided by a. 

We use the notation [xj, the floor of x, to mean the largest integer < x, 
and \x~\, the ceiling of x, to mean the smallest integer > x. Thus, [5J = 5 , 
L3.14J = 3, L-2.7J = - 3 , \S\ = 5, [3.14] = 4 and ["-2.71 = - 2 . 

With this notation, the quotient q in the definition and in Theorem 3.3 may 
be written q = [b/a\. We also use the notation b mod a for the remainder r. 

We say the integer n is even if the remainder is 0 when n is divided by 2, 
and call n odd if this remainder is 1. 

3.2 Arithmetic with Large Integers 
The construction and cryptanalysis of cryptographic algorithms require arith­
metic with large integers. These algorithms will run faster if the basic arith-



Divisibility and Arithmetic 29 

metic operations can be performed swiftly. Computer hardware has a fixed 
maximum size, such as 231 — 1, for the integers it can handle directly. Cryp­
tographic algorithms use much larger integers than this hardware maximum 
value. In this section we explain how computers represent larger integers and 
how to perform arithmetic with them efficiently. The reader will find different 
presentations of the material of this section in books by Knuth [56], Rosen 
[99] and Riesel [96]. 

Probably because we have ten fingers, we use decimal notation to represent 
numbers. The character string "6218" represents the integer 6218 with value 
6 x 103 + 2 x 102 + 1 x 101 + 8. Computers usually use binary notation to 
represent numbers internally. We hope the use of bases 10 and 2 for positional 
number systems are familiar to the reader. In fact any integer > 1 can be 
used as a base. 

THEOREM 3.4 Positional number systems 
Let b be an integer greater than 1. Let n be a positive integer. Then n has 

a unique representation in the form 

The number b is called the base or radix of the number system. The 
numbers di for i = fc, k — 1 , . . . , 0 are called the digits in base b of n. The 
left-most digit dk is called the first digit or leading digit or most significant 
digit and the right-most digit do is called the last digit or trailing digit or 
least significant digit. 

PROOF We use the division algorithm (Theorem 3.3) to construct the 
representation. First we divide n by b to get n — bqo + do with 0 < do < b— 1. 
If qo > 0, divide qo by b to get q0 = bq\ +d i with 0 < d\ < b— 1. Continue this 
process with qi = bqi+i + d¿+i and 0 < d¿+i < b - 1 until we get a remainder 
qk = 0. This condition must occur eventually since 

and every decreasing sequence of positive integers must end. Replace q0 with 
bqi + d\ inn — bqo + do to obtain 

When we replace qi with bq2 + <¿2 and so on to qk-i = Ob + dk, we get the 
representation in the statement of the theorem. 

where k is a positive integer, the di are integers in 0 < d¿ < b - 1 and dk ^ 0. 
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This shows that 6 divides dj — e¿. If we subtract 6 — 1 > ej > 0 from 
0 < dj < b — 1, we find — b + 1 < dj — ej < b — 1. The only multiple m of 
b in — 6 + 1 < m < b — 1 is m = 0. Therefore, dj = ej. This contradicts 
our assumption that the two representations differ. It follows that the base b 
representation is unique. I 

Some special cases of this representation include decimal (b — 10), binary 
(6 = 2), octal (6 = 8) and hexadecimal (6 = 16). The symbols 0, 1, 2, 3, 4, 
5, 6, 7, 8, 9, A, B, C, D, E, F are used for the 16 hexadecimal digits. When 
several bases are being used, the base 6 in the representation of Theorem 3.4 
is indicated as a subscript: n — (dkdk-i • - .dido)b- Binary digits are called 
bits. 

Integers greater than the natural word size are stored in arrays with a fixed 
number of bits per word. It would be wasteful memory usage to store only one 
bit per word. On the other hand, it would be difficult to perform arithmetic 
on large numbers if each word were filled completely with bits of the large 
integer. A standard compromise often uses all but two bits of each word to 
store bits of large numbers. For example, many libraries of procedures for 
arithmetic with large integers pack 30 bits into each 32-bit word. 

Sometimes it is necessary to convert a number from one representation 
to another. Most computers use binary to represent numbers within them. 
Humans often prefer the decimal form. When a number is input to a computer 

so that 

and hence 

where A; is a positive integer, the d{ and e¿ are integers with 0 < d¿ < 6 - 1 and 
0 < e{ < 6 — 1, and we may have added high-order zero digits to make both 
sums have k + 1 digits. If the two representations differ, then there is a least 
j in 0 < j < k so that dj ^ ej. Subtracting the expressions and factoring out 
a V we find 

Now we show the representation is unique. Suppose n had the two repre­
sentations 
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program by a human, it is often converted from decimal to binary. Likewise, 
output procedures convert from binary to decimal for human consumption. 

It is easy to convert a number from one base to another when both bases 
are powers of 2 (or both are powers of some other number). In this case the 
bits just need to be regrouped, and this is easily done with shift operations 
on a binary computer. For example, to convert a number from binary to 
hexadecimal, group the bits in blocks of four bits each, starting from the low-
order bit, and replace 0000 by 0, 0001 by 1, etc., 1110 by E, 1111 by F. It 
may be necessary to prepend up to three high-order 0's to form the high-order 
block of four bits. To convert from octal to binary, start at the low-order octal 
digit and work to the left replacing 0 by 000, 1 by 001, etc., 7 by 111. 

Conversion of a number from base B to base b is more complicated when 
the two bases are not powers of the same integer. Say the two representations 
are 

Example 3.2 

Convert 991 o from base 10 to base 8. 

This table shows the progress of the algorithm as a snapshot taken right after 

We are given the digits DK, DK-I, •. -, A) and want to find the digits dk, 
dife_i, . . . , do. We assume we can perform arithmetic in one of the two bases. 
Humans can do this in base 10, while most computers work in binary. If one 
knows how to divide using base B arithmetic, then the conversion algorithm 
is repeated division by b as in the first part of the proof of Theorem 3.4. 

Here is the algorithm in pseudocode. It is often used to output a binary 
number in decimal notation (6 = 10). 

[Conversion from base B to base b using base B arithmetic] 
Input: DK, DK-\, • • -, Do, the base B digits of n. 
Output: dk, dfc-i, . . . , do, the base b digits of n. 
Since we can do base B arithmetic, we can work with n as a number 

in that base. 

i = 0 
while (n > 0) { 

di — n mod b 
n — \n¡b\ 
i = ¿ + 1 
} 
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the remainder step di — n mod 8. 

i n di 

0 99 3 
1 12 4 
2 1 1 

Thus, the digits are 1, 4, 3, and we have 991 o = 143s-

If one knows how to add and multiply using base b arithmetic, then the 
conversion algorithm is to use base 6 arithmetic to evaluate the polynomial 
Z^=o DiB1 in the form 

((• - • (DKB + DK-X)B + •••)# + D±)B + D0. 

The pseudocode for this algorithm is quite simple. It is used to input 
decimal numbers (B = 10) to a program. 

[Conversion from base B to base b using base b arithmetic] 
Input: DKI DK-I, • -, Do, the base B digits of n. 
Output: dfc, dk-i, • •., do? the base b digits of n. 
Since we can do base b arithmetic, we can just return n as a number. 

n = 0 
for (i = K down t o % — 0) { 

n = n * B + D¿ 
} 

return n 

Example 3.3 

Convert 107s from base 8 to base 10. 
This table shows the progress of the algorithm as a snapshot taken at the end 

of each pass of the for loop. Note that K = 2 because 107s has three digits. 

i n Di 

2 1 1 
1 8 0 
0 71 7 

Thus, 1078 = 71 io. 

The basic operations of arithmetic are addition, subtraction, multiplication 
and division. In order to perform these operations on large integers we repre­
sent the numbers in a convenient base with their digits stored in arrays. The 
first three operations use the algorithms you learned in elementary school. 
The algorithms given here are the "conventional" ones. 

Suppose we use base 6 and we wish to add A = J2i=o a^% to B = J2lLo &¿&*-
If k ^ m, prepend enough leading 0 digits to the shorter number to give the 
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two numbers the same length. After this has been done, assume the problem 

is to add A = £? = o a * 6 * t o B = E*=o 6<&i- C a l 1 t h e s u m C = E*=o c¿6 ¿- N o t e 

that the sum might have one more digit than the summands. The addition 
algorithm is to add corresponding digits of A and B to form each digit of C, 
and carry a 1 if the digit sum is > 6. Here is the algorithm. 

[Addition: C = A + B using base 6 arithmetic] 
Input: The base b digits of A and B. 
Output: The base 6 digits of C = A + 5 . 

carry = 0 
for ( Î = 0 t o fe) { 

Ci = ai + 6¿+ carry 
if (c¿ < 6) { carry = 0 } 
e l s e { carry = 1 ; a = Ci — b } 
} 

Cfc+i = carry 

Note that in the second line of the for loop, we must have 0 < c¿ < 26 
because 0 < a¿ < 6 — 1, 0 < 6¿ < 6 — 1 and carry is either 0 or 1. Thus we 
need to subtract at most one 6 from a (in the e l s e line) to get it into the 
legal range for digits. The steps of the for loop are executed no more than 
k + 1 times. 

Now suppose we wish to subtract B — Y^lLo ^ * fr°m A — S¿=o a^>%- ^ 
k T¿ m, add enough leading to the shorter number to give the two numbers 
the same length. After this has been done, assume the problem is to subtract 
B = Yli=o bib1 from A = Yli=o a^%- Assume that A > B. If this is not true, 
then the sum is negative with absolute value B — A. We have not discussed 
a way to handle signed numbers. If we allow the difference to have a minus 
sign, then we should allow A and B to have signs as well. We leave the 
problem of arithmetic with signed numbers to the reader. Call the difference 
C = J2i=o cibl- The subtraction algorithm is to subtract corresponding digits 
of A and B to form each digit of C, and borrow a 1 if the digit difference is 
negative. Here is the algorithm in pseudocode. 

[Subtraction: C = A - B using base 6 arithmetic] 
Input: The base 6 digits of A and B. 
Output: The base 6 digits of C = A - B. 

borrow = 0 
for (i = 0 to k) { 

Ci = ai — 6¿— borrow 
if (ci < 0) { borrow = 1; c¿ = c¿ + 6 } 
e l s e { borrow = 0 } 
} 

if (borrow ^ 0) Er ror : A < B 
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Note that in the second line of the for loop, we must have -b < ci < b 
because 0 < a¿ < ò — 1, 0 < 6¿ < 6 — 1 and borrow is either 0 or 1. Thus we 
need to add at most one b to c¿ (in the if line) to get it into the legal range 
for digits. The steps of the for loop are executed no more than k + 1 times. 

The product of a fc-digit integer times an m-digit integer has either k + m 
or k + m — 1 digits (or is zero). Suppose we wish to multiply A — YIÍZQ

 ai^ 

times B = X^Lõ1 W -̂ C a l 1 t h e P r o d u c t G = T,i=™~lcibi- N o t e t h a t t h e 

high-order digit might be 0. The elementary school method forms partial 
products bi x A, shifts their digits into appropriate columns and adds the 
shifted partial products. In a computer, it saves space to do the addition 
concurrently with the multiplication. Here is the algorithm in pseudocode. 

[Multiplication: C = A x B using base b arithmetic] 
Input: The base ò digits of A and B. 
Output: The base b digits of C — A x B. 

carry = 0 
for (¿ = 0 t o fc + m - 1 ) { Ci = 0 } 
for (¿ = 0 t o k- 1) { 

carry = 0 
for (j = 0 t o m - 1) { 

t = a i x bj + Ci+j+ carry 
d+j — t mod b 
carry = [t/b\ 

c m + i + i = carry } 
} 

One can show by induction that in the second line of the inner for loop, we 
must have 0 < t < b2 because 0 < a¿ < b — 1, 0 < bj < b — 1, 0 < Ci+j 
and 0 < carry < b— 1. Each step of the inner for loop is executed km times. 

The last operation of arithmetic is division. The elementary school "algo­
rithm" for division is really not an algorithm because one must guess each 
digit of the quotient, and sometimes the guess is wrong. One way to improve 
the guess is explained in Knuth [56]. The trick is to "normalize" the divisor 
by multiplying it by some number d which makes the high-order digit at least 
b/2. The dividend is also multiplied by d. After this normalization, the algo­
rithm proceeds much like the elementary school method, with each quotient 
digit guessed using the high-order digit(s) of the divisor and current dividend. 
Knuth shows that the guesses cannot be wrong by more than 1 or 2. At the 
end, divide the remainder by d. This assumes that there is an algorithm for 
dividing a multi-digit integer A = Y^i=o a^ ^ a single-digit integer B. The 
results are a quotient Q = Yli=o ^% a n d a single-digit remainder r. It is easy 
to design such an algorithm by analogy to the multiplication algorithm. Here 
is the algorithm in pseudocode: 
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[Division by a one-digit divisor: Q = A/B using base b arithmetic] 
Input: The base b digits of A and B; B has just one digit. 
Output: The base b digits of Q = A/B; also return a one-digit 

remainder. 

r = 0 
for (i = k — 1 down to 0) { 

t = r x b + ai 
Qi = \t/b\ 
r = t mod b 
} 

r e t u r n r 

The temporary variable t used in the for loop must be able to hold a two-
digit number in base b. Some computers have a hardware instruction which 
divides a 64-bit dividend by a 32-bit divisor to produce a 32-bit quotient and 
a 32-bit remainder. Such an instruction would be ideal for performing the 
last two lines of the for loop together, computing qi and r in one operation. 
If the high-order digit qu-i of the quotient is zero, it should be removed. The 
division algorithm can be modified easily to return only the quotient or only 
the remainder by not storing the unneeded result. 

In order to analyze the complexity of algorithms that use arithmetic we 
will need to know the time taken by the four arithmetic operations. We do 
not concern ourselves with the actual time taken, since this time depends 
on the computer hardware. Rather we will count the number of basic steps. 
The basic steps we consider are adding, subtracting or multiplying two 1-bit 
numbers, or dividing a 2-bit number by a 1-bit number. These are called bit 
operations. 

Furthermore, we will not worry about the exact count of bit operations. 
We will use the big-O notation to approximate the growth rate of the number 
of bit operations as the length of the operands grows. 

DEFINITION 3.3 If f and g are functions deñned and positive for all 
sufficiently large x, then we say f is 0(g) if there is a constant c > 0 so that 
f(x) < cg(x) for all sufficiently large x. 

The big-0 notation allows us to focus on the general growth rate of a 
function and ignore the fine details of its growth. For example, f(x) = 539x4 + 
212027z3 - 1852z2 + 178026x - 348561 is 0(g), where g(x) = x4. Suppose 
this f(x) is the exact number of steps taken by an algorithm when its input is 
x bits long. Then the running time will be roughly a positive constant times 
g(x), that is, proportional to the fourth power of the length of the input. This 
means that if the length of the input doubles, then the number of steps needed 
will be multiplied by about 24 = 16. 
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We summarize the complexity of arithmetic operations discussed in this 
section in this theorem. 

THEOREM 3.5 Complexity of arithmetic 
One can add or subtract two k-bit integers in O(k) bit operations. One can 

multiply two k-bit integers in 0(fc2) bit operations. One can divide a 2k-bit 
dividend by a k-bit divisor to produce a k-bit quotient and a k-bit remainder 
in 0(k2) bit operations. 

PROOF The statements about addition, subtraction and multiplication 
are shown by counting the steps in the three algorithms above. The state­
ment about division can be shown the same way, after one writes the division 
algorithm. I 

The time complexities for addition and subtraction stated in the theorem 
are best possible (except for a constant). But one can multiply and divide 
faster than the 0(fc2) bit operations mentioned in the theorem. One can mul­
tiply two fc-bit integers, or divide a 2fc-bit dividend by a fc bit divisor, in only 
O(fclogfcloglogfc) bit operations, which is not much slower than addition. 
However, these fast algorithms do not become become useful or practical un­
til fc is very large—larger than numbers which occur in cryptography, at least 
in this book. See Section 4.3.3 of Knuth [56] or Chapter 9 of Crandall and 
Pomerance [33] for information about these faster arithmetic algorithms. 

DEFINITION 3.4 We say that an algorithm runs in polynomial time 
if there is a k and a constant c > 0 so that for every input I of length b bits, 
the algorithm on input I ñnishes in no more than cbk bit operations. 

Base conversion, addition, subtraction, multiplication and division of inte­
gers can be done by algorithms that run in polynomial time. 

3.3 Greatest Common Divisors and the Eu­
clidean Algorithm 

Now that we can perform arithmetic with integers of any size, we return to 
our study of divisibility. 

DEFINITION 3.5 When a and b are integers and not both zero we defíne 
the greatest common divisor of a and b, written gcd(a, b), as the largest 
integer which divides both a and b. We say that the integers a and b are 
relatively prime if their greatest common divisor is 1. 
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It is clear from the definition that gcd(a, b) = gcd(6, a). One way to compute 
the greatest common divisor of two nonzero integers is to list all of their 
divisors and choose the largest number which appears in both lists. Since d 
divides a if and only if —d divides a, it is enough to list the positive divisors. 
For example, to compute gcd(6,9), one finds that the positive divisors of 6 
are 1, 2, 3 and 6 and that the positive divisors of 9 are 1, 3 and 9. The 
largest number common to both lists is 3, so gcd(6,9) = 3. The following 
theorem will help us compute greatest common divisors quickly, even when 
we do not know any divisors of the numbers (other than 1). Although the first 
equation in the theorem might remind one of the division algorithm, there is 
no requirement here that 0 < r < a. 

THEOREM 3.6 GCDs and division 
If a is a positive integer and b, q and r are integers with b — aq -f r, then 

gcd(6,a) =gcd(a , r ) . 

PROOF Write d = gcd(6, a) and e — gcd(a, r). Since d divides both 6 and 
a, it must divide r = 6 — aq, by Theorem 3.2. Then d is a common divisor of 
a and r, so d < e since e is the greatest common divisor of a and r. Likewise, 
since e divides both a and r, it must divide b because b — aq + r. Then e is a 
common divisor of b and a, so e < d. Therefore, d — e. I 

A systematic way of computing gcd(a, b) has been known for thousands of 
years. It was published as Proposition 2 in Book VII of Euclid's book The 
Elements more than 2300 years ago and is called the Euclidean algorithm. 

THEOREM 3.7 Simple form of the Euclidean algorithm 
Let ro = a and r\ — b be integers with a > b > 0. Apply the division 
algorithm (Theorem 3.3) iteratively to obtain 

n = n+iqi+x + ri+2 with 0 < r i + 2 < ri+1 

for 0 < i < n — 1 and rn+i = 0. Then gcd(a, b) = rn , the last nonzero 
remainder. 

PROOF First of all, the algorithm will end because we will eventually get 
a zero remainder since a = r0 > ri > r2 > • • • > 0; so, there cannot be more 
than a nonzero remainders. Applying Theorem 3.6 n times, we find 

gcd(a, 6) = gcd(r0, n ) = gcd(n, r2 ) = • • • = 

= gcd(rn_i , r n ) = gcd(rn,0) = r n . 

Hence, gcd(a, b) = rn. I 



38 Cryptanalysis of Number Theoretic Ciphers 

Example 3.4 

Use this theorem to compute the greatest common divisor of 165 and 285. 
We find 

285 = 1 x 165 + 120 

165 = 1 x 120 + 45 

120 = 2 x 45 + 30 

45 = 1 x 30 + 15 

30 = 2 x 15 + 0, 

sogcd(165,285) = 15. 

This algorithm may be written concisely in pseudocode. We write a mod b 
for the remainder r in 0 < r < b when a is divided by the positive integer b. 

[Simple form of the Euclidean Algorithm] 
Input: Integers a > b > 0. 
Output: gcd(a, b). 

while (6 > 0) { 
r = a mod b 
a = b 
b = r 
} 

r e t u r n a 

THEOREM 3.8 Division by the GCD 
Let g = gcd(a, 6). Then a/g and b/g are relatively prime integers. 

PROOF Suppose d is a positive common divisor of a/g and b/g. Then 
there are integers m and n such that a/g = md and b/g = ne?, that is, a = gdm 
and b = gdn. Hence gd is a common divisor of a and b. Since g is the greatest 
common divisor of a and 6, we must have^o? < g, or d < 1. Therefore d = 1 
and a/g and b/g are relatively prime. r 

The next theorem tells us that we can solve ax + by = 1 for integers x and 
y whenever a and b are relatively prime. 

THEOREM 3.9 GCD is a linear function 
If the integers a and b are not both 0, then there are integers x and y so that 

ax -{-by — gcd(a,b). 

PROOF At least one positive integer, a2 + 62, has the form ax + by. 
Let g be the smallest positive integer of this form, say g = ax -i- by. Any 
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common divisor of a and b must divide ax + by = g by Theorem 3.2, and 
so gcd(a, 6) divides #, which implies that gcd(a,ò) < g. We claim that g 
divides a. Suppose not. Then a = gq + r with some 0 < r < g. Note that 
r — a — gq — a — q(ax + by) = a{\ — qx) + b(—qy), which contradicts the fact 
that g is the least positive integer of the form ax -f by. Hence g divides a. 
Similarly, g divides b. Therefore g < gcd(a, ò) and g = gcd(a, b). I 

Example 3.5 

In Example 3.4, we found that gcd(285,165) = 15. Now let us find x and y 
with 285x + 165y = gcd(285,165) = 15. 

Beginning with the next to last equation in that example and working back­
wards, we find 

15 = 45 - 30 = 45 - (120 - 2 x 45) = 3 x 45 - 120 

15 = 3(165 - 120) - 120 = 3 x 165 - 4 x 120 

15 = 3 x 165 - 4(285 - 165) = 7 x 165 - 4 x 285. 

Thus x = - 4 and y = 7. 

This method for finding integers x and y with ax + by = gcd(a, b) is incon­
venient because one must work through the Euclidean algorithm, save all the 
steps and then work backwards to the beginning. The next algorithm finds 
the same result and requires working through the algorithm only once. 

[Extended Euclidean Algorithm] 
Input: Integers a > b > 0. 
Output: g = gcd(a, b) and x and y with ax + by = gcd(a, b). 

x = l; y — 0; g = a; r = 0; s = l ; t — b 
while a > 0) { 

q = l9/t\ 
u = x — qr; v = y — qs; w = g — qt 
x = r; y = s; g = t 
r = u; s — v; t = w 
} 

r e t u r n (g, x, y) 

To see that the algorithm works, focus first on the variables g, t and w. In 
the middle of each pass through the while loop, w is set to g mod t. Then 
t is copied into g and w is copied into g. This is exactly what happens to 
the variables a, b and r in the simple Euclidean algorithm. Since g and t are 
initialized to a and 6, and the condition for the while loop to end is the same 
in both algorithms, the variable g has the value gcd(a, b) when the algorithm 
finishes. 

Now prove by induction that at the beginning and end of the while loop, 
these two equations hold: 

ax + by = g and ar + bs = t. 
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The induction step is shown by noting that the assignments in the second line 
of the while loop subtract q times the second equation from the first one, 
forming the equation 

a(x - qr) + b(y - qs) = g - qt. 

If we apply the extended Euclidean algorithm to Example 3.4, the variables 
take on the values in this table. 

X 

1 
0 
1 

-1 
3 

-4 

y 
0 
i 

-i 
2 

-5 
7 

9 
285 
165 
120 
45 
30 
15 

r 
0 
1 

-1 
3 

-4 
11 

s 
1 

-1 
2 

-5 
7 

-19 

t q 

165 1 
120 1 
45 2 
30 1 
15 2 
0 

THEOREM 3.10 Product of numbers relatively prime to m 
Let a, b and m > 1 be integers. If gcd(a,ra) = gcd(6,m) = 1, then 

gcd(aò, m) = 1. 

PROOF By Theorem 3.9, there are integers w, x, y, z so that aw + mx = 
1 = by + zm. Therefore, (aw)(by) — (1 — mx)(l — mz) — 1 — mv, where 
v — x -\- z — mxz. From abwy + mv = 1 and Theorem 3.2 we see that any 
common divisor of ab and m must also divide 1. Therefore, gcd(aò, m) = 1. 

i 
Although it is not easy to determine the average time complexity of the Eu­

clidean algorithm (see Section 4.5.3 of Knuth [56] for the average complexity), 
it is fairly easy to give an upper bound on the worst-case complexity using 
Fibonacci numbers. 

DEFINITION 3.6 The Fibonacci numbers are deñned recursively by 
UQ = 0, u\ = 1, and i¿n+i = un + un-i for all n > 1. 

The next few Fibonacci numbers after u\ are u<2 = 1, u% — 2, w4 = 3, 
i¿5 = 5, UQ — 8, u7 — 13, u8 = 21 and i¿9 = 34. 

The next lemma shows that the Fibonacci numbers grow exponentially. 

LEMMA 3.1 
Let a = (1 + v/5)/2. Then an~2 < un < a*1'1 for all n > 3. 



Divisibility and Arithmetic 41 

PROOF Use induction on n. The base step is to verify the inequalities 
for n = 3 and n = 4, using the fact that a is approximately 1.618. Note that 
a is a root of x2 - x - 1 = 0, so a2 = a + 1. Multiply by a n _ 4 and an~3 

to get an~2 = an~3 + a n _ 4 and a n _ 1 = an~2 + a n _ 3 . Assume by induction 
that the inequalities hold for n — 2 and n — 1: 

a n " 4 < tÉn-2 < a n " 3 and an~3 < un-i < an~2. 

Add these two inequalities and use the equations for the powers of a and the 
definition of un to get an~2 < un < an~1. I 

THEOREM 3.11 GCD of consecutive Fibonacci numbers 
For n > 1, the Euclidean Algorithm takes exactly n steps to compute the 
greatest common divisor ofun+2 and i¿n+i, which is 1. 

PROOF Since i¿¿+i = i¿¿ + u¿-i, the quotients in the Euclidean algorithm 
for gcd(i/n+2,^n+i) are all 1, and the n steps are: 

Un+2 = 1 X U n + i + U n 

W n + i = 1 X U n + 16n_i 

W4 = l X U 3 | î i 2 

ÎI3 = 2 X 1/2-

I 
We will show in the middle of the next proof that consecutive Fibonacci 

numbers provide the worst case for the Euclidean algorithm. That is, i¿n+2 
and un+\ are the smallest two numbers that make the Euclidean algorithm 
take n steps. 

THEOREM 3.12 Complexity of the Euclidean algorithm, Lamé, 1845 
The number of steps (division operations) needed by the Euclidean algorithm 

to fínd the greatest common divisor of two positive integers is no more than 
ñve times the number of decimal digits in the smaller of the two numbers. 

PROOF The Euclidean algorithm takes only one step if the two numbers 
are equal. Otherwise, apply the Euclidean algorithm to a = r0 > b = r\ > 0. 
Suppose the n steps are 

r¿ = ri+iqi+1 + r¿+2 with 0 < ri+2 < ri+i 



42 Cryptanalysis of Number Theoretic Ciphers 

This shows that i¿n+2 and un+\ are the smallest two numbers that make the 
Euclidean algorithm take n steps. By Lemma 3.1, we have wn+i > a n _ 1 for 
n > 2, where a = (1 + y/E)/2. Hence, b > an~l. Since log10 a > 0.2, we have 

log10 b > {n - 1) log10 a> {n- l ) /5 . 

Thus, n — 1 < 5 log10 6. Suppose 6 has d decimal digits. Then b < 10fc and 
log10 b < k. Hence, n — 1 < 5k and, since n and k are integers, we must have 
n < 5fc. I 

COROLLARY 3.1 
TLe number of bit operations needed by the Euclidean algorithm to find the 

greatest common divisor of two positive integers is 0((log2a)3), where a is 
the larger of the two numbers. 

PROOF By Lamé's theorem, it takes 0(log2a) division operations to 
compute the greatest common divisor. The result follows from Theorem 3.5, 
which says that each division operation takes 0((log2 a)2) bit operations. I 

The corollary shows that the Euclidean algorithm runs in polynomial time. 

3.4 Exercises 

1. Show that if a\b and c\d, then ac\bd. 

2. Convert 0x3EB7 from hexadecimal to decimal. 

3. Convert 6291 from decimal to hexadecimal. 

4. Prove that an integer n is even if and only if its last decimal digit is 
even. 

for 0 < i < n — 1 and r n + i = 0. Every quotient qi must be > 1 and the last 
one, qn > 2, because r n _ i > rn > r n + i = 0. Hence, 
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5. Prove that an integer n is divisible by 5 if and only if its last decimal 
digit is divisible by 5. 

6. Prove that an integer n is divisible by 3 if and only if the sum of its 
decimal digits is divisible by 3. 

7. Prove that an integer n is divisible by 9 if and only if the sum of its 
decimal digits is divisible by 9. 

8. Let ra > 1. Prove that an integer n is divisible by 2m if and only if the 
integer k consisting of its last m decimal digits is divisible by 2 m . Note 
that fc = n m o d l O m . 

9. Let m > 1. Prove that an integer n is divisible by 5 m if and only if the 
integer k consisting of its last m decimal digits is divisible by 5 m . Note 
that k = n mod 10m. 

10. Let n = YH=o ¿¿10*. Prove that n is divisible by 11 if and only if the 
alternating sum do — d\ + d<¿ — d% + • • • of its decimal digits is divisible 
by 11. 

11. Modify the algorithm for multiplying integers to make it nearly twice 
as fast in the special case A = B, that is, when the algorithm computes 
a square C = A2. 

12. In this exercise, we show that one can multiply two fc-bit binary numbers 
A and B faster than in 0(k2) steps when k is large. Make k even by 
prepending a 0 bit, if necessary. We may have to remove two or three 
leading 0 bits from the product at the end. Write the numbers in base 
b = 2kl2 as A = Aib + A0 and B = Bxb + B0. Prove that 

AB = (b2 + b)A1B1 + b(Ax - A0)(B0 - Bx) + (b + 1)A0B0. 

This formula shows that the product AB of two A>bit numbers can be 
formed by multiplying the three fc/2-bit numbers (A\ — A0)(Bo — Bi), 
A\B\ and AQBQ, together with simple shifting and adding operations. 
Note that one can multiply a binary number by b or b2 by shifting the 
bits by k/2 or k positions. This simple trick can be used recursively. 
Let T(k) denote the time needed to multiply two k-bit binary numbers. 
The formula shows that T(k) < ST (k/2) + ck, for some constant c. 
Show that this inequality implies that T(2l) < c(Sl — 2*), for i > 1. 
Deduce from this that T(k) < Sc • 3log2 k = Sckl0^3. Since log2 3 « 
1.585 < 2, this method, which is called Karatsuba multiplication, is 
faster theoretically than conventional multiplication when k exceeds a 
threshold. In practice, when multiplying large numbers with the same 
length, one uses the formula recursively down to the threshold. 

13. Find the greatest common divisor of 4905 and 32445. 
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14. Find integers x and y so that 4905x + 32445?/ = gcd(4905,32445). 

15. If un is the n-th Fibonacci number, and i and j are two positive integers, 
prove that gcd(u¿,Uj) = i¿gCd(¿,j)-

16. When a, 6 and c are nonzero integers, define gcd(a, 6, c) = gcd(gcd(a, b), c). 

a. Prove that gcd(a, 6, c) = gcd(a,gcd(6, c)). 

b. Extend the extended Euclidean algorithm to one which will find, in 
polynomial time, integers x, y and z with ax-\-by -\-cz — gcd(a, 6, c) for 
any given nonzero integers a, 6, and c. 



Chapter 4 

Primes 

This chapter introduces the prime numbers, which are the building blocks of 
the integers with respect to multiplication. Many cryptographic algorithms 
use large prime numbers. To learn more about primes, the reader should 
consult books by Riesel [96], Robbins [98], Crandall and Pomerance [33] and 
Niven, Zuckerman and Montgomery [78]. 

4-1 The Fundamental Theorem of Arithmetic 

DEFINITION 4.1 A prime number is an integer greater than 1 which 
is divisible only by 1 and itself, and by no other positive integer. A composite 
number is an integer greater than 1 which is not prime. 

A composite number n has a positive divisor other than 1 and itself. This 
factor must be less than n and greater than 1. 

Example 4.1 

The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 and 37. 
The first few composite numbers are 4, 6, 8, 9, 10, 12, 14, 15, 16, 18 and 20. 
The integers 4 = 2-2, 12 = 2-2-3 and 63 = 3 • 3 • 7 are all composite because 
they each have divisors other than 1 and themselves. 

Some old texts and tables consider 1 to be a prime number. We do not 
do this, nor do we consider 1 to be composite, because then the beautiful 
Theorem 4.1 would be false. 

LEMMA 4.1 

Let a, b and c be positive integers. If a\bc and gcd(a, b) — 1, then a\c. 

45 
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PROOF Since a and b are relatively prime, by Theorem 3.9 there are 
integers x and y so that ax + by = gcd(a, b) = 1. Multiply by c to get 
axe + bey — c. Now a\axc and a\bcy by Theorem 3.1 and the hypothesis. 
Therefore, a divides axe + bey = c by Theorem 3.2. I 

LEMMA 4.2 
If a prime p divides a product a\a<i • • • a& of positive integers, then it divides 

at least one of them. 

PROOF We use mathematical induction on the number n of factors. 
If n — 1, there is nothing to prove. Assume the statement is true for n 
factors. Suppose the prime p divides a product of n + 1 positive integers 
aia2 • • • a n a n + i . If p\a\, we are done. Otherwise, p is relatively prime to a\ 
because p has only the divisors 1 and p, and p doesn't divide a\, so gcd(p, a\ ) = 
1. By Lemma 4.1, p divides the product a^a^ • • • a n a n + i of n factors, and so 
p must divide one of these n numbers by the induction hypothesis. I 

THEOREM 4.1 Fundamental theorem of arithmetic 
Every integer greater than 1 can be written as a product of primes, perhaps 

with just one prime, and this product is unique if the primes are written in 
nondecreasing order. 

PROOF The integer 2 is a prime number and so is the "product" of just 
one prime. If some integer cannot be expressed as a product of primes, then 
there must be a smallest one with this property. Let n be the least integer 
greater than 1 which is not a product of primes. If n were prime, then it would 
be the "product" of just one prime. So n must be composite, say, n = aò, 
where 1 < a < n and 1 < b < n. Since a and b are smaller than n, it must 
be possible to write them as the product of primes. But then n = ab is also 
the product of primes. This shows that every integer greater than 1 can be 
written as a product of primes. 

We now show that this product is unique if the primes are written in non-
decreasing order. Suppose to the contrary that some integer could be written 
in two different ways as a product of primes, say 

n=pip2'"Pk =q\q2'-qii 

where all p¿ and all qj are primes and p\ < pi < • • • < pk and q\ < #2 < • • • < 
qi. Cancel any common prime factors to get 

PilPi2 '"Pir =qjiqj2 '"Qjsl 

where no prime appears on both sides of the equation. There must be at least 
one prime factor on each side since we assumed that the two factorizations 
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where pi,P25 • • • ,Pk are the primes that actually divide n and e¿ > 1 is the 
number of factors of pi dividing n. We make the convention that n = 1 has 
this representation with the empty product. 

Sometimes we allow some exponents e¿ to be 0 in the representation. We 
might do this to compare the prime factorizations of two integers. This device 
is used to find the greatest common divisors of integers whose factorizations 
are known. We begin with a simple example. 

Example 4.2 

Find the gcd g of 41184 = 25 • 32 • 11 • 13 and 10920 = 23 • 3 • 5 • 7 • 13. 
The highest power of 2 that can divide g must divide both numbers; so, it 

must be the smaller of 25 and 23, which is 23. Likewise, only one 3 can divide g 
since only one 3 divides the second number. The primes 5, 7 and 11 divide only 
one of the two numbers, so cannot divide g. A single 13 divides each number, 
so 13|p. Now we know all prime divisors of g and g = 23 • 3 • 13 = 312. 

THEOREM 4.2 GCD of factored numbers 
Let pi, p2, • • • ? Pk be all the primes that divide either of the positive integers 

m and n. Write 

m = p^pl2 -"Pe
k
k and n = p^pÇ* • • -p{k, 

where all exponents e% and fi are > 0. Then 

g c d ( m , 7 l ) =pf*^Mpf»('*>f*) . . .pmin(e f c , / f c ) > 

PROOF The power of each prime which divides the gcd is the smaller of 
the two powers of the prime which divide the two numbers. I 

If we allowed 1 to be a prime number, then the fundamental theorem would 
fail because n could have two factorizations with different numbers of l 's. We 
don't want 1 to be composite, either, because it has no prime divisor. 

Suppose the positive integer n is factored into the product of primes, and the 
primes are in nondecreasing order. The fundamental theorem of arithmetic 
says that this representation is unique. If we collect repeated prime factors 
and write them as the power pe of a prime, we have the following standard 
representation: 

of n differ. By Lemma 4.2, the prime p^ must divide one of the numbers on 
the right side, say, Pû|<7jm. But </jm is prime, so pix — qjm and the common 
prime factors were not all canceled. This contradiction shows that the prime 
factorization of n is unique. 
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DEFINITION 4.2 The least common multiple of r > 1 positive 
integers n i , n 2 , . . . ,nr, denoted lcm(ni,ri2,. . . , n r ) , is the smallest positive 
integer which is divisible by all of the numbers n i , n 2 , . . . , nr. 

The definition makes sense because nin2 • • • nr is one positive integer which 
is divisible by all of the numbers n i , r i2 , . . . , n r , so that l cm(ni ,n2 , . . . ,n r ) 
must be some integer between 1 and niU2 • • • nr. By analogy to Theorem 4.2 
one can prove the following result, which we state only for the least common 
multiple of two integers. 

THEOREM 4.3 LCM of factored numbers 
Let p\, p2, • • •, Pk be all the primes that divide either of the positive integers 
m and n. Write 

m = pl'p? "'Pe
k
k and n = pfpfr --p{\ 

where all exponents e¿ and fi are > 0. Then 

lcm(m,n) = p--(e i , / l ) pmax(e 2 , / 2) . ^ ( e , / ^ 

COROLLARY 4.1 
For any two positive integers m and n, gcd(m, n)lcm(ra, n) = mn. 

PROOF The equation follows from the two theorems just stated and the 
fact that min(x, y) + max(x, y) = x + y for any real numbers x and y. I 

THEOREM 4.4 LCM of numbers relatively prime in pairs 
If u\,..., nr are r positive integers which are relatively prime in pairs, that is, 

gcd(ni,rij) = 1 for all 1 < i < j < r, then lcm(ni, 77,2,..., nr) = n\ri2 • • • nr. 

PROOF Use induction on r. For r = 2, the statement is just Corol­
lary 4.1. Suppose the statement is true for r — 1. Then we are given that 
l cm(ni ,n2 , . . . ,n r _ i ) = ni r i2-- -n r_i . We must prove the statement for r. 
Write L = lcm(ni,ri2,. . . , ^ r - i ) = n\ri2 — -n r _ i . Note that if a prime p di­
vides L, then it must divide n¿ for some 1 < i < r — 1, for otherwise L/p 
would be a smaller common multiple for m , . . . , n r _ i , and L is the least one. 
If a prime p divided both L and nr, then it would divide both nr and ra¿ for 
some 1 < i < r — 1. This cannot happen because nr and n¿ are assumed to be 
relatively prime. Therefore, gcd(L,nr) = 1. Now by Corollary 4.1, we have 
lcm(ni, r i2 , . . . , nr) = lcm(L, nr) = Lnr = ri\n<i • • • nr. I 

The fundamental theorem of arithmetic has many other uses, one more of 
which is illustrated in the next example. 
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Example 4.3 

Find all the positive divisors of 364 = 22 •7 • 13. 
The only positive divisors of 364 are positive integers whose prime factoriza­

tions contain only the primes 2, 7 and 13, raised to nonnegative integer powers 
no higher than 2, 1 and 1, respectively. These divisors are: 

1 7 13 7-13 = 91 
2 2-7 = 14 2-13 = 26 2-7-13 = 182 
22 = 4 22 • 7 = 28 22 • 13 = 52 22 - 7 • 13 = 364 

4-2 The Distribution of Prime Numbers 
Since some cryptographic algorithms require large prime numbers, we must 
investigate whether there are enough of them. The first theorem, which offers 
a tiny bit of comfort in this direction, was already known to Euclid more than 
2300 years ago. See Euclid's Elements, Book IX, Proposition 20. 

THEOREM 4.5 Number of primes is infinite 
The number of prime numbers is inñnite. 

PROOF Suppose pi,P25 • • • ,Pk were all of the prime numbers. Let n = 
Pi * Vi ' ' 'Pk + 1 be 1 plus their product. Then n has a prime divisor p, by 
Theorem 4.1. The prime p cannot be one of the primes pi because, if it 
were, then it would divide n — p\ • p2 • • -pk — 1 by Theorem 3.2. Therefore 
Pi,P2, • • • ,Pk were not all of the primes. I 

This theorem is constructive in that it tells us how to find new primes after 
we think we know all of them. But the construction is not useful because 
it is difficult to factor large integers. We will see in the next section and in 
Chapter 11 that there are much easier ways to construct new primes. 

The next theorem tells us that there are arbitrarily long gaps between 
consecutive primes. 

THEOREM 4.6 Long gaps between primes 
For every positive integer n, there are n (or more) consecutive composite 
positive integers. 

PROOF We claim the n consecutive positive integers 

(n + 1)! + 2, (n + 1)! + 3 , . . . , (n + 1)! + n + 1 

are all composite. For 2 < i < n + 1 we have i\(n + 1)!. Theorem 3.2 implies 
that i\(n + 1)! + z, so (n + 1)! + i is composite. I 
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Example 4.4 

There are six consecutive composite numbers beginning with 7! + 2 = 5042. 
But the first set of six consecutive composite numbers is 90, 91, 92, 93, 94, 95, 
which are much smaller than 5042. 

Two primes whose difference is 2 are called twin primes. Some examples 
are 3 and 5, 17 and 19, 101 and 103, and 3671 and 3673. Much numerical 
evidence suggests that there are infinitely many twin prime pairs. A famous 
unsettled conjecture asserts that this is so. Although the gap between consec­
utive primes can be arbitrarily large, as shown by the theorem just proved, the 
smallest possible gap which could occur more than once, 2, probably occurs 
infinitely often. 

A prime p for which 2p+l is also prime is called a Sophie Germain prime. 
The first few Sophie Germain primes are 2, 3, 5, 11, 23, 29, 41 and 53. Others 
have been found with hundreds or thousands of digits. It is conjectured that 
there are infinitely many Sophie Germain primes. Twin primes and Sophie 
Germain primes are used in a few cryptographic functions. 

DEFINITION 4.3 For positive real numbers x, let n(x) be the number 
of prime numbers less than or equal to x. 

For example, 7r(l) = 0, 7r(10) = 4 and 7r(100) = 25. The function TT(X) has 
been computed for selected x up to about 1020. We know from Theorem 4.5 
that TT(X) increases without bound as x —> oo. To use some ciphers, we will 
have to choose some large primes, say, 100-digit primes. The growth rate of 
TT(X) has a strong effect on the difficulty of finding a large prime. For example, 
if TT(X) « y/x, at least for x near 10100, it would be quite hard to find even 
one prime with 100 digits. On one hand, this approximation would say that 
there are about 1050 primes less than 10100. But another way of looking at 
this (false) estimate is that the probability would be roughly 10 - 5 0 that a 
randomly chosen 100-digit integer would be prime. That would mean that 
we would have to try about 1050 random 100-digit integers to get a prime. 
Fortunately for cryptography, TT(X) grows nearly as rapidly as x. The next 
theorem relates this growth to the natural logarithm function \nx. 

THEOREM 4.7 The prime number theorem 
The ratio of TT(X) to x/mx tends to 1 as x goes to inñnity. In symbols, 

hm —-¡ = 1. 
x->oo x/ mx 

The known proofs of the prime number theorem either are very complicated, 
although "elementary," or else use advanced mathematics. We do not give a 
proof here. The theorem was conjectured by Gauss more than 200 years ago. 
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It was first proved in 1896 (independently) by J. Hadamard and Ch. J. de la 
Vallée-Poussin. 

The prime number theorem says that ir(x) œ (x/\nx) and that the per­
centage error in this approximation goes to 0 as # goes to infinity. We 
illustrate how good the approximation is at x = 1010. It is known that 
TT(1010) = 455052512 and (101 0/ lnl01 0) « 434294482. The ratio of these two 
numbers is about 1.048, that is, the approximation is about 5% too small. 
Better analytic approximations to 7r(x) are known, but are not needed for 
cryptography. 

Although x/\nx is only a rough approximation to 7r(x), it tells us immedi­
ately the probability that a random integer n in 1 < n < x is prime. There 
are x integers in this range and xj In x of them are prime, so the probabil­
ity is roughly (x/\nx)/x — 1/lnx. Since the function lnx changes slowly 
when x is large, 1/lnx is also the probability that a random integer near x 
is prime. The probability that a random 100-digit integer is prime is about 
l/ln(101 0 0), which is about 1/230. This means that we would have to try 
about 230 random 100-digit integers to find one prime. We could shorten 
the search by skipping numbers that have small prime divisors. If we just 
omit the even numbers, which after 2 cannot be prime, then the probability 
of each candidate being prime doubles and we would need to try only about 
115 random odd 100-digit integers to find one prime. 

There are more precise versions of the prime number theorem than Theorem 
4.7. They express TT(X) as a main term (more accurate than x / lnx ) plus an 
error term, and prove an upper bound on the absolute value of the error term. 
The proofs of those versions of the theorem study the zeros of a function 
called the Riemann zeta function. The more one knows about these zeros, the 
smaller the upper bound on the error term that one can prove. It is known 
that the error term in the estimate for 7r(x) cannot be better than about 
yfxlnx. The Riemann Hypothesis is a statement about the zeros of the 
Riemann zeta function which would imply that the error term in the prime 
number theorem is as good as it could be. The statement is a famous unsolved 
problem in number theory. If it were proved, there would be many applications 
throughout number theory, not just for counting primes. For example, some 
fast "algorithms" for identifying primes depend on the Riemann Hypothesis 
for their correctness or speed. They might give the wrong answer or run for 
a long time if the Riemann Hypothesis were false. 

4*3 Identifying and Finding Primes 
Now that we know there are plenty of large primes, how do we distinguish 
them from composite numbers? This section will not answer that question, 
which is deferred to Chapter 11, but will take the first steps in that direction. 
The first theorem tells how to tell in 0(^/n) steps whether n is prime or 
composite. 
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THEOREM 4.8 Composites have a divisor below their square root 
If the integer n > 1 is composite, then n has a prime divisor p < y/ñ. In other 
words, if the integer n > 1 has no prime divisor p < y/ñ, then n is prime. 

PROOF Suppose n is composite. Then we can write n — ab, where 
a and b are integers greater than 1. Swap a and b, if necessary, to make 
1 < a < b < n. Then a < y/n, for if a > y/ñ, then b > a > y/ñ and 
n = ab > yfñyfñ = n, which is impossible. By Theorem 4.1, a must have a 
prime divisor p < a < y/ñ. By Theorem 3.1, p divides n. 

The second statement has the same meaning as the first one. I 

The theorem suggests a simple algorithm for testing a small number for 
primality and for factoring it if it is composite. 

[Factoring and Prime Testing by Trial Division] 
Input: A positive integer n to factor or to test for primeness. 
Output: Whether n is prime, or one or more prime factors of n. 

m = n 
p = 2 
while (p < y/m) { 

if (m mod p = 0) { 
Print "n is composite with factor p" 
m = m/p 
} 

else { p = p+ 1 } 
} 

if (m = n) { P r in t "n i s prime" } 
e l s e if (m > 1) { P r in t "The l a s t prime fac to r of n i s m" } 

If n is prime, then trial division will take about 0(y/n) steps to prove this 
fact. If n is composite, then the number of steps required depends on the size 
of the prime divisors of n. If we merely wish to know whether n is prime or 
composite, and n is composite, then the algorithm can stop as soon as it finds 
the first prime divisor, and the number of steps needed is proportional to the 
smallest divisor of n. In case we wish the complete prime factorization of n, let 
ni be the largest prime factor of n and ri2 be the second largest prime factor 
of n. The trial division algorithm will have to continue at least until it finds 
ri2. When this happens, if ri2 > yfñ\, then the while loop will terminate on 
its next iteration; otherwise, trial division of n\, the last remaining cofactor, 
will have to continue until it is recognized to be prime when the variable p 
passes y/ñ{. We have shown that the number of steps the algorithm takes to 
factor n completely is 0(max(n2, y/ñi))-

There are some obvious ways to accelerate the algorithm. It is inefficient 
to add only 1 to p in the e l s e step, because then we try even numbers p > 3, 
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which clearly cannot divide the odd remaining cofactor m. In fact, we should 
really replace p by the next prime after p in the e l s e step. However, this 
would require having a table of primes up to y/n and it might be too expensive 
to precompute such a table. Usually, a compromise is made to avoid many 
but not all composite trial divisors p. For example, after p = 5, one might 
alternately add 2 and 4 in the e l s e step to determine the next p. Then the 
sequence of trial divisors would be 

p = 2,3,5,7,11,13,17,19,23,25,29,31,35,37,41,43,47,49,... 

which excludes all multiples of 2 and 3 except for these numbers themselves. 
Theorem 4.8 also suggests a simple algorithm for finding all primes up to 

some limit. The algorithm, called a sieve, was known to Eratosthenes more 
than 2200 years ago. 

[Sieve of Eratosthenes] 
Input: A limit n > 2. 
Output: A list of all the primes between 2 and n. 

Write all the integers between 2 and n in a list. 
p = 2 
while (p < y/n) { 

i = 2p 
while (i < ri) { 

Cross out i from the list 
i — i + p 

} 
Let p — the next number after p not yet crossed out 

} 
Pr in t the numbers t h a t were not crossed out . 

Let us estimate the time complexity of this algorithm. The inner while loop 
is performed once for each prime p < y/n, or fewer than y/n times. We simplify 
the analysis by ignoring the restriction that p is prime. This simplification will 
make the time estimate larger. For each p, the instructions inside the inner 
while loop are performed n/p times because every p-th number is crossed 
out. We may estimate the total number of steps for the entire algorithm by 
the following sum, and then approximate the sum by an integral: 

If we had tested each integer i between 2 and n for primality by trial division, 
it would take 0(y/ï) steps to test ¿, for a total of 0{ny/n) steps. Thus, the 
sieve of Eratosthenes is much more efficient than trial division for finding all 
primes up to some limit. Furthermore, the fact that the operations of adding 
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and crossing out (setting a byte) are faster than division tips the scale even 
more in favor of the sieve of Eratosthenes. 

A variation of the sieve of Eratosthenes finds all integers in some interval 
which have no prime divisor less than some limit. For example, let L be a 50-
digit integer. One could compute all integers between L and L -f 10000 free of 
prime divisors less than 1000 as follows: First, make a list of the primes below 
1000, perhaps by the sieve of Eratosthenes. Second, write tokens (bytes in a 
computer program) representing the 10001 integers L, L + 1 , . . . , L + 10000. 
Third, for each prime p < 1000, find the first integer i > L divisible by p, 
and cross out the tokens representing i and each p-th number after i. Finally, 
scan the list of tokens and output each i whose token was not crossed out. A 
sieve like this one lies at the heart of several of the fastest known algorithms 
for factoring large integers. 

4*4 The Largest Prime Factor of a Number 
For several purposes later in this book we will need to know the approximate 
size of the largest prime factor of a "typical" integer n. We need it, together 
with the size of the second largest prime factor of n, to estimate the complexity 
of the trial division algorithm in the previous section. 

DEFINITION 4.4 A positive integer n is called ¿/-smooth if all of its 
prime factors are <y. 

The de Bruijn [35] function, i¡)(x, y), is defined to be the number of ¿/-smooth 
numbers n in 1 < n < x. 

For 0 < t < 1 and x > 2, let p(x, t) be the probability that the largest prime 
factor of an integer 1 < n < x is less than tx. Then p(x,t) = ip(x,tx)/x. We 
might hope that if x ^ y are two large numbers, then p(x,t) « p(y,t) for all 
0 < t < 1. If this should happen, then we could define p(t) — limx^00p(x,t) 
and say that p(t) is the probability that the largest prime factor of n is less 
than tx. It turns out that this is the wrong way to proceed, because p(t) = 1 
for all 0 < t < 1. This means that if we choose any fixed t in 0 < t < 1, then 
almost all integers n in 1 < n < x have no prime factor larger than tx. 

It is better to use a logarithmic scale for the size of the largest prime factor. 
Let t > 0. Let p(x,t) be the probability that the largest prime factor of an 
integer 1 < n < x is less than xl. Then p(x,t) — ij;(x,xt)/x or, equivalently, 
^(x,y) = xp(x, (Iny)/ Inx). Dickman [39] gave a heuristic argument that, for 
each t > 0, 

F(t) = lim p(x,t) = lim ^(x,xt)/x 
x—>-oo x—>-oo 

exists, and gave a functional equation for computing F(t). Later, Ramaswami 
[94] made Dickman's argument rigorous. Thus, F(i) is the probability that 
the largest prime factor of n in 1 < n < x is less than xl. It is clear that 
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F(t) = 1 for t > 1, because the largest prime factor of any n < x must be 
< x < xl. For 0 < t < 1, Dickman's functional equation for F(t) is 

(4.1) 

His heuristic argument is roughly as follows: Let 0 < s < 1. The number of 
integers n < x whose largest prime factor is between xs and xs+ds is xF'{s)ds. 
By the prime number theorem, the number of primes in that interval is 

For each prime p in this interval, the number of n such that np < x and 
the largest prime factor of n is < p is the same as the number of n < xl~s 

whose greatest prime factor is < xs = (xl~s)s^l~s\ that is, x1~~sF(s/(l — s)). 
Hence, 

or F'(s)ds — F(s/(1 — s))ds/s, and we obtain Equation (4.1) by integration. 
Equation (4.1) provides an effective way of computing F(t) approximately 

by numerical integration. Figure 4.1 shows the graph of F(x). 
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We will want to use the value of F(t) when t is very close to zero. This 
process becomes easier if we invert the argument. Define p(u) — F(l/u) for 
u > 0. Figure 4.2 gives the graph of p(u). 

THEOREM 4.9 Count of smooth numbers below x 
For each ñxed real number u > 0 there is a real number p(u) > 0 so that 

lim ip(x,x1/u)/x = p(u) 
x—>-oo 

and p(u) is the unique continuous function denned by p(u) = 1 for 0 < u < 1 
and the functional equation p'(u) — —p(u — l)/u for u > 1. 

The functional equation for p(u) is easy to derive from that for F(t). From 
Equation (4.1) we find Ff(s) = F(s/(1 - s))/s. (In fact that equation was 
the step before Equation (4.1) in the heuristic argument for Equation (4.1).) 
Write u = l/s so that we have F(s) — p(l/s) = p(u). Differentiating this 
formula gives F'{s) = p'(l/s)(-l/s2) = -p'(u)u2. On the other hand, we 
have F(s/(1 - s))/s = p((l - s)/s)/s = up(u - 1). Putting it all together, we 
have 

-p'(u)u2 = F'(s) = F(s/(1 - s))/s = up(u - 1), 

Figure 4.2 p(u) for 0 < u < 7. 

Dickman's heuristic theorem, proved by Ramaswami [94], says this: 
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or p'(u) = -p(u - \)/u for u > 1. 

One can find a formula for p(u) for 1 < u < 2: Since p(i¿ - 1) = 1 for u in 
this range, the functional equation gives 

PROOF The functional equation shows that p(u) is strictly decreasing for 
u > 1. This fact and the Theorem imply that up(u) < p(u — 1) for all u > 1. 
A simple induction gives p(n) < 1/n! for all n > 1. I 

In fact, p(u) goes to zero about as rapidly as the function u~u
1 which is a 

moderately good approximation for it when u is large. The following table 
illustrates the Corollary and the approximation. See Knuth and Trabb Pardo 

However, there is no known closed form for p{u) for u > 2. 

It is possible to compute p(u) numerically from the functional equation. It 
goes to zero rapidly, as shown by the corollary to this theorem. 

THEOREM 4.10 Integral for Dickman p function 

P R O O F Since p(v - 1) = 1 for 1 < v < 2, we have 

By the functional equation, the latter integral is J" —vp'(v)dv. Integrating 
by parts, we obtain 

Subtracting the integrals gives 

COROLLARY 4.2 

For all positive integers n, p(n) < 1/n!. 
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[57] for more values of p(u). 

n 

1 
2 
3 
4 
5 
6 
7 

p(n) 

1.00000000 
0.30685282 
0.04860839 
0.00491093 
0.00035472 
0.00001965 
0.00000087 

1/n! 

1.00000000 
0.50000000 
0.16666667 
0.04166667 
0.00833333 
0.00138889 
0.00019841 

n~n 

1.00000000 
0.25000000 
0.03703704 
0.00390625 
0.00032000 
0.00002143 
0.00000121 

As a consequence, we have the approximation 

iP(x,x^u)^xu-u (4.2) 

for each fixed u. To estimate the complexity of certain algorithms, we will 
need a formula like (4.2) even when u is not fixed, but increases with x. 
Canfield et al. [23] proved that the approximation (4.2) is valid so long as 
u < (1 — e) \nx/minx (for any fixed e > 0). This gives a good approximation 
to ip(x, y) when y > ln1+e x and x is large. 

If y — xxlu, then \ny — ¿ l n x , so u — (\nx)/\ny. We can summarize the 
discussion above by saying that 

i/)(x,y) œ xp{u) « xu~u, 

where u = (In x)/ In y. We can also say that the probability that n is y-smooth 
is p(u) « u~u, where u — (Inn)/In?/. 

Sometimes we will need to estimate the number of integers < x whose prime 
factors are all < z, except for the largest k prime divisors, which must be < ?/, 
where y > z. Write the prime factors of n as ni > n^ > ns > . . . , so that n¿ 
is the z-th largest prime factor of n. If n doesn't have an i-th largest prime 
factor, then let n¿ = 1. 

DEFINITION 4.5 An integer n is called k-semismooth with respect to 
y and z ifni < y and n¿+i < z. Let ipk(x, y> z) denote the number of integers 
< x that are k-semismooth with respect to y and z. 

By analogy to Theorem 4.9, one can prove this result. See the doctoral 
theses of Cavalar [25] and Zhang [131] for a proof. 

THEOREM 4.11 Count of semismooth numbers below x 
For each integer k > 1 and fíxed real numbers v > u > 0 there is a real 

number pu{v,u) > 0 so that 

lim ipk(x,x1/u,x1/v)/x = Pk(v,u). 
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There are formulas, like the functional equation for p(u), for computing 
pk(v,u), but their complexity increases rapidly with k. 

Example 4.5 

In the previous section, we found that the complexity of a simple trial division 
algorithm is 0(max(n2, v ^ O ) t o factor n completely. For 0 < t < 0.5, this 
complexity will be < nl provided that ri2 < n1 and y/nï < nl. The second 
inequality may be written as ri\ < n2t. This means that the trial division 
algorithm will factor an integer n in 0(n*) steps provided that n is 1-semismooth 
with respect to y = n2t and z = n*. By Theorem 4.11, the probability that 
this will happen is approximately p i ( l / i , l/2t). The following table gives some 
values of this function. 

u 

1 
2 
3 
4 
5 
6 
7 

t = 1/u 

1.00000000 
0.50000000 
0.33333333 
0.25000000 
0.20000000 
0.16666667 
0.14285714 

pi(u,u/2) 

1.00000000 
1.00000000 
0.44731421 
0.09639901 
0.01241348 
0.00109227 
0.00007139 

See Knuth and Trabb Pardo [57] for more values of pi(w, u/2). This table tells 
us that trial division will factor n completely in 0(n°- 2 5) steps with probability 
0.0963, and that it will finish in O(n 0 2 ) steps for about 1.2% of the numbers n. 

4-5 Exercises 
1. Factor 10988208 and 17535336 each into the product of primes. 

2. Find the greatest common divisor and the least common multiple of 
2 6 - 3 2 - 5 2 - l l - 1 3 a n d 2 3 - 3 5 - 7 - 1 3 . 

3. Prove tha t there are infinitely many primes of the form 4fc + 3. Model 
your proof after tha t of Theorem 4.5. Suppose there were only a finite 
number of them. Multiply them all and construct a new number which 
must be divisible by a different prime of this form. To help the last step 
work, prove tha t a product of primes of the form 4k + 1 must have the 
same form. 

4. Use the sieve of Eratosthenes to find all primes between 0 and 200. 

5. Use a variation of the sieve of Eratosthenes to find all primes between 
2000 and 2100. 

6. Est imate the number of 104-smooth numbers between 1020 - 106 and 
102 0. 
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7. Estimate the number of 105-smooth numbers between 1020 — 106 and 
1020. 

8. Estimate the number of numbers between 1024 — 106 and 1024 which 
will be factored completely by the trial division algorithm by the time 
the variable p reaches 104. 

9. Use Dickman's theorem to prove that for any 0 < t < 1 we have 

lim ip(x,tx)/x = 1. 



Chapter 5 

Congruences 

This chapter introduces the basic facts about congruences. See the number 
theory texts [99], [78] and [98] for more about congruences. Gauss introduced 
congruences in 1801 in [45]. A congruence is a statement about divisibility. It 
is a notation that simplifies reasoning about divisibility. It suggests proofs by 
its analogy to equations. Congruences are familiar to us as "clock arithmetic." 
Four hours after 10 AM it will be 2 PM. How do we get the 2 from the 10 and 
the 4? We add four to ten and then subtract 12. We have used a congruence 
modulo 12. 

5.1 Simple Properties of Congruences 

DEFINITION 5.1 Suppose a and b are integers and m is a positive 
integer. If m divides a — b, then we say a is congruent to b modulo m and 
write a = b (mod m). If m does not divide a — b, we say a is not congruent 
to b modulo m and write a ^ b (mod m). The formula a = b (mod m) is 
called a congruence. The integer m is called the modulus (plural moduli) 
of the congruence. 

Usually we will have m > 1. 
Do not confuse the binary operator "mod" in a mod ò, which means the 

remainder when a is divided by 6, with the "mod" enclosed in parentheses 
together with the modulus of a congruence. These concepts are related as 
follows. If m is a positive integer and a and 6 are integers, then a = b (mod m) 
if and only if (a mod m) = (b mod m). 

We will often use the fact that a = b (mod m) if and only if there is an 
integer k so that a = b+km. This fact follows immediately from the definitions 
of congruence and divide. 

The congruence relation has many similarities to equality. The next theo­
rem says that congruence, like equality, is an equivalence relation. 

61 
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THEOREM 5.1 Congruence is an equivalence relation 

Let m be a positive integer. Let a, b and c be integers. Then: 

1. a = a (mod ra). 

2. Ifa = b (mod m), then b = a (mod ra). 

3. Ifa = b (mod m)and b = c (mod ra), then a = c (mod ra). 

P R O O F Clearly, m\a — a. Also, m\(a — b) if and only if m\(b — a). Finally, 

if m\(a — b) and m\(b - c), then m\(a — c) — (a — b) + (b — c). I 

Let ra > 0 be fixed. For each integer a, the set of all integers b = a (mod ra) 
is called the congruence class or residue class of a modulo ra. The congru­
ence class of a modulo m consists of all integers in the arithmetic progression 
a + dm, where d runs through all integers. Each integer in a congruence class 
is a representa t ive of it. If the modulus m is understood and a and b are 
in the same congruence class, then each is called a residue of the other. The 
smallest nonnegative representative of a congruence class is often used as the 
standard representative of it. For example, the standard representative of the 
congruence class of 27 (mod 5) is 2. When we study congruences, we regard 
all integers in the congruence class of a modulo m as being equivalent. The 
next theorem says that it makes sense to perform arithmetic on congruence 
classes without worrying about which representatives we choose. 

THEOREM 5.2 Arithmetic with congruences 
Let a, b, c and d be integers. Let m be a positive integer. Suppose a = 

b (mod m) and c = d (mod m). Then 

1. a + c = b + d (mod m). 

2. a — c = b — d (mod m). 

3. ac = bd (mod m). 

P R O O F The first two statements are trivial. For the third, let m\(a - b) 
and m\(c — d). Then m\c(a — b) + b(c — d) — ac — bd. I 

COROLLARY 5.1 
Let a and b be integers. Let m be a positive integer. Let f be a polynomial 

with integer coefficients. If a = b (mod m), then f(a) = f(b) (mod m). 

P R O O F Write f(x) = cnx
n + . . . + c\x + c0, where the c¿ are integers. 

Using a = b (mod m) and the last statement of the theorem, we see that 
a2 = b2 (mod m), a3 = b3 (mod m), etc. Using the last statement again, we 
get cia1 = C{bl (mod m) for each i. Use the first statement n times to add all 
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these congruences and get 

f(a) - cna
n + . . . + cia + c0 = cnb

n + ... + c\b + c0 = f(b) (mod m). 

I 

THEOREM 5.3 Divisor of the modulus 
Let a and b be integers. Let m and d be positive integers with d\m. If 

a = b (mod m), then a = b (mod d). 

PROOF We have d\m and m\(a - b). By Theorem 3.1, d\(a - b). I 

We saw in Theorem 5.2 that the arithmetic operations of addition, sub­
traction and multiplication for congruences obey the usual rules for the same 
operations with integers. However, division does not always work as for inte­
gers. For example, 2 -3 = 6 = 18 = 2-9 (mod 12), but 3 ¿ 9 (mod 12). 

In general ac = be (mod m) does not always imply a = b (mod m). We now 
investigate when this implication will be true. 

LEMMA 5.1 
If gcd(a, m) = 1 and 0 < i < j < m, then ai ^ aj (mod m). 

PROOF If not, then m\a(i — j). Since gcd(a,ra) = 1, we have m\(i — j ) , 
which contradicts the bounds on i and j . I 

THEOREM 5.4 Number relatively prime to modulus has an inverse 
If gcd(a,ra) = 1, then there is a unique x in 0 < x < m such that ax = 

1 (mod m). 

PROOF By Lemma 5.1, the function f(i) — (ai mod m) for 1 < i < m — l 
is one-to-one, and so the set 

{ai mod m\i — 1 , . . . ,m — 1} 

is a permutation o f{ l , . . . ,m—1}. Therefore 1 appears exactly once in the first 
set, that is, there is exactly one x in 0 < x < m such that ax = 1 (mod m). 

I 
One can prove Theorem 5.4 from Theorem 3.9 as follows. The latter theo­

rem says that there exist integers x\ and y so that ax\ +my = gcd(a, m) = 1. 
Therefore, m divides ax\ — 1 and we have ax\ = 1 (mod m). Now use the 
division algorithm (Theorem 3.3) to find integers q and x with 0 < x < m and 
x\ — mq + x. Then ax = 1 (mod m). Clearly, x cannot be 0, so 0 < x < m. 
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Note that the x in this theorem is like "a - 1 , " the reciprocal of a modulo 
ra. Sometimes we even use the notation " a - 1 (mod ra)" to mean the x of 
Theorem 5.4. 

Now we have enough theory to tell when cancellation is allowed in congru­
ences. 

THEOREM 5.5 Division in congruences 
If m > 1, a, b, c are integers, (c ^ 0), gcd(c, m) — 1, then ac = be (mod m) 

implies a = b (mod ra). 

PROOF By the previous theorem, there is an x such that ex = 1 (mod ra). 
Then ac = be (mod ra) implies acx = bcx (mod ra), which implies a\ = 
òl (mod ra), which implies a = b (mod ra). I 

DEFINITION 5.2 A set of m integers r i , . . . , r m is a complete set 
of residues (CSR) modulo m if every integer is congruent modulo ra to 
exactly one of the r¿ 's. 

The set { 1 , . . . , ra} is called the standard CSR modulo ra. 

Example 5.1 

The set {0,. . . , m — 1} is a CSR modulo m, as is the set of all integers between 
—ra/2 and ra/2 (including exactly one of these endpoints if ra is even). The set 
{-10, 91, -3,13,109} is a CSR modulo 5. 

5.2 Linear Congruences 
In this section we tell how to solve congruences like ax = b (mod m), where a, 
6 and m > 1 are given integers and x is an unknown integer. The solution to 
an equation ax = 6, where a ^ 0, is the single number x = a/b. In contrast, 
if the congruence ax = b (mod m) has any solution, then infinitely many 
integers x satisfy it. 

For example, the solution to the congruence 2x = 1 (mod 5) is all integers 
of the form x = òk + 3, where k may be any integer, that is, x lies in the 
arithmetic progression 

. . . , - 1 2 , - 7 , - 2 , 3 , 8 , 1 3 , 1 8 , . . . . 

This set of integers may be described compactly as x = 3 (mod 5). We could 
have written this solution as x = 28 (mod 5), but we generally use the least 
nonnegative residue as the standard representative of its congruence class. 

Suppose f(x) is a polynomial with integer coefficients and m > 1. If x0 is an 
integer for which / (x 0 ) = 0 (mod m), then f(xo + km) = 0 (mod m) for every 
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integer k by Corollary 5.1. Thus x = xo+km is a solution to f(x) = 0 (mod m) 
for every integer k. The whole congruence class (#o (mod m)) satisfies f(x) = 
0 (mod ra). However, when considering solutions of congruences we consider 
these numbers to be just one solution. By the solution to the congruence 
f(x) — 0 (mod m) we mean a list of the different congruence classes which 
satisfy it. These may be described by giving one representative from each 
class, typically the least nonnegative one. 

DEFINITION 5.3 If f(x) is a polynomial with integer coefficients and 
m is a positive integer, then the number of solutions to f(x) = 0 (mod ra) 
is the number of numbers r in a ñxed CSR modulo m such that f(r) = 
0 (mod ra). 

By Corollary 5.1, the number of solutions does not depend on which CSR 
is used. Also, the number of solutions cannot exceed ra. When m is small we 
can solve f(x) = 0 (mod ra) by testing each x between 0 and ra — 1. 

Example 5.2 

Solve the congruence f(x) = x2 + x + l = 0 (mod 7). 
Evaluate f(x) for x = 0 , 1 , . . . , 6. We find that /(2) = 7 = 0 (mod 7) and 

/(4) = 21 = 0 (mod 7), but f(x) £ 0 (mod 7) for x = 0,1,3,5,6. Therefore, 
the solution to f(x) = x2 4- x + 1 = 0 (mod 7) is x = 2 or 4 (mod 7). 

DEFINITION 5.4 Let f(x) = anx
n+an-1x

n-1 + .. .+a0 be a polynomial 
with integer coefficients. If m divides every coefficient ai, then the congruence 
f(x) = 0 (mod m) has no degree. Otherwise, the degree of the congruence 
f(x) = 0 (mod m) is the largest integer d in 0 < d < n for which a¿ ^ 
0 (mod m). 

The degree of the congruence f(x) = 0 (mod m) is not always the same as 
the degree of the polynomial f(x). Also, the congruence f(x) = 0 (mod m) 
may have different degrees for different m. 

Example 5.3 

Let f(x) = 10x4 + 8x3 - 20x + 6. Then the polynomial f{x) has degree 4. The 
congruence f(x) = 0 (mod m) has degree 4 when m = 3 or m = 7, degree 3 
when m = 5 or m = 10, and no degree when m = 2. 

The next two theorems tell how to solve a congruence of degree 1. 

THEOREM 5.6 Solvability of a linear congruence 
Let m > 1, a and b be integers. Then ax = b (mod m) has a solution if and 

only if gcd(a, m) divides b. 
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PROOF The congruence ax = b (mod m) is equivalent to saying that 
there is a whole number y so that ax — b — my. Let g = gcd(a, m). Since g\a 
and g\m, if there is a solution, then g\b by Theorem 3.2. This proves that if 
g does not divide ò, there is no solution. 

Conversely, suppose g\b. Suppose b = gt, where t is an integer. By Theorem 
3.9, there are integers u and v so that au + mv — g. Multiply by t to get 
a(ut) + m(vt) = gt = 6, and x — ut is a solution to ax = b (mod m). If we 
divide au + mi; = # by #, we get (a/g)u + (m/g)v — 1, which shows that i¿ is 
a solution to (a/g)u = 1 (mod (m/g)). I 

THEOREM 5.7 Solutions of a linear congruence 
Let m > 1, a and b be integers. Let g — gcd(a,m). If g\b, then ax = 

b (mod m) has g solutions. They are 

x = -xo + t— (mod m), t = 0 , 1 , . . . yg - 1, 
9 9 

where xo is any solution of -XQ = 1 (mod y ) . This means that 

b m 
x=-Xo + t—, £ = 0 , 1 , . . . , 

9 9 

are all integer solutions x. 

PROOF By Theorem 5.6 we know the congruence has a solution. The 
last two sentences of the proof of Theorem 5.6 show that one solution is 
x = (b/g)xo, where x0 is any solution of (a/g)xo = 1 (mod (m/g)). 

Now suppose x — y and x — z are two solutions to ax = b (mod m) 
and assume that y and z are the least nonnegative representatives of their 
congruence classes. Then ay = az = b (mod m). This means that ay — 
az = mk for some integer k. Divide by g to get (a/g)y — (a/g)z — (m/g)k, 
which shows that (a/g)y = (a/g)z (mod (m/g)). Now a/g and m/g are 
relatively prime by Theorem 3.8; so, by Theorem 5.5 we can cancel them and 
get y = z (mod (m/g)). This means that y = z + j(m/g) for some integer j . 
Use the division algorithm (Theorem 3.3) to write j — s g -f ¿, where s and t 
are integers and 0 < t < g — 1. Then y — z + (sg + t)(m/g) = z + sra + t(m/g) 
and we have y = 2 + t(m/g) (mod m). As we let £ run through the g different 
values t = 0 ,1 , . . . , p — 1 we get all solutions to ax = b (mod m), one of 
which must be the solution x = (b/g)xo we found above. To show that these 
solutions are distinct, that is, incongruent modulo m, suppose to the contrary 
that z + t(m/g) = z + u(m/g) (mod m), where 0 < i < w < p — 1. Then m 
divides t(m/g) - u(m/g) = (t — u)(m/g). Hence g divides (t — i¿), which is 
impossible since 0 < u — t < g because 0 <t < u < g — 1. Therefore there are 
exactly g distinct solutions, those in the statement of the theorem. I 
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Example 5.4 

Solve 7x = 3 (mod 12). 
We find g — gcd(7,12) = 1 and g\b since 1|3, so there is one solution. Since 

7 - 7 = 1 (mod 12), we have xo = 7, and the solution to 7x = 3 (mod 12) is 
x = 3 • 7 + 1 • 12 = 21 + 12* = 9 (mod 12). 

Example 5.5 

Solve 165a: = 100 (mod 285). 
In Example 3.4, we calculated that gcd(165, 285) = 15. Since 15 does not 

divide 100, the congruence has no solution. 

Example 5.6 

Solve 165x = 105 (mod 285). 
As in the preceding example, we have gcd(165,285) = 15. Since 15|105, 

the congruence has fifteen solutions modulo 285. To find them, we first solve 
the congruence (165/15)x0 = 1 (mod (285/15)), or l l x 0 = 1 (mod 19). The 
extended Euclidean algorithm gives 11(7) + 19(—4) = 1, so xo = 7. Then 
x = (105/15) (7) + i(19) = 7 • 7 + 19i. The fifteen solutions are 

x = 7, 7 4-19, 7 + 2 • 1 9 , . . . , 7 + 14 • 19, 

that is, x = 7 ,26,45,64, . . . , or 273 (mod 285). These solutions are the same 
numbers as x = 7 (mod 19). 

We can solve a system of two linear congruences, with the same modulus, 
in two unknowns by a method much like tha t used to solve two equations in 
two unknowns. The difference is tha t we must be more careful when dividing. 
Division by a number relatively prime to the common modulus is simple. It is 
performed by multiplying by the multiplicative inverse of the divisor modulo 
the common modulus. When the divisor has a common factor > 1 with the 
modulus, we must use Theorem 5.7. The following examples illustrate what 
possibilities exist. 

Example 5.7 

Solve the system of two linear congruences 

5x + 4y = 1 (mod 11) 

x + 2y = b (mod 11). 

Subtract 2 times the second congruence from the first to get 3x = 1 — 2 • 
5 = 2 (mod 11). When we apply Theorem 5.7 to 3x = 2 (mod 11), we find 
g = gcd(3,11) = 1|2, so there is one solution. We find xo = 4 (mod 11), 
x = 8 (mod 11) and y = 4 (mod 11). 

Example 5.8 
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Solve the system of two linear congruences 

5x + 4y = 2 (mod 15) 

x + 2y = 5 (mod 15). 

Subtract 2 times the second congruence from the first to get 3x = 2 — 2 • 
5 = 7 (mod 15). When we apply Theorem 5.7 to 3x = 7 (mod 15), we find 
g = gcd(3,15) = 3 does not divide 7, so there is no solution. Hence the system 
has no solution either. 

Example 5.9 

Solve the system of two linear congruences 

bx + 4y = 1 (mod 12) 

x + 2y = 5 (mod 12). 

Subtract 2 times the second congruence from the first to get 3x = 1 — 2 • 
5 = 3 (mod 12). When we apply Theorem 5.7 to 3x = 3 (mod 12), we find 
g = gcd(3,12) = 3|3, so there are 3 solutions. Here xo is the solution to 
(3/3)a?o = 1 (mod (12/3)) or x0 = 1 (mod 4). Then 

x = (b/g)x0 + t(m/g) = 1 + t • 4 (t = 0,1, 2) = 1, 5 or 9. 

Consider first the case x = 1 (mod 12). With 1 for x the two congruences 
become 

4y = 1 - 5 - 1 = 8 (mod 12) 

2y = 5 - 1 = 4 (mod 12). 

The first of these is implied by the second (multiply by 2), but the reverse 
implication is false. Apply Theorem 5.7 to the second congruence. We find 
g = gcd(2,12) = 2|4, so there are two solutions. Next we compute xo = 
1 (mod 6) and y = 2 or 8 (mod 12). If we had applied Theorem 5.7 to the first 
congruence, we would find g = gcd(4,12) = 4|8, so there are four solutions. We 
get xo = 1 (mod 3) and y = 2, 5, 8 or 11 (mod 12). However, 5 and 11 must 
be discarded because they do not satisfy the second congruence. In summary, 
two solution pairs to the original system of congruences are (x,y) = (1, 2) and 
(x, y) = (1, 8). In a similar fashion, we find that when x = 5 (mod 12) we have 
y = 0 or 6 (mod 12) and when x = 9 (mod 12) we have y = 4 or 10 (mod 12). 
The system of congruences has six solution pairs modulo 12. 

We close this section by showing tha t a congruence modulo a prime may 
have no more solutions than its degree. The hypothesis tha t the modulus be 
prime is essential, as is shown by the example, f(x) — x2 — 1 =. 0 (mod 8), 
which has the four solutions x = 1, 3, 5, 7 (mod 8). In other words, the square 
of every odd number is = 1 (mod 8). 
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THEOREM 5.8 No more solutions than degree 
Let p be prime. Let f(x) be a polynomial with integer coefficients and degree 

d modulo p. Then the congruence f(x) = 0 (mod p) has at most d solutions. 

P R O O F Use induction on d. If d — 0, then f(x) — a0 ^ 0 (mod p), and 
this congruence has no solution. If d — 1, then the congruence has exactly one 
solution by Theorem 5.6 and the fact that the modulus is prime. Assume the 
theorem is true for all congruences modulo p with degree < d. Suppose that 
the congruence / (#) = 0 (mod p) with degree d has more than d solutions. 
Let 7*1,..., r^, Vd+i be d + 1 incongruent solutions modulo p. Let the leading 
term of f(x) be adXd, where a<¿ ̂  0 (mod m). Define a new polynomial 

g(x) = f{x) - ad(x - n) • • • (x - rd). 

Note that the degree, if any, of the congruence g(x) = 0 (mod p) must be 
less than d because the terms adx

d cancel in f(x) and ad(x — r\) • • • (x — r¿). 
Thus, if the congruence g(x) = 0 (mod p) has a degree, then it must have 
fewer than d solutions by the induction hypothesis. But it is easy to see 
that this congruence has at least the d solutions r i , . . . , r d . Therefore, the 
congruence g(x) = 0 (mod p) has no degree. This means that p divides 
every coefficient of g(x), and so g(x) = 0 (mod p) for every x. In particular, 
g(rd+i) = 0 (mod p). But also, /(r^+i) = 0 (mod p). Therefore, x = r<i+i is 
a solution to the congruence 

ad(x - n ) • • • (x - rd) = 0 (mod p), 

and this contradicts Lemma 4.2. I 

5.3 The Chinese Remainder Theorem 
The Chinese remainder theorem is a clever, useful and old idea which gets 
its name because it first appeared in a book, The Art of War, by Sun Tsu 
(or Sun Che, depending on dialect) more than 1500 years ago. It allows 
one to deduce an integer from its approximate size and its least nonnegative 
remainder modulo m for a few small m. One early application was to count 
soldiers by ordering them to, "Count off by sevens," then, "Count off by tens," 
etc., and remember the numbers shouted by the last soldier. Suppose an army 
of a few hundred men was assembled and the "Count off" orders showed that 
the remainders of the number x of soldiers modulo 7, 10 and 13 were 1, 3 and 
8, respectively. Then x satisfies the system of congruences 

x = 1 (mod 7) 

x = 3 (mod 10) (5.1) 

x = 8 (mod 13). 
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THEOREM 5.9 Chinese remainder theorem 
Let ni,..., nr be r positive integers relatively prime in pairs. (That is, 

gcd(n¿,n¿) = 1 whenever 1 < i < j < r.) Let a i , . . . , a r be any r integers. 
Then the r congruences 

x = ai (mod rii) 

for i = 1 , . . . , r Lave common solutions. Any two common solutions are con­
gruent modulo n = ni - - -nr. 

Note that the hypotheses are satisfied in the example in Congruences (5.1) 
above because any two of the moduli 7, 10, 13 are relatively prime. The proof 
of the Chinese remainder theorem gives a reasonably efficient algorithm for 
computing the common solution. 

PROOF For j = 1 , . . . , r, the number n/rij is an integer. We claim that 
gcd(n/n¿,rij) = 1. If not, then some prime d would have to divide both n/rij 
and Uj. But n/rij is the product of the n¿ for i ^ j , so d would have to divide 
some rii for i / j by Lemma 4.2. Then n¿ and rij would not be relatively prime, 
contrary to hypothesis. Since gcd(n/rij,nj) = 1, by Theorem 5.4, there is an 
integer bj such that (n/nj)bj = 1 (mod Uj). Clearly, (n/rij)bj = 0 (mod n¿) if 
i y¿ j because n¿ divides (n/rij). Let XQ = Y,Vj=i(n/nj)^jaj- Let <5¿¿ = 1 if i — 

j and = 0 if i ^ j . Then x0 = J27j=i(n/njf)j)aj = Y^j=\ ^ijaj = ai (m°d ni)-
Thus there is a common solution XQ. 

If x\ is another common solution, then XQ = a¿ = xi (mod n¿) and thus 
^¿|(^o — #i) for each i. Now use the division algorithm (Theorem 3.3) to 
divide (xo — x\) by n: (x0 — x\) — qn + r, where 0 < r < n. Suppose r > 0. 
Note that n is the least common multiple of n i , . . . , n r , by Theorem 4.4. But 
r is a smaller nonnegative common multiple of these numbers, by Theorem 
3.2. Therefore, r = 0 and #o = £i (mod n). I 

Example 5.10 

Solve the problem of counting the soldiers in Congruences (5.1). 
We have n\ = 7, ri2 = 10, 713 = 13, ai = 1, a2 = 3, a^ = 8 and n = 910. 

Then n/ni = 10-13 = 4 (mod 7). The extended Euclidean algorithm gives òi = 
4_ 1 = 2 (mod 7). Likewise, b2 = l - 1 = 1 (mod 10) and 63 = 5 _ 1 = 8 (mod 13). 
Then 

x = 130 • 2 • 1 + 91 • 1 - 3 + 70 • 8 • 8 = 5013 = 463 (mod 910). 

Since there are a few hundred soldiers, there must be exactly 463 of them, as 
the next integer solution would be 463 + 910 = 1373. 

Here is a simple algorithm based on the proof of the Chinese remainder 
theorem. 



Congruences 71 

[Solve simultaneous congruences via the Chinese remainder theorem] 
Input: Integers r > 1, n i , . . . , n r , all > 1, with gcd(n¿,nj) = 1 

for 1 < i < j < r, and integers a±,..., ar. 
Output: The solution x of x = a¿ (mod n¿) for 1 < i < r. 

w = n r = i *»< 
for (i = 1 to r) { 

mi = n/rii 
bi — (rrii mod n¿) - 1 (mod n¿) 
Ci=rrti' bi 
} 

for (i = 1 t o r) { 
X — X I G¿ * C¿¿ 

} 
r e t u r n x 

Note that if we have many systems of simultaneous congruences to solve 
with the same set of moduli ri\,..., n r , and different a\,..., ar, then the first 
for loop needs to be performed only once. Of course, the first for loop takes 
most of the time because it uses the extended Euclidean algorithm to find the 
modular inverses. 

THEOREM 5.10 Complexity of Chinese remainder algorithm 
The ñrst for loop in the Chinese remainder algorithm takes 0(r(log n)3) bit 

operations. The second for loop in the Chinese remainder algorithm takes 
0(r(logn)2) bit operations. 

PROOF The calculations are performed modulo n or modulo some m <n, 
so by Corollary 3.5, each arithmetic operation can be done in 0((logn)2) bit 
operations. Each for loop runs from 1 to r. If we ignore the time for the 
modular inverses, each loop requires 0(r(logn)2) bit operations. A total of r 
modular inverses are performed in the first for loop. By Corollary 3.1 each 
takes 0((logn)3) bit operations; so, the total number of bit operations for the 
first for loop is 0(r(logn)3) . I 

Let the positive integers n\,..., nr be relatively prime in pairs and let 
n = ni • • • n r , as in the hypothesis of the Chinese remainder theorem. Let S 
be the set of integers between 0 and n — 1 and let T be the set of all r-tuples 
( a i , . . . , ar) of integers, where 0 < a¿ < n¿ for 1 < i < r. Both sets S and T 
contain n elements. The function f(x) from S into T defined by 

f(x) = (x mod ni,..., x mod nr) 

x = 0 
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gives a one-to-one correspondence between the two sets. It is one-to-one 
because if 

(x mod m , . . . ,£ mod nr) = (2/ mod rai,... ,2/ mod n r ) , 

then x = y (mod n) by the Chinese remainder theorem, so that x — y. The 
proof of the Chinese remainder theorem and the algorithm above show how 
to compute the inverse function to f(x). 

One use of the Chinese remainder theorem is to solve congruences modulo 
composite numbers when we already know how to solve them modulo prime 
powers. For example, in Chapter 7, we will learn how to to find modular 
square roots, that is, how to solve congruences like x2 = a (mod </), where q is a 
power of a prime. Suppose we wish to solve x2 = a (mod m), where m has the 
standard factorization m = pi1 — -p%r. Suppose we can solve x2 = a (mod p\{ ) 
for each i, and that x — a¿ is a solution to this congruence. Since the prime 
powers p\{ are relatively prime in pairs, we can use the Chinese remainder 
theorem to solve the system x = a¿ (mod p\l ) for 1 < i < r and get a solution 
x to x2 = a (mod ra). Furthermore, different r-tuples of solutions ( a i , . . . , ar) 
will give different solutions x. 

Another use of the Chinese remainder theorem is to perform complex cal­
culations with large integers. Suppose we wish to compute the determinant of 
a square matrix with integer entries. The determinant is an integer. Suppose 
we have an upper bound B on its absolute value. (For example, Hadamard 
[50] proved that the absolute value of the determinant of a k x k matrix whose 
entries are < M cannot exceed B = kk¡2Mk.) Choose moduli n i , . . . , n r of 
convenient size and relatively prime in pairs. For example, one might choose 
the moduli to be distinct primes slightly less than 230 whose product exceeds 
2B. For each i, compute the determinant modulo n¿, for example, by using 
Gaussian elimination to transform the matrix into a diagonal matrix. Re­
member that when the algorithm requires dividing by some integer d, one 
must instead multiply by d~l (mod n¿). Let a¿ be the value of the determi­
nant modulo n¿. Then use the Chinese remainder theorem to compute the 
determinant modulo n = n\ • • -nr. Call the value x, where 0 < x < n. Since 
n > 2B > 21 determinant |, we know that if x < n /2 , then the determinant is 
x and if x > n /2 , then the determinant is x — n < 0. Note that there are no 
congruences in the question or the answer. 

5.4 Exercises 
1. A computer job starts at 9 PM and runs for 100 hours. At what time 

of day will it end? 

2. Let m > 1. Prove that a = b (mod m) if and only if a mod m = 
b mod m. 

3. Write a congruence to say that x — Ylk + 5 for some integer k. 
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4. Show that the unit's digit of a square written in decimal must be one of 
0, 1, 4, 5, 6 or 9. 

5. Which decimal digits can occur as the last digit of the fourth power of 
an integer? 

6. Find a complete residue system modulo 13 consisting only of multiples 
of 5. 

7. Write a single congruence equivalent to the pair of congruences x = 
3 (mod 5) and x = 4 (mod 6). 

8. Solve the congruence 15x = 9 (mod 36). 

9. Solve the congruence 9x = 15 (mod 36). 

10. Solve the congruence 36x = 9 (mod 15). 

11. Solve the system of two congruences 3x + 4y = 2 (mod 7) and lx + 2y = 
5 (mod 7). 

12. What are the degrees of the congruence 12x3 + 2x — 3 = 0 (mod m) 
when m = 2, when m = 3 and when m = 5? 

13. Solve the system of simultaneous congruences x = 3 (mod 5), x = 
2 (mod 7), x = 1 (mod 8). 

14. Find an integer that leaves a remainder of 3 when divided by 6 or 7, 
and which is a multiple of 5. 

15. For which positive integers m is it true that 

l + 2 + 3 + --- + ( r a - l ) = 0 (mod m)? 

16. Let un denote the n-th Fibonacci number. Prove that a multiplicative 
inverse of un modulo i¿n+i is (—l)n+lun. 

17. Show that the system of congruences x = a¿ (mod n¿), for i = 1 , . . . , r, 
has a common solution if and only if gcd(n¿, rij) divides a¿ — a¿ for every 
pair (i,j) with 1 < i < j < r. Prove that if a common solution exists, 
then it is unique modulo lcm(ni , . . . , nr). 
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Chapter 6 

Eider's Theorem and Its 
Consequences 

Fermat's little theorem is a statement about primes that nearly characterizes 
them. Euler generalized Fermat's theorem to a statement about any positive 
integer. Many interesting properties about congruences follow from Euler's 
theorem. See the number theory texts [99], [78] and [98] for more about this 
subject. 

6.1 Fermat's Little Theorem 
This exceedingly useful theorem was proved more than 350 years ago by Pierre 
de Fermât. 

THEOREM 6.1 Fermat's "little" theorem 
Let p be prime and a be an integer that is not a multiple of p. Then ap~x = 

1 (mod p). 

Fermât proved this theorem before congruences were invented. He expressed 
the conclusion by saying that p divides ap~1 — 1 (in French, of course). 

PROOF Since gcd(a,p) = 1, as we saw in the proof of Theorem 5.4, the 
set {ai mod p; i = 1 , . . . ,p — 1} is a permutation of the set { 1 , . . . ,p — 1}. 
Therefore, 

75 

Now gcd Í nf=i hP) — 1 because p, being prime, has no divisor between 2 

and p — 1. Thus, by Theorem 5.5, we can cancel the product (p — 1)! and get 
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a?-1 = 1 (modp). I 

COROLLARY 6.1 
Ifp is prime and a is an integer, then oP = a (mod p). 

PROOF Ifp does not divide a, then ap~l = 1 (mod p) by Theorem 6.1, 
and the corollary follows when we multiply both sides by a. If p does divide 
a, then ap = 0 = a (mod p). I 

Fermât's little theorem has many uses. It provides an alternate way to 
compute the multiplicative inverse a~l of a modulo a prime p: Recall that a - 1 

is the residue class modulo p such that a~1a = aa~l = 1 (mod p). It is defined 
only when p does not divide a. In that situation we have ap~1 = 1 (mod p) 
by Fermat's little theorem. Factoring out one a gives a • ap~2 = 1 (mod p), 
whence a~l = ap~2 (mod p). 

For large p, computing a~l modp by this formula requires roughly the 
same number of bit operations as computing a~l mod p by the extended Eu­
clidean algorithm, provided one uses the following fast exponentiation algo­
rithm, which we state first for integers. 

[Fast Exponentiation] 
Input: An integer n > 0 and a number a. 
Output: The value an. 

e — n 
V = l 
z = a 
while (e > 0) { 

if (e i s odd) y = y • z 
z — z - z 
e = Le/2j 
} 

r e tu rn y 

Note that we did not require a to be an integer. We said a is a "number." 
In fact, the algorithm works when a is anything that can be multiplied asso-
ciatively, such as a real number or even a matrix. When a is a congruence 
class modulo m, we can use the algorithm to compute an mod m while keep­
ing the numbers small (smaller than m, that is), by reducing modulo m after 
each multiplication. The modulus m need not be prime in this application. 

THEOREM 6.2 Complexity of fast exponentiation 
The fast exponentiation algorithm computes an in O(logn) multiplications. 
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The while loop computes z — a2 for 0 < i < k and multiplies a2 into the 
partial product y whenever 6¿ = 1. The instructions inside the while loop 
are performed k = |~log2 n\ times. No more than 2log2 n multiplications are 
performed. I 

If we use this theorem to estimate the number of bit operations needed to 
compute a modular inverse modulo p, the number is 0((logp)3), the same 
complexity as the extended Euclidean algorithm would take to find the same 
inverse. Often, the architecture of the machine will determine which algorithm 
is faster. 

Fermât 's little theorem shows that powers modulo a prime p are periodic 
with period dividing p — 1. 

THEOREM 6.3 Powers are periodic modulo a prime 
Let p be prime and a, e and f be positive integers such that e = f (mod p— 1) 
and p does not divide a. Then ae = a? (mod p). 

PROOF Since e = / (mod p — 1), we can write e = f + m(p — 1) for some 
integer m. Then, by Fermat's little theorem, av~x = 1 (mod p), and we have 

ae = a/+m(p-l) = af ( a P - l ) m = afim = af ( m o d py 

I 

Theorem 6.3 allows us to find the last digits of powers of integers. 

Example 6.1 

Find the low-order decimal digit of 31234. 
Note that 10 = 2 • 5. We will compute 31234 mod 2 and 31234 mod 5, and 

then use the Chinese remainder theorem to combine the residues and find the 
digit 31234 mod 10. First, since 3 is odd, any power of it will be odd because 
the product of odd numbers is always odd. Hence, 31234 mod 2 = 1. Now, 
1234 mod (5 - 1) = 1234 mod 4 = 2. Since 1234 = 2 (mod 4), Theorem 6.3 tells 

PROOF The algorithm works by computing z = a2 while simultane­
ously computing the bits of the binary representation of the exponent n (the 
statement if (e i s odd) means, "if the next bit is a 1") from low order to 
high order, and multiplying the powers a2% selected by the 1 bits into a par­
tial product y. If we write n = J2i=0 &¿2% where each bit 6¿ is 0 or 1, then 
k = [log2 n\ and the algorithm computes 
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us that 31234 = 32 = 9 = 4 (mod 5). Therefore, the low-order decimal digit of 
31234 is the least nonnegative solution x to the system 

x = 1 (mod 2) 

x = 4 (mod 5), 

which is easily seen to be x = 9. 

Fermât 's little theorem can almost be used to find large primes. The theo­
rem says that if p is prime and p does not divide a, then oP~l = 1 (mod p). 
Thus, this theorem gives a test for compositeness: If p is odd and p does not 
divide a, and dP~l ^ 1 (mod p), then p is not prime. 

If the converse of Fermât's theorem were true, it would give a fast test for 
primality. The converse would say, if p is odd and p does not divide a, and 
ap~l = 1 (mod p), then p is prime. This converse is not a true statement, 
although it is true for most p and most a. If p is a large random odd integer and 
a is a random integer i n 2 < a < p — 2, then the congruence ap~1 = 1 (mod p) 
almost certainly implies that p is prime. However, later we will see that there 
are more reliable tests for primality having the same complexity. In Theorem 
6.10, we will prove a true statement quite similar to the false converse. 

DEFINITION 6.1 An odd integer p > 2 is called a probable prime to 
base a if ap~1 = 1 (mod p). A composite probable prime to base a is called 
a pseudoprime to base a. 

If one had a list of all base a pseudoprimes < L, then the following instruc­
tions would form a correct primality test for odd integers p < L: 

1. Compute r — ap~l mod p. 
2. If r / 1, then p is composite. 
3. If p appears on the list of pseudoprimes < L, then p is composite. 
4. Otherwise, p is prime. 
Although this algorithm has occasionally been used, there are much better 

tests, some having the same complexity. 
There are only three pseudoprimes to base 2 below 1000. The first one is 

p — 341 = 11 - 31. By fast exponentiation or otherwise, one finds 2340 = 
1 (mod 341). 

The second pseudoprime p to base 2 has a remarkable property. This num­
ber is p = 561 = 3 • 11 • 17. Not only is 2560 = 1 (mod 561), but also 
a560 = 1 (mod 561) for every integer a with gcd(a, 561) = 1. It is a Carmichael 
number. 

DEFINITION 6.2 A Carmichael number is an odd composite positive 
integer which is a pseudoprime to every base relatively prime to it. 
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The bad news is that there are infinitely many Carmichael numbers [2]. The 
good news is that Carmichael numbers are so rare that if you choose a random 
large odd number, it almost certainly will not be a Carmichael number. 

6.2 Euler's Theorem 
Euler's theorem generalizes Fermât 's little theorem to composite moduli and 
is even more useful for cryptography than Fermât's little theorem. For a 
composite modulus, the analogue of the exponent p— 1 is the size of a reduced 
set of residues. 

DEFINITION 6.3 A reduced set of residues (RSR) modulo m is a 
set of integers R, each relatively prime to m, so that every integer relatively 
prime to m is congruent to exactly one integer in R. 

THEOREM 6.4 The GCD depends only on the residue class 
Ifa = b (mod m), then gcd(a,ra) = gcd(ò, ra). 

PROOF The congruence means that a = b + mq for some integer q. The 
theorem then follows from Theorem 3.6. I 

In view of Theorem 6.4, one may construct a reduced set of residues by 
starting with a complete set of residues and deleting the members which are 
not relatively prime to the modulus. If one begins with the standard CSR 
{ 1 , . . . ,ra} and deletes the numbers not relatively prime to ra, one gets the 
standard RSR, namely the set of all i in 1 < i < m with gcd(i,ra) = 1. All 
RSR's modulo m have the same size because the definition gives a one-to-one 
correspondence between the elements of two RSR's. 

DEFINITION 6.4 The common size of all RSR's modulo m is called the 
Euler phi function, <t>{m), of m. 

The Euler phi function is sometimes called the totient function. 
If we consider the size of the standard RSR, we get this alternate definition: 

(f)(m) is the number of i in 1 < i < m with gcd(z, m) = 1. 

THEOREM 6.5 A multiple of an RSR is an RSR 
Let a be relatively prime to m. Let {ru . . . ,r^(m)} be an RSR modulo m. 

Then { a r i , . . . , ar^m^} is also an RSR modulo m. 

PROOF We first show that each integer ari is relatively prime to m. 
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Suppose not. Then gcd(ar¿,ra) > 1 for some ¿. Hence there is a prime p 
which divides the gcd, so p divides both m and av{. Since gcd(a, m) = 1 and 
p|ra, p cannot divide a. Thus gcd(p, a) = 1 and by Lemma 4.1, p|r¿. Hence 
p divides both m and r¿, so p| gcd(ra,r¿) and gcd(ra,r¿) > 1, contrary to the 
hypothesis that gcd(r¿, m) = 1 because r¿ is a member of an RSR modulo ra. 

So far we know that the elements of {ar\,..., ar^^ } are relatively prime 
to m and that the set has the correct size <j)(m) to be an RSR modulo ra. We 
need only show that no two members of the set are congruent to each other. 
Suppose to the contrary that ari = arj (mod ra). Then Theorem 5.5 shows 
that Ti = Tj (mod ra), and soi — j because {r\,..., r^(m)} is an RSR modulo 

m. I 

Now we can prove the main theorem of this chapter. 

THEOREM 6.6 Euler's theorem 
Let m > 1 and gcd(a,ra) = 1. Then a^m"> = 1 (mod m). 

PROOF Let { r i , . . . ,r^(m)} be an RSR modulo m. By Theorem 6.5, the 
set {a r i , . . . ,ar«£(m)} is an RSR modulo m, too. Therefore, for all ¿, there is 
a unique j so that r¿ = ar^ (mod m). Then 

Since gcd ( nf=i r ^ m ) = 1J w e c a n cancel, by Theorem 5.5, and get a^(m) = 

1 (mod m). I 

Euler's theorem has many corollaries. First, we can derive Fermat's little 
theorem (Theorem 6.1) as a corollary: If m = p is prime, then (¡>{p) = p — 1 
because the numbers 1,2,... ,p — 1 are all relatively prime to p, and so they 
form an RSR modulo p. Also since p is prime, the statement "a is relatively 
prime to p" has the same meaning as the statement "p does not divide a." 
Thus, Euler's theorem for a prime modulus says that if p does not divide a, 
then ap~1 = 1 (mod p), which is just Fermat's theorem. 

Another corollary gives an alternative to the extended Euclidean algorithm 
for computing modular inverses. 

COROLLARY 6.2 
Suppose m > 1 and gcd(a, m) = 1. Then a ^ m ) _ 1 mod m is a multiplicative 

inverse of a modulo m. 

PROOF We have a (a^^'1 mod m) = a^ m ) = 1 (mod m). I 
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since g^(m) = 1 (mod m), by Euler's theorem. I 

This corollary allows us to give a different solution to an earlier example, 
this time without using the Chinese remainder theorem. 

Example 6.2 

Find the low-order decimal digit of 31234. 
We need to find the residue 31234 mod 10. It is easy to see that an RSR 

modulo 10 is {1,3,7,9} because these four integers are relatively prime to 10, 
while the other integers between 1 and 10 are not. Thus, 0(10) = 4. Now 
1234 mod 4 = 2, so that 1234 = 2 (mod 4). By Corollary 6.3, 

31234 _ 3 2 = g ( m o d 1 0 ^ 

The answer 9 is the same answer we obtained in the previous section. 

In order to use Euler's theorem, we must be able to compute <j>(m). The 
next two theorems provide a way to do this when we know the factorization 
of m. 

DEFINITION 6.5 A real-valued function f(x) denned for positive inte­
gers is called multiplicative if f(ab) = f(a)f(b) whenever gcd(a, b) = 1. 

DEFINITION 6.6 The Cartesian product of two sets S and T is the 
set S x T of all ordered pairs (s, t) with s G S and t G T. 

The set S x T is called the Cartesian product because when S and T are 
finite sets, the number of elements in S xT equals the product of the number 
of elements in S times the number of elements in T. It is called Cartesian 
because Descartes invented it. 

PROOF We have x = y + k(j)(m) for some integer fc, so 

COROLLARY 6.3 
Let m > 1, x, y and g be positive integers with gcd(#,ra) = 1. If x = 

y (mod (¡>{m)), then gx = gy (mod m). 

For large m, computing a - 1 mod m by this formula requires roughly the 
same number of bit operations as computing a - 1 mod m by the extended 
Euclidean algorithm. However, the latter must be used if <p(m) is unknown. 

Here is another corollary of Euler's theorem, useful in cryptography. 
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THEOREM 6.7 The Euler phi function is multiplicative 
The Euler phi function, (¡){x), is multiplicative, that is, (f)(mn) = (¡){m)(j){n) 

whenever m and n are relatively prime. 

PROOF The statement is trivial if ra = 1 or n — 1. We assume now that 
m > 1 and n > 1. 

For positive integers &, let R(k) be the standard RSR modulo fc, that is, 
the set of all i in 1 < i < k with gcd(i, k) — 1. Note that R(l) — {1}, but k 
is not an element of R(k) for k > 1. The size of R(k) is <j>(k). 

We will show that (p(mn) — (j)(m)(j)(n) by constructing a one-to-one corre­
spondence between R(mn) and R(m) x R(n). Define a function / from R(mn) 
into R(m) x R(n) by 

f(x) = (x mod m, x mod n). 

We must show that the function is well defined. Suppose x is relatively prime 
to mn. Then gcd(#,ra) = 1 and gcd(x mod ra,ra) = gcd(x,ra) = 1. Also, 
1 < x mod ra < ra — 1 because m > 1. Therefore, x mod m is in R(m). 
Similarly, x mod n is in R(n). Therefore / is well defined. 

Now define a function g from R(m) x R(n) to R(mn) as follows. Given a 
pair (a, 6) in i2(ra) x R(n), use the Chinese remainder theorem to find the 
unique solution x — g((a,b)) to the congruences 

x = a (mod ra) 

x = b (mod n) 

with 0 < x < mn. We now show that x really is an element of R(mn). Note 
first that gcd(x,ra) = gcd(a,ra) = 1 because x = a (mod ra) and a is in 
R(m). (We have used Theorem 6.4 here.) Similarly, gcd(x,n) = 1. If x were 
not in R(mn), then gcd(x,ran) > 1. Suppose a prime p divides gcd(x,ran). 
Then p\mn and hence p\m or p\n by Lemma 4.2. If p|ra, then p|gcd(x,ra), 
which cannot happen. Likewise, p cannot divide n either. Therefore, x is in 
R(mn) and the function g is well defined. 

It is clear from their definitions that / and g are inverse functions to each 
other. Therefore, R(mn) and R{m) x R(n) have the same size and <j>{mn) = 
(f){m)(t){n). I 

THEOREM 6.8 Formulas for the Euler <j> function 
Let p be prime, and e and ra be positive integers. Then: 

1 . </>{p) =p-l, 

2. ct>(pe)=Pe-Pe-1, 

3. if m = n ÎL iP iS then <Kn) = n L i {pV -ti1"1), and 

4. «m) = m n g | m ) î p r i m e ( l - j ) . 



Euler's Theorem and Its Consequences 83 

Now use Part 2. 
4. Factor out p\{ from the i-ih factor in the product in Part 3. These 

factors multiply to produce m and the remaining factors give n¿=i ( 1 "~ h)-

I 

The following corollary is just a special case of Part 3 of the theorem, but 
it is important for the RSA cipher. 

COROLLARY 6.4 
Ifp and q are distinct primes, then <j>(pq) = (p — l)(q — 1). 

The next corollary leads to a true converse of Fermât 's little theorem. 

COROLLARY 6.5 
Ifm>l is composite, then (f){m) < m — 2. 

PROOF If m is a prime power pe with e > 1, then </>(m) — pe — pe~x < 
pe — 2 because p > 2. 

If m has at least two different prime factors p and q, then these two primes, 
at least, are between 1 and m — 1 and not relatively prime to m, so </>(ra) < 
(ra-l)-2. I 

DEFINITION 6.7 If m > 1 and gcd(a,m) = 1, then the order of a 
modulo m is the smallest positive integer e for which ae = 1 (mod m). 

The order e of a modulo m is well defined because, by Euler's theorem, 
a<t>(™>) = i (mod m) when gcd(a,ra) = 1, so that 1 < e < 0(m). 

Classical number theory books write "a belongs to the exponent e" for "a 
has order e." 

THEOREM 6.9 Multiples of the order 
Let m > 1, gcd(a,ra) = 1 and e be the order of a modulo m. Then the 

positive integer x is a solution ofax = l (mod m) if and only if e\x. 

PROOF 1. The p — 1 numbers 1 , . . . ,p — 1 are all relatively prime to p. 
2. The pe numbers 1 , . . . ,pe are all relatively prime to p except for the pe~l 

multiples of p: p, 2p,... ,pe~lp. 
3. Using Theorem 6.7 and the fact that powers of different primes are 

relatively prime, we have that if m = n¿=i PV 5 ̂ n e n 
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P R O O F If e|x, say x = ek, then ax = (a6)^ = 1* = 1 (mod m) because 
ae = 1 (mod m). Now suppose ax = 1 (mod m). Use the division algorithm, 
Theorem 3.3, to write x = eq + r with 0 < r < e. Then ax = aeqJrr = 
(ae)9a r = a r (mod m). But ax = 1 (mod m), so a r = 1 (mod m). Since e 
is the smallest positive integer for which ae = 1 (mod m) and 0 < r < e, we 
must have r = 0. Therefore e\x. I 

COROLLARY 6.6 
Ifm>l and gcd(a, m) = 1, then tne order of a modulo m divides 4>(m). 

P R O O F Euler's theorem tells us that a^(m) = 1 (mod m); so, the order 

of a modulo m divides (¡>{m) by Theorem 6.9. I 

Now we can give our first prime-proving theorem. It is a true converse to 
Fermât's little theorem. 

THEOREM 6.10 Lucas-Lehmer m - 1 primality test 
Let m > 1 and a be integers such that a171"1 = 1 (mod m), but a^m~~l^p ^ 

1 (mod m) for every prime p dividing m - 1. Then m is prime. 

P R O O F The congruence a m _ 1 = 1 (mod m) and Theorem 6.9 imply that 
gcd(a, m) = 1 and the order e of a modulo m divides m — 1. The second 
condition, a^m~l^p ^ 1 (mod m) for every prime p dividing m — 1, shows 
that e is not a proper divisor of m — 1. Therefore, e must equal m - 1. But by 
Corollary 6.6, e divides 4>(m). Hence, m — 1 < <f>{m). But by Corollary 6.5, if 
m > 1 is composite, then <j>(m) <m — 2. Thus, m cannot be composite. I 

This theorem can be used to prove primeness of almost any prime m for 
which we know the factorization of m — 1. If m is an odd prime, then usually 
a small prime a can be found quickly which will satisfy all the conditions. The 
principal difficulty in using the theorem to prove that a prime m is prime is 
not the search for a, but rather finding the factorization of m — 1. If m — 1 
has been factored, then one can use this simple algorithm to try to prove it 
is prime. 

[Lucas-Lehmer m — 1 primality test] 
1. Choose a — 2 or choose a random a in 2 < a < m — 1. 
2. Compute r = a m _ 1 mod m. 
3. If r ^ 1, then m is composite. 

4. Check'that a ^ - 1 ^ ^ 1 (mod m) for each prime p dividing m — 1. 
5. If all these incongruences are true, then m has been proved prime. 
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6. If they are not satisfied, then either choose another a (either the next 
small prime or a new random 2 < a < m — 1) and go back to Step 2, or else 
give up if many a have already been tried. 

If m is a large prime, then the expected number of a this algorithm must try 
before finding one that works is known to be < 2 In In m. See Theorem 6.18. 
If ra is composite, but not a Carmichael number (Definition 6.2), then the 
algorithm will almost certainly stop in Step 3. If m is a Carmichael number, 
then the algorithm will probably stop when you give up in Step 6. 

THEOREM 6.11 Complexity of Lucas-Lehmer m - 1 primality test 
If the input m of the Lucas-Lehmer ra — 1 primality test is prime and the com­

plete prime factorization ofm — 1 is given, then the average time complexity 
of the algorithm is 0(log4ra(loglogra)) bit operations. 

PROOF We have already mentioned that the expected number of a which 
must be tried is < 21nlnra and will not prove this here. See Theorem 6.18. 
This estimate gives the factor log logra in the theorem statement. 

It is easy to see that for each a, most of the work is the calculation of 
a(™-i)/p m o c [ m in Step 4. Each of these exponentiations takes O(logra) 
multiplications by Theorem 6.2, and each multiplication takes 0(log2ra) bit 
operations by Theorem 3.5. For each a, the exponentiation must be done for 
each prime p dividing m — 1. No integer n can have more than logn prime 
divisors because each prime is > 2 and n is the product of its prime divisors, 
some of which may be repeated. The total complexity is 

O ((log m - 1) (log2 ra) (logra) (log logra)) = O (log4 ra (log logra)) 

bit operations. I 

We finish this section by stating a generalization of the prime number theo­
rem (Theorem 4.7). Sometimes we need a prime that lies in a specific congru­
ence class modulo d, that is, it lies in a specific arithmetic progression a + dn. 
If the first term a and common difference d have a common factor > 1, then 
every number in the arithmetic progression is divisible by this common factor, 
so there cannot be more than one prime. 

Example 6.3 

In the congruence class 9 mod 12, which is the same as the arithmetic progres­
sion 9 + 12n, every number is divisible by gcd(9,12) = 3, and there are no 
primes. The congruence class 3 mod 12 contains only the prime 3 since every 
number of the form 3 + Yin is divisible by 3. 

But if the first term a and common difference d are relatively prime, then 
the arithmetic progression a + dn contains infinitely many primes. In fact, 
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The theorem says that, roughly speaking, half of the primes are = 1 (mod 4) 
and half are = 3 (mod 4). 

There is a more precise version of this theorem that expresses 7ra?d(x) as a 
main term plus an error term. The extended Riemann Hypothesis, ERH, 
is a statement about the zeros of certain functions, which would imply that 
the error term in the theorem is as good as possible. The ERH is a famous 
unsolved problem in number theory. If proved, the ERH would have many 
consequences throughout number theory. 

6.3 Primitive Roots 
In the previous section, when gcd(a, m) = 1, we defined the order of a modulo 
m to be the smallest positive integer e for which ae = 1 (mod TO). We showed 
that the order divides </>(ra) and so cannot be larger than </>(ra). Numbers a 
whose order modulo m equals </>(ra) have important uses in cryptography. 

DEFINITION 6.8 An integer g whose order modulo m is (¡>{m) is called 
a primitive root modulo m. 

If g is a primitive root modulo TO, then gcd(#,ra) = 1 because the order of 
g would be undefined if gcd(#,m) > 1. 

Some positive integers TO have primitive roots and some do not. 

THEOREM 6.13 Which integers have primitive roots 
A positive integer m has a primitive root if and only if m — 2, or 4, or pe or 

2pe, where p is an odd prime and e is a positive integer. If m has at least one 
primitive root, then it has exactly <j>(<j>(m)) of them. 

Some versions of this theorem in number theory texts state that 1 has order 

for fixed d every arithmetic progression a + dn which could have infinitely 
many primes has asymptotically the same number of primes < x. There are 
.(j){d) congruence classes relatively prime to d, one for each element of an RSR 
modulo m, and each class has about l/(j)(d) of the primes. 

THEOREM 6.12 Dirichlet's theorem, the prime number theorem for arith­
metic progressions 
Suppose a and d > 1 are integers with gcd(a, d) = 1. Let 7raid(x) the number 

of primes = a (mod d) which are < x, that is, the number of primes of the 
form a + dn<x. Then 
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1 modulo 1, so 1 is a primitive root modulo 1, and 1 is added to the list of the 
integers m having primitive roots. We omit the proof of this theorem, which 
has many steps. We focus instead on how to find primitive roots. 

Consider first the powers of 2. It is easy to see that 1 is a primitive root 
modulo 2 and 3 is a primitive root modulo 4. There is no primitive root mod­
ulo 8 because 0(8) = 4 and the possible candidates 3, 5 and 7, for primitive 
root modulo 8, all have order 2. Although there is no primitive root modulo 
2e for e > 3, the number 5 has order 2e~2 modulo 2e for every e > 3, and this 
order is 0(2e)/2 and is as large as possible. 

Theorem 6.13 says that every prime p has primitive roots, in fact 0(0(p)) = 
0(p— 1) of them. If one proves p to be prime via the Lucas-Lehmer m — 1 test, 
Theorem 6.10, then the number a satisfying all the hypotheses is a primitive 
root modulo p. The Lucas-Lehmer m — 1 primality test provides an efficient 
way of finding primitive roots for large primes. The complexity of this method 
of finding primitive roots is given in Theorem 6.11. 

If p is an odd prime and g is a primitive root modulo p, then either g or 
g + Pi whichever one is odd, is a primitive root modulo pe for every e > 1. 
(However, some even numbers are primitive roots modulo pe.) If p is an odd 
prime and g is a primitive root modulo p2, then g is a primitive root modulo 
pe for every e > 1. If p is an odd prime and g is a primitive root modulo p e , 
then either g or g + p e , whichever one is odd, is a primitive root modulo 2pe 

for every e > 1. (Of course, no even number can be a primitive root modulo 
2pe.) 

Example 6.4 

Let p — 3. Then 0(0(3)) = 0(2) = 1; so, there is only one primitive root modulo 
3, namely g = 2. Since 2 + 3 = 5 is odd, 5 is a primitive root modulo 3e for all 
e > 1. Actually, 2 is a primitive root modulo 9 because 0(9) = 6 and the powers 
of 2 modulo 9 are: 2, 4, 8, 7, 5, 1. Therefore, 2 is a primitive root modulo 3e 

for every e > 1. Since, 0(0(9)) = 0(6) = 2, we have found all of the primitive 
roots modulo 9. They are 2 and 5. 

Example 6.5 

Let p = 5. Then 0(0(5)) = 0(4) = 2, so there are two primitive roots modulo 
5, namely g = 2 and 3. Since 2 + 5 = 7 is odd, 7 is a primitive root modulo 5e 

for all e > 1, as is 3. 

The following theorems give useful properties of primitive roots. In many 
applications of the first three theorems, a will be a primitive root modulo m 
and its order h = 0(m). 

THEOREM 6.14 Order of a power 
If gcd(a, m) = 1 and a has order e modulo m, then ak has order e/ gcd(e, k) 

modulo m. 



88 Cryptanalysis of Number Theoretic Ciphers 

PROOF Let j be the order of ak modulo m. Let d — gcd(e, fc), so we may 
write e — bd and k = cd for some integers b and c with gcd(ò, c) = 1. We have 

(ak)b = acdb = (abd)c = (ae)c = Ie = 1 (mod m). 

Therefore, by Theorem 6.9, j\b. On the other hand, afej = (ak)j = 1 (mod m) 
since j is the order of ah. Using Theorem 6.9 once more, we see that e\kj. 
This may be written as bd\cdj, so b\cj. But gcd(ò, c) = 1, so b\j by Lemma 
4.1. Therefore, j = 6 = e/d = e/ gcd(e, fe). I 

The next theorem generalizes Theorem 6.3 and Corollary 6.3. It shows that 
if we wish to compute powers of a modulo m, then we should work modulo 
the order of a in the exponent. 

THEOREM 6.15 Order is the modulus for the exponent 
If gcd(a, m) — 1 and a has order e modulo m, then a1 = a-7 (mod m) if and 

only if i = j (mod e). 

PROOF Suppose first that i = j (mod e). Then i = j + en for some 
integer n and we have 

a* = aj+en = a^'(ae)n = a ñ n = â ' (mod m). 

Conversely, suppose a1 = a-7 (mod m). Interchanging ¿ and j if necessary, we 
may assume that i > j , so that i — j > 0. Now gcd(a,ra) = 1 by hypothesis. 
Therefore, we may cancel a-7 from each side and obtain a ï _ J = 1 (mod m). 
Therefore, by Theorem 6.9, e\(i — j), so i = j (mod e). I 

THEOREM 6.16 The power residues are distinct 
Suppose gcd(a,m) = 1 and a has order e modulo m. Then the powers 

1, a, a 2 , . . . , a e _ 1 are aii different modulo m. 

PROOF Suppose a1 = a-7 (mod m) where 0 < ¿ < j < e — 1. Then 
¿ = j (mod e) by Theorem 6.15. Hence, e\(j — i), and this cannot happen for 
0 < z < j < e — 1 unless i = j . Therefore, the e powers of a must be distinct. 

THEOREM 6.IT The powers of a primitive root form an RSR 
If g is a primitive root modulo m and gcd(ò, m) = 1, then there is exactly 

one exponent k in 0 < k < <f>(m) with gk = b (mod m). 

PROOF There cannot be more than one such k by Theorem 6.16. Since 
gcd(#,ra) = 1, every power gl is relatively prime to m. Therefore, the <j){m) 
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numbers gl mod m for i = 0 , 1 , . . . , (f)(m) — 1 are all relatively prime to m. 
Thus, they must be contained in an RSR modulo m. They are all different 
by Theorem 6.16. There are enough of the powers to form an RSR modulo 
ra. Hence they must be an RSR modulo ra, and so every integer b relatively 
prime to ra must be congruent to one of them. I 

Using analytic number theory to prove a lower bound on (p(p — 1), one can 
obtain the following result. 

THEOREM 6.18 A lower bound on the number of primitive roots 
Ifp > 1012 is prime, then there are at least (p - l)/(2\n\np) primitive roots 

modulo p. 

See Exercise 4.1 of [33] for an outline of the proof. We used Theorem 6.18 
in the proof of Theorem 6.11. 

6.4 Discrete Logarithms 
If a modulus ra and a primitive root g are fixed, then the exponents on the 
powers of g have properties similar to those of logarithms. Number theorists 
and cryptographers give different names to these exponents. 

DEFINITION 6.9 Let g be a primitive root modulo ra. If the integer b is 
relatively prime to ra, then by Theorem 6.17 there is a unique integer k such 
that gk = b (mod ra) and 0 < k < (j)(m). This integer k is called (by number 
theorists) the index of b to base g modulo ra and (by cryptographers) the 
discrete logarithm ofb to base g modulo ra. 

The notations k = mdgb and k = I>oggb are used for the index or discrete 
logarithm of b to base g modulo ra (which are the same thing). Both notations 
suppress the modulus ra, which is assumed to be fixed. We will call k a 
discrete logarithm rather than an index. We write "Log" to emphasize that 
it is different from ordinary logarithms, which are denoted by "log." In this 
notation, we have b = gLog9b (mod m). 

Remember that by Theorem 6.13 only the moduli m = 2, 4, pe and 2pe have 
primitive roots. Thus, m must be one of these numbers in order for discrete 
logarithms modulo m to be defined. 

Many useful properties of discrete logarithms are given in the following 
theorem. Note their similarity to properties of ordinary logarithms. 

THEOREM 6.19 Properties of discrete logarithms 
Let g be a primitive root modulo m. Let a and b be integers relatively prime 
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and Part 3 follows from Theorem 6.15. 
4. Let i = Logg(g

k). We have gl = gk (mod m) by the definition of discrete 

logarithm. Hence, i — Logg(g
k) = k (mod </>(m)) by Theorem 6.15. 

5. Note first that gLo^(ak) = a
k (mod m) and 

by definition. Hence, # L o M a ) = gk'Lo&ga (mod m), and Part 5 follows from 

Theorem 6.15. I 

For example, 2 is a primitive root modulo 13. The powers of 2 modulo 13 
are given in this table. 

¿fc: 0 1 2 3 4 5 6 7 8 9 10 11 
2k mod 13: 1 2 4 8 3 6 12 11 9 5 10 7 

Therefore, the discrete logarithms modulo 13 are given in this table. 

0 : 1 2 3 4 5 6 7 8 9 10 11 12 
Log26: 0 1 4 2 9 5 11 3 8 10 7 6 

The second table may be formed from the first by sorting the columns in 
the first table in increasing order of the numbers in the second row and then 
swapping the two rows. 

Therefore, 

and 

P R O O F 1. This is immediate from g° = 1 and g1 = g. 
2. Let i = Logpa and j = Loggb. Then 0 < ¿, j < (¡>(m), a = gl (mod m) 

and b = gj (mod m). By Theorem 6.15, g% = gj (mod m) if and only if 
i = j (mod 0(m)). Then Part 2 follows from the definition. 

3. By the definition of discrete logarithm, 

to m. Then 
1. Loggl = 0 and Loggg = 1, 
2. a = b (mod m) if and only ifLogga = Loggb, 
3. Logg(ab) = Logga + Logp6 (mod 0(m)), 

4. Log5(^
fe) = fc (mod (j)(m)), and 

5. Logg(a
k) = fc(Log^a) (mod 0(m)). 
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6.5 Exercises 
1. Find the last digit of the base 13 expansion of 7200. (The exponent 200 

is in decimal.) 

2. The fast exponentiation algorithm processes the bits of the exponent n 
from right to left as it computes an. The following algorithm uses the 
same bits from left to right to compute an. Show that it is correct for 
n > 2, and compare its complexity to that of fast exponentiation. 

[Left to Right Fast Exponentiation] 
Input: An integer n > 2 and a number a. 
Output: The value an. 

wri te n in binary as n = ^i=0 b{2%, 
with bi = 0 or 1, and bk 

y = a 
for (z = k — 1 down to 0) { 

y = y2 

if (bi = 1) y = y -x 
} 

return y 

= 1 

3. Find a reduced residue system modulo 12 consisting entirely of multiples 
of 5. 

4. Prove that if m > 2, then the sum of the numbers in any reduced residue 
system modulo m is a multiple of m. 

5. Show that if p and q are distinct primes, then pq~x +qp~1 = 1 (mod pq). 

6. Find the last hexadecimal digit of 71234. (The exponent 1234 is in 
decimal.) 

7. Find the last two decimal digits of 71234. 

8. Find <j)(m) for each integer m between 20 and 30. 

9. For which positive integers m is (¡>(rn) odd? 

10. Solve a quadratic equation to find the primes p and g, given that n = 
pq = 4386607 and 0(n) = 4382136. 

11. Show that every odd composite integer is a pseudoprime to base 1 and 
to base —1. 

12. Find a primitive root modulo 19. How many primitive roots modulo 19 
are there? 
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13. Use the Lucas-Lehmer m — 1 primality test to prove that 17 is prime. 

14. Use the Lucas-Lehmer m — 1 primality test to prove that 23 is prime. 

15. Multiply ( 7 x 9 ) mod 13 by adding the discrete logarithms of 7 and 9, 
using the tables at the end of Section 6.4. 

16. Find Logg(m — 1) when m > 2 and g is a primitive root modulo m. 



Chapter 7 

Second Degree 
Congruences 

In Section 5.2, we learned how to solve linear congruences. This chapter in­
troduces quadratic congruences. Some integer factoring algorithms and some 
protocols require the rapid solution of quadratic congruences. Certain pri-
mality testing methods become improved by the ability to tell whether some 
second degree congruences have solutions, although one need not find them. 
See the number theory texts [99], [78] and [98] for more about second degree 
congruences. 

The most general quadratic congruence is 

ax2-\-bx-\-c = 0 (mod m) (7.1) 

where a, b and c are integers. If instead we had to solve a quadratic equation 
ax2 + bx + c = 0, we could use the quadratic formula 

93 

(7.2) 

Suppose a, b and c are integers and we wish to try to use Formula (7.2) to 
solve Congruence (7.1). We could perform the addition, subtraction and mul­
tiplication modulo m in Formula (7.2) without difficulty. We could perform 
the division by 2a modulo m provided gcd(2a, m) = 1. (Note that problems 
arise here when m is even.) The part of the problem that is new in this chap­
ter is taking a square root modulo m. We must solve y2 = r (mod m), where 
r = b2 — Aac. This congruence may be solved by first solving it modulo each 
prime power divisor of m and then combining the solutions via the Chinese 
remainder theorem. We will see that the solutions modulo a prime power pk 

are obtained by first solving z2 = r (mod p) and then "lifting" those solutions 
to solutions modulo pk. We begin by studying z2 = r (mod p), where p is 
prime. 
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7.1 The Legendre Symbol 
The solution to the congruence x2 = r (mod 2) is simple. There is always one 
solution modulo 2. If r = 0, then x = 0 (mod 2). If r = 1, then x = 1 (mod 2). 

When p is an odd prime, the congruence x2 = r (mod p) has solutions for 
some r and no solution for other r. Consider this table of squares modulo 11: 

x : 0 1 2 3 4 5 6 7 8 9 10 
x2 mod 1 1 : 0 1 4 9 5 3 3 5 9 4 1 

Note that the congruence classes 0, 1, 3, 4, 5, 9 are squares and the classes 
2, 6, 7, 8, 10 are not squares modulo 11. The class 0 has only one square 
root, but the other classes which are squares each have two square roots. For 
example, the solutions to x2 = 3 (mod 11) are x = 5 and 6 (mod 11). 

The congruence x2 = 0 (mod p) always has the unique solution x = 
0 (mod p) when p is prime. We exclude this special case from the next 
definition. 

DEFINITION 7.1 If m is a positive integer and r is relatively prime to 
m, then we say r is a quadratic residue (QR) modulo m if the congruence 
x2 = r (mod m) has a solution, and we say r is a quadratic nonresidue 
(QNR) modulo m if the congruence x2 = r (mod m) has no solution. 

Thus, 1, 3, 4, 5 and 9 are the quadratic residues modulo 11 and 2, 6, 7, 8 
and 10 are the quadratic nonresidues modulo 11. 

In fact, 1 is always a quadratic residue modulo ra. It always has 1 and —1 
as square roots. When m is prime, there are no other square roots. 

THEOREM 7.1 Square roots of 1 modulo p 
Ifp is prime, then x2 = 1 (mod p) if and only if x = ±1 (mod p). 

PROOF We may write the quadratic congruence as (x — l)(x + 1) = 
x2 — 1 = 0 (mod p). It holds if and only \îp\(x—l)(x + l). By Lemma 4.2, this 
means either p\(x - 1) or p\(x + 1), that is, x = 1 (mod p) or x = — 1 (mod p). 

An alternate proof of Theorem 7.1 uses Theorem 5.8. That theorem says 
that the congruence x2 — 1 = 0 (mod p) has no more solutions than its degree. 
Clearly, 1 and —1 are solutions. There can be no more solutions. 

COROLLARY 7.1 
If g is a primitive root modulo an odd prime p, then g^"1)/2 = — 1 (mod p). 
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PROOF Let x = g^~1^2. Then x2 = ^ _ 1 = 1 (mod p), so by Theorem 
7.1, either x = 1 (mod p) or x = —1 (mod p). But if x = 1 (mod p), then g 
would not be a primitive root. Therefore, x = - 1 (mod p). I 

THEOREM 7.2 There are either 0 or 2 square roots of r modulo p 
if p is an odd prime and r is not a multiple of p, then the congruence 

x2 = r (mod p) has either no solution or exactly two incongruent solutions 
modulo p. 

PROOF Suppose x — a is a solution to x2 = r (mod p). Then # = — a is 
also a solution because (—a)2 = a2 = r (mod p) and —a^a (mod p) since 
the odd prime p does not divide a — (—a) = 2a. (If p|a, then p|a2 and so p|r.) 

Suppose 6 were a third solution to x2 = r (mod p). Then b2 = r = 
a2 (mod p), so p divides b2 — a2 = (b — a)(b + a). By Lemma 4.2, this means 
either p\(b — a) or p\(b + a), that is, ò = a (mod p) or 6 = —a (mod p). 

We have shown that if the congruence x2 = r (mod p) has a solution, then 
it has exactly two of them. Therefore it has either no solution or exactly two 
solutions. I 

THEOREM 7.3 Equal numbers of quadratic residues and nonresidues 
If p is an odd prime, then there are exactly (p - l ) /2 quadratic residues 

among 1,2,... ,p — 1, and the same number of quadratic nonresidues. 

PROOF Every one of the p — 1 numbers x = 1,2,... ,p - 1 satisfies one 
of the congruences x2 = r (mod p), namely, the one with v — x2 mod p. 
But by Theorem 7.2, each congruence x2 = r (mod p) has either zero or 
two solutions. Therefore, as r goes from 1 to p — 1, half of the congruences 
x2 = r (mod p) have two solutions x and the other half have no solution. The 
(p — l ) /2 values of r (mod p) for which x2 = r (mod p) has two solutions are 
the quadratic residues modulo p and the other (p — l ) /2 values of r are the 
quadratic nonresidues. I 

DEFINITION 7.2 Let p be an odd prime and r be an integer. The 
Legendre symbol (r/p) is deñned tobe+1 ifr is a quadratic residue modulo 
p, — 1 ifr is a quadratic nonresidue modulo p and 0 ifp divides r. 

This notation was introduced by the French mathematician A.-M. Legendre 
more than 200 years ago. 

THEOREM 7.4 Euler's criterion for r being a quadratic residue 
Let p be an odd prime and r an integer not divisible by p. Then r^"1^2 mod 
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P R O O F By Fermât's little theorem, Theorem 6.1, p divides rp x — 1 = 
(r(p-i)/2 _ i)(r(p-i)/2 + 1). By Lemma 4.2 p divides either ( r ^" 1 ) / 2 - 1) or 
(r(p-!)/2 + i) . However, p cannot divide both of these numbers because in 
that case, by Theorem 3.2, it would divide their difference, which is 2, and p 
is odd. Thus, r ^ - 1 ) / 2 = ±1 (mod p). 

If r is a quadratic residue modulo p, then by definition there is an a so that 
a2 = r (mod p), and we have 

r(p-D/2 = (a2)(p-D/2 = flp-l = + 1 ( m o d p ) j 

by Fermat's little theorem. Thus the (p—1)/2 quadratic residues are solutions 
to r ( p - 1 ) / 2 = +1 (mod p). As this congruence has degree (p—1)/2, it can have 
no more than (p — l ) /2 solutions, by Theorem 5.8. Therefore, the (p — l) /2 
quadratic nonresidues must be solutions to r(^p~1^2 = — 1 (mod p). I 

If one merely wishes to know whether the congruence x2 = a (mod p) has 
a solution x, then Euler's criterion, with fast exponentiation to evaluate the 
power, provides an ideal solution. For many purposes in cryptography, this 
algorithm is sufficient. 

COROLLARY 7.2 
Let g be a primitive root modulo an odd prime p. Then the quadratic 

residues modulo p are the powers of g with even exponents and the quadratic 
nonresidues modulo p are the powers of g with odd exponents. 

P R O O F By Corollary 7.1, gb-1)/2 = - 1 (mod p). So if i is even, then 
(0Í)(p-l)/2 = (_!)< = + l j w h ü e if i i s o d d ? t h e n ^)(p-l)/2 = (_1)* = _1 . 

Now apply Euler's criterion, Theorem 7.4. I 

COROLLARY 7.3 
Every primitive root modulo an odd prime p is a quadratic nonresidue modulo 

P-

The following theorem lists some useful properties of the Legendre symbol. 

THEOREM 7.5 Properties of the Legendre symbol 
Let p be an odd prime and a and b be integers. Then 

p = 1 or p — 1. If it is 1, then r is a quadratic residue modulo p, and if it is 
p — 1, then r is a quadratic nonresidue modulo p. In terms of the Legendre 
symbol, 
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1. the number of solutions to the congruence x2 = a (mod p) is 1 + (a/p), 
2. (a/p) = a^" 1 ) / 2 {modp), 
3. (ab/p) = (a/p)(b/p), 
4. ifa = b (mod p), then (a/p) = (b/p), 
5. (1/p) = +1 and ( -1/p) = ( - l ) ^ - 1 ) / 2 , and 
6. if p does not divide a, then (a2/p) = +1 and (a2b/p) = (b/p). 

PROOF Part 1 is clear from the definition of quadratic residue and 
quadratic nonresidue, and from Theorem 7.2. Part 2 follows from Euler's 
criterion if gcd(a,p) = 1. If p divides a, then Part 2 is true because both sides 
are = 0 (mod p). The other parts follow easily from Part 2. I 

One can prove Part 3 directly when (a/p) = (b/p) = +1 as follows: Let 
x2 = a (mod p) and y2 = b (mod p). Then z — xy satisfies z2 = ab (mod p). 
Similar easy proofs can be given when (a/p) = —(b/p), but not when (a/p) — 
(b/p) = - 1 . 

In Part 5, observe that ( - l ) ^ - 1 ) / 2 = +1 when p = 1 (mod 4) and = - 1 
when p = 3 (mod 4), because if p = 4k + 1, then (p — l ) /2 = 2k is even, and 
if p = 4& + 3, then (p - l ) /2 = 2& + 1 is odd. 

By Part 5 of Theorem 7.5, the number 1 is the smallest positive quadratic 
residue modulo any prime p. Some number theoretic algorithms require us to 
find a quadratic nonresidue modulo p. Suppose we try consecutive positive 
integers looking for one. How far must we search to find the first quadratic 
nonresidue? 

THEOREM 7.6 A bound on the least quadratic nonresidue 
If p is an odd prime and n is the smallest positive quadratic nonresidue 

modulo p, then n < 1 + ^/p. 

PROOF Let m = \p/n\ so that (m — l)n < p < mn. Since n > 2 and 
p is an odd prime, we actually must have (m — l)n < p < mn. Therefore, 
0 < mn — p < n. Since n is the smallest positive quadratic nonresidue, mn—p 
must be a quadratic residue modulo p. Thus, 

1 = ((mn-p)/p) = (mn/p) = (m/p)(n/p) = ( ra /p) ( - l ) , 

and (m/p) = — 1 by Parts 4 and 3 of Theorem 7.5. This shows that m is a 
quadratic nonresidue modulo p, and so m > n. Then 

(n - l ) 2 < (n - l)n < (m - l)n < p, 

and n — 1 < y^p, as required. I 

Theorem 7.6 is not the best upper bound on the size of the first quadratic 
residue. Burgess [20] has shown that for every e > 0 there is a po(e) so that 
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the least positive quadratic nonresidue modulo p is < pc+e for all primes 
P > Po(t), where c = l/(4i/e) « 0.1516. A similar bound holds for the 
number of consecutive integers we must try, beginning at any number, until 
we find the first quadratic nonresidue. Even these results seem far from the 
truth. Vinogradov conjectured that for every e > 0 there is apo(e) so that the 
least positive quadratic nonresidue modulo p is < pe for all primes p > po(e). 
Although one cannot prove a good upper bound for the least positive quadratic 
nonresidue, the average number of positive integers which must be tried to find 
a quadratic nonresidue modulo p is 2, by Theorem 7.3. Indeed, the quadratic 
residues and nonresidues seem to be very evenly distributed in the interval 
from 1 to p — 1. 

7.2 The Law of Quadratic Reciprocity 
The Law of Quadratic Reciprocity is a beautiful theorem proved by Gauss 
[45] more than 200 years ago. We do not prove it here because all known 
proofs are long and complicated. 

THEOREM 7.7 Law of Quadratic Reciprocity 
If p and q are distinct odd primes, then (p/q) — (q/p) if at least one of p,q 

is = 1 (mod 4), but (p/q) = -(q/p) if p = q = 3 (mod 4). 

The theorem is often stated in the concise form 

(i)(;)=(-i)VV-
It is easy to see that the power of (—1) on the right side is +1 if either p or 
q is = 1 (mod 4), and —liîp = q = 3 (mod 4); so, this formula is equivalent 
to the statement above. Another way of stating the theorem is that when p 
and q are different odd primes, the two congruences 

x2 = p (mod q) 

y2 = q (mod p) 

are either both solvable or neither is solvable in case either p or q is = 
1 (mod 4), and exactly one of the two congruences is solvable if p = q = 
3 (mod 4). 

Most proofs of Theorem 7.7 prove the following theorem on the way. 

THEOREM 7.8 Supplement to the Law of Quadratic Reciprocity 
Ifp is an odd prime, then the congruence x2 = 2 (mod p) is solvable ifp = 1 

or 7 (mod 8), but not solvable ifp = 3 or 5 (mod 8). 
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Theorem 7.8 has the concise form (2/p) = ( - l ) ( î > " 1 ) / 8 , which one may 
verify by evaluating the exponent modulo 2 for p in the four odd congruence 
classes modulo 8. If p is an odd prime number writ ten in binary with the three 
low-order bits 62&1&0 (where 60 = 1)? then 2 is a quadrat ic residue modulo p 
if and only if 62 = &i • 

Recall t ha t Pa r t 5 of Theorem 7.5 says tha t ( - 1 / p ) = ( - l ) ( i ? - 1 ) / 2 , tha t is, 
the congruence x2 = — 1 (mod p) is solvable when p = 1 (mod 4), but not 
when p = 3 (mod 4). 

One application of the results just s tated is in evaluating Legendre symbols 
by hand with numbers of modest size. 

Example 7.1 

Is the congruence x2 = —22 (mod 59) solvable? 
If we used Euler's criterion, we would have to compute (—22)^59-1^2 mod 59. 

This is a simple matter, even without fast exponentiation, on a small computer, 
but it is tedious to perform correctly by hand. 

By Part 3 of Theorem 7.5, we can write 

(zll) = (ziUA) fliy 
V 59 7 V 5 9 / V597 V59/ 

Part 5 of Theorem 7.5 shows that (-1/59) = - 1 . Theorem 7.8 tells us that 
(2/59) = - 1 . Theorem 7.7 shows that (11/59) = -(59/11), and then (59/11) = 
(4/11) = +1 by Parts 3 and 6 of Theorem 7.5. 

Finally, (—22/59) = (—1)(—1)(—(+1)) = —1, so the original congruence has 
no solution. Note that we performed no exponentiation at all in this solution. 

A more important application of the Law of Quadrat ic Reciprocity is in 
determining which primes q are quadrat ic residues modulo a given odd prime 
p. Theorem 7.8 tells us tha t the odd primes of the forms Sk -f 1 and Sk + 7 
are the ones which have 2 as a quadrat ic residue. 

Example 7.2 

Which odd primes p have 3 as a quadratic residue? 
By the Law of Quadratic Reciprocity, (3/p) = ( p / 3 ) ( - l ) ( p _ 1 ) / 2 . Now (p/3) = 

(1/3) = +1 when p = 1 (mod 3) and (p/3) = (2/3) = - 1 when p = 2 (mod 3). 
Also, ( - l ) ^ " 1 ) / 2 = +1 when p = 1 (mod 4) and ( - l ) ^ " 1 ) / 2 = - 1 when 
p = 3 (mod 4). This means that (3/p) = -hi if and only if p = 1 (mod 3) 
and p = 1 (mod 4), or p = 2 (mod 3) and p = 3 (mod 4), that is, p = 1 or 
11 (mod 12) by the Chinese remainder theorem. 

Example 7.3 

Which odd primes p have 5 as a quadratic residue? 
The Law of Quadratic Reciprocity says that (5/p) = (p/5). The quadratic 

residues modulo 5 are 1 and 4; so, the answer is all primes p = 1 or 4 (mod 5). 
Since p must be odd, this condition is the same as p = 1 or 9 (mod 10), that is, 
all primes whose last decimal digit is 1 or 9. 
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where the symbols on the right side are Legendre symbols. We allow m — 1, 
and deñne (a/1) = 1 for every a. 

If gcd(a,ra) > 1, then some prime factor p of m will also divide a and the 
Legendre symbol (a/p) in the definition of (a/m) will be 0. Thus, the Jacobi 
symbol (a/m) = 0 when a is not relatively prime to m. 

The Jacobi symbol shares many properties with the Legendre symbol. Com­
pare the next theorem with Theorem 7.5. 

THEOREM 7.9 Properties of the Jacobi symbol 
Let m and n be odd positive integers and a and b be integers. Then 

1. ifa = b (mod ra), then (a/m) = (b/m), 
2. (ab/m) = (a/m)(b/m), 
3. (a/mn) = (a/m)(a/n), and 
4. if gcd(a,ra) = 1, then (a2/m) = (a/m2) - +1 , (a2b/m) = (b/m) and 

(a/(m2n)) = (a/n). 

PROOF 1. If a = b (mod m), then a = b (mod p) for every prime 
p dividing m. Hence, (a/p) = (b/p) for every p dividing m by Part 4 of 
Theorem 7.5. Then (a/m) = (b/m) by Definition 7.3. 

2. This formula follows from Definition 7.3 and Part 3 of Theorem 7.5. 
3. This formula is immediate from Definition 7.3. 

Analogous questions for larger primes may be answered in the same way. 
Suppose p is fixed and we ask, which odd primes q have p as a quadratic 
residue? We need to evaluate the Legendre symbol (p/q). If p = 1 (mod 4), 
then (p/q) = (q/p) and the answer is the primes in (p — l ) /2 residues classes 
modulo p, namely the ones which are quadratic residues. Since p and q are 
odd, this set of residue classes is equivalent to a set of (p—1)/2 residues classes 
modulo 2p. If p = 3 (mod 4), then (p/q) = (—l)^-1^2(<z/p), and the answer 
is the primes in p — 1 congruence classes modulo 4p, just as in Example 7.2. 

Another use of the Law of Quadratic Reciprocity is to evaluate the Ja­
cobi symbol, which leads to an algorithm for computing the Legendre symbol 
without factoring the "numerator" and also to improved primality tests. 

1.3 The Jacobi Symbol 

DEFINITION 7.3 Let m be an odd positive integer with prime factor­
ization m = n¿=i PT and tet a be an integer. The Jacobi symbol (a/m) is 
deñned by 
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4. These formulas follow from Parts 2 and 3 and (—l)2 = 1. I 

The next theorem shows that the Jacobi symbol enjoys the same Law of 
Quadratic Reciprocity as the Legendre symbol, and leads to an efficient algo­
rithm for computing Legendre symbols. 

THEOREM 7.10 Law of Quadratic Reciprocity for Jacobi symbols 
l.Ifm is an odd positive integer, then (—1/m) = +1 ifp = 1 (mod 4), and 

(-1/ra) = - 1 ifp = - 1 (mod 4). 
2. If m is an odd positive integer, then (2/ra) = +1 if p = 1 or 7 (mod 8), 

and (2/ra) = - 1 if p = 3 or 5 (mod 8). 
3. If m and n are relatively prime positive integers, then (ra/n) = (n/m) 

if at least one of m,n is = 1 (mod 4), but (ra/n) = —(n/m) if ra = n = 
3 (mod 4). 

PROOF Part 5 of Theorem 7.5 says that if p is an odd prime, then 
the Legendre symbol (—l/p) = ( - l ) ^ - 1 ^ 2 . We will show that (-1/ra) = 
(—l)(m_1)/2, which is equivalent to the statement in Part 1 above. 

Let ra have the prime factorization ra = n¿=i PV • From Definition 7.3, we 
have 

where s = £ * = 1 e¿(p¿-l)/2 by Euler's criterion. Now ra = JXLiU+G^- 1 ) ) 6 ' • 
Because each pi — 1 is even, we have 

and 

Using these congruences repeatedly, we find 

Hence, (ra - l ) /2 = s (mod 2) and we have (-1/ra) = (_i)(™-i)/2. 
Parts 2 and 3 are proved the same way, except that the modulus 64 replaces 

modulus 4 in the proof of Part 2. I 

The following algorithm uses Part 2 of Theorem 7.9 and Parts 2 and 3 of 
Theorem 7.10 to evaluate a Jacobi symbol. It is a recursive algorithm, which 
means that function calls itself with smaller values of its parameters. The first 
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few instructions check the input data and return special values. The while 
loop removes factors of 4 from a. The last few lines use the Law of Quadratic 
Reciprocity to reduce the evaluation of (a/m) to that of a Jacobi symbol with 
smaller parameters. 

[Compute the Jacobi symbol] 
Input: An integer a and an odd positive integer m. 
Output: The value of the Jacobi symbol (a/m). 

Recursive function Jac(a, m) 
i f (m i s even or m < 0) Er ror : bad input t o Jac . 
if (m = 1) return 1 
if (a > m or a < 0) a = a mod m 
if (a = 0) return 0 
if (a = 1) return 1 
while (4 d iv ides a) { a = a/4 } 
if (2 d iv ides a) { 

if (m E 1 or 7 (mod 8)) { return Jac(a/2,ra) } 
else { return — Jac(a/2,ra) } 

} 
if (a = 1 (mod 4) or m = 1 (mod 4)) { return Jac(m mod a, a) } 

e l s e { r e t u r n — Jac(m mod a, a) } 

If the algorithm did not remove powers of 2, then the sequence of recursive 
calls would take the variables a and m through the same sequences of values 
as in the Euclidean algorithm for computing gcd(a, m). With a slightly more 
careful analysis (see Theorem 5.9.3 of Bach and Shallit [8]), one can prove 
that it is no harder to evaluate the Jacobi symbol (a/m) than to compute 
gcd(a,ra). Compare this estimate for the complexity with Theorem 3.12. 

THEOREM 7.11 Complexity of evaluating Jacobi symbol 

Let a and m be relatively prime integers with 0 < a < m. Then the Ja­
cobi symbol (a/m) can be evaluated, using 0(log3 m) bit operations, by the 
algorithm above. 

Recall that we can compute a modular inverse in about the same time 
using either Euler's theorem or the extended Euclidean algorithm. Similarly, 
it takes about as long to evaluate a Legendre symbol by the Euler criterion 
as by the algorithm above. Of course, you cannot use the Euler criterion 
to evaluate a Jacobi symbol (a/m) when m is composite; you must use the 
algorithm above. 

Example 7.4 
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If we knew only about Legendre symbols, then we would have had to factor 133 
as the first step, or else use Euler's criterion. 

Consider what we have done so far in this chapter. We defined the Legendre 
symbol (a/p), which tells when we can solve the congruence x2 = a (mod p). 
Then we defined the Jacobi symbol (a/m), which is easier to compute than 
the Legendre symbol. In case m is prime, the Jacobi symbol (a/m) is the 
same as the Legendre symbol (a/m). Jacobi symbols provide a convenient 
way of computing Legendre symbols. But when m is composite, the fact 
that the Jacobi symbol (a/m) is -hi does not mean that one can solve the 
congruence x2 = a (mod ra). If the congruence is solvable and gcd(a,ra) = 1, 
then (a/m) = +1 because the Legendre symbols (a/p) = +1 for every prime 
divisor p of ra. This means that if the Jacobi symbol (a/m) = — 1 and 
gcd(a,ra) = 1, then a is a quadratic nonresidue modulo m. 

The reader may wonder why we didn't define the Jacobi symbol (a/m) to 
be -hi or —1 according as the congruence x2 = a (mod m) has a solution or 
not. If we had made that definition, then the Jacobi symbol would not satisfy 
the Law of Quadratic Reciprocity, and it would be difficult to compute for 
large m. For example, (5/9) = (9/5) = -hi. The congruence x2 = 9 (mod 5) 
has the solutions x = 2 or 3 (mod 5), but the congruence x2 = 5 (mod 9) has 
no solution. 

7.4 Euler Pseudoprimes 
By Fermât 's little theorem, if the prime p does not divide a, then av~x = 
1 (mod p). We mentioned that if m is odd and gcd(a,ra) = 1 and a m _ 1 = 
1 (mod ra), then ra is probably prime. 

We can devise an analogous probable prime test using Euler's criterion. It 
says that if the prime p does not divide a, then a ^ - 1 ) / 2 = (a/p) (mod p). It 

In this example, all of the Jacobi symbols just happened to be Legendre symbols 
because the "denominators" are all prime. 

Example 7.5 

Evaluate the Legendre symbol (133/401). 
Here 401 is prime, but 133 is composite. We find 

Let us use the algorithm to solve the problem of Example 7.1, namely, compute 
the Legendre symbol (—22/59). The algorithm does it this way: 
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turns out that if m is odd and gcd(a, m) = 1 and aim l^2 = {aim) (mod m), 
then m is probably prime. 

DEFINITION 7.4 An odd integer m > 2 is called an Euler probable 
prime to base a if a ( m _ 1 ) / 2 = {a/m) (mod m) and gcd(a, m) = 1. (The 
symbol {a/m) here is Jacobi.) A composite probable prime to base a is called 
an Euler pseudoprime to base a. 

Every prime p > 2 is an Euler probable prime to every base a which is not 
a multiple of p. 

THEOREM 7.12 Euler probable primes are probable primes 
If m is an Euler probable prime to base a, then m is a probable prime to 

base a. 

PROOF We have a( m " 1 ) / 2 = {a/m) (mod m) and gcd(a,ra) = 1 by 
hypothesis. The Jacobi symbol {a/m) = ±1 since gcd(a,ra) = 1. Square 
both sides of the congruence to get a m _ 1 = 1 (mod p), so m is a probable 
prime. I 

Thus, every Euler pseudoprime is a pseudoprime (to the same base). How­
ever, some pseudoprimes are not Euler pseudoprimes. For example, 341 = 
11 • 31 is a pseudoprime to base 2, but it is not an Euler pseudoprime to base 
2 because 2(341"1)/2 - 2170 = +1 (mod 341) while (2/341) = - 1 by Theo­
rem 7.10. Therefore the Euler probable primality test is more discriminating 
than the simple probable prime test. The two tests have essentially the same 
complexity. 

7.5 Solving Quadratic Congruences Modulo m 
We now return to the task of solving quadratic congruences modulo m, which 
we considered at the beginning of this chapter. So far, we have found an 
efficient way, actually two of them, for deciding whether x2 = a (mod p) has 
a solution where p is prime. Let us find the solutions x when there are any. 
The answer is easy when p is a Blum prime. A Blum prime is a prime 
= 3 (mod 4). The name arises because M. Blum used these primes in the 
oblivious transfer protocol and in a random number generator. 

THEOREM 7.13 Square roots modulo a Blum prime 
If p = 3 (mod 4) is prime and a is a quadratic residue modulo p, then the 

solutions to x2 = a (mod p) are x = ± (a^p+1^/4) (mod p). 
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PROOF Note that 

x2 = a ( p + 1 ) / 2 = a • a ( p -1 ) / 2 = a(a/p) = a (mod p) 

by Euler's criterion and the fact that a is a quadratic residue modulo p. I 

What happens if we apply the formula in the theorem when a is a quadratic 
nonresidue modulo p? Obviously, we won't get a solution to the congru­
ence, for it has none. When p = 3 (mod 4), (—1/p) — —1, so (-a/p) — 
(—l/p)(a/p) = -(a/p). If (a/p) — - 1 , then (-a/p) = +1 , so —a is a 
quadratic residue. The numbers x computed by Theorem 7.13 are solutions 
to the congruence x2 = — a (mod p), as one can see from the proof of the 
Theorem. 

Example 7.6 

Solve x2 = 6 (mod 47). 
We first compute 

(6/47) = (2/47X3/47) = (+l)(-l)(47/3) = -(2/3) = - ( - 1 ) = +1, 

so 6 is a quadratic residue modulo 47. The solutions are 

x = ± (6(47+1)/4) = ± (612) = ±37 (mod 47). 

One checks that 372 = 6 (mod 47). 

It is slightly harder to find square roots modulo primes p = 5 (mod 8). 

THEOREM 7.14 Square roots modulo a prime p = 5 (mod 8) 
If p = 5 (mod 8) and a is a quadratic residue modulo p, then the solutions 

to x2 = a (mod p) are ±x, where x is computed by this algorithm. 

x = a^+3)/8 modp 

if (x2£a (modp)) x = x2<<p-1^4 mod p 

PROOF Note first that with x = a(*>+3)/8 mod p, we have 

xA = a^+3)/2 = aW-W2 = a2(a/p) = a2 (mod p) 

by Euler's criterion and the fact that a is a quadratic residue modulo p. 
Therefore, x2 = ±a (mod p). If x2 = a (mod p), then the algorithm returns 
x. Otherwise, the algorithm multiplies x by 2 ^ - 1 ^ / 4 mod p. Now 2 is a 
quadratic nonresidue modulo p by Theorem 7.8, so 2 ^ - 1 ^ 2 = — 1 (mod p). 
In this case, we have 

x2 = (a<p+3>/8 • 2(*-1>/4)2 = ( - a ) ( - l ) = a (mod p). 
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i 
Example 7.7 

Solve x2 = 3 (mod 37). 
Let x = 3 ( 3 7 + 3 ) / 8 = 35 = 21 (mod 37). Then x2 = 212 = 34 =É 3 (mod 37); so, 

we multiply x by 2(37~~1)/4 = 29 = 31 to obtain a new x = 21-31 = 22 (mod 37). 
This x works because 222 = 3 (mod 37). 

Next we present an algorithm which will find square roots of quadratic 
residues modulo any odd prime p. When p ^ 1 (mod 8) it reduces to the 
algorithm in one of the last two theorems. The algorithm begins by choosing 
a random quadratic nonresidue n modulo p. There is no known determinis­
tic polynomial-time algorithm for finding a quadratic nonresidue n modulo 
p. Just try random n and use Euler's criterion to determine (n/p). This 
procedure makes the algorithm probabilistic. However, usually it is easy to 
find n quickly because half of the integers between 1 and p — 1 are quadratic 
nonresidues; so, the expected number of n's that must be tried is 2. The 
algorithm uses the quadratic nonresidue n to construct an integer N whose 
order is 26, where p — 1 = 2 e / 5 with / odd. The for loop determines the 
correct power of N to multiply times the first guess a ^ + 1 ) / 2 for x to get the 
true solution x. 

The algorithm returns just one solution x. The other one is — x or p — x. Of 
course, one must be sure that a is a quadratic residue modulo p before using 
the algorithm. 

The average complexity of the algorithm is 0(log3p) bit operations, that 
is, averaged over many random primes, but the worst case (when e is large) 
is 0(log4p) bit operations plus the time needed to find n. 

[Square root of a modulo p] 
Input: An odd prime p and an integer a with (a/p) = + 1 . 
Output: A solution x to x2 = a (mod p). 

Find a (random) quadratic nonresidue n modulo p 
Compute e > 0 and odd / so that p — 1 = 2e/ 
A = a? mod p 
N — nf mod p 
3=0 
for (1 < i < e) { 

See Theorem 7.1.3 of Bach and Shallit [8] for a proof that the algorithm 
works. The algorithm is similar to Algorithm 2.3.8 of Crandall and Pomerance 
[33]. 
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Example 7.8 

Solve x2 = 2 (mod 17). 
In the algorithm we have p = 17 and a = 2. Note that (2/17) = +1 by 

Theorem 7.8. We have p — 1 = 16 = 24, so e = 4 and / = 1. Trying small n, 
we find that the first quadratic nonresidue is n = 3, since (3/17) = (17/3) = 
(2/3) = - 1 . We find A = af = 21 = 2 and N = nf = 31 = 3. We set ¿ = 0 and 
begin the for loop. 

When i = 1, the test is whether (2)2 = — 1 (mod 17). This is true and j 
becomes 2. 

When i = 2, the test is whether (2 • 32)2' = - 1 (mod 17). The left side is 
182 = 1 (mod 17), the test fails and j remains 2. 

When i = 3, the test is whether (2 • 32)2° = - 1 (mod 17). The left side is 
181 = 1 (mod 17), the test fails and j remains 2. 

Finally, x = 2 ( 1 + 1 ) / 232 / 2 = 2131 = 6 (mod 17). One verifies that 62 = 
2 (mod 17), so the solutions are x = ±6 (mod 17). 

Now we know how to solve x2 = a (mod m) when m is prime. Next we will 
solve this congruence when m is a prime power. The first theorem applies 
to a congruence with a general polynomial. It "lifts" zeros of the polynomial 
modulo pl to zeros modulo pl+1. The procedure is just like using Newton's 
method to refine an approximate zero to a polynomial. 

THEOREM 7.15 HensePs lemma 
Let p be prime and f(x) be a polynomial with integer coefficients. If f(a) = 

0 (mod pl) and / ' (a) ^ 0 (mod p), then there is a unique t so that f(a + tpl) = 
0 (modp¿ + 1) . 

PROOF Let f(x) have degree d modulo pl+1. Expand f(a + tpl) in a 
Taylor series 

f(a + tpl) = f(a) + tp'f'ia) + • • • + tdpdif^(a)/d\ 

Derivatives after the d-th are zero polynomials. We claim that this expansion 
reduced modulo p z + 1 is 

f(a + tpl) = f(a) + tjPf'ip) (mod p i + 1 ) . (7.3) 

If cxe is a typical term in / (#) , then the corresponding term in f^k\a) is 

ce(e-l){e-2)--{e-k + l)ae-k 

But e(e — l)(e - 2) • • • (e — k + l)/kl = (e
k) is an integer, so k\ divides e(e — 

l)(e — 2) • • • (e — A; + 1). Therefore, in the Taylor expansion above, the term 
tkpkifW(a) with 2 < k < d is divisible by p ^ and so by p i + 1 , which proves 
congruence 7.3. 
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Congruence 7.3 shows that if f(a + tpl) = 0 (mod p ï + 1 ) , then f(a) + 
tpif'(a) = 0 (mod pi+1). Since f(a) = 0 (mod pl), this is equivalent to 
f'{a)t = —f(a)/pt (mod p), which is a linear congruence in t. By Theorem 
5.7, it may have zero, one or p solutions. But when f'(a) ^ 0 (mod p), it has 
exactly one solution. I 

If f(a) = f'{a) = 0 (mod p), then the root a is called singular. We do not 
discuss how to "lift" singular solutions here. See Section 2.6 of [78] to learn 
how to do it. 

THEOREM 7.16 Solution of x2 = a (mod p¿) 
Let a be a quadratic residue modulo an odd prime p. Then for every n > 1 

the congruence x2 = a (mod pn) has exactly two solutions, x = ±an (mod pn). 
Also, gcd (an,p) = 1. 

PROOF Use induction on n. The base step n — 1 holds since a is a 
quadratic residue modulo p. The induction hypothesis says x2 = a (mod pn~1) 
has only the two solutions x = ± a n - i (mod p n _ 1 ) , and gcd(an_i,p) = 
1. If x is a solution to x2 = a (mod p n ) , then it must be a solution to 
x2 = a (mod p n _ 1 ) , and so x = ±a n _ i (mod p n _ 1 ) . Thus, x = ± (a n _ i + 
¿p71"1) (mod p n ) . Write / (x) = x2 - a. By Theorem 7.15 if / ; ( a n _ i ) ^ 
0 (mod p), there is a unique t so that / ( a n - i + ¿pn_1) = 0 (mod p n ) . Now 
f'(an-i) = 2an-i is not a multiple of p because p is odd and, by induction, 
gcd(an_i,p) = 1. Thus, an_i lifts to a unique solution an — an-\ + tpn~l of 
x2 = a (mod p n ) . The same argument shows that - a n _ i lifts to a unique solu­
tion, which must be — an because (—x)2 = x2 and there are no other solutions. 
Finally, gcd(an,p) = 1 because an = an_i (modp) and gcd(an_i,p) = 1. I 

Example 7.9 

Solve x2 = 2 (mod 172). 
We saw in Example 7.8 that the solutions of x2 = 2 (mod 17) are x = 

±6 (mod 17). Let us lift the solution 6 (mod 17). Write f(x) = x2 - 2. Then 
the solution ai = 6 lifts to a unique solution ai = 6 + 17t where t satisfies 

or 2 • 6t = - ( 6 2 - 2)/17 (mod 17). That is, 12* = - 2 (mod 17), or t = 
14 (mod 17). Finally, a2 = 6 + 14 • 17 = 244 = 172 - 45, and the solutions to 
x2 = 2 (mod 172) are x = ±45 (mod 289). 

Now we can solve x2 = a (mod m) when m is an odd prime power. What 
about modulo a power of 2? We cannot use Hensel's lemma to lift a solution of 
x2 = a (mod 2l) to a solution modulo 2l+1 because every root b of f(x) = x 2 - a 
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is singular since f'(x) = 2x = 0 (mod 2). Nevertheless, it is easy to lift a 
solution directly. 

THEOREM 7.17 Solution of x2 = a (mod 2*) 
The solutions to x2 = a (mod 2l), where a is odd, are as follows: 

1. If i = l, then a = 1 gives one solution x = 1 (mod 2). 
2. If i = 2, t ien a = 1 gives two solutions x = ±1 (mod 4) and a = 3 gives 

no solution. 
3. If i > 3, then there are four solutions x (mod 22) if a = 1 (mod 8) 

and no solution x (mod 2Z) if a ^ 1 (mod 8). If x is one solution, then the 
other three are x, x ± 2l . Solutions may he lifted as follows: If y is a 
solution to y2 = a (mod 2l), then either x = yorx = y + 2l~l is a solution 
tox2 = a (mod2¿ + 1) . 

Example 7.10 

Solve x1 = 9 (mod 32). 
The solutions to x2 = 9 (mod 8) are x = 1,3,5,7 (mod 8). The solution 3 

clearly lifts to a solution modulo 16. The solution 1 does not lift, but 1+4 = 5 
is a solution modulo 16. The other solutions modulo 16 are 16 — 3 = 13 and 
1 6 - 5 = 11. 

Of the solutions 3, 5, 11, 13, modulo 16, one find that 3 and 13 lift to solutions 
modulo 32, but 5 and 11 do not. However, 5 + 8 = 13 and 11 + 8 = 19 are 
solutions. We already knew that 13 was a solution. The fourth solution modulo 
32 is 32 - 3 = 29. 

Of course, a congruence x2 = a (mod pl) may have solutions when p\a, so 
that a is not a quadratic residue modulo p. For example, x2 = 4 (mod 8) has 
the obvious solutions x = 2,6 (mod 8) and x2 = 0 (mod 8) has the solutions 
x = 0,4 (mod 8). Solutions like this exist when a = 0 (mod pl) or when 
a power of p with an even exponent exactly divides a. A congruence of the 
latter type may be reduced to one of lower degree. For example, solving x2 = 
p2a (mod pb), where gcd(a,p) = 1, is equivalent to solving y2 = a (mod p3) 
and letting x = py. 

Finally, to solve x2 = a (mod m), solve it first modulo p1 for each prime 
power dividing m, and combine the solutions with the Chinese remainder 
theorem. One special case is so important in cryptography that we record it 
here as a theorem. 

THEOREM 7.18 Four square roots modulo pq 
Let p and q be distinct odd primes and let a be a quadratic residue modulo 

pq. Then there are exactly four solutions to x2 = a (mod pq). 

PROOF The hypothesis implies that a is a quadratic residue modulo each 
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of p and q, so the two congruences x2 = a (mod p) and x2 = a (mod #) each 
have two solutions by Theorem 7.2. By the Chinese remainder theorem, each 
of the four pairs of solutions gives rise to a solution modulo pq. I 

7.6 Exercises 
1. Evaluate the Legendre symbols (r/103) for 1 < r < 10. Use Theorem 

7.5 to simplify your work. 

2. Evaluate the Legendre symbols (10/79), (11/43) and (6/23). 

3. Find the smallest positive quadratic nonresidue modulo 71. 

4. Prove that if p is an odd prime, then YHZo(r/p) = 0. 

5. Find the odd primes that have —2 as a quadratic residue. Express your 
answer as a set of congruence classes modulo 8. 

6. Find the odd primes that have 7 as a quadratic residue. Express your 
answer as a set of congruence classes modulo 28. 

7. If a is a quadratic nonresidue modulo each of the odd primes p and 
g, what is the Jacobi symbol (a/pq)? How many solutions does x2 = 
a (mod pq) have? 

8. Show that s 8 = 16 (mod p) has a solution for every prime p. (Hint: 
Factor xs — 16 into the product of four quadratic polynomials.) 

9. Solves2 = 3 (mod 11). 

10. Solves2 = 3 (mod 13). 

11. Solves2 = 3 (mod l l 2 ) . 

12. Solve x2 = 3 (mod 143). 

13. Solves2 = 4 1 (mod 64). 

14. Find all the square roots of 58 modulo 77. 

15. Find a quadratic nonresidue modulo the composite integer 4009 without 
factoring this modulus. 

16. Prove that if p and p-f 2 are twin primes, then (p/(p-\- 2)) = ((p-f- 2)/p). 

17. Prove that if p is a Sophie Germain prime, then (p/(2p + 1)) = ( -1/p) . 

18. Prove that 1 + £ 2 ™ 0 (j^t\ J2 0 0 2) 2003* is not the square of an integer. 



Chapter 8 

Information Theory 

This chapter introduces information theory and its use in analyzing simple 
ciphers. See Denning [36] for another view of much of the material in this 
chapter. This subject was created by Shannon [106] to give a theoretical 
foundation for communication and, in particular, for cryptography. He mea­
sured the secrecy of a cipher by the uncertainty in the plaintext given the 
ciphertext. The most secret ciphers are the ones for which an eavesdropper 
learns nothing at all about the plaintext by seeing the ciphertext. Most ci­
phers leave some information about the plaintext in the ciphertext. If an 
eavesdropper has enough ciphertext, he may obtain enough information to 
break the cipher, at least theoretically. Many ciphers can be broken from just 
a hundred or so bits of ciphertext. These ciphers are not necessarily insecure, 
because an enormous computation might be required to break them, and the 
crypt analyst might not have enough resources to do it. 

Shannon applied his information theory also to "noisy channels," in which 
Alice sends a redundant message to Bob over a communication channel, which 
may change the message randomly through imperfections. Bob tries to recover 
the original message from its redundancy. Ordinary English is redundant. 
One may regard encryption as a kind of "noise" added to a message before 
an eavesdropper receives it. The eavesdropper tries to recover the plaintext 
from the ciphertext. The same theory of information that predicts how much 
noise must be added to a message before Bob can no longer recover it from 
its redundancy also predicts how well a cipher protects a message from an 
eavesdropper. 

8.1 Entropy 
The amount of information contained in a message is measured by its entropy. 
In other words, entropy measures the uncertainty about a message before it 
is received or deciphered. Suppose there are n possible messages # i , . . . , x n 

which could be sent. Let pi be the probability that X{ is the message sent, 
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so that pi + • • • + pn — 1. The entropy of the message should depend only 
on these probabilities and not on the particular set of messages because if 
y i,..., yn were another set of possible messages with the same probability 
distribution, then it would have the same uncertainty. Therefore, we may 
write H(pi,... ,pn) for the entropy of the set of messages. 

In defining entropy, Shannon [106] required that it satisfy three properties. 
First, it should be a continuous function of the variables p i , . . . , p n , subject 
to Pi + —•+ pn = 1. Second, when the messages are equally likely, that is, 
every pi — l /n , H should be an increasing function of n. He required this 
property because there is more choice, or uncertainty, when there are more 
equally likely messages. The third property said that if the choice of one 
among n messages is replaced by two successive choices, first of a subset of 
the messages and then a message in the chosen subset, then the entropy of the 
set of messages should be a weighted sum of the entropies of the two choices. 
For example, if there are four equally likely messages, we may choose one of 
them as follows: (1) Choose a subset of the messages, either the first one or 
the second one or the last two. (2) If the subset was the last two, choose one 
of them. Then the third property would say 

Example 8.1 

The coefficient of the last term is | because the second choice is made half of 
the time. 

From these three properties, Shannon [106] proved that the entropy must 
be 

where K is a positive constant. The constant K may be regarded as a choice 
of units for entropy. Choosing K — l / log2 makes the binary digit the unit 
of entropy. His theorem motivates the definition of entropy. 

DEFINITION 8.1 If X is a message that takes on the value x{ with 
probability pi, for i = 1 , . . . , n, then the entropy of X in bits is 

We either exclude terms with p¿ = 0 from the sum or else we define 0 log2 0 
to be limp_^o+ P log2 P = 0. 

The entropy is always nonnegative. It equals 0 if and only if one outcome 
is certain. 
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Suppose we toss a coin having probability p of showing heads and 1 — p of 
showing tails. Let the message X be the outcome of the coin toss: heads or 
tails. Then 

This function of p has a maximum of 1 at p — 0.5 and a minimum of 0 when 
p = 0 or p = 1. If the coin is true (p = 0.5), then there is one bit of uncertainty 
in the outcome. A one-bit message could tell the outcome of the coin toss. But 
there is less uncertainty in the outcome as the coin becomes more unbalanced, 
with no uncertainty at all if the coin always shows heads. 

Note tha t H(X) is the expected value of the random variable 

Example 8.2 

Suppose X is a random n-bit integer, with all 2n possible integers being equally 
likely. Then each message has probability 2~n and the entropy is 

This example shows tha t H(X) measures the number of bits of information 
we learn when we are told the message X. We learn n bits when we are told 
an n-bit number. 

The entropy H(X) is the average number of bits needed to encode all pos­
sible messages in an optimal encoding, called a Huf fman code . 

Example 8.3 

Suppose there are four messages, £i ,£2,#3,#4, with probabilities 1/2, 1/4, 1/8 
and 1/8, respectively. The entropy is 

A Huffman code for the four messages would use one bit for the first message, 
two bits for the second, and three bits each for the third and fourth. For 
example, code the messages by the bit strings, 0, 10, 110, 111. Then the 
average length of the bit string to reveal which x% was sent is 

the same as H{X). 

In cryptography, we measure the entropy of ciphertext and keys, as well as 
of plaintext. We can define the cond i t i ona l en tropy of one of these items 
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The joint entropy H(X, Y) is the entropy of the pair (X,Y). 
With these definitions, one can prove the following facts about entropy: 

1. H(X,Y) = H(X) + H(Y\X). This formula says that joint uncertainty 
of the pair (X, Y) equals the uncertainty of X plus the uncertainty of 
F , given that X is known. 

2. H(Y\X) < H(Y), with equality if and only if X and Y are independent. 
This inequality tells us that the uncertainty about Y, given that X is 
known, is no greater than the uncertainty about Y. But if X and Y 
are independent events, then the uncertainty about Y, given that X is 
known, is the same as the uncertainty about Y. This means that X 
can only tell us information about Y\ learning X cannot make us more 
uncertain about Y. 

3. H(X,Y) < H(X) + H(Y). This says that the uncertainty in the pair 
(X, Y) is no more than the sum of the uncertainties in X and Y sepa­
rately. 

4. H(X) < log2 n, where n is the number of possible X's. We have equality 
if and only if the n X's are equally likely. 

Example 8.4 

Suppose X and Y each can be one of four equally likely messages, and each Y 
message limits X to one of two equally likely messages. (For instance, Yi might 
say, aX is Xi or X4.") Then each p(X\Y) is 1/2 or 0, so 

H(X|y) = 4[(l/4).2(l/2)log22] = l. 

8.2 Perfect Secrecy 
Let M, C and K represent plaintext, ciphertext and keys, respectively. 

DEFINITION 8.2 A cipher has perfect secrecy if H{M\C) = H(M). 

This definition, taken from Shannon [107], says that if a cipher has perfect 
secrecy, then an eavesdropper is just as uncertain about the plaintext after 
seeing the ciphertext as he was before seeing the ciphertext. He learns nothing 
at all about the plaintext from the ciphertext. 

given another one. For example, the conditional entropy of the key K given 
the ciphertext C is 
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Perfect secrecy is clearly a desirable property for a cipher. Few ciphers enjoy 
perfect secrecy. However, one fairly simple cipher does have the property. 

DEFINITION 8.3 A one-time pad is a synchronous stream cipher with 
a truly random key stream. 

One-time pads are so called because, in early versions of this cipher, the 
sender and receiver would have identical pads of paper with random key char­
acters printed on them. After using each sheet to encipher or decipher a 
message, the cryptographer would destroy the sheet. It is important that 
each page of key characters be used only once, because if one were reused, a 
cryptanalyst could gain information about the plaintexts by comparing the 
two ciphertexts. 

The Vernam cipher is a one-time pad that uses the exclusive-or operation 
© to encipher (and decipher). If ra¿, fc¿ and c¿ are the i-th characters of 
plaintext, key and ciphertext, respectively, then c¿ = m¿©&¿ and ra¿ = c¿©fc¿. 
If two plaintexts, m i , m 2 , . . . and m^, ra2,..., were both enciphered using the 
same random key stream, and a cryptanalyst obtained the two ciphertexts 
ci, C2,... and c[, c 2 , . . . , then he could compute c¿ © c[ = ra¿ © ra¿, which is 
essentially a running key cipher (see Example 1.2 and Section 8.4) and easy 
to break. 

Modern one-time pads have the keys written on magnetic or optical media 
that are destroyed after use. In advance of the communication, two copies 
of the random key stream must be created and distributed to the sender and 
receiver. Assuming the key is not reused, the one-time pad achieves perfect 
secrecy because, given any M and C, there is always a key stream K that will 
encipher M as C, so that every C occurs with equal probability, assuming 
the keys are equally likely. Hence, p(M = m\C = c) = p(M = m) and so 
H{M\C) = H{M). 

If a cipher has perfect secrecy, then there must be at least as many keys as 
plaintexts. Otherwise, there would be some pairs m, c with no key to decipher 
c into m. Then p(M = m\C = c) = 0 for these particular m and c, and so 
H(M\C) < H(M), which would violate the definition of perfect secrecy. 

8.3 Unicity Distance 
How much information can be contained in a string of n letters of English? If 
we allow any string of n letters, then there are 26n possible strings. If they are 
equally likely, then the entropy of such a string is log2 26n = nlog2 26. Thus, 
the amount of information per letter is R = log2 26 « 4.7. This is called the 
absolute rate of English. In general, the absolute rate of a language with 
a letters in its alphabet is the maximum number of bits per letter in a string, 
namely, R = log2 a. The absolute rate would be higher if we counted spaces 
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and punctuation as "letters" of the alphabet. 
How much information is contained per letter in a meaningful string of 

letters of English? If we could list all meaningful n-letter strings X of English 
and determine the probability of each, then we could compute H(X) and the 
number of bits of information per letter would be H(X)/n. Finally, we could 
define the rate of English to be limn^oo H(X)/n. For any language, we define 
the rate of the language for messages X of length n as rn — H(X)/n and 
the rate of the language to be r = lmin^oo rn. This is the average number 
of bits of entropy per letter in meaningful messages. Although we cannot 
compute H(X)/n for n of any interesting length, Shannon [108] proposed a 
way to estimate r for English and found that r « 1 bit per letter. 

The redundancy of a language is defined to be D — R — r. The redun­
dancy of English is about 3.7 bits per letter. With these definitions we see 
that there are 2Rn = 26n n-letter messages, of which 2rn are meaningful and 
2Rn — 2rn are meaningless. 

A cipher is unconditionally secure if H(K\C) does not go to 0 as the 
length of C increases without bound. For example, a one-time pad is uncon­
ditionally secure. Let us consider ciphers that do not have this property. 

DEFINITION 8.4 If the conditional entropy H(K\C) goes to 0 as the 
length of C increases, then the cipher is theoretically breakable, and the 
unicity distance is the shortest length n of C for which H(K\C) < 1. 

If H(K\C) < 1, then there is no more than 1 bit of uncertainty about the 
key, that is, the key has one of two possible values. Then, any given ciphertext 
can be deciphered in at most two different ways, and a crypt analyst aware of 
the nature of the communication should be able to decide which of the two 
possible plaintexts was sent. 

For most ciphers we can only estimate the unicity distance. We now derive 
a useful approximation to it. 

We assume that all 2rn meaningful n-letter messages have equal probability 
2~ r n , and that all meaningless messages have probability 0. Here we are 
assuming the equally-likely case, which maximizes entropy and is the worst 
case. 

We assume that there are 2H^K^ keys, and they are equally likely. That is, 
p(K = k) = 2~H^ for each key k. 

A r a n d o m cipher is one in which the decipherment DK{C) is an inde­
pendent random variable uniformly distributed over all 2Rn messages, both 
meaningful and meaningless. This means that for a given k and C, Dk(C) is 
as likely to produce one plaintext message as any other. Actually the deci­
pherments are not completely independent because a given key must uniquely 
encipher a given message, so that Dk{C) ^ Dk(C) for C ^ C", that is, the 
deciphering function Dk is one-to-one for each key. 

Assume we have a random cipher and suppose C — Ek(M). A spurious 
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key decipherment or false solution of C is either C = Ek> (M) or C — 
Ek" (M;) where M' is meaningful. (We are not concerned with meaningless 
false solutions, as they are easily detected.) In the first case (C = Ew{M)), 
the key k' may or may not decipher other C enciphered with k. For every 
correct decipherment there are 2H^ — 1 other keys, each with probability 

q = 2vnl<lRn = 2~Dn 

of giving a false solution. Let F be the number of false solutions. Then 
F = (2H<<K"> - í)q « 2H^-Dn. When n is large enough so that F < 1, 
we have enough ciphertext to break the cipher. At the borderline case where 
F = 1, we have H(K) = Dn. Thus n = H(K)/D is approximately the unicity 
distance. 

Example 8.5 

DES is a block cipher with 56-bit keys and 64-bit blocks of plain and cipher 
text. Now 64 bits is 8 characters. For English, D = 3.7, so n = H(K)/D = 
56/3.7 = 15.1 characters, or about two blocks. 

8.4 Some Obsolete Ciphers 
Kahn [55] tells the fascinating history of cryptography up to 1967, including 
tales about many of the ciphers mentioned in this section. 

We compute the standard approximation to the unicity distance for several 
simple ciphers, and mention techniques for breaking them. 

Recall that transposition ciphers rearrange characters or bits. They have a 
fixed period, d, say. If we assume that all d\ permutations are equally likely, 
which is the worst case, then the unicity distance is 

THEOREM 8.1 Stirling's formula 
For n > 1, n\ w \/2wñ(n/e)n and log(n!) « nlog(n/e). 

See Feller [43], page 50, for a proof. 

Use the frequency distribution of pairs or triples of letters to break trans­
position ciphers. The process is called anagramming. 

Use frequency counts to distinguish transposition ciphers from substitution 
ciphers. With transposition ciphers, the letters of the alphabet have their 
normal frequency; with substitution ciphers, they do not. 

where we have used Stirling's formula to approximate d\. 
For example, with a 3 x 9 matrix we have d—27 and n = 27.9. 
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Recall that substitution ciphers replace (blocks of) characters by other char­
acters. One classification lists four types of substitution ciphers. They are 

1. Simple: Replace each ra¿ by c¿. 

2. Homophonic: Replace ra¿ by a random one of many possible c¿. 

3. Polyalphabetic: Use multiple maps from the plaintext alphabet to the 
ciphertext alphabet. 

4. Polygram: Make arbitrary substitutions for groups of characters. 

1. Simple substitution ciphers replace each ra¿ by c\. Write the enci­
phering function as /(ra) = c. For example, the Caesar cipher rotates the 
alphabet: /(ra) = (ra + k) mod n, where n is the alphabet size. For English, 
the unicity distance is H(K)/D = (log2 26)/3.2 « 1.5 letters. 

If all n! permutations of the alphabet are equally likely (the worst case 
for the cryptanalyst) in a simple substitution cipher, then the unicity dis­
tance is \og2(n\)/D. For English, n = 26 and the unicity distance would be 
log(26!)/3.2 « 27.6. 

These ciphers may be broken with frequency analysis and trial and error. 
Some are published in newspapers as puzzles to amuse readers. 

In an affine cipher, /(ra) = (am + b) mod n. Break it by guessing some 
two-letter pairs and solving two congruences in the two unknowns a and b. 
An exercise gives an example of finding the unicity distance. Remember that 
a and n must be relatively prime in order for messages to be deciphered. 
Therefore, there are <¡>(ri) choices for a and n choices for b. 

2. Homophonic substitution ciphers replace ra¿ by a random one of 
many possible c¿. 

To confound the frequency analysis that succeeds so well for simple substi­
tution ciphers, one might use a ciphertext alphabet larger than the plaintext 
alphabet and assign each plaintext letter a to a subset (homophone) f(a) 
of the ciphertext alphabet. To permit deciphering, we require that f(a) and 
/(&) be disjoint when a / b. Encipher each ra¿ in the plaintext as a randomly 
chosen c¿ G /(ra¿). 

Usually, the ciphertext alphabet is much larger than the plaintext alphabet 
and the size of / (a ) is proportional to the frequency of occurrence of a in En­
glish. Then the letters of the ciphertext alphabet have a uniform distribution 
in the ciphertext. Use the frequency distribution of pairs of letters to break. 

One can define / via a standard text using the number of an instance of 
the letter as its cipher. 

One can encipher two plaintext messages of equal length together using a 
26 x 26 matrix of ciphers. One cannot tell which message it is without the 
key. 

3. Polyalphabetic substitution ciphers use multiple maps fa from the 
plaintext alphabet to the ciphertext alphabet. 
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Suppose we encipher M = mora i . . . as C = /o(^o) / i (^1) • • • • Let n be the 
length of the alphabet. The sequence {/¿} may be periodic, perhaps defined 
by a keyword K = ko . . . kd-i> 

For example, the Vigenère cipher uses /¿(a) = (a + fc¿modd) mod n and 
the Beaufort cipher uses /¿(a) = (fc¿ mod d ~ a) mod n. If the period of the 
key (the number of letters in the keyword) is d, then the unicity distance is 
H(K)/D = log2(n

d)/D = (d/D)\og2n. For English, this is dlog2(26)/3.2 « 
I Aid. 

There are two basic methods to find the period of periodic polyalphabetic 
substitution ciphers, which is the first step in breaking them. The Kasiski 
method, due to F. W. Kasiski, looks for repetitions in cipher text. They 
might occur at multiples of the period d; so, the period might be a divisor of 
the gcd of several of the differences. 

W. Friedman [44] invented the Index of Coincidence Method, which 
measures frequency variations of letters to guess the approximate size of the 
period d. Let {ezo,ai,. • • , a n _ i} be the (plain or ciphertext) alphabet. Let 
Fi be the number of times a¿ occurs in a ciphertext of length N. Define the 
Index of Coincidence as 

Then IC represents the probability that two letters chosen at random in the 
ciphertext are the same. 

One can estimate IC theoretically in terms of the period d. See Section 2.7 
of Barr [10] for the derivation. For English and a polyalphabetic cipher with 
period d, the expected value of IC is 

Solving for d gives the estimate 

For large N, we have d « 0.027/{IC - 0.038). 

Example 8.6 

Suppose that a Kasiski analysis suggests that the period d of a polyalphabetic 
substitution cipher is a divisor of 15 and that the Index of Coincidence of a 
large ciphertext sample is 0.043. 

The divisors of 15 are 1, 3, 5 and 15. An IC of 0.043 implies a period of 
d = 5.4, so d is near 5 or 6. Therefore, the period is probably 5. 

Once the period d is determined, the cipher may be broken using frequency 
analysis and trial and error. Think of the cipher as d interwoven simple 
substitution ciphers. 
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Polyalphabetic ciphers can also have nonperiodic mapping functions from 
the plaintext to ciphertext alphabets. Running key substitution ciphers use 
a known text (in a standard book, say) as a key. Encrypt as for a Caesar or 
Vigenère cipher, except that the key is not constant or periodic. Since the 
key is as long as the message, this cipher may seem to be unbreakable, like 
the one-time pad, but it is not if the key is redundant, as in English text. 
Roughly speaking, this is so because a large proportion of letters in both key 
and plaintext will be high frequency letters (ETAONISRHDL). 

Rotor machines produce running key substitution ciphers with large period 
d. If there are 26 letters in the alphabet and t rotors, we have d = 26*. The 
Enigma was a rotor machine with four rotors used by the Germans in World 
War II and broken by Alan Turing using group theory. 

The UNIX1 crypt (1) command is a (software) rotor machine with one rotor 
having 256 positions. See Reeds and Weinberger [95] for its cryptanalysis. 

A one-time pad is another example of a nonperiodic polyalphabetic substi­
tution cipher. 

4. Polygram substitution ciphers make arbitrary substitutions for 
groups of characters. One example is the Hill cipher, due to Hill [54], which 
codes blocks of n letters into column vectors of dimension n. It enciphers a 
block of n letters by multiplying it by an n x n matrix to get a vector of n 
ciphertext letters. The matrix must be invertible modulo the alphabet size to 
permit deciphering. 

For example, suppose n — 2 and we encode the alphabet as A= 0, B= 1, 

etc. Then the plaintext AT would be encoded as and the plaintext NO 

would be encoded as Suppose the key matrix is Then 

AT would be enciphered as 

which may be converted back into the letters EB. Similarly, NO would be 

enciphered as or FL in letters. 

Someone who knew the key matrix K could decrypt ciphertext by multiply­
ing the vectors by K~l (mod 26). The matrix may be inverted by the usual 
techniques of linear algebra, keeping in mind that any division by d must be 
done by multiplying by the multiplicative inverse of d modulo 26. The meth­
ods are similar to those used in Example 5.7. We will illustrate a different 
method by inverting K modulo 26 by Cramer's rule. The determinant of K 
is 3 • 11 - 18 • 21 EE 19 (mod 26). Now 0(26) = 12, so the inverse of 19 is 

iUNIX is a trademark of Bell Labs. 
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which is easy to solve for K using linear algebra. 
A ciphertext-only attack is harder. Crypt analysis based on letter frequency 

does not work because a Hill cipher encrypts blocks of n letters together. If 
n is small, one could use the frequency of n-letter blocks to guess n of the 
blocks and then proceed as in the known-plaintext attack above. 

8.5 The Entropy of Number Theoretic Ciphers 
Plaintext and ciphertext are encoded as numbers when number theoretic ci­
phers are used. These numbers are grouped into large blocks which hold the 
codes of many letters and which form numbers modulo some large integer 
m. These numbers modulo m are enciphered by computing some function 
modulo m. The key is typically a number about the size of m in these ciphers 
and its entropy H(K) is roughly log2 ra. The key is chosen large enough so 
that one cannot try all the keys, making a brute force ciphertext-only attack 
infeasible. 

Known-plaintext attacks on number theoretic ciphers are generally thwarted 
by making the cryptanalyst solve a hard problem of number theory. When ex­
ponentiation modulo m is used as the enciphering function, the cryptanalyst 
must solve a discrete logarithm problem to effect a known-plaintext attack. 

It is amusing to note that the key entropy for all public-key ciphers is zero 
because one can always compute the secret key from public data. Public-key 
ciphers do not rely on large key entropy for their secrecy, but rather on the 
difficulty of computing the secret key from public data. The cryptanalyst must 
solve a hard number theory problem, like the discrete logarithm problem, to 
deduce the secret key from public data. 

1911 = 11 (mod 26) by Corollary 6.2. Then by Cramer's rule, 

The ciphertext FL would be deciphered as 

or NO in letters. 
One can break the Hill cipher easily with a known-plaintext attack. If 

one knows n plaintext-ciphertext blocks, then one can determine K through 

linear algebra. Suppose we didn't know K, but we did know that 

(mod 26). These matrix equations are 

equivalent to the single equation 

(mod 26) and 
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8.6 Exercises 
1. Let X be an integer variable represented with 24 bits. Suppose that the 

probability is 1/2 that X is in the range [0,211 - 1], with all such values 
being equally likely, and 1/2 that X is in the range [2 n ,2 2 4 — 1], with 
all such values being equally likely. Compute the entropy H(X). 

2. Suppose that X is one of two messages. Use calculus to prove that 
the entropy H(X) is maximal when the two messages are equally likely. 
When is the entropy minimal? 

3. Prove the four properties of entropy listed at the end of Section 8.1. 

4. Let M be a 6-digit number in the range [0,106 - 1] enciphered with a 
Caesar-type shifted substitution cipher with key K in the range 0 < 
K < 9. For example, if K = 2, then M = 214759 is enciphered as C 
= 436971. Compute H(M), H(M\C) and H(K\C), assuming that all 
values of M and K are equally likely. 

5. Suppose that meaningful English language plaintext messages 1000 let­
ters long are enciphered using keys that are strings of letters. (Here 
"letter" means one of the 26 letters A, B, . . . , Z.) Explain why perfect 
secrecy can be achieved with keys shorter than 1000 letters long, and 
compute the minimum length of keys if perfect secrecy is desired. 

6. Let M be a secret message revealing the name of a spy. There are 
five suspects: two females, Alice and Bethany, and three males, Chuck, 
Dennis and Edgar. Exactly one of the five suspects is the spy. The 
message M is correct. Alice, Bethany and Chuck each have probability 
0.25 of being the spy while Dennis and Edgar each have probability 
0.125 of being the spy. 

a. Compute the entropy H(M). 

b. Let 5 be a message telling whether the spy is male or female. Com­
pute H(M\S). 

7. A secret message was enciphered using the affine substitution cipher 
E(x) = (Sx + 24) mod 26. The ciphertext is RT0LK T0IK. Find the 
plaintext. 

8. Consider an affine substitution cipher using the transformation / (m) = 
(k\m -h ko) mod 26. It is suspected that the plaintext letter E (= 4) 
corresponds to the ciphertext letter F (= 5) and that the plaintext letter 
H (— 7) corresponds to the ciphertext letter W (= 22). Assuming these 
correspondences are correct, break the cipher by finding ki and k0. 

9. The people on the island of Cobol speak Cobolese. The Cobolese alpha­
bet has 45 letters and the written language has a rate of r = 2.0 bits 
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per letter. For its diplomatic communications, the government of Cobol 
uses affine ciphers of the form / (a) = {ak\ + ko) mod 45. Naturally, the 
keys ko and k\ are chosen so that the deciphering function f~l is a well 
defined function and so that all such keys are equally likely. Determine 
the standard approximation to the unicity distance of these ciphers. 

10. One hundred characters of ciphertext from a suspected Beaufort cipher 
were intercepted by one of your agents. Here is the frequency distribu­
tion of the letters of the alphabet in this sample of ciphertext: 

A 
2 

N 
2 

B 
10 

0 
10 

c 
2 

P 
1 

D 
5 

Q 
8 

E 
3 

R 
1 

F 
8 

5 
8 

G 
1 

T 
5 

H 
2 

U 
2 

I 
2 

V 
1 

J 
5 

W 
3 

K 
1 

X 
5 

L 
3 

Y 
1 

M 
1 

Z 
8 

a. Compute the Index of Coincidence IC for this sample. 

b. What do you think is the period of the key? 

11. Suppose that a Kasiski analysis of ciphertext from a Vigenère cipher 
identifies these six pairs of repeated sequences of ciphertext letters: 

Location of start of 
first occurrence 

second occurrence 
10 
34 

21 
65 

37 
109 

49 
105 

58 
162 

72 
132 

What can you conclude about the period of the Vigenère cipher? Ex­
plain your answer. 

12. Consider a synchronous stream cipher (from Shamir [103]) whose i-th 
key block is k{ — (¿ + l)d mod n, where the large integer n is public and d 
is secret. The i-th message block ra¿ is enciphered as c¿ = ra¿ 0fc¿. Show 
that this cipher is vulnerable to a known-plaintext attack. Specifically, 
show how to compute ks and k$ from the two pairs (mi, c\) and (7712,02). 
Given many plaintext-ciphertext pairs, can a crypt analyst determine d? 

13. Consider a synchronous stream cipher (from Shamir [103]) whose i-th 
key block is k{ — Sxldi mod n, where n = pq, and the large primes p and 
q are secret, S is secret and relatively prime to n, the di are pairwise 
relatively prime and also relatively prime to </>(ri), and Sl/di mod n is 
the di-th root of S modulo n. 

Show how to compute the keys from p, q, 5, and the d¿'s. Explain why 
this technique cannot be used to find the square root of S modulo n. 

14. A message is enciphered using a product cipher which consists of one Hill 
cipher followed by (composed with) another Hill cipher. Each of these 
Hill ciphers uses a 2 x 2 matrix which is invertible modulo 26. Does 
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the product cipher have a well defined inverse (deciphering) function? 
If so, is the product cipher more secure, less secure or just as secure as 
a single Hill cipher? Justify your answer. 



Chapter 9 

Groups, Rings and Fields 

This chapter considers some topics from modern algebra that have important 
uses in cryptography. We begin with group theory. Many cryptographic 
functions are computations in groups. Then we study rings, which generalize 
the structure of the integers modulo m. We consider fields, which generalize 
the integers modulo a prime p. We investigate polynomials and then make a 
brief incursion into algebraic number theory, which we need to describe the 
number field sieve integer factoring algorithm. Other books that cover the 
same material as this chapter are [78] and [53]. 

9.1 Groups 
Operations like addition, multiplication and exponentiation, which combine 
two numbers and produce a third number, are called binary operations. A 
group is a set with a binary operation satisfying certain properties. In this 
section only, the symbol 0 represents a generic binary operation rather than 
exclusive-or, which is its meaning in the rest of this book. 

DEFINITION 9.1 A group G is a set of elements together with a binary 
operation 0 such that 

1. The set is closed under the operation, that is, for every a, b in G, a 0 ò 
is a unique element of G. 

2. The associative law holds, that is, for all a, 6, c in G, 

a 0 (b 0 c) = (a 0 b) 0 a 

3. The set has a unique identity element e such that a(& e = e® a = a 
for every element aofG. 

4. Every element a of G has a unique inverse a - 1 in G, with the property 
a 0 a - 1 = a - 1 0 a = e. 

A group is called commutative or abelian if a 0 b = b 0 a for every pair 
of elements a,b ofG. 

125 
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A group is finite if it has only a ñnite number of elements. The number of 
elements of a unite group is called the order of the group. If a group has an 
inñnite number of elements, it is an infinite group. 

Nonabelian groups played an important role in breaking the German Enigma 
cipher during World War II. (See [95].) Most groups arising in number theory 
are abelian. All groups studied in this book are abelian. 

The set of all integers {. . . ,—2,-1,0,1,2, . . .} forms an infinite abelian 
group with addition (+) for the binary operation, 0 for the identity, and —a 
for the inverse of a. However, this set does not form a group with multipli­
cation as the operation because 1 would have to be the identity and elements 
other than ±1 lack inverses in the set. 

If m is a positive integer, a complete set of residues modulo m forms an 
abelian group with addition modulo m as the binary operation. The identity 
is the residue class containing 0. The inverse of the residue class containing a 
is the residue class containing —a. The associative law is inherited from the 
integers, that is, a + (6 + c) = (a + b) + c implies a + (b + c) = (a + b) + 
c (mod m). This group is called the additive group modulo m. Different 
CSR's modulo m produce additive groups modulo m with different appearance 
but the same structure under the addition operation. Two such groups are 
essentially the same; only the elements have been renamed. These groups are 
called isomorphic. 

DEFINITION 9.2 We call two groups, G with operation 0 and G' 
with operation ®, isomorphic and write G = G' if there is a one-to-one 
correspondence between the elements of G and those of G' such that if a G G 
corresponds to a' G G', then a 0 b corresponds to a' <g>b'. 

We will regard isomorphic groups as being the same group. The discussion 
above proves this theorem. 

THEOREM 9.1 Integers modulo m are a group under addition 
A CSR modulo m for a group with addition modulo m as the operation. Any 
two CSR's modulo m form isomorphic groups. 

At this point we will drop the notation 0 for the binary operation of a 
group. When we discuss groups abstractly, we will write the operation as 
multiplication and write 1 for the identity element. We write ab for a 0 6, abc 
for a 0 (6 0 c) = (a 0 6) 0 c, a2 for a 0 a, etc. We write a1 for the product 
of i a's. However, when a group inherits its operation from another group, 
then we will write the operation as in the other group. For example, we will 
continue to write + for the addition operation in the group of integers modulo 
m under addition. When + is the group operation, we will write 2a for a + a, 
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etc., and use 0 for the identity element. 
A CSR modulo m does not form a group under multiplication because 0 

has no inverse. In addition, if m is composite, then proper factors of m lack 
inverses, too. 

THEOREM 9.2 RSR modulo m is a group under multiplication 
Let m > 1 be an integer. Then any RSR modulo m forms a group with 

multiplication modulo m as operation. This group has order (p(m). Different 
RSR's modulo m produce isomorphic groups. 

This group, denoted i?m, is called the multiplicative group modulo m. 

PROOF Write n — </>(m) and let r\,..., rn be an RSR modulo m. The­
orem 3.10 shows that the set is closed under multiplication modulo m. The 
associative property is inherited from the integers, that is, a{bc) — (ab)c im­
plies a(bc) = (ab)c (mod m). The identity is the element r¿ = 1 (mod m). 
Inverses exist because the congruence VjX = ri (mod m) has a unique solution 
by Theorem 5.6. Two different RSR's are congruent, element by element, 
modulo m, and this correspondence gives an isomorphism between the two 
groups. I 

9.2 Simple Properties of Groups 

THEOREM 9.3 Cancellation in group equations 
In any group, if ab — ac, then b = c. If a is an element of a unite group with 

identity 1, then there is a unique smallest positive integer i with a% = 1. 

PROOF Multiply ab = ac by a'1 to get a~x{ab) = a~l(ac) . The as­
sociative law and the properties of inverse and identity yield 16 = lc and 
b — c. Consider the powers of a: l ,a , a2 ,a3 , Since the group is finite, 
there must be a repeated power of the form au = av, where u < v. Write 
this as aul — auav~u. By the cancellation property just proved, 1 = av~u. 
Hence, a1 — 1 for some positive integer, namely, v — u, and so there must be 
a smallest positive integer with this property. I 

DEFINITION 9.3 Let a be an element of a group. If there is a positive 
integer i with a1 = 1, then a is said to have finite order (even if G is not a 
unite group). If a has unite order, then the order of a is the smallest positive 
integer i with a1 = 1. The element a has infinite order if there is no positive 
integer i with a1 — \. A cyclic group is one that contains an element a whose 
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powers a1 and a l make up the entire group. An element a with this property 
is called a generator of the group and is said to generate the group. 

By Theorem 9.3, every element of a finite group has finite order. The 
identity element 1 has finite order in every group. 

The set of all integers with + for the operation is a cyclic group of infinite 
order. It is generated by 1. The "powers" of 1 are 0, ± 1 , ± 2 , — Every 
element a ^ 0 of this group has infinite order. 

The integers modulo m > 0 with + for the operation form a cyclic group 
of order m. The residue class of 1 is a generator. 

If m is a positive integer, then all cyclic groups of order m are isomorphic. 
If a and b generate two cyclic groups of order m, then the one-to-one corre­
spondence makes a1 correspond with bl for each integer i. Let Cm denote a 
cyclic group of order m. 

The multiplicative group modulo m, Rm, of Theorem 9.2 may or may not 
be cyclic. The order of a in this group is the same as the order of a we defined 
in Definition 6.7. A generator for Rm is the same as a primitive root modulo 
m. Theorem 6.13 said that m > 1 has a primitive root if and only if m — 2, 
4, pe or 2pe, where p is an odd prime and e > 1. The group Rm is cyclic for 
the same set of m. When Rm is cyclic we have Rm = C^my 

THEOREM 9.4 Lagrange's theorem 
The order of an element of a unite group divides the order of the group. Ifn 

is the order of the group, then an = 1 for every element a of the group. 

PROOF Let a have order i. A proof like that of the second part of 
Theorem 9.3 shows that the members of A = {1, a, a 2 , . . . , a 2 - 1 } are i distinct 
elements of the group. If A is not the whole group, then the group has another 
element a,2. We show that the set B = {0,2,0,2(1,... ,020l~1} contains i new 
elements different from the ones in A. First of all, if a^a? — 020k, then 
a? = ak by Theorem 9.3, contrary to A having distinct elements. Also, if 
a<ia? — afe, then a^ — ak~i and Ü2 would be in A. If A U B is not the whole 
group, then the group has another element a3, and one can show that C = 
{as, a^a,..., a^a1-1} contains i new elements not in A U B. Since the group 
is finite, this process of obtaining new elements a,j must terminate with a last 
batch, say the batch of i elements including a&. Then the order of the group 
must be n = ik, and the order i of a divides n. Finally, an = (al)k = lk — 1. 

I 
The theorem just proved implies Euler's theorem. The group Rm has order 

n = (f){m). The elements of Rm are integers a relatively prime to m. La­
grange's theorem says that an — 1, that is, a^ m ) = 1 (mod m). Lagrange's 
theorem has this corollary, which generalizes Corollary 6.2. 
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COROLLARY 9.1 
If a is an element of a group of order n, then an~l is the inverse of a. 

PROOF We have aan~l — an~la — an — 1 by Lagrange's theorem. I 

The fast exponentiation algorithm works in any group, and computes an 

with only O (log n) group operations. Corollary 9.1 provides an efficient method 
of finding inverses in any group whose order is known. 

If G and H are two groups, we can define a group operation on the set 
of ordered pairs (g^h) of elements of the two groups by (</i,fci) • (g2,h2) = 
(9192, hih2), where gi G G and hi  H. The set of ordered pairs with this 
operation forms a group G® H, called the direct product of G and H. The 
identity in the direct product is (IQ, 1#) and the inverse of (g, h) is (g~l, ft-1), 
with the obvious notation. In a similar way, we may form the direct product of 
three or even more groups by defining a group operation on the set of ordered 
triples or quadruples, etc. 

A theorem of group theory says that every finite abelian group is isomorphic 
to a direct product of cyclic groups. We can find this direct product for the 
group Rm. Let m = p\x --pe

k
k be the standard factorization of m. The 

Chinese remainder theorem implies that 

Rm ¥ Rpe± <g>... <g> Rpej,. 

If p is an odd prime, then Rpe = C^pe^ is cyclic. When p = 2, we have 
R2 = Ci and R4 = C2- One can show that R2e = C2 0 C2e-i for e > 3. (In 
fact, (—1) generates C2 and 5 generates C2e-2. That is, one can show that 
every odd number is = ±(5k) (mod 2e) for some A;.) Thus, Rm is expressed 
as the direct product of k or k + 1 cyclic groups, depending on the power of 
2 dividing m. 

DEFINITION 9.4 A subgroup of a group is a subset of the group that 
forms a group with the same binary operation. 

The associative law holds automatically for a subset of a group. To verify 
that a subset 5 is a subgroup, one must check that the identity element is in 
5, that a~l is in S whenever a is in 5 and that ab is in S whenever a and 6 
are in S. A subgroup of an abelian group is automatically abelian. It is easy 
to see that a subgroup of a cyclic group is cyclic. 

The real Lagrange's theorem states that the order of a subgroup of a group 
G divides the order of G. Theorem 9.4 is the special case for the cyclic 
subgroup generated by a. The real Lagrange's theorem may be proved by a 
slightly more complicated argument than the proof of Theorem 9.4. 
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9.3 The Baby-Step-Giant-Step Algorithm 
When we say we are "given a group," we mean that we have a way to represent 
group elements by strings of symbols, we know which string represents the 
identity and we have algorithms to decide whether two strings represent the 
same group element, to compute the string which represents the product of 
elements represented by two given strings and to find the inverse of any given 
element. We shall assume these algorithms are efficient. This is true for 
groups used in cryptography. The complexity of other group algorithms is 
measured in units of these group operations. 

This section considers the following problem. Given a finite cyclic group G 
with generator g and an element b of G, find the smallest integer k so that 
gk = b. This problem generalizes the discrete logarithm problem for groups 
Rm when m has a primitive root. That is why it is called the discrete 
logarithm problem for groups. 

The simplest algorithm for solving this problem is to compute successively, 
g, #2, p 3 , . . . , and compare each power of g with 6, stopping at the first equality. 
If G has order n, then this algorithm takes O(n) group operations and 0(1) 
space. 

If one wished to compute discrete logarithms of group elements very quickly, 
one could precompute a table of the discrete logarithm of every element in 
G and simply look up the discrete logarithm of a when it was needed. The 
precomputation time is O(nlogn) group operations to form the n powers of 
g and sort the pairs (gl,i). The main computation takes no group operations 
but O(n) space. The time for table lookup is probably O(logn), depending 
on the representation of group elements. 

Shanks' [105] baby-step-giant-step algorithm computes the discrete log­
arithm of an element of a finite cyclic group with a complexity about mid­
way (on a logarithmic scale) between those of the two simple algorithms just 
stated. It does not require that we know the order of the group exactly; an 
upper bound on the size is good enough. A slightly different version of this 
algorithm appears as Algorithm 5.3.1 in Crandall and Pomerance [33]. 

[Baby-step-giant-step algorithm for discrete logarithms in a group] 
Input: A finite cyclic group G, a generator g, an upper bound n on the order 
of G, and an element b of G. 
Output: An integer k for which gh = b. 

Precomputation: 

a= 1 
for (i = 0 to L - 1) { 

store (a,i) in a Table A 
a = a* g 
} 

sort Table A in order of its first components 

L=|V^1 
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Main computation: 
h=(9~1)L 

a — b 
for ( j = 0 t o L - 1) { 

if (a i s the f i r s t component of a 
p a i r (a,i) in Table A) { 

wri te "Log of b i s i+jL" and e x i t 
} 

a = a * /i 
} 

wri te "Error : n was too smal l . " 

The algorithm is called the baby-step-giant-step algorithm because the vari­
able a takes baby steps of length 1 through powers of g in the first for loop 
and giant steps of length L through powers of g in the second for loop. 

THEOREM 9.5 Complexity of the baby-step-giant-step algorithm 

The baby-step-giant-step algorithm correctly fínds the discrete logarithm 
of an element b of a unite cyclic group with generator g and order < ra. 
The complexity of this algorithm is 0(^/n\ogn) group operations and 0{y/n) 
space. 

P R O O F Suppose gk = b. Then 0 < k < n and so k is a two-digit number 
in base L = \y/ñ ] , that is k = i -h jL for some 0 < i,j < L. This means that 
b = gk = gi+Li = g^g1*)!, so g{ = bh?, where h = (g1)'1 = (g~l)L. Table 
A contains pairs (gs,s) for 0 < s < L. The second for loop forms a = bh1 

and searches for this group element as first component of a pair in Table A. 
It will certainly find such a pair when t = j because the pair (#% i) is in Table 
A and gl = bh?. 

The group element h = {g~x)L may be computed in O (logra) group op­
erations by fast exponentiation. We are assuming that we can compute g~l 

in one group operation even if we don't know the exact order of the group. 
The for loops clearly take O(y/ñlogra) group operations because L < 1 + yjn 
and log ra comparisons are needed to seek each a in the sorted Table A in the 
second loop. Sorting Table A of length L requires 0(>/ralogra) comparisons 
of strings representing group elements. The only large data structure is Table 
A, and it occupies 0(^/ñ) space. I 

If we wish to compute discrete logarithms modulo a prime p, the baby-step-
giant-step algorithm roughly doubles the length of p for which we can do the 
calculation, as compared to the first algorithm in this section. 
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9.4 Rings and Fields 

DEFINITION 9.5 A ring is a set of at least two elements with two binary 
operations, addition (+) and multiplication (x), which is an abelian group 
with identity zero (0) under addition and whose multiplication is associative 
(a x (b x c) = (a x 6) x c) and distributive over addition (a x (b + c) = 
(a x 6) + (a x c) and (b + c) x a = (6 x a) + (c x a)). A ring is commutative 
ifaxb — bxa for every a and b. If the elements of a ring, other than 0, form 
a commutative group under x, then the ring is called a field. 

All rings in this book will be commutative and the multiplication will have 
an identity which we will write 1 and call the unity of the ring. We will write 
multiplication in rings in the usual way and omit the x. The set Z of all 
integers with the usual operations is a commutative ring with unity. It is not 
a field because most integers have no inverses under multiplication. The set 
of all rational numbers Q is a field, as are the set R of all real numbers and 
the set C of all complex numbers. 

THEOREM 9.6 The integers modulo m are a ring 
The set Zm = { 0 , 1 , . . . , m — 1}, with arithmetic defined modulo m, forms a 

commutative ring for every integer m > 1. This ring is a held if and only if 
m is prime. 

PROOF By Theorem 9.1, the set Zm is a group under addition modulo m. 
Multiplication modulo m inherits its associative, commutative and distribu­
tive properties from the integers. (For example, a(b -he) = ab + ac (mod m) 
because a(b + c) = ab + ac.) This shows that Zm is a commutative ring. 

Theorem 9.2 shows that any RSR modulo m forms an abelian group under 
multiplication modulo m. If m is prime, then the elements of Zm other than 
0 are an RSR, and therefore a commutative group. Thus, Zm is a field if m 
is prime. If m is not prime, then m = ij for some 1 < i < j < m and the 
congruence ix = 1 (mod m) has no solution, by Theorem 5.6. This shows 
that the element i of Z m has no multiplicative inverse in Z m ; so, the set of 
nonzero elements of Zm is not a group under multiplication, and Zm is not a 
field. I 

The set of all 2 x 2 matrices with integer entries is a commutative ring with 
unity / , the identity matrix. Likewise, the set of all 2 x 2 matrices with entries 
modulo m > 1 is a commutative ring with unity / . 

Let R and S be two rings. A homomorphism from R to S is a function 
/ from R into S which preserves addition and multiplication. This means 
that /(0) = 0, / ( l ) = 1, f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b) for 
all a and b in R. If / is onto, then the ring S is called the homomorphic 
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image of R. For each integer m > 1 there is a homomorphism from Z onto 
Zm defined by / (a) = (amodra) , that is, / (a ) is the congruence class of 
a modulo ra. An isomorphism from R to S is a homomorphism which is 
one-to-one and onto, that is, a one-to-one correspondence between rings that 
preserves addition and multiplication. We say R and 5 are isomorphic if 
there is an isomorphism from one to the other. 

9.5 Polynomials 
Let F be a ring. A polynomial with coefficients in F is an expression 
f(x) = anx

n + an-\x
n~~x + Y a\x + ao, where the coefficients a¿ are in F . 

The set of all such polynomials is denoted F[x\. The degree of a polynomial 
f(x) is the exponent on the highest power of x having a nonzero coefficient. If 
the leading coefficient, an, is ^ 0 in the expression above for f(x), then the 
polynomial f(x) has degree n. The coefficient ao of x° is the constant term. 
Constant polynomials have degree 0, except for the zero polynomial 0, which 
has no degree. A polynomial is monic if its leading coefficient is 1. Two 
polynomials are equal if they have the same degree and all corresponding 
coefficients are equal. 

Polynomials in F[x] may be added and multiplied in a natural way. If 
f(x) = anx

n + an-ix
n~l H h a\x + ao and g(x) — bnx

n + &n_i#n _ 1 H h 
b\X + bo, then their sum is 

f(x) + g(x) = (fl„ + bn)x
n H (ai + bx)x + (a0 + &o) 

and their product is 

f(x)g(x) = (anbn)x
2n H h (a2&o + ai&i + a0b2)x

2 + (ai&0 + ao&i)# + («oM-

With these operations, F[x] is a commutative ring with unity. The zero 
element is the polynomial 0 and the unity is the constant polynomial 1. 

From now on in this section, we assume F is a field. 

THEOREM 9.7 Division algorithm for polynomials 
Let f(x) and g(x) be two polynomials in F[x], where F is a fíeld. If g(x) is 

not the zero polynomial, then there exist polynomials q(x) and r(x) in F[x] 
with f(x) = q(x)g(x) + r(x) and either r(x) is the zero polynomial or else the 
degree ofr(x) is less than the degree of g(x). 

The proof is a statement of the long division algorithm you learned for 
polynomials in high school. 

A zero of a polynomial f(x), or a root of f(x) = 0, is a quantity a, 
belonging either to F or to a larger field, for which f(a) = 0. 
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THEOREM 9.8 The factor theorem 
If a e F is a zero of a polynomial f(x) in F[x], where F is a field, then there 

is a polynomial q(x) in F[x] for which f(x) = (x — a)q(x). 

PROOF By Theorem 9.7 with g(x) — {x - a) , we can write f(x) = 
(x - a)q(x) + r(x), for some polynomials q(x) and r(x) in F[x\. If r(x) has 
a degree, then it is less than 1, that is, r(x) must be constant. Substituting 
x — a shows that this constant must be 0, and the theorem is proved. I 

COROLLARY 9.2 
The number of zeros of a polynomial in F[x], where F is a field, is no more 

than its degree. 

PROOF Use induction on the degree. Compare with the proof of Theorem 
5.8. I 

It is essential that F be a field in this corollary. We saw in Theorem 7.17 
that the polynomial x2 — 1 has four zeros in Z%. By Theorem 7.18, if a is a 
quadratic residue modulo pq, then x2 — a has four zeros in Zpq. 

The division algorithm for polynomials allows us to define divisibility and 
greatest common divisors for polynomials, just as we did for integers in Chap­
ter 3. Let F be a field. If f(x) and g(x) are in the polynomial ring F[x] and 
/ / 0, then f(x) is called a divisor of g(x) if there is a polynomial q(x) in 
F[x] with g{x) = q(x)f{x). We write f(x)\g(x) if this is so. If a G F and 
a / 0 , then the constant polynomial a divides every polynomial in F[x]. Also 
if a G F and a ^ 0, then f(x)\g(x) if and only if (af(x))\g(x). 

A greatest common divisor of two polynomials f(x) and g(x), not both 
0, in F[x] is a monic polynomial d(x) of highest degree which divides both 
f(x) and g(x). We write d(x) = gcd(f(x),g(x)) in this case. 

THEOREM 9.9 GCD is a linear function of polynomials 
If the two polynomials f(x) and g(x) in F[x] are not both 0, and d(x) is a 

greatest common divisor of f(x) and g(x), then there are polynomials a(x) 
and b(x) in F[x] such that a(x)f(x) + b(x)g(x) = d(x). 

The theorem may be proved in the same way as Theorem 3.9. A conse­
quence of Theorem 9.9 is that the greatest common divisor of two polynomials 
is unique. The analogue of the extended Euclidean algorithm for integers may 
be used to compute the greatest common divisor of two polynomials. The only 
difference here is that, if the last nonzero remainder is not a monic polyno­
mial, then we must multiply it by the inverse of its leading coefficient to make 
it monic. 
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A polynomial p(x) of degree at least one in F[x] is called irreducible (over 
F) if it cannot be written as the product of two nonconstant polynomials in 
F[x] of lower degree. Irreducible polynomials are analogues of prime num­
bers. The analogue of Lemma 4.2 is this statement: If p(x) is irreducible and 
p(x)\f(x)g(x), then either p(x)\f(x) or p(x)\g(x). This can be used to prove 
the analogue of Theorem 4.1. 

THEOREM 9.10 Factorization of polynomials 
Every nonconstant polynomial f(x) in F[x] can be written in the form 

f(x) = ap1{x)--pk(x), 

where the Pi(x) are irreducible polynomials in F[x]. 

The irreducible (over Q) factors of the polynomials xn — 1 are called the 
cyclotomic polynomials. There is exactly one irreducible monic polynomial 
$n(#)j called the n-th cyclotomic polynomial, which divides xn — 1 but no 
xk — 1 for 1 < k < n. The coefficients of each $n(x) are integers. The degree of 
$n(x) is (¡>(n). One can show that xn — 1 = \[d\n $d{x) (and so ^2d\n (¡>{d) = n). 
The zeros of 4>n(x) are the n-th roots of 1 in the complex numbers C which 
are not fc-th roots of 1 for any 1 < k < n. These numbers are called the 
primitive n-th roots of unity. They are the complex numbers e2irz^n, 
where 1 < j < n and gcd(j, n) = 1. The first few cyclotomic polynomials are 

$i(x) = x - 1 

$2(2) = x + 1 

$3(x) =x2 +x + l 

$4(x) = x2 + 1 

$5(x) = XA + X3 + X2 + X + 1 

$6(x) = x2 - x + 1 

The notion of divisibility for polynomials allows us to define congruence of 
polynomials. Let f(x) be a nonzero polynomial in F[x]. Let a(x) and b(x) be 
two polynomials in F[x]. We say a(x) is congruent to b(x) modulo f(x) and 
write a(x) = b(x) (mod f(x)) if f(x) divides a(x) — b(x). Congruence defines 
an equivalence relation on F[x]. Let [a(x)] be the congruence class containing 
the polynomial a(x), that is, [a(x)] = {b(x)  F[x]]b(x) = a(x) (mod f(x))}. 
Then the formulas 

[a(x)] + [b(x)] = [a(x) + b(x)] 

[a(x)][b(x)] = [a(x)b(x)] 

are well defined rules for addition and multiplication of congruence classes. 
The set of congruence classes with these operations forms a commutative ring 
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with unity. The ring is denoted F[x]/(f(x)). The zero element of the ring is 
the class [/(#)] and the unity is the class [1]. 

If f(x) has degree d > 0, then it is easy to prove, using Theorem 9.7, that 
the distinct congruence classes of F[x]/(f(x)) are the classes [a(x)], where 
a(x) is an arbitrary polynomial in F[x] of degree < d. 

We will construct new fields using the following theorem. 

THEOREM 9.11 Fields correspond to irreducible polynomials 
Let p(x) be a polynomial in F[x], where F is a ñeld. Then p(x) is irreducible 

if and only if the ring F[x]/(p(x)) is a ñeld. 

P R O O F Suppose p(x) is irreducible. Let [a(x)] be a nonzero element of 
F[x]/(p(x)). Then p(x) does not divide a(x) and so gcd(a(x),p(x)) = 1. By 
Theorem 9.9, there are polynomials b(x) and c(x) so that b(x)a(x)+c(x)p(x) — 
1. Hence, a(x)b(x) = 1 (mod p(x)), which means [a(x)][6(a:)] = [1]. Thus, 
[a(x)] has a multiplicative inverse, and so F[x]/(p(x)) is a field. 

Conversely, if p(x) were not irreducible, then the congruence classes of its 
factors would not have inverses, so F[x]/(p(x)) would not be a field. I 

Theorem 9.11 may be used to construct finite fields of size pe elements for 
every prime p and every positive integer e. We know from Theorem 9.6 that 
F p = Zp is a field for every prime p. It contains p elements. Let f(x) be 
an irreducible polynomial of degree e in Fp[x]. Then Fpe — Fp[x]/(f(x)) is 
a field with exactly pe elements, and all finite fields arise this way. One can 
prove that there is such an irreducible polynomial for every prime p and every 
positive integer e. Let ne denote the number of monic irreducible polynomials 
of degree e over F p , where p is prime. Then one can show that ne = (pe — 

El<d<e,d\ednd)/e-

Example 9.1 

Use f(x) = x8 + xA + x3 + x + 1 in F2IXI to construct a field with 28 elements. 
We first show that f(x) is irreducible over F2, the integers modulo 2. Since 

the degree of f(x) is 8, if f(x) were not irreducible, then f(x) would be divisible 
by an irreducible polynomial of degree 1, 2, 3 or 4. If f(x) had a linear factor 
x + a, then / (a ) = 0. But /(0) = / ( l ) = 1 ^ 0 . It is easy to see that the 
only irreducible polynomial in F2IXI of degree two is x2 + x + 1. (Note that 
x2 + 1 = (x + l)2 .) Similarly, the only irreducible cubic polynomials in F2[x] 
are x3 + x2 + 1 and x3 + x + 1. Long division shows that none of these three 
trinomials divide f(x). We leave it to the reader to find the three irreducible 
polynomials in F2[x] of degree 4 and show they do not divide f(x). 

By Theorem 9.11, F2s = F2[x]/(/(o;)) is a field. Its 28 elements are 0 and 
the polynomials of degree < 8 with coefficients in F2. The 8 coefficients of such 
a polynomial are bits, and the polynomials correspond in a natural way to 8-bit 
bytes. Addition in F2s corresponds to the exclusive-or of bytes. To multiply 
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two polynomials in F2s, first multiply them as ordinary polynomials (over Z) 
and reduce the coefficients modulo 2. Then divide the product by f(x). The 
remainder is the product of the two polynomials in F2s. 

One can show that two different irreducible polynomials f(x) and g(x) 
in Fp[x\ with the same degree e produce isomorphic fields Fp[x]/(f(x)) and 
Fp[x]/(g(x)), which we regard as the same field Fpe. 

Note that, when e > 1, Fpe is not isomorphic to Zpe. Both rings contain 
pe elements, but Zpe is not a field because, for example, the congruence class 
of p has no multiplicative inverse. 

Let p be prime and q = pe for some positive integer e. The set of nonzero 
elements of Fq forms a group of order q — 1. By Lagrange's theorem, if a G Fq 

and a ^ O , then aq~l = 1. In fact, there is an element of order q - 1 in this 
group. 

THEOREM 9.12 Multiplicative group of a finite field is cyclic 
The multiplicative group of a ñnite ñeld is cyclic. 

PROOF Let F be the finite field and let G be its multiplicative group. 
By Corollary 9.2, for every n > 1 the equation xn = 1 has at most n roots in 
F. Let a be an element of G with largest order N. Let b be any element of 
G, and call n its order. We will show that G is cyclic by proving that b = aJ 

for some integer j . 
If n does not divide iV, then there is a prime p and a power q = ps of p 

so that q divides n but not N. It is easy to see that the order of abnlq is 
lcm(iV, q) > N, which contradicts the definition of N as the largest order of 
any element of G. Therefore n divides N. 

The equation xn — 1 has the n distinct roots alN^n in G, with 0 < i < n. 
Since b satisfies bn = 1, it must be one of these roots, that is 6 = aj with 
j = iN/n for some 0 < i < n. I 

9.6 Algebraic Number Theory 
In this section, we give a brief introduction to algebraic number theory needed 
to understand the number field sieve factoring algorithm. 

Let Z[x] denote the ring of polynomials with integer coefficients. 

DEFINITION 9.6 An algebraic integer of degree d is the zero in the 
complex numbers C of a monic polynomial of degree d in Z[x] which is not 
the zero of such a polynomial with lower degree. 

For example, y/ò and i — i/—Ï are algebraic integers of degree 2. They 
are the zeros of the polynomials x2 - 5 and x2 + 1, respectively, but not 
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the zero of any linear polynomial with integer coefficients. If a and b are 
integers, then a + bi is an algebraic integer of degree 2 because it is the zero 
of x2 — 2ax + (a2 + b2). Let Z[i] denote the set of all a + bi, where a and b are 
integers. This set is called the Gaussian integers. It contains the integers 
Z as the subset with 6 = 0 and shares many properties with Z. 

A major portion of algebraic number theory studies how algebraic integers 
factor. In the Gaussian integers, 3 and 7 cannot be factored, but 2 = (1 + 
i)(l — i) and 13 = (3 + 2i)(3 — 2Ï) can be factored, even though they are primes 
in Z. The Gaussian integers 3, 7, 1 + i and 3 — 2% are primes in Z[i]. 

The primes in Z are called rational primes to distinguish them from the 
Gaussian integer primes. Likewise, the elements of Z are sometimes called 
rational integers to distinguish them from algebraic integers not in Z. 

DEFINITION 9.7 A unit of a commutative ring R with unity 1 is an 
element having a multiplicative inverse in R. An irreducible element of 
R is a nonzero, nonunit element a whose only factorizations in R are the 
trivial ones a = uf3 with one factor u being a unit. If a — u/3, where u 
is a unit, then a and (3 are called associates. An algebraic integer a has 
unique factorization in R if any two factorizations of a into the product of 
irreducibles and units are the same except for replacing irreducibles by their 
associates and using different units. 

The units in Z[i] are +1,—1,-fi and —i. The units in Z are +1 and — 1. 
The irreducible elements in Z are the primes p and their associates —p. In 
Z[¿], 2 -f i is irreducible and has the associates 2 — i, 1 + 2i and 1 - 2i. The 
Gaussian integers have unique factorization. The number 5 can be factored 
as (2 + ¿)(2 - z), as (1 + 2i)(l - 2i) and also as (-¿)(2 + ¿)(1 - 2i). All three 
of the factorizations are considered the same. 

Now let Z[\/—6] denote the set of all numbers of the form a + by/^6, where 
a and b are integers. This set forms a commutative ring with unity under 
addition and multiplication. Define the norm of a + by/^6 to be N(a + 
by/—6) = a2 + 662. We say a + by/^6 is factored if we can write 

a + by/-H = (c + c?VC:6)(e + fV^G) 

with N(c + dv^-6) > 1 and N(e + fy/—6) > 1. This restriction avoids trivial 
factorings. The norm function is completely multiplicative, that is, if a and 
(3 are in Z J V ^ ] , then N(a(3) = N(a)N(/3). It follows that a + byf^i is 
factored if a + b^/^E = a(3 with 1 < N(a) < N(a + ò y ^ ) = a2 + 6b2 

and 1 < N((3) < N(a + ò-y/—6). These inequalities show that a number in 
Z[^/—6] can break up into only a finite number of factors. Note also that 
N(a + b^/^6) > 6 if b / 0. This shows that 2 and 5 are irreducibles; they do 
not factor in Z[\/—6]. Now 10 can be factored in two different ways: 

10 = 2 • 5 = (2 + V^){2 - \ / ^6 ) . (9.1) 
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The ring Z[\/—6] does not have unique factorization. 

DEFINITION 9.8 A nonzero algebraic integer a divides an algebraic 
integer (3 (written a\/3) if there is an algebraic integer 7 so that (3 = aj. A 
nonzero algebraic integer a is p r ime if it is not a unit and whenever a|/?7, 
either a\/3 or a\"y. 

In the integers Z, every irreducible is prime, by Lemma 4.2. In any ring 
in which every irreducible is prime, one can prove that factorization into 
irreducibles (or primes) is unique; our proof of Theorem 4.1 shows this. Not 
every irreducible in Z[V—6] is prime. The four factors of 10 in Equation (9.1) 
are irreducible but not prime. 

DEFINITION 9.9 An algebraic number of degree d is the zero in the 
complex numbers C of a polynomial of degree d in Z[x] which is not the zero 
of such a polynomial with lower degree. 

This definition is the same as Definition 9.6 of algebraic integer except that 
the word "monic" is dropped. 

DEFINITION 9.10 If E C F are two ñelds, we call E a subfield ofF, 
and F an extension field of E. 

DEFINITION 9.11 An algebraic n u m b e r field is an extension held of 
Q that contains only algebraic numbers. If a is an algebraic number of degree 
d, then the algebraic number field of degree d over Q generated by a 
is the smallest extension held Q(a) of Q containing a. 

One can show that Q(a) is the intersection of all algebraic number fields 
containing a. The monic polynomial in Q[x] of degree d satisfied by a is the 
minimal polynomial of a over Q. When considered as a vector space over 
Q, Q(a) has dimension d over Q. It is known that every extension field E of 
Q that is a finite-dimensional vector space over Q has the form Q(a) for some 
algebraic number a. The elements of Q(a) are all sums $^7Ç0

 aja^ where 

the aj are in Q. Define Z(a) to be the set of all sums X^=o aja^ where the 
cij are in Z. 

If a is an algebraic number of degree d, then its conjugates are the d 
roots in C of its minimal polynomial. The norm of a, -/V(a), is the product 
of its conjugates, and equals ( - l ) d times the constant term of the minimal 
polynomial of a. The norm satisfies N(a(3) — N(a)N(/3). The norm of an 
algebraic integer is an integer. The minimal polynomial of an algebraic integer 
has integer coefficients. 
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Let a be an algebraic number. The set of all algebraic integers in Q(a) 
forms a ring X called the ring of integers in Q(a). This ring X always 
contains the ring Z(a), and may be equal to it. 

Example 9.2 

The ring Z(-y/Ï3) consists of all numbers a + by/Ï3, where a and b are integers. 
However, the ring of integers in Q(vT3) consists of all numbers a+6(1 + VT3)/2, 
where a and b are integers. The number (1 + y/VÒ)/2 is an algebraic integer 
because it is a zero of the polynomial x2 — x — 3. Clearly, it is in Q(VT3). 

If the ring X of integers in Q(a) has unique factorization, then X is called 
a unique factorization domain. 

9.1 Exercises 
1. Which of the following are groups? 

a. The even numbers with addition as the operation. 

b. The integers with subtraction as the operation. 

c. The odd numbers with multiplication as the operation. 

d. The rational numbers a/b with b = 1 or 2, with addition as the 
operation. 

e. The rational numbers a/b with b = 1, 2 or 3, with addition as the 
operation. 

2. Show that the groups R$ and R$ have the same size, but that they are 
not isomorphic. 

3. Show that the groups CQ and RQ are isomorphic. 

4. Let G be a finite cyclic group generated by g. Let b be an element of G. 
Suppose two numbers A < B are known, with B — A small compared 
to the order of G, such that there is an integer k in A < k < B for 
which gk = b. Modify Shanks' baby-step-giant-step algorithm to create 
an algorithm that will discover this k in 0(y/B — A\og(B — A)) group 
operations and 0(y/B — A) space. 

5. Alice and Bob debate whether Shanks' baby-step-giant-step algorithm 
works because of the birthday paradox of Theorem 2.4. Does it? 

6. Do the real numbers of the form x + y\/2, where x and y are rational 
numbers, form a ring with the usual addition and multiplication? If so, 
is this ring a field? 
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7. Let F = F3, the field with three elements. Let f(x) — 2x2 + 1 and g(x) = 
x3 + x 2 + 2 be two polynomials in F[x]. Compute d(x) = gcd(f(x),g(x)) 
and find polynomials a(x) and b(x) so that a(x)f(x) + b(x)g(x) = d(x). 

8. In Example 9.1, find the three irreducible polynomials in 1?2[x] of degree 
4 and show that they do not divide f(x) = xs + x4 + x3 + x + 1. 

9. Find explicit formulas for the cyclotomic polynomials $p(x) and $2p(x), 
where p is any odd prime. 

10. According to Theorem 9.12, the multiplicative group of the field F2s 
constructed in Example 9.1 is cyclic. Find a generator for it. 





Chapter 10 

Exponential Methods of 
Factoring Integers 

This chapter introduces methods of factoring integers that are slower than 
the fastest known ones. They require time 0(n c ) , where c > 0 is a constant, 
to factor n. They are called "exponential algorithms" because their time 
complexity is exponential in logn, the length of the input, since nc = e c l n n . 
We study them because they are fairly simple, some are used as procedures 
in faster factoring methods, and because, since they sometimes work sur­
prisingly quickly, we have to avoid numbers they can factor when choosing 
cryptographic keys that must not be factored. See the books by Crandall and 
Pomerance [33], Cohen [28], and Riesel [96] for more about these factoring 
algorithms. 

The trial division algorithm from Chapter 4 is an excellent way to factor 
fairly small numbers. Example 4.5 shows that it has little chance of factoring 
large integers completely, although it almost always finds some small prime 
factors of random large integers. Half of all integers have a factor of 2. About 
92% of large odd integers have a prime divisor below 1,000,000. Example 4.5 
shows that if we don't want someone to factor our secret key, then it must 
not have a small prime factor. 

Throughout this chapter, n will be the odd composite number to factor. 

10.1 FermaVs Difference of Squares Method 

This is the second oldest factoring method, after trial division. Fermât tried 
to express n as a difference of two squares, x2 — y2, with the pair x, y different 
from (n + l ) /2 , (n — l ) /2 . Any other representation of n as x2 — y2 gives a 
nontrivial factorization n— (x — y)(x + y). Clearly, x > ^Jn. 

We illustrate the algorithm with n — 481 in the following table. The vari­

es 
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able x begins with [y/n\ rather than \\/ñ "| to check whether n is a square. 

X 

21 
22 
23 
24 
25 

t -

43 
45 
47 
49 
51 

2x + 1 X2 

441 
484 
529 
576 
625 

r = x2 — n 

-40 
3 
48 
95 
144 = 122 

The last line of the table shows that 481 = 252 - 122 = (25 - 12) (25 +12) . 
Why is there a column for 2x + 1 in the table? After the numbers in the 

first row have been computed, we can find the new x2 by adding the old 2x +1 
to the old x2, since (x +1)2 = x2 + (2a; +1) . Likewise, the next r can be found 
by adding the old 2x + 1 to the old r. The column for x is needed only at 
the end. It need not be computed at all because it can be found easily from 
2x + 1 when the algorithm finishes. This suggests the following algorithm. 

[Fermât 's difference of squares factoring algorithm] 
Input: An odd composite positive integer n to factor. 
Output: The factors a and b of n. 

x = [y/n\ 
t = 2x + l 
r — x2 — n 
while (r i s not a square) { 

r = r + t 
t = t + 2 
} 

x = (t- l ) /2 
V= [y/r\ 
r e t u r n the f ac to r s x — y and x + y 

In two lines of the algorithm we must find the integer part of the square 
root of an integer. A good way to do this is with a modification of Newton's 
method. The initial value of x in the algorithm below can be any integer 
> y/n, the closer to y/n the better. The value in the first line of the algorithm 
is easy to compute on a binary computer. 

[Integer part of the square root of a positive integer] 
Input: A positive integer n. 
Output: x = [y/ñ\. 

x — 2r(log2^)/2] 

y=L(*+L*/*J)/2j 
while (y < x) { 

y=l(x+[n/x¡)/2¡ 
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} 
return x 

It is an easy exercise to show that this algorithm is correct and finishes in 
O(loglogn) iterations. 

Let us return to Fermat's difference of squares factoring algorithm. The 
condition in the while loop may be tested as, "Is r ^ (|_v^\l)2?"> where the 
square root is computed by the algorithm just given. However, the rest of 
the loop contains only two additions. The integer square root algorithm uses 
several divisions and would dominate the time for the loop. Fermât, working 
by hand with decimal numbers, solved this problem by recognizing possible 
squares by their low-order digits. Every square has last decimal digit 0, 1, 4, 
5, 6 or 9. In the example in the table above, r = 3 and 48 cannot be squares 
because their last digits are not in the list. Only 22 two-digit numbers may 
occur as the last two decimal digits of a square. A binary computer can 
test whether r might be a square with the logical operation (r&63) to find 
(r mod 64), followed by looking up the remainder in a table of the twelve 
possible squares modulo 64. If r passes this test, then look up (r mod pe) in 
a table of possible squares modulo pe for a few small odd prime powers pe. 
Only in case r passes all these tests need one check "r ^ (Lv^J)2?"- Tricks 
like these amortize evaluation of the while condition to a cost comparable to 
the cost of the two addition operations inside the loop. 

THEOREM 10.1 Complexity of Fermat's factoring algorithm 
Let the odd composite positive integer n = ab, where a is the largest divisor 

ofn which is < y^ñ. Let k = a/y/ñ, so that 0 < k < 1. Then the while loop 
in Fermat's difference of squares factoring algorithm is executed 

1 + (1 - k)2y/^/{2k) 

times. 

P R O O F If a = b, then n is a square, k = 1 and the while loop ends 
after the first iteration. In any case, when the algorithm ends, x — y — a and 
x + y = 6, that is, x = (a + 6)/2 and y — (b — a)/2. At this time, x = (£ —1)/2, 
so¿ = l + a + ò = 1 + a + n/a . The variable ¿ increases by 2 at each iteration, 
begins at the first odd number > 2y/n and stops at 1 + a + n/a. Hence, the 
while loop is executed 

times. I 
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Theorem 10.1 does not say that the time complexity of Fermât 's algorithm 
is 0(y/n) to factor n. In the worst case, n — 3p, for some prime p, we have 
k = 3/y/ñ and the while loop is performed essentially n /6 times. 

If ^ / ñ - a is 0(nl y / 4) , then the theorem shows that Fermat's algorithm takes 
about yjn — a steps. The cryptographic significance of this result is that if 
n = pq is public but the primes p and q must stay secret, then one must 
not choose p and q too close to each other. If p < q and q — p is small 
enough so that an attacker could perform q — p simple operations, then n can 
be factored by Fermat's method. As one can build special hardware devices 
(called sieves) capable of executing the while loop at high speed, it is best to 
require q — p> 1025. See Lehmer [62], [63] and Williams [128] for information 
about the construction and use of sieves. 

10.2 Pollard's Rho Method 
This method is also called the Monte Carlo factoring method because it con­
structs a sequence of random numbers and the city of Monte Carlo is well 
known for randomness. 

Let n be the composite number to factor and let p be an unknown prime 
factor of n. Pollard [85] proposed choosing a random function / from the set 
{ 0 , 1 , . . . , n — 1} into itself, picking a random starting number s in the set and 
iterating / : 

* , / ( * ) , / ( / ( * ) ) , / ( / ( / ( * ) ) ) , • • • • 

If we consider these numbers modulo the unknown prime p, we get a sequence 
of integers in the smaller set { 0 , 1 , . . . ,p — 1}. We know from the birthday 
paradox, Theorem 2.4, that some number in the smaller set will be repeated 
after about y/p iterations of / . Iiu,v were the iterates of / with u = v (mod p), 
then probably gcd(u — v, n) — p because p divides u — v and n and it is unlikely 
that any other prime divisor of n divides u — v. But how can we detect this 
repeated value when it happens? We don't know p and must iterate / modulo 
n. Suppose that f(u) = f(v) (mod p) whenever u = v (mod p). 

Write S{ for the z-fold iterate of / starting at s. That is, s0 = s and 
Si = f(s{-i) for i > 0. If Si = Sj (mod p), then p divides s¿ — Sj and also 
gcd(si — Sj,n). However, we can't compute a gcd for every pair ¿, j < ^fp 
because there would be about \{^fp)2 — p/2 pairs and we might as well use 
trial division to find p. 

There is a beautiful solution to this problem due to Floyd. (See Exercise 
6b in Section 3.1 of [56].) The Floyd cycle-finding algorithm computes 
two iterates of / together in the same loop, with one instance running twice 
as fast as the other. This trick generates sm and S2m together and forms 
gcd(s2m — sm,n), hoping to find p. Here is why the trick works. Suppose 
Si = Sj (mod p) for some i < j . By the birthday paradox, Theorem 2.4, the 
first j for which this congruence holds for some i < j is 0(y/p). Let k = j -i. 

*> m , /(/(«)), /(/(/(S))),.... 
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Then for any m > i and t > 0, sm = sm+tk (mod p). When m = k\i/k^\ and 
t — \i/k] we have sm = s2 m (mod p) and m < j , so m is 0(v /p) . 

What is a good choice for the random function /(#)? It must be easy to 
compute modulo n. Low degree polynomials with integer coefficients come to 
mind first. They satisfy f(u) = f(v) (mod p) whenever u = v (mod p), by 
Corollary 5.1. 

One should not use a linear polynomial because they are not random 
enough. Consider first f(x) — (x + b) mod n. Then s¿ = s + ib (mod p). 
We may suppose that p does not divide 6, since otherwise gcd(6, n) = p fac­
tors n. In this case, we have s¿ = Sj (mod p) if and only if i = j (mod p) 
by Theorem 5.5. This means that the sequence {s¿ modp} has period p, and 
trial division of n would find p sooner. 

Now suppose f(x) = (ax + b) mod n. We may suppose that p does not 
divide a — 1, for otherwise gcd(a — l ,n) = p factors n. In this situation, 
1 — a has a multiplicative inverse modulo p. An easy induction shows that 
si = sa* + 6/(1 — a) (mod p) for ¿ > 0. Then s¿ = Sj (mod p) if and only if 
a1 = aj (mod p). lî a happened to be a primitive root modulo p, then this 
congruence would hold if and only if i = j (mod p — 1), by Theorem 6.15. 
Hence the sequence {s¿ mod p} has period p — 1, and trial division of n would 
find p sooner. The same difficulty would arise whenever a happened to have 
a large order modulo p, which happens often by Theorem 6.14. 

The next simplest functions to compute modulo n are quadratic polyno­
mials. One should avoid f(x) = x2 mod n because this choice gives s¿ = 
s2 (mod p). Suppose s is a primitive root modulo p, which has a reasonable 
chance of happening. Then S{ = Sj (mod p) if and only if 2Z = V (mod p - 1) 
by Theorem 6.15. Write p - 1 = d2h with d odd. Suppose i > h and j > h. 
The last congruence is equivalent to 2l~h = 2^~h (mod d). Then s¿ modp 
would have a period equal to the order of 2 modulo d, which might easily be 
much larger than y/p. 

Another quadratic polynomial to avoid is f(x) = (x2 — 2) mod n. By Theo­
rem 7.3, there is a 50% chance that s2 — 4 is a quadratic residue modulo p. If 
this happens, then we can solve the congruence r2 - sr + 1 = 0 (mod p), which 
has discriminant s2 — 4, and which is equivalent to s = r + (1/r) (mod p). A 
simple induction shows that si = r2% + r -^2^ (mod p). Then s¿ = Sj (mod p) 
if 2l = 2J (mod p — 1), and we have the same long period problem as with 
f(x) = x2 mod m. 

Although no one has proved that any polynomials f(x) = (x2 + b) mod n 
are random mappings when b ^ 0 or - 2 , experiments suggest that these are 
good choices. We avoid terms ax in these polynomials because they make / 
harder to evaluate. Here is the algorithm. 

[Pollard rho factorization algorithm] 
Input: A composite number n to factor. 
Output: A proper factor of n, or else "give up." 
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Choose a random b in 1 <b <n — 3 
Choose a random s in 0 < s < n — 1 
A = B = s 
Define a function f(x) = (x2 + b) mod n 

9 = 1 
while (<? = 1) { 

A = /(A) 
B = f(f(B)) 
g = gcd(A-B,n) 
} 

if (g < n) { wr i t e "g i s a proper fac to r of n" } 
e l s e { e i t h e r give up or t r y again with new s and/or b } 

If we reach the last line of the algorithm, it means that g — n, that is, we 
have found all prime factors of n together. There is a fair chance that we will 
separate them, and find just one of them, if we restart the algorithm with new 
random b and s. 

The factor g of n written in the next-to-last line is not guaranteed to be 
prime. It is possible that we may find two or more prime factors of n together. 
One should always test g for primality. 

As noted above, assuming / is a random mapping, the complexity of the 
Pollard rho method is 0(v/p) steps, where p is the smallest prime factor of n. 
Since p < y/n, this complexity is 0 (n 1 / 4 ) . 

Example 10.1 

Try Pollard rho factorization of n = 9271 with s = b = 1. 
The first 12 iterates are: s0 = 1, si = 2, 5, 26, 677, 4051, s6 = 932, 6422, 

4677, 4041, 3451, 5438, s12 = 6626. We have gcd(si2 - s6in) = gcd(6626 -
932, 9271) = 73. The (hidden) values of s¿ mod 73 are shown in the figure 
below. The shape is the reason for the algorithm's name. 
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The most expensive step in the while loop is the gcd. Its cost may be 
amortized by adding a new variable C, initialized at 1, replacing the gcd by the 
instruction C = C(A — B) mod n, and computing g — gcd(C, n) occasionally. 
One strategy performs the gcd only when the iteration number is a Fibonacci 
number. This causes gcd's to be done less and less frequently. 

The Pollard rho factoring algorithm roughly doubles the size of prime fac­
tors we can discover, as compared to trial division. The Monte Carlo method 
will find a 20-digit prime factor of n with about the same work needed to find 
a 10-digit factor by trial division. 

10.3 Pollard's p-1 Method 
Pollard invented two factoring methods in the 1970's. One was the rho method 
and the other [84] was the p—1 method. The p— 1 method is based on Fermat's 
little theorem (Theorem 6.1), which says that ap~1 = 1 (mod p) when p is 
a prime which does not divide a. Thus aL = 1 (mod p) for any multiple L 
of p — 1. If also p\n, then p divides gcd(aL — l ,n) . Of course, we cannot 
compute aL mod p because p is an unknown prime factor of n. However, we 
can compute aL mod n. Pollard's idea is to let L have many divisors of the 
form p — 1 and thus try many potential prime factors p of n at once. 

The number p — 1, where p is a large prime, seems to factor in the same 
way as a random integer of about the same size. In particular, the statements 
about smooth numbers in Section 4.4 seem to apply to numbers of the special 
form p— 1. If p— 1 is B-smooth, that is, the largest prime factor of p— 1 is < B, 
then p— 1 will divide L if L is the product of all primes < Z?, with appropriate 
multiplicity. If a prime q < B divides p - 1 , then q cannot divide p-1 more 
than loggP — 1 = (logp/ log q) — 1 times. This number is an upper bound on 
the "appropriate multiplicity" of q in L. However, large primes rarely divide 
large random integers more than one time. A reasonable compromise for L 
is to choose a bound B, which tells how much work one is willing to do in 
an effort to factor n, and define L to be the least common multiple of the 
positive integers up to B. One can show that this L = Y\qe, where q runs 
over all primes < B and, for each </, qe is the largest power of q which is < B. 
Typically, B is in the millions and L is enormous. There is no need to compute 
L. As each qe is formed, one computes a — aq&. Here is the algorithm. 

[Simple Pollard p — 1 factorization method, first stage] 
Input: A composite positive integer n to factor and a bound B. 
Output: A proper factor p of n, or else give up. 

Find the primes pi = 2,p25 • • • ,Pk < B 
a = 2 
for (i = l t o i ) { 

e = |_(log B)/ log pi J 
f=PÏ 
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a — a^ mod n 

} 
# = g c d ( a - l ,n) 
if 1 < g < n { p r i n t "g d iv ides n" } 
e l s e { give up } 

The primes may be found by the sieve of Eratosthenes. Exponentiation 
is done by the fast exponentiation algorithm. The gcd should be computed 
once every few thousand primes rather than just once at the end, with the 
for loop continuing if g — 1. If g = 1 at the end, one can either give up or 
try the second stage described below. If g — n, then all prime divisors p of 
n have been discovered together. When this happens, if one has saved the 
value of a at the previous gcd, one can return to it and compute a gcd after 
each exponentiation in an effort to separate the prime divisors p of n. But 
even this trick won't work in case p — 1 has the same largest prime divisor q 
for every prime factor p of n. This happens, for example, when one tries to 
factor 1247 = 29 • 43, since 29 - 1 = 22 • 7 and 43 - 1 = 2 • 3 • 7. 

If we use the Pollard p — l algorithm with bound B to try to factor n, and 
n has a prime factor p, then the probability that we will find p is roughly 
the probability that a number near p is JE?-smooth, which is p((logp)/\ogB) 
by Theorem 4.9. But if p — 1 has a prime factor > i?, then we will fail. We 
could fail to find a prime factor p as small as p — 2q + 1, where q is the first 
prime > B (or > B2l if the second stage is used). On the other hand, the 
p—l algorithm occasionally has a spectacular success, like the 30-digit prime 
divisor p = 174463386657191516033932614401 of 2740 + 1 found by R. Baillie. 
He used B — 500,000 and succeeded because 

p - 1 = 28 • 52 • 17 • 37 • 1627 • 5387 • 68111 • 152081 • 477361. 

The second stage of the algorithm chooses a second bound B2 > B, perhaps 
B2 = 1005, and seeks a factor p of n for which the largest prime factor of 
p — 1 is < B2 and the second largest prime factor is < B. In other words, 
p — 1 is 1-semismooth with respect to B2 and B in the terminology of Sec­
tion 4.4. Theorem 4.11 predicts that the probability of finding p is about 
Pi ( (log P) I log B, (log p) / log B2 ). 

Here is one version of the second stage. At the end of the first stage (the 
algorithm above), a has the value 2L (mod n). Let qi < q2 < . . . < qt be the 
primes between B and B2. The idea is to compute successively 2Lqi (mod n) 
and then gcd(2L<?* - l ,n) for 1 < i < k. The first power 2Lqi (mod n) is 
computed directly. The differences qi+\ — qi are even numbers and much 
smaller than the qi themselves. Precompute 2Ld (mod n) for d = 2 ,4 , . . . 
up to a few hundred. To find 2Lqi+1 (mod n) from 2Lqi (mod n), multiply 
the latter by 2Ld (mod n), where d = qi+i — (/¿. The amortized cost of 
computing 2Lqi (mod n) for 1 < i < k is a single multiplication modulo n. 
We can save time on the gcd's by multiplying several values of (2Lqi mod n) — 1 
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modulo n and taking the gcd of the product with n. R. Brent found the factor 
p = 49858990580788843054012690078841 of 2977 - 1 with this method. Since 

p - 1 = 23 • 5 .13 .19 • 977 • 1231 • 4643 • 74941 • 1045397 • 11535449, 

he must have used B > 1045397 and B2 > 11535449. Many tricks and 
variations speed this algorithm, especially its second stage. 

The cryptographic significance of Pollard's p — 1 algorithm is that, if we 
don't want an adversary to be able to factor a large composite number n, 
then each prime factor p of n must have the property that p — 1 contains a 
prime factor q so large that it is not feasible to perform q operations. 

There is a complementary algorithm, due to Williams [123] and called the 
p + 1 factoring method, which discovers a prime divisor p of n provided p + 1 
is smooth. Therefore, if a cryptographic key n must not be factored, then 
p + 1 must have a large prime factor for each prime factor p of n. 

IO.4 Square Form Factorization 
A binary quadratic form is a function ax2 + bxy + cy2 of x and y. We 
require the coefficients a, 6, c to be integers. It is customary to suppress the 
variables and write (a, ò, c) for ax2 -f bxy + cy2. Two quadratic forms are 
equivalent if a linear change of variables with determinant 1 changes one 
form into the other. A quadratic form (a,b,c) represents an integer m if 
there exist integers x and y so that ax2 + bxy + cy2 = m. The discriminant 
of (a, 6, c) is D = b2 — 4ac. Equivalent forms have the same discriminant 
and represent the same set of integers. The theory of quadratic forms was 
developed by Gauss [45]. 

In order to determine whether two quadratic forms with the same discrim­
inant are equivalent, it is convenient to select one form from each equivalence 
class and call it reduced. Then two forms would be equivalent if and only 
if their reduced forms are the same. When D < 0, one can define a unique 
reduced form in each equivalence class via simple inequalities on the coeffi­
cients. There is a polynomial-time algorithm for computing the reduced form 
equivalent to any given quadratic form. 

However, when D > 0, it is not possible to define a unique reduced form in 
each equivalence class and have an efficient algorithm for finding the reduced 
form equivalent to any given one. Instead, simple inequalities define reduced 
forms with given discriminant D > 0. (A form (a,6,c) is reduced if \>J~D — 
2\a\\ < b < \fD.) Most equivalence classes contain many reduced forms. 
Usually, a class contains about \[D different reduced forms, but occasionally 
this set is quite small. There is an efficient algorithm for finding a reduced 
form equivalent to any given one. The reduced forms in each equivalence 
class are arranged in a cycle. There is an efficient algorithm for computing 
the "next" reduced form in the cycle after a given one. To decide whether 
two quadratic forms with discriminant D > 0 are equivalent, compute the 
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reduced forms equivalent to each. Beginning with one of the reduced forms, 
cycle through the reduced forms, using the "next" algorithm, until you either 
find the other reduced form or return to the first one. In the first case, the 
original forms are equivalent; in the second case, they are not. All the reduced 
forms with discriminant D > 0 have coefficients 0 < |a|, 6, \c\ < \fD. 

A square form is a quadratic form (a^b^c) in which a is the square of 
an integer: a = r2. If one visits the reduced forms of an equivalence class, 
the expected number of iterations of the "next" algorithm between square 
forms is typically O(Z)1/4). When a square form is found, it often leads 
to a factorization of D as follows. One constructs a form (r, s,t), where 
a = r2 in the square form, and visits the successive reduced forms in the 
equivalence class of (r, s, t) until one reaches two consecutive reduced forms 
(u,v,w), (j,v,k), with the same middle coefficient v. Then u divides D. 

D. Shanks devised the following factoring algorithm called the SQUare 
FOrm Factorization algorithm, or SQUFOF. Given an odd positive integer 
n, let h = [y/ñ\ and c = h2 — n. If c = 0, then n = h2 is a square and we are 
done. Otherwise, c < 0 and the form (1,2ft, c) is reduced and has discriminant 
D — (2h)2 - Ac = Ah2 - A(h2 — n) = An. Visit the reduced forms equivalent 
to this one until a square form is found. Detect squares a efficiently as in 
Fermât 's difference of squares method. Use the square form as above to find 
a factor u of D — An. If u is odd, it divides n. If u is even, u/2 divides n. 

The number of forms visited in the equivalence class of (r, s, i) after the 
square form is located is always very close to one-half of the number of forms 
tested in the first equivalence class to find the square form. Since the latter 
number is O ^ 1 / 4 ) , or 0(n 1 / 4 ) , the total number of quadratic forms visited 
is 0(n1^), and this is the complexity of SQUFOF. 

The algorithm can fail in two ways. The equivalence class of the initial form 
may be so small that it contains no reduced square form. In the rare event 
that this happens, one can apply the algorithm to 3n or 5n, etc., which have 
completely different, and probably larger, equivalence classes. 

The other failure possibility is that the factor of n produced by the algo­
rithm may be trivial, with u or u/2 = 1. Shanks found a way to distinguish 
between square forms that lead to trivial factors of n and those that lead to 
proper factors. If the square form (r2, b, c) leads to a trivial factor, then there 
was a form (r,i,j) visited earlier in the equivalence class, in fact, about half 
way from the beginning to (r2,6,c). Since r2 < 2y/n, we can detect unpro­
ductive square forms by maintaining a list of a < \/2^fn which occur in forms 
(a, 6, c) and ignoring square forms (r2,6, c) with r on the list. This is how the 
algorithm is usually implemented (see the versions in Cohen [28], Algorithm 
8.7.2 and Riesel [96], pages 190-192), although some square forms with r on 
the list do lead to proper factors of n. In unpublished work, Shanks found 
necessary and sufficient conditions for a square form to lead to a proper factor 
of n. 

SQUFOF has the remarkable property that, after the first couple of steps 
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in factoring n, all arithmetic is performed on integers < 2y/n. Although the 
complexity of SQUFOF is 0(n1 / / 4) , the implied constant is tiny. The main loop 
uses only a handful of arithmetic operations to pass from one quadratic form to 
the next. (See the program in Riesel [96].) If [2y/ñ\ fits in a single-precision 
integer variable, then each pass through the main loop takes only about a 
dozen machine cycles. On a 32-bit one-gigahertz machine, SQUFOF can 
factor almost any 18-digit number in less than a millisecond. In contrast to the 
factoring algorithms mentioned earlier in this chapter, the complexity depends 
only on the size of n and not on the size of its prime factors. While SQUFOF 
is useless in a direct assault on a cryptographic key, it has an important use 
in factoring auxiliary numbers arising in more powerful factoring algorithms, 
such as the quadratic and number field sieves. 

10.5 Exercises 
1. Show that the algorithm for the integer part of the square root of a 

positive integer is correct and takes O(loglogn) iterations. 

2. Find the 22 two-digit numbers that may be the last two decimal digits 
of a square. 

3. Find the twelve square residues modulo 64. 

4. Factor 18779 by Fermat's difference of squares method. 

5. Factor 18779 by Pollard's rho method. 

6. Factor 18779 by Pollard's p - 1 method. 

7. Experiment with simple, easily evaluated random functions other than 
f(x) = (x2 + b) mod n in Pollard's rho method. 

8. Show that the least common multiple L of the positive integers up to B 
is L = Y\pe, where p runs over all primes < B and, for each p, pe is the 
largest power of p that is < B. 

9. Show that equivalent binary quadratic forms have the same discriminant 
and represent the same set of integers. 

10. Prove that if a, b and c are integers, D = b2 —Aac > 0 and |y/D — 2\a\ I < 
b < y/D, then a and c have opposite signs, b < y/D and \a\ -h \c\ < y/ÏÏ, 
so that both \a\ and \c\ are < y/T). 
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Chapter 11 

Finding Large Primes 

Many cryptographic algorithms require prime numbers of a certain size. If the 
prime need not be secret, then one can get one from a book or web site. There 
are thousands of primes in the Cunningham Project electronic book [18] or the 
web site with the full tables from that work, h t tp : / /www.cer ias .purdue . 
edu/homes/ssw/cun/ thi rd/ index.html . Alternatively, one can form a ran­
dom large prime by one of the methods for finding secret primes. 

One needs a source of random numbers to generate secret random primes. 
Some methods for finding them are described in Chapter 15. 

Number theorists who identify large primes distinguish between "primality 
testing" and "primality proving." There are simple and swift algorithms for 
testing large odd numbers for being "probably prime." When used properly, 
these "probable primality tests" are nearly infallible, but could say that a 
composite number is prime. They never assert that a prime number is com­
posite. Numbers that pass these tests are called "industrial-grade primes." 
When a rigorous proof of the primality of a large probable prime is desired, 
one must resort to slow, complicated algorithms unless the prime has a special 
form which facilitates its primality proof. 

Every prime has a short, simple proof of its primality, but it is usually 
difficult to discover such a proof when the prime is large. See Theorem 11.16. 

There are three ways to find large secret primes for cryptographic use. 

1. Test random large numbers and choose the first probable prime. In 
other words, use industrial-grade primes. 

2. Test random large numbers for being probably prime. When you find 
one, prove rigorously that it is prime. 

3. Use random numbers to construct a large prime having special form 
which permits an easy rigorous proof of its primality. 

We consider the first method in the next two sections, and the second and 
third methods in the two following sections. 
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11.1 Stronger Probable Prime Tests 
Recall that Theorem 6.1, Fermat's little theorem, says that if p is prime and p 
does not divide the integer a, then ap~1 = 1 (mod p). The fast exponentiation 
algorithm makes the arithmetic of ap~l modp easy. Also in Chapter 6, we 
defined a probable prime to base a to be an odd integer n with an~1 = 
1 (mod n). Thus, every prime is a probable prime to every base it does not 
divide. We defined a pseudoprime to be a composite probable prime. We 
noted after Definition 6.1 that if we had a list of all pseudoprimes to some 
base a up to some limit L, then we could devise a simple, fast primality 
test: An integer n < L is prime if and only if it is a probable prime to 
base a and it is not on the list. One difficulty with this test is that lists of 
pseudoprimes, to base 2, say, do not reach high enough to encompass the 
range of primes of cryptographic interest. A second problem is that there are 
too many pseudoprimes to any particular base; the list of all of them would 
be too long. One might try to solve this problem with pseudoprime tests to 
multiple bases. However, this proposed solution does not work because there 
are lots of Carmichael numbers, which are pseudoprimes to every possible 
base. 

In Chapter 7, we devised a more discriminating probable prime test. An Eu-
ler probable prime to base a was defined as an integer n for which gcd(a, n) = 1 
and a( n _ 1 ) / 2 = (a/n) (mod n). The Jacobi symbol (a/n) = ±1 because 
gcd(a,n) = 1. An Euler pseudoprime to base a is a composite Euler probable 
prime to base a. We proved in Theorem 7.12 that every Euler probable prime 
is a probable prime (to the same base). 

Our goal in this section and the next one is to find even more discriminating, 
but still rapid, probable prime tests. The first one was inspired by the fast 
exponentiation algorithm to compute a n _ 1 mod n. 

DEFINITION 11.1 An odd positive integer n, with n - 1 = 2s d, where 
d is odd, is a strong probable prime to base a if either ad = 1 (mod n) or 
ad'2 = — 1 (mod n) for some 0 < r < s. A strong pseudoprime to base a 
is a composite strong probable prime to base a. 

The left to right variation of fast exponentiation computes a n _ 1 mod n 
by first finding ad mod n, and then squaring the result s times modulo n. 
Thus, fast exponentiation automatically produces the remainders, which are 
compared to +1 or —1 in the definition. 

Every prime p is a strong probable prime to every base a it does not divide 
because ap _ 1 = 1 (mod p), by Theorem 6.1, and the only solutions to x2 = 
1 (mod p) aie x = ±1 (mod p), by Theorem 7.1. 

One can show that there are infinitely many strong pseudoprimes to every 
base a > 1. However, they are rarer than Euler pseudoprimes. 

The bases +1 and —1 are not interesting because every odd composite 
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integer n is a pseudoprime, an Euler pseudoprime and a strong pseudoprime 
to both of these bases. 

It is easy to see that every strong probable prime is a probable prime to 
the same base, because the definition says that we will get ±1 at some step 
before the last step in computing an~l mod n by fast exponentiation, and this 
number will be squared at least once. 

THEOREM 11.1 Strong probable primes are Euler probable primes 
Every strong probable prime is an Euler probable prime to the same base. 

Every strong pseudoprime is an Euler pseudoprime to the same base. 

Since every prime not dividing a is both a strong probable prime to base 
a and an Euler probable prime to base a, the two statements are equivalent. 
For a proof of the second statement, see Theorem 3 of [89] or Theorem 9.12 
of [99]. 

In some cases, one can prove that Euler pseudoprimes must be strong pseu­
doprimes. 

THEOREM 11.2 Euler pseudoprimes = 3 (mod 4) are strong 
If n = 3 (mod 4) is an Euler pseudoprime to base a, then n is a strong 

pseudoprime to base a. 

PROOF Since n = 3 (mod 4), we have n — 1 = 2d, where d is odd. 
Because n is an Euler pseudoprime, we have gcd(a, n) — 1 and ad = (a/n) = 
±1 (mod n). Therefore, n satisfies one of the two cases of the definition of 
strong pseudoprime, depending on the sign ± 1 . I 

THEOREM 11.3 Euler and (a/n) = - 1 imply strong 
Ifn is an Euler pseudoprime to base a and (a/n) = — 1, then n is a strong 

pseudoprime to base a. 

PROOF If n - 1 = 2*d, with d odd, then ar~1(i = a*""1)/2 = (a/n) = 
— 1 (mod n) because n is an Euler pseudoprime to base a. Then the second 
case of the definition of strong pseudoprime applies t o n . I 

Recall that Rn denotes the multiplicative group of congruence classes rela­
tively prime to n. 

THEOREM 11.4 Pseudoprime bases form a subgroup of Rn 

Let n be an integer greater than 1. The set of all bases 1 < a < n to which 
n is a pseudoprime forms a subgroup of Rn under multiplication modulo n. 
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The set of all bases 1 < a < n to which n is an Euler pseudoprime forms a 
subgroup of Rn. 

PROOF By Theorem 3.10, if gcd(a,n) = gcd(ò,n), then gcd(afc,n) = 1. 
If n is a pseudoprime to bases a and 6, then n is a pseudoprime to base 
ab because (ab)n~1 — an~1bn~1 = 1 -1 = 1 (mod n). If n is an Euler 
pseudoprime to bases a and b, then n is an Euler pseudoprime to base ab 
because (aft)*""1)/2 = a(n-i)/26(n-i)/2 = (a/n)(b/n) = (ab/n) (mod n) by 
Part 2 of Theorem 7.9. I 

For a Carmichael number n, the group of all pseudoprime bases is all of 
Rn. One can prove that for every composite n > 1 there is at least one a in 
1 < a < n with gcd(a, n) — 1 so that n is not an Euler pseudoprime to base 
a. Hence, the group of all Euler pseudoprime bases for n is always a proper 
subgroup of Rn. Since the order of a subgroup divides the order of the whole 
group, by Lagrange's theorem, the number of Euler pseudoprime bases for n 
must be < half the size of Rn, and we have this theorem. 

THEOREM 11.5 Number of Euler pseudoprime bases 
If n is an odd composite positive integer, then the number of bases a in 

1 < a < n with gcd(a, n) = 1 to which n is an Euler pseudoprime is < </)(n)/2. 

This theorem yields the following probabilistic primality test. 

[Solovay-Strassen probabilistic primality test] 
Input: Two integers n > 1, which is odd, and k > 1. 
Output: Either "n is prime" or "n is composite." 

for (i = 1 to k) { 
Choose a random integer a in 1 < a < n — 1 
if (gcd(a, n) > 1) { return "n is composite" } 
if (a^-1)/2 ̂  (a/n) (mod n)) 

{ return "n is composite" } 

} 
return "n is prime" 

THEOREM 11.6 Solovay-Strassen probabilistic primality test 
If n is an odd prime, then the algorithm returns "n is prime. " If n is odd 

and composite, then the algorithm returns "n is composite" with probability 
at least 1 — 2~k. The time complexity of the algorithm is 0((logn)3) bit 
operations. 

PROOF If n is prime, then gcd(a,n) = 1 because 1 < a < n, and so 
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a(n-i)/2 = (a/n) (mod n) by Euler's criterion. Therefore, the for loop will 
finish and the algorithm will return "n is prime." 

Now suppose n is composite. If gcd(a, n) > 1 for some chosen a, then the 
algorithm returns "n is composite." Otherwise, gcd(a, n) = 1 for every such a, 
and each chosen a is in Rn. By Theorem 11.5, for each a in i?n the probability 
is < 1/2 that n is an Euler pseudoprime to base a. Hence, the probability that 
n is an Euler pseudoprime for every one of the k random bases a is < (l/2)fe. 
So the algorithm returns "n is composite" with probability at least 1 — 2~k. 

The complexity follows from Corollary 3.1 and Theorems 6.2 and 7.11. I 

We can construct a better probabilistic test of primality by using strong 
probable primes in place of Euler probable primes in the test above. 

THEOREM 11.7 Number of strong pseudoprime bases 
For each odd composite integer n, the number of bases to which n is a strong 

pseudoprime is < (n — l ) /4 . 
For each odd composite integer n > 9, the number of bases to which n is a 

strong pseudoprime is < </>(n)/4. 

For a proof, see Theorem 5.10 of Rosen [99] or Theorem 3.4.4 of Crandall 
and Pomerance [33]. The theorem was first proved independently by Monier 
[73] and Rabin [93]. Earlier, Miller [72] had proposed a similar but slightly 
more complicated test. The set of all bases to which n is a strong pseudoprime 
usually does not form a subgroup of Rn. The idea of the proof of the theorem 
is to show that this set is a subset of a proper subgroup of the group of Euler 
pseudoprime bases for n. 

This theorem gives the following improved probabilistic primality test. 

[Miller-Rabin probabilistic primality test] 
Input: Two integers n > 1, which is odd, and k > 1. 
Output: Either "n is prime" or "n is composite." 

for (i = 1 to k) { 
Choose a random integer a in 1 < a < n — 1 
if (a is not a strong probable prime to base a) 

{ return "n is composite" } 

} 
return "n is prime" 

One can prove the following theorem in the same way as Theorem 11.6, but 
using Theorem 11.7 in place of Theorem 11.5. 

THEOREM 11.8 Miller-Rabin probabilistic primality test 
If n is an odd prime, then the algorithm returns "n is prime." If n is odd 
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and composite, then the algorithm returns "n is composite" with probability 
at least 1 - 4~k. The time complexity of the algorithm is 0((logn)3) bit 
operations. 

DEFINITION 11.2 If n is an odd composite integer and 1 < a < n, 
then a is called a witness for n ifn is not a strong pseudoprime to base a. 

In other words, a is a witness to the compositeness of n; a can testify, via 
a strong probable prime test, that n is composite. Theorem 11.7 says that at 
least three-fourths of the integers a in 1 < a < n are witnesses for n. How 
hard is it to find one witness? Let W(n) be the least witness for n. If we 
could prove that W(n) < C for all composite n and some constant C, then 
we would have a very simple and fast primality test. Unfortunately, Alford et 
al. [3] prove that this is not so. 

THEOREM 11.9 The least witness may be large 
For inñnitely many odd composite n we have 

On the other hand, if you believe the extended Riemann Hypothesis, then 
this theorem of Bach [7] is useful. 

THEOREM 11.10 The least witness isn't too large 
Assuming the extended Riemann Hypothesis, W(n) < 2(Inn)2 for every odd 

composite integer n. 

If n « 10100, then 2(lnn)2 « 106038. Therefore, you can prove that a 
100-digit odd number is prime by doing about 100,000 strong pseudoprime 
tests on it, assuming the extended Riemann Hypothesis is valid. This is not 
a reasonable way to find a 100-digit prime. Keep reading. 

11.2 Lucas Probable Prime Tests 
In this section, we develop the theory of binary linear recurrences and a prob­
able prime test using them. The test is based on a generalization of the 
following theorem, which we will prove later. See Williams [124] for much 
more about primality tests developed by Lucas. 

THEOREM 11.11 Divisibility of Fibonacci numbers by primes 
If n is prime, U{ is the i-th Fibonacci number and (n/5) is the Legendre 

symbol, then n divides î/n__(n/5). 
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Example 11.1 

Since (3/5) = - 1 , 3 divides u4 = 3. Since (11/5) = +1, 11 divides mo = 55. 
Since (5/5) = 0, 5 divides u*> = 5. 

DEFINITION 11.3 The Lucas sequences with parameters P and 
Q are the two sequences {un} and {vn} deñned by UQ — 0, u\ = 1, v0 = 2, 
vi - P, and un = Pun-i - Qun-2, vn = Pvn-\ - Qvn-2, for n > 2. We 
sometimes write un — un(P, Q) and vn = vn(P, Q) to show the dependence on 
the parameters P and Q. Let x2 — Px + Q be the recurrence polynomial 
associated to the Lucas sequences, let D = P2 — 4Q be the discriminant of 
this polynomial and let a and ¡3 be the two zeros of the polynomial. 

To get the Fibonacci numbers un , let P = 1 and Q = - 1 . In that case, 
vn = vn(l,— 1) are called the Lucas numbers. The recurrence polynomial 
is x2 — x — 1, with discriminant D = 5 and roots a, ¡3 — (1 ± \ /5)/2. 

In this section, the parameters P and Q will always be integers. In this 
situation, all the un and vn are integers. Usually, we will also assume that 
D — P2 — 4Q is not a square. This implies that D ^ 0, so a / /?. From the 
equation (x — a)(x - (3) — x2 — Px + Q, we see that a + (3 = P and a/3 = Q. 
If we let a = (P + y/D)/2 and ¡3 = (P - \/D)/2, then a-0 = VÊ- It is easy 
to show by induction on n that 

for n > 0. These formulas are called the generalized Binet equations, and 
provide an alternate definition of the Lucas sequences. 

There is a natural way to compute Lucas sequences using 2 x 2 matrices. 

Define and, for Then 

A simple induction shows that An = LnAo for n > 0, where L° 

means the identity matrix. This is not just a pretty formula. It provides a 
quick way to compute un and vn when n is huge. The fast exponentiation 
algorithm of Chapter 6 applies to anything we can multiply associatively, 
including matrices. Thus, Theorem 6.2 says that we can compute Ln in our 
formula with only O(logn) matrix multiplications. If we wish to compute 
un mod m or vn mod m, we should reduce each matrix entry modulo m as it 
is computed. This will keep the numbers small (< m2) even if n has hundreds 
of digits. 

We need the formulas in the next theorem to prove the generalization of 
Theorem 11.11. 
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THEOREM 11.12 Lucas sequences in terms of binomial coefficients 
For integers n >0 we have 

PROOF Begin with the formula for un in terms of the two roots of the 
recurrence polynomial. 

Apply the binomial theorem to the two binomial powers and get 

When i is even, the terms cancel, but they add when i is 

odd. Hence 

We obtain the first formula when we cancel one VD and divide by 2. The 
second formula is proved the same way, starting from vn — an + (3n. I 

The next theorem generalizes Theorem 11.11 and proves it. 

THEOREM 11*13 Divisibility properties of Lucas sequences 
Ifp is an odd prime not dividing PQ, then 

UP-(D/P) = 0 (modp), 

Up = (D/p) (mod p) and 

vp = v\ — P (mod p). 

If also gcd(p, D) — 1, then 

PROOF First let n = p in the formula for un in Theorem 11.12. Note that 
since p is prime, it divides every binomial coefficient (^) with 1 < i < n - 1. 
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The only remaining term with odd i in the sum is the one with i — p. Also, 
2 P _ 1 = 1 (mod p) by Fermat's little theorem. We find 

by Euler's criterion. This proves the second formula. 
To prove the first one, let n = p+1 in the formula for un in Theorem 11.12. 

Since p is prime, it divides the binomial coefficients (p^"1) with 2 < i < p — 1. 
The only odd i not in this interval are i = 1 and i = p, so the sum reduces to 
two terms. We have 2P = 2 (mod p) by Fermat's little theorem. We find 

2u. P+i = (p + l)PpD° + (p + l j p 1 ! ^ - 1 ) / 2 = P ( l + (P>/p)) (mod p), 

where we have again used Euler's criterion and also Pp = P (mod p) by 
Fermat's little theorem. If (D/p) = —1, we see immediately that p divides 
up+i = up_(D/py If (D/p) = + 1 , then we have 2up+i = 2P (mod p), so 
Up+i = P (mod p). By the second formula, which we proved above, up = 
(D/p) = -hi (mod p). Substituting into the recurrence formula, up+i = 
Pup — Qup-i, we find P = P ( + l ) — Quv-\ (mod p). This yields Qup-\ = 
0 (mod p). Since gcd(p, Q) = 1 we can divide by Q and find that p divides 
Up.! = up_(D/py The other two congruences are proved the same way, using 
the formula for vn in Theorem 11.12. I 

Two matrices are congruent modulo n if their corresponding entries are 
congruent modulo n. Let I denote the 2 x 2 identity matrix. 

Let L = 

THEOREM 11.14 Fermat's little theorem for Lucas sequences 
"p -Q] 

\ be the matrix used to compute the Lucas sequences with 

parameters P and Q. Let D = P2 -4Q. Let p be a prime not dividing 2PQD. 
If (D/p) = +1 , then U*'1 = I (mod p). In any case, l / " 1 = J (mod p). 

PROOF Suppose (D/p) = +1 . Then Theorem 11.13 says that 

But also Ap-i — Lv 1A$. Since AQ has determinant 2, it is invertible mod­
ulo the odd prime p. Therefore, L p _ 1 = i" (mod p). We have Lp _ 1 = 
(¿P- i jP+i = jp+i = / ( m o d p) . 

Now suppose (D/p) = — 1. In this case, Theorem 11.13 says that 
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Since AQ is invertible modulo p, with inverse (mod p), we 

find that (mod p) and (mod p). 

Then (mod p) by Fermât's little theorem. 

Why did we call this theorem, "Fermat's little theorem for Lucas sequences?" 
Fermât 's little theorem says that if you raise a, relatively prime to a prime 
p, to the power p — 1 modulo p, you will get the identity element 1 of Rp. 
The theorem says that if you raise L, which describes a Lucas sequence, to 
the power p2 — 1 modulo the prime p, relatively prime to 2PQD, you will 
get the identity element / in the cyclic group of powers of L modulo p. Note 
that p2 — 1 is the order of the multiplicative group of the field Fp2 with p2 

elements, and this group is also cyclic by Theorem 9.12. If the matrix L were 
an element of Fp2, the last statement of the theorem would follow from La­
grange's theorem. The connection between Lucas sequences and this field is 
shown on page 132 of [33], where the first formula of Theorem 11.13 is proved 
as Theorem 3.5.3. 

The four congruences of Theorem 11.13 are valid at least for all primes 
p not dividing 2PQD. In fact, when p is allowed to be composite, but 
gcd(p,2PQD) = 1, any two of the congruences imply the other two. Baillie 
and Wagstaff [9] found that they seldom hold when p is an odd composite 
number. They focussed on the first congruence when they made this defini­
tion. 

DEFINITION 11.4 A Lucas probable prime with parameters P 
and Q is an integer n > 1 with gcd(n, 2PQD) — 1 and un_(D/n) = 0 (mod n), 
where D — P2 — AQ. A Lucas pseudoprime with parameters P and Q 
is a composite Lucas probable prime with the same parameters. 

Baillie and Wagstaff [9] showed that Lucas pseudoprimes are rare and de­
fined Lucas analogues of Euler and strong pseudoprimes. 

The bases a = ±1 are avoided in probable prime tests because every odd 
number is a probable prime to these bases. Likewise, the parameters (P, Q) = 
(1,1) and (—1,1) must be avoided in Lucas probable prime tests because every 
odd n satisfies i¿n-(£>/n) = 0 (mod n) with either of these choices. 

We mentioned that D should not be a square. In fact, D should not even 
be a quadratic residue modulo n in a Lucas probable prime test on n. For if 
D = b2 (mod n), then (D/n) = +1 , P = b + 2 (mod n),Q = b+l (mod n), 
a = Q (mod p), f3 = 1 (mod p), and un-\ = (Q71'1 — l)/b (mod n); so, the 
Lucas test is an ordinary probable prime test in disguise. The complexity of 
a Lucas probable prime test is several times that of a probable prime test; so, 
one might as well perform a probable prime test with base a = b + 1 rather 
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than a Lucas probable prime test with D = b2 (mod n). 
Selfridge [89] proposed the following method of choosing the parameters for 

a Lucas probable prime test that avoids the problem of D being a quadratic 
residue modulo n. Let D be the first member of the sequence 5, —7,9, - 1 1 , 
13, - 1 5 , . . . for which the Jacobi symbol (D/n) — - 1 . Let P — 1 and Q = 
(1 - D)/á. It is known (page 1416 of [9]) that the expected number of D's 
which must be tried, before a suitable one is found, is about 1.8. When n = 2 
or 3 (mod 5), the first discriminant, D — 5, is chosen and the Lucas sequence 
is the Fibonacci numbers. 

Pinch [82] has computed the pseudoprimes to base 2 up to 1013. With 
Selfridge's parameter choices for the Lucas sequence, not a single known strong 
pseudoprime to base 2 is also a Lucas pseudoprime. In fact, Pomerance, 
Selfridge and Wagstaff [89] made this conjecture. 

CONJECTURE 
No odd composite positive integer is both a strong pseudoprime to base 2 

and a Lucas pseudoprime with Selfridge's choice of parameters P and Q. 

In 1980, they [89] offered $30 for a proof or disproof of the conjecture, and 
have since raised this reward to $620. The conjecture is certainly true for all 
integers < 1013. 

A simplified version of the conjecture asserts that there is no composite 
number n whose last decimal digit is 3 or 7, which is strong pseudoprime to 
base 2 and which divides the Fibonacci number un+i. 

Those cryptographers satisfied with "industrial-grade primes" should select 
strong probable primes to base 2 which are also Lucas probable primes, as in 
the Conjecture. The tests are simple, elegant and provide the added benefit 
that if you are the first to detect a failure of the conjecture, then you will 
collect $620. 

11.3 Rigorous Proof of Primality 
Recall the Lucas-Lehmer primality test. 

THEOREM 11.15 Lucas-Lehmer n - 1 primality test = Theorem 6.10 
Let n > 1 and a be integers such that a n _ 1 = 1 (mod n). If a^n_1^p ^ 
1 (mod n) holds for every prime p dividing n — 1, then n is prime. 

Suppose we had proved that n is prime via this theorem and we wished to 
convince someone else that n is prime. How little information can we provide 
and still make the verification easy? We would certainly provide the primitive 
root a for n and reveal the prime factorization of n — 1. But the certificate 
of primality for n would not be complete until we gave certificates for the 
primality of each of the prime factors of n — 1 as well. This certificate would 
have a tree structure. Each node would contain a prime n and a primitive 
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root a for n. Each node (n, a) would have a child node, with the same format, 
for each distinct prime divisor of n - 1. As we must stop somewhere, let us 
assume that everyone knows that 2 is prime. How large could the tree be? 
Let N(n) be the number of nodes in the tree that certifies the primality of 
n. Let M(n) be the total number of multiplications modulo a number < n 
a verifier would have to perform to check the certificate using Theorem 6.10. 
Pratt proved the following theorem. 

THEOREM 11.16 Every prime has a succinct certificate 
With the notation above, for every odd prime n we have N(n) < log2 n and 

M(n)<2( log 2 n ) 2 . 

For details of the proof, see Pratt [90] or Bach and Shallit [8]. 
Theorem 6.10 may be used iteratively to construct large, random primes. 

[Really simple large prime generation algorithm] 
Begin with a prime p\. Let i — \. Repeat Steps 1 through 5 until p¿ is large 

enough. 
1. Let k be a random small integer and let n = 2kpi + 1. 
2. If 2 n _ 1 ^ 1 (mod n), then n is composite by Fermat's little theorem, so 

return to Step 1. 
3. Otherwise, n is probably prime, so try to prove n is prime using the 

Lucas-Lehmer theorem just stated. Note that n — 1 = 2kpi is easy to factor 
completely because it has the known prime factor p¿, which should be removed 
first, and because k is small. Try the primes < 30 for possible values of a. 

4. If you succeed in finding an a which satisfies the conditions of the theo­
rem, then n is proved prime. Let p¿+i = n and i = i + 1 and go to Step 1. 

5. Otherwise, try a new random k. (Go to Step 1.) 

During the construction of the last pi one may have to restrict the size of 
k to produce a prime of the required size. Typical sizes for k before the last 
Pi might be 10 or 15 decimal digits—small enough to factor easily by trial 
division. 

There are several enhancements to Theorem 6.10 that accelerate this algo­
rithm. The first is that one can use different a's for different prime factors p 
of n — 1, provided one checks a n _ 1 = 1 (mod n) once for each a used. The 
proof of this version of the theorem is the same as for Theorem 6.10. Note 
that if more than a is used, then no a is guaranteed to be a primitive root 
modulo n. If you want to construct a large prime pi and a primitive root a 
for it, then you must use the original version of the Lucas-Lehmer theorem to 
show pi is prime, although you may use the more flexible version in the prime 
proofs of pj with j < i. 

Suppose the prime pi must be secret, and is a factor of a public key. The 
algorithm has the advantage that p¿ will be immune to discovery by the Pollard 
p — 1 method, because pi — 1 has the large prime factor Pi-\. 
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However, the algorithm is slow because it builds up primes little by little. 
The next theorem, which may be viewed as another enhancement of Theorem 
6.10, allows one to jump ahead to larger primes much faster because it requires 
only a partial factorization of n — 1. 

THEOREM 11.17 Pocklington-Lehmer theorem 
Let n be odd and n — 1 = FR, where the complete factorization of F is 

known. Suppose that for every prime p dividing F there is an integer a such 
that a n _ 1 = 1 (mod n) and gcd(a^n _ 1^p — l ,n) = 1. Then every prime factor 
ofn is = 1 (mod F). 

If also F > v^ï, then n is prime. 

PROOF Let F — YIPT be- the standard factorization of F , and let a¿ be 
the integer a for pi in the hypothesis. Let p be a prime divisor of n and let fi 
be the order of a¿ modulo p. Then /¿ divides p — 1. Since a™"1 = 1 (mod n), 
we have fi divides n — 1. But gcd(a\n~ *'Pi — l,p) = 1, so fi does not divide 
(n — l)/pi. Hence, pf divides /¿. Therefore, p\{ divides p — 1 for each z, and 
so F must divide p—1. 

Suppose F > yjn. Then every prime factor p of n must be greater than 
F > ^/ñ, and so n is prime by Theorem 4.8. I 

Of course, the a's in the theorem need not be primitive roots modulo n in 
case n turns out to be prime. 

This theorem allows us to construct a new prime with about twice as many 
digits as the previous one. 

[Doubling the size of a random prime] 
Input: A prime p. 
Output: A prime n near p2. 

repeat { 
let k be a random integer between p/2 and p. 
n = 2kp + 1 
i f 2 n _ 1 ^ 1 (mod n) r e s t a r t t h i s loop. 
t r y t o prove n i s prime v ia Theorem 11.17. 
if you succeed, end the loop. 
} u n t i l n i s prime 

By the prime number theorem, the expected number of iterations of the 
loop needed to find a prime n is about In p. 

In applying Theorem 11.17 in the algorithm above, let F = p and R = 2k. 
It may seem strange to put the known factor 2 into i?, but it would take 
longer to check the hypotheses of Theorem 11.17 if we put the 2 in F. For 
the integer a of the theorem, try the ten primes < 30. 
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To construct a large prime near X, begin with a known prime near the 
2*-th root of X, for some convenient ¿, and apply the algorithm i times with 
the known prime as the first input, and each subsequent input equal to the 
previous output. Adjust k in the final iteration of the loop to make the last n 
just the right size. The large prime p will have a rigorous proof of its primality 
and p — 1 will have a large prime factor to make p immune to discovery by 
the Pollard p — 1 method. If you wish to make p impossible to find by the 
p + 1 method, then try to factor p + 1 and reject p unless you can factor it 
completely and show that p + 1 has just one large probable prime factor. 

There are theorems analogous to Theorems 6.10 and 11.17 in which n can 
be proved prime provided n + 1 can be factored completely or partly. Lucas 
sequences replace powers of a in these results. 

In the following theorems, if n is the odd number to be proved prime, then 
we let Un be the set of all Lucas sequences {un} for which the Jacobi symbol 
(D/n) = —1. The theorems are proved in [17]. Theorem 11.19 was first 
proved by Morrison [76]. 

THEOREM 11.18 Primality test with n + 1 completely factored 
Let n > 1 be odd. If for each prime p dividing n + 1, there exists a Lucas 

sequence {un} in Un for which n divides un+\ but not ii(n+i)/p, then n is 
prime. 

THEOREM 11.10 Primality test with n + 1 partly factored 
Let n be odd and n + 1 = FR, where the complete factorization of F is 

known. Suppose that for every prime p dividing F there is a Lucas sequence 
{un} in Un for which n divides un+\ and gcd(u(n+1)/p,n) = 1. Then every 
prime factor qofn is = (D/q) (mod F). 

If also F > y/n + 1, then n is prime. 

Theorems like 11.17 and 11.19 can be enhanced by letting F be smaller 
when a lower bound is known on the prime divisors of R. Each theorem 
has another version which proves that n is prime provided F > nly/3. These 
two theorems may be combined into a theorem that asserts that if we have a 
completely factored divisor F > n1//3 of n2 — 1, then we can rigorously decide 
in polynomial time whether n is prime. See [17] for details. These theorems 
suffice to give a quick proof of primality of almost any prime < 1050. See 
Appendix B of the Cunningham Project [18] for thousands of examples. 

Note that n — 1 and n + 1 are the first two cyclotomic polynomials evaluated 
at x = n. Williams and his associates [126], [127], [125], [121] have general­
ized the theorems above to some higher cyclotomic polynomials, proving that 
one can rigorously decide in polynomial time whether n is prime, given a 
sufficiently large completely factored divisor of 

(n - l)(n + l)(n2 + l)(n2 - n + l)(n2 + n + 1). 
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11.4 Prime Proofs for Arbitrary Large Inte-
gers 

There are two types of practical algorithms for proving primality of large 
primes without special form. These algorithms can show that a 100-digit 
prime is prime in a few seconds or less. They take a few hours for 1000-
digit primes, which are larger than primes currently used in cryptography. 
However, all of these algorithms are complicated. 

One collection of these algorithms generalizes the theorems of Williams, 
mentioned at the end of the previous section, to even higher cyclotomic poly­
nomials. Adleman, Pomerance and Rumely [1] invented an algorithm of this 
sort that correctly decides whether n is prime in < ( l n n ) c l n l n l n n steps for 
some constant c > 0. They offer a simple, practical, probabilistic version as 
well as a more complicated deterministic version. The probabilistic version al­
ways gives the correct answer; its random choices affect only the running time. 
Both versions were soon improved. Lenstra [66] simplified the deterministic 
version, while Cohen and Lenstra [29] made the probabilistic version faster. 
These algorithms, which use cyclotomy, all have superpolynomial complexity, 
although the exponent on In n grows so slowly (In In In n) that the algorithms 
nearly run in polynomial time. Because of their complexity, the cyclotomy 
algorithms lost favor in the 1990's when practical elliptic curve prime proving 
algorithms were invented. In 1998, Mihãilescu [71] found further improve­
ments in cyclotomy prime proving algorithms. Although his new algorithm 
still has superpolynomial running time, it is faster than elliptic curve methods 
for primes having no more than a few thousand decimal digits. Prime proofs 
using cyclotomy do not have useful succinct certificates. One must redo most 
of the calculation to verify a prime proof of this type. 

Elliptic curve prime proving algorithms can prove n is prime in expected 
polynomial time 0((logn)6) and are described in Chapter 12. Elliptic curve 
prime proofs do have succinct certificates. Such a proof can be verified in 
much less time than it took to discover it. 

Note: As I write this, a new prime proving algorithm has just been an­
nounced by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. If it turns 
out to be correct, its complexity will be provably polynomial time. Their 
algorithm uses simple mathematics compared to cyclotomy or elliptic curves. 

11.5 Exercises 
1. The year is 2020. As the Chief Scientist of a large computer security 

company, you are implementing a new cryptosystem that uses 1000-digit 
primes as keys. The algorithm chooses a random 1000-digit integer R 
and then tests R + l, R + 2, . . . , for being prime until it finds the first 
prime number R + k greater than R. What is the average (or expected) 
number of integers R + i the algorithm tests for being prime? 
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2. Show that if n is an Euler pseudoprime to base 2 and n = 5 (mod 8), 
then n is a strong pseudoprime to base 2. 

3. Show that if n is an Euler pseudoprime to base 3 and n = 5 (mod 12), 
then n is a strong pseudoprime to base 3. 

4. Find a composite number n and two bases a and b so that n is a strong 
pseudoprime to base a and to base 6, but not to base ab. 

5. Prove that if n is a strong pseudoprime to base a, then n is a strong 
pseudoprime to base a1 for every integer i. 

6. Prove the formula for vn in Theorem 11.12. 

7. Prove the formulas for vn in Theorem 11.13. 

8. Prove that every odd n satisfies un-(£>/n) = 0 (mod n) with either of 
the parameter sets (P, Q) = (1,1) and (—1,1). 

9. Prove that if you are given a large odd composite integer n and an integer 
a so that n is a pseudoprime to base a, but not a strong pseudoprime 
to base a, then you can factor n in polynomial time. 

10. Show that if the conjecture of Section 11.2 is true and n is a composite 
number with last decimal digit 3 or 7, then either n is not a strong 
pseudoprime to base 2 or n does not divide the Fibonacci number i¿n+i. 

11. Many cryptographic algorithms require primes 2 m bits long for some 
particular m. For large k, not a power of 2, there are almost certainly 
many primes with k bits in their binary representation, exactly two of 
which are 0 bits. (See Wagstaff [117].) Prove that for all m > 1 there is 
no prime with 2m bits in its binary representation, exactly two of which 
are 0 bits. 
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Elliptic Curves 

Elliptic curves are abelian groups created by defining a binary operation on 
the points of the graph of certain polynomial equations in two variables. These 
groups have several properties that make them useful in cryptography. One 
can test equality and perform the group operation on pairs of points efficiently. 
When the coefficients of the polynomial are integers, we can study the points 
whose coordinates are also integers, if any. Reducing the coefficients and 
points modulo a prime p produces an interesting finite abelian group whose 
order is near p. Choosing random coefficients results in groups with random 
orders near p. There is an integer factoring algorithm that finds the unknown 
factor p provided the order of an elliptic curve group is smooth, just as the 
Pollardp—1 algorithm finds p when p — 1 is smooth. There is a probabilistic 
algorithm for proving p is prime that generalizes the Lucas-Lehmer primality 
test by replacing p—1 with the order of an elliptic curve group modulo p. 
Finally, an elliptic curve group may be used directly in cryptographic algo­
rithms in many of the same ways the multiplicative group of integers modulo 
p can be used. In these applications, the discrete logarithm problem is harder 
for elliptic curve groups than for the integers modulo p, permitting smaller 
parameters and faster algorithms. We will say more about this version of the 
discrete logarithm problem in Chapter 14. 

See [58], [111] and [78] for alternate treatments of elliptic curves, with ap­
plications to factoring, prime proving and cryptography. 

12.1 Definitions and Examples 
Let f(x,y) be a polynomial in two variables. The degree of a term cxmyn 

with constant c / 0 is m + n. The degree of the polynomial f(x,y) is the 
highest degree of any of its terms. Let f(x,y) have degree d. A straight line 
ax + by + c = 0 intersects the graph of f(x, y) = 0 in at most d points because 
if we solve for x in the equation for the line and substitute for x in / (# , y) — 0, 
we get a polynomial equation of degree d in y, and it has at most d zeros, 

111 
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each of which gives a unique value for x when substituted into the equation 
for the line. 

We wish to define a group operation on the graph of f(x,y) = 0. First 
we must give a rule for specifying a third point on the graph from two given 
points. One way of defining such a rule is to draw a straight line through the 
two given points and look for a third point of intersection of the line and the 
graph. From the discussion of intersections of straight lines and graphs above, 
we see that this is most likely to work when the degree of / (x , y) is 3. In that 
case, the straight line through two points of the graph will intersect it in at 
most one more point. 

We can ensure that there is exactly one more point of intersection if we 
count the intersections with multiplicity. If the straight line and the graph 
are tangent at point P , then P counts as two points of intersection. If the 
straight line and the graph are tangent at a point P of inflection of the graph, 
then P counts as three points of intersection. For ax -f by + c = 0 to be the 
equation of a straight line, at least one of a, b must be / 0. Suppose the 
straight line ax + by + c = 0 with b =¿ 0 intersects the graph of f(x, y) = 0 in 
two points P and Q. Then f(x,(—ax — c)/b) = 0 is a cubic equation in x and 
we know it has two real roots, namely, the ^-coordinates of P and Q. In this 
situation, the cubic equation has exactly one more root, the x-coordinate of 
a third point of intersection R. We can find the y-coordinate of R from the 
equation of the straight line. 

The binary operation 0 defined by P 0 Q = R turns out not to define 
a group on the graph, but a simple modification does work. To keep the 
formulas for the binary operation simple, we will restrict f(x,y) to have the 
form y2 — (x3 +ax + b), which is called the Weierstrass form of the elliptic 
curve. 

Figure 12.1 Graphs of y2 — x3 - 5x and y2 — x3 + 8. 
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DEFINITION 12.1 An elliptic curve is the graph E or Ea¿ of an 
equation y2 = x3 + ax + b, where x, y, a and b are real numbers, rational 
numbers or integers modulo m > 1. The set E also contains a point at 
infinity, denoted oo. 

The point oo is not a point on the graph of y2 — x3 + ax + b. It will be the 
identity of the elliptic curve group. The points of E, other than oo, look like 
one of the graphs in Figure 12.1. 

The discriminant b2 — 4ac vanishes when the quadratic equation ax2 + bx + 
c = 0 has a repeated root. For the cubic equation x3 + ax + b = 0, the 
discriminant is 4a3 + 27b2. It vanishes when the cubic has a repeated root. 
We will assume that that this discriminant is ^ 0, so that the cubic does 
not have a repeated root. Thus, we are excluding elliptic curves like those in 
Figure 12.2, which have a "double point" and a "cusp." 

If P = (x, y) lies on the graph of y2 = x3 + ax + 6, we define —P = (x, —y), 
that is, — P is P reflected in the x-axis. 

Given two points P and <2, on the graph but not on the same vertical line, 
define P + Q = —R, where R is the third point on the straight line through 
P and Q. 

If P and Q are distinct points on the graph and on the same vertical line, 
then they must have the form (x, ±y), that is, Q = —P, and we define P+Q = 
oo, the identity element of the group. 

Figure 12.2 Graphs of y2 — x3 - 3x + 2 and y2 = x3. 
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Also, P + oo = oo + P = Pfor any element P of the elliptic curve (including 
oo). 

To add a point P ^ oo to itself, draw the tangent line to the graph at P. 
If the tangent line is vertical, then P = (#,0) and we define P + P = oo. 
If the tangent line is not vertical, then it intersects the graph in exactly one 
more point P , and we define P + P = —R. (If P is a point of inflection, then 
R = P.) 

The addition rule may be expressed a s P + Q-fP = ooif and only if P, Q, R 
are on the same straight line. 

THEOREM 12.1 An elliptic curve is a group 

An elliptic curve E with the addition operation + forms an abelian group 
with identity oo. The inverse of P is —P. 

PROOF The operation + is well defined and assigns an element P+Q of E 
to every pair or elements P, Q of E. It is easy to check that oo is the identity, 
that the inverse of P is — P and that P + Q — Q + P . The associative law 
(P + Q) + R = P + (Q + R) may be verified by a long and tedious calculation 
using the addition formulas that follow. I 

There are several short proofs of the associative law, but each requires 
knowledge of some hard mathematics, like algebraic geometry. See Silverman 
[111] for a proof. 

Let E be defined by y2 = x3 + ax + b. Let P = (xi, y±) and Q = (#2,2/2)- ^ 
#i = x2 and 2/1 = —2/2, then P — —Q and P + Q = 00. Otherwise, let s be the 
slope 5 = (2/2 — yi)/(x2 — x\) of the line through P and <2 when P / Q, and 
let s be the slope s = (3#? + a)/(2yi) of the tangent line to y2 — x3 -\- ax -\-b 
at P when P = Q. Then P + Q = (#3,2/3), where x3 = s2 — 2x\ and 
2/3 = s(x1 -x3) - 2 / 1 . 

Example 12.1 

On the elliptic curve y2 = x3 — 5x, add the points P = (—1, 2) and Q = (0, 0). 
Using the formula above, we find that the slope is s = (0 — 2)/(0 — (—1)) = 

- 2 . Then x3 = ( -2 ) 2 - ( -1) - 0 = 5 and y3 = ( - 2 ) ( - l - 5) - 2 = 10, so 
P 4- Q — (5,10). One should check the arithmetic by verifying that the sum is 
a point on the curve. Here the check is 102 = 53 — 5 • 5. 

Example 12.2 

On the elliptic curve y2 = x3 + 8, compute P + P, where P = (1,3). 

We use the second formula for the slope because P = Q. We have s = (3-12 + 
0)/(2 • 3) = 1/2, x3 = (1/2)2 - 1 - 1 = - 7 / 4 and y3 = (1/2)(1 - ( -7/4)) - 3 = 
- 1 3 / 8 , so P + P = ( -7 /4 , -13 /8) . 
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Note that if a and b and the coordinates of points P and Q on the elliptic 
curve Ea,b are rational numbers, then the coordinates of P + Q will be rational 
numbers (unless P + Q = oo). Therefore, if a and b and the coordinates of 
points P and Q on the elliptic curve Ea¿ are integers modulo m, then the 
coordinates of P + Q will be integers modulo m, unless P + Q — oo, provided 
that any division needed to add points is by a number relatively prime to m. 
The modulus m cannot be even because we have to divide by 2 in the formula 
for the slope s when P — Q. The condition on the discriminant becomes 
4a3 4- 27i>2 ^ 0 (mod m). Of course, the graph is not a curve in the plane; it 
is just a set of pairs of numbers modulo m. 

Let us look at the points of the elliptic curve y2 = x3 + 3x + 4 (mod 7). 

x (x3 + 3x + 4) mod 7 y 

0 4 2,5 
1 1 1,6 
2 4 2,5 
3 5 none 
4 3 none 
5 4 2,5 
6 0 0 

There are ten points on this elliptic curve, counting oo. 

Example 12.3 

Add the points (1,1) + (2, 5) on the curve whose points were just listed. 
We have s = (5 - l)/(2 - 1) = 4, x3 = 42 - 1 - 2 = 13 = 6 (mod 7) and 

Î/3 = 4(1 - 6) - 1 = 0 (mod 7), so the sum is (6,0). 

Example 12.4 

Double the point (2, 2) on the same curve. 
We must add (2, 2) + (2, 2). We have s = (3 • 22 + 3)/(2 • 2) = 2 (mod 7), 

x3 = 22 - 2 - 2 = 0 (mod 7) and ys = 2(2 - 0) - 1 = 2 (mod 7), so the sum is 
(0,2). 

There is a simple formula for the number of points on an elliptic curve 
modulo a prime. 

THEOREM 12.2 The number of points on an elliptic curve 
The number N of points on the elliptic curve y2 = x3 + ax + b (mod p) is 

N = p + 1 + YH=o((x3 + ax + fy/p), where (r/p) is the Legendre symbol. 

PROOF Each x between 0 and p — 1 gives one value x3 + ax + b. The 
number of y between 0 and p — 1 with y2 = x3 + ax + b (mod p) is 0, 1, or 2 
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Theorem 7.3 says that there are as many quadratic residues as quadratic 
nonresidues in the interval 1 < r < p — 1. Thus the Legendre symbol in 
Theorem 12.2 will be +1 about as often as it will be —1. Hence, we expect 
the number of points on a random elliptic curve modulo p to be close to p + 1 . 
H. Hasse proved that this is so. 

THEOREM 12.3 Hasse's theorem 
Let the elliptic curve E modulo a prime p have N points. Then 

p + 1 - 2y/p < N < p + 1 + 2y/p. 

We omit the proof, which is hard. See Section V.l of Silverman [111] for a 
proof. Deuring [38] proved that every integer N in p+1 — 2y/p < N < p+1 + 
2yjp actually occurs as the order of an elliptic curve y2 = x3 + ax + b (mod p) 
for some pair a, b. Lenstra [67] showed that the orders of these elliptic curves 
are well distributed in the interval when random pairs a, b are chosen. 

In certain cases, we can determine the order of an elliptic curve without 
computation. For example, if p = 3 (mod 4) and b — 0, then the curve Ea$ 
modulo p has exactly p + 1 points. 

Now that we have a rich family of abelian groups modulo primes, we can 
ask about their structure. A theorem of Casseis [24] implies that elliptic curve 
groups modulo a prime p are either cyclic or the direct product of two cyclic 
groups. In the latter case, the order of the smaller cyclic group divides both 
p— 1 and the order of the larger cyclic group. 

When P is a point on an elliptic curve and A: is a positive integer we write 
kP for the sum P + P+- + Poîk P 's . We also define OP = oo and kP = 
(—k)(—P) when A: is a negative integer. The fast exponentiation algorithm, 
with multiplication replaced by addition of points of an elliptic curve, provides 
a speedy way to compute kP. It takes O (log |fc|) group operations to find kP 
when k ^ 0. 

12.2 Factoring with Elliptic Curves 
In 1985, H. W. Lenstra, Jr. invented an ingenious new factoring algorithm 
which uses elliptic curves. Recall that Pollard's p — 1 factoring algorithm 
performs a calculation (aL mod n) in the integers modulo n which mirrors a 

according as x3 + ax + b is a quadratic nonresidue, is = 0, or is a quadratic 
residue, all modulo p, by Part 1 of Theorem 7.5. Counting oo, we have 
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hidden calculation (aL modp) in the multiplicative group Rp. The factor p 
of n is discovered when the order p — 1 of the group Rp divides L. The p — 1 
algorithm fails to find p if p— 1 happens to have a large prime divisor. Lenstra's 
idea is to replace the group Rp with an elliptic curve group Ea¿ modulo p. 
By Hasse's theorem, the two groups have roughly the same size. But there is 
only one group Rp and there are many elliptic curve groups modulo p. If the 
order of Rp has a large prime factor, we are stuck. But if the order of Ea¿ 
modulo p has a large prime factor, we just change a and b and try another 
elliptic curve group. 

In Pollard's p — 1 algorithm, we raise a random number a to the L power 
modulo n and the factor p appears as gcd(aL — l ,n) . In Lenstra's elliptic 
curve method, or ECM, we multiply a random point P on an elliptic curve 
times the integer L, that is, we add P to itself L times, and the factor p 
appears when we use the extended Euclidean algorithm to try to compute a 
multiplicative inverse modulo n as part of the slope calculation. Here is the 
algorithm. 

[Simple elliptic curve factorization method, first stage] 
Input: A composite positive integer n to factor and a bound B. 
Output: A proper factor p of n, or else give up. 

Find the primes p\ — 2,p2,... ,Pk < B 
Choose a random e l l i p t i c curve Ea¿ modulo n 

and a random point P ^ oo on i t 
g = gcd(4a3 + 27ò2,n) 
if (g — ri) choose a new curve and point P 
i f (<7 > 1) r epor t the f ac to r g of n and stop 
for (i = 1 to k) { 

e=\{\ogB)l\ogPi-\ 
P = (PI)P or e l s e f ind a f ac to r g of n 
} 

Give up or t r y another random curve 

Whenever we compute a multiple hP we reduce the coordinates modulo n. 
Imagine that the coordinates are also reduced modulo p, a prime divisor of n. 
Here is why the algorithm works. If the order of the elliptic curve modulo p 
divides L, then LP — oo by Lagrange's theorem. Since P ^ oo, at some point 
during the calculation we must have P\ + P% — oo for two points P\, P<¿ ^ oo 
working with coordinates modulo p. According to the formulas for addition of 
points, the only way this could happen is if Pi = — P2, that is, P\ = (x,y) and 
P2 = (x, — y), working with x and y modulo p. It could happen that Pi = - P 2 

with coordinates modulo n, but only if that equation held with coordinates 
modulo q for every prime factor q of n, which is unlikely if n has more than 
one large prime factor. It is much more likely that Pi ^ — P2 with coordinates 
modulo n. Write Pi = (xi,i/i) and P2 = (#2,2/2) w ^ n coordinates modulo n. 
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We have x\ = X2 (mod p) because P\ = — P2 with modulo p coordinates. If 
x\ T¿ x2, then we will try to compute the slope s — (2/2 - 2/i)/(#2 _ #1) and 
discover the factor p when we attempt to find the inverse of X2 — x\ modulo n 
because gcd(x2 — #i ,n) > 1. And if x\ — x2, but 2/1 / —2/2, then 2/1 = 2/2, and 
so Pi = P2. In this case we are doubling ("squaring") the point Pi during 
the fast "exponentiation." We must have 2/1 ^ 0 because 2/1 / —2/2 = ~2/i-
However, Pi = —P2 with modulo p coordinates. Since also Pi = P2, we must 
have 2 / i=0 (modp). But 2/1 ̂  —2/2 and we use the formula s = (3a?f+a)/(22/i) 
to compute the slope. When we use the extended Euclidean algorithm to try 
to find an inverse of 2yi, we will discover p because p divides both 2/1 and n. 
See Proposition VI.3.1 of Koblitz [58] for more details of why the algorithm 
works. 

Technically, the "elliptic curve modulo n" is really not an elliptic curve 
because the addition of points is not defined for every pair of points. This 
is why we use the condition gcd(4a3 + 27b2, ri) = 1 in the algorithm. This 
condition ensures that 4a3 + 21b2 ^ 0 (mod q) for each prime divisor q of n, 
so that Ea¿ is a valid elliptic curve (without repeated zeros of x3 + ax + b) 
modulo each q. 

If we make some reasonable assumptions, we can determine the complexity 
of the elliptic curve method. To factor large numbers n, the basic algorithm for 
one curve, given above, is repeated until a factor p is found. If the probability 
is 1/ra that p will be discovered by one instance of the algorithm, then the 
expected number of curves that must be tried is m. The factor p is discovered 
by the algorithm if the order N of the elliptic curve modulo p is P-smooth. 
(This is actually not quite true because some prime Pi < B might divide N 
to a higher power than the exponent e tried in the algorithm. But such bad 
luck is very rare and the statement is essentially true.) The Hasse interval 
p+ 1 — 2^/p < N < p + 1 + 2y/p is too short to prove that any TV in it is 
P-smooth. The principal assumption we make is that the probability that 
N is P-smooth is u~u, where u = ( l np ) / lnP , which would follow from a 
theorem of Canfield et al. [23], if N could be chosen from a longer interval 
(p/2 < N < 3p/2, say) than the Hasse interval. 

We will also assume that the optimal value of P is used in the algorithm. 
This is a problem because the optimal value depends on p, which is unknown. 
However, if the algorithm is used with slowly increasing values of P , the effect 
is the same as if the optimal P were used. This is how people actually use the 
algorithm. See Silverman and Wagstaff [112] for advice about how to increase 
P gradually. 

THEOREM 12.4 Complexity of elliptic curve method 
Let n be a positive integer with an unknown prime factor p. Let B be 

the optimal bound for fínding p by the elliptic curve algorithm. Assume 
that a random elliptic curve Ea¿ modulo p with 4a3 + 27b2 ^ 0 (mod p) 
has a B-smooth order with probability u~u, where u = (Inp)/ In P . Defíne 
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L(x) = exp(\/(ln x) In In x). 

Then £ = L(py2/2. The expected total number of group additions per­
formed when the elliptic curve algorithm is used to discover p is L(p)y^2. The 
expected total work needed to discover one prime factor of n is L(n) group 
additions. 

P R O O F By the prime number theorem, there are about B/ In B primes 
< B. For nearly all of these primes 0, the largest power qe < B has e = 1. 
The fast "exponentiation" used to compute (qe)P takes about logB group 
additions. Hence the total count of group additions per curve with bound B 
is about (B/ In B) In B = B. 

Since the probability of finding p with any single curve is u~u, the expected 
number of curves required is l/u~u = uu. Therefore, if we use bound B 
in the algorithm, the total number of group operations needed to find p is 
f{B) = Buu. We must find the B which minimizes f(B). 

Let a — (lnjB)/lnL(p) so that B — (L(p))a. We will express f(B) in terms 
of a. We have InB = a\nL(p) = a^/(\np)\n\np, so 

Like the Pollard p — 1 algorithm that inspired it, Lenstra's elliptic curve 
algorithm admits a second stage. The second stage of the algorithm chooses a 

and In u = \ In lnp — | In In \np — In a s¿ | In lnp since the other two terms are 
small compared to \ In In p. Hence, 

Therefore, t¿w = ewlnM « Lip)1^2^ and the function we seek to minimize is 

Since L(p) is a positive constant (for p > ee), the minimum of f(B) will occur 
when a H- l/(2a) is minimal. It is an easy calculus exercise to show that the 
minimum of a + 1 /(2a) occurs when a = A/2 /2 , and the minimum value is 
>/2. Therefore, the optimal B is L(p)^^2. With this I?, the expected total 
number of group additions is f(B) = L(p)y^. 

Let p be the smallest prime factor of n. Then p < y^ñ, lnp < (1/2) Inn and 
lnlnp < lnlnn, so the expected total number of group additions is 
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second bound B2 > B, perhaps B2 = 100B. At the end of the first stage (the 
algorithm above), the variable P is the point Q equal to L times the original 
point P . Let qi < q2 < . . . < qt be the primes between B and B2. The idea is 
to compute successively (Lqi)P for i = 1,2,... t, where P is the original point. 
The first point (Lqi)P is computed directly as (qi)Q. The differences <?¿+i -qi 
are all even numbers and much smaller than the qi themselves. Precompute 
(Ld)P = dQ for d = 2 ,4 , . . . up to a few hundred. To find (Lqi+\)P from 
(LqijP, add the latter to (Ld)P = dQ, where d = </¿+i - <?¿. The amortized 
cost of computing each (Lqi)P for 1 < i < k is a single addition of two points 
on Ea,b' 

The second stage finds a factor poïn when the order of the elliptic curve is 1-
semismooth with respect to B2 and B in the terminology of Section 4.4. The 
probability of finding p is about pi((logp)/logB, (logp)/\ogB2) per curve, 
according to Theorem 4.11. 

The cryptographic significance of the elliptic curve method is that, if we 
don't want an adversary to be able to factor a large composite number n, 
then each prime factor p of n must have the property that there are no B-
smooth integers between p + 1 — 2^/p and p + 1 + 2^/p, where the adversary 
is able to perform 0(B) operations. As this goal is impossible to achieve, the 
best we can do is make the smallest prime divisor of n as large as possible. 
If n must be composite, but we are free to choose the number of its prime 
divisors, we should opt for only two of them. 

Of the many enhancements of the elliptic curve method, let me mention just 
one. Recall that in the Pollard p — 1 method, we may delay computing the 
greatest common divisor with n. In fact, the version of the algorithm we stated 
had just one gcd at the end. On the other hand, the elliptic curve method 
has a gcd hidden in every addition of points. This step slows the algorithm 
significantly. We may avoid it by using a different coordinate system. The 
system of representing points (x, y) on the curve y2 = x3 + ax -f b is called the 
"affine coordinate system" and (x,y) an "affine" point. With "homogeneous" 
or "projective coordinates," one lets x = X/Z and y = Y/Z and clears the 
denominators, obtaining the equation Y2Z — X3 + aXZ2 + bZ3. Points in 
this system are triples [X, Y, Z). When Z ^ O , the point [X, Y, Z] corresponds 
to the affine point (X/Z, Y/Z). Any point [X, Y, 0] with Z — 0 represents 
oc. One can derive formulas for adding points [Xi,Yi,Zi] and [X2,Y2,Z2] 
in the new system as follows. If either Z\ — 0 or Z2 = 0, the sum is the 
other point (P + oo = P) . Otherwise, there are formulas for the projective 
coordinates of the sum [X3, Y3,Z3] which involve only addition, subtraction 
and multiplication modulo p, and which may be derived this way. Formally 
add the points (X\IZ\,Y\/Z\) and (X2/Z2, Y2/Z2) using the affine rules given 
above. Leave the fractions as fractions. Replace each condition like X\/Z\ — 
X2/Z2 by a condition XiZ2 = X2Zi, which avoids division. In the two cases 
P+Q and P + P not involving oo, write the formulas for the affine coordinates 
as fractions with a common denominator. Let Z3 be the common denominator 
and let X3 and Y3 be the two numerators. If one stores intermediate results 
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like X1Z2 - X2Zi to be used later, one can reduce the addition of two points 
to only 13 or 14 multiplications, a handful of additions and subtractions and 
no divisions modulo p. Other coordinate systems reduce the computational 
labor of adding points even further. See Section 7.2 of [33] for more details. 
In these systems, one computes gcd(Z, n) once at the end, or more often, to 
see whether n has been factored (yet). 

12.3 Primality Proving with Elliptic Curves 
Elliptic curve prime proving (ECPP) algorithms are the only ones that can 
prove a prime is prime in polynomial time. They can prove n is prime in 
expected time 0((logn)6). The first such algorithms were published by Gold-
wasser and Kilian [47]. Atkin and Morain [6] made substantial improvements 
and made the algorithm practical. 

We will describe the original algorithm by Goldwasser and Kilian. The next 
theorem is an elliptic curve analogue of Theorem 11.17. (The variables m, s 
and P in the next theorem correspond to n — 1, F and a in the Pocklington-
Lehmer theorem.) The words "elliptic curve" are in quotes in the statement 
because we don't know that it really is an elliptic curve until after n is proved 
prime. 

THEOREM 12.5 Goldwasser-Kilian ECPP 
Let n be a positive integer relatively prime to 6. Let s and m be positive 

integers with s\m. Let E be an uelliptic curve" modulo n. Suppose there is 
a point P of E such that we can perform the curve operations to compute 
mP and nnd mP = 00, and for every prime p dividing s we can perform the 
curve operations to compute (m/p)P and ñnd (m/p)P ^ 00. Then s divides 
the order of E modulo any prime divisor ofn. 

If also s > (n1/4 + l ) 2 , then n is prime. 

PROOF Let q be a prime factor of n. The calculations on E modulo n, 
when reduced modulo q, show that s divides the order of P on E modulo g, 
just as in the proof of Theorem 11.17. 

If also s > ( n ^ + l ) 2 , then the size of E modulo q must also be > ( n ^ + l ) 2 . 
But by Hasse's theorem 12.3, the size of E modulo q is < (y/g+1)2. Therefore, 
(y/q+ l ) 2 > (n1/4 + l ) 2 , so q > >/ñ. Since this is true for every prime factor 
q of n, n must be prime. I 

The algorithm following Theorem 11.17 applied that theorem with F — p, 
a prime slightly larger than y/ñ. We can use Theorem 12.5 in a similar way. 
To prove that n is prime, try to find an elliptic curve E modulo n and a point 
P on E whose order is p > (n1/4 + l ) 2 . This computation shows that if p is 
prime, then n is prime. How do we know that p is prime? Apply the theorem 
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recursively to produce a decreasing sequence of numbers, each of which is 
prime if the next smaller one is prime. The sequence ends when it reaches 
a number small enough to be proved prime by trial division or some other 
method. When the last number is proved prime, the primality of all the other 
numbers, including n, is demonstrated. 

The one catch in the algorithm is determining the order of P on E. How do 
we find the number m in Theorem 12.5? It is supposed to be the order of the 
elliptic curve modulo n. If n really is prime, then m is within 2y/n of n + 1 
by Hasse's theorem. The formula in Theorem 12.2 is useful only for primes 
up to a few million. 

There is a variation of Shanks' baby-step-giant-step algorithm which will 
find the order m of E modulo n assuming that n is prime. Basically, this 
algorithm tries to find a discrete logarithm m of oo in the Hasse interval 
n + 1 — 2y/n < m < n + 1 — 2yfn. The giant steps have size ^2^/n. The 
algorithm has complexity 0(n1 / 4 ) group operations and is effective for n up to 
about 1030. See Algorithm 7.5.3 of Crandall and Pomerance [33] for details. 
There is a twist. 

As we wish to apply the elliptic curve prime proving algorithm to n much 
larger than 1030, we need a faster way of computing orders of elliptic curves. 
Schoof [101] found a beautiful algorithm for computing the order moîE mod­
ulo n which runs in 0((logn)fc) for fixed k. His method determines m mod q 
for many small primes q and deduces m via the Chinese remainder theorem, 
just as Sun Tsu counted his soldiers. Schoof's algorithm uses division poly­
nomials and is too complicated to present here. See [101] or Algorithm 7.5.6 
of [33] for details. 

I2.4 Exercises 
1. Derive the formulas for adding points (#1,2/1) + (#2,2/2) stated after 

Theorem 12.1. 

2. Consider the curve y2 = x3 - 7x + 15. Add the points (1,3) + (2,3). 
Add the points (1, — 3) + (2,3). Double the point (1,3). Be sure to check 
that the given points and your answers all lie on the curve. 

3. Consider the curve y2 = x3 + \x + 4 (mod 11). Add the points (1,3) + 
(2,3). Add the points (1,8) + (2,3). Double the point (1,3). Find the 
order of the point (1,8). Find the number of points on the elliptic curve. 
Be sure to check that the given points and your answers all lie on the 
curve. 

4. Show that the points P = ( -3 ,2) , Q = (-1,4) and R = (1,2) are on 
the elliptic curve y2 = x3 - 7x + 10. Compute P + Q, 2R, 3R and 4R 
on this curve. 
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5. The point (0,16) has finite order on the elliptic curve y2 = x3 + 256 over 
the rational numbers. Find its order. 

6. Prove that if p is prime, p = 3 (mod 4), and 6 = 0, then the elliptic 
curve EQio modulo p has exactly p + 1 points. 

7. Find formulas for adding points in homogeneous coordinates [X,Y, Z\. 

8. Let g be a quadratic nonresidue modulo the prime p. Let m and n be the 
orders of the two elliptic curves y2 = x3 +ax + b and y2 = x3 +g2ax+g3b 
modulo p. (The second curve is called the "twist" of the first curve.) 
Prove that m + n = 2p + 2. 

9. Let P / oo be a point on an elliptic curve over the real numbers. 
Give a geometric condition (something involving tangent lines, points 
of inflection, etc.) that is equivalent to P being a point of order 

a. 2. 

b. 3. 

c. 4. 

10. For the following values of p and B determine the fraction of the integers 
between p+\ — 2y/p and p + 1 + 2^/p having no prime divisor greater 
than B: 

a. p = 109, B = 5. 

b. p=127, £ = 17. 
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Chapter 13 

Subexponential Factoring 
Algorithms 

This chapter deals with integer factoring algorithms whose complexity grows 
more slowly than an exponential function of logn, the length of the input 
number n. (An exponential function of logn means a function of the form 
exp(clogn) = e c l o g n = nc, for some constant c > 0. The complexity functions 
in this chapter have roughly the form exp(eVlogn) for some constant c > 0, or 
even slower growth.) We have already mentioned one of these algorithms, the 
elliptic curve factoring method, which factors n in about exp( ̂ /(ln n) In In n) 
steps. The complexity of that algorithm is actually a slowly increasing func­
tion of the prime factor p it discovers. The complexity of the factoring al­
gorithms described in this chapter depends only on n and not on the size of 
any prime factor of n. In this respect, they are similar to SQUFOF, whose 
complexity is 0(n1/ /4) steps. 

The factoring algorithms in this chapter have several other similarities. 
They all factor many relatively small auxiliary numbers using the primes in 
a fixed set, called a factor base, and they use linear algebra over the field F 2 

with two elements to combine the factorizations of the auxiliary numbers to 
construct x and y with x2 = y2 (mod n), which gives the factorization of n. 

13.1 Factoring with Continued Fractions 

This factoring algorithm has been superseded by the algorithms in the follow­
ing sections. We study it here because, historically, it was the first subexpo­
nential integer factoring algorithm and because the later algorithms build on 
the ideas invented to make this one work. 

The following theorem has been known for a long time. 

185 
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THEOREM 13.1 Factoring by congruent squares 

Ifn is a composite positive integer, x and y are integers, and x2 = y2 (mod n), 
but x ^ ±y (mod n), then gcd(z - y, n) and gcd(x + y, n) are proper factors 
ofn. 

PROOF The congruence shows that n divides x2 — y2 = (x — y)(x + y), 
while the incongruences imply that n does not divide either x — y or x + y. 
Hence, at least one prime factor of n does not divide x — y and so must divide 
x + y. Likewise, at least one prime factor of n divides x — y. Therefore both 
gcd's are > 1. Neither gcd can equal n because of the incongruences. I 

Although we will describe ways to find x and y with x2 = y2 (mod n), it is 
difficult to ensure that x ^ ±y (mod n), so we ignore this condition. We can 
easily factor even numbers. We can also factor prime powers n by computing 
n1/*5 by Newton's method for 2 < k < log2 n. Suppose now that n is odd 
and has k > 1 distinct prime factors. Suppose we can find x and y satisfying 
x2 = y2 (mod n). Then x2 = y2 (mod pe) for each of the k distinct prime 
divisors p of n. The number y2 is clearly a quadratic residue modulo p. By 
Theorem 7.16, the congruence z2 = y2 (mod pe) has exactly two solutions z. 
Since y and — y are clearly two solutions, z = ±y (mod pe). By the Chinese 
remainder theorem, given y, there are 2k solutions x to x2 = y2 (mod n), one 
for each choice of the ± sign in each x = ±1/ (mod pe). The solutions with 
x = ±y (mod n) are two of these 2k solutions. Therefore, if x and y are chosen 
randomly subject to x2 = y2 (mod n), the probability that x ^ ±y (mod n) 
is (2* - 2)/2fc = 1 - 2k~1. Since k > 1, the probability is at least 1/2 that a 
random congruence x2 = 2/2 (mod n) will yield a factorization of n. We have 
proved: 

THEOREM 13.2 Each congruence has at least a 1/2 chance of factoring 
Ifn is an odd positive integer with at least two different prime factors, and ifx 
and y are chosen randomly subject to x2 = y2 (mod n), then, with probability 
> 1/2, gcd(# — y, n) is a proper factor ofn. 

It would be futile to try to guess integers x and y satisfying x2 = y2 (mod n). 
If n is the product of two primes, then for each x only two values of y lead to 
a factorization. The continued fraction and quadratic sieve algorithms both 
find many "relations" x2 = qi (mod n), where 0 < \qi\ < n. A subset of the 
g¿'s is found whose product is a square, say, y2. If we let x be the product of 
the corresponding x¿'s, then we have x2 = y2 (mod n). 

The idea of using relations x2 = qi (mod n) to help factor n actually goes 
back to Legendre [61] in 1830. He observed that if p is any prime factor of n, 
then each qi must be a quadratic residue modulo p. For each i he would find 
a list of congruence classes modulo qi or 4#¿ containing all primes having qi 
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as a quadratic residue, just as we did in Examples 7.2 and 7.3. He used the 
arithmetic progressions to limit his search for a factor of n by trial division, 
testing only primes in the possible congruence classes. Each qi that was not 
a square times some other qj eliminated half of the remaining eligible primes. 
This scheme works fine if you are using pencil and paper to factor a ten-
digit integer. The sieves we mentioned in the discussion of Fermât's method 
are ideal hardware devices for finding primes that lie in specified congruence 
classes modulo various small primes qi. But even though the fastest sieves 
today [128] process billions of candidate factors per second, they are still 
using trial division and cannot compete with the methods in this chapter for 
factoring numbers of cryptographic interest. 

Seventy-five years ago, Kraitchik obtained relations by ad hoc means. He 
[60], page 201, tried to factor n = 193541963777 and found the relations 

4399352 = 28 • 72 • 67 (mod n) 

16092 • 72 • 67 = 4494902 (mod n). 

He multiplied the two congruences, canceled the 72 • 67 and got 

(439935 • 1609)2 = (24 • 449490)2 (mod n), 

from which the factorization of n is easy to deduce. 
Although, Kraitchik's methods were ad hoc, they do suggest a way to find 

a subset of a given set of relations x\ = q\ (mod n) for which the product of 
the qi is a square. If the numbers qi have been factored completely, we can 
try to match the primes in the relations so that each appears an even number 
of times in the relations we select. Suppose pi,...,Pk are all of the primes 
which appear in the factorizations of all the qi. We can write the z'-th relation 
as 

x\ = qi = vTvT * • 'VT (mod n), 

where we allow e¿j = 0 if pj does not divide g¿. Think of the list of exponents 
as a vector Vi = (e¿i, e¿2,. . . , e¿¿), and let Vi represent the z-th relation. These 
vectors are added when two relations are multiplied to form a new relation. 
Such a vector represents a relation with a square right side if and only if each 
component of the vector is even, because a positive integer is a square if and 
only if every prime that divides it does so an even number of times. 

To select a subset of the q^s whose product is a square, we can write a 
system of k congruences modulo 2, one for each prime pj. Let Z{ = 1 if the 
z-th relation is to be selected and z\ = 0 if it is not selected. Then the system 
of congruences is J2i zieij = 0 (mod 2) for 1 < j < k. If we have only a 
few relations and many primes, it is unlikely that there will be a nontrivial 
solution. But if there are more relations than primes, then we certainly will 
have a solution with some Zi = 1. 

Since we are concerned only with the parity of the components of the expo­
nent vectors, we may regard Vi as a vector of dimension k over the field F2 of 
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integers modulo 2. Then the system of congruences becomes the homogeneous 
system of linear equations YJÍ zieij = 0 for 1 < j < fc. We may use techniques 
of linear algebra, such as Gaussian elimination, to solve this system. 

With these preliminaries, we now head towards the continued fraction in­
teger factoring algorithm. A simple continued fraction is an expression of 
the form 

which we will denote by [qo, 01,02,03, • • •, Qk]- The numbers qi, except for the 
last one, qk, are required to be integers. Every real number x has a simple 
continued expansion which may be computed by this algorithm: 

i = 0 
0o = [x\ 
x — x — qo 
while (x > 0) { 

i = i + l 
Qi = \M%\ 
x — x — qi 

} 

The algorithm terminates if and only if x is a rational number. If x = a/b, 
then the qi are the quotients in the Euclidean algorithm for gcd(a, 6). 

Given a finite simple continued fraction [00,01,02, ••• , 0&], with all qi in­
tegers, we can find its value Ak/Bk as a rational number by clearing the 
denominators starting from the end and working backwards. We can also find 
Ak/Bk by working forwards, using the formulas A-i — 1, i?_i = 0, A§ — q0, 
B0 = 1 and A¿ = 0¿A¿_i + A¿_2, 2?¿ = 0 ^ - 1 + £¿-2 for i = 1,2,. . . , k. 

Continued fractions have an important application in finding rational num­
bers a/b which closely approximate real numbers x. With Ak and Bk as above, 
one can prove that 

for every k > 0. See Theorem 7.11 of [78] for a proof. Also, if A and B are 
integers with gcd(A, B) = 1 and 

then there is a k > 0 for which A = Ak and B = Bk. 
[78] for a proof. 

(13.1) 

See Theorem 7.14 of 



Subexponential Factoring Algorithms 189 

When n is not a perfect square, the simple continued fraction expansion of 
yjn is infinite because y/n is not a rational number. However, the expansion is 
periodic, that is, the g¿'s repeat after a while. Usually, the length of the period 
is roughly y/ñ. One would have to know ^/n~ to very high precision to compute 
its simple continued fraction by the algorithm above. But, there is a simple 
iteration that computes the q^s using only integer arithmetic. Two or three 
other integers are computed during the iteration. One of them is an integer 
Qi which satisfies A? - nB2 = {—\)%Qi and 0 < Qi < 2^/n. (The numbers 
(-l)lQi are the same as the a in SQUFOF, but that algorithm iterates the 
continued fraction expansion until a is a square.) If we regard the equation 
as a congruence modulo n, we have A? = (—l)lQi (mod n). In other words, 
the continued fraction iteration produces a sequence {(—l)*Qi} of quadratic 
residues modulo n whose absolute values are < 2y/n\ This is very small 
indeed, since the average quadratic residue between 1 and n is about n/2 . 

The continued fraction factoring algorithm, CFRAC, first implemented by 
Morrison and Brillhart [77], uses the fact that, since the Qi are small, they 
are more likely to be smooth than numbers near n/2, say, because u will be 
only half as big in Theorem 4.9. The continued fraction expansion for ^Jn 
generates the sequences {Qi} and {Ai mod n} and tries to factor each Qi by 
trial division using the primes below some bound B, called the factor base. It 
saves the ^-smooth Q¿'s, together with the corresponding A^ representing the 
relation A? = {—l)lQi (mod n). When enough relations have been collected, 
Gaussian elimination is used to find linear dependencies (modulo 2) among 
the exponent vectors of the relations. (In linear algebra terminology, we find 
a basis for the null space of the linear system.) There are enough relations 
when there are more of them than primes in the factor base. Each linear 
dependency produces a congruence x2 = y2 (mod n) and a chance to factor 
n by Theorem 13.2. 

Suppose the prime p divides Qi. The equation A2 — nB2 — {—XfQi shows 
that (Ai/Bi)2 = n (mod p), so the Legendre symbol (n/p) is 1 (or 0 if p\n). 
The factor base should contain only primes p with (n/p) = 1, that is, about 
half of the primes up to B. One might think that the probability that Qi is 
£?-smooth would be lessened by having only about half of the possible primes 
available. But there is a heuristic argument (see Section 4.5.4 of Knuth [56]) 
that if p < B does not divide n, then p divides Qi with probability 2/(p + 1) 
rather than the expected 1/p. This higher chance of dividing Qi compensates 
for the smaller number of useful primes < B and leaves the estimate in The­
orem 4.9 essentially unchanged. Assuming a couple of plausible hypotheses, 
Pomerance [87] proved that the time complexity of CFRAC is L(n)^, where 
L(x) is defined in Theorem 12.4. 

Here is a simple example of CFRAC. 

Let us factor n — 13290059. The continued fraction expansion for y/n yields 
the relations below, and many others. 
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i 

10 
23 
26 
31 
40 

Ai mod n 

6700527 
1914221 

11455708 
1895246 
3213960 

( -1 ) ' 
+1 
- 1 
+1 
- 1 
+1 

Qi 

1333 
226 

3286 
5650 
4558 

Qi factored 

31-43 
2 113 

2-31-53 
2-5 2 -113 
2-43-53 

Of course, a square cannot be negative. We handle this requirement by 
treating (—1) as another "prime" factor of (—l)lQi. Each relation in the 
table above is represented by one row in the next table. Each row holds one 
exponent vector V{ modulo 2. 

i 

10 
23 
26 
31 
40 

(-1) 
0 
1 
0 
1 
0 

2 

0 
1 
1 
1 
1 

5 

0 
0 
0 
0 
0 

31 

1 
0 
1 
0 
0 

43 

1 
0 
0 
0 
1 

53 

0 
0 
1 
0 
1 

113 

0 
1 
0 
1 
0 

By Gaussian elimination modulo 2, or otherwise, one sees that the rows 
with i — 10,26 and 40 are linearly dependent, as are the rows with i — 23 
and 31. The first dependency is 

(6700527 • 11455708 • 3213960)2 = (2 • 31 • 43 • 53)2 (mod 13290059) 

or 1412982 = 1412982 (mod 13290059), which fails to factor n. The second 
dependency is 

(1914221.1895246)2 = (2 • 5 • 113)2 (mod 13290059) 

or 126776052 = 11302 (mod 13290059), which gives the factors 

gcd(12677605 - 1130,13290059) = gcd(12676475,13290059) = 4261 and 

gcd(12677605 + 1130,13290059) = gcd(12678735,13290059) = 3119. 

Smith and Wagstaff [113] and [118] fabricated a special computer for fac­
toring large integers by CFRAC. It had a 128-bit wide main processor with a 
bit-slice architecture to generate the Ai and Q¿, and sixteen simple remain­
dering units (the "Mod Squad") to factor sixteen Q^s in parallel. 

13.2 The Quadratic Sieve 
The quadratic sieve factoring algorithm, QS, is quite similar to CFRAC. The 
difference is in the method of producing relations x2 = q (mod n) with q 



Subexponential Factoring Algorithms 191 

factored completely. CFRAC forms x and q from the continued fraction ex­
pansion of y/ñ and factors q by trial division, a slow process. The quadratic 
residues q in CFRAC are likely to be smooth because they are < 2>/ñ. 

QS produces x and q with a quadratic polynomial q = f(x) and factors 
the g's with a sieve, a much faster process than trial division. The quadratic 
polynomial f(x) is chosen so that the g's will be as small as possible. This 
means that most of them will be larger than 2i/ñ, but not too many times 
larger, so that they are almost as likely to be smooth as the g's in CFRAC. 

Let f(x) = x2 — n and s = IV™ I- Consider the numbers / ( s ) , / ( s + l ) , f(s + 
2), Fermat's factoring method considered the same numbers and sought 
f(s + Ï) = y2. As we saw in Theorem 10.1, this could take a long time. 
Suppose we could factor some of these numbers, not by trial division, but by 
a faster method which would find the 5-smooth numbers quickly. If a prime p 
divides some f(x) = x2—n, then x2 = n (mod p), so n is a quadratic residue 
modulo p (unless p\n). If there are K primes p < B with (n/p) = +1 and 
we can find R > K 5-smooth numbers / (#) , then we will have R relations 
involving K primes and linear algebra will give us at least R — K congruences 
x2 = y2 (mod n), each of which has probability at least 1/2 of factoring n, by 
Theorem 13.2. Typically, R is only K + 10 or K + 20. 

How do we find the .B-smooth numbers among f(s), f{s + 1), f(s + 2), . . .? 
We sieve them by some primes < B. As with CFRAC, the factor base for 
QS consists of the primes p < B for which the Legendre symbol (n/p) = +1 . 
Write down the numbers f(s + i) for i in an interval a < i < b of convenient 
length, say a few million. The first interval will have a = s. Subsequent 
intervals will begin with a equal to the endpoint b of the previous interval. 
For each prime p < B, divide out all factors of p from those f(s + i) which p 
divides. For which i does p divide f(s H- i)? Since f(x) = x2 — n, p divides 
f(x) precisely when x2 = n (mod p). We know from Theorem 7.2 that the 
solutions x to this congruence lie in the union of two arithmetic progressions 
with common difference p, and we learned how to find the starting points of 
these two arithmetic progressions in Section 7.5. If the roots of x2 = n (mod p) 
are x\ and #2, then the arithmetic progressions begin with the first numbers 
= X\ and X2 (mod p) which are > a. The prime factor p is removed from each 
f(s + i) which it divides. There is no trial division. We divide only when we 
already know that the remainder will be 0. 

The number of sieve operations for a prime p is about 2(b — a) because 
exactly two of every p numbers are divided by p. The complexity of the sieve is 
^2p<B,P prime | ( ^ ~ a ) ' ^ c a n ^e shown that this sum is 0((b — a) In In B). The 
amortized cost of sieving one i value is thus In In B. Trial division would have 
taken about 0((6 — a)B/InB) steps to find the ^-smooth numbers between 
a and 6, or B/ In B steps per i value. The sieve saves much time. 

If one replaces f(s + i) and p by their logarithms, one can replace the 
slow division of large numbers with subtraction of small numbers. Initialize 
an array F [ i ] with the logarithm of f(a + i). During the sieve, subtract 
logp from F[ i ] when p divides f(a + i). Most implementations use scaled 
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approximate logarithms which are integers between 0 and 255, so that fast 
integer byte arithmetic may be used. After the sieve, the array is scanned for 
small values of F [ i ] . We do not require that the byte value be zero because of 
the approximation of logarithms, because some primes may divide f(a + i) to 
a higher power than the first, and because small primes are treated differently. 
Really small primes, p < 100, say, are replaced in the factor base by powers 
pe and the sieve subtracts logpe whenever pe divides f(a + i). This is done 
because the small primes contribute little to the factorization of f(a + i), 
unless pe divides f(a + ¿), and sieving by them is expensive. When F[ i ] is 
smaller than a threshold T, we form the integer f(a + i) and try to factor it. 
This factoring is facilitated by the fact that we already know the two roots 
of f(x) modulo each p in the factor base. We need only compare x (mod p) 
with these two numbers to determine whether p divides f(x). The threshold 
is adjusted so that we will often succeed in factoring the number completely. 
Each success represents a relation, which is saved in a set as a -f i and perhaps 
the factorization of f(a + i). When the set contains a few more than K entries, 
the sieving stops and linear algebra constructs congruences x2 = y2 (mod n) 
which will likely yield a factorization of n. 

In the final step of the algorithm, x in x2 = y2 (mod n) is formed as the 
product modulo n of the X{ 's on the left sides of the relations x\ = qi (mod n) 
which participate in the dependency. The number y2 is the product of the 
<7¿'s in the same relations. Here is a good way to compute y. The complete 
prime factorization of each qi is known, and only primes from the factor base 
appear in these factorizations. For each prime p in the factor base count the 
number of times it appears as a factor in any of the q^s. This count must be 
an even number 2e because of the linear algebra. Multiply the prime powers 
pe modulo n to find y. 

The size K of the factor base is about ^n(B) « ^B/lnB and should be 
optimized to minimize the total work. We want to choose K small so that 
we will need fewer relations to complete the factorizations. But if we choose 
K too small, the i?-smooth numbers f(a + i) will be very rare and we will 
search for them forever. We must choose K large enough so that jB-smooth 
numbers will appear at a steady pace. 

In order to determine the complexity of QS, we must estimate the size of 
the numbers f{s + i). If 0 < ¿ < M, say, where M is much smaller than ^/n, 
we have 

f(s + ¿) = (s + i)2 -n = s2 + 2si + i2 - n « 2y/ñi < 2y/nM. 

This shows that the numbers we hope are ^-smooth are only about M times 
larger than the corresponding numbers in CFRAC. We will estimate the prob­
ability that these numbers are smooth by assuming that they are about the 
size of y/ñ. By Theorem 4.9, the probability that f{s + i) is jB-smooth is 
about u~u, where u = {\ny/n)/\nB = | ( l n n ) / l n ^ . 

We expect to have to try about uu values of i to get one B-smooth f(s + ¿). 
Therefore, we will need to try about M = Kuu values of i to get about K 
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relations. We need just a few more than K relations. Using the complexity 
of the sieve mentioned above, we see that the total work to factor n is about 
W{B) — Kuu\n\nB. Write L(x) = exp(A/(lnx)lnlnx). An analysis like that 
in the proof of Theorem 12.4 shows that the optimal smoothness bound B is 
about (L(n))1/2 and that the total work using this B is about W(B) — L(ri). 
The total number of values of f(s + i) sieved is about 

This analysis ignores the time for the linear algebra needed to find the 
dependencies. Ordinary Gaussian elimination takes 0(K3) steps, which is 
about (L(n)3/2) and too slow in theory. In practice, Gaussian elimination is 
a fine method for finding the relations because the constant implied in 0(K3) 
is tiny. One can pack 32 vector components into a 32-bit word and perform 
32 subtractions modulo 2 with a single exclusive-or operation. Furthermore, 
the matrix of exponents is sparse because few primes divide any particular 
f(s + i). One can use "structured" Gaussian elimination (see [79]) to preserve 
the sparseness as long as possible. Other sparse matrix methods, like the block 
Lanczos method (see [79] and [75]), which run in essentially 0(K2) steps, can 
replace Gaussian elimination and preserve the theoretical estimate of L(n) for 
the complexity of QS. 

13.3 Variations of the Quadratic Sieve 
The version of QS described in the previous section was close to the initial 
design of Pomerance [87] implemented by Gerver [46]. Several variations on 
this basic algorithm accelerate it in practice, although they do not improve 
the theoretical complexity below 0(L(n)). 

13.3.1 Large Primes 

Recall that during the scan after the sieve, the value of f(s 4- i) is factored 
by trial division for each i for which F [ i ] is less than a threshold T, and i is 
saved provided f(s + i) was completely factored. These relations are called 
fulls. The size K of the factor base would have to be quite large for this to 
work well and the sieving process would take a long time. This problem was 
solved already in CFRAC. Morrison and Brillhart [77] proposed saving the 
relations that have at most one prime factor larger than the largest prime F 
in the factor base and smaller than some upper bound P. This technique has 
been used in every implementation of the quadratic sieve, even the first one 
[46]. These relations with one prime beyond F are called partial relations. 
The partial relations are stored and sorted in order of their large primes. Any 
two partial relations containing the same large prime can be multiplied, and 
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the common large prime removed, to form a full relation. It takes no extra 
effort to find partial relations when P < F2 since we know that the remaining 
cofactor is prime because the trial division has already searched for all possible 
prime divisors below its square root. By Theorem 2.4, we will begin to get 
partial relations having large primes, which have already appeared as soon as 
we have about y/iT(P)/2 relations. Many more duplicate large primes appear 
as the number of relations increases above this number. (There is a factor 1/2 
inside the square root because large primes p, like those in the factor base, 
must satisfy (p/n) — 1, and this equality holds for about half of all primes.) 

Another variation, due to A. K. Lenstra and Manasse [65], saves relations 
that have at most two large primes less than P and greater than F. This 
method takes a small additional effort, since the cofactor remaining after trial 
division may have to be factored into the two large primes. Because the 
remaining cofactor could also be a single large prime, a probable prime test is 
performed to distinguish prime and composite cofactors so that factorization is 
attempted only for the composite ones. SQUFOF and ECM are good choices 
for factoring these numbers. Relations that contain two large primes are called 
partial-partial relations, or pp's, and can be combined with partial and 
other partial-partial relations by a graph cycle-finding algorithm to form full 
relations [65]. 

Three large primes, or ppp's, have also been used occasionally. See [68] for 
an example. 

The quadratic residues factored in partial, partial-partial and ppp relations 
are fc-semismooth numbers for k — 1,2,3, respectively. They are counted by 
the function i/>k(x,F,B), where x « y'ñ. By Theorem 4.11, the probabil­
ity is about pjfe((lnn)/(21nB),(lnn)/(21nF)) that any particular f(s + i) is 
semismooth. Zhang [131] analyzed the use of three large primes in [68]. 

13.3.2 Multiple Polynomials 

As the size of x in the sieve increases, the probability of successfully factoring 
f(x) decreases. It was proposed by Davis and Holdridge [34] and Mont­
gomery (see [88]) to use many polynomials for shorter sieve intervals. The 
multiple polynomial quadratic sieve (MPQS) is significantly faster than the 
single polynomial version but requires expensive multi-precision and modular 
inverse operations. One must find the two zeros of f(x) modulo p for each 
new polynomial. The algorithm spends much time calculating the new zeros 
for each polynomial when compared to the sieving time. 

In QS, the relations x2 = q (mod n) with q factored completely are produced 
as follows. Let the factor base consist of the first K small primes p i , . . . ,PK 
for which n is a quadratic residue. To construct many suitable polynomials, 
choose pairs a, b of integers with a = c2 for some integer c,b2 = n (mod a) and 
0 < b < a/2. (Of course, (a - b)2 = n (mod a), but it leads to an equivalent 
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will take integer values at every integer t. Since each polynomial of this form 
has discriminant n, the factor base is the same for each polynomial, namely the 
primes for which n is a quadratic residue. If a value of t is found for which the 
right hand side is factored completely, a relation x2 = q (mod n) is produced, 
with x = (at + b)c~l (mod n) and q = Q(t) = Y[f=\Pj\ as desired. No trial 
division by the primes in the factor base is necessary. A sieve factors millions 
of Q(¿)'s at once. Let t\ and t<i be the two solutions of (at + b)2 =n (mod p¿) 
in 0 < ¿i, £2 < Pi- This congruence has two solutions because n is a quadratic 
residue modulo p¿. Then all solutions of Q(t) = 0 (mod p¿) are ¿i + fcp¿ and 
¿2 + &p¿ for A:  Z. In most implementations, Q(t) is represented by one byte 
Q [ t ] , initialized at 0, and logp¿ is added to this byte to avoid division of Q(t) 
by p¿, a slow operation. The two inner loops are 

t = t _ l 
while t < upper_l imit 

Q[t] = Q[t] + log p_i 
t = t + p 

end 

and a similar loop for the other root of the quadratic congruence. After the 
sieve completes, one harvests the relations x2 = q (mod n) from those t for 
which Q[t] exceeds a threshold T less than logQ(i). Only at this point is 
Q(t) formed and factored, the latter operation being done by trial division 
with the primes in the factor base. 

13.3.3 The S elf-Initializing Quadratic Sieve 

We have seen how to change polynomials easily. It is good to change polynomi­
als because each new one gives us a new set of small numbers to try to factor. 
On the other hand, we have to solve the congruences (at-\-b)2 = n (mod p¿) for 
each prime p¿ in the factor base for each new polynomial, and this requires a lot 
of extended precision arithmetic, which may take as long as the sieving itself. 
The next version of the QS algorithm amortizes the root finding over many 
polynomials. It was invented independently by Peralta [81] and Alford and 
Pomerance [4], who respectively called it the hypercube multiple polynomial 
quadratic sieve and the self-initializing quadratic sieve. The algorithm uses 
polynomials with two coefficients, a and ò, of the form f(x) = (ax + b)2 — n. 
We omit the details of this polynomial construction, but in summary it is: 

• a has s prime factors q\ ... qs, where qi is in the factor base, 1 < i < s. 

• b is the sum of s values. 

polynomial.) Then the quadratic polynomial 
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• b2 = n (mod a). There exist 2s solutions to this equation by Theo­
rem 7.16, but only 2 S _ 1 are of interest because the other half represent 
the negative values of the first 2 S _ 1 values, and would yield duplicate 
relations. 

• The 2 S _ 1 values of 6 and corresponding zeros of f(x) (mod p) are quickly 
computed with a Gray code using single precision addition or subtrac­
tion instead of the multi-precision multiplication and inversion needed 
in the original multiple polynomial QS. 

The sieving and trial division process of the hypercube multiple polynomial 
QS is the same as with the single polynomial QS, except that the hypercube 
multiple polynomial QS does not sieve by the prime factors of a. 

13.4 The Number Field Sieve 
A good general reference for the Number Field Sieve, NFS, is the book [64] 
by Lenstra and Lenstra. The book [33] by Crandall and Pomerance has an 
excellent treatment of this algorithm. 

In the quadratic sieve, we produced many relations x2 = qi (mod n) with qi 
factored completely. When we had enough relations, we matched the prime 
factors of the qi and selected a subset of them for which the product of the qi 
was square. In this way, we found congruences x2 = y2 (mod n) which could 
factor n. 

Let us now drop the requirement that the left side of a relation must be 
square. Let us seek relations r¿ = qi (mod n) in which both r¿ and qi have 
been factored completely. We could use linear algebra as in QS to match 
the prime factors of r¿ and the prime factors of qi and select a subset of the 
relations for which both the product of the r¿'s and the product of the </¿'s 
are square. This is fine idea, but unfortunately, no one has been able to make 
it work. 

NFS tries to make the idea work by letting the numbers on one side of each 
relation be algebraic integers from an algebraic number field. The plan is to 
match the irreducible factors so that each occurs an even number of times and 
the product of the algebraic integers in the selected subset of the relations is 
a square in the algebraic number field. 

The first difficulty of this approach is in writing a congruence modulo n with 
a noninteger on one side. We solve this problem by using a homomorphism 
h from the ring of integers of the algebraic number field to Zn , the integers 
modulo n. Suppose we have many algebraic integers #¿, each factored into 
irreducibles, and also every ft(0¿) factored into the product of primes. Then 
we may match the irreducibles and match the primes to choose a subset of 
the 6i$ whose product is a square 72 in the ring of algebraic integers and so 
that the product of the ft(0¿)'s is a square y2 in the integers. Let x = ^(7), 
a residue class modulo n. Since homomorphisms preserve multiplication, we 



Subexponential Factoring Algorithms 197 

Let the integer y be a square root of the first product. Let 7 G Z[a] be 
a square root of the second product. We have h{^2) = y2 (mod n), since 
h(a — ba) = a — bm (mod n). Let x = ^(7). Then x2 = ?/2 (mod n), which 
will factor n with probability at least 1/2, by Theorem 13.2. 

In addition to being irreducible and having a known zero m modulo n, 
we want the polynomial f(x) to have "small" coefficients compared to n. 
There are several ways one might satisfy all these conditions. In practical 
applications, one should choose the degree d of f(x) to be 4 for n near 10100, 
5 for n near 10150 and 6 for n near 10200. 

The requirements on f(x) are easily met in the Special Number Field Sieve, 
SNFS, which factors numbers of the form n = re — s, where r and \s\ are 
small positive integers. While numbers of this special form are not likely to 
be cryptographic keys, their factorizations arise in many problems in mathe­
matics and have been studied extensively. The numbers in [18], which have 
this form, are often used to test new factoring algorithms. Let k be the least 
positive integer for which kd > e. Let t — srkd~e. Let f(x) be the polynomial 
xd - t. Let m = rk. Then / (m) = rkd - srkd~e = rkd~en = 0 (mod n). See 
[42] for some other interesting ways to choose the polynomial. 

and 

(13.2) 

have 

The congruence x2 = y2 (mod n) may lead to a factorization of n by Theorem 
13.2. In order for this theorem to apply, we assume that n is odd and has at 
least two different prime factors. 

Now we choose the algebraic number field and construct the homomor-
phism. Let 

be an irreducible monic polynomial with integer coefficients and let a be a zero 
of / in C. The algebraic number field will be Q(a) and our ring will be the 
ring Z[a] of all ^7=0 aja^ where the a,j are integers. This ring is contained 
in the ring X of integers of Q(a) . We must also know an integer m for which 
f(m) = 0 (mod n). The homomorphism from Z[a] to Zn will be defined by 
h(a) = m (mod n). This implies that ^ (^7=0 aja^) — S7=0 ajm^ (mod n). 

The numbers 6 will all have the simple form a — ba. We will seek a set S 
of pairs (a, 6) of integers such that 
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In the general ease, called the General Number Field Sieve, GNFS, one 
standard approach to finding a good polynomial (of degree 5, say) to factor 
n is to let m = [n1/5] and write n = Yll=o ^ m * m ^ a s e m* ^he digits d{ will 
be in the interval 0 < d{ < ra, which is small compared to n. Then let the 
polynomial be f(x) = Yli=o^xt-

With the choice of f(x) for either the SNFS or the GNFS, we assume / 
is irreducible. If / is not irreducible, then we can factor n immediately. If 
f(x) — g(x)h(x) in Z[x], then the integer factorization n — g(m)h(m) gives a 
nontrivial factorization of n. See Brillhart et al. [16] for details. 

We will have two sieves, one for a — bm and one for a — ba. The sieve on 
a - 6m is simple. Choose a bound M for a and b. Note that if a and b are 
replaced by their negatives, so are a — bm and a — ba, and no new relation is 
produced. We eliminate duplicate relations by requiring b > 0. Also, if both 
a and b are multiplied by the same integer g > 1, we get a relation which is 
just a multiple of the first one, and which does not provide additional help in 
forming congruent squares. We avoid these useless relations by requiring that 
gcd(o, b) = 1. Then for each fixed 0 < b < M we try to factor the numbers 
a — bm for — M < a < M by a sieve much like that of Eratosthenes. During 
the scan after the sieve, we ignore otherwise good a's with gcd(a, b) > 1. 

The goal of the sieve on the numbers a — ba is to allow us to choose a set 
S of pairs (a, b) so that the product in Equation (13.2) is a square. Rather 
than try to factor the algebraic integers a — ba, let us work with their norms. 
The norm function is multiplicative and the norm of an algebraic integer is an 
integer. The norm of a square j 2 is a square because iV(72) = (iV(7))2. Thus, 
if the product in Equation (13.2) is a square, then its norm is a square, and 
its norm is the product of all N(a — ba) with (a, b) G S. Since the norms are 
rational integers, rather than algebraic integers, it is easy to match their prime 
factors to form squares. Furthermore, the norm of a — ba is a polynomial in 
a and b and therefore something we know how to factor with a sieve. 

Let the complex numbers a i , . . . , ^ ^ be all of the zeros of the minimal 
polynomial f{x) of a. These numbers are the conjugates of a. The conjugates 
of a — ba are a — ba\,..., a — bad, and so 

because f(x) = (x — ai) • • • (x — a^). If we define 

then N(a-ba) = F(a,b). 
We can perform the second sieve this way: For each 0 < b < M, sieve the 

polynomial F(a, b) for —M < a < M and find smooth values of N(a — ba). We 
want a — bm to be simultaneously smooth, too. For each fixed ò we sieve both 
a — bm and F(a, b) and save the pairs (a, b) for which both of these integers 
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are smooth and also gcd(a, b) = 1. The two sieves might have different factor 
bases corresponding to different smoothness bounds. The exponent vectors 
will have one entry for each prime in each factor base. When we have found 
many relations, linear algebra will construct sets of pairs (a, b) for which the 
product of a — bm is a square and the product of the norms of a — ba is a 
square. 

The product of the norms of a — ba is the norm of the product of the a — ba. 
Will this product be the square of a number in Z[a] as we require? Not in 
general. One problem is that the norm function does not distinguish among 
associates. For example, 3 + 2¿ and 3 — 2i are associates in the Gaussian 
integers Z[i]. They have the same norm, 13, and 

7V((3 - 2i)(3 + 2i)) = N(3 - 2i)N(3 + 2Ï) = 132 

is a square although (3 — 2i)(3 + 2i) is not the square of a Gaussian integer. 
This problem is easy to solve using data already computed to perform the 
sieve. For each prime p in the factor base, let R(p) denote the set of all 
0 < r < p with f(r) = 0 (mod p). In the case of the Gaussian integers, the 
polynomial is f(x) = #2 + l, so R(2) = {1}, R(7) is empty and i?(13) = {5,8}. 
If gcd(a, b) = 1, then p divides F (a, b) if and only if a = br (mod p) for some 
r in R(p). For the Gaussian integers, F (a, b) = a2 + b2. We have 

N(3 + 2%) = F(3, - 2 ) = F ( - 3 , 2 ) = 13 = F(3,2) = F ( - 3 , - 2 ) - AT(3 - 2i), 

and 3 = 2 -8 (mod 13) while - 3 = 2-5 (mod 13). For another example, 

JV(7 - 4t) = F(7,4) = 65 = F(8,1) = N(8 - ¿), 

and 7 = 4 - 5 (mod 13), showing that 3 + 2i divides 7 — 4i, while 8 = 
1 • 8 (mod 13), showing that 3 — 2% divides 8 — i. We can remember this 
information in the exponent vectors. Use one entry for each pair p, r, where p 
is a prime in the factor base and r is in R(p). Suppose p divides F(a,b) and 
gcd(a, b) = 1. If a ^ br (mod p), then the exponent vector will have entry 0 
for the pair p, r. But if a = br (mod p), then the entry for the pair p, r in the 
exponent vector will be the exponent on p in the prime factorization of F(a, 6). 
Note that the sets R(p) should already be computed during sieve setup. Fix 
b and sieve F(a, b) as a polynomial in the single variable a. The a for which 
a given prime p divides F (a, b) are the a in the residue class a = br (mod p) 
for each r in R(p). 

So far, we have solved the problem of the norm function not distinguishing 
among associates. The units cause further problems, as do the possible lack of 
unique factorization in Z[a] and the fact that Z[a] might be a proper subset of 
the ring X of integers in Q(a) . All of these conditions may cause the product 
of the a — ba in Formula 13.2 to fail to be the square of a number in Z[a] even 
though the product of the norms of a — ba is a square integer. Here is one trick 
that solves many of these problems. Remember that if a is a square, then the 
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Legendre symbol (a/q) — +1 for any prime q not dividing a. The converse 
statement is false, of course, but if a is an integer such that (a/q) = +1 for 
many primes q, then a is likely to be square. Recall that when we multiply 
positive and negative integers to form a square, we include the sign as one 
more column, for the "prime" —1. To solve the problem with the square norm 
not guaranteeing a square, we add a few more entries to the exponent vectors. 
Choose several primes q not in the factor base. For each of these ç's, find a 
solution s to f(s) = 0 (mod q) with f'(s) ^ 0 (mod q). For each pair (a, b) 
and each prime q, evaluate the Legendre symbol ((a + bs)/q), put its value 
(0 for + 1 , 1 for —1) in the exponent vector and extend the linear algebra to 
ensure that 

for every q. The resulting sets S will very likely produce squares in Formula 
13.2. 

The final step of the NFS is to find the square roots and then compute 
gcd(x — y,n). The square root x in Z may be found just as for QS. But it is 
much harder to compute the square root 7 of the product in Formula 13.2. See 
Buhler et al. [19], Couveignes [32] and Montgomery [74] for ways of finding 
this square root. 

Now let us consider why NFS is a fast factoring algorithm. The answer to 
this question involves the proper choice of the parameters. In QS, we factor 
many numbers near y/n until we can find a subset of them whose product is 
square. This size estimate leads to the complexity L(n) for QS. We will show 
that in NFS the numbers we try to factor are much smaller than yfñ, so that 
it is easier to find enough smooth ones to produce a subset of them whose 
product is square. 

In the polynomial constructions for SNFS and GNFS above, the number 
m was chosen to be near n1^. Let us assume m has this approximate size. 
Suppose the absolute values of the coefficients c¿ of f(x) and F(x,y) are also 
bounded by n1/0*. Suppose we sieve the rectangle 0 < ò < M, —M<a<M. 
Then \a - bm\ < 2n1¡dM and |F(o,6)| < (d+ \)n1'dMd. Requiring that both 
a — bm and F(a, b) be smooth for the same pair (a, b) is essentially the same 
as requiring that their product be smooth for (a, 6). Hence we seek smooth 
numbers bounded above by 2(d + l)n2//dMd+1. Comparing with QS, we see 
that if d and M are fixed, then NFS should be faster than QS for large n when 

d > 4. Indeed, if d is fixed, the complexity of NFS is essentially L(n)v 4 / d . 
A more careful analysis (see Section 6.2.3 of [33]) shows that if one lets d 
increase slowly, so that 

then the complexity of the number field sieve is 
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for some constant c > 0. The constant c is a bit smaller for SNFS than for 
GNFS because the coefficients are smaller. 

There are several variations on the basic NFS algorithm. One can use large 
primes, as in QS, on either side of the relations. The multiple polynomials, 
which work so well in QS, do not work in a practical way for NFS because 
each new polynomial defines a new number field and has different root sets 
R(p) for each prime p. See Section 6.2.7 of [33] for other variations. 

13.5 Exercises 
1. Factor Kraitchik's number 193541963777. 

2. Devise an algorithm to solve this problem in polynomial time. The input 
is a composite integer n, not a power, and a proper factor oof n. The 
output consists of two relatively prime integers c, d satisfying n — cd 
and 1 < c < n. 

3. Given a positive integer n, not a power, and an integer d, let m — 
\nl/d\. Write n = Y^i=o ^im% w ^ t n 0 < di < d. Define a polynomial 
f(x) — H2i=o d>ix% • Prove that if d is fixed and n is large enough, then 
f(x) is monic. 
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Chapter 14 

Computing Discrete 
Logarithms 

Many cryptosystems could be broken if we could compute discrete logarithms 
quickly, that is, if we could solve the equation ax — b in a large finite field. 
For convenience of computation, usually the finite field is either the integers 
modulo a prime p or the field with 2n elements. 

The discrete logarithm algorithms considered here and in the first two sec­
tions apply in any group. In particular, they are about the best one can do in 
elliptic curve groups. The discrete logarithm problem for elliptic curves 
is to find an integer x for which Q = xP, where P and Q are two given points 
on an elliptic curve E modulo p. It is also given that such an integer x exists, 
perhaps because the elliptic curve group is cyclic and P generates it. 

The algorithms in the final two sections depend on the notion of smoothness 
and solve the discrete logarithm problem only in the group i?p, the integers 
modulo a prime p, where one can define smooth numbers. The index calculus 
and other fast algorithms for discrete logarithms are much faster than the 
methods of Shanks and Pollard. Hence, the group Rp must be much larger 
than an elliptic curve group to achieve the same security. A rough rule of 
thumb is that Rp with a 1024-bit prime p is about as safe as an elliptic curve 
modulo a 128-bit prime. 

Consider first the exponential congruence ax = b mod p. By analogy to 
ordinary logarithms, we may write x = Loga6 when p is understood from 
the context. These discrete logarithms enjoy many properties of ordinary 
logarithms, such as Log06c = Logaò + Logac, except that the arithmetic with 
logarithms must be done modulo p — 1 because ap _ 1 = 1 mod p. This is 
explained in Theorem 6.19. Neglecting powers of logp, the congruence may 
be solved in 0(p) time and 0(1) space by raising a to successive powers modulo 
p and comparing each with b. It may also be solved in 0(1) time and 0(p) 
space by looking up x in a precomputed table of pairs (x,ax modp), sorted 
by the second coordinate. The next section explains an intermediate method 
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which takes essentially 0(v/p) time and 0(v/p) space. 

14.1 Shanks ' Baby-Step- Giant-Step Method 
This algorithm was described for general groups in Section 9.3. 

Shanks' baby-step-giant-step algorithm solves the congruence ax = b mod p 
in 0(y/p\ogp) time and 0{-s/p) space as follows. Let m = \y/p — 1 ~|. Compute 
and sort the m ordered pairs (j, a m j modp), for j from 0 to m — 1, by the 
second coordinate. Compute and sort the m ordered pairs (¿, ba~l mod p), for 
i from 0 to m — 1, by the second coordinate. Find a pair (j,y) in the first 
list and a pair (i,y) in the second list. This search will succeed because every 
integer between 0 and p — 1 can be written as a two-digit number ji in base 
m. Finally, x — mj -f i mod p—1. 

14.2 Pollard's Methods 
Pollard [86] invented two methods for finding discrete logarithms analogous 
to his rho method for factoring integers. Like Shanks' baby-step-giant-step 
algorithm, these algorithms work in any group and have complexity 0{y/p), 
where p is the group order. However, their space requirements are tiny. 

14-2.1 The Rho Method for Discrete Logarithms 

We will describe the rho method for solving the congruence ax = b mod p, 
where p is prime, although it works in any group. The method is quite similar 
to his rho method for factoring, which is described in Section 10.2 and which 
the reader should review before continuing. 

We are given a prime p > 3, a primitive root g modulo p and an element h 
of Rp, the group of nonzero integers modulo p. We seek the x modulo p — 1 
for which gx = h (mod p). The answer x may be written x — Loggh. We use 
Theorem 6.19 often in the following. 

Define three sequences {x{}, {a¿}, {bi} by x0 = 1, a0 = &o = 0 and 
if 0 < xi < p /3 , then £¿+1 = hxi mod p, 

a¿+i = 1 + a¿ mod p—1 and 6¿+i = 6¿ mod p — 1 , 
if p /3 < Xi < 2p/3, then x¿+i = x\ modp, 

a¿+i = 2di mod p — 1 and 6¿+i = 2o¿ mod p — 1 , and 
if 2p/3 < Xi < p, then #¿+1 = #x¿ mod p, 

a¿+i = a¿ mod p—1 and 6¿+i = 1 + 6¿ mod p — 1 . 
A simple induction argument shows that x¿ = fo0i#òi (mod p). 
The mapping a?¿ -» £¿+1 is a random mapping from .ñp to itself. By The­

orem 2.4, after about y/p iterations of the mapping there will be a repeated 
value Xi = Xj. As in the Pollard rho factoring method, we can use the Floyd 
cycle-finding algorithm to find two repeated values by computing two iterates 
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of the mapping in the same loop, with one instance running twice as fast as 
the other. This gives us a subscript e with x2e — %e-

Now we have a congruence ha2egÒ2e = hüegbe (mod p). As we can easily 
find inverses modulo p, this leads at once to a congruence hm = gn (mod p), 
where m = ae — a2e (mod p— 1) and n = 62e — &e (mod p - 1). Using Theorem 
6.19, we can rewrite this as 

mx = mLoggh = n (modp-1). (14.1) 

Let d = gcd(m,p— 1). We know that Congruence (14.1) must have a solution 
because g is a primitive root modulo p and p does not divide h. By Theorem 
5.6, d|n, and by Theorem 5.7, Congruence (14.1) has d solutions, one of which 
is the answer x we seek. One can show that d is usually small, say, d = 1 or 
2, so we can try all d solutions to Congruence (14.1) and find x. 

Example 14.1 

Let p = 999959, g = 7 and h = 3. Find x = Loggh. 
At e = 1174 we have xe = x2e = 11400, m = 310686 and n = 764000. 

Congruence (14.1) becomes 310686x = 764000 (mod 999958). The extended 
Euclidean algorithm gives 

2 = gcd(310686, 999958) = 148845 • 310686 - 46246 • 999958, 

and we find that 32 = 7356324 (mod p) and 3 = ±7178162. Since 3 is a quadratic 
residue modulo p and —1 is not, the plus sign is correct and x — Loggh = 
178162. 

In the setting of an elliptic curve group E, we are given two points P and 
Q, are told that Q — xP for some integer x, and must find x. The group is 
partitioned into three pieces of roughly equal size. The random mapping of 
E -> E takes a point X into X + P , I + 1 or J + Q, according to which 
piece of the group contains X. The initial value of the variable point X is the 
identity oo. The a¿ and 6¿ are defined just as above. A repeated point yields 
an equation mQ = nP, which means that mx = n (mod iV), where TV is the 
order of P in E. Since we know that Q = xP, this congruence must have a 
solution. 

14»2.2 The Lambda Method for Discrete Logarithms 

We describe Pollard's lambda method in the general setting of groups. This 
method is also called the kangaroo method, since it employs two kangaroos 
to hop around in the group. 

Let G be a finite cyclic group with generator g and let h be an element of G. 
We seek the least positive integer x so that h = gx. Suppose we know that x 
lies in the interval a < x < b. Pollard [86] defined two kangaroos, a tame one 
T starting at t0 = gb (the upper end point of the interval) and a wild one W 
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starting at w0 = h (an unknown point in the interval). Define do(T) = &, the 
initial distance of T from the origin. Let do(W) = 0, the initial distance of >V 
from h. Let S = {gSl, . . . ,pSfe} be a set of jumps. Let G be partitioned into 
k pieces and for each a G G, let / (#) , with 1 < f(g) < k, be the number of 
the piece to which g belongs. The exponents si should be positive and small 
compared b — a. Pollard suggested that s¿ = 2l might be good choices. The 
reader should experiment with various choices. Think of the s i as the lengths 
of the hops of the kangaroos. 

Now let the two kangaroos hop around in the group G. The tame one T hops 
from ti to £¿+i = Ug8*^ for i > 0. Keep track of T's distance from the origin 
by computing d¿+i(T) = d¿(T) + «/(¿¿J for i > 0. It follows that U — gdi^ 
for i > 0. After a while T stops and sets a trap at its final location, say tm. 
Then the wild kangaroo hops along the path from wi to Wi+i — WigSf{wi) for 
i > 0. Keep track of W s distance from the unknown starting position (the 
discrete logarithm of h) by computing d¿+i(W) = d¿(W) + Sf(Wi) for ¿ > 0. 
Then w¿ = ^ ' ( w ) fori > 0. 

After each hop, we check to see whether W has fallen into the trap by testing 
whether Wi — tm. With a good choice of the parameters s¿, it is highly likely 
that eventually wn = tm for some n. Then we have x — dm(T) — dn(W). 

If we find that dn(W) > dm(T), then >V has passed the trap. In this case, 
we start a new wild kangaroo at w0 — hgz for some small integer z > 0 and 
hope it falls into the trap. 

If the two kangaroos ever land on the same spot (wi — tj), then their paths 
will coincide from that point on and W will be trapped. If you draw their 
paths going upwards, the paths will form the Greek letter lambda: A. This is 
the reason for the name. 

The most important property of the jumps sizes s i is their average. Van 
Oorschot and Wiener [116] have shown that if the mean value of the s¿ is 
about \\/b — a and if T makes about 0.7y/b — a hops before setting the trap, 
the running time will be minimal. With these choices, W will hop about 
2.7y/b — a times before getting trapped, which happens three-fourths of the 
time, or passing the trap. The space requirement is about O(log(6 — a)). 

1J^.3 Discrete Logarithms via Index Calculus 
There are faster ways to solve ax = b (mod p) using methods similar to the 
two integer factoring algorithms QS and NFS. Here is the analogue for QS. 
It is called the index calculus method. Choose a factor base of primes 
Pi,...,Pfc, usually all primes < B. Perform the following precomputation 
which depends on a and p but not on b. For many random values of x, try 
to factor ax mod p using the primes in the factor base. Use trial division or 
a more powerful method such as Pollard's rho method or the elliptic curve 
method. The complexity will be subexponential regardless of the factoring 
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See Section 6.4 of [33] for more details. 

14-4 Other Fast Methods for the Group Rm 

There is an algorithm similar to the index calculus method for solving con­
gruences of the form ax = b (mod p) which is analogous to NFS factoring 

algorithm used. Save at least k + 20 of the factored residues: 

or equivalently 

Use linear algebra to solve for the Logap¿. This is not as simple as it sounds 
because p — 1 is composite for prime p > 3. Linear algebra is much easier 
over a field. Solve the system of congruences modulo each prime q dividing 
p— 1. Use Hensel's lemma to lift the solutions to solutions modulo the highest 
power qe of q dividing p — 1. Finally, combine the prime power solutions with 
the Chinese remainder theorem. 

When b is given, perform the following main computation to find Loga6. 
Try many random values for s until one is found for which bas mod p can be 
factored using only the primes in the factor base. Write it as 

or 

Substitute the values of Logap¿ found in the precomputation to get Loga6. 
Using arguments like those for the running time of the elliptic curve and 
quadratic sieve factoring algorithms, one can prove that if a fast factoring 
algorithm like the elliptic curve method is used, the precomputation takes 
time 

while the main computation takes time 
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for some constant c > 0. 
The Pohlig-Hellman cipher, which we will describe in Chapter 16, could be 

broken if one could solve the discrete logarithm problem in Rp quickly. In the 
paper [83] in which this cipher was published, Pohlig and Hellman give an 
algorithm for computing discrete logarithms modulo a prime p when p — 1 is 
jB-smooth and B is small enough so that one can perform 0(B) operations. 
Suppose p — 1 = Yli (¡T is the prime factorization of p — 1. For each i we will 
find y i so that x = y i (mod q^). Then we will find the common solution to 
these congruences by the Chinese remainder theorem. 

Let qe be one of the prime power factors. Let us find y so that x = 
y (mod qe). As 0 < y < qe, we may write y as an e-digit number in base q: 

Solve 2X = 15 (mod 19). 

algorithm and runs faster than the index calculus method for large p. See 
Gordon [49] for a method with time complexity 

We will find t/o, 2/i5 • - • 5 2/e—i in that order to compute y. We have 

for some integer Y. Raise both sides of b = ax (mod p) to the power (p— l)/q 
and get 

We used Fermât's little theorem to get the last congruence. To obtain 2/0, 
form the powers (a^p~l^q)n mod p for n = 0 , 1 , . . . , q — 1 until one of them is 
congruent to fr^-1)/?. Then y0 is the exponent n that worked. 

If q2 divides p - 1, let h = ba~y° = a<?(2/i+y2<?+•••) ( m o d p). Raise both 
sides to the power (p — l)/q2 and get of ~ ''q = avAv-±)Iq. ( m o d p)? where 
we have used Fermat's little theorem again. To obtain i/i, form the powers 
(a(p-i)/g)" modp for n — 0 , 1 , . . . ,q — 1 until one of them is congruent to 

af~ *'q . Then y\ is the exponent n that worked. 
If e > 2, repeat this process until all of yo, y\,..., ye-i have been computed. 

Then y = y0 + yxq + y2q
2 + • • • ye-iq

e~l. 

Example 14.2 
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This example is trivial, but the method we use to solve the congruence would 
work if 19 were replaced by a large prime p such that the largest prime factor 
q of p — 1 was small enough so that we could do q operations. 

We have 19 - 1 = 2 • 3 2 . It is easy to find x mod 2. We have (19 - l ) /2 = 9 
and 

( _ ! ) - = 18- = (2*)9 = 159 = 18 = (-1) (mod 19), 

so x = i/o = 1 (mod 2). 
Now we find x mod 3. We have (19 — l ) / 3 = 6 and 

T = (26)* = 156 = 11 (mod 19). 

We try the powers of 7 (mod 19): 7° = 1, 71 = 7, 72 = 11 (mod 19), and so 
x = yo = 2 (mod 3). To compute yi, we let òi = 15 • 2~2 = 181 (mod 19). 
Raising both sides to the power (19 — l ) / 3 2 = 2, we see 

1 = 182 = (26)yi = 7yi (mod 19), 

so y i = 0 and x = y = 2 + 0 -3 = 2 (mod 9). Now apply the Chinese remainder 
theorem to the pair of congruences x = 1 (mod 2) and x = 2 (mod 9) to obtain 
x = 11 (mod 18). 

There is one other case in which it is easy to solve a discrete logarithm 
problem. If m is Z?-smooth, where B is not too large, then one can solve 
ax =b (mod m ) . Roughly speaking, solve the congruence modulo each prime 
divisor of m and combine the solutions with the Chinese remainder theorem. 
For example, suppose m — pqis the product of two primes small enough so 
tha t we can solve the congruences aXl = b (mod p) and aX2 = b (mod q). 
Then we know tha t x = x\ (mod p — 1) and x = #2 (mod q—1). The Chinese 
remainder theorem does not apply directly because p — 1 and q—1 are not 
relatively prime. However, if there is a solution #, then the two congruences 
must be compatible, and one can solve them with the methods of Exercise 17 
of Section 5.4. 

Example 14.3 

Solve 2X = 35 (mod 1003). 

Note that 1003 = 17 • 59. We solve 2Xl = 35 = 1 (mod 17) and find xi = 
8 (mod 16). Then we solve 2X2 = 35 (mod 59) and find x2 = 24 (mod 58). The 
gcd(16, 58) = 2 divides (24 — 8) = 16, so the two congruences are compatible 
and we find x = 24 (mod 464) since lcm(16, 58) = 464. 

There is a method of Coppersmith [30] for solving equations of the form 
ax = b in the field with 2 n elements tha t is practical for n up to about 1000. 

Empirically, it is about as difficult to solve ax = b in the field with pn 

elements as it is to factor a general number about as large as pn. 
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14*5 Exercises 
1. Use Shanks' baby-step-giant-step method to solve the discrete logarithm 

problem 2X = 82 (mod 107). 

2. Use Pollard's rho method to solve the discrete logarithm problem 5* = 
20 (mod 103). 

3. Use Pollard's lambda method to solve the discrete logarithm problem 
2X = 39 (mod 101). 

4. Solve the discrete logarithm problem 10^ = 83 (mod 97) by the index 
calculus method, using the following information. The factor base con­
sists of the three primes 2, 3, 5. The precomputation, which depends 
on 10 and 97, but not on 83, generated many random exponents y and 
tried to factor (10y mod 97) using just the primes in the factor base. It 
produced these congruences: 

101 = 10 = 2 • 5 (mod 97) 

102 = 3 (mod 97) 

1013 = 15 = 3-5 (mod 97). 

The main computation generated many random z and tried to factor 
(83 • 10z mod 97) using just the primes in the factor base. After a while, 
it found the congruence 

83-109 3 = 6 = 2 -3 (mod 97). 

Restate these congruences in terms of discrete logarithms modulo 97. 
Solve these congruences (modulo 96 = 0(97)) for the discrete logarithm 
x of 83. Do not perform any exponentiation modulo 97, except to check 
your answer after you find it. 

5. Solve the discrete logarithm problem 3X = 282 (mod 391). 

6. Devise a probabilistic algorithm to solve the following discrete logarithm 
problem in expected time 0(y/n/m) group operations. The input con­
sists of a cyclic group G of order n generated by #, integers m and a 
with 2 < m < n and 0 < a < ra, and an element h of G. It is given that 
there exists an integer x = a (mod ra) such that h = gx and 0 < x < n, 
but x is unknown. The output is x. 



Chapter 15 

Random Number 
Generation 

This chapter is the last one in Part I because it nearly fits into Part II. Random 
numbers have many uses. They are used in simulation. In cryptography they 
are used in stream ciphers and for choosing a secret key. 

Some desirable properties a sequence of random numbers might have are: 

1. The sequence looks random—it passes statistical tests of randomness. 

2. The sequence is unpredictable: knowing the algorithm and previous bits, 
one cannot guess the next bit(s), but the sequence can be reproduced. 
Such sequences of random numbers might be used as key streams for 
stream ciphers. 

3. The sequence cannot be reliably reproduced: If you run the random 
number generator (RNG) twice with the same input (as closely as pos­
sible), you get two different random sequences. The sequence cannot be 
compressed. Sequences of this sort might be used to select a secret key, 
like a large prime. 

Most computer libraries provide a simple random number generator called 
a linear congruential generator. It works this way. Fix a multiplier 
a, an increment 6, a modulus m and a seed XQ. Define X{ for i > 1 by 
Xi = (axi-i + 6) mod m. The random numbers X{ are periodic and the period 
is always < m because each X{ depends only on #¿_i, and all X{ are in the 
interval 0 < Xi < m. One example with maximum period uses a — 9301, ò — 
49297 and m = 233280. Linear congruential generators pass some statistical 
tests, are fine for simulation and are efficient. However, they are worthless for 
cryptography because their linearity makes them easy to break. 

Other generators for reproducible random numbers are described in the 
next two sections. They have been used for cryptography. 

211 
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15.1 Linear Feedback Shift Registers 
A linear feedback shift register LFSR is a device that generates a pseu­
dorandom bit stream. It consists of an n-bit shift register and an exclusive-or 
gate. Let the vector R = ( ro , r i , . . . , r n _ i ) hold the bits in the the shift reg­
ister, with 7*0 the bit at the right end. At each clock cycle, the bits in the 
register shift one position to the right. The bit r0 is shifted out the right end 
and used. The output bit of the exclusive-or gate is shifted into the bit r n _i 
at the left end of the register. 

The inputs to the exclusive-or gate are several bits selected (tapped) from 
fixed bit positions in the register. Let the vector T = (¿i,¿2, • • • , ¿n) specify 
the tapped bit positions: U = 1 means "bit rn_¿ was selected" and t{ — 0 
means "bit rn_¿ was not selected." Let Mt denote the transpose of the matrix 
M. The output of the exclusive-or gate may be regarded as the scalar product 

j r2 
0 1 
1 0 
2 1 
3 0 
4 0 
5 1 
6 1 
7 1 

n 
1 
1 
0 
1 
0 
0 
1 
1 

ro 

1 
1 
1 
0 
1 
0 
0 
1 

The period is seven. 

The bit stream {rj} must be periodic because eventually the n bits in the 
shift register will be duplicated, and the bits rj will repeat from that point. 
There are 2n possible contents of the shift register; so, the period certainly 

In this section, the sum ^2 means exclusive-or 0 , the sum modulo 2. 
Define r¿ for j > n by Vj = (J27=i ̂ irj-i) m ° d 2. Then {rj} for j > 0 is 

the sequence of pseudorandom bits generated by the LFSR. This bit stream 
is sometimes used as the key of a stream cipher. If the plaintext bit stream 
is {rrij} for j > 0, then the ciphertext bit stream is {c¿}, defined for j > 0 by 
Cj •— TfTj (¿7 Vj. 

Example 15.1 

Show the operation of the LFSR with n = 3,T = (1,0,1) and initial R = (1,1,1) 
and find the period of its output stream. 

We have ro = 1, n = 1, r<i = 1, r$ = 1 • 1 © 0 • 1 0 1 • 1 = 0, etc. The column 
ro of this table shows the output stream {rj}. 
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cannot exceed that number. However, if the register contains all zero bits, 
then every r¿ will be zero since the exclusive-or of zeros is zero. Thus, the 
period cannot be more than 2n — 1. If the period has this maximal value, then 
every bit pattern, other than all zeros, will appear as the content of the shift 
register sometime during each period. One can prove that for every n > 1 
there is at least one tap vector T which achieves the maximal period 2n — 1. 

Let r(x) = Xir=o rix% m ^ M - The degree of r(x) is, hopefully, defined 
and less than n. A useful tool for studying the period of an LFSR is the 
generating function G{x) — Y^T=o rj&- Since the coefficients r¿ are 0 or 1, 
the sum converges at least for \x\ < 1. We prove first that G(x) is the ratio 
of two polynomials. We have 

In the last sum, replace Vj by Vj — J^ILi U^j-i and interchange the order of 
summation. 

Solving for G(x) gives G(x) = s(x)/t(x), where t{x) — 1 — Y^i=i ̂ ^x% an(^ 

The polynomial t(x) must have degree n in FÏ[X] because if tn = 0, then 
the last bit position r$ would serve merely to delay the output of a bit and 
would not participate in generating them. The degree of s(x) is less than n 
since xlxi~% — #J and 1 < j < n — 1. The polynomial t(x), which may also be 
written t(x) = 1 + S lL i ^ix% since - 1 = +1 in F 2 , is called the characteristic 
polynomial of the tap sequence. We will assume that t(x) is irreducible. One 
can show via the partial fraction decomposition of s(x)/t(x) that if t(x) were 
not irreducible, then the LFSR could not have maximal period. See Theorem 
2.3 of Golumb [48] for a proof. Since t(x) is irreducible and the degree of s(x) 
is less than the degree of t(x) we must have gcd(s(x),t(x)) = 1 and so no 
common factors can be canceled in the ratio s(x)/t(x). 
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Now let p be the minimum period of the LFSR. Then p is the smallest 
positive integer such that rp+j = Vj for every j > 0. Then 

Therefore, G(x)(l - xp) = Y!j=o rjx3- Recall that G(x) = s(x)/t(x). Hence, 
(s(x)/t(x))(l — xp) = Zlj=o rjxJ - The left side must be a polynomial because 
the right side is one. Since gcd(s(x),t(x)) — 1, t(x) must divide l-xp = xp + l 
in F2[x]. 

Conversely, it is not hard to show that if t(x) divides xq + 1 for some positive 
integer q, then q is a multiple of the period p of the LFSR. See Theorem 2.4 of 
Golumb [48] for a proof. Therefore, p is the smallest positive integer for which 
t(x) divides the polynomial xp + 1. The condition that t(x) be irreducible is 
necessary but not sufficient for the LFSR to have maximal period. A sufficient 
condition is that t(x) be primitive. 

DEFINITION 15.1 A polynomial t(x) of degree n in F2[x] is called 
primitive if it is irreducible, it divides x2 _ 1 + 1, but it does not divide 
xd + 1 for any divisor dof2n — l. 

One can prove that, for every n > 1, there is a primitive tap polynomial 
of degree n. Primitive trinomials xn + xa + 1 are especially popular for use 
as the tap polynomial of an LFSR because exclusive-or gates with only two 
inputs are much cheaper than those with more than two inputs. 

Unfortunately, LFSR's do not produce cryptographically strong random 
sequences. If n is a few thousand and t(x) is primitive, the period of the bit 
stream is 2n — 1, which is the maximum possible. This huge period gives the 
cipher the appearance of security, but the linearity makes it easy to break. 

Recall that R = ( ro , r i , . . . , r n _ i ) is the contents of the LFSR. Let R' = 
(r¿, r[,..., r^_x) be the contents of the register after the shift. Then r\ = ri+i 
for 0 < i < n - 1 and r ^ = TRK In other words, Rft = HRl mod 2, where 
H is the n x n matrix with T as its first row, l's just below the main diagonal 
and 0's elsewhere. 

Suppose 2n consecutive key bits, r 0 , . . . , r 2 n - i , are known. Let X and Y 
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be the n x n matrices 

From i?'¿ = HR* mod 2 it follows that Y = fl"X mod 2, so if may be com­
puted from if = y X _ 1 mod 2. The inverse matrix X - 1 mod 2 is easy to 
compute by Gaussian elimination for n up to at least 104. The tap vector 
T is the first row of H and the initial contents R of the shift register are 
( r n _ i , . . . , r 0 ) . 

See Golumb [48] and Ding, Xiao and Shan [41] for more information about 
linear feedback shift registers and variations of them. Some variations use 
several LFSR's connected by some nonlinear muddle. These are not good 
sources of cryptographically secure random numbers either. All can be broken 
with linear algebra. 

We can compute 2l mod ((p — l)(q — 1)) with only O(logi) multiplications 
modulo (p — l)(q— 1). Hence, we can compute Xi with only 0((log¿)(logn)2) 
bit operations, rather than the 0(¿(logn)2) bit operations it would take using 
the definition. If we used the BBS generator to form a key stream to encipher 
a random-access file, we could use this property to decipher the file from any 
starting point without forming the key stream from its beginning. 

The number —1 is a quadratic nonresidue modulo every Blum prime by 
Part 5 of Theorem 7.5. Hence, r is a quadratic residue modulo p if and only 
if — r is a quadratic nonresidue modulo p. The same statement holds with 
p replaced by q. By Theorem 7.18, every quadratic residue r modulo n has 
exactly four square roots x modulo n. The square roots of r modulo p are 
±r(p-i)/4 (moci p) by Theorem 7.13, and exactly one of these two numbers 
is a quadratic residue. The same is true when p is replaced by q. The four 

15.2 A Quadratic Residue Random Number 
Generator 

Blum, Blum and Shub [11] invented a random bit generator called the BBS 
generator. It chooses two Blum primes, that is, primes p = q = 3 (mod 4). 
Let n = pq and let s be relatively prime to n. Define xo — s2 mod n and 
Xi = x\_x mod n for i > 0. The ¿-th pseudorandom bit is the low-order bit 6¿ 
of#¿. 

A simple induction shows that X{ = x^ mod n. It follows from Theorem 
6.15 that 
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square roots x of r modulo n are constructed by using the Chinese remainder 
theorem to solve x = one square root modulo p and x = one square root 
modulo q. Now x is a quadratic residue modulo n = pq if and only if it is 
a quadratic residue modulo p and a quadratic residue modulo q. Therefore, 
exactly one of the square roots of a quadratic residue r modulo n is itself a 
quadratic residue. Since every X{ in the BBS generator is clearly a quadratic 
residue modulo n, we have a way to compute x¿_i from X{. It is the unique 
square root of X{ that is a quadratic residue. This shows that if we know the 
factorization of n, then we can compute the sequence x¿ backwards. 

Conversely, suppose we can compute x¿_i somehow for any given x\. Then 
we can factor n. Just pick a t for which the Jacobi symbol (t/n) — — 1. This 
t must be a quadratic nonresidue modulo n. Let Xi — t2 mod n. Compute 
Xi-i somehow. Then x2_x = xi = t2 (mod n) and gcd(¿ + #¿_i,ra) = p or q 
by Theorem 13.1, so n has been factored. 

Suppose n is made public, but p and q are kept secret. Then anyone can 
use the BBS generator with that modulus n to compute the sequence {xi} 
forwards. By what was just proved, one can compute the sequence {#¿} 
backwards if and only if they know the factorization of n. 

There are (p — l ) /2 quadratic residues modulo p and (q — l ) /2 quadratic 
residues modulo q. Therefore, by Theorem 5.9, there are (p - l)(q — l ) /4 
quadratic residues modulo n. The mapping x¿ —> Xi+i is a permutation of the 
set of quadratic residues modulo n. Blum, Blum and Shub [11] show how to 
ensure that the period of the sequence {xi} is long. 

They also prove this result. If the factorization of n is unknown, then the key 
stream {6¿} is unpredictable in a strong sense. Given k consecutive key bits 
6 j , 6 J + i , . . . , &¿+fc_i, one cannot guess the bits bj+k or bj-i with probability 
more than 0.5. Although the algorithm is slow, one can accelerate it somewhat 
by using the low-order log2 n bits of xi rather than just the low-order bit. 

15.3 Hash Functions 
A weak hash function is a function h of a message M of arbitrary length 
that produces a message digest or hash value h(M), which is a bit string 
of fixed length, say, m bits, such that: 
1. Given M, it is easy to compute h(M), 
2. Given /i0, it is hard to compute any M for which h(M) = /i0, and 
3. Given M, it is hard to find M' ¿ M for which fc(M') = h(M). 

A strong hash function is a weak hash function that also satisfies: 
4. It is hard to find any two messages M' ^ M for which h{M') — h(M). 

A common use for hash functions is authentication of messages. Property 3 
provides the authentication. Suppose a long message M is not secret, but the 
sender wants the recipient to be sure that M was not changed by an active 
wiretapper during transmission. Then M would be sent along with a shorter, 
signed message containing h(M). The recipient would check the signature, 
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compute h(M) from M, and compare this message digest with the signed one. 
If they agreed, he would know that M was the same message that was sent. 
Usually, h(M) would be either enciphered or transmitted separately from M. 

We will use hash functions in the next section as an aid to generating 
random numbers. They are also used in many protocols, such as signing 
contracts digitally. If the hash function has Property 4, then only h(M) need 
be signed, where M is a long text like a contract. 

Property 4 protects M against birthday attacks. Let m be the length in 
bits of the message digest h(M). Property 4 says that m is large enough so 
that one party to a contract cannot compute h(M) for 2 m / 2 messages M, 
which would be needed to mount a birthday attack. 

A one-way function is a function / which can be computed easily but 
which has the property that given any y in the range of / it is infeasible to 
compute any x with f(x) = y. One example is a sparse polynomial of high 
degree modulo a large prime. See Purdy [91]. 

Most hash functions are built from a one-way function / which takes one 
argument of length b bits and one of length m bits and produces a value of 
length m bits. The whole message M is broken into blocks M¿ of length b bits 
each. One computes /i¿ = /(M¿,/i¿_i) with some standard initial value ho of 
length m bits. The hash value or message digest is the final hi. 

Some examples of hash functions are SNEFRU, N-Hash, MD4, MD5 and 
SHA. MD5 produces a 128-bit message digest, while SHA's message digest 
has 160 bits, and so is even more resistant to birthday attacks. 

Both MD5 and SHA begin by padding the message M with a 1 and as many 
0's as needed to make the total length = 448 = 512 - 64 (mod 512). The last 
64 bits hold the length of the message (in bits) before padding (modulo 264). 
This makes the message length a multiple of 512 bits. Call the 512-bit blocks 
M 0 , . . . , M L _ i . 

MD5 defines h-i to be a 128-bit constant stored in four 32-bit words. SHA 
defines ft_i to be a 160-bit constant stored in five 32-bit words. Both compute 
hi = f(Mi,hi-i) for 0 < i < L, where the one-way function / is easy to 
compute using addition, shift and Boolean operations on 32-bit integers. See 
Schneier [100] or Stallings [114] for more about MD5 and SHA. 

15.4 Generating Truly Random Numbers 
In designing secure random number generators, it is best to assume your 
adversary has a copy of your key-generating program, any master key in it, 
and knows the time-of-day, process number, machine name, network address, 
etc., of your program and its machine. 

Use as many of the following sources of randomness as possible: Use the 
computer's clocks: UNIX gives seconds since January 1, 1970 (a whole number 
plus a fractional part to the microsecond). Also set an alarm and increment a 
counter rapidly until interrupted. Then use the low-order bits of the counter. 
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Use any available special hardware to produce random bits: a Geiger counter 
with a speck of plutonium, a capacitor to charge, an unstable oscillator, ther­
mal noise, radio static, /dev/audio with no mike attached, the disk position 
or time to read one block. Use random system values such as CPU load and 
arrival time of network packets. If there is a user present, have the user pro­
vide randomness by typing on the keyboard, moving the mouse or speaking 
into the mike. Hash together, with SHA, say, anything with at least some 
randomness. 

If the random bits you generate by using the techniques above appear to 
be biased, you should make them less biased in one of the following ways. 

1. Exclusive-or several such bits together. Say the bit is 0 with probability 
1/2 + e and 1 with probability 1/2 — e, for some 0 < e < 1/2. Then the 
exclusive-or of two such bits is 0 with probability ( l /2+e) 2 + ( l /2 —e)2 — 
1/2 + 2e2. Then the exclusive-or of four such bits is 0 with probability 
1/2 -h 8e4. In the limit when many such bits are exclusive-or'ed, the 
probability that the exclusive-or will be 0 will converge to 1/2. 

2. Use the biased "random" bits in pairs: If the two bits in a pair are the 
same, skip; else output the first bit. 

Neither of these techniques works if adjacent bits are correlated. 
Use at least two independent sources of random bits. The random num­

bers for generating session keys should come from the timing of the users' 
keystrokes. Private keys may be encrypted by a passphrase, a character 
string remembered and typed by the user. SHA produces a 160-bit hash 
of the passphrase. 

15.5 Exercises 
1. A linear congruential generator with m = 65537 produces the three 

consecutive X{ values 10413, 9953, 14267. Find a and b. 

2. Let M = 10001011 and C = 11110011 be corresponding bit streams 
in a known-plaintext attack, where the key was generated by a four-bit 
LFSR. Find the matrix H and the tap sequence T. 

3. The definition of primitive polynomial is redundant. Prove that if t(x) 
is an irreducible polynomial of degree n > 1, then t(x) divides x2n~x + 1. 
Hint: Apply Lagrange's theorem to x in F2« = F2[a;]/(£(#)). 

4. Let n > 1 be an integer. Prove that set of all quadratic residues modulo 
n is a group under multiplication modulo n. 

5. Design two programs for choosing truly random numbers on your com­
puter, one which accepts randomness input by a user and one which 
does not. 
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Chapter 16 

Private Key Ciphers 

In this part of the book we describe many cryptographic functions and algo­
rithms that use number theory. 

This chapter describes several private key encryption functions that use 
some number theory. There are many other private key encryption functions 
that use little or no number theory, such as the Digital Encryption Standard, 
DES, and the International Data Encryption Algorithm, IDEA. 

Also called symmetric ciphers, private key ciphers feature very fast enci­
phering and deciphering. They are used to transmit lots of data securely 
between two people who have previously agreed on a common secret key, or 
to encipher the private files of one person. Each encryption function has a 
parameter that determines its secrecy, that is, the difficulty of breaking it by 
trying all possible keys. 

The plaintext input to each cipher must be broken into blocks of fixed 
length and the characters encoded as numbers, for example, their ASCII codes. 
These numbers are concatenated into one large number M that represents one 
block. We assume it is trivial to encode the characters into M and to decode 
M back into characters. The descriptions of the ciphers that follow tell how 
to encipher M to form the ciphertext C, a number about the same size as M, 
and how to decipher C to recover M. 

16.1 Rijndael, the Advanced Encryption Stan­
dard 

Rijndael, the new Advanced Encryption Standard, AES, was invented by 
Joan Daemen and Vincent Rijmen in Belgium. The name Rijndael is pro­
nounced like "Rain Doll" and not like "Region Deal." 

Rijndael is a block cipher. The block size and key length can be chosen 
independently to be 128, 192 or 256 bits. It has 10, 12 or 14 steps called 
rounds, depending on the block and key lengths. It was designed to be 

221 
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simple, to be resistant against all known attacks and to have fast and compact 
code on many platforms. Each round is composed of four basic steps called 
layers, which operate either on eight-bit bytes or 32-bit words. We begin by 
describing the arithmetic operations for these types of data. 

16.1.1 Byte Arithmetic in Rijndael 

A byte bybe . . . 6160 is considered to be a polynomial of degree 7 in F2[x], that 
is the coefficients are in {0,1}: 

b(x) = b7x
7 + b6x

6 + • • • + hx + 60. 

For example, the byte 0xB7 = 1 0 1 1 0111 is the polynomial 

x7 +x5 +x4 + x2 + £ + 1. 

Bytes are added as polynomials in F2[x], which is the same as combining 
them with exclusive-or (0) . Addition is associative and commutative. The 
identity element is 0x00 = 0. Every byte is its own additive inverse, since 
xe>x == 0. 

Example 16.1 

We have 0xB7 0 0xA5 = 1011 0111 0 1010 0101 = 0001 0010 = 0x12. 

Bytes are multiplied as polynomials modulo m(x) = x8 + x4 + x3 + x + 1 = 
0x1 IB. Multiplication is associative and commutative. The identity element 
is 0x01 = 1. Every nonzero polynomial (byte) has a unique inverse with 
respect to this multiplication. The inverse may be computed by the extended 
Euclidean algorithm for greatest common divisor of the polynomial with m(x). 
This multiplication is denoted •. Thus, Rijndael treats bytes as elements of 
the field F2s, discussed in Example 9.1. 

Example 16.2 

Multiply the bytes 0xB7 • 0xA5 = 1011 0111 • 1010 0101. 
Multiplying them as polynomials, we have 

To reduce this polynomial modulo m(x) we replace x8 by x4 + x3 + x + 1. 

z 1 4 + x u
 +x

10 + x9 + x8+x3 + x + l = 

= x1A+x12 + xn+xg + xs + z7 + 

x9 + x7 + x6 + xA + a:3 + x2 + 

x7 + x5 +xA +x2 + x + l 
14 , 11 , 10 , 9 , 8 . 3 . , -, 

= X +X + X +X +X +X +X + \. 

(x7 + x5 + xA + z2 + x + 1) Or7 + x5 + x2 + 1) = 

12 . 10 . 9 . 7 . 6 , 5 . X +X +X +X + X + X + 
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/ 10 . 9 . 7 . 6\ . 11 , 10 . 9 . 8 , 3 , , -, 
(X +X+X+X)+X +X +X +X +X +X + 1 
= x11 + x8 + x7 + x6 + x3 + x + 1 

= (X7 + X6 + XA + X3) + X8 + X7 + X6 + Z3 + X + 1 

= £ + £ + X + 1 

= (x4 + x3 + x + 1) + x4 + x + 1 

= x3 (mod m(x)). 

The polynomial x3 is the byte 0x08, and this is the product. 

Multiplication of b(x) by x = 0x02 is a left shift of one bit position, followed 
by an exclusive-or with m(x) if and only if the bit shifted out was 1. Therefore, 
multiplication of two polynomials may be performed by up to eight left shifts 
and conditional exclusive-ors. Let x t ime(^) denote a left shift of the byte z 
by one bit position, followed by an exclusive-or with m(x) = 0 x 1 IB if the bit 
shifted out of z was a 1 bit. In pseudocode, x t ime(z) is 

f u n c t i o n x t i m e ( z ) 
z = 2z 
i f ( ¿ > 2 5 6 ) { £ = z e 0 x l l B } 
r e t u r n z 

E x a m p l e 16.3 

Multiply the bytes 0xB7 • 0xA5 = 1011 0111 • 1010 0101. 
We begin by multiplying 0xB7 by x% for 0 < i < 7, that is, computing 0xB7 

•z, where z is a byte having exactly one 1 bit. Of course, 0xB7 • 0x01 = 0xB7. 

0xB7 • 0x02 = xtime(B7) = 0x75 

0xB7 • 0x04 = xtime(75) = OxEA 

0xB7 • 0x08 = xtime(EA) = OxCF 

0xB7 • 0x10 = xtime(CF) = 0x85 

0xB7 • 0x20 = xtime(85) = 0x11 

0xB7 • 0x40 = xt ime(l l ) = 0x22 

0xB7 • 0x80 = xtime(22) = 0x44. 

Now we exclusive-or the needed bytes to form the product. Since 

0xA5 = 10100101 = 0x80 0 0x20 0 0x04 0 0x01, 

we have 

0xB7 • 0xA5 = 0xB7 • (0x80 0 0x20 0 0x04 0 0x01) 

= 0xB7 • 0x80 0 0xB7 • 0x20 0 0xB7 • 0x04 0 0xB7 • 0x01 

= 0xB7 0 OxEA 0 0x11 0 0x44 = 0x08, 

which is the same product we found in the previous example. 
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16.1.2 Word Arithmetic in Rijndael 

Here is how Rijndael operates on thirty-two bit words. 
Thirty-two bit words are regarded as four bytes, which are the coefficients of 

a polynomial of degree three with coefficients in F2s, that is, cubic polynomials 
in F2s[x}. 

Addition of two 32-bit words is simple: Add them as polynomials. This 
is the same operation as exclusive-or'ing the coefficients and the same as 
exclusive-or'ing the two 32-bit words. 

Multiplication of two 32-bit words is done by multiplying the polynomials 
modulo M(x) = xA + 1. This multiplication is denoted ®. If 

a(x) — a^x3 -f a2x
2 + a\x + ao 

and 
b(x) = fox3 + fox2 + fox + 60, 

then 
d(x) = a(x) (g> b(x) = d%x3 + d2x

2 + dix + do 

may be computed by 

do = a0 • bo © «3 • fo ® «2 • fo © «i • fo 

dx = a\ • fe0 0 a0 • òi © a3 • fe2 0 a2 • 63 

d2 = a2 • fo 0 ai • fo 0 a0 • &2 0 «3 • &3 

d3 = a3 • 60 0 Û2 • 61 0 01 • fo 0 a0 • fo 

The reason this works is that multiplication of a cubic polynomial by x 
modulo M(x) is equivalent to a circular left shift of the bytes of a 32-bit 
word: 

xa(x) — x{a%x3 + a2x
2 + a\x + ao) = 

= CL3X4 + a2x
3 + a\x2 + ao^ = 

= a2x
3 + a\x2 + aox + 03 (mod #4 + 1). 

E x a m p l e 16.4 

Multiply 0xB7A5662F <g> 0x03010102 modulo M{x) = x4 + 1. 
We use the formulas above with ao = 0x2F, a\ = 0x66, 0,2 = 0xA5, 03 = 0xB7, 

feo = 0x02, fei = 0x01, fo = 0x01 and fo = 0x03. In the formula for do we have 

a0 • feo = 0x2F • 0x02 = 0x5E 

a3 • fei = 0xB7 • 0x01 = 0xB7 

a2 • fo = 0xA5 • 0x01 = 0xA5 

ai • 63 = 0x66 • 0x03 = OxAA 
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and so 

do = do • òo 0 a3 • b\ © a<i • 62 © ai • 63 

= 0x5E © 0xB7 0 0xA5 0 Ox A A = 0xE6. 

Similarly, 

d\ — OxCC 0 0x2F 0 0xB7 0 0xF4 = OxAO 

d2 = 0x51 0 0x66 0 0x2F 0 0xC2 = OxDA 

d3 = 0x75 0 0xA5 0 0x66 0 0x71 = 0xC7. 

Finally, 0xB7A5662F <8> 0x03010102 = 0xC7DAA0E6. 

16.1.3 The Structure of Rijndael 

Rijndael has 10, 12 or 14 rounds, depending on the block and key lengths. 
The block length and key length can be chosen independently to be 128, 192 
or 256 bits. Let Nb be the length of the block in 32-bit words (Nb = 4, 6 or 
8). Let Nk be the length of the key in 32-bit words (Nk = 4, 6 or 8). Let Nr 
be the number of rounds. Then Nr = 14 if either Nb or Nk = 8. Otherwise, 
Nr = 12 if either Nb or Nk = 6. Finally, Nr = 10 if both Nb and Nk = 4. 

Different parts of the Rijndael cipher operate on the intermediate result, 
called the Sta te . The State is a rectangular array of bytes with four rows and 
Nb columns. The key begins as a rectangular array of bytes with four rows 
and Nk columns. The key is expanded and placed in an array W[Nb*(Nr+l)] 
of 32-bit words. We will describe the key expansion in the next section. 

Each round of Rijndael consists of four different transformations or layers, 
expressed here in pseudo C code. 

Round(State, RoundKey) 

{ 
ByteSub(State); 
ShiftRow(State); 

MixColumn(State); 

AddRoundKey(St at e, RoundKey); 

} 

The FinalRound omits the MixColumn. The plaintext is the initial State. 
The final State is the ciphertext. The complete Rijndael cipher consists of: 

R i jndae l (S t a t e , CipherKey) 
{ 
KeyExpansion(CipherKey, ExpandedKey); 
AddRoundKey(St at e, ExpandedKey); 

For (i=l; i<Nr; i++) Round(State, ExpandedKey + Nb*i); 

FinalRound(State, ExpandedKey + Nb*Nr); 

} 
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Before we describe these transformations, we define a simple substitution 
cipher S on bytes. If a is a byte, compute S (a) as follows. 

1. First, if a / 0, take the multiplicative inverse of a in F2s, that is, the 
inverse with respect to the • multiplication. Map a = 0 to itself. Label 
the bits of the resulting byte XJXQXSX^XSX2XIXO-

2. Apply the affine transformation (over F2) 

2/o 

2/i 
2/2 
2/3 
2/4 
2/5 
2/6 
2/7 

10001111 
1 10001 1 1 
1 1 10001 1 
1 11 10001 
11111000 
01111100 
00111110 
00011111 

x0 

Xi 

%2 

X3 

X4 

# 5 

x6 

x7 

+ 

' l 1 

1 
0 
0 
0 
1 
1 
0 

Then S(a) is the byte 2/72/62/52/42/32/22/12/o- Each of these two steps performs a 
permutation of bytes. There is an inverse function S~l so that S~1(S(a)) = a 
for every byte a. In most implementations of Rijndael, the function S and 
its inverse are precomputed, so that they may be evaluated by table look-up 
during encryption. 

Now we describe the round transformations. 
ByteSub (Sta te) transforms each byte a in the State by replacing it with 

S(a). 
ShiftRow (Sta te) is a circular left shift of the rows in the State by various 

byte offsets which depend on Nb and on the row. The shift offsets are specified 
in this table. 

Shift offsets for different rows and block lengths. 

Nb 

4 
6 
8 

RowO 

0 
0 
0 

Rowl 

1 
1 
1 

Row2 

2 
2 
3 

Row3 

3 
3 
4 

In MixColumn(State) the columns of the State are considered to be cu­
bic polynomials with coefficients in F2s and each is multiplied (<g>) modulo 
M(x) = xA + 1 with the fixed polynomial 

c(x) = 0x03a:3 + 0x01a;2 + OxOlx + 0x02. 

The polynomial M(x) — x4 + 1 is not irreducible in F2s[x], so not all cubic 
polynomials are invertible modulo M(x). However, the polynomial c(x) is 
relatively prime to x4 + 1 and therefore invertible. The inverse operation to 
MixColumn (Sta te) is multiplication of each column by 

d(x) = OxOBx3 + OxODz2 + 0x09x + OxOE. 
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AddRoundKey(State, RoundKey) is simply a byte-by-byte exclusive-or of 
State with RoundKey. The generation of RoundKey is described in the next 
section. 

16.1.4 The Key Schedule of Rijndael 

Here we tell how the key is expanded and the round keys are produced. 
Recall that the key begins as a rectangular array of bytes with four rows 

and Nk columns. The key is expanded and placed in an array W[Nb*(Nr+l)] 
of 32-bit words. 

The first Nk words of the array W are the key. Each subsequent word is 
the exclusive-or of the previous word and the word Nk words back in the 
array, except that words whose subscript is a multiple of Nk have the previous 
word transformed before the exclusive-or. When Nk < 6, the key expansion is 
described in this pseudo C code. 

For ( i = Nk; i < Nb*(Nr + 1) ; i++) { 
temp = W[i - 1] ; 
if ( i °/, Nk == 0) temp = T(temp) ; 
W[i] = W[i - Nk] xor temp; 
} 

Here xor is the exclusive-or operation © and T(w) is a transformation of a 
word w described as follows. First, the bytes of w are rotated left one byte 
position. Next, S is applied to each of the four bytes. Finally, the high order 
byte is exclusive-or'ed with a byte representing the element ^(«/Nk)-1^ where i 
is the loop variable i in the pseudocode. 

The RoundKey used in the i-th AddRoundKey transformation consists of the 
Nb consecutive words of the key array W beginning with W[Nb*i]. 

16.1.5 Summary of Rijndael 

Ideas from finite field theory are used to give a concise and elegant description 
of the substitution and transposition of bits and bytes that define Rijndael. It 
does not have the linearity that is the weakness of linear feedback shift regis­
ters. See Chapter 5 of Trappe and Washington [115] for another presentation 
of Rijndael. 

Rijndael is by far the fastest cipher described in this chapter, which is one 
reason it was chosen as the new AES to replace DES. Implementations of the 
cipher in hardware can encipher and decipher at disk transfer speeds. 

We did not describe the deciphering function for Rijndael, which is slightly 
slower and more complicated than the enciphering function. One reason it 
takes longer is that multiplication (0) by d(x) is slower than multiplication 
by c(x). The interested reader can either derive the deciphering function or 
look it up on the Web. 
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16.2 The Pohlig-Hellman Cipher 
The Pohlig-Hellman cipher is an example of an exponentiation cipher, one 
which uses exponentiation modulo a large number as its encryption function. 
Here is how an exponentiation cipher functions. 

Choose a large integer n for modulus. Encode plaintext as blocks in 0 < 
M < n. Encipher M as C - E(M) = Me mod n. Decipher C as M = 
D(C) = Cd mod n. 

This works, that is, D(E(M)) = M for all M in 0 < M < n, provided that 
ed = 1 (mod 0(n)) since M ^ n ) = 1 (mod n), by Euler's theorem. (Proof: 
Write ed = t<t>(n) + 1 for some integer t.) This implies that e and d are 
relatively prime to <¡>{n). 

The Pohlig-Hellman cipher is not a public-key cipher. It is a symmetric 
cipher which is used in one of the two following ways. 

Let n = p= prime. Then </>(p) — p—1 and ed = 1 (mod p — 1). 
Method 1: Keep all of p, e,d secret. All three are the "key." There is just 

one user or one pair of users. 
Method 2: Let p be public and keep e and d secret. The key is the pair 

(e,d). Each user has a secret pair to safeguard her personal secrets. Each 
pair of users who wish to communicate choose a common key pair. 

Since it may take a while to generate a large prime, Method 2 is more com­
monly used than Method 1. Furthermore, Method 2 has interesting mathe­
matical properties which foster its use in special ways discussed later (Massey-
Omura, mental poker). 

Here is the cryptanalysis. For a known-plaintext attack on Method 2, one 
is given a prime p, C and M, and must find an exponent e so that C = 
Me (mod p), or equivalently, d so that M = Cd (mod p). These problems 
are instances of the discrete logarithm problem, in which one is given positive 
integers a, b and m, and must find x so that ax = b (mod m). This is a well 
known difficult problem in number theory, and ways to solve it are discussed 
in Chapter 14. 

16.3 Elliptic Curve Pohlig-Hellman 
This cipher works just like the Pohlig-Hellman cipher except that the multi­
plicative group Rp of integers modulo p is replaced by an elliptic curve. 

Let p be a large prime and let E be an elliptic curve modulo p that has 
order N, that is, E has TV points including the identity oo. 

We will explain shortly how a plaintext block M might be embedded into 
the ^-coordinate of a point P on E. Assume this has been done. 

A point P on E is enciphered by adding it to itself e times, using fast 
multiplication; the ciphertext point is Q = eP. The latter is deciphered by 
multiplying by d: P = dQ. 

In order for the deciphering to return to P , the multipliers e and d must 
satisfy ed = 1 (mod N), because NP = oo by Lagrange's theorem, and 
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so cP = P for any c = 1 (mod iV). This implies that e (and d) must be 
chosen relatively prime to N. Of course, one should choose a random e in 
1 < e < N, relatively prime to N, and then compute d by the extended 
Euclidean algorithm. 

By Hasse's theorem, N is approximately p. But this approximation is not 
good enough. We must know N exactly in order to choose e and d. In typical 
cryptographic applications, N and p must be large enough so only Schoof's 
algorithm is fast enough to compute N. Schoof's algorithm is complicated. 
If you have a program for it, then you are free to choose any elliptic curve E 
for the analogue of the Pohlig-Hellman cipher. Otherwise, you must choose 
an elliptic curve whose order has been published. 

In a known-plaintext attack on this system, one is given E, p, TV (which are 
public anyway), P and Q, and one must find e with Q = eP or, equivalently, 
d with P — dQ. Either problem is the discrete logarithm problem on the 
elliptic curve E, whose solution is discussed in Chapter 14. 

Now we deal with the matter of embedding plaintext into points. There are 
two methods in common use. Both embed a plaintext M in 0 < M < p into 
the x-coordinate of a point P = (#, y) on a given elliptic curve E. 

The first method is probabilistic and may fail to embed M with a positive 
probability. The overall encryption function must handle this failure grace­
fully. It may 

1. skip M, 

2. change M in some way, or 

3. ask for human assistance in changing M. 

In any case, it is easy to make the probability of failure minuscule. Let us 
reserve k bits of the ^-coordinate for a small integer. Then the blocks M 
must be k bits shorter, that is, 0 < M < p/2k rather than 0 < M < p. The 
probability of failure will be only 1 chance in 22 . This is less than one chance 
in a billion if k = 5. The x-coordinate will be x — 2kM + ¿, where ¿is a k-bit 
integer 0 < i < 2k. When P is recovered during deciphering, M is extracted 
from x by M = [x/2h\, which may be done quickly with a right shift of x by 
A: bits. Let the elliptic curve have equation y2 = x3 + ax + b (mod p). Choose 
i by this algorithm: 

for (i = 0 to 2k - 1) { 
x = 2kM + i 
if (((x3 + ax + b)/p) = +1) { r e t u r n i } 
} 

r e t u r n "Fa i lu re : could not choose i" 

The algorithm returns the first i < 2k, if any, for which the Legendre 
symbol ((x3 + ax + b)/p) = +1 . Since the Legendre symbol (r/p) is +1 for 
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(p — l ) /2 values of r modulo p, and since, for each i, the value x3 + ax + b is 
more or less random modulo p, the probability that all 2k choices for i yield 
((x3 + ax + b)/p) 7̂  +1 is about 2 - 2 , as claimed. 

Once we have i with ((x3 + ax + &)/p) = + 1 , where x = 2fcM + i, we find a 
square root y oî x modulo p by the methods of Chapter 7 and let P = (x, 2/). 
Then F lies on £ . 

The second method of embedding plaintext into points is deterministic but 
only works for special primes p and elliptic curves E. Plenty of primes and 
elliptic curves satisfy the requirements. 

Assume that p = 3 (mod 4), that is, p is a Blum prime. For such primes p, 
— 1 is a quadratic nonresidue, so (—1/p) = — 1. Let b = 0 in the congruence 
defining E, so that E is y2 = x3 + ax (mod p). 

Plaintext M is restricted to 0 < M < p/2. Thus, one bit of possible 
plaintext storage space is lost. Given M, form t = M 3 + aM mod p. Since 
(—1/p) = — 1, exactly one of t and — t is a quadratic residue modulo p by 
Theorem 7.5. If (¿/p) = + 1 , let x = M. If (£/p) = - 1 , let x = p - M. Then 
((x3 + CLX)IP) — +1 and we can find ?/ with y2 = x3 + ax (mod p) by Theorem 
7.13. Let P = (x,2/). When P is recovered during deciphering, look at x. If 
x < p/2, then M = x. If x > p/2, then M = p- x. 

16.4 Exercises 
1. This question concerns the 8-bit and 32-bit arithmetic operations used 

in Rijndael. 

a. Add the bytes 0xB3 © 0x95. 

b. Multiply the bytes 0xB4 • 0x4F. 

c. Find the inverse with respect to the • multiplication of the byte 0xB3. 

d. Multiply the 32-bit numbers (regarded as cubic polynomials over F2s) 
0x21A68490 <g) 0x03010102 (modulo M(x), of course), just as Rijndael's 
MixColumnO procedure would multiply them. Your answer should be a 
32-bit number, given as hexadecimal digits. (The low-order byte is the 
constant term of the cubic polynomial.) 

e. Show that d(x) is the inverse of c(x) by multiplying them modulo 
M(x) = x4 + 1. 

2. We mentioned that the polynomial M(x) = x4 + 1 is not irreducible in 
F2s[x]. Factor it. 

3. The Pohlig-Hellman cipher with prime modulus p = 2591 and encipher­
ing exponent e — 13 was used to encipher a secret message. Two-letter 
blocks were used. Note that the largest block would be 2525 (meaning 
ZZ) and this is less than p. Decipher the cipher text 1213 0902 0539 
1208 1234 1103 1374. 
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Public Key Ciphers 

This chapter introduces several public key ciphers. Public-key ciphers are 
generally slower than private key ciphers. They are used for short commu­
nications, like a private key for a longer attached ciphertext. In contrast to 
private key ciphers, they do not require the exchange or establishment of a 
secret key before communication begins. 

Another advantage of public key ciphers is that fewer keys are needed when 
many users wish to communicate with each other. If n people communicate 
with public key cryptography, then there are n public keys, one per person. 
If the same n people wished to use private key cryptography, then each would 
have to manage n — 1 keys, one for each other user, and there would be a total 
of (£) = n(n - l ) /2 keys. 

11.1 Rivest- Shamir- Adleman 
The Rivest-Shamir-Adleman public key cipher, RSA, [97] is another exponen­
tiation cipher. See Section 16.2 for exponentiation ciphers. 

Each user of RSA chooses two large primes p and q. She lets n = pq. She 
chooses a random e in 1 < e < n - 1 with gcd(e, (f)(n)) = 1. Now </>(n) = 
(j>{pq) = (p— l)(q — 1), so she calculates d so that ed = 1 (mod (p— \){q — 1)). 
She makes n and e public, but keeps d secret. The factors p and q are not 
needed after e and d are computed, but in any case should not be revealed. 
The encryption function is E(M) = Me mod n, which anyone can compute, 
since n and e are public. The deciphering function is D(C) = Cd mod n. 

Since n is public and one can easily compute d from e and the factors of n, 
a direct approach to breaking RSA is to factor n. Using the best currently-
known methods, this is about as hard as solving a discrete logarithm problem 
with the same sized modulus. For a modulus n of 300 decimal digits, this is 
too hard for current algorithms and computers. 

It may be possible to break RSA without factoring n. However, it is prob­
ably true that if you know an algorithm that can decipher any ciphertext C 
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with positive probability, then you can use the algorithm to factor n, but no 
one has ever proved this statement. If the hypothetical deciphering algorithm 
raises C to a fixed power modulo n, then, with high probability, you can factor 
n. 

17.2 Massey- Omura 
One can change the Pohlig-Hellman private-key cipher in Section 16.2 slightly 
to create a public-key cipher. This was done [70] by Massey and Omura. Their 
system is not used much because it is inefficient. (But the elliptic curve version 
is used.) 

Consider a Pohlig-Hellman cipher with common prime p. This was called 
Method 2 in the previous chapter. Suppose users A and B have encryption 
functions EA and EB and decryption functions DA and DB- (SO EA(M) = 
M6A modp and DA(C) = CdA modp, where e^d^ = 1 (mod p — 1), etc.) 
Since the encryption and decryption functions all consist of exponentiation 
modulo a fixed modulus, they all commute, that is, they may be done in any 
order and give the same result. For example, EA(DB(X)) — DB{EA(X)) for 
every x because both are just x AdB = xdB6A (mod p). 

How do A and B use this property as a public-key cipher? The "public key" 
is the common prime modulus p. The private keys are all of the exponents 
(unlike RSA). If Alice wants to send a message 0 < M < p to Bob, she first 
sends EA(M) to Bob. Bob replies by sending EB(EA(M)) to Alice. Then 
Alice sends DA(EB(EA(M))) = EB(DA(EA(M))) = EB(M) to Bob. Bob 
deciphers the message by applying DB to EB(M). 

Note that this requires three messages to pass between Alice and Bob. This 
means that they must communicate in close to real time. 

An eavesdropper would see the messages r = EA(M), S = EB{EA(M)) and 
t = DA{EB(EA(M))) = EB(DA(EA{M))) = EB(M) pass between Alice and 
Bob. If the eavesdropper could solve the discrete logarithm problem modulo 
p, then he could read M in either of two ways. First, s = reB (mod p). He 
knows s, r and p. If he can solve for es, then he can compute ds by the 
extended Euclidean algorithm. Then he can compute M = tdB mod p. The 
other way to read M is to use the congruence s = t A (mod p) to find e^, by 
solving a different discrete logarithm problem. Then compute d A from e^ by 
the extended Eulcidean algorithm and find M = rdA (mod p). It is likely that 
the two discrete logarithm problems are equally hard. But it is possible that 
one of the bases r, t might have a much smaller order modulo p than the other, 
and so produce an easier discrete logarithm problem. In a direct attack on 
this communication, one should try to solve both problems together. The two 
discrete logarithm problems are intertwined. It would be interesting to find 
an attack on both of them together, using information from each congruence 
to facilitate the solution of the other, so that the total effort is easier than 
solving either one separately. 
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17.3 Elliptic Curve Massey-Omura 
Consider an elliptic curve Pohlig-Hellman cipher with elliptic curve E having 
N points modulo a prime p. Suppose users A and B have encryption functions 
EA and EB and decryption functions DA and DB> (SO EA(P) = CAP on E. 
DA(Q) — ÚAQ on E, where e^d^ = 1 (mod TV), etc.) Since the encryption 
and decryption functions are all multiplication of integers times points on E, 
they all commute, that is, they may be done in any order and give the same 
result. For example, EA(DB(P)) — DB(EA(P)) for every P because both are 
just eAdBP = OIBCAP-

How do A and B use this property as a public-key cipher? The "public 
key" consists of E, N, and p. The private keys are all of the multipliers 
eA, d>A, etc. If Alice wants to send a message 0 < M < p to Bob, she first 
embeds it in a point P of E, as explained in the previous chapter. She sends 
EA(P) to Bob. Bob replies by sending EB{EA(P)) to Alice. Then Alice 
sends DA(EB(EA(P))) = EB(DA(EA(P))) = EB(P) to Bob. Bob deciphers 
the message by applying DB to EB(P). 

Note that this requires three messages to pass between Alice and Bob. This 
means that they must communicate in close to real time. 

An eavesdropper would see the messages R — EA(P), S = EB(EA(P)) 

and T = DA(EB(EA(P))) = EB(DA(EA(P))) = EB(P) pass between Alice 
and Bob. If the eavesdropper could solve the discrete logarithm problem for 
points of E, then he could read P in either of two ways. First, S — e#i2. He 
knows 5, i?, E, N, and p. If he can solve for e#, then he can compute ds 
by the extended Euclidean algorithm. Then he can compute P = dsT. The 
other way to read P is to use the equation S — CAT to find eA, by solving 
a different discrete logarithm problem on E. Then compute dA from e^ by 
the extended Eulcidean algorithm and find P = d^i?. It is likely that the 
two discrete logarithm problems are equally hard. But it is possible that one 
of the points i?, T might have a much smaller order on E than the other, 
and so produce an easier discrete logarithm problem. In a direct attack on 
this communication, one should try to solve both problems together. The two 
discrete logarithm problems are intertwined. It would be interesting to find 
an attack on both of them together, using information from each congruence 
to facilitate the solution of the other, so that the total effort is easier than 
solving either one separately. 

17.4 ElGamal 
The ElGamal public key cryptosystem is defined as follows: Fix a large 
prime p which is public. Also public is a primitive root g modulo p in 1 < 
g < p. Each user A who wishes to participate in this public-key cryptosystem 
chooses a secret a A in 0 < a A < p — 1 and publishes ÒA = gaA mod p. When 
a user B wants to send a secret message M i n O < M < p t o ^ 4 , she chooses 
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a random k in 0 < k < p— 1 and sends to A the pair 

C = (gk modp, (MbA) mod p). 

The plaintext M is enciphered by multiplying it by bA in the second com­
ponent of C. Note that bk

A = (gaA)k = gaAk (mod p). The first component 
of C provides a hint for deciphering M from the second component of C, but 
one which is useful only to A. Only A knows the secret key a A , SO only A can 
compute (gk)aA = gaAk (mod p). If the multiplicative inverse of this number 
is multiplied times the second component, one recovers M: 

• (gaAk)~l (Mbk
A) = {g^y1 (MgaAk) = M (mod p). 

An eavesdropper who could solve the discrete logarithm problem modulo p 
could compute M from C and public data without knowing a A as follows. The 
first component of C is h = gk mod p. This number and T — {MbA) mod p are 
observed by the eavesdropper. The eavesdropper knows p and g because these 
numbers are public. He can also obtain A's public key 6^ from .A's directory, 
just as B did. He would solve the discrete logarithm problem gk = h (mod p) 
for k and then compute 

T (bk
A)~l = (MÒ*) (ft*)"1 = M (modp). 

17.5 Elliptic Curve ElGamal 
There is an elliptic curve analogue to the ElGamal public key cryptosystem 
defined as follows: Fix an elliptic curve E modulo p and a point P0 of large 
order on E. All of this data is public. Each user A who wishes to participate in 
this public-key cryptosystem chooses a secret a A in 0 < a A < p and publishes 
PA = CLAPO on E. When a user B wants to send a secret message M to A, she 
first embeds M into a point P of E (explained in the previous chapter). She 
chooses a random kinO < k < p and sends to A the pair C = (kPo, kPA+P). 

The plaintext P is enciphered by adding the point kPA in the second com­
ponent of C. Note that kPA = k(a,APo) = (kaA)Po- The first component of 
C provides a hint for deciphering P from the second component of C, but 
one which is useful only to A. Only A knows the secret key a A , SO only A 
can compute a,A(kPo) = (kaA)Po> If this point is subtracted from the second 
component, one recovers P: kPA+P—(ka,A)Po = (küA)Po+P— {küA)Po — P> 

An eavesdropper who could solve the discrete logarithm problem on E could 
compute P from C and public data without knowing a A as follows. The first 
component of C is P\ = kPo. This and T — kPA + P are observed by the 
eavesdropper. The eavesdropper knows p, E and PQ because this information 
is public. He can also obtain A's public key PA from ^4's directory, just as B 
did. He would solve the elliptic curve discrete logarithm problem kP0 = Pi 
for k and then compute T - kPA = (kPA + P) - kPA = P . 
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17.6 Rabin- Williams 
This is a public key cipher invented by Rabin [92]. Each user chooses two 
large Blum primes p and q, that is, p = q = 3 (mod 4). The user publishes 
the product n = pq as her public key. The factors p and # are her private key. 
Someone who wishes to send a plaintext M in 0 < M < n to the user encrypts 
M a s C = M2 mod n. The user, knowing the factors of n, can compute the 
four square roots of C modulo n by the methods of Chapter 7. If the original 
M was written in English, then, with high probability, only one of the four 
square roots of C will make sense, and this one is M. 

If M were a binary string, then a standard header must be prepended to 
M before enciphering to allow the recipient to tell which square root is M. 
For example, one might use a two-bit number to indicate which square root 
is M: "00" means "the smallest one," "01" means "the second smallest one," 
etc. The enciphering function would have to compute all four square roots to 
determine this two-bit number. 

Here is a slightly faster and more elegant way to fashion the two bits. 
During deciphering, the square roots of M2 are first computed modulo p and 
modulo ç, and then they are combined with the Chinese remainder theorem 
in the four possible ways. Let the bits indicate whether (i) M mod p < p/2 
and whether (ii) M mod q < q/2. These bits are easy to compute during 
enciphering and they prevent unnecessary work during deciphering. 

Aside from a lack of elegance, the downside of using two bits to distinguish 
a square root is that they provide a modicum of information about M to a 
cryptanalyst. 

Recall that the RSA public key system is probably equivalent to factoring 
its modulus, but no one has proved this statement. This equivalence can be 
proved for the Rabin cipher. 

THEOREM 17.1 Breaking Rabin's cipher is equivalent to factoring n 
Breaking the Rabin cipher is equivalent to factoring its modulus n. 

PROOF Clearly, anyone who can factor n can decipher any message the 
same way the intended recipient can decipher it. 

Breaking the Rabin cipher means having an algorithm that will decipher 
any message M in a reasonable time. In the first version of the cipher above, 
the algorithm would have to return all four square roots of C so that the 
human user could decide which one was meaningful. One could factor n by 
squaring an arbitrary x modulo n, using the algorithm to find the four square 
roots of x2 modulo n, and picking one of them, say, y ^ ±x (mod n). Then 
gcd(x + y,ri) = p or q, by Theorem 13.1, and n has been factored. 

In the versions of the cipher with two extra bits, square an x modulo n and 
use the algorithm one, two or three times, with different two-bit numbers, 
until it gives you ay ^ ±x (mod n). Then factor n as before. I 
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Williams [122] improved Rabin's cipher by eliminating the ambiguity in 
deciphering without adding a two-bit number. Williams' cipher also has the 
property that breaking it is provably equivalent to factoring the modulus. In 
his scheme, the user chooses large primes p = 3 (mod 8) and q = 7 (mod 8). 
Let n = pq. Then n = 5 (mod 8). Let d = {(p - l)(q - l ) /4 + l ) /2 , which is 
an integer. The public key is n. The secret key is d. The primes p and q are 
not needed after d is computed. They may be discarded, and certainly should 
not be revealed. Let (r/n) denote the Jacobi symbol. 

The set of allowed plaintext M is not all of 0 < M < n. Let M be the set 
of all positive integers M such that 2(2M + 1) < n when ((2M + l ) /n) = - 1 
and 4(2M + 1) < n when ((2M + l ) /n) = +1 . Only M in M are allowed to 
be plaintext. This set includes all M in 0 < M < n/S — 1 and some larger M. 

Williams defines the following functions for encryption and decryption. 
For M e M, let 

THEOREM 17.2 Williams' version of Rabin's cipher works 
If M G M, then D1(D2(E2(E1(M)))) = M. 

If we define E(M) = E2(E1(M)) and D(C) = D1{D2(C)), then the theorem 
says that for every M G M, we have D(E(M)) = M. The enciphering 
function E is easy to compute by anyone who knows the public key n. The 
deciphering function D is easy to compute by anyone who knows the public 
key n and the secret key d. The proof of Theorem 17.2 requires one lemma. 

LEMMA 17.1 
Ifn — pq, where p and q are distinct Blum primes, and (M/n) = 1, then 

We have (2/n) = —1 because n = 5 (mod 8), so (Ei(M)/n) = 1 for every 
M. It is possible for ((2M + l ) /n) = 0, but this event is so unlikely that we 
ignore it. Note that the Jacobi symbols are easy to compute. 

Define E2(N) = N2 mod n. This is Rabin's enciphering function. 
Define D2(C) =Cdmodn. 
Finally, let 
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PROOF Since (M/(pq)) = 1, we have (M/p) = (M/q), by definition of 
the Jacobi symbol. 

Suppose first that (M/p) = (M/q) = 1. By Euler's criterion, M ^ " 1 ) / 2 = 
1 (modp) and M ^ " 1 ) / 2 = 1 (mod q). Hence, M ^ " 1 ^ " 1 ) / 4 = 1 (mod p) and 
M ( p - l ) ( g - l ) / 4 = ! ( m o d g ) a n d s o M ( p - l ) ( î - l ) / 4 = 1 ( m o d ^ ) 

Suppose now that (M/p) = (M/ç) = - 1 . By Euler's criterion, M ^ - 1 ^ 2 = 
- 1 (modp) a n d M ^ - 1 ) / 2 = - 1 (modg). Since ( p - l ) / 2 a n d (q-l)/2 are odd 
numbers (because p = <? = 3 (mod 4)), we have M ^ - 1 ^ - 1 ) / 4 = — 1 (mod p) 
and M ^ " 1 ) ^ " 1 ) / 4 EE - 1 (mod q) and so M ^ " 1 ^ " 1 ) / 4 = - 1 (mod pq). I 

Now we prove Theorem 17.2. 

PROOF Let M <E M. Let N = EX(M). Then AT is even and 0 < TV < n. 
We have (N/n) = 1 because (2/ra) = — 1. 

Let L = D2(E2(N)). Then 

L = (AT2)d = iV2d = ^(P- i ) (g- i ) /4+i = ±N ( m o d n ) 

by Lemma 17.1. Also, 0 < L < n. Therefore, since N is always even, if L is 
even, then L — N, while if L is odd, then L — n — N. 

If L = 0 (mod 4), then 2M + 1 = N/4 and so M = (L/4 - l ) /2 = Z?i(L). 
We leave the other three cases of L modulo 4 to the reader. I 

THEOREM IT.3 Breaking Williams' cipher is equivalent to factoring n 
If there is an efficient algorithm A such that for every C of the form C = E(M) 
for some M G M, A can compute M given C, then there is an efficient 
algorithm for factoring the modulus n. 

For a proof, see Williams [122]. 

17.7 Exercises 
1. Alice uses n — 2581 and e^ = 107 for her public RSA key. How would 

Bob encipher M = 1619 to send to Alice? Decipher the ciphertext 
C = 1674, which Alice received from Chuck. 

2. Alice uses the "double RSA" cipher. She makes public a modulus n, 
which is the product of two secret primes, and two public encryption 
exponents, e\ and e2- She tells people to encipher messages M in 0 < 
M < n to her by computing C\ = Mei mod n and then C = C{2 mod n 
and sending just C to her. 

a. Tell how Alice deciphers C, using her knowledge of the secret prime 
factors of n. 
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b. Is there an easy way to factor n, given e\ and e2? 

c. Is the "double RSA" cipher more secure, less secure or just as se­
cure as the regular RSA cipher with the same modulus n but only one 
encryption exponent? 

d. Chuck got Alice's instructions confused, and enciphered a message 
M for Alice using e\ and e<¿ in the reverse order. What happened when 
Alice, unaware of Chuck's error, tried to decipher the ciphertext using 
her usual procedure? Did she get M or nonsense? If nonsense, could 
she recover M anyway? 

3. Alice and Bob use the Massey-Omura cipher with common modulus 
p — 2591. Alice's secret enciphering exponent is e^ — 107; Bob's is 
eB = 257. Compute the deciphering exponents and show the numbers 
passed between them when Alice sends Bob the plaintext M — 1234. 

4. Alice and Bob use the elliptic curve Massey-Omura cipher with the el­
liptic curve y2 = x3 + 1441# + 611 (mod 2591). Alice's secret enciphering 
multiplier is 6A = 107; Bob's is es — 257. 

a. Find the number of points on the elliptic curve. 

b. Compute the deciphering multipliers d A and cfe. 

c. Show the numbers in the messages passed between them when Alice 
sends Bob the plaintext P = (1619,2103). 

5. A simple version of the ElGamal cipher uses the public common modulus 
p = 97 and the primitive root g — 5. Alice participates in this ElGamal 
system and uses e^ = 37 as her secret key and ÒA = 9eA mod p = 56 as 
her public key. How would Bob encipher M = 82 to send to Alice if he 
chose k — 75 for the random number? Show how Alice would decipher 
the ciphertext (7,84), which she received from Chuck. 

6. Alice uses the Rabin-Williams cipher with public modulus n = 11021. 

a. What ciphertext would Bob send to Alice if the plaintext is M — 678? 

b. Factor n via Fermât 's difference of squares method. 

c. Find Alice's deciphering exponent d. 

d. Decipher the ciphertext C = 6525, which Alice received from Chuck. 

7. Finish the proof of Theorem 17.2 by showing that D\{L) = M for the 
three remaining cases of L modulo 4. 
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Signature Algorithms 

This chapter defines several signature algorithms. These are methods of "sign­
ing" messages to show their authenticity. 

18.1 Rivest-Shamir-Adleman Signatures 
RSA has no direct authentication: Anyone can send any message to you and 
claim it came from anyone. However, one can sign RSA [97] messages as 
follows. 

Use the same notation for enciphering and deciphering functions as we did 
for Massey-Omura: EA, DB, etc. Alice can sign (and encipher) a message M 
to Bob by sending C = EB(DA(M)) to Bob. Bob can decipher C by applying 
DB to it (to get DA(M)) and then check the signature by applying EA to the 
latter. 

Note that Bob's cipher algorithms do not commute with Alice's because 
the modulus is different. Thus the order in which Bob applies the operations 
to C matters: Bob must use DB first and then EA second. 

There is another problem caused by the different moduli. The functions 
DA and EA perform arithmetic modulo Alice's modulus TÍA while EB and DB 
perform arithmetic modulo Bob's modulus UB- This works fine if UA < TIB, 
but part of the message will be lost if UA > TIB • 

There are three ways to solve this problem: 

1. Re-block the message after DA is applied. 

2. Enforce an arbitrary threshold T and let every RSA user A have two 
complete sets of RSA keys, one with n ^ < T and one with UA2 > T. 
The keys with the smaller modulus TIA1 are used for signing messages 
from A and the keys with the larger modulus UA2 are used to encipher 
messages going to A. 

239 
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3. A more elegant solution is for Alice to sign (and encipher) a message 
M to Bob by sending C = EB(DA(M)) to Bob when HA < n#, and by 
sending C = DA(EB(M)) to Bob when HA > n ¿ . In either case, Bob 
undoes these operations in reverse order. 

In the third method, what if Alice later denies sending M, and Bob goes 
to an independent judge to prove that M bears Alice's signature? In the first 
case {TÍA < ns), Bob gives the judge M and X = DB(C), the judge computes 
M' = EA(X) and tests whether M' — M. If so, the judge rules that Alice 
signed M. In the second case (TÍA > KB), Bob gives the judge M and C, the 
judge computes X1 = EB(M) and X' = EA(C) and tests whether X' — X. 
If so, the judge rules that Alice signed M. 

There is a trick that speeds RSA signature generation by a factor of four. 
Suppose the modulus is n — pq, where the primes p and q have about the 
same length. Let b be the number of bits in n, so that the length of p and 
q is about 6/2 bits. If the decryption exponent is d, the plaintext M is 
signed as D(M) = Md mod n. According to Theorems 6.2 and 3.5, this 
fast exponentiation takes about cb3 bit operations, for some constant c > 0. 
The trick replaces this fast exponentiation by two fast exponentiations with 
b replaced by 6/2. Let Mp = M mod p, Mq = M mod q, dp — d mod (p - 1) 
and dq = d mod (q — 1). The length of each of these four numbers is about 6/2 
bits. Compute Sp = Mp

p mod p and Sq = Mq
 q mod q by fast exponentiation. 

Each of these exponentiations takes about c(6/2)3 = (c/8)63 bit operations. 
Now the signature D(M) = Sp (mod p) and D(M) = Sq (mod q), so D(M) 
can be computed from Sp and Sq by the Chinese remainder theorem. In 
the application of the Chinese remainder theorem, the inverses p~l mod q 
and q~x mod p may be precomputed. The result is that D(M) = (aSp + 
bSq) mod n where a and b are precomputed constants. The total number of 
bit operations is essentially 2(c/8)ò3 = c63/4, which is one-fourth as many as 
for computing D(M) — Md mod n directly. The same trick can be used in 
deciphering RSA messages, too, of course. But it can't be used to accelerate 
RSA encryption because p and q must be kept secret. 

18.2 ElGamal Signatures 
In addition to encryption, as explained in Section 17.4, one can sign messages 
with the ElGamal scheme. The security depends on the difficulty of the 
discrete logarithm problem. 

All users have a common large prime p and a primitive root g for p. These 
numbers are public. Each user chooses a secret x m. 1 < x < p — 2 and 
publishes y — gx mod p. Thus, the public key is p, g and y, while the private 
key is x. We explained in Section 17.4 how to encipher a message to the user 
with public key y. 

This user can sign a plaintext M as follows. Choose a random k in 1 < 
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k < p — 1 and relatively prime to p — 1, and let a — gk mod p. Then solve the 
congruence kb = M - xa (mod p-l) for b by Theorem 5.7. This congruence 
can be solved since gcd(k,p - 1) = 1. The signature for M is the pair (a, 6). 

The recipient verifies the signature by checking whether yaab = gM mod p. 
Since y = gx (mod p) and a = gk (mod p), this is equivalent to gxagkb = 
gM (mod p). By Theorem 6.3, this will hold provided xa + kb = M (mod p — 
1), which is equivalent to the congruence defining b. Hence the signature 
verification will succeed if the signature was constructed according to the 
rules above. It is reasonable to call (a, b) a "signature" because it is hard to 
find a and b satisfying yaab = gM mod p without knowing x. 

The random number k must not be revealed since it would allow one to 
compute the secret key x from the congruence xa + kb = M (mod p — 1). 

Example 18.1 

Suppose p = 19, g = 2 and x = 7. Then y = gx mod p = 14. To sign a message 
M = 14, the user would choose a random k = 13, say, and let a = gk mod p = 3. 
Solve for 6 in 136 = kb = M - xa = 14 - 7 • 3 = 11 (mod p - 1) to get 6 = 5. 
The signature for M = 14 is the pair (3, 5). To verify the signature, one checks 
the congruence 

6 = 214 = gM = abya = 35143 = 15 • 8 = 6 (mod 19). 

18.3 Rabin-Williams Signatures 
Recall the discussion of the Rabin-Williams cipher in Section 17.6. We will 
use the same notation in this section. 

Theorem 17.2 says that if M e M, then D1(D2(E2(El(M)))) = M. Since 
both of the functions E2 and D2 are exponentiations modulo n, they commute: 
E2(D2{C)) = C2dmodn = D2(E2(C)). Therefore, from Theorem 17.2, we 
obtain the corollary that if M E A4, then D1(E2(D2(E1(M)))) = M. 

This corollary can be used to produce signatures as follows. 
Suppose Alice uses EA = E2AE\A and DA — D\AD2A as her enciphering 

and deciphering functions. Let Bob use the corresponding functions EB — 
E2BE\B and DB = DIBD2B- If Alice wishes to sign and encipher a message 
M to Bob, she computes the signature 5 = D2A{E\A{M)) and sends C = 
EB(S) to Bob. The mail header tells Bob that this is a signed message from 
Alice. 

Bob deciphers C by computing L = DB(C). He finishes deciphering it 
and checks Alice's signature by computing DIA(E2A(L)) = M. Since only 
Alice knows D2A, only she could have signed it. Only Alice could compute 
a ciphertext which would decipher through E2A into a meaningful message. 
The reason this technique works is the corollary mentioned above. 

As with RSA signatures, there may be a problem with the relative size of 
the moduli used in E2A and E2B . The signature S might have to be reblocked 
if it is too big for EB> Reblocking can be avoided if a threshold T is enforced, 
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and each user has two sets of Rabin-Williams enciphering and deciphering 
algorithms, one with a modulus below T and one with a modulus above T. 
Because of the limited message space M of the Rabin-Williams cipher, the 
second modulus should exceed 8T + 1. 

18.4 The Digital Signature Algorithm 
The Digital Signature Standard, DSS, uses the Digital Signature Algorithm, 
DSA, to sign the output of hash functions. Compare this with signing a hash 
function with RSA. 

DSA is a variation of signature schemes of ElGamal and Schnorr. 
Here is the notation for DSA. 
Let L be a multiple of 64 in the range 512 < L < 1024, p be a prime 

of L bits, that is 2L~l < p < 2L and q be a 160-bit prime which divides 
p — 1. Let h be a primitive root modulo p in the interval 1 < h < p — 1 and 
g = h^p~l^q mod p. Then g has order q modulo p. 

DSA assumes that discrete logarithms modulo p are hard to compute. 
Several people will use p, g, g as a global public key. Each user of the 

DSA chooses a secret private key x in 1 < x < q and publishes a public key 
y = gx mod p. Each time a user wants to sign a message M, she chooses a 
secret random number k in 1 < k < q and computes SHA of M, called h(M) 
below. 

Alice signs message M with the pair r, s, where r = (gk mod p) mod g, and 
s = [fe~1(ft(M) + xr)] mod q. 

If Bob receives the message M' with signature r', s' from Alice, he verifies 
her signature by computing w = ( s ' ) - 1 m ° d Q, u\ = [h(M')w] mod g, i¿2 = 
(r')w mod q, v = [(gUlyU2) modp) mod <?, and making the test, "Does v = 
r'V If this equality holds, then Bob accepts that M' — M is a message 
actually sent to him by Alice. Note that y is Alice's public key. 

Why does the DSA work? That is, assuming that the message and signature 
are received correctly (so M' = M, r' — r and s' — s), why should v — r? 
The following three lemmas and theorem prove that this equality should hold. 
Note that r doesn't even depend on M. 

LEMMA 18.1 
Ifa = b (mod q), then ga = gb (mod p). 

PROOF Write a = b + qt, where t is an integer. Then 

because gq = ( / i ^ " 1 ) / ^ = h^1 = 1 (mod p), by Fermat's little theorem. 
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LEMMA 18.2 
With the notation above, y«rw>> m o d «> = g«xrw^ m o d q) (mod p). 

PROOF By definition, y — gx mod p, so 

((rw) mod g) ^ gZ((rw) mod q) ( m o d pA 

Lemma 18.2 follows from Lemma 18.1 and the fact that 

x((rw) mod q) = ((xrw) mod q) (mod g). 

I 

LEMMA 18.3 
With the notation above, ((h(M) + xr)w) mod q = k. 

PROOF By definition, iu = s _ 1 mod g and s = [fc_1(/i(M) + xr)] mod q. 
Therefore, 1 = ws = wk~l(h{M) + xr) mod g (mod </). Since g is prime and 
g does not divide k, k = w(h(M) + xr) (mod g). The lemma follows because 
1 < fc < g. I 

THEOREM 18.1 The Digital Signature Algorithm works 
If M is unchanged and really came from Alice, then v = r. 

PROOF Using the definition of v and then those of u\ and u<i, we find 

i; = ((gUlyU2) modp) mod q 

V = (g(HM)w) mod q . y(rw) mod 9 m o d ^ m ( ) d ̂  

Lemma 18.2 allows us to replace y by g: 

V = (g(h(M)w) mod ç . ^ r u ; ) mod g m o d pj m o d g 

U = (g(h(M)w) m o d <?+(*™) mod g m o d ^ m ( ) d g 

Lemma 18.1 lets us combine terms in the exponent: 

v = (g{h{M)w+xrw) mod q m o d p ) m o d Q 

V = (g«HM)+xr)w) mod q m ( ) d pj m ( ) d ^ 

Now use Lemma 18.3 and the definition of r: 

v = (gk mod p) mod q — r. 

I 
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18.5 Exercises 
1. Show that the trick for speeding RSA signature generation produces the 

correct signature, and determine the constants a and b in the formula 
D(M) = (aSp + bSq) mod n. 

2. Can the trick for speeding RSA signature generation be modified slightly 
to accelerate Rabin-Williams signature generation? Explain your an­
swer. 

3. Consider the following simple signature algorithm which is like DSA 
except that it does not require a secret random number. 

The public elements are a prime q and a primitive root g for q. There 
is a private key x in 1 < x < q and a public key y — gx mod q. 

To sign a message M, compute h — h(M) for some hash function h. We 
require that gcd(ft, q — 1) = 1. If this is not so, then append the hash 
to the message and compute a new hash. Continue this process until a 
hash h is computed which is relatively prime to q — 1. Then compute z 
satisfying zh = x (mod (q - 1)). The signature for M is s = gz mod q. 
The signature is verified by checking whether sh = y (mod q). 

a. Show that the latter congruence will hold, provided the signature is 
valid. 

b. Show that the scheme is unacceptable by describing a simple tech­
nique for forging a user's signature on an arbitrary message. 

4. Consider the following signature algorithm. The public elements are 
a prime q and a primitive root g for q. Everyone knows and uses the 
same q and g. Alice has a secret key x in 1 < x < q and a public key 
y = g~x mod q. Let h be a standard hash function. The length in bits 
of the prime q is greater than the length of the output of h. 

To sign a message M, Alice generates a random integer k in 1 < k < 
q — 1 and computes gk mod q. Then she computes c = h(gk mod q; M), 
where ";" means concatenation of bit strings. Finally, Alice computes 
t — (k + cx) mod (q — 1). She sends the pair (¿, c) as the signature of M. 

When Bob receives M and the alleged signature (£, c), he obtains Alice's 
public key y from a secure site and computes a — gtyc mod q and tests 
whether /¿(a; M) = c. If these are equal, then Bob accepts the signature; 
otherwise he rejects it. 

a. Show that equality will hold, provided the signature is valid. 

b. Compare the efficiency of this signature algorithm with that of DSA. 

5. Design an elliptic curve variation of the Digital Signature Algorithm. 
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Key Exchange Algorithms 

This chapter discusses key exchange algorithms, which are protocols for two 
users, Alice and Bob, to agree on a common key or to learn each other's keys 
using a communication channel, like the Internet, which may have eavesdrop­
pers or even malicious users who masquerade as others. 

19.1 Key Exchange Using a Trusted Server 
Here we assume there is a trusted server, Tracy, who helps the other parties 
choose a common key K to a symmetric cipher EK> 

In the first two protocols, Tracy shares a secret key with Alice and a different 
secret key with Bob. A message enciphered with the symmetric cipher EA 
can be read only by Alice and Tracy. Likewise, the symmetric cipher EB is 
used only for secret communication between Tracy and Bob. These secret 
keys were chosen when Tracy met with each party before the protocol begins. 
These functions are used only for key distribution and not to send messages 
between Alice and Bob. 

In these protocols, A represents Alice's name and B represents Bob's name. 
The first protocol of this type is called Wide-mouthed Frog. It appeared 

in [21] and is about as simple as such a protocol can be. 

1. Alice generates a current time stamp ÍA and a common secret key K. 
She sends the message A.EA^A^B.K) to Tracy. 

2. Tracy knows that the message came from Alice because she sees Alice's 
name A in plaintext. She deciphers it with EA and finds Bob's name 
B. She checks that the time stamp ÍA is current to ensure that it is 
not being replayed by a malicious user. She makes a new current time 
stamp ÍB and sends the message EB^B^A^K) to Bob. 

3. Bob receives the message, deciphers it, checks that ts is current, sees 
Alice's name and begins communicating with her using the secret key 
K. 

245 
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No one could pretend to be Alice in Step 1 because they would not know 
EA> NO one could pretend to be Tracy in Step 2 because they would not know 
EA- NO one could pretend to be Bob in Step 3 because they would not know 
EB- The messages could not be replayed later because the enciphered time 
stamps in them are generated and checked. No eavesdropper could learn K 
because it is enciphered in transit. Tracy could betray Alice and/or Bob in 
many ways, but they trust her. The most likely attack would be on Alice's 
random key generator. If it were badly designed, an eavesdropper might be 
able to guess K. 

The next protocol is called Yahalom. It also appeared in [21]. This pro­
tocol and the previous one are mentioned in [22], which presents a way of 
analyzing the security of protocols like these using rules of inference as in 
mathematical logic. 

1. Alice generates a random number, r^, called a nonce because it is used 
just for this occasion. She sends the message A, TA to Bob. 

2. Bob receives the message, generates his own random number, rg , and 
sends Tracy the message B^EB^A^TA^B)-

3. Tracy receives Bob's message, deciphers it, generates a random secret 
key K for Bob and Alice to use, and sends Alice the pair of enciphered 
messages EA(B,K,rA,rB),EB(A,K). 

4. Alice deciphers the first message and checks that TA is the same nonce 
she created in Step 1. If it is, she sends Bob the message EB(A, K) and 
the message EK^B), which is encrypted with the session key K. 

5. Bob decrypts EB(A,K), obtains K, decrypts EK(TB) and checks that 
rs is the same number he created in Step 2. Then he begins communi­
cating with Alice using the secret key K. 

Although Alice sends her nonce in plaintext in Step 1, it is enciphered in 
Steps 2 and 3. An eavesdropper could discover r^, but would gain nothing 
from this knowledge because the eavesdropper could not forge the messages in 
Steps 2 and 3. Carol could pretend to be Alice in Step 1. If Carol managed to 
intercept the messages Tracy sent to Alice in Step 3, she would not be able to 
decrypt them, and so she could not perform Step 4. If Carol or someone else 
recorded and replayed messages from the protocol, they would not be accepted 
as genuine because the nonces would be wrong. Note how the nonces here 
play the role of the time stamps in the Wide-mouthed Frog protocol. No 
eavesdropper could learn K because it is enciphered in transit. An interesting 
feature of this protocol is that, although Alice initiates it, only Bob contacts 
Tracy. 

The next two key exchange protocols use public-key cryptography. Here 
EA, EB and ET are the public encryption functions of Alice, Bob and Tracy, 
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respectively. Let KA>> KB and KT be the respective public keys. Likewise, 
DA, DB and DT are the private decryption functions of Alice, Bob and Tracy, 
respectively. They are used also for signatures. Tracy maintains a database 
containing everyone's public keys, obtained securely before the protocol be­
gins. Everyone knows Tracy's public key KT, SO everyone can verify Tracy's 
signature. Alice and Bob may learn each other's public keys during the pro­
tocol, but they communicate later using a symmetric cipher with a random 
key K created during the protocol. Symmetric ciphers are much faster than 
public-key ciphers. 

Here is the key exchange protocol of Denning and Sacco [37]. 

1. Alice tells Tracy her identity and Bob's in the message A, B. 

2. Tracy sends Alice Bob's public key and Alice's own public key, both 
signed. That is, she sends Alice the message DT(B,KB),DT(A,KA). 

3. Alice verifies the signatures. She chooses a random session key K and 
a current time stamp ÎA* She signs these two numbers and enciphers 
them with Bob's public key. She sends this message, EB{DA{K,ÍA)), 

to Bob together with the two messages she received from Tracy. 

4. Bob verifies the signatures on the messages that came from Tracy via 
Alice. He uses his private key to decipher the message that originated 
with Alice and checks her signature using her public key, which he ex­
tracts from DT{A,KA)- If the time stamp ÎA is still valid, he begins 
communicating with Alice using the symmetric cipher with key K. 

An eavesdropper could learn from Step 1 that Alice wanted to communicate 
secretly with Bob. The eavesdropper could learn Alice and Bob's public keys 
from Step 2. But the eavesdropper could not decipher EB(DA(K, ÍA)) because 
he would not know DB- Hence the eavesdropper could not discover K or 
decipher the rest of the communication between Alice and Bob. There would 
be no point to replaying EB(DA(K^A)) later because its time stamp would 
be valid only for a short time. 

Here is another key exchange protocol, due to Woo and Lam [129] and [130]. 
It uses nonces instead of time stamps. 

1. Alice sends the message A, B to Tracy. 

2. Tracy signs Bob's public key and sends it to Alice as the message 
DT(KB)-

3. Alice verifies Tracy's signature on the message. She chooses a nonce 
TA and sends it with her name to Bob, enciphered with his public key: 
EB(A,rA). 

4. Bob sends Tracy Alice's name, his name and Alice's nonce enciphered 
with Tracy's public key: A, B, ET{VA)' 
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5. Tracy chooses a random secret key K for Alice and Bob to use in the 
symmetric cipher. Tracy sends Bob two messages. The first is DT(KA), 

Alice's public key, signed by Tracy. The second is EB(DT(TA,K, A, B)), 
which contains Alice's nonce rA, Alice's name, and Bob's name, all 
signed by Tracy and enciphered with Bob's public key. 

6. Bob deciphers the second message using DB and verifies the signa­
tures on both messages. Then he chooses a nonce r# and sends Al­
ice the signed second message from Step 5 and the new nonce, all en­
ciphered with Alice's public key; that is, he sends Alice the message 
EA(DT(rA,K,A,B),rB). 

7. Alice deciphers the message using DA. She verifies Tracy's signature 
and checks that rA is the same nonce she chose in Step 3. Then she 
sends Bob his nonce enciphered with the session key if, EK(TB)-

8. Bob deciphers the message and checks that r# is the same nonce he 
chose in Step 6. 

An eavesdropper could learn from Step 1 that Alice wanted to communicate 
secretly with Bob. The eavesdropper could learn Alice's public key in Step 2 
and Bob's public key in Step 5. But the eavesdropper could not decipher any 
of the enciphered messages, and so could not see the session key K or either 
nonce. Hence the eavesdropper could not decipher the rest of the commu­
nication between Alice and Bob. There would be no point to replaying any 
enciphered message because of the nonces in them. 

19.2 The Diffie-Hellman Key Exchange 
This protocol allows two users to choose a common secret key, for a symmet­
ric cipher like DES or Rijndael, say, while communicating over an insecure 
channel, without the aid of a trusted third party. 

The two users agree on a common large prime p and a constant value g, 
probably a primitive root, which may be publicly known and available to 
everyone. The algorithm is most secure when the order of g modulo p is large. 

Alice secretly chooses a random xA in 0 < xA < p — 1 and computes 
yA = gXA mod p. Bob secretly chooses a random XB in 0 < XB < p — 1 and 
computes ys — gXB mod p. 

Alice sends yA to Bob. Bob sends ys to Alice. An eavesdropper, knowing p 
and #, and seeing yA and ys, cannot compute xA or XB from this data unless 
he can solve the discrete logarithm problem quickly. 

Alice computes KA — yx
B

A mod p. Bob computes KB — yA
B mod p. Then 

KA = y*B* = (g**)** = tf"** = {?*)** = jff = KB (mod p) 

and 0 < KA-, KB < p, so KA = KB-
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Alice and Bob choose certain agreed-upon bits from KA to use as their key 
for a single-key cipher like DES or Rijndael. 

Although this protocol provides secure communication between Alice and 
whomever is at the other end of the communication line, it does not prove 
that Bob is the other party. To guarantee that Bob is at the other end, they 
would have to use a signature system like RSA or one of the protocols in the 
previous section. 

There is an elliptic curve variation of the algorithm in which the group Rp 

is replaced by an elliptic curve. In it, Alice and Bob agree on an elliptic curve 
E — Ea,b modulo a prime p and a point P of high order on E, perhaps a 
generator of the group. Let N be the order of the group. The group E and 
the point P need not be secret and Alice and Bob do not need to know N 
exactly. By Hasse's theorem, TV is approximately p, and that approximation 
is good enough. 

Alice secretly chooses a random XA in 0 < XA < N and computes PA — XAP 
on E. Bob secretly chooses a random XB in 0 < XB < N and computes 
PB = xBP on E. 

Alice sends PA to Bob. Bob sends PB to Alice. An eavesdropper, knowing 
E and P , and seeing PA and Pg, cannot compute XA or XB from this data 
unless he can solve the discrete logarithm problem for elliptic curves quickly. 

Alice computes KA = XAPB on E. Bob computes KB = XBPA on E. Then 

KA = (XA -xB)P = KB. 

Alice and Bob choose certain agreed-upon bits from KA to use as their key 
for a private key cipher like DES or Rijndael. 

Since the discrete logarithm problem is harder to solve for an elliptic curve 
than for the multiplicative group of integers modulo p, the modulus of the 
elliptic curve may be chosen smaller than the prime p for Rp. 

The protocol clearly generalizes to any large group. 

19.3 The X.509 Key Exchange 
X.509 is a directory authentication service that solves the following problems 
without the aid of a trusted third party who communicates with you during 
the protocol. 

How do you get the public key of someone to whom you wish to send mail? 
How do you know it is valid and not a forgery? How can you and another 
user agree on a private key to use to communicate over an insecure network? 

ITU-T recommendation X.509 defines a framework for provision of authen­
tication services. Each user has a public key certificate issued by a trusted 
certification authority CA. The signature of the certificate consists of the hash 
codes of its other fields, signed by the CA's private key. 

The certificates form a tree-structured hierarchy. 
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Each certificate contains fields for Version, Serial number, Algorithm for 
signature, Name of issuer (CA), Period of validity, Subject name, Subject 
public key information, and the Signature of the CA, and perhaps other fields 
depending on the version. 

Use f inger or f tp or a web browser to obtain the certificate of a user to 
whom you wish to send mail via public key cryptography. 

Use the "Issuer" field in the certificate to find the certificate for the CA, 
etc., to the root (whom everyone trusts) or up to some CA in the chain from 
you to the root. 

Note that: 

• Certificates need not be specially protected since they are unforgeable. 

• Any user with access to the public key of the CA can recover the user 
public key that was certified. 

• No one other than the CA can modify the certificate without the change 
being detected. 

• CA's may certify each other, to make it easier for users to reach a CA 
they trust when obtaining the certificate of a new user. 

• To revoke a certificate (for example, if the user's key was compromised), 
the CA of that key puts it on a public list, with its serial number and 
revocation date. 

X.509 also includes three alternative authentication procedures. 
Let us use the notation X{M} to mean "X signs M," that is, M followed 

by the signed hash code of M. The notation "A -> £:" means "A sends the 
following message to B." The ÍA is a time stamp, giving the date and time 
the message was sent, TA is a nonce, that is, a random number generated and 
used just this one time, sessionkeyAB is the key to a single-key cipher A and 
B will use to communicate for a while, and sgnData is the signature of the 
message digest of the other fields. Consider the following three messages. 

1. A —> B: A{tA, rA, B, sgnData, sessionkeyAB} 

2. B —> A: A{tB,rB,A,rA)sgnData,sessionkeyAB} 

3. A->B: A{rB}. 

Either Message 1, or Messages 1 and 2, or all three messages may be used. 
Message 1 establishes the identity of A, that the message was generated by 

A, that the message was intended for B, and that the message has not been 
changed or sent more than once. 

Message 2 establishes the identity of B, that the reply was generated by B, 
that the reply was intended for A, and that the reply has not been changed 
or sent more than once. 
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The purpose of the third message, if it is used, is to obviate the need to 
check time stamps. It is used when synchronized clocks are not available. It 
works because both nonces are echoed, so they can be checked to detect replay 
attacks. 

See Chapter 14 of Stallings [114] for more about X.509. 

19.4 Exercises 
1. There is a flaw in the key exchange protocol of Denning and Sacco. 

Suppose Alice and Bob have a brief secret conversation, so that the 
time stamp tA is still valid when they finish. Explain how Bob could 
pretend to be Alice and communicate with Carol so that Carol thought 
she was talking to Alice. Repair this flaw with a minor change to one 
message. 

2. Alice and Bob communicate securely every day. Eve knows the param­
eters p and g of the Diffie-Hellman algorithm they use to choose their 
daily Rijndael keys. The prime modulus p is so large that Eve cannot 
solve discrete logarithm problems modulo p. She has recorded all mes­
sages passing between them, including every y A , ys and the Rijndael-
enciphered traffic. She notices that Alice's random number generator 
must be defective, since Alice sends the same y A every day. However, 
Bob uses a new ys every day. 

Eve tells Bob that she is madly in love with him, is jealous of his daily 
secret conversations with Alice, and has recorded today's ciphertext. 
Bob recalls that today's conversation with Alice was pretty boring and, 
in a moment of weakness, tells Eve today's symmetric key KB (the 
whole KB, not just the part used for the Rijndael key) to let her read 
today's conversation and put her jealousy to rest. 

Given this information, how many days of recorded ciphertext can Eve 
decipher? 

3. There is a flaw in the three-way authentication procedure for X.509. In 
simplest form, the protocol is: 

A^B: A{tA,rA,B} 
B -> A: B{tB,rB,A,rA} 
A-> B : A{rB}. 

The X.509 rules state that checking the time stamps ÍA and ¿# is op­
tional for three-way authentication. The time stamps are set to 0 when 
they are not used. 

a. Explain how an active wiretapper C can impersonate Ato B. Assume 
that C is in the hierarchy, can capture messages passing between A and 
B, and can cause A to initiate authentication with C. 
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b. One solution to this problem is to use time stamps. Suggest another 
solution, one not using time stamps. 

4. Design a variation of the DifRe-Hellman key exchange protocol that will 
allow Alice, Bob and Chuck to choose a single common Rijndael key 
securely for their mutual communication. There is a public large prime 
p and a primitive root g. The three participants choose secret keys a, 
6, c, respectively. The common key should be some bits of gabc mod p. 
It should not be possible for an eavesdropper, who sees all messages 
passing among the three parties, but cannot change them, to deduce 
the common key. 



Chapter 20 

Simple Protocols 

This chapter presents a few simple protocols. Some of them make sense; others 
may seem strange because they are used as components of larger protocols in 
the next chapter. 

20.1 Bit Commitment 
Alice wants to commit to a "bit" (it can be a string of bits) now so that 
she can't change it later, but only Alice knows it for now. She wants to tell 
Bob something now that he can remember, and which is connected to the 
bit. Later, when Alice reveals the bit, she will tell Bob the bit and more 
information which he will see is connected to the bit and what Alice told him 
earlier. At that time Bob can check something and be convinced that the bit 
Alice has revealed must have been the one she had in mind earlier. He will 
know that she could not have changed it. 

Alice commits to b by generating two random strings i?i, i?2. 
She creates a message, (i?i, R2,6), and computes a hash value of it. 
She reveals, that is, tells Bob, the hash value and R\. 
When the time comes to reveal 6, Alice shows the message (i?i,i?2,&)-
Bob checks that R\ is the same as it was earlier and verifies the hash value. 
Why is R2 needed? Because if b were a short string (literally one bit, say), 

then Bob could guess it from the hash value. 

20.2 Mental Poker 
In the card game of poker, each player is dealt five of the 52 cards. Each 
player can see his hand, but not any other player's hand. Players bet based 
on their hands. The "best" hand wins. In some variations, some cards are 
revealed and some cards may be replaced by cards not yet dealt. 

The "e-mail" or "mental" poker protocol requires a fair deal with these 
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properties. Players see their own hands, but not other hands. The hands are 
disjoint. All hands are equally likely. A player can "draw" (replace) selected 
cards. A player can reveal individual cards one at a time without revealing 
other cards. All players can check at the end of the game that there was no 
cheating. 

We use a variation of the Pohlig-Hellman cipher to implement mental poker. 
Assume there are two players, Alice and Bob. (There are similar protocols 

for three or more players.) 
The players jointly choose a large prime p as modulus. Each secretly chooses 

ZA, d A , CB, ds, as in the Pohlig-Hellman cipher. Note that every e and d is 
relatively prime to p — 1 because we must have e^d^ = 1 (mod p — 1), etc. 
Define EA(M) = MeA modp, etc. Recall that these functions commute: 
EA(EB{M)) = EB(EA{M)) for every M, etc. Let M i , . . . , M 5 2 be the en­
coded deck (more if there is a joker). 

1. Bob enciphers the cards as d — EB(MÍ) for i = 1 , . . . , 52. Bob sorts the 
d as numbers and sends them to Alice. The sorting operation shuffles 
the deck so that Alice cannot tell which d represents which M¿. 

2. Alice selects five cards Ci at random and sends then to Bob, who de­
crypts them as his hand. 

3. Alice selects five more random cards, say C i , . . . , C s (her hand) and 
enciphers them as C[ — EA(CÍ) for i — 1 , . . . , 5. She sends them to Bob. 

4. Bob deciphers the C[. They are still enciphered with EA after he applies 
DB to undo EB- He sends the DB(C¡) back to Alice. 

5. Alice deciphers the five cards and uses them as her hand. They bet and 
play poker. A card is "revealed" by sending both the plain and cipher 
text of it to the other player. 

6. At the end of the hand, Alice and Bob exchange their keys e^, etc., and 
check everything that happened. 

Unfortunately, one can cheat in mental poker because the cipher functions 
EA, EB, etc., preserve quadratic residues. 

THEOREM 20.1 Quadratic residues are preserved 
Let 0 < a < n, gcd(a,n) = 1, and gcd(e,0(ra)) = 1. Then a is a quadratic 

residue modulo n if and only if ae is a quadratic residue modulo n. 

PROOF Let d be the inverse of e modulo (/>(n): ed = 1 (mod (j>{n)). If a is 
a quadratic residue modulo n, then there exists an x so that x2 = a (mod n). 
Let y = xe mod n. Then 

y2 = {xe)2 = {x2)e = ae (mod n). 
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This shows that ae is a quadratic residue modulo n. Conversely, if a6 is 
a quadratic residue modulo n with y2 = a6 (mod n), then (yd)2 = aed = 
a (mod n), so a is a quadratic residue modulo n. I 

Alice can use this theorem to cheat: Perhaps most high cards are quadratic 
residue and most low cards are quadratic nonresidues. It is like playing with 
a deck in which most high cards are "marked." This attack can be foiled by 
(a) appending extra bits to each M i or (b) multiplying some of the M¿ by a 
fixed quadratic nonresidue in order to make all cards be quadratic residues or 
all cards be quadratic nonresidues. 

In order for Alice to cheat and in order to foil the attack, one must be able 
to distinguish between quadratic residues and quadratic nonresidues modulo 
p (at least for prime p) quickly. This is easy. See Theorem 7.11. 

20.3 Oblivious Transfer 
An application of finding square roots modulo n is the Rabin-Blum oblivious 
transfer or coin tossing protocol. In it, Alice reveals a secret to Bob with 
probability 1/2. 

In the oblivious transfer version, Alice doesn't know whether Bob got the 
secret or not (and this outcome must be acceptable to both participants). 

In the coin tossing version, Bob tells Alice whether he got the secret. He 
wins the coin toss if he did get it; loses otherwise. 

Alice's secret is the factorization of a number n = pq which is the product 
of two large Blum primes p = q = 3 (mod 4). 

1. Alice sends n to Bob. 

2. Bob picks a random x in i /ñ < x < n with gcd(#, n) = 1. Bob computes 
a — x2 mod n and sends a to Alice. 

3. Knowing p and q, Alice computes the four solutions to x2 = a (mod n). 
They are x, n — x, y and n — y, for some y. These are just four numbers 
to Alice. She doesn't know which ones are x and n — x. She chooses one 
of the four numbers at random and sends it to Bob. 

4. If Bob receives x or n — x, he learns nothing. But, if Bob receives y or 
n — y, he can factor n by computing gcd(# + y,ri) = p o r q. 

Why can Bob factor n if he gets y or n — yl He can do so because of 
Theorem 13.1. 

Here is another way to do the same protocol: 
Alice will send Bob one of two messages. Bob will receive one. Alice won't 

know which one. 

1. Alice generates two RSA public/private key pairs. She sends both public 
keys to Bob. 
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2. Bob chooses a Rijndael key K. He chooses one of Alice's public RSA 
keys and enciphers K with it. He sends the encrypted key to Alice 
without telling her which of her public keys he used to encipher it. 

3. Alice decrypts Bob's key twice, using both of her private RSA keys. In 
one case, she gets K. In the other case, she gets garbage that looks like 
a Rijndael key. She can't tell which is which. 

4. Alice encrypts the two messages with Rijndael, one using K and the 
other using the garbage key. She sends both ciphertexts to Bob. 

5. Bob tries to decrypt the two ciphertexts using K. He can read one 
message; the other is gibberish. 

Alice doesn't know which message Bob can read. Alice could cheat unless 
we used the next step. 

6. Alice gives Bob both of her private RSA keys so that he can verify that 
she did not cheat. After all, she could have encrypted the same message 
with both keys in Step 4. Then she would know which message Bob 
received. 

2O.4 Zero-knowledge Proofs 
A zero-knowledge proof is a dialog between two people, the Prover (Alice) and 
the Verifier (Bob), in which the Prover convinces the Verifier that she knows 
a certain secret, but without revealing to the Verifier (or to an eavesdropper) 
any part of the secret. After the protocol concludes, neither the Verifier nor 
an eavesdropper could masquerade as the Prover to convince someone else 
that they know the secret. 

There are many different forms of zero-knowledge proof. We describe a 
zero-knowledge proof protocol that uses square roots modulo n. One appli­
cation of these protocols is in identification. If Alice can show that she can 
compute arbitrary square roots modulo n, a number whose factorization is 
known only to her, then she can convince someone at the other end of an 
Internet connection that she really is Alice, by Theorem 13.2. 

This protocol is closely related to the oblivious transfer protocol. The 
difference is that Alice wants to convince Bob that she knows the factors of 
n = pq, but does not want to reveal the factors to Bob. 

Alice (the Prover) convinces Bob (the Verifier) that she knows the prime 
factorization of a large composite number n, but does not give Bob any hint 
that would help him find the factors of n. In terms of entropy, this means 
that if M is a message that tells the factors of n, and S is the set of messages 
exchanged by Alice and Bob during the zero-knowledge proof, then H(M\S) = 
H(M). Thus, Bob learns nothing about the factorization of n during the 
protocol that he could not have deduced on his own without Alice's help. 
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Roughly speaking, Bob gives Alice some quadratic residues modulo n and 
Alice replies with their square roots. The difficulty with this simple approach 
is that when Alice replies to Bob with a square root, there is a 50% chance that 
she will reveal the factorization of n to Bob, as in the first oblivious transfer 
protocol. It is known that computing square roots modulo n is polynomial-
time equivalent to factoring n. 

Here is a good way to do the zero-knowledge proof protocol: 
Alice knows n, p and q. Bob knows n but not p or q. 

1. Alice chooses a in y/ñ < a < n and computes b = a2 mod n. 

2. At the same time, Bob chooses c in yjn < c < n and computes d = 
c2 mod n. 

3. Alice sends b to Bob and Bob sends d to Alice. 

4. Alice receives d and solves x2 = bd (mod n). (Note that this is possi­
ble because bd is a quadratic residue and she can compute its square 
roots since she knows the factors of n.) Let x\ be one solution of this 
congruence. 

5. At the same time, Bob tosses a fair coin and gets Heads or Tails, each 
with probability 1/2. Bob sends H or T to Alice. 

6. If Alice receives H, she sends a to Bob. If Alice receives T, she sends x\ 
to Bob. 

7. If Bob sent H to Alice, then he receives a from Alice and checks that 
a2 = b (mod n). If Bob sent T to Alice, then he receives x\ from Alice 
and checks that x\ = bd (mod n). 

Alice and Bob repeat steps 1 through 7 many (20 or 30) times. 
If the check in step 7 is always okay, then Bob accepts that Alice knows the 

factorization of n. 
But if Alice ever fails even one test, then Bob concludes that Alice is lying. 
Why does this protocol work? If Alice really knows the factors of n, then 

she can compute all the required square roots by the methods of Chapter 7. 
If Alice doesn't know the factors of n, then she will not be able to compute 
general square roots modulo n. She could fake one of the two square roots, 
but not both. In this case, she could give Bob the correct square root only if 
she could guess which one he would request. If Bob really tosses a fair coin 
to decide which square root to request, then Alice would have to guess the 
outcome of each coin toss. There is less than one chance in a million that she 
could predict the outcome of twenty coin tosses. 

Why does Bob not learn the factors of n? This is so because through­
out the protocol, Bob learns only one square root of any single quadratic 
residue. He would have to know two different square roots (not satisfying 
ri = —r2 (mod n)) in order to apply Theorem 13.1. 
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20.5 Methods of Sharing Secrets 
An important cipher key K must be protected from (a) accidental or ma­
licious exposure (causing vulnerability) and (b) loss or destruction (causing 
inaccessibility). 

Both problems may be alleviated by the use of shadows in a threshold 
scheme. 

For 1 < t < w, a (t,w) threshold scheme is a system of protecting a key 
K by breaking it into w shadows (pieces), Ki,...,Kw, in such a way that 
(a) it is easy to compute K using knowledge of any t of the shadows if¿, but 
(b) it is impossible to compute K because of lack of information if one knows 
only t — 1 or fewer of the shadows K{. 

The w shadows are given to w users. Since at least t shadows are needed 
to find if, no group of fewer than t users can conspire to get the key. 

At the same time, if a shadow is lost or destroyed, one can still compute K 
so long as at least t valid shadows remain. 

The same mathematics can handle more complicated cases in which some 
people are more important than others. For example, suppose the secret key 
K opens a safe in a bank. Let the policy be that the safe can be opened by (a) 
any four tellers, or (b) a manager and two tellers, or (c) two managers, or (d) 
the bank president. Then one could use a (4,w) threshold scheme, where w 
is large enough. Give each teller one shadow, each manager two shadows and 
the president four shadows. The safe can be opened whenever four shadows 
are available. 

20.5.1 Secret Splitting 

The special case of t — w is easy to arrange. In this case the secret is split 
among w people and all w must get together to use the secret. This technique 
is called secret splitting. A trusted person or program, Tracy, prepares the 
w shadows. The first w — 1 people are given random bit strings of the same 
length as the secret. The last person receives the exclusive-or of the w - 1 
random strings and the secret. 

To reconstruct the secret the w people simply exclusive-or their strings. 
Each random string appears twice in the final exclusive-or and the secret 
appears once in it, so the exclusive-or of all w strings is the secret. If any 
w — 1 of the people try to compute the secret, they can't do it because they 
lack the missing bit string. Anything they could compute would be as random 
as the missing string. 

Other forms of secret sharing can be done elegantly with number theory. 

20.5.2 The Lagrange Interpolating Polynomial Scheme 

Shamir [102] proposed a (¿, w) threshold scheme based on Lagrange interpo­
lating polynomials. 
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Indeed, it is easy to see that h(x) is a polynomial of degree no more than 
t — 1, and when x — ij each term in the sum has a factor 0 in the product, 
except for the j-th term, which has the product equal to 1 and the value Kiá, 
so that h(ij) = Kiá, as required. 

Shamir's threshold scheme uses Lagrange polynomials modulo p. 
The shadows come from a random polynomial of degree t — 1: 

h(x) = (o¿_ixí _ 1 + h a\x + ao) mod p 

with constant term CLQ = K and random numbers for a¿_ i , . . . , a\. 
All arithmetic is done modulo p, where p is a prime number greater than 

both K and w. Long keys can be broken into smaller blocks to avoid com­
puting modulo a large prime. 

Given the polynomial h(x), the key K is easily computed by K = h(0). 
The w shadows are defined as the value of h(x) at w distinct points. For 

example, one might let K{ — h(%) for 1 <i<w. 
Given t shadows, K^,..., K{t, one may construct h(x) as 

i f l 

# 2 

# 3 

A-4 

^ 5 

= ft(l) = 
= ft(2) = 

= ft(3) = 

= h(4) = 

= ft(5) = 

= (6 + 7 + 10) mod 13 = 10 

= (24 + 14 + 10) mod 13 = 9 

= (54 + 21 + 10) mod 13 = 7 

= (96 + 28 + 10) mod 13 = 4 

= (150 + 35 + 10) mod 13 = 0 

A polynomial of degree t — 1 is determined by its values at t distinct val­
ues of its argument. In numerical analysis it is shown that given t points 
(ii, KÍÍ), . . . , (it, Kit)

 w i t n different x coordinates ij, there is a unique poly­
nomial of degree <t — l passing through them. It is the Lagrange polynomial 

If only t — 1 shadows are known, then, for any Ko, one could pick (0, Ko) 
as the t-ih point and compute a polynomial ho(x) with Ko = h(0). Hence, 
t — 1 shadows reveal nothing about K. 

Example 20.1 

Let t = 3, w = 5, p = 13, K = 10 and 

h(x) = (6x2 + 7x + 10) mod 13, 

with random coefficients 6 and 7. 
The five shadows are the values of h(x) at x = 1, 2, 3,4, 5: 
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We can recover h(x) and K = h(0) from any three of the shadows. For 
example, using K\, K3 and K5 we have: 

hM i n ( x - 3 ) ( ^ - 5 ) (x-l)(x-b) i n ( ^ - l ) ( ^ - 3 ) 
h{x) = 1 0 ( l - 3 ) ( l - 5 ) + 7 ( 3 - 1 ) 0 - 5 ) + ° ( 5 - l ) ( 5 - 3 ) m ° d 1 3 

= 10(x - 3)(x - 5)/8 + 7(x - l)(x - 5)/(-4) mod 13 

= 10(x - 3)(a? - 5)5 + 7(x - l)(x - 5)3 mod 13 

= 50(z2 -8x + 15) + 21(x2 - 6x + 5) mod 13 

= ll(rr2 + 5a; + 2) + S(x2 + 7x + 5) mod 13 

= (19a:2 + lllar + 62) mod 13 = h(x). 

20.5.3 The Asmuth and Bloom Threshold Scheme 

Asmuth and Bloom [5] based their threshold scheme on the Chinese remainder 
theorem. 

Let K > 0 be the key. Let p, di,d2,-..,dw be integers such that p > K, 
d\ < d<i < • • • < dw, gcd(p, di) = 1 for all i, gcd(d¿, dj) = 1 for all i ^ j , and 
d\d2 - • - dt > pdw-t+2dw-t+3 ' ' ' dw. 

The gcd requirements guarantee that the integers p, d\, ¿2, • • •, dw are pair-
wise relatively prime. The last condition says that the product of the t small­
est di$ is greater than the product of p and the t — 1 largest d¿'s. Let 
n — d\d2- "dt be the product of the t smallest <¿¿'s. Then n/p is greater 
than the product of any t — 1 of the d¿'s. 

Let r be a random integer in the range 0 < r < n/p. Write K' = K + rp. 
Then 0 < K' < n. The w shadows are defined as Ki = K1 mod di for 
i — 1 , . . . ,w. 

To recover K, it suffices to find K' because K = K' mod p. If ¿ shadows 
if¿1,..., Kit are known, then by the Chinese remainder theorem, K1 is known 
modulo ri\ = d¿1 • • -o?¿t. Since ni > n > K\ the Chinese remainder theorem 
uniquely determines K'. 

If only t—1 shadows K\x,..., -^Q^ are known, then K' can only be known 
modulo 712 — dix - "dit_1. Because n/77,2 > p (the last condition above) and 
gcd(ri2,p) = 1, the numbers x such that x < n and x = K' (mod 712) are nearly 
evenly distributed over all the congruence classes modulo p. Therefore, there 
is not enough information to determine K'. 

Example 20.2 

Let K = 3, t = 2, w = 3, p = 5, di = 7, d2 = 9 and d3 = 11. Then 
n = d\di = 7-9 = 63 > 5 - 11= pd$ as required. 

We need to choose a random number between 0 and (63/5), that is, between 
0 and 12. Picking r = 9, we get 

K' = K + rp = 3 + 9 - 5 = 48. 
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The shadows are Kx = 48 mod 7 = 6, K2 = 48 mod 9 = 3 and K3 = 48 mod 
11 = 4. 

Given any two of the three shadows, we can compute K. Assume we know 
K\ and K3. Then m = di<¿3 = 7 • 11 = 77. The Chinese remainder theorem 
produces K' = 48 (mod 77). Finally, K = K' mod p = 48 mod 5 = 3. 

20.0 Blind Signatures 
Suppose Bob uses RSA for signatures and has public keys n and e, and a 
private key d for this purpose. Alice wants Bob to sign a message M, but 
Alice doesn't want Bob to see the contents of M. Bob trusts Alice and agrees 
to provide a blind signature for M. 

Normally, Bob would sign M by computing Md mod n and giving this 
number to Alice. But if he did that, he could see what M says. 

Instead, Alice chooses a random k in 1 < k < n. She "blinds" (enciphers) 
M by computing t = Mke mod n. To Bob, t looks like a random integer. He 
cannot compute M from t because he doesn't know k. Bob signs t as 

td = (Mke)d = Mdked = Mdk (mod n). 

After she leaves Bob with td mod n, Alice "unblinds" (deciphers) the signed 
message by computing the multiplicative inverse k~l mod n via the extended 
Euclidean algorithm and multiplying: 

s = tdk~l mod n = {Mke)dk~l = Mdked'1 = Md (mod n). 

Now Alice has Bob's blind signature Md mod n for M, and Bob never saw 
M. 

This protocol is the electronic equivalent of Alice sealing M inside an en­
velope with a piece of carbon paper, getting Bob to sign the outside of the 
envelope, so that the carbon paper copies his signature onto M, and then 
Alice opening the envelope later. 

20.7 Exercises 
1. Alice discovers a wonderful proof of the Riemann Hypothesis. She writes 

a manuscript containing her proof, but does not publish it immediately 
because she feels the world is not ready for the proof. However, she 
wants to be able to claim that she did it first in case someone else finds 
a proof later. What short string of letters or numbers could she publish 
in a classified advertisement in the New York Times to accomplish this 
goal? 

2. Design a protocol for mental poker with three players. 
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3. The rules of draw poker allow players to discard (some) cards and replace 
them. Show that discarding and replacement can be done by a slight 
modification of the mental poker protocol. 

4. Is there a way that either Alice or Bob could deliberately lose the coin 
tossing protocol? Explain your answer. 

5. Can Bob deduce Alice's second message when she gives him both of her 
private RSA keys in Step 6 of the second oblivious transfer protocol? 

6. Consider Shamir's Lagrange interpolating polynomial threshold scheme. 
Let t = 4, p = 11, K = 7 and h{x) = (x3 + 10a;2 + 3x + 7) mod 11. 
Compute shadows for x = 1, 2, 3, 4, 5, 6 and 7. Reconstruct h(x) from 
the shadows for x = 1, 3, 5 and 7. 

7. Consider Asmuth and Bloom's key threshold scheme based on the Chi­
nese remainder theorem. Let t — 2, w = 4, p = 5, d\ = 8, d2 — 9, 
d3 = 11, d4 = 13. Then n = 8 x 9 = 72. Let K = 3 and r = 10, so that 
K1 — 53. Compute the four shadows K\, K2, K% and K4. Reconstruct 
K from K\ and K3. 

8. Consider Asmuth and Bloom's key threshold scheme based on the Chi­
nese remainder theorem. Suppose keys have three shadows, any two 
of which are enough to determine the key. Suppose the key is a non-
negative integer less than p = 5, while the shadows are integers modulo 
di = 7, c?2 = 9 and d% = 11. Determine the key K from the two shadows 
K\ = 0 and K% = 9. Then find the second shadow K2. Note that the 
two given shadows correspond to the first and third moduli 7 and 11. 

9. A small bank has an electronic safe which may be opened by certain 
combinations of the president, the two managers and the five tellers. 
Policy dictates that the safe may be opened if and only if 

(a) the bank president decides to open it, or 

(b) the two managers both decide to open it, or 

(c) all five tellers decide to open it, or 

(d) one manager and three tellers decide to open it. 

Explain how you would choose the parameters and distribute the shad­
ows of a Lagrange interpolation polynomial key threshold scheme to 
meet the requirements of this bank. 
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Complicated Protocols 

This chapter discusses several complicated protocols. Some of them use pro­
tocols from the previous chapter. See Chapters 5 and 6 of Schneier [100] for 
more about these protocols. 

21.1 Contract Signing 
Alice and Bob want to enter into a contract. They agree on it. Both want to 
sign, but neither wishes to sign unless the other signs as well. 

The first protocol uses a trusted arbitrator, Tracy. 

1. Alice signs a copy of the contract and mails it to Tracy. 

2. Bob signs a copy of the contract and mails it to Tracy. 

3. Tracy tells both Alice and Bob that the other has signed it. 

4. Alice signs two copies of the contract and mails them to Bob. 

5. Bob signs both copies, keeps one and mails the other to Alice. 

6. Alice and Bob both tell Tracy that they each have a copy of the contract 
signed by both of them. 

7. Tracy destroys the two copies of the contract that she has. 

If Alice didn't sign the contract in Step 4, then Bob could get a copy she had 
signed from Tracy. Likewise, if Bob didn't sign it in Step 5, then Alice could 
get one he had signed from Tracy. 

In the second protocol, Alice and Bob have no arbitrator, but are face-to-
face in a room. 

1. Alice signs the first letter of her name on two copies of the contract and 
hands them to Bob. 

263 



264 Cryptanalysis of Number Theoretic Ciphers 

2. Bob signs the first letter of his name on both copies and hands them 
back to Alice. 

3. Alice signs the second letter of her name on both copies and hands them 
back to Bob. 

4. Bob signs the second letter of his name on both copies and hands them 
back to Alice. 

5. This continues until both Alice and Bob have signed their entire names. 

In the third protocol, Alice and Bob have no arbitrator and are not face-
to-face. In this case, they exchange a series of signed messages of the form, 
"I agree that I am bound by the contract with probability p." Suppose that 
Alice doesn't want to be bound to the contract with a probability more than 
2% higher than the probability Bob is bound to it. Suppose also that Bob 
doesn't want to be bound to the contract with a probability more than 3% 
higher than the probability Alice is bound to it. 

1. Alice and Bob agree on a time by which the signing protocol should be 
completed. 

2. Alice mails Bob a message with p = 0.02. 

3. Bob mails Alice a message with p = 0.05. 

4. Alice mails Bob a message with p = 0.07. 

5. Bob mails Alice a message with p = 0.10. 

6. These steps alternate until both have received messages with p = 1 or 
else the time in Step 1 has passed. 

In case one of Alice and Bob stopped the protocol before the end, the other 
would take the last signed message to a judge, who would choose a random 
number between 0 and 1 and compare it to the p in the message to see whether 
the contract was valid. 

In the fourth protocol, Alice and Bob have no arbitrator, are not face-to-
face, and can't agree on the probabilities above. 

1. Alice and Bob randomly select 2n Rijndael keys, in pairs. 

2. Alice and Bob generate n pairs of messages: L¿ = "This is the left half 
of my signature." Ri = "This is the right half of my signature." Each 
message also contains a digital signature of the contract and a time 
stamp. The contract is considered signed by a party if both L¿ and Ri 
can be produced by the other party for some 1 < i < n. 
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3. Alice and Bob encipher their message pairs using the 2n Rijndael pairs, 
the left message with the left key and the right message with the right 
key. 

4. Alice and Bob mail each other their set of 2n enciphered messages, 
making it clear which is which. 

5. For 1 < i < n, Alice and Bob mail each other one of the keys in the 
i-ih pair by oblivious transfer, omitting Step 6 for the moment. Now 
they each have one key in each pair, but neither knows which signature 
halves the other can read. 

6. Both Alice and Bob decipher the messages they can, using the keys 
mailed to them. They check that the messages are valid. 

7. Alice and Bob mail each other the first bit of all 2n Rijndael keys. They 
check the n first bits they already know. 

8. Alice and Bob repeat Step 7 for the second, third, etc., bits, until all 
bits of all the Rijndael keys have been exchanged. 

9. Alice and Bob decipher the remaining halves of the message pairs and 
the contract is signed. 

10. Alice and Bob exchange the private RSA keys (Step 6 of the RSA version 
of the oblivious transfer protocol) and verify that the other has not 
cheated. 

If Bob wanted to cheat, he could send garbage in Step 4 or 5, but Alice would 
notice this fraud in Step 6. 

21.2 Secure Elections 
Secure elections should have at least these properties: 

1. Only registered voters can vote. 

2. No person can vote more than once. 

3. No one can determine for whom anyone else voted. 

4. Every voter can make sure that his vote has been counted. 

5. No person can duplicate any other person's vote. 

6. No person can change any other person's vote undetected. 

All of the following protocols use a Central Tabulating Facility, CTF. The 
following protocol satisfies Property 6, but not much else. 
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1. Each voter enciphers his vote with the public key of the CTF and mails 
it to the CTF. 

2. The CTF deciphers the votes, tabulates them, and publishes the results. 

There are many problems with this protocol. The CTF can't tell whether 
votes come from registered voters or whether registered voters vote more than 
once. 

Protocol 2 is slightly better. 

1. Each voter signs his vote with his private (RSA) key. 

2. Each voter enciphers his signed vote with the CTF's public key and 
mails it to the CTF. 

3. The CTF deciphers all votes, checks signatures, tabulates the votes and 
publishes the results. 

This protocol satisfies Properties 1, 2 and 6: only registered voters can vote 
and no person can vote more than once. Also, no person can change any vote. 

The problem is that the CTF knows who voted for whom. The voters must 
trust the CTF completely. 

Protocol 3 solves many of these problems. The "blinding" mentioned in Step 
2 refers to the blind signature protocol described in the previous chapter. 

1. Each voter prepares ten sets of messages. Each set contains a valid 
vote for each possible outcome. Each message also contains a randomly 
generated twenty-digit number. 

2. Each voter blinds each of these messages individually and mails them 
to the CTF. 

3. The CTF checks its list to make sure the voter has not submitted his 
blinded votes previously in this election. It randomly chooses nine of 
the ten sets of votes and asks the voter to unblind these sets. The voter 
does and the CTF checks that these nine sets are properly formed. If 
they are, then it individually signs each message in the tenth set. It 
mails them back to the voter and stores his name in the list. 

4. The voter unblinds the signed tenth set and is left with a set of all 
possible votes signed by the CTF. He can tell which is which. 

5. The voter chooses one of the possible votes and enciphers it with the 
CTF's (second) public key. He mails it to the CTF. 

6. The CTF deciphers the votes, checks the signatures, checks its list for 
a duplicate twenty-digit number, saves the twenty-digit number in the 
database and tabulates the votes. It publishes the results of the election, 
along with every twenty-digit number and the vote with it. 
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The blind signature ensures that votes are unique. No one can generate 
bogus votes or change votes of others because the CTF's private key is secret. 
A malicious CTF cannot determine how people voted. Each voter can confirm 
that his vote was tabulated correctly. 

However, if the CTF can determine where the votes comes from, it can 
link votes with people. Even if it can't do this, it could still generate many 
signed valid votes and submit them itself. If Alice discovers that the CTF has 
changed her vote, she cannot prove this. 

The next protocol has the six properties listed above and these two: 

7. A voter can change his mind, that is, delete his old vote and cast a new 
one, within a certain time period. 

8. If a voter finds that his vote is miscounted, he can correct the problem 
without hurting the secrecy of his ballot. 

Protocol 4. 

1. The CTF publishes a list of all eligible voters. 

2. Before a deadline, each voter tells the CTF whether he intends to vote. 

3. At this deadline, the CTF publishes a list of all eligible voters who intend 
to vote. 

4. Each voter receives a unique twenty-digit number / , for example, by 
mental poker or blind signature protocol. 

5. Each voter generates RSA keys n, e, d with encipher function E and 
decipher function D. If his vote is v, he mails the message I,E(I;v) 
anonymously to the CTF. 

6. The CTF acknowledges getting the vote by publishing E(I,v). 

7. Each voter mails the message / , d to the CTF. 

8. The CTF deciphers the votes. It can do this since it has received the d 
for each vote, so it can compute D(E(I;v)) = I; v. When the election 
ends, it publishes the results and, for each different vote, the list of all 
E(I; v) that contained that vote. 

9. If a voter sees that his vote was not counted properly, he objects by 
mailing / , E(I; v), d to the CTF. 

10. If a voter wants to change his vote from v to v', he mails I,E(I;vf),d 
to the CTF. 
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Steps 1 through 3 of Protocol 4 are preliminary to the actual voting. They 
reduce the ability of the CTF to add fraudulent votes. 

If two voters get the same / in Step 4, the CTF discovers this in Step 5. 
It creates a new twenty-digit number / ' , chooses one of the two votes, and 
publishes I',E(I\v). 

The person who cast that vote recognizes it and votes again by repeating 
Step 5 with the new I'. 

In Step 6, each voter can check that his vote is counted accurately. If not, 
he can prove this in Step 9. 

One limited problem is that the CTF could make up fraudulent votes for 
people who respond in Step 2 but don't actually vote. 

A more serious problem is that CTF could neglect to count a vote. Alice 
could claim that the CTF deliberately neglected her vote, while the CTF 
could claim that she never voted. 

21.3 Electronic Cash 
Electronic cash or digital cash is not a check, credit card or a debit card. 
They leave audit trails. It is as close to cash as can be. 

Digital cash is anonymous and untraceable. It can be sent through computer 
networks. It can be used off-line, not connected to a bank. It is transferable. 
One can make change with it. It can be stolen. It can be spent only once. It 
would be used to pay for small things like tolls and food. 

We do not achieve all of these goals, but we design electronic cash with 
many of these properties. In the next two sections we describe two quite 
different forms of digital cash. 

21.3.1 Electronic Cash According to Chaum 

We begin with a simple protocol for digital cash and follow with a series of 
more complicated protocols that fix the problems with the first one. 

1. The bank gives Alice a note for $100 (like a money order or cashier's 
check) and subtracts $100 from Alice's bank account. 

2. Alice spends the note with a merchant. 

3. The merchant deposits the note in his bank account. 

4. The merchant's bank clears the note with Alice's bank. 

This protocol has many problems. As the note is electronic, it can be easily 
copied, so Alice could spend it twice. So could the merchant. Also, Alice 
could be traced if the bank remembered the serial number of the note. 
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We solve these problems one-by-one, following Chaum [26] and [27]. Pro­
tocol 1 solves the problem of Alice being traced by the bank and makes the 
money truly anonymous. The bank has RSA keys n, e, d, as usual. 

Protocol 1. 

1. Alice makes 100 anonymous money orders for $100 each. She blinds 
(enciphers) each one and gives them all to her bank. 

2. The bank asks Alice to open 99 of the money orders, randomly chosen, 
and verifies that each one is a money order for $100. (If not so, Alice 
goes to jail.) To "open" the 99 money orders t, Alice tells the bank M 
and k for each. The bank verifies that each t = Mke mod n. 

3. The bank put its blind signature on the last, unopened one, returns it 
to Alice and deducts $100 from her bank account. 

4. Alice unblinds the money order (now signed by the bank) and spends it 
with a merchant. 

5. The merchant verifies the bank's signature (which can be done without 
communication with bank) to make sure it is valid. 

6. The merchant takes the money order to his bank, which verifies the 
signature and adds $100 to merchant's bank account. 

Protocol 1 makes anonymous cash, but cash that can still be spent twice. 
Protocol 2 protects the bank from double spending, but doesn't catch the 
double spender. 

Protocol 2. 

1. Alice makes 100 anonymous money orders for $100 each. On each one 
she writes a random twenty-digit integer. She blinds each one and gives 
all to her bank. 

2. The bank asks Alice to open 99 money orders, and verifies that each one 
is a money order for $100 and that all 99 twenty-digit integers differ. 
(If not, Alice goes to jail.) The bank puts its blind signature on the 
last money order, returns it to Alice and deducts $100 from her bank 
account. 

3. Alice unblinds the money order (now signed by the bank) and spends it 
with a merchant. The merchant verifies the bank's signature to make 
sure it is valid. 

4. The merchant takes the money order to his bank. 
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5. The merchant's bank verifies the signature, and checks in a database to 
make sure that a money order with the same twenty-digit integer has 
not been previously spent. If this has not happened, then it adds $100 
to the merchant's bank account and records the twenty-digit number 
in the database used by all banks. But if the number is already in the 
database, then the bank doesn't accept the money order. 

With Protocol 2, if Alice tries to spend the money order twice, or if the 
merchant tries to deposit it twice (in two different banks, say), the second 
bank will know and not accept it. Protocol 3 identifies the cheater. 

Protocol 3. 

1. Alice makes 100 anonymous money orders for $100 each. On each 
one she writes a random twenty-digit integer and 100 pairs of identity 
bit strings: (IIL,IIR), • • • > {hooL, IIOOR)- Each part is a bit-committed 
packet that Alice can be asked to open, and whose proper opening can 
easily be checked. Any pair, (h9L,h9R), s a v

5 reveals Alice's identity 
when the two strings are exclusive-or'ed together. But halves from dif­
ferent pairs, such as(l23L,hiR) or (Ii9L,hiL), do not reveal who Alice 
is. Alice blinds each money order and gives all 100 of them to her bank. 

2. The bank asks Alice to open 99 money orders, and verifies the contents. 
If it finds an error, Alice goes to jail. The bank puts its blind signature 
on the last money order, returns it to Alice and deducts $100 from her 
bank account. 

3. Alice unblinds the money order (now signed by the bank) and spends 
it with a merchant, who verifies the bank's signature to make sure it is 
valid. 

4. The merchant asks Alice to randomly reveal either the left or right half 
of each of the 100 identity strings. (The merchant chooses the random 
numbers.) Alice reveals them. 

5. The merchant takes the money order to his bank. The bank verifies the 
signature and checks the database for the twenty-digit number. If it is 
not found therein, the bank credits the merchant with $100 and records 
the money order in the database. 

6. If the twenty-digit integer is already in the database, the bank does not 
accept the money order. It compares the 100 identity strings on the 
money order with those in the database. If they agree, that is, the same 
set of left halves has been opened, the bank knows that the merchant 
copied the money order. If they differ, a second merchant deposited 
the money order earlier and it was Alice who copied. Some of the 100 
identity strings will have both halves revealed, so Alice can be identified. 
In that case, Alice goes to jail. 
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Protocol 3 is not transferable nor can one make change with this digital 
money. We did not achieve all of our goals. But Protocol 3 does some re­
markable things anyway. 

Can Alice cheat? She can copy her $100 money order. It works the first 
time she spends it. But she gets caught the second time she spends it. 

Can she create a money order with a bad identity string? There is one 
chance in 100 that she can, not worth going to jail. 

Alice can't change the twenty-digit number or the identity strings, because 
then the bank's signature would no longer be valid. 

Can the merchant cheat? No. If he tries to deposit the money order twice, 
he will be caught, and Alice will not be implicated. 

Can the merchant and Alice conspire to spend the digital cash twice? No, 
because they can't change the twenty-digit number signed by the bank, so the 
bank will not have to pay the $100 more than once. 

Can Eve copy Alice's money order and spend it first? Yes. It is like cash. 
Even worse, if Alice didn't know that Eve copied it and spent it, then Alice 
would be caught when she spent it the first time. If Eve spent it twice (or 
even more times) before Alice spent it, then Alice would go to jail. 

Eve could eavesdrop on communication between Alice and the merchant and 
deposit the money (as a merchant) before the merchant deposits it. When 
the merchant tries to deposit it, he will be found as a cheater. 

Both Alice and the merchant must protect their digital cash as if it were 
cash. It must be enciphered when it is sent across the Internet. 

The money order in Protocol 3 takes about a megabyte. 

21.3.2 Electronic Cash According to Brands 

Here is an alternate way of creating digital cash, due to Brands [15]. Trappe 
and Washington have an excellent treatment of this protocol in Chapter 9 of 
[115]. In addition to the properties of cash in the previous protocol, this one 
offers some protection against someone stealing the cash from Alice. If they 
do, they won't be able to spend it. The protocol sounds complicated, but 
keep in mind that it does everything that Protocol 3 above does, and more. 
It also takes far less storage than Protocol 3, only a few kilobytes. 

We will call the unit of digital cash a "coin" in this protocol, rather than a 
"money order." 

A central bank chooses a Sophie Germain prime q. This means that p = 
2q + 1 is also prime. The prime p must be large enough so that no one can 
solve the discrete logarithm problem modulo p, say, p > 21000. The central 
bank also chooses a number g which is the square of a primitive root modulo p. 
Then g has order q modulo p, so gl = gj (mod p) if and only if i = j (mod q) 
by Theorem 6.15. The central bank chooses two random numbers k\ and 
fe, and computes g\ = gkl modp and g2 — g1*2 mod p. It makes public the 
numbers p, q, g, g\ and #2- The random numbers k\ and k2 are destroyed. It 
also publishes a standard hash function 5, like SHA, and a standard way of 
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applying it to the concatenation of four or five large integers, so that, given 
the numbers, everyone would compute the same message digest of them. 

Each bank in the electronic cash system chooses a secret identity number, 
x, which it remembers, and publishes the three numbers h — gx mod p, hi = 
gf mod p and h2 — g2

 m ° d V o n its Web page. 
When Alice opens an account at a bank, she chooses a secret identity num­

ber u. She tells the bank the account number I — g\ mod p. She does not tell 
u to anyone, not even the bank. The bank stores / together with information 
identifying Alice. It sends z\ — (Ig2)

x to Alice to use when she later creates 
coins. 

Each merchant chooses an identification number ra, which is registered with 
the bank, together with the merchant's name and address. 

A coin consists of a 6-tuple (A, B, z, a, 6, r) of integers modulo p or g, and 
takes about a kilobyte to store. When Alice wants to withdraw cash from her 
bank account she performs the following steps for each coin. 

1. Alice identifies herself to the bank and tells it the value of the coin she 
wants to withdraw from her account. 

2. The bank chooses a random number w modulo </, a new one for each 
coin, and sends gw = gw modp and e = {Ig2)w modp to Alice. The bank 
keeps w secret and remembers it until Step 4, where it is used again. 

3. Alice chooses five secret random numbers s / 0, x\, x2l yi and y2l all 
modulo q. She chooses different numbers for each coin. Alice computes 

A = (Ig2)
s mod p, 

B E f f ^ m o d p , 

z = z[ mod p, 

a = gif gV2 mod p and 

b = esyiAy2 mod p. 

The case A = 1 is forbidden. This can happen only when s — 0, which 
is not allowed, or when Ig2 = 1 (mod p), which is equivalent to g^u = 
g2 (mod p), and this would mean that Alice had solved a discrete logarithm 
problem modulo p when she chose u. But the prime p is so large that this 
can't happen. Alice computes c = (yi)~1S(A, B, z, a, b) mod q and sends c to 
her bank. 

4. The bank computes c\ — cx + w mod q and sends c\ to Alice. The bank 
destroys w after this use. The bank deducts the value of the coin from Alice's 
account. 

5. Alice computes r = y\C\ +y2 mod q and the coin (A, £?, z, a, ò, r) is ready. 
This may sound complicated, but Alice's wallet computer and the bank's 

computer can do it all in less than a second. 
Now Alice takes the coin (A, B, z, a, 6, r) , and probably others, to the mer­

chant. Her computer and the merchant's computer perform the following 
steps to let Alice spend the coin. 
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1. Alice gives the coin (A,B,z,a,b,r) to the merchant. 
2. The merchant tests whether gr = ah

s^B^z^a^ (mod p) and Ar = 
bzs(AtB,z,a,b) ( m o d p ) < if either congruence fails, the coin is invalid, and the 
merchant rejects the coin. If both congruences hold, the merchant computes 
d — S(^4, i?,ra,¿), where t is a current time stamp. The merchant sends d to 
Alice. 

3. Alice computes r\ — (dus + x\) mod q and r<¿ — (ds + #2) mod q, where 
u is Alice's secret identity number she used to establish her bank account, and 
8, xi, and X2 are three of the secret random numbers she chose to generate 
this coin. Alice sends r± and 7*2 to the merchant. 

4. The merchant checks the congruence g^g^2 = AdB (mod p). If so, 
the merchant accepts the coin and the transaction is complete. If not, the 
merchant rejects the coin because Alice stole it from someone else. 

Some time after the transaction, the merchant tries to deposit the coin in 
the bank. He gives it to the bank, together with the triple (7*1,7*2, d). The 
bank performs these checks. 

First, the bank checks whether the coin (A, B, z, a, 6, r) is already stored in 
its database of used coins. If it is not there, the bank checks the same three 
congruences that the merchant checked earlier, namely, 

gr = ahS(A,B,z,a,b) ( m o d p ) ? 

Ar = bzS(A,B,z,a¿) ^ m ( ) d ^ a n d 

g?g?=AdB (modp). 

If all three hold, the coin is valid and the bank credits it to the merchant's 
account. It enters the coin (A,B,z,a,b,r) and the triple (ri,r2,d) into its 
database of used coins. 

If the coin (A, B,z,a, ò, r) is already in the bank's database, then it has a 
triple (^,7*2,^') stored with it. The bank compares this triple with the triple 
(ri,r2,d) just submitted by the merchant. If the triples are the same, then 
the merchant must be submitting the same coin again because the merchant's 
identification number m and the time stamp t are hashed into d and Alice's 
secret u is in r\. If the triples differ, and in particular if V2 ^ r2, then the 
bank can compute Alice's secret identity number u from u = (7*1 — r[)(r2 — 
r 2 ) - 1 (mod q). Then it calculates i" = g% modp and learns Alice's identity. 
Alice goes to jail. 

The difficulty of solving the discrete logarithm problem modulo p prevents 
most other possible fraud. The merchant cannot submit a coin twice, once 
with the triple (ri,r2,<¿) and once with a phony triple (r*i,r2,(f), because he 

can't compute a second triple satisfying g^g^2 = Ad B (mod p). For the 
same reason, one merchant cannot deposit a coin in the bank and also spend 
the same coin at another merchant. If someone stole a coin from Alice, they 
could not spend it because they could not compute 7*1 and 7*2 with g^g^2 = 
Ad B (mod p), where d' was given to them by a merchant. Likewise, no 
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one could forge a bogus coin because they could not compute a number r 
satisfying gr = ah

s(A>B>z>a>b) (mod p) and Ar = bzs^B>z^ (mod p). A 
person working in the bank and knowing Alice's / could not forge a coin with 
Alice's identity because they don't know Alice's secret u, and that number is 
needed to produce n . If an evil merchant stole a coin and the triple (ri, r2, d) 
from a merchant before that merchant sent it to the bank, then the evil 
merchant could successfully deposit it first. This is a problem with real cash, 
too. 

The transaction between Alice and the merchant is totally anonymous, just 
as it would be if real cash were used. Their computers merely exchange num­
bers. Alice's identity I is hidden in one of the numbers, but it cannot be 
extracted unless Alice spends the coin twice. The bank knows / . It could 
remember that w was a random number used to create a coin for Alice, al­
though it is not supposed to store this number. It might even keep track of c 
and c\. With all this knowledge, can it inspect incoming coins and tell which 
ones were spent by Alice? Only Alice knows the secret numbers s, x\, x<i, 
yi and 2/2 • Therefore, A, B, z, a, b and r, which depend on these five secret 
random numbers are just six random numbers to anyone other than Alice. 

2I.4 Exercises 
1. Explain why the protocols for contract signing work, if they do. What 

if one party has much faster computers than the other? 

2. Explain why the protocols for elections work, if they do. 

3. Make reasonable estimates for the sizes of the numbers used in Chaum's 
Protocol 3, and estimate the number of bytes Alice must carry from her 
bank to the merchant. 

4. In Chaum's Protocol 3, why must Alice bit-commit the halves of the 
identity bit strings? After all, if she changed them, the bank's signature 
on them would not be valid. 

5. Suppose a coin is created properly using the protocol of Brands. Prove 
that the three congruences checked by the merchant and the bank will 
hold. 

6. Explain how someone who knows the bank's secret number x can create 
and spend valid coins without even having an account at the bank. 
What happens if he spends one of these coins twice? 

7. In which digital cash protocols in this chapter can Alice and a Merchant 
conspire to cheat the Bank? 



Chapter 22 

Complete Systems 

This chapter introduces two complete systems. See Chapters 14 and 15 of 
Stallings [114] for more about these systems. 

22.1 Kerberos 
Kerberos, developed by Project Athena at MIT, solves this problem: Assume 
an open distributed environment. Users at workstations wish to access services 
on various servers. Servers wish to restrict access to authorized users and be 
able to authenticate users' requests for service. A workstation cannot be 
trusted to identify its users correctly. 

There are three threats: 

1. A user may gain access to a workstation and pretend to be another user 
on that workstation. 

2. A user may alter the network address of a workstation so that the re­
quests from it appear to come from a different workstation. 

3. A user may eavesdrop on exchanges and use a replay attack to gain 
entrance to a server or to disrupt operations. 

Kerberos addresses these threats by providing a central authentication server, 
AS, to authenticate users to servers and servers to users. It requires a user 
to prove identity for each service invoked. It also requires that servers prove 
their identity to clients. 

Kerberos uses only conventional cryptography (DES), no public key cryp­
tography, and is supposed to be: 

• Secure: No eavesdropper can impersonate a user. 

• Reliable: No one can use any services unless permitted by Kerberos. 
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• Transparent: A user just types a password; all else is hidden. 

• Scalable: It can support many clients and servers. 

Version 4 was the first full version, and is still in use. Version 5 is the next 
full version. 

Here is a simple authentication dialogue: 
1. C ^ AS: IDc,Pc,IDv 

2. AS -> C: Ticket 
3. C -+V: IDc, Ticket 
where Ticket = EKv [IDC, ADC, IDV\. 
AS — authentication server (Kerberos) 
C = client 
V = server 
IDc = identification of user on C 
IDy — identification of server V 
Pc = password of user on C 
ADc = network address of C 
Ky — secret key shared by AS and V. 
The use of ADc prevents ticket capture and reuse. 
The ticket is valid only once and only from workstation C. 
There are some problems with this simple dialogue: 
1. A user on C must enter her password for each ticket, which is too many 

times. It would be better to make the ticket reusable. 
2. The plaintext transmission of the password in Step 1. An eavesdropper 

could capture it. 
These problems are solved by adding a Ticket Granting Server, TGS. 
Once per user login session: 
1. C -+AS: IDCJDTGS-

2. AS -> C: EKc[TicketTGsl 
where TicketTGs = EK^^IDC.ADCJDTGS.TSULTX]. 

Once per type of service (mail, print, login, etc.): 
3. C ->TGS: IDcJDy,TicketTGS. 
4. TGS -> C: Tickety. 

where Tickety = EKv [IDC, ADC, IDV,TS2, LT2}. 
Once per service session: 
5. C -+V: IDC,Tickety. 
In 1 and 2, no password is sent over the network. Instead, in 2, C asks its 

user for a password (Kc) and uses it to decrypt the ticket. 
The time stamps and lifetimes prevent reuse by an eavesdropper, unless he 

reuses it right away. 
There are two problems with the dialogue above: 
(a) The lifetime may be too long or too short. The TGS or V should be 

able to check that the person using the ticket is the same as the one to whom 
it was issued. 
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(b) Servers should have to prove their identity to users. Otherwise a bogus 
server could capture information from an unwary user and deny service. 

These problems are solved by the following Kerberos 4 dialogue. 
Once per user login session: 
1. C^AS: IDOIDTGSITSL 

2. AS-+C: EKc[Kc,TGS,IDTGS,TS2,LT2,TicketTGs], 
where TicketTGs = EKTGS[KC,TGS, IDC, ADC,IDTGS,TS2, LT2]. 

Once per type of service: 
3. C-+TGS: IDy,TicketTGSiAuthenticatorc,TGSi 

where Authenticatorc,TGS — EKC,TGS[IDC,ADC,TSZ}. 

4. TGS^C: EKClTGs[Kctv,lbv,TSi,Ticketv], 
where Tickety = EKy [Kc,vJDc, ADC, IDV,TS4, LT4]. 

Once per service session: 
5. C —> V: Tickety, Authenticatorc,v, 

where Authenticatorc,v = EKC V[^C^ADC,TS^]. 

G.V-+C: EKc!V[TSb + l]. 
Now the lifetime is less important and can be made long enough, since 

knowledge of KC,TGS and Key prove the user is the grantee of the ticket. 
In 6, F proves its identity to C. 
Purdue University students Dole and Lodin broke Kerberos 4 a few years 

ago. 

22.2 Pretty Good Privacy 
Pretty Good Privacy, PGP, was written mostly by Phil Zimmermann. 

He used the best available crypto algorithms as building blocks to create 
a system for enciphering both files and e-mail. It provides confidentiality 
and/or authentication. It is independent of operating system and machine. 
It has a small number of easy-to-use commands. It is freely available on the 
Internet. Authentication is provided by SHA signed by either RSA or DSS. 
Confidentiality is provided by encryption using either CAST-128, IDEA or 
Triple DES with a one-time key generated by the sender. PGP also provides 
ZIP compression, radix-64 conversion (for e-mail), as well as segmentation 
and reassembly of long messages. 

The signature is generated before compression because: 
(a) It is better to sign an uncompressed message so that you can store 

only the uncompressed message and signature for later verification. If you 
signed a compressed document, you would either have to store the compressed 
document or else recompress it at verification time. 

(b) The ZIP compression algorithm is not deterministic. Different versions 
of ZIP produce different compressed files. Signing after compression would 
require the use of just one version of ZIP. 

The message is enciphered after compression because the compressed mes­
sage has less redundancy; so, its crypt analysis is harder. 
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The random numbers for generating session keys come from the timing of 
the users' keystrokes. 

Users may have more than one set of RSA keys (to change keys or to 
communicate with different sets of correspondents, say). Each public key is 
identified by its low-order 64 bits in messages sent to the recipient. 

Each user of PGP has two data structures to hold keys: one for his own 
public/private key pairs and one to store the public keys of other users. These 
data structures are called the user's private-key ring and public-key ring. 

The private keys are encrypted via a passphrase. SHA produces a 160-
bit hash of the passphrase and 128 of these 160 bits are used as the key for 
CAST-128. Private keys are indexed either by their low-order 64 bits or by a 
userid. 

The public keys are stored in a similar data structure, but which has addi­
tional fields for a time stamp and trust information. 

Suppose Alice gets a public key for Bob from a source which has been 
compromised by Chuck, so that the key Alice thinks is Bob's really comes 
from Chuck. Then Chuck could send a message to Alice signed "Bob" and 
Alice would accept it as coming from Bob. Furthermore, Chuck could read 
any encrypted message from Alice to Bob. 

One way to solve this problem would use X.509. PGP uses the notion of 
"trust" instead. 

PGP provides a way for a public key to be "signed" by another public key. 
It also has a level of "trust" associated to each public key. The higher the 
level of trust, the stronger the binding of userid and key. A key that is signed 
by trusted keys is also trusted to a degree determined by number and degree 
of trust of the trusted keys. 

The degrees of trust are: undefined, unknown user, usually not trusted to 
sign other keys, usually trusted to sign other keys, always trusted to sign other 
keys, and present in the secret key ring (ultimate trust). 

If a user wishes to change one of his public keys or if he believes it has 
been compromised, then he widely disseminates a Key Revocation Certificate, 
signed by the associated private key. 

22.3 Exercises 
1. Find weaknesses in the Kerberos and PGP protocols. 
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Chapter 23 

Direct Attacks 

This section of the book describes various attacks on the ciphers and protocols 
mentioned in Part II. This section is not as long as it might have been since 
many attacks were already described when the algorithms were presented in 
Part II. 

The attacks vary in the information known to the attacker, the compu­
tational power of the attacker and the attacker's goal. If the cryptanalyst 
knows only that the ciphertext is a string of bits, then it is hard to make any 
progress. We will assume that at least the type of cipher is known, in addition 
to some ciphertext. As explained in Chapter 1, this ciphertext-only attack 
is the most difficult. In case of a public-key cipher, we will assume that the 
public key data are also known. 

It is an advantage for the cryptanalyst to know some pairs of plaintext 
and ciphertext. Often one can mount this known-plaintext attack by guessing 
some of the plaintext, such as a standard header. 

The cryptanalyst may get even more help if he can choose plaintext and see 
the corresponding ciphertext. This chosen-plaintext attack is always available 
with a public-key cipher, and usually doesn't help much in that case. 

This chapter introduces some direct attacks, which include the most obvious 
kinds of attack. In these attacks a direct assault is made on a secret key or 
message. 

23.1 Try All Keys 
This sounds dumb, and it is dumb, but occasionally it works. Most ciphers 
have so many possible keys that it would take too long to try all of them in 
a known-plaintext attack. 

The Data Encryption Standard, DES, is a block cipher with 56-bit keys. 
One can build a special machine with many fast simple processors which can 
try all 256 possible keys in a few hours. 

If a defect in the key selection algorithm limits the number of possible keys, 
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then one might be able to try all of the possible ones. This is how Bryn Dole 
and Steve Lodin [69] broke Kerberos 4. 

Recall that Kerberos is a secret key network authentication protocol de­
signed at MIT. See Section 22.1 for a description of the protocol. Its key 
distribution server and ticket granting server generate secret keys for the sym­
metric block cipher DES. A user who could guess these keys could intercept 
session keys, which are enciphered, and use them to access services without 
authorization. DES keys have 56 bits, and 256 keys is too many for one to try 
all of them during the lifetime of a session key. 

Kerberos 4 generates the 56-bit keys as follows. A pseudorandom number 
generator, PRNG, is seeded with a random 32-bit seed and called twice to 
produce two 32-bit random numbers. Every eighth bit is set as a parity bit. 
This 64-bit quantity is the 56-bit DES key for a session key. Since the key 
depends only on the 32-bit seed, the entropy of the 56-bit key K is only 
H(K) — 32. This is already a serious problem because one could try all 232 

seeds and test each DES key they yield in only a few hours on a workstation. 
But the lifetime of a typical session key is a few hours; so, this attack may or 
may not work. 

But the situation is even worse. The 32-bit seed for the PRNG is formed 
as the exclusive-or of five random 32-bit numbers. They are: 

1. the time-of-day in seconds since January 1, 1970, 

2. the fractional part of the current time in microseconds, 

3. the process ID of the Kerberos server process, 

4. the cumulative count of session keys produced so far, and 

5. the hostid of the machine on which Kerberos is running. 

These five quantities have various amounts of entropy from 1 to 20 bits. The 
fractional part of the time has the most entropy. It is a random number 
modulo 1,000,000. Since the uncertain bits are always in the low-order 20 
bit positions and since the five numbers are combined with exclusive-or, the 
entropy of the seed for the PRNG is only 20 bits. Therefore, one could 
generate and test all 220 possible DES keys in a few seconds. This attack will 
succeed easily within the lifetime of the session key. 

Rather than forming the exclusive-or of the five random numbers, the key 
generator should have computed a hash of their concatenation and chosen the 
bits of the session key from the bits of the message digest. Then every bit of 
randomness in the numbers would contribute to every bit of the session key. 
The PRNG, with its 32-bit seed, should not have been used at all. 

This problem was corrected in Kerberos 5. 
Another situation in which one can try all keys is when a human chooses 

a key. When a cipher program asks a user to type a password and then 
converts it into a key, the user often chooses an easy-to-remember word, like a 
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word in a dictionary. This oversight happens frequently with login passwords. 
One can attack this error by trying all words in a dictionary. One can also try 
dictionary words spelled backwards, words with one letter capitalized, pairs of 
short words, foreign words, and strings of letters constructed from the letters 
in a user's name. One can guess a large percentage of login passwords this 
way. 

One way to counter this problem is to have a program assign random pass­
words. But these are difficult to remember. Another approach is to use 
passphrases. These are easy to remember and the user can type the first let­
ter of each word as he says the passphrase to himself. Another way of using 
passphrases is to have the user type the entire passphrase, let a program com­
pute a message digest of it, and use part of the hash value as the key. Keep 
in mind that the rate of English is about one bit per letter. This translates 
into five or six normal words per 32 bits of key. A 64-bit key should have a 
passphrase of at least a dozen words to produce enough key entropy. 

23.2 Factor a Large Integer 
This attack might work for some public-key systems, like RSA or Rabin-
Williams. Some day a polynomial-time integer factoring algorithm might be 
discovered. If that happens, these systems will be out of business. 

Usually, the composite numbers n used as public keys are chosen so that 
they cannot be factored. Designers of these systems must be aware of all 
known integer factoring algorithms and choose keys that will make it impos­
sible to factor n by any of these methods. One requirement is that the prime 
factors of n be large so that they cannot be found by trial division or the 
Pollard rho method. On the other hand, the larger n is, the slower the enci­
phering function will be, so n should be as small as possible, subject to being 
too hard to factor. This size requirement implies that n should have only two 
prime factors because if n had three prime factors, then one of them would 
have to be less than the cube root of n. If n = pq is the product of two primes, 
they must be different because (i) prime powers are easy to detect and factor, 
and (ii) the cipher wouldn't work if n — p2. 

Thus, if we want n to be difficult to factor, we should choose n — pq where 
the primes p and q are close to each other. But if they were too close, Fermât's 
difference of squares method could find them. To avoid this attack, choose 
\q-p\> 1025. 

The primes p and q should also have the property that all four of the 
numbers p ± 1, q ± 1 have at least one prime factor > 1020. If either of the 
numbers p ± 1 were 1010-smooth, then p could be found by the Pollard p - 1 
method or Williams' p + 1 method. 

In order to avoid having p discovered by the elliptic curve method one would 
have to make certain that no integer N in the Hasse interval p + 1 - 2^/p < 
N < p + 1 + 2y/p was 1010-smooth, say. Of course, it is impossible to check 
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this requirement. The best that one can do is make p > 1080, say. The 
largest prime factor ever discovered by ECM has about 55 digits. This record 
increases slowly, but will take many years to pass 1080. 

The largest number n factored with the quadratic sieve algorithm has 135 
decimal digits. If you choose n = pq with q > p > 1080, then n will be too 
large to factor with QS. 

The general number field sieve has factored n with about 160 decimal dig­
its, and this record is slowly increasing as faster computers are applied to 
factoring. To be safe from GNFS, one should choose n > 10200, at least. 

The special number field sieve has factored n with about 230 decimal digits, 
and by the time this is published, it will probably have factored an integer with 
more than 1024 bits, a common size specified for RSA cryptographic keys. Of 
course, the SNFS works only for integers with the special form re — s, where 
r and |s| are small positive integers. Make sure that your RSA key n is not 
of this form. Use a program like this one to test candidate n. 

for (e = 2 to 1000) { 
r = the nearest integer to the e-th root of n 
if (|re -n\< 1000) { print "n is bad"; exit } 

} 
print "n is good" 

Some cryptographic algorithms might be endangered by a sudden increase 
in the speed of computers due to new technology. Several computational 
paradigms loom on the horizon. Shor [109], [110] has shown how one may 
factor large integers using quantum computation. Shamir [104] proposed an 
optoelectronic processor for factoring integers via the quadratic or number 
field sieve. Paun et al. [80] explain how future computers might work via 
chemical reactions of DNA molecules. If any of these technologies succeed, we 
could factor integers and/or compute discrete logarithms much faster than we 
can with current machines. Only time will tell whether these new methods 
will work. 

23.3 Solve a Discrete Logarithm Problem 
This attack might apply to some private- or public-key systems, like Pohlig-
Hellman or ElGamal, or to a key exchange protocol, like Diffie-Hellman. Some 
day faster algorithms for discrete logarithms might be discovered. If that 
happens, these systems may be out of business or one may have to use larger 
groups. The discrete logarithm problem is to solve for x in the equation 
ax = b in some group. The time to solve the problem depends mostly on 
the size of the group, although it might be easy for special a and b. Usually, 
the size of the group is chosen large enough so that the problem cannot be 
solved in reasonable time. But if it is chosen too large, then the algorithm 
speed will suffer. Designers of these systems must be aware of all known 
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discrete logarithm algorithms and choose the size just large enough so that 
the problem cannot be solved by any of these methods. 

Three types of groups are used in contemporary cryptography. The com­
plexity of the discrete logarithm problem is quite different in the three types. 

The first group of interest is the multiplicative group Rp of integers modulo 
p. This group appears in the Pohlig-Hellman and ElGamal ciphers, the ElGa-
mal and Digital Signature Algorithms and the Diffie-Hellman key exchange 
protocol. Its discrete logarithm problem is a congruence, ax = b (mod p). 
The parameter p is almost always prime in this application because the dis­
crete logarithm problem is hardest in that case. The fastest algorithms for 
solving this problem are the index calculus method, which is similar to the 
quadratic sieve factoring algorithm, and the number field sieve, which is like 
the factoring algorithm of the same name. The complexity of these algorithms 
is comparable to that of the similar factoring algorithms when they factor a 
composite number of about the same size as p. This means that p should be 
larger than about 160 digits to be safe from the index calculus method and 
larger than about 200 digits to be safe from the number field sieve method. 
Work on these discrete logarithm algorithms has lagged work on the similar 
factoring algorithms. The record p's for solving discrete logarithms is quite a 
bit smaller than the largest hard numbers factored by these algorithms. 

The second group used in cryptography is the group of points on an elliptic 
curve modulo a prime p. These groups have roughly p points. But they have 
no notion of smoothness, which is what makes the index calculus or number 
field sieve work. The product of smooth numbers in Rp is smooth—or con­
gruent to a smooth number, which is all the algorithm wants. One might 
think of defining a point on an elliptic curve to be smooth if its coordinates 
are small compared to p. But then P + Q need not be smooth when P and 
Q are smooth. Therefore, one must use other algorithms to solve the discrete 
logarithm problem on an elliptic curve. The other nontrivial algorithms in­
clude Shanks' baby-step-giant-step method and the rho and lambda methods 
of Pollard. All three of these algorithms have complexity O(y'p), far slower 
than the index calculus and the number field sieve, whose complexities are 
L(p) or better, where L(x) = exp(>/(ln x) In In x). A rough comparison of ^Jp 
with L(p) shows that the discrete logarithm problem for an elliptic curve mod­
ulo a 160-bit prime is a bit harder to solve than the problem in Rp modulo 
a 1024-bit prime. Both problems are too hard to solve with current algo­
rithms and machines. With these parameter choices, encryption by ElGamal 
or Pohlig-Hellman would run about 100 times faster in an elliptic curve than 
in Rp. 

We mentioned the third group commonly used in cryptography briefly at 
the end of Chapter 14. It is the multiplicative group of the field F2* with 
2n elements. This group is cyclic and arithmetic in it is fast on a binary 
computer. Coppersmith [30] found an algorithm for computing discrete loga­
rithms in this field which works for n up to about 1000. It consists of a massive 
precomputation, which need be done only once for each n, and a fairly short 
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main computation to find particular discrete logarithms. 

23.4 Timing Attacks 
These insidious attacks were discovered by Kocher [59] and apply to nearly all 
cryptographic algorithms whose execution time depends on the input value. 
This includes most of the ciphers, signature schemes and key exchange pro­
tocols discussed in this book. 

In order to perform the attack, you must be able to observe a cipher program 
running on your computer and make precise measurements of the time it 
takes to run on various inputs. You must also know the input value and the 
parameters of the cryptographic algorithm other than the secret key. Someone 
with an account on the victim's machine and who could observe incoming 
packets could easily obtain the required information. 

Let us use RSA as a simple example of a timing attack. The victim has 
modulus n, enciphering exponent e and deciphering exponent d. The latter 
is secret, while n and e are public. The victim receives ciphertext messages 
C and deciphers them by computing M — Cd mod n. Let d — X)i = 0 ^&% ^ e 

the binary representation of d. The attacker records many ciphertexts Cj and 
the time tj needed to decipher each. He deduces d one bit at a time, from bo 
to bk- This is the order in which the bits are used in the fast exponentiation 
algorithm. Assume that the first r bits have been computed. We repeat the 
fast exponentiation algorithm from Chapter 6, but specialize it here to RSA 
decryption. 

[Fast Exponentiation for RSA Deciphering] 
Input: A modulus n, an exponent d > 0 and a ciphertext C. 
Output: The value M = Cd. 

e — d 
M = 1 
z = C 
while (e > 0) { 

if (e i s odd) M — Mz mod n 
z = z2 mod n 
e = [e/2] 
} 

r e t u r n M 

Let us suppose that the operation M = Mz mod n takes longer for some 
pairs M, z than for other pairs and that the attacker can measure the execution 
time of the algorithm accurately enough to notice the difference. Because the 
first r bits of d have been computed, the attacker can perform the first r 
iterations of the while loop for input Cj and measure its time Cj precisely. 
The attacker can also measure the precise time dj the operation M = Mz mod 
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n would take, if it were done. He knows whether this particular modular 
multiplication is fast or slow compared to the time for average pairs M,z. 
Using a formula from statistics, he can predict whether br is 0 or 1. He 
compares the two variances v\ = Var(£j — Cj) and v2 = Var(£j — Cj — dj). If 
v\ > v2, the bit br is probably 1; but if v\ < v2, then br is probably 0. This 
works because of Part 4 of Theorem 2.6. For if the multiplication occurs, it 
is reasonable to assume that the time dj it takes and the time tj — Cj — dj for 
the part of the fast exponentiation after it are mutually independent, so 

Vi = Var(¿7 - Cj) = Var(ij - Cj — dj) + Var(c^) > Var(¿¿ — Cj - dj) = v2. 

But if the multiplication does not occur, then the time dj it takes and the time 
tj —Cj for the part of the fast exponentiation after it are mutually independent, 
so 

v2 = Var(£¿ — Cj — dj) = Var(tj — Cj) + Var(—dj) > Var(£j — Cj) =v\. 

If a mistake is made, then no further significant differences between v\ and v2 

will appear for larger r. In that case, the attacker will notice the error, back 
up and correct it. See [59] for more details. 

The timing attack works against the Diffie-Hellman key exchange protocol 
provided Alice always uses the same random XA , but different primitive roots 
g are used each time, and the modulus n is fixed. 

23.5 Exercises 
1. Read the source code of security programs, like the Secure Socket Layer, 

which generate random numbers. Estimate the entropy of these random 
numbers and find ways to predict them. 

2. Eve routinely records all ciphertext messages sent from Alice to Bob. 
Bob uses the RSA cipher with public keys TIB and ejg. One day, Eve 
learns from another source that one of the plaintext messages Alice sent 
to Bob was not relatively prime to UB (and it was not 0 either). Does 
this tidbit help Eve to decipher any of the ciphertext messages? 

3. Alice was playing with Bob's RSA public keys and noticed that if she 
enciphered a message five times, she always got the message back. That 
is, EB(EB(EB(EB(EB(M))))) = M for every M she tried. 

a. If Alice intercepted a message C from Carol to Bob enciphered (once, 
of course) with Bob's public RSA keys, tell how she could decipher it. 

b. What mathematical property of Bob's RSA keys caused this weak­
ness? 

c. Without expensive repeated enciphering of lots of messages, how 
could Bob have avoided this weakness when he chose his RSA keys? 
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(By "this weakness" I mean "enciphering any small number of times, 
not just five times, and returning to the plaintext.") 

4. The timing attack could be thwarted if one could ensure that all modular 
multiplication operations, Mz mod n, take exactly the same time. Can 
you think of a way to make this happen? 



Chapter 24 

Exploiting an Error 

In this chapter, we explore various ways an attacker might exploit an error 
made by the user(s) of a cipher or protocol, or even a hardware or software 
error. These errors may or may not relate to number theory. Many attacks 
on RSA in this chapter and the previous one are described in Boneh [12]. 

2^.1 Key Management 
We have seen how to choose keys for a number theoretic cipher sufficiently 
large so that no one can find them in a direct attack, by factoring a number 
or solving a discrete logarithm problem in some group. Although it requires 
some hard mathematics to be able to make these choices, this is the easy part. 
If you leave your passphrase written on a note on your terminal, it doesn't 
matter how large your keys are. If a knowledgeable attacker sees that note, he 
can use your cipher program to generate your key the same way the program 
generates it when you use it. 

If your keys are stored enciphered in a file, and you type a passphrase to 
allow your cipher program to access them, then you must choose a passphrase 
that is hard to guess, and you must not write it down anywhere. What if you 
forget it? Then you will not be able to read your enciphered files or messages. 
If this matters to you, then you will have to write your passphrase, or at least 
the keys you cannot afford to lose, in some secure location, like on a sheet of 
paper kept in a safe. If you forget the combination to the safe, you can cut it 
open. If several people need to share secret keys, the methods of Section 20.5 
might help. 

When generating keys, you must create enough entropy to make all bits 
of the key as random as possible. It is not good enough to choose a 32-bit 
seed for a random number generator and use its output to produce your key. 
Even if your key has 160 bits, it will have no more than 32 bits of entropy. I 
once graded a student project which generated 512-bit primes for RSA keys. 
The primes it made were all = 1 (mod 2480). The extended-precision integer 
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package used base 230, storing 30 bits per word. The student had formed 
random numbers rsOOOOOOOOOOOl in this base as candidate large primes, 
putting all the randomness in the high-order 32 bits r s . Strong probable 
prime tests are especially fast for numbers p of this form because p — 1 is 
divisible by at least 480 twos. But that is no excuse for not making all 
fourteen digits random. And one should not call the system random number 
generator fourteen times to generate these digits, as there would be no more 
entropy in the prime than in the seed for the RNG. The high-order and low-
order bits of a 512-bit random prime must be 1, but the remaining 510 bits 
must come from a source with at least 510 bits of entropy. 

How do Alice and Bob exchange keys for secure communication over an 
insecure medium like the Internet? The best solution is for them to meet and 
trade keys before communicating. If that is not possible, then they should 
use the X.509 protocol to learn each other's public keys. They should verify 
the signatures certifying these keys, which are a part of the protocol. If Alice 
uses the Diffie-Hellman key exchange to establish a common private key with 
Bob over the Internet, then she will get a secret known only to her and to 
whomever is performing the other side of the protocol. The number theory 
behind this key exchange does not guarantee that it is Bob. 

The protocols and algorithms in this book are secure only if the key remains 
secret. If the key is compromised, security is lost. If the stolen or revealed 
key was for a symmetric cipher, then Alice must change her key and hope 
for the best. But if it was a private key for an asymmetric cryptosystem, the 
damage is greater. Alice must quickly change her public key in every location 
that stores it and tell everyone who might use it about the new key. These 
messages should have a time stamp so that the recipient will know when the 
theft happened. Someone who discovered Alice's private key could read her 
enciphered mail, sign messages as Alice and literally become Alice. Each time 
you use someone's public key you should check to see whether it has been 
compromised and revoked. 

24-2 Reuse of a Key 
A cryptographic key should never be reused after it has been exposed. This 
is obvious for most ciphers. 

We give a slightly less obvious example for RSA. Suppose Alice uses RSA 
modulus n, public encryption exponent e and private decryption exponent d. 
If d is exposed, Alice must change n because one can almost certainly factor 
n given e and d. 

Note first that ed = 1 (mod (j){n)) by construction of the RSA system. 
Therefore, ed — 1 = k<j>(n) for some integer k. If we let r = ed — 1, then 
whenever gcd(a, n) = 1 we have 

ar = aed~l = ( a^ ( n ) ) * = 1 (mod n) (24.1) 
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by Euler's theorem. Note that r is even because <f>(n) is even for n > 2. 
Now write r = 2sd with d odd. Choose a random a in 1 < o < n - 1. 

If gcd(a,n) > 1, then n has been factored and we are done. Otherwise, 
compute bi = ard mod n for 0 < i < s. We know that bs = ar mod n = 1 
by Congruence (24.1). If for some 0 < i < s we have bi = 1 but &¿_i ^ 
±1 (mod n), then gcd(fr¿_i — l ,n) is a proper factor of n. If there is no such 
¿, try a different random a. The reason this works is that tí¡_± = 1 (mod n), 
but 6¿_i ^ ±1 (mod n), so gcd(6¿_i — 1, n) is a proper factor of n by Theorem 
13.1. We can argue just as in the proof of Theorem 13.2 that each random a 
leads to a factorization of n with probability at least 1/2. 

Here is an example of the misuse of RSA. Suppose a trusted central au­
thority chose a fixed modulus n = pq for everyone to use. It would keep the 
primes p and q secret, of course, but n would be public. It would provide each 
user A with a pair of exponents e^, d A for encryption and decryption. Each 
eA would be public, but only user A would know d A- At first glance, this 
might seem reasonable since user B could not decipher a message enciphered 
with eA because B does not know d A- However, user B knows both es and 
ds and, by the argument in the preceding paragraph, this is enough to factor 
n. Then user B could compute d A from e^, which is public, and read A's 
mail. 

24*3 Bad Parameter Choice 
There are many ways in which users may choose secret parameters that are 
easy for an attacker to guess or compute. As one simple example, suppose 
you must choose a random secret 100-digit integer. Suppose you do this 
by choosing a random 30-bit integer and multiplying it by 1091. Then your 
100-digit number will have at most 30 bits of entropy and will be easy to 
guess. Suppose you need a random secret 100-digit prime and construct it 
by choosing a random 30-bit integer, multiplying by 1091, and selecting the 
first strong probable prime to base 2 greater than the product. Then your 
100-digit prime will be insecure because it will have only 30 bits of entropy. 

Here are more examples for RSA. The next attack is due to Hastad [52]. 
The smallest possible value for the public enciphering exponent is e = 3, and 
some implementations of RSA use this value of e. Sometimes this is done for 
communication between smart cards, which have relatively slow processors, 
and larger, faster computers. If the public key for the large machine has e — 3, 
then the slow smart card only has to raise M to the third power to encipher it. 
The message M might be a credit card number. Now suppose the smart card 
is used to make purchases at three different merchants, with public moduli 
^i? ^2, ^3- An attacker who could observe the ciphertext transmitted during 
these three transactions would know 

M 3 mod m , M 3 mod n2 , and M 3 mod n3 
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and, of course, the three public moduli. If the moduli were not relatively 
prime in pairs, then he could factor at least two of them and recover M by 
deciphering it the way the merchant's computer did it. If they were relatively 
prime in pairs, then the attacker could use the Chinese remainder theorem 
to determine M 3 (mod (ni712713)). But 0 < M < n¿ for each ¿, and so 
0 < M 3 < nir¿2ri3 and the attacker has found the actual value of M 3 , just as 
Sun Tsu found the number of his soldiers. Then the attacker could find M 
by computing the cube root of M 3 , for example, by Newton's method. This 
attack works not only for e = 3, but for any small e. 

Users of RSA might wish to choose a small deciphering exponent d to speed 
decryption. Clearly, d must not be so small that one could guess it, but it 
must not even be as small as n1/4, as shown by this theorem of Wiener [120], 
which uses continued fractions in its proof. 

THEOREM 24.1 Small RSA deciphering exponents are bad 
Let n = pq, where the primes p and q satisfy q < p < 2q. Let ed = 

1 (mod (¡>{n)), where 1 < e < (/>(n) and 1 < d < n 1 / 4 / 3 . An attacker given n 
and e can efficiently ñnd d. 

This is a case of Inequality (13.1). It shows that k/d is such a close approxi­
mation to the fraction e/n, which is known to the attacker, that it must have 
the form Ai/Bi in the continued fraction expansion for e/n. The attacker 
computes the continued fraction expansion for e/n, which is fast, and checks 
each denominator B{ for being d, that is, he tests whether MeBi = M (mod n) 
for a few M. One of them must work. I 

As this attack actually works for d slightly larger than ^ n , one must choose 
d even larger to be safe. If d > y/ñ, then the attack certainly doesn't work. 

P R O O F Since ed = 1 (mod 0(n)), there is an integer k with ed—k(/)(n) = 
1. Therefore, 

This shows that k/d is an approximation to e/</>(n). The attacker does not 
know </>(ri), but may use n as an approximation of it. Since (f)(n) —n— p—q+1 
and p + q — 1 < 3^/n, we have 0 < n — </>(ri) < 3y/n. Thus, 

But k(/)(n) — ed — 1 < ed < d(/>(n), so k < d < n 1 / 4 /3 and we find 
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24*4 Partial Key Exposure 
If some bits of a secret key are revealed, this reduces the key entropy. Then 
one might be able to discover it by trying all possible keys having the known 
bits. We give more examples for RSA. 

The first result in this direction is due to Coppersmith [31]. 

THEOREM 24.2 One can find p given half its bits 
Let n— pq be a b-bit RSA modulus, so that the length of each of the primes 

p and q is about 6/2 bits. One can efficiently factor n given either the 6/4 
most signiñcant bits ofp or the 6/4 least signiñcant bits of p. 

See [31] for a proof. The next theorem, due to Boneh et al. [14], says that if 
e is small enough so that an attacker can perform O (e loge) operations, then 
an attacker can deduce d from just a few of its bits. 

THEOREM 24.3 You can find d from its least significant bits 
Let n be an RSA modulus of b bits. Let e and d be the enciphering and 

deciphering exponents. Given the 6/4 least signiñcant bits of d, an attacker 
can ñnd d in 0(e log e) steps. 

PROOF Write n — pq. Since ed = 1 (mod <^(n)), there is an integer k so 
that 

ed — k(n — p — q + 1) = ed — k(f)(n) = 1. 

As d < 0(n), we have 0 < k < e. Multiply the equation by p, replace q by 
n/p and reduce modulo 26/4 to get 

(ed)p - kp(n -p+l) + kn=p (mod 26 / 4). 

In this congruence, the attacker knows n, e and the 6/4 least significant bits of 
d. Therefore, he knows the value of ed mod 26/4. For each fc, the congruence 
is a quadratic equation in p. For each of the e possible values of fc, the attacker 
solves the quadratic congruence using the methods of Chapter 7 and obtains 
some candidate values for p mod 26/4. One can show that there are no more 
than elog2 e candidate values of p mod 26/4 in total. For each of these values, 
the attacker runs the algorithm of Theorem 24.2 and tests whether the output 
p actually divides n. This shows that n will be factored after at most 0(e log e) 
steps. I 

24*5 Computer Failure 
Computers occasionally make hardware or software errors. If an error happens 
during computation of a cryptographic function, a key may be leaked. We 
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give an example involving the RSA signature scheme. In it, the attacker will 
be able to factor the modulus n, and so be able to sign messages with it, just 
like the legitimate user. 

Suppose n — pq and the encryption and decryption exponents are e and d. 
The public information is n and e, while p, q and d are private. The message 
to be signed is M; its signature is S = Md mod n. 

We assume the trick described in Section 18.1 is used to speed signature 
generation. This trick computes Sp = Md mod p and Sq = Md mod q and 
combines them with the Chinese remainder theorem to form S = aSp + bSq. 
Suppose an error causes Sp to be incorrect. Suppose the attacker has the cor­
rect signature S as well as the incorrect one S' formed by the Chinese remain­
der theorem using the wrong Sp and the correct Sq. Then S = Sp (modp), S = 
Sq (mod q), S' ^ Sp (modp), S' = Sq (mod q) and we have gcd(S-S ' ,n ) = q. 

A. Lenstra found that this attack works even if the attacker only knows S' 
and M, but not S. We have M = Se mod n. In case the error occurred in 
computing Sp, we have M = (S')e (mod q) but M ^ (S')e (modp). Therefore, 
g c d ( M - ( S ' ) e , n ) = </. 

Boneh et al. [13] describe the attack above and also an attack on RSA 
signatures not using the trick, that is, in which S — Md mod n is computed 
directly. That attack is less likely, as it requires the attacker to see several 
faulty signatures each with one bit flipped somewhere during the computation. 

24-6 Exercises 

1. What is the flaw in the following solution to a key exposure problem? 
Bob accidentally reveals his private RSA key d. Because so many peo­
ple already know his public modulus n and enciphering exponent e, he 
decides to keep them. He chooses two new secret primes with product n 
and uses them and the old e to compute a new deciphering exponent d'. 

2. In the RSA cipher, each user has a public modulus n, a public key e, 
and a private key d. Suppose Bob accidentally reveals his private key d. 
Because it takes so long to generate large primes, Bob decides to keep 
his old modulus n, which is public anyway, and just create a new e and 
d. After creating them, he makes the new e public and keeps the new d 
secret. Is this choice of RSA parameters safe? Explain your answer. 

3. Eve notices that both Alice and Bob use the RSA cipher with the same 
modulus n, although they have different public encryption exponents e^ 
and e#, which happen to be relatively prime. Eve learns through one of 
her agents that Chuck has just sent the same plaintext M to both Alice 
and Bob via RSA, and she intercepts the two ciphertexts CA and CB> 
Explain how Eve can read M, given CA, CB and public data. Can Eve 
factor n easily? Explain your answer. 
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4. The 1988 X.509 text says this about choosing secure RSA keys: "It 
must be ensured that e > log2 n to prevent attack by taking the e-th 
root modulo n to discover the plaintext." The reason given is incorrect, 
although it is a good idea to satisfy the inequality. What is wrong with 
the reason, and what is the real reason? 

5. Alice uses the ElGamal signature scheme with common public modulus p 
and primitive root g. Alice has a secret x and publishes y — gx mod p. 
She uses a secret random number k to sign one message M. Since k 
is used only once, she discards the piece of paper on which she had 
written k. The next day Tom, Alice's trash collector, finds the sheet in 
her garbage can and realizes its significance. Tom learns M and Alice's 
signature for it from Eve, who collects all of Alice's signed messages as 
her hobby. Explain how Tom can forge Alice's signature (with different 
random fc's) on arbitrary messages. 

6. Alice and Bob use the elliptic curve ElGamal public key cipher for their 
secret communication. One day, Bob tosses a coin and sends Alice the 
enciphered result. Knowing only public data and that the plaintext is 
either "Heads" or "Tails," can Eve tell which plaintext it is from the 
ciphertext she has intercepted? 

7. Alice and Bob use the coin-tossing protocol from Section 20.3. Alice 
chooses 100-digit primes p and q as her secret. Because of a defect in his 
random number generator, Bob always chooses x in yjn < x < n/1000. 
Does this fault matter? Can either Alice or Bob almost always win the 
coin toss? Explain your answer. Would the same fault in the random 
number generator affect the zero-knowledge proof protocol? 

8. Alice and Bob use the elliptic curve Diffie-Hellman key exchange proto­
col to choose random Rijndael keys. The elliptic curve group is public 
and has order N near 2160. Because of a defect in her random number 
generator, the low-order 100 bits of Alice's random XA are always one, 
but the high-order 60 bits are really random. Eve is aware of this de­
fect because she has studied the source code of Alice's random number 
generator. Eve records all messages passing between Alice and Bob. 
Eve has a computer powerful enough to perform about 230 elliptic curve 
group additions in a reasonable time. Explain how Eve can compute, 
with high probability, the Rijndael keys chosen by Alice and Bob. 



http://taylorandfrancis.com


Chapter 25 

Active Attacks 

This chapter considers some active attacks in which the attacker takes some 
action to fool the victim, causing an error, obtaining a key, or introducing his 
own devious message which others accept as authentic. 

25.1 Force a User to Make a Mistake 
For example, the mistake might expose a flaw in the cryptographic algorithm 
or it might make a user reveal part of a key. 

Here is an attack on a flaw in one standard zero-knowledge proof protocol. 

Alice knows n, p and #, where p and q are large primes and n = pq. Bob 
knows n but not p or q. Alice wants to convince Bob that she knows the 
factors p, q of n. But she does not want to reveal the factors to him. 

1. Alice chooses a in y/n < a < n and computes b = a2 mod n. 

2. At the same time, Bob chooses c in ^/n < c < n and computes d = 
c2 mod n. 

3. Alice sends b to Bob and Bob sends d to Alice. 

4. Alice receives d and solves x2 = bd (mod n). (Note that this is possible 
because bd is a quadratic residue and she can compute its square root 
because she knows the factors of n.) Let x\ be one solution of this 
congruence. 

5. At the same time, Bob tosses a fair coin and gets Heads or Tails, each 
with probability 1/2. Bob sends H or T to Alice. 

6. If Alice receives H, she sends a to Bob. If Alice receives T, she sends x\ 
to Bob. 

297 
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7. If Bob sent H to Alice, then he receives a from Alice and checks that 
a2 = b (mod n). If Bob sent T to Alice, then he receives x\ from Alice 
and checks that x\ = bd (mod n). 

Alice and Bob repeat steps 1 through 7 many (20 or 30) times. 
If the check in step 7 is always okay, then Bob accepts that Alice knows the 

factorization of n. 
But if Alice ever fails even one test, then Bob concludes that Alice is lying. 

Bob could cheat by finding the factors of n as follows: 
Bob skips Step 2. In Step 3, he waits until he receives b from Alice. He 

computes d = b3 mod n, and sends this d to Alice. Note that d is a quadratic 
residue modulo n, by Theorem 20.1. In Step 5, Bob sends T to Alice. In 
Step 6, Alice sends x\ to Bob, and x\ is a solution to the congruence x2 = 
bd = ò4 (mod n). Bob already knows one solution, 62, to this congruence. If 
x\ = ±(b2) (mod n), then Bob learns nothing when he receives x\. But if 
Alice sends Bob one of the other two square roots of b4 mod n as x\ in Step 
6, then Bob can factor n by taking a greatest common divisor, by Theorem 
13.1. 

Alice could prevent this by checking whether d — b3 mod n. But Bob could 
mount a similar attack with d = 65 mod n, d = b7 mod n, etc., and there are 
too many possibilities for Alice to check. 

One way for Alice to avoid this trap is to wait for d to arrive from Bob 
before she sends b to him. (Could Alice cheat in a similar way then? I'm 
not sure.) A better way to avoid the problem is for both Alice and Bob to 
bit-commit to their quadratic residues before sending them. 

25.2 Man-in-the-Middle Attacks 
In these attacks, an attacker stands between Alice and Bob. Communication 
between them passes through the attacker's computer. He may modify parts 
of a message and pass it on to the intended recipient. The result of this devious 
action is that the attacker learns something about their communication or else 
fools one of them into accepting as authentic a bogus message supposedly from 
the other. 

Here is a simple example of the man-in-1he-middle attack. Suppose Al­
ice wishes to communicate securely with Bob. She initiates the conversation 
by sending Bob a plaintext message with her public key. She expects Bob 
to reply with his public key and that they will use their public keys to talk 
secretly. However, Mike intercepts Alice's first message, replaces her public 
key with his and forwards the message to Bob. Bob receives a message that 
claims to be from Alice. It contains a number which is supposed to be her 
public key. He replies to Alice with a message containing his public key. Mike 
intercepts this message, replaces Bob's public key with his own and forwards 
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the message to Alice. Then Alice and Bob communicate, but they both un­
knowingly encipher all their messages with Mike's public key. Mike intercepts 
all their messages, deciphers them, reenciphers them with the appropriate 
public key and forwards the messages to the intended recipient. Mike could 
even change the messages if he wished. The clever number theory behind 
public key cryptography is worthless against this attack. 

This attack would work even if the public keys of Alice and Bob were 
stored in a public database, so long as Mike could intercept their queries to 
the database. Mike would intercept Alice's request for Bob's public key and 
reply with his own public key. He would do the same with Bob's query for 
Alice's public key and the attack would continue as before. The attack would 
be the same if Alice and Bob stored their public keys on their home pages. 
Mike would intercept their browser requests and reply with his own public 
key. 

The X.509 protocol prevents the man-in-the-middle attack. In it, each 
user's public key is signed by a trusted authority, Tracy, perhaps through 
a hierarchy of trusted signatures. The signed record contains the identity 
of the public key owner in addition to the public key. When Alice requests 
Bob's public key and receives a number in reply, that number comes with a 
certificate signed by Tracy that this number is Bob's public key. Mike can 
intercept Alice's request and Bob's reply, but if he replaces Bob's public key 
with his own, either the signature won't match the one on the signed message 
or else the message will identify the public key as Mike's—not Bob's. 

If Alice and Bob used PGP, they would receive each other's public key from 
several sources, each having a level of "trust" or confidence. Mike would have 
to compromise all of these sources to perform a man-in-the-middle attack. 
And Alice and Bob would likely be informed by PGP that there was little 
confidence in each other's public key, so they would realize that a man-in-the-
middle attack could be happening. 

Another type of man-in-the-middle attack involves replaying a message 
recorded earlier, in the hope that the recipient will believe it was just sent. 
For example, suppose Mike creates a phony person called Bob and arranges 
for Bob to sell a valuable diamond to Alice. Alice pays for the diamond by a 
bank transfer. Mike records the bank transfer, which is enciphered, of course, 
and replays it several times to Bob's bank. This causes Bob's bank to credit 
the payment to Bob's account several times. Mike withdraws the money 
from Bob's account, which Mike created, and retires in Brazil. Banks require 
several forms of identification when you open an account, or even access it, 
because of attacks like this one. Furthermore, bank transfer orders contain 
time stamps and sequence numbers to prevent this type of attack. After the 
first bank transfer, Bob's bank would notice that the others were copies of the 
first one, and not credit the account multiple times. Whether Alice received 
her diamond is another matter. 
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25.3 Birthday Attacks 
Hash functions h(M) may be subject to birthday attacks if the message digest 
is too short. Suppose M is a contract that Alice and Bob want to sign. Alice 
prepares M and sends it to Bob to sign. Both agree that signing h(M) 
electronically binds the contract. Alice prepares two contracts, M which is 
fair to Bob, and M' which favors Alice. Let m be the length in bits of the 
message digest produced by h. In each contract, Alice finds ra/2 + 5 places 
where the text could read in either of two ways, such as changing active voice 
to passive. She hashes all 2 m / 2 + 5 versions of both messages and looks for a 
match h(M') = h(M) between versions of the two messages. By Theorem 
2.5, this is likely to happen because there are 2 m possible message digests and 
more than 2 m / 2 versions of each message. She sends M and h(M) to Bob. 
Alice and Bob sign h(M). Later, Alice produces M' and Bob's signature on 
h(M') — h(M). Bob finds that he has signed a contract favorable to Alice. 
This attack can be prevented by choosing m large enough so that Alice can't 
compute 2 m / 2 + 5 hash values. 

25.4 Subliminal Channels 
Several cryptographic algorithms have subliminal channels. These are 
covert ways that an attacker can send a second message hidden within a 
normal message. A simple example of this is the bit string formed by the 
parity of the number of letters in each word of a message. A carefully con­
structed, innocent sounding message may contain another message hidden in 
this bit string. As another example, a message may be hidden in certain bits 
of a digitized photo. Some cryptographic algorithms known to have sublim­
inal channels are schemes that choose random numbers used just once, such 
as the Digital Signature Algorithm and the signature algorithms of ElGamal 
and Ong-Schnorr-Shamir. 

Here is a subliminal channel for the DSA. Alice is a spy who sends many 
plaintext messages to her contact Bob. Alice's employer reviews these mes­
sages to ensure she is not divulging any secrets. All of the messages are signed 
by the DSA. Alice and Bob secretly agree on a prime pi, different from any 
parameter of the DSA. When Alice signs an innocuous message M, she hides 
a subliminal bit in it. If she wants to send a 1 bit, she tries different random 
numbers k until the r parameter of the signature is a quadratic residue mod­
ulo p\. For a 0 bit, she makes r a quadratic nonresidue modulo p\. Since half 
of the r are quadratic residues and half are quadratic nonresidues, she doesn't 
have to try many random k to do this. 

Bob checks each DSA signature to be sure the message came from Alice. 
Alice's employer could make the same check and find nothing amiss. Bob 
would read the subliminal bit in each message by evaluating the Legendre 
symbol (r/pi). 

In fact, Alice could send several subliminal bits per message. Suppose Bob 
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and Alice agree on j secret primes p i , . . . ,pj. Then j subliminal bits could be 
sent per message, with the ¿-th bit being 0 or 1 according as r is a quadratic 
residue or nonresidue modulo p¿. On average, Alice would have to try 2J 

values of k to get an r with the required properties, so she can't make j too 
big or her employer might wonder why her DSA was so slow. She could choose 
j = 16 and send two bytes per message. 

An evil implementer of DSA could use the same subliminal channel to 
leak Alice's 160-bit private key. Mike sells low-cost DSA chips with a 14-bit 
subliminal channel using fourteen primes that only he knows. When the chip 
signs a message, the user must supply it with her private 160-bit key x. Alice 
buys a DSA chip from Mike and uses it to sign messages. The chip breaks 
the 160-bit key x into sixteen ten-bit pieces. It chooses a random four-bit 
number e and sends the subliminal message consisting of e and the e-th piece 
of x. Mike observes the signature and deduces ten bits of Alice's private key 
x. After seeing many of Alice's signatures, he will learn most of the ten-bit 
pieces of x. When he knows all but one or two of the pieces he can compute 
the remaining bits by trying all possibilities. Then Mike can forge Alice's 
signature on messages. Even if Alice or someone else knew that Mike was 
stealing DSA private keys this way, they could not prove it unless they knew 
Mike's fourteen secret primes. 

25.5 Exercises 
1. Bob is a bit naive about using RSA. He created a public modulus n 

and a public encryption exponent e and made them public. He knew 
that he should keep his private decryption exponent d secret. For a long 
time no one sent him RSA-enciphered messages. Finally, he received a 
ciphertext message C from Alice. He deciphered this to get the plaintext 
M, a rather personal note. Evil Eve has intercepted C and would love 
to know what Alice said in M. Eve makes Bob feel guilty that his 
RSA system was used only once. In response, he agrees to decrypt any 
message sent to him, so long as it is not C, and return the answer to 
the sender. Eve sends him the ciphertext (IeC mod n). Bob deciphers 
this message, puzzles over the apparently meaningless "plaintext," but 
sends the latter to Eve as agreed. Explain how this trick allows Eve to 
read M. 

2. Alice and Bob use the Diffie-Hellman key exchange protocol to establish 
a Rijndael key for their daily chat. Explain how Eve can mount a man-
in-the-middle attack and relay all messages between them so that she 
can read them, but they won't know that anything is wrong. 

3. Write a contract or find an existing one. Find forty places in the text 
where you could express something in two different ways without chang­
ing the meaning. 
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4. Find a subliminal channel in the ElGamal signature scheme. 

5. In the DSA subliminal channel, suppose Mike has acquired 25 of Alice's 
signatures produced by the chip he sold her. What is the probability 
that these signatures reveal to him at least fourteen of the sixteen pieces 
of Alice's private key xl 

6. Alice and Bob use this simplified version of the zero-knowledge proof 
protocol for Alice to convince Bob she knows the factorization of a huge 
integer n. Both Alice and Bob know n. 

(a) Bob chooses a random x in ^/n < x < n and sends y = x2 mod n 
to Alice. 

(b) Alice computes the four square roots of y modulo n, picks one, r, 
say, and sends it to Bob. 

(c) Bob checks whether y = r2 mod n. If this fails, Alice does not 
know the factorization of n. 

Alice and Bob repeat the three steps thirty times, but stop if the equa­
tion fails in Step (c). 

a. Explain why Bob should believe that Alice knows the factors of n if 
the check in Step (c) is valid all thirty times. 

b. Explain why this is not a zero-knowledge proof protocol. 

c. Suppose that no value of y is repeated during the thirty repetitions. 
Eve knows n and observes the numbers y and r passed between Alice 
and Bob, but cannot see their private data, such as x. Can Eve use this 
information to convince Chuck that she, Eve, knows the factorization of 
n using the same protocol? Could Eve convince him if she and Chuck use 
the full, unsimplified zero-knowledge proof protocol instead? Explain 
your answers. 

d. Same question as part c , except that one y value was repeated. 
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