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Preface 
The proliferation, ubiquity, and increasing power of various types of sensors, 
wire(less) communication, and advanced information technology have dramatically 
increased the capabilities of data collection, storage, and manipulation ability, with 
the result that  various types of data sets have dramatically grown in volume and 
complexity. 

Data mining is the process of fnding anomalies, patterns, correlations, and new 
insights hidden inside large data sets to predict future trends. Data mining has been 
widely applied in many felds, for example, retailers, banks, manufacturers, telecom-
munications providers, and insurers, among others, who are using data mining to 
discover relationships among everything from price optimization, promotions, and 
demographics to how the economy, risk, competition, and social media are affecting 
their business models, revenues, operations, and customer relationships. It has been 
demonstrated that the more complex the data sets collected, the more potential there 
is to uncover relevant insights. 

The objective of this book is to advance readers’ data mining techniques through 
focusing on a special topic, co-location pattern mining. This book gives a comprehen-
sive description of the principles of co-location pattern mining and its applications 
in geoinformatics, such as spatial analysis, spatial decision making, and remotely 
sensed image classifcation. The content of this book has been specially deliberated 
upon, from fundamentals of co-location defnitions, to theory of co-location, to co-
location decision tree, to maximum variance unfolding (MVU) co-location, to maxi-
mal instance algorithm for co-location, and to negative co-location and can therefore 
be used as a textbook of senior undergraduate, and graduate courses and as a refer-
ence for instructors, researchers, scientists, engineers, and professionals in academia 
and governmental and industrial sectors. With investigations of the published books 
relevant to data mining, none of them has only concentrated on the special topic of 
co-location data mining. Another objective of this book is therefore to fll the gap. 

Several of the apparent features of the book that I believe will enhance its value 
as a textbook and as a reference book are as follows: First, this book only con-
centrates on a special topic, co-location mining pattern; that is, this textbook goes 
beyond the traditional focus on a wide spectrum of data mining. Second, this book 
emphasizes the principles, methods, and wide applications of co-location pattern 
mining, of which each topic is clearly explained and illustrated by detailed examples. 
Third, co-location pattern mining is an emerging feld and one of the cutting-edge 
topics of data science and is able to automatically dig co-location patterns from all 
types of data, with applications ranging from scientifc discovery to business intel-
ligence and analytics. Fourth, the content of this book specially deliberates upon 
co-location defnitions (fundamentals), the theory of co-location (basic theory), the 
co-location decision tree (middle advanced theory), the MVU co-location decision 
tree (junior advanced theory), and maximum instance co-location pattern mining 
(senior advanced theory). Such a deliberated chapter arrangement is to help students 
completely understand the principle of co-location pattern mining step by step. 



 xiv Preface 

The book signifcantly refects new developments in and case applications of data 
mining in order to meet societal and economic challenges. I believe that readers will 
be very impressed and interested in co-location pattern mining. Co-location pattern 
mining refects and represents the emergence of the most current data mining theory 
and technologies. 

It is my hope that this book can be read in varying depths by readers with data 
science backgrounds. 

Guoqing Zhou 
July 2021 
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Introduction 1 
1.1 BACKGROUND 

With the rapid development of science and technology, a large amount of data has 
been produced in all daily lives and all felds. These data are not only various, but 
also stored with different types of formats. However, a large number of useful infor-
mation and interesting patterns is often hidden in these data sets, but it is usually 
very time-consuming and complicated for us to obtain this information and patterns 
if relying on the traditionally existing query technology and statistical methods. 
Therefore, how to automatically and intelligently dig out valuable information and 
patterns from these data is a challenging problem to solve (Wang et al. 2011). In this 
case, data mining (DM) technology has emerged, which has attracted attention of 
many scholars worldwide. 

Interestingly, it is widely accepted that most of the data in our lives are geospa-
tial data, or simply called spatial data. Although these data span the data sources 
available, they are different from transactional data. It is thereby usually diffcult to 
obtain potentially useful knowledge from these spatial data (Li et al. 2013). Li Deren 
frst proposed the concept of “discovering knowledge from GIS database” (KDG) in 
1994 (Li et al. 1994). Then he further developed KDG into spatial data mining and 
knowledge discovery (SDMKD) (Li et al. 2002). SDMKD has a wide and important 
practical role; for example, the rules of spatial association, classifcation, and cluster-
ing are all spatial knowledge that can be applied in many felds (Li et al. 2001). 

Spatial data mining is an interesting but very challenging topic not only because 
of the complexity of spatial autocorrelation, spatial data types, and spatial rela-
tions but also because of the continuity of spatial data. Generally, the subsets of 
spatial features frequently located together in geospatial space are called spatial 
co-location patterns (Yoo and Shekhar 2006; Huang et al. 2004; Yoo et al. 2004, 
2005). Co-location pattern mining is a branch of spatial data mining. This pattern 
explains the association phenomenon in geospatial space, which can provide impor-
tant information for many application felds. For example, the co-location pattern 
{stagnant water source, West Nile disease} predicts the existence of West Nile dis-
ease in stagnant water source areas (Yoo et al. 2006). However, it is not feasible to 
directly use an association rule algorithm to mine this type of co-location pattern, 
since the spatial data is different from transactional data, and instances of the spatial 
features are embedded in a continuous space, sharing multiple spatial relationships 
(Yoo et  al. 2004). The join-based algorithm, partial join algorithm, and joinless 
algorithm solve the problem of mining co-location patterns and lay a foundation for 
domestic and foreign scholars to study co-location patterns (Yoo and Shekhar 2006; 
Huang et al. 2004; Yoo et al. 2004; Zhou 2011; Zhou et al. 2021). 

Although co-location pattern mining has been investigated for a few years, 
most of the co-location mining algorithms have shortcomings. A large part of the 
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computing time of the join-based algorithm is used to calculate the join to identify 
the candidate co-location pattern (Huang et al. 2004). Therefore, with the increase of 
spatial feature types and the number of instances, a large number of join operations 
are needed, increasing the time-consumption of the join-based algorithm. A partial 
join algorithm is to establish a group of disjoint clusters between spatial instances to 
identify the intraX instances and interX instances of co-location, which reduces the 
number of joins, but it takes time to establish clusters (Yoo et al. 2004). Although a 
joinless algorithm does not need join operation, it needs to generate table instances 
and candidate co-location patterns repeatedly, so the effciency of joinless algorithm 
is affected by the length of the co-location pattern. 

Under this background, the concept of maximal instance and maximal instance 
algorithm are proposed to mine co-location patterns by Zhou et al. (2021), which 
overcomes the shortcomings of both these algorithms. With the maximal instance 
and maximal instance algorithm, the maximal instances in spatial data are found 
by constructing an instance tree (RI-tree), and the candidate co-location patterns 
are generated by using the maximal instances. The process does not need any join 
operation, which greatly reduces the time consumption. 

1.2 DATA MINING 

1.2.1 CONCEPT FOR DATA MINING 

Data mining is the process of automatically extracting hidden useful information 
from large data repositories in order to fnd novel and useful patterns that might 
remain unknown. The data mining has become a powerful technology and tools for 
(Tan et al. 2006): 

• Finding predictive information and patterns, future trends, and behavior 
that experts may miss, 

• Allowing the decision maker to make proactive, knowledge-driven decisions, 
• Making prospective analyses and interpretability that are beyond the provi-

sion by retrospective tools, such as decision support systems, and 
• Answering those questions that traditionally were too laborious and time-

consuming to resolve. 

Figure 1.1 illustrates a basic architecture of data mining including data collection, 
selection, transformation, mining and interpretation, and knowledge discovery. The 
starting point is a data warehouse, where the different types of attribute data and/or 
spatial data are collected and archived and further managed in a variety of relational 
database systems. The data mining technology is integrated with the data warehouse 
to analyze these data using data mining algorithms. The discovered knowledge in 
the last step is rendered to improve the whole process. Reporting, visualization, and 
other analysis tools can then be applied to plan the future actions and confrm the 
impact of those plans. 

As seen from Figure 1.1, the process of data mining technology consists of a 
series of transformation steps, from data preprocessing to post-processing of data 
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FIGURE 1.1 The basic architecture of data mining. 

mining results. As mentioned in Tan et al. (2006), the input data can be in a variety 
of formats (e.g., fat fles, spreadsheets, or relational tables), be stored in a centralized 
data repository, or be distributed across multiple sites connected by internet. The 
preprocessing includes fusing data from multiple sources, cleaning data to remove 
noise and duplicate observations, and selecting records and features that are rel-
evant to the data mining task so that the raw input data can be transformed into an 
appropriate format for subsequent data mining analysis. The post-processing step 
is required in order to eliminate spurious data mining results so that only valid and 
useful results are incorporated into the decision support system. The post-processing 
algorithm includes statistical measures, hypothesis testing methods, etc. (Tan et al. 
2006). Such a “closing the loop” form can ensure the fnal decision will be as optimal 
as possible, since the mined information from database can be recycled and refned 
recursively. 

1.2.2 DATA MINING AND KNOWLEDGE DISCOVERY 

Knowledge discovery (KD) is a process including data warehousing, target data 
selection, cleaning, preprocessing, transformation and reduction, data mining, model 
selection (or combination), evaluation and interpretation, and use of the extracted 
knowledge (Fayyad 1996). Data mining is an integral part of knowledge discovery 
in databases (KDD) (Tan et al. 2006). Data mining aims to develop algorithms for 
extracting new useful patterns from databases that experts may miss, while knowl-
edge discovery aims to enable an information system to transform information to 
knowledge through hypothesis testing and theory formation (Tan et al. 2006). 



4 Data Mining for Co-Location Pattern  

    

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

   

  

 

  

1.2.3 DATA MINING WITH OTHER DISCIPLINES 

A number of other disciplines have played key supporting roles in the development of 
data mining. The germinative idea of data mining was based on sampling, estimation, 
and hypothesis testing from statistics and search algorithms, modeling techniques, and 
learning theories from artifcial intelligence, pattern recognition, and machine learning 
(Tan et al. 2006). With the advanced technologies in other disciplines, such as opti-
mization, evolutionary computing, information theory, signal processing, visualization, 
spatial database, genetic algorithm, and information retrieval, data mining obtained a 
sustainable development. In particular, techniques from high performance (parallel) 
computing are often important in addressing the massive size of some data sets, such 
as database systems for effcient storage, indexing, and query processing. Distributed 
techniques can also help address the issue of size and are essential when the data cannot 
be gathered in one location. The most commonly used techniques in data mining are: 

• Database technology, 
• Information science, 
• Statistics, 
• Machine learning, 
• Visualization, and 
• Others such as 

• Artifcial neural networks, 
• Decision trees, 
• Genetic algorithms, 
• Classifcation, and 
• Rule induction. 

1.2.4 DATA MINING TASKS 

Mennis and Guo (2009) have summarized the common tasks in the spatial data min-
ing. These tasks include (1) spatial classifcation and prediction, (2) spatial associa-
tion rule mining, (3) spatial clustering regionalization and point pattern analysis, and 
(4) geo-visualization. Generally speaking, spatial data mining tasks are divided into 
two major categories (Tan et al. 2006): 

• Predictive tasks. Like data mining, the major task of spatial data mining 
is to predict the values and behaviors of attributes on the basis of mined 
knowledge and patterns. 

• Descriptive tasks. This task primarily describes the mined knowledge and 
spatial patterns, such as correlations, trends, neighbors, clusters, trajecto-
ries, co-location, co-occurrence, and anomalies. 

1.3 GEOSPATIAL DATA MINING 

A pavement database is a type of spatial database, since the spatial data, such as XY 
coordinates, etc., are recorded for describing the pavement location. Thus, study of 
pavement management on the basis of a pavement database should apply the spatial 
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data mining technology. In fact, spatial data mining is a natural extension of data 
mining techniques applied to a spatial database. Spatial data mining is also used to 
extract the useful information and pattern in geography that is unknown and missed 
by explorers for offering great potential benefts for applied GIS-based decision 
making. Thus, spatial data mining has the same objectives and goals as data min-
ing does, and even more. Many researchers in information technology (IT), digital 
mapping, remote sensing, geoinformatics, spatial science, and spatial databases have 
made tremendous efforts. These efforts include the development of theory, algo-
rithm, methodology, and practice for the extraction of useful information and knowl-
edge from geographically referenced spatial data and drive inductive approaches to 
geographical analysis and modeling (e.g., Andrienko and Andrienko 1999; Cantú-
Paz and Kamath 2000; Chawla et al. 2000; Chen et al. 2005; Guo 2008; Han et al. 
1997; Keim et al. 2014; Knorr and Ng 1996; Kulldorff 1997; Mennis and Liu 2010; 
Miller and Han 2001a, 2001b; Openshaw et al. 1987; Shekhar et al. 2012; Yan and 
Thill 2009; Yao and Thill 2007; Zhang and Pazner 2004; Huang et al. 2006; May 
and Savinov 2002; Zhou et al. 2016, 2021; Zhou and Wang 2008, 2010, 2011). 

1.4 COMPARISON BETWEEN SPATIAL DATA 
MINING AND DATA MINING 

The common points between spatial data mining and data mining are they can share 
common methods, algorithms, theories and practices. The differences of the two 
branches can be briefy summarized as follows (Zhou and Wang 2010, 2011): 

1.4.1 SPATIAL DATA IN DATA MINING 

Data describing an object in a spatial database consist of spatial data and nonspatial 
data. So-called spatial data generally consists of two basic properties – geometric 
and topological properties. The geometric properties can be spatial location (e.g., 
geodetic coordinates), area, perimeter, volume, etc. Meanwhile, the topological 
properties can be adjacency, inclusion, left-/right-hand side, clockwise/counterclock-
wise, etc. In a traditional database, describing an object usually only uses nonspatial 
data, that is, no spatial data. The nonspatial data can be stored and managed using a 
relational database where one attribute of an object has no spatial relationship (Aref 
and Samet 1991). In a pavement database, the object and event are described by spa-
tial data simultaneously. 

In addition, geographic attributes used for describing an object often exhibit the 
properties of spatial dependency and spatial heterogeneity (Yuan 1997; Gahegan 
et al. 2001 at www.ucgis.org/priorities/research/research_white/2000%20Papers/ 
emerging/gkd.pdf). The former implies that the attributes at some locations in space 
are related with others, the latter implies that most geographic processes are unsta-
ble, so that global parameters do not well represent the process occurring at a par-
ticular location (e.g., Glymour et al. 1997; Han et al. 1993; Hornsby and Egenhofer 
2000; Lu et al. 1996; Ng and Han 2002). 

These distinct features present challenges and bring opportunities for mining 
useful information and spatial patterns from nonspatial and/or spatial properties 
of pavement treatment strategies. Thus, decision tree induction and decision rules 

http://www.ucgis.org
http://www.ucgis.org
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induction for pavement management should consider both spatial data and nonspatial 
data simultaneously. Thus, if the properties of spatial dependency and spatial hetero-
geneity are ignored, the accuracy of pavement treatment strategies derived from data 
mining techniques will be affected. 

1.4.2 DATA MINING AND SPATIAL DATABASE 

A pavement database is a type of spatial database. The primary methods for spatial 
data mining focus on the spatial database, which stores spatial objects represented by 
spatial data, nonspatial data, and spatial relationships (Han et al. 1993; Agrawal et al. 
1993). In addition to extraction of hidden knowledge, spatial patterns, and informa-
tion, spatial data mining, or knowledge discovery, is also the extraction of implicit 
spatial relations that are not explicitly stored in spatial databases (Koperski and Han 
1995). Also, most studies of spatial data mining focus on the relational and trans-
actional databases. The methods strive to combine already mature techniques such 
as machine learning, databases, and statistics (Han et al. 1993; Ng and Han 2002). 

The fundamental idea of spatial data mining is on the basis of the spatial data of a 
pavement database, which has some characteristics and brings more challenges than 
tradition data mining. Existing traditional data mining methods may not have been 
suffcient to deal effectively with geospatial data, since it can change in spatial and 
temporal domain. Thus, this research considers the characteristics of spatial data’s 
co-location and co-occurrence. 

1.5 DECISION TREES AND DECISION RULES 

1.5.1 DECISION TREE INDUCTION 

Decision tree (DT) induction is one of the most popular and powerful data mining 
techniques and has thus widely applied in various pattern classifcations (Witten and 
Frank 2002). A decision tree can be understood as a type of classifer that classifes 
the data set using a tree structure representation of the given decision problem (Osei 
and Kweku 2007) and is usually composed of three basic elements (Tan et al. 2006) 
(see Figure 1.2): 

1. A root node, which is also called decision node; it has no incoming edges 
and zero or more outgoing edges; 

2. Internal nodes, which is also called edge, each of which has exactly one 
incoming edge and two or more outgoing edges; and 

3. Leaf, which is also called terminal node or answer node, each of which has 
exactly one incoming edge and no outgoing edges. 

Over the past few decades, a lot of effort has been made on how to construct 
an “optimal” decision tree. Dietterich (1990) discussed improvement to decision 
tree design methods and provided a good background to these and more classical 
decision tree development methods. Lim et al. (1998) compared several decision 
trees, such as statistical and neural network methods on a variety of data sets. Both 



 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

7 Introduction 

of these works showed that a wide range of speed and accuracies can be obtained 
from the different decision tree algorithms commonly used, and that the effective-
ness of different algorithms varies greatly with the data set. One of the most com-
mon “benchmark” methods of inducting decision tree structure is ID3 (Interactive 
Dichotomizer 3) (Quinlan 1986) and C4.5 (Quinlan 1993), which deals with data 
sets in which variables are continuous or integer, or where there is missing data, and 
CART (classifcation and regression trees) algorithm (Breiman et al. 1984). These 
algorithms are typically called top-down induction on decision trees (TDIDT), with 
which the knowledge obtained in the learning process is represented in a tree where 
each internal node contains a question about one particular attribute (corresponding 
decision variable) and each leaf is labeled with one of the possible classes (asso-
ciated with a value of the target variable) (Osei and Kweku 2007). Typical algo-
rithms also include; SLIQ (Mehta et al. 1996), PUBLIC (Rastogi and Shim 2000), 
SPRINT (Shafer et al. 1996), RAINFOREST (Gehrke et al. 2000), BOAT (Gehrke 
et al. 1999), MMDT (Chen et al. 2003), and TASC (Chen et al. 2006). In addition, 
Friedman et al. (1996) discussed the problems of constructing decision trees and 
showed that the problem of constructing a decision becomes harder as one deals 
with larger and larger data sets and with more and more variables. Fulton et al. 
(1996) analyzed the problems of generating decision trees capable of dealing with 
large, complex data sets and showed that it is simpler to construct decision trees that 
can deal with a small subset of the original data set. Alsabti et al. (1999) discussed 
the problems of scaling decision trees up to large data sets, with the loss of accu-
racy that often occurs as a result. Mehta et al. (1996) emphasized the importance 
of classifcation in mining of large data sets and also discussed the wide range of 
uses that classifcation can be put to in economic, medical, and scientifc situa-
tions. Garofalakis et al. (2000) discussed methods for constructing decision trees 
with user-defned constraints such as size limits or accuracy. These limits are often 
important for users to be able to understand or use the data sets adequately or to 
avoid over-ftting the decision tree to the data that is available. Ankerst et al. (1999) 
used an interactive approach, with the user updating the decision tree through the 
use of a visualization of the training data. This method resulted in a more intuitive 
decision tree and one that the user was capable of implementing according to their 
existing knowledge about the system in question. On the other hand, evolutionary 
computation for decision tree induction has been of increasing interest to many 
researchers. Li and Belford (2002) demonstrated that slight changes in the train-
ing set could require dramatic changes in the tree topology, that is, the instability 
inherent in decision tree classifcations. Llorà and Garrell (2001) and Papagelis and 
Kalles (2001) showed that evolutionary methods, when used to develop classifca-
tion decision trees, allowed both important and unimportant attributes and relation-
ships to be developed and for unimportant factors to be recognized. Cantú-Paz and 
Kamath (2000), meanwhile, discussed an evolutionary method specifcally used 
to develop classifcation trees, while Turney (1994) used a defnition of ftness for 
decision tree evolution that included not only error rates but also other costs, such as 
size. Endou and Zhao (2002) examined a decision tree implementation method that 
relied on evolution of the training data set used. The training data set was evolved 
to give the best coverage of the domain knowledge. Siegel (1992) discussed the 
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implementation of competitively evolving decision trees as a method of enhancing 
evolutionary methods. 

Among these methods, one of the most common “benchmark” methods, and also 
probably the most popular one, is the C4.5 algorithm developed by Quinlan (1986, 
1993), which is based on the ID3 method. Thus, this research will emphasize the 
analysis of the algorithm’s advantages and disadvantages in order to present our new 
method in Chapter 4. 

1.5.2 DECISION TREE MODELING 

In principle, there are exponentially many decision trees that can be constructed 
from a given set of attributes (Tan et al. 2006), but investigators in fact only endeavor 
to fnd a most appropriate decision tree through making a series of locally opti-
mum decisions about which attribute to use for partitioning the data while growing 
a decision tree, since the optimal tree is computationally infeasible because of the 
exponential size of the search space (Olaru and Wehenkel 2003). This most appropri-
ate decision tree is believed to be the reasonably most accurate, albeit suboptimal, 
taking a reasonable amount of time. No matter which algorithm employed, the basic 
process of a decision tree usually consists of two major phases: the growth phase and 
the pruning phase (Apté and Sholom 1997). 

1.5.2.1 Growth Phase 
The basic process of the growth phase is: a decision tree is generated top-down by 
successive divisions of the training set in which each division represents a question 
about an attribute value. The initial state of a decision tree is the root node, which is 
assigned all of the attributes from the training set. If all attributes belong to the same 
class, then no further decisions need to be made to partition the attributes, and the 
solution is complete. If attributes at this node belong to two or more classes, then a 
split attribute operation will be made by a test. The process is recursively repeated 
for each of the new intermediate nodes until a completely discriminating tree is 
obtained (Apté and Sholom 1997). With the generated decision tree, each leaf node 
is assigned a class label. The nonterminal nodes, which include the root and other 
internal nodes, contain attribute test conditions to separate records that have differ-
ent characteristics. 

This algorithm, that is, starting from the root to the leaves, is called a generic 
decision tree algorithm, which can be briefy characterized by the following three 
properties (Elouedi et al. 2001): 

1. Attribute selection measure. How to choose an attribute is a critical issue 
because the most appropriate choice will result in partitioning the training 
set in an optimized manner. When a decision node relative to this attribute is 
created after a test, this node becomes the root of the decision tree. 

2. Partitioning strategy. How to partition the training set with a given criterion 
or multiple criteria is very important. It consists in decomposing the training 
set into many subsets. In order to “optimally” partition the attributes, many 
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criteria have been presented before; meanwhile, many new criteria are still 
being proposed. 

3. Stopping criteria. What criteria will be satisfed for stopping so that a train-
ing subset is declared as a leaf? This means that stopping criteria determines 
whether or not a training subset will be further divided. Some investigators 
apply the different steps recursively on the training subsets for verifying the 
stopping criteria. 

One of the most important properties is the attribute selection measurement, which 
measures how to select the attribute that characterizes the root of the decision tree and 
those of the different subdecision trees. Quinlan (1993) has defned a measure called 
information gain and further developed a well-known popular decision tree modeling 
algorithm called C4.5. The details of attribute selection measures will be described 
in section 1.5.3. Briefy, the basic idea of this attribute selection measure is to com-
pute the information gain of each attribute in order to fnd how well each attribute 
alone classifes the training examples, and then one presenting the highest value will 
be chosen. In fact, this attribute generates a partition where the record classes are as 
homogeneous as possible within each subset created by the attribute. 

In order to explain this basic process, Figure 1.2 illustrates the data set, and the 
corresponding tuple-table is listed in Table 1.1. The fgure also shows the three axis 
parallel lines, one at height = 4.2, the second line at height = 6.3, and third line at 
volume = 34. The three lines seem to completely partition the training data set into 
three different subareas. 

Figure 1.2 illustrates the process of a decision tree growth phase for training set 
listed in Table 1.1 and Figure 1.2. In the frst step, all attributes are assigned to the 

FIGURE 1.2 Example of data set for decision tree generation. 
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TABLE 1.1 
Example of Data Set for Decision Tree 
Generation 

ID Height Volume Class 

1 5.2 91.3 

2 0.85 84.4 

3 2.96 78.3 

4 6.99 75.5 

5 5.92 65.0 

6 1.87 62.2 

7 6.83 48.5 

8 1.79 45.6 

9 5.33 26.4 

10 7.55 19.2 

11 1.87 18.4 

12 8.99 8.9 

13 3.41 8.2 

top level of the tree, that is, root node, at which the classifcation process begins 
with a condition test for all examples at volume > 34. Examples that satisfy this test 
conditions with TRUE are passed down to the left internal node, with FALSE are 
passed down to the right internal node. This means that the right edge from root 
node receives examples that are not yet purely from one class, so further testing 
is required at this intermediate node. The second test at this level for the left node 
(TRUE) is for height > 4.2, and for the right node (FALSE) is for height > 6.2. For 
the left node, examples that satisfy the test condition (height > 4.2) are all in one 
class (MOUSE), and those that do not are all in another class (CYLINDER). For the 
right node, examples that satisfy that test condition (height > 6.2) are all in one class 
(DRUM), and those that do not are all in another class (CUBE). At this stage, both 
edges from this node lead to leaf nodes, that is, no more tests are needed; thus, the 
decision tree solution is complete. Note that this example illustrates a binary tree, 
where each intermediate node can split into at most two sub-trees. In fact, a decision 
tree may be nonbinary tree, where each intermediate node may split into more than 
two sub-trees. 



 

   

 

 

 

 

 

       

 

11 Introduction 

FIGURE 1.3 Process of tree growth phase. 

1.5.2.2 Pruning Phase 
Due to noise and outliers in the training data, the generated decision tree at the previ-
ous stage is potentially an over-ftted solution. The over-ftting can heavily infuence 
the classifcation accuracy of new data sets. Thus, a second phase, called pruning, 
is required to eliminate sub-trees in order to minimize the real misclassifcation 
error produced in growth phase (Apté and Sholom 1997). The actions of the pruning 
phase are often referred to as post-pruning in contrast to the pre-pruning that occurs 
during the growth phase. In order to create a small and interpretable decision tree, 
numerous post-pruning methods have been proposed (e.g. Almuallim 1996; Bohanec 
and Bratko 1994; Fournier and Cremilleux 2002; Li et al. 2001; Mingers 1989, 1987; 
Niblet and Bratko 1986; Quinlan 1986, 1987, 1993; Mansour 1997; Elouedi et al. 
2001; Säuberlich 2000; Witten and Frank 2002). These methods can be grouped by 
(Osei and Kweku 2007): 

• Error-based method. Some post-pruning approaches attempted to identify 
a sub-tree that gives the smallest error on the validation data set, such as the 
reduced error pruning method proposed by Quinlan (1987), while others 
use an error estimation that is derived from training data set only, such as 
the minimum error pruning method developed by Niblet and Bratko (1986). 

• Top-down or down-top method. Some researchers propose a top-down 
approach, such as the pessimistic error method (Quinlan 1987); while some 
researchers take a bottom-up approach, such as the error-based pruning 
method (Quinlan 1993). 

• Optimal or suboptimal method. Some methods are suboptimal heuristics 
(e.g. Mingers 1987); some methods are proposed to produce optimal solu-
tions (e.g. Almuallim 1996; Bohanec and Bratko 1994). 

• Criterion method. Some methods used a signal criterion (e.g., Quinlan 
1987); some methods used a multi-criteria approach for evaluating the 
“best” DT in a set of generated DTs (e.g., Osei and Kweku 2007, 2004). 

1.5.3 MEASURES FOR SELECTING THE BEST SPLIT 

Many measures have been developed to determine the best way to split the attributes 
based on the degree of impurity of the child nodes during the growth phase of a 
decision tree. Most of these measures are defned in terms of the class distribution of 
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the records before and after splitting. The smaller the degree of impurity, the more 
skewed the class distribution (Tan et al. 2006). The commonly used standard split-
ting measures are entropy (Quinlan 1986), gain ratio (Quinlan 1993) and Gini index 
(Breiman et al. 1984). The frst two measures will be used in this research. 

1.5.3.1 Entropy 
In information theory, entropy is a measure of the uncertainty associated with a 
random variable. Also, the entropy is a measure of the average information content 
one is missing when one does not know the value of the random variable (http:// 
en.wikipedia.org/wiki/Entropy (information _theory)). Entropy was frst adopted in 
decision tree generation by Quinlan (1986) in his ID3 algorithm as a split measure. 
The formula is (Tan et al. 2006) 

c−1 

Entropy(t)  =−∑ p(i | t)  log2 p(i | t) (1.1) 
i=0 

Where p(i |  t) is the fraction of records belonging to class i at a given node t, 
and c is the number of classes. The ID3 algorithm utilized the entropy criteria for 
splitting nodes. The process is: Giving a node t, computing the splitting criterion, 
Entropy (t) = pi × log(pi), where pi is the probability of class i within node t. An 
attribute and split are selected that minimize entropy. Splitting a node produces two 
or more direct descendants. Each child has a measure of entropy. The sum of each 
child’s entropy is weighted by its percentage of the parent’s cases in computing the 
fnal weighted entropy used to decide the best split. 

1.5.3.2 Information Gain 
For a training set T on attribute A, information gain in information theory and 
machine learning is defned as (Elouedi et al. 2001): 

Gain T A) = Info T  − A ( ) (1.2)( ,  ( ) Info T  

where 

n freq C T( , ) freq C T )i ( ,iInfo T( )  =∑ ⋅ log2 (1.3)
T Ti=1 

n T vInfoA ( )T = ∑ ⋅ Info T( )v (1.4)
Tv D A∈ ( )  

where Θ={C C, ,˜,C } are the set of n mutually exclusive and exhaustive classes, 1 1 n 

freq( ,C T ) denotes the number of objects in the set T that belong to the class Ci,i 

and Tv is the subset of objects for which that attribute A has the value v. 
Theoretically, the best attribute is the one that maximizes Gain (T, A). Once the 

best attribute is allocated to a node, the training set T is split into several subsets. 
The procedure is then iterated for each subset. 

http://en.wikipedia.org
http://en.wikipedia.org


 

  

  
 

 

    

 
 
 

 

 

 
 

 

13 Introduction 

1.5.3.3 Gain Information Ratio 
Elouedi et al. (2001) demonstrated that the gain information has good results, but it 
is limited to those attributes with a large number of values over those with a small 
number of values. To overcome this drawback, Quinlan (1993) has proposed the gain 
ratio criterion, which is mathematically defned by: 

Gain T A)( ,
Gain ratio (T , A) = (1.5)

Split Info T A)( ,  

T T v vwhere Split Info T A( , )  =− ∑ ⋅ log2  measures the information in the attri-
T Tv D A∈ ( )  

bute due to the partition of the training set T into |D(A)| training subsets. Split info 
(T, A) is also the information due to the split of S on the basis of the value of the cat-
egorical attribute A. With gain ratio, the attributes with many values will be adjusted. 

In C4.5 algorithm (Quinlan 1993), the attribute value that maximizes the gain 
ratio is chosen for the splitting attribute. The gain ratio is computed using attributes 
having gain greater than average gain. This gain ratio expresses the proportion of 
information generated by a split that is helpful for developing the classifcation. The 
numerator (the information gain) in this ratio is the standard information entropy 
difference achieved at node t, expressed in Equation 1.4. 

1.5.4 DECISION RULE INDUCTION 

Decision rules are directly induced by translating a decision tree either in a bottom-
up specifc-to-general style or in a top-down general-to-specifc style (Apté and 
Sholom 1997). In other words, the decision rules are constructed by forming a 
conjunct of every test that occurs on a path between the root node and a leaf node 
of a tree. 

Algorithms of inducing decision rules can be grouped into two categories: ordered 
rule sets or unordered rule sets (Apté and Sholom 1997): 

1. Ordered rule sets are induced by ordering all the classifcations, and then 
using a fxed sequence, such as the smallest to the largest class, to combine 
them together. When this rule is applied to new data set, the new data exam-
ple is required in exactly the same sequence as they were generated in the 
training data. Based on the example in Figure 1.3, the induced decision rules 
are depicted in Figure 1.4. 

2. Unordered rule sets are induced without a fxed sequence. Thus, when this 
rule is applied to new data, the new data example can be independent and 
more fexible. 

For the basic process of decision rule induction, that is, a tree generation frst and 
then translation of the tree into a set of rules, some problems were discovered. For 
example, for certain data spaces, this nature of partitioning may not always be capa-
ble of producing appropriate/optimal solutions. On the other hand, if algorithms 
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IF (volume > 34) 
THEN If (height > 4.2) 

Then MOUSE 
ELSE CYLINDER 

ELSE IF 
IF (height > 6.3) 

THEN DRUM 
ELSE CUBE 

End 

FIGURE 1.4 Decision rule induction. 

are employed that directly generate the tree, it is possible to create rules. These 
rules essentially correspond to decision regions that overlap each other in the data 
space. Thus, some people suggested the techniques that directly generate rules from 
data are also available, which overcome some of the drawbacks of decision tree 
modeling. 

1.5.5 EVALUATION OF THE PERFORMANCE OF DECISION TREES 

Once a decision tree and/or decision rule is induced, it can be used for estimating 
or predicting a new data set. Many methods have been developed to evaluate the 
performance of a decision tree or decision rules. The most well-known criteria are 
accuracy, speed, and interpretability. In other words, the decision tree and decision 
rules derived using different approaches can be compared in terms of their predic-
tive accuracy on the new data set, on the computational cost, and the level of under-
standing and insight that is provided by the solution. Accuracy and speed vary from 
algorithm to algorithm, and in most instances these two issues are coupled; that is, a 
high predictive accuracy tends to require increased computational effort (Apté and 
Sholom 1997). This research will use the following criteria to evaluate the perfor-
mance of a decision tree and decision rules. 

1.5.5.1 Accuracy of Performance 
The performance accuracy of a decision tree is defned as a ratio between the number 
of correct or incorrect classifed instances. The mathematical formula is (Tan et al. 
2006): 

Number of correct predictions
Accuracy = (1.6)

Total number of prediictions 

This classifcation of accuracy gives a general assessment of the number of 
correctly classifed examples in total. 
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1.5.5.2 Twofold Cross-Validation 
Twofold cross-validation will be applied in this research to evaluate the perfor-
mance of decision tree and decision rules. The basic process is: the whole data 
set is split into two parts, one part of the data set being dedicated to the training 
and the other one for the test. The training set is used to learn the algorithm and 
generate the tree and rules, and the test set is used to estimate the generated deci-
sion tree and rules. This procedure is repeated after every part of the data set is 
used for both training and testing, respectively. Afterward, the overall accuracy 
parameters are calculated as means from the evaluation of the individual cross-
validation subset. 

1.5.6 PROBLEMS OF DECISION TREE INDUCTION DATA MINING 

Decision tree induction is capable of extracting implicit, previously unknown, 
and potentially useful information from large databases and has therefore been 
successfully and widely used in various domains, including data mining (Quinlan 
1986, 1993) and many other industrial and business domains for credit evalua-
tions, fraud detection, and customer-relationship management (Berry and Linoff 
2000). 

The decision tree induction method has several advantages over other data min-
ing methods, including being human interpretable, well organized, computationally 
inexpensive, and capable of dealing with noisy data (Li et al. 2001). 

However, the decision tree induction method entails the following drawbacks: 

1. Up to until now, decision tree construction algorithms have usually 
assumed that the class labels were Boolean variables. This means that 
the algorithms operate under the assumption that the class labels are fat. 
In other words, decision tree construction takes each attribute through 
in a one-by-one manner without considering the simultaneous occurrence 
of multiple attributes. In real-world applications, there are more complex 
class scenarios, where the classifcation labels to be predicted are in co-
occurrence labels. Unfortunately, existing research has paid little attention 
to the classifcation of data with co-occurrence class labels. To the best of 
our knowledge, no method has been developed to construct DTs directly 
from data are in co-occurrence class labels. This research work intends to 
remedy this research gap. 

2. Almost all of the decision tree generation methods did not consider the spa-
tial features of geospatial data, such as geographic relationships and topo-
logical relationships. In other words, the spatial data contains objects that 
are characterized by a spatial location and/or extension as well as by several 
nonspatial attributes. Figure 1.5 shows an example of spatial objects, which 
occur at a co-location pattern, that is, CYLINDER always co-occurs with 
MOUSE. In a real-world, some instances are often located close geographi-
cally to another instance, such as gasoline station and road. Thus, identifca-
tion of such a classifcation pattern associated with spatial relationships and 
topological relationships needs to be studied. 
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 FIGURE 1.5 Instance co-location pattern and nonlinear classifcation. 

3. Mugambi et al. (2004) divided the decision trees into three main types on the 
basis of how they partition the feature space: 

• Univariate or axis-parallel decision tree. This type of decision tree 
carries out tests on a single variable at each non-leaf node and splits 
the attributes using axis-parallel hyperplanes in the feature space (see 
Figure 1.2). The C4.5 algorithm (Quinlan 1993) belongs to the axis-par-
allel class of decision trees. This type of tree is called a linear decision 
tree. 

• Multivariate linear or oblique. This type of decision tree carries out 
tests and split the attributes using an oblique orientation to the axis of the 
feature space geometrically. 

• Nonlinear multivariate decision trees. This type of decision trees carries 
out tests using nonlinear partitioning of the feature space (see Figure 
1.5), such as polynomial-fuzzy decision tree (Mugambi et al. 2004). 

A linear decision tree is known to perform well in small and linear feature spaces 
but very poorly in large and nonlinear ones. Theoretically, exploring information 
patterns using decision tree is based on a large database. In fact, in our pavement 
management database, the database is not large enough, as expected in principle. 
This means that the pavement data mining uses linear decisions better than a non-
linear decision tree. However, the spatial features in the pavement database are not 
a linear mode in the real-world. Thus, this fact requires us to develop a robust linear 
decision tree method to handle small data with linear spatial features. 
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1.6 CO-LOCATION PATTERN MINING 

Many scholars have studied co-location patterns earlier and achieved many sat-
isfcing research results. The use of the co-location pattern is proposed by Huang 
et al. (2004). The basic mining algorithms for a co-location pattern are join-based 
algorithms, partial join algorithms, and joinless algorithms. Literature (Huang et al. 
2004) not only introduces the concept of the co-location pattern but also proposes a 
join-based algorithm to solve the problem of co-location pattern mining. The join-
based algorithm is also called a transaction-free algorithm, because there is not a 
customized transaction set in the spatial data set. This algorithm uses the principle of 
data mining to discover the co-location pattern in spatial data without the transaction 
set. In the join-based algorithm, the participation index satisfes an anti-monotonic 
property, which not only provides an effective pruning strategy to reduce unneces-
sary computing time but also ensures the correctness of co-location pattern mining. 

Partial join algorithm was frst proposed in the literature by Yoo and Shekhar 
(2004). This algorithm is to solve the problem of poor performance caused by too 
many join operations in the join-based algorithm. The main idea is to reduce the 
calculation time by reducing the join operations, so as to achieve the purpose of 
optimizing the algorithm. Before mining the co-location pattern, the partial join 
algorithm frst transacts the spatial data set, that is, generating disjoint clusters in 
the data set. 

The joinless algorithm was frst proposed by Yoo and Shekhar (2004). This algo-
rithm is to better solve the problem of excessive computation consumption caused 
by join operation in the join-based algorithm and partial join algorithm. The main 
idea of a joinless algorithm is to establish a star neighborhood in a spatial data set. 
Compared with the join-based algorithm and partial join algorithm, this algorithm is 
more effective because it uses the instance lookup method rather than the computa-
tionally expensive instance join method when obtaining instances of the co-location 
pattern. 

Co-location pattern studies have tended to emphasize the equal participation 
of each spatial feature. As a result, it is impossible to capture interesting patterns 
involving features with different frequencies. Therefore, Huang, Pei, and Xiong 
studied the mining of co-location patterns with rare spatial features and proposed a 
new measure called maximum participation ratio (maxPR) (Ma 2017). 

In addition, a few scholars have put forward the concept of maximal clique in 
co-location pattern mining, which can be used to mine co-location patterns quickly 
and effectively. For example, Verhein and Al-Naymat (2007) frst proposed the con-
cept of maximal clique; Verherin et al. (2007) also introduced the data of the Sloan 
Digital Sky Survey (SDSS) and proposed an effective algorithm to generate the maxi-
mal clique from a large spatial database; this algorithm can successfully generate all 
the maximal cliques in SDSS data and generate a useful co-location pattern; Kim 
et al. (2011) proposed a polynomial algorithm called AGSMC (Algorithm Generating 
Spatial Maximal Cliques), which can generate all the maximal cliques from the gen-
eral spatial data sets (Kim et al. 2011). This algorithm uses the materialized method to 
construct a tree data structure to represent the maximal cliques, which can effectively 
mine the spatial co-location pattern (Ghazi-Tabatabai et al. 2008). 
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A few other scholars have studied the relationship between spatial co-location 
pattern and spatial clustering. For example, Huang et al. (2008) proposed spatial 
clustering to combine similar spatial objects and introduced a new method of min-
ing spatial co-location patterns by clustering technology; Jiamthapthaksin (2009) 
proposed multi-objective clustering (MOC), which decomposes data sets into simi-
lar groups and maximizes multiple objects in parallel, and applied the MOC to co-
location pattern mining (Huang et al. 2008); Yu (2017) proposed a new co-location 
analysis method to analyze the popular areas of the patterns; this method combines 
kernel density estimation and polygon clustering technology and specifcally consid-
ers the correlation, heterogeneity, and context information in complex spatial interac-
tion (Jiamthapthaksin et al. 2009). Bian and Wan (2009) defned a spatial co-location 
pattern based on k-proximity in reference(Wu et al. 2013) and proposed a k-prox-
imity feature co-location pattern mining algorithm based on grid index to effec-
tively discover co-location patterns in spatial data sets. Wu et al. (2013) proposed the 
basic algorithm of fuzzy co-location mining based on the related concepts of fuzzy 
co-location mining. Jiang et al. (2017) introduced the spatial instance with utility 
value and the new utility participation index and used the new utility participation 
index to mine co-location patterns (Gao et al. 2011). Yang et al. (2014) proposed an 
agglomerative hierarchical clustering algorithm for spatial co-location pattern min-
ing. Hu et al. (2014) introduced the concept of utility into spatial co-location pattern 
mining and proposed a basic algorithm to mine spatial co-location pattern with high 
effciency; Hu et al. (2013) studied spatial co-location pattern mining with instance 
location ambiguity, defned the relevant concepts of spatial co-location pattern min-
ing with instance location ambiguity, and proposed the distance calculation based 
on grid and pruning strategy to improve the mining performance and accelerate the 
generation of co-location rules. The concept of spatial maximal co-location pattern 
and the mining algorithm were frst proposed by Lu et al. (2014). Guo et al. (2016) 
proposed the degree method according to the characteristics of large degree of the 
maximal clique vertex and then studied the effcient incremental mining of spatial 
co-location pattern and the evolution analysis of spatial co-location pattern and pro-
posed the basic algorithm and pruning algorithm of effcient incremental mining of 
spatial co-location patterns. 

With the development of spatial data mining technology, the research interests 
on the co-location pattern are increasing, and this pattern has been widely used in 
various felds. Zhou (2011) applied the co-location pattern to the decision tree and 
proposed a decision tree induction method called co-location based decision tree 
(CL-DT) to strengthen the decision of pavement maintenance and repair. In addi-
tion, since there is a nonlinear distribution of instances in high-dimensional space, 
the CL-DT decision tree induction only considers the Euclidean distance between 
instances. He (2018) and Jiang et al. (2010) used co-location patterns to analyze 
the urban planning and supermarket distribution. In order to make the analysis and 
research of co-location more practical, Hu et al. (2008) combines the analysis of 
co-location patterns with the spatial analysis method of a geographic information 
system, put forward the theory of co-location spatial analysis based on buffers, and 
studied the infuencing factors of karst collapse on this basis. The concept of spa-
tiotemporal co-location patterns was given by He (2018), who studied urban traffc 
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data and used spatiotemporal co-location pattern mining to fnd the collection of 
congestion and transitive roads in urban traffc, which provides good suggestions for 
solving the problem of urban congestion. 

1.7 ARRANGEMENT OF THE CHAPTERS 

Several of the apparent features of the book that I believe will enhance its value as a 
textbook and as a reference book are as follows: First, this book only concentrates on 
a special topic, mining co-location patterns; that is, this book goes beyond the funda-
mentals of data mining, such as data analysis, pattern mining, clustering, classifca-
tion, statistics, regression, neural networks, deep learning, and machine learning. In 
fact, no single book has addressed all these topics in a comprehensive and integrated 
way. Second, co-location pattern mining is an emerging feld and a cutting-edge 
topic in data science and is able to automatically dig co-location patterns from all 
types of data sets, with applications ranging from scientifc discovery to business 
intelligence and analytics. Third, this book emphasizes the principles, algorithms, 
and wide applications of co-location pattern mining; this book can therefore advance 
readers’ knowledge and skill in data mining. Fourth, the content of this book is 
specially deliberated with the following arrangements. Such a deliberated chapter 
arrangement is to help readers completely understand the principle of mining co-
location patterns step by step. 

Chapter 1: Introduction. The background and signifcance of this book, funda-
mentals of data mining, and the advance of co-location patterns are over-
viewed and introduced. 

Chapter 2: Fundamentals of mining spatial co-location patterns. The defni-
tions and concepts related to mining co-location patterns are introduced. 
The algorithms for three types of mining co-location patterns, including 
join-based, partial join-based, and joinless-based, are introduced. Their 
advantages and disadvantages are discussed, and some of the other algo-
rithms developed in recent years are reviewed in detail. 

Chapter 3: Principles of mining spatial co-location patterns. Methods and 
algorithms for mining co-location patterns are explained in detail. The 
generation of co-location decision trees and decision rule induction from 
co-location are described. 

Chapter 4: Manifold learning co-location pattern mining. Manifold learning is 
frst introduced, and the maximum variance unfolding (MVU)-based min-
ing co-location pattern, including generation of rule and pruning, is focused 
on and detailed. 

Chapter 5: Maximal instance algorithm for mining co-location patterns. The 
maximal instance algorithm, through introducing a new concept, maximum 
instance, is described in detail. The process of generating row instances and 
co-location patterns in this algorithm is introduced. Its advantages and dis-
advantages are discussed. 

Chapter 6: Mining negative co-location patterns. S few new defnitions and 
concepts pertaining to negative co-location are introduced. The principle of 
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mining negative co-location patterns is described in detail. The relationship 
between positive and negative co-location patterns is analyzed. 

Chapter 7: Applications of mining co-location patterns in pavement mainte-
nance and rehabilitation are described in detail. Comparison analysis and 
discussion are introduction, and decision making is recommended. 

Chapter 8: The application of mining co-location in spatial buffer analysis is 
described in detail, including three traditional types of buffer analysis, hat 
is, point buffering, line buffering, and polygon buffering. A comparison 
analysis and remarks are made. 

Chapter 9: The application of mining co-location patterns in remote sensed 
imagery classifcation is introduced in detail. A comparison analysis with 
the different methods is discussed. 
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Fundamentals of Mining 2 
Co-Location Patterns 

2.1 BASIC CONCEPTS OF MINING CO-LOCATION PATTERNS 

Spatial co-location pattern is a feature subset of the relationship between geographi-
cal instances. In spatial data, each spatial instance is recorded as T i. , where T is 
the spatial feature type of the spatial instance and i is the unique ID of the instance 
within each spatial feature type. A.1 in Figure 2.1, whose ID is 1, is an instance of 
spatial feature type A. The example of spatial data set in Figure 2.1 includes three 
types of spatial features A, B, and C. Among these instances, fve instances belong to 
the spatial feature A, fve instances belong to the spatial feature B, and four instances 
belong to the spatial feature C (Table 2.1). 

FIGURE 2.1 An example of spatial data set. 

TABLE 2.1 
Spatial Feature Types and Instances 

Spatial feature types Spatial instances 

A A A. ,1 . ,2 A. ,3 A. ,4 A.5 
B B B. ,1 . ,2 B B. ,3 . ,4 B.5 
C C C. ,1 . ,2 C C. ,3 .4 

DOI: 10.1201/9781003139416-2 27 
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1. Spatial neighbor relationships 

A neighbor relationship is a Euclidean distance measure with a threshold of 

d, that is, R(A B. ,1 .1)↔(distance A( .1, .B 1)≤ d) (Verhein and Al-Naymat 
2007). In Figure 2.1, two instances of solid line connection meet the neighbor 
relationship defnition. For example, A.1 and B.2 meet the neighbor relation-
ship defnition. 

2. Spatial co-location patterns 

Spatial co-location patterns represent the subsets of features that are fre-
quently located together in geographic space (Verhein and Al-Naymat 2007; 
Jiang et al. 2010; Hu and Qin 2008; Yu 2014). {A B C, ,  } in Figure 2.1 is a 
co-location pattern. 

3. Clique 

A clique is a group of objects such that all objects in that group are co-located 
with each other (Kim et al. 2011). For example, A.4, B.3, and C.4 form a 
clique in Figure 2.1. 

4. Neighborhood transaction 

A neighborhood transaction (simply, transaction) is a set of instances T that 
forms a clique using a neighbor relationship R. 

5. Cut neighbor relation 

A neighbor relation r ∈ R between two event instances is called a cut neigh-
bor relation if i1 and i2 are neighbors of each other but belong to distinct 
transactions. 

6. Row instance 

A neighborhood instance I of a co-location C is a row instance (simply, 
instance) of C if I contains instances of all events in C and no proper subset 
of I does so. 

7. Table instance 

The table instance of a co-location C is the collection of all row instances 
of C. 

8. IntraX row instance 

A row instance I of a co-location C is an intraX row instance (simply, intraX 
instance) of C if all instances i ∈ I belong to a common transaction T. 

9. IntraX table instance 

The intraX table instance of C is the collection of all intraX row instances 
of C. 
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10. InterX row instance 

A row instance I of a co-location C is an interX row instance (simply, 
interX instance) of C if all instances i ∈ I have at least one cut neighbor 
relation. The interX table instance of C is the collection of all interX row 
instances of C. 

11. InterX table instance 

The interX table instance of C is the collection of all interX row instances 
of C. 

12. Participation ratio 

The participation ratio PR(c f, i ) for feature type fi in size-k co-location 
c ={ f1, ,  fk }  is the fraction of instances of fi  which participate in any ˜ 
instance of co-location c (Verhein and Al-Naymat 2007; Jiang et al. 2010; Hu 
and Qin 2008; Yu 2014), i.e. 

table instance c( ))_π (
iPR(c f, i )= f 

, (2.1)
table instance f( )i_ 

where π is a projection operation with duplication elimination. 

13. Participation index 

The participation index, Pi(C) is used as a co-location prevalence measure, i.e. 

PR( )c = min {PR c fi
k

i=1 ,( )} . (2.2) 

14. Antimonotone 

The participation ratio and participation index are antimonotone (monotoni-
cally nonincreasing) as the size of the co-location increases. 

A negative co-location pattern refers to the patterns with strong negative cor-
relation in spatial data and participation value less than the minimal frequency 
threshold (Jiang et al. 2010, Hu and Qin 2008). Jiang and others frst proposed 
the concept of a negative co-location pattern and a mining algorithm (Jiang 
et al. 2010). The following is the concept of a negative co-location pattern. 

15. Negative co-location pattern 

A co-location pattern C is a negative co-location pattern, if C X Y , where = ∪  
X is a set of positive items (positive spatial features), Y  is a set of negative 

items (negative spatial features), and Y ≥1， X Y  ∅∩ =  . 

16. The PI of negative co-location patterns 

The participation index of a negative co-location pattern C X  Y  is defned = ∪  
( )  {PR C Xi

k
i=1 ,( )} ( , )as PI C = min , where PR C Xi  is the participation ratio of 
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spatial feature Xi in a negative co-location pattern C. The participation ratio 
PR(C X, i ) can be calculated by: 

πXi 
(table instance C( ))_ 

PR(C Xi )=, (2.3)
table instance X_ ( )i 

17. Prevalence negative co-location pattern 

Given a minimum prevalence threshold (min_prev), a negative co-location 
pattern C X  Y  is a prevalence negative co-location pattern if C meets the = ∪  
following conditions:（a）PI X ≥ min _ prev( ) ， 

PI ( )Y ≥ min _ prev and PI X Y  )<min prev ( )≥ min ( ∪ _ ；（b） PI C _ prev. 

2.2 THREE BASIC TYPES OF CO-LOCATION 
PATTERN MINING ALGORITHMS 

Huang, Shekhar, and Yoo proposed the join-based algorithm (Huang et al. 2004), 
the partial join algorithm (Hu and Qin 2008), and the joinless algorithm (Verhein 
and Al-Naymat 2007). These three basic algorithms not only solve the problem of 
spatial co-location pattern mining but also provide a basis for international scholars 
to deeply study co-location pattern mining. This section frst introduces three basic 
types of co-location pattern mining algorithms in detail and analyzes their advan-
tages and disadvantages, respectively. 

2.2.1 JOIN-BASED ALGORITHMS 

The join-based algorithm was frst proposed by Huang, Shekhar, and Xiong (in 
Huang et al. 2004) for instances when the traditional transactional data mining 
method cannot be applied to spatial data sets. The join-based algorithm is also called 
the transaction-free algorithm because there is no self-defned transaction set in the 
spatial data set; this algorithm uses the principle of data mining to discover the co-
location pattern in the spatial data on the basis of no transaction set. Literature (Yu 
2014) introduces the concept of co-location patterns. As the basis of judging whether 
the co-location pattern is frequent, the participation index satisfes a non-monotonic 
property, that is, with the increase of the order of the co-location patterns, the partici-
pation index is monotonic and nonincreasing (Jiang et al. 2010; Huang et al. 2006). 
This property not only provides an effective pruning strategy to reduce unnecessary 
computing time but also ensures the correctness of co-location pattern mining. 

The idea of the algorithm is: input spatial feature type set ET (Euclidean Type), 
spatial instance set E, user-defned proximity distance threshold and interest mea-
surement threshold, and output frequent co-location pattern with a participation 
index greater than the user-defned interest measurement threshold. According to 
the defnition of a participation index, it can be found that the participation index 
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of all the size 1 co-location patterns is 1. This shows that all the size 1 co-location 
patterns are frequent, so it is not necessary to calculate their participation indexes or 
flter them based on frequency (Jiang et al. 2010). Therefore, both the size 1 candi-
date co-location pattern set and the frequent size 1 co-location pattern can be initial-
ized to the spatial feature type set ET (Euclidean Type). The join-based algorithm 
has four basic steps: generating the candidate co-location pattern, generating the 
table instance of the candidate co-location pattern, pruning, and generating the co-
location pattern. 

Because the pruning process of the size 1 co-location patterns can be ignored, the 
iteration of the algorithm starts from the size 2 co-location patterns. The four steps 
of the algorithm are detailed as follows: 

1. Generate candidate co-location pattern: frequent size k co-location patterns 
with k − 1 same instances are joined with each other to generate a size k + 1 
candidate co-location pattern. This join strategy is the key of the algorithm. 
The apriori_gen function takes the size k frequent co-location pattern set Pk 

as the parameter. 
2. Generate the table instance of the candidate co-location pattern: the gen-

eration of a table instance of the size k +  1 candidate co-location pattern 
also depends on the join operation. There are three strategies to calculate 
the total join, which are geometry strategy, combination strategy, and hybrid 
strategy. The geometric strategy can be realized by spatial join based on 
neighborhood relation, that is, the size k frequent co-location table instances 
are connected with the size 1 frequent co-location table instances. If in the 
previous step the size 2 frequent co-location pattern {A, B} and {A, C} con-
nections generate the size 3 candidate co-location pattern {A, B, C}, then the 
table instance of {A, B} and the table instance of {A, C} can be connected 
to generate the table instance of {A, B, C}. This strategy is called a combi-
nation strategy. The hybrid strategy is to choose more effective geometry 
strategy and combination strategy in each iteration. Figure 2.2 details how 
to generate a row instance of co-location pattern {A, B, C} through join. 
Because the size k row instances are generated by joining the size k − 1 row 
instances. Although join-based algorithm can generate a complete and cor-
rect co-location pattern, the connection operations required in the genera-
tion process will increase with the increase of spatial feature types and their 
instances, and the calculation time will also increase. 

3. Pruning: the candidate co-location pattern can be pruned by a given interest 
measurement threshold. First, the algorithm prunes co-locations based on the 
frequency, that is, only the candidate co-location pattern that is higher than 
the given interest measurement threshold is frequent. After the participation 
indexes of all candidate co-location patterns are calculated, pruning based on 
frequency is performed, and those non-frequent candidate co-location pat-
terns will be deleted. Another pruning strategy is multi-resolution pruning. 
Multi-resolution pruning is learned from spatial data with coarse resolution 
using disjoint partitions. In the whole connection, the main pruning strategy 
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 FIGURE 2.2 The example of generating a row instance of co-location patterns through join. 

is based on frequency. This pruning strategy can ensure fnding the complete 
and correct frequent co-location pattern. 

4. Generate frequent co-location mode: through pruning, a co-location pat-
tern satisfying a frequent threshold value greater than the user set value is 
selected. 

The join-based algorithm is described as follows: 

Input： 

a. E ={ − , − , }Event ID Event Type Locationin Space  represents the set of 
instances of spatial features; 

b. ET represents the set of spatial features; 
c. R represents the neighbor relationship; 
d. Θ represents the minimum frequency threshold, and α the minimum 

conditional probability threshold. 

Output： 

A set of co-locations with prevalence and conditional probability values 
greater than user-specifed minimum prevalence and conditional probability 
threshold. 

Variables 

k : co-location size; 
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Ck  : set of candidate size k co-locations; 
Tk  : set of table instances of co-locations in Ck ; 
Pk  : set of prevalent size k co-locations; 
Rk  : set of co-location rules of size k; 
T Ck : set of coarse-level table instances of size k co-locations in Ck ._ 

Steps 

1. Co− location size k =1, C1 = ET P, 1 = ET; 
2. T1 = _ _ ( 1, Egenerate table instance C  ); 
3. if ( fmul =TRUE) then 

4. T C  = generate _ table instance C  , multi _ event E  ;1 ( 1 ( )) 
5. Initialize data structure C T, ,k k , ,k T C_ to be empty for < ≤ K;k P R  k 1 < k 

6. while(not empty Pk and k K  do< ) { 

C = generate candidate colocation C_7. k+1 _ ( k , k); 
8. if ( fmul =TRUE) then 

9. C = multi _ resolution pruning θ,C ,T _ ,  _ rel R  )_ ( C multi ( ) ;k+1 k+1 k 

+ generate table instance  1 T R, );10. Tk 1 = _ _ (θ,Ck+ , k 

11. Pk+1 = select _ prevalent _ colocation(θ,Ck+1,Tk+1 ); 
12. Rk+1 = generate cokocation rule_ (α, Pk+1,Tk+1 );_ 
13. k = +k 1; 
14. } 
15. return union R2 ˜ Rk+1 ).( , ,  

2.2.2 PARTIAL JOIN ALGORITHMS 

A partial join algorithm, frst proposed by Yoo and Shekhar (2004, 2006) and Yoo 
et al. (2005), is used to solve the problem of low performance caused by too many join 
operations in the join-based algorithm. The main idea of this algorithm is to opti-
mize the algorithm by reducing the join operations and reduce the computing time. 
Before mining the co-location pattern, the partial join algorithm frst transacts the 
spatial data set, that is, generating disjoint cliques in the data set. Generating a clique 
inevitably generates a segmentation neighborhood relationship (the “cut neighbor 
relationship” refers to the connection between two spatial instances if they belong 
to two different groups but meet the neighborhood relationship). The introduction 
of the cut neighbor relationship brings about new concepts: intraX table instance, 
intraX row instance, interX table instance, and interX row instance. In this way, each 
instance of a co-location pattern is divided into an interX row instance and an intraX 
row instance. A partial join algorithm is to join the interX and intraX instances and 
then calculate the participation of co-location pattern. The key of this algorithm is to 
reduce the number of neighbor relationships and divide them into as large groups as 
possible. Therefore, the method of the transactional spatial data set is very important, 
and the effect of the transaction is affected by the distribution of spatial instances. 
Since all spatial instances in a transaction are adjacent to each other, there is no need 
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for spatial operations and composite operations; that is, the connection operations 
are not needed to fnd the candidate co-location pattern instances in the transaction. 
This method provides a framework for effective co-location pattern mining. The 
calculation cost of the instance join operation that only generates unidentifed inter-
group table instances in the transaction is relatively cheaper than that of the instance 
join operation that fnds all co-location pattern table instances. 

The basic steps of a partial join algorithm are as follows: 

1. Transactionizing a spatial data set: given a spatial data set, the partial join 
algorithm frst divides it to generate a transaction set. In reference (Hu and 
Qin 2008), some partition methods of generating a transaction set are intro-
duced, such as the grid partition method, maximal clique method, minimal 
partition method, and so on. The ideal situation of a transactional spatial data 
set is to generate a group of the largest cliques while minimizing the number 
of sides divided by partitions. Figure 2.3 describes in detail the method of 
transactionizing a spatial data set in a partial join algorithm. The virtual 
coil represents the cluster, the diameter of each dotted circle is d (d is the 
distance threshold of neighbor relationship), the solid line represents that two 
instances meet the neighbor relationship, and the dotted line represents that 
two instances are a cut neighbor relationship. 

2. Generate candidate co-location patterns: in the partial join algorithm, this 
step is the same as the join-based algorithm. It also uses the Apriori idea and 
join operation to generate size k + 1 candidate co-location pattern from the 
frequent size k co-location pattern. 

3. Scan the transaction set to collect the intraX instances: scan the transaction 
set in each iteration and list the intraX instances of the candidate co-location 

FIGURE 2.3 Transactionizing a spatial data set. 
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pattern. This step is similar to the Apriori algorithm. It should be noted that 
the transaction of spatial data set is different from that of market basket data. 
In traditional market basket data transactions, there are only Boolean item 
types, that is, items can only exist or not exist in transactions. In contrast, each 
item in a neighborhood transaction consists of a spatial feature type and its 
instances. A spatial feature type can have multiple instances in a transaction. 

4. Generate interX table instances: similar to the method of generating table 
instance in join-based algorithm, the size k + 1 interX table instances are 
generated from the size k interX table instances. 

5. Generate frequent co-location patterns: frst merge the intraX table instance 
set and interX table instance set, then calculate the participation value of co-
location pattern, then use the frequency threshold to prune and remove the 
non-frequent candidate co-location pattern. 

Partial join algorithm is described as follows: 

Input 

a. E represents the set of spatial feature types; 
b. S = , , } represents the set of {event instanceid event type locationinspace 

spatial instances; 
c. R represents the neighbor relationship; and 
d. Θ represents the minimum frequency threshold; α the minimum condi-

tional probability threshold. 

Output 

A set of co-locations with prevalence and conditional probability values 
greater than the user-specifed minimum prevalence and conditional prob-
ability threshold. 

Variables 

k : co-location size; 
T : set of transactions 
Ck : set of candidate size k co-locations; 
Pk : set of prevalent size k co-locations; 
Rk  : set of co-location rules of size k; 
IntraXk : set of intraX table instances of co-locations in Ck; 
InterXk : set of interX table instances of co-locations in Ck and Pk ; 

Steps 

1. (T InterX, 2 = trasactionize S R  ;) ( , ) 
2. k =1 ; C1 = E ; P1 = E ; 

3. while(not empty Pk )do{ 

C = generate candidate colocation Pk ;4. k+1 ( )  
5. for all transaction te T 
6. IntraX 1 = _ _ k+ , tk+ gather intraX instances(C 1 ); 
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7. if k ≥ 2 
gen interX instances(C ,8. InterX = _ _ , InterX R);k+1 k+1 k 

9. P = select _ prevalent _ colocation C  , IntraX ∪ InterX , miin _ prev)k+1 ( k+1 k+1 k+1 ; 
_ ( min cond 10. R = gen _ colocation rule P  , _ _ prob);k+1 k+1 

11. k = +k 1; 
12. } 
13. return union(R2 , ,  ).˜ Rk+1 

2.2.3 JOIN-LESS ALGORITHMS 

The joinless algorithm, frst proposed by Yoo et al. (2005), is used to better solve the 
problem of excessive computing consumption caused by join operations. The main idea 
of the joinless algorithm is to establish a star neighborhood in a spatial data set. A star 
neighborhood is a circle centered on each spatial instance. The neighbor relationships 
among all spatial instances are stored in the star neighborhood, and the row instances of 
co-location patterns can be obtained by scanning the star neighborhood. The effciency 
of joinless algorithms is higher than join-based algorithms and partial join algorithms 
because it uses the instance look-up method to get the instance of co-location patterns 
instead of the instance join method, which consumes too much calculation. 

Figure 2.4 describes the star neighborhood partition method. The dashed circle 
in the fgure is the star neighborhood of spatial instances A.1, A.4, and C.3 (that is, 
the star neighborhood with A.1, A.4, and C.3 as the center points). Instances within 
each star neighborhood are listed in Table 2.2. Although A.3 and C.3 satisfy the 
neighborhood relationship, there is no A.1 in the star neighborhood of C.3. This is 
because star neighborhood is a set of central instances and instances that satisfy the 
neighborhood relationship with the central instance and whose spatial feature types 

; 

FIGURE 2.4 Star neighborhood partition method. 
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TABLE 2.2 
Star Neighborhood 

Central instance Instances in star 
neighborhood 

A A.1 A.1, B.2, C.1, C.2 

A.2 A.2, B.4 

A.3 A.3, C.3 

A.4 A.4, B.3, C.4 

A.5 A.5, B.2, B.1, C.1 

B B.1 B.1 

B.2 B.2, C.1 

B.3 B.3, C.4 

B.4 B.4 

B.5 B.5, C.2 

C C.1 C.1 

C.2 C.2 

C.3 C.3 

C.4 C.4 

are in order larger than those of the central instance. A.1 belongs to feature type A in 
order greater than C.3 belongs to feature type C. 

The basic steps of joinless algorithm are as follows: 

a. Transform the spatial data set into a non-intersecting star neighborhood set: 
given the input spatial data set and neighborhood relationship, frst use the geo-
metric method to fnd all adjacent object pairs. A star neighborhood can be 
generated from neighbor pairs by grouping neighbor objects of each object. 

b. Generate candidate co-location patterns: frst, all features are initialized to 
determine the size 1 prevalent co-location patterns according to the def-
nition of the participation index. In the process of neighborhood material-
ization, the number of instances of each feature is known. Size k candidate 
co-location patterns are generated in size k − 1 prevalent co-location patterns. 
These co-location patterns are fltered at the feature level. If any subset of 
the candidate co-location pattern is non-prevalent, the candidate pattern is 
pruned. 

c. Filtering star instances of co-locations from star neighborhood sets: the star 
instances of the candidate co-locations are collected from the star neighbor-
hood with the same feature type as the frst feature of the co-locations. For 
example, instances of co-location pattern {B, C} are collected from the star 
neighborhood of feature B, and instances of co-location pattern {A, B, C} are 
collected from the star neighborhood of feature A. It should be noted that the 
number of candidate patterns examined in each star neighborhood is far less 
than the number of actual candidate patterns. 
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d. Choose the prevalent co-locations roughly: the star instances of size 2 are the 
cluster instance, because proximity is symmetric. For the co-locations above 
size 3, check whether a star instance is a cluster instance. Before this process, the 
co-locations are roughly fltered, that is, the participation indexes of candidate 
co-locations are calculated to flter them. If it is less than the minimum popular-
ity threshold specifed by the user, the candidate co-locations are pruned. 

e. Filter row instances of co-locations: from star instances of candidate co-location 
patterns, use the instance lookup scheme to flter instances of co-locations. 

f. Generate prevalent co-locations: the optimized fltering of co-locations is 
completed by the real participation index calculated from the instance of co-
locations. Candidate co-locations that meet a given threshold are prevalent. 

The joinless algorithm is described as follows: 

Input 

a. F = 1, ,  f }  represents the set of spatial features; { f ˜ n 

b. S  represents the set of instances of spatial features; 
c. R  represents the neighbor relationship; and 
d. Θ represents the minimum frequency threshold, and α the minimum 

conditional probability threshold. 

Output： 

A set of co-locations with prevalence and conditional probability values greater 
than user-specifed minimum prevalence and conditional probability threshold. 

Variables 

SN = SN f , ,  SN } fi ;{ 
1 
˜ fn 

: set of star neighborhood of spatial feature type 
k : co-location size; 
SIk : set of star neighborhood of size k candidate co-locations; 
CIk : set of table instances of size k candidate co-locations; 
Pk : set of prevalent size k co-locations; and 
Rk : set of co-location rules of size k. 

Steps 

1. SN = _ _ ( );gen star neighborhoods F S, ,  R 
2. P1 = F  ; k = 2; 
3. while(not empty Pk−1 ) do 
4. C = generate candidate colocations_ P − );_ (k k 1 

5. for i in 1 to n do 
6. for t  ∈ SN where f  = cf , cf is the first featureof C  ( 1, ,cf ˜ cf ).f i 1 1 k k 

7. SI = filter  
i 

_ star instances(C t, );k _ k 

8. end do 
9. if k = 2 then CIk = SIk 

10. else do Ck = select _ coarse _ prevalent _ colocations C SI mink ,( k , _ prev) 
instances(C SI ;11. CIk = filter _ clique _ k , k ) 
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12. end do 
13. P = select _ prevalent _ colocation C  , SI , _ );( min prev k k k 

k _ ( k min cond 14. R = gen _ colocation rule P  , _ _ prob); 
15. k = +k 1; 
16. End do 
17. return union R2 , ,  ) .( ˜ Rk 

2.2.4 ADVANTAGES AND DISADVANTAGES OF THREE BASIC ALGORITHMS 

The join-based algorithm uses the idea of data mining to fnd the neighbor relation-
ships between spatial instances in continuous spatial data and then proposes a join 
strategy to generate instances of co-location patterns and candidate co-location pat-
terns. In addition, the non-monotonic property of participation index is proposed 
and proved. One of the biggest advantages of the algorithm is that the join opera-
tions between the instances and the co-locations ensures that the full connection 
algorithm can mine the complete co-location pattern in the spatial data set, and the 
non-monotonic property of the participation index ensures that the join-based algo-
rithm can mine the correct co-location patterns. However, the join operations in the 
join-based algorithm will increase with the increase of feature types and instances 
in the spatial data, and the amount of data in the spatial data set is often very large. 
Therefore, the join-based algorithm needs a lot of computing time to mine a com-
plete and correct co-location pattern. In the era of big data, it is urgent to fnd use-
ful knowledge quickly, so the time-consumption of the join-based algorithm cannot 
meet this requirement at the outset. 

In order to solve the problem of excessive time consumption caused by too many 
join operations in the join-based algorithm, the partial join algorithm establishes dis-
joint clusters in the spatial data by transacting the spatial data set and divides the row 
instances of the spatial co-location patterns into interX row instances and intraX row 
instances. In this way, in order to generate co-locations, the partial join algorithm 
only needs to connect intraX instances and interX instances to calculate the par-
ticipation index, which greatly reduces the number of join operations and the time 
consumption caused by the join. However, prior to mining the co-locations, the par-
tial join algorithm needs to process the spatial data set, which also needs some extra 
time. Moreover, the transaction of spatial data sets is impacted by the distribution 
of spatial instances. If there are more cut neighbor relationships in this process, the 
effciency of partial join algorithm will also be affected. 

The advantage of the joinless algorithm is that it does not need the join between 
instances to generate co-locations. Similar to the partial join algorithm, the joinless 
algorithm needs to process the spatial data set before mining co-locations, that is, to 
establish the star neighborhood. By scanning the star neighborhood of each spatial 
instance, the neighborhood relationships between the instances can be obtained and 
all table instances can be generated. But the joinless algorithm is not perfect. It needs 
to scan the star neighborhood three times to generate table instances, which also 
consumes part of the computing time. 
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2.2.5 OTHER ALGORITHMS 

2.2.5.1 Co-Location Pattern Mining Algorithm with Rare Spatial Features 
For co-location pattern mining, most of the research often emphasizes the equal partici-
pation of each spatial feature, which results in the inability to obtain interesting patterns 
involving spatial features with different frequencies. Therefore, Verhein and Al-Naymat 
(2007) studied the mining of co-location patterns with rare spatial features. First, the 
concept of maximum participation rate is put forward, and it is pointed out that com-
pared with the participation rate, the maximum participation rate is also of great sig-
nifcance to co-locations; that is, it is also feasible to mine co-locations with rare spatial 
features by using the maximum participation rate. The maximum participation rate sat-
isfes the weak monotonicity, which can effectively save computing time in the pruning 
stage. In Verhein et al. (2007), a large number of experiments are provided to evaluate 
the performance of two algorithms: Min-Max and maxPrune. Specifcally, three cases 
are tested: (a) data sets that do not contain co-location patterns with rare spatial features, 
(b) data sets that contain patterns with rare spatial features, and (c) large data sets. 

2.2.5.2 Maximal Clique Algorithm 
Most of the algorithms of co-location pattern mining are based on the Apriori 
algorithm, which has two disadvantages. First of all, it is diffcult to meaningfully 
include some types of complex relationships (especially negative ones) in a pattern. 
Second, the Apriori algorithm is slow. Kim et al. (2011) proposed the largest clique 
(not included in any other clique) to extract the complex maximal clique and then 
mine these largest cliques to obtain the interesting set of object types (including 
complex types). This means that the interesting complex relationships can be mined. 
At the same time, it is demonstrated that the application of GLIMIT (Geometrically 
Inspired Linear Itemset Mining in the Transpose) itemset mining algorithm to this 
task has better performance than the use of the Apriori style method. 

In addition, the maximal clique algorithm is also studied by Wu et al. (2013), 
among others, and a polynomial algorithm called AGSMC (Algorithm Generating 
Spatial Maximal Cliques) is proposed to generate all the maximal cliques of general 
spatial data sets and to generate co-locations by using the maximal cliques. First, the 
existing advanced method is improved, which can extract all the neighborhood rela-
tionships between spatial objects. Second, a special tree data structure is proposed 
that can represent the maximal cliques. Third, a polynomial algorithm is proposed 
that can generate all the maximal cliques from general spatial data sets. It constructs 
a tree data structure and generates the maximal cliques by scanning the completed 
tree. The structure of the tree is as follows: for all nodes, only the fltered candi-
date nodes are generated as real nodes using advanced method. Fourth, through the 
experiment of a synthetic spatial data set and a real spatial data set, it is demonstrated 
that the algorithm with the polynomial is proper. 

2.2.5.3 Density Based Co-Location Pattern Mining Algorithm 
Most of the existing co-location pattern mining algorithms are generated and tested, 
that is, generating candidates and testing each candidate to determine whether it is a 
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co-location pattern. In the test step, the candidate instances are identifed to get their 
acceptability. Generally, the cost of case recognition is very high. In order to reduce 
the calculation of case recognition, a density based method is proposed in (Xiao 
et al. 2012). First, divide the object into multiple partitions, and then identify 
instances in dense partitions. The dynamic upper limit of a candidate’s popularity 
remains unchanged. If the current upper limit is less than the threshold, it stops iden-
tifying its instances in the remaining partitions. 

Figure 2.5 shows the partitioning method of the density based algorithm. The 
algorithm frst divides the spatial data into grids, so that each grid contains different 
spatial instances, that is, the density of each grid is different. For high-density parti-
tion priority processing, it is possible to quickly fnd out the co-location mode and 
save a lot of time. For example, as shown in Figure 2.5, the sample data is divided 
into nine partitions, among which the density of partition 3, 5 and 7 is signifcantly 
higher than that of other partitions, so the spatial instances in these three partitions 
will be processed frst. 

2.2.5.4 Co-Location Pattern Mining Algorithm with Fuzzy Attributes 
Fuzzy features refer to different types of things with some fuzzy attributes in space. 
In practical applications, spatial features not only contain spatial information but 
also attribute information, which is of great signifcance to decision making and 
knowledge discovery. If the attribute information is considered, the original co-
location pattern mining algorithm is no longer used. Therefore, the concept of fuzzy 
feature and fuzzy co-location pattern is introduced in reference (Wu et al. 2013; He 

FIGURE 2.5 The method of spatial instance grid partition (Xiao et al. 2012). 
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2014), and a basic mining algorithm is proposed to mine co-location patterns with 
fuzzy attributes. Finally, the algorithm is evaluated by simulation data. 

2.2.5.5 Co-Location Pattern Mining Algorithm with Time Constraints 
The existing spatial co-location pattern mining algorithms often only use the loca-
tion attribute of spatial data. But most spatial data has many different attributes, 
such as a time attribute and so on. There are two special cases in spatial data: time 
constraint and no user preset threshold. In order to solve the problem of co-location 
pattern mining in these two cases, literature (Zeng 2013) redefned the proximity 
between instances under time constraints, not only using Euclidean distance but also 
combining time constraints and Euclidean distance. In addition, the concept of no 
threshold is introduced into the data, which can mine co-location mode without a 
user preset threshold. 

2.3 SPATIAL NEGATIVE CO-LOCATION MINING ALGORITHM 

Spatial negative co-location pattern mining is of great signifcance in some applica-
tions, such as fnding plant growth information. Botanists are not only interested in 
symbiotic information but also in mutually exclusive plant information. It can also 
be used to identify conficting items (goods) in business data. However, only a few 
researchers have conducted the investigations on the mining of negative co-location 
patterns. 

The reference (Jiang et al. 2010) was the frst to propose an algorithm for mining 
negative co-location patterns. Jiang et al. (2010) and others put forward the defnition 
of the participation index of negative co-location patterns. By analyzing the rela-
tionship between the participation index of the positive and negative co-locations, 
the calculation method of the participation index of the negative co-locations is 
proposed. The participation index of the negative co-locations provides a basis for 
judging whether a negative co-location pattern is prevalent. Although this algorithm 
successfully solves the problem of mining negative co-location patterns, it needs to 
mine all co-location patterns before mining negative co-location patterns (Li 2020). 
Therefore, the time consumption of the algorithm is too large to achieve fast and 
effective mining of the negative co-location mode. 

The algorithm of negative co-location pattern mining proposed by Jiang et al. 
(2010) consists of the four steps: 

a. obtaining the proximity between spatial instances; 
b. generating size k candidate co-location patterns and negative co-location 

patterns; 
c. generating size k prevalent co-location patterns; and 
d. generating prevalent negative co-location patterns. 

The generation of candidate negative co-locations is different from that of co-
location pattern mining algorithms. The candidate negative co-location is generated 
by non-prevalent co-locations. In order to ensure that all co-locations and negative 
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co-locations can be generated, the size k candidate co-locations in the algorithm is 
generated by joining size k − 1 prevalent co-locations and size k − 1 prevalent co-
locations. The algorithm is described in this book. 

2.4 DIFFERENCES BETWEEN POSITIVE AND NEGATIVE 
CO-LOCATION PATTERN MINING 

Positive co-location patterns and negative co-location patterns are two different types 
of patterns in space. The knowledge contained in the two patterns plays a great role 
in people’s understanding of spatial data and also has great application signifcances 
in many felds. First of all, from the defnition point of view, a co-location pattern is 
a set of positively correlated instances in spatial data, that is, the instances contained 
in a co-location pattern are adjacent in space, while the negative co-location pattern 
is a set of instances with negative correlation in spatial data, and the instances in the 
pattern contain at least one negative correlation. 

From the perspective of a participation index, the calculation method of a partici-
pation index of negative co-location patterns depends on the instances of participat-
ing in co-location patterns to calculate the participation index of negative co-location 
patterns. According to the defnition of the participation index of negative co-location 
patterns, a method for calculating the participation index of negative co-location pat-
terns is proposed by Jiang et al. (2010), that is, if C X= ∪Y  is a candidate negative 
co-location, where X ={X1 X2 ˜, Xk} 1, 2 ,˜, Ak are the number of instances , ,  . If A A  
of spatial features X X, ,˜, X  participating in co-location pattern X Y1 2 k ∪ , then the 
participation index of negative co-location pattern X Y∪  is: 

  X1 −A1 X2 −A2 Xk −A 
k PI X Y = mi , ,˜,( ∪ ) n 


,  (2.4) X1 X2 Xk  

where Xi  is the number of instances of the spatial feature Xi. 
From the perspective of mining algorithms, the ideas of the two algorithms are 

different. In co-location pattern mining, size k candidate co-locations are generated 
by connecting size k − 1 prevalent co-locations. In order to ensure that all co-loca-
tion patterns and negative co-location patterns can be found, the size k candidate 
co-location patterns in the mining algorithm of negative co-location patterns are 
generated by the connection of size k − 1 prevalent co-location patterns and size 1 
prevalent co-location patterns. 

2.5 SUMMARY OF THIS CHAPTER 

This chapter mainly introduces the basic theory of spatial co-location pattern min-
ing. First, the concept of co-location patterns, row instances, the participation index, 
and other related concepts are given, which provides help for a better understanding 
of this book. Second, the related algorithms of spatial co-location pattern mining 
are reviewed. Spatial co-location pattern mining was a hot topic in recent years; 
there are many related research results, but the most classic co-location pattern 



44 Data Mining for Co-Location Pattern  

 

 

 
 

 

mining algorithms are join-based, partial join algorithms, and joinless algorithms. 
Therefore, this chapter only focuses on these three algorithms. 
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Principle of Mining 3 
Co-Location Patterns 

3.1 INTRODUCTION 

Chapter 1 introduced the fundamental theory of decision tree generation includ-
ing tree construction, algorithm modeling, and attributes splitting criteria, pruning, 
and accuracy evaluation of decision tree performance. This chapter will present an 
innovative method called co-location spatial decision tree induction, which is to 
incorporate co-location (also called co-occurrence) mining into the decision tree. 
This chapter will describe the details of the co-location decision tree construction, 
algorithm, modeling, decision rule, node splitting criterion, node merging criterion, 
and leaf stopping criteria and then will give an example for illustrating the calcula-
tion process of the co-location spatial decision tree induction algorithm. 

3.2 CO-LOCATION MINING ALGORITHMS 

Huang et al. (2004) presented the frst general framework of mining spatial co-
location patterns. Afterward, Huang and her research team made further research 
and exploration into how mining co-location rules can be applied in spatial data 
analysis, spatial data pattern classifcation, and spatial geographic knowledge dis-
covery. For example, Huang et al. (2005, 2006) adjusted the measure to treat cases 
with rare events, and Huang et al. (2008) used density ratios of different features to 
describe the neighborhood constraint together with a clustering approach. Xiao et al. 
(2008) presented a density based algorithm for mining a spatial co-location pattern, 
and Xiong et al. (2004) presented a buffer-based model to describe the neighborhood 
constraint for dealing with extended spatial objects such as lines and polygons. 

On the other hand, different researchers have made efforts to improve the eff-
ciency of the mining process of co-location. Yoo et al. (2004) proposed a partial-
join algorithm. Yoo et al. (2005), Yoo and Shekhar (2006), and Wang et al. (2008) 
proposed a join-less algorithm and N-most prevalent collocated event in 2009 (Yoo 
and Bow 2009). Complex spatial co-location patterns are presented by Verhein and 
Al-Naymat (2007). Sheng et al. (2008) introduced the defnition of an infuence 
function based on the Gaussian kernel to describe the neighborhood constraint, in 
which the algorithm assumed a distribution of features on the global space. Hsiao 
et al. (2006) applied the spatial data mining of co-location patterns to support 
agriculture decision making. Zhang et al. (2004) enhanced the algorithm proposed 
in Huang et al. (2004) to mine special types of co-location relationships in addi-
tion to cliques, namely, the spatial star and generic patterns. Celik et al. (2006a) 
proposed the problem of mining mixed-drove spatial-temporal co-occurrence 
patterns (MDCOPs), which extends co-location pattern mining to the scope of 
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both time and space. Afterward, Celik et al. (2006b) further considered some con-
straints based on the result of MDCOP and the most top-k ranking issues, and 
Celik et al. (2007a, 2007b) partitioned a global space into small zones and applied 
the co-location mining algorithms on every zone for accumulated computation. 
Eick et al. (2008) also proposed to fnd regional co-location patterns based on 
clustering. Qian et al. (2009a) presented spatial co-location patterns with dynamic 
neighborhood constrain, and further spatial-temporal co-occurrence over zones 
(Qian et al. 2009b). 

3.2.1 DEFINITIONS OF THE CO-LOCATION MINING METHOD 

The basic concept of spatial co-location, also called spatial co-occurrence, 
implies the presence of two or more spatial objects at the same location or at 
signifcantly close distances to each other. Co-location patterns can indicate inter-
esting associations among spatial data objects with respect to their nonspatial 
attributes. In these methods, the neighborhood constraint is described by a dis-
tance threshold that is the maximal distance allowed for two events to be neigh-
bors. Mathematically, co-location has been modeled by the references (Huang 
et al. 2004; Yoo and Shekhar 2006; Arunasalam et al. 2004; Zhou 2011; Zhou and 
Wang 2010, 2021): 

Given 

s , ,  sK 1, ,2 }a. The training data is a set S = { 1 s2 ˜, }. Each sample si = {x x ˜xN 

is a vector, representing example-ID, spatial feature type, and location ∨, 
where location ∈ spatial framework. The training data is augmented with a 
vector C = c1, c2, . . . where c1, c2, . . . represent the class to which each sample 
belongs. 

b. A neighbor relation ℜ over examples in S. 

We have 

a. A co-location, C, is defned as a subset of Boolean spatial features, C ⊆ S, 
whose instances form a clique under a neighbor relationship ℜ. Usually, 
the neighbor relationship ℜ is a Euclidean distance metric. For example, 
if the two spatial objects satisfy the neighbor relationship, that is, distance 
(si, sj) ≤ d, they are called neighbors. If an instance shares co-location with 
another instance, the objects of all features form a clique relationship in the 
co-location. 

b. Accompanying the co-location mining process, a co-location rule can be 
formed and expressed as c ⇒ c ( ), where c ⊆ S, c ⊆T , and c ∩ =Ω;p cp c,1 2 1 2 1 2 

p is a number representing the prevalence measure, and cp is a number mea-
suring conditional probability (Huang et al. 2004). 

With the modeling given here, it can be noted that an important part in the co-
location is proximity neighborhood, which is expressed using neighbor relation ℜ. 
This relationship is based on the semantics of the application domains for forming a 
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clique (Huang et al., 2006). For this reason, many researchers have presented differ-
ent methods and algorithms to mode the neighbor relationship ℜ, such as: 

• Spatial relationships (e.g., connected, adjacent in GIS (Xiong et al. (2004)); 
• Metric relationships (e.g., Euclidean distance (Yoo and Shekhar 2006)); 
• Combined relationships (e.g., shortest-path distance in a graph such as a 

road-map); and 
• Constrained relationships (e.g., Sheng et al. 2008,; Qian et al. 2009a, 2009b). 

It is also noted that the R-proximity neighborhood concept is different from the 
neighborhood concept in topology, since some sets of an R-proximity neighborhood 
may not qualify to be R-proximity neighborhoods (Huang et al. 2006). 

In order to describe the co-location algorithm, we frst give several defnitions 
(Huang et al., 2004). 

A. Participation ratio 

The participation ratio pr (c s, i ) for feature type si in a size-k co-location 
c = s , ,˜, }{ s  is the fraction of instances of feature si R-reachable to 1 2 sK 

some row instance of co-location c −- {fi}. 

B. Participation index 

The participation index pi (c) of a co-location c = {s1, s2,⋯, sK} is 

mini
k 
=1 {pr c( 1, fi )}. The participation index is used as the measure of preva-

lence of a co-location. The participation ratio can be computed as: 

table ins tan ce(c)_ )π s (
pi( )c = i (3.1)

table ins tan ce( )i_ f 

Where π is the relational projection operation with duplication elimination. 

C. Conditional probability 

The conditional probability cp(c1 ⇒ c2) of a co-location rule c1 ⇒ c2 is the 
fraction of row instances of c1 ℜ-reachable to some row instance of c2. It is 
computed as: 

π 1 (table instance c({ ° c } )_ )c 1 2 
cp = (3.2)

table instance c1_ ({ }) 
where π is the relational projection operation with duplication elimination. 

3.2.2 PRINCIPLE OF CO-LOCATION PATTERN MINING ALGORITHMS 

Different types of co-location mining algorithms have been proposed in the past several 
years, for instance, He et al. (2008), Huang et al. (2003; 2004; 2005; 2006), Xiao et al. 
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(2008), Xiong et al. (2004), Yoo et al. (2005), Yoo and Shekhar (2006), Yoo and 
Bow (2009), Verhein and Al-Naymat (2007), Sheng et al. (2008), Celik et al. (2006a, 
2006b, 2007a, 2007b), Qian et al. (2009a, 2009b). All of these proposed algorithms 
for mining co-location rules iteratively perform fve basic tasks, namely (1) initializa-
tion, (2) determination of candidate co-locations, (3) determination of table instances 
of candidate co-locations, (4) pruning, and (5) generation of co-location rules. These 
tasks are carried out inside a loop iterating over the size of the co-locations. 

3.2.2.1 Initialization 
The task of initialization is to assign starting values to various data-structures. 
Obviously, the value of the participation index is 1 for all co-locations of size 1, that 
is, there is no need for either the computation of a prevalence measure or prevalence-
based fltering, since all co-locations are prevalent. 

3.2.2.2 Determination of Candidate Co-Locations 
Determination of candidate co-location is usually realized using an approximate 
computation with rough threshold, so that a number of features with potential co-
location can be found as much as possible. Huang et al. (2004) applied apriori_gen, 
proposed by Agarwal and Srikant (1994) to generate size k + 1 candidate co-loca-
tions from size k prevalent co-locations. This research will use only one geometric 
condition, spatial neighbor, to generate candidate co-location. 

3.2.2.3 Determination of Table Instances of Candidate Co-Locations 
The determination of table instances of candidate co-locations can be realized 
through a join query from k + 1 candidate co-location. The query takes the k + 1 
candidate co-location set, Ck+1, and k prevalent co-locations in table instances as 
arguments and works. 

In addition, during the join computation of generating table instances, Huang 
et al. (2004, 2006) presented three spatial neighbor relationship constraint con-
ditions, the geometric approach (i.e., (p.ins tan cek, q.ins tan cek) ∈ℜ), a combina-
torial distinct event-type constraint (i.e., p.ins tan ce1 = q.ins tan ce1,⋯, p.ins tan 
cek−1 = q.ins tan cek−1), and hybrid constraint, which combine the spatial neigh-
bor relation constraint and combinatorial distinct event-type constraint. This 
research will adopt the hybrid constraint, but a slight modifcation will be made 
as follows: 

• Geometric constraint condition: The geometric constraint condition will 
be neighborhood relationship-based spatial joins of table instances of 
prevalent co-locations of size k with table instance sets of prevalent co-
locations of size 1. The spatial join operations consist of flter step and 
refnement. For these algorithms, Huang et al. (2004, 2006) has given a 
detailed description. 

• Event-type constraint condition: The distinct event-type constraint is: 

Let V = {v1, v2, ⋯, vc} is a set of corresponding clusters center of feature a1, 
a2, . . . ac; the distinct event-type constrain is defned as: 
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S c 

Γ=∑∑( fi −vk )
2 

(3.3) 
i=1 k=1 

Where ‖xi−vk‖ represents the Euclidean distance between fi and vk; Γ is a squared 
error clustering criterion. vk, ∀k = 1, 2, ⋯, c can be calculated by: 

N 

vk =∑ fi / ,  N = 6 k (3.4)N ; ∀ =1,2 
i=1 

So, if the Γ is greater than a given threshold, Γθ, the i-th instance is assumed the 
distinct event. 

3.2.2.4 Pruning 
The purpose of pruning is to remove the non-prevalent co-locations from the candi-
date prevalent co-location set using the given threshold θ on the prevalence measure. 
Huang et al. (2004) proposed two basic pruning methods called prevalence-based 
pruning method and multi-resolution pruning. In this research, we will develop the 
spatial features pruning method. The multi-resolution pruning used the criterion of 
the coarse participation index based on the coarse table instance to eliminate the co-
location. If its coarse participation indexes fall below the threshold, the co-location 
will be eliminated. This research will use the autocorrelation criterion of spatial 
features to eliminate the co-location features. The basic idea is: 

For a training data set S = {s1, s2, ⋯, sK}, if the instance si and sj are in co-location, 
where si ∈ S, sj ∈ S and Si = {x1, x2, ⋯, xN}, autocorrelation of the features vectors xi and 
xj, where xi ∈ Si and xj ∈ Sj, is calculated by: 

N 

∑(Si −Si )(Sj −Sj ) 
i j, =1ρij = (3.5)

N N 

∑(Si −Si )
2 

∑(Sj −Sj )
2 

i j, =1 i j, =1 

If the two feature vectors are strongly cross-correlated when greater than a given 
threshold T  in the training data, the co-location will be eliminated from the candi-ρij

date co-location. Under this condition, a new neighbor relationship ℜp will have to 
be re-computed on the basis of the original relationship ℜ so that any two instances 
from each of the two partitions are ℜ neighbors. In this research, this computation is 
implemented under a local zone, that is, not a global extend. 

3.2.2.5 Generating Co-Location Rules 
Accompanying the generation of a co-location set, all the co-location rules with the 
user-defned conditional probability threshold from the prevalent co-locations and 
their table instances can be generated (Huang et al. 2004). The conditional probabil-
ity of a co-location rule cp(c1 ⇒ c2) in the event-centric model is the probability of c1 

reachable to a ℜ-proximity neighborhood containing all the features in c2. 
An overview of the co-location mining algorithm is depicted in Figure 3.1. 
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Find-Co-Location Instance () /* function 

Input: 
a. Spatial data set 
b. Criteria, including minimum prevalence threshold and other thresholds. 

Output: 
A set of co-location rules 

Variables Setup: 
k : co-location size ¢ 
Ck : set of candidate size- k co-locations 
Tk : set of table instances of co-location in Ck 

Pk : set of prevalent size 
Rk : set of co-location rules of size 
T_C k : set of coarse-level table instances of size-k co-locations in Ck 

Steps: 
Step 1: Co-location size-k =1; 
Step 2: IF (fmul=TRUE) THEN 

T_C 1 =generate _table_instance( C1 ,multi_event); 
Step 3: While (not empty Pk and k < K ) do { 

generate candidate co_location; 
IF (fmul=TRUE) THEN 

Ck+1 = candidate size- k co-locations 
Tk+1 = table instance of co-location in Ck 

Pk +1 : = select prevalent colocation 
Rk +1 : = generate co-location rule 
k = k +1; 

} 
Step 4: return union 

FIGURE 3.1 Overview of the co-location mining algorithm (modifed from Huang et al. 
2006). 

3.3 CO-LOCATION DECISION TREE (CL-DT) ALGORITHMS 

The basic idea of the presented co-location decision tree (CL-DT) algorithm is 
depicted in Figure 3.2. Co-location mining is used to induce the co-location rules. 
These induced co-location rules are used to guide the decision tree generation. The 
co-location mining algorithm was described in section 3.2. This section will focus 
on how a co-location decision tree is induced. 
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FIGURE 3.2 Flowchart of co-location decision tree induction. 

3.3.1 CL-DT ALGORITHM MODELING 

Let each sample si = {x1, x2,⋯, xN}T in data set S = {s1, s2,⋯, sd}T be a vector, represent-
ing example-ID, spatial feature type, and location Π, where d is the number of fea-
tures, T is transpose, and the spatial location ∈ spatial framework. The training data 
is augmented with a vector C = {c1, c2,⋯, cK}, where {c1, c2,⋯, cK} represent the class 
to which each sample belongs. In order to assign an example to one of the classes, 
C = {c1, c2,⋯, cK} (K ≥ 2), each internal node, mi, carries out a decision or discrimi-
nant function, denoted by g x( ) for this purpose. mi 

The functional of g x( ) varies due to various decision tree algorithms, such as mi 

univariate decision trees, linear multivariate decision trees, and nonlinear multivari-
ate decision trees (Altincay 2007). This section discusses the generation of univari-
ate co-location decision trees, and linear multivariate co-location will be discussed 
in section 3.4. 

As usual, the CL-DT also utilizes a divide-and-conquer strategy to partition the 
instance space into decision regions by generating internal or test nodes. During the 
generation of the univariate decision trees, each internal node uses only one attribute 
to defne a decision or a model. The mathematical model can be expressed by: 

g x( )  = +s b m i m (3.6)
i i 

Where bmi
 is a constant. The selection of the best attribute si, where si ∈ S, and the 

corresponding bmi
 for the instance subset reaching at the node bmi

 are the main tasks 
in the generation of the decision function. 

As shown in Figure 3.3, the proposed algorithm for generating the CL-DT consists 
of a binary tree structure. At the beginning, the root node “accepts” all of examples, 
S = {s1, s2,⋯, sd}T; the best feature is selected from input data set, and then splitting 
criterion is used for determining whether the root node will be split using a binary 
decision, Yes and No, with which the two intermediate nodes, noted by mi, and mj 

(i = 1 and j = 2 in Figure 3.3). For each of intermediate nodes, mi and mj, splitting 
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 FIGURE 3.3 Co-location/co-occurrence decision tree. 

criterion will be used to determine whether the node (e.g., mi or mj) should be further 
split. If No, this node is considered as a leaf node; then one of class labels is assigned 
to this leaf node. If YES, this node will be split by selecting one “best” feature. Once 
this “best” attribute is selected, the co-location criterion will be used to determine 
whether the sample with the “best” feature co-occurs with the sample with the previ-
ously selected features (see Figure 3.3). If YES, this node will be “merged” into the 
same classifcation as the co-location’s, and one new “best” attribute will be selected 
again and re-determine whether the selected “best” feature co-occurs with the last 
best attribute; if NO, the node will further be split into a subset by repeating the 
previous work. This selection process is repeated until a non-co-occurrence feature 
is found. 

This process continues recursively until all vectors are classifed correctly. Finally, 
the termination criterion is satisfed; all leaf nodes are reached, and the class labels 
are assigned to each of the leaf nodes. 

The outline of the algorithm is depicted in Figure 3.4. The input to this algorithm 
consists of the training records S = {s1, s2,⋯, sd}T and the attribute set si = {x1, x2,⋯, 
xN}T. The algorithm works by recursively selecting the best attribute to split the data 
and expanding the intermediate nodes of the tree, and checking whether or not the 
attributes co-occur until the stopping criterion is met. 

3.3.2 ATTRIBUTE SELECTION 

A pavement management database in fact contains many attributes, which are 
used to describe different pavement characteristics for various applications. This 
means that some of the attributes in the pavement management database do not 
in fact contribute to pavement rehabilitation-decision; that is, these attributes 
may be irrelevant to pavement decision making of maintenance and rehabilita-
tion. Applications of these irrelevant attributes may cause negative infuences to 
the pavement decision support or cause the decision tree to be over-ftted. Thus, 
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Input: 
Training dataset D, 
Splitting criterion, 
Co-location threshold and criterion, 
Terminal node threshold 

Output: 
A LC-DT decision tree with multiple condition attributes. 

Process: 
Step 1. Co-location mining 
Step 2. Co-location rules 
Step 3. Build an initial tree 

Step 4. Starting with a single node, root. The root node includes all the 
rules and attributes. 

Step 5. For each non-leaf node, e.g., mi 
• Perform label assignment test to determine if there are any labels that can be 

assigned. 
• Take all the unused attributes in node mi, and choose an attribute according 

to splitting criterion to further split mi. 
o If the selected attribute satisfy the splitting criterion, partition the node 

into subsets. 
o If terminal condition is satisfied, stop splitting and assign mi as a leaf 

node. 
Step 6. For each of two non-leaf nodes in the same layer, e.g., mi, and mj 

• Apply co-occurrence algorithm, and test if the two nodes satisfy the co-
occurrence criterion. If yes, merge two neighbor nodes; if no, please go 
head Step 5. 

Step 7. Apply the algorithm recursively to each of the not-yet-stopped 
nodes, and update the bottom nodes in the tree built in Step 2. 

Step 8. Generate decision rule by collecting decisions driven in individual 
nodes. 

Step 9. The decision rules generated in Step 6 are used as initialization of 
co-location mining rule, and apply the algorithm of co-location mining rule to 
generate new associate rules. 

Step 10. Re-organize the input data set, and repeat Step 2 through Step 7, 
until the classified results by the co-location mining rule and decision tree 
(rules) is consistent. 

FIGURE 3.4 Outline of algorithm of co-location/co-occurrence decision tree (CL-DT). 

to reduce the post-processing for obtaining an accurate and interpretable decision 
tree, these irrelevant attributes must be eliminated. Schetinin and Schult (2005) 
proposed sequential feature selection (SFS) algorithms based on a greedy heuristic 
to eliminate the irrelevant attributes. The basic idea of this method is a bottom-up 
search method, starting with one attribute and then iteratively adding the new attri-
butes until a specifed stopping criterion is met. The basic steps of the sequential 
feature selection are described in Figure 3.5. 
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Find_Best_Attribute ()     /* function
Step 1.  Initiation with Set i = 1, Fb = Fi = F1 /* Wb stands for the best feature 
Step 2.  Find the best attribute Fb
• Run the weighted linear tests F1, F2, …, FT with the single attribute
• Select the test attribute Fk, k .T
• Find the best test Fk , k .T , if the test Fk is better than Fb, then Fb = Fk

Step 3.  if the stopping criterion is met, then stop and return to Fb.
otherwise, i : = i + 1, and go to Step 2.

FIGURE 3.5 The outline of steps of the SFS algorithm. 

3.3.3 CO-LOCATION MINING RULES

With the previously described co-location pattern mining operation, the co-location 
rules are traditionally generated with the user-defined conditional probability thresh-
old from the prevalent co-locations and their table instances. The conditional prob-
ability of a co-location was given in section 3.2.1, that is 

table instance c  ° c }π c1 ( _ ({ l 2 )) 
cp = (3.7)

table instance { }cl_ ( ) 

Where π is the relational projection operation with duplication elimination. 
However, this automatic method encountered problems, since conditional prob-

ability computation is time-consuming. Thus, this research manually forms the co-
location rules by organizing individual decision making. 

3.3.4 NODE MERGING CRITERIA

As mentioned earlier, in the pavement management database, some attributes are 
in co-occurrence in geography. For example, a set of co-occurrence attributes, {car 
accident, traffic jam, police} means when a car gets into an accident, the traffic 
jam will accompany occurrence and, further, police will arrive the accident site for 
cleaning up. So the three attributes co-occur frequently in a nearby region. If the 
three attributes are sequentially selected to generate the decision tree, the generated 
tree will be over-fitted. Thus, during the generation of the decision tree, the three 
nodes should be merged into one, or the other two nodes should be pruned. 

One of the most major characteristics for the co-occurrence in a spatial database 
is that the attributes occur in nearby regions in geography for an event. For this rea-
son, this research developed the following algorithm to “prune” the nodes. 

For a spatial data set S, let F = {f1, f2,⋯, fk}T be a set of spatial attributes. Let I = 
{i1, i2,⋯, in}T be a set of n instances in S, where each instance is a vector instance-ID, 
location, spatial features. The spatial attribute fi, fi ⊂ F of instance i is denoted by 
i. f. We assume that the spatial attributes of an instance are from F and the location
is within the spatial framework of the spatial database. Furthermore, we assume that
there exists a neighbor relationship R in S. In addition, let, V = {v1, v2, . . ., vc} is a set
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of corresponding clusters center in the data set S, where C is the number of clusters 
of spatial features, that is, C ⊆ F. To capture the concept of “nearby,” the criterion of 
co-occurrence is defned as 

C N 

Π m =∑∑uik ( xi −vk )
2 

i=1 k=1 

where ‖xi−vk‖ represents the Euclidean distance between xi and vk; Πm is a squared 
error-clustering criterion; U = {uik}, i = 1, 2, ⋯, C; k = 1, 2,⋯, C. C is a matrix, and 
satisfes the following conditions: 

uik ∈ [ ,0 1], ∀ i =1 2, ˜, N, ∀ j = 1 2, ˜,C (3.8) 

C 

∑uik = 1, ∀ i = 1,2˜, ,N ∀ j =1,2˜,C (3.9) 
k=1 

So, if the Πm is less than a given threshold, the two nodes are considered are in 
co-occurrence and thus should be merged. 

3.3.5 DECISION RULE INDUCTION FROM CL-DT 

After the co-location decision tree is generated, decision rules will be created by 
translating a decision tree into semantic expressions. Since a decision tree essentially 
partitions a data space into distinct disjoint regions via axis parallel surfaces created 
by its top-down sequence of decisions, decision rules will collect the individual deci-
sions in each node through either top-down or down-up search. 

Decision trees present a clear, logical model that can be understood easily by 
people who are not mathematically inclined (Wan et al. 2008). 

3.4 LINEAR MULTIVARIATE CL-DT ALGORITHMS 

The previous discussion is for univariate decision trees. In fact, the CL-DT algo-
rithm can easily be extended to linear multivariate and/or multi-class trees. For a 
linear multivariate tree, the decision is based on a weighted linear combination of the 
features, which can be expressed by (Altincay 2007): 

d 

g x  w xmi + m (3.10)m ( )  =∑ i b 
i=1 

Similar to the univariate decision tree, the linear function at each node generates 
linear decision hyperplanes in the input space and separates the input space into two 
or multiple regions. For example, if a data set is partitioned into size-C classes, a 
maximum of C sub-nodes can be split, and up to C(C − 1)/2 linear multivariate func-
tions are constructed in each node. Correspondingly, C(C − 1)/2 linear hyperplanes 
are constructed, thus separating each class from one another. It is also noted that an 
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arbitrary hyperplane generated by a linear multivariate node is more powerful com-
pared to the univariate case producing a hyperplane orthogonal to a particular axis 
(Altincay 2007). This process continues recursively until all vectors are classifed 
correctly and a leaf node is reached. 

3.5 EXAMPLE ANALYSIS 

This section explains the details of a proposed algorithm and makes a comparison 
analysis between the proposed method and the C4.5 algorithm. Table 3.1 shows a data 
set of an extend example on the basis of the example adopted in Kervahut and Potvin 
(1996), where each instance is a member of class cl, c2 or c3, and is described with four 
discrete attributes, namely a1 with values f11, fl2, fl3; a2 with values f21, f22, f23; a3 with 
values f31, f32, f33, f35, f36; and a4 with values f41, f42, f43, f45, f46  (see Table 3.1). 

3.5.1 DECISION TREE AND DECISION RULES INDUCTION 

USING C4.5 ALGORITHMS 

The C4.5 algorithm builds decision trees from a data set of training data in the same 
way as ID3 (Agarwal and Srikant 1994; Al-Naymat 2008). At each node of the tree, 
C4.5 chooses one attribute of the data that most effectively splits its set of instances 
into subsets enriched in one class or the other. Its criterion is the normalized infor-
mation gain (difference in entropy) that results from choosing an attribute for split-
ting the data. The attribute with the highest normalized information gain is chosen 
to make the decision. The C4.5 algorithm then repeats recursively the work on the 
smaller sub-lists. For the given example, the details are as follows: 

TABLE 3.1 
Data Set of Examples for Generating a Decision Tree and Co-Location 
Decision Tree 

Example Nonspatial Spatial Class results 
attributes attributes 

a1 a2 a3 C4.5 Our 
algorithm algorithm 

s1 f11 f21 f31 c1 c1 

s2 f11 f22 f32 c2 c4 

s3 f12 f22 f33 c2 c2 

s4 f12 f23 f32 c1 c4 

s5 f13 f21 f35 c3 c3 

s6 f13 f22 f36 c3 c3 

In this example, we have 
S = {s1, s2, s3, s4, s5, s6} 
A = {a1, a2, a3} 
C = {c1, c2, c3} 
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Step 1. Start with the root as the current node to which the entire set of instance 
belongs. 

Step 2. Select one attribute; evaluate the entropy of each subset of examples 
produced by splitting the set of examples at the current node along all pos-
sible attribute values. Then combine these entropy values into a global 
entropy value. For example, if we evaluate the entropy of attribute ai, the 
set of examples S is partitioned into subsets Si,j, Each subset Si,j contains the 
instances in S that share the same value fi,j for feature fi. Then the entropy 
values of the subsets Si,j are combined to provide a single global value asso-
ciated with attribute fi, namely: 

Gain S f, = E S( ) E S f, i 1, ,2 3 4,( )i − ( )i ∀ =  (3.11) 

Where: 

 Sij
E S f, =−  ( )i ∑

 
E Sij , and× ( )

S f a∀ ij i   

E S( )  =∑(PS c  log ( )#| 2 PS c  )k k 
c C∈k

Where: 
S = the set of examples at the current node, 
|S| = the cardinality of set S, 
C = the set of classes, and 
PS c| k 

= the proportion of examples in set S belonging to class ck. 

So, we have 

E S( )  = E S( )+E S( )+E S( )11 12 13 

=−0 5  2 . 
2
0 5  . log

2
0 0 5 .. log 0 5. −0 5log .  −0 0  0.0 − . log

2 
0 5 

−0 5. log 0 5. −0 0. log .0 0−0 0. log 0 0. −0 0. log .0 0  −1 01. log 1 0.
2 2 2 2 2 

= 0 6934. 

2 2 2
E a( , S) = E S( )+ E S( )+ E S( )1 11 12 136 6 6 

2 2
0 5  0 5. − . 0 5 0 0− . log 0 0. + −0 5= − . log 0 5log .5 ( . log 0 5. 

6 
( 2 2 2 )

6 2 

0 0 log .2 )
2 ( 0 0 0 0 log .  − 1 0−0 5. log2 0 5. − . 0 0  + −0.. log0 2 . − . 2 0 0 1. log0 2 . )
6 

= .0 4621 
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)

So, Gain(S, xi) = 0.6934−0.4621 = 0.2313 

Similarly, we can calculate the information gain for a2, 

2 3 1
E S a, 2 = E S( )21 + E S22 + E S( )23( ) ( )

6 6 6 

. log 0 5. −0 0  log .0 − .= 2 (−0 5  2 . 2 0 0 1 0. log2 1 0)
6 

3
+ −0 0  0 0  − . log 0 6667− . 0 0( . log .  0 6667 . 0 0 log . )2 2 26 

+ −  0 5  0 333 . log 0 0)1 ( 0 5. log . −0 333. log .  −0 0  .2 2 26 
= .0 5698 

So, Gain(S, xi) = 0.98306 − 0.3698 = 0.6133 

2 3 1
E S a( ) = E S + E S + E S, ( )  ( ) ( )3 21 22 236 6 6 

= .0 5698 

2 3 1
E S a( , ) = E S + E S + E S( )  ( ) ( )4 21 22 236 6 6 

= .0 5698 

Based on this computation of entropy, attribute a1 is selected and the children of 
the root are created accordingly. 

Step 3. Recursively apply this procedure to the children of the current node. 
The procedure stops at a given node when the node is homogeneous or 
when all attributes have been used along the path to this node. As shown 
in Figure 3.6, one child is homogeneous at a1 = f13, and no more processing 
is needed. The two other children are not homogeneous, and the procedure 
is recursively applied to each one of them, using the remaining attribute a2. 

Step 4. The stopping criterion is applied to check whether the procedure should 
be stopped. For this example, the fnal full decision tree can be created and 
is illustrated in Figure 3.6. 

FIGURE 3.6 Decision tree induced by the C4.5 algorithm. 
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Step 5. With the generated decision tree in Figure 3.6, this decision tree 
encodes the following decision rules (see Figure 3.7): 

IF (f1 = a1) THEN c3 

IF ((f1 = a12 and f2 = a22) OR (f1 = a13 and f2 =a22)) THEN c2 

IF ((f1 = a12 and f2 = a23) OR (f1 = a13 and f2 =a21)) THEN c1 

FIGURE 3.7 Decision rules induced by C4.5 algorithm. 

3.5.2 CL-DT ALGORITHMS 

Here, detailed steps for our algorithm would be presented. The proposed algorithm 
majorly includes two major steps: co-location mining rule induction and decision 
tree induction. The co-location mining rule induction mainly considers the spatial 
data and their characteristics, and decision tree induction mainly considers the non-
spatial data. Integration of two data sets using two data mining technologies is in 
order to be complementary to the individual technologies’ shortcoming. The steps 
of our algorithms are: 

3.5.2.1 CL-DT Mining Rules 
We frst generate a co-location rule to discover which instances are “nearby”, that is, 
having a neighborhood relationship. To this end, we follow up the steps described in 
section 3.2.2 as follows. 

Step 1. Initialization: The purpose of initialization is to set up each variable 
and assign the memory size for each participation variable. 

Step 2. Determination of candidate co-locations: The candidate instances with 
co-location relationships will be determined using the spatial neighborhood 
criterion with a given threshold, Dθ. In this particular example, the spatial 
neighborhoods for six instances is computed by: 

Disti j, = ( f3i − f3 j )
2 

i j, ∈ 6 (3.12) 

With the given data set, the spatial distances of any one pair in this data set can 
form the following matrix: 

 0 d d13 d d14  12 15   0 d d d  23 24 25   Dist = 0 d d   34 35   0 d  45   0  
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With the given values of instances S2 and S4, the matrix can be rewritten as 
follows: 

 0 d d13 d14 d15 
 12     d 0 0. d250 23   Dist = 0 d d 34 35     0 d  45   0  

With this computation, instances S2 and S4 probably have co-location, since 
their spatial distance is equal to 0. Thus, S2 and S4 are listed as candidate 
co-locations. 

Step 3. Determination of table instances of candidate co-locations: Based on 
the previously generated potential co-location instances, the determination 
of table instances of candidate co-locations will be implemented using a 
combination approach, that is, using spatial neighbor relationship constraint 
conditions (geometric approach) and distinct event-type constraints. The 
spatial geometric constrain is expressed thus: 

di j, ≤ Dθ di j  ⊆ Dist, ∀ =1 2, , ,, i ˜ 6 (3.13) 

where Dθ is given threshold for spatial distance. 
With the given example, the distinct event-type constraint is: 

6 2 

Γ=∑∑( f −v )2 
(3.14)i k 

i=1 k=1 

where ‖xi−vk‖ represents the Euclidean distance between fi and vk; V = {v1, v2} is a 
set of corresponding clusters center of feature a1 and a2; Γ is a squared error cluster-
ing criterion. vk, ∀ k = 1,2 can be calculated by: 

N 

vk =∑ fi / ,  N = 6 kN ; ∀ =1,2 (3.15) 
i=1 

So if the Γ is greater than a given threshold, Γθ, the i-th instance is assumed to be 
the distinct event. 

Step 4. Pruning: As mentioned, this research used cross-correlation of the fea-
tures vectors fi and fj to prune the candidate co-location. Since the features in 
this example have no correlation, the pruning is unnecessary. si sj 

Step 5. Generating Co-location Rules: Based on the described co-location 
mining approach, the co-location rules from the prevalent co-locations and 
their table instances can be generated. They are depicted in Figure 3.8. 
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IF (di, j ˜ D˜ ) THEN si and sj are potentially co-located 

IF (di, j ˜ D˜ ) and ° ˜ T̃  ) THEN si and sj co-location 
IF (si and sj are co-located) THEN c2 

OTHERWISE, c1 

FIGURE 3.8 Co-location mining rule. 

3.5.2.2 CL-DT Induction 
With the previously described co-location mining rule, decision tree induction will 
be carried out on the basis of the induced co-location mining. Thus, during the gen-
eration of the decision tree at this time, the co-location mining rule will constrain the 
process of the decision tree induction. The steps are as follows: 

Step 1. Start with the root as the current node to which the entire set of instance 
belongs. 

Step 2. With the similar computation of the entropy of each subset of instances 
produced by splitting the set of instances at the root node, attribute a1 is selected. 

Step 3. With the selected attribute, a1, split the instances along the path to this 
node. As noted, one child is homogeneous at a1 = f13, which implies that no 
further processing is needed. The two other children are not homogeneous, 
and the procedure is recursively applied to each one of them, using the 
remaining attribute a2. 

Step 4. During the recursive procedures to attribute a2, the process will auto-
matically recall the co-location mining rule; that is, instances, s2 and s4, 
are co-located, i.e., co-occurred. Thus the s2 and s4 must be the same class. 

Step 5. The stopping criterion is applied to check whether the procedure should 
be stopped. For this example, the fnal full decision tree can be created and 
is illustrated in Figure 3.9. 

FIGURE 3.9 Decision tree induced by our algorithm. 
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Step 6. With the generated decision tree described, this decision tree encodes 
the following decision rules (Figure 3.10): 

IF ((s2, s4 ) = co-location) THEN c4 

IF (a1 = f13) THEN c3 

IF (a1 = f11 and a2 = f21) THEN c1 

IF ((a1 = f12) and a2 = f22) THEN c2 

FIGURE 3.10 Decision rules induced by our algorithm. 

3.6 DISCUSSION AND ANALYSIS OF CL-DT 

As observed from the previous two examples, the C4.5 algorithm is very sensitive 
to the entropy formula. If we selected attribute f2 before f1, a different tree may be 
created in the example. Therefore, it can be imagined that many different decision 
trees may be generated when modifying the entropy formula (Tan et al. 2006). On 
the other hand, one major weakness of the C4.5 algorithm is that a node is created for 
each value of a given attribute. As mentioned before, a few attributes are co-occur-
rent of one another, that is, only a single attribute can get a good global evaluation 
in some cases, even if its entropy is good only for a few values among all its possible 
values (Kervahut and Potvin 1996), where the entropy of an attribute is computed as 
a linear weighted sum over all values. 

The CL-DT uses a co-location mining technology to frst classify the co-location 
attributes. This is in fact equivalent to pruning the nodes whose attributes co-occur 
with the previous attributes. Consequently, this proposed CL-DT overcomes the 
weakness of the C4.5 algorithm, which creates a node for each value of a given 
attribute. Obviously, the proposed CL-DT has the capability of handling rare events, 
which may arise naturally in the original data set because of the lower probability of 
occurrence of certain classes or the shortage of data for certain classes. Obviously, 
the CL-DT inherits all the advantages from regular decision trees, such as the recur-
sive divide-and-conquer approach and effcient tree structure for rule extraction. 
Moreover, the proposed CL-DT allows it to solve classifcation problems with co-
location and co-occurrence classes, making it more robust in real-world situations. 

The quality of a decision tree is based on both its accuracy and complexity. The 
accuracy is assessed by testing the induced decision tree and/or decision rules with 
a new data set and then comparing the predicted classes with the real classes. The 
complexity is related to the shape and size of the tree. Obviously, the proposed 
CL-DT is capable of creating a simple and highly accurate decision tree because this
algorithm has used the co-occurrence mining rule as the initialization to induce the
decision tree and decision rule. However, most classifcation algorithms sought the
models that attained the highest accuracy or, equivalently, the lowest error rate but
with a complex tree and rules. For the same accuracy, simple trees are preferred over
complex ones.

Traditionally, most of the decision tree induction algorithms have not been capable 
of producing compact solutions, that is, free expansion during generation of a deci-
sion tree, despite the adoption of pruning. On the other hand, since the decision tree 
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is freely expanded, the decision rules also are freely expanded because the decision 
rules directly capture the individual decision of each node. These rules essentially 
correspond to decision regions that overlap each other in the data space. The proposed 
CL-DT is capable of create a compact solutions for decision trees and decision rules. 
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Manifold Learning 4 
Co-Location 
Pattern Mining 

4.1 INTRODUCTION 

In the past a few decades, the decision tree (DT) induction method has become one 
of the most prevalent and powerful techniques for data mining (Appel et al. 2013; 
Witten and Frank 2000; Simard et al. 2000; Farid et al. 2014; Franklin et al. 2001; 
Franco-Arcega et al. 2011; Greiner and Hormann 1998; Huang et al. 2009; Lacar 
et al. 2001; Mansour 1997; Mohammad et al. 2002; Moustakidis et al. 2012; Osei-
Bryson 2007, 2008; Xu and Anwar 2013; Chasmer et al. 2014; Polat and Gunes 
2009; Zhang 2015; Zhang et al. 2015). As for the defects of traditional DTs, Zhou 
(2011) and Zhou and Wang (2012) presented a co-location-based decision tree 
(CL-DT) method to enhance decision making and has been successfully applied in 
pavement maintenance strategies. The major characteristics of CL-DT consider the 
geospatial relationship of these attribute data in addition to the traditional attribute 
data and use a co-location mining technology to frst classify the co-location attri-
butes. The basic idea of CL-DT is to apply co-location rules to induce the genera-
tion of DT. The processes of CL-DT consist of (a) selecting nonspatial and spatial 
data, (b) determining rough candidate co-locations, (c) determining candidate co-
locations, (d) pruning the non-prevalent co-locations, (e) inducing co-location rules, 
(f) formulating node merging criterion, and (g) inducing a co-location decision tree. 

However, the CL-DT uses Euclidean distance as a geometric constraint condition 
to refne the candidate co-location instances; that is, 

dist = X −X + −Y Y  i j  1 2, , ,( )2 ( )2 
∀ =, ˜ N (4.1)i j, i j i j 

where X, Y are spatial data in the database. In fact, although Euclidean distance 
can effectively represent the real distance between instances when they belong to 
a linear distribution in three-dimensional (3D) space, it is not capable of repre-
senting the real distance when they have a nonlinear distribution in 3D or higher-
dimensional space (Zhan and Hua 2005). For example, Figure 4.1a shows a data set 
of a Swiss roll in a 3D space, in which the Euclidean distance AB between A and ˛ 
B is shorter than the real distance ACB, which is along the surface of the roll. If 
the Swiss roll is unfolded into Figure 4.1b using the maximum variance unfolding 
(MVU) method based on the notion of local isometry, the MVU method can pre-
serve the original neighborhood relationship of A and B, including the lengths of 
edges and the angles between edges at the same node (Weinberger and Saul 2004). 
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After unfolding the input data, the real distance between instances can be truly 
represented by the unfolded distance (see Figure 4.1b). For this reason, this chapter 
presents the MVU-based CL-DT method, which can better take advantage of co-
location relationship. 

FIGURE 4.1 (a) Data of Swiss roll; (b) the result of mapping the Swiss roll data by MVU. 

Note: Figure 4.1 is based on the original fgure of Weinberger and Saul 2006. 
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4.2 MVU-BASED CO-LOCATION PATTERN MINING 

4.2.1 BRIEF REVIEW OF MVU 

The MVU algorithm was frst proposed in 2006 by Weinberger and Saul, whose goal 
was to detect and discover faithful low dimensional structure in high dimensional 
data (Weinberger and Saul 2006; Jin et al. 2015; Kanazawaa and Kanatani 2004; 
Quinlan 1987, 1993). It is based on this intuition: imagine the inputs as connected to 
their k nearest neighbors by rigid rods. MVU attempts to pull the inputs apart, maxi-
mizing the sum total of their pairwise distances without breaking (or stretching) the 
rigid rods that connect nearest neighbors. The outputs are obtained from the fnal 
state of this transformation. 

The details of the MVU method can be referenced to Weinberger and Saul (2006). 
Briefy, the MVU algorithm can faithfully preserves distances and angles among 
with nearby input data instances by computing the low dimensional representation 
of a high dimensional data set (Weinberger and Saul 2006; Kardoulas et al. 1996). 
After MVU processing, the neighbor instances of input and output are invariant 
about the translation and rotation. Consequently, by calculating the unfolded dis-
tances between instances, the real distances between instances can be obtained. 

Over the past few decades, many efforts have been made on developing the 
MVU method. Weinberger and Saul (2004, 2006) put forward a maximum variance 
unfolding (MVU) algorithm that added a kernel matrix into the algorithm and used 
the positive semidefnite constraint of the kernel matrix to realize the convex optimi-
zation of data. Hou et al. (2008) proposed a relaxed MVU (RMVU) method, which 
solved the problem that MVU could not unfold manifolds when short-circuit edges 
appear or when the embedded mapping was conformal but not isometric. Shao and 
Rong (2009) discussed the defciencies of kernel principal component analysis for 
monitoring nonlinear processes and proposed a new process monitoring technique 
based on maximum variance unfolding projections (MVUP). Liu et al. (2014) ana-
lyzed the shortcomings of MVU for process monitoring and proposed an extended 
maximum variance unfolding (EMVU) method for nonlinear process monitoring. 
Ery and Bruno (2013) analyzed and discussed the convergence of maximum vari-
ance unfolding, and they proved that it is consistent when the underlying submani-
fold is isometric to a convex subset (Sok et al. 2015; Storey and Choate 2004; Zhou 
et al. 2016). 

4.2.2 MVU-BASED CO-LOCATION PATTERN MINING 

The basic idea of the MVU-based CL-DT method is that the MVU algorithm is 
applied to unfold the input data for obtaining the real distances (i.e., unfolded dis-
tances) between instances. And these unfolded distances are then applied to deter-
mine the R-relationship (RRS), which describes the neighbor relation between spatial 
instances (Huang et al. 2004). With the established RRS of instances, co-location 
rules are generated to induce the decision-tree generation. 

The proposed MVU-based CL-DT method consists of a binary tree structure 
that utilizes a divide-and-conquer strategy to partition the instance space into 
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decision regions (see Figure 4.2). As shown in Figure 4.2, the proposed method 
contains three parts: 

a. Unfold input data using MVU method. First of all, in order to obtain the 
real distance between instances, original input data set X, which is a non-
linear distribution in higher dimensional space, is preprocessed using MVU 
method. After dealing with MVU, a new data set X′, which is regarded as lin-
ear distribution, is produced. Then the data set X′ is employed in two ways: 
on one hand, the data set X′ is used to calculate unfolding distance; on the 
other hand, the data set X′ is put into the root node of DT as the input data. 

b. Mine co-location rules. Co-location rules can be mined by co-location algo-
rithm with the unfolded distances that are calculated in the data set X′. 

c. Generate MVU-based CL-DT. The data set X′ is also put into the root node of 
DT as input data. At the beginning, all attributes of data set X′ are “accepted” 
by the root node, and the DT starts. One “best” attribute, BA1, is selected 
from the input data set X′, and then a splitting criterion is used to determine 
whether the root node will be split using a binary decision (Yes or No in 
Figure 4.2) with two intermediate nodes, noted by wi, and wj (w = A, i = 1, and 
j = 2 in Figure 4.2). For each of the intermediate nodes (wi and wj), the split-
ting criterion will be applied to determine whether the node (such as wi or 
wj) should be further split. If No, this node is considered a leaf node, and one 
of the class labels is assigned to this leaf node. If Yes, this node will be split 
by selecting another “best” attribute, BA2. At the same time, the MVU-based 
co-location criterion will be used to judge whether the “best” attribute BA2 

is co-located with BA1 at the same layer. If Yes, this node will be “merged” 
into those nodes with a co-location node. For example, node A1 and A2 are 
merged into node A1′. After that, one new “best” attribute will be selected 
again, rejudging whether the selected “best” attribute co-occurs with the last 
“best” attribute. If No, the node will further be split into a subset by repeat-
ing this work. This selection process is repeated until a non-co-occurrence 
attribute is found (Vincent et al. 2010; Wu et al. 1975; Yang 1990). 

FIGURE 4.2 MVU-based CL-DT induction method. 
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4.2.3 MVU-BASED CO-LOCATION MINING RULES 

4.2.3.1 MVU Unfolded Distance Algorithm 
The basic idea of MVU unfolded distance algorithm is that every sample instance 
constitutes a neighborhood relationship matrix with its k-nearest instances. If one 
type of mapping method is found to maximize the distance between two instances 
that are not nearest neighbors, the embedding of sample instances in the low 
dimensional space can be realized by using this type of mapping relationship. As 
a result, the unfolded distance between instances can be calculated and preserved. 
Thus, the MVU unfolded distance algorithm consists of the three steps: {a) neigh-
bor relation matrix reservation; {b) MVU function establishment and solution; and 
{c) the calculation of the unfolded distance between instances. They are detailed 
as follows. 

4.2.3.1.1 Neighbor Relation Matrix Reservation 
The mapping function for the MVU method is requested to preserve the neighbor-
hood relationship of instances, including the angles and distances of instances. For 
this reason, it is necessary to set up a matrix to preserve the neighborhood relation. 

˝̇ N ˝̇  N 

Let X = X i  and Y = Y i  denote the input data set and output data set, respec-{ }  { }
i=1 i=1 

tively, which have an exactly one-to-one correspondence. We defne a matrix δ to 
preserve the neighborhood relation among instances for X (and similarly, for Y) if 
input instances Xi and XkXk (i≠k) are k-nearest neighbors, δik = 1, or, if Xi and XkXk 
(i≠k) are not k-nearest neighbors, but another input instance Xj is embedded between 
Xi and Xk, which makes Xi and XkXk k-nearest neighbors, δik = 1 as well; otherwise, 
δik = 0 (and similarly for Yi and Yk). 

4.2.3.1.2 MVU Function Establishment and Solution 
The MVU algorithm “unfolds” the input data by maximizing the sum of pairwise 
squared distances among output data. Therefore, the objective function can be 
expressed by (Weinberger and Saul 2006; Breiman et al. 1984; Qin and Karniell 
2001): 

˝̇  ̋̇  
MaxΨ = Max Y i −Y k 

2 } (4.2){∑ i k, 

˝̇  ̋̇  2 ˙ ˙ 
where Y i −Y k  is the squared distance of output instances Yi  and Yk . Because the 

MVU is a constrained optimization algorithm, it sets up three constraint conditions 
as follows. 

Constraint 1: Local isometry. Based on the characteristics of local isometry 
before and after mapping, the constraint condition for reserving the angles 
and distances among k-nearest neighbors can be expressed by 

˙ ˙ ˙ ˙2 2 
Y Y  = δik Xi −Xk (4.3)δik i − k 
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Supposing that a squared distance matrix is defned as D = (Dik)n×n, that is, 

˙ ˙ 2 
Dik = Xi −Xk (4.4) 

equation 4.3 can be further expressed by 

˙ ˙ 2 
− = δik Dik (4.5)δik Y Yi k 

Constraint 2: Output centralization. In addition, to eliminate the output 
instances’ translational degree of freedom, which results in the changes of the 
instances’ locations, it is necessary to set up a constraint to ensure that the bary-
center of the output data set is in the center. This constraint is mathematically 
expressed by 

˙
∑ i

Yi = 0 (4.6) 

iYi = 0 

With this description, the MVU algorithm is a constrained optimal problem. 
Under the condition of satisfying the constraints of local isometry and output cen-
tralization, it maximizes the distance between instances. It is worth noting that the 
constrained optimal problem is a maximization problem of quadric form under the 
equality constraints. Thus, it is not a convex optimization problem. For this reason, 
an inner product matrix L is defned as 

˙ ˙  
= ⋅Lik Yi Yk (4.7) 

equation 4.5 is rewritten by 

δik (Lii −2Lik +Lkk )= δik Dik (4.8) 

and the output centralization can be deduced as 

˙ 2 ˙ ˙ 
0 = =∑ i

Yi •Yk =∑ ik 
Lik (4.9)∑ Yii 

Constraint 3: Symmetric positive semidefnite. Because equation 4.8 and equa-
tion 4.9 are linear constraints about Lik, they can be regarded as functions 
of the inner product matrix L. But not all matrices can be converted into 
inner product matrices; only symmetric positive semidefnite matrices can 
undergo such a transformation. A constraint thus must be added to ensure 
that a matrix is symmetric, positive, and semidefnite. The additional con-
straint condition can be expressed by 

L ≥ 0 (4.10) 
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Following this new constraint, a new objective function is rewritten as the func-
tion about the inner product matrix L, that is, 

˙˙{ 2 }∑Ψ =  Y Y−Max Max i ki k, 

˙{ 2 }∑Max Yi = 
(4.11)i k, 

= Max {∑ Lii }i k, 

= Max tr L{ ( )} 

In combination with equation 4.5, equation 4.6, and equation 4.10, the MVU 
method can be mathematically expressed by 

M ax tr L { ( )} 
s t. . : ( )1 δ (L −2L +L )= δ D
 ik ii ik kk ik ik
 (4.12)
  (2) ∑ L = 0 ik ik  (3)) L ≥ 0

With the MVU model established earlier, positive semidefnite programming 
(SDP) is employed to solve it. The details can be referenced in Vandenberghe and 

˙Boyd (1996). After solution, the inner product matrix L can be obtained, and then 
the output instance Yi  can be obtained by utilizing the method of diagonalization of 
matrices. This algorithm can be described as follows. 

Let Uβi represents the β-th element of the i-th eigenvector, with eigenvalue λβ; 
then the inner product matrix L can be rewritten by 

Lik =∑
n 
λβUβiUβk (4.13)

β=1 

Lik = β = 1nλβUβiUβk

 Combining equation 4.13 with equation 4.7 

Lik = Yi ∙ Yk, 

˙ 
the βth element of output instance Yi  is expressed by 

˙ 
Y = λ U Y iβ =….λβU iββi β βi (4.14) 

4.2.3.1.3 The Calculation of the Unfolded Distance between Instances 
Based on the preserved neighbor relation matrix knowledge, we can use the estab-
lished MUV model to unfold input data, and then the unfolded distances between 
instances are calculated. The calculation process can be described as follows. If Yi 
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and Yj are k nearest neighbors, then the unfolded distance, noted as DU(Yi,Yj), can be 
replaced by the Euclidean distance of Yi and Yj, represented as DE(Yi,Yj). Otherwise, 
if they are not k nearest neighbors, DU(Yi,Yj) is represented by the shortest cumulative 
Euclidean distance of a number of neighbors. This criterion can mathematically be 
described by 

 D Yi ,Y 
E ( )j

D Y( ),Y = (4.15)U i j min D  Y Y, , DD Y  ,Y D Y Y, ˜ D Y  ,Y{ U ( )i j U ( i k )+ U ( k h )+ + U ( )g j } 

if Y  and Y are neighbori j 

others 

To further explain the unfolded distance between instances, an example is given as 
follows. As shown in Figure 4.3, k nearest neighbors are connected by lines, such as 
Y1, Y2, and Y3. In Figure 4.3, two cases are considered: (1) the calculation of unfolded 
distance between k nearest neighbors; (2) and the calculation of unfolded distance 
between instances that are not k nearest neighbors. For k nearest neighbors, Y1 and Y3, 
according to equation 4.15, the unfolded distance is the Euclidean distance between 
them. However, for Y10 and Y1, Y10 is not one of the k nearest neighbor of Y1. Hence, on 
the basic of equation 4.15, the DU(Y1,Y10) is the shortest cumulative Euclidean distance 
of a number of neighbors (such as Y1, Y3, Y5, Y6, Y9, and Y10). Because output data of 
MVU can be seen as a connected graph, such a shortest path always can be found. 

With this analysis, the MVU unfolded distance (MUD) algorithm is described as 
follows (Algorithm 4.1). 

4.2.3.2 Determination of MVU-Based Co-Locations Patterns 
When these steps are completed successfully, only the unfolded distance between 
instances can be obtained. Based on the unfolded distances, an RRS between 
instances, which describes the neighborhood relation between spatial instances 
(Chen et al. 2014; Huang et al. 2004; Zhou and Wang 2012), can be created as follows. 

FIGURE 4.3 Determination of the unfolded distance between instance and instance. 
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Algorithm 4.1 / The Algorithm of Mud / 

Input: 

1. The number of nearest neighbors k 
2. Original data set X 
3. An N × N zero matrix δ 

Output: 

4. Low dimensional representation Y 
5. An N × N binary matrix δ′ 
6. An unfolding distance matrix U 

Process: 

Step 1: Construct neighbor graph. 

7. If Xi and Xk satisfy K − NN 
8. Then δik 

′ =1 else if δik 
′ = 0; 

Step 2: Semidefnite programming. 

9. Compute the maximum variance unfolding Gram matrix L of sample pair-
wise points, which is centered on the origin. 

Max{tr(L)} s.t. L ≥ 0, ∑ Lik = 0 
ik 

And δik (Lii − 2Lik + Lkk) = δikDik. 

Step 3: Compute low dimensional embedding. 

10. Perform generalized eigenvalue decomposition for Gram matrix L obtained 
by Step 2. The eigenvectors, corresponding to the front d greater eigenvalues, 
is the result of embedding.˙ 

11. Y = λ Uβi β βi 

Step 4: Calculate the unfolding distance of instances Yi and Yj. 

 D Y  ,Y ( ) E i j
12. D YU ( )i ,Yj = 

 D Y  ,Y D  (Y Y  ) D Y  ,Y ˜ D Y Y { + + ( )min U ( )i j , U i , k + U ( k h ) U g , j } 
if Y  and Y are neighbori j 

} others 
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If and only if the unfolded distance of Yi and Yj is less than or equal to the distance 
threshold, there exists RRS between them. The RRS is mathematically expressed by 

 ,1 if D Y Y )≤ DU ( i j θ 
R Y( i ,Yj ) =  

(4.16)NAN if D Y( ,Y )> D U i j θ 

where Dθ is the threshold of unfolded distance, R(Yi,Yj) represents the RRS of Yi and 
Yj, and DU(Yi,Yj) is the unfolded distance of Yi and Yj. After the determination of the RRS, 
those which satisfy the RRS condition are the candidates of MVU-based co-location. 

After this processing, only the 2nd-order candidates of MVU-based co-location 
are obtained. To determine MVU-based co-locations, different attributes (such as 
surface soil moisture (SSM), land surface temperature (LST), and vegetation cover-
age (VC)) in the image classifcation of every instance are utilized. For this reason, 
a density ratio (DR) is defned to determine whether instances are MVU-based co-
location patterns. The mathematical model of DR is expressed by 

similar AttrN Y( i ,Yj_ )
DR = (4.17)

Total AttrN_ 

where Yi is the i-th instance, similar_AttrN (Yi,Yj) is the number of attributes in 
which the values of Yi and Yj satisfy the same threshold, and Total_ AttrN is the total 
number of attributes used in this chapter. After calculation, if DR is greater than or 
equal to the threshold DRθ, (Yi,Yj) is an MVU-based co-location pattern. For exam-
ple, in Figure 4.4, there are RRSs between arbitrary two instances of A1, A6, and A11. 
(A1, A6) is a 2nd-order candidate of a MVU-based co-location pattern, and the total 
number of utilized attributes, including the components of PCA, VC, LST, SSM, 
and texture, is fve. However, only four attribute (PCA components, LST, SSM, and 
texture) values of instances A1 and A6 satisfy the corresponding attribute threshold, 
so the DR of (A1, A6) is 4/5, which is greater than the threshold DRθ set as 3/5. Thus, 
(A1, A6) is a 2nd-order MVU-based co-location pattern. 

When the 2nd-order MVU-based co-location patterns are determined, the 3rd-
order and higher order MVU-based co-location patterns should be constructed. The 
method for constructing the 3rd-order MVU-based co-location patterns is described 
as follows. 

Let the (k − 1)th order MVU-based co-location pattern Ck−1 connect the (k − 2) 
th order MVU-based co-location pattern Ck−2 to generate the k-th order candidate 
of MVU-based co-location pattern C′ k, and if C′ k satisfes the threshold of DR, it 
is regarded as k-order MVU-based co-location pattern Ck. Taking the constructed 
process of the 3rd-order MVU-based co-location (A1, A6, A11) in Figure 4.4 as an 
example. First, (A1, A6) connects (A6, A11) according to the previous k − 2 order. Then, 
the candidate of the MVU-based co-location pattern (A1, A6, A11) is obtained. Finally, 
if the DR of (A1, A6, A11) satisfes the threshold constraint condition, (A1, A6, A11) is a 
MVU-based co-location pattern. By parity of reasoning, all MVU-based co-location 
patterns will be obtained. 
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FIGURE 4.4 Determination of MVU-based co-locations (Note: Attribute-k represents the 
k-th attribute, and Ai represents the i-th instance of object A. In each of the attributes, the 
location of instance Ai is the same). 

Because those instances that are MVU-based co-location patterns have similar char-
acteristics, the phenomenon that different objects have the same spectrum in remote 
sensing images will be eliminated. Thus, the classifcation accuracy will be enhanced. 

4.2.3.3 Determination of Distinct Event-Types 
These processes are used only to mine MVU-based co-location instances but cannot 
ensure that these instances are distinct event types. Therefore, a constraint condition 
has to be set. 

Let M= {m1, m2, . . ., mc} be a set of corresponding cluster centers of attributes a1, 
a2, . . ., ac, so the distinct event-type can be expressed by 

Ψi =∑ 
S 

∑ 
C 

( )2 
(4.18)fi −mk 

i=1 k=1 

where ||fi−mk|| denotes the Euclidean distance between fi and mk; fi is the value 
of the i-th instance in attribute ak; Ψi is a squared error clustering criterion; C is the 
number of attributes; and S is the number of instances. Therefore, if Ψi is greater 
than the given threshold Ψθ, then the i-th instance is regarded as a distinct event. 

4.2.4 GENERATION OF MVU-BASED CO-LOCATION RULES 

Accompanying by the generation of MVU-based co-locations, the MVU-based co-
location rules can be generated from the candidates of MVU-based co-location. On 
the basic of the previous analysis, the algorithm of determination of MVU-based 
co-locations (MCL) developed in this paper is summarized, and the pseudocodes are 
shown in Algorithm 4.2. 
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Algorithm 4.2 / The Algorithm of Determination of Mcl / 

Input: 

1. Unfolded distance matrix DU; 
2. Unfolded data set Y; 
3. Thresholds of distance Dθ, and thresholds of density radio ℜθ; 

Valuable: 

4. ζ: the order of co-location pattern; 
5. R: the set of R-relationship between instances; 
6. C_ζ: the set of candidates of co-location pattern whose size is ζ; 
7. Tab_ζ: the set of co-location patterns; 
8. Rul_ζ: the ζ order co-location rule. 

Output: 

9. ζ order co-location pattern; Rul_ζ. 

Process: 

Step 1: 

10. If (DU(Yi, Yj) ≤ Dθ) Then (R(Yi, Yj) = 1) 
11. else (R(Yi, Yj) = NAN); 

Step 2: 

12. MVU_co-location size ζ = 1; C_1 = Yi; P_1 = Yi; 

Step 3: 

13. Tab_1 = generate_table_instance (C_1, P_1); 

Step 4: 

14. If (fmul = TRUE) Then 
15. Tab_C_1 = generate_table_instance (C_1, multi_event); 

Step 5: 

16. R = determine_R-relationship (DU(Yi, Yj)); 
17. While (P_ζ is not empty and ζ < k) do 
18. {C_ζ + 1 = generate_candidate_MVU-co-location (C_ζ, ζ) 
19. Tab_C_ζ + 1 = generate_MVU-co-location (ℜθ , C_ζ, ℜ ) 
20. Rul_ζ + 1 = generate_MVU-co-location_rule (Tab_C_ζ + 1, β) 
21. ζ++} 
22. Return ζ order co-location pattern; Rul_ζ. 
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4.3 PRUNING 

In a DT induction algorithm, different pruning algorithms are usually employed to 
prune the nodes. In this chapter, a pruning algorithm proposed by Zhou and Wang 
(2012) is employed. The pruning algorithm is briefy described as follows. 

For a spatial data set SP, let FT = ( ft1, ft2, ft3,⋯, fth) be a set of spatial attributes. 
Let Φ = (φ1, φ2, φ3,⋯, φn) be a set of n instances in SP, where each instance is a 
vector instance-ID, spatial attributes, and location. The spatial attribute of instance 
i is denoted by fti. It is assumed that the spatial attributes of an instance are from 
spatial attribute set FT, that the location is within the spatial framework of a spatial 
database, and that there is an RRS in SP. Additionally, let O = (o1, o2, o3, . . ., ok) be 
a set of corresponding clusters centered in the data set SP, where k is the number of 
clusters of spatial attributes. To capture the concept of “nearby”, the criterion of co-
occurrence is defned as 

h n 

Ξ m =∑∑ viq ( ϕ −o )2 

(4.19)q i 
i=1 q=1 

where ‖φq−oi‖ is the Euclidean distance between xq and oi; Ξm is the squared 
error clustering criterion; and V = {viq}, i = 1, 2, . . ., h, q = 1, 2, . . ., N is a matrix that 
satisfes the following constraint conditions: 

viq ∈ [ ,0 1], ∀ i = 1 2, ,˜, ,h ∀ q = 1 2, ,˜, N (4.20) 

h 

∑viq =1, ∀ i = 1 2, ,˜, ,h ∀ q = 1 2, ,˜, N (4.21) 
i 

So, if Ξm is less than or equal to a given threshold, the two nodes are considered 
as co-occurrent and thus should be merged. 

4.4 INDUCTING DECISION RULES 

After the MVU-based CL-DT is generated, decision rules will be created by trans-
lating the decision tree into semantic expressions. Because the MVU-based CL-DT 
algorithm partitions a data space into several distinct disjoint regions via axis paral-
lel surfaces, the top-down search method will be employed to translate individual 
node into rules in this chapter. 

In a nutshell, the whole fowchart of the proposed MVU-based CL-DT algorithm 
is shown in the following chart (see Algorithm 4.3). 

Algorithm 4.3 / The Algorithm of Mvu-Based Cl-Dt/ 

Input: 

1. Training data set TD; the threshold of unfolded distance Dθ; 
2. The thresholds of density radio ℜθ; splitting criterion; 
3. The threshold of terminal node; 
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Output: 

4. A MVU-based CL-DT with multiple condition attributes. 

Process: 

Step 1: The algorithm of MUD: function MUD; 
Step 2: The algorithm of determination of MCL: function MCL; 
Step 3: Judge whether co-locations are distinct event type; 
Step 4: Build an initial tree; 
Step 5: Starting with a single node, root, which includes all rules 

5. and attributes; 

Step 6: Judge whether each non-leaf node will be further split, 

6. e.g., wi; 
7. • Perform label assignment test to determine if there are any 
8. labels that can be assigned; 
9. • An attribute according to splitting criterion is selected to split 

10. wi further and judge whether stop criterion is meet; 
11. O If the selected attribute meet the splitting criterion, the node 
12. will be parted into a subset; 
13. O If the stop criterion is satisfed, stop splitting and assign wi 

14. as a leaf node; 

Step 7: Apply MVU-based co-location algorithm for each of two 

15. non-leaf nodes in the same layer, e.g., wi and wj, to test 
16. whether the two nodes satisfy the co-location criterions. If 
17. yes, merging the two neighbor nodes; if no, go back to Step 6. 

Step 8: Apply the algorithm recursively to each of the not-yet-

18. stopped nodes; 

Step 9: Generate decision rules by collecting decisions driven in 

19. individual nodes; 

Step 10: The decision rules generated in Step 7 are used as the 

20. initialization of co-location mining rule and apply the 
21. algorithm of the co-location mining rule to generate new 
22. associate rules. 

Step 11: Reorganize the input data set, and repeat Step 2 through 

23. Step 8 until the classifed results from the colocation mining 
24. rule and decision tree (rules) are consistent. 
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Maximal Instance 5 
Co-Location Pattern 
Mining Algorithms 

5.1 INTRODUCTION 

Spatial co-location mining is used to mine the “positive” relationship of different 
spatial features in spatial data. It is somewhat diffcult to fnd co-location instances, 
since the instances of spatial features are embedded in a continuous space and share 
neighbor relationships. Association rule mining algorithms cannot be directly applied 
to co-location pattern mining since there are no predefned transactions in spatial 
data sets (Huang et al. 2003, 2004). Thus, the following three basic approaches are 
proposed for mining co-locations. 

Join-based approach: In order to solve the problem of mining co-locations, 
Huang et al. frst proposed a transaction-free (join-based) approach (Huang et al. 
2004). This approach mines co-locations by using the concept of proximity neigh-
borhood and identifes co-location instances by joining table instances, which ensure 
the correctness and completeness of this approach. However, it is time-consuming 
due to a large number of join operations required as the number of features and their 
instances increases. Figure 5.1b shows the detailed process of instance join. Huang 
et al. addressed the problem of mining co-location patterns with rare spatial events 
(Huang et al. 2006). In their paper, a new measure called the maximal participation 
ratio (maxPR) was introduced, and a weak monotonicity property of the maxPR mea-
sure was identifed. Verhein introduced the concept of maximal clique and applied 
the GLIMIT (Geometrically Inspired Linear Itemset Mining in the Transpose) item-
set mining algorithm to mine complex spatial co-location patterns, which leads to 
far more superior performance than using an Apriori style approach (Verhein and 
Al-Naymat 2007). Alnaymat used maximal clique for mining co-locations from a 
Sloan Digital Sky Survey (SDSS) data (Alnaymat et al. 2008); Kim proposed a poly-
nomial algorithm called AGSMC (Algorithm Generating Spatial Maximal Cliques) 
to generate all maximal cliques from general spatial data sets; AGSMC constructs 
the tree-type data structures using the materializing method and generates maximal 
cliques by scanning the constructed trees (Kim et al. 2011). Yao et al. propose an 
adaptive maximal co-location (AMCM) algorithm to address two limitations in the 
co-location mining method: (1) it is diffcult to set an appropriate proximity thresh-
old to identify close instances in an unknown region and (2) those methods neglect 
the effects of distance values between instances and far-instance effects on the pat-
tern’s signifcance (Yao et al. 2017). Deng et al. developed a multi-level method to 
identify regional co-location patterns in two steps. First, global co-location patterns 
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were detected and other non-prevalent co-location patterns were identifed as candi-
dates for regional co-location patterns (Deng et al. 2017). Second, an adaptive spatial 
clustering method was applied to detect the subregions where regional co-location 
patterns are prevalent. 

Partial-join approach: Yoo and Shekhar frst proposed a partial-join approach, 
since a large fraction of the join-based co-location miner algorithm is devoted to 
computing joins to identify instances of candidate co-location patterns (Yoo et al. 
2004, 2005, 2014). The partial-join approach frst transactionizes continuous spatial 
data (builds cliques) to identify the intraX instances of co-location (belonging to a 
clique) and interX instances of co-location (belonging between two cliques) then 
joins the intraX instances and interX instances. respectively. to calculate the value 
of the participation index. This approach mines co-location patterns more effciently 
than the join-based approach since it reduces a large number of join operations. 
However, building cliques is time consuming. Huang et al. proposed that spatial 
clustering groups similar spatial objects together and proposed a new approach to 
the problem of mining co-location patterns using clustering techniques (Huang et 
al. 2008). Yu proposed a new co-location analysis approach to fnd the prevalent 
regions of a pattern; the approach combines kernel density estimation and polygon 
clustering techniques to specifcally consider the correlation, heterogeneity, and con-
textual information existing within complex spatial interactions (Yu 2017). Ouyang 
et al. studied the co-location mining problem for fuzzy objects and proposed two 
new kinds of co-location pattern mining for fuzzy objects, single co-location pattern 
mining (SCP) and range co-location pattern mining (RCP), to mining co-location 
patterns at a membership threshold or within a membership range (Ouyang et al. 
2017). Celik et al. proposed an indexing structure for co-location patterns and pro-
posed algorithms (Zoloc-Miner) to discover zonal co-location patterns effciently for 
dynamic parameters; extensive experimental evaluation shows their approaches are 
scalable, effcient, and outperform naive alternatives (Celik et al. 2007). 

Join-less approach: In order to solve the problem of excessive time consump-
tion caused by join operations thoroughly, Yoo and Shekhar frst proposed a join-
less approach (Yoo et al. 2005). The join-less approach uses the star neighborhood 
to materialize spatial relationships. It is more effcient compared with the join-
based approach and partial-join approach since it generates co-location patterns 
without join operations. With the increase of co-location size, the processes of 
generating table instances of candidate co-locations and prevalent co-locations 
are repeated, and the computation time of the join-less approach increases. So 
the effciency of the join-less approach is affected by the length of co-location 
patterns. The concept of the negative co-location patterns was defned by Jiang et 
al. (2010). Based on the analysis of the relationship between the negative and posi-
tive participation index, they proposed methods for negative participation index 
calculation and negative patterns pruning strategies. Zhou and Wang applied 
co-location patterns to the decision tree; they developed a co-location decision 
tree (CL-DT) method (Zhou and Wang 2010). Yu investigated a projection-based 
co-location pattern mining paradigm (Yu 2005). In particular, an FP-tree based 
colocation mining framework and an algorithm called FP-CM, for FP-tree based 
colocation miner, are proposed. 
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Although the three basic approaches have solved the problem of co-location 
mining, they still have shortcomings: (1) the join-based approach requires a large 
number of join operations; (2) building cliques is time-consuming in the partial-
join approach; (3) the computation time of the join-less approach increases with 
the increase of the co-location size. For this reason, this chapter intends to over-
come these shortcomings through developing a maximal instance algorithm. This 
algorithm is designed to fnd maximal instances from a spatial data set. Relying on 
the defnition of the spatial neighbor relationship in the join-based approach, this 
chapter constructs a RI-tree to generate maximal instances. The construction of an 
RI-tree is actually a process of judging the spatial neighbor relationship between 
spatial instances and the series of spatial instances. The advantage of maximal 
instance algorithm is that it generates co-locations without requirement of join 
operations, since all row instances are generated by fnding subsets of maximal 
instances and the process of fnding subsets does not require joins between row 
instances (Adilmagambetov et al. 2013; Albanese et al. 2011; Bao and Wang 2017; 
Celik et al. 2012, Celtic 2011; Ding et al. 2008; Kim et al. 2014; Lei et al. 2012; 
Li et al. 2004; Li 2020; Mohan et al. 2011; Qian et al. 2009; Shekhar and Huang 
2001; Sundaram et al. 2012; Venkatesan and Thangavelu 2013; Wang et al. 2018; 
Williams et al. 2006; Xiao 2009; Yang et al. 2011; Yao et al. 2016; Zhang 2000; 
Zhou et al. 2005; Yoo and Shekhar 2006). 

5.2 MAXIMAL INSTANCE ALGORITHMS 

In Figure 5.1a, each instance is uniquely identifed by T i. , where T is the spatial 
feature type and i is the unique ID inside each spatial feature type, lines between 
instances represent neighbor relationships. Figure 5.1b shows the instances of co-
location {A B C, ,  } being generated by instance joins. A maximal instance is a row 
instance that does not appear as a subset of another row instance. In other words, 
maximal instances cannot combine with other instances to generate row instances 
of higher size co-locations. For example, {A B.. ,1 2} in Figure 5.1a is not a maxi-
mal instance, since it is a subset of row instance {A. ,1 B. ,2 C.1}, which in turn is a 

FIGURE 5.1 (a) An example data set. (b) Instance joins. 
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maximal instance. A maximal instance must be a maximal clique (maximal clique 
is defned as a clique that does not appear as subset of another clique in the same co-
location pattern), but a maximal clique may not be a maximal instance, since maxi-
mal cliques may not be row instances. Assuming A i. , B i. , B j.  ( A i.  is an instance of 
A, B i.  and B j.  are instances of B) form a clique, that is, they are neighbors to each 
other, {A i. , B i. , B j. } is a maximal clique rather than a maximal instance as it is not 
a row instance. However, {A. ,1 B. ,2 C.1} is a maximal instance and also a maximal 
clique. 

5.2.1 GENERATION OF ROW INSTANCES 

The generation of row instances is the basic part of co-location mining, because 
only when all row instances are found can the participation index of co-locations be 
calculated. How to fnd row instances of co-locations is discussed here. 

In the process of generating row instances of all co-locations, there are some 
differences between our algorithm and previous algorithms. The generation of 
row instances in join-based algorithms, based on join operation, can be repre-
sented in equation 5.1, and the detailed instance join process for the example 
data set (in Figure 5.1a) is shown in Figure 5.1b. The k-size row instances are 
generated from k − 1-size row instances, that is, high-size row instances are gen-
erated by join operations between low-size row instances. For example, 2-row 

. ,1 A .1instance {A B.2} and { . ,1 C } can be joined to generate 3-row instance 
{A. ,1 B. ,2 C.1}. This method for mining co-location is time-consuming due to 
the large number of join operations required as the numbers of features and their 
instances increases. 

join join join 

E RI  ) → RI →˜→ RI (5.1)( 1 2 k 

Here E  is a set of spatial event types (i.e., RI1) and RIi  is a set of row instances 
of i-size co-locations. In a join-based algorithm, the set of all row instances RI  is 
a merge of RI1, RI2 , ˜, and RIk, that is, RI =∑ k 

RIi. Every time the size of co-
i=1 

locations is increased, a join operation needs to be performed, resulting in k − 1 
times of join operations needed to generate a k-size row instance. The larger k, the 
more join operations needed and the more execution time consumed. Therefore, the 
method (called a join-based method by us) of generating row instances by join opera-
tions is ineffcient. 

By reviewing the generation of row instances in the join-based algorithm, the 
relationship between a high-size row instance H generated from L with a low-size 
row instance L is obvious: L is a subset of H since H must contain the instances in L. 
And if a high-size row instance exists, it must also exist for its corresponding low-
size row instances. The corresponding low-size row instances are actually subsets 
of the high-size row instances. So Lemma 1 can be obtained. According to Lemma 1, 
instead of using low-size row instances to generate high-size row instances, as in 
traditional algorithms, this chapter thinks backwards: using high-size row instances 
to generate low-size row instances. 
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Lemma 1 

An arbitrary non-empty subset of a k-size row instance must be a row instance of 
co-locations. 

Proof. This lemma is proved from the defnition and generation process of row 
instances. (1) By defnition, a row instance is essentially an R-proximity neighborhood. 
And the defnition of R-proximity neighborhoods is given by Huang: a R-proximity 
neighborhood is a set I ⊂ S of instances that form a clique under the relation R. 
Accordingly, a set I is a row instance if any two instances in I satisfy the neighbor-
hood relation. (2) Huang, et al. gave a detailed introduction to the generation of row 
instances (Huang et al. 2004). Similar to the generation of candidate co-locations, row 
instances are generated by a join strategy. An example in Figure 5.1 is used to illustrate 
the generation of row instances. Row instances {A. ,1 B.2} and {A. ,1 C.1} are joined 
to generate {A. ,1 B. ,2 C. ;} then check the neighbor relationship between B.4 and C.1.1 
{A. ,1 B. ,2 C.1} is a true row instance if B.2 has neighbor relationship with C.1. 
In contrast, {A. ,4 B. ,5 C.4}, generated by joining {A. ,4 B.5} and {B. ,5 C.4}, fails 
to be a row instance, since A.4 has no neighbor relationship with C. .4 Thus, any two 
instances in a row instance satisfy the neighbor relationship. Let Ik be a set of instances 
in a k-size row instance. Because k-size row instances are generated from k − 1-size 
row instances, a conclusion is drawn: I

k−1 
is a proper subset of Ik (shown as the formula: 

I ⊆ I ). And it can be inferred that: I ⊆ I ⊆˜ ⊆ I . So any set I is a proper subset 
k −1 k 1 2 k n 

of Ik ( n k), that is, I
n 

I
k
. If row instances are treated as sets, the following con-1 ≤ <  ⊆ 

clusions can be drawn: RI RI . Here RI n⊆  is a set of k-size row instances, 1 ≤ <  k. 
n k k 

In summary, an arbitrary non-empty subset of a k-size row instance must be a row 
instance of co-locations. 

Based on: (1) A maximal instance is the maximal row instance for a co-location; 
it cannot join with another instance to generate a high size row instance; (2) Lemma 1, 
it can draw a further conclusion that non-empty subsets of maximal instances are 
all row instances of co-locations. Once all maximal instances are found, all row 
instances can be generated by fnding non-empty subsets of them. This method 
(shown in equation 5.2; M ={m1, m2 , ˜, mk } is a set of maximal instances) for 
generating row instances does not require join operations, which can reduce a lot of 
computing time. The set of all row instances RI is a merge of non-empty subsets of 
maximal instances. Empty sets are not considered here since they are meaningless. 

gen _ non−empty subset E → M →RI (5.2) 

A simple comparison is made to illustrate that this method is more effcient than 
the join-based method for generating row instance. The join-based method gener-
ates row instances by join operations. Two-size row instances are frst generated 
by joining spatial instances that have neighbor relationships. Then high-size row 
instances are generated size by size until no higher-size row instances are generated. 
It requires k − 1 times of join operations to generate all row instances, which is time 
consuming. Our method is frst to generate the highest-size row instances (maxi-
mal instances) then generate all row instances by fnding non-empty subsets of the 
highest-size row instances, which requires no join operations and only one time of 
fnding subsets. One obvious difference between two methods is that the join-based 
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method generates row instances from low-size to high-size; our method generates 
row instances from highest-size to low-size. A large number of join operations are 
not needed in our method, which makes our method less time consuming. 

Let k be the number of maximal instances; mi represents a maximal instance 
(1≤ ≤  ( ) represents the set of non-empty subsets of mi; B mi  is the poweri k); NS mi ( )  
set of mi; RIis the number of instances in mi; is the number of row instances;mi

m m −∅;two lemmas can be derived: RI =∪NS( )i = ∪( B( )mi ) RI =∑ k 
2 −k. 

i=1 

The proofs are as follows. It should be noted that the universal set here is the set of 
spatial instances I. 

Lemma 2 

RI NS mi = ∪( B( )mi )=∪ ( )  −∅. 

Proof. First, according to the conclusion that non-empty subsets of maximal 
instances are all row instances of co-locations, there is RI = ∪NS ( )i 

. Second,m 
NS( )m B m −∅, since: B m , the power set of m , is defned as a set of all= ( )  ( )i i i i 

subsets of m
i
; NS ( )i

 is the set of non-empty subsets of m
i
. Therefore,m 

RI =∪NS ( )im 

=∪(B( )m −∅)i 

B m −∅=∪( ( )i ) 
=∪(B( )i ∩ ∅)m ~ 

= ∪( B( )mi )∩ ~ 

= ∪( B( )mi )−∅. (5.3) 

Lemma 3 

=∑ k 
2 miRI −k. 

i=1 

0 1 n nProof. For an n-set, the total number of subsets is C +C +˜+C = 2 , so 
n n n 

mi . And NS m
i

B( )m
i 

−1, since NS( )m =B( )−i 
m

i 
∅. Therefore, 

m

( ) =B m( )i 
= 2 

mi iRI = NS m B m − =  
k 

2 − =  
k 

2 − k .( )i 
=∑ k ( ( )i 

1) ∑ ( 1) ∑∑ i

k 

=1 i=1 i=1 i=1 

. ,  2 . ,} {B 2 . ,  A 5 . ,} {A 2 . ,As shown in Table 5.1, M ={{A 1 B C. , 1 . ,  A 5} { . ,  B 6 . ,  B 4} 
{ 3 . ,  { A A B C  } {A 4 B } {B C  } is a set of maximalA C. ,  2} C.2, .1} {, .4, .3, .4 , . , .5 , .1, .3} 
instances found from the example data set in Figure 5.1(a). Row instances of all co-
locations listed in the second column of Table 5.1 are non-empty subsets of maximal 
instances. And the number of row instances can be calculated by Lemma 3.RI 
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TABLE 5.1 
Enumeration of Maximal Instances and Co-Location Instances 

M Row instances of all co-locations 

{A B C1 2 .1 A , .2 , C.1 , . ,1 .2 , . ,1 .1 , . ,2 .1 , . ,  2 .1. ,  . ,  } .1 B A B A C B C A B C1 . ,{ } { } { } { } { } { } { } 

B A2 .5 B A B A.5. ,  .2 .5 . ,2{ } { }, { }, { } 

{A B.6} A.5 , { }B.6 , { . ,5 .6}. ,5 { }  A B 

A B2 .4 A B A B.4}{ . ,  } .2 .4 { . ,2 

A C3 .2 { }A , C.2 , A C.2} 

{ }, { }, 

{ . ,  } .3 { } { . ,3 

C. ,  A.1} C.2 , { }A , { . ,2{ 2 { }  .1 C A.1} 

A B C.4 { }A .3 { }C.4 4 .3 4 .4 B C3 .4 4 3 .4{ 4 3 } .4 { }B {A B } {A C } { } {A B C }. ,  . ,  , , , . ,  , . ,  , . ,  , . ,  . ,  

{A B. ,4 .5} A.4{ }, B.5{ }, {A B. ,4 .5} 

{B C. ,1 .3} B.1{ }, C.3{ }, {B C. ,1 .3} 

3 2 2 2 2RI = 2 −1 + 2 −1 + 2 −1 + 2 −1 + 2 −1( ) ( ) ( ) ( ) ( ) 
2 3 2 2+( )2 −1 + 2 −1 + 2 −1 ( )( ) ( )+ 2 −1 

3 2 2 2 2 2 3 2 2=(2 + + + + + + + +2 2 2 2 2 2 2 )−92 

= 35 (5.4) 

5.3 RI-TREE CONSTRUCTION 

As described in section 5.2.1, the maximal instances are used to generate row 
instances of co-locations. The RI-tree for fnding maximal instances is introduced 
in this section. 

A maximal instance m should satisfy the following two conditions: (1) m is a row 
instance of a co-location; (2) m cannot join with other instances to generate a high-
size row instance. 

An RI-tree is a kind of rooted tree. The root of an RI-tree is labeled as F (F is a 
set of all spatial instances). A branch of the RI-tree is constructed in a correspond-
ing connective subgraph in the graph G. The node in the RI-tree represents the row 
instance of co-location patterns. The node u is the parent of the node v; when v is 
a row instance of size k co-locations, u is one of row instances of size k − 1 co-
locations. An RI-tree is constructed to generating maximal instances, which is the 
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key of co-location mining. A set of spatial instances with their spatial relationships 
(i.e., Euclidean distance) is input, and an algorithm implemented in Python outputs 
all maximal instances. In this process, neighbor relationships between instances of 
the same spatial feature type are not taken into consideration, since our goal is to fnd 
the positive relationship between different spatial feature types. 

Based on the defnitions of RI-tree and maximal instance, there is the following 
algorithm for constructing an RI-tree. 

Algorithm 5.1 

1. Create the root of the RI-tree, and label it as F. 
2. Push all spatial instances into a set F in alphabetic and numerical descending 

order. 
3. Pop an instance from RI1, and delete it in RI1, then create a child node of the 

root “F” for this instance. 
4. Find out the instances that are neighbors of this instance, the different spatial 

features from this instance, and “bigger” than this instance. 

a. If not, return to (3). 
b. If so, push them into a set T in alphabetic descending order and create a 

child node for them. 

5. Find out the instances that are neighbors of the last instance in T, and delete 
it in RI1. 

a. If not, push T in M; Return to (3). 
b. If so and it also has neighborhood relationship with the rest of the 

instances in T, put it at the end of T and create a child node for them; 
return to (5). 

c. If so but it is not neighbors with all other instances in T, push T in M, cre-
ate another child node of the root for the last instance in T, and generate 
a new T by combining it with the last instance in T; return to (5). 

6. Repeat the operation above till RI1 is empty. 

Figure 5.2 shows the process of constructing an RI-tree for the example data 
set in Figure 5.1a. Leaf nodes of this RI-tree, such as {A. ,1 B. ,2 C.1}, {B. ,2 A.5}, 

{A. ,5 B.6}, {A. ,2 B.4}, {A. ,3 C.2}, {C. ,2 A.1}, {A. ,4 B. ,3 C.4}, {A. ,4 B.5}, and 

{B. ,1 C.3} are maximal instances of the example data set. Taking {A. ,1 B. ,2 C.1} 
as an example to illustrate the generation of a maximal instance, A.1 is a spatial 
instance popped from the example data set; create a child node of A.1 for A.1 and 
B.2, since there is a neighbor relationship between A.1 and B.2. Then fnd out the 
instance C.1 which has neighbor relationship with B.2 and check whether there is a 
neighbor relationship between A.1 and C.1. A child node is created for A. ,1 B.2, and 
C.1 since there is a neighbor relationship between A.1 and C.1. The spatial instance 
D.3 has neighbor relationship with C.1, but not with A.1 and B.2, so {A. ,1 B. ,2 C.1} is 
a maximal instance. 



Maximal Instance Algorithms 93  

    

  

 

 

 

 

 FIGURE 5.2 The process of constructing a RI-tree. 

5.3.1 RULES OF RI-TREE 

Before building an RI-tree, all spatial instances are put into set F. The instance will 
be deleted from F if a child node of the root is created for it or if it has neighbor 
relationship with the child node of the root. For example, a child node of the root is 
created for A.5, so A.5 will be deleted from F; B.2 and C.1 are deleted from F since 
they have neighbor relationships with A.5 (A.5 is a child node of the root). 

Each node is a row instance of co-location, and note that not all row instances 
are listed in the RI-tree, but all neighbor relationships are contained in the RI-tree. 
The number of row instances is very large if there are a lot of instances in a spatial 
data set. The aim of a RI-tree is to generate maximal instance; there is no need to 
list all row instances in an RI-tree. A node in RI-tree contains neighbor relationships 
between all instances in the node. 

The nodes of the nth layer of a RI-tree are n − 1 size row instances. The spatial 
instances in F are selected as child nodes of the root, that is, nodes in the second 
layer of RI-tree. From layer 3 to layer n, there are size 2 row instances, size 3 row 
instances,  .  .  .  , n − 1 size row instances. The highest size of row instance of the 
example data in Figure 5.3 is 5 since the RI-tree constructed for this example data 
has only four layers. 

After creating a child node of the root, scan its neighbor relationships. The neigh-
bor relationships are identifed by Euclidean distance metric; two instances have 
neighbor relationship if their Euclidean distance is less than the user-defned mini-
mum distance threshold (Huang et al. 2004). If this node has a neighbor relationship 
with another instance, a child node of this node will be created under this branch 
for these two instances; if there is no common neighbor of instances in this node, 
another instance will be popped from F and a child node of the root will be created 
for it. For example, instance B.2 is a child node of the root; the node “B.2, A.5” is 
created under this branch since B.2 has a neighbor relationship with A.5. There is no 
common neighbor of B.2 and A.5, but A.5 still has a relationship with B.6, so a new 
child node of the root is created for A.5, and the node A.5 has a child node “A.5, B.6.” 

The RI-tree is built from left to right. When a leaf node appears in one branch 
of the RI-tree, another branch can be established. A node is a leaf node if there is 
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 FIGURE 5.3 Algorithm for generating maximal instances. 

no common neighbor of instances in this node, which means the end of the branch 
where this node is located. 

The leaf nodes of a RI-tree are maximal instances, because a leaf node is a row 
instance in which all instances in it are neighbors and no other instances can join 
with it to generate a high size row instance. It is obvious that the leaf node meets 
the conditions of maximal instance. The number of maximal instances equals the 
number of branches of the RI-tree. 
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5.3.2 COMPLETENESS OF RI-TREE 

None of the neighbor relationships is omitted in the process of fnding maximal 
instances. All the spatial instances are scanned, and all neighbor relationships 
between instances of different spatial types are considered in the process of con-
structing a RI-tree. Although not all neighbor relationships are shown in the RI-tree, 
they are considered when creating nodes. For example, the node “A.1, B.2, C.1” con-
tains the neighbor relationships between A.1 and B.2, A.1 and C.1, and B.2 and C.1, 
although the neighbor relationships between A.1 and C.1, B.2 and C.1 are not shown 
in the RI-tree, and the neighbor relationships are not duplicated. Ince all neighbor 
relationships of an instance are identifed, this instance will be deleted in F. 

5.4 GENERATION OF CO-LOCATIONS 

Candidate co-location generation: The basic algorithms rely on a combinatorial 
approach and use apriori_gen (Agrawal and Srikant 1996) to generate size k + 1 
candidate co-locations from size k prevalent co-locations. However, this chapter gen-
erates candidate co-locations from maximal instances, which does not require any 
join operations. C ={e e1, ,  ̃,  is a candidate co-location, if m = i i2 ˜, }2 ek } { 1, ,  ik  is 
maximal instance, in n n k. For example,is the instance of spatial event types e , 1≤ ≤  
{A.1, B.2, C.1} is a maximal instance, so T ={A B, ,  C} is a candidate co-location. 
And candidate co-locations are also generated from candidate co-locations that 
are not prevalent. Those candidate co-locations generated from maximal instances are 
not all prevalent. Candidate co-locations which fail to be a prevalent pattern are 
selected; their subsets are corresponding low-size candidate co-locations. That is 
because of the anti-monotonicity of participation index. If pi C <min (C is( )  _ prev 
a candidate co-location), there must exist pi c ≥ ( )( )  pi C  (c is a subset of C), c may 
be a prevalent co-location, so c is a candidate co-location. Taking Figure 5.1 as an 
example, if min _ prev is set to 0.4, T ={A B, ,  C} is not a prevalent co-location since 
pi T = min{pr T A, , pr (T B  , ( , }= min / , / , /  ) . .( )  ( ) , ) pr T C) (2 5 2 6 2 4  =1 3/ < 0 4  
Therefore, {A, B}, {A, C}, and {B, C} (subsets of {A, B, C}) are candidate co-locations. 

Pruning: In order to make our algorithm more effcient, this step introduces the prun-
ing strategies, which can greatly reduce the unnecessary calculate time. Prevalence-based 
pruning (2004) is also used in our algorithm. The refnement fltering of co-locations 
is done by the participation index values calculated from their co-location instances. 
Prevalent co-locations satisfying a given threshold are selected. Actually, there is no need 
to calculate the participation index of each candidate co-location. Because the participa-
tion ratio and participation index are antimonotone (monotonically nonincreasing) as the 
size of the co-location increases (Huang et al. 2004), if a high-size candidate co-location 
is prevalent, subsets of this candidate co-location are all prevalent. Therefore, participa-
tion indexes of high-size candidate co-locations (generated by maximal instances) are 
prioritized. If the participation index values are above a given threshold, there is no need 
to calculate the participation indexes of subsets of high-size candidate co-location; if the 
participation index values are below a given threshold, participation indexes of subsets of 
high-size candidate co-locations need to be calculated. 

The second pruning strategy can be explained by Lemma 4. 
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Lemma 4 

Subsets of a candidate co-location are prevalent if it is a prevalent co-location. 
Proof. This lemma is proved by the antimonotone property of participation index. C is 
a candidate co-location, C′ is a subset of C, k and n (k > n) are the number of instances 
in C and the number of instances in C′. From the previous formula, it can be concluded 
that the participation index of a candidate co-location is less than or equal to that of 
its subset. If pi C min _ prev , then pi ′ < _  must be established, so< C min prev( )  ( )  
the conclusion can be drawn: subsets of a candidate co-location are prevalent if it is a 
prevalent co-location. 

 π table instance C  π ek 
(table insta ( ))  _ ance C  e1 

( _ ( ))
pi C = min( )   


e1 

…, ,  

= mini
k 
=1 {pr C( ,ei )} 

n≤min {pr C( ,e )}i=1 i 

n≤min {pr C( ′ , e )}= pi C ′ 
i=1 i ( )  

ek 

 

(5.5) 

Quite a lot of maximal instances are generated in the process of mining co-locations 
from the real data set introduced in section 6.5.1. {A I  , ,  R}, ,  T P  is a candidate co-
location since there are row instances of {A I  , ,  R}, ,  T P  in maximal instances, and 
{A I, ,  T P R} is the highest size candidate co-location since there are only fve, ,  
facility types in the real data set. The participation index of {A I  , ,  R}, ,  T P  is cal-

( A I  , ,  0 1. A I  , ,culated frst. When min d_ is set to 1, pi { , ,  T P R})= . { , ,  T P R} 
failed to be a prevalent co-location if min prev is set to 0.4. Therefore, { , ,  T P  ,_ A I  , }
{A I, ,  T R}, { , ,  P R}, { , ,  P R}, and { , ,  P R}, which are the subsets of, A I  , A T  , I T  , 

{A I, ,  T P R , become candidate co-locations. In the subsets of { , ,  T P R},, ,  } A I  , ,  
those row instances that contain 4 instances are row instances of size 4 co-locations. 
And the size 4 maximal instances are also row instances of size 4 co-locations. By 
calculating their participation indexes, A T  , } is a prevalent co-location with{ , ,  P R  

, ,  P R  ) .pi({A T  , } = 0 48. According to the anti-monotonicity of participation index, 
the participation indexes of A T  }, { , ,  R} A P  }, and { , ,  R}{ , ,  P A T  , { , ,  R T P  must 

be greater than 0.48. A T  }, { , ,  R}, A P  }, and T P  } are prevalent{ , ,  P A T  { , ,  R { , ,  R 
co-locations, so there is no need to calculate their participation indexes, which saves 
a lot of time. This is the pruning strategy mentioned earlier. 

5.5 DISCUSSIONS FOR MAXIMAL INSTANCE ALGORITHMS 

The idea of the presented algorithm is different from the existing algorithms. Their 
differences are: 

• The existing methods identify high-size row instances from low-size row 
instances, but the presented algorithm frst identifes the highest-size row 
instances (maximal instances) based on the relationship of spatial instances, 
then generates all low-size row instances from highest-size row instances. 
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• The existing methods generate candidate patterns by joining row instances, 
but the presented algorithm generates candidate patterns from maximal 
instances without join operations. 

5.5.1 COMPARISON ANALYSIS OF ROW INSTANCE GENERATION 

The reason why our method for generating all row instances is more effcient than 
join-based algorithm is demonstrated in detail here. Let T and T ′ gen row_ instance gen row instance_ 

be the computation cost of generating all row instances in join-based algorithms and 
our method. The following equations show the computation cost functions: 

T =T +(k −1)×T (5.6)gen row_ instance scan(neighobr relationship) join 

T ′ =T +T (5.7)gen row_ instance  gen _ m  gen _ instance 

Tjoin represents the computation cost of a join operation, Tgen m  represents the com-_ 

putation cost of generate all maximal instances, Tgen instance represents the computation 
cost of fnding subsets of maximal instances. T 

_ 

≈T because of _ (gen m  scan neighobr relationship)
generating maximal instances is also a scanning process of neighbor relationships, 
and T ˆ (k −1)×T .gen instance join_ 

Therefore, 

T T + −k 1) join( ×T 
gen row instance scan neighobr relations )_ ( ship= 

T ′ T +T gen row_ instance gen m_ gen instance_ 

T + −k 1 ×T 
≈ scan(neighobr relattionship) ( ) join 

T +T nstance scan(neighobr relationship) gen i_ n

>1 (5.8) 

Apparently, T >T ′ . And a conclusion can be drawn: our gen row instance  gen __ row instance 

method for generating all row instances is more effcient than join-based algorithm. 

5.5.2 COMPARISON ANALYSIS OF MAXIMAL INSTANCE ALGORITHMS 

The computational cost of our algorithm with three basic algorithms is compared 
here. Each algorithm has an initial step of materializing neighborhoods. The join-
based algorithm frst gathers the neighbor pairs per candidate co-location, the par-
tial join algorithm frst generates the disjoint clique neighborhoods using a simple 
grid partitioning, the join-less algorithm frst generates the star neighborhoods, and 
our algorithm frst generates maximal instances. S represents a spatial data set, 
T ( )S , T ( )S , T ( )S  and T ( )S  repre-neighbor _ pairs clique _ neighborhoods& _ neighborhoods gen m  cut relations star _ _ 

sent the computational costs of initial steps in each algorithm, and Tjb ( )2 , Tpj ( )2  and 
Tjl ( )2 represent the cost for generating size 2 co-locations in join-less algorithm, the 
partial join algorithm, and the join-based algorithm, respectively. Let T T  , T,  and jl pj

 be the total computation cost of our algorithm, the join-less algorithm, the partial Tjb 
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join algorithm, and the join-based algorithm, respectively. The following equations 
show the total cost functions: 

T =T ( )S +T gen m_ gen instance 

T = T S +T 2

_ 

+∑ T kjl star _ neighborhoods ( )  jl ( )  jl ( )
k>2 

T =T _ ( )S +T ( )2 +∑ > 
T k( )pj clique _ neighborhoods&cut relations pj pjk 2 

=Tneighbor _ S +Tjb 2 +∑ T k( )  (5.9)Tjb pairs ( )  ( )  jbk>2 

Here, k is greater than 2. 
Yoo and Shekhar (Yoo et al. 2004) proposed the following comparative 

relationships: 

T ( )S +T ( )2clique _ neighborhoods& _ pjcut relations 

>T ( )S +T ( )2star _ neighbo jlorhoods 

>Tneighbor _ pairs ( )S +Tjb ( )2 (5.10) 

Because of: (1) the join-less algorithm has an additional cost to materialize the 
star neighborhoods from the neighbor pairs compared with a join-based algorithm; 
(2) an additional cost is required to fnd all size 2 inter-instances with cut relation-
ships in a partial join algorithm; the overall cost is expected to be a little bigger than 
the cost to generate the star neighborhood set. 

Lemma 5 

T ( )S >T ( )S .star _ neighborhoods gen m_ 

Proof.  The star neighborhood partition model in a join-less algorithm takes each spa-
tial object as a central object and fnds out the remaining objects in their neighbor-
hoods. respectively. Thus, this process takes n times; n is the number of spatial objects. 
The process of generating all maximal instances needs to be executed 

C C Ctimes, is the number of maximal instances. Apparently, n > , so the m m m 

star neighborhood partition model in join-less method is more time consuming than 
the process of generating maximal instance in our method. 

×Tstar _ neighborhoods ( )S n t
scan(neighbor relationshiip) 

×tTgen m  ( )S 
≈ 

_ Cm scan(neighbor relationship) 

n 
= 

C m 

>1 (5.11) 

Lemma 6 

T S >T S +T 2 .gen m  ( )  neighbor _ pairs ( )  jb ( )_ 
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Proof. Gathering the neighbor pairs per candidate co-location is the most basic opera-
tion in co-location mining. The neighbor pairs are used to generate maximal instances; 
it has an additional cost compared with gathering the neighbor pairs per candidate co-
location and calculating their prevalence measures. 

According to Lemma 5 and Lemma 6, the following equation can be reached: 

T ( )S +T ( )2clique _ neighborhoods& _ pjcut relations 

>T ( )S +T ( )2star _ neighbo jlorhoods 

>Tgen m  ( )S 

>T 

_ 

( )S +T ( )2 (5.12)neighbor _ pairs jb 

The advantage of maximal instance algorithm lies in the latter part. Three basic 
algorithms generate bigger size co-locations size by size after generating size 2 co-
locations. This operation needs to repeat k − 2 times to generate all co-locations. 
Each operation cannot be omitted. And cross-size operation is not allowed (size k 
co-locations cannot be directly generated from size k − 2 co-locations’ size k co-
locations are generated from size k − 1 co-locations after generating size k − 1 co-
locations from size k − 2 co-locations). Therefore, the execution time of each join 
operation should be added to the total computational costs of three basic algorithms. 

However, once maximal instance algorithm generates maximal instances, 
row instances of all size co-locations can be generated from subsets of maximal 
instances. There is no need for the join operation. A large amount of time consump-
tion is avoided in this part; the bigger the size of co-locations, the more obvious the 
effect is. Therefore, there are the following equations: 

T _ ˆ ∑ 2 
T ( )k , (5.13)gen instance jlk> 

T _ ˆ ∑ 2 
T ( )k , (5.14)gen instance pjk> 

_ > ( )Tgen instance ˆ ∑ k 2 
Tjb k . (5.15) 

On the basis of the equations 5.13, 5.14, 5.15, and 5.16, we can say that our algo-
rithm has a lower computational cost than three basic algorithms. 

T T< jl , (5.16) 

T T< pj , (5.17) 

< . (5.18)T Tjb 
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Negative Co-Location 6 
Pattern Mining 
Algorithms 

6.1 INTRODUCTION 

The co-location pattern, as a method for mining spatial data, has received increasing 
attention since Yoo and Shekhar frst proposed two co-location algorithms based on 
join and joinless modes (Morimoto 2001; Shekhar and Huang 2001; Huang et al. 
2004; Yoo et al. 2004; Yoo et al. 2005). Many scholars have afterward presented 
new co-location algorithms, for instance, fuzzy co-location pattern mining, parallel 
co-location pattern mining, the adaptive maximal co-location algorithm, effcient 
co-location pattern mining, co-location pattern mining with rare features (Bao and 
Wang 2019; Wang et al. 2008, 2009; He et al. 2015), the co-location-based decision 
tree (CL-DT) (Zhou et al. 2012, 2014, 2016), manifold learning co-location pattern 
mining (Zhou et al. 2016, 2018), and maximal instance co-location pattern mining 
(Zhou 2011; Zhou et al. 2021). 

Although the advance of mining co-location patterns has been made, there are 
still some potentially useful patterns that have not been fully mined, such as negative 
co-location patterns. Spatial data mining with negative co-location patterns can be 
signifcant because it can fnd features with strong negative correlations and deter-
mine mutually exclusive relationships between spatial features, which can play a 
vital role in many applications. For example, lilacs planted next to cloves wither 
immediately. The scent of cloves can also endanger the narcissus. If you keep lilacs, 
violets, tulips, and forget-me-nots together, each suffers. Therefore, garden designs 
and forest plans need to fully consider the relationships among plants to reap benefts 
and avoid harm. Similarly, negative co-location patterns can play great roles in biol-
ogy. They can identify a variety of cells that inhibit each other and can be applied in 
vaccines and pharmaceuticals. 

A few scholars have proposed mining algorithms for association rules and 
sequences for negative co-location. For example, Wu et al. (2004) proposed effcient 
mining of both positive and negative association rules. Zheng et al. (2009) proposed 
some constraint conditions and mining algorithms for negative sequence patterns. 
Cao et al. (2016) proposed the e-NSP (effcient negative sequential patterns) algo-
rithm, which can effectively identify negative sequence patterns. Dong et al. (2018) 
proposed the f-NSP (fast negative sequential patterns) algorithm. 

This chapter frst overviews the existing algorithms and methods, which are espe-
cially presented by Yang et al. (2010), and then proposes a new algorithm for mining 
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negative co-location patterns. The proposed method is based on joining low preva-
lent co-location patterns or candidate negative co-location patterns to generate all 
candidate negative co-location patterns, and a paradigm is detailed for illustrating 
the algorithm proposed in this chapter. 

6.2 DEFINITION AND LEMMA FOR NEGATIVE CO-LOCATION 

6.2.1 BASIC DEFINITION OF NEGATIVE CO-LOCATION 

Negative co-location mining is to fnd out the subsets of spatial features that are 
strong negative associated. For the spatial data, each spatial instance is recorded as 
T i. , where T is the spatial feature type of the spatial instance and i is the unique ID 
of the instance within each spatial feature type. In the negative co-location pattern 
mining, the Euclidean distance is still used to measure the proximity between spatial 
instances, that is, R A B  1 ↔ distance A. , .1 ≤ d( . ,1 . ) ( ( 1 B ) ). In Figure 6.1, the real lines 
are used to connect the neighboring instances, such as A.1 and B.2. 

The basic concepts pertaining to negative co-location pattern mining that follow 
were given by Jiang et al. (2010). 

Defnition 1 

Negative co-location patterns: A co-location pattern T is defned as a negative co-
location pattern if T = ∪X Y , where X is a set of positive items (positive spatial fea-
tures), Y  is a set of negative items (negative spatial features), and Y ≥1, X Y  ∅∩ =  
(Jiang et al. 2010). 

Defnition 2 

Participation index (PI) of negative co-location patterns: T = ∪X Y  is defned as 
( )  i

k 
=1 {PR T Xi } , where PR T XiPI T = min ( , ) ( , ) is the participation ratio (PR) of spa-

tial feature Xi in a negative co-location pattern T (Jiang et al. 2010). 

FIGURE 6.1 An example of a spatial data set. 
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Defnition 3 

( , 
ture Xi in a negative co-location T = ∪  is defned as and can be computed by 
Participation ratio (PR): The participation ratio, noted as PR T Xi ), of spatial fea-

X Y 
(Jiang et al. 2010): 

π 
i 
( _ ( ))X table instance T  

PR(T , Xi )= (6.1)
table instance X  _ ( )i 

Defnition 4 

Prevalent negative co-location patterns: For a given minimum prevalent threshold 
(min_prev), a negative co-location pattern T = ∪Y is defned as a prevalent nega-X 
tive co-location pattern if T meets the following conditions (Jiang et al. 2010). 

1. PI ( )≥min _ prev PI Y  ≥min_ prev and PI X Y  <X , ( )  ( ∪ ) min _ prev 

2. PI T ≥min _ prev ( )  

6.2.2 LEMMAS FOR NEGATIVE CO-LOCATION 

Jiang et al. (2010) also presented the following lemmas for negative co-location mining. 

Lemma 1 

Let T = ∪X Y be a candidate prevalence negative co-location pattern, where 
{ } . If A A  are respectively the number of instances of spatial X = X , X ,…, X , ,…, A

1 2 k 1 2 k 

, in the positive co-location X Yfeatures X X  ,…, X ∪ , the PI of negative co-location 

Let X ∪Y and X ∪Y be prevalent negative co-locations. For prevalent positive co-

1 2 k 

X Y∪ is (Jiang et al. 2010): 

 X1 −A1PI X Y  = min ( ∪ )  ,
X1 

X2 −A2 

X2 

,…, 
Xk −A k  

Xk 
 

(6.2) 

where Xi is the number of instances of spatial feature Xi. 

Lemma 2 

′ ′′ 
location pattern X = X ′ ∪ X ′′ , X Y∪ must be a prevalent negative co-location pattern 
(Jiang et al. 2010). 

Lemma 3 

Let X Y∪ be a prevalent negative co-location pattern. For prevalent positive co-location 
pattern Z, if Y ⊆ Z holds, then X Z∪ is also a prevalent negative co-location pattern 
(Jiang et al. 2010). 
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6.3 ALGORITHM FOR MINING NEGATIVE 
CO-LOCATION PATTERNS 

In order to fnd out the potentially useful negative co-location patterns in spatial data 
sets, Jiang et al. (2010) presented a few new concepts and lemmas as follows. 

Defnition 5 

Spatial relation pair: If there is a size 2 prevalent co-location pattern or a size 2 
prevalent negative co-location pattern, this is defned as a neighbor relation pair 
(Jiang et al. 2010). 

Lemma 4 

The participation ratio (PR) and the participation index (PI) are monotonically nonde-
creasing as the size of negative co-location increases (Jiang et al. 2010). 

Proof: 
X N = ′ ⊆ 

i1. Supposing that M = ∪Y , X′ ∪Y , X X , A  represents the number of 
instances of each feature X

i 
in X ∪Y , B

i 
represents the number of instances of 

each feature X in X′ ∪Y , A ≤ B since the spatial feature instance that partici-
i i i 

pates in a row instance of X also participates in a row instance of X′. Therefore, 

−B  X
i 
− A  

i ≥PR(M X
i 
= 

X
i

X
i 

X
i = PR N X, ) PI ( )M , )

− A
i ≥ 

X
i 

i (  and = min
i  X

i  
 X

i 
−B

i 
 .min = PI N( )
 X

i  
2. Supposing that X Y , N = ∪Y ′ , Y ′ ⊆Y , A  represents the num-M = ∪  X 

i 
ber of instances of each feature X in X ∪Y , B represents the number of 

i i 

instances of each feature X in X′ ∪Y , A = B since the spatial feature instance
i i i 

that participates in a row instance of X also participates in a row instance 

X
i 
− A

i 
X

i 
−B

iof X′ . Therefore, PR(M X  = = = , ) andPR(N X
i

, 
i ) 

X
i 

X
i 

 X
i 
− A

i 
  X

i 
−B

i 
 PI ( )M = min = min = PI N .( )

   X
i 

X
i    

According to (1) and (2), the participation ratio and the participation index are 
monotonically nondecreasing as the size of negative co-location increases. 

Lemma 5 

Let X ∪Y be a prevalent negative co-location; if PI X ′ ≥ min _ prev( )  and 
PI ( )Y ′ ≥ min _ prev holds, then X′ ∪Y and X ∪Y ′ are also prevalent co-locations, where 

X ⊆ X ′ and Y ⊆Y ′ (Jiang et al. 2010). 

Proof: 

PI X ≥ min _ prev , ( )≥ min _ prev , PI (X Y∪ ≥ _ . and PI ( ∪( )  PI Y ) min prev X Y  ) 
< min prev_ , since X ∪Y is a prevalent negative co-location. PI (X ′ ∪Y )< PI (X Y∪ )< 
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_ v PI X Y ′)  since the participation index min pre  and ( ∪ < PI X Y( ∪ )< min p_ rev 
is antimonotone (monotonically nonincreasing) as the size of the positive co-location 

PI X Y _ reincreases. It can be concluded from Lemma 4 that PI (X ′ ∪ Y )≥ ( ∪ )≥ min p v 

and PI (X Y )≥ PI X Y )≥ min prev. Therefore, Y  and X ∪ Y ′ are also preva-∪ ′ ( ∪ _ X′ ∪ 

lent co-locations, where X ⊆ X ′ and Y ⊆ Y ′ . 

6.3.1 GENERATION OF CANDIDATE NEGATIVE CO-LOCATIONS 

Jiang et al. (2010) used non-prevalent co-locations to generate candidate nega-
tive co-locations. This method is very time consuming, because frst of all, those 
non-prevalent co-locations should be found from the process of co-location pattern 
mining, and then the negative correlation items of these non-prevalent co-location 
patterns are combined to generate candidate negative co-location patterns. For 
example, {A B C, ,  } is a non-prevalent co-location pattern, so 

{A B C}, { , ,  {A B C}, { , ,  {A B C}, . . . are the candidate negative , ,  A B C}, , ,  A B C}, , ,  
co-location patterns. By calculating their participation indexes, it can be determined 
whether they are frequent negative co-location patterns. A non-prevalent co-location 
pattern can form multiple candidate negative co-location patterns, and it takes too 
much time to calculate their participation indexes one by one. 

In order to generate candidate negative co-location patterns quickly and effec-
tively and avoid the time-consuming problem caused by unnecessary calculation of 
the participation index, this chapter proposes a new method to generate candidate 
negative co-location patterns, that is, generate candidate negative co-locations by 
joining size 2 prevalent co-locations and size 2 prevalent negative co-locations. Size 
2 prevalent co-locations and size 2 prevalent negative co-locations are called a spa-
tial relation pair. Because this proposed algorithm takes little time to generate the 
size 2 prevalent co-locations and size 2 prevalent negative co-locations according 
to the neighbor relationships between spatial instances, it is very effective to gener-
ate candidate negative co-location patterns by using them. For example, {A C, } and 

{B C, } are size 2 prevalent co-locations. The {A B C, ,  } obtained by joining {A C, } 
and {B C, } is a candidate negative co-location pattern (Figure 6.2). This method can 
mine the negative co-location pattern without generating the co-location pattern, 
which reduces a lot of computing time. 

Take the example data in Figure 6.1 as an example to further explain the genera-
tion of candidate negative co-locations. First, the participation indexes of the size 2 
co-locations are calculated according to the proximity of each instance. As shown 
in Table 6.1, the participation indexes of co-location patterns {A B, }, {A C, }, {A D},, 
{B C, {B D}, and { ,}, , C D} are 3/4, 4/5, 1/5, 1/4, 1/2, and 1/3, respectively. If the 
minimum frequency threshold min prev is set to 0.6, then co-locations , } and _ {A B  

{A C, } are prevalent. The non-prevalent co-locations {A D}, { , }, {B D}, and , B C  , 

{C D} provide the possibility for the generation of candidate negative co-location , 
patterns. For example, {A D} is non-prevalent, so { , {A D} are the candi-, A D} and , 
date negative co-location patterns. According to the calculation method of the par-
ticipation index of negative co-locations, the participation index of each candidate 
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FIGURE 6.2 Generation of candidate size 2 prevalent negative co-locations. 

TABLE 6.1 
Table Instances and Participation Indexes of Size 2 Co-Locations 
Co-location pattern {A B, } {A C, } {A D, } {B C, } {B D, } C D{ , } 
Table instance {A B. ,  .1 2} {A C. ,1 .3} {A D. ,2 .1} {B C. ,2 .3} {B D. ,3 .1} C D{ . ,1 .1} 

{A B. ,2 .1} {A C. ,2 .1} {B D. ,4 .2} 
{A B. ,4 .3} {A C. ,3 .1} 
{A B. ,5 .1} {A C. ,4 .2} 

Participation index 3/4 4/5 1/5 1/4 2/4 1/3 

negative co-location can be calculated. The detailed candidate negative co-locations 
and participation index are listed in Table 6.2. Set the minimum frequency thresh-

old of negative co-locations to 0.6. The participation indexes of {A D}, { ,, B C}, and 
{C D, } are greater than 0.6, and the participation indexes of , }, , }, and {A D  {B C  

{C D, } are less than 0.6, so { , {B C}, and { ,A D}, , C D} are prevalent co-locations. 

In Figure 6.1, {A B}, { , {A D}, { , {C D} are neighbor pairs. Next, , A C}, , B C}, and , 

Lemma 5 and lemmas presented by Jiang et al. (2010) are combined to generate 
high-size candidate negative co-locations. This method for generating candidate 
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TABLE 6.2 
Size 2 Candidate Negative Co-Locations and Their Participation Indexes 

Non-prevalent Candidate negative Participation index 
co-locations co-locations 

, A D}{A D} { , 4/5 

{A D 1/2, } 
{B C  {B C 3/4, } , } 

{B C 2/3, } 
{B D, {B D} 2/4} , 

{B D 0, } 
{C D, } {C D 2/3, } 

{C D 1/2, } 

co-locations is similar to the join strategy in a join-based algorithm. There are 
two kinds of combination methods. One is the combination of prevalent positive 
co-locations and prevalent negative co-locations. For example, the combination of 
{A B} and {A D} can generate the candidate negative co-location {A B D}. Another , , , ,  

way is to combine prevalent negative co-locations. For example, the combination 

of {A D} and { , {A C D}. It , C D} can generate the candidate negative co-location , ,  
should be noted that two size k prevalent patterns can be combined only if they 
contain k − 1 identical instances, that is, only one instance of the two patterns is dif-
ferent. According to Lemma 5 proposed in this chapter, after the candidate negative 
co-locations are generated, we can judge whether they are prevalent or not without 
another calculation of their participation indexes. For example, because {A D, } is a 

prevalent negative co-location pattern, {A} is a subset of {A C, } and {A C, } is a prev-

alent co-location pattern; according to Lemma 5, the candidate negative co-location 
pattern {A C D} is obviously prevalent (Figure 6.2). , ,  

6.3.2 PRUNING 

Lemma 4 and Lemma 5 provide effective pruning means for generating prevalent 
negative co-location patterns. By using Lemma 4 and Lemma 5, we can quickly 
judge whether a candidate negative co-location pattern is prevalent, and we do not 
need to calculate their participation indexes one by one. For example, if {A C, }  and 
B C, } are the size 2 prevalent co-location patterns, and , } is the prevalent co-{ {A B  

location pattern, then the negative co-location pattern {A B C, ,  } must be a prevalent 

negative co-location pattern. For example, according to Lemma 5, it can be seen that 

the participation index of candidate negative co-location pattern {A B C, ,  } is not less 

than participation indexes of {A C} and {B C} (that is, PI A B C, ,  })≥ PI A C}),, , ({ ({ , 
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} PI B C} , ,  ,PI ({A B C, ,  )≥ ({ , ) ), since {A B C} is generated by combination of {A C} 
and {B C}. There is no need to calculate the participation index of { , ,, A B C}. If the 

co-location pattern {A B} is prevalent, then we can infer that the negative co-location , 

pattern {A B C, ,  }  must be a prevalent negative co-location pattern. Therefore, only 
the participation index of co-location {A B}  needs to be calculated. , 

6.4 JOIN-BASED PREVALENT NEGATIVE CO-LOCATION  
PATTERNS 

In this section, the join-based prevalent negative co-location pattern algorithm is 
presented, which includes the following steps: 

1. Calculate the positive co-location pattern of all instances and use any algo-
rithm for mining prevalent positive co-location. Store all of the size 2 preva-
lent co-location patterns and the PI values for all of the size 2 co-location 
patterns. 

2. Compare the PI values of the size 2 co-location pattern with the threshold 
value of min_prev and fnd and store all of the size 2 candidate negative co-
location patterns. The size 2 prevalent negative co-location pattern is calcu-
lated to facilitate pruning. 

3. A size 2 prevalent co-location or candidate negative co-location is joined 
to a size 2 prevalent co-location to generate a size 3 candidate negative co-
location. Then a size 3 prevalent co-location or candidate negative co-location 
is joined to a size 2 prevalent co-location to generate a size 4 candidate nega-
tive co-location, and so on. 

4. The candidate negative co-location patterns that have been obtained from 
Step 1 through Step 3 are pruned. According to Lemma 2 and Lemma 3, if 
the size 2 candidate negative co-location pattern joined is a prevalent negative 
co-location pattern, then it is proven to be a prevalent negative co-location 
pattern. The rest of the unpruned candidate negative co-location patterns are 
judged by the comparison between the PI value and the given threshold of 
min_prev to obtain the prevalent negative co-location patterns. 

The algorithm above is summarized here. 

ALGORITHM 6.1 
Join-Based Prevalent Negative Co-location Pattern 
Input: 
1. Collection of spatial features F = { f f  f , ,  f, ,  ˜ }

1 2 3 n 

, ,  S ˜ }2. Set of spatial instances S = {S S  , ,  S 
1 2 3 m 

3. Co-location relationship R 
4. Minimum PI threshold min_prev 
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Output: 
5. Size n prevalent positive co-location collection nPPC 
6. Size 2 candidate negative co-location collection 2CNC 
7. Size 2 prevalent negative co-location collection 2PNC 
8. Size n candidate negative co-location collection nCNC 
9. Size n prevalent negative co-location collection nPNC 

Variable: 
10. Instance co-location relation NT 

Steps: 
11. Calculate all NT. 
12. Any existing algorithm is used to mine the set of prevalent positive co-location patterns of each size. 

, ,  nPPC }Nppc = {nPPC , nPPC , nPPC ˜ 
1 2 3 m 

13. FOR EACH 2CNC & 2PPC 
14. According to Lemma 4, it is combined with 2PPC to generate a size 3 candidate negative co-location 

pattern. Eliminate repetitive patterns. The candidate negative co-location of the size 2 requires the 
inclusion of both negative modes. 

15. FOR EACH 3 CNC & 3PPC 
16. According to Lemma 4, it is combined with 2PPC to generate a size 4 candidate negative co-location 

pattern. Eliminate repetitive patterns. 
17. In addition, and so on ˜ 
18. FOR EACH (n −1)CNC & (n −1)PPC. 

19. According to Lemma 4, it is combined with 2PPC to generate size n candidate negative co-location T. 
20. Pruning. If T contains a prevalent low-order negative co-location, then T is a prevalent negative 

co-location. 
21. The remaining ones without pruning are compared with the threshold min_prev. 
22. Return to the size N prevalent negative co-location nPNC. 

6.5 EXPERIMENT AND ANALYSIS 

To evaluate the effectiveness of the join-based prevalent negative co-location pattern 
algorithm proposed in this chapter, Algorithm 6.1 proposed in this chapter is com-
pared with the algorithm presented in Jiang et al. (2010), which is referenced as the 
traditional algorithm. The algorithms are written in Python, and the experimental 
environment is PyCharm running in Windows10. 

6.5.1 DATA SETS 

The real data set selected in the experiment is the geospatial data from Shopping, 
Traffc, Dining and Companies (see Table 6.3) in the City of Ji’nan, Shandong, China, 
which contains a total of 11,189 data points, as shown in Figure 6.3. 

6.5.2 JOIN-BASED PREVALENT NEGATIVE CO-LOCATION PATTERNS 

According to the obtained data, a positive co-location of size 1–4 is obtained, as 
shown in Figure 6.4. The line charts represent the sum of the total number of positive 
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TABLE 6.3  
Data Set 

Type Abbreviation Number 

Shopping S 7,284 

Traffic T 582 

Dining D 1,963 

Companies C 1,360 

FIGURE 6.3 The data set of City of Ji’nan, Shandong, China. 

FIGURE 6.4 A comparison between the negative co-location algorithm based on the join-
based and traditional algorithms with the change in threshold value. 
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co-location patterns for each size, and the bar charts represent the number of detailed 
positive co-location patterns for each size. 

In the experiment, the distance threshold is fxed at d = 1,000 m. The participa-
tion threshold was changed from 0.1 to 0.7, and the relevant tests were performed. In 
addition, the traditional mining algorithm and the algorithm proposed in this chapter 
are used to mine all negative co-locations under different thresholds. 

As seen in Figure 6.4, the effect of the connection algorithm changes with the 
min_prev. When the number of the size 2 prevalent co-locations is equal to the num-
ber of size 2 candidate negative co-locations, it is the most complicated case, and 
the effect is the worst. However, its number is approximately 0.6 of the traditional 
algorithm. Moreover, the traditional algorithm enumerates all negative co-location 
patterns, independent of the value of min_prev, without fuctuations. 

6.5.3 DIFFICULTIES IN MINING NEGATIVE CO-LOCATION PATTERNS 

Jiang et al. (2010) has summarized the diffculties in mining negative co-location 
patterns. Combining these with our experiments, the major diffculties for mining 
negative co-location patterns are: 

1. The spatial computation is time consuming, including generation of the nega-
tive co-location patterns. The number of candidate negative co-location pat-
terns exponentially increases with the size of data sets (Jiang et al. 2010). 

2. The algorithms developed for mining the negative association rules cannot 
be reused; also, the algorithms developed for mining positive co-location 
mining cannot be used directly since some methods must be redesigned; 
there are no traditional “transactions” in spatial data sets (Jiang et al. 2010). 

6.6 CONCLUSIONS 

In summary, the main contributions of this chapter can be summarized as follows: 

• A candidate negative co-location pattern is proposed based on the defnition 
of prevalent negative co-location, and it is proven that any N size candi-
date negative co-location pattern can be joined by an N − 1 size prevalent 
co-location pattern or prevalent negative co-location pattern and a size 2 
prevalent co-location pattern. 

• For the specifed spatial feature set Y , the negative co-location pattern 
T = ∪X Y of the specifed size can be calculated directly through the join-
based algorithm. 

• According to the defnition of a negative co-location pattern, the monot-
onous non-decrement of the PI value of a negative co-location pattern is 
strictly proven, and a fast pruning method is proposed by using the cor-
responding lemma. 

• By combining negative co-location patterns from low order to high order, 
two patterns in extreme cases and their meanings are proposed: “single pos-
itive of negative co-location” and “single negative of negative co-location.” 
An algorithm for solving the pattern is given. 
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Application of Mining 7 
Co-Location Patterns in 
Pavement Management 
and Rehabilitation 

7.1 INTRODUCTION 

7.1.1 DISTRESS RATING 

As an initial experimental study, this chapter will frst explore the decision tree and 
decision rules induction using the following nine common types of pavement dis-
tresses, which are listed in Table 7.1 (Zhou and Wang 2010, 2012; Zhou 2011): 

• Alligator Cracking, 
• Block Cracking, 
• Transverse Cracking, 
• Bleeding, 
• Rutting, 
• Utility Cut Patching, 
• Patching Deterioration, and 
• Raveling. 

Table 7.1 presents the eight types of distresses that are evaluated for asphaltic con-
crete pavements. In Table 7.1, the severity of distress is rated in four categories, rang-
ing from very slight to very severe. Extent (or density) is classifed in fve categories, 
ranging from few (less than 10%) to throughout (more than 80%). The identifcation 
and description of distress types, severity, and density are: 

• The road conditions of Alligator Cracking are rated as a percentage of the 
section that falls under the categories of None, Light, Moderate, and Severe. 
Percentages are shown as 1 = 10%, 2 = 20%, and 3 = 30%, up to 10 = 
100%. The appropriate percentages should be placed under None, Light, 
Moderate, and Severe. These percentages should always add up to 100%. 

• The severity levels of distresses Block Cracking, Transverse Cracking, Bleeding, 
Rutting, Utility Cut Patching, Patching Deterioration, and Raveling are rated at 
4 levels: None (N), Light (L), Moderate (M), and Severe (S), respectively. 

• The severity levels of ride quality are classifed as Average (L), Slightly 
Rough (M), and Rough (S). 

DOI: 10.1201/9781003139416-7 117 
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TABLE 7.1 
Nine Common Types of Distresses for This Study 

Distress Rating 

Alligator Cracking Alligator None (AN) Percentages of 1 = 10%, 2 = 20%, 3 = 

Alligator Light (AL) 30%, up to 10 = 100% indicate None, 

Alligator Moderate (AM) Light, Moderate, and Severe, 

Alligator Severe (AS) respectively 

Block/Transverse Cracking This indicates the overall condition of the section as follows: 
(BK) • N-None • L-Light • M-Moderate • S-Severe 

Refective Cracking (RF) The same manner as BK 

Rutting (RT) The same manner as BK 

Raveling (RV) The same manner as BK 

Bleeding (BL) The same manner as BK 

Patching (PA) The same manner as BK 

Utility Cut Patching, The same manner as BK 

Ride Quality (RQ) The condition is designated as follows: 
• L–Average • M–Slightly Rough • S–Rough 

Standard PCI Custom PCI 
rating scale rating scale 

Adequate 

Degraded 

Unsatisfactory 

Distress 
type 

Distress 
severity 

Distress 
quantity PCI 

100 

Very good 

Good 

Fair 

Poor 

Very poor 

100 

85 

70 70 

55 55 

40 

25 

10 

0 0 

FIGURE 7.1 Pavement Condition Index standard and custom rating scales. 

Source: Courtesy of Greene, J. and M. Shahin, 2010. 

Experiments, accompanying all the analyses and pavement condition evaluations 
presented in this chapter, are based on the pavement performance measures. A com-
mon acceptable pavement performance measure is the Pavement Condition Index 
(PCI), which was frst defned by the US Army (see Figure 7.1). In the PCI, the pave-
ment condition is related to factors such as structural integrity, structural capacity, 
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roughness, skid resistance, and rate of distress. These factors are quantifed in the 
evaluation worksheet that feld inspectors use to assess and express the local pave-
ment condition and damage severity. Mostly, inspectors use their own judgment to 
assess the distress condition. Usually, the PCI is quantifed into seven levels, from 
Excellent (over 85) to Failed 0 (see Figure 7.1). Thus, PCI is an important index 
for maintenance and repair determination in which the overall conditions of the 
observed road surface are evaluated. 

7.1.2 POTENTIAL REHABILITATION STRATEGIES 

Based on the knowledge gained from experts, we have classifed rehabilitation treat-
ments for fexible pavements into three main categories according to the type of the 
problem to be corrected: cracking, surface defect problems, and structural problems. 
These problems can be treated using crack treatment, surface treatment, and non-
structural overlay (one- and two-course overlay), respectively. 

In order to select an appropriate treatment for rehabilitation and maintenance 
to a specifc road, seven potential rehabilitation and maintenance strategies have 
been proposed by the North Carolina Department of Transportation (NCDOT) 
(Table 7.2). Which treatment strategies will be carried out for a pavement segment is 
dependent on the comprehensive evaluation of all distresses. This used to be created 
by experts or a pavement engineer at North Carolina Department of Transportation. 
This research will experiment and test whether the decision tree and decision rule 
can produce an appropriate decision for an M&R (maintenance and repair) strategy 
using data mining technology and then compare the differences of decisions made 
by the manual method and data mining. 

7.2 EXPERIMENTAL DESIGN 

7.2.1 FLOWCHART OF EXPERIMENT AND COMPARISON ANALYSIS 

The proposed co-location decision tree algorithm consists of two major steps, co-
location mining and decision tree induction, as depicted in Figure 7.2. When a data-
base is input, the spatial data and nonspatial data are selected. Both types of data are 

TABLE 7.2 
Potential Rehabilitation Strategies 

ID Rehabilitation Strategies 

0 Nothing 

1 Crack Pouring (CP) 

2 Full-Depth Patch (FDP) 

3 1” Plant Mix Resurfacing (PM1) 

5 2” Plant Mix Resurfacing (PM2) 

6 Skin Patch (SKP) 

7 Short Overlay (SO) 
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 FIGURE 7.2 Flowchart of experimental design. 

employed to induce co-location rules, and only nonspatial data is used for decision 
tree induction. The decision tree induction algorithm is C4.5. The induced co-loca-
tion rules are used for determining pruning (merging) the branches of a tree. Thus, 
the process is recursively repeated until the leaf node creation of a tree. Following up 
on the co-location decision tree induction, the co-location decision rules are induced 
by translating a decision tree into semantic expressions. The comparison analyses 
for three methods are conducted to evaluate the advantages and disadvantages of the 
proposed CL-DT algorithm. 

7.2.2 DATA SOURCES 

In 1983, the Institute for Transportation Research and Education (ITRE) of North 
Carolina State University began working with the Division of Highways of the 
North Carolina Department of Transportation (NCDOT) to develop and implement 
a Pavement Management System for its 60,000 miles of paved state highways. At 
the request of several municipalities, NCDOT has made this Pavement Management 
System available for North Carolina municipalities. The ITRE modifed this system 
for municipal streets in more than 100 municipalities in North and South Carolina. 
The data sources for this experiment are provided by ITRE of North Carolina State 
University. They conducted pavement distress surveys for several counties since 
January 2007 to determine whether or not the activity (rehabilitation treatment) for 
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pavement needs to be carried out. The collected 1,285 records to be utilized in this 
empirical study come from a network-level survey covering several-county roads 
including US Highway 1 and the rural road network. The provided pavement database 
is a spatial-based rational database, that is, an ArcGIS software compatible database. 
In this database, 89 attributes including geospatial attributes (e.g., X,Y coordinates, 
central line, width of lane, etc.), pavement condition attributes (e.g., cracking, rutting, 
etc.), traffc attributes (e.g., shoulder, lane number, etc.), and economic attributes 
(e.g., initial cost, total cost) are recorded by engineers, who were carrying out these 
surveys by walking or driving and recording the distress information and their cor-
responding M&R strategy. Then the data is integrated into database, as shown in 
Figure 7.3. The frst through 19th column recorded road name, type, class, owner, 
etc. attributes; the 31st through 43rd column recorded the pavement condition (dis-
tress) attributes; the 44th through 50th column recorded the different types of cost; 
and others included the proposed activities, etc. 

7.2.3 NONSPATIAL ATTRIBUTE DATA SELECTION 

Which nonspatial data are more signifcant to contribute the decision making of pave-
ment maintenance and rehabilitation? From the expert’s suggestion in the ITRE, the 
following nine common types of distresses are considered to assess the necessity for 
road rehabilitation (see Table 7.3). The rating was determined by visual evaluation/ 
inspection at each section of roadway. The severity of distresses in Table 7.3 is rated 
in four categories ranging from very slight to very severe. Extent (or density) is also 
classifed in fve categories ranging from few (less than 10%) to throughout (more 
than 80%). The identifcation and description of types of distress, severity, and den-
sity are as follows, respectively. 

• The road conditions of the Alligator Cracking are rated as a percentage 
of the section that falls under the categories of None, Light, Moderate, 
and Severe. Percentages are shown as 1 = 10%, 2 = 30%, 3 = 60%, up to 
10 = 100%. The appropriate percentages were placed under None, Light, 
Moderate, and Severe. These percentages should always add up to 100%. 

• The severity levels of distresses for Block Cracking, Transverse Cracking, 
Bleeding, Rutting, Utility Cut Patching, Patching Deterioration, and 
Raveling are rated four levels: None (N), Light (L), Moderate (M), and 
Severe (S), respectively. 

• The severity levels of ride quality are classifed as: Average (L), Slightly 
Rough (M), and Rough (S). 

7.2.4 SPATIAL ATTRIBUTE DATA SELECTION 

Traditionally, only nonspatial attribute data were considered for mining decision 
tree. However, as mentioned early, it is incorrect for decision making without consid-
ering spatial data. The spatial data in the database include X,Y coordinates, central 
line, width of lane, number of travel lanes, length of street segment, frst-left, to-left, 
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123 Pavement Management and Rehabilitation 

TABLE 7.3 
Eight Common Types of Distresses Plus Ride Quality for This Study 

# Distress Rating 

1 Alligator Cracking (four Alligator None (AN) Percentages of 1 = 10%, 2 = 20%, 3 = 
types of rates are given) Alligator Light (AL) 30%, up to 10 = 100% indicate None, 

Alligator Moderate (AM) Light, Moderate, and Severe, 

Alligator Severe (AS) respectively 

2 Block/Transverse This indicates the overall condition of the section as follows: 
Cracking (BK) • N-None • L-Light • M-Moderate • S-Severe 

3 Refective Cracking (RF) The same rating as BK’s 

4 Rutting (RT) The same rating as BK’s 

5 Raveling (RV) The same rating as BK’s 

6 Bleeding (BL) The same rating as BK’s 

7 Patching (PA) The same rating as BK’s 

8 Utility Cut Patching The same rating as BK’s 

9 Ride Quality (RQ) The condition is designated as follows: 
• L–Average • M–Slightly Rough • S–Rough 

TABLE 7.4 
Selected Spatial Data for This Study 

Attributes Explanation 

• X coordinate Datum: NAD_1983_StatePlane_North_Carolina_FIPS_3200_Feet 
• Y coordinate Coordinate system name: GCS_North_American_1983 

Map Projection Name: Lambert Conformal Conic 
Standard Parallel: 34.333333 
Standard Parallel: 36.166667 
Longitude of Central Meridian: −79.000000 
Latitude of Projection Origin: 33.750000 
False Easting: 2000000.002617 
False Northing: 0.000000 

Length GIS length of street segment (in feet) 

frst-right, to-right, etc. However, only two types of spatial data, XY coordinates, 
and length of each road segments are considered (see Table 7.4). 

7.2.5 MAINTENANCE AND REHABILITATION (M&R) STRATEGIES 

Based on the knowledge obtained from ITRE in the feld, the ITRE has classifed 
fexible pavement rehabilitation needs into three main categories according to the 
type of the problem to be corrected: (1) cracking, (2) surface defect problems, and (3) 
structural problems. These problems can be treated using crack treatment, surface 
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TABLE 7.5 
Potential Rehabilitation Strategies 

# Rehabilitation Strategies 

0 Nothing 

1 Crack Pouring (CP) 

2 Full-Depth Patch (FDP) 

3 1” Plant Mix Resurfacing (PM1) 

4 2” Plant Mix Resurfacing (PM2) 

5 Skin Patch (SKP) 

6 Short Overlay (SO) 

treatment, and nonstructural overlay (one-and two-course overlay), respectively. In 
order to select an appropriate pavement treatment, seven potential rehabilitation and 
maintenance strategies have been proposed by the NCDOT (see Table 7.5). Which 
treatment strategies will be carried out for a pavement segment is traditionally deter-
mined by the ITRE, who comprehensively evaluate all types of distresses. This 
chapter intends to replace this process using the CL-DT algorithm. 

7.3 INDUCTION OF CO-LOCATION MINING RULES 

7.3.1 DETERMINATION OF CANDIDATE CO-LOCATIONS 

As described in Chapter 3, the candidate instances with co-location relationship will 
be determined using the spatial neighborhood criterion with a given threshold, Dθ. In 
this research, the spatial neighborhoods for all instances are computed by: 

Dist = (X −X )2 Y Y  )2 ∀ =1,2,˜,1285 (7.1)+ ( − i,ji j, i j i j 

Where X and Y are the spatial data of the pavement database. With the given 
database at a dimension of 1,285 instances, the spatial distances of any two instances 
produce a matrix with the dimension of 1,285 × 1,285, i.e., 

 d ˜˜  d 0 12 1×1285   0 ˜˜  d  2×1285   Dist =  ˜˜  ˜   (7.2)
1285×1285    ˜  d1284×1285    0   

With the given database, a statistical analysis, including average and standard 
deviation, for the length of street segment is conducted. It is found that the length of 
approximately 25,000 feet is appropriate as threshold. Thus, the threshold of spatial 
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distance of two instances is selected Dθ = ,25 000 (feet). Combining the generated 
spatial neighborhood matrix (equation 7.2) and threshold, the elements of spatial 
neighborhood matrix, Dist , are re-calculated by:

1285×1285 

d if d ≤ 25 000i j, i j,
di j, =

 , 
di j, ⊆ Dist (7.3) 

. if d > 25 0000 0  , i j, 

With the above fltering, the potential of co-location instances can be determined 
by the spatial neighborhood matrix, which is a spare matrix. 

7.3.2 DETERMINATION OF TABLE INSTANCES OF CANDIDATE CO-LOCATIONS 

7.3.2.1 Determination of Distinct Events 
In addition to the above geospatial distance constraint, another constraint condition 
for the determination of candidate co-location is the distinct event-type constraint. 
This implies that if two instances are co-located, they must be distinct events. The 
constraint condition of distinct event is mathematically expressed by: 

K 

Γi =∑( f −v )2 
= ˜,1285i 1, (7.4)i k 

k=1 

where xi −vk  represents the Euclidean distance between fi and vk; 
V = v , ,˜, } is a set of corresponding clusters center of attributes, a a  ̃ , };{ 1 v2 vk { 1, ,2 ak 

Γ is a squared error clustering criterion; and K is number of event. v ∀ = , , Kk , k 1 2  ̃  
can be calculated by: 

N 

vk =∑ fi / ,K ∀k =1 2, ,˜, K (7.5) 
i=1 

So the distinct event can be determined by: 

event if Γi ≤ΓθΓi = (7.6)
 N /A if Γ ≤Γ i θ 

where Γθ is the threshold. If the Γi is greater than a given threshold, the i-th 
instance is assumed to be the distinct event. 

For the given database, only one attribute, ride quality (RQ), is selected for evalu-
ating the distinct event with which the clusters center of attributes of ride quality, v 

is 85, which is calculated by equation 7.5. 
Equation 7.4 can be rewritten as: 

K 

Γi =∑ ( fi −85)2 (7.7) 
i=1 
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TABLE 7.6 
The Process of Co-Location Mining Using Both the Geospatial Distance 
Criterion and Distinct Event Criterion 

# X Y Activity Rating 

1 2049671.1 691641.5 PM1 69 

2 2049518.9 691461.1 98 

3 2049600.3 691368.6 90 

4 2049673.2 690247.2 CP 68 

5 2049643.1 697413.1 100 

6 2049600.3 691368.6 90 

7 2049646.1 690634.4 88 

8 2049632.7 702497.6 

9 2049615.2 699440.8 

10 2049660.7 693303.0 

11 2049652.9 692671.9 

FIGURE 7.4 Determination of distinct events using ride quality (RQ). 

With equation 7.7, the values of Γi for 1,285 instances is depicted in Figure 7.3. 
Further, the distinct events can be determined by equation 7.6. 

The computational process of these two constrain conditions can be illustrated by 
Table 7.6. For example, for a given distinct event, PM1, the geospatial distance cri-
terion frst produces 11 instances, which are co-located with PM1. With the second 
criterion condition of distinct event, only 7 instances are co-located with PM1 event, 
since the other 4 instances have no records of rating of ride quality. Figure 7.4 depicts 
the distributions from the original 1,285 instances (Figure 7.5a) to 946 instances 
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FIGURE 7.5 Spatial distributions of (a) the 1,285 original instances and (b) the 946 instances 
after co-location algorithm 

(Figure 7.5b) after two constraint conditions are used. Finally, a total of 946 distinct 
events are found. 

7.3.2.2 Co-Location Mining for Rehabilitation and Maintenance Strategy 
As mentioned earlier, seven potential rehabilitation and maintenance strategies have 
been proposed by the North Carolina Department of Transportation (NCDOT). In 
order to fnd the co-location events for each M&R strategy, we take each strategy as 
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a distinct event and then fnd the co-location using the co-location mining algorithm, 
which has been described earlier, respectively. For each of M&R treatment strate-
gies, the results of co-locating mining are as follows. 

7.3.2.2.1 Crack Pouring (CP) 
The ITRC at the NCDOT indicated three crack pouring (CP) treatment strategies. 
Two of them are chosen to illustrate the results of the proposed co-location mining 
method. As seen in Figure 7.6a and Figure 7.6b, fve instances are clustered with the 
frst CP event (Figure 7.6a), and three instances are clustered with another CP event 
(Figure 7.6b). Other events are not clustered due to far distances. 

7.3.2.2.2 Full-Depth Patch (FDP) 
The ITRC at the NCDOT indicated 34 full-depth patch (FDP) treatment strategies. 
Four of them are chosen to illustrate the results of the proposed co-location mining 
algorithm. As seen in Figure 7.7a and Figure 7.7d, no instances are clustered around 

FIGURE 7.6 Spatial distributions of CP instances after initial determination of co-location 
algorithm. 

FIGURE 7.7 Spatial distributions of FDP instances after initial determination of co-location 
algorithm. 
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the two FDP events, but there are clusters in Figure 7.7b and 7.7c for the other two 
FDP events. 

7.3.2.2.3 1” Plant Mix Resurfacing (PM1) 
The ITRC at the NCDOT indicate six 1” plant mix (PM1) treatment strategies. 
All of them are chosen to illustrate the results of the proposed co-location mining 
algorithm. As seen from Figure 7.8a, Figure 7.8c, Figure 7.6d, and Figure 7.8f, no 
instances are clustered with the four PM1 events, but there are clusters for the two 
PM1 events in Figure 7.8b and 7.8e. 

7.3.2.2.4 2” Plant Mix Resurfacing (PM2) 
The ITRC at the NCDOT indicated three 2” plant mix (PM2) treatment strategies. 
All of them are chosen to illustrate the results of the proposed co-location mining 
algorithm on the basis of the event of PM2 treatment strategy. As seen in Figure 7.9a 
and Figure 7.9b, no instances are clustered with the two PM2 events, but there is a 
cluster for another PM2 event in Figure 7.9c. 

FIGURE 7.8 Spatial distributions of PM1 instances after initial determination of co-location 
algorithm. 
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  FIGURE 7.9 Spatial distributions of PM2 instances after initial determination of co-location 
algorithm. 

7.3.2.2.5 Skin Patch (SKP) 
The ITRC at the NCDOT indicated 56 skin patch (SKP) treatment strategies. 
Nine representatives of them are chosen to illustrate the results of the proposed 
co-location mining method with each SKP treatment strategy. As seen in Figure 
7.10a through Figure 7.10d, Figure 7.10f, and Figure 7.10g through Figure 7.10i, 
several candidate events are clustered surrounding the individual SKP treatment 
event, but no candidate event is clustered surrounding one SKP treatment event in 
Figure 7.10e. 

7.3.2.2.6 Short Overlay (SO) 
The ITRC at the NCDOT indicated three short overlay (SO) treatment strategies. 
All of them are chosen to illustrate the results of the proposed co-location mining 
algorithm for each SO treatment strategy. As seen in Figure 7.11a and Figure 7.11b, 
there are clusters surrounding the SO treatment, but no cluster surrounding another 
SO treatment in Figure 7.11c. 

7.3.2.3 Pruning 
These generated candidates of co-location events for each treatment strategy may 
include incorrect determinations. The purpose of pruning is to remove the non-
prevalent co-locations from the candidate prevalent co-location set so that the fur-
ther co-location mining rule induction is reliable. To this end, a cross-correlation 
criterion of spatial attributes is applied to eliminate those non-prevalent co-location 



 

  

131 Pavement Management and Rehabilitation 

FIGURE 7.10 Spatial distributions of SKP instances after initial determination of co-location 
algorithm. 
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FIGURE 7.11 Spatial distributions of SO instances after initial determination of co-location 
algorithm. 

instances. The computation of cross-correlation is modeled in equation 7.8, with 
which we have a co-correlation matrix, as follows: 

ρ ρ ˜˜  ρ 11 12 1×946   ρ ˜˜  ρ  22 2×946   Σ =  ˜˜  ˜   (7.8)
946×946    ˜ ρ  945×946   ρ × 946 946  

With observation to the coeffcient of cross-correlation matrix, cross-correlation 
coeffcients threshold is set at 0.95, that is, 

 if pi,j ≤ . non-correlated 0 95 
pi j, =  di j, ⊆ ∑ (7.9)

correlated if di,j > . 0 95 946×946 

With the given threshold, all of the candidates’ prevalent co-location events are 
kept without pruning. 

7.3.3 GENERATING CO-LOCATION RULES 

Accompanying with the generation of co-location set, the co-location rules with the 
user-defned constrain conditions (threshold) from the prevalent co-locations and 
their table instances can be generated (see Figure 7.12), that is, 
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IF ( Dist_ij <= 25000 AND Gramma <=85 AND cross-correlation<=0.95 ) Co-location 
ELSE Non_Co-location 

FIGURE 7.12 Generated co-location rules. 

7.4 EXPERIMENTS OF CL-DT INDUCTION 

7.4.1 BASIC STEPS OF CL-DT INDUCTION 

With the previously generated prevalent co-location events, the CTree for Excel tool 
is applied to create the decision tree. The steps include (Zhou and Wang 2010). 

7.4.1.1 Step 1. Load Pavement Database 
As described in sections 7.2 and 7.3, the pavement database frst has to be loaded into 
the software. In this experiment, the loaded data are a prevalent co-location data-
base, that is, they have been “preprocessed” using a co-location mining algorithm. 
Similarly, the distress data (nonspatial data) in the database, such as N, L, M, and S, 
will be quantifed into 100, 75, 50, and 25. 

7.4.1.2 Step 2. Data Inputs 
Similarly, some parameters to optimize the processes of decision tree generation will 
be input. These parameters include: 

1. Adjust factor of categorical predictor: While growing the tree, child nodes 
are created by splitting parent nodes; which one is a predictor to use for this 
split is decided by a certain criterion. Because this criterion has an inherent 
bias towards choosing predictors with more categories, thus, the input of an 
adjust factor will be able to adjust this bias. 

2. Minimum node size criterion: While growing the tree, whether to stop split-
ting a node and declare the node as a leaf node will be determined by some 
criteria that we need to choose. These criteria are the same as those adopted 
in section 7.4.1, i.e.: 

a. Minimum node size: A valid minimum node size is between 0 and 100. 
b. Maximum purity: An effective value is between 0 and 100. Stop splitting 

a node if its purity is 95% or more. Also, stop splitting a node if the num-
ber of records in that node is 1% or less of the total number of records. 

c. Maximum depth: a valid maximum depth is greater than 1 and less than 
20. Stop splitting a node if its depth is 6 or more. 

3. Pruning option: This option allows us to decide whether or not to prune 
the tree when the tree is growing, which can help us to study the effect of 
pruning. 

4. Training and test data: In this research, a subset of data is used to build the 
model and the rest to study the performance of the model. Also, a random 
selection of the test set at a ratio of 10% is adopted. 



134 Data Mining for Co-Location Pattern  

   

  

  

 

 

TABLE 7.7 
Information of the Induced Decision Tree Using CL-DT Algorithm 

Tree Information % Misclassified Time Taken (Second) 

Total Number of Nodes 22 Training Data 21.7% Data Processing 1 

Number of Leaf Nodes 14 Test Data 15.3% Tree Growing 2 

Number of Levels 13 Tree Pruning 1 

Tree Drawing 5 

Classifcation using fnal tree 1 

Rule Generation 19 

7.4.2 EXPERIMENTAL RESULTS 

7.4.2.1 Induced Decision Tree 
With the previous data input, a decision tree is generated. The corresponding infor-
mation for the decision tree, including misclassifed data percentage, time taken, total 
number of nodes, number of leaf nodes, and number of levels is listed in Table 7.7. 

7.4.2.2 Induced Decision Rules 
After the decision tree is induced, the tree is further processed to induce decision 
rules. The decision rules are directly induced in this research by forming a conjunct 
of every test that occurs on a path between the root node and a leaf node of a tree, 
that is, top-to-bottom mode. Thus, the decision rules are frst induced by ordering 
all the classifcations and then using a fxed sequence to combine them together. 
After this processing, 12 rules are generated. Finally, seven rules are induced and 
depicted in Figure 7.13. The quality of the individual rules is measured by Support, 
Confdence, and Capture (see Table 7.8). 

TABLE 7.8 
Support, Confidence, and Capture for Each Generated Rule 

Rule ID Classes Support Confidence Capture 

0 NO 100.0% 89.2% 92.2% 

1 CP 80.0% 95.0% 79.9% 

2 SKP 79.2% 83.6% 83.8% 

3 FDP 83.2% 84.4% 77.7% 

4 PM2 83.5% 94.1% 79.2% 

5 PM1 89.0% 88.8% 90.2% 

6 SO 83.3% 76.3% 89.5% 
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Rule 1: 
IF (AN" >=5 AND "AS_" =0 AND "BK" ='50' AND "RF" ='100' AND "RT"='75' OR "RT"='100' AND 

"RV"='100' AND "RQ"='75' AND "RATING" > '73' ) 
THEN CP 

Rule 2: 
IF ("AN" >=3 AND "AS_" >=1 AND "BK" ='100' AND "RF" ='100' AND "RV"='100' OR "RV"='75' AND 
"RQ"='75' OR "RQ"='50' AND "RATING" >= '43') 
THEN FDP 

Rule 3: 
IF ("AN" >=2 AND "AN" <= 6 AND "AS_" >=0  AND "BK" ='100' AND "RF" ='100' AND "RV"='100' 

AND "RQ"='75' AND "RATING" >= '45' AND "RATING" <= '65'). 
THEN PM1 

Rule 4: 
IF ("AN" >=2 AND "AN" <= 6 AND "AS_" >=0  AND "BK" ='100' AND "RF" ='100' AND "RV"='100' 

AND "RQ"='75' AND "RATING" >= '55' AND "RATING" <= '70') 
THEN PM2 

Rule 5: 
IF "AN" >3 AND "AM" >1 AND "AS_" =0  AND "RF"='100' AND "RV"='100' OR "RV"='75' AND 

"RQ"='75' AND "RATING" >= '63' AND "RATING" < '90') 
THEN SKP 

Rule 6: 
IF "AN" >=6 AND "AM" =0 AND "AS_" =0  AND "BK"='100' AND "RF"='100'  AND "RV"='100' OR 

"RV"='75' AND "RQ"='75' AND "RATING" >= '60' AND "RATING" <= '75') 
THEN SO 

Rule 7: 
IF "AN" >=9 AND "RATING" <= '100') 
THEN Nothing 

FIGURE 7.13 The fnal rules after verifcation and post-processing. 

7.5 MAPPING OF CL-DT-BASED DECISION OF M&R 

With these rules induced, the M&R strategies can be predicted and decided for each 
road segment in the database using the rules. In other words, the operation using the 
co-location decision tree only occurs in the database, and thus the results cannot 
be visualized and displayed on either map or screen. Thus, this research employed 
ArcGIS software in combination with the above induced results to create the map of 
decision making for maintenance and rehabilitation. The basic operation is the same 
as that described in Chapter 7.5, that is, taking each rule as a logic query in ArcGIS 
software, then queried results are displayed in the ArcGIS layout map. In order to 
compare the results, the rehabilitations suggested by engineers at the ITRE of North 
Carolina State University are superimposed with the decisions made at this research. 
As seen from Figure 7.11 through Figure 7.19, each rehabilitation strategy derived in 
this research can be located with its geographical coordinates and visualized with its 
spatial data, nonspatial data, and different gray. 
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 FIGURE 7.14 Comparison analysis of the CP decision of road rehabilitation made by DT 
(described in section 7.3) and the proposed CL-DT (described in section 7.5), both of which 
are compared to the CP decision made (provided) by the ITRC at the NCDOT. 
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FIGURE 7.15 Comparison analysis of the FDP decision of road rehabilitation made by DT 
(described in section 7.3) and the proposed CL-DT (described in section 7.5), both of which 
are compared to the FDP decision made (provided) by the ITRC at the NCDOT. 



138 Data Mining for Co-Location Pattern  

 FIGURE 7.16 Comparison analysis of the PM1 decision of road rehabilitation made by DT 
(described in section 7.3) and the proposed CL-DT (described in section 7.5), both of which 
are compared to the PM1 decision made (provided) by the ITRC at the NCDOT. 
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FIGURE 7.17 Comparison analysis of the PM2 decision of road rehabilitation made by DT 
(described in section 7.3) and the proposed CL-DT (described in section 7.5), both of which 
are compared to the PM2 decision made (provided) by the ITRC at the NCDOT. 
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 FIGURE 7.18 Comparison analysis of the SKP decision of road rehabilitation made by DT 
(described in section 7.3) and the proposed CL-DT (described in section 7.5), both of which 
are compared to the SKP decision made (provided) by the ITRC at the NCDOT. 
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FIGURE 7.19 Comparison analysis of the SO decision of road rehabilitation made by DT 
(described in section 7.3) and the proposed CL-DT (described in section 7.5), both of which 
are compared to the SO decision made (provided) by the ITRC at the NCDOT. 
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7.6 COMPARISON ANALYSIS AND DISCUSSION 

7.6.1 COMPARISON ANALYSIS FOR THE INDUCED DECISION TREE PARAMETER 

The proposed co-location decision tree (CL-DT) method should have many advan-
tages over the traditional decision tree method in the effectiveness and accuracy of 
decision tree (decision rules) generation when applied in the decision making of road 
maintenance and repair. In order to validate this conclusion, we compare the tree 
induction information for the two methods, and the results are listed in Table 7.9. 
As seen in Table 7.9, the total number of nodes, number of leaf nodes, and number 
of levels decreases 51%, 62%, and 35%, respectively. Thus, computational time will 
largely decrease. Accuracy of the decision tree increases. 

7.6.2 COMPARISON ANALYSIS FOR THE MISCLASSIFIED PERCENTAGE 

Also, we check the misclassifed percentage, and the results are listed in Table 7.10. 
As seen in Table 7.10, the misclassifed percentage for the training data decreases 
from 61.2% to 9.7%. This is probably caused by the fact that we used co-location 
mining technology to delete any non-prevalent candidate co-location instances. As a 
result, the training data contributed to the decision tree induction. 

TABLE 7.9 
Comparison of Tree Information Parameters between DT and CL-DT 
Algorithm 

Tree Information Methods Decreasing percentage 

DT CL-DT 

Total Number of Nodes 72 35 51% 

Number of Leaf Nodes 37 14 62% 

Number of Levels 20 13 35% 

TABLE 7.10 
Comparison of Misclassified Percentage between DT and CL-DT Algorithm 

Misclassified percentage Methods 

DT CL-DT 

Training Data 

Test Data 

61.2% 

60.0% 

9.7% 

8.3% 
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TABLE 7.11 
Comparison of the Computation Time between DT and CL-DT Algorithm 

Items Time taken for two % decreasing 
methods (second) 

DT CL-DT 

Data Processing 1 1 Rounded to 1” 

Tree Growing 6 2 66% 

Tree Pruning 1 1 Rounded to 1” 

Tree Drawing 10 4 60% 

Classifcation using fnal tree 1 1 Rounded to 1” 

Rule Generation 35 15 20% 

7.6.3 COMPARISON ANALYSIS FOR THE COMPUTATIONAL TIME 

Theoretically, the proposed CL-DT method should save much computational time, 
since the “preprocessing” method uses co-location mining technology, which deletes 
the non-prevalent co-location events. In order to verify this conclusion, we retrieved 
the computational time of data processing, tree growing, tree pruning, tree drawing, 
classifcation using fnal tree, and rule generation from the computer for the two 
methods. The results are listed in Table 7.11. As observed in Table 7.11, the time 
taken for the tree growing, tree drawing, and rule generation is largely decreased. 
The time taken for rule generation decreases by 20%. 

7.6.4 COMPARISON ANALYSIS OF SUPPORT, CONFIDENCE, 
AND CAPTURE FOR RULE INDUCTION 

Another comparison analysis is for support, confdence, and capture of training 
data when inducing the decision rules. The results for the two methods are listed 
in Table 7.12. As observed in Table 7.12, the percentage of support, confdence, and 
capture for training data in FDP treatment strategy increase from 71.6%, 55.6%, and 
66.2% to 83.2%, 84.4%, and 77.7%, respectively. This means that most of training 
data actively contributes the decision rule induction, which demonstrates that the 
co-location mining method can largely increase the effectiveness of decision tree/ 
rules induction. 

7.6.5 VERIFICATION OF THE QUANTITY OF EACH TREATMENT STRATEGY 

As mentioned earlier, the ITRC at the NCDOT has indicated the quantity of six 
treatment strategies at different road segments in the study area (four counties at 
North Carolina). Theoretically, the proposed CL-DT method should fnd the same 
quantity and location of each treatment strategy as those proposed by the ITRC at 
the NCDOT, since the proposed CL-DT applied the experts’ knowledge from the 
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TABLE 7.12 
Comparison for Support, Confidence and Capture for Two Methods in Each 
Generated Rule 

Rule ID Strategies Support Confidence Capture 

DT CL-DT DT CL-DT DT CL-DT 

0 NO 100.0% 100.0% 86.7% 89.2% 93.0% 92.2% 

1 CP 60.7% 80.0% 100.0% 95.0% 75.6% 79.9% 

2 SKP 60.5% 79.2% 66.7% 83.6% 82.5% 83.8% 

3 FDP 71.6% 83.2% 55.6% 84.4% 66.2% 77.7% 

4 PM2 80.2% 83.5% 100.0% 94.1% 73.1% 79.2% 

5 PM1 81.3% 89.0% 71.4% 88.8% 85.3% 90.2% 

6 SO 81.6% 83.3% 66.7% 76.3% 73.5% 89.5% 

TABLE 7.13 
Quantity Comparison of Different Treatment Strategies Made by Three Methods 

ID Proposed treatment strategies Methods Quantity Differences in quantity 
referred to NCDOT 

1 Crack Pouring (CP) NCDOT 3 

DT 3 0 

CL-DT 3 0 

2 Full-Depth Patch (FDP) NCDOT 34 

DT 29 5 

CL-DT 32 2 

3 1” Plant Mix Resurfacing (PM1) NCDOT 6 

DT 7 1 

CL-DT 6 0 

4 2” Plant Mix Resurfacing (PM2) NCDOT 3 

DT 4 1 

CL-DT 5 2 

5 Skin Patch (SKP) NCDOT 65 

DT 56 9 

CL-DT 62 3 

6 Short Overlay (SO) NCDOT 3 

DT 5 2 

CL-DT 4 1 

ITRC. In order to verify this result, Table 7.13 lists the comparison for each treatment 
strategy proposed by ITRC at the NCDOT and discovered by the proposed CL-DT 
method. Meanwhile, the quantity of each treatment strategy discovered by the DL 
method (Zhou and Wang 2010) is also listed in Table 7.13. 
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As observed in Table 7.13, the quantity discovered by CL-DT is very close to 
those proposed by the ITRC for each treatment strategy. Thus, the traditional deci-
sion tree method mines 56 skin patch (SKP) strategies, which is nine differences 
from those proposed by the ITRC, while the CL-DT method mined 62 SKP treat-
ments, which is only three differences from those proposed by the ITRC. 

7.6.6 VERIFICATION OF THE LOCATION OF EACH TREATMENT STRATEGY 

Also, the ITRC at the NCDOT has indicated locations of six treatment strate-
gies at different road segments in the study area (four counties at North Carolina). 
Theoretically, the proposed CL-DT method should fnd the same location for each 
treatment strategy as those proposed by the ITRC at the NCDOT, since the proposed 
CL-DT applied the experts’ knowledge (distress for each road segment) from the 
ITRC. In order to verify this conclusion, Table 7.14 lists the comparison for each 
treatment strategy proposed by ITRC at the NCDOT and discovered by the proposed 
CL-DT method. Meanwhile, the locations of each treatment strategy discovered by 
DL method (Zhou and Wand 2010) are also listed in Table 7.14. 

As observed in Table 7.14, the location differences referred to those proposed by 
CL-DT for skin patch (SKP) strategies is signifcant. In other words, 13 road seg-
ments for SKP strategy are different from those proposed by the traditional decision 

TABLE 7.14 
Location Comparison of Different Treatment Strategies Made by Three Methods 

ID Proposed treatment From Number Difference in location 
strategies referred to NDCOT 

1 Crack Pouring (CP) NCDOT 3 

DT 3 1 

CL-DT 3 1 

2 Full-Depth Patch (FDP) NCDOT 34 

DT 29 3 

CL-DT 32 1 

3 1” Plant Mix Resurfacing NCDOT 6 
(PM1) DT 7 1 

CL-DT 6 0 

4 2” Plant Mix Resurfacing NCDOT 3 
(PM2) DT 4 1 

CL-DT 5 1 

5 Skin Patch (SKP) NCDOT 65 

DT 56 13 

CL-DT 62 3 

6 Short Overlay (SO) NCDOT 3 

DT 5 2 

CL-DT 4 1 
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tree method, but only three differences by the CL-DT method, when referred to 
those by the ITRC (also see Figure 7.9a and 7.9b). 

7.7 DISCUSSION AND REMARKS FOR CO-LOCATION 
DECISION TREE ALGORITHMS 

With the existing shortcomings of the decision tree induction method discovered 
in Chapter 1.5, this chapter presented the theory and algorithm of a new decision 
tree induction, called a co-location decision tree (CL-DT). The main purpose of 
the proposed algorithm is to utilize the characteristics of attribute co-location (co-
occurrence) to fnd the co-occurrence rules. These rules are used to enhance the 
traditional decision tree induction algorithm. 

With the described experimental results and comparison analysis, it can be con-
cluded that the proposed CL-DT algorithm can better make a decision for pavement 
treatment maintenance and rehabilitation when compared to the traditional decision 
tree method (e.g., C5.0 algorithm), since the new proposed method considers the co-
occurrence distinct events. This chapter especially makes a comparison analysis for 
the induced decision tree parameter, the misclassifed percentage, the computational 
time taken, support, confdence and capture for rule induction. This chapter also veri-
fed the quantity and location of each treatment strategy referred to those proposed 
by the ITRC at the NCDOT. 

With these experimental results and comparison analyses, it can be concluded 
that: 

1. The proposed CL-DT method has many advantages over the traditional deci-
sion tree method in the effectiveness and accuracy of decision tree (decision 
rules) generation when applied in the decision making of road maintenance 
and repair. With comparing the analyses of two methods, DT and CL-DT, it 
is concluded that the total number of nodes, number of leaf nodes, and num-
ber of levels decrease 51%, 62% and 35%, respectively. 

2. With comparison analysis of two methods, DT and CL-DT, it is concluded 
that the misclassifed percentage for the training data decrease from 61.2% 
to 9.7%, which demonstrated that the training data can fully play roles in 
contribution to decision tree induction. 

3. With the comparison of the two methods, DT and CL-DT, it is concluded that 
the time taken by data processing, tree growing, tree pruning, tree drawing, 
classifcation using fnal tree, and rule generation is largely decreased, which 
can achieve 20% for rule generation. 

4. With the comparison of the two methods, it is concluded that the percentage 
of support, confdence, and capture for the FDP treatment strategy increase 
from 71.6%, 55.6%, and 66.2% to 83.2%, 84.4%, and 77.7%, respectively. This 
means that most of the training data contributes to the decision rule induction. 

5. With comparison of the quantity of six treatment strategies proposed by the 
ITRC at different road segments in the study area and by the CL-DT method, 
it is concluded that that the quantity discovered by CL-DT is much closer to 
those proposed by the ITRC for each treatment strategy. For example, 56 skin 
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patch (SKP) strategies were mined by the traditional decision tree method, 
which is nine differences from those proposed by the ITRC, while there were 
only three differences for the proposed CL-DT method when compared to 
those proposed by the ITRC. 

With comparison of the locations of six treatment strategies at different road seg-
ments in the study area proposed by CL-DT method and by the ITRC at the NCDOT, 
it is found that there are 13 road segments for SKP strategy different from those 
proposed by the traditional decision tree method but only three differences from the 
CL-DT method when compared to those by the ITRC. 

7.8 CONCLUSIONS 

This chapter verifed the development of the theory and algorithm of a new decision 
tree induction algorithm called co-location-based decision tree (CL-DT). 

Through this experiment analysis, the following fndings have been discovered 
and the following conclusions have been drawn up. 

7.8.1 ADVANTAGES AND DISADVANTAGES OF APPLYING EXISTING DT 
METHOD IN PAVEMENT M&R STRATEGY DECISION MAKING 

The advantages of applying the existing DT method are (1) the DT technology can 
make the consistent decision of pavement M&R strategy under the same road condi-
tions, that is, with less interference from human factors. (2) The DT technology can 
largely increase the speed of decision making because the technology automatically 
generates decision tree and decision rules if the expert knowledge is given and thus, 
largely saves time and cost of pavement management. (3) Integration of the DT and 
GIS can provide the PMS with the capabilities of graphically displaying treatment 
decisions, visualize the attribute and non-attribute data, and link data and informa-
tion to the geographical coordinates. 

Disadvantages of applying the existing DT method are (1) existing DT induction 
methods are not as quite intelligent as people’s expectation. In other words, the DT 
inducted by DMKD are not completely exact; thus, post-processing and refnement 
are necessary. (2) Existing DT induction methods for pavement M&R strategy deci-
sion making only used the nonspatial attribute data. It has been demonstrated that 
the spatial data is very useful for enhancing decision making of pavement treatment 
strategies. (3) A DT induction method is based on the knowledge acquired from 
pavement management engineer for strategy selection. A decision tree is in fact to 
organize the obtained knowledge in a logical order. Thus, the decision trees can 
determine the technically feasible rehabilitation strategies for each road segment. 

7.8.2 SIGNIFICANCES OF THE PROPOSED CL-DT METHOD FOR 

PAVEMENT M&R STRATEGY DECISION MAKING 

This research has verifed the advantages through experimental results and sev-
eral comparison analyses including the induced decision tree parameters; the 
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misclassifed percentage; the computational time taken, support, confdence, and 
capture for rule induction; and the quantity and location of each treatment strategy. 
It can be concluded that 

a. The proposed CL-DT algorithm can better make a decision for pavement 
M&R strategy when compared to the existing decision tree method (e.g., 
C4.5 algorithm), since the new proposed method considers the co-location 
(co-occurrence) distinct events of spatial data in the pavement database. 

b. The proposed CL-DT method has higher accuracy and effectiveness than the 
existing decision tree method does. The induced tree information, including 
the total number of nodes, number of leaf, and number of levels, decrease 
51%, 62%, and 35%, respectively. 

c. The training data can fully play a role in contribution to decision tree induc-
tion. For example, the misclassifed percentage for the training data using the 
CL-DT method decreased from 61.2% to 9.7%; the percentages of support, 
confdence, and capture of the FDP treatment strategy increased from 71.6%, 
55.6%, and 66.2% to 83.2%, 84.4%, and 77.7%, respectively. 

d. The computational time taken for the tree growing, tree drawing, and rule 
generation is largely decreased for CL-DT method, which achieved 20% for 
the rule generation. 

e. The quantity of six treatment strategies proposed by the ITRC and by CL-DT 
method at different road segments in the study area is much closer for each 
treatment strategy. 

f. Locations of six treatment strategies proposed by the CL-DT method and by 
the ITRC at different road segments in the study area are close, but different 
for the existing DT method. 
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Application of Mining 8 
Co-Location Patterns 
in Buffer Analysis 

8.1 INTRODUCTION 

The research for buffering algorithms can traced back to the 1960s (Shimrat 1962), 
when Europe frst introduced statistics into geography. The traditional buffering algo-
rithm includes point elements, line elements, and polygon element buffering. Since 
the 1960s, many novel algorithms have been developed. For example, in early 1975, 
Chvátal (1975) frst proposed a buffer creation algorithm using computational geom-
etry, and then Preparata and Shamos (1985) and Aggarwal et al. (1985) extended this 
method. Wu (1997) proposed an improved algorithm for generation of line buffering 
zone called a “geometric model for both-side parallel lines buffer generation.” This 
method was presented on the basis of a comparison analysis of the two methods of 
line buffer generations, the angle bisector method and the circular arc method, and 
can effectively solve problems such as determination of convex and concave of a chord 
arc. Wu (Wu et al. 1999) proposed a vector buffer algorithm for point, line, and poly-
gon elements using a buffer curve and edge-constrained triangulation network. This 
method can effciently reduce the computational complication in the process of cutting 
and reorganizing the buffer boundary line or/and curve. Chen et al. (2004) proposed a 
method called Voronoi k-order neighbors to recreate the buffer area. Dong et al. (2003) 
improved the buffer generation algorithm with double parallel lines and arcs using 
the rotation transformation and the recursive. This method can largely simplify the 
process of line buffer generation and meanwhile effciently corrects the acute corners 
of the boundary of the area buffer. This method was considered the better solution 
for the intersection of line buffer generation. In order to reduce the time consumed 
during generating the point buffering in the self-intersection section, Ren et al. (2004) 
proposed the application of the Douglas-Peuker algorithm to extract the feature points 
of the curve before the buffer was generated. The experimental result demonstrated 
that this algorithm can largely decreased computational time. Er et al. (2009) proposed 
a novel method in which the buffer distance is variable during generating line buf-
fers. However, the variable buffer distances are indeed equidistant, and as a result, 
this method has met challenges for complicated and irregular regions with various 
geographic attributes. Pan and Li (2010) proposed a random algorithm for buffer zone 
generation. This algorithm can be carried out using computer parallel processing and 
consequently largely improves the effciency of buffer zone generation.(Liu and Min 
(2011) conducted a comprehensive overview for various buffer algorithms, analyzed 
and compared the advantages and disadvantages of these early methods, and con-
cluded the most appropriate solution to the problems such as distortion and correction 
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of the acute corners during the process of buffer generation. Bai and Zhang (2011) 
proposed the convex arc algorithm for solution of the problems of self-intersection and 
acute corner correction. This method can effectively solve the problem of area buffer 
generation with multiple embedded inner rings. Zhang et al. (2014) propose a buffering 
approach for matching areal objects (e.g., buildings) on the basis of relaxation labeling 
techniques. This method has successfully been applied in pattern recognition and com-
puter vision. Chen and Liu (2014) proposed the function form of the buffer expression 
varying with a certain variable, which effectively solved the problem of determining 
the complex boundary of the buffer on both sides of the convex and concave infec-
tion points under the variable buffer distance. Xu and Liu (2014) proposed a vector 
grid hybrid algorithm to solve the problem of buffer generation for line targets. First, 
convert the vector data to a raster format, second, use the Douglas-Peuker algorithm to 
resample the line, then generate a buffer based on the expansion principle, and fnally 
deal with the problem of buffer self-intersection. Yang et al. (2014) used GPU (Graphic 
Processor Unit) to calculate the distance between vector data, which can quickly real-
ize the cache analysis of vector data and also solve the problem of buffer boundary 
self-intersection. This method has successfully been applied in three-dimensional (3D) 
digital earth. Fan et al. (2014) proposed “a parallel buffer algorithm to improve the per-
formances of buffer analyses on processing large datasets,” which was based on area 
merging and massage passing interface. But in the algorithm, the relationship of adja-
cent vector features was not considered. Wang E. et al. (2016) proposed a new method 
that frst classifes attribute data and then establishes multiple temporal buffers, fnally 
smoothing the boundary line using the Douglas-Peuker algorithm and Bézier curve. 
Wang T. et al. (2016) and Huang (2020) proposed a parallel algorithm on the basis 
of the equal arc segmentation method, which frst segments a whole arc into many 
segments, then takes the segments as a unit, and fnally deals with each of the units, 
respectively. Dong and Jing (2017) proposed buffer generation method on the basis of 
a geodesic of tiles. The buffer distances on both sides are different and are measured 
using geodetic facets. Chen (2018) present a buffering method using the probability 
and entropy theory. This method can effectively reduce the error of spatial analysis 
and avoid the error of spatial decisions. Lee and Who (2011) used a diagram of long 
distance and polar angle bins to compute the correlation. Ma et al. (2019) proposed a 
buffer generation method on the basis of a combination of spatial index and data trans-
formation in order to speed up data processing. 

Although many efforts have been made over 60 years, the traditional buffering 
methods have encountered many challenges in practice due to the increasing require-
ment in buffering zone accuracy. This is because the existing buffering methods are 
based on a fxed buffer distance without considering the differences of attributes 
within the buffer zone, that is, the existing methods treat all attributes within buffer 
zone as the same, that is, homogenous. As a result, the resulting buffer zone deviates 
from the “true” buffer zone and loses accuracy. For example, as shown in Figure 8.1, 
given point P and white star targets (such as A0, A1, etc.) are homogeneous patterns. 
The boundary of traditional buffer zone of point P is the arc of A0BA4A3A0, of which 
the buffer radius is a fxed value r. However, the attributes of black star target B in 
traditional point buffer zone are heterogeneous with the other targets. Additionally, 
the white star A1 outside the buffer zone is homogeneous with the others. Therefore, 
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FIGURE 8.1 Traditional point buffer zone (surrounded by the arc of A0BA4A3A0) and gener-
alized point buffer zone (surrounded by the arc of A1A2A4A3A1). 

the buffer zone of point P should NOT be a regular shape, while the irregular shape, 
that is, the zone surrounded by the arc of A1A2A4A3A1, is more in line with the actual 
situation. For this reason, a radical algorithm called a Generalized buffering algo-
rithm (GBA) is proposed for buffer zone generation. 

8.2 GENERALIZED BUFFERING ALGORITHMS 

From a viewpoint of spatial entities, the generation of a buffer zone is to build a 
polygon around the point, line, and polygon instances. On the other hand, from a 
viewpoint of mathematics, the generation of a buffer zone is to determine the neigh-
borhood of one certain spatial object and the range of a neighborhood upon the 
radius of neighborhood (called buffer radius, or buffer distance in a traditional buff-
ering algorithm). At this point, the traditional buffering algorithm can be described 
as follows: 

Let A = {A1, A2, …, Ad} be a set of objects, and then the buffering of one spatial 
object is expressed by 

Buffer ={p d p A, ) ≤ r}: (  (8.1)
j j 

where r, which is a constant, is the buffer radius of the buffer zone, and d(p, Aj) 
is the Euclidean distance between p and Aj. Bufferj is the instances set where the 
distance is less than or equal to r. 

For the set of spatial objects A={A1, A2, …, Ad}, the buffer zone can be defned by 

d 

Buffer  = °Buffer (8.2) 
j=1 

j 



152 Data Mining for Co-Location Pattern  

  

 
 

 

  

 

    

 

As mentioned in section 8.2, the existing buffering algorithms have shortcom-
ings, such as the equidistance of buffer distance and ignoring the homogenous and/ 
or heterogeneous attributes of neighbor instances. Consequently, the resultant buffer 
zone exposes low accuracy and useless zone (information) and loses the useful zone 
(information). 

To overcome these shortcomings of the existing buffer algorithm, an innovate 
algorithm called generalized buffer algorithm (GBA) is proposed. The basic idea of 
the GBA is to utilize homogeneous rules to induce the generation of a buffer zone 
for which buffer radius is variable upon the attributes of instances. Consequently, the 
size of the buffer zone is not a regular shape. The GBA mathematical model can be 
expressed by 

CL _ B ={p d p: ( , A )≤ r } (8.3)j j CL 

where rCL is the generalized buffer radius, which is constrained by homogeneous 
rules; CL_Bj is the instance set, in which the distances of all instances are less than 
or equal to rCL; d(p, Aj) is the distance between p and Aj. The generalized buffer 
radius rCL is the function of the attributes of the instances and can be calculated by 
the homogeneous rules (CLR), i.e., 

rCL = d[(x y, ), CLR] (8.4) 

where d[(x, y), CLR] is a distance function of the coordinates (x, y) of a boundary 
point that is obtained using homogeneous rules. 

The fowchart of the GBA is depicted in Figure 8.2. Let each instance Ai = (x1, 
x2,…, xN)T in data set A=(A1, A2,…, Ad)T be a vector representing instance-ID, spatial 

FIGURE 8.2 The fowchart of generalized buffering algorithm (GBA). 



 

  
 

  

  
 

 

   

      

 
   

    
 

  

  
  





153 Buffer Analysis 

object type, location Π, and attributes, etc., in which d is the number of object types, 
T is transpose, and location ∈  spatial framework. The spatial object types contain 
point, line, and polygon entities. The basic steps for the generalized buffer generation 
are described as follow. 

Step 1: Initialization: To build the generalized buffer zone of point, line, and 
polygon, the polar coordinate system is established, where the axis is hori-
zonal and angle φi is the polar angle, varying from 0 to 2π. For point object, 
the pole is the itself. While, for line or polygon, the pole is the sampling 
points at the line or the arc of polygon. 

Step 2: Determining buffer boundary points. This step consists of the follow-
ing steps. 
a. In the direction of φ, frst, the Euclidean distance between instances pi 

and pi+1 is calculated by 

2 2E = (x − x ) + ( y − y ) (8.5)
d( p p  ) i i+1 i i+1

i
, 

i+1 

where Ed(pi, pi+1) is the Euclidean distance between instances pi and pi+1; 
x and y are the coordinates of instances. Ed(pi, pi+1) should be judged 
whether it is less than or equal to the threshold of distance Eθ by equa-
tion 8.6. If Yes, turn to (b). Otherwise, instance pi is regarded as the buf-
fer boundary point in direction of φ, and then turn to (c). 

1 if E ≤ E d( p p  ) θ i+1R p p  = (8.6)( i
, )  i

, 

i+1 0 if E > E d( p p  ) θ
i
,

 i+ 1 

where R(pi, pi+1) represents the R-proximity relationship between 
instances pi and pi+1. R(pi, pi+1)=1 means that instances pi and pi+1 are the 
candidate of homogeneous instances. 

b. When instances pi and pi+1 are determined to be the candidate homog-
enous instances, their attributes should be used to determine whether 
they are homogenous instances. A new participation index (NPI) is 
defned by 

( i
, ) similar nA_ ( p p  )

i
, 

i+1NPI p p  = (8.7)
i+1 _total nA 

where NPI(pi, pi+1) is the participation index of instances pi and pi+1; simi-
lar_nA(pi, pi+1) is the number of attributes in which instances pi and pi+1 

meet the same thresholds of attributes and total_nA represents the num-
ber of all attributes which attend the computation of NPI. For example, 
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let AT={AT1, …, AT5} be a set of attributes. For the attributes AT1, AT2, 
AT4, and AT5, the values of attributes of instances pi and pi+1 meet the 
same thresholds of attributes, that is, similar_nA(pi, pi+1) = 4, and total_ 
nA = 5. Consequently, NPI is 4/5. NPI is judged whether it is greater than 
or equal to the threshold of participation index NPIθ. If Yes, turn to (a), 
and then the value of i automatically increases 1. If No, turn to (c), and 
instance pi is regarded as the buffer boundary point in the direction of φ. 

c. Collect buffer boundary points, and put them into a matrix in order. The 
direction line φ increase ∆φ, which is the infnitesimal of φ. And then 
turn to (a), and initialize the value of i. If φ = 2π and no homogenous 
instance is found, turn to (d). 

d. Exit. 
Step 3: Connecting buffer boundary points to create the generalized buffer 

zone: When all buffer boundary points are obtained, they are connected 
using THE interpolation method to form generalized buffer zone. 

8.3 DISCUSSION OF THREE TYPES OF GBAS 

The buffer generation usually consists of point, line, and polygon buffering algo-
rithms. Thereby, three types of the generalized buffer generation algorithms for point, 
line, and polygon elements are described in the following sections, respectively. 

8.3.1 GENERALIZED POINT BUFFERING ALGORITHMS 

The basic idea of the generalized point buffer generation is to determine the buffer 
radius of the neighbor instances using homogeneous rules with which the zone with 
the same attributes are clustered into the buffering zone (i.e., homogenous attributes). 
This implies that the buffer radius is no longer a constant, that is, it is a variable. The 
details are described as follows. 

Step 1: Given a polar coordinate system where axis is horizonal and angle φi is 
the polar angle, varying from 0 to 2π, with the given defnitions described 
in section 8.2 and the basic principle of the generalized buffer generation 
described in Chapter 8.3.1 above: for a target point object Aj (see Figure 8.3), 
Aj is taken as the point to be buffering and meanwhile the pole of the polar 
coordinates system, and rφ represents the polar radius. The coordinates of 
boundary point (BP(x, y)) of forming the point buffer zone of target point 
object Aj can be defned by 

P B_ = :p E ( ,p A ) ≤ r ,{ }A i d i j ϕ
j 

ϕ ∈ [ ,0 2π] (8.8) 

r = H BP x y( ,  ), CLR ,{ }ϕ ϕ ϕ ∈ [ ,0 2π] (8.9) 

CLR  = G R p( ,  p ), NPI p( ,  p ) ,{ }ϕ i i +1 i i +1 
ϕ ∈ [ ,0 2π] (8.10) 
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where P_BAj represents the point instance set that the distance between Pi and 
Aj is less or equal to buffer radius rφ in the corresponding direction; CLR 
represents homogeneous rules; H{BP(x,y), CLRφ} is the function about the 
coordinates of boundary point (BP(x, y)) and CLR. R(pi, pi+1) represents 
that there exists R-proximity relationship between pi and pi+1. For a group 
of target point objects A={A1, A2,…, An}, the generalized point buffer is 
mathematically expressed by 

n 

P B_ = °P BA_ (8.11)
iA

i=1 

When the polar angle φ varies from 0 to 2π based on infnitesimal ∆φ, in every 
corresponding orientation, homogeneous instances are mined until there are no new 
instances added into the homogeneous set and the buffer radius rφ, which is the 
distance between the boundary point (the farthest homogeneous instance away from 
target point object Aj) and target point object Aj, will be determined. 

According to the theory of a double integral, assuming that the boundary line is 
a continuous, differentiable, and integrable curve, the area of the point buffer zone 
can be expressed by 

2π r 

S B
A 

= ∫0 
d 

0 

ϕ 
(8.12)_ ϕ∫ rdr 

j 

where S_BAj is the area of point buffer zone, ∆φ is the infnitesimal of polar angle 
φ, and rφ is the buffer radius that changes with the change of boundary point’s coor-
dinates and subjects to homogeneous rules. 

FIGURE 8.3 Generalized point buffer (GPIB) algorithm. 
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Step 2: Mining buffer boundary points using homogeneous rules, which con-
sists of the following steps. 
a. Determination of homogeneous candidates. In order to determine 

homogeneous candidates, the R-proximity relationship of instances 
must be determined frst. According to equation 8.12, if the Euclidean 
distance between instances Pi and Pi+1, which are at the same direction 
line φi + ∆φ, is less than or equal to distance threshold Eθ, there exists 
R-proximity relationship between these two instances. Therefore, those 
instances that satisfy R-proximity relationship constraint condition are 
the 2nd-order homogeneous candidates. 

b. Determination of prevalent homogeneous patterns. When all 2nd-order 
homogeneous candidates are found, equation 8.13 is utilized to deter-
mine prevalent homogeneous patterns. According to equation 8.13, if 
the NPI of 2nd-order homogeneous candidate ℂi is greater than or equal 
to the threshold NPIθ, ℂi is a 2nd-order prevalent homogeneous pattern. 
After this processing, only 2nd-order prevalent homogeneous are deter-
mined. Based on the generation method of k-th-order homogeneous can-
didate mentioned in the section 8.3, k-th-order prevalent homogeneous 
patterns will be obtained. 

c. Determination of buffer boundary points. As shown in Figure 8.3, an 
example is made to explain the generation processes of the bound-
ary point of the point-based buffer when the polar angle is φi + ∆φ. 
According to the previous two steps, those instances (such as points P1 

and P2) that satisfy homogeneous rules in this orientation are saved in 
a matrix, and the farthest homogeneous instance (for example point P2) 
away from the target object instance Aj is regarded as the boundary point 
in this orientation and is put into the matrix of boundary point. Thus, 
the buffer distance rφi in arbitrary polar angle φi can be mathematically 
expressed by 

r = X 2 +Y 2 (8.13)
b p_ oint b _ pointϕi 

When φi varies from 0 to 2π, all boundary points will be collected and put into a 
matrix in order. 

Step 3: Generation of generalized point buffer zone. When all buffer boundary 
points are obtained, they can be connected using the interpolation method 
to form a generalized point buffer zone. 

Compared to the implementation processes of a traditional buffer analysis algo-
rithm, in the proposed algorithm, at the beginning, φ is increased in anticlockwise 
order based on infnitesimal ∆φ. Meanwhile, instances are judged whether they are 
homogeneous in corresponding direction. And n + 1 boundary points can be pro-
duced, among which the frst point and the last point are the same point, which makes 
the zone close. Finally, the cubic spline interpolation method is used to connect these 
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boundary points, and the generalized point buffer zone is the area that is within the 
boundary. As shown in Figure 8.3, we can see that instance point P3 which is the 
boundary point of the buffer zone in the traditional buffer zone, is replaced by point 
P2 which is the new boundary point of the generalized point buffer zone, because 
instance point P3 is not the homogeneous instance and instance point P2 is the last 
homogeneous instance in this orientation. 

8.3.2 GENERALIZED LINE BUFFERING 

The basic idea of a generalized line buffer (GLB) algorithm is that a target line 
object is expressed by a point set Li = {A0, A1,… , Am} and is considered as an axis. 
The generation of the generalized line buffer (GLB) is mathematically expressed by 

 m  
L _ B = p : °[ (d p, )Aj ≤ rA ]

  (8.14)
i  j  j=0   
rA = D 


BPA (xa , yb ),CLRA 


 (8.15)

j j j 

where Aj is the j-th sample point along the target line object; rAj is the buffer 
distance corresponding to Aj, whose size varies upon the attributes of neighbor 
instances; Li_B is the instance set in which the distance between p and Aj is less or 
equal to rAj in the normal direction of the j-th sampled point along the target line 
object; D[BPAj(xb, yb), CLRAj] is the function of the coordinates of boundary points, 
which is based upon the attributes of the neighbor instances decided by the homo-
geneous rule. CLRAj

 represents the induced homogeneous rules (CLR) in the cor-
responding normal direction of the target line object, which regards the j-th sample 
point as the foot point. For multiple target line objects L={L0, L1,…, Ln}, the general-
ized line buffer can be defned as 

n 

L B_ = L B° i _ (8.16) 
i=1 

In order to calculate the area of the generalized line buffer zone across two end-
points of line, vertical lines of line are made, such as V1(x) and V2(x), respectively. 
Let ds and dr represent the infnitesimal element of line object and buffer radius, 
respectively. And let SA0 and SAm be the areas of zone that are formed by the buffer 
zone of endpoints and vertical lines, respectively. The area of the generalized line 
buffer zone can be calculated by 

L r 
LS = ∫ 

0 

i 

ds∫ Aj 

dr + S + S (8.17)
A 0 Am

0 

where rAj can be got from equation 8.15, which is constrained by homogeneous 
rules; SA0 and SAm can be acquired based on equation 8.12. 

When all boundary points are found, they will be connected by using the cubic 
spline interpolation method to form an enclosed zone (see Figure 8.4). Compared to 



158 Data Mining for Co-Location Pattern  

  

  

 

  

  

  

     

  

 

the traditional line buffer algorithm, the proposed method considers that the buffer 
distance is no longer a constant but is a variable that is decided by the attributes of 
neighbor instances and decided by homogeneous rules. As a result, the produced line 
buffering zone is much closer to the actual situation. 

With the algorithm proposed here, the details of the generation of GLB for a tar-
get line object can be summarized as the following steps. 

Step 1: Initialization of line: First, the target line object is virtually sampled 
and noted as a series of points. Let ss be a sampling distance; a series of 
sampling points are obtained along the target line and is expressed by 
Li = {A0, A1,…, A7} (see Figure 8.4). As shown in Figure 8.4, A0, A4, and A7 

are the starting point, infection point, and endpoint, respectively. 
Step 2: Determination of the rectilinearity of adjacent three points. Assume 

that coordinates of the adjacent three points are Ai−1(Xi−1, Yi−1), Ai(Xi, Yi), ˝˝˝˝˝̆  ˝˝˝˝˝̆  
and Ai+1(Xi+1, Yi+1), their vectors are expressed by A A  , A A  . The vector i−1 i i i+1 

product of the two vector is used to determine their rectilinearity, that is, 

˝˝˝˝˝̆  ˘ 
− = = m n,A A  =(X −X , Y Y  ) g ( ) (8.17)i−1 i i i−1 i i−1 1 1 

˝˝˝˝˝̆  ˝̆  
A A  = X −X , Y −Y f m , ni i+1 ( i+1 i i+1 i )= =( 2 2 ) (8.18) 

The normal vector is calculated by 

˝̆  ˝˝˝˝˝̆  ˝˝˝˝˝̆  ˘ ˝̆  ˘ ˘ 
N A A A A  = g× f = m n −m n j=β j (8.19)= × ( )i−1 i i i+1 1 2  2 1  

˘ 
where m1=(Xi−Xi−1), n1=(Yi−Yi−1), m2=(Xi+1−Xi), n2=(Yi+1−Yi); j is the unit vector 

˝˝˝˝˝̇  ˝˝˝˝˝̇  
that is perpendicular to the plane constructed by vectors A A  and A A  . If β  isi-1 i  i i+1 

FIGURE 8.4 Generation of generalized line buffer zone. 
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˝˝˝˝˝̇  ˝˝˝˝˝˙ 
equal to zero, then A A−1 i i  are collinear; for example, points A1, A2, andi  and A Ai+1 

A3 in Figure 8.4 almost lay a straight line; the β value is close to zero; if β is greater 
than or less than zero, for instance, points A3, A4, and A5, the middle point A4 is usu-
ally an infection point. Furthermore, the concavity and convexity of infection point 
should be judged. When β determined by the products of the two vector is greater 
than zero, if the former vector turns to the latter vector with the minimum angle at a 
counterclockwise direction, the infection point is a convexity point; in contrast, the 
infection point is a concave point. 

Step 3: Generation of line buffering: After linearity, infection, and concavity– 
convexity of infection point at the sampled points along a target line are 
completed, the following work is the generation of GLB using the homoge-
neous rule. First spatial and nonspatial attributes are selected to determine a 
rough candidate for the zone using the homogeneous rule. The mathemati-
cal model is expressed by 

NS_A NS_A satisfies threshold i, j i, jNS_A =  (8.20)i, j NAN NS_A does not saatisfy threshold i, j 

where NS_Ai,j is the value of a certain nonspatial attribute and i and j are 
coordinates. With implementing this step, those instances without meeting the 
given threshold will be excluded. Afterward, the generation of GLB is car-
ried out, for which three types of sampled points are considered as follows, 
respectively. 

a. When the points are neither at inflection points nor at endpoints. Taking 
point A2 in Figure 8.5 as an example to explain the line buffering gen-˘ 
eration, assume that n is a normal lines at line LA, the instances points ˘
A2, Q2, and P3 lie on the normal line n. The Euclidean distance between 
them is 

DA Q, 2 
= (X2 −XQ )

2 
+ Y2 −YQ )

2 
(8.21)

2 2 
( 

2 

If DA2, Q2 is less than or equal to a given threshold Dθ, A2 and Q2 exist in an 
R-proximity relationship. Thereby, they are considered as candidate of a homoge-
neous set. When all instances of candidate homogeneous pattern {A, Q} are deter-
mined, according to equation 8.20 and equation 8.21, the participation index (PI) is 
applied to decide whether the candidate homogeneous pattern is prevalent homoge-
neous pattern or not. If NOT, it is not considered as homogenous. When k-th order 
homogeneous patterns are mined, a k + 1-order homogeneous pattern may be found. 
This homogeneous mining process will not be stopped until no qualifed homoge-
neous pattern is found. The point belongs to boundary point, that is point Q2 in 
Figure 8.4. 
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b. When the points are at inflection. Taking point A4 in Figure 8.4 as an example 
to explain the line buffering generation, two perpendicular lines are made, 
noted as ⊥

2
 and ⊥

3
, along the adjacent two line segments (see line segments 

A3A4 and A4A5), and then the parallel line of directed line segments (A3A4 

and A4A5) crossing the buffer zone’s boundary point (for example points 3) 
corresponding to the adjacent points (i.e., point A3) of point A4 are made. 
Then at the convex side, an arc is constructed, which makes point A4 as the 
center and regards the distance between point A4 and the parallel line as the 
radius. The arc intersects with ⊥

2 
and ⊥

3 
to form a closed zone, which is the 

initialization zone for mining the homogeneous pattern. For infection point 
A4, R-proximity neighbor relations between instances will be determined by 
equation 8.12 in the closed zone, and homogeneous patterns are mined in this 
initialization zone. Finally, the buffer zone’s boundary points, such as points 
4, 5, 6, will be acquired. However, at the side of concave, R-proximity neigh-
bor relations and homogeneous patterns are mined on the angular bisector 
of ∠A A A . Then the boundary points corresponding to infection points are 

3 4 5 

determined. 
When the points are at endpoints. Taking point A7 in Figure 8.4 as an 

example to explain the generation of GLB, crossing the endpoint, a verti-
cal line of a broken line is made, and parallel lines of broken line are pro-
duced across the buffer zone’s boundary points (such as points 9 and 15) 
corresponding to point A6, which is adjacent to endpoint A7, and then an arc 
is made, which makes the midpoint of the vertical line segment ⊥4, which 
intersects with the two parallel lines as the center and the distance between 
the midpoint and parallel line as the radius. The arc intersects with the two 
parallel lines, respectively. The vertical line segment ⊥4 and the arc form a 
closed zone which is the initialization zone for mining homogeneous pat-
terns. For the endpoint, the process of mining homogeneous patterns is the 
same as step (a). Finally, the boundary points of a generalized line buffer 
zone (such as points 9, 10, 11, 12, 13, and 14) are collected and put into the 
set. 

8.3.3 GENERALIZED POLYGON BUFFERING 

Polygon-based buffer algorithm includes outwards or inwards buffer radius to gener-
ate a buffer zone. If the boundary of a polygon is considered as an enclosed curve, 
the polygon-based buffer algorithm is somewhat similar to the line-based buffer 
algorithm (see Figure 8.5). The mathematical models can be referenced to equation 
8.20 and equation 8.21. The implementations can be carried out by: 

Step 1: Extraction of the polygon boundary, and initialization of the bound-
ary line. Because the buffer of the polygon makes the boundary line the 
axis and a given distance as the buffer distance to dilate outside or shrink 
inside, so the initialization process is similar to the broken line’s. Points 
that are on the boundary line should be collected by applying step size. 
Although the frst point and the last point overlap (such as points Q0 and Q16 
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FIGURE 8.5 Generalized polygon buffer (GPLB). 

in Figure 8.5), it is not necessary to separately consider the buffer boundary 
of terminal points, as long as it is according to the generalized buffer con-
struction method of the middle point of three consecutive points. 

Step 2: Determination of the rectilinearity of adjacent three points. The polygon 
boundary is a curve, but in this chapter, directed line segments are con-˘ ˘ 
nected to replace the curve (such as a, and b in Figure 8.10). When the 
amount of line segments is more enough, the boundary of the closed zone, 
which is constructed by directed line segments, is smoother. The rectilin-
earity of three adjacent points (such as points Q3, Q4, and Q5) can be deter-
mined by 

(Dx + Jy + K)
h = 4 4 (8.22) 

D2 + J 2 

Where h is the distance between middle point Q4 and the straight line across the 
frst point Q3 and last point Q5 of three adjacent points; D, J, and K are coeffcients 
of equation of the straight line; xi and yi (i = 4) are coordinates of the middle point 
(for example point Q4). If hi is less than or equal to the threshold, then the adjacent 
three points can be regarded as collineation. 

Step 3: Creation of generalized polygon buffer. Similar to the operation for 
line in section 8.3.3, the points on the boundary line of polygon need to be 
judged whether they are infection points. If hi is greater than the thresh-
old, then the i-th point is infection point. When the types of points are 
determined, homogeneous rule should be utilized to guide the generalized 
polygon buffer zone. First, nonspatial attributes are selected to determine 
rough candidate homogeneous instances using equation 8.14, and then in 
order to get candidate homogeneous patterns, R-proximity relations among 
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these rough candidate homogeneous instances should be determined in a 
normal line direction by Euclidean distance, and the points that are on the 
boundary of the polygon but not the infection points are made as the foot 
of perpendicular. For instance, in Figure 8.11b, Pj is a point on the boundary 
line of the polygon, and there are four points that satisfy the Euclidean dis-
tance condition, that is, there are R-proximity relationship among them in a 
normal line direction that make Qj the foot of perpendicular. Then 2-order 
candidate homogeneous patterns can be acquired, such as {Qj, Pi} and {Pi, 
Pi+1}. For the sake of determining whether these candidate homogeneous 
patterns are prevalent homogeneous patterns, participation index (NPI{ℂ}) 
of patterns should be calculated by equation 8.1 and equation 8.2. If NPI{ℂ} 
is greater than or equal to the threshold, then pattern ℂ is the prevalent 
homogeneous pattern. In addition, k-th order homogeneous patterns can be 
generated based on k − 1-th order and k − 2-th order homogeneous patterns. 
At last, the point (for example point P2) that meets homogeneous rules and 
is farthest away from Qj in a normal line direction is regarded as the bound-
ary point of the generalized polygon buffer zone. The same operation is 
performed for other points that are on the boundary line of the polygon. All 
boundary points of the generalized polygon buffer zone are collected and 
put into a set in order. 

8.4 EXPERIMENTS AND ANALYSIS 

Traditional buffer analysis usually took the noise pollutions as the paradigm. This 
chapter also takes the noise pollutions paradigm in two cities of China as an example 
to explain how the generalized buffer is used for spatial analysis and what difference 
is between the generalized and traditional buffer algorithm. 

8.4.1 DATA SETS 

Data set-1: The investigation area is the electronic vector data of Bao’an 
District, Shenzhen, China, obtained from the Geographical Information 
Monitoring Cloud Platform in 2015 with an ArcGIS shp fle. Data set-1 con-
tains more than 30 million pieces of information (e.g., hospitals, buildings, 
supermarkets, gas stations, banks, etc.), in which there are 24 types of point 
features consisting of 1,876 point elements, (e.g., airports, parking, gas sta-
tions, etc.), 11 types of line features consisting of 26,135 line elements (e.g., 
in-state free highway, provincial highway, pedestrian paths, etc.), and seven 
types of polygon features consisting of 1,201 polygon elements (e.g., provin-
cial boundaries, regional boundaries, lakes, etc.). 

Data set-2: The investigation area is the electronic data of Beijing in 2015 
and is obtained from the Geographical Information Monitoring Cloud 
Platform, with ArcGIS shp format. Data set-2 contains more than 30 mil-
lion pieces of information (e.g., hospitals, buildings, supermarkets, gas sta-
tions, banks, etc.). Data set-2 contains 18 types of point features consisting 
of 124,252 point elements (e.g., village, school, bus station, etc.), nine types 
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of line features consisting of 112,057 line elements (e.g., expressways, pro-
vincial highways, pedestrian paths, etc.), and four types of polygon fea-
tures consisting of 6,933 polygon elements (e.g., lakes, rivers, boundaries 
of regions, etc.). 

In the two data sets, the point noise source is assumed from in-situ construction, 
such as excavating, blasting, cement mixing, etc. The line noise source is assumed 
from moving vehicles on the highway. The polygon noise source is assumed from 
manufacturing, in which the machines are operated continuously. Many buildings 
are surrounding these noise sources, i.e., surrounding the point element, line ele-
ment, and the polygon element. 

• Spatial data: The spatial data for describing point, line, and polygon fea-
tures are X, Y coordinates. The datum and the projection coordinate system 
for spatial data for Data set-1 and Data set-2 are listed in Table 8.1. 

• Attribute data: The attribute data of point, line, and area features include 
quantitative and qualitative attributes (see Table 8.2). In order to investigate 
the extent of noise propagation using point, line, and polygon buffer algo-
rithms without losing generality, only one attribute, namely, integrated areal 
density (IAD), is selected, and other attributes are not taken into account in 
this step. This assumption is consistent with Kang (2004), who though that 
the IAD of a building hinders noise propagation. 

TABLE 8.1 
The Information of Spatial Data 

Attributes Data Set-1 

X, Y coordinates Geographical coordinate 
(system: Lat Long for 
MAPINFO type) 
Datum: D_MAPINFO 
Prime meridian: 
Greenwich 
Angular Unit: Degree 
Spheroid: 
World_Geodetic_ 
System_of_1984 
Semimajor Axis: 
6378137.00 
Semiminor Axis: 
6356752.314 
Inverse Flattening: 
298.257 

Data Set-2 

Geographical coordinate (system: 
GCS_WGS_1984) 
Datum: D_WGS_1984 
Angular Unit: Degree (0.017453292519943299) 
Prime Meridian: Greenwich 
Spheroid: WGS_1984 
Semimajor Axis: 6378137.00 
Semiminor Axis: 6356752.314 
Inverse Flattening: 298.257 
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TABLE 8.2 
Instance Nonspatial Attributes 

Type of data Nonspatial attribute 

Point, Quantitative attributes Time, Length, Width, Height, Area, Quantity, Size, Level, 
Line, Density, Integrated areal density (IAD) 
Polygon Qualitative attributes Name, Category, Number, Utilization type, Characteristics 

8.4.2 GENERALIZED BUFFER ANALYSIS 

The experiments were conducted on a computer with an Intel Xeon E5645 Six core 
2400 MHz (12MB Cache) and 4GB of RAM. 

8.4.2.1 Experiment for Data Set-1 
8.4.2.1.1 Generalized Point Buffer Analysis 
The purpose of studying noise pollution using point buffer analysis is to investigate 
how big an area is impacted by a noise source. Usually, the volume of a sound higher 
more than 80 dB is considered as noise and of lower than 45 dB–60 dB is NOT con-
sidered as urban environmental noise. The noise attenuation is expressed 

1 2  ∆dB =10 log πr  (8.23)
4  

where r is the noise propagation distance (m) and ∆dB is the noise attenuation 
(dB), which decreases with increasing distance square as a logarithmic function. 

This chapter selects 45 dB as a threshold of either sound or noise, that is, bigger 
than 45 dB as noise. With the threshold, the buffer radius in traditional point buffer-
ing algorithm is 

(80−45) 10 r = ×4 10 . = ( )  (8.24)3 1415926 63.5 m 

In order to compare the traditional point buffering algorithm (TPIA), we take 
point A, which is a mechanical manufacturing factory, as the noise source to cre-
ate a point buffer analysis, as depicted in Figure 8.6. As observed from Figure 8.6, 
the traditional point buffer area is a circle centered at Point A, i.e., the noise source. 
This means that traditional point buffer analysis thinks that the noise propagation is 
along a fat terrestrial area in all directions without any obstacle. In fact, the noise 
propagation is impacted by many factors, such as buildings, and as a result, the noise 
propagation is NOT a complete circle; that is, the noise propagation distances are 
NOT equal in all directions. 

In the generalized point buffer (GPIB) algorithm, also taking Point A as the noise 
source, 45 dB as a threshold of either sound or noise, buildings noted as Point Pi, 
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FIGURE 8.6 Traditional point buffer zone with a buffer radius of 63.5 m. 

FIGURE 8.7 Generalized point buffer analysis algorithm. 

(Pi = P1,…, P8) in Figure 8.6 as obstacles, whose attributes are listed in Table 8.3, 
IAD as factor of noise attenuations. The steps of the GPIB algorithm are as follows. 

Step 1: Establish a polar coordinate system. Point A is taken as the pole, and 
easting as polar axis, noted, X-axis. φ is defned as the “polar angle”, whose 
value is determined relative to the X-axis counterclockwise, ∆φ is defned 
as the angle increment at a counterclockwise rotation. In this experiment, 
the polar angle is expressed using φi, that is, φi+1 = φi + ∆φ, and ∆d is 
defned as increment distance (distance step) along rotational axis starting 
from pole Point A (see Figure 8.7). 
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Step 2: Calculating the sound propagation course. Starting at Point A, 
along the X axis, that is, φ0 = 0°, set a distance increment of 12.7 m (the 
63.5/5 = 12.7 m, noted as ∆d=12.7 m; other lengths are discussed later). 
The starting point is located at Point A1. The Euclidean distance between 
Point A and Point A1 can be calculated using equation 8.5, noted as Ed(A, 
A1) = 12.7, and noise attenuation is also calculated using equation 8.23, 
which is 20.8 dB. Meanwhile, it is determined whether the sound propaga-
tion encounters any building. It has been indicated from the data set that 
no buildings have blocked the nose propagation (see Figure 8.7). Because 
Ed(A, A1) is less than the distance threshold, noted as Eθ = 63.5 m, Point A1 

is considered to be homogenous with Point A, that is, Point A1 with Point A 
has an R-proximity relationship. In order to further determine their homo-
geneity, the NPI is calculated using equation 8.7, where the total_nA in 
equation 8.7 is the number of all attributes, which is 3 (IAD and XY coor-
dinates) in Table 8.1 and Table 8.2, that is, total_nA = 3. The similar_nA 
is the number of attributes for each point (see Table 8.2). Point A has 2 
attributes (XY coordinates), similar_nA=2. that is, NPIA=2/3. Therefore, 
the threshold of NPI is calculated using equation 8.7, that is, NPIθ = 2/3. 
When the NPI value of the candidate instance is equal to or greater than 
NPIθ, this means that the candidate instance is homogeneous with Point A. 
On the other hand, an NPI value of Point A1 is NPIA1 = 2/3, which is equal 
to NPIθ. This means that Point A1 and Point A are homogeneous. Moreover, 
the noise value at Point A1 is 59.2 dB (≥ 45 dB), so the noise at Point A1 will 
continue to propagate along the X-axis. 

Step 3: Repeating the same operation at the same distance increment, that is, 
(∆d = 12.7 m), the sound is propagated to Point A2; calculate the Euclidean 
distance between Point A and Point A2 and noise values, and also determine 
whether encountering any building. With calculations, the volume of sound 
is 27.0 dB, and no building is encountered. The Euclidean distance of Point 
A2 and Point A is Ed(A, A2) = 12.7 m + 12.7 m = 25.4 m, which is less than 
Eθ = 63.5 m and NPIA2 = 2/3, which is equal to NPIθ. This means that Point 
A and Point A2 are homogeneous. In addition, the noise value at Point A2 

is 53 dB (≥ 45 dB). This means that the sound will continuously propagate 
along the X-axis. Repeat Step 2 until the volume of sound is equal to and 
less than 45 dB, and/or encounters the buildings which can block sound 
propagation. Therefore, a boundary point, far away (63.5 m) from Point A is 
found and noted, Point B1, and Ed(A, B1) = 63.5 m, which is the boundary of 
the GPIA at φ0 = 0° (see Figure 8.7). 

Step 4: Anticlockwise rotating the polar axis with an increment angle of 1.5°, 
that is, ∆φ = 1.5° and φ1 = φ0 + ∆φ = (0° + 1.5°) = 1.5° (see Figure 8.7). 
Repeating Step 2 and Step 3 for the same operations along new X-axis at 
polar angle of 1.5°. With the repeated operations and the same calculations, 
during which there are no buildings/blocks, until the boundary point B2 is 
recognized. 

Step 5: Repeat Step 4 with anticlockwise rotating of the polar axis at an incre-
ment angle of 1.5°, that is, ∆φ = 1.5°, φ2 = φ1 + ∆φ = (1.5° + 1.5°) = 3° (see 
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Figure 8.7). Repeating Step 2 and Step 3 along the X-axis at a polar angle of 
3°, it is found that the sound propagation meets a blocking building, noted 
as Point P1. Calculate the Euclidean distance from Point A to Point P1 using 
equation 8.5, that is, Ed(A, P1) = 44 m, which is less than Eθ = 63.5 m. 
This implies that Point P1 is homogenous with Point A, since it satisfes the 
R-proximity relationship constraint condition in equation 8.6. In addition, 
for Point P1, NPIA = (similar_nA)/(total_nA) = 1/3, which is smaller than 
the threshold, NPIθ = 2/3. Therefore, it can be concluded that Point P1 and 
Point A are not homogeneous. This implies that the sound propagation ends 
at Point P1. Thereby, Point P1 is considered as the boundary point of the 
GPIB algorithm. 

Step 6: Repeating Step 2 through Step 5 with anticlockwise rotating the polar 
axis with an increment angle of 1.5°, until φ = 360°, the GPIB algorithm is 
fnished. The result is shown in Figure 8.8. 

Comparison analysis with the different angle increments: In order to compare the 
accuracy of the GPB algorithm, the different increments of angle are set up at 3°, 6°, 
and 9°. The same operations are carried out as ones previously described, and the 
results are shown in Figures 8.9a, 8.9b, and 8.9c, respectively. 

FIGURE 8.8 Generalized point buffer using Data set-1 with the increment angle at 
∆φ = 1.5°. 
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FIGURE 8.9 Generalized point buffer using Data set-1 with the different increment angles 
at (Fig. 8.15a) ∆φ2 = 3°, (Fig. 8.15b) ∆φ3 = 6°, and (Fig. 8.15c) ∆φ4 = 9°. 

8.4.2.1.2 Generalized Line Buffer Algorithms 
The validation takes a vehicle’s noise along the highway as a noise source to investi-
gate how a big area is impacted by the vehicle noise source using the generalized and 
traditional line buffer algorithm. In order to explain the GLB algorithm in detail, two 
endpoints and one infection point are selected as examples. Also, assuming that the 
vehicles’ noise is 80 dB (vehicle noise is usually between 60–80 dB (Ma and Chang 
2018)), the traditional line buffer zone is generated using a buffer distance of 63.5 m 
along the highway (line element). The result is depicted in Figure 8.10. 

FIGURE 8.10 Traditional line buffer analysis with a buffer distance of 63.5 m. 



 

 

   

 

     

  

 
   

     
 

 
       

     

  
 

 
          

     
 

     

 
   

169 Buffer Analysis 

Similar to the GPIB algorithm, the GLB algorithm also takes the buildings – 
which block the noise propagation upon their properties (e.g., IAD) – as obstacles, 
and they are represented by Point Pi (i = 1, . . ., 24) in Figure 8.10. The steps for the 
GLB algorithm are described as follows. 

Step 1: The line is frst resampled into the line segments at a given distance 
increment, noted ∆L = 1m, without losing generality. The points are called 
sample points. The six sample points, noted as Ai (i = 1, …, 6), located in 
the starting point and the infection of the line (highway), respectively, are 
taken as examples to explain the process of the GLB algorithm (see Figure 
8.11a). The spatial attributes and nonspatial attributes are listed in Table 8.2 
and Table 8.3. 

Step 2: Start from Point A1 (see Figure 8.11b), determining whether Point A1 is 
either endpoint, or infection point, or neither using the method in Chapter 
8.4.2.1.2. Because Point A1 is an endpoint, a line perpendicular to the line 
passing Point A1 is made, that is, B1A1B2, where Point B1 and Point B2 are the 
boundary points of the noise propagation in the GLB algorithm. Similarly, 
the same calculation and process are made for Point A1 using the method 
described in Step 3 of the GPIB algorithm in Section III.B. With the calcu-
lated results, it is found that the Point B0 and Point B2 are traditional bound-
ary points without encountering any buildings (blocks). Thereby, their 
Euclidean distances, Ed(A1, B0) and Ed(A1, B2), are 63.5 m, respectively. 

Step 3: With an increment angle of ∆φ = 1.5°, and rotating anticlockwise the 
axis AB1

0 until φ = 1.5°, set an increment distance of 12.7 m along the axis 
A B0 at B1

0 and repeat Step 2 through Step 5 in the GPB algorithm described 1 1 

in Section III.B to determine whether any building (block) is encountered 
during the noise propagation. When the noise propagates to Point b, it is 
found that no buildings (blocks) are encountered with Point b. With the 
repeated operation, no buildings (blocks) are encountered until reaching 
Point B1

1; thus, Point B1
1 is considered as a boundary point. 

Step 4: Repeat Step 3 with an increment angle of ∆φ = 1.5° until the rotation 
angle reaches φ = 31.5°; it is found that the sound propagation encountered a 
building, noted as Point P1. Calculating the Euclidean distance from Point A1. 
to Point P1 using equation 8.5, that is, Ed(A1, P1), it satisfes the R-proximity 
relationship constraint in equation 8.6 (that is, less than 63.5 m) and is con-
sidered to be homogenous with and a candidate for being homogeneous with 
Point A1. Further calculate NPIP1 = (similar_nA)/(total_nA) = 1/3, which 
is smaller than the threshold NPIθ = 2/3, to determine whether Point P1 is 
homogeneous with Point A1 or not using equation 8.7 in Section III.B; with 
the calculated result, it is found that Point P1 and Point A1 are NOT homog-
enous. Thus, Point P1 is considered as the boundary point of the GLB zone. 

Step 5: Continue increasing the increment angle of ∆φ = 1.5° and repeat 
Step 4; it is found that Point P2 and Point P3 are NOT homogeneous with 
Point A1, which means that they are boundary points. 

Step 6: Continue increasing the increment angle of ∆φ = 1.5°, repeat these 
steps until Point B2. 



170 Data Mining for Co-Location Pattern  

   

 

  
     

 

 

Step 7: With the assumed length increment, ∆L = 1.0 m, Point A2 is operated 
to determine whether it is either an endpoint, an infection point, or neither 
by the methods described in Section II.C. With the computation, Point A2 

is none of them. Two line-segments (A2B3, A2B4) are made, respectively, 
on both sides of the highway (line element); meanwhile, the homogeneous 
points along both of the line segments, A2B3, A2B4, are determined (see 
Figure 8.11b). It can be concluded that no buildings are encountered in both 
of the line segments, that is, Point B3 and Point B4, as the boundary points. 

Step 8: Repeat the same operation with the same length increment, until Point 
A3, it is found that the sound propagation encounters a building, noted, 
Point P4. Calculating the Euclidean distance between Point A3 and Point P4 

using equation 8.5, that is, Ed(A3, P4) = 37 m, which satisfes R-proximity 
relationship constraint condition in equation 8.6 (that is, less than 63.5 m), 
and are considered as a candidate of homogeneous with Point A3. Further 

FIGURE 8.11 (a) Generalized line buffer using Data set-1 with the increment length at 
∆L 1.0 m; (b) and (c) generalized line buffer analysis algorithm implementation step diagram. 



 

 

 

 

     
 

   

  
 
 
 
 

 
           

171 Buffer Analysis 

determining whether Point P4 is homogeneous with Point A3 using Step 
4, Point P4 is considered as the boundary point of the generalized buffer 
analysis. Similarly, Point B5 is a boundary point. 

Step 9: Repeat Step 7 and Step 8 up to Point A5 (see Figure 8.11c). With the 
computation, Point A5 is an infection point by the methods described in 
Section II.C. Two vertical lines along two line segments (A4A5, A5A6) are 
made. The boundary points are determined using the same Step 3. Point B6 

and Point B7 are boundary points. Their Euclidean distances, Ed(A5, B6) and 
Ed(A5, B7), are both 63.5 m. 

Step 10: Assuming that Point B6 is a starting point, repeat Step 4 with an incre-
ment angle of ∆φ = 1.5° to determine the boundary points. Point P7 and 
Point P8 are selected. 

Step 11: Continue increasing the increment angle of ∆φ = 1.5°; repeat the steps 
given until Point B7. 

Step 12: On the angular bisector of ∠A4A5A6, repeat the same Step 4, with Point 
P22 as the boundary point. 

Step 13: Connect all boundary points to form a generalized line buffer analysis 
area. The results are shown in Figure 8.11a. 

Generalized line buffer generation using different length increments ∆L: In order 
to compare the difference when using different distance increments, ∆L, the differ-
ence value of ∆L at 5 m, 10 m, and 15 m are set. Repeating the same steps described, 
the results of the GLB zones with the different length increment are depicted in 
Figure 8.12a, Figure 8.12b, and Figure 8.12c. 

8.4.2.1.3 Generalized Polygon Buffer (GPLB) Generation 
Assume that the noise source is produced by a factory at 80 dB (Xia et al. 2001). 
The region of the factory with noise is depicted in Figure 8.13. Without losing the 
generality, the noise at any point within the factory is the same. The traditional 
polygon buffer zone is generated using a buffer distance of 63.5 m and is shown in 
Figure 8.13. 

FIGURE 8.12 Generalized line buffer using Data set-1 with the different increment length 
at (a) ∆L2 = 5 m, (b) ∆L3 = 10 m, and (c) ∆L4 = 15 m. 
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 FIGURE 8.13 Traditional polygon buffer analysis with a distance of 63.5 m. 

The operations of the GPLB algorithm are almost the same as the one of the 
GLB; the unique difference is the starting point is the same as the endpoint. For this 
reason, any point at a curve is selected as the starting point. For example, Point Q1 

is selected as the starting point, and the boundary of the polygon is resampled into 
curve segments starting from Point Q1 at a given curve of 1.0 m, noted as ∆S = 1.0 
m. The points are called sampled points. The four sampled points, noted as Point Qi 
(i = 1, …,4), which are located on the boundary of a polygon (factory with noise) are 
taken as examples to explain the algorithm of the GPLB zone generation (see Figure 
8.14). The spatial attributes and nonspatial attribute for each of the sampled points 
are the same as the ones described earlier. 

For Point Q2 (see Figure 8.14), whether is it an infection point or not is deter-
mined by the method described in Chapter 8.4.1, with which Point Q2 in an infection 
point. The results are shown in Figure 8.14. 

GPB Zone Generation using different curve increments ∆S: In order to investi-
gate the accuracy of the GPB algorithm with the different increment of curves, ∆S, 
the increment of curves at 5 m, 10 m, and 15 m are set up for the experiments. The 
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FIGURE 8.14 Generalized polygon buffer using Data set-1 with the increment curve at 
∆S = 1.0 m. 

FIGURE 8.15 Generalized polygon buffer using Data set-1 with the different increment 
curves at (a) ∆S = 5.0 m, (b) ∆S = 10.0 m, and (c) ∆S = 15.0 m. 

same operations are repeated. The results are shown in Figure 8.15a, Figure 8.15b, 
and Figure 8.15c. 

8.4.2.2 Experiment for Data Set-2 

8.4.2.2.1 Generalized Point Buffer Zone Generation 
For Data set-2, the same assumption of noise resource with 80 dB happens at Point 
A. The same operations are made as one for Data set-1, as described in Chapter 8.3.2. 
The traditional and generalized point buffer zone are generated. The results are 
depicted in Figure 8.16 and Figure 8.17, respectively. 
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FIGURE 8.16 Traditional point buffer analysis with a radius of 63.5 m. 

8.4.2.2.2 Generalized Line Buffer Analysis 
Similarly, a vehicle’s noise along the highway is considered as a noise source. The 
same operations are made as for Data set-1, as described in Chapter 8.4.1. The exper-
imental results are shown in Figure 8.18 and Figure 8.19, respectively. 

8.4.2.2.3 Generalized Polygon Buffer Analysis 
Similarly, a noise at a factory is considered as a noise source. The same operations 
are made as the one for Data set-1, as described in Chapter 8.4.1. The experimental 
results are shown in Figure 8.20 and Figure 8.21. 

8.4.3 COMPARISON ANALYSIS AND REMARKS 

8.4.3.1 Comparison Analysis 
In order to compare the difference between the traditional and generalized buffer 
algorithms, the following parameters are used for indexes. 
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FIGURE 8.17 Generalized point buffer using Data set-2 with the different increment angles 
at (a) ∆φ1 = 1.5°, (b) ∆φ2 = 3°, (19c) ∆φ3 = 6°, and (d) ∆φ4 = 9°. 

Area difference, which is the difference of the areas between the traditional buffer 
zone and generalized buffer zone, that is, 

= Area − Area∆Area T G (8.25)
i 

where ∆Area is the difference of areas (m2); AreaT is the area from traditional buffer 
zone; AreaGi is area from the generalized point/line/polygon buffer zone; Gi = Point, 
line, and Polygon. 

Perimeter difference, which is the difference of the perimeter between the tradi-
tional buffer zone and generalized buffer zone, that is, 

= Perimeter  − Perimeter (8.26)∆Perimeter T Gi 
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FIGURE 8.18 Traditional line buffer analysis with a distance of 63.5 m. 

where ∆Perimeter is the difference of perimeters (m); PerimeterT is the perimeter 
from the traditional buffer zone; PerimeterGi is the perimeter from generalized 
point/line/polygon buffer zone. 

Relative position similarity, which is defned as the distance between the cen-
troids of the two buffers (Zhang et al. 2018), that is, 

D a ,b( )= 1 
(8.27)

21+ a b, 

where D(|a, b|) is the relative position and |a, b| is the distance between the two 
centroids. 

Relative area similarity, which is defned as follows (Zhang et al. 2014): 

ST −SGS = −  area (8.28)
Max S ,S 

1 
( T G ) 
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FIGURE 8.19 Generalized line buffer using Data set-2 with the different increment length 
at (a) ∆L1 = 1.0 m, (b) ∆L2 = 5.0 m, (c) ∆L3 = 10.0 m, and (d) ∆L4 = 15.0 m. 

Where Sarea is the relative area similarity, ST −SG  is the area difference of two 
buffer regions, and Max(ST, SG) is the maximum area of them. 

Relative perimeter similarity, which is defned as follows (Zhang et al. 2014): 

PT −PG (8.29)S = −  per 1 
Max P( P )T , G 

Where Sper is the relative perimeter similarity, PT −PG  is the difference between 
the perimeter of the traditional buffer and the generalized buffer, and Max(PT, PG) is 
the maximum perimeters of them. 

Offset of centroid of mass, which is defned as 

(8.30)∆ ∆ ∆
f 

X Y= + 2 2 
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FIGURE 8.20 Traditional polygon buffer analysis with a distance of 63.5 m. 

Where ∆f is the offset of centroid mass, ∆X =  XT − XGi (i = 1,2,3,4), and is the 
difference between the XT (X-coordinate of the centroid of the traditional buffer 
analysis) and the XGi (X-coordinate of centroid for generalized buffer analysis). 
∆Y = YT − YGi (i = 1,2,3,4) and is the difference between the YT (Y-coordinate of the 
centroid of the traditional buffer analysis) and the YGi (Y-coordinate of centroid for 
generalized buffer analysis). 

Comparison analysis for Data s et-1: For Data set-1, the six parameters for point, 
line, and polygon buffer zones are calculated, associated with the different param-
eters, and shown in Table 8.4 through Table 8.6. 

Comparison analysis for Dataset-2: For Data set-2, the six parameters for point, 
line, and polygon buffer zones are calculated, associated with the different param-
eters, and shown in Table 8.6 through Table 8.7. 
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FIGURE 8.21 Generalized polygon buffer using Data set-2 with the different increment 
curves at (a)∆S1 = 1.0 m, (b) ∆S2 = 5.0 m, (c) ∆S3 = 10.0 m, and (d) ∆S4 = 15.0 m. 
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TABLE 8.3 
The Difference Value and the Shape Similarity Index of the GPIB Relative to 
TPB for Data Set-1 

∆Area (m2) ∆perimeter (m) ∆f(m) D (|a, b|) (%) Sarea (%) Sper (%) 

∆φ1 = 1.5° 29 −205 1.4 41.4 97.7 66.1 

∆φ2 = 3° 46 −191 1.5 39.8 96.4 67.6 

∆φ3 = 6° 83 −167 2.2 31.2 93.5 70.5 

∆φ4 = 9° 112 −146 2.8 26.3 91.2 73.3 

TABLE 8.4 
The Difference Value and the Shape Similarity Index of the GLB Relative to 
TLB for Data Set-1 

∆Area (m2) ∆perimeter (m) ∆f(m) D (|a, b|) (%) Sarea (%) Sper (%) 

∆L1 = 1 m 3697 −986 0.9 53.7 98.5 72.9 

∆L2 = 5 m 5897 −878 1.0 50.9 97.6 75.2 

∆L3 = 10 m 8805 −790 1.6 38.9 96.4 77.1 

∆L4 = 15 m 12286 −725 2.1 33.8 94.9 78.6 

TABLE 8.5 
The Difference Value and the Shape Similarity Index of the GPLB Relative to 
TPLB for Data Set-1 

∆Area (m2) ∆perimeter (m) ∆f(m) D (|a, b|) (%) Sarea (%) Sper (%) 

∆S1 = 1 m 5034 −1425 17.3 5.8 97.7 68.3 

∆S2 = 5 m 8695 −1572 17.0 5.9 95.9 65.0 

∆S3 = 10 m 11796 −1652 16.9 5.9 94.6 63.2 

∆S4 = 15 m 16703 −1733 17.5 5.7 92.3 61.4 

TABLE 8.6 
The Difference Value and the Shape Similarity Indexes of the GPIB Relative 
to TPB for Data Set-2 

∆Area (m2) ∆perimeter (m) ∆f(m) D (|a, b|) (%) Sarea (%) Sper (%) 

∆φ1 = 1.5° 394 −3565 34.1 2.8 68.9 10.1 

∆φ2 = 3° 690 −1502 47.6 2.1 45.6 20.9 

∆φ3 = 6° 867 −494 44.5 2.0 31.5 44.7 

∆φ4 = 9° 974 −84 52.6 1.9 23.1 82.6 
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TABLE 8.7 
The Difference Value and the Shape Similarity Index of the GLB Relative to 
TLB for Data Set-2 

∆Area (m2) ∆perimeter (m) ∆f(m) D (|a, b|) (%) Sarea (%) Sper (%) 

∆L1 = 1 m 16050 −12493 8.5 10.6 80.3 11.1 

∆L2 = 5 m 24757 −11085 11.3 8.1 69.6 12.3 

∆L3 = 10 m 26349 −8741 14.7 6.4 67.6 15.1 

∆L4 = 15 m 47936 −3446 26.1 3.7 41.0 31.1 

TABLE 8.8 
The Difference Value and the Shape Similarity Index of the GPLB Relative to 
TPLB for Data Set-2 

∆Area (m2) ∆perimeter (m) ∆f(m) D (|a, b|) (%) Sarea (%) Sper (%) 

∆S1 = 1 m 7253 −2471 1.5 41.7 91.9 32.7 

∆S2 = 5 m 8539 −2372 1.4 41.3 90.6 33.2 

∆S3 = 10 m 10099 −2035 1.7 37.3 88.9 36.7 

∆S4 = 15 m 32034 −1792 2.0 33.7 64.7 39.6 

8.4.3.2 Remarks from the Compared Results 

8.4.3.2.1 From Traditional/Generalized Point Buffer Algorithms 
With Table 8.4 and Table 8.7, a few remarks can be drawn up: 

a. If the angle increment ∆φ limits to 0, the area of GPIB is close to the area of 
TPB, that is, 

2π 
S = lim ds = S

GPIB ∫ TPB 
∆ϕ→0 0 

(8.31) 

This means that the generalized buffer zone is close to the traditional buffer 
zone when the angle increment ∆φ limits to 0. 

b. Increasing the incremental angles (∆φ) from 1.5° to 9°, the area from GPB 
algorithm decreases from 1.6 times to 3.9 times for Data set-1 and from 1.8 
times to 2.5 times for Data set-2 relative to ones from the TGB algorithm; the 
perimeters from the GPB algorithm dramatically increase from 0.7 times to 
0.9 times for Data set-1 and from 0.02 times to 0.4 times for Data set-2. The 
offsets of mass centroid move from 1.4 m to 2.8 m for Data set-1 and from 
34.1 m to 52.6 m for Data set-2. 

c. Increasing the incremental angle (∆φ) from 1.5° to 9°, the relative position 
similarities decrease from 41.4% to 26.3% for Data set-1 and 2.8% to 1.9% 
for Data set-2. The relative area similarities decrease from 97.7% to 91.2% for 
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Data set-1 and 68.9% to 23.1% for Data set-2. The relative shape similarities 
increase from 66.1% to 73.3% for Data set-1 and 10.1% to 82.6% for Data set-
2. This means that the relative area similarity, relative perimeter similarity, 
and the relative position similarity slightly increase for Data set-1, while the 
relative position similarity greatly increases for Data set-2. 

8.4.3.2.2 From Traditional/Generalized Line Buffer Algorithms 
With Table 8.5 and Table 8.8, a few remarks can be drawn up: 

a. If the distance increment ∆L limit to 0, the area of GLB zone is close to the 
area of TLB zone, that is, 

L 

S = lim ds = S
GLB ∫ TLB 

(8.32) 
∆ →L 0 0 

This means that the generalized line buffer zone is close to the traditional 
buffer zone when the line increment ∆L limits to 0. 

b. Increasing the incremental distance (∆L) from 1 m to 15 m, the areas of GLB 
zone decrease from 1.6 times to 3.3 times for Data set-1 and from 1.5 times 
to 3 times for Data set-2; the perimeters increase from 0.7 times to 0.9 times 
for Data set-1 and from 0.3 times to 0.9 times for Data set-2. The offsets of 
the mass centroid move from 0.9 m to 2.1 m for Data set-1 and from 8.5 m to 
26.1 m for Data set-2. 

c. Increasing the incremental distance (∆L) from 1 m to 15 m, the relative posi-
tion similarities decrease from 53.7% to 33.8% for Data set-1 and 10.6% to 
3.7% for Data set-2. The relative area similarities decrease from 98.5% to 
94.9% for Data set-1 and 80.3% to 41.0% for Data set-2. The relative perime-
ter similarities with increasing the incremental distance increase from 72.9% 
to 78.6% for Data set-1 and 11.1% to 31.1% or Data set-2. This means that the 
relative area similarity, relative perimeter similarity, and the relative position 
similarity slightly increase for Data set-1, while the relative position similar-
ity greatly increase for Data set-2. 

8.4.3.2.3 From Traditional/Generalized Polygon Buffer Algorithms 
With Table 8.6 and Table 8.8, a few remarks can be drawn up: 

a. If the arc increment ∆S approaches 0, the area of GPLB zone is close to the 
area of the TPLB zone, that is, 

S 

SGPLB = lim ∫ ds STPLB = (8.33)
∆ →S 0 0 

This means that the generalized polygon buffer zone is close to the tradi-
tional polygon buffer zone when the arc increment ∆S limits to 0. 

b. Increasing the incremental arc length (∆S) from 1m to 15 m, the areas of 
GPLB decrease from 1.7 times to 3.3 times for Data set-1 and from 1.2 times 
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to 4.4 times for Data set-2, and the perimeters increase from 1.1 times to 1.2 
times for Data set-1 and from 0.7 times to 0.9 times for Data set-2. The offsets 
of mass centroid move from 17.3 m to 17.5 m for Data set-1 and from 1.4 m to 
2.0 m for Data set-2. 

c. Increasing the incremental arc length (∆S) from 1 m to 15 m, the relative posi-
tion similarities decrease from 5.8% to 5.7% for Data set-1 and 41.7% to 33.7% 
for Data set-2. The relative area similarities decrease from 97.7% to 92.3% for 
Data set-1 and 91.9% to 64.7% for Data set-2. The relative perimeter similari-
ties increase from 68.3% to 61.4% for Data set-1 and 32.7% to 39.6% for Data 
set-2. This means that the relative area similarity and relative perimeter simi-
larity slightly increase, while the relative position similarity quickly increase 
for Data set-1, and the relative area similarity, relative perimeter similarity, 
and relative position similarity quickly increase for Data set-2. 

With this analysis, the following conclusions can be drawn up: 

a. The differences between traditional and generalized buffer zones for the 
point, line, and polygon buffer zone generation are different upon the vari-
ables, such as incremental angles (∆φ), incremental length(∆L), and incre-
mental arc length (∆S). In particular, when these increments approach 0, the 
traditional and generalized buffer zones are the same. 

b. Increasing the incremental angle (∆φ), incremental length (∆L), and incremen-
tal arc length (∆S), the relative position similarity in GB zones for the point, 
line, and polygon buffering zone generation decreases. The smaller the data 
density is, the bigger the relative position similarity changes, and vice versa. 
The higher the relative position similarity is, the simpler the generalized buf-
fer shape is, even approaching the traditional buffer shape, and vice versa. 

c. Increasing the incremental angle (∆φ), incremental length (∆L), and incre-
mental arc length (∆S), the relative area similarity of the generalized buff-
ering zone decreases. The smaller data density is, the smaller relative area 
similarity changes, and vice versa. The higher the relative area similarity is, 
the closer the generalized buffer shape is to the traditional buffer shaper, and 
vice versa. 

d. Increasing the incremental angle (∆φ), incremental length (∆L), and incre-
mental arc length (∆S), the perimeters for point, line, and polygon buffer 
zones increase. In addition, the data density is small, and the change in the 
relative perimeter similarity is small. When the data density is large, the 
relative perimeter similarity changes greatly. The higher the relative perim-
eter similarity the simpler the generalized buffer shape is, and the closer the 
generalized buffer shape is to the traditional buffer. 

8.5 CONCLUSION 

The main contribution of this research is the development of a radial and break-
through algorithm called a generalized buffer algorithm (GBA) for point, line, and 
polygon buffer generation. This algorithm is challenging the traditional buffering 
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algorithm that has been used for over 60 years. This algorithm stems from the fact 
that traditional buffering algorithms are based on a fxed buffer distance without 
considering the difference of neighbor instances’ attributes in practice. The proposed 
GBA simultaneously considers homogeneity and the correlation of both spatial data 
and attribute data of two instances; consequently, the buffer distance varies upon the 
characteristics of two instances. 

The details of the proposed GBA are described in text. In summary, frst, spatial and 
nonspatial attributes are selected. Second, the R-proximity relationships between two 
instances are determined in accordance with the selected spatial attributes. Third, can-
didates of boundary points of the buffering zone are selected based on the R-proximity 
relationship. Forth, boundary points of the buffering zone are determined using non-
spatial attributes to decide if the candidates of boundary points of the buffer zone are 
prevalent events. Finally, the boundary points are connected to form the boundary 
of the generalized buffer zone. To validate the advances of the proposed method, the 
point, line, and polygon data sets from Beijing and Bao’an District, City of Shenzhen, 
China, are used. The experimental results and comparison analyses, using six indexes 
calculated from traditional and generalized buffer algorithms, discovered that: 

1. The proposed GBA can accurately refect the real situation of the buffering 
zone and improve the defciency and accuracy of the traditional buffering 
algorithm. 

2. From six indexes, GBA approaches to the traditional point/line/polygon buff-
ering algorithms when the incremental angle (∆φ), the incremental length 
(∆L), and the incremental arc length (∆S) approach zero. 
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Application of Mining 9 
Co-Location Patterns 
in Remotely Sensed 
Imagery Classifcation 

9.1 INTRODUCTION 

In this section, we describe the test data Set and experiment environment and pres-
ent the results of land cover classifcation. In addition to the proposed method, SAE 
(a deep neural network) that is regarded as baseline, CL-DT, and traditional DT 
(CART) are also used to classify the land cover of two test areas. The details are 
described as follows. 

9.2 DATA SETS 

9.2.1 DATA SETS 

1. The frst test area and data set: The frst test area is located at 24.25° thru 26.38° 
north latitude and 109.60° thru 111.48° east longitude, covering the entire city of 
Guilin, Guangxi Province, China. The area covers approximately 27,200 km2. The 
test area is a typical karst plain landform in which there are many exposed carbonate 
rocks (Zhou et al. 2010). 

The images of Landsat-5 TM were acquired at a local time on September 21, 
2006. The spatial resolution of three visible bands, one near-infrared band, one 
middle infrared band, and one far infrared are 30 meters, and the spatial resolu-
tion of one thermal infrared band is 120 meters. The Landsat-5, with the main 
detector TM, is operated in a sun-synchronous, 705 km orbit height and a 16-day 
revisit cycle. 

2. The second test area and data set: The second test area is located at 23.78° 
through 24.58° north latitude and 107.85° thru 108.5° east longitude, covering Du’an 
County of the city of Hechi, Guangxi Province, China. The area covers nearly 4,459 
km2. The test area is a typical karst rocky desertifcation area in which exposed car-
bonate rocks are widespread. 

The images of Landsat-5 TM were acquired at local time on January 30, 2009, 
and were ordered from the website http://datamirror.csdb.cn/. 

These imagery data were preprocessed before further utilization, including geo-
metric correction (Kardoulas et al. 1996; Storey and Choate 2004; Zhou 2011; Zhou 
and Wang 2012.), mosaic (Yang 1990; Kanazawaa and Kanatani 2004), and clipping 
(Greiner and Hormann 1998). 
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9.2.2 NONSPATIAL ATTRIBUTE AND SPATIAL ATTRIBUTE SELECTION 

In addition to the original TM imagery data, as a rule of thumb, fve nonspatial attri-
bute data, including SSM, LST, VC, the components of PCA, and texture (TEX), 
are considered to classify the land cover (see Table 9.1). SSM data can be gener-
ated by the method of the spectrum of soil water content and the regression method 
(Liu et al. 1997). LST is retrieved from Landsat TM data by a mono-window algo-
rithm (Qin and Karniell 2001). VC can be obtained by the vegetation index method 
(Mohammad et al. 2002). By applying the PCA function of ENVI 4.8 software for 
the preprocessed TM imagery data, the components of PCA can be acquired, whose 
i-th component can be represented by PCAi. Based on the co-occurrence measures, 
the texture (noted as TEX) data can be produced. There are 30,217,776 instances for 
each attribute in the frst test area and 4,954,112 instances in the second test area. 

As a rule of thumb, the instances are classifed into fve categories: water (WT), 
vegetation (VG), exposed carbonate (EC), habitation (HB), and cultivated land (CL). 

In addition to these nonspatial attributes, spatial attributes including X and Y coor-
dinates are considered as well. The metadata for the spatial data are listed in Table 9.2. 

TABLE 9.1 
Four Nonspatial Attributes 

# Nonspatial Scope 
attribute 

1 The WT PCA1 > 30 
components of VG PCA2 > 5 
PCA EC PCA3 < −5 

HB PCA1 < −10 and PCA3 > 10 

CL PCA1 < −20 

2 VC The scope is 0.1 to 0.9. 

3 SSM Percentages of I ≤ 5%, 5% < II ≤ 10%, 10% < III ≤ 15%, 15% < IV ≤ 20%, 20 < V 
≤ 25%, VI > 25, indicate different levels of moisture content. 

4 LST The scope is 282K to 302K 

TABLE 9.2 
X/Y Coordinates 

# Description 

Projection: Transverse_Mercator; Geographic Coordinate System: 
X/Y False_Easting: 500000.000000; GCS_WGS_1984 
coordinates False_Northing: 0.000000; Angular Unit: 

Central_Meridian: 111.000000; Degree (0.017453292519943295) 
Scale_Factor: 0.999600; Prime Meridian: 
Latitude_Of_Origin: 0.000000; Greenwich (0.000000000000) 
Linear Unit: Meter (1.000000); Datum: D_WGS_1984 

Spheroid: WGS_1984 
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Furthermore, these TM imagery data, SSM, LST, VC, the components of PCA, 
TEX, and X/Y coordinates are managed by a database, and each of them is respec-
tively regarded as one of the dimensions of high dimensional space in which instances 
belong to nonlinear distribution. Therefore, the coordinate of every instance can be 
seen as a vector expressed by (att11, att12, . . ., att1n), where attij represents the value 
of the i-th instance in the j-th attribute. 

9.3 EXPERIMENTS 

The fowchart of the experimental procedure is depicted in Figure 9.1. First, the 
MVU algorithm is utilized to “unfold” input data, and MVU unfolded distance 
between instances are calculated. Second, the unfolded distance is merged with the 
co-location mining algorithm to establish the exact RRS (r-relationship) between 
instances, and then MVU-based co-location rules are mined. Finally, the MVU-
based co-location rules are used to induce the generation of the decision tree, and 
MVU-based co-location decision rules are obtained. 

The experiment was conducted using a computer with an Intel Xeon E5645 Six 
core 2400 MHz (12 MB Cache) and 4 GB of RAM. We implement the proposed 
algorithm in ENVI+IDL 4.8. For all experiments, we have used tenfold cross valida-
tion. Through Google Earth, the regions of interest (ROIs) of fve classes (WT, VG, 
EC, HB, and CL) are acquired in Landsat TM images (see Table 9.3), respectively. 
Tenfold cross-validation breaks data sets of ROIs into 10 subsets of size N/10. It 
trains the proposed classifer using nine subsets and tests it using the remaining one 
subset. 

FIGURE 9.1 The fowchart of the experiment. 
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 TABLE 9.3 
Data Sets of ROIs of First Test Area 

Data sets #Instances #Attributes 

WT 10,000 12 

VG 10,000 12 

EC 10,000 12 

HB 10,000 12 

CL 10,000 12 

9.3.1 EXPERIMENTS ON THE FIRST TEST AREA 

9.3.1.1 Input Parameters 
Data input: The MVU-based co-location database, which has completed the 

“preprocessing” using the MVU-based co-location mining method, is loaded. 
Additionally, a subset of data is applied to build the model, and the rest is uti-
lized to validate the performance of the model. 

Parameters input: It is necessary to input some parameters to optimize the pro-
cess of DT induction. 

These parameters include: 

a. Minimum node size: The minimum valid node size is 0. 
b. Maximum purity: If the purity of a node is 95% or higher, the algorithm stops 

splitting it. Additionally, if its number of records is 1% or less of the total 
number of records, the algorithm stops splitting it. 

c. Maximum depth: The maximum valid depth is 20. 

9.3.1.2 Generation of MVU-Based Co-Location Mining Rules 

9.3.1.2.1 Calculation of Unfolded Distances 
Generally, there is a high correlation among different bands of remotely sensed 
imagery. And most data are redundant and repeated from the viewpoint of extracting 
the useful information. The principle component analysis (PCA) can integrate the 
useful information of original multi-band images together and make these principal 
component images unrelated with each other. For example, as shown in Table 9.4, 
the correlation between an arbitrary two bands of Landsat-5 thematic mapper (TM) 
is high, especially the correlation between TM2 and TM3. After performing PCA, 
these principal component images are unrelated with each other (see Table 9.5), and 
the main information is contained in the former three components. 

To save computational time of data processing in the MVU-based CL-DT gen-
eration, this chapter proposes an initial processing after eliminating the correla-
tion between images using the PCA method to delete those instances that are not 
apparently neighbors. This chapter takes one attribute, PCA1, which represents the 
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TABLE 9.4 
The Correlation between an Arbitrary Two Bands of Landsat-5 

# TM1 TM2 TM3 TM4 TM5 TM7 

TM1 1.0 0.95 0.92 0.31 0.46 0.62 

TM2 1.0 0.98 0.39 0.58 0.72 

TM3 1.0 0.35 0.63 0.79 

TM4 1.0 0.68 0.45 

TM5 1.0 0.91 

TM7 1.0 

TABLE 9.5 
The Correlation between an Arbitrary Two Components of PCA 

# PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 

PCA1 1.0 0 0 0 0 0 

PCA2 1.0 0 0 0 0 

PCA3 1.0 0 0 0 

PCA4 1.0 0 0 

PCA5 1.0 0 

PCA6 1.0 

frst components of PCA in image processing, as an example to explain the initial 
processing. 

Different thresholds are set up for the instances of different categories to determi-
nate the initial candidates of the MVU-based co-location. For example, the thresh-
olds of PCA1 are set as rθ1 and rθ2 (rθ1 < rθ2) for the exposed carbonate. If the values 
of PCA1 are within rθ1 and rθ2, the instances with eligible values are the initial can-
didate instances. It can be mathematically expressed by 

PCA  ( ,i j) if r  ≤ PCA ( , )  ≤ ri j1 θ1 1 θ2PCA ( ,i j) = PCA ( ,i j) ⊆ P (9.1)1 {0  other 1 

where rθ1 and rθ2 are the given minimum and maximum thresholds of PCA1, 
respectively; P is the set of PCA1(i, j); and i and j represent the i-th row and j-th 
column, respectively. 

With the implementation of this step, those non-neighbored instances will be 
deleted, and the other instances are called initial candidate instances. This means 
that the non-neighbored instances are excluded in the following computation. As a 
result, computational time is saved. 

From equation 9.1, the components of PCA are selected to determine the initial 
candidates of the MVU-based co-location. For example, the threshold of PCA3, as 
for the exposed carbonate, is less than or equal to −5, that is, 
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Max tr L{ ( )}s t. .  : ( )1 δ (L −2L +L ) = δ D ik ii ik kk ik ik (9.2)
 ( )2 L = 0 ∑ ik ik 
 ( )3 L ≥0 

D (Y ,Y )  if Y and Y are neighbor
E i j i jD (Y ,Y )  = (9.3)

U i j {min{D (Y ,Y ),D  (Y ,Y )+ D  (Y ,Y )+˜+ D  (Y ,Y )} others
U i j U i k U k h U g j 

PCA i, j( )  if PCA ( )i, j  ≤−5PCA i, j  = 3 PCA i,, j) ⊆ P( )  3 ( (9.4)3 0 if PCA ( )  = other 3{ 
3 i, j 

When the fltering is successfully fnished above, the MVU algorithm is utilized 
to unfold these data using equation 9.2. After unfolding these data, the unfolded 
distances between instances are calculated using equation 9.3. After calculation, a 
sparse matrix Dm×m of unfolded distance can be obtained that records the unfolded 
distances among instances. 

0 30 60 ˜ 230025    0 30 ˜ .    Dm m× = ˜ ˜  ˜   (9.5)
   ˜ 30    0  ×m m  

where m is 30,217,776, and the unit is meters. 

9.3.1.2.2 Determination of the MVU-Based Co-Location 
After obtaining the unfolded distances between instances, the RRSs between 
instances are determined using equation 9.6. In equation 9.6, the threshold of 
unfolded distance is set as 60, that is, Dθ = 60 (meters) because the resolution of the 
TM images is 30 meters. Therefore, we have 

1 if D Y ,Y ≤ ( ) 60 U i jR ,(Y Yj ) =  (9.6)i NAN ( if D Y ,Y ) > 60U i j

With this determination of the RRS, those instances with RRS are the candidates 
for the MVU-based co-location. A sparse matrix CDm×m of the candidates for MVU-
based co-location is generated. 

similar AttrN Y( , )Y_ 
DR = i j (9.7) 

_Total AttrN

0 1  1 ˜ 0     0 1  ̃ .    CDm m  = ˜˜  ̃×   (9.8)  ˜ 1     0  m m× 
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FIGURE 9.2 (a) The results of the determination of table instances; (b) the results are 
amplifed two times; (c) the results are amplifed 40 times. 

TABLE 9.6 
Determination of Table Instances 

Pattern RRS PCA3 VC LST SSM (%) TEX DR 

(2,3) Yes (−20.4,−22.3) (0.33,0.15) (17.2,16.8) (4.8,6.8) (53.7,46.3) 2/5 

(3,4) Yes (−22.3,−18.9) (0.15,0.13) (16.8,16.3) (6.8,7.6) (46.3,45.7) 1 

(10,15) Yes (−17.2,−20.8) (0.21,0.24) (16.9,16.8) (9.8,5.3) (58.7,46.5) 3/5 

(11,12,16) Yes (−19.3,−19.8,−21.2) (0.21,0.19,0.24) (16.5,17.1,16.6) (6.1,7.4,6.7) (47.6,46.6,6.9) 1 

On the basis of equation 9.7 and equation 9.8, for each pair candidate of MVU-
based co-location instances, PCA components, VC, SSM, LST, and TEX are employed 
to determine the MVU-based co-locations. Taking the EC as an example, as men-
tioned earlier, if the DR (density ratio) of candidates of MVU-based co-location of the 
exposed carbonate is greater than or equal to 4/5, they are MVU-based co-locations. 
If not, they will be deleted from the candidates. With the application of this algorithm, 
the k-th order MVU-based co-locations can be obtained, as shown in Figure 9.2. 

With this calculation, 8,122,155 instances are preserved. Figure 9.2c only shows 
25 instances, and the 1st-order (ignored) through 6th-order table instances of MVU-
based co-location are presented. Table VI takes four examples to explain the gen-
eration processes of the determination of MVU-based co-location. Figure 9.6c only 
shows the DRs of candidate patterns (3, 4) and (11, 12, 16), which are greater than 
4/5. However, for patterns (2, 3), there is an RRS between them, the TEX is greater 
than 50, the SSM is not in the scope of 5 to 8, and the VC is not less than 0.25 (and 
similarly, for pattern (10, 15)), so they are deleted from the candidate set. 

9.3.1.2.3 Determination of Distinct-Type Events 
On the basis of equation 9.8, for EC, the cluster center value of attributes (such as 
VC) can be obtained from the average value of samples. So we have 

S C 
2Ψi =∑∑( f −m )  (9.8)i k 

=i 1 k 1= 
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Ψi = ( fi − .0 37 )2 (9.9) 

With the calculation, the threshold is set to 0.04. If Ψi  is less than or equal to 
0.04, then the i-th instance is a distinct event. 

9.3.1.3 Experimental Results 
A DT is induced by the proposed method. With post-processing to the DT, fve deci-
sion rules are induced (Figure 9.3). 

The classifcation results of remote sensing images in the frst test area using the 
proposed method are presented in Figure 9.4a. Moreover, through applying CL-DT, 
SAE (Chen et al. 2014; Vincent et al. 2010), and traditional DT (CART), the clas-
sifcation results of remote sensing images in the frst test area are depicted in Figure 
9.4b, Figure 9.4c, and Figure 9.4d, respectively. Furthermore, some differences are 
marked by black circles in Figure 9.4. In addition, the distribution of exposed car-
bonate is shown in Figure 9.5. 

9.3.2 EXPERIMENTS ON THE SECOND TEST AREA 

Similarly, the classifcation of remote sensing images in the second test area is 
retrieved by using the same method as in the frst test area. The classifcation results 
in the second test area using the proposed method, CL-DT, SAE, and DT are shown 
in Figure 9.6a, Figure 9.6b, Figure 9.6c, and Figure 9.6d, respectively. Furthermore, 
some differences are marked black circles in Figure 9.6. In addition, the distribution 
of exposed carbonate in second test area is shown in Figure 9.7. 

FIGURE 9.3 The fnal rules after verifcation and post-processing. 
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FIGURE 9.4 (a) The results of classifcation in frst test area by the proposed method 
(Guilin, China); (b) the results of classifcation in frst test area by CL-DT (Guilin, China); (c) 
the results of classifcation in frst test area by SAE; (d) the results of classifcation in frst test 
area by traditional DT (CART). 

FIGURE 9.5 (a) The extraction results of exposed carbonate by the proposed method 
(Guilin, China); (b) the extraction results of exposed carbonate by CL-DT (Guilin, China); 
(c) the extraction results of exposed carbonate by SAE; (d) the extraction results of exposed 
carbonate by traditional DT (CART). 

FIGURE 9.6 (a) The results of classifcation in second test area by the proposed method; 
(b) the results of classifcation in second test area by CL-DT; (c) the results of classifcation 
in second test area by SAE; (d) the results of classifcation in second test area by traditional 
DT (CART). 
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 FIGURE 9.7 (a) The extraction results of exposed carbonate by the proposed method 
(Du’an, China); (b) the extraction results of exposed carbonate by CL-DT (Du’an, China); 
(c) the extraction results of exposed carbonate by SAE; (d) the extraction results of exposed 
carbonate by traditional DT (CART). 

9.4 COMPARISON ANALYSIS AND VALIDATION IN THE FIELD 

9.4.1 CLASSIFICATION ACCURACY COMPARISON 

In order to analyze the classifcation accuracy of the proposed MVU-based CL-DT 
method, we take classifcation results using SAE method as a baseline, that is, “true 
value,” and perform the change detection statistical analysis by using ENVI 4.8 
software between classifcation results retrieved by SAE and MVU-based CL-DT, 
between classifcation results retrieved by SAE and CL-DT, and between classif-
cation results retrieved by SAE and traditional DT, respectively. Compared to the 
baseline classifcation results, the relative difference (RD) of classifcation results 
and relative accuracy (RA) for two test areas are shown in Table 9.7 and Table 9.8, 
respectively. 

To further analyze the classifcation accuracy, the proportions of fve categories 
are statistically analyzed and shown in Figure 9.8, As observed to Figure 9.8, the 
proportion of each category classifed by SAE and MVU-based CL-DT are very 
close. For example, in frst test area, the smallest difference between them is about 
0.2% for WT, and the biggest difference between them is 1.1% for EC. 

As observed in the Table 9.7, Table 9.8, Figure 9.8, and Figure 9.9, the proposed 
MVU-based CL-DT has the highest classifcation accuracy relative to baseline clas-
sifcation results. CL-DT takes second place, and traditional DT is the worst. 

To further explain the impact of spatial relationship for classifcation accuracy, 
spectral curves and magnifed windows of classifcation results, which are retrieved 
by the MVU-based CL-DT, CL-DT, and traditional DT, are employed for a visual 
check (see Figure 9.10 and Figure 9.11). As shown in Figure 9.10, although there are 
three different features, their spectral curves are very close and similar. One of them, 
pine (masson pine) is the main natural vegetation in frst test area, which is recoded 
as “VG” in classifcation results. The grass family (for example, rice) and walnuts 
are the main crop, which is recoded as “CL” in classifcation results. Because their 
spectral characteristics are so close and similar, DT misclassifes “VG” and “CL.” 
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TABLE 9.7 
The RD of Classification Results and RA in First Test Area 

# SAE DT CL-DT MVU-based 
(Baseline) CL-DT 

RD (%) 0 25.32 16.38 8.93 

RA (%) 100 74.68 83.62 91.07 

TABLE 9.8 
The RD of Classification Results and RA in Second Test Area 

# SAE DT CL-DT MVU-based 
(Baseline) CL-DT 

RD (%) 0 25.03 14.72 8.46 

RA (%) 100 74.97 85.28 91.54 

FIGURE 9.8 Comparison of the proportion of categories retrieved by different methods in 
the frst test area. 

For example, as observed in Figure 9.11, the classifcation results of SAE and MVU-
based CL-DT are the closest to the real image, and the classifcation results of tradi-
tional DT are signifcantly different from real image. 

As mention in section 9.3.1, the motivation of the CL-DT is to decrease misclas-
sifcation, which is caused by images with different objects but the same spectra, by 
using spatial relationship, that is, co-location relationship between instances. Thus, 
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FIGURE 9.9 Comparison of the proportion of categories retrieved by different methods in 
the second test area. 

FIGURE 9.10 Spectral curves of features. (Note: These spectral curves of features are from 
spectral libraries of ENVI 4.8). 

MVU-based CL-DT and CL-DT have higher classifcation accuracy than traditional 
DT. 

On the other hand, through using ground truth ROIs acquired from Google Earth 
and the confusion matrix method, we can get the produce accuracy (Prod. Acc.), 
user accuracy (User Acc.), over-accuracy (OA), and Kappa coeffcient of four types 
of method (see Table 9.9, 9.10, and 9.11). 
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FIGURE 9.11 Magnifed windows of classifcation results in frst test area. 

(a) The classifcation results of SAE. 
(b)/(g)/(l) True image. 
(c)/(h)/(m) Magnifed windows of classifcation results of SAE. 
(d)/(i)/(n) Magnifed windows of classifcation results of MVU-based CL-DT. 
(e)/(j)/(o) Magnifed windows of classifcation results of CL-DT. 
(f)/(k)/(p) Magnifed windows of classifcation results of traditional DT (CART). 

TABLE 9.9 
Prod. Acc., User Acc., and AA for Different Methods in First Area 

# Prod. Acc. User Acc. 

CRAT CL-DT SAE Our method CRAT CL-DT SAE Our method 

VG 100.0% 86.36% 99.55% 96.74% 90.91% 86.36% 100.0% 86.41% 

WT 72.82% 89.32% 100.0% 94.50% 98.68% 92.00% 99.69% 100.0% 

EC 79.31% 79.31% 80.88% 83.91% 57.98% 71.13% 93.61% 84.88% 

HB 84.71% 75.29% 94.65% 95.83% 76.60% 92.75% 96.63% 100.0% 

CL 63.39% 83.93% 97.63% 86.07% 81.61% 77.69% 100% 86.78% 

AA 80.05% 82.84% 94.54% 91.41% 81.16% 83.99% 97.99% 91.61% 
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TABLE 9.10 
Prod. Acc., User Acc., and AA for Different Methods in Second Area 

# Prod. Acc. User Acc. 

CRAT CL-DT SAE Our method CRAT CL-DT SAE Our method 

VG 95.28% 86.40% 100.0% 91.75% 94.87% 74.22% 96.28% 89.00% 

WT 95.41% 90.91% 100.0% 96.70% 100.0% 89.29% 100.0% 100.0% 

EC 50.00% 75.28% 95.37% 80.90% 71.97% 81.71% 83.74% 84.71% 

HB 71.33% 81.93% 98.60% 92.94% 100.0% 89.47% 98.60% 95.18% 

CL 98.15% 75.00% 85.26% 88.29% 52.48% 78.36% 97.59% 83.76% 

AA 82.03% 81.90% 95.85% 90.12% 83.86% 82.61% 95.24% 90.53% 

TABLE 9.11 
Comparison of AA and Kappa Coefficient in Two Test Areas 

# 1st Test Area 2nd Test Area 

CRAT CL-DT SAE Our method CRAT CL-DT SAE Our method 

OA 79.87% 

Kappa Coeffcient 0.75 

83.3% 

0.79 

98.0% 

0.97 

91.1% 

0.89 

80.33% 

0.75 

81.8% 

0.77 

95.53% 

0.94 

90.1% 

0.87 

9.4.2 PARAMETERS AND COMPUTATION TIME COMPARISON 

To further evaluate the quality of the proposed method, the induced DT parameters 
and computational time are compared among the MVU-based CL-DT, CL-DT, and 
DT. 

9.4.2.1 Comparison of the Induced Decision Tree Parameters 
This chapter also compares the induced DT parameters for the proposed method, 
CL-DT method, and traditional DT. The compared results are listed in Table 9.12. The 
total number of nodes, number of leaf nodes, and number of levels of the proposed 
method decrease by 48%, 45%, and 25%, respectively, compared to CL-DT. The total 
number of nodes, number of leaf nodes, and number of levels of the proposed method 
decrease by 56%, 54%, and 33%, respectively, compared to traditional DT. This means 
that the proposed MVU-based CL-DT algorithm can make a better DT. 

9.4.2.2 Comparison of the Computational Time 
Another comparison is the running time. The running time of the proposed method 
consists of two parts, that is, the time of preprocessing (that is, unfolding data sets) 
and the time of constructing DT. In the preprocessing phase, several minutes are 
taken to unfold the original data set, that is, large images. However, in the phase 
of constructing DT, the time can be largely decreased, which has been reported in 
Table 9.13. As observed in Table 9.13, the necessary time for all of them is largely 
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TABLE 9.12 
Comparison of the Induced Decision Tree Parameters 

# DT CL-DT Our method 

Total number of nodes 25 21 11 

Number of leaf nodes 13 11 6 

Number of levels 9 8 6 

TABLE 9.13 
Comparison of the Computational Time of Constructing DT 

# Time taken (seconds) 

DT CL-DT Our method 

Data processing 6 4 3 

Decision tree growing 11 8 5 

Decision tree drawing 22 18 10 

Generating rules 52 37 21 

FIGURE 9.12 Validation in feld. 

decreased. The time taken for rule generation decreases by 43% and 59%, respec-
tively, compared to CL-DT and traditional DT. This demonstrates that the proposed 
method has higher computation speed in constructing decision tree. 

9.4.3 VALIDATION IN FIELD 

For the frst test area, we conducted a feld validation in Guanyang County, 
Guilin, China (Figure 9.12). We used a Magellan 210 GPS to collect the longitudes 
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TABLE 9.14 
Sample Points 

# Latitude Longitude # Latitude Longitude 

1 25°36′11.52″ 111°6′38.88″ 11 25°36′39.45″ 111°6′49.18″ 
2 25°36′20.29″ 111°6′47.49″ 12 25°36′38.63″ 111°6′53.45″ 
3 25°36′17.86″ 111°6′39.42″ 13 25°36′32.58″ 111°6′47.21″ 
4 25°36′25.42″ 111°6′38.86″ 14 25°36′39.41″ 111°6′57.76″ 
5 25°36′26.88″ 111°6′41.03″ 15 25°36′33.75″ 111°6′44.85″ 
6 25°36′25.66″ 111°6′1.01″ 16 25°36′37.07″ 111°6′51.73″ 
7 25°36′33.95″ 111°6′48.99″ 17 25°36′40.58″ 111°6′32.31″ 
8 25°36′35.41″ 111°6′51.41″ 18 25°36′41.16″ 111°6′36.61″ 
9 25°36′37.85″ 111°6′48.72″ 19 25°36′32.56″ 111°6′37.25″ 

10 25°36′36.39″ 111°6′47.11″ 20 25°36′25.92″ 111°6′45.42″ 

FIGURE 9.13 Validation in the feld using points collected by a Magellan 210 GPS. 

and latitudes of 20 points that represent the locations of exposed carbonate 
(Table 9.14). 

These collected points are used to validate the extraction results of the exposed 
carbonate obtained by the proposed method (Figure 9.13). Only two collected points, 
points 1 and 2, do not match the extraction results, for an accuracy of 90%. 

9.5 CONCLUSIONS 

The primary contribution of this research is to propose a MVU-based CL-DT algo-
rithm. The algorithm overcomes the defciency of the traditional CL-DT method, 
where the Euclidean distance of instances that are nonlinear distributions in high 
dimensional space cannot accurately refect the co-location relationship between 
instances through merging the maximum variance unfolding algorithm with the 
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CL-DT. In this way, the issue of “the different objects but the same/similar spec-
trum” in remote sensing images, which decreases the classifcation accuracy, can be 
better solved. 

This chapter has provided detailed descriptions of algorithms and steps. First, 
the MVU algorithm is utilized to unfold the input data, and the unfolded dis-
tances between instances in unfolded data are calculated. Second, according to 
the unfolded distances, the RRS between instances is determined. Third, MVU-
based co-location instances are found on the basis of the RRS. Then the distinct 
events are determined and MVU-based co-location rules are generated. Finally, the 
MVU-based co-location rules are merged into the DT to generate the MVU-based 
co-location decision rules. 

The proposed method has been used to classify the remote sensing images in 
two test areas that are typical karst rocky desertifcation areas. Compared to SAE, 
which is the baseline, CL-DT, and traditional DT (CART), it demonstrates that (1) 
the proposed method has the highest classifcation accuracy, with relative accuracy 
of 91.07% and 91.54% in two test areas, respectively, relative to baseline. However, 
the CL-DT method reaches 83.62% and 85.28%, respectively, and traditional DT 
only gets 74.68% and 74.97%, respectively; and (2) the proposed method can pro-
duce a better tree, because the total number of nodes, the number of leaf nodes, 
and the number of levels of the proposed method decreases by 48%, 45%, and 25%, 
respectively, compared to CL-DT, decreases by 56%, 54%, 33%, respectively, com-
pared to traditional DT; and the time taken for data processing, decision tree gen-
eration, drawing the tree, and generating rules decreases by 25%, 38%, 44%, and 
43%, respectively, compared to CL-DT, and decreases by 50%, 55%, 55%, 60%, 
respectively, compared to traditional DT. With the calculation results of the confu-
sion matrix using the ROIs, it can be concluded that (1) the OAs for MVU-based 
CL-DT reach 91.10% and 90.53% and Kappa coeffcients are 0.89 and 0.87, in two 
areas, respectively; (2) the OAs for SAE achieve 98.10% and 95.53%, and Kappa 
coeffcients are 0.97 and 0.94 in two areas, respectively; (3) the OAs for CL-DT 
achieve 83.30% and 81.80%, and Kappa coeffcients are 0.79 and 0.77 in two areas, 
respectively; (4) the OAs for DT reach 79.87% and 80.33%, and Kappa coeffcients 
are 0.75 and 0.75 in two areas, respectively. 
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