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Preface 

In this book we are about to study how data abstraction, and data structures programming 
with the Standard Template Library can empower our programs. The Standard Template 
Library (STL) was developed at Hewlett-Packard, based on the work of Alexander 
Stepanov and others. Libraries similar to this have been developed for other languages 
such as Ada and now Java. C++ however, has been special in that the standard for the 
language has evolved specifically to support generic programming as seen in the STL. 

The Standard Template Library provides a solid basis of fundamental abstract data 
types and algorithms that are commonly needed in many software projects. It combines 
efficiency of implementation with the safety of compile time type checking of arguments. 
Once a student learns to use the library, it will no longer be necessary to rebuild common 
data types such as lists and expandable arrays for each new project. The STL provides 
these and many others without the compromise in efficiency that is the usual trade-off for 
generality. 

In many places in this book we shall speak about "the" implementation of the STL. 
This is not precisely true as the STL is not defined in terms of an implementation, but in 
terms of a specification of behavior and efficiency. Other implementation strategies can be 
used than the ones that we detail here, provided that they meet the specification. What we 
are actually describing is the so called "reference implementation" of the STL that was re­
veloped at Hewlett-Packard as the library standard was being developed. 

Our technique for teaching data structures along with the STL is to develop C++ 
classes and functions that are similar to, though simpler than the reference implementa­
tion. In some cases our sample implementation does not meet all of the STL require­
ments, and we will point out the serious discrepancies as we go along. It is our belief that 
students can learn from working with these simpler implementations and that they will 
give appropriate background for examining the actual implementation if that is reemed 
necessary. Some of the "simpler" implementations are actually quite sophisticated-more 
so than is found in some books intended for this level. 

There are some places where, in a sequence of exercises, each depends on the earlier 
ones. This is a good place to put a team of students to work implementing different parts 
based on prototypes agreed upon as a group. 
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The Standard Template Library 

Complete documentation of the STL can be found in the current C++ standards document 
(see reference [13] in the Bibliography) and from: 

Alexander Stepanov and Meng Lee 
http://www.cs.rpi.edul-musserlstl.html 
look for doc.ps.gz 

The STL code shown in this book is taken from the Hewlett-Packard version of STL 
that is used as the basis of many commercial versions of the library. This material is: 

Copyright (c) 1994 
Hewlett-Packard Company. 

Permission to use, copy, modify, distribute and sell this software 
and its documentation for any purpose is hereby granted without fee, 
provided that the above copyright notice appear in all copies and 
that both that copyright notice and this permission notice appear 
in supporting documentation. Hewlett-Packard Company makes no 
representations about the suitability of this software for any 
purpose. It is provided "as is" without express or implied warranty. 

Reference versions of the STL may be obtained over the internet from David Musser 
at address 

ftp://ftp.cs.rpi.edulpub/stl/ 
or from Hewlett-Packard at ftp://butler.hpl.hp.comlstll 

The software written specifically for this book may be obtained from 
http://csis.pace.edul-berginlstl 
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Chapter 1 
Data Structures and Algorithms 

1.1 Data Abstraction and Encapsulation 

Niklaus Wirth, the creator of Pascal, Modula-2, and more recently, Oberon, once wrote a 
book entitled Data Structures + Algorithms = Programs. A key idea of that book is that 
data structures and algorithms must work together to produce a result. Further, the thesis 
is proposed that data structures and algorithms must be developed together, and, using 
modem languages, should be packaged together as a unit of functionality. 

As an example, the built-in floating point types of C++, such as float and double, 
come packaged within the language with a set of operations that manipulate them. Opera­
tors such as operatoH and operator< are intrinsically bound to and indispensable from the 
values on which they operate. One of the great strengths of the C++ language is that it 
permits the programmer to create data types and bind them to operations so that they op­
erate with all of the ease and power of the built-in types. 

The idea of a data abstraction has three parts. First there is a set of values to be ma­
nipulated. The internal structure of these values is not of interest and may be hidden from 
users. For example, the internal representation of the data type double is only infrequently 
of interest to the programmer. These values are taken as atomic, or indivisible. The sec­
ond part of the definition of a data abstraction is a set of operations that manipulate the 
values. The internal workings of the algorithms is also not of interest to the user, only 
the specified results that the operations promise to provide. Again, the internal operations 
of operator* are not as important to the user of doubles as the fact that the operator ap­
proximates the true mathematical result of a multiplication. The third element of a data 
abstraction is a set of rules that define the operation of the operators. An example here 
would be a specification that sets out the limits of the approximation of the multiplica­
tion of two doubles. 

Question: What are all of the operators that C++ provides for type double? 

The process of packaging the data and the operations of a data abstraction together into 
a single unit is called encapsulation. Most modem computer languages provide some 
means of encapsulation. Object-oriented programming employs one kind of encapsula-

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998
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tion; namely that of packaging up the data and the operations that manipulate it into ob­
jects. These objects communicate with each other at run time by requesting the execution 
of operations of one another. 

One sort of data abstraction that is often of use in programming is that of a set. A set 
is a container of values of some kind. As a container we need to insert values into it am 
to check if a given value is stored. We also need operations for common set functions 
such as union and intersection. The computer representation of the set values is not of 
particular importance as long as it is adequate to support the specifications of the opera­
tions. Some representations won't do, however, since one of the specifications of an op­
eration will probably involve the speed with which an operation can be carried out. Some 
representations will not be sufficiently efficient to support this part of the specification. 
To be specific, we might want to specify that deletion from the set be achievable in con­
stant time, independent of the size of the set. We might desire this to be true if the use of 
the set is within a program in which deletions must be done frequently. This requirement 
might greatly restrict what implementations we might choose, but if the specifications 
can be met, the user does not need to be aware of the details of the implementation. For 
example, an implementation that required that each item in the set be examined to fmd the 
one to be deleted would not be suitable if deletions must be done in constant time. 

There are lots of categories of users, of course. The user of a spreadsheet program is, 
perhaps, not especially aware of the details of computer programming, and may have little 
interest in how a logarithm is implemented, or even that a power function is implemented 
using logs. Most software, however, is written to be used by other programmers. This is 
because most software is built by more than one person in a team. Most of the program­
mers are providing components to be used by other programmers to build the overall 
product. Most of the time we will use the term user for another programmer who must 
use the products of a programmer in his or her own work. 

In fact, it is desirable that the user of sets not be aware of the implementation of either 
the values or the operations. This will be especially true if the set abstraction is to be 
used in a very large project developed by many people, even more if the set data type is to 
be used in several projects over a long span of time. The reason for this is the inevitabil­
ity of change. Problems change over time and software must be built in such a way as to 
permit changes to the programs themselves. The main difficulty in exposing the details of 
an implementation to a user is that of coupling. When a user knows the details of an im­
plementation, he or she may somehow take advantage of those details. If these details 
change, as they probably will, then the software built subsequently will also need to be 
modified. This is very undesirable. We should be able to build programs out of independ­
ent parts, so that replacing one part with a functionally equivalent part will not require 
modification of the parts that depend on it. This can be achieved only if the details are ef­
fectively hidden from users. 

An analogy can be made here with hardware integrated circuits (ICs). Engineers build 
electronic equipment from off-the-shelf components based on the specifications of the 
signals that can be expected on the various pins of the IC. The internal wiring of the cir­
cuit is not of importance, only the overall effect as presented to the external interface, 
namely the pins. This greatly decreases the complexity of design, and increases its modu­
larity. 
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This de coupling of the parts of a software project can be enhanced if the details are ac­
tually hidden from other programmers so that they can be manipulated only by the opera­
tions provided. This is called information hiding and is an important feature of modem 
computer languages. 

In C++ we would build a set data abstraction by encapsulating the details within a Set 
class. The public members of the class would be the operations on our sets, and the pri­
vate members would be the implementation details. The users of our abstraction would 
use the class to create objects of type Set and would manipulate the sets by requesting 
execution of the operations such as union and intersection. We will take up the details of 
classes later in this chapter and the details of sets in a later chapter. 

Since sets need to be able to store different kinds of things, and since it is not very 
productive to define a set as containing only a single kind of thing (int set, or float set), 
we would like to be able to define our set abstraction independent of the type to be con­
tained therein. In C++ we may use templates to provide parameters to our abstractions, so 
that they may be specialized when used and do not need to be rewritten for each different 
use. 

The Standard Template Library (STL) is one of the standardized components of the 
C++ language. It provides a large set of data abstractions such as set, list, and stack that 
have proved useful in many different kinds of applications. These abstractions are all pre­
sented as templates so that they may be specialized in many ways when needed by users 
(other programmers) without being modified. The STL also has a large number of algo­
rithms for manipulating the provided abstractions using techniques of proven efficiency 
and generality. 

1.2 Classes, Data Abstraction, Encapsulation, and Information 
Hiding 

The main means of encapsulation in C++ is the class, which evolved from the C struct or 
the Pascal record idea. The main difference between classes and more primitive records is 
that classes also define functional elements as well as data elements. Thus we have 
Wirth's Data Structures + Algorithms. In C++, classes are types. Values with a class 
type are called objects. Since a class defines both data and functional elements, each object 
has both data and functional elements. Therefore, instead of the data being treated as pas­
sive, to be acted on by functions, the data (i.e., objects) are treated as active since they 
have functional parts. 

Here is a very simple class that encapsulates the idea of a die. Dice usually come in 
pairs, but we shall implement only a single die. Most dice are small cubes with a differ­
ent number of spots on each face. They are used in board games to generate player moves. 
We will use a die to generate random values that we will store in some data structures 
seen later so that we may test those structures. First we present the class declaration, 
which defines what functions are available for use in a Die. The class declaration also 
shows the variables that are used to implement a Die. 
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class Die 
{ public: 

Die(unsigned int faces 6); 

int roll ( ); 
static void randomize(int seed 0); 

private: 
unsigned int _faces; 

} ; 

The class is divided into public and private sections. The private section here contains 
only a member variable jaces. We intend to be able to create dice with any number of 
faces: even physically impossible numbers of faces. The public part contains a construc­
tor Die(int) and two member functions: rollO and randomize(int). Function randomize is 
marked static. The constructor will automatically be called whenever we create a new Die 
object. It just sets the _faces variable to its parameter. We provide a default value of 6 for 
this parameter, so that the user can create a standard six-sided die by creating a Die but 
without giving any parameter. For example, 

Die standard; 
Die special(12); 

II Creates a 6 sided die. 
II Creates a 12 sided die. 

The definition of the constructor follows. Notice how the member variable is initial­
ized between the parameter list and the (empty) statement part. 

Die::Die(unsigned int faces) 
_faces (faces) 

{ 
} 

To roll a die, we call the standard function randO that is exported from <stdlib.h>. We 
take the remainder modulo the number of faces, which gives a number between 0 arxl 
jaces - 1. We finally add one to this result and return it. 

int Die: : roll ( ) 
{ return rand() % _faces + 1; 
} 

The way that randO works, each time we re run our program we will get exactly the 
same random numbers. This is useful while testing, but if we really want random num­
bers, then we must seed the random number generator. We do this by calling the function 
srand(int). This is the purpose of the randomize member function. We randomize with the 
user's parameter, or, if that is zero, we use the system clock to give us a seed. The type 
time_t and the function timeO are exported by interface <time.h>. 
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void Die: :randomize{int seed) 
{ if (seed == 0) 

}; 

{ time_t now = time (NULL) ; 
srand{now % 32763); 

} 
else 

srand ( seed) ; 

Each Die object will contain a jaces variable and will have access to a rollO function. 
Once we create a Die object named standard, we can roll it with standard. roll ( ), as 
in 

cout « standard.roll{); 
cout « special.roll{); 

The constructor and the static function are not available in the same way. Constructors 
are called implicitly when we declare variables of class type. Static member functions are 
not part of the objects of the class, but part of the class itself. If we want to execute the 
static randomize function of the Die class, we need to say something like 

Die:: randomize ( ) ; 

What follows is the definition of a StopWatch class that we shall use to empirically 
determine the running time of certain algorithms. The class depends on a built-in interface 
<time.h> that comes with C++. The StopWatch class is user-defined and can be found in 
the interface StopWatch.h. 

class stopwatch 
{ public: 

StopWatch ( ) ; 
II Start a new timer at system 
II reference time 
II (UNIX and pc: GMT 0:0:0 Jan 1 1970) 
II (Macintosh: Midnight Jan 1 1904) 
II The resolution is one second. 

stopWatch (const StopWatch &d); 
-StopWatch { ); 
StopWatch & operator = 

(const StopWatch &d); 
time_t start { ); 

II Returns the absolute time of start. 

time_t stop { ); 
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} ; 

II Returns the absolute time of stop. 

time_t mark ( ) ; 
II Returns the absolute time of mark. 
II Prints (cout) the elapsed time 
II (seconds) since start 
II and the elapsed time since last 
II mark. 

void reset ( ) ; 
II Resets all times to system reference 
I I time. 

private: 
time_t _startTime; 
time_t _markTime; 
time_t _stopTime; 

Every class has a name and a feature list. The features, called members, may be either 
variables, such as _startTime, or functions, such as stop ( ). Each object created 
from this type definition will have all of these features. 

Some of the features are declared public and some private. The public members 
are accessible to other program sections. The private members are available only within 
the code of this class. Here all of the variable members are private, which is the usual 
case, and all of the functions are public, which is common, but not universal. This visi­
bility control is up to the creator of the class. Thus, within a class, we see both encapsu­
lation and information hiding. 

Some of the class features are special in a number of ways. Here we have two con­
structors, which are functional members that have the same name as the class. We also 
have a destructor, that has the name of the class preceded by the "-" character and no pa­
rameters. Constructors are not contained within the objects, but are used to create the ob­
jects themselves. When we include a constructor in a class, we provide the means of ini­
tialization for objects so that each object we use will always be in a consistent internal 
state. This construction by a member of the class is needed since it is the data members 
that need to be initialized, but they are private and not accessible to client code, including 
the main function that drives our computation. 

Note that some of the parameters of member functions are marked const. This simply 
means that the function will not attempt to modify them. It will then be possible to pass 
constants as well as variables for the real parameters (arguments) when the functions are 
called. 

This class illustrates the standard idiom of C++ encapsulation by providing two con­
structors, a destructor, and an assignment operator. This class is actually too simple to re­
quire all of this. They would be required if the class managed any dynamic memory. If the 
user does not provide them, then standard versions will be provided by the compiler. 
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Here we have two constructors. The first has no parameters, and constructs a Stop­
Watch from standard values-here the system clock. The second constructs one Stop­
Watch as a copy of another. The constructor with no parameters is called a default con­
structor and is needed by the C++ system as well as by users. If no constructor is 
provided by the programmer, then C++ will provide a default constructor. The constructor 
that copies an object of the same type is called a copy constructor, and it will also be 
provided if the user provides no constructors at all. The copy constructor is needed by the 
system whenever we call a function and attempt to pass a StopWatch object as an argu­
ment. The provided copy constructor just copies the individual fields from one object to 
another. The provided default constructor merely gives default values to contained objects. 

Destructors are called automatically by the C++ system when an object is no longer 
available. They provide the means for a programmer to specify clean up processing done 
when an object is destroyed. When you declare a StopWatch object as a local variable 
within a function, the variable has a lifetime that is the same as the running time of the 
function. When the function returns, all of its local data cease to be. The system will call 
destructors on all of your local objects at this time. Objects created on the free store using 
operator new, and objects declared to be static are handled differently, as will be seen later. 
The system will provide a destructor if the programmer does not, though this provided de­
structor will take no actions other than to call destructors of any other objects that are 
contained within the one being destroyed. This will be the case if one object has members 
of class type. 

The StopWatch class also defines a new version of the assignment operator, 
operator=, so that the programmer can specify what will happen when one StopWatch 
object is assigned to a StopWatch variable. This ability to give operators new meanings 
for new kinds of data is what makes it possible for C++ objects to behave just as built-in 
values do. We could, for example, provide a difference function representing the (last mark 
time) difference between two StopWatch objects. We could use operator- to imple­
ment this operation. The system will always provide operator= if the programmer does 
not. It provides for memberwise assignment of the members of the object. 

Most of the operators of C++ may be given new meanings. This mechanism is called 
operator overloading. One small weakness of the implementation of operator overloading 
in C++ is that it is not possible to change the precedence or associativity of the operators 
when giving a new version. In particular operator= has relatively low precedence and it as­
sociates from the right. All overloaded versions of this operator will behave in the same 
way. 

In the above class declaration, we have omitted the definitions of the member func­
tions. Some programmers prefer to include these definitions with the classes themselves 
and others prefer to list them separately in an implementation file. For example, in the 
separate file StopWatch.cpp, we have 

StopWatch: :StopWatch() 
_startTime(O), 
_markTime(O), 
_stopTime(O) 
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{ 
} 

time_t StopWatch::stop() 
{ _stopTime = time(NULL)i 

return _stopTimei 
} 

When defining member functions, constructors, and destructors separately, we must 
give the class name as part of the definition, using the scope resolution operator: : as 
well. 

We create a new StopWatch object by using the name of the class as a type in the 
usual way. The constructor will be called as part of the execution of this object creation. 

StopWatch myWatchi 

We operate on an object by sending it a message consisting of the name of one of its 
member functions and any needed parameters. The result of the message will be the result 
of calling the member function: 

time_t now = myWatch.start()i 

Philosophically, we treat the execution of one of the member functions as if it were 
executed by the object itself acting as if it were a computer. Therefore, we say that my­
Watch receives the start message and executes the start member function, returning the 
start time to the message sender. Thus we think of the sender of a message as a client, and 
the object that receives the message as a server that provides information to the client. 

Destructors are not called directly. The system sees to their execution when an object 
ceases to exist. Objects that are local to a function are destroyed when the function exits. 
Static objects are destroyed when the program terminates. Finally, objects created on the 
heap are destroyed when the user uses the delete operator. 

If we look back at the constructor definition above, we see that the member variables 
of the class are initialized in a special section, outside the statement part, introduced by a 
colon symbol. We give the name of a member variable and, in parentheses, the values 
that we want it to have. This initialization syntax is used only in constructors. 

Another thing to keep in mind when defining classes is that if you don't include a 
public section, then everything is automatically private. This is rarely, though occasion­
ally, useful. As a point of style, we name classes with capitalized words, member func­
tions starting with a lowercase letter, and member variables beginning with an initial un­
derscore character. This particular style isn't necessary, though it does make it easier to 
see what things are when reading code. Some style is very important to the readability of 
your programs. The standard template library itself uses a different capitalization conven­
tion. There, the class names are not capitalized, just as the built-in type names of C++ 



Chapter I. Data Structures and Algorithms 9 

are not capitalized. We also use a style in which all grouping symbols such as "{" and "r' 
either line up horizontally on the same line or vertically. 

Exercise. Examine the rest of the code of the StopWatch class provided with the code 
that came with this book. Devise a test of the code and run it. One way to do this is to 
take a program you have written previously and "instrument" it with one or more Stop­
Watches to time its behavior. You will need to include StopWatch.h, of course, and link 
to StopWatch.cpp. 

Here is another class that we shall use in future chapters. Class CountedInt defines 
very simple objects that merely keep a value that remembers the order of creation of ob­
jects of the class. This class contains a static data member c. Such a variable is not a 
member of each object of the class, as there is only one such variable for the entire class 
and all objects in the class have access to it. Notice that such a member must be initial­
ized outside the class but at the global level. The scope resolution operator "::" must be 
used to access c. Static data is also called shared data, since it is shared among objects 
within a class. In this example, we have included the definitions of the member functions 
and constructors within the class itself. 

class Countedlnt 
{ pUblic: 

Countedlnt(int x 0) 
_order(c++), 
_value (x) 

{ 
} 

Countedlnt(const Countedlnt& count) 
_order ( c++) , 

{ 
} 

_value (count._value) 

Countedlnt& operator= 
(const Countedlnt& count) 

{ if(this!= &count) 

} 

{ _value = count._value; 
} 

return *this; 

int getValue()const{ return _value;} 

void setValue(int v){ _value = v;} 
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} ; 

int getOrder()const{ return _order;} 

private: 
int _value; 
int _order; 
static int c; 

int CountedInt::c = 0; 
II Initialize c from class CountedInt. 

This class shows additional features as well. First, it is possible to give default values 
to parameters of functions in C++, including member functions. Here we have given the 
constructor CountedInt(int) a default parameter value of O. This means that if we use the 
constructor and don't give an argument, then the value 0 will be assumed for x. This also 
means that this constructor serves as a default constructor, since it may be called without 
arguments. 

Within the assignment operator=, we have used the reserved term this. Variable 
this is a pointer variable that points to the object that received the message that caused 
this code to be executed. It stands for the object in control of the computer at that time. 
The assignment operator = is treated as a message to the object on the lefthand side of op­
erator =, with the object on the righthand side treated as a parameter. Here we check to see 
if this is the same object as count, by comparing this to the address at which count oc­
curs. If they are the same, then this isn't really the assignment of a different object, so we 
do nothing. Otherwise we make the object known as this a copy of the parameter ob­
ject. But since the assignment does not result in a new object (we had two objects before 
the assignment and we have two objects when we are done), we don't give a new value to 
the _order member variable. It retains the value that it had. The return statement returns 
the object to which the variable this points. Pointers and addresses will be taken up in 
detail in the next chapter. 

Also note that two of the member functions are marked const by including this re­
served word after the parameter list. This means that the member function will not try to 
modify the object this. In other words, it won't directly or indirectly modify any of the 
member variables of this class. 

The copy constructor also illustrates that private features of a class are not private to 
the objects in the class only. They are really private to the member functions of the class. 
Therefore, within the class we may refer to the _value and _order members of any of the 
objects of the class, including those of the parameter object named count. 

Exercise. Test the above class. Make certain that you have tested all constructors aOO 
member functions. Is it possible to modify the member variable _value from main? 
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1.3 Derived Classes. Object Orientation 

In C++, one class can be derived from another, called the base. The meaning of this is 
that the derived class has all of the public features of the base class and may a&:l additional 
features. We say that the derived class inherits the features of the base. The derived class 
can also give new procedure bodies to any of the member functions of the base class. This 
is not exactly the same as overloading, in which we have several functions in a class with 
the same name but different parameters. Here we have only a single function in different 
classes with the same parameters, but different implementations in the base and in the 00-
rived class. This is called overriding. 

For example, suppose that we are building a spreadsheet program. We will use some 
container to hold the individual spreadsheet cells. It might be advantageous to (a) define 
the cells as a class, and (b) make the container hold pointers to this class. The cell class 
can define properties common to all spreadsheet cells, such as a getValue function. We 
can then derive additional classes from this cell class for the different kinds of cells in the 
spreadsheet. Some cells hold just a numeric value (NumericCell) and some hold a formula 
to be evaluated (FormulaCell). Each of these classes will define its own version of get­
Value. The spreadsheet can then hold pointers to any of these specialized cells. 

class SpreadsheetCell 
{ public: 

SpreadsheetCell( ... ); 
double getValue(); 

class NumericCell: public SpreadsheetCell 
{ pUblic: 

} 

NumericCell( ... ); 
double getValue(); 

class FormulaCell: public SpreadsheetCell 
{ public: 

} 

FormulaCell( ... ); 
double getValue(); 

Notice that we declare the base class of a new derived class after a colon. We also 
make the inheritance public. This means that a client of the NumericCell class, for exam­
ple, will be able to utilize features of the SpreadSheetCell class as well. Inheritance can 
also be private, though it is seldom used. 
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Derived classes do not have access to private members of their base classes. Some­
times it is desirable to give derived classes access to some features that are not publicly 
visible. C++ provides an additional level of visibility control called protected. A protected 
member is visible to its own class and to any derived class. Some programmers make the 
implementation variables of a class protected. Others prefer to leave them private and to 
provide access functions to them. These access functions may be public or protected as 
necessary, depending on the specific needs. This latter method lessens the likelihood that a 
change in one class will necessitate a change in another class, even a derived class. For 
example, each cell of a spreadsheet has some format that is independent of whether the 
cell is numeric or formula. Assuming that we also have a Format type defined, we might 
have something like the following in our SpreadSheetCell class: 

class SpreadsheetCell 
{ public: 

} 

SpreadsheetCell( ... ); 
double getValue(); 

protected: 
Format getFormat(); 
void setFormat(Format newFormat); 

private: 
Format _format; 

class NumericCell: public SpreadsheetCell 
{ public: 

} 

NumericCell( ... ); 
double getValue(); 

class FormulaCell: public SpreadsheetCell 
{ public: 

} 

FormulaCell( ... ); 
double getValue(); 

The derived classes will have access to getFormatO and setFormatO. This means that 
the member functions of these derived classes may call the protected functions, and may 
directly refer to protected variables if there are any. The ordinary clients of the cells will 
not have such access. 

The best way to use inheritance is to conceptualize relationships between different 
kinds of data in your program. If one kind of data seems to be a specialization of another 
kind, then the more specialized kind is a good candidate for a derived class and the more 
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generalized kind a good choice for its base class. Inheritance models specialization well 
and other relationships poorly. In particular, it models part relationships badly. An auto­
mobile is made up of parts: body, frame, engine, wheels, and so on. We don't use inheri­
tance to model this relationship, however, but member variables. An Automobile object 
has a body member, a frame member, etc. On the other hand, there are different kinds of 
automobile engines. It might make sense to have a base class Engine, with derived 
classes for HighPerformanceEngine, Diesel Engine, and whatever other kinds are neces­
sary. 

The Standard Template Library does not depend heavily on object-oriented features of 
C++. Relatively little inheritance is involved in this library. In contrast, other libraries 
use inheritance extensively, some to the extent that every class is derived from a common 
base class. Some other object-oriented languages (Smalltalk, Modula-3, Java) make this a 
requirement, in fact. 

Exercise. Suppose in a software library we needed both an Integer class and a Fraction 
class. Is either of these a good candidate for a base class of the other? Explain your answer 
thoroughly. Consider both the concepts involved and the use of the classes. 

1.4 Templates 

Templates are another important means of providing abstractions in C++. They permit us 
to define entire collections of functions or classes at once and then tailor them for use as 
needed. The STL depends fundamentally on this facility, as you can guess from the name. 
The basic idea of templates is that they allow us to write functions and classes in a very 
general way and then specialize them when they are actually put to use. 

In C++ there are two different kinds of templates: function templates and class tem­
plates. Function templates are used when the same algorithm can be applied to different 
kinds of arguments. Class templates are used when the same class structure can utilize dif­
ferent types in the same way. 

The most commonly seen example of a function template is one that defines the algo­
rithm for swapping the values of two variables. As an ordinary function, if we want to 
swap the values in two integer variables we would write the following: 

void swap(int& a, int& b) 
{ int temp = ai 

a bi 
b = tempi 

} 

We desire to generalize this, of course, since exactly the same algorithm works for 
floats, or indeed any assignable data types. We can do so with a function template as fol­
lows: 
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template <class T> 
void swap(T& a, T& b) 
{ T temp = a; 

a b; 
b = temp; 

} 

To define this template we have done two things. We replaced all occurrences of the 
type int with a template parameter symbol T, and we indicated that we wanted a function 
template instead of a function by including the template preamble to the function defini­
tion. In this context, the template parameter T is defined in angle brackets, "<" and ">," 
and it is preceded by the word class. This use of class is not related to classes as defined 
above, but simply means that the parameter is required to be a type. 

A function template defines a family of functions, one for each possible set of values 
of the parameters. Yes, you can have several parameters. We use such a function template 
simply by calling one or more of the functions that it defines. For example, 

int x = 5, Y = 3; 
swap(x, y); 
float r = 5.2, s = 1.1; 
swap(r, s); 

The system will create two different functions for us using the function template. 
These template functions will be able to swap ints and floats respectively. The function 
template mechanism is a function factory facility, since it creates functions as needed. 

Class templates are used when we write one class that must depend on another type, 
but that other might be different for different uses. For example, a set needs to contain ob­
jects of some kind, but what kind is of little importance when we define what we mean 
by a seL Therefore, instead of defining set as a class, it would be better to define it as a 
class template, and let the user decide what kind of object should be put into his or her 
sets. 

Extending the example above, in which we built a class of counted ints, there was no 
reason that we needed to restrict ourselves to type int. We could instead have provided a 
class template so that we could count creations in any kind of values. Consider how we 
do this. First we come up with a name: CountedValue. Then we decide on a name for our 
parameter: V. Then we replace all occurrences of int that refer to the value collected, by 
the parameter V and precede the whole by a template preamble. We will have a few diffi­
culties in this particular case. 

template <class V> 
class CountedValue 
{ public: 

CountedValue(V x) 
_order ( c++) , 
_value(x) 
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{ 
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CountedValue(const CountedValue& count) 
{ _order c++; 

_value = count._value; 

CountedValue& operator= 
(const CountedValue& count) 

{ if(this!= &count) 

} 

{ _value = count._value; 
} 

return *this; 

V getValue()const{ return _value;} 

void setValue(V v){ _value = v;} 

int getorder()const{ return _order;} 

private: 
V _value; 
int _order; 
static int c; 

The first difficulty is that it is harder to give default values to parameters here, since 
we don't know their types when we write the template. One possibility is to use VO as 
the default value, as this syntax will construct a default value of type V, provided that V 
is a type that provides a default constructor. 

To use a class template, the user must explicitly give a value to the template parame­
ter. For example, 

CountedValue<int> cvi (5); 
CountedValue<double> cvd (4.1); 

will define a new counted integer value and a counted double. Note that these objects are 
from two different classes. A class template creates classes. The template mechanism for 
classes is a type manufacturing facility. 

The second difficulty concerns the initialization of static data, such as our variable c. 
We can't provide for this in general, as we don't have template variables. We need to ex­
plicitly initialize these values for each class that we intend to instantiate. This must be 
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done before we can execute the above definitions of cvi and cvd. Since the static variable 
is private, this initialization must be done at the global level, outside of any function: 

int CountedValue<int>: :c = 0; 
int CountedValue<double>: :c = 0; 

This is not much of a problem in practice, as static members are quite rare in C++. 
What types may be substituted for template parameters? C++ does not in itself place 

any restriction on the type that may be used to instantiate a class template. However, the 
code of the template itself may place restrictions. Some of these restrictions don't look 
like restrictions at all until you really understand the working of C++, and especially its 
constructors and operator structure. For example, in the template CountedValue, the pa­
rameter V appears once as the type of a parameter. This means that we may pass such a 
value, which requires the presence of a copy constructor. If we attempt to instantiate 
CountedValue with a type that does not support copy construction, then we will fail, 
with a compiler message. All of the built-in types do support copying and most user­
defined classes will also. Some classes purposely fail to provide this mechanism. Such 
classes can't be used with our CountedValue template. 

Question. What other restrictions do we impose on type V in the CountedValue tem­
plate? 

It is very important to realize and remember that C++ templates impose restrictions 
on template parameters only through use of those parameters. This is very different from 
the types given to function parameters in which the restriction is made by the type sys­
tem and not by the uses to which the parameter is put. So, when we define a function ard 
say that one of its parameters must be of type int, then no values are possible except int 
values (and those compatible with int)o The restriction on the parameter is not there be­
cause we happen to use an int operation, but because the declaration itself imposes it. 
This is not the case with template parameters. 

It is possible to define class templates (but not function templates) in which the pa­
rameters are values rather than types. One example simulates Pascal's range type. A range 
is an integer value (more generalized in Pascal, actually) that has legal values only in 
some fixed range, such as the integers between 10 and 20, inclusive. We can give the 
Low and High bounds of the range as template parameters. We present an excerpt from 
this class template here: 

template <int LoW, int High> 
class Range 
{ public: 

Range(int v = Low) 
_value (v) 

{ if(Low > High) 
userERROR("Illegal Range type. "); 

if(_value<Low I I _value>High) 
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userERROR("Range error. "); 
} 

Range<Low, High> & operator 
(const int v) 

( if(v<Low I I v>High) 

} 

userERROR ( II Range error. II ) ; 

_value = v; 
return *this; 

int first() {return Low;} 

int last() {return High;} 

operator int() II Produce an int 
{ return _value; 
} 

private: 
int _value; 

}; II Could provide additional operators. 

Then a range variable would be created with 

Range<10, 20> x = 10; 

If the appropriate operators are included, then all changes to the variable can be 
checked for the validity of the new values. We can therefore guarantee that x is always 
within range. 

Newer versions of C++ even permit template parameters to have default values. For 
example, we could give the range variable defaults that make them equivalent to ints with 
the following: 

template <int Low rninint, int High rnaxint> 
class Range 
{ . . . } 

If available, default template parameters apply also to type «class ... » parameters. 
The STL depends on this feature, and if it is not present, the STL can be only partially 
implemented. 
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There is one special difficulty with using templates, especially if you are a novice. 
Since templates are not compiled until they are actually used by a program, it is both dif­
ficult to test a template and difficult to read the error messages produced by compilers 
when you make errors in a template definition. To test them correctly, you need to test 
every part with a variety of different arguments so that you don't make subtle assump­
tions about the requirements of the template. A minimum test for a template intended to 
be used with most (or all) types uses a built-in type such as int, a pointer type such as 
char*, and a user-defined struct or class type. 

The error message problem is especially frustrating. It is often difficult to decide what 
to do when you get an error message in a template. Often the errors are caused by incon­
sistency between the features of the argument type and the needs of the template. For ex­
ample, if a certain operator is applied to a value of the template parameter type within the 
template, then that operator must be supplied by the actual argument used to instantiate 
the template. It is worth the effort to construct an example in which this is not the case, 
so that you see the message that will be produced by your compiler in this situation. For 
example, with the following function template: 

template <class T> 
void junkt(T t) {cout « *ti} 

and the instantiation/call 

junkt(5) i 

one of my compilers flags an error within the template (not the call) that indicates that a 
pointer or an array is required. The problem is not in the template, but in the call, how­
ever. Yes, a pointer or array is required to de-reference, but that is obvious. What the 
compiler did not do, however, was show me which of possibly several instantiations 
(calls), caused the message to occur. 

1.5 Which Data Abstractions Are Useful? 

The question posed in the title of this section is without a complete answer, as it is lim­
ited only by human ingenuity. Any time we can think of a binding of data and operations, 
with rules defining the behavior of the operations, we have a good candidate for a data ab­
straction. 

One set of abstractions used frequently today dermes modem computer interfaces: the 
so-called GVIs or Graphical User Interfaces. Window is one abstraction in this set. The 
data elements derme rectangular regions of a display. The operations open, close, paint, 
and move these regions, as well as adorn them with controls. The controls themselves 
form another subset of the abstractions of a GUI. The data derme current settings and w­
fault behavior of things like scroll bars or buttons. The operations connect the user's 
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movements with the mouse to changes in the display. It is not our purpose in this book 
to take up the details of such data abstractions. 

Another class of abstractions define numeric objects of various kinds. for example, int 
and float are built-in data abstractions in c++ as well as in many other languages. A user­
defmed abstraction could be built to define rational numbers (fractions) made up of a nu­
merator and a denominator. Another could defme complex numbers with real and imagi­
nary parts. Here the operations would be mostly arithmetic. We would want operator+ and 
operator<, for example. 

Similar to this, and very useful in C++, is a String abstraction, that makes manipula­
tion of character strings less error-prone and more convenient than is possible when using 
char* values. For example, we could overload operator+ to provide a string catenation op­
eration, as is done with the built-in string class of C++. 

Some abstractions come from the problem domain in which we happen to be work­
ing. For example, a game programmer might want an abstraction of a game board. This 
abstraction would allow for user pieces to be moved according to rules of the game. A 
programmer developing medical systems might attempt to build an abstraction of an 
automated pharmacy that would dispense drugs based on symptoms of patients. In the air­
craft industry, programmers use abstractions of aircraft flight surfaces and behaviors. 
These kind of abstractions are quite specialized to a single industry, or even to a single 
project. 

One very useful class of data abstractions is that of containers. A container contains 
values of some kind, or references (actually pointers) to values of some kind. An example 
of a container is a set. Another kind of container is a list. The difference between a set aJXl 
a list is that a list imposes a physical, though not necessarily a logical, ordering on the 
elements that it contains. A set imposes nothing on the values it contains other than the 
fact of containment. We have a lot to say about containers, as they are one major compo­
nent of the Standard Template Library. In some other libraries, containers are called col­
lections-they collect values. It turns out that containers are closely related to other data 
abstractions called iterators. Iterators are used to refer to the individual elements of con­
tainers and to provide the means of applying operations to the contents of containers. 
Think of some numbers written on a blackboard at the front of a room as being a con­
tainer. Think of sitting a few feet away with a laser pointer (a finely focused light beam) 
that you can use to point to anyone of the numbers. You can point to only one at a 
time, but you can easily move the pointer from number to number. To add up all the 
numbers, you could start with a running sum of zero and then point to each of the num­
bers in tum, adding that number to the running sum. When you had visited (iterated over) 
each of the elements exactly once, you would have the sum. Yes, iterators do something 
like what is done with integers and for loops. That similarity is part of the design of itera­
tors. 
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1.6 Abstractions Provided by the STL 

The data abstractions provided by the Standard Template Library fall into several catego­
ries. First there are the container classes and their iterators. The algorithms that manipu­
late containers are a separate category. Additionally, there are function objects, adaptors, 
and allocators. Function objects give us a way to specify characteristics of the objects 
stored in containers. Adaptors modify either the interface or the behavior of some other 
component, and allocators give us control over how the system allocates space for our ob­
jects. While there are many parts, they all revolve around the container classes, and the 
other components merely support containers. There are eight basic container types of two 
kinds. The sequential containers are arrays, vectors, deques, and lists. The associative con­
tainers are sets, multisets, maps, and multimaps. In addition, adaptors may be used to 
transform these containers into three additional forms: stacks, queues, and priority queues. 
There are versions of the STL that also include hash table containers. For the rest of this 
chapter, we will examine these container-based data abstractions conceptually. We will 
look at each of them again in detail in a later chapter. We will also look at how some of 
them might be useful in developing programs of various kinds. 

Arrays represent densely stored blocks of cells of some type. The dense storage per­
mits any individual cell to be quickly accessed. Arrays in the STL are the built in arrays 
of C++. They have fixed size. The dense storage permits the system to compute the ac­
tual position of any cell from its relative position in the container. Because of the speed 
of retrieval, arrays support many sophisticated algorithms efficiently. Arrays are the ab­
straction of choice if the problem requires fast retrieval, or the data must be sorted into 
logical order. Arrays are discussed in detail in Chapter 2. Much of the STL can be consid­
ered to be a generalization of features of arrays. The main operations on arrays are storage 
into and retrieval from a cell indicated by its relative position in the storage. In an array 
A, the first cell is denoted A[O]. If the array has n cells, then the last cell is A[n-l]. Ar­
rays are used throughout computer science for many tasks, including the implementation 
of other structures. Two dimensional arrays are just arrays in which the elements stored 
are also arrays. A spreadsheet is just a two-dimensional array. A graphics screen is a two­
dimensional array of picture elements or pixels. 

Vectors are similar to arrays except that they may be enlarged at one end to hold addi­
tional data. They may also be shrunk at that same end. They support efficient retrieval, 
though not quite as efficiently as arrays. Vectors support the same algorithms as arrays 
and a few more that require variable size containers. In addition to the storage/retrieval op­
erations of arrays, vectors support the push_back(T) operation that extends the length of 
the vector and inserts the (template parameter) value at the end. Similarly, pop_backO 
will remove the last item, shrinking the size of the vector. Vectors are used in graphics to 
hold lists of figures to be drawn or lists of points to be connected. 

Deque, pronounced as in "deck of cards," sometimes spelled dequeue, is an acronym for 
double-ended queue. A deque is also similar to an array except that it can grow and shrink 
at either end. The dense storage again permits rapid retrievals. Deques permit pushjrontO 
and pop_frontO in addition to vector operations. 
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Lists don't use dense storage. Instead the cells of a list are linked together using point­
ers or addresses of logically adjacent cells. The individual cell of a list may be physically 
anywhere in memory. From a given cell it is efficient to access only the immediately pre­
ceding and the immediately following cells, if any. This means that some algorithms are 
not appropriate for lists, as the accessing of elements would be too inefficient. On the 
other hand, lists make it possible to insert values efficiently between existing values, 
which is an expensive operation with Vectors and Deques. Therefore Lists are used where 
we desire the maximum flexibility in insertion and deletion of cells at any point in the 
container. An algorithm will be efficient on lists provided that we can execute the algo­
rithm by processing the elements in the order of the cells in the list. Otherwise, it is 
likely to be very inefficient. Because it is sometimes necessary to sort lists into a given, 
logical order, and because the generalized algorithms appropriate to Vectors and Deques 
would be inefficient on Lists, the List class template defines a sort member function that 
works well on lists, but would not work well on those other types. Lists are much more 
useful than this brief introduction suggests. They are used extensively in artificial intelli­
gence and they permit highly complex programs to be written. The language lisp is built 
of sophisticated uses of lists. 

Among the sorted associative containers, sets are intended to behave like the sets of 
mathematics. We can form unions and intersections, for example, as well as insert arxl 
remove elements. Multisets are similar except that they permit an element to be contained 
several times, while a set permits an element to be present only once if at all. Sometimes 
multisets are called bags. 

A map container is a set of pairs of a certain kind. These pairs consist of keys and as­
sociated information, where the key is used to define uniqueness of pairs. A pair is said to 
associate the additional information with its key. Sometimes these pairs are called asso­
ciations. Generally, two pairs are considered equal if their keys are equal. A set of these, a 
map, therefore implements something like a dictionary where the keys are the words to be 
looked up and the information is the definitions. An alternate name for map is dictionary, 
in fact. A map can also be thought of as implementing a function, where the set of keys 
is the domain and the set of information values is the range. Because of the equality rela­
tionship on pairs, if a map contains (1,2) and we wish to insert (1,3), then (1,2) must be 
removed since a map is like a set, and (1,2) and (1,3) are equal. 

A multimap is like a map, except that a given pair may be present more than once, or 
more precisely, two pairs with the same key may be present at the same time. Therefore 
(1,2) and (1,3) may be in a multimap simultaneously. Maps and multimaps implement 
simple kinds of databases in which we store and later look up data according to its keys. 
Maps and multimaps are used extensively in artificial intelligence and in logic program­
ming. The programming language Prolog depends fundamentally on the idea of a map. 

A stack, which can be formed from a vector, deque, or list by applying an adaptor, is a 
container in which all insertions and retrievals are at one end. The push operation inserts 
an item at this end and the pop operation removes the most recently inserted item. A 
stack implements a storage strategy called last-in, first-out, or LIFO. Stacks are used ex­
tensively in programming and are indispensable in compilers and in the management of 
runtime systems. We can often do processing on complex data structures such as trees arxl 
certain kinds of graphs by employing stacks. 
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A queue is a container that supports insertions at one end and deletion at the other. 
Queues may be effectively created from deques and lists by applying an adaptor. Queues 
are used in operating systems programming and in simulations of complex systems in 
which events occur at random times and must be handled in the order in which they occur, 
but in which a time delay may occur before they can be handled. We simply insert the 
events in a queue when they occur and remove them when we are ready to handle them. 
Queues have a protocol called first-in, first-out, or FIFO. 

Priority queues are similar to queues except that the item that is removed is not the 
item that has been in the queue for the longest time, but the one with the largest value. 
The values are considered to be priorities and we always remove the item of highest prior­
ity. Priority queues can be efficiently created from vectors and deques by applying an adap­
tor. Priority queues are used in operating systems to keep track of user jobs that are wait­
ing to execute. We always run the job with the highest priority when a processor 
becomes available. The previously running job is returned to the queue, perhaps with an 
adjusted priority, if it has not completed when it was interrupted. 

In the STL, containers are homogeneous. This means that they store elements of the 
same kind. The type of element stored in a container is specified by its template argu­
ment. Thus we have list<int> and list<Window>. Because of the object-oriented features 
of C++, it is possible to store things in containers that are not precisely of the same 
kind, but of related kinds. To do so, however, requires pointers. This will be taken up in 
the next chapter. 

1.7 Summary 

Make certain that you understand each of the following terms: 

array 
base class 
class 
class template 
constructor 
containers 
copy constructor 
coupling 
data abstraction 
default constructor 
deque 
derived class 
destructor 
encapsulation 
function template 
information hiding 
inheritance 



instantiation (of a template) 
iterators 
list 
map 
multimap 
multi set 
overloaded operator 
override 
priority queue 
private member 
protected member 
public member 
queue 
set 
stack 
static member 
vector 

1.8 Exercises 
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1. A standard list of ints may be defined by using 

#include <list.h> 

list<int> testList; 

Try the following code: 

#include <iostream.h> 
#include <STL.h> 
#include "stopWatch.h" 

stopWatch watch; 
list<int> ml; 

void main(void) 
( watch.start();watch.mark(); 

int pwr = 1; 
for(int i = 0; i < 50; ++i) 
( ml.push_back(pwr); 

pwr *= 2; 
} 

list<int>: :iterator w; 
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for(w = ml.begin(); w 1= ml.end(); ++w) 
cout « *w « ' '; 

cout « endl; 
w = max_element(ml.begin(), ml.end(»; 
cout« "Max is: "« *w «endl; 
cout « "Size is "« ml.size()«endl; 
watch.mark(); 
int query; 
cout« "Enter a positive number. "«endl; 
cin » query; 
query = abs(query); 
int count = 0; 
for 
( w = ml. begin ( ) 

w != ml.end() && *w < query 
++w 

++count; 
if (*w ! = query) 
{ --count; 

--Wi 

} 
cout «"two to the "«count«" 

« * (w)«endl; 
" 

Some entries produced by the above may be unexpected. Modify the above code to 
erase them. 

Use pushjront instead of push_back. Modify the query so that it is consistent with 
this change. We want to return the largest power of two that is not greater than the query. 

What happens when you make the following errors? Run the code and verify your an­
swers. 

#include <iostream.h> 
#include <STL.h> 

StopWatch watch; 
list ml; 

void main(void) 
{ watch.start();watch.mark(); 

cout « ml.front() « endl; 
ml . pop_back ( ) ; 
ml.pushBack(123); 

} 
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2. Create a template class to define a die, in which the number of faces of the die is an in­
teger template parameter rather than an argument to a constructor of an individual die. 
What tradeoffs are there between the two approaches? 

3. Add a member to the die class to obtain the number of faces of the die. Make this a 
function. Don't just make the number of faces a public member variable. 

4. Add a member function to the die class to obtain the value of the last roll without roll­
ing it again. What else do you need to add to the class to make this feasible? 

5. Prove that the static variable c in the counted value class is always equal to the number 
of counted values that have been created since the beginning of the program. 

6. Add another static variable to the counted value class that is always equal to the num­
ber of counted values in existence in the program. Recall that destructors are called when 
an object is deleted for any reason. Give the class a member function so that the value of 
this variable may be obtained. 

7. Write a program that rolls a standard (6-sided) die 720 times. (a). How long does it take 
for this program to run? Use a StopWatch object to find out. (b). How many 6s do you 
get in 720 rolls? How many do you expect to get? 

8. How many pairs of 6s do you get in 720 rolls of a die? A pair of 6s is defined to be a 6 
on an odd-numbered roll and another on the next even-numbered roll. 

9. How many pairs of 6s do you get in 720 rolls of a die? A pair of 6s is defined to be a 
six on any roll and another on the next roll. Note that four 6s in a row would be counted 
as three pairs. 

10. Save 120 rolls of a die in a list<int>, using push_back to insert new items. Then 
write out the list to see what it contains. Use an iterator to write it out. How long does 
this take? Repeat with a vector<int>. If you don't see any difference in time, try it with 
1200 rolls instead. What can you conclude about the relative performance of lists and vec­
tors? 

11. Save 120 rolls of a die in a list<int>. Use the sort member function of list to sort 
your list. Write out the contents using an iterator. The prototype is: 

void list<int>: :sort() 

How long does the sort take? How long does it take to sort 1,200 items in a list? 

12. Save 120 rolls of a die in a vector<int>. Use the generic algorithm sort to sort your 
list. Write out the contents using an iterator. The prototype is 
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void sort(iterator first, iterator afterLast) 

How long does the sort take? How long does it take to sort 1,200 items in a vector? 



Chapter 2 
Programming with Arrays and Pointers 

In this chapter we will learn about programming with arrays and pointers. In the Standard 
Template Library, arrays and pointers are one fundamental component, though they are 
unchanged from standard C++. Most of the major features of the STL are generalizations 
and abstractions based on features of arrays and pointers. 

2.1 Arrays 

An array is a block of memory consisting of several items of the same kind. These items 
are called components of the array. The components are arranged sequentially, one after 
the other, in computer memory. The computer will store the array with no wasted space 
in a single block of data as in Figure 2.1. This storage method is sometimes called dense 
or contiguous storage. An array has a fixed number of components, defined at the time the 
array is created. 

Figure 2.1. An Array. 

There are two ways to defme an array in C++. We are required to give the type of 
components of the array as well as its length in the definition. The easiest is to use a 
definition like the following, which defines an array of 12 doubles. 

double monthlySalary[12]; 

This definition actually defmes two things, which are most often treated as if there 
were only one. The first thing created is the array itself. If doubles require 4 bytes of stor­
age, then this array will require a single block of 48 bytes. The second thing created is the 
address of this block. The address of the block is also the address of the first component of 
the block. The name monthlySalary actually has a value equal to this address. The loca­
tion of a component of an array is called a cell. The individual cells of the array are named 
monthlySalary[O] through monthlySalary[ll]. See Figure 2.2. These cells are variables 
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like any other and can hold a value that can be changed. monthlySalary itself is a con­
stant, meaning that it will always refer to this same block of data. Notice that the length 
of the array is 12, and, since we start with a cell numbered 0, there is no cell numbered 
12. But note that monthlySalary[12J is the address of the location immediately following 
the array. 

o 1 11 

Figure 2.2. An Array with markings indicating cell numbers. 

When used as a cell number, an integer is called a subscript. This comes from mathe­
matical usage that would probably write Ai, for the computer scientist's A[iJ. A subscript 
is also called an index. 

A very common pattern of use of arrays is the following for loop, which reads 12 
doubles from the standard input and assigns them to the 12 components of the array: 

for (int i = 0; i < 12; ++i) 
cin » monthlySalary[i); 

Notice from the above that subscript expressions may, in fact, be variables. They may 
also be arbitrarily complex integer-valued expressions. c++ has no restrictions here. 

The location of the block of data defined by the array definition is up to the compiler 
to arrange. If an array definition appears at the global level or is marked static, then the 
block will continue to exist as long as your program continues to run. If the definition is 
local to a function or to an object, then the array only exists while the function is run­
ning or the object exists. Because the lifetime of the array is managed by the system, 
such data are often called automatic. This applies to all data, not just to arrays. 

Be careful with array definitions. The following defines a single double (called a scalor 
to distinguish it from an array) and an array. 

double thisMonth, monthlySalary[12); 

One of the important things to remember about arrays defined as above is that their 
sizes are determined at compile time. It is not legal to use a variable expression as the 
size of an array defined in this way. 

2.1.1 An Example. A Guessing Game 

Suppose we are building a game program in which the player guesses integer numbers. 
Suppose that the game needs to remember the guesses made by the player in the order that 
they are made. One way to do this is to create an array whose length is the maximum 
number of guesses allowed, together with an auxiliary variable called an index. 
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long guess[ 10 ]i 
int nextGuess = Oi 

Then, when a guess is made by the player, we execute 

guess[ nextGuess ] = playerGuessi 
nextGuess++i 

which first uses that value as a subscript into the array to determine the component into 
which we save the player's guess and then increments the index. We can, of course, com­
bine these two statements into the single one: 

guess [ nextGuess++ ] = playerGuessi 

Finally, we can process all of the guesses actually made with 

for(int i = Oi i < nextGuessi i++) 
... guess [ i ] ... 

For automatic arrays the built-in function sizeof will tell us the number of bytes 
required by the array. We can apply sizeof to either a value, such as a variable, or to a 
type. If we want the number of components, we can divide the size of the array by the 
size of the component. 

2.1.2 Another Example. Array of Objects 

Often we want to create arrays in which the components are to be a user-defined type, es­
pecially a type defmed by a class. There are special requirements that enable this to be 
done. C++ requires a class used in this way to have a default constructor: a constructor 
with no parameters. Since all classes should have such a constructor anyway, and since 
C++ will provide one if you don't provide any constructors at all, this is a light require­
ment. 

Recall the CountedInt class from Chapter 1. This class has a default constructor since 
we may call one of the constructors with no arguments. Now we can fill an array with 
CountedInt values and look at what we have. 

void main ( ) 
{ Countedlnt All [10]i 

} 

II The default constructor is called for each cell. 
for(int i = Oi i < 10; i++) 

cout « All[i] .getOrder() « endl; 

Exercise. Test the above code. First anticipate what it will produce. Were you correct? 



30 Data Structure Programming with the Standard Template Library in C++ 

2.2 Pointers and Arrays 

The second way to define an array actually splits the defmitions of the two parts (name 
and block) into two defmitions. We may define a variable that will be used to refer to an 
array of doubles with 

double* dailyCosts; 

Here, the variable dailyCosts is defined to be a pointer variable. While pointers can 
be used in many ways in C++, one of the most important is to make them "point to" ar­
rays. Note that dailyCosts is a variable, not a constant, and so it could hold different val­
ues at different times. The above declaration does not give it any value, however. It is 
useful to give every variable some value, and C++ provides a value named NULL for use 
in initializing pointer variables. This is normally just the constant 0, but it guarantees 
the pointer has a specific value that can be tested. A better definition of dailyCosts would 
be 

double* dailyCosts = NULL; 

This both defines the variable, and initializes its value. This looks like an assignment, 
but it is technically not. It is an initialization. 

None of the above defmes an array, just a variable that could be used to refer to an ar­
ray. We could actually define such a variable and make it point to our monthlySalary ar­
ray with 

double* someSalary = monthlySalary; 

This assumes that monthlySalary was previously defined. This defines someSalary as 
an alias of monthlySalary, and someSalary could be used just as monthlySalary is used. 
An alias is a name that refers to the same thing, usually a variable, as another name. Note 
that someSalary is a variabl~, while monthlySalary (as a name) is a constant. 
We could set the sixth monthly salary using an assignment such as 

someSalary[5] = 1200.0; 
II set the sixth monthly salary. 

However, since someSalary is a variable, it can be used to refer to any array of doubles 
(or to any single double, for that matter). One way to make someSalary refer to an array 
is to create the array at run time. The' computer reserves a large amount of storage in a 
structure called the free store or heap, which can be used to create new values as the pr0-

gram runs. We always refer to values in the free store with pointers, though pointers may 
refer to locations elsewhere as well. We create these values in the free store by using the 
C++ operator new. Operator new creates variables that are called dynamic. The life­
times of dynamic values are determined by the programmer, they are not automatic. 
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someSalary = new double[6]i 

creates a new array of 6 doubles on the free store and assigns a value to someSalary, 
which is the address of, or a pointer to, this block of data. This is shown in Figure 2.3. 
Having done this, someSalary[O] through someSalary[5] are defined and legal, though the 
computing system will not be able to detect an expression like someSalary[8] as an error. 
An important lesson to learn about arrays is that the legality of subscript expressions is 
up to the programmer to guarantee. The system provides little help here. 

I 
someSalary 

Figure 2.3. A pointer variable and the value it points to. 

The C++ system does not guarantee a particular layout of memory, so the following 
may not work exactly as shown, but some variant will. Suppose we define two automatic 
arrays with 

long arrayl[5] , array2[5]i 

Then arrayl[9] might well refer to the same component as array2[4]. This would be 
the case if array2 were laid out exactly after array 1 in the memory. 

Exercise. Try the above on your computer and report on what you learn. 

We need to distinguish between the pointer variable that refers to an array and the array 
itself. Given the above, someSalary is an automatic variable that refers to a dynamic 
value. If someSalary were local to a function, then its lifetime would end when the func­
tion returns. The array itself, however, continues to exist until the programmer deletes it 
using something like 

delete [] someSalarYi II Delete an array. 

The delete operator is the inverse of new. It returns previously defined free store values 
to the heap. Note that delete is used for other values besides arrays. To use the above, 
however, we would need to write it in a place where the name someSalary is defined. It is 
possible for a dynamic value to outlive the variable used to create it. Consider the follow­
ing: 
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double* getNewSalaries() 
{ double* result = new double[12]; 

for(int i = 0; i < 12; ++i) 
cin » resu1t[i]; 

return result; 

This function creates and returns an array. Notice that the variable result is auto­
matic and ceases to be at the end of this function. The array itself, however, is returned to 
the caller. Actually, the array itself isn't returned. A pointer to it is returned. The array it­
self just continues to exist in the free store. It is then the responsibility of the caller to 
see to its eventual deletion. A function that returns a new dynamic value should clearly 
say so in its documentation, since deletion of the value becomes the responsibility of the 
caller. 

Automatic arrays in C++ may be initialized with constant values. Suppose, for exam­
ple, that we need an array of strings, and we know the values of these strings in advance. 
Then we may define and initialize the array at once with something like 

char* days [ ] = 

{ "Sun", "Mon", "Tues", "Wed", 
"Thur", "Fri", "Sat" 

} ; 

Here days is an array of seven strings (char *). Note that we let the system count the 
length of the array for us. We could have made it explicit by writing the seven between 
the brackets also. The system will create the array defined by the initializer and make days 
a constant pointer to it. We could write out the contents of this array with 

for(int i = 0; i< 7; ++i) 
cout « days[i]«endl; 

We cannot initialize dynamic arrays in the same way. The problem is that a dynamic 
array must exist before we can give its components values, while an initialization such as 
the above must exist before the pointer that is to refer to it. In particular, the following 
will not work. 

long* values = new long[5]; 
II Create a new dynamic array. 

values = { 2, 3, 5, 7, 11 }; 

At the end of this sequence, values will be pointing to a static array and the dy­
namic array on the free store has no pointer pointing to it. It is a lost block in the heap 
that cannot be recovered while the program runs. In general, you should never follow a 
free store allocation by an assignment to the same variable. Between such statements you 
should either delete the item or create an alias, so that you always have at least one 
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should either delete the item or create an alias, so that you always have at least one 
pointer to each free store item. This is true of arrays as well as other things in the free 
store. 

If you define an array dynamically, the sizeof function won't tell you the size of the ar­
ray if you apply it to a pointer to the array. This is because you are asking for the size of 
a pointer (often 4 bytes), not the size of the array. Therefore, the sizeof(days) will proba­
bly be 4. If you ask for sizeof(*days), you will likely get I, the size of a char. The best 
way to know the size of a dynamic block is to remember it when you allocate it. Save the 
length you use in a variable. 

2.3 Pointer Arithmetic 

If we have a pointer variable, we often need the thing that it points to. The prefix 
operator * is called the dereferencing operator, and it will give us the value to which 
a pointer points. For example, in the above string example, the array variable days is a 
pointer that points to the beginning of the array. In other words, it points to its first 
component (days[O]). Therefore, *days and days[O] may be used interchangeably. 

We can also always create a pointer value. Suppose that we have a double value sal­
ary. We can create a pointer to it with &salary. 

double salary = 4500.00; 
double* aliasOfSalary = &salary; 

Now salary and *aliasOfSalary are variables that refer to the same entity, namely the 
4500.00. Thus the following will increase the salary by 2000. 

salary += 1000.00; 
*aliasOfSalary += 1000.00; 

Thus "&" and "*,, are inverse operators. One gives us an address from a value, and the 
other a value from an address. 

We can apply the above to arrays and array components as well. 

double* sal = &monthlySalary[4]; 

gives us, in sal, the address of monthlySalary[ 4]. Notice that we are using two operators 
in this expression, operator& and operator[]. The latter has the higher precedence, so this 
is the address of monthlySalary[ 4], not the fifth component of &monthlySalary (which 
doesn't really exist since &monthlySalary isn't an array). 

Some arithmetic operators can be applied to pointers. In particular, an integer may be 
added to or subtracted from any pointer, and the difference between two pointers (to the 
same type of thing) may be computed. The meaning is illustrated in the following exam­
ples: 
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long values [ ) = 

{ 10, 20, 30, 40, 50, 
60, 70, 80, 90, 100 

} ; 
long* somewhere = values; 
somewhere++; 

II Points to the 10. 
II Points to the 20. 

cout « (*somewhere) + 2; 
cout « *(somewhere + 2); 
cout « *somewhere + 2; 
cout « *(somewhere + 22); 

II Prints garbage outside 
cout « somewhere - values; 

II Prints 1; the number of 
II between the two values. 

cout « *somewhere - *values; 

II Prints 22. 
II Prints 40. 
II Prints 22. 

array. 

components 

II Prints 10. 

Note that the addition operator has lower precedence than the dereferencing operator. 
We can generate a pointer to the cell immediately following our array values with 

long * afterEnd = &values[10); 

or equivalently with 

long * afterEnd = values + 10; II See below. 

It would not be safe to de-reference this pointer, but we shall see that we will eventu­
ally need this value in the STL. 

If we have an array A, then A is a pointer and the expression &A[i] is exactly the 
same as the expression A+i. In fact, the pointer duality law specifies the equivalence of 
these two expressions. Note that A+i does not refer to a location i bytes past the begin­
ning of A, but the location i components after A. This will be true independent of the 
component type of the array. The pointer duality law can also be written as A[i] is equiva­
lent to *(A+i). 

Using the pointer duality law implies that the following for loop will process all of 
the elements of our array, values. 

for(long* p = values; p < values + 10; ++p) 
cout « *p; 

What can happen if you are not careful about your array subscripts and equivalent 
pointer expressions? That depends on whether you are reading values or writing them. If 
you are reading values from the "array" and your subscript does not fall in legal bounds, 
then you will get a value, but the value will be meaningless. The computer will interpret 
the values retrieved as if they had the component type, but, of course, they may not. It is 
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for this reason that (a) you get garbage, and (b) it is hard to recognize it as such, since it 
has the correct form. 

If you are attempting to place data into the array (write the array), then the situation is 
much worse. If you write into a valid cell then you change it, of course. If you write into 
an illegal cell, one outside the legal bounds, then you change something. That location in 
the computer memory is probably being used for something else, and when the value of 
that item is later retrieved, it will not have the last value that was correctly placed into it, 
but some value placed by our incorrect reference. There is no guarantee that the value 
written has the same type as the value read, but any sequence of bits can be interpreted ac­
cording to (nearly) any type, so the user of that other data item will find a legal value, but 
the wrong value. 

In the worst case, on some computers you can do serious damage by making illegal 
array references. For example, on many small computers, a technique called memory­
mapped 110 is used in which physical devices such as disks and printers are installed in 
such a way that they look just like memory. They are controlled by "writing" into their 
device control registers, which are just memory locations. If an out-of-bounds array refer­
ence were to accidentally write to a device register, that device would do something. Per­
haps, if it were a disk drive, it would erase that disk. This would be a very unhappy event. 

A few final words on pointer arithmetic. Notice that it is bidirectional. You can 
subtract from a pointer just as you can add. Therefore, continuing the above examples, 
afterEnd - 1 is a pointer to the last cell of our array. 

Actually, pointers are more than just bidirectional. They are actually random access. 
This means that from a pointer to any cell in the array, we can move immediately, in one 
step to any other cell. For example, suppose that third is a pointer to the third cell of 
some array. Then third + 5 is automatically a pointer to the eighth cell, if such ex­
ists. Using the pointer duality law, if A[i] represents the third cell, then A[i+5] represents 
the eighth. In either case we can move from any cell to any other, without visiting the in­
tervening, or any other, cells. 

Finally, we may subtract two pointers into the same array. Thus, again referring to 
the array values from above, afterEnd - values is the number of components of 
the array: 10. Note again that it is not the number of bytes of storage occupied by the ar­
ray. Indeed, some computers are not even byte-oriented. Rather, it is the number of cells 
between the two pointers. 

2.4 Arrays with More than One Dimension 

In C++ multiple dimension arrays are not technically possible. It is, however, possible to 
define arrays whose components are arrays, and this has much the same effect. We can 
give an alternate definition of our days array with 

char days [7] [5] = 
{ "Sun" I "Mon" I "Tues" I "Wed" I 

"Thur" I "Fri" I "Sat" 
}; 
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Here we have an array of 7 arrays, each of 5 characters. We describe the array as "7 by 
5" or as having 7 rows and 5 columns. See Figure 2.4. We need the "inner" arrays to hold 
5 characters, since Thur has four letters plus the terminating null character. The extra 
character is wasted in the other names, except Tues, of course. In C++ we may have an 
arbitrary number of dimensions in this way, but be careful, since the size of the resulting 
structure is the product of the sizes in the individual dimensions and the size of the ulti­
mate component type, here char. A large number of dimensions could result in a very 
large structure, even if the length in each dimension is small. Sometimes an array with 
two dimensions is called a matrix. 

Figure 2.4. A Matrix with 7 rows and 5 columns. 

This new declaration of days defines a slightly different structure than the original, 
however. In this new definition it is clear that there are a few wasted bytes, since each in­
terior array is required to have five, though most of the values stored require only four. In 
the original, this wasted space will not be present. The former method of definition is 
somewhat more flexible because it admits components of differing sizes. The first defmi­
tion of days defines an array whose components are pointers to characters. The second <b­
fines one whose components are arrays of characters. Similar, but not quite the same. Use 
sizeof to discover the difference. 

Just as we can get access to the individual strings by indexing, we can also get access 
to the individual characters, though we need to use double indexing. 

days [ 2 ] [ 0 ] i 
days [ 5 ] [ 2 ] i 
days[ 4 ]i 

II Refers to the T of Tues. 
II Refers to the i of Fri. 
II Refers to the array 
II containing Thur. 

Exercise. Prove that if a r ray has declaration: 

int array [A] [B] 

that &array[m][n] is the same as array + B*m + n. 
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2.5 Putting It Together. An Application 

One of the topics in artificial intelligence is machine learning. In this section we present 
a simple game that learns from its mistakes. It is almost too simple to be called artificial 
intelligence, but it is only intended to introduce you to the concept and to show pro­
gramming with arrays. 

The French Military Game is played on a graph with 11 nodes, numbered ° to 10. The 
game has two sides: the Police and the Fox. The Fox has only one piece that begins the 
game at cell 5. The Police has 3 pieces, originally at 0, 1, and 3. The Police moves first 
and the players alternate. On a tum each side may move one piece along one of the arcs. 
The object of the Fox is to reach cell 0. The Police, who may only move vertically arxl 
to the right, has the objective of trapping the Fox against a side wall For example, if the 
Fox is at 6 and the Police at 3, 5, and 9, then the Police wins. If the Fox reaches cell 0, 
then it wins. A game with over 20 moves is forfeited to the Fox. (The Fox is aspy, try­
ing to elude the Police and reach its base.) Play the game a few times with two human 
players to get a feel for it. Note that there is only one side for the Police , not three sepa­
rate players. When the Police moves, it may move only one piece. 

1--4--7 
11\ 1 11\ 

1 1 \ 1 1 1 \ 

0--2--5--8--10 
\ 1 11\ 1 1 
\1/ 1 \11 
3--6--9 

In this computer simulation, the computer plays the Fox. Initially the computer plays 
randomly, with a bias toward moving left. However, the Fox learns from its mistakes and 
after only a few games it becomes nearly impossible for the human player to win. 

To represent this game board, we use a two dimensional array of integers as shown be­
low. 

0 2 2 2 0 0 0 0 0 0 0 
1 0 2 0 2 2 0 0 0 0 0 
1 2 0 2 0 2 0 0 0 0 0 
1 0 2 0 0 2 2 0 0 0 0 
0 1 0 0 0 2 0 2 0 0 0 
0 1 1 1 2 0 2 2 2 2 0 
0 o 0 1 0 2 0 o 0 2 0 
0 o 0 0 1 1 0 0 2 0 2 
0 0 0 o 0 1 0 2 0 2 2 
0 o 0 0 0 1 1 0 2 o 2 
0 o 000 0 0 1 1 1 0 
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This is a definition of the board. It has 11 rows and 11 columns, one for each cell in 
the graph. A zero at a row, column entry indicates there is no arc from the row entry to 
the column entry. A nonzero entry indicates an arc, hence a possible path for the Fox. 
The Police can't travel all arcs in all directions, so a 2 is used to show a legal Police 
move. The 2 on row 1 (the second row, since they are numbered from 0) and column 2, 
indicates it is legal for the Police to move from cell 1 to cell 2. Such an array is called an 
adjacency matrix, since it defines which cells in a graph are adjacent (have arcs between 
them). 

We can store this game board definition in a file of 121 integers. This file is read in at 
the beginning of play and stored in a two-dimensional array. 

The key to the learning aspect of this game is that there are only 165 legal positions 
for white, and 11 positions for black. During one play of the game, the computer keeps a 
record (in an array) of all of the positions that occur. 

A single game is stored in a two-dimensional array with 20 rows and 2 columns. Col­
umn 0 is used for a Police position (a number from 0 to 164), and the second column is 
used to store the Fox position (a number from 0 to 10). 

At the end of the game it updates a 165 x 11 matrix of weights, increasing all the 
weights of positions occupied if the computer won, and decreasing them if it lost. When 
the computer tries to choose a move, it consults this table and chooses one with the 
highest weight value. This means that the complete results of all positions of all games 
played can be summarized in a rectangular array of 165 x 11 integer entries. Finding a 
best move is just searching for the maximum value in a portion of an array. Very simple. 

The Police position is translated into a number by computing 2a + 2b + 2c, where a, 
b, and c are the cell numbers occupied by the Police. Since no two Police pieces can oc­
cUPi the same cell, and since they are all less than 11, the maximum value of this is 29 
+ 2 + 210 and no two positions result in the same value. Only 165 different values ac­
tually occur. (The number of ways to choose 3 items from a set of 11 without replace­
ment, in the language of combinatorics. 165 = (11!) / (3!)(8!» The 165 different values of 
this sum are all between 7 and 1792. These are stored in another array. We search this lat­
ter array for a Police position value and the cell number in which we find the result is 
used as a row index into the memory array. 

From this description you can try to build the game. 

2.6 How the STL Generalizes Arrays and Pointers 

In the Standard Template Library there are several other data structures that have compo­
nents. These data structures are called, collectively, containers. Each of them has some 
feature different from arrays. Vectors are like arrays except that their length may be 
changed. Deques can grow also, but at either end. Lists do not use dense, contiguous, 
storage. Sets don't have a linear or sequential structure. There are several other container 
classes as well. 

Pointers are generalized in the STL to objects called iterators. An iterator has the 
property that it refers to a specific location in a container, and this location may be moved 
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by doing simple arithmetic operations. One of the features of iterators in the STL is that 
they may be used with for loops in a way completely analogous to the way we use 
pointers and for loops with arrays. Some iterators, like pointers, are bidirectional. Some 
iterators, like pointers, are random access. Other iterators are more restricted, such as for­
ward iterators that can only move in one direction through their container. Different kinds 
of containers support different kinds of iterators. 

The algorithms provided by the Standard Template Library for the manipulation of 
containers are all defmed in terms of iterators. In other words, to manipulate a container 
using one of these algorithms, we pass the algorithm one or more iterators over that con­
tainer. This philosophy that the algorithms are defined in terms of the iterators, rather 
than the containers themselves, makes it possible to write the algorithms in a very gen­
eral way. In particular, an algorithm that works for lists may well also work for sets or 
for vectors. Finally, this philosophy makes it possible for these same algorithms to work 
with the built-in arrays of C++, as well as the components of the STL proper. 

2.7 Some Common Problems. Searching and Sorting 

When we save data in some container, we often want to retrieve the values we have 
stored. The efficiency with which we can do this is greatly determined by the ordering of 
the data within the container. Sorting is the problem of putting a collection of data into 
some particular ordering or relationship. Searching is the retrieval process itself. 

2.7.1 Linear Search in Arrays 

One common problem that occurs in dealing with arrays is that of searching for an ele­
ment that mayor may not be in the array. While loops are especially helpful in this. 
Suppose we have an array A in which we are certain that a value x occurs, and we would 
like to know the cell number in which it occurs. The following loop will tell us. 

int i = 0; 
while(A[i] != x) i++; 

This loop exits as soon as A[i] = x and so we have the desired index. If we are not 
certain whether x is in the array or not, however, we need to be a bit more careful to avoid 
searching past the end of the array. The following will serve, where we replace lengthOfA 
with the actual length of the array A. 

int i = 0; 
while (i < lengthOfA && A[i] != x) i++; 

The test for the length must be made first, so that we can guarantee that an index used 
to retrieve a value (A[i]) represents a legal subscript. C++ will guarantee that if i >= 
lengthOfA, the second test will not be evaluated and the loop will exit. This is the advan-
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tage of short circuiting the evaluation of Boolean expressions. The value is returned as 
soon as enough of the expression is evaluated to make the answer clear. The same is true 
of the OR opera tor I I. Note that in this search, if the item is not present, the value of 
i will be left at lengthOfA. This can be tested. Remember that when you write a loop 
with a compound exit condition such as we did here, when it exits, you don't know which 
condition caused the exit. Therefore, an additional test after the loop is often required. 

A for loop can also be used in conjunction with the break statement. 

for (int i 0; i < lengthOfA; ++i) 
if ( A[ i ] == x ) break; 

This loop will also exit with either A[ i ] containing the desired value or the index 
equal to lengthOfA. 

Exercise. Use the pointer duality law to change the above for loop into an equivalent 
one that uses pointers instead of subscripts. 

The above process is called sequential search, since we look for the item of interest se­
quentially, starting at the first component. If the array is long, then this can take quite a 
while. It is possible to search faster if the array is sorted, as we shall see. 

2.7.2 Selection Sort 

Next we attack the problem of putting an array in order, assuming that the elements in 
the array are sortable. To be sortable means that the elements of the component type must 
support operator<. This is certainly the case for the built-in types of c++ and it may 
be true for user-defined types, since it is possible for the programmer to give alternate 
definitions of operator< for user-defmed data. As we shall see later, there are other 
ways that a type can be made sortable. 

One of the simplest algorithms for sorting is called selection sort. The idea behind se­
lection sort is to remove the smallest element from the array, then sort the remainder with 
the same process, and then attach that smallest element back to the beginning. The pic­
ture in Figure 2.5 should help. 

Sorted and Smallest 

o length 

Figure 2.5. Selection sort, outer loop. 
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This is intended to be a picture of the sort function in the middle of its operation. The 
implication is that there is an index i, somewhere between 0 and length-I, and all cells 
strictly to the left of cell i have been sorted and also contain the smallest values in the en­
tire array. 

Each array picture that we draw, called an array section, is intended to represent the 
state of some array, part way through an algorithm. Usually they represent the state of 
some loop or recursion partly completed. The above picture actually represents a for 
loop with control variable i in the middle of its execution, as we shall see. When we put 
a value below the rectangle representing the array, we intend it to represent a subscript. 
When it is inside the rectangle, it represents a value. A vertical bar in the rectangle sepa­
rates the array into two parts that may have different characteristics. If something is 
known about the elements in some section, then we write a description within the rectan­
gle. The positioning of subscripts and vertical lines is significant and in the above case, 
the fact that the subscript i is to the right of the vertical line indicates that the description 
"Sorted and Smallest" applies only to subscripts 0 through i-I. A statement, such as the 
one defined by Figure 2.5 is called an invariant because it's truth will not change. We 
will keep it true throughout our process. 

Our job is to complete the process by getting i up to value length-l so that the part to 
the left will be the entire array except for one cell. Since that part is sorted and since its 
values are no greater than the value in cell i = length - 1, then the entire array is sorted, 
which is our aim. The problem then is how to get this figure true, keep it true, and get i 
up to length - 1. 

First, it is easy to make this picture true. All we need to do is to set i to be O. Since 
there are no cells to the left of i = 0, it is certainly true that it is sorted. Likewise, noth­
ing in the left part is any larger than anything in the part from i through length-I, since 
there are no cells at all in that left part. 

The goal of getting i up to length - 1 can be achieved if we keep increasing i as we 
progress. We will use a for loop to do this for us. The part about keeping the picture in 
Figure 2.5 true is the challenging part, and this is where the original idea comes in. 

What we want to do is to find the smallest value in the part i .. .length-l and move it 
to cell i. Then, when we increase i, the picture is still true. Make sure that you understand 
why before you read further. 

To handle this last part of the task, it will be helpful to consider the picture in Figure 
2.6. 

Sorted and Smallest 

o 

Figure 2.6. Selection sort, inner loop. 
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The implication here is that we have a picture of the portion between i and length - 1. 
In this section we have an index j and an index s, and cell s contains the smallest element 
in the section between i and j. If we can get this true, keep this true, and get j up to 
length - 1, we will have found the smallest value in i...length - 1. We can then swap cells 
i and s to achieve our goal of getting the smallest value to cell i. We can make this pic­
ture true initially just by setting s and j to be i and keeping an auxiliary value named 
small to hold the smallest value discovered so far: the one in cell s. We can get j in­
creased with a for loop. We can keep the picture true just by setting s to j whenever we 
discover a value at j, smaller than the value at s as we move j along. This leaves us with 
the following code for the selection sort. Note that the only requirement we make on the 
type to be sorted is that it support operator<. 

const int length = ..• ; 

float elements[length]; 

void selectionSort() 
{ for(int i = 0; i < length - 1; ++i) 

} 

{ int s = i; 

} 

float small elements[s]; 
unsigned j; 
for(j = i + 1; j < length; ++j) 

if(elements[j] < small) 
II operator< used. 

{ s = j; 
small elements[s]i 

} 
elements[s] 
elements[i] 

elements [i] ; 
small; 

This is not a very good function, since it will only sort an array named elements, 
and only if its length is named length and only if it contains floats. We can do better. 
One way is to pass in the array to be sorted along with the length, so the function sorts 
its parameter instead of a global value. That would certainly be an improvement. In C++ 
this would look like the following. 

void selectionSort(float elements[], int length) 
{ for(int i = 0; i < length - 1; ++i) 

{ int s = i; 
float small elements[s]i 
for(unsigned j = i + 1; j < length; ++j) 

if(elements[j] < elements[s]) 
{ s = j; 

small = elements[s]; 



} 

} 

elements[s] 
elements[i] 
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elements[i]; 
small; 

This is much better, but we still can sort only floats. One way to improve this further 
is to tum it into a function template. The result won't be a function, but a means of creat­
ing functions as needed. 

template < class T > 
void selectionSort(T elements[], int length) 
{ for(int i = 0; i < length - 1; ++i) 

{ int s = i; 
T small = elements[s]; 
for(unsigned j = i + 1; j < 

if(elements[j] < small) 
{ s = j; 

small 

elements[s] 
elements[i] 

elements[s]; 

elements[i]; 
small; 

length; ++j) 

Note that here, both occurrences of the type float have been replaced by a reference to 
the template parameter T. This parameter is a type. Later if we need to sort an array of 
ints, then the system will use this function template, with T equal to int, to create a sort­
ing function for us. It will also be used to create a different function that will sort floats if 
we need it. The compiler sees to this creation (instantiation) of functions from the tem­
plate by examining which functions we make use of in our code. This instantiation of 
template functions from function templates is automatic, but note that it requires the sys­
tem to create different functions for different values of the template parameter. 

int intArray[6] = {5, 4, 3, 6, 2, l}; 
float floatArray[5] = {1.2, 3.4, 2.5, 0.4, l.l}; 
selectionSort(intArray, 6); 
selectionSort(floatArray, 5); 

One requirement that the writer of a function template must remember is that the tem­
plate parameter must appear in the parameter list of the function itself. This is the means 
that the compiler uses to determine which template function to create. It is not enough to 
specialize the return type or the body of the function. The template parameter must appear 
in the function parameter list. 
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Another means of improving on our selection sort algorithm is to include it as a 
member function in a class. Suppose we build a class Array to provide additional support 
that C++ arrays do not have. For example, our Array class could provide bounds checking 
which C++ does not do for built-in arrays. This class would actually be a class template 
rather than a class, with the element type (component type) as the template parameter. If 
this were the case, and it is attractive to do, then we might consider making selection sort 
one of the member functions of this class. In this case, the array elements would be 
one of the member variables of this class, implementing the class with a built-in array. 

These last two solutions, a function template or a member function, are both great 
improvements over our original version, but note that they still have a restriction. They 
can only sort arrays. In the function template case, we have used an array declaration as 
the type of one of the parameters. If we have a member function of class Array, we are 
obviously restricted to sorting objects of that type. 

However, if we apply the pointer duality rule uniformly, we can remove even this re­
quirement. We are going to change selectionSort again. Suppose we pass in two pointers, 
one that points to the first component of the array and one that points just after the array. 
A typical call might look something like the following: 

int elements[20]; 
int * start = elements; 
int * after = elements + 20; 
selectionSort(start, after); 

To make this work, we change the prototype of the function template to 

template < class T > 
void selectionSort(T* start, T* end) 

Now, selectionSort can sort elements without referring to an array directly in any way. 
The important thing to recognize is the pointer duality law, which states that if A is any 
pointer to the start of an array, then A[i] is equivalent to A + i. The replacements we 
shall make are defmed as follows: 

replace 
replace 
replace 

elements[s] by *loc or equivalently &elements[s] by loc 
elements[i] by *where 
elements[j] by *inner 

See Figure 2.7 and compare it to Figure 2.6. 
This gives us the following version, which no longer makes reference to any array, 

only to pointers that point in to the array. 
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Sorted and Smallest 

where 
start 

smallest in where .. .inner inner 

Figure 2.7. Selection sort, inner loop with pointers. 

template < class T > 
void selectionSort(T* start, T* end) 
{ for(T* where = start ; where < end 

} 

{ T* loc = where; 
T small = *loc; 
for 

} 

T* inner = where + 1; 
inner < end; 
inner++ 

if(*inner < *loc) 
{ loc = inner; 

small = *loc; 

*loc *where; 
*where = small; 

where++) 

The algorithms of the Standard Template Library are all defined using this last idea. 
While it is entirely equivalent to the above when we are sorting arrays, the fact that the 
algorithm doesn't refer directly to arrays but only to pointers means that the same algo­
rithm can be used for other structures that have the property that they can be referred to by 
pointers. Do note, however, that this last version is not nearly as easy to read, especially 
for novices. Being less easy to read and understand, it is more likely to have an error. 

What essential features of pointers have we used in the above? All we need to do is 
examine the uses. We have applied operator++ to the pointer variables in several 
places. We have used operator* to de-reference the pointers in several places. We have 
used operator< for pointers (as well as their de-referenced values). We have assigned 
one pointer value to another with operator=. We have done pointer arithmetic (e.g., 
where + 1). Finally, we have implicitly assumed that if we execute start++ suffi-
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ciently often, then eventually start < end will be false. The implication of all this is 
that we don't even need pointers. Any datatype that has these essential features could be 
used in place of pointers here. The iterators of the STL have all of these properties. 

It is important to note that we refer to the contents of a container in the STL using 
two iterators. The first of these refers to some element in the container: its "first" ele­
ment. The other, however, does not refer to any element. It refers to a location "past the 
end" of the container. In mathematics, a range of real numbers is called an interval. There 
are several kinds of intervals depending on whether they include or exclude their erxl­
points. The interval [a, b], for example, includes all of the numbers between a and b, in­
cluding both of these values, as well. This is called a "closed" interval. The open interval 
(a,b) excludes both endpoints, but contains the values strictly between a and b. The half 
open interval [a,b) includes a, but excludes b. In the STL we uniformly use something 
like this half open interval to refer to our containers, except that the "end points" are itera­
tors, rather than numbers. 

It is also possible to sort an array into decreasing order, in which the largest value is 
first, rather than last. To do so we replace operator< with operator> of course. 

2.7.3 Binary Search 

Once an array is sorted, it is possible to search it much more efficiently than if it is not. 
One commonly used mechanism is called binary search, which is similar to a guessing 
game that you may have played. One player announces that she has thought of a number, 
say between 1 and 100. The other players guess what the number is, and for each guess 
the original player informs the guesser whether the guess is correct, too high, or too low. 
A correct sequence of guesses can arrive at the remembered number quite quickly. In fact, 
if the number remembered is between 1 and 1 million, it only requires about 20 guesses 
to arrive at the answer. 

The correct next guess, of course, is halfway between the largest previous guess that 
was too low, and the smallest previous guess that was too high. So your first guess in 
the 1...100 version is 50 and if that is too high, you next try 25, which if too low, you 
next guess either 37 or 38, etc. 

In binary search over a sorted array, we first look in the cell in the middle of the array. 
If that is the desired value we are done, but if that value is larger than the one we seek, 
then, since the array is sorted, the desired value must be to the left (assuming the sort was 
increasing). Binary search is called binary, by the way, since it splits the portion of the 
array yet to be searched into two equal parts at each step. In other words, each failure re­
duces the remaining work by a factor of 2. 

Here is a recursive version of binary search over an array. It returns the cell number in 
which it finds the item, or an arbitrary cell number if the target is not present. Because 
the process is recursive over a portion of the array, we must pass parameters to indicate 
the subscript bounds of the search. 
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template<class T> 
unsigned int binarySearch 
( T* elements, II Array of Ts. 

const T& t, 

) 

II Searching for t in elements. 
unsigned int first, II Starting here. 
unsigned int last II Ending here. 

{ if(first >= last) return first; 
unsigned int mid = (first + last)/2; 

II Middle of the array. 

} 

if(t == elements[mid) return mid; 
if (elements [mid) < t ) 

return binarySearch(t, mid + I, last); 
else 

return binarySearch(t, first, mid - 1); 

Exercise. Modify binary search by applying the pointer duality law throughout. The pa­
rameters of your modified version should be the target plus two pointers, one to the first 
cell of interest, and the other to the location just after the last. It should return a pointer 
to the cell that contains the value if found, and an arbitrary pointer into the array other­
wise. Be careful about the translation of mid. Test both the original version and your new 
version. 

2.7.4 Quicksort 

Quicksort is called quick because it sorts faster than sorts like selection sort. This is be­
cause it does more work each time it scans the array. In particular, what we will attempt 
to do is to use a linear scan of the array to establish the truth of the logical statement em­
bodied in Figure 2.8. 

<=t >t 

o m length-l 

Figure 2.8. Quicksort partition. 

The idea here is to split the array approximately in the middle around a value t with 
the property that all values to the left of t are less than or equal to it, and all values to the 
right are strictly larger. Once we establish this "partition step" we will then recmsively 
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repeat the process on the two side pieces: the piece from 0 to m-I and the piece from m + 
I to length - 1. Since this is to be done recursively, and since we need to say in the recur­
sion step what the limits of the sorting are to be, quickSort will need to have two pa­
rameters so that we may pass in these bounds. We can establish our plan in an outline as 
follows: 

quicksort(first, last) is 
if (first < last) 

partition, finding m 
quicksort(first, m-I) 
quicksort(m+ I last) 

There are a variety of ways to carry out the partition step. One of the clearest and easi­
est follows. What we will do first is establish the truth of Figure 2.9. 

>t 

first last Low last 

Figure 2.9. Quicksort partition postcondition. 

This will be a bit easier to do, since we know where the special "pivot" value will be: 
always in cell first. Instead of m, we now use an index named lastLow, that marks the 
cell in which we fmd the last "small" value. Note that if we can establish the truth of 
Figure 2.9 then a swap of cells first and lastLow will establish Figure 2.8. 

To establish Figure 2.9, we will carry out a process described in Figure 2.10. 

>t ?? 

first lastLow last 

Figure 2.10. Quicksort partition invariant. 

What we do here is to use an index i, which we move along so that it is eventually 
equal to last. Cells between firsH I and lastLow are <= t, those between lastLow+ I and i 
are> t, and we don't know about those beyond i, since we haven't examined them yet. We 
make this picture true initially by setting i and lastLow to be first. Then all parts are 
empty except the first cell and the "??" part. We get i to be last eventually, by increasing 
it in a for loop. We keep Figure 2.10 true in the following way. Each time we increase i, 
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we examine the new cell i. If its value is > t, then nothing needs to be done. On the other 
hand, if it is <= t, we can increase lastLow and then swap cells i and lastLow. This will 
reestablish the truth of 2.10 for the new i. Putting all of this together, we arrive at the 
following code for quickSort. We employ an auxiliary function swap that exchanges the 
values of two cells. 

template<class T> 
void swap(T* elements, int i, int j) 
{ T temp = elements[i]; 

elements[i] elements[j]; 
elements[j] = temp; 

template<class T> 
void quickSort 
( T * elements, 

unsigned int first, 
unsigned int last 

) 
{ if(first < last) 

} 

{ T t = elements[first]; 
II t is the pivot. 

unsigned lastLow = first; 
unsigned i; 
for (i = first + 1; i <= last; i++) 

if(elements[i] < t) 
{ ++lastLow; 

swap(lastLow, i); 
} 

swap(first, lastLow); 
if(lastLow != first) 

quickSort 
(elements, first, lastLow - 1); 

if(lastLow != last) 
quickSort (elements , lastLow + l,last); 

Note that the portion of this algorithm up to the recursive calls is the partition step, 
and its result (Figure 2.8) is called a partition of the array. 

Exercise. Modify quickSort by applying the pointer duality law throughout. Your func­
tion should have two parameters. They are pointers to the beginning and the "after" posi­
tion. as usual. Test both the original version and your new version. 
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2.7.5 The Efficiency of These Algorithms 

After correctness, the most important aspect of any algorithm is its efficiency. There are 
two aspects to efficiency, namely the efficiency of the algorithm itself and the efficiency 
of its implementation. It turns out that the latter measure is not nearly so important as 
the former and merely requires that the programmer take care not to execute unneeded in­
structions. The essential efficiency of the algorithm itself is much more important, as it 
sets limits that no details of implementation can overcome. 

Efficiency can be measured various ways. One measure is the space required. If an al­
gorithm is written to run on a multiprocessor system, then the number of processors re­
quired may be an important measure. Usually, however, efficiency means time efficiency. 
How much time can we expect an algorithm to take to complete? 

It must first be recognized that this question cannot be answered in specific, concrete, 
exact terms. Computers differ in their speeds. Disk drives have differing transfer rates. 
Multiuser computers have different loads that affect the speed of programs running on 
them. Most importantly, each time we run a program, we likely do so with a different set 
of input data. This can have a large effect, and we expect that a run with a small amount 
of data will be faster than one with a large amount of data. 

Therefore, efficiency is always expressed in terms of some measure of the input re­
quirements (size of the data) or the resources required (memory, processors, etc.). Here we 
will consider only the time efficiency of our algorithms as a function of the size of the 
input data. We also adopt a measure that will be independent of the speed of a particular 
computing system on which a program implementing the algorithm might be run. 

Some algorithms always take the same amount of time when run on a given system 
in a given start state (system load, available memory, etc.). For example, an algorithm 
that returns the first element of an array can be expected to run in constant time independ­
ently of the size of the array. However, an algorithm that uses a simple for loop to sum 
the elements of an integer array must visit each cell of the array, so we expect that its 
running time will be proportional to the size of the array, approximately doubling if we 
double the size of the array. But this doubling isn't a precise measure either, since any 
such algorithm will have a certain amount of overhead (initializing the sum, etc.) that 
must be done no matter what the number of data items that it processes. Therefore, for 
example, summing an array of two items using our for loop algorithm will not run ex­
actly twice as long as when applied to one element. However, between 1000 and 10,000 
elements, the time will be very nearly related in a 1 to 10 ratio, since this fixed overhead 
will be amortized, or spread out over a large number of repetitions. 

In order to be as precise as possible when presenting the run-time characteristics of an 
algorithm, we resort to a mathematical means of expressing the upper and lower bounds 
of functions, here the running time, as a function of the amount of the data processed. 
What we do, essentially, is to compare the running time function to functions of well 
known behavior, such as polynomials, logarithms, and exponential functions. These 
functions have been extensively studied and characterized using calculus. When the value 
of function g is always less than the value of function f for a given input x, we say that f 
dominates g, or gives an upper bound for g. If, on the other hand, function g is always 
greater than function h at each point of the domain, we say that h forms a lower bound of 
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g. If functions f and h are also quite close together at all input values, then we have 
pinned down the behavior of function g quite well. 

Computers run relatively fast today, so the behavior of an algorithm on a small 
amount of data is only seldom of interest. For most algorithms, the time is nearly instan­
taneous. The problem gets interesting only when the data set gets large, the time gets 
long, and we reach the limit of how long we are willing to wait for an answer. So, we are 
usually willing to ignore the bounds problem for small inputs. With all of this in mind, 
we can give a definition of a precise measure of the upper bound of a function, in terms of 
another function. 

Let f and g both be functions of an integer variable. We say that function g is O(t), 
read "big oh of f," provided that there is an integer M and a constant C, such that for all 
x>M, it is true that g(x) <= C . f(x). The purpose of M is to ignore small values of x 
(the size of the input in our application). In effect, this lets us ignore the fixed ovethead 
of the algorithm. The purpose of C is to provide a constant of proportionality that lets us 
ignore the specific speed of processors. Different systems will just have different values of 
C. 

Note that if our running time is O(t) for some function f, this just means that the 
running time for input size n is less than some mUltiple of f(n) for all n that are relatively 
large. It might be nearly C·f(n) or considerably less. To get a sharp estimate of the run­
ning time, we also need a lower bound. 

Lower bounds are expressed quite differently, though it sounds similar. We say that a 
function g is g (t), read "big omega of f," if there is a constant C such that for any inte­
ger N there is an n > N such that g(n) >= C· f(n). Said another way, g is bigger than a 
fixed multiple of f for infinitely many values. All this means is that it is sometimes 
large, not that it is necessarily always large. In terms of running time, this means that for 
some sets of inputs, the program will run for a long time and that this behavior will be 
observed for more than just a finite number of values. 

Normally, however, when we give a "big oh" bound for a function, we mean that the 
running time is indeed close to that bound. So, while it is technically true to describe a 
function as 0(x2), when it is also O(x), that won't normally be done. Note that if a func­
tion is big 0 of some polynomial function, then it is also big 0 of xn, where n is the 
degree of that polynomial, since any given polynomial of degree n is O(xn). 

We call an algorithm linear if it is O(x), since f(x) = x is a linear function. An algo­
rithm that is 0(x2) is called quadratic. One that is 0(x3) is cubic. As one extreme, an al­
gorithm with constant running time is 0(1), and at the other extreme an algorithm is 
called exponential if it is 0(2n). Exponential running time algorithms take extremely 
long to execute on large sets of data, as illustrated by the following exercise. Another 
commonly used bound function is the logarithmic function !og2(n). An algorithm with 
such a bound is described as logarithmic. 

Exercise. Suppose that you have an exponential algorithm that takes 1 second to com­
plete if the size of the input is 16 items. For each additional item the time doubles. How 
much time does it take on a set of 64 items? Suppose your computing cost (cost of time 
and depreciation on the machine plus electricity consumed) is one penny for 16 items. 
What does it cost for 64 items using the same formula? 
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The sequential search algorithm presented above is linear, of course. The number of 
steps it executes is directly proportional to the length of the array, as can be inferred from 
the use of the for loop. Likewise, the selection sort algorithm is quadratic, since it con­
tains two nested loops, each of which is linear. In general, algorithms built out of loops 
are relatively easy to analyze for their runtime bounds. Recursive algorithms and some 
others are a bit more challenging. 

One means of analyzing the running time of an algorithm is to write down an equa­
tion that describes the running time and then solve it. Even though we know that sequen­
tial search has linear running time, let us use this technique to analyze the efficiency as an 
illustration of how to go about it. 

In sequential search we look at one item in a set of n and if that is not the target of the 
search, we still need to examine n-I others. Therefore, if there is a single item in our con­
tainer we take one unit of work to verify whether or not that item is the target. If there is 
more than one item, say n, then the work required is one unit to check the first item plus 
the work required for the other n-I items. If we write down this work equation, where W n 

represents the work done for n items and W n-I the work for n-I items, we get the follow­

ing. 

W n = I + W n-I ' if N > I and WI = 1. 

Equations like these are called recurrence relations because they are recursive defini­
tions of a value. As in all recursive systems, note the necessity of a base (non-recursive) 
case to which we reduce. 

We can solve this by repeated substitution, replacing a work term on the righthand 
side by its definition using this formula itself. Notice that we start with n-l on the right 
and a single I. If we substitute the meaning of W n-I = I + W n-2 into the above formula, 

we get 

If we repeat this, we get 

Wn = 2 + Wn-2 = 3 + Wn-3 ... = n 

That is to say, the work to process n items is n times the work to process one item. 
This again justifies the statement that the work of sequential search is proportional to the 
length of the array. 

Suppose that we try to analyze the running time of binary search in this same way. 
The binary search proceeds by doing one unit of work to look in the center location in the 
array. If that is not a hit, then the recursion says that the binary search must do the same 
process over a data set half as large. Of course if the array only has one item, it only takes 
one unit of work. We just verify that that item is, or is not, the target of the search. Sup­
pose that we again let W n represent the work done (time expended) for exactly n items. 



Chapter 2. Programming with Arrays and Pointers 53 

Then an equation defining this work that corresponds to the first two sentences of this 
paragraph is 

W n = I + W nl2' if n > I, and WI = 1. 

This can be solved if we substitute n = 2k into the equation and then do repeated sub­
stitutions on the righthand side using this definition itself. 

=k 

Therefore, W n = k = log2(n), and we have a logarithmic algorithm. This is very good, 

since the log of a number is small in comparison to the number. This justifies our earlier 
claim that we can binary search an array with a million items with only about 20 repeti­
tions. 

Exercise. Normally the quicksort exhibits the following behavior. The partition step 
splits the array into two parts of about equal size. Therefore, the work done is the work 
done to do the partition, which is linear, plus the work done to quick sort the two halves. 
But sorting the two halves separately is just twice the work required to sort an array half 
as big. Of course, an array with only one element takes no work at all to sort, since it al­
ready is sorted. Use this idea to verify the claim that quick sort is O(n log2(n)). 

Some algorithms work well on most data sets but perform badly on a few. Quick sort 
as presented here is such an algorithm. In an average case the quick sort is O(n log2(n)). 

However, the algorithm as presented has a very strange behavior if we give it a sorted ar­
ray to start with. In this case, the partition doesn't divide the array into two parts of equal 
size, but into one part that is empty and the other which has just one less element. So, in 
this case, the running time is the time required to do the partition (linear) plus the time 
required to sort an array with one less item. Now the recurrence is 

W n = n + W n-l' if n > 1, and WI = O. 

It is easy to show that the solution of this recurrence relation is a quadratic function of 
n. Therefore, quick sort is no better than insertion sort on a few cases. For quick sort we 
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say that the average running time is O(n log2(n», but the worst case running time is 

0(n2). As a shorthand, we will use 19(n) in place of log2(n), as the log base 2 commonly 

occurs when measuring efficiency. 

Exercise. Actually, if we use big 0 to measure efficiency, any log base is equivalent to 
any other and so the base doesn't matter. Why? 

There is another measure of running time that is occasionally useful, though not for 
these algorithms. Suppose we want to build a class to implement arrays that can be ex­
panded. A nice technique is to do the following. The class has a member variable that is 
an array of some convenient size at creation. If we later learn that the array was too small, 
we expand the array as follows. Allocate a new array, twice as long as the original, copy 
the elements from the old array into the new one, and then delete the old array, assigning 
the new one to the member variable. If we ask how much time it takes to insert an ele­
ment into this "array class", the answer is that it depends. If it is not time to expand, the 
time is constant. If an expansion is required, the time is linear in the number of items 
currently stored, to account for the copying time. But if we average this out over all inser­
tions, we find that the (average) time is still constant, actually about twice the time of 
one of the atomic instructions. Note that to make this work, you must double the size 
when you expand, not just increase it by a fixed amount. Such an algorithm is called am­
ortized constant, since we amortize the cost of an expensive operation out over several 
cheap operations, with the average being constant. 

2.8 Using Arrays with the STL 

Most of the algorithms provided with the Standard Template Library work for arrays as 
well as those additional containers provided by the STL itself. This was one of the pri­
mary design decisions of the STL. They work because pointers into arrays satisfy the re­
quirements of random access iterators. Since most of the algorithms work with such itera­
tors, they work with arrays. 

To use the algorithms you must include the header <algo.h> provided with the STL 
and probably provided with your c++ compiler. To sort an array, we need a pointer to the 
beginning of it and a pointer to the cell that would immediately follow the array (not a 
pointer to the last cell, a pointer to the following cell). Consider the following test ex­
ample: 

int testArray[] = { 3, I, 4, 2, 5 }; 
int * first = testArray; 
int * last = &testArray[5]; II Or testArray + 5; 
sort(first, last); 

for (int i =0; i< 5; ++i) 
cout « testArray[i]«endl; 



1 
2 
3 
4 
5 

This produces 
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Notice that the sort function doesn't mention the array that it is sorting. It only needs 
pointers to the first cell and the "last" position. Technically, in the language of the STL, 
sort takes two iterators as arguments and sorts the section of the container between the 
two iterators, including the item at the location of the first iterator and not including the 
position of the second. Sort works for many (but not all) of the container classes, and 
most algorithms take one or more iterators as arguments. 

There are two requirements for using the sort routine of the STL. The first is that the 
pointer must de-reference to a type that supports operator<. In other words, the compo­
nent type must support this operator. The second is that the operator< of that type must 
have the property that if a < b, then it is not true also that a = b. If your type doesn't 
meet this specification, then you might get a compiler error that operator< is not defined, 
or if it is but the operator fails to satisfy its condition, then using sort may result in an 
infinite computation. 

A somewhat less obvious requirement of the STL sort is automatically fulfilled by ar­
rays and array pointers. Sort requires that the iterators (here pointers) passed in satisfy the 
requirements of random access iterators. Since array pointers have this property this is not 
a problem, but applying sort to some other data structures (e.g., linked lists) might not 
be possible. 

The STL sort algorithm is a variation of quickSort. It is a bit more sophisticated than 
the one shown above, as it works efficiently for already sorted arrays, though it will be 
inefficient for some collections of data. The STL has other sort routines that are slower 
on average than sort, though they can be guaranteed to always be faster than quadratic al­
gorithms like selection sort. See sort_heap in the index or in Chapter 6, for example. 

Another STL algorithm that can be used in exactly the same way as sort is reverse, 
which reverses the elements of an array (or other container). 

Note that when you apply one of the STL algorithms using an iterator, the value of 
that iterator may change. It may no longer point to the location to which it originally 
pointed. We say that an iteration "consumes its iterator." 

2.9 Another Example. A Simple Database 

One of the important problems in computer processing is how to efficiently and effec­
tively store large amounts of information. The solution is called a database. We shall pre­
sent an extremely simple solution here that is not really adequate for large amounts of 
data, but it introduces a few key concepts. 
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Data is stored so that it may later be retrieved. Usually the data is stored once, updated 
infrequently, but accessed frequently. Eventually the data will likely be removed. For ex­
ample, when a new employee is hired, a new record is placed into the employee database, 
describing the relevant information about that person. The data is modified or updated 
only when some piece of information changes, such as name or address. The data is re­
trieved at least as frequently as the pay cycle, since it is needed to write a paycheck. Fi­
nally, when the person leaves employment the data is removed from the active part of the 
database, though the information may simply be moved to an archival region. 

Since retrieval is done more frequently than creation/modification/removal, it is im­
portant to organize the database so that lookups are fast, even if this somewhat slows the 
speed of insertions. One of the chief ways that this is achieved is to choose from among 
all of the data to be stored, some portion that can be guaranteed to be uniquely associated 
with the data entity (here person), and that will not be the same for any other entity. This 
portion of the record is called the key, and the remainder of the data for that entity is called 
the information. Therefore, data is a collection of key-information pairs. social security 
numbers are often used in the United States as a key for employee records, since they are 
required to be maintained by employers (for taxing purposes) and they are also (supposed 
to be) unique. In general, however, the type of the key and the type of the information dif­
fer from one database to another, and even from one portion of the same database to an­
other, so it is useful to abstract these types. We can do this with a class template. 

template <class Key, class Information> 
class DataRecord 
{ public: 

DataRecord(Key k, Information v) 
key(k) , 

{ 
} 

information (v) 

Information getInformation() const 
{ return information; 
} 

Key getKey() const { return key; } 

bool match(const Key k) const 
{ return k == keYi 
} 

private: 
Key key; 
Information information; 
DataRecord(){} 



} ; 
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II Needed to create arrays of 
II DataRecords. 

friend class Database<Key, Information>; 

We can now build a database using an array to hold DataRecords. This solution, as 
mentioned before, is overly simplified, as it requires that we know the maximum size of 
the database in advance, which is seldom the case. 

template <class Key, class Information> 
class Database 
{ public: 

} ; 

Database(int size) 
currentSize(O), 
storage 

{ 
} 

( new DataRecord<Key, 
Information> [size] 

void store 
const Key k, 
const Information v 

storage [currentSize++] 
DataRecord<Key, Information> (k, v); 

} 

Information retrieve(const Key k) const 
{ for(int i = 0; i < currentSize; i++) 

if(storage[i] . key == k) 

} 

return storage[i] . information; 
return Information(); 

II The default value of type 
II Information; 

private: 
DataRecord<Key, Information> * storage; 

II Save the data in an array. 
int currentSize; 
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We can now store information into our database, where it is saved in the next avail­
able slot in the array. We can also retrieve the information associated with any key, 
though it takes a sequential search of the database to achieve it. Thus, though it works, it 
does not satisfy the efficiency requirements that specify that lookups should be fast. Here 
insertions are fast but retrievals are very slow. 

To create a database, you need to specify the key and information types as well as the 
maximum size. 

Database< int, char*> BonMot(lOO); 
BonMot.store(22, "Have a nice day."); 
BonMot.store(ll, "Have an OK day."); 
BonMot.store(33, "Have a wonderful day."); 
BonMot.store( 5, "Have a day."); 
cout « BonMot.retrieve(ll) « endl; 
cout « BonMot.retrieve(99) « endl; II Prints garbage. 

Exercise. Speed up retrievals, even at the expense of insertions. One way to do this is 
to sort the database after each insertion. This requires that DataRecords have an operator<, 
which you will need to write. This operator should consider only the keys and ignore the 
information values. 

Exercise. Devise a better mechanism for signaling that the data sought is not to be 
found. You can change retrieve into a bool function that returns its information value in 
a reference parameter, for example. Throwing an exception is another possibility. 

2.10 Arrays That Contain Pointers 

If we assign a value to some component of an array, then a copy of the value is made and 
stored at that component. Sometimes we want to avoid this copying because of its cost, 
or because the logic of the problem dictates that we not make copies of things. In this 
case we may store pointers to values rather than values themselves as the components of 
the arrays. This same technique may be applied to other containers as well, of course. 

For example, in a database, it might be desirable to store the same objects in several 
places without copying. We try to keep only a single copy of data in a database to sim­
plify the problem of updating values. If several copies of a piece of data are stored, then 
all must be updated at the same time. One way to achieve this is to avoid copies alto­
gether, keep one copy of each piece of data, and use pointers as needed to simulate replica­
tion. 

To do this our database will store pointers to data records rather than data records. Each 
cell of the array will contain just a pointer to some actual data record, or possibly be 

NULL. 
Aside from the avoidance of copying, there is another major advantage of using point­

ers as the contents of our containers. This is the possibility of making the containers het-



Chapter 2. Programming with Arrays and Pointers 59 

erogeneous: of storing different types of things in the same container. This can't be done 
with complete freedom in C++, however, since pointers have a type that includes the type 
of the value that they point to. However, we may use the object-oriented features of C++ 
to achieve heterogeneity. We return again to derived classes. 

Since we define a new class when we derive one class from another, we have different 
types. However, these types are partly compatible with each other. In particular, a pointer 
to a base type may hold a value that is a pointer to a derived class. This means that if we 
have a container, such as an array, defined to hold pointers to some class, then it may in 
fact hold pointers to any class derived from that class. For example, we may create an ar­
ray of pointers to SpreadSheetCells and store pointers to NumericCells and FormulaCells 
as well. 

SpreadsheetCell* lotsOfCells [100]; 
II Array of cell pointers 

lotsOfCells[O] 
lotsOfCells[l] 

new FormulaCell( ... ); 
new NumericCell( ... ); 

2.11 Another Use for Pointers-Lists 

As a final brief note, we mention that pointers may be used to refer to other values than 
arrays. One of the most fruitful uses is to use pointers as links to chain data cells to­
gether. Each cell will now contain not only a value, such as an array cell does, but also 
the address of another cell. In this way the cells do not need to be stored contiguously, but 
can be anywhere in the free store. The advantage of this is that it is quite easy to insert a 
cell "between" two other cells and nothing needs to be moved. All that is required is that 
the addresses that impose the physical ordering on the cells be updated. In this way we can 
build sequential structures called linked lists. More generally, we can use more than one 
such address in a cell and build nonsequential structures such as trees and graphs. Lists 
will be taken up in detail in Chapter 7. 

2.12 Summary 

Make certain that you understand each of the following terms: 

array 
array section 
alias 
big 0 
binary search 
cell 
component 
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half open interval [a, b) 
index 
initialization 
invariant 
iterator 
pointer 
pointer duality law 
quicksort 
recurrence relation 
searching 
selection sort 
sequential search 
sorting 
subscript 

2.13 Exercises 

1. Build a calendar generation program. Fill in a 6 by 7 array with numbers representing 
the days of a month. Consider columns to represent the days Sunday through Saturday. 
Input a date and build a calendar for the month containing that date. If a cell does not cor­
respond to a day in that month, give it a zero or negative value. Provide a print routine to 
print nicely formatted monthly calendars. 

2. The following sequence of exercises should be worked together. The following ordinary 
function will compare Countedlnts: 

bool crnpi 
(const Countedlnt& a, const Countedlnt& b) 

{ return a.getValue() < b.getValue(); 
} 

It returns true provided that the first parameter has a value less than the second. Such a 
function is very useful if CountedInts are to be placed in STL containers. For example, 
create an array of 20 Countedlnts. They will be initialized automatically by the default 
constructor. Notice that the defmition of the array itself will call the default CountedInt 
constructor on all elements. Verify this by scanning over the array and writing out the 
"order" of each element using getOrder. 

Countedlnt ci[20); 
for(Countedlnt* cip ci; cip != ci+20; ++cip) 

cout «cip->getOrder()«' '; 
cout«endl; 
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Now verify that all of the values stored are zeros. 

3. Set some values into the CountedInts stored in the array of the last exercise. Then ver­
ify that you have your values by printing out the entire array again. Then shuffle the val­
ues around with the STL algorithm random_shuffle: 

random_shuffle(ci, ci + 20); 

Now verify that you have the same values by printing out the values. Also print out 
the orders, to show that you have the same objects as before in the same cells. 

4. Now sort the array with 

sort(ci, ci+l0, crnpi); 

Again verify that the values have been sorted. Note that we need the comparison op­
erator as the last parameter of sort. 

5. We would not need the last parameter of sort in exercise 4 if we had given CountedInt 
an operator<. In that case, sort would have used this operator if we had not supplied the 
third parameter. Try this. 

6. Save 10 rolls of a ten-sided die in an array. Print out the array. Sort the array. Reverse 
the sorted array. Shuffle the array. Sort it again. Scan the array to find the number of rolls 
on which the value was even. Use iterators (pointers) for all of this. You should not use 
subscripts anywhere. Perform all of the above again using subscripts to get access to the 
cells. You should not use pointers (iterators) anywhere. Unless you have access to another 
library of algorithms, this last part is much harder. Why? 

7. Build a database in which the keys are strings and the data values are also strings. 
Sometimes such databases are called property lists. The keys name some property, and the 
data value is the value of that property. Property lists are attached to various objects. For 
example, a window object could have a property named "HasVerticalScrollbar" with the 
value "true." The advantage of using strings for the keys is the flexibility to add additional 
properties without rebuilding the database system, as we are not using a fixed set of prop­
erties. To enable the next two exercises, first write a function that will write out a com­
plete database. This could be a friend function with prototype 

template <class Key, class Info> 
ostrearn& operator« (ostrearn & 0, const Database<Key, Info>& 
db) 

Such a function should return the same ostream that it gets as a parameter after send­
ing all elements of the database to the stream 0, with appropriate formatting. Such friend 
functions are the standard way of giving objects print capabilities. 
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8. It is sometimes necessary to sort a database. If we store the DataRecords in an array, 
then this can be arranged with a few changes to the database system. One typical way is 
to add a sort member to the Database class. Implement this idea. The prototype should be 

void sort ( ) ; 

9. A better way to permit sorting of a database is to provide a mechanism compatible 
with STL iterators. To do so requires only that we provide beginO and endO members to 
our Database class that return pointers to array cells. We can return variable storage for 
the value ofbeginO and & (storage [currentSize] ) for the after then end value re­
quired by endO. With these functions provided, we can use the STL algorithm sort, which 
requires such iterators for its parameters. Note that sorting char* strings is a bit tricky 
since the ordinary operator< won't work. If you use this kind of string, then you need to 
provide a string comparison routine like 

boo1 cmp(char* a, char* b) 
{ return strcmp(a,b) < 0; 
} 

In this particular case we need to be able to compare DataRecords based on only their 
keys. The following function will do this. 

boo1 cmp 
( DataRecord<char*, char*> a, 

DataRecord<char*, char*> b 
) 
{ return cmp(a.getKey(), b.getKey(»; 
} 

This function could be passed to the generic sort routine of the STL as a third parame­
ter, as in 

sort(db.begin(), db.end(), cmp); 

where db is the name of our database. 

10. c++ does a pretty good job of handling strings. You can allocate a fixed amount of 
space for a string, just by using a string value 

char * x = "These are the times." 

You can allocate a large buffer in which to put a string as you read it when you don't 
know how big it will be: 

char buf [256]; 
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You can also allocate a string on the free store when you know its length: 

char * ans = new char[18]; 

Only the last method gives you the flexibility to decide at run time how big the string 
will be. But there is another way, called a string buffer. It has the advantage of not requir­
ing calls to the allocator new, which can take a lot of time if done frequently. Suppose we 
have an array in our program that is large enough to hold several strings: 

char spellbuffer[4096]; 

We are going to pack strings into this buffer, one after the other. A string will then be 
referenced by knowing the index of its first character in the buffer, which we obtain when 
we insert it. We keep an integer variable, nextFree, initially 0 that is always the index of 
the next cell of the array that has not yet been filled. We can insert a string S into the ar­
ray with two statements: 

strcpy(spellbuffer + nextFree, S) 
nextFree += strlen(S)+l; 

The location of the spelling of S in the buffer is the original value of nextFree before 
we increment it. 

Write functions insert and retrieve. The insert function takes a char* and inserts it into 
the buffer, returning the integer index at which it starts. Function retrieve takes an integer 
index and returns the string at that index. 



Chapter 3 
Overview of Container Mechanisms 

3.1 Storage Mechanisms 

In this chapter we are going to examine a number of ways that a programmer can store 
relatively large amounts of data for a program. We have already examined arrays, which 
use dense storage, and we saw that we can allocate such storage either automatically or on 
the free store. Two other methods of importance and frequent use are linked storage and 
hashed storage. Normally, linked storage is done only in the free store and hashed storage 
may be a combination of linked and dense storage and may involve either automatic or 
free store data or even a combination. 

Dense storage is needed when we need to access elements in a random order and do so 
quickly. It is also useful if we can predict the total number of items to be stored in a:l­
vance. Linked storage is needed when we need to be able to insert items between existing 
items frequently. Hashed storage is often used when we need to retrieve items quickly, 00 
not need to rearrange them or retrieve them in a particular order. Hashed storage is also 
useful when you can't predict in advance the total number of items to be stored, though 
there are variations of hashed storage that require this knowledge in advance. 

Linked storage is the most flexible of the methods considered here. With links it is 
possible to build sequential structures called Lists (Linked Lists), as well as non­
sequential structures such as trees and graphs, with complete generality. 

3.2 Dense Storage 

Dense storage, as used in arrays, has many advantages and only a few disadvantages. The 
main advantage is that when we know where the structure is, we know automatically 
where every part of it is. Internally, when we use a subscript reference like A[i], the sys­
tem multiplies i by the size of a cell and adds that to the address A to obtain the address of 
cell i. This multiplication and addition are very fast, so the access is very fast. When you 
use a struct or a class in C++, the system also uses dense storage for the value. In this 
case, each member of the struct or class is given a fixed offset from the beginning of the 
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value. Then a member access like B.x is evaluated by adding the fixed offset of x to the 
beginning address of B to obtain the member's address. 

The main disadvantage of dense storage is the difficulty of extending the size of fixed 
blocks, especially if they have large size. A running program has many items to be stored 
and a fixed amount of memory in which to store them. In order to make good use of 
memory, a compiler will pack data items together in memory without much wasted 
space. This means that our array or struct is surrounded by other data items. Therefore, it 
is usually impossible to expand the size of an array in place. If we underestimate the size 
of an array initially and want to expand it, then we will need to allocate a new, larger ar­
rayon the free store, and copy the elements from the old to the new array. This is time­
consuming, and if done frequently, can greatly slow an algorithm. 

A secondary, though important, disadvantage of dense storage is the difficulty of mak­
ing room for additional components in the middle of a block. The very nature of dense 
storage implies that the old values must be moved to make room for the new value. This 
moving of old values takes time that, generally speaking, is proportional to the number 
of elements to be moved. 

3.3 An Extended Example Part 1: The Array Stack 

A stack is a container object that keeps items in the order in which they were inserted. 
When we remove an item from a nonempty stack, it is always the item most recently in­
serted of those still remaining. The standard name for this protocol is LIFO, for Last-In, 
First-Out. A stack can be defined formally in terms of its state, which is modified by its 
operations. The operations on a stack are emptyO, which tells us if the stack is empty; 
fullO, which tells us if it is full and should not be inserted into; push(val), which is the 
insert operation; popO, the removal operation, which removes the most recently inserted 
item and returns it to the caller; and topO, which returns the most recently inserted item 
without removing it. The rules defining a stack are as follows: 

1. Immediately after creation, empty returns true. 
2. Immediately after push, empty returns false. 
3. If a stack is in a state in which empty returns true, then pop and top are errors. 
4. If a stack is in a state in which full returns true, then push is an error. 
S. (If a stack is in state S in which full returns false and we push an element E and then 

immediately pop, then the pop will return E to us and the stack will again be in state 
S. 

6. Immediately after a (successful) push(E), top returns E without changing the state. 

In actuality we have defined a bounded stack here, since it can hold a fixed number of 
items. If we remove this restriction, or otherwise guarantee that full always returns false, 
we have a stack proper. 

One of the classic uses of a stack is to evaluate postfix expressions. Such expressions 
have each operator written after all of the operands of that operator. For example, the ex-
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pression (a + b)*(c + d) would be written in postfix as a b + c d + *. The way to evaluate 
an expression written in postfix is to read the expression, one symbol at a time, from left 
to right. If we read an operand, then simply push it on a stack. If you see an operator, 
then pop the appropriate number of operands for that operator from the stack, apply the 
operator to the values popped, and then push the result back onto the stack. When you 
reach the end of the expression, you have the value on the top of the stack. 

We can implement a Stack class in many ways. We will do so first with dense stor­
age, employing an array as our internal storage mechanism. We will use a dynamic array 
so that we can decide when we create a stack how large it should be. It is possible to ob­
tain a stack very easily from the STL. However, we will build one here ourselves to see 
what is involved. Even given the fact that we intend to use dense storage for the elements, 
there are still many decisions that need to be made to build our stack abstraction. The 
choices we shall make here will all be such as to illustrate what goes on in the STL con­
tainers, though it is certainly possible to implement things differently. We should em­
phasize, however, that what we shall build is quite a bit simpler than what occurs in the 
STL. We shall only be illustrating concepts here, not attempting to extend the Standard 
Template Library. 

As a minimum, our class needs a constructor, a destructor, copy constructor, over­
loaded assignment operator, and the specific operations of a stack. In addition we shall de­
fine an associated iterator class and a means of generating certain iterators from any given 
stack. The name of our class is ArrayStack, which is not a particularly good name, but it 
does emphasize the implementation, which is our intention here. 

The implementation of our stack will require three variables: _size is the physical size 
of the array that we allocate; _top is an index of the topmost element in the stack; mxl 
_elements is a dynamic array of size _size, initialized in the constructor. When we insert a 
new element, we first increase _top by one and then insert the new item in the slot refer­
enced by _top. 

We will intersperse the complete definition of the ArrayStack class with our com­
ments. 

template <class T> 
class ArrayStack 
{ public: 

typedef T value_type; 
typedef ArrayStacklterator<T> iterator; 

These types are for convenience. They let other classes get access to the types that we 
are using by employing standard names such as iterator, rather than the proper names. 

ArrayStack(int size = 100) 
_size(size) I 

{ 
} 

_top(-l) I 

_elements(new T[size]) 
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Here we allocate a new array according to the parameter, which, by the way, has a w­
fault value. 

ArrayStack(const ArrayStack<T>& S) 
_size(S ._size) I 

_topeS ._top) I 
_elements(new T[S._size]) 

{ for(int i = 0; i<= _top; i++) 
_elements[i] = S._elements[i]; 

} 

The copy constructor is used when we create one stack from another. We must allocate 
a new array for the new stack. We don't want two stacks to share the implementation ar­
ray. Otherwise, changing one stack would change the other as well. This would be a dis­
aster in this situation. Why? 

ArrayStack<T> operator= 
(const ArrayStack<T>& S) 
{ if(this!= &S) 

} 

{ delete [] _elements; 
_elements = new T[S._size]; 
_size = S._size; 

} 

_top = S._top; 
for(int i = 0; i<= _top; i++) 

_elements[i] = S._elements[i]; 

return *this; 

This is the assignment operator. Note that it guarantees that we aren't trying to assign 
the same array to this one. Again, without this check we could have a disaster. What hap­
pens if we would delete the current _elements before copying the old values without this 
check? Note how much code is shared between the copy constructor and the assignment 
operator. This is typical of c++. It is convenient to factor out this common code into a 
private procedure so that it is easier to maintain. 

-ArrayStack(){ delete [] _elements; } 

The destructor must delete the array that the constructor created. 

void push(const T& v) 
{ _elements [++_top] = v; 
} 
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To push onto a stack, we must first advance the _top member and then store the new 
element into the resulting component. Notice that we do not check for legal array limits 
here. It might be preferable to do so, though it would take time. The user has the ability 
to check for overflow using the function fullO and must generally do so in any case. A 
test here would likely just repeat a test done elsewhere in a correct program. 

T pop(}{ return _elements[_toP--]i } 

A pop is the opposite of a push. We must return the element at the current _top am 
then reduce the _top value. Again there is no test for underflow. The user will likely (am 
should) use emptyO before calling popO. 

T top()const{ return _elements[_top]i } 

Top is like pop except that we don't change the _top member. 

bool empty()const{ return _top < 0; } 

bool full()const{ return _top >= _size; } 

In empty and full, we just return information about the state of the stack. 

iterator begin()const 
{ return 

ArrayStacklterator<T>(_elements, 0); 
} 

The beginO function returns an iterator, which is an ArrayStackiterator<T> according 
to the typedef seen above. We shall examine the iterator class in a moment. 

iterator end()const 
{ return 

ArrayStacklterator<T> 
(_elements, _top+l); 

} 

The endO function also returns an iterator. We initialize it with the index of the first 
empty slot after the active elements of the stack. Notice that this is not the slot after the 
array necessarily, but the slot after the active part of the array. 

private: 
int _sizei 
int _toPi 
T* _elements; 
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These are the member variables that implement the structure. The order in which these 
are listed can be important. This is because constructor defined above initializes them in 
the initialization section rather than in the code block. The rule is that the initializations 
are done in the order in which the member variables are dermed, not in the order in which 
the initializations occur in the constructor definition. They happen to be the same order 
here, but if, for example, we had defined _elements first (before _size) and then used _size 
rather than size as the initializing value in the constructor definition, then _elements 
would not be properly initialized. This can lead to subtle errors if you forget the rule. 

friend class ArrayStacklterator<T>; 
} ; 

Finally, we note that the ArrayStackIterator<'f> is declared to be a friend class. This 
implies that the member functions of that class will have access to the member variables 
(all the private members, actually) of this one. 

All of this seems pretty straightforward, except possibly the need for the begin am 
end functions. Why bother? The stack seems complete. What can be done with these two 
functions and the values they return? We shall return to these questions momentarily, but 
first a simple example of use. 

void main ( ) 
{ ArrayStack<int> as; 

as . push ( 3 ) ; 

} 

as . push ( 5 ) ; 
as. push( 1) ; 
cout «as. top() « ' , 

« as.pop() « as.pop() « endl; 
ArrayStack<char*> ss; 
ss. push( "Hi. ") ; 
ss.push("Bye."); 

The creator of every class has a dilemma to face and a problem to solve. If the class 
properly employs information hiding so that details of the implementation are hidden 
from users, then how does a user get necessary algorithms implemented? One way is to 
assure that the class has all necessary algorithms for use implemented as member func­
tions (or combinations of member functions). This is a rather heavy requirement and re­
quires a lot of foresight. Suppose that we discover after the fact that some required proc­
essing is missing. What do we do? One option is to modify the class itself to !lid the 
required functionality, and this is often done. Modifying existing code, however, is prob­
lematic, since it can introduce errors and make previously working code break. Another 
option is to build a derived class and to implement the new functionality there. This is 
also often done and in many cases is superior to the first solution. The STL takes a differ­
ent approach to this problem, however. 
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In the Standard Template Library, very few of the algorithms needed to manipulate an 
abstraction are implemented in the class corresponding to that abstraction. Instead, the 
class defmes functions that make certain information about the abstraction-here a 
stack-available in such a way that the user can implement any needed algorithm without 
modifying the structure itself. In fact, it is possible to build such algorithms in such a 
way that they work with other data abstractions as well as the one for which they were 
originally designed. This is the purpose of iterators. 

Iterators are any types, built-in or user-defined, that have certain characteristics similar 
to those of pointers. In particular, we need to be able to de-reference an iterator to get ac­
cess to the value that it references. We need to be able to advance an iterator using opera­
tor++, and we need to be able to test two iterators for equality. Specialized iterators have 
additional properties, as we shall see. What follows is a user-defmed class that imple­
ments an iterator type corresponding to our ArrayStack type. It is much simplified from 
what is actually available in the STL, but again, it is intended primarily to introduce the 
concepts needed and not to be an extension of the STL. We shall see that it gives us 
enough power to be able to use a variation of our selectionSort algorithm of the previous 
chapter to sort stacks, although sorting a stack is a somewhat foreign concept. 

In this implementation, an iterator (ArrayStackIterator) uses an integer representing an 
index and a pointer to an array. This array is actually the same array (not a copy) that rep­
resents the implementation of the ArrayStack that this iterator is iterating over. 

template <class T> 
class ArrayStacklterator 
( public: 

typedef T value_type; 

The value_type is the type of data stored in the associated array. 

T& operator* () 
{ return _array->_elements[_where]; 
} 

This is the de-reference operator. It gives us access to the item the iterator references at 
the time. Note that by returning a T& rather than a T, we return the value itself, not a 
copy. This means that we can store into this value as well as retrieve the current value. 
This means we can modify the associated stack without pushing or popping, of course. 
This might be undesirable. We could prevent this by making the operation const and re­
turning a const reference instead. 

bool operator«const ArrayStacklterator<T>& i) 
{ return _where < i._where; 
} 
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Here we compare two iterators using <. The implication is that the iterators are iterat­
ing over the same stack. Any other use will return garbage information. We just compare 
the _where member variables of the two iterators. 

ArrayStacklterator<T> operator+(int i) 
( return 

ArrayStacklterator<T> (_array, _where + i); 
} 

Operator+ lets us IKkl an integer to an iterator. This is the exact analogue of pointer 
arithmetic in which we add an integer to a pointer. We want the addition of i to point us 
up i slots in the stack. 

T& operator++() 
{ return _array->_elements[++_where];} 

T& operator++(int) 
(return _array->_elements[_where++];} 

These are the two auto increment operators. The ftrst is the preincrement version that 
moves the iterator along one cell and returns the value in the new position. We increment 
_where before we use it to retrieve an element (reference). The version with the unused int 
parameter is a c++ hack that deftnes the post-increment operator. Again, we use 
_ where++ as the basis of the implementation. Note that we could turn this iterator class 
into something like a bidirectional iterator if we also implement the two operator-- ver­
sions. 

private: 
Arraystacklterator 
( ArrayStack<T>* s, int where 0 
) 

( 
} 

_where (where) , 
_array(s) 

The constructor just makes a copy of a pointer to an ordinary array and an index. 
These come from the array that creates the iterator. These iterators are created only by 
functions such as beginO and endO of the ArrayStack class. We guarantee that iterators are 
created only by ArrayStacks by making the constructor private. Note that we don't need a 
copy constructor here or an overloaded assignment or a destructor, since the supplied ver­
sions will suffice. 

int _where; 
T* _array; 
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friend class ArrayStack<T>; 

This friendship relation gives the ArrayStack class access to the private constructor of 
this class. 

} ; 

Exercise. What we have done with ArrayStackIterators is a little backwards when you 
think of it. In reality, an iteration over a stack should start at the top and proceed to the 
bottom. Ours proceeds in the opposite order. Rebuild ArrayStack and ArrayStackIterator 
as necessary to implement this improved idea. 

In order to see what we can do with this, lets reexamine the selection sort from Chap­
ter 2. The last version we had of that function template was 

template < class T > 
void selectionSort(T* start, T* end) 
{ for(T* where = start ; where < end 

} 

{ T* loc = where; 
T small = *loc; 
for 

} 

( T* inner = where + 1; 
inner < end; 
inner++ 

if(*inner < *loc) 
{ loc = inner; 

small = *loc; 
} 

*loc *where; 
*where = small; 

where++) 

This is close to what we want, but not exactly. Here we explicitly use pointers to T 
as parameters and as locals. We want to replace these pointers with iterators. To do so we 
are going to change the template parameter type to TI and let this refer to an iterator type, 
rather than the type of data collected in the array (or other container). We won't have a pa­
rameter for the collected type at all, which gives us a problem since the type of local vari­
able small must be this collected type. This was the purpose for the typedef value_type 
defined in the iterator class. We replace T* in the above by our new template parameter TI 
and replace T by TI::value_type. 

template < class TI> 
void selectionSort(TI start, TI end) 
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{ for(TI where = start ; where < end ; where++) 

} 

{ TI loc = where; 

} 

TI: :value_type small = *loc; 
for 
( TI inner = where + 'I; 

inner < end; 
inner++ 

if(*inner < *loc) 
{ loc = inner; 

small = *loc; 
} 

*loc *where; 
*where = small; 

Note: The STL is a bit more sophisticated about providing this value_type for iterators. 
In the STL it is done indirectly through the use of generic functions, while we have done 
it directly. The STL solution is preferable, as it permits ordinary arrays and pointers to be 
used as well as other containers and iterators. Our selectionSort will not work with arrays 
and pointers since, being built-in rather than dermed by classes, they can't provide this 
value_type. This topic will be taken up again in Chapter 5. 

Notice what operations we apply to the variables of the template parameter type: 
variables start, end, where, and loco We assign one iterator to another. We use operator<, 
operator++ (postfix), and operator*. All of these are implemented in our class (except the 
assignment, which the system provides). We can therefore pass this function 
ArrayStackIterators and expect that it will sort the region of our stack between these itera­
tors. 

void main() 
{ ArrayStack<int> as; 

as.push(3); 
as.push(S); 
as . push ( 1) ; 
as . push ( 4 ) ; 

selectionSort(as.begin(), as.end(»; 

} 

cout « as. pop () 
cout « as.pop() 
cout « as.pop() 
cout « as.pop() 

« endl; 
« endl; 
« endl; 
« endl; 
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Note that the selectionS art algorithm is not part of the ArrayStack class, which did 
not need to be modified in order to provide this new functionality. This gives us power in 
two ways. First, the same algorithm will be used with a LinkStack that we intend to 
build in the next section. Second, we can add algorithms to a program without modifying 
existing code. Of course this is only possible because the iterator mechanism is very gen­
eral and very powerful. 

We close by noting that in the STL the array, vector, and deque types all use varia­
tions of dense storage. We shall examine some of the details in future chapters. 

Exercise. Transform the quickSort algorithm in the same way that we have translated 
the selectionSort. Test it by sorting ArrayStacks. 

Exercise. Use the StopWatch class of Chapter 1 to verify in practice that selectionS art 
is 0(n2) and quickSort on random data is O(n log(n». Create a rather large stack and sort 
it, timing the operation. Now do the same on stacks twice as large and four times as 
large. What did you learn? 

3.4 Linked Storage 

With dense storage, our data structure is compactly stored in one place in memory. With 
linked storage, on the other hand, it is distributed in small pieces that are linked together. 
Think of taking lots of bits of paper with values on them and lots of bits of string with 
their ends glued to the bits of paper. The strings represent the links. We could connect the 
paper bits into a single chain, or a ring, or lots of other geometries if we permit more 
than two bits of string to be glued to the same piece of paper. This is similar to linked 
storage but not exactly the same, as we shall see. 

The main difference between the links, which are actually pointers, and the bits of 
string is that pointers can only be traversed in one direction by using the de-referencing 
operator. We need two pointers to be able to move in two directions between adjacent bits 
of paper (data). Suppose that you glue lots of bits of paper-string into a linear chain. 
Then it is pretty clear that you can pick up the entire chain by picking up any piece. This 
is not so if you have a chain of links (pointers) and use only single linking from some 
first piece to some last piece. In this case, to pick up the entire chain, you need to pick 
up its first link. Since you can't move backwards along pointers if you pick it up else­
where, you won't have access to the items "before" the place you pick it up. 

Pointers are very much like string in other ways, however. A similarity between 
strings and links is that if you cut a linear chain, you lose access to the part cut away un­
less you are careful to hold on to both pieces at the time the cut is made. 

To build a linked implementation of a data structure, we normally use two structs or 
classes. One of these classes defines nodes and the other defines the data abstraction of in­
terest: a stack, for example. The nodes are an implementation detail and are not, properly, 
part of the abstraction. They are just the stuff out of which we build our stack, or list, or 
whatever. A Node normally contains a data value of some type: the type that we collect in 
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the container, or occasionally a pointer or a reference to such a type. The Node also has 
one or more link fields. These are just pointers to other Nodes. If we want a linear, se­
quential structure or a ring, we only need one pointer per Node. If we want bi-directional 
links, we need two pointers per Node. Trees and graphs may require more, even a variable 
number of pointer variables in each Node. 

A standard form for Nodes of a singly linked structure would look like the following: 

template <class T> 
class Node 
{ private: 

}; 

Node(T val, Node<T>* next NULL} 
_value (val) , 

{ 
} 

_next (next) 

T _value; 
Node<T>* _next; 

friend class . . . 

We have made everything in the class private and have indicated that some class will 
be a friend of this class. This is because this class defines an implementation detail only, 
so its features should be private to the class that uses it and not available to others. The 
constructor "links" in its parameter, which is a Node*, to this Node, in effect attaching it 
after the Node being constructed. 

In the absence of the other class, and assuming that the constructor, at least, is public, 
we can construct a sequentially linked structure by repeatedly calling the constructor 
(carefully). 

Node<int> * head = new Node<int>(5}; 
head new Node<int> (4, head); 
head new Node<int> (3, head); 
head new Node<int> (2, head); 
head new Node<int> (1, head); 

At this point, head points to a Node with a 1 in it. That Node is followed by a Node 
with a 2, then a 3, etc., until the last Node with the 5 in it has a _next field of NULL. 
Note that each time we set a new value into head, we first use the old value as the "tail" 
of the Node being created. The following sequence of pictures, Figure 3.1 through 3.3, 
should help. 

head ~15 NULL I 
Figure 3.1. After: Node<int> * head = new Node<int>(5); 
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head ~I L-_4 _---I-+---I.P 15 NULL I 
Figure 3.2. After: head = new Node<int> (4, head); 

head ~I ..... _3 __ -=1-----11 •. 1 ..... _4 __ -=.-1-----11 •• 15 NULL I 
Figure 3.3. After: head = new Node<int> (3, head); 

The boxes represent the Nodes, and the arrows from one box to another represent the 
_next field of each Node. Note that we have only one variable here. To get access to the 
Nodes after the first (head) we must use expressions, not simple variable names. 

It is generally a mistake to build a linked list in this way, using just a pointer to refer 
to its head. Instead we normally define a second class that will encapsulate (and hide) this 
head pointer. 

template <class T> 
class List 
{ public: 

List( ) 
_first (NULL) 

void insertFirst(T val) 
{ _first = new Node<T>(val, _first); 
} 

private: 
Node<T>* _first; 

} ; 

This class will be the friend class of the Node class. 
We would now create the same list with the following code: 

List<int> L; 
L.insertFirst(S); 
L.insertFirst(4); 
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L.insertFirst(3)i 
L.insertFirst(2)i 
L.insertFirst(l)i 

There are many variations on linked storage as indicated above. One of the easiest is to 
circularly link the list so that the last Node, rather than having a NULL pointer in its 
_next field, has a pointer to the first Node. Maintaining this circularity requires care when 
we insert and remove data. Its advantage is that it lets us "back up" along links by going 
around the other way. This also takes care, however, so that you don't go around am 
around forever. 

Another variation is double linking. Put two Node* fields in each Node: _next am 
_previous. It is then very useful to put two Node* fields into the List class as well: _first 
and _last. In fact, even with single linking, it is often of use to maintain a pointer in the 
list class to both the fIrst and last Nodes of the chain. This gives us access to both ends 
of the chain. Note that it is easy to do inserts at either end, easy to do deletions at the 
front, but difficult to delete at the rear, as we shall see in a moment. 

If a list is singly linked, then we can effectively only provide fOlWard iterators: those 
that can move from beginning to end in the direction of the linking. If we doubly link a 
list, then we can easily provide bidirectional iterators. This is the approach taken in STL 
lists. 

To delete a Node at the front of a List we could use a member function like the fol­
lowing: 

void deleteFirst() 
{ Node<T>* temp = _first; 

_first = _first->_next; 
delete temp; 

} 

The difficulty of deleting elsewhere is illustrated by Figure 3.4, in which we suppose 
we want to delete the Node with the 5, but all we have is a pointer to that Node. 

1 .15 NUlL I 
/ 

Figure 3.4. Problematic deletions. 
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The difficulty is not in deleting the Node itself, but in keeping the rest of the List le­
gal. We always want the last link in a list to be in some specific state, usually NULL. 
The problem is that this new last link will be the link in the Node with the 4 after we w­
lete the last Node. We can get access to this Node only with difficulty, since we don't 
have a direct link to it and we can't follow links backwards. The correct way to delete a 
Node in a singly linked list is to have a pointer to the Node that precedes it, not to the 
Node itself. See Figure 3.5. We are much better off if we have a pointer to the Node with 
the 4, since the _next field of this Node needs to be updated to keep the List intact. 

Figure 3.5. Correctly positioned for deleting Node 5. 

Well, how do we get such a pointer? The answer again involves our iterator concept. 
Suppose we build the List class with a member function beginO that returns an iterator to 
the beginning. The implementation of this iterator class can be just a Node*, perhaps 
named _here, since it names a position within a list. Then we can continually advance the 
iterator, with operator++, until we refer to the Node preceding the one we seek. We can 
check where we are using the de-reference operator*. Then, from the iterator itself, we can 
execute the deleteAfter operation, which is a member of the iterator class, not the list 
class. 

void deleteAfter() 
{ Node<T>* temp = _here->_nexti 

II The node to be deleted 
_here->_next = temp->_nexti 

II Point around temp 
delete tempi 

} 

This function works correctly even if the Node to be deleted is not the last Node in the 
chain, since it doesn't set the _next of the current position to be NULL, but to the current 
value of the Node to be removed, which completes the chain. Of course, all depends on 
first getting our iterator to the right location. 
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Exercise. Draw a sequence of link pictures, similar to Figures 3.1 through 3.3, that il­
lustrate the operation of the deleteAfter function step by step. 

Using such an iterator we can also insert a new Node between two existing Nodes. To 
do so again requires having a pointer (iterator actually) to the first of the two Nodes. We 
need to create the new Node, make its _next refer to the second of the two Nodes we are 
inserting between, and then make the first Node refer to the new Node. Therefore, the fol­
lowing can be part of our Listlterator class. The first statement carries out the first two of 
the above three steps. 

void insertAfter(T val) 
{ Node<T>* temp = 

} 

new Node<T>(val, _here->_next)i 
_here->_next = tempi 

Figures 3.6 through 3.8 detail the operation of this member assuming we are attempt­
ing to insert the value 7 into a list. We assume that we have previously positioned an it­
erator to the location of the insertion. Note again that this is not a list member, but a list 
iterator member. 

head ~I L.... 3 __ :1-/,---1.~1 L.... _4 __ -,...:----1.~ 15 NULL I 
_here 

Figure 3.6. Before inserting between the 4 and the 5 . 

head ~I 3 I ·1 4 • 15 NULL I 
/' 

_here 
temp 7 

Figure 3.7. After the first statement, inserting a 7. 
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head 

Figure 3.8. After the last statement, inserting a 7. 

While we have described the deleteAfter and insertAfter members as being actions of 
an iterator rather than a list, there is an alternative way to implement them. We CAN put 
code like this into the list class if we pass an iterator as a parameter to each of these. We 
would then use _here member of this iterator to implement the above operations. This is 
the method chosen in the STL, since it puts fewer restrictions on the iterators themselves, 
leaving them more general. 

Exercise. Look at Figure 3.8. Novices sometimes delete temp, as the last statement of 
insertAfter, thinking that they don't need the pointer anymore. Carefully explain the effect 
of this and why it is a disaster. 

3.5 An Extended Example Part 2: The Linked Stack 

In this section we will rebuild our Stack using a linked implementation. Notice that the 
interface of this LinkStack class has identical functions with identical parameter lists. In 
other words, a LinkStack is functionally equivalent to an ArrayStack. There will be one 
difference in efficiency, as we shall note near the end of the section. We shall also need to 
build an associated LinkStackIterator class. First, however, we need a Node class as indi­
cated above. We call this class LinkNode. It is as advertised above, except that it declares 
both the LinkStack and LinkStackIterator classes as friends. It also has an additional 
(recursive) member function copyAllO that we shall discuss when we look at the Link­
Stack class. 

template <class T> 
class LinkNode 
{ private: 

LinkNode(T val, LinkNode<T>* next 
_value(val), 

{ 
} 

_next (next) 

NULL) 
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} ; 

LinkNode<T>* copyAll() 
{ if(_next == NULL) 

} 

return new LinkNode<T>(_value); 
else 

return 
new LinkNode<T> 
<_value, _next->copyAll(»; 

T _value; 
LinkNode<T>* _next; 

friend class LinkStack<T>; 
friend class LinkStacklterator<T>; 

To push onto a LinkStack, we insert a new Node at the front. To pop we remove from 
the front. This means that single linking is sufficient, with no need for an additional 
pointer to the end. 

template <class T> 
class LinkStack 
{ public: 

typedef LinkStacklterator<T> iterator; 

LinkStack() 

{ 
} 

_first (NULL) 

An empty LinkStack has its _first == NULL. 

LinkStack(const LinkStack<T>& S) 
{ copy(S); 
} 

-LinkStack(){ free();} 

LinkStack<T>& operator= 
(const LinkStack<T>& S) 
{ if(this!= &S) 

} 

{ free(); 
copy(S) ; 

} 

return *this; 
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The copy constructor, destructor, and assignment operator have been factored into two 
auxiliary functions copy and free. Free deletes all of the Nodes in the current stack and 
copy sets the Nodes to be copies of the Nodes of its parameter. Copy is careful to pre­
serve the order of the Nodes it copies. We will discuss these functions below. 

void push(const T& v) 
{ _first = new LinkNode<T>(v, _first);} 

This is just an insert at the beginning of the list of Nodes as indicated above. 

T pop() 
{ T temp = _first->_value; 

LinkNode<T>* oldnode = _first; 
_first = oldnode->_next; 
delete oldnode; 
return temp; 

Here we remove the Node at the beginning of the list of Nodes, but we also return the 
value stored in that Node. This will result in an error if the stack is empty when it is exe­
cuted. 

T top()const{ return _first->_value; } 

We just return the first value. Again, it is an error if the stack is empty. We could 
also return a const reference here, const T &, rather than a copy. This would let us look at, 
but not change the value returned. We could also return a T& in fact, which would let us 
modify the top in place, without removing it from the stack. 

Exercise. Explore the following three versions of topO. 

T top()const{ return _first->_value; } 
T& top()const{ return _first->_value; } 
const T& top()const 
{ return _first->_value; 
} 

In each case, try to modify the returned value and then look at the stack as a whole. 

bool empty()const 
{ return _first 
} 

NULL; 

bool full()const{ return false; } 
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These are straightforward. It is empty if its jirst is NULL. The user of our LinkStack 
must be careful to use these functions or otherwise keep track of when the stack is empty. 
Such a stack is never full. Well, actually, it would be full if the allocator were unable to 
allocate a new Node. The allocator can in fact be used to return a sensible value for full in 
this case. We ignore this complication here. 

iterator begin()const 
{ return LinkStacklterator<T>(_first)i 
} 

An iterator to the beginning of the stack contains a pointer to the first Node. 

iterator end()const 
{ return LinkStacklterator<T>(NULL)i 
} 

An after-the-end iterator contains a pointer to the same spot as the last Node in the 
list. In this case that is the NULL pointer. 

private: 
LinkNode<T>* _firsti 

void free ( ) 
{ while(_first!= NULL) 

} 

{ LinkNode<T>* temp = _firsti 
_first = temp->_nexti 
delete tempi 

} 

Free is used in the destructor and in the assignment operator. It deletes all of the Nodes 
in the list, leaving it empty. Note that it could as easily have called popO repeatedly, 
though this is somewhat more efficient. 

void copy(const LinkStack& S) 
{ if(S._first == NULL) 

_first NULLi 
else 

S._first->copyAll()i 
} 

This member function sets the current value to the same value as the parameter. It is 
used by the copy constructor and by the assignment operator. If the parameter is empty it 
sets itself (this) to be empty. Otherwise, it sets its _first to be the result of calling 
LinkNode::copyAll on the _first of the parameter. The effect of that is to recursively copy 
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all of the Nodes that start with S._first, making a new chain. Function copy All works by 
creating a new Node and installing as its next a copy of its own next. If its own next is 
NULL, then the copy is just NULL also, but otherwise, the copy may be made by calling 
copyAll recursively on its _next. 

friend class LinkStacklterator<T>; 
} ; 

What we have above is a new class that implements the same interface as the Ar­
rayStack class. Except for the type name, they may be used interchangeably. Let us now 
tum to the associated iterator class, LinkStackIterator. Again we will comment the code 
as we go along. Note that this class implements the same interface as ArrayStackIterator, 
though we will see in a moment that it probably should not. An iterator here is imple­
mented with a field _where, that is just a Node pointer. 

template <class T> 
class LinkStacklterator 
{ pUblic: 

typedef T value_type; 

Linkstacklterator(LinkNode<T>* where) 
_where (where) 

{ 
} 

We just remember the parameter in the _where field. No copy constructor, destructor, 
or assignment operator is needed here, since we are not managing memory in this class. 
The Node pointed to will not be destroyed, for example, until the stack that contains it is 
destroyed or the Node is popped. 

T& operator*() 
{ return _where->_value; 
} 

The de-reference operator just de-references the current pointer. The pointer points to a 
Node, however, and we want the value, so we extract and return that. 

Question. What happens if we de-reference an iterator that was created with LinkStackIt­
erator(NULL)? 

bool operator< 
(canst LinkStacklterator<T>& i) 
{ ifC_where!= NULL && i._where 

return true; 
NULL) 
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} 

if _where == NULL 
I I _where i . _where 

return false; 
LinkNode<T>* temp = _where->_next; 
while(temp != NULL) 
{ if( temp == i._where) return true; 

temp = temp->_next; 
} 
return false; 

This is expensive to implement correctly. We require that the two iterators compared 
are "into" the same stack, of course. We are testing whether if we follow _next pointers 
from the current position we will eventually arrive at the position of i. This requires time 
that is linear in the number of elements in the stack. The bidirectional iterators of STL 
lists do not provide this operation because of its cost. 

LinkStacklterator<T> operator+(int i) 
{ LinkNode<T>* temp = _where; 

for(int x = 0; x < i; x++) 
temp = temp->_next; 

return LinkStacklterator<T>(temp); 

This is the pointer arithmetic operation again. Note that it cannot be done in constant 
time. It takes time proportional to the integer i because of the for loop. Perhaps it 
would be better to omit this function altogether for reasons of efficiency. Bidirectional it­
erators in the STL do not have such an operation. 

T& operator++() 
{ _where = _where->_next; 

return _where->_value; 
} 

This is the prefix increment operator. Note that we move before we de-reference. 

T& operator++(int) 
{ LinkNode<T>* temp = _where; 

_where = _where->_next; 
return ternp->_valuei 

} 

The postfix increment is a bit messier since we need to remember where we were as 
the basis of the returned value, but also move forward. 
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private: 
LinkNode<T>* _where; 

} ; 

Well, there it is, with a few problems as indicated. However, since it does implement 
the same interface as the ArrayStackIterator, we can use these interchangeably. In particu­
lar, we can sort a LinkStack with our selectionSort algorithm. 

void main ( ) 
{ LinkStack<int> as; 

as.push(3); 
as.push(S); 
as . push ( 1) ; 
as.push(4); 

selectionSort(as.begin(), as.end()); 

cout « as.pop() 
cout « as. pop ( ) 
cout « as.pop() 
cout « as.pop() 

« 
« 
« 
« 

endl; 
endl; 
endl; 
endl; 

There will be a difference in performance, however, since the operator+ works more 
slowly here. For this reason the STL list class does not include the operator+ in its itera­
tor. It is too expensive in general. This means that the generalized sort algorithm of the 
STL won't work with lists, because it requires this operator (random access iterators 00-
pend on it). Instead, the list class supplies its own specialized sort algorithm that works 
efficiently on lists but less efficiently elsewhere. We will examine that algorithm later. 

One important lesson that you should learn from the above is that a linked list iterator 
behaves like a pointer, is implemented as a pointer, but is, in fact, an encapsulated object 
with a limited interface. It is not a ''naked'' pointer, but an object that contains and con­
trols a pointer. This extra level of packaging provides safety, as it makes inappropriate 
pointer operations impossible. 

Exercise. Just how inefficient is sorting lists with selectionSort and quickSort? Analyze 
these two algorithms, taking into account the fact that operator< and operator+ are linear 
time algorithms; the first is linear in the number of elements in the list and the second is 
linear in its parameter. The inefficiency of operator+ has little effect on selectionSort, 
since we only add one to any iterator there. 

Exercise. Use a StopWatch object to verify your conclusions from the above exercise. 
Build a large ListStack and time its sort with the two sorts. Then double the size of the 
stack and repeat. Double again and repeat your measurements. Does this support your 
conclusions from above? 
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Exercise. Redo the selection sort algorithm so that it uses only operator++ and opera­
tor== in place of operator+ and operator<. What is the advantage of this change? Rebuild 
the two stack iterator classes so that they also implement operator==. 

3.6 Tree Storage 

Trees are normally treated as a variation on linked storage, though it is possible to store 
certain trees densely. The difference between the sequential linkages defmed above and tree 
storage is in the number of links in a node. The simplest kind of tree is a binary tree in 
which each node has exactly two "next" nodes, called its children. See Figure 8.1 for ex­
ample. A binary tree node might look like the following: 

template <class T> 
class BinaryTreeNode 
{ private: 

} ; 

Node 
( T val, 

{ 

} 

BinaryTreeNode<T>* left = NULL, 
BinaryTreeNode<T>* right = NULL 

_value(val), 
_left ( left) , 
_right(right) 

T _value; 
BinaryTreeNode<T>* _left; 
BinaryTreeNode<T>* _right; 

friend class . . . 

The analogue of double linking in a tree is to provide a pointer in each node to its par­
ent: the node above it in the tree. The single node with no parent is called the root node, 
and most often trees are drawn with the root at the top. If the BinaryTree class that uses 
these node types needs to provide iterators, then parent links are very helpful. 

template <class T> 
class BinaryTreeNode 
{ private: 

Node 
T val, 
BinaryTreeNode<T>* left = NULL, 
BinaryTreeNode<T>* right = NULL, 



} ; 
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BinaryTreeNode<T>* parent = NULL 

{ 
} 

_value(val) , 
_left ( left) , 
_right(right) , 
-parent (parent) 

T _value; 
BinaryTreeNode<T>* _left; 
BinaryTreeNode<T>* _right; 
BinaryTreeNode<T>* -parent; 

friend class . . . 

A node in a tree is called a leaf if it has no children. The root has no parent. In our 
implementation this means that both (all) children must be NULL. The height of a node 
is the number of links back to the root of the tree from that node. The height of the root 
is zero, that of its children is one, etc. The height of a tree is the maximum of the heights 
of all of its nodes. The height of a tree is important since we search for things in a tree 

starting at the root. If we arrange the tree appropriately we need only search a single path 
from root to leaf for an item. We would like these paths to be as short as possible. 

A binary tree is called balanced when all of its leaf nodes are at approximately the 
same height. More specifically, a tree is balanced when the minimum and maximum leaf 
heights differ by only one. When a tree is balanced, the height of the tree is the logarithm 
of the number of nodes. Thus, we can store about a million values in a balanced binary 
tree of height twenty. 

A binary search tree is a binary tree in which the elements inserted support the opera­
tor<, and the elements are kept in the tree in a special order. The rule is that the value in 
any node, A, is less than that of any node in the subtree whose root is the right child of A 
and the value in any node in the left subtree is not greater than the value in node A. 

If we have a binary search tree and we list the values in the nodes in the order called 
inorder, then we shall list the values in increasing order according to operator<. Inorder 
listing of the nodes of a binary tree require that we list all of the nodes in the left subtree 
of any node before we list the value in the node, and that we list or otherwise process the 
values in the right subtree after listing the node. This can be easily arranged with a recur­
sive function of the form 

void inorder( BinaryTreeNode<T> * n) 
{ if(n->_left!= NULL) inorder(n->_left); 

process (n->_value); 
if(n->_right != NULL) inorder(n->_right); 

} 
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In contrast, preorder processing of a tree requires that we process the root before its 
children. The form for this is as follows: 

void preorder ( BinaryTreeNode<T> * n) 
{ process (n->_value); 

} 

if(n->_left != NULL) preorder (n->_left); 
if(n->_right != NULL) preorder (n->_right); 

Finally, postorder requires that we process a node after both of its children. 
One major advantage of a binary search tree is that it is easy to retrieve data stored in 

it. If we are looking for a certain value, then by examining the value at the root of the 
tree or any subtree, we always know whether to continue the search to the right or to the 
left if we haven't yet found the desired item. 

The naive way to insert into a binary search tree always inserts at the bottom of the 
tree, inserting a new leaf. We compare the value to be inserted with the root node first and 
if the new value is less than the root, we move down to the left; otherwise, we move 
down to the right. We again compare and move down, until we reach a spot where the 
node that we are trying to move to is missing: a NULL pointer. We insert a new node at 
this point. 

The problem with the above insert algorithm into binary search trees is that it might 
leave us with a tree that is not tree-like, but list-like. The ideal binary tree is balanced, 
meaning that each leaf node is at about the same depth. The reason for this is that a tree 

holds the maximum number of nodes for its height when it is balanced. This means that 
in a balanced binary search tree, we can search quickly for an item among a lot of data. 

Question. What happens if we use the naive insert method in a binary search tree and 
then insert data into it that is already sorted? 

Some algorithms for inserting into a balanced binary search tree require that the tree be 
rebalanced after each insertion. This balancing takes place along a path from leaf to root 
and only requires that a few pointers be adjusted, and so can be done in logarithmic time. 
The STL set class is based on a variation of a balanced binary tree. It does require that op­
erator< be implemented on the values to be included in the set, however. Lookups in a 
balanced binary search tree are logarithmically related to the number of values in the tree 

and so it proceeds very quickly, since a logarithm of a number is small in comparison to 
the number. 

A balanced binary tree can be stored efficiently in an array. We store the root in cell 
one (not zero, which is often kept free as a temporary location in the algorithms that 
process the tree). The left child of the node in cell n is stored in cell 2n and the right child 
is stored in cell 2n+ 1. Verify that this works and that it wastes relatively little space if 
the tree is balanced. The number of cells required in the array is 2h + I, where h is the 
height of the tree. We can find the parent of a node in such a tree just by dividing the cell 
number of a value by 2. 
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3.7 Graph Storage 

A graph is composed of nodes (or vertices), and links (or arcs). An arc connects a pair of 
the vertices. We can store data in the vertices, and in some graphs we also store data along 
the arcs. A graph with data on its arcs is sometimes called a network. Graphs are more 
complicated than trees, as you would suppose. One obvious way to build a graph is to 
keep in each node a list of the neighbors of that node. Another implementation is often 
more convenient. In this latter method, we keep a list of all the nodes in the graph. For 
each node we keep a list, not necessarily in the node itself, that gives the neighbors of the 
given node. Graphs can be directed or undirected. In a directed graph (digraph), the arcs are 
unidirectional like pointers. See Figure 5.4 for an example of a digraph. In an undirected 
graph, the arcs are just connections and have no direction. One can implement these with 
a pair of pointers. 

Traversing all of the vertices of a graph may be easy or difficult. If we keep a list of 
the vertices it is easy, of course. If we do not, then it may be necessary to keep a "mark" 
value in each vertex. Before traversing the graph, we set all of the marks to false. Then 
when we process a vertex, we set its mark to true so that we don't process it again. Two 
common protocols for processing the vertices of a graph are depth first and breadth first. 
In breadth first, we process all of the near neighbors of a node before processing their 
neighbors: process the near neighbors before the far neighbors. In depth first protocol, 
when we process a neighbor of the first node we process its neighbors before returning to 
the next neighbor of the first. When we search a graph for an item starting at a given 
node, we might use breadth first if we expect that the target will be near the original node. 
If not, we might use depth first search. 

The STL does not have a class representing graphs. However, using lists and arrays it 
is quite easy to build a graph abstraction. 

3.8 lIashedStorage 

Dense storage is a mechanism for achieving very fast lookup of stored items based on 
where the data is stored. To retrieve an item in constant time, you must know the sub­
script in which to look for the item. Hashed Storage, on the other hand, tries to achieve 
fast lookup based on what the data is. In other words, the value of the data, or some part 
of the data, is used to compute the storage location. Since it is not normally useful to 
look up data when we already have the value of the data, this sounds like a useless idea. 
However, it is commonly the case that we store a variety of information about a person 
or thing and we desire to look up the information while knowing the name or some other 
characteristic of the target. A telephone book is a simple example of this idea. We store 
names, addresses, and phone numbers in the directory. We use the name as a key to re­
trieve the rest of the information. The data itself consists of key-information pairs. We 
use the key to get access to the information. An individual in a phone book database 
might have a record like the following: 
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class cell 
{ public: 

cell 

} 

( char* name, 
char* address, 
char* phone 

) ; 
unsigned int hash(); 

private: 
char* _name; 
char* _address; 
char* -phone; 

In fact, a phone book stores the data in key order, making something like binary 
search possible. Hashed storage is quite different. In fact it is called "hash" because of the 
fact that the data, when viewed as a whole, appear to be mixed up in order, similar to the 
ingredients in the culinary delight (?) corned beef hash. This seemingly random mixing is 
only superficial, however, and there is a deeper structure. 

In hashed storage, a computation is done on the value of the key. The value of this 
computation, called the hash, is used to indicate where in a storage structure the corre­
sponding data will be stored. Depending on the specifics of the storage itself, the hash 
may result in a unique storage location in which the target may be found if it is stored at 
all, or simply indicate the place to start a search. This latter method is the most common 
and, while it may not result in constant retrieval time, it can greatly speed lookups by 
greatly reducing the number of items that must be examined to find the target or verify 
that it is not stored. 

One common hash function on name data is to take the length of the name and its 
first character value, treated as a numeric ASCII code, and multiply these values together, 
resulting in an integer. Notice that this value is completely well determined and repro­
ducible given the spelling of the name. 

Suppose that our storage mechanism consists of an array of 100 linked lists. If we 
take the hash value of a given key, and take the remainder upon division by 100, we ob­
tain a number between 0 and 99. This may be taken as a subscript into the array. If we 
wish to store data for this key, we store it on the list at this computed index. Then, if we 
wish to retrieve data for this key, we recompute the hash, reduce it to an index in the 
same way, and then search the corresponding linked list for the key. The expected time to 
find the item is the average length of the lists, which is about 1 percent of the total num­
ber of data items. 

Of course, achieving fast lookup in practice involves two things. The first is having a 
hash function that distributes the keys to be stored uniformly over the resulting hash val­
ues and so uniformly over the lists, which, by the way, are called "hash buckets." The 
term bucket is used since it indicates a storage mechanism with little if any internal struc­
ture. The second essential feature of hash storage mechanism is correctly choosing the 
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number of buckets so that the lists will all be short. This assumes that we may estimate 
the total number of items to be stored, though this need not be completely accurate. 

When the keys consist of things like names or words in some human language, it 
turns out to be a bad idea to use all of the characters in the key as a basis for the hash 
function, especially if the hash function simply adds the character encodings. This is not 
just because it is time-consuming to do so. The problem, rather, involves the fact that 
some of the characters appear much more frequently than others, which skews the results. 
This can easily make some of your lists short and others very long. This can greatly 
lengthen the retrieval time, which is undesirable. 

It is possible to build a self-organizing hash system in which the number of buckets 
expands or contracts dynamically as data is inserted and removed. To do so involves peri­
odically examining the buckets for length, expanding or contracting the number of buck­
ets as appropriate, and redistributing the stored data among the new buckets by recom­
puting the hash values. If the number of buckets is always a power of two, then this is 
particularly easy if remainders are the last step in the computation of the index. This is 
because if the remainder when we divide by 2n is k, then when we divide by 2n+ I, it will 
be either k or k+2n. This means that the new bucket for an item is either the same as the 
old one or possibly one other bucket. 

When we can predict precisely how many items will be stored, it is possible to avoid 
the lists altogether. Suppose that we know that we will store exactly m values. Then we 
can allocate an array of m cells. If we know all of the keys in advance and work hard 
enough, we can find a hash function that will compute a different value for each of the 
keys. We store the data for this key in the cell computed by this hash function. Otherwise 
we use the computed value simply as a place to start a linear search for the data within the 
array. We must search "circularly," however, so that if we come to the end of the array be­
fore finding the item, we resume our search at the beginning. This method of hashing is 
called circular hashing, as opposed to the separate chaining which uses the array of lists 
described above. 

When two keys result in the same hash value, we say we have a collision. A hash 
function with no collisions is called perfect. They are difficult to find, but possible, pro­
vided that we have a fixed, finite number of known keys. 

One advantage of hashed storage over binary search trees is that we don't need a com­
parison like operator< for hashed storage. This makes hashed storage feasible in some 
situations in which binary search trees are not. Of course we require that the data provide 
either a hash function, or a means of devising one. 

3.9 Indexed Storage 

Indexed storage is somewhat like the index of a book. The words (keys) are arranged in a 
definite (usually alphabetical) order and are associated with some sort of pointing mecha­
nism to the data records (pages) of interest. In a book index these are just page numbers, 
of course. The sorted order of the index makes it easy to search, and the pointers give us 
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quick access to the desired information. Similarly, a phone book is like an index to peo­
ple, represented by their phone numbers. 

The main advantage of an index is that it lets us simulate having one file sorted on 
different criteria. For example, in an employee database, it might be advantageous to 
physically arrange the records according to an employee number. This would make it dif­
ficult to find a person based on their name or office, however. An index with key name 
and another with key office can be used to solve this problem. 

To build a name index into the employee database, we would proceed as follows. First 
we scan the entire employee file, building a list of employee numbers (the primary key) 
and the associated names. When we are done we have a list that is in employee number 
order. We then sort this list by name. This sorted file is our index. Since it is sorted by 
name, it is easy to look up names. The associated employee numbers give us quick access 
to the full employee record, using the main file. A given file can have any number of in­
dices. 

The above described a record index. A related idea is called a block index. Suppose that 
the employee records are packed several to a block on a disk or similar device. Such 
blocks have block addresses, which we can think of as being numbers, though in reality 
they sometimes have a more complex structure. Given a block number, the disk device 
can quickly access the block. Suppose that we build an index by recording, for each record 
in the block, its first employee number and the disk block number. Recall that the file 
was sorted physically by employee number, so other employee records in the same block 
will have successive employee numbers. If we sort this index file by employee number, 
then we can get quick access to the block number for a given employee and hence, quick 
access to the rest of the data. 

Part of the key to making the above work well is that the index is usually much 
smaller than the original file. We can take special advantage of this in the following way. 
Suppose we have a block index with employee number as the key and suppose that we 
store this index itself in disk blocks. Call this file the first level index. Suppose that we 
then build a (second level) block index to the first level index file. This file will be even 
smaller, since many indexing records will fit into a single block. We can, of course, con­
tinue this process to build higher level (and smaller) indexes to indexes at a lower level, 
until an index is small enough to hold it in computer memory. With such a multilevel 
indexing scheme, we can then get access to the records in the original file by finding the 
record in the highest level index that covers the record sought, tracing the associated block 
address to a single block of the next level index, searching it again for the record number 
desired, etc. Eventually we get to the lowest level index and then to the original file. This 
works in practice because we don't usually need many levels unless the original file is 
huge. Storing 20 to 100 index records in each block of an index is common. This means 
that for each level of the index, the number of available records expands by a factor of 20 
to 100 for each level. This exponential growth implies that large files can be covered with 
indexes without much depth. 

What we have described above, of course, is very similar to a tree structure, with the 
highest level index being the root, and the original file representing the leaves. It is com­
plicated by the fact that we may need to insert and delete records. We wouldn't want to 
have to generate all of the index levels for each insert or deletion. The solution to this is 
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to only partially fill the index blocks when the file is first created, leaving room for addi­
tional index records at each level. This complicates the algorithms that manipulate the in­
dex tree, but greatly speeds up the overall operation of the system. One variation on this 
idea is called a b-tree. This is not to be confused with binary tree, however. A b-tree is an 
n-way tree (up to n children at each level) where each leaf is at exactly the same height 
and where each internal node has between nl2 and n children. 

At the other extreme is a simple two level structure, in which we maintain the data at 
one level and the index at another level. We shall see this technique used in a later chapter 
(Chapter 6). 

3.10 Summary 

Make certain that you understand each of the following terms: 

binary search tree 
binary tree 
circular hashing 
collision 
dense storage 
graph 
hashed storage 
indexed storage 
linked storage 
multilevel indexing 
perfect hash function 
separate chaining 
stack (including the defining rules) 

3.11 Exercises 

1. Add a sizeO function to each of our stack classes. It should return the number of ele­
ments stored in the stack. For the linked stack it may require linear time. 

2. Rewrite LinkStack::sizeO so that it can be done in constant time. What other changes 
to the stack are required to make this possible? What does that do to the efficiency of the 
other member functions? 

3. A queue is a structure similar in some ways to a stack. Stacks implement a LIFO, or 
last-in, first-out, protocol, whereas queues implement FIFO, or first-in, first-out. This 
means that the item removed from a queue is the one that has been in the queue for the 
longest amount of time rather than the shortest. Another way to think of it is that it is 
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sequential structure with inserts at one end and deletions at the other. The protocol for a 
Queue class template might be 

template <class E> 
class Queue 
{ public: 

typedef E value_type; 
Queue ( ) ; 
-Queue ( ); 
Queue(const Queue<E>&); 
Queue<E>& operator=(const Queue<E>&); 

bool empty() const; 
value_type& front(); 
const value_type& front() const; 
void push(const value_type& x); 
void pop ( ); 

private: 
_front; 

... _back; 
} ; 

Give a linked implementation of a queue. Private member variables _front and _back 
point to the first and last nodes of the implementing list. pushO inserts the value at the 
location following _back. popO removes the item pointed to by _front, and frontO returns 
that item without removing it. An empty queue can be represented with both jront am 
_back NULL. 

The formal rules for a queue are 

1. Just after creation, empty returns true. 
2. Just after push, empty returns false. 
3. If empty would return true, then popO; is an error; and t = frontO; is an error. 
4. If empty would return true, then push(x); popO leaves the queue empty. 
5. If empty would return true, then push(x); t = frontO; returns x to variable t. 
6. If empty would return false, then push(x); popO is the same as popO; push(x); also 

push(x); t = frontO; is the same as t = frontO; push(x); 

4. It is somewhat difficult to define an iterator for the above implementation. It is made 
easier if we use a trailer node that does not contain data. An empty queue has a single 
node with both jront and _back pointing to it. This node is created when the queue is, 
and is never deleted until the queue is. 

The iterator can be a separate class that maintains a pointer to a QueueNode as its 
main implementation variable. 
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Build an iterator class for the modified Queue class. The new Queue class needs public 
members beginO and endO. beginO returns an iterator to the first item. endO returns an it­
erator to the after-the-end location of the trailer node. 

5. Test the stack implementations given in the text. Use a StopWatch object to time their 
operations over several thousand insertions and deletions. 

Create An STL stack with a linked implementation. All this takes is the declaration 

stack< list< int> > aStack; 

You may now push and pop this stack. Be careful to put a space between the two 
">'s" in the declaration, however, or the compiler may misinterpret what you have. How 
does the performance of this implementation compare with that of the linked stack im­
plementation from the text? 

Create an STL stack with a dense implementation with 

stack< vector<int> > anotherStack; 

How is the performance of this one? 

6. Test your queue implementation against that of the STL queues in a similar way. You 
can create a linked queue with 

queue< list< int> > aQueue; 

and a dense queue with 

queue< deque< int> > anotherQueue; 

You can actually create a queue from a vector but the performance will be poor, since 
a vector has inefficient operations at the front. (Try it.) 

7. Build a class DoubleLinkedDeque. It uses a doubly linked implementation and permits 
insertions and deletions at either end. 

8. Build a hash table to implement a phone book. The key should be the name (a string) 
of the person and the data can have the phone number along with other information. Build 
a hashing function that works on the names. Note that it will not be possible with this 
implementation to list the names in alphabetical order without a separate sorting opera­
tion. 

9. Build a Binary Search Tree phone book using the names as keys. Write a function that 
will compare the names using an operation like operator<. 
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10. Which of the two implementations of a phone book (See Exercises 6 and 7) give a 
better performance. Evaluate it theoretically as well as using a StopWatch object to time 
insertions and retrievals. 

11. Build an index to a phone book so that we may look up people in the phone book by 
knowing their phone numbers and retrieve the names. You may use either the hash or the 
tree class for the basic phone book. The index, however, should have phone numbers for 
keys and provide access to an individual record in the phone book. 

12. Postfix expressions are written with the operator symbol following all of its operands 
rather than between them (infix notation). For example, the ordinary expression (a+b) * c 
is written a b + c * in postfix. There are no parentheses in postfix notation, one of its !d­
vantages. Postfix expressions can be evaluated easily using a stack. The algorithm is 
quite simple. As you read the postfix expression left to right, if you see an operand 
(value), just push it onto a stack. If you see an operation, pop the correct number of oper­
ands for that operation from the stack, apply the operation to them, and push the result 
back onto the stack. You must be careful with noncommutative operations like subtrac­
tion, that you get the operands in the correct order: the first item popped becomes the 
rightmost operand. Implement this idea. 



Chapter 4 
Overview of the Standard Template Library 

4.1. Components of the STL 

The Standard Template Library has six different kinds of components. There are different 
subcategories of each of these component types. Here in one place is the complete listing 
of the library elements. 

1. containers 
sequential containers 

array 
vector 
deque 
list 

sorted associative containers 
set 
multiset 
map 
multimap 

hashed associative containers 
(an extension) 

2. iterators 
input iterators 
output iterators 
forward iterators 
bidirectional iterators 
random access iterators 

3. generic algorithms 
nonmutating sequence algorithms 
mutating sequence algorithms 
sort related algorithms 
numeric algorithms 

4. function objects 

J. Bergin, Data Structure Programming
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arithmetic operations 
comparison operations 
logical operations 

5. adaptors 
function adaptors 

negators 
binders 
pointer to function adaptors 

container adaptors 
stack 
queue 
priority queue 

iterator adaptors 
reverse adaptors 
insert adaptors 

6. allocators 
default allocator 
custom allocators 

We use the STL when we want to be able to store data in some structured way and to 
execute algorithms on the saved data. Depending on the nature of our problem and the 
type of algorithms we need to execute, some containers will be more suited to the task 
than others. Most of the algorithms work with most of the containers, but there are ex­
ceptions. It will become clear from the nature of the algorithms and the containers when 
there is a poor match. For example, the sort algorithms don't work on lists because of the 
difficulty of moving from one cell to a nonadjacent cell in a list. Instead, a specialized 
sort algorithm is provided for lists. 

Each of the algorithms in the library is specified with its big 0 run-time bounds. This 
lets the user be sure about the performance of his or her programs. Most of the algo­
rithms work with iterators. In fact, iterators are the interface between containers and algo­
rithms that operate on them. This library was designed in this way so that the algorithms 
could be written in as general a way as possible so as not to have to duplicate the code for 
each container type. We create iterators by executing member functions of the container 
classes. For example, the member function beg in () of each of the container classes re­
turns an appropriate iterator for that container, initialized to point to the "first" element of 
the container. Similarly, function end () returns an iterator that points just after the 
"last" item. If we continually execute operator++ on the iterator returned by beginO, it 
will eventually reach the iterator returned by endO. If we pass these two iterators to an ap­
propriate algorithm, the algorithm will be applied to our container. 

There are different kinds of iterators, of course, and different kinds are associated with 
the different containers. For example, as we have seen, pointers behave like random access 
iterators. Likewise, vectors use random access iterators, so the beginO member of vector 
returns a random access iterator. On the other hand, list::beginO returns a bidirectional it­
erator. For this reason, the standard sort algorithm does not work with lists: sort requires 
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a random access iterator. The reason for this is not that it is impossible to sort lists, just 
that the standard sorting mechanism (quicksort) is too inefficient on lists. 

Adaptors are used so as to minimize the number of classes and functions in the library 
without reducing its power. For example, we can tum a vector or a list or a deque into a 
stack by using the stack adaptor. We don't need three kinds of stacks in the library, one 
for each way of using memory, because a single adaptor can provide these for us. Like­
wise, we can make any (bidirectional) iterator work backwards, from the last element to 
the first, by applying a reverse iterator adaptor. 

4.2 A Motivating Example: A Spell Checker 

Suppose that we want to build a rudimentary spell checker. One of the tools that we shall 
need is a dictionary of correct spellings that we can compare against. One way to generate 
such a file is to take a large text file, read it into some data structure, sort the words, re­
move adjacent duplicates, and then save the result. If we pick a large enough file, then we 
shall have a lot of words as the basis of our dictionary. Of course the original file needs to 
have correctly spelled words if this is to be useful, and it will be especially helpful if we 
can allow this file to grow over time by appending additional words to it. 

Since we don't know in advance how large a word file we shall be processing, and 
since we want to sort the structure efficiently, we can choose to use a vector as the basis 
of our solution. Arrays aren't flexible enough in terms of size, and lists don't sort as effi­
ciently. We could also use a deque, but the 00ded flexibility of deques in being able to 
grow at either end, which we don't need, comes at the cost that the algorithms that we 
wish to use will operate more slowly (by a constant factor) than will be the case if we use 
a vector. 

In order to see the results of our work, and as an aid in debugging, it will be helpful to 
have a function that writes vectors. 

template <class T> 
void writeVector(vector<T> v) 
{ for 

} 

vector<T>: :iterator i = v.begin(); 
i < v .end(); 
++i 

cout « *i « ' '; 
cout « endl«endl; 

This function writes out a space-separated listing of the elements of a vector. We will 
be using strings (char*) as our template argument, and strings can contain spaces, though 
ours won't, so the above function might not be the best for strings. It is useful for most 



102 Data Structure Programming with the Standard Template Library in C++ 

other types, however. We can get a special version of writeVector for just strings simply 
by writing it. 

void writeVector(vector<char *> v) 
{ for 

} 

( vector<char *>::iterator i = v.begin(); 
i < v .end(); 
++i 

cout « *i « endl; 
cout « endl; 

One of the nice features of c++ is that the compiler will choose the most appropriate 
version of writeVector for us. If we write a vector<char*>, then this latter function will 
be used. If we write a vector<int>, then the template will be used to build us a writeVec­
tor for ints. 

It is even easier to use an ostream iterator to output a vector. 

ostream_iterator<int> out (cout); 
II creates the iterator 

Once we have the iterator we can use the copy algorithm of the STL to copy the vec­
tor to the stream: 

copy(v.begin(), v.end(), out); 

The type char* is quite finicky, as you know. We need to be careful to allocate mem­
ory correctly for such strings. It is useful to read a string into a fixed length buffer, but 
for storage, it is most useful if the length of the storage block is tailored to the length of 
the string so that we don't waste space. The following function will read from an input 
file stream and store one word in each cell of a vector<char*>: 

void readStrVec 
ifstream & inp, 
vector<char*> &V 

) 
{ char* input; 

char buf[80]; 
do 
( inp» buf; 

if (strncmp(buf,"",80) 0) break 
int len = strlen(buf); 
input = new char [len+l]; 
strcpy(input, buf); 
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V.push_back( input ); 

while (true); 
} 

We could also use an istream iterator and the copy algorithm to read a vector. For ex­
ample, to read a set of int values into a vector v from cin, we can say 

istream_iterator<int> in(cin); 
II Iterator to the "beginning". 

isteram_iterator<int> end; 
II Iterator to the "end" of the stream. 

copy(in, end, v.begin(»; 

This would be harder for char* values, since we want to allocate storage for them be­
fore storing them into the vector. This last assumes that the vector is big enough to hold 
all of the values to be input. Note that the copy algorithm is not part of the vector class. 
It can be used to copy many kinds of things, but those things need to be specified using 
iterators. We can even copy a vector v to a vector w using copy (if w is at least as big as 
v). 

copy(v.begin(), v.end(), w.begin(»; 

The vector class template defines a number of members for inserting, removing, and 
accessing values stored in the vector. Member function push_back inserts a new item at 
the right end of the vector. We can also compare two vectors for equality if the element 
type values can be compared for equality. The same is true of less than comparisons. One 
container is less than another if some prefix of each is the same (equal to) the correspond­
ing prefix of the other, and at the first point of difference, the element of the first is less 
than the corresponding element of the other. This is called lexicographic ordering. 

The main function that calls readStrVec might look something like the following: 

void main() 
{ ifstream inp( "words. txt"); 

vector<char *> V; 
readStrVec(inp,V); 
writeVector(V) ; 

} 

Suppose that our file "words. txt" contains the following: 

these are the 
times that 
try us 
all the more 
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The input operator» for strings breaks at spaces, so we shall get one word of this file 
in each cell of the vector V. The output of our main fragment will be 

these 
are 
the 
times 
that 
try 
us 
all 
the 
more 

OUT next task is to sort the results of reading the file of words. Unfortunately, if we do 
this naively, we won't get what we desire. The usual way to sort a container that has ran­
dom access iterators is the following: 

sort(V.begin(), V.end(»; 
writeVector(V) ; 

This won't work in this case, since what we are storing in the vector V are pointers. 
Sort works by applying operator< to the elements, and operator< for pointers simply 
compares pointer values (addresses), not the values that the pointers reference. When I ran 
the above on my computer, I got 

more 
the 
all 
us 
try 
that 
times 
the 
are 
these 

We need to do better. In fact, we need the alternate fonn of algorithm sort, that uses a 
third parameter to specify how the comparison is to be made. This third parameter needs 
to be a function object. 

A function object is an object (value of a class type) that supports operator ( ). 
Supporting this operator means that the object may be "called" as if it is a function. We 
need to build a class (or struct) in which operatorO defines the string comparison <. This 
is very simple to do. We use a struct, rather than a class, simply to make everything pub­
lic. 
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struct strless 
{ bool operator() (char* x, char* y) const 

{ return strcmp(x, y) < 0; 
} 

} ; 

This struct has only one member: operator(), which returns the "<" comparison for 
strings. This is just what we require. The correct code for sorting our vector<char*> then 
is 

sort(V.begin(), V.end(), strless(»; 
writeVector(V) ; 

The third parameter passes in a new strless object. It looks like a function call, but it 
is a constructor call that initializes our strless object. Algorithm sort will use this object 
as a function to compare strings during the sort. In any case, the result of the above code 
fragment is 

all 
are 
more 
that 
the 
the 
these 
times 
try 
us 

A function object that returns bool, or a type convertible to bool, is called a predicate. 
The above class strless defines a binary predicate, since operator() has two parameters. A 
unary predicate takes a single argument and returns bool. The STL uses these extensively. 

We could, by the way, reverse the order of the sort, simply by changing the "<" to a 
">" in the definition of strless::operatorO. There is a better way to get this reverse sort 
done, however, given struct strless. That is to apply a function adaptor to it to reverse the 
sense of the comparison. To do this, we must first be a bit more sophisticated in our 
function objects. We built a simple class strless above, but we didn't put quite enough 
into it to make it work properly with the STL. The easiest way to complete it is to derive 
strless from the built-in less function object class that comes with the STL. 

struct strless: public less<char*> 
{ bool operator() (char* x, char* y) const 

{ return strcmp(x, y) < 0; 
} 

} ; 
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The major difference here is that we need to define certain types to the STL so that the 
various algorithms know what types we have for our parameters. This is similar to what 
we did with the value_type in our stack classes in Chapter 3. Having done this (and 
we should do it with strequal as well), we can now sort in reverse order with 

sort(V.begin(), V.end(), not2(strless(»); 
writeVector(V) ; 

The function adaptor not2 takes a binary predicate (2 arguments) and transforms it 
into its negation. It actually constructs a new function object whose operatorO returns the 
negation of that of the parameter. We apply not2 to our function object strless ( ) 
to get another function object that is used by sort. The result of this sort would be 

us 
try 
times 
these 
the 
the 
that 
more 
are 
all 

Notice that we have some repeated words here and in the original sort, since we had 
duplicate words in the original file. We wish to remove such duplicates. This is a two 
step process with the STL. First we use algorithm unique, which simply rearranges the 
contents of the vector (or other container) so that its unique elements are at the beginning. 
It returns an iterator to us to tell us the end of the range of this initial interval of unique 
values. Again, we must not be naive in calling it, however. Usually we would write sim­
ply 

vector<char*>: :iterator tail 
= unique(V.begin(), V.end(»; 

writeVector(V) ; 

But again this won't work here. (Try it.) The problem again is that our vector saves 
pointers and unique uses operator== to determine what values are the same. This will be 
pointer comparison here, and since our values are held in strings with different addresses, 
none of them will look like duplicates. Again we need to use a function object to evaluate 
equality between strings. 

struct strequal: equal<char *> 
{ bool operator() (char* X, char* y) const 

{ return strcmp(x, y) == 0; 
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} 
} ; 

The correct call of unique is 

vector<char*>: :iterator tail 
= unique(V.begin(), V.end(), strequal(»; 

writeVector(V) ; 

The output of this is as follows (assuming we did an increasing sort). Note that the 
vector V has not changed its length, and it does not have the same contents. 

all 
are 
more 
that 
the 
these 
times 
try 
us 
us 

What has happened here is that the unique elements were copied to the front and kept 
in the same relative order. This may result in some values getting overwritten. The sec­
ond copy of "the" was overwritten by the "these." This leaves us with two copies of "us" 
at the end. The iterator that is returned from unique will reference the second copy of "us," 
which is the end of the unique range. We next need to delete the tail of extra values. 

V.erase(tail, V.end(»; 
writeVector(V) ; 

This will leave us with the desired values: one each of the words in the original file, 
sorted alphabetically. 

all 
are 
more 
that 
the 
these 
times 
try 
us 
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At this point the vector contains nine elements, as we can observe by evaluating 
V.sizeO. The size of a vector is its current size. Its size will grow as we execute member 
function push_back(T). This function pushes a value onto the back of the vector, so that 
it grows at the end. The original size was zero when we created it at the beginning of 
mainO. The physical size doesn't grow with each push_back, however, as this is time­
consuming (as we shall see in the next chapter). Instead, the vector is created with a cer­
tain capacity. The vector won't grow physically until we try to exceed this capacity. You 
can discover the capacity by evaluating V.capacityO. Here it is 1,024. 

4.3 Containers 

In this section we shall consider the design elements of container classes, focusing espe­
cially on those elements that are common to the various classes. In later chapters we will 
look at the differences and the specifics of each class. As indicated above, many of the 
most important algorithms for manipulating containers are not defined as members of the 
container classes, but externally as generic algorithms. However, it is necessary to have 
some support, especially for inserting, deleting, and accessing elements within the con­
tainers. 

All container classes in the STL support a common functionality in addition to some 
specialized operations. They may differ in the efficiency with which they perform some of 
the common operations, however. Arrays are a special case. They have this functionality, 
but often use different syntax to achieve it. For example the accessor function begin ( ) 
that returns an iterator to the beginning of a container corresponds to a pointer to the be­
ginning of the array. 

The common functionality falls into seven categories: types, constructors, destructor, 
accessing, comparison, assignment, and swap. 

Types. All containers define at least nine types. These are defined by typedefs within 
the class declarations. The purpose of these is to make it easy for the algorithms to 
declare appropriate temporary data. 

val ue_ type is the type of data stored in the container. This is the same as the 
template parameter type. For example, the value_type of a vector<int> is 

vector<int>::value_type. It will be int, of course. While it seems silly to define 
this, recall that we must be able to recover this type from within a function template, 
where we do not have knowledge of what the template parameter will be. 

reference is the type of references to values in the container. Usually this is 
just &T, where T is the parameter, but it can be otherwise. 

canst_reference is the type of const references to data stored. 
i teratar is the type of iterators appropriate to this container type. 
const_i terator is the type of iterators over constant containers of this 

type. 
reverse_i teratar is the type of iterators that can iterate over the container 

in reverse of the usual direction. 
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const_reverse_i terator is the type of reverse iterators into const con­
tainers of this type. 

size_type is a numeric type that can represent the size of containers of this 
type. 

difference_type is a numeric type adequate to hold any generated value of 
the difference between two iterators. 

All of the iterator types provided by containers are at least bidirectional. The vector 
and deque iterators, as well as the pointers used with arrays, are random access iterators. 
Note that, since arrays are not defined by a class but are the built-in arrays of C++, the 
above types are not formally defined for arrays. 

Constructors. All containers have a default constructor and a copy constructor. The 
copy constructor requires linear time. 

Destructor. All containers have a destructor. It applies the destructor to each ele­
ment of the container. The destructor requires linear time in the number of elements 
stored. Be aware, however, that if destruction of the individual elements is slow, then 
so will be the destruction of the container. 

Accessing. All containers support seven member functions for obtaining informa­
tion about the container and its contents. 

beg in ( ) returns an iterator to the first position in the container. 
end ( ) returns an iterator to a position just after the last position in the con­

tainer. [ beginO, endO ) form a valid interval in the container that includes all ele­
ments stored. For an empty container, this interval will be empty. 

rbeg in ( ) returns an iterator to the last position. 
rend ( ) returns an iterator to a position just before the first item. 

[ rbeginO, rendO ) forms a valid interval that includes all elements stored. It provides 
for reverse iteration over the container. 

ernpt y ( ) returns true if and only if there are no elements in the container. 
s i z e ( ) returns the current size of the container. This is the number of values 

stored. The physical capacity may be higher. 
rnax_s i z e ( ) returns the size of the largest possible container of this type. 

All of the accessing operations require only constant time. 

Comparison. All container classes support the usual comparison operators. The 
operator= and operator< are used to defme the other four comparisons, so they be­
have as expected. They depend on the presence of operator== and operator< of the pa­
rameter type, which is the element type of the container. The comparison operations 
take linear time as they are applied to all (or many) corresponding elements of the 
containers. 
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Assignment. All container classes overload the assignment operator to make as­
signment of containers safe. 

Swap. All containers support a swap operation that will swap the contents of two 
containers of the same type in constant time. For example, if a and b are vectors, 
then a.swap(b) will exchange their contents. 

As a simple illustration of the generality of the design of the STL, the following 
function template will correctly write out the contents of any container in the library. 
This is because every container defines an iterator type, beginO and endO iterators. All it­
erators can be de-referenced, and all iterators produced from containers are bidirectional am 
support the operator!=. Note that not all support operator<, however, which is a property 
of random access iterators. 

ternplate<class container> 
void writeContainer(container C) 
{ for 

} 

( container: :iterator i = C.begin(); 
i ! = C. end ( ) ; 
++i 

cout «*i«' '; 
cout « endl; 

Note that while we said that all iterator types may be de-referenced, it is not the case 
that all values of iterators may be safely de-referenced. For example, the vector::endO it­
erator does not refer to a valid slot in the vector and so should not be de-referenced. This is 
exactly similar to the situation with c++ pointer variables. They are a de-referencable 
type, but not all values of a pointer refer to a valid item. A pointer may be NULL, or it 
may be uninitialized. The same kind of thing is true of iterators (though they may not, in 
general, be NULL). 

4.3.1 Sequence Containers 

The sequence containers are vectors, deques, and lists. Vectors use dense storage, similar 
to arrays, though vectors may change in size as a computation proceeds. Deques use a 
simple tree of dense blocks. Lists use doubly linked storage. 

In addition to the general requirements of containers, all sequence containers have addi­
tional members. These fall into three categories: constructors, insertion, and deletion. 

Constructors. All sequence containers have a constructor that will place n copies 
of a value into the new container. They also have a constructor that will create a new 
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container with the values defined by any valid iterator interval. Even one from a dif­
ferent kind of container. 

Insertion. Sequence containers have three member functions named insert. They 
all have an iterator as first parameter. It gives the location at which we shall insert. 
The first version of insert will insert a given value at the location of the iterator. 
Note that it makes room available for the new item. It does not overwrite existing 
items, but inserts ''before'' the item to which the iterator refers. This version returns 
an iterator to the newly inserted position. The second version of insert inserts n cop­
ies of a value at the location of the iterator. The last inserts the contents of a valid 
range at the location of the first parameter. 

Note that the insertion routines all change the size of the container. Also be 
aware that the iterator returned by lastO is a valid point of insert. 

Deletion. Sequence containers all have two member functions named erase. The 
first removes an item at the location of an iterator. The second removes all values in 
a given valid interval. They both change the size of the container. 

Note that insertions and deletions may invalidate iterators into that container. For ex­
ample, in a vector, if we insert into the middle of the container, all iterators after that lo­
cation will become invalid. We should not write programs that depend on the stability of 
iterators while insertions are in progress. 

Finally, we note that the individual sequence containers have additional members as 
appropriate. We also note that container adaptors may be used to tum sequence containers 
into more restricted types, such as stack, queue, and priority queue. 

4.3.2 More on the Spell Checker 

Suppose that we wish to remove the word "the" from our spelling dictionary. Since the 
vector is sorted, we can use binary search to find the location of this word in the vector. 
The generic algorithm binary_search simply returns a bool value telling us whether the 
target is present or not. We need more: the actual location of the target. For this we can 
use the lower_bound or upper_bound function. These give us the locations (as iterators) 
of the earliest and latest place in the container at which we could insert the target without 
destroying the sort. Since, in general, a sorted container can have duplicates, this just 
gives us the interval of values equal to the target if it is present. We don't need both val­
ues here, however, so we will just use lower_bound. This function requires a pair of itera­
tors delineating the range over which it will search. It also requires the target of the 
search. Since we are using char* values, which require a special comparison function, we 
pass in the function object also. Note that we pass a strless object since that was the 
comparison used to sort the vector. Therefore, it is also used to binary search it. 

vector<char*>: :iterator where; 
where = lower_bound 
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(V.begin(), V.end(), "the", strless(»; 

Now that we know the position of the word "the," we can remove it with erase. 

V. erase (where) ; 

Now suppose that we wish to insert the word "souls" into the dictionary, but we want 
to insert it into its proper location. We can use lower_bound again to find this position. 

where = lower_bound 
(V.begin(), V.end(), "souls", strless(»; 

Now that we have an iterator to the proper location of insert, we may use insert to 
place the word into this location. 

V.insert(where, "souls"); 

We don't want to do so here, but we could insert three copies of the word into the vec­
tor at this location with 

V.insert(where, 3, "souls"); 

Finally, if we wanted a separate vector of all of the words that begin with "t", we can 
first find the interval in which they lie with 

vector<char*>: :iterator start, stop; 
start = lower_bound 

(V.begin(), V.end(), "t", strless(»; 
stop = lower_bound 

(V.begin(), V.end(), "u", strless(»; 

We can now construct a new vector with just the "t" words using 

vector<char*> t_words(start, stop); 

The same strings are now in both vectors, V and t_words. We don't have copies of the 
strings in the two vectors, but they share pointers to the buffers containing the strings. 
This means that if we alter the spelling of one of the strings, it will show up as changed 
in both vectors. We also need to be careful about deleting a string held in a container, re­
membering that we hold a pointer to its buffer there. If we delete the string, then other 
pointers to it become invalid. For this reason we would be better off using a String class 
rather than char*, so that we could better control allocation, copying, and deallocation. 
The string class provided by the c++ standard would be a good choice. 

We don't want to remove all of the "t" words from our dictionary, but we could do so 
with 
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start = lower_bound 
(V.begin(), V.end(), "tn, strless()); 

stop = lower_bound 
(V.begin(), V.end(), "un, strless()); 

V.erase(start, stop) 

Notice that we need to reset start and stop if they have been passed to some algorithm 
such as the constructor above. This is because the algorithms may modify the iterators. 
Again, we note that many of the algorithms "consume" their iterator parameters. 

Algorithms such as lower_bound return iterators. These iterators may be used in many 
ways. The iterators returned by a vector are random access iterators, so we may do arith­
metic with them, adding an integer to them, for example. We need to be careful with our 
operations on iterators, since it is possible to make the same kinds of errors with iterators 
as it is with pointers. In particular, it is possible to make an iterator point outside the 
container that generated it. If we try to de-reference where+ 1 0, for example, we are 
likely to get into trouble. The user needs to be aware that the STL was optimized for 
flexibility and efficiency, not for safety. Therefore, the user needs to take all care when 
manipulating iterators. In general, the same techniques you have learned for keeping out 
of trouble with pointers also work for iterators, because of the design that makes them so 
similar to pointers. 

Exercise. In the Appendix, fmd the generic algorithms mentioned in this section and 
explain the template parameters and function parameters of each of them. 

4.3.3 Sorted Associative Containers 

There are four kinds of sorted associative containers in the STL: set, multiset, map, and 
multimap. Sets and maps have the property that an item may be present in the container 
only once if at all. Multisets and multimaps permit the "same" item to occur several 
times. The reason the word "same" is quoted in the last sentence is that the definition of 
sameness is up to a programmer and so needs to be interpreted in terms of what kinds of 
things are stored in the container. The values stored in maps and multimaps are pairs of 
items. The first element of a pair, its key, is used to retrieve items, and as the basis of 
"sameness." The second element of the pair, the information, may be of any kind. An ex­
ample of a <key, information> value is a social security number as the key, with em­
ployee information as the information component. In sets and multi sets the values stored 
are just the keys. 

As implied by the name, sorted associative containers are sorted. This means that the 
contents need to be compared. Instead of doing this directly, with operator<, however, 
these containers use a function object to define the relationship. The default object, named 
Compare, is given as a template argument, but the user is free to substitute another. The 
STL provides a number of possible values of the template argument. One of these is 
less<T>O that uses the operator< as the basis of comparison. The comparison object 
must obey certain principles, however, if the algorithms are to work correctly. 
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As an aid in defming and using the sorted associative containers, the STL defines a 
struct template named pair that can be used to defme ordered pairs of any types. These 
pairs are used as the values stored in maps and multimaps, and as the return type of func­
tion equal_range, defined below. This template is defined in <pair.h>. A pair has public 
member variables to set or retrieve the first and second elements of the pair. 

The requirements of comparison objects are as follows: 
To define a comparison object, you create a class and name it. We will suppose that 

the name "Comp" is to be used. Comp must define a binary operatorO, returning a bool, 
that defines the ordering on the keys to be stored. If this operator returns true for a pair of 
values a, b, then we write aRb, (read "a is related to b"). Note that operatorO may return 
true for a, b in that order, but false in the other order. 

Transitivity. If a, b, and c are key values, and aRb, and also b R c, then aRc 
must also be true. 

Trichotomy. If a and b are values, then exactly one of aRb, bRa, and "a is the 
same as b" is true. 

When a function object obeys the above, we say that it a strict total ordering on the 
values. Notice that the law of trichotomy implies that aRb and bRa are never true si­
multaneously. This implies that operator<= will not serve as the basis of a comparison 
object. 

Implied in the definition of a strict total ordering is the notion of "sameness" used in 
the first paragraph of this section. In particular, we say that two items, a and b, are the 
same if both aRb and bRa are false. This is not the same thing as saying a = b, of 
course. When aRb and bRa are both false, we say that a and b are equivalent to each 
other. 

When we create a sorted associative container, we also give it a comparison object. If 
none is supplied, then the default object is used, which was defined by the template argu­
ment. We can also specify this operator using the constructor less<T>O, where T is the 
type of values to be stored. The STL also defines object greater<T>O. 

Note that operator< as defined on the built-in types of C++ acts as a strict total order­
ing. 

In addition to the features shared by all containers, sorted associative containers have 
the following members. 

constructors 
Sorted associative containers have constructors that permit initialization with a 

comparison object. When present, this is the last argument of the constructor call. In 
general, you can construct a container from an arbitrary range, even a range from a 
different kind of container. This may not be fully implemented, given the current 
state of compilers, however. 

access 
key_camp ( ) returns the key comparison object. 
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va 1 ue_comp () returns a constructed comparison object that works on values 
stored (keys for sets and multi sets, pairs for maps and multimaps). In the case of 
maps and multimaps, the comparison object still works by comparing only the keys. 

insert() (sets and maps only) inserts its argument only if it is not already 
present. The comparison object is used. The object will not be inserted if it is equiva­
lent to an object already stored. 

insert ( ) (multi sets and multimaps) inserts its argument into the sorted loca­
tion. There are various forms of insert, including insertion of a range. This is prop­
erly defined using a template member function, which may not be fully implemented 
in your compiler. If this is the case, then you may be restricted to ranges defIned by 
ordinary pointers only. 

erase (k) deletes the object whose key is k if present. It returns the number of 
items erased. It erases all copies in a multiset or multimap. 

erase ( i) deletes the object to which the iterator i refers. There is also a ver­
sion that will erase a range given by two iterators. 

find ( k) returns an iterator referring to the object with key k, if present, or 
endO otherwise. 

count (k) returns the number of items whose key is k. 
lower_bound (k) returns an iterator pointing to the first location whose key 

is not less than k according to the comparison object. 
upper_bound (k) returns an iterator pointing to the first location whose key 

is greater than k. 
equal_range (k) returns a pair of iterators consisting of the pair 

(lower_boundO, upper_bound) 

4.3.4 Rebuilding the Spelling Dictionary as a Set 

The spelling dictionary problem is easier if we use sets, since we don't need to sort them 
or remove duplicates. This is already implied by the use of sets. We do need to pass com­
parison objects, but we have been doing this already because of the special needs of char* 
values. Notice that our function object strless satisfies the requirements of a strict total 
ordering. We will want a different function to read a fIle into a set, since sets don't sup­
port push_back, but rather just insert. We first defIne a type called stringSet. 

typedef set<char*, strless > stringSet; 

void readStrSet(ifstream& 
{ int i = 0; 

inp, stringSet& V) 

char * input; 
char buf[80]; 
do 
{ inp » buf; 

if (strncmp(buf,"",80) 
int len = strlen(buf); 

0) break 
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} 

} 

input = new char [len+l]; 
strcpy(input, buf); 
H+; 
V.insert( input ); 

while (true); 

Now the result of 

void main ( ) 
{ ifstream inp ( "words. txt" ) ; 

stringSet V; 
readstringSet(inp, V); 
writeContainer(V); 

} 

is 

all are more that the these times try us 

As we see, the container is already sorted, and the second "the" was not inserted, since 
one was already present. If we don't want even the one copy of "the," we can remove it 
with 

V. erase( "the"); 

and if we wish to insert the word "souls," the following will do: 

char* temp = new char[6]; 
strcpy (temp, " souls" ) ; 
V. insert (temp) ; 
writeContainer(V); 

Now the result is 

all are more souls that these times try us 

Notice that we allocated a new buffer to hold the new word. While either of the next 
two cans to insert are legal, both will result in eventual problems. 

V. insert ( "souls") ; 
II points to a static value 



or 
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char temp [6] = "souls"; 
V. insert (temp) ; 

II points to an automatic value 

This is not a problem with containers or the insert member. The problem lies in the 
nature of pointers. In the last example above, if we change the value of the temp buffer, 
we will change what is in the set. The first of these would be useful only in a set of con­
stant strings. 

Again supposing that we wish to have a listing of just the "t" words in a separate set, 
the following will work: 

stringSet: :const_iterator start 
= V.lower_bound( "t"}; 

stringSet: :const_iterator stop 
= V.lower_bound( "u"}; 

stringSet t_words(start, stop}; 
writeContainer(t_words}; 

Assuming we did remove "the," this will produce 

that these times try 

4.4 Iterators 

We have used iterators in many ways already, but have only scratched the surface of their 
capabilities and complexity. The STL defines many kinds of iterators, as we have already 
noted. Chief among these are random-access, bidirectional, and forward iterators. There are 
also two generalizations of forward iterators called input iterators and output iterators. 
These, in tum, have special versions called istream iterators and ostream iterators, respec­
tively. We will explore some of the differences between these in this section. 

The reason for having different iterator categories is dual. On the one hand, certain 
container types can only provide certain kinds of iterators efficiently. We want all iterator 
operations to be doable in constant time, so that the iterator operations don't slow down 
the operation of algorithms in which they are used. Thus, a list cannot efficiently provide 
random access iterators, but since they are doubly linked, they can provide bidirectional it­
erators efficiently. When we specify a container, we specify the strongest iterator type that 
it can (efficiently) provide. The second aspect of the need for different iterator categories 
has to do with the needs of the algorithms. Sorting algorithms, for example, may need to 
compare items at widely separated locations in the containers they sort. To do so may re-
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quire more power in the iterator than would be required in a searching algorithm. When 
we specify an algorithm, we specify the weakest iterator type that can be used with it. 

Most of the iterator types are not defined by classes in the STL. Instead they are in­
formally defined by what services they provide-especially, which operators they over­
load. Thus, there is no class for forward iterators. The collection of requirements for an 
object like a forward iterator are informally called a concept. Any class or built-in type 
(pointers) that has the forward iterator operations defined (chiefly operator++) conforms to 
the concept and can therefore serve as a forward iterator. This is because the iterator classi­
fications are used as template parameters, not as actual types. The categories of iterators 
are defined as an aid in documentation to aid the user of an algorithm understand what is 
required of the iterators that are passed. For example, the specification of the copy algo­
rithm that will copy a range into a container is 

template <class Inputlterator, class Outputlterator> 
Outputlterator copy 
( Inputlterator first, 

Inputlterator last, 
Outputlterator result 

) ; 

This is a way of saying that the template parameters have certain requirements, which 
if satisfied, we can guarantee the correct operation of the algorithm. 

In addition to the presence of certain operators, the STL requires that the operators 
obey certain laws if the algorithms are to work correctly. We have already seen one sim­
ple example of this in our specification of an interval or range [a,b), where we assume 
that repeatedly executing a++ will eventually get us to b. 

We will detail each of the iterator categories below. There are two varieties of each of 
these iterators, however. Since it is possible to build const containers that cannot be 
modified, we also need const iterators, so that we don't try to modify a const container by 
de-referencing an iterator. We therefore classify iterators as either const or mutable. A mu­
table iterator returns a reference from operator*, so that we can assign to such a de­
reference. A const iterator returns a const reference (or possibly a value). The container 
classes all define a type called iterator and another named consUterator. The first of these 
is generally mutable. The category of these iterators depends on the container. For exam­
ple, vector<T>::iterator is a mutable random access iterator and vector<T>::consCiterator 
is a const random access iterator. 

A given value of an iterator may be de-referencable or not. An iterator A is de­
reference able if it refers to a location within a container, and so * A is a value of the con­
tained type. If a container C is nonempty, then C.beginO will return a de-referencable it­
erator. C.endO will return an iterator also, but it is not de-referencable. Instead, it refers to 
a past-the-end value. This location is a valid place for inserts in most containers, but not 
for retrievals. 

There may also be a singular value for an iterator. This is a legal value of the iterator 
that does not refer to any location or any container. For example, NULL is the singular 
value of ordinary pointers. Some constructions of iterators result in a singular value as 



Chapter 4. Overview of the Standard Template Library 119 

indicated. The algorithms are not guaranteed to work if passed singular values when they 
require iterators. 

Iterator categories, then, are defined by the operators they provide. Somewhat more is 
required, however. It is not enough just to have an operator present for an iterator to work 
correctly. Since it is possible for the programmer to overload operators, he or she can 
give any desired meaning to any operator. The operators have to be consistent with each 
other for the iterators to work correctly with the algorithms. For example, a random ac­
cess iterator must provide for the difference between iterators, b - a, as an integer n. The 
type must also provide an operator ++. However, these two operators must also be con­
sistent with each other for things to work. This means that if b - a = n, then exactly n 
iterations of a++ will take us to b. If this is not the case, then our program may compile 
correctly, but is unlikely to operate correctly. It may work with poor efficiency, or it may 
fail altogether. 

Iterators are used to define ranges. Most of the algorithms take a pair of iterators and 
define a range or interval that includes the first position and includes everything up to but 
not including the second. This is expressed as 

[a, b) 

where a and b are iterators. In order for this to be a valid range, b must be reachable from 
a. This means that repeatedly applying a++ will eventually have a == b. If this is not the 
case, the algorithm will fail, perhaps as an infinite iteration. It is up to the user to guar­
antee this, although the containers are helpful in returning iterators with beginO and endO 
that guarantee that endO is reachable from beginO. 

4.4.1 Forward Iterators 

Forward iterators mark a location in a container and can be moved forward with opera­
tor++. A newly created forward iterator might be a singular value. If it is de-referencable, 
then it must support both prefix and postfix operator++ as well as operator== and opera­
tor!=. There is an additional requirement that may sound like it could not possibly be 
false. We require that if two mutable forward iterators obey a = b, then it must also be 
true that *a == *b, and ++a == ++b. We will show how this can be false when we look at 
input iterators. 

4.4.2 Bidirectionallterators 

Bidirectional iterators have all of the properties of forward iterators. In addition, they may 
be moved backwards with operator--. Both pre and posfix forms of this operator are re­
quired. Furthermore, if --r == --s for de-referencable iterators, then r == s. 



120 Data Structure Programming with the Standard Template Library in C++ 

4.4.3 Random Access Iterators 

Random access iterators have all of the properties of bidirectional iterators. In addition, 
they support iterator arithmetic with such operators as operatoH and operator-. They also 
support operator<. In particular, we need an operator+ and an operatoH= that lets us Idl 
an integer to a random access iterator. We also need operator- and operator-=. We need two 
forms of operatoH, actually, so that we can add an iterator and an integer in either order. 
We also need to be able to take the difference between two random access iterators into the 
same container. The value n that is returned should be consistent with the operator+, as 
well, so that if a - b returns n, then a + n should be b. Also, exactly n iterations of a++ 
should take you to b. 

Random access iterators can also be indexed using operator£]. This should behave con­
sistently with iterator arithmetic, as in the pointer duality law. 

Finally, we need to be able to compare iterators with operator<, operator>, opera­
tor<=, and operator>=. Furthermore, operator< and operator> must be total ordering rela­
tions (as well as defining "opposite" orderings). This means that they obey the following 
two laws: 

Trichotomy. For any two values, a and b, exactly one of a < b, a = b, and b < a 
is true. 

Transitivity. If a < b, and also b < c, then a < c. 

Actually, this is a bit more than is required. Operator = doesn't have such a special 
place here. In fact, we can define a relation a E b to be true whenever a < b and b < a are 
both false. What is required is that this relation E be an equivalence relation. This means 
that E satisfies the following three laws: 

Reflexivity. For any a, a E a. 

Symmetry. If a E b, then also b E a. 

Transitivity. If a E b, and b E c, then a E c. 

If this is the case, then E partitions all of the values into disjoint sets called equiva­
lence classes. Any two elements a and b in one equivalence class satisfy a E b, and if c 
and d come from different equivalence classes, then c E d is false. As an example in which 
a perfectly reasonable ordering relation does not satisfy the above requirement, consider 
binary trees. Let an operation < be defined on the vertices of such a tree by a < b if a is an 
ancestor of b, but not the same as b. Then the induced relation E satisfies a E b if a is 
neither an ancestor or a descendant of b. It is possible to show that E does not satisfy the 
law of transitivity. (Four vertices on three levels will do.) Therefore, this operator< would 
not be a suitable candidate for a random access iterator operator<. 

Note that the operator< defined on the built-in types of C++ satisfies the law, as the 
induced relation E is just operator== on those types (even for pointers). 
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4.4.4 Input Iterators 

Input iterators are a generalization of forward iterators. This means that every forward it­
erator satisfies the requirements of an input operator, and more. Another way to think of 
this is that input iterators drop some of the requirements of forward iterators. 

Input iterators need to implement operators == and != for comparison. They need pre­
fix and postfix versions of operator++ for advancing, and they need to be de-referencable. 
They do not provide operator=, however, so that we may not be able to assign one iterator 
to another. More importantly, the template argument is not required to be mutable. We 
may not be able to use a de-reference of an iterator to change the container. This is be­
cause such iterators are used only for retrieving information from a container, not for put­
ting information into it. 

The final quirk of input operators is that, for two iterator values a and b, a = b does­
n't necessarily imply that ++a = ++b. This is because an input iterator is permitted to 
change the global state of its container, for example, by advancing a read buffer. It is pos­
sible to associate an input iterator with an input stream in such a way that operator++ 
reads from the stream. If two iterators into the stream are positioned at the same location 
and we use operator++ with one of them, the other will be "advanced" as well. Because of 
this restriction on use, all algorithms that use input (or output) iterators are required to be 
single pass algorithms. The iterator is consumed by its use and can't be reused. 

4.4.5 Output Iterators 

Output iterators are another generalization of forward iterators and are intended for putting 
information into a container, but not for retrieving information. As such, they may be as­
sociated with output streams in which operator++ writes to the stream. Output operators 
do not need operators == or !=. Operator++ (prefix and postfix) are used to advance. And 
we need to be able to assign a value to a de-reference of such an iterator. We are not re­
quired to be able to read from such a de-reference, however. Therefore, if a is an output it­
erator that points into a container of ints, then 

*a = 5; 

would be legal, but 

int x = *a; 

would not be. 
Input and output iterators are often used together. For example, in copying one con­

tainer to another, an input iterator may be used on the source, and an output iterator on 
the destination. 
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4.4.6 Istream and Ostream Iterators 

The STL defines two classes to easily associate streams with input and output iterators. 
This makes it easy to treat streams as containers like the other containers in the library. 
Thus, we may apply some algorithms directly to streams without providing intermediate 
storage to hold the contents. Input streams provide input iterators and output streams pro­
vide output iterators. 

We specify an istream_iterator by supplying (at least) the type of data to be read from 
the stream as a template argument. We construct an istream iterator by specifying a par­
ticular input stream. The end_oCstream iterator of a stream is constructed without pa­
rameters. Then, each execution of operator++ on the iterator is translated into an execu­
tion of operator» on the stream. The value read is stored within the iterator, and will be 
returned by de-referencing the iterator. 

istream_iterator<int> start(ein); 
II iterate over ein 

istream_iterator<int> finish; 
II end_of_stream. 

veetor<int> vee (start, finish); 
ostream_iterator<int> dump(eout); 
eopy(vee.begin(), vee.end(), dump); 

Important Note: This example requires two features from C++ that may not yet be 
implemented, and hence this may not work with your version of the STL. In particular, 
istream_iterator actually has two template parameters, the second of which is the differ­
ence type between pointers to the first parameter. In this case the type is ptrdifCt, defined 
by C++. We could have stated it here, but chose instead to use the new feature of default 
template arguments. In fact, ptrdifCt is the default value of the second parameter. If these 
are not available, you need to specify the second argument, as in 

istream_iterator<int, ptrdiff_t> start(ein); 
II iterate over ein 

The second advanced feature that this example depends on is template members. In ear­
lier versions of C++, individual member functions could not be templates: only classes 
and free functions. The latest standard provides for template members. The constructor we 
have used for vee is such a template member, in which the template argument is an input 
iterator. Hopefully by the time you read this, compilers will have caught up with the 
standard. This requirement is not so easily bypassed. Early versions of STL use various 
ways to compensate (partially) for this, usually by adding additional members to cover 
important cases that would be covered by a templated member. 
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4.5 Generic Algorithms 

While containers are the most visible feature of the STL and iterators are its backbone, it 
is the algorithms that form its purpose. As indicated earlier, most of the algorithms are 
not provided within container classes, but interface to the containers through iterators. 
This permits many algorithms to be written only once and to operate correctly with many 
container types. One version of the STL that I use has 106 generic algorithms. There are 
a few places where a generalized algorithm won't work efficiently with some container 
type but a specialized algorithm will. If the algorithm is important enough, it may be in­
cluded within the class of that container. This is exactly the case when sorting a list. 
Therefore, the list template provides a sort member, while vectors and deques use the gen­
eral template algorithm. 

Some of the algorithms work "in place," modifying the container on which they oper­
ate. Sort is like this. Other algorithms work on and return a copy of the input container. 
Some algorithms have both an in place and a copying version. For example, replace will 
replace old values with new in a range. This is an in place version. replace30py will re­
place old values with new, but does not modify its input. Instead it puts a modified copy 
of the input into another container. The copying algorithms all have a _copy suffix. For 
example, 

replace (start, done, oldValue, newValue) 

will replace all copies of oldValue by newValue over the range, but 

replace_copy 
(start, done, toWhere, oldValue, newValue) 

will write the range [start, done) starting at iterator toWhere, replacing oldValue by 
newValue as it copies. 

Some of the algorithms require that we pass in a unary or binary predicate as a func­
tion object. These algorithms only operate on elements or pairs of elements that satisfy 
the predicate: i.e., only if it returns true. These algorithms all end in _if. For example, 
replace_if will process a range replacing values that satisfy a unary predicate with a new 
value. There is also a copying version called replace_copy_if. Predicates are assumed not 
to modify their arguments. That is, they are supposed to merely return a value of true or 
false, without changing anything. Note that the predicates are called by these algorithms 
by applying them to the result of de-referencing iterators. Therefore, if we call replace_if 
with 

replace_if (start, done, big, newValue); 

where start and done are iterators, big is a unary predicate and new Value is the replacement 
value, then somewhere within the execution of replace_if will appear big(*i), where i is 
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some iterator, perhaps iterator start. If this predicate execution returns true, then *i = 

newValue will be carried out. 
Also, many of the algorithms have two versions depending on whether a predicate is 

passed or a standard predicate is assumed. For example, 

sort (start, done); 

will sort a range using the operator< on the elements of the range, while 

sort (start, done, strless) 

will sort using the binary predicate strless. These versions are not suffixed _if, since the 
predicate is not used to determine if the value should be included, but how the algo­
rithms should operate. 

If we don't count multiple versions and variations, there are about 56 fully generic al­
gorithms in the STL. There are also a few public support algorithms and a very large 
number of support functions. The public generic algorithms can be organized loosely into 
ten categories. 

The remainder of this section is intended to serve as a reference to the generic algo­
rithms. As such, it need not be read completely through. The prototypes of all of the al­
gorithms may be found in the Appendix. We will introduce each of the algorithms with a 
sample call, somewhat stylized, to indicate what kinds of parameters are required. Refer­
ence parameters in which values are returned will be shown in italics. 

4.5.1. Minimum and Maximum Algorithms 

The STL includes simple min/max comparisons written as templates so that other types 
won't need to provide these. It is not our intention to show many of the algorithms of the 
STL, but these are particularly simple. 

value = m.in(valueA, valueB); 
value = m.i.n(valueA, valueB, binaryPred); 
value = lIl.iU(valueA, valueB); 
value = lDJlX(valueA, valueB, binaryPred); 

The two versions of min might look like the following. Note that the first version 
uses operator< for the comparison, while the second uses a comparison object. Note that 
the class of the comparison object is a template argument, leaving maximum flexibility. 
Any class providing a binary predicate operatorO may be used for this argument. Ordinary 
functions may also be used. 

template <class T> 
inline const T& min(const T& a, const T& b) 
{ return b < a ? b : a; 
} 
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template <class T, class Compare> 
inline const T& min 

const T& a, 
const T& b, 
Compare comp 

return comp(b, a) ? b a; 

ForwardIter = min element(ForwardIterl, ForwardIter2); 
ForwardIter = min element(ForwardIterl, ForwardIter2, binaryPred); 
ForwardIter = max element(ForwardIterl, ForwardIter2); 
ForwardIter = max element(ForwardIterl, ForwardIter2, binaryPred); 

There are also two algorithms that return the minimum value in a range: one using 
operator< and the other using the comparison object. As is generally true of the algo­
rithms that process a range, the input range is defined by the first two parameters. These 
algorithms are linear. 

template <class Forwardlterator, class Compare> 
Forwardlterator min_element 

Forwardlterator first, 
Forwardlterator last, 
Compare comp 

4.5.2. Generalized Numeric Algorithms 

Each of these algorithms performs some arithmetic operation on a range or on a pair of 
ranges. Each has an alternate version in which the user can specify a particular binary op­
eration to be used in place of the standard version. When present, this binary operation is 
defined by a function object, and that parameter is last. 

total accumulate( first, last, init); 
total accumulate(first, last, init, binaryOp); 

Algorithm accumulate will add (using operator+) all elements of the range [first, last) 
to init and return the result. This is a single pass, linear algorithm, so all that is required 
is an input iterator. The type of init is a template parameter, and this type is also the re­
turn type. The alternate version repeatedly applies binaryOperation(init, *first++) and re­
turns the result. 

value = inne[..product(InputIterl, InputIter2, OutputIter, val); 
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value = jnner product 
(InputIterl, InputIterl, OutputIter, val, binOpl, binOpl); 

An inner product is the sum of the products of corresponding elements of two contain­
ers. Two ranges are required for input, but this is done with only three iterators, since the 
length of the second range must be the same as the length of the first. A fourth parameter 
gives the initial value of the total. The final value is returned. The second form passes 
two binary operations as the last two parameters, with the first replacing the sum and the 
other replacing the product. For example, we can get the product of sums of two int vec­
tors of the same length with something like 

inner...,product 
( v1.begin{), 

v1.end{) , 
v2 .begin{), 
1, 

) ; 

times<int> ( ) , 
plus<int> ( ) 

Note that the function objects plus and times are provided with the STL. 

Outputlter = partjal sum(InputIterl, Inputlterl, OutputIterl); 
Outputlter = partial sum(lnputIterl, InputIterl, OutputIterl, 

binaryOp); 

The partial_sum algorithm efficiently computes a sequence of running totals of an in­
put range. For example, if a set contains 1, 2, 3, 4, 5, then the partial sums would be 1, 
3,6, 10, 15. This result is placed into a second range that may be the same as the first. A 
second version replaces operator+ with any binary operator. 

partial_sum 
( set1. begin { ), 

setl. end { ) , 
vec2 . begin ( ) , 
times<int> () 

) ; 

This assumes that the vector vec2 has a size large enough to hold the resulting se­
quence of values. 

OutputIter = adjacent djfference(inputIterl, InputIterl, OutputIterl); 
OutputIter = adjacent.,.djUerence 

(inputIterl, InputIterl, OutputIterl, binaryOp); 
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The adjacenulifference algorithm is similar. It puts adjacent differences between val­
ues into a second range. The first "adjacent difference" is just the first value from the first 
range. AdjacenCdifference and partiaCsum perform inverse computations. 

4.5.3 Nonmutating Sequence Operations 

These algorithms operate on sequences, but they do not change them. While they work on 
sequences, they are not restricted to sequential containers since they use iterators to define 
their operations, and iterators return sequences of values even from nonsequential contain­
ers. 

lterPair = mjsmatcb(InputIterl, InputIter2, InputIter3)j 
lterPair = mjsmatcb(lnputIterl, InputIter2, InputIter3, binaryPred); 

Algorithm mismatch compares corresponding values in two ranges (again defined by 
three iterators) and returns a pair of iterators indicating the first location in each range at 
which the corresponding values fail to be the same using operator==. The two iterators re­
turned are equidistant from the beginnings of the input ranges. A second version, as ex­
pected, replaces operator== with a binary predicate of the user's choice. 

boolVal tIlWll(inputIterl, InputIter2, InputIter3)j 
boolVal tIlWll(inputIterl, InputIter2, InputIter3, binaryPred)j 

Algorithm equal (again two versions) compares two ranges and determines if they are 
the same up to the end. 

funObj = for eacb( inputIterl, InputIter2, InputIter3, funObj); 

One of the most powerful and general operations in the STL is algorithm for_each, 
which applies a user-supplied function to each element of a range. Any result produced by 
the supplied function is ignored. The function can, however, set global variables or even 
modify the elements of the collection. It should not, however, attempt to modify the col­
lection itself. For example, suppose we consider the CountedValue template that we cre­
ated in Chapter l. We can write a function object to set the value in any given Counted­
Value<int> to zero. 

struct setzero 
{ void operator() (CountedValue<int>& C) 

{ c.setValue(O); 
} 

} ; 

If we have a vector vec4 of CountedValue<int> objects, we can set all of their values 
to zero with 
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for_each(vec4.begin(), vec4.end(), setzero(»; 

InputIter = fiwI.(InputIterl, Inputlter2, value); 
InputIter = find if(Inputlterl, InputIter2, unaryPred); 

Algorithm find and find_if search for a value in a range and return an iterator to the lo­
cation of the value if found and the end of the range otherwise. Algorithm find has a pa­
rameter to specify the value sought and uses = to detennine a "hit." On the other hand, 
find_if uses a supplied unary predicate, but no value. It returns the first location in the 
range for which the predicate returns true. 

ForwardIter = adjacent find(ForwardIterl, ForwardIter2); 
ForwardIter = adjacentJind(ForwardIterl, ForwardIter2, binaryPred); 

Algorithm adjacencfind looks for two adjacent values in a range that are the same 
with operator==. An alternate version uses a supplied binary predicate instead of the opera­
tor. Both return an iterator to the first location satisfying the goal, or the end of the range 
if there are no matches. 

~(InputIterl, InputIter2, value, init); 
count if(InputIterl, InputIter2, unaryPred, init); 

Algorithm count counts values that match a given value. Interestingly, the count is 
returned as a reference parameter, rather than as a function result, so that the user may 
specify the type of the count itself using a template argument. 

template <class Inputlterator, class T, class Size> 
void count 

Inputlterator first, 
Inputlterator last, 
const T& value, 
Size& n 

) ; 

Since n is incremented once for each "hit" with operator++, any type that implements 
this function may be used as the last parameter, including user-defined classes. The alter­
nate version, counUf, replaces the value with a unary predicate. Each value of the range 
for which this function returns true causes the count to be incremented. This algorithm is 
a very good example of the total generality of the STL approach. Most libraries would 
just return an int or a long from such an operation, as this is the most common case. 
Here, we get to choose the type of the value to be incremented with complete freedom. 
We could even pass in an object from a class that changes the appearance of a dial each 
time its operator++ is executed. 
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ForwardIter = K.il.Uh 
(ForwardIterl, ForwardIter2, Forwardlter3, ForwardIter4); 

ForwardIter = K.il.Uh 
( ForwardIterl, 

ForwardIter3, 
binaryPred 

ForwardIter2, 
Forwardlter4, 

) ; 

Algorithm search is passed two ranges, using four iterators this time. It determines 
whether the second range is a subrange of the first. If so it returns an iterator to the start­
ing point of the subrange. The standard version uses operator=- and the other uses a bi­
nary predicate passed by the caller. This algorithm is quadratic in the worst case, but be­
haves better in most actual uses. 

4.5.4 Mutating Sequence Operations 

These algorithms also act on sequences, but they modify some range as they operate. This 
is the largest category of operations, with about thirty algorithms. Notice that if the des­
tination is a vector, for example, then the algorithms do not in general extend the length 
when they reach the end. The user is responsible for guaranteeing that the destination has 
sufficient size. 

OutputIter = ~(InputIterl, InputIter2, OutputIter); 

Algorithm copy copies one range to another. Be careful that the second container has 
sufficient room to hold the values. The two ranges can actually overlap as long as the 
first range (source) does not contain the first location of the second range(destination). It 
returns an iterator to the last item inserted into the destination. 

BidirectIter = copy backward 
(BidirectIter Iter I, BidirectIter Iter2, Bidirectlter Iter I); 

Algorithm copy_backward, which needs bidirectional iterators, copies one range to an­
other, but using last element first. The source range must not contain the last location in 
the destination range, but otherwise overlap is possible. Note that this doesn't reverse the 
order of the elements, just the order in which they are copied. It does copy into the desti­
nation working to the "left" of the initial point, however. This also returns an iterator to 
the last item inserted. 

Outputlter = fi.lL,o(OutputIter, count, value); 

Algorithm fill_n inserts n copies of a value into a container. 

template 



130 Data Structure Programming with the Standard Template Library in C++ 

< class Outputlteratar, 
class Size, 
class T 

> 
Outputlteratar fill_n 
( Outputlteratar first, 

Size n, 
canst T& value 

) i 

The return value points to the last item inserted. 

swap(valuel, value2); 
ForwardIter swap ranees(Forwardlterl, ForwardIter2, ForwardIter3); 

Swap exchanges two values. Algorithm swap_ranges swaps two intervals of equal 
length, returning an iterator just after the last item in the second range. 

OutputIter = transform(InputIterl, InputIter2, OutputIterl, unaryOp); 

This function applies the unary operator to each element of the first range, writing re­
sults to the second range. It returns an iterator after the last item inserted. The output 
range may be the same as the input range. 

OutputIter = transform 
(InputIterl, InputIter2, Inputlter3, OutputIterl, binaryOp); 

This version of transform applies a binary operator to corresponding elements of the 
two input ranges, writing results to the output range. It returns a past-the-end value of the 
second range. The output range may be the same as either input range. 

replace(ForwardIterl, ForwardIter2, oldValue, newValue); 
replace)f(Forwardlterl, ForwardIter2, unaryPred, newValue); 
OutputIter = replace copy 

(InputIterl, InputIter2, OutputIterl, oldVal, newVal); 
OutputIter = replace copy if 

(InputIterl, InputIter2, OutputIterl, unaryPred, newVal); 

Replace replaces all copies of oldValue in the input range with newValue. Replace_if 
replaces all values for which the predicate is true with newValue. The copy versions are 
similar, except that they place the results into an output range instead of modifying the 
input range. 

eenerate(ForwardIterl, ForwardIter2, GenFunc); 



Chapter 4. Overview of the Standard Template Library 131 

OutputIter = Kenerate O(OutputIterl, count, GenFunc); • 

These algorithms fill a range by repeatedly calling a generating function and saving 
the results. 

ForwardIter = remove(ForwardIterl, ForwardIter2, value); 
ForwardIter = remove.if(ForwardIterl, ForwardIter2, unaryPred); 
OutputIter = remove copy(InputIterl, InputIter2, OutputIterl, value); 
OutputIter = remove copy if 

(InputIterl, InputIter2, OutputIterl, unaryPred); 

These algorithms remove values from a range. The first removes all copies of the 
value. The second removes all values for which the predicate is true. The other versions 
are similar, except that they write the results to an output range instead of modifying the 
input range. If two elements of the input range are not removed, then their relative posi­
tion after execution is the same as before. Therefore, the algorithm is called stable. 

ForwardIter = unjQue(ForwardIterl, ForwardIter2); 
ForwardIter = unjQue(ForwardIterl, ForwardIter2, binaryPred); 
OutputIter = unjQue copy(InputIterl, InputIter2, OutputIterl); 
OutputIter = unique copy 

( InputIterl, 

) ; 

InputIter2, 
OutputIterl, 
binaryPred 

Algorithm unique removes successive equal values from a range. The first version 
uses operator== to detennine equality of pairs of values. The second version uses the bi­
nary predicate instead. The copy versions write results to an output range. 

reverse(BidirectIterl, BidirectIter2); 
OutputIter = reverse cQPy(BidirectIterl, BidirectIter2, OutputIterl); 

These algorithms reverse the order of the values in a range. The first modifies the in­
put range and the second produces an output range . 

.t!llilk(ForwardIterl, ForwardIter2, ForwardIter3); 
OutputIter = rotate.copy 

(ForwardIterl, ForwardIter2, ForwardIter3, OutputIter); 

The input to a rotation is defined by three iterators: the beginning, the middle, and the 
end. The rotate algorithms shift values leftward in the range so that the middle of the in-
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put becomes the beginning of the output and values shifted out are copied to the back. 
Therefore, the old beginning comes just after the old end in the output. 

random shuffle(RandomAcIterl, RandomAcIter2); 
random shuffle(RandomAcIterl, RandomAcIter2, randomGenFunc); 

The random_shuffle algorithms permute the input range randomly. The first uses a 
built-in uniform random number generator, so that all orderings of the input are about 
equally likely. The second version allows the user to supply a random number generator, 
which should return values in the interval [0, 1). 

BidirectIter = partition(BidirectIterl, BidirectIter2, unaryPred); 
Forwardlter = stable partition(ForwardIterl, ForwardIter2, 

unaryPred); 

These algorithms rearrange the values in a range so that all values that satisfy the 
supplied predicate come before those that do not. They return an iterator just after the last 
true value. The stable version does not reorder items from the same part of the result. If 
one item for which the predicate is true came before another for which it is also true prior 
to the execution, then it will remain before that other value after. The same is true for the 
false range. 

4.5.5 Sorting Related Operations 

The sorting related operations either sort a range, merge two sorted ranges into a sorted 
output, or partially sort a range. They all have an optional compare function that can be 
used to replace the standard operator<. If this object is used, then it must define a strict to­
tal order in the sense defined above in Section 4.4.3. That is to say, two elements, a and 
b, are considered equivalent under a compare function, comp, if both comp(a,b) and 
comp(b,a) are false. It is required that the function never return true for both comp(a,b) 
and comp(b,a), and also that the induced definition of equivalence is an equivalence rela­
tion in the mathematical sense. That is, it must be reflexive, symmetric, and transitive. 

~(RandomAcIterl, RandomAcIter2); 
~(RandomAcIterl, RandomAcIter2, compareFunc); 

The sort algorithms sort a range using operator< or a supplied compare function. The 
compare function must define a strict total order. Sort is typically O(Nlg(N», but can be 
quadratic in a few cases. It won't be quadratic on a sorted range, however. 

stable sort(RandomAcIterl, RandomAcIter2); 
stable sort(RandomAcIterl, RandomAcIter2, compareFunc); 
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Stable sort is like sort, except that "equal" values are not rearranged. In the second ver­
sion "equality" is the equivalence relation induced by the compare function, NOT opera­
tOI"==. Stable sort is O(Nlg(N» if there is enough workspace available to hold NI2 ele-

ments, where N is the size of the range. Otherwise, stable_sort is O(Nlg(N)2). 

partial sort(RandomAcIterl, RandomAcIter2, RandomAcIter3); 
partial sort 
( RandomAcIterl, 

) ; 

RandomAcIter2, 
RandomAcIter3, 
compareFunc 

A partial sort is defined by three iterators. The second should point into the range <b­
fined by the other two. The input range is rearranged, but only the portion between the 
first and middle positions is sorted and they are the same elements that would appear there 
if the entire range were sorted. In the above example, the range [RandomAcIterl, Ran­
domAclter2) will be sorted. 

RandomAcIter = partjal sort cgpy 
(lnputIterl, InputIter2, RandomAcIterl, RandomAcIter2); 

RandomAcIter = partjal_50rt_J:Opy 
( InputIterl, Inputlter2, 

RandomAcIterl, RandomAclter2, 
compareFunc 

) ; 

The copying partial sort is defined by an input range and an output range that may be 
of a different length. If the output range is shorter than the input range, then it is filled 
with the sorted "smallest" values of the input range. If the output range is larger, then the 
sorted input range is placed into the initial portion of the output range, with the remainder 
left unchanged. The copying partial sort is O(Nlg(K», where N is the length of the input 
and K is the smaller of the lengths of the two ranges. 

nth element(RandomAcIterl, RandomAcIter2, RandomAcIter3); 
nth element 
( RandomAclterl, 

); 

RandomAcIter2, 
RandomAcIter3, 
compareFunc 

The nth_element algorithm is defined by three iterators. The first and third define a 
range and the second a position within that range. The elements in the range will be n;ar-
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ranged so that the element pointed to by the second iterator will be in its correct location 
as if the range were sorted. Furthermore, all items "smaller" than that item will be to its 
left, and the larger items to the right. For the first version, smaller is defined by operator< 
and in the second, by the compare function. This is a linear algorithm in the average, but 
could be quadratic in a few cases. 

Forwardlter = lower bound(Forwardlterl, Forwardlter2, value); 
Forwardlter = lower bound -

(Forwardlterl, Forwardlter2,. value, compareFunc); 

Forwardlter = upper bound(Forwardlterl, Forwardlter2, value); 
Forwardlter = upper bound 

(Forwardlterl, Forwardlter2, value, compareFunc); 

Algorithm lower_bound returns the first location in a range at which the value can be 
inserted, assuming that the range is sorted. The range doesn't need to be sorted, however. 
The returned iterator points to the first location that is "not less" than the item. up­
per_bound returns the first location that is "greater" than the value. In a sorted list, 
lowecbound and upper_bound return, respectively, the first and last positions into which 
value may be inserted while maintaining the sorted order. These algorithms are linear in 
general, but logarithmic if the iterators are random access. 

lterPair = equal ranee(Forwardlterl, Forwardlter2, value); 
lterPair 

= equal ranee(ForwardIterl, ForwardIter2, value, compareFunc); 

The equaCrange algorithms return a pair of forward iterators that would be returned in­
dividually by lower_bound and uppecbound. These algorithms are linear in general, but 
logarithmic if the iterators are random access. 

boolVal 
boolVal 

( 

) ; 

binary search(Forwardlterl, Forwardlter2, value); 
binary search 
Forwardlterl, 
ForwardIter2, 
value, 
compareFunc 

These algorithms carry out a binary search on the indicated range and return whether or 
not they were able to find the value. They do not return where the value may be found, 
however. These algorithms are linear in general, but logarithmic if the iterators are ran­
dom access. 

Outputlter = ~ 
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(Inputlterl, Inputlter2, Inputlter3, Inputlter4, Outputlterl); 
Outputlter = ~ 

( Inputlterl, Inputlter2, 
Inputlter3, Inputlter4, 
Outputlterl, 
compareFunc 

); 

These algorithms merge two sorted input ranges into a sorted output range. The merge 
is stable, so that items with equivalent values from one of the input ranges will maintain 
their relative positions in the output. They are both linear algorithms. 

inplace meree(Bidirectiteratorl, Bidirectlterator2, Bidirectlterator3); 
inplace merae 

Bidirectlteratorl, 
Bidirectlterator2, 
Bidirectlterator3, 
compareFunc 

); 

These algorithms merge two halves of a range in place. It is assumed that each half of 
the range, namely [Bidirectlteratorl, Bidirectlterator2) and [Bidirectlterator2, Bidirectltera­
tor3) is sorted. The result will be sorted. These algorithms are linear if there is room for a 
copy of the entire range, and O(Nlg(N» otherwise. 

4.5.6 Set Operations on Sorted Structures 

These algorithms all assume that the input ranges are sorted. This will automatically be 
the case for sorted associative containers, of course. The union, intersection, and difference 
algorithms work by merging ranges, so they work on multiset and multimap structures as 
well. The union of multisets contains the maximum of the number in the two inputs (not 
the total). The intersection of two multi sets contains the minimum of the two. The algo­
rithms are all linear. If an output range is used (all but algorithm includes), then it must 
not overlap with the input range. 

boolVal = includes(InputIterl, Inputlter2, InputIter3, InputIter4); 
boolVal = includes 

(InputIterl, InputIter2, Inputlter3, InputIter4, compareFunc); 

Returns true if everything in the second range is contained in the first range. 

OutputIter = set union 
( InputIterl, InputIter2, 

InputIter3, InputIter4, 
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Outputlterl 
); 

OutputIter = set union 
( InputIterl, InputIter2, 

Inputlter3, InputIter4, 
Outputlterl, 
compareFunc 

); 

Produces those elements that are in either range. 

Outputlter = set intersectjon 
( InputIterl, InputIter2, 

Inputlter3, Inputlter4, 
Outputlterl 

); 
OutputIter = set intersectjon 

( InputIterl, InputIter2, 
InputIter3, InputIter4, 
Outputlterl, 
compareFunc 

); 

Produces only those elements that are in both ranges. 

OutputIter = seLdifference 
( InputIterl, InputIter2, 

InputIter3, InputIter4, 
OutputIterl 

); 
OutputIter = seLdifference 

( InputIterl, InputIter2, 
InputIter3, InputIter4, 
Outputlterl, 
compareFunc 

); 

Produces those elements in the first range that are not in the second. 

OutputIter = set symmetric difference 
( InputIterl, InputIter2, 

InputIter3, InputIter4, 
Outputlterl 

); 
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OutputIter = set symmetric difference 
( InputIterl, InputIter2, 

InputIter3, InputIter4, 
OutputIterl, 
compareFunc 

); 

Produces those elements that are in either range but absent from the other. 

4.5.7 Heap Operations 

These operations all produce or manipulate a data structure called a heap. Heaps require 
random access iterators, so are ideally suited for vectors. Logically a heap is like a binary 
tree in which each node is larger than either of its children, putting the largest value at the 
root. A heap may be stored in an array-like structure, with the children of the node in cell 
n stored in cells 2n and 2n+ 1. This permits insertions and removals to be done in loga­
rithmic time, while maintaining the heap property. Since the largest item is easy to find 
and remove, heaps are often used to implement priority queues. We shall return to heaps 
in Chapter 6. 

A heap is defined with respect to a comparison operator, which is operator< by w­
fault. Note, however, that it is the "largest" value that is at the root of the heap. 

push heap(RandomAcIterl, RandomAcIter2); 
pusb_beap(RandomAciterl, RandomAcIter2, compareFunc); 

Insert an item into the heap and maintain the heap property. The item inserted is 
originally just before location RandomAcIter2, and [RandomAcIterl, RandomAclter2 - 1) 
is originally assumed to be a heap. The full range will be a heap on completion. 

pop beap(RandomAclterl, RandomAclter2); 
pop beap(RandomAclterl, RandomAcIter2, compareFunc); 

Remove the largest item from the heap [RandomAclterl, RandomAclter2) and restore 
the heap property. When done, only [RandomAclterl, RandomAclter2 - 1) forms a heap. 
The item "popped" can be found in the last location of the range (RandomAclterl - 1). 

make heap(RandomAcIterl, RandomAcIter2); 
make beap(RandomAciterl, RandomAcIter2, compareFunc); 

Rearrange the range so that it satisfies the heap property. It requires linear time. 

sort beap(RandomAciterl, RandomAcIter2); 
sort beap(RandomAcIterl, RandomAcIter2, compareFunc); 
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Assuming that the range is originally a heap, this will sort the range. The time com­
plexity is O(Nlg(N)). 

4.5.8 Lexicographical Compare Operations 

These algorithms compare two ranges. They compare corresponding elements and as long 
as the elements are equivalent, the process continues. At the first difference, if the first is 
less than the second, then true is returned, otherwise false. If the comparisons continue 
until the end of one and the first is shorter, then return true. In all other cases return false, 
including when the ranges are identical. 

boolVal 
( 

); 
boolVal 

( 

) ; 

lexicographical compare 
InputIterl, InputIter2, 
InputIter3, InputIter4, 

lexicographical compare 
Inputlterl, Inputlter2, 
InputIter3, InputIter4, 
compareFunc 

4.5.9 Permutation Generation Operations 

These algorithms generate all permutations of a sequence. nexcpermutation generates the 
lexicographically next reordering and prev _permutation gives the previous one. These are 
linear algorithms. 

boolVal = next permutation(BidirectIterl, BidirectIter2); 
boolVal 

= next permutation(Bidirectlterl, BidirectIter2, compareFunc); 

boolVal = prey permutation(BidirectIterl, BidirectIter2); 
boo IVai 

= prey permutation(BidirectIterl, BidirectIter2, compareFunc); 

4.5.10 Miscellaneous Additional Operations 

distance(InputIterl, InputIter2, distVal); 

Distance computes and returns the distance between two iterators that form a valid 
range. It is done in constant time for a random access iterator and in linear time otherwise. 
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Actually, it increments the value of the third argument by the distance between the first 
two. 

adyance(Inputlter, distVal); 

This advances an iterator a fixed number of times. It is done in constant time for a 
random access iterator and in linear time otherwise. 

4.6 Function Objects 

As we have seen, function objects are used in place of ordinary functions to pass proce­
dural information to an algorithm. The advantage of this is that it permits the template 
mechanism to choose an appropriate function based on how the template is used, without 
the programmer needing to provide several different versions of an algorithm. The func­
tion object categories that are the most used are the following: 

unary predicates 
binary predicates 
compare functions 
binary operators 
unary operators 

Because several particular function objects are often used, they are provided by the 
STL itself. The classes are all derived from either the binary _function class or the un­
ary 3unction class. Both of these export typedefs that defme the argument types and the 
result types of the function. In this way a function using the template can get access to 
the actual template arguments. For example, here is the definition of binary_function: 

template <class Argl, class Arg2, class Result> 
struct binary_function 
{ typedef Argl first_argurnent_type; 
typedef Arg2 second_argurnent_type; 
typedef Result reSUlt_type; 

} ; 

So a binary function has two arguments, possibly of different types, as well as a re­
sult type. There is a corresponding class unary_function<Argl, Result> that defmes op­
erators of a single parameter. Note that, generally speaking, an ordinary function of two 
arguments can be used in place of a binary function object when necessary. One advantage 
of an object, however, is the ability to store variables in it, which will retain their values 
between uses. 
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4.6.1 Arithmetic Operations 

The STL provides six function object classes to defme the most common arithmetic op­
erations. Typical is the plus class, shown here in its entirety. 

template <class T> 
struct plus : binary_function<T, T, T> 
{ T operator() (const T& x, const T& y) const 

{ return x + Yi 
} 

} i 

Note that we donlt require that the arguments be built-in types, just that type T sup­
ports an operator+. 

Also provided are classes minus<T>, times<T>, divides<T>, modulus<T>, 
and negate<T>. The last of these is a unary function, while all of the others are binary. 

4.6.2 Comparison Operations 

Similar to the arithmetic operations are the comparison operations. Note that the return 
type is bool, but the argument types may be any type supporting the individual operator 
used. 

template <class T> 
struct equal_to : binary_function<T, T, bool> 
{ bool operator() (const T& x, const T& y) const 

{ return x == Yi 
} 

} i 

The others are not_equal_to<T>, greater<T>, less<T>, greater_equaI<T>, 
and less_equal<T>. These are all binary functions. Note that less<T> and greater<T>, 
may be used as compare functions in the sort algorithms, but the others may not, due to 
the restrictions on compare functions. 

4.6.3 Logical Operations 

The STL also provides two binary functions and one unary function for performing the 
common logical operations. These are logical_and<T>, logical_or<T>, and 
logical_not<T>. Again, these just apply the corresponding operator and return boolean 
results. 
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4.7 Adaptors 

Adaptors take some object in the STL and transform it into something similar. There are 
adaptors for functions, containers, and iterators. We shall look at each of these in tum. 

4.7.1. Function Adaptors 

There are three kinds of function adaptors: negators, binders, and pointer-to-function adap­
tors. All function adaptors are functions that return a modified object from a given object. 
The negator adaptor notl takes a unary predicate and returns another unary predicate that 
negates the first one. Similarly, not2 negates binary predicates. Thus 
not2 (less<int> ( ) ) returns a binary predicate equivalent to 
greater_equal <int> ( ). 

The binder adaptors take a binary function object and a value and produce a unary func­
tion object that uses that value as one of the parameters of the original binary function. 
Thus, bindlst(less<int>O, 5) produces a unary function that evaluates 5 < x for an ar­
gument of x. We say we bind 5 to the first parameter. Likewise, bind2nd will bind a 
value to the second parameter. Therefore, bind2nd( divides<int> 0, 5) produces a function 
that divides its argument by 5. 

The pointer-to-function adaptors take a pointer to an ordinary function and transform it 
into a function object so that it may be used with the library. There is both a 
pointer_to_unary_function adaptor and a pointer_to_binary_function adaptor. 
The first takes a pointer to a function of one argument and creates and returns a corre­
sponding function object of one argument. In this way, ordinary C++ functions may be 
used wherever the STL requires function objects. 

4.7.2 Container Adaptors 

The STL defmes three container adaptors: stack, queue, and priority_queue. These 
transform a container of another type into one of these. For example, the stack container 
adaptor can transform a vector, list, or deque into a stack. It does this simply by providing 
a restricted interface for the user. The container adaptors are defmed as class templates. 
Thus stack< list<int> > provides a stack implemented as a list. The template argument 
for a container adaptor is a container of some type. Each adaptor works with only certain 
container types. 

4.7.2.1 Stack Adaptor 

A stack adaptor may be applied to any vector, list, or deque. The stack adaptor provides 
the following operations 

bool empty(); const 
size_type size(); const II number of elements 
void push(const value_type&); 
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void pop ( ); 
value_type& tope); 
const value_type & tope) const; 
template <class T> 
bool operator==( const stack<T>&, const stack<T>&) 

II Determines if two stacks have the same 
II elements. 

template <class T> 
bool operator< 
( const stack<T>&, 

const stack<T>& 
II Compares the contents lexicographically. 

4.7.2.2 Queue Adaptor 

A queue adaptor may be applied to any list or deque. It won't work with vectors because 
of the difficulty of working at the front of a vector, which is required for a queue. The 
queue adaptor provides the following operations. 

bool empty(); const 
size_type size(); const II number of elements 
void push(const value_type&); II Insert at rear 
void pope); II Remove at front. 
value_type& front(); II Element at front. 
const value_type & front() const; 
value_type& back(); II Element at rear. 
const value_type & back() canst; 

template <class T> 
bool operator== 
( canst queue<T>&, 

canst queue<T>& 
II Determines if two queues have the same 
II elements. 

template <class T> 
bool operator< 
( canst queue<T>&, 

canst queue<T>& 
II Compares the contents lexicographically. 

4.7.2.3 Priority Queue Adaptor 

A priority queue adaptor may be applied to any vector or deque. It also requires that a 
comparison object be supplied. For example, 
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priority_queue< vector< float>, greater<float> > 

will provide a vector-based priority queue of floats in which greater is used as the com­
parison object. Since priority queues remove the "highest priority" element on a pop aOO 
since greater's "highest priority" element is the smallest, this reverses the usual sense of a 
priority queue. 

The priority_queue adaptor provides the following operations: 

bool empty(); const 
size_type size(); const II number of elements 
void push(const value_type&); II Insert 
void pope); II Remove highest priority item. 
value_type& tope); 

II Element of highest priority. 
const value_type & tope) const; 

4.7.3 Iterator Adaptors 

There are two kinds of iterator adaptors: reverse iterators, and insert iterators. An iterator 
adaptor transforms an iterator so that it behaves differently when executing its operators, 
especially operator++ and operator=. 

4.7.3.1 Reverse Iterators 

A reverse iterator adaptor transforms a bidirectional iterator into one in which the direc­
tions of travel are reversed. Thus, operator++ will be transformed into operator--, and vice 
versa. Each of the STL container types produces two reverse iterators rbeginO and rendO 
that perform the reverse iteration. There are special versions of the reverse iterator adaptor 
for bidirectional and for random access iterators. 

The constructor reverse_bidirectional_iterator(Bidirectlter x) will produce a re­
verse iterator equivalent to x. If x is a random access iterator, then use 
reverse )terator(RandomAclter x) instead, and the result will also be a random access 
iterator, but it will operate in the opposite direction from x. 

4.7.3.2 Insert Iterators 

Normally iterators apply operator= to de-references to modify existing positions in a con­
tainer. When using an insert iterator, these applications are translated into insertions in­
stead. 

Suppose, for example, that we want to compute the partial sums of an existing 
set<int> and put the results into a new vector. The following will produce an error: 

vector<int> V; II New vector 
partial_sum 
( setl.begin(), 
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setl. end ( ) , 
V.begin() 

The problem, of course, is that the vector has no room for the data: it has size zero. 
We could initialize V with the size of the set, of course, but there is another solution. In­
stead of using V.beginO (or V.endO, which is just as bad), we can use a 
back insert iterator instead. - -

vector<int> Vi II New vector 
partial_sum 
( setl. begin () , 

setl. end ( ) , 
back_insert_iterator< vector<int> >(V) 

This iterator will take the *v = ... operations done within partial_sum and translate 
them into push_back(*V) operations instead. Thus, the vector will be properly extended 
when necessary. A back insert iterator can be generated from the function back_inserter 
by simply passing a container as the parameter. The container must support push_back, 
of course. The result is a back_insert_iterator over that container. Note that the parameters 
here are containers, not iterators. 

There is also a front_insert)terator that can be produced from any collection that 
has a push_front operation. These can be conveniently constructed using the function 
front inserter. 

Finally, there is an insert _iterator adaptor that can be produced from any container 
that has an insert operation. This version requires that we pass both the container and an 
iterator into that container. 

For example, if we have a list L, and an iterator I into that list, then insert_iterator 
(L,I) will produce an iterator that will do insertions at the point of I. 

4.8 Allocators 

In STL an allocator is an encapsulation of a memory model. Some computers, such as In­
tel-based PCs have many different systems for organizing memory, and an allocator can 
be used to separate the details of the memory model so that other parts of the library need 
not be written to depend on a certain model. For example, in some memory models a 
pointer need only be 16 bits long. In others it is required to be 32 bits. The new operator 
of C++ depends on a certain memory model, but can be tailored to any such model. An 
allocator exports a number of types such as pointer and reference, that other classes can 
use. In particular, the reference type exported by a container class is defined in terms of a 
particular allocator's reference type. An allocator also defines an allocation function that 
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can be used to obtain blocks from the free store. It is not our purpose to discuss alloca­
tors. Additional material can be found in the STL Tutorial and Reference Guide. [3] 

4.9 Summary 

Make certain that you understand each of the following terms: 

adaptor 
allocator 
bidirectional iterator 
concept 
container 
forward iterator 
function object 
generic algorithm 
input iterator 
istream iterator 
iterator 
ostream iterator 
output iterator 
past-the-end values 
random access iterator 
reflexivity 
symmetry 
transitivity 
sequence container 
sorted associative container 
singular values 
strict total ordering 

4.10 Exercises 

1. Find a long piece of text to process. Read it into a vector using an istream iterator with 
one word per cell. Then sort the vector and remove duplicate values with unique. How 
long does this take? Now read the same text into a set. Note that it is already sorted with 
duplicates removed. How long does this take? 

2. Use binary search to find a large number of values (1000 or more) in the vector-based 
spelling table of Exercise 1. How long does it take to find all of the values? Compare this 
with the time required for the set-based spell table. Compare these times with the times 
required to find twice as many values. Be careful to not always search for one (or only a 
few) value. 
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3. How long does it take to print out a long vector that was previously sorted? How long 
does it take to print out a set with the same values? 

4. An alternate method of maintaining a sorted container is to use a vector, but insert each 
item into its sorted location rather than sorting after inserting all items. How long does it 
take to do this, compared to the operations asked for in Exercises 1 and 2? 

5. Repeat Exercise 1 using a list instead. You can sort it with the sort member of list, 
rather than the generic sort algorithm. How long does this take? 

6. Repeat Exercise 1 using a deque. What can you say about the relative efficiency of a 
deque and a vector on these operations? 

7. Compare stable_sort with sort for its time requirements on a large vector. 

8. Merge two spelling tables with seCunion. How much difference in time is there for set 
and vector implementations? 

9. Build a spelling table by reading into a multi set and then removing duplicates with 
unique. How long does this take compared to set operations? 

10. Use count to determine how many items are in your spelling table. Use counUf to 
find the words with an even number of characters. 

11. Use an appropriate STL generic algorithm to fmd the longest word in your spelling 
table. 

12. Use an appropriate STL generic algorithm to put quote marks around each word in the 
spelling table. Don't change the original table, but produce a new one instead. 



Chapter 5 
Vector Programming 

5.1. Vectors-Expandable Arrays 

Suppose that you have a problem in which you need an array, but the size of the array 
can't be known at the time at which you create it. An example is when you need to real 
in data from a file of unknown size and process it. You need to create the array in which 
you wish to put the data before you begin to read the file, but you won't know until the 
end of the file how much data there is. Vectors are ideal for this kind of problem, provided 
that the problem only requires the array to grow at one end. If it must grow at both ends, 
then a deque is better suited to the task. Here we are assuming, of course, that the other 
processing required of the data requires an array-like structure. If we don't require random 
access iterators in our processing, then a list will probably be a better choice in which to 
hold the data. 

The basic strategy for an expandable array is to initially allocate an array whose size is 
a good guess at the size of the data. If this is difficult to do, then make a guess that is 
adequate for a relatively small data set. Then begin to fill the array, keeping track of how 
much data you have inserted relative to the size of the array allocated. If you reach the em 
of the array, then simply allocate a larger array, copy the original array into the new one, 
and then continue with the new, larger, array after deleting the original one. This sounds 
like it might be slow, and it is. However, if the right strategy is chosen for allocating the 
new array, then the time expended won't be so bad-on the average. This is because for 
most allocations the insertion time is a small constant. It is only when we reach the 
boundary that we absorb a large cost. 

If an array can expand, then it can also shrink. If we discover that a large part of the ar­
ray is unused, and likely to remain unused, then we could also allocate a new, smaller ar­
ray, copy the old to the new, and continue with the new array. This might free up mem­
ory on the free store for use elsewhere in the program. 

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998
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5.2 The Indexing Problem 

One problem that occurs frequently in applications is that of building an index to a file. 
Suppose that we have a file that consists of records with two fields. The first field is the 
key that is used to retrieve records. The purpose of retrieving a record is to get access to 
the second field, the value. If the file is large, then it is useful to keep the file sorted by 
key. There are many problems, however, in which it is not desirable to sort the records by 
key, since they may need to be often processed in some other order, so that processing re­
quires that the ordering not be by key. In this case an index file will be very helpful. Fig­
ure 5.1 shows an example of a simple file and Figure 5.2 shows its index. 

Smith, John 
Jones, Mary 
Kumar, Sue 
Woo,Mark 
Kahn, J. P. 

123 Main St 
234 Oak Ave 
345 Jefferson Ln 
456 Maple Ln 
567 Front Street 

Figure 5.1. A sample file. 

Jones,Mary 
Kahn, J. P. 
Kumar, Sue 
Smith, John 
Woo,Mark 

Figure 5.2. An index file. 

1 
4 
2 
o 
3 

Any town 
Gotham City 
Oak Island 
Village Home 
Uptown 

If we store the original records in a vector, so that we may easily extend its length, 
then records may be accessed by subscript, assuming that we know which subscript to use 
to obtain a given value. An index is a file of records, also with two fields. The first field 
consists of the keys of the original file and the second field is just integer subscripts into 
the first file. The subscript stored with a key in the index file is the location in the first 
file at which a record with that key can be found. We suppose that we store the index file 
in a vector also. Then, we can sort the index file by key, leaving the original file (vector) 
in its original order. To get access to a record we first search the index vector, perhaps us­
ing binary search. This give us a subscript into the original file's vector. 

As an overly simplified example, suppose that we have a file consisting of standard 
c++ string objects for keys and float values. We store this file in a vector< pair< string, 
float> >. To get access to the string class you should include <string> (not <string.h> ) 
into your file. The index is stored in a vector<pair< string, int> >. We can create the in­
dex when we read in the data file. The following function will read both the file and create 
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the index. Note that strings are normally read a word at a time from an input stream. This 
is because the stream will break at any whitespace character. 

void readStrVec 
( ifstream & inp, 

vector<pair<string, float> > &v, 
vector<pair<string, int> >&1 

) 

{ int i = 0; 
string input; 
float val; 

} 

while( inp » input) 
{ inp» val; 

V.push_back 
( pair<string, float> (input, val) ); 

pair<string, int> p(input, i++); 
I . push_back (p) ; 

After reading the file and creating the index, we sort the index with 

sort(Index.begin(), Index.end()); 

This requires that we provide a special operator< so that pairs will be compared using 
strcmp on the keys. 

inline bool operator< 
( const pair<string, int>& x, 

const pair<string, int>& y 
) 
{ return x.first < y.first; 

II compare 2 string objects. 
} 

We can now search the index to obtain subscripts into the original file. The subscript 
gives us the desired original pair with the desired key. 

vector<pair<string , int> > .. const_iterator where; 
where lower_bound 

Index. begin ( ), 
Index. end() , 
pair<string , int>("times",O) 

) ; 
float val = Data [where->second] . second; 
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Note that only the index file was sorted. This can be a big advantage when the original 
file may not be sorted and also when it contains very large value fields, which are expen­
sive to move and hence expensive to sort. Note also that in this particular case, we have 
not even copied the keys into the index file. We simply have pointers to the original key 
strings. Therefore, the index file itself may be small in comparison to the original file. If 
the size of the file is known in advance, we may use an array instead of a vector, of 
course. Indexed files on disk use a variation of this technique in which the integers in the 
value fields of the index are replaced by disk block addresses. 

5.3 How We Can Implement Vectors 

In this section we will explore the implementation of a class that is much like the STL 
vector class, though a little less sophisticated. It will give us a chance to see some im­
plementation tradeoffs as well as become more familiar with the philosophy and require­
ments of the STL. We will call the class template ExpandableArray. The template pa­
rameter is the type of data to be held in the structure. A minimally useful implementation 
is presented below and discussed immediately after. 

template <class T> 
class ExpandableArray 
{ public: 

typedef T& reference; 
typedef T value_type; 
typedef T* iterator; 

II Use ordinary pointers. 

ExpandableArray() 
_values(new T[lOO]), 
_size(O) , 
_capacity(lOO) 

{ 
} 

ExpandableArray 
(long n, canst T& val T(» 
_values(new T[2*n]), 
_size(n) , 
_capacity(2*n) 

{ if(val!= T(» 

} 

for(long i = 0; i < n; ++i) 
_values[i] = val; 
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ExpandableArray 
(const ExpandableArray<T>& A)i 

ExpandableArray<T>& operator= 
(const ExpandableArray<T>& A)i 

-ExpandableArraY()i 

long size(){ return _sizei} 

long capacity(){ return _capacitYi} 

reference operator[]( long w ) 
{ return _values[w]i 
} 

iterator begin(){ return &_values[O]i } 

iterator end(){ return &_values[_size]i 

void push_back(const T & t) 
{ if( _capacity == _size ) 

{ reserve(2*_capacitY)i 
} 

_values [_size++] = ti 

void reserve(long n) 
II make capacity at least n 

{ if(_capacity < n) 

} 

{ T* new_values = new T[n]i 
_capacity = ni 

} 

for(int i = Oi i < _sizei ++i) 
new_values [i) = _values[i]i 

delete [ ] _values i 
_values = new_valuesi 

private: 
T * _valuesi 
long _sizei 
long _capacitYi 
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} i 

void copy(const ExpandableArray<T>& A)i 
void free ( ) i 

We emphasize that this class merely has the flavor of the STL vector class. It is much 
less sophisticated. Notice the following STL-like features, however. First, we export sev­
eral types, so that a user can recover the value_type, for example. Second we define itera­
tors to the beginning and the end of the activ'e part of the structure. The iterators in this 
case are just pointers. They could have been much more sophisticated, actually. They are, 
however, random access iterators, so we can use all of the generic algorithms with them. 
Third, we provide operator[] so that we can use the structure like an array. Finally, we 
provide a means to extend the size of the structure in the member push_back. These are 
all similar to the STL vector class. 

Notice, importantly, that operator[] does not check the legality of its parameter. This 
is in keeping with usual C++ practice that puts the responsibility for such checking on 
the programmer who uses the structure, rather than on the one that builds it. An alterna­
tive implementation that does do checking is outlined next. Notice that the legal sub­
scripts are those between 0 and _size-I, not between 0 and 3apacity-l. The cells between 
_size and 3apacity-l are not logically part of the ExpandableArray. They are there to 
permit push_back operations to extend the logical size of the structure without having to 
extend its physical size. 

template <class T> 
reference ExpandableArray<T>: :operator[] 
( long w 
) 
{ if( w >= 0 && w < _size 

else exit ( 1) i 
} II Range checking version. 

return _va1ues[w]i 

Here we cause the program to exit if the user gives an illegal subscript. There are bet­
ter solutions available in C++ for this, including the throwing of an exception. 

What is missing? The STL vector class provides more types and more member func­
tions, including the capability of shrinking the size of the structure as well as growing it. 
The STL vector also provides members to insert an item between two existing items, 
making room for the new item by moving all of the following items. Some of these op­
erations will be discussed below, and some will be exercises. We will study the STL vec­
tor class later in this chapter. 

Our ExpandableArray class has three constructors. The default constructor creates an 
empty structure with a nonempty capacity. The capacity of an ExpandableArray is the 
maximum number of items that it can hold before it needs to be grown. It is the physical, 
as opposed to the logical, size of the structure. The second constructor lets us set the size 
and initialize all cells to a given value. If the value is not given, we use the default value 
of the value_type. In this case we set a larger capacity than the size; in fact, it is twice as 
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large. The idea is that vectors are intended to be expanded, so we expect them to grow, and 
hence allocate space to make this easy. 

Exercise. Discuss the tradeoffs in overallocating space at the beginning. Do you think 
this is a good idea or a bad idea? What factors should be considered in determining this? Is 
100 cells in the default constructor too much or too little? Is doubling the size on reallo­
cation too much or too little? Modify the definition of ExpandableArray to suit your own 
concept of what is appropriate. 

Expansion in capacity of the structure is controlled by the push_back function. When 
we reach capacity we call reserve, asking for a capacity twice that of the current structure. 
This is achieved by allocating an array of the desired size and copying all elements into 
the new array. We then keep this new array and delete the original. This copying is an ex­
pensive operation as it must be done with a loop, giving us linear time. Therefore, we 
don't want to do it very often. Expanding the array by a fixed factor, rather than a fixed 
amount, is an important means of achieving good performance in the push_back opera­
tion. Notice that push_back is very fast most of the time and slow only occasionally. If 
we look at the average effort, however, we find that it is actually constant. The extra time 
for the expansion averages out to a constant amount over the other insertions. 

To see this, consider that if we start with a single cell and double the capacity each 
time, then just after a capacity expansion to 2*n, we have n active cells in the structure. 
We have reorganized about Ig(n) times at a total cost of copying of about 2*n. This is in 
addition to the n simple insertions. Therefore, the total insertion cost is about 3 * n for n 
items or about 3 per item. This is called amortized constant time. It is not actually con­
stant, but on the average it is constant. 

This will not be the case if we expand the structure by a fixed amount, say 100 cells, 
each time we need to expand capacity. In that case the reorganization step will be done 
much more often and so the cost will be much larger on the average. In that case we will 
have reorganized about k = n / 100 times at a total cost of copying of about k*(k+l) * 
50. Since this inserts n items, we see that the copying cost alone is about 50*(k+ 1) per 
item. This is a linear function so the costs would be amortized linear, rather than amor­
tized constant. 

Notice that we are clearly trading space for time with the above solution. Doubling 
the capacity when we need more does take up a lot of space. However, it also saves a lot 
of time. In modem computers, space is generally much cheaper than time, so this is a 
good tradeoff. Space is cheaper than time since it is cheaper to buy twice as much mem­
ory as it is to buy a processor twice as fast. There are situations, however, in which 
memory is at a premium and cannot be expanded. In such a case, another solution would 
be preferable. 
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5.4 Memory Management 

The definitions of five of the members of ExpandableArray were not shown above. These 
are the destructor, the copy constructor, the overloaded assignment operator=, and the two 
private functions used to implement these three members: copy and free. All classes that 
manage memory need a destructor, a copy constructor, and an overloaded assignment. This 
means most classes that have any pointer or reference members. The reason that we need 
to write these members is that the compiler-supplied versions of them will not do the 
right thing in most circumstances. This is because they only provide for memberwise op­
erations. Thus, if we assign one ExpandableArray object to another ExpandableArray vari­
able, we could wind up with two ExpandableArrays that share internal representation as in 
Figure 5.3. That is to say, the _values pointer of each of two ExpandableArrays could 
point to the same memory location. Then, modifying one of the ExpandableArrays would 
automatically modify the other as well. 

Figure 5.3. Two objects sharing an implementation. 

The copy constructor, destructor, and overloaded assignment operator are designed to 
solve this problem. The copy constructor and overloaded assignment are very similar, but 
are quite different in purpose. They are both used for making copies of one object for in­
sertion into another. The copy constructor is used when you pass an object by value to a 
function and when you create one object from another directly using initialization syntax. 
In each of the following three cases a copy constructor will be called. 

afunction(anObject)i 
II Function call 

AClass aNewObject(oldObject)i 
II Create a new object from old. 

AClass aNewObject = oldObjecti 
II Initialization. 

An assignment operator is used when you assign to a variable of class type. 
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aVariable = anObject; 

An initialization looks like an assignment, but it is not the same, and different mem­
bers are used in the two cases. The difference is that in an initialization, the left side vari­
able doesn't hold a value yet, while in an assignment we must deal with the current value 
of member variables before giving them new values from the righthand side object. 

The three necessary operations can be provided in terms of two helper functions, copy 
and free. Copy copies one object's member variables to another, and free cleans up any al­
located memory that should not be shared with other objects. Given these, we can easily 
provide a destructor, a copy constructor, and an overloaded assignment. 

template <class T> 
ExpandableArray<T>:: -ExpandableArray () 
{ free() ; 
} 

template <class T> 
ExpandableArray<T>:: ExpandableArray 
( const ExpandableArray<T>& A 
) 
{ copy(A) ; 
} 

template <class T> 
ExpandableArray<T>& ExpandableArray<T>:: operator= 
( const ExpandableArray<T>& A 
) 
{ if(this!= &A) 

{ free ( ) ; 
copy (A) ; 

} 
return *this; 

} 

In other classes, these three members nearly always look exactly like this. You need a 
good reason to deviate from the above pattern. Notice that the assignment operator guards 
against assignments in which the value held in the left side variable is exactly the same 
object as that held in the right side expression. We need to do this since we are destroying 
the contents of the left side object. If they are the same, this would be a disaster. 

Member free is used to deallocate memory. Here we have the _values field that was 
previously allocated and holds the contents of the ExpandableArray. 

template <class T> 
void ExpandableArray<T>:: free() 
{ delete [J _values; 
} 



156 Data Structure Programming with the Standard Template Library in C++ 

The purpose of copy is to copy the internals of the parameter into the object this. We 
assume that this has previously been cleared. 

template <class T> 
void ExpandableArray<T>:: copy 
( const ExpandableArray<T>& A 
) 
{ size = A._size; 

} 

_capacity = A._capacity; 
_values = new T [ _capacity]; 
for(long i = 0; i < _size; ++i) 

_values[i] = A._values[i]; 

There are a few classes in which we deviate from the above. These are classes in which 
two or more objects may safely share an implementation. This could be the case if we 
built objects out of pointers, but the objects could not be modified after they were created. 
It would then be safe to share implementation as long as we can be sure when it is safe to 
delete the implementation. This would happen when we delete the last object sharing that 
implementation. This can be done by keeping a count in the shared data that keeps track 
of how many objects share the implementation. This count would be updated in construc­
tors and destructors. This is an important technique, though it is used fairly rarely. We 
won't discuss if further in this book, but you can study it further in [1] 

5.5 Adding to the Functionality of ExpandableArrays 

In this section we shall discuss several operations that should be 00ded to the Ex­
pandableArray template to extend its usefulness. Rather than present template preambles 
with each of them, we shall assume that they are added inline in the definition of the tem­
plate itself. 

Since iterators are fundamental to the STL and operator[] is fundamental to array like 
structures, it is useful to have members that translate between subscripts and iterators. 
Member index translates an iterator into an equivalent index into the array. It works be­
cause an iterator into an Expandable array is a random access iterator so that we may do 
arithmetic on it. 

long index(iterator i) {return i - _values;} 

This is equivalent to i- beginO, of course. 
To translate in the other direction, we use member location: 

iterator location(long i) (return _values + i;} 

which is equivalent to beginO + i. 
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In both of these we have assumed that the subscript type is long. This is not necessar­
ily the case, however. STL container templates export a difference_type that is some inte­
ger type sufficient to hold the difference between any two iterators into the container. It 
might, indeed, be long for most implementations, but it might be otherwise. Declaring 
and uniformly using difference_type adds to the efficiency and portability of the STL. 
Likewise, the size and capacity functions return values of type size_type. 

Next, we have an operator[] defined in ExpandableArray, but if we want to insert const 
objects into our structure, we need another version that returns const references. 

const reference operator[]( long w )const 
{ return _values[w]i 
} 

This member will be employed rather than the other whenever the container has const 
objects in it. Note that the body of the function is the same; only the returned value is 
different. This member is also, itself, marked const, since it cannot be used to modify the 
container itself. In spite of the fact that the function bodies are the same, the effect is dif­
ferent, as the compiler enforces const operations. If we write code that implies modifying 
a const object by applying a nonconst operation, the compiler will inform us of the error. 

Occasionally it is necessary to insert an object into the middle of an expandable array. 
Here we don't mean just changing a value at some iterator position, but actually making 
room between two existing elements. This is not an especially efficient operation on ar­
ray-like structures, though it can be done. We must increase the size of the structure and 
then move all elements "to the right" of the desired insertion position one cell to the 
right. We then have an empty cell into which to insert the desired item. This operation is 
linear in the size of the structure, though if the location of the insertion is near the back 
of the structure, it goes quite quickly. 

void insert(iterator i, const value_type& v) 
{ if(_size == _capacity) reserve(2*_capacity); 

for(iterator j = end()i j != ii --j) 
*j = *(j-l) i 

*i = Vi 

_size++i 

If we can insert new items at the back of an ExpandableArray, making its size larger, 
then we ought to be able to remove them there as well. This operation will be left to an 
exercise. We can also erase an item in the middle of an expandable array by closing up the 
space to the right of the removed item. The insert and erase operations can also be used to 
provide push_front and pop_front operations on expandable arrays. 
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5.6 Programming with Expandable Arrays 

In Chapter 2 we took subscript-based searching and sorting algorithms and turned them 
into pointer-based versions using the pointer duality law. In Chapter 3 we went a bit far­
ther and modified these into iterator-based functions. These operations, as discussed in 
Chapter 3, had the following prototypes, in which the iterator template parameter needs to 
be a random access iterator. 

template < class iterator > 
void selectionSort 

iterator start, 
iterator end 

template<class iterator> 
iterator BinarySearch 
( const iterator:: value_type& t, 

iterator first, 
iterator after 

II Searching for t between first, after. 

As defined above, these cannot be applied to expandable arrays. This is because itera­
tors over ExpandableArrays are ordinary pointers that, when treated as iterators, cannot w­
fine the value_type that is required. In this section we will see how to solve this problem, 
though the solution is quite subtle and involved. It does show the power of templates, 
however. 

Our goal is to be able to sort and search any expandable array or any subsection of 
such a structure. For example, 

ExpandableArray<float> costs(20, 0.0); 

selectionSort(costs.begin(), costs.end(»; 

The solution for BinarySearch is actually easier. All we need to do is to provide an aj.. 

ditional template parameter for the value type of the iterator. This works because a value 
of this type appears as a function parameter and it is function parameters that are used for 
template function selection. 

template<class iterator, class T> 
II random access iterator with 
II value type T with operator< and operator~~ 

iterator BinarySearch 
const T& t, II Searching for t between 

II first, after. 



) 

iterator first, 
iterator after 
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{ if(first >= after) return first; 
iterator mid = first + (after - first)/2; 

II Middle of range. 
if(t == *mid) return mid; 
if(*mid < t ) 

return BinarySearch(t, mid + 1, after); 
else 

return BinarySearch(t, first, mid); 

Note that the new template parameter is used not only as the type of a function pa­
rameter, but also to define a temporary variable within the function. 

We can't apply this solution to selection sort because we will pass only iterators to 
this function. But suppose that we do write a version that has an extra template parameter 
for the value type. It might look as follows. 

template < class iterator, class T > 
void selectionSort_aux 

iterator start, 
iterator end, 
T* 

) 

{ for 

} 

iterator where 
where < end ; 
where++ 

start 

iterator loc = where; 
T small = *loc; 
for 

iterator inner 
inner < end; 
inner++ 

if(*inner < *loc) 
{ loc = inner; 

small = *loc; 

*loc *where; 
*where = small; 

where + 1; 
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Note that we haven't named the extra function parameter of type T* since we don't in­
tend to actually use the value passed for this parameter. It can be used for template selec­
tion nevertheless. We have named this function selectionSorCaux, because we intend to 
use it as an auxiliary function to define the iterator-based selectionSort function. We can 
let this function do the work of selectionSort simply by calling it and passing some 
dummy value of the required type for this extra parameter. 

template < class iterator > 
void selectionSort 

iterator start, 
iterator end 

) 
{ selectionSort_aux 

(start, end, sorneValueOfType_T_star); 
} II the _aux function does the work. 

The problem is coming up with the right value to pass. In this particular case we 
could de-reference the start iterator and then take the address of the result, letting some­
ValueOIType_T_star be &(*start). There is a small problem with this solution, however, 
since in the case that start is not properly initialized, the address will not be valid. There­
fore, the solution in the STL is a bit more sophisticated. 

The STL defines a collection of function templates for the value type of any iterator or 
pointer. The definition for the pointer version is 

template <class T> 
inline T* value_type(const T*) 
{ return (T*)(O); 
} 

This function returns a default object pointer for any pointer type passed to it. Notice 
that the syntax (T*)(O) is actually a cast of NULL to type T*. The important thing is not 
the value, but the fact that it is typed. It therefore produces the dummy value we need for 
template selection. A similar function is also defined for each iterator type. Given this 
family of functions, we can write the final version of selectionSort. 

template < class iterator > 
void selectionSort 

iterator start, 
iterator end 

) 
{ selectionSort_aux 

(start, end, value_type(start»; 
} II the _aux function does the work. 
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5.7 Building a Stack Adaptor 

Adaptors are one of the major components of the STL. They also demonstrate a particu­
larly good use of template programming. In this section we shall create a stack adaptor 
template called StackAdaptor. It is similar to the stack template of the STL itself, though 
somewhat less sophisticated. This template uses a template variable that doesn't represent 
the element type of the items to be included, but rather some container type, such as one 
built from our ExpandableArray template. It is important to note, however, that any con­
tainer type could be used, provided that it has the functionality that the StackAdaptor 
template demands. 

As discussed in Chapter 3, a Stack is a FIFO mechanism that is very useful in proc­
essing when we may need to delay handling some item while we handle some other item 
and then want to return to previous items. This is especially true when we handle com­
posite items made up of simpler parts. We may want to begin handling the whole object, 
then discover that it contains some part that we need to handle before we can continue 
processing the whole. Languages (including computer languages) are like this, where 
large constructs are composed of smaller ones with their own structure. To handle such 
situations it is often useful to push information about the larger object onto a stack while 
we handle the part of interest. We can then return to handling the larger object by popping 
the previously saved information. 

The StackAdaptor template builds a Stack from some other container type. In particu­
lar, we could build a stack with 

StackAdaptor< ExpandableArray< int> > aStack; 

Here the implementation of the stack would be an expandable array of ints. We would 
thus be able to stack ints. Furthermore, the operations we would perform would not be 
ExpandableArray operations, but stack operations such as push and pop instead. 

template <class container> 
class StackAdaptor 
{ public: 

typedef container: : value_type value_type; 
typedef container: :iterator iterator; 

StackAdaptor():_elements(){} 
void push(const value_type& v) 
{ _elernents.push_back(v); 
} 

void pop() {_elements.pop_back();} 
value_type& top() 
{ return _elernents[_elements.size() - 1]; 
} 
const value_type& top()const 
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} ; 

{ return _elements [_elements.size() - 1]; 
} 
iterator begin() 
{ return _elements.begin(); 
} 
iterator end() {return _elements.end();} 
bool empty()const 
{ return _elements.empty(); 
}; 

long size()const{return _elements.size();} 

private: 
container _elements; 

The constructor simply constructs a default object of type container as its 3lement 
field and passes most operations to this internal representation object. We provide two 
versions of top since a stack might contain const objects or mutable objects. We can ob­
tain a reference in either case. Note that the pop operation returns nothing. It simply re­
moves the top item from the stack. If you also need a reference to the object that pop 
would remove, you should use top first. Some people prefer a pop that also returns a ref­
erence to the object removed. This is not provided here, nor in the STL itself. 

It is very instructive to examine what is really needed from the container object. The 
template makes use of only the following: a default constructor, push_back, pop_back, 
size, begin, end, empty, iterator, value_type and operator[]. Therefore, any container type 
that implements these would be acceptable as a template parameter for this adaptor. It 
should be clear why this type of template is called an adaptor. It adapts the interface of its 
representation object so that it seems to provide different operations than the underlying 
class provides. 

Notice how the definitions of types in classes like ExpandableArray help us here. We 
can define an Iterator for the stack adaptor to be the same type as that of the container pa­
rameter without actually knowing what that type is when we write the stack adaptor tem­
plate. The template mechanism fills in the appropriate types for us when we instantiate 
the template. 

The use of operator[] in the above class is troubling, since few container types can ef­
ficiently implement it. In fact, all we use it for is obtaining access to the last element in 
the representation object. This operation is much simpler to provide than a general opera­
tor[], so we can improve StackAdaptor by modifying it to use a required member back in­
stead of operator[]. 

template <class container> 
class StackAdaptor 
{ public: 

typedef container: : value_type value_type; 
typedef container: :iterator iterator; 
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stackAdaptor():_elements(){} 
void push(const value_type& v) 
{ _elements.push_back(v)i 
} 
void Pop(){_elements.pop_back()i} 
value_type& top() 
{ return _elements.back(); 
} 

const value_type& top()const 
{ return _elements.back(); 
} 

iterator begin() 
{ return _elements.begin(); 
} 

iterator end() {return _elements.end();} 
bool empty()const 
{ return _elements.emptY()i 
} 

long size()const{return _elements.size();} 

private: 
container _elements; 

As defined above, our expandable array class can't meet the requirements of this adap­
tor. It will be an exercise to provide it with the necessary members. 

5.8 The STL vector Template 

Now let's look at the actual vector class template from the STL. We will examine only 
the interface of this class, leaving out almost all details of the implementation. We will 
intersperse the interface with some commentary on the various members. Note that this 
implementation was written before C++ fully supported the STL. In particular, future 
versions of C++ will support default template parameters, in which case the allocator will 
be a template parameter rather than assumed to be imported from class Allocator<T>, as 
here. 

II Copyright (c) 1994 
II Hewlett-Packard Company 
template <class T> 
class vector { 
public: 
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typedef Allocator<T> vector_allocator; 
typedef T value_type; 
typedef vector_allocator: : pointer pointer; 
typedef vector_allocator: :pointer iterator; 
typedef vector_allocator::const-pointer 

const_iterator; 
typedef vector_allocator: : reference 

reference; 
typedef vector_allocator: :const_reference 

const_reference; 
typedef vector_allocator::size_type 

size_type; 
typedef vector_allocator: : difference_type 

difference_type; 
typedef reverse_iterator 

< const_iterator, 
value_type, 
const_reference, 
difference_type 

> const_reverse_iterator; 

typedef reverse_iterator 
< iterator, 

value_type, 
reference, 
difference_type 

> reverse_iteratori 

Class vector exports several types including pointer, reference, and iterator types. This 
permits algorithms to declare these items as needed. In this case we just use the types d;}. 

fined by the default allocator. 

protected: 
static Allocator<T> static_allocator; 
iterator start; 
iterator finish; 
iterator end_of_storage; 

These are the implementing member variables. The allocator obtains a block of stor­
age and start points to the beginning of it, end_oCstorage to the end, and finish to the end 
of the active part of the vector. 

void insert_aux 

) i 

iterator position, 
const T& x 
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From an interface perspective this function is unimportant, as it is protected. It is used 
to implement insert. 

public: 
iteratar begin(); 
canst_iteratar begin() canst; 
iteratar end(); 
canst_iteratar end() canst; 
reverse_iteratar rbegin(); 
canst_reverse_iteratar rbegin() canst; 
reverse_iteratar rend(); 
canst_reverse_iteratar rend() canst; 

The above functions generate the standard iterators that we have seen many times. The 
reverse_iterator functions return iterators that iterate backwards over the vector: from last 
element to first. 

size_type size() canst; 

This function tells us the current size of the vector: the number of elements currently 
stored. 

size_type max_size() canst; 

The max_size is the limit that the system puts on a vector of this type. It is the 
maximum capacity that the vector can have. 

size_type capacity() canst; 

The capacity is the maximum number of elements that can be stored without reallocat­
ing storage for the array. It is always at least as big as size, and never bigger than 
max_size. 

vaid resize(size_type sz, T c = T(»; 

Member resize either truncates the vector on the right to size sz, or pads it with value 
c on the right to reach size sz. 

baal empty() canst; 

This tells us the current state of the vector. Is it currently empty? 

reference aperatar[] (size_type n); 
canst_reference aperatar[] (size_type n) 

canst; 
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1. 
These two members let vectors behave like arrays. We can index from 0 through size-

vector ( ); 
vector(size_type n, const T& value 
vector(const vector<T>& x); 
vector 

) ; 

const_iterator first, 
const_iterator last 

T(» ; 

The fIrst constructor creates an empty vector. The second creates a vector with n cop­
ies of value. The next is the copy constructor, and the last copies any iterator range into a 
new vector. The defInition of the STL does not require that the source container be a vec­
tor, though with the above declaration it would. The standard specifIes that this last con­
structor should be defIned as 

template<class Inputlterator> 
vector 

) ; 

Inputlterator first, 
Inputlterator second 

This is an example of a template member function. Vector itself is a template, mxl 
some of its member functions have additional template arguments. Not all compilers im­
plement this yet, so compromises are often made. See the STL home page for a complete 
implementation of STL [11]. It may not be usable with your compiler, however. 

-vector ( ); 

The destructor releases storage for the vector as usual. 

vector<T>& operator=(const vector<T>& x); 

The overloaded assignment operator creates new storage for the copy as necessary. It 
also releases the old storage associated with the variable on the righthand side of the as­
signment. 

void reserve(size_type n); 

Member reserve guarantees that the capacity is at least n elements. 

reference front(); 
const_reference front() const; 
reference back(); 
const_reference back() const; 
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Members front and back give us access to the elements stored in the vector. They are 
not iterators, but the data themselves. Since they return references we can operate directly 
on the values themselves, not copies. 

void push_back(const T& x); 

This is the primary insert operation. It inserts x efficiently at the rear of the vector. 

void swap(vector<T>& x); 

This member exchanges the contents of two vectors of the same type. 

iterator insert 
iterator position, 
const T& x 

) ; 

This member inserts x at location position, moving all elements down to the right to 
make room for the new value. The new item will be before the item originally referred to 
by position. The reason that it is before and not after is to make it possible to use this to 
insert before the first location in the vector. It requires time that is linear in the number of 
elements to be moved. It returns an iterator to the item inserted. 

void insert 

) ; 

iterator position, 
const_iterator first, 
const_iterator last 

This second version of insert inserts a range of values before position. The source 
range does not need to be a vector. In more recent versions of the STL this is a member 
template function with the actual iterator type as the template parameter. Earlier versions 
of c++ did not support classes in which the members were themselves template func­
tions. 

void insert 

) ; 

iterator position, 
size_type n, 
const T& x 

Member insert inserts n copies of x at location position. 

void pop_back(); 
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This member removes the last element in the vector, decreasing the size. It may ~ 
crease the capacity as well. 

void erase(iterator position); 
void erase(iterator first, iterator last); 

The erase members remove values from the vector, closing up space as required. The 
first removes a single item at location position. The second removes a range of values. 
They both decrease the size and, perhaps, the capacity. 

} ; 

5.9 A Graph Implemented with STL vectors 

I~ this section we are going to use STL vectors in two different ways to build a variety of 
graphs known as directed graphs (digraphs). A directed graph is composed of vertices, also 
called nodes, and arcs which connect the vertices. The arcs are directed in the sense that 
they go from one vertex to another. It is possible for the beginning and the end of an arc 
to be the same vertex also. Figure 5.4 shows an example of a digraph with eight nodes 
and nine arcs. We have numbered the nodes for convenience. If we want an ordinary 
(undirected) graph, the arcs can simply be doubled: For each arc in the digraph, provide 
another in the opposite direction. 

Figure 5.4. An Example of a digraph. 
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A digraph can have any number of nodes and any number of arcs. Our implementation 
of digraphs will need to be very flexible. It is also possible to store arbitrary data in the 
nodes. For some problems it is also necessary to associate data with the arcs, though we 
won't do that here. When a digraph has data along the arcs, it is sometimes called a net­
work. 

Because the data stored in a node can have arbitrary type, we shall build a DiGraph 
class template with parameter T representing the type of stored data. Because the DiGraph 
is a container, it needs an associated iterator. We shall see that vector iterators will serve 
here. Finally, we shall also build a class template for the nodes out of which the digraph 
is composed. We won't need a class for the arcs, however, though it might be useful to 
have one if we were building networks. 

Because the nodes are considered to be internal to a graph, we won't permit the user to 
create any nodes, except via the DiGraph of which they are to be a part. To create the 
nodes of the above digraph, we can use the following: 

DiGraph<int> G; 
GraphNode<int>& gnO 
GraphNode<int>& gnl 
GraphNode<int>& gn2 
GraphNode<int>& gn3 
GraphNode<int>& gn4 
GraphNode<int>& gn5 
GraphNode<int>& gn6 
GraphNode<int>& gn7 

G.newGraphNode(O); 
G.newGraphNode(l); 
G.newGraphNode(2); 
G.newGraphNode(3); 
G.newGraphNode(4); 
G.newGraphNode(5); 
G.newGraphNode(6); 
G.newGraphNode(7); 

This creates the eight nodes and inserts them into the graph. It also gives us names by 
which we can manipulate the nodes as needed. It doesn't create any arcs, however. To do 
this, we can write 

G.arc(gnl, gn2); 
G.arc(gn2, gn3); 
G.arc(gnl, gn3); 
G.arc(gn4, gn2); 
G.arc(gn3, gn5); 
G.arc(gn5, gn6); 
G.arc(gn2, gn7); 
G.arc(gn7, gnO); 
G.arc(gn6, gn2); 

Our implementation of DiGraph will use a vector to store the nodes of the graph. The 
constructor creates an empty vector and each invocation of newGraphNodeO creates and re­
turns a reference to new GraphNode, while also inserting the node into this vector. Note 
that newGraphNode returns a reference only. The actual node is kept within the DiGraph 
itself: in the vector. 
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The next issue to deal with is the storage of the arc information. There are a number 
of ways to do this, of course. We could store arc information in the DiGraph itself. This 
would provide a centralized depository of arc data that might be advantageous in some 
problems. It is also possible to distribute the arc information among the nodes, however, 
with each node containing information about those arcs that point out from it. This is the 
trick that we shall employ here. Each node will have a vector that contains references to 
those nodes that can be reached by following one arc from that node. For example, the 
vector within node 1 of our example graph will contain references to nodes 2 and 3. 

It isn't quite as simple as detailed in the previous paragraph, however. Recall that we 
also need iterators for our digraphs. We want to be able to iterate over the nodes of a 
given graph, often to obtain ~ccess to the data stored within those nodes. Therefore, an it­
erator will be a sort of reference to a node. Thus, the _neighbors vector in a given 
node will actually store iterators into the graph, not c++ references. But since the nodes 
of the graph are stored in a vector, a vector (of graph nodes) iterator can be used as a graph 
iterator. 

We shall build two class templates: 

template <class T> class GraphNode; 
template <class T> class DiGraph; 

The graph node class is quite simple. When we construct a new graph node, we also 
create an empty vector of graph iterators. Note that the value of a node is a public mem­
ber, so it may be set directly. We can use operator* to get a copy of the stored value. In­
ternally, a graph node has two additional private member variables. Member _mark is 
used in a number of graph traversal algorithms in which it is necessary to visit each node 
once. To prevent visiting nodes multiple times (and perhaps trying to execute infinite 
loops), we unmark each node in a graph before we begin the algorithm and mark a node 
when we visit it. The algorithm is careful, then, to visit only unmarked nodes. All nodes 
are created unmarked. We provide private member functions to mark and unmark a node. 
These can only be called by members of DiGraph<T>. 

template <class T> 
class GraphNode 
{ public: II No public constructor. 

T value; 
T operator*(){ return value; } 

private: 
int _index; 
bool _mark; 
vector< vector< GraphNode<T> >::iterator > 

_neighborsi 

void mark() {_mark truei} 
void unmark() {_mark = falsei} 



} ; 

bool marked() {return _mark;} 

GraphNode(const T& t = T(» 
value(t), _index(-l), 
_mark(false) , 
_neighbors ( ) 

{} 
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GraphNode(const T& t, int index) 
value(t) , 
_index ( index) , 
_mark (false) , 
_neighbors ( ) 

{} 

friend class DiGraph<T>; 
II Lets DiGraphs construct nodes. 

friend class vector< GraphNode<T> >; 
II Lets us keep the default constructor private. 

The _index member of a node saves the index in the graph's vector at which this node 
can be found. It is used primarily in creating arcs between the nodes and gives us an effi­
cient way to discover the physical location of a node from the node itself, without search­
ing for it. Thus, the sixth node created in a graph will be saved in the sixth slot of the 
vector of that graph and will have an _index of five (since all counting is from zero). The 
default node constructor sets an illegal value for this variable. 

Note that nodes are relatively inactive. They don't have member functions for inserting 
values into the _neighbors vector, for example. Nodes are acted upon rather than them­
selves being active. It is members of DiGraph<T> that will act on them. There isn't even 
a public constructor in the node class. 

template <class T> 
class DiGraph II Directed graphs. 
{ public: 

typedef T value_type; 
typedef GraphNode<T> node; 
typedef vector<node>: :iterator iterator; 
typedef vector<node>: :const_iterator 

const_iterator; 

As usual, we export a few types. The node type provides a convenient shorthand. It 
also allows the user to use Digraph< ... >::node for the node type. 

DiGraph():_vertices(){} 
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The constructor creates an empty vector to hold the vertices. 

II Create GraphNodes using the following member. 
node& newGraphNode(const T& t) 
{ _vertices.push_back 

} 

(node(t, _vertices.size(»); 
return _vertices.back(); 

This is how we create new nodes. Note the constructor call of class node as an argu­
ment to the vector push_back call. By passing the _vertices.sizeO value to the node con­
structor, we initialize the node's _index member. 

II Connect two nodes created with the 
II above member. The arc is directed. 
void arc(node& from, node& to) 
{ from._neighbors.push_back(iterator(&to»; 
} 

We create an arc by naming first the tail and then the head of the arc. The _index vari­
able in a node correctly frods the slot of the _vertices vector in which that node resides. 
We push an iterator to the "to" node onto the _neighbors vector of the "from" node. 

iterator begin()const 
{ return iterator(_vertices.begin(»; 
} 
iterator end ()const 
{ return iterator(_vertices.end(»; 
} 

These are the standard container iterator generators. We just pass back vector iterators 
as expected. Notice, then, that iteration over a vector is in node creation order. This might 
not always be desirable. In fact, another standard ordering of the nodes of a graph is called 
depth first ordering. 

In depth first ordering, we start at some convenient node and list it. We then recur­
sively list the reachable neighbors of that node, but, by the nature of the recursion, when 
we list the first neighbor of the first node we then list its neighbors before returning to 
list the remaining neighbors of the first node. In this way we search deeply into the graph 
relative to the first node. If not all nodes are reachable from the first, then we may repeat 
the process from other nodes until all are listed. We provide a member function here that 
will list the nodes reachable from a given node, which may not include all nodes in the 
graph. It is also important that each node be listed only once. This is the purpose of the 
_mark fields in the nodes. We begin the process by unmarking all of the nodes in the 
graph. DiGraph provides a member to do this for us. 
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II Returns a depth first listing of the 
II nodes of the graph 
II that are reachable from node gn. 
vector< iterator > depthFirst(node& gn) 
{ vector< iterator > result; 

} 

unmark ( ) ; 
depthFirst_aux(iterator(&gn), result); 
return result; 

Member depthFirst returns a vector of iterators in which each node in the graph is rep­
resented by one iterator and these iterators are arranged in depth first order. The real work 
is done by a private member function depthFirscaux, shown later. 

private: 
vector< node> _vertices; 

This is, of course, the implementation. 

void unmark () 
{ for 

} 

( iterator i begin(); 
i ! = end(); 
++i 

( * i) . unmark ( ) ; 

Here we just send the unmark message to all of the nodes, using the begin and end it­
erators in the usual way. 

The following private member function is the helper for depthFirst. It takes an iterator 
indicating the current location, and if this location is not marked, inserts it into the sec­
ond parameter, a vector, and then recurses on each of its neighbor locations. Note that 
(*gi) is a node and so has a _neighbors field. This field is a vector and so has begin am 
end iterators. Therefore, a vector<iterator>:: iterator makes perfect sense. A value i of type 
vector<iterator>:: iterator refers to an iterator so (*i) is an iterator: a DiGraph::iterator. 

void depthFirst_aux 
( iterator gi, 

vector< iterator >& A 
) 

{ if(! (*gi).marked(» 
{ (*gi) . mark () ; 

A.push_back(gi); 
for 
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} 
} ; 

} 

vector<iterator>::iterator i 
gi->_neighbors.begin(); 

i != gi->_neighbors.end(); 
++i 

depthFirst_aux(*i,A); 

We also provide a function template to make it easy to write out a DiGraph. Note 
how it is defined in terms of the DiGraph::iterator. This can only be used, however, if 
type T, which is the type of the value of a node, also supports operator«. 

template <class T> 
ostream& operator«(ostream& os, const DiGraph<T>& g) 
{ for 

} 

DiGraph<T>: :iterator i = g.begin(); 
i ! = g. end ( ) ; 
++i 

os« (*i).value«" "; 
return os; 

Let's note a few things about this implementation. One of the most important is that 
once a node is inserted into a graph, its physical location in the vector never changes. 
This gives us complete freedom in referring to it either by its index in the vector or by a 
pointer to the node. Also, the _index field in a node always refers to the index within the 
node's graph at which the node can be found. This is an important class invariant of the 
node class. A class invariant is a Boolean statement that is always true when the class is 
viewed from without. Class invariants may be false, briefly, while member functions are 
executing, but before any public function terminates, all class invariants must be restored 
so that a client may never see an invariant that is not true. It is worth documenting class 
invariants with comments. For example, just after the declaration of the _index variable, 
we might write 

II Invariant. The value of _index is always the 
II location of the node within its graph's 
II implementing structure. 

Next, we should note that it will be difficult to use this design in a flexible way. In 
particular, it will be hard or impossible to implement many graph algorithms without ac­
tually modifying the template itself. This is because the interface reveals very little about 
the nodes and arcs of a graph that most algorithms will need to access. The marks main-
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tained by the nodes are completely private, for example. It is a very flexible design from 
within, but one that is limiting from without. 

5.10 Summary 

Make certain that you understand each of the following terms: 

adaptor 
copy constructor 
destructor 
digraph 
invariant 
memory management 
network 
overloaded assignment operator: 
vector 

5.11 Exercises 

1. Add the necessary elements to the ExpandableArray class to meet the requirements of 
the StackAdaptor class. 

2. Build a QueueAdaptor class. What requirements does it have for its container template 
argument? 

3. Add the following member functions to the ExpandableArray class. Some of them are 
discussed in Section 5.5. 

a) void insert(iterator, const value_type&); insert the value at the location of the itera­
tor, making room as necessary. 

b) void pop_back 0; remove the last element. 

c) operator< ; One expandable array is less than another if they are identical up to 
some point at which the first has a value less than the second. If one is shorter but con­
tains the same elements in the same order up to the end, then the shorter is less. 

d) operator==; two expandable arrays are == if they have the same length and identical 
elements. 

e) const value_type &backOconst and value_type& backO; return a reference to the last 
element of ExpandableArray. Why do we want both of these? 
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f) void erase(iterator) and value_type erase(iterator); remove and perhaps return the 
element at the location of the iterator, closing up the space as necessary. 

g) void pop_frontO; remove the first element, closing up space. 

h) void push_front(const value_type&); insert value at the beginning, making room as 
necessary. 

4. Modify the ExpandableArray class so that it also shrinks as the size grows smaller. For 
example, when it is only half full we could reallocate a smaller array to hold the ele­
ments. 

5. Build an undirected graph class. The implementation can be like our directed graph, but 
with two iterators to represent each arc. 

6. Build a network class. A network is like a graph except that the arcs may contain data 
of some kind. You will need an arc class template as well as a node template. 

7. Write a function depthFirstOrderO that creates and returns a list of all the nodes in a 
graph in some depth frrst ordering. 

8. Graph iterators are challenging. One way is to take a snapshot of the graph when the 
iterator is created. This can be done by calling depthFirstOrder from Exercise 7. The itera­
tor can then be a list iterator into the resulting list. Note that such iterators can't be used 
to insert and delete items, because you will be changing the graph after its snapshot, so 
the iterator is invalid. They are useful for many purposes, however. If you do it carefully, 
you can even use the iterators to modify values stored in the graph. Just be careful about 
what you store in the list returned by depthFirstOrderO. 

9. Test the stack adaptor shown in the text against the STL stack adaptor. For StackAdap­
tor (from the text), use ExpandableArray as the argument. For stack (from the STL), use 
vector as the argument. What performance differences do you observe? 

10. Assume you start with an empty vector and it doubles each time that it needs addi­
tional space. Suppose you insert into it and do not remove any items. If it has 10,000 
items, how many times have you reorganized? How many times has each item been 
moved from one implementing array to another because of reorganizations? Counting an 
insertion and a move each as one step, how many steps have been executed? How many 
per item? How many times have you had to call the allocator? 

11. Another way to represent a graph is to use an adjacency matrix. Such a matrix is a 
two-dimensional array with one row and one column for each node in the graph. The in­
tersection of a row and a column contains a one to indicate an arc from the row entry node 
to the column entry node. There are zeros in the table where there are no arcs in the graph. 
Or the table could contain data to be stored along the arcs, with a nodata object stored if 
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there is no arc. Implement such a graph representation. You will also need to store the 
nodes in some (STL) container. 

12. See Exercise 11. Implement a way to transform DiGraphs as implemented in the text 
into adjacency matrix representations and back again. 



Chapter 6 
Dequeue Programming 

6.1 Queues and Double-Ended Queues 

A queue is a structure into which we can insert items at one end and remove them from 
the other. It has the property that the next item removed is the one that has been in the 
container for the longest amount of time. This is called first-in first-out (FIFO) storage. 
Queues are used internally in computer operating systems to manage many resources, 
such as current users. Since there is only a single CPU on most systems, only one user 
process can be active at a time. When the currently executing process gets interrupted, it 
is put into the user queue (an enqueue operation) and another process is removed 
(dequeued) and allowed to run. This guarantees that each process gets its tum to execute. 

A double-ended queue, or dequeue (or deque) is somewhat more general since we are al­
lowed to insert and remove from either end. A siding on a railroad is like a dequeue. See 
Figure 6.1. We can insert railroad cars at either end of the siding and also remove them 
there. If we restrict ourselves to inserting and removing at the same end, a dequeue be­
haves like a stack. If we always remove from one end and always insert at the other, it 
behaves like a queue. A deck of cards is also like a dequeue since we can insert or remove 
cards easily from either end: i.e., the top or bottom. 

A Dequeue 

11& : : : : : : : : : : : : : : : : : : : : : : : : : ~II 
Figure 6.1. A railroad siding is like a double ended queue. 

When implementing a dequeue in a computer program, we need to be especially care­
ful to make the insert and remove operations at the ends as efficient as possible, since 
these are the most common operations. 

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998
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6.2 Implementing a Dequeue 

One simple implementation trick is not too bad in practice. We could use a scheme simi­
lar to what was done with vectors, except instead of starting to insert the first item entered 
in the first cell of our implementing array, we could insert it into the middle cell. Then it 
is easy to insert an item to the left or to the right, until we fill one end of the array. We 
will need to keep track of where the left and right ends of the active section are, of course. 
When we do reach the end of the array, we can allocate a new array, twice as large as the 
original and copy the current elements to the new array, leaving about as much space at 
each end in the new array. 

There are a few difficulties with this plan, however. When the user is making the 00-
queue behave like a stack, we are reorganizing more often than necessary. The situation is 
even worse when making a dequeue behave like a queue. In this case you might require a 
reorganization when only one or two elements were stored in a structure with thousands 
of open slots. More fundamental, however, is the problem of iterators. When we reorgan­
ize such a structure, each element moves its location in the implementing array. If it were 
at subscript 341 before, it may wind up at subscript 243 afterwards. This doesn't happen 
with vectors, since each element retains its location relative to the beginning of the struc­
ture after a reorganization. Thus, each reorganization will invalidate all indexes into the 
array and perhaps all iterators as well, since these are often relative to the beginning of the 
physical structure. 

The STL deque class template uses a somewhat more sophisticated arrangement that is 
partially based on the above simple plan. The implementation of the STL deque uses a 
two-level storage structure consisting of an array called the map and a collection of 
blocks. The actual data stored in the deque are stored in the blocks. The map contains 
pointers to the blocks. Both the map and the blocks can be quite large, and in fact, the 
map grows with use of the deque. See Figure 6.2. When we first insert an element into a 
deque (with either push_front or push_back), we allocate a map and one block. We insert 
a pointer to the block in the middle of the map. We insert the new item in the middle of 
the block. If we do additional push_front and push_back operations the values are stored 
in this same block, either to the left or to the right of the currently filled portion. The 
map doesn't need to be modified. 

When we reach one end of a block, we allocate a new block, insert a pointer to it in 
the map (to the right if we ran off the right end, for example), and insert the new value at 
the beginning of the new block. Figure 6.2 shows what state we will be in after many 
such insertions. We can also see there the logical positions of the iterators begin and end. 
Note that the values already in the deque don't move when we allocate a new block. 

The only problem occurs when we allocate a new block and there isn't room in the 
map for the pointer at the correct end. In this case we reallocate the map, making it twice 
as large. We insert the existing pointers into the new map, centering them in the new 
storage. We then have room to insert the new pointer to the new block. Again, the values 
in the deque don't move, just the block pointers do. 
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Notice that in this scheme, all blocks except one or two will be completely filled. We 
need to keep track of where we are in these two blocks, as well as where we are in the 
map. 

An iterator into such a structure is not a simple pointer into one of the blocks. This is 
because we want to be able to execute operator++ on the iterator and, in fact, do pointer 
arithmetic on the iterators, since we want deques to support random access iterators. We 
can implement such an iterator by using three pointers into a block and one into the map. 
If an iterator, i, refers to an object, then pointer ijirst points to the first cell of the block 
of our object, pointer i.last points just after the last cell, pointer i.current points to the 
object itself, and pointer i.node points to the cell in the map that holds the pointer to the 
block of the object. We can then advance the iterator until current reaches last. At this 
point we advance node and set first and last to refer to the beginning and end of the new 
block. This is made somewhat easier because the sizes of the blocks are all the same and 
they never change. Only the map changes size. Knowing the block size, we can even ch 
pointer arithmetic on iterators. 

start finish 

}IT 
blocks ~ 

full full 

Figure 6.2. Storage for a deque. 

The storage method discussed above makes insertions at the beginning and end of a re­
que very efficient. Reorganization is very infrequent if the block sizes are reasonably 
large. Note, however, that reorganization invalidates all iterators into the deque. Therefore, 
we need to be careful when using a deque (as well as a vector, by the way) not to do inser­
tions when iterator validity must be maintained. The advantage of this method over the 
simpler one discussed at the beginning of this section lies in the less frequent reorganiza­
tions that occur. 



182 Data Structure Programming with the Standard Template Library in C++ 

We note in passing that one common mechanism for organizing very large disk files 
uses a variation on this method, but it uses multiple levels of maps. Pointers in each 
level map point to the map below, with the bottom map level pointers pointing to disk 
blocks. Some additional information is usually required in the maps in addition to the 
pointers. This is called b-tree storage. This topic is beyond the range of this book. It is 
commonly discussed in books on database programming. 

6.3 A Simple deque Example 

Sometimes we need to output a complex structure to a file and later restore it. For exam­
ple, we might like to save a DiGraph in a disk file and then later read it into another pro­
gram. For the DiGraph case, it would be useful to save the graph by first saving all of the 
node data, and then all of the arc data. This is because when we restore, it is most conven­
ient to create all of the nodes first, before we attempt to create any arcs. Otherwise, we 
might try to create an arc between nodes that hadn't been recreated yet. We can use a 00-
que, acting like a queue, to help perform this task. We want to add a new member func­
tion, archive, to the DiGraph class. It will write a representation of any DiGraph on an 
ostream. For example, if G is the DiGraph that we created at the end of the last chapter, 
then 

G.archive( cout ); 

will produce the following. 

o 
1 
2 
3 
4 
5 
6 
7 
(1,2) 
(1,3) 
(2,3) 
(2,7) 
(3,5) 
(4,2) 
(5,6) 
(6,2) 
(7,0) 

We first write out a list of the data in the nodes (the values), and then we write a list 
of all of the arcs using index numbers. 
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The function proceeds by first iterating over its own DiGraph. For each step of the it­
eration it outputs the value of the current node, and inserts the arcs pointing out from this 
node into a deque. We use push_back for this. To get access to all of the neighbors of a 
given node (which are stored in a vector), we use another iterator over the neighbors. 
Then, after all of the nodes have been output, we next empt} the dequeue, outputting the 
required arc data as we remove it. Each arc datum is saved in the deque as a pair of node 
pointers. To write an arc, we write out the indices of the corresponding nodes. 

void archive(ostream& out) 
{ typedef pair<node *, node * > pri 

typedef deque< pr > deq; 

} 

deq arcs; 

for 
( const_iterator i 

i ! = end(); 
begin ( ); 

} 

++i 

out« i->value«endl; II Output this node. 
for II Save its arcs in the deque. 
( vector<node*>: :const_iterator j 

i->_neighbors.begin(); 
j != i->_neighbors.end(); 
++j 

arcs.push_back(pr( i, *j ) ); 

while(! arcs.empty(» II Output the arcs. 
{ pr p = arcs.front(); arcs.pop_front(); 

} 

out« '(' «p.first->_index« ',' 
« p.second->_index« ')' « endl; 

6.4 The deque Interface 

Externally, a deque looks like a vector with a few exceptions. First is the push_front arxl 
pop_front operations that are not part of the vector interface as they are for deques. Deques 
don't have a capacity or reserve member since reorganization involves only the internal 
map and not the elements themselves. This is somewhat problematic since we sometimes 
use those vector members to detennine whether we can guarantee the preservation of itera­
tors during insertions and removals. These tools are not available to us with deques. This 
means that the user should always assume that all iterators into a deque are invalid after 
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any insertion or deletion. This is true even of the operations at the ends. Technically, ref­
erences into a deque may be invalidated by insertions and deletions as well as iterators, 
though not all implementations do this. Be careful taking advantage of special features of 
an implementation, however, since that can drastically affect portability of the code. 

Deques provide random access iterators, so all of the STL algorithms work with de­
ques. There is also an operator[] so that deques can be made to look like arrays when nec­
essary. Be cautious with this, however. A pushjront operation changes the relative sub­
scripts of all elements and an insertion in the middle affects all subscripts either before or 
after that point, whichever is closer. As with vectors, an insertion at the location of an it­
erator inserts the new item before the iterator's location. The space for the new item could 
be created at either end, but the algorithm will choose the closer end for efficiency. 

6.5 Efficiency of deques 

The implementation of the deque optimizes the push_front operation. It is a constant time 
operation, while for a vector, insertion at the beginning is linear time. The tradeoff is that 
all operations are slowed down slightly compared to vector operations. So push_back on a 
vector is faster than push_back on a deque, though only by a small constant multiple. In­
sertions in the middle of a deque take time proportional to the distance to the nearest end. 
Therefore, insertions near the ends are quite fast. Inserting a block of values at the same 
point in the middle is much faster than inserting the same elements individually, since 
space needs to be made available only once for all of the elements. 

If insertions and deletions are to occur largely at one end, a vector may be a better 
choice than a deque. If insertions are to occur frequently in the middle, then a list is likely 
preferable to a deque. For a structure in which insertions and deletions are to occur at the 
ends, however, the deque is ideal. While a list also provides these operations efficiently, a 
queue is slightly faster at the ends. 

6.6 More on Container Adaptors-The queue Adaptor 

When you need a structure that behaves like a queue and you want to restrict the interface 
so that non queue-like operations are not possible, a queue adaptor can be used. You can 
apply this adaptor to either a list or a queue. Actually, you can apply it to any container 
that provides the required interface: namely empty, size, front, back, push_back, arxl 
pop_front. Both deques and lists from the STL provide the necessary operations. 

A complete implementation of the queue container adaptor (from the Hewlett-Packard 
library) follows. It is extremely simple. All it does is pass operations on to the container 
with which it is created. Its only purpose is to provide a restricted interface. Since all of 
the members are inline, the efficiency of a queue will be the same as that of the underly­
ing container that it adapts. 



template <class Container> 
class queue 
{ friend bool operator== 

( const queue<Container>& X, 

const queue<Container>& y 
) ; 
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friend bool operator<bool operator< 
( const queue<Container>& X, 

const queue<Container>& y 
) ; 

public: 
typedef Container: : value_type value_type; 
typedef Container: : size_type size_type; 

protected: 
Container c; 

public: 

} ; 

bool empty() const { return c.empty(); } 
size_type size() const { return c.size(); 
va1ue_type& front() { return c.front(); } 
const value_type& front() const 
{ return c.front(); 
} 

value_type& back() { return c.back(); 
const value_type& back() const 
{ return c.back(); 
} 

void push(const value_type& x) 
{ c.push_back(x); 
} 

void pop() 
{ c.pop_front(); 
} 

template <class Container> 
bool operator== 
( const queue<Container>& X, 

const queue<Container>& y 
) 
{ return x.c == y.c; 
} 

template <class Container> 
bo01 operator< 
( const queue<Container>& X, 
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canst queue<Cantainer>& y 
) 
{ return x.c < y.c; 
} 

If the Container parameter also provides operator== or operator<, then so will the re­
sulting queue. Note that we could have used a queue adaptor in our DiGraph archiving 
function, since we treated the deque like a queue there. 

6.7 Priority Queues and Heaps 

A priority queue is a structure into which we put values that have a size. When we re­
move an item from the priority queue, we always get the one with the largest size. You 
can think of a priority queue as a waiting line in which each entering person has a priority 
(his or her "size"). The person doesn't need to go to the end of the line but only to the po­
sition behind all others with the same or higher priority. The person (or thing) with the 
highest priority is always first. When it comes time to remove a person from the line, 
presumably to get served at some facility, the person at the head of the line gets service 
next. 

A heap is a structure that is useful in many ways, one of which is in implementing 
priority queues. A heap is theoretically a binary tree structure that stores values with size. 
As a binary tree, each node has zero, one, or two children. The largest item is always at 
the root and each node contains a value that is larger than (or possibly equal to) the values 
in any of its children. We shall see that it is usually possible to store this tree in an array 
like structure. We shall see the details shortly, but the idea of implementing a priority 
queue with a heap works because the largest item is easily available. We shall also see 
that it is very efficient to insert an item into a heap (or remove an item) and keep the heap 
property. 

6.7.1 Heaps 

We need to refine our definition of heap slightly. First we want a binary tree. This means 
that each node has either zero, one, or two children. A node with no children is a leaf 
node, and others are called interior nodes. The single node with no parent node is called 
the root. The height of a node is the number of links between it and the root. In the tree 
in Figure 6.3, the height of the node with a six in it is two. The height of a tree is the 
maximum of the heights of the nodes. For the tree in Figure 6.3, the height is three. A 
heap also has the property that only those nodes whose height is the height of the tree or 
one less than the height have less than two children. Finally, we want all of the nodes at 
height equal to the height of the tree to be as far to the left as possible. Therefore, the tree 
in Figure 6.3 is a heap. 

The reason for the restrictions on a heap are to make storage of the heap in an array as 
efficient as possible. Suppose that we consider an array whose first subscript is one 
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(rather than the usual zero) and store the root of our heap there. Then for each node stored 
in a subscript k, the children of that node are stored in cells 2*k and 2*k+ 1. 

Figure 6.3. A heap shown as a tree. 

Storing the heap of Figure 6.3 in this way leads us to an array such as shown in Fig­
ure 6.4. The restrictions on the heap guarantee that there are no gaps in the array between 
active node elements. Thus, the storage in an array is as dense as possible. This also 
means that, for a given height, there are about as many nodes in the tree as possible. 
Looked at in another way, in such a tree, each node is about as close to the root as possi­
ble. In fact, for a tree of height H, there are between 2*H and 2*(H+ 1 )-1 nodes that can be 
stored. Thus in a tree of height ten, we can store over 1,000 nodes. But every node is no 
farther from the root than ten arcs. 

Figure 6.4. The heap of Figure 6.3 shown as an array. 

The reason that it is nice to store a heap in such an array is that moving both up aOO 
down the arcs of the tree is very easy. The children of a node can be found at fixed sub­
scripts relative to the subscript of the given node. Also, the parent of the node in cell k is 
at subscript kl2. (For zero-based array storage, these formulas need to be adjusted slightly, 
however.) 

Exercise. Give the formulas for parent and child access in a heap stored in a zero-based 
array, with the root at cell zero. 



188 Data Structure Programming with the Standard Template Library in c++ 

One can insert into a heap and maintain the heap property in the following way. 
Physically insert the value in the next available slot. For an array representation, this is 
the first empty cell in the array. For a tree, it is the left-most slot on the last row. Then 
compare that value with the value in the parent slot. If the value in the child is smaller or 
the same, then you already have the heap property in place. Otherwise, exchange the two 
values. If the value was bigger than the parent's value, it must also be bigger than the 
parent's other child value. If you moved the inserted value, repeat the process looking at 
the value in the new slot and its parent. Continue up the tree until you reach the root, or 
until some exchange doesn't need to be made. Thus reheaping the heap after an insert 
works along a single path from leaf to root. 

If we combine the above algorithm with the knowledge about the relationship between 
the number of nodes in a heap and its height, we discover that the reheap operation takes 
only about log2(n) time, where n is the number of nodes in the tree. In formulas like this 

we shall use Ig as the name of the logarithm base 2. 
Similarly, we can remove the largest element from the heap in the following way, 

which also takes about 19(n) time for n nodes. We first exchange the root node and the 
last node in the tree. The node in which the old root now lies will eventually be pruned 
away. First we downheap the structure, restoring the heap property. To do this we com­
pare the root node with both of its children. If it is bigger than both we are done and we 
have a heap. Otherwise, we exchange the root and the larger of the children. We then 
move down to the original location of the value we promoted and continue as above from 
there, until we either reach a leaf or until we have a value that is bigger than all of the 
children. This process also follows a single path, but this time from root to leaf. 

The STL does not provide a heap container class or class template. Instead it supplies 
six algorithms for maintaining heaps in any structure that has random access iterators. 
Since such a structure can be thought of as a generalized array, this is very general and 
useful. All of the heap operations occur in pairs. One element of each pair compares val­
ues using operator<. The other function uses a user-supplied comparison object. This is 
just an object from a class that implements an operator() to compare two values. There 
are requirements on such an operator. These were discussed in Section 4.3.3. 

template <class RandomAccessIterator> 
void make_heap 
( RandomAccessIterator first, 

RandomAccesslterator last 
) ; 

template 
<class RandornAccessIterator, class Compare> 
void make_heap 
( RandomAccessIterator first, 

RandomAccessIterator last, 
Compare comp 

) ; 
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Algorithm make_heap constructs a heap from the elements given in the range of any 
random access iterator. It can work by successively reheaping starting with the first two 
elements and adding one each time. The time is proportional to n*lg(n), where n is the 
size of the range. There is actually a faster way. It takes only time proportional to n. If 
we first note that a leaf is automatically a heap, then we only need to start reheaping in 
the first node in the tree that actually has a child. In Figure 6.3, this is the node with the 
six. We just downheap from there. We then consider the other nodes farther to the left in 
the array, downbeaping from each of them in tum as we go. Our starting node is actually 
the middle node in the array structure. With ten nodes, it is in slot five. 

template <class RandornAccesslterator> 
void push_heap 
( RandornAccesslterator first, 

RandornAccesslterator last 
) ; 

template 
<class RandornAccesslterator, class Compare> 
void push_heap 
( RandornAccesslterator first, 

RandornAccesslterator last, 
Compare comp 

) ; 

Algorithm push_heap assumes that the range [first, last-I) is a heap, and that we want 
to insert the item at location last. It restores the heap property so that the range [first, 
last) is a heap. It doesn't actually insert anything. It is typically used by applying it to a 
vector or array and first performing push_back followed by push_heap. This algorithm re­
quires only logarithmic time in the number of elements in the heap. 

template <class RandornAccesslterator> 
void pop_heap 
( RandornAccesslterator first, 

RandornAccesslterator last 
) ; 

template 
<class RandornAccesslterator, class Compare> 
void pop_heap 
( RandornAccesslterator first, 

RandornAccesslterator last, 
Compare comp 

) ; 
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Algorithm pop_heap starts with a heap in range [first, last). It rearranges the elements 
so that the old maximum value is in location last, and the range [first, last-I) is again a 
heap. It is the opposite of push_heap, though they are not necessarily strict inverses, 
since many rearrangements of the same values can constitute a valid heap. Again, this al­
gorithm doesn't actually remove anything, though it is often followed by operation back 
which will then return the largest element and then pop_back, which will remove that 
value. This algorithm is logarithmic in its time behavior. 

Finally, the STL has (two versions of) an algorithm that will rearrange a heap into a 
sorted range. Algorithm sort_heap assumes that it has a heap for a range and sorts that 
range in time proportional to n*lg(n). It does this by repeatedly performing pop_heap on 
a smaller and smaller range. The first call puts the largest value last and each successive 
call puts one more "next largest" value in the correct slot. 

template <class RandomAccesslterator> 
void sort_heap 
( RandomAccesslterator first, 

RandomAccesslterator last 
) ; 

template 
<class RandomAccesslterator, class Compare> 
void sort_heap 
( RandomAccesslterator first, 

RandomAccesslterator last, 
Compare comp 

) ; 

6.7.2 Priority Queues 

The STL priority_queue container adaptor shows a nice relationship between containers, 
adaptors, and algorithms. It requires a container with a random access iterator and treats it 
as a heap. We also need to specify a comparison object to define the order of the values to 
be inserted. The protocol, however, is nearly the same as that of a queue. We push to en­
ter into the priority queue and we pop to remove from it. As discussed in the last section, 
we push by first doing a push_back on the underlying container, and then calling 
push_heap. Popping performs the inverse operations. Here is a complete implementation. 

template <class Container, class Compare> 
II Compare = less<Container: :value_type> > 
class priority_queue 
{ 

public: 
typedef Container: : value_type value_type; 
typedef Container::size_type size_type; 
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protected: 
Container c; 
Compare comp; 

public: 
priority_queue 

} 

( const Compare& x = Compare(» 
c(), 

comp(x) 
{ 
} 
priority_queue 
( const value_type* first, 

II Should be an iterator 
const value_type* last, 
II Should be an iterator 
const Compare& x = Compare() 

c(first, last), 
comp(x) 

{ make_heap(c.begin(), c.end(), comp); 

bool empty() canst { return c.emptY()i } 
size_type size() const { return c.size()i } 
value_type& top() { return c.front()i } 
const value_type& top() const 
{ return c.front(); 
} 

void push(const value_type& x) 
{ c.push_back(x)i 

} 

} ; 

push_heap(c.begin(), c.end(), comp)i 

void pop ( ) 
{ pop_heap(c.begin(), c.end(), comp)i 

c . pop_back ( ) i 
} 

Normally we don't use priority queues to store simple datatypes like ints or floats. 
The most important usage is when we have a complex datatype and one of its fields is a 
comparison field. We create a compare object that compares our objects based on this 
field. The priority queue will then prioritize our objects based on values of this field. For 
example, suppose we have person objects with a last name field (a string). We provide a 
compare object that (using operator(» tells us which of two persons has a "smaller" last 
name. Then if we insert these person objects into a priority queue, then when we dequeue 
them, they will be ordered by last name: largest first, of course. 



192 Data Structure Programming with the Standard Template Library in C++ 

6.8 STL Generic Algorithms-Searching and Sorting 

The deque and vector classes of the STL as well as arrays of c++ provide random access 
iterators. The generality of these iterators permits a large collection of algorithms to be 
written that will easily manipulate any of these structures. Sometimes we insert items 
into a container that can be compared with operator<. Other times we insert data that has 
no defined comparison. It is often necessary to find an item once it has been inserted into 
a container. This process is called search. If the items can be compared, then it is much 
faster to search a container if the container is sorted, with smaller items first and larger 
ones last, for example. Putting a container into such a sorted state is called sorting. The 
STL contains generalized algorithms for both searching and sorting of containers with 
random access iterators. Many of the algorithms don't require random access iterators. 

6.8.1 Generalized Searching 

First we will look at searching in situations in which the container may not be sorted. In 
this case any searching strategy that does not repeatedly look at the same components of 
the container is about as good as any other. The most common technique is called sequen­
tial search and it proceeds by searching from the first element to the last, comparing each 
element in tum with the target of the search. This is quite easily achieved with a for or 
while loop. For generality, however, it is advantageous that we not apply the operation to 
a container, but to a pair of iterators representing a range. Suppose we have iterators first 
and last, representing a range [first, last) in the usual way. Suppose we search for a value 
named target. Then either of the following two fragments will find the element if present. 

while(first != last) 
{ if( *first == target) return first; 

++first; 
} 
return last; 

for ( ; first 
if(*first 

return last; 

!= last; ++first) 
target) return first; 

Of course, if we don't want to modify first then we need an auxiliary iterator to step 
across the range. 

It is also possible that we don't want to compare the elements with operatof==. In this 
case we would use a comparison predicate instead. This would be a function of two argu­
ments that returns true if the first argument is considered to be the same as the second. 
The algorithm could use this in place of the operator== in the above. 

Actually, the STL takes a somewhat different approach that increases the usefulness. 
Suppose that we drop the requirement that we are searching for a given value and think of 
searching for an item about which something of interest happens to be true. For example, 



Chapter 6. Dequeue Programming 193 

if the elements have a feature called color, we might want to search for the first red item. 
In this case we could replace the comparison in the above fragments with a predicate that 
has a single argument and returns true if that element is red. For example, 

while(first j= last) 
{ if( isRed(*first) ) return first; 

++first; 
} 

return last; 

The STL provides two algorithms that provide these services. They are called fmd and 
find_if. The first version uses operator==. 

template<class Inputlterator, class T> 
Inputlterator find 
( Inputlterator first, 

Inputlterator last, 
const T& value 

) ; 

This searches starting at first, looking for an element that is = to value. If it is not 
found, then last is returned. Otherwise an iterator to the location of the found item is re­
turned. Note that we don't need random access iterators to do this. In particular, we may 
also use it to search lists and sets. We may even search for items as they come in from a 
stream, as they only need to look at one item at a time and only in the forward direction. 

The second form of the find algorithm requires a unary predicate and will return an it­
erator to the first occurrence of a value for which that predicate returns true. 

template 
<class Inputlterator, class unaryPredicate> 
Inputlterator find_if 
( Inputlterator first, 

) ; 

Inputlterator last, 
unaryPredicate pred 

When calling this function, you can pass a function for this unaryPredicate, or you 
can pass an object from a class that implements operatorO. In other words, a function or a 
function object. The function or function object must have a single parameter and return a 
boolean value. 

As you might expect, these algorithms are both linear in time behavior. 
Suppose that you want to find several copies of an item in the container. In this case, 

you can call find several times, each time replacing first with the successor of the value 
returned on the previous call. 



194 Data Structure Programming with the Standard Template Library in c++ 

There is another possibility, however. Sometimes you want to fmd a location in a 
container at which there are adjacent items that are the same. Here we need to compare 
two items within the container rather than one item with something else. For this pur­
pose, the STL provides two versions of adjacentFind. The first uses operator= and the 
second uses a binary predicate. They both return an iterator to the first element of a pair of 
"equal" values, or location last, if all adjacent pairs are distinct. 

template <class Forwardlterator> 
Forwardlterator adjacent_find 
( Forwardlterator first, 

Forwardlterator last 
) ; 

template 
<class Forwardlterator, class BinaryPredicate> 
Forwardlterator adjacent_find 
( Forwardlterator first, 

) ; 

Forwardlterator last, 
BinaryPredicate pred 

If you were to write these yourself, you would need to take a bit of care, remembering 
that the next to last location of the iterator represents the last actual location in the range 
and that this is never followed by an item to be compared with. 

Another linear sequential search technique that is often needed is trying to determine if 
two ranges are the same, and if not, finding the first location at which they differ. The 
ranges need to be of the same length, of course, for this to be defined. Again, we could 
search for a the first location at which a pair of values, one from each range, are not = or 
for which a binary predicate returns false. 

The STL provides two versions of algorithm mismatch for this purpose. We pass in 
two ranges by passing in three iterators. The first two iterators give the beginning and end 
(after the end, of course) locations of the first range, and the third iterator gives the begin­
ning of the second range. The end of the second range will be implied by the length of the 
first range. 

template < class Inputlteratorl, 
class Inputlterator2 

> 
pair<Inputlteratorl, Inputlterator2> mismatch 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2 

) ; 
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The algorithm returns a pair of iterators, one into each range. If all values are the 
same, then both iterators represent after the end locations in the two ranges. Otherwise 
they represent locations, one into each range, at which the values differ. Note that the 
ranges may overlap if needed. The second version is similar except that comparisons are 
done with a supplied binary predicate. 

template < class Inputlteratorl, 
class Inputlterator2, 
class BinaryPredicate 

> 
pair<Inputlteratorl, Inputlterator2> mismatch 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
BinaryPredicate binary-pred 

) ; 

The last search algorithm that we shall consider here looks for one range within an­
other. For example, you might want to search for the word "liberty" in a document repre­
sented as a string. While such a search proceeds linearly, it has quadratic time complexity. 
Note that there does exist a linear time algorithm (on the average) for this problem, 
though it is not implemented in at least some versions of the STL. This is because of its 
complexity and the fact that it is generally slow in typical use. 

Algorithm search looks for one range duplicated within another. These ranges are rep­
resented by four iterators. The first range, given by the first two parameters, is the range 
to be searched. The last two iterators give the range to be looked for. If the target is 
found, search returns an iterator into the first range that represents the beginning of the 
target. If the target cannot be located, then lastl is returned. 

template 
<class Forwardlteratorl, class Forwardlterator2> 
Forwardlteratorl search 

) ; 

Forwardlteratorl firstl, 
Forwardlteratorl lastl, 
Forwardlterator2 first2, 
Forwardlterator2 last2 

The algorithm is surprisingly simple since we may use mismatch. 

while(firstl != lastl) 
{ pair 

<Forwardlterator2, Forwardlteratorl> where 
mismatch(first2, last2, firstl); 

if (where. first == last2) return firstl; 



196 Data Structure Programming with the Standard Template Library in C++ 

++firstl 
} 
return lastl; 

There is a second version that uses a binary predicate for the comparison, as you 
would expect. 

The algorithms we have been discussing here are all of a kind that the STL classifies 
as nonmutating sequence algorithms. In addition to the search algorithms, there are also 
function templates to determine directly if two ranges are equal, and to count ranges. The 
equal algorithm could be used in place of mismatch in implementing the search algo­
rithm. 

6.8.2 Sorting 

We discussed two sorts in Chapter 2: selection sort and quicksort. Selection sort is too 
inefficient generally for inclusion in a general library such as the STL. Its main advantage 
is its simplicity. Another simple sort is called insertion sort, and it has the advantage that 
it behaves efficiently on small containers. The idea of insertion sort is to keep the range 
to be sorted in two sections, an initial sorted section and another unexamined section. 
This is shown in Figure 6.4. 

Sorted Unexamined 

first last 

Figure 6.4. Loop invariant for the outer loop of insertion sort. 

The idea is to keep this true while getting the iterator i up to the location of iterator 
last. We can do this by making a copy of the contents of cell i in a variable copy. This 
effectively leaves cell i "empty" since we know the value that was originally there. We 
can then slide elements to the right starting at cell i-I, leaving a new cell "empty" each 
time, until we come to the location j at which value copy actually belongs. Notice that 
each slide to the right requires only one statement be executed and on the average we will 
only have to slide about half of the elements in first. .. i-I to the right. This inner loop is 
shown in Figure 6.5. 
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a) "copy" is a copy of i's original value. 
b) Values in j+ 1 .. .i are> copy and sorted. 
c) Values in first...j-1 are sorted. 
d) Cell j is "empty." 

Figure 6.5. Inner loop invariant for insertion sort. 

The sort algorithm of the STL uses a combination of insertion sort and quicksort. If 
the size of the range to be sorted is small, it uses insertion sort. Otherwise it uses quick­
sort. This gives the best average running time since for short ranges we don't need the re­
cursive overhead of quicksort and for longer ranges we don't absorb the quadratic time be­
havior of insertion sort. 

As indicated in Chapter 2, the use of quicksort implies that for some ranges (sorted 

ranges, for example) sort will take quadratic time. There is another sort algorithm, par­
tial_sort, in the STL that can be guaranteed to be n * 19(n) in its running time, though 
slower on the average than sort. This algorithm will be discussed below in the section on 
the median. 

The standard version of sort uses operator< to compare elements. There is another ver­
sion that uses a binary comparison function instead. This comparison should return true if 
its first argument should come before the second in a sorted list. This comparison needs 
certain characteristics, however, if sorting is to be accomplished correctly. There are many 
other algorithms that also require the same behavior for the comparison. 

template <class RandornAccesslterator> 
void sort 

) ; 

RandornAccesslterator first, 
RandornAccesslterator last 

template 
<class RandornAccesslterator, class Compare> 
void sort 

) ; 

RandornAccesslterator first, 
RandornAccesslterator last, 
Compare comp 
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To understand the needs of the comparison operator, it is necessary to know that it is 
used both to fmd if one element is "less" than another and also to determine if they are 
"the same." Here the "same" does not mean that they are ==, however. Two elements x 
and y are "equivalent" under a comparison C provided that C(x,y) and C(y,x) are both 
false. Otherwise they are to be considered different. This means that a comparison operator 
and a value x divide up all the values into three sets. Those for which C(x,y) are called 
greater than x. Those for which C(y,x) are called less than x, and the rest are equivalent to 
x. Note that if x is to be the same as x, C(x,x) must be false. This is very important. A 
comparison that fulfills these requirements is said to define a strict partial order on the 
elements. 

All of this means that it is the user's responsibility to provide a comparison object 
that satisfies the requirements of partial order. If not, the sorting and other similar algo­
rithms may not operate correctly. They may even loop infinitely. In particular, opera­
tor<= is not a valid candidate for a comparison operator. Again, we can pass a function for 
the comparison operator, or a function object. 

Be aware that even with the first version of sort, which uses operator<, it is important 
that the version of operator< that is used also impose a strict partial order on the ele­
ments. The standard comparison on ints and floats does so, of course, but the programmer 
must be careful that other overloaded versions do as well. 

Fairly often, sorting a container is not just a matter of picking some simple basis for 
the sort. We may have records of some kind with several fields. We might need to sort the 
data on one of these fields. If the contents of this field have repeated values, it may not be 
good enough to leave the order of elements with common values unspecified. For exam­
ple, it might be necessary to sort employees in a large company by department. Within 
each department we might like the employees sorted alphabetically by name. To do this 
requires two sorts. The first is by name. The second is by department. There is a problem, 
however: in the second sort, there is no guarantee that the relative positions defined by the 
first sort won't be changed. Of course some rearrangement is necessary, but we mean that 
values with the same department field should not be rearranged relative to each other. 

To achieve this requires that the second (and subsequent) sort be stable. A sort on a 
field is stable if values of that field that are equivalent are not rearranged relative to each 
other. Unfortunately, quicksort is not stable and so the STL sort algorithm is not stable 
either. 

For this reason, the STL provides another algorithm (two versions) called stable_sort 
that is based on the merge sort process, which is stable. 

template <class RandomAccesslterator> 
void stable_sort 

RandomAccesslterator first, 
RandomAccesslterator last 

) ; 

template 
<class RandomAccesslterator, class Compare> 
void stable_sort 



) ; 

RandomAccesslterator first, 
RandomAccesslterator last, 
Compare comp 

Chapter 6. Dequeue Programming 199 

The merge_sort algorithm will be discussed in the section on merge, which follows. 
Its two advantages over sort are that it is stable and is guaranteed to have n * 19(n) run­
ning time if there is enough extra memory available to make a copy of the range to be 
sorted. 

6.8.3 Searching Sorted Containers 

Once a container is sorted using some criteria, we can search it efficiently using compati­
ble criteria. We examined binary search in Chapter 2. The STL includes a number of algo­
rithms that implement binary search. The simplest, called binary_search, just returns a 
boolean value as to whether the target is present or not. The first version assumes that the 
data are sorted using operator<. 

template <class Forwardlterator, class T> 
bool binary_search 
( Forwardlterator first, 

Forwardlterator last, 
const T& value 

) ; 

This second version uses a binary predicate to compare elements. This should be the 
same predicate that was used to sort the data originally. 

template 
<class Forwardlterator, class T, class Compare> 
bool binary_search 
( Forwardlterator first, 

Forwardlterator last, 
const T& value, 
Compare comp 

) ; 

These algorithms will require logarithmic time if the iterators are random access itera­
tors. However, they also work on more general forward iterators, as the template parame­
ters imply. In case the iterators are not random access, the time behavior will be linear. 
Therefore, it is possible to search lists and sets using binary_search. This is also true of 
the other algorithms discussed in this section. 

Usually we want to know more than whether the target is present. We want to know 
where the element lies in the (sorted) container. Since duplicate values are possible, there 
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can be many locations of a given target. There can also be none, as the target might be 
absent from the container. Algorithm lowecbound will return an iterator to the first oc­
currence of the target. Formally, it returns an iterator to the first location at which the 
target could be inserted while maintaining the sorted order. If the target is not present, this 
will be to the first value that is "larger" according to the sort criteria. 

template <class Forwardlterator, class T> 
Forwardlterator lower_bound 

Forwardlterator first, 
Forwardlterator last, 
const T& value 

) ; 

There is another version that has an additional parameter giving a comparison operator 
to defme the sort, and hence the search, criteria. There are also two versions of 
uppecbound, which gives the last location at which the target could be inserted. 

Finally, equal_range returns a pair of iterators that would be returned individually by 
lower_bound and uppecbound. 

template <class Forwardlterator, class T> 
pair<Forwardlterator, Forwardlterator> equal_range 
( Forwardlterator first, 

) ; 

Forwardlterator last, 
const T& value 

All of the values from the first iterator returned up to, but not including the second, 
should refer to values that are equivalent to the target value. As usual, there is another 
version with the additional search predicate. Again, the behavior of these is logarithmic if 
the iterators are random access, and linear otherwise. 

There are also a number of algorithms that operate on containers that are not necessar­
ily sorted, but whose contents are sortable. For example, min_element will search a 
range, whether sorted or not, for the minimum value of the sort criteria. 

template <class Forwardlterator> 
Forwardlterator min_element 

Forwardlterator first, 
Forwardlterator last 

) ; 

There are also corresponding max_element algorithms and versions of both that take 
the usual comparison operator. These return an iterator to the desired element or to last for 
an empty range. 

Algorithm lexicographical_compare compares two ranges according to the following 
rule. We compare corresponding elements of the two ranges starting at their first ele-
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ments. Let f be the element from the first range and s be that from the second. If f < s for 
a given comparison, stop the process and return true. If f > s, stop and return false. If they 
are the same, then proceed to the next pair of corresponding elements. If you come to the 
end of the first range, with all comparisons having come out "the same," then return true; 
otherwise, return false. Thus, lexicographical30mpare tells us whether the first range rep­
resents a string of values that would come before that of the second in a dictionary-like 
ordering. 

template 
<class Inputlteratorl, class Inputlterator2> 
bool lexicographical_compare 
( Inputlteratorl firstl, 

) ; 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2 

In fact, if we apply this operation to ordinary C++ strings, it will give us the diction­
ary ordering. A second version takes an additional comparison operator. 

Finally, we look at three algorithms that don't put a range in order, but rather destroy 
the order. 

Algorithm random_shuffle puts a range into random order in linear time. It uses either 
a built-in random number generator, or one supplied as a parameter. It works by comput­
ing a random location to swap with each successive location. 

template < class RandornAccesslterator, 
class RandornNumberGenerator 

> 
void random_shuffle 

RandornAccesslterator first, 
RandornAccesslterator last, 
RandornNumberGenerator& rand 

) ; 

If supplied, this RandomNumberGenerator should be a function object of no parame­
ters. It should return values in the interval [0, 1). The standard generator is built in and is 
approximately uniform. If this is what is desired, the third parameter need not be given. 
Also note that this algorithm does not require sortable elements. It works for any sort of 
contents, but does require random access iterators to define the range to be shuffled. 

It is also possible to systematically generate all possible rearrangements, or permuta­
tions, of a range. Algorithm nexCpermutation will shuffle the elements in such a way 
that successive calls will generate all permutations. It also is guaranteed to generate them 
in lexicographical order. It requires linear time. It returns true unless there is no 
nexcpermutation, meaning that its input was the last permutation lexicographically. 
This will be true (and the algorithm will return false) if the range is sorted from largest to 
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smallest. When it returns false it also rearranges the range, but in sorted (smallest to larg­
est) order. 

template <class Bidirectionallterator> 
bool next_permutation 
( Bidirectionallterator first, 

Bidirectionallterator last 
) ; 

To generate all permutations, first sort the range and then repeatedly call 
nexcpermutation. It will require n! (n factorial) calls, where n is the length of the range. 
In this case, the first call will permute the last two elements. Starting with elements 1 2 
345, the first 16 successive permutations are: 

12345 
12354 
12435 
12453 
12534 
12543 
13245 
13254 
13425 
13452 
13524 
13542 
14235 
14253 
14325 
14352 

There is also a prev _permutation algorithm that also generates all permutations when 
called repeatedly, but in reverse lexicographical order. Both of these have versions with 
comparison operators as a final parameter as well. 

6.9 Median and Other Order Statistics 

The median of a set of values is the value that would appear in the middle location if the 
set were sorted. It is expensive to sort, however, so a more efficient means of finding the 
median and other similar order statistics is needed. The other common order statistics are 
quartiles, deciles, and percentiles. The three quartiles are the values in locations one­
fourth, half and three-fourths of the way through the range of sorted data. The nine deciles 
are each one-tenth further along, so that in a collection of 200 items, they would be the 
values that would fall in slots 20, 40, etc. in the data if it were sorted. The 99 percentiles 
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are each 1 percent of the data apart. The 37th percentile in a collection of 1,000 would be 
at the 370th location. Of course, if we ask for the 37th percentile in a list of 150, then we 
must choose between two slots. Rounding can be used to choose the slot, or we can (with 
some types of data) average the values in the two closest slots. 

We can find the median in linear time by using a variation of the partition algorithm 
that we used to help implement quicksort in Chapter 2. If we separate that algorithm and 
rewrite it to use iterators, we get 

template <class Iterator> 
void partition_aux 
( Iterator b, 

) 
{ 

} 

Iterator& m, 
Iterator e 

Iterator J 
m=b; 
while(J < e) 

b; 

{ if(*J != *b) 
{ m++; 

swap(*m, 
} 

J++; 
} 
swap(*m, *b) ; 

J++; 

*J) ; 

Exercise. What kinds of iterator do we require for partition_aux? Do we need a random 
access iterator or will a forward or bidirectional iterator suffice? Why? 

Exercise. Rewrite partition_aux so that it performs the same function, but only requires 
a forward iterator. 

The idea is to first partition the range, obtaining a location near the middle. If this lo­
cation is to the left of the middle, we repartition only the right section. If, on the other 
hand, our returned iterator is actually to the right of the true middle, we recurse on the left 
part only. Notice, however, that we can't keep recomputing the mid on each recursion. 
We need the mid position of the original range, even though we recurse over portions of 
this range. We therefore write an auxiliary function. 

template <class Iterator> 
void median_aux 

Iterator b, 
Iterator e, 
Iterator mid 
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{ if(b<e-l && mid>=b && mid<e) 
{ Iterator t; 

partition_aux(b, t, e); 
if (t<rnid) 

} 
} 

median_aux(t+l, e, mid); 
else if (t>mid) 

median_aux(b, t, mid); 

Exercise. What kinds of iterator do we require for median_aux? Do we need a random ac­
cess iterator, or will a forward or bidirectional iterator suffice? 

Median then, just calls median_aux. Note that calling median will rearrange your data, 
but not completely sort it. It does move the median into the middle location rather than 
return it. From that location it can be retrieved. 

template <class RandomAccessIterator> 
inline void median 

RandomAccessIterator begin, 
RandomAccessIterator end 

median_aux 
(begin, end, begin + (end-begin)/2); 

} 

Note the computation of the middle position. It can't be written as (end+begio)/2, 
since operator+ (with two iterators) is not an iterator operation. Operator-, however, re­
turns an integer value, and integers can be added to random access iterators. 

The median is not one of the algorithms in the STL. There are a number of similar 
algorithms that can be used to generate the median and other order statistics, however. 

Algorithm nth_element places the nth element from the smallest into that location. It 
will partially rearrange the range, but not completely sort it. 

template <class RandomAccessIterator> 
void nth_element 

RandomAccessIterator first, 
RandomAccessIterator nth, 
RandomAccessIterator last 

) ; 

For example, to find the median of an array you can use something like the following: 

int A[300]; 

nth_element (A, A+150, A+300); 
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When this returns, the array will have been rearranged somewhat and the median will 
be in A[150). These operations are linear on the average, but like the quicksort, they are 
quadratic in some cases. The version shown uses operator< to define the sorted order. The 
other version requires a comparison operator as the last parameter. 

Related to the above are algorithms that will partially sort a range. The first of these 
(with two versions as usual) rearranges a range so that the first part consists of the ele­
ments in sorted order that would occur there if the entire range were sorted. The elements 
after the first part will not necessarily be in order, but the entire range is a permutation of 
the original. 

template <class RandomAccesslterator> 
void partial_Bort 
( RandomAccesslterator first, 

RandomAccesslterator middle, 
RandomAccesslterator last 

) ; 

The subrange from the first to the second parameter is sorted. The other version of this 
takes a comparison operator. 

There is also a version of partial sorting that makes a copy of the original range and 
then partially sorts this range, leaving the original unmodified. 

template < class Inputlterator, 
class RandomAccesslterator 

> 
RandomAccesslterator partial_Bort_copy 
( Inputlterator first, 

) ; 

Inputlterator last, 
RandomAccesslterator result_first, 
RandomAccesslterator result_last 

If the second range, of size N, say, is smaller than the first, the algorithm leaves the N 
smallest elements of the first range in the second range in sorted order. If the second range 
is the same size or larger than the first, it places the entire first range into the second in 
sorted order starting at result_first. Other locations in the second range are not modified. 
In either case, partiaCsort_copy returns a past-the-end value of the sorted range that it cre­
ates. 

Partial_sort and partial_sort30Py are guaranteed to be n * 19(n) in running time. Par­
tiaCsort will sort an entire range by making middle equal to last. Likewise, par­
tial_sort_copy will sort an entire range if the second range has length equal to that of the 
first. 

Finally, we discuss two algorithms that don't exactly belong with the sort routines, 
but are similar in flavor. Algorithm partition also rearranges a range, but does so accml-
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ing to a predicate function rather than a comparison operator. Those elements for which 
the predicate returns true are placed before those for which it is false. 

template 
<class Bidirectional Iterator, class Predicate> 
Bidirectionallterator partition 
( Bidirectionallterator first, 

) ; 

Bidirectionallterator last, 
Predicate pred 

The other algorithm is like this but is stable in the sense that it won't permute two 
elements, both of which return true for the predicate, or both of which return false. 

template 
<class Forwardlterator, class Predicate> 
Forwardlterator stable-partition 
( Forwardlterator first, 

) ; 

Forwardlterator last, 
Predicate pred 

These algorithms could be used to put small elements before large ones or red ones be­
fore noored elements, etc. Algorithm partition is linear, as is stable_partition if there is 
memory available for a copy of the input range. Otherwise, stable_partition requires 
n*ln(n) time. 

6.10 Merging 

Merging is the process of creating a larger sorted list from two or more smaller sorted 
lists. In the simplest version we need three ranges: two for the inputs and a separate third 
one for the results. 

Outputlterator merge 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2, 
Outputlterator result 

) ; 

The algorithm proceeds by examining the first elements in each of the inputs. The 
smaller of these is copied to the output. The output iterator is advanced and also the itera-
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tor that was the source of the copy. The process proceeds from this point until one of the 
inputs is empty. The remainder of the other input range is then copied to the output. This 
process is linear in the sizes of the inputs. A second version takes a comparison operator 
as the last parameter, as we would expect. 

Sometimes the two input ranges are two halves of a larger range. Note that each half 
still needs to be sorted. We desire to provide a sorted range as usual. If we want to store 
the results in the same range, we have two possibilities. The first and simplest uses some 
auxiliary storage and the algorithm above. It is somewhat more complex, though possi­
ble, to merge in place without additional space for a copy of our data. To explain this re­
quires that we discuss another algorithm that rotates a range about a location within it. 

template <class ForwardIterator> 
void rotate 

) ; 

ForwardIterator first, 
ForwardIterator middle, 
ForwardIterator last 

Assuming that middle is within the range [first, last), this algorithm relocates the 
element at middle to the location first, rotating toward the left. Therefore, the old first 
element winds up just after the old last element. When we finish the element that was 
just before the original middle will be in last location. There is also a copying version ro­
tate30py, but we won't need that here for our inplace merge. 

template <class BidirectionalIterator> 
void inplace_merge 
( BidirectionalIterator first, 

BidirectionalIterator middle, 
BidirectionalIterator last 

) ; 

This process merges the sorted range [first, middle) and the sorted range [middle, last) 
into a sorted range [first, last) without using additional space. It is similar to quicksort in 
some ways. It proceeds as follows. First, we compute the exact middle point of the left 
range, mid_left, and note what value, v, is stored there. This should be near the median 
value of the result. We then use lower_bound to find the first occurrence of this value (or 
a slightly larger one in case v is not present) in the right range. Call this location 
mid_right. Then we compute the smaller of middle-mid_Ieft and mid_right-middle. We 
call this value s. We next rotate(mid_Ieft, mid_left + s, mid_right). This leaves us with 
value v near the middle in its correct final position. It also leaves us with all values to the 
left of the mid_left + s smaller than v and all values to the right larger than or equivalent 
to v. Finally, the subranges [first, mid_left) and [mid_left, mid_left + s) are each indi­
vidually sorted, as are the two corresponding subranges to the right of mid_left + s. We 
can then recursively apply the same process to the left side and the right side of the point 
mid_left + s. This leaves us with a sorted result. As described, the process requires n * 
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19(n) time for the same reason that the quick sort has this time complexity. However, the 
actual implementation will use merge and then copy back to the input range if space is 
available, making it linear in that case. 

Finally we discuss a process called merge sort that forms the basis of the stable_sort 
described above. Merge_sort itself is not part of the STL. 

We assume that we have a range of values that can be compared with operator< or 
with a comparison operator. Merge_sort proceeds by splitting the input range in the exact 
middle, assuming that there is more than one item. It then recursively sorts the two 
halves of this range and then merges the two halves together into a whole. You can use 
either merge or inplace_merge for this operation, depending on how much additional space 
is available. If space is available, the overall algorithm requires n * log2(n) time. Other-

wise, it requires n * (log2(n))2 time. This is still better than quadratic time. 

Merge_sort is stable because neither the split nor the merge permute equivalent ele­
ments. It takes some careful thought to see that rotate, as used in the inplace_merge, 
swaps the left and right sides of the range to which it is applied, leaving relative locations 
within each half unaffected. 

6.11 Summary 

Make certain that you understand each of the following terms. You should also understand 
each of the algorithms discussed in this chapter. 

binary search 
container adaptor 
decile 
double-ended queue 
heap 
heap sort 
insertion sort 
nonmutating sequence algorithm 
lexicographical order 
median 
merge sort 
order statistic 
partial order 
percentile 
permutation 
priority queue 
quartile 
rotation 
sequential search 
stable sort 
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6.12 Exercises 

1. Write a member function to read in a DiGraph that was written with archive. 

2. Implement a heap container. Write reheap and downheap as described in the text. 

3. Using a stopwatch object and the STL heap operations over a deque, verify that the 
make_heap operation is linear in its time requirements. Show that, over a wide range of 
deque sizes, doubling the size of the deque doubles the time necessary to make it into a 
heap. Use random data for your tests. 

4. Implement an insertion sort generic algorithm, as described in the text. 

5. Implement inplace_merge, as described in the text. 

6. Use partition_aux to find other order statistics than just the median. Start with the frrst 
and third quartiles. The first quartile is larger than or equal to one fourth (quarter) of the 
data and less than or equal to three fourths of it. Now try the 20th percentile. This value 
is larger than or equal to 20 percent of the values. Test your functions on a large set of 
data. Write a general percentile function. 

7. In the STL, container adaptors like stack and queue do not have iterators. Discuss why 
not. Can you find valid reasons? For the queue adaptor shown in the text, add an associ­
ated iterator. A queue iterator should produce the elements of the queue in the order from 
front to back. Should operator* of your iterator return copies of the elements? references 
to the elements? const references? Think about this before you start. 

8. Give your own implementation of the first version of sort_heap. It should take a heap 
and produce a sorted container. Test it by transforming a random vector into a heap ani 
then sorting it. Use a stopwatch object to determine experimentally what the running 
time can be expected to be as a function of the size of the heap. 

9. Suppose you have a vector that contains items in no particular order and in which the 
current order need not be maintained. Then one possible search technique is ran­
dom_search. Suppose we have N items in the vector and we have examined N-K of them 
already. Pick a random number i in the range [O,K). Look in cell i to see if that is the 
item of interest. If not, then swap cell i and cell N - K -I, reduce K, and repeat as neces­
sary. Implement random_search. Compare its running time with that of sequential_search. 

10. Draw a picture or series of pictures to illustrate random_search. Use Figure 6.4 ani 
6.5 as a rough guide. 
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11. Draw a picture or series of pictures to explain what happens in algorithm rotate. You 
may need to consider more than one case for a complete explanation. It might help to run 
the algorithm a few times so that you thoroughly understand it. 



Chapter 7 
Lists 

7.1. Implementation Strategies of STL Lists 

The STL provides a container class template list that is very useful in situations in 
which we need to frequently insert and remove items in the middle of a container. We 
looked at simple lists in Chapter 3 and examined the basic insert and removal algorithms 
there. STL lists provide bidirectional iterators. This means that the list should be built of 
doubly linked nodes so that we can easily traverse in both directions. We also want to 
provide after-the-end values for iterators. Therefore, a trailer node after the last actual data 
node will be useful. 

The basic node type in a list implementation could look like Figure 7.1. 

value 

.. --I-prev 

Figure 7.l. A node from a doubly-linked list. 

If we chain a number of these nodes together we get something like Figure 7.2. Each 
node refers to the one that follows it and the one that precedes it. Somehow the process 
must stop. One way to do this is to set the pointer to the previous node of the first node 
and the pointer to the next node of the last node to be NULL, as is shown in Figure 7.2. 

Value ~~value 
null I -rJ.-f I 

l ~ r Value ~ ~ VoJue =r .-fL-__ L-l _=t.......l .. - I null 

Figure 7.2. A sequence of nodes in a doubly-linked list. 

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998
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If this is used, then a list as a whole could be represented by maintaining a pointer to 
each end of the list. This is shown in Figure 7.3. 

Figure 7.3. Representing a list with begin and end pointers. 

Figure 7.3 does not show a trailer node. We could replace the null pointer in the 
rightmost node with a pointer to a trailer. There could be one trailer for all lists or there 
could be a separate trailer for each list. 

The STL takes a slightly different approach, however. Each list has a node known as 
the header that is unique to each list. Both the previous pointer of the first node and the 
next pointer of the last point to this header. In turn, the header points to each of these. 
The list itself is implemented using a pointer to the header node. See Figure 7.4. Logi­
cally, the header node represents both a before-the-beginning and an after-the-end location. 
It does not hold data from the list, but is purely positional. An empty list consists of just 
a header node with both of its pointers pointing to itself. We call this structure circular 
linking. 

An iterator into such a container can be represented as just a pointer to a node. The 
beginO iterator is a pointer to the node that follows the header. The endO iterator is a 
pointer to the header node. Iterators are a class here, since the distance between nodes is 
not fixed. We cannot do simple pointer arithmetic on a pointer to find the next node. It­
erators maintain a pointer to a node and to execute operation++, we need to set the value 
of this pointer to the value of the next field in the node that the iterator currently refer­
ences. Similarly, the prev field is used to execute operation--. There are actually separate 
classes for iterators and const iterators. 

A list structure makes random access iterators extremely expensive, since the list must 
actually be traversed to do pointer arithmetic. For this reason, lists provide only bidirec­
tional iterators. Once we establish an iterator at a location, however, it is just as simple 
(and fast) to insert an item at that point as it is at the beginning or end. 
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list 

CJ ---. )1-_heT"ad_e_r n-l0de 

Figure 7.4. Lists in the STL. 

7.2. Properties of STL Lists 

Lists have constructors to create empty lists, lists with any number of elements with the 
same value, a copy of another list, or a copy of the elements of any iterator range. 

As noted above, lists have only bidirectional iterators. This means that some algo­
rithms can't be used with lists. Sorting is the most important algorithm that we might 
like to have with lists. The sort routines of the STL require random access iterators, how­
ever. For this reason, list provides a member function sort. The sort member function 
is a stable sort and uses a variation on merge sort. Instead of trying to split the list in the 
middle, which would be somewhat expensive, it starts by merging the first two elements 
into a sorted minilist. It then repeats this with the next two, and then merges these two 
minilists into a list of four. It then repeats this process until it gets a list of eight, etc., 
until it has incorporated all the elements into the work list. It also does this merging 
without creating new nodes, since it just relinks the existing nodes into the work lists as 
it proceeds. 

Another special member function splices all of the nodes of one list into another, 
making the first empty. We can also remove an item from one list and splice it into an­
other without recreating a node. A third version splices an iterator range from one list into 
another. If movement of items from one list to another is frequent, splicing can be impor­
tant to efficiency. This is exactly the case in the sort algorithm mentioned above. The 
ability to splice lists together in constant time makes lists useful in some algorithms in 
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which containers must be frequently combined into larger containers. In contrast, the 
other containers in the STL are all relatively expensive to combine. 

Member function unique will remove all but the first element of any consecutive se­
quence of equal elements in the list. 

Lists also have the usual functionality we would expect, such as pushing and popping 
at both ends, similar to a deque. We also want the size function to work in constant time, 
so lists keep a length field that is updated on inserts and removals. Without this, we 
would need to traverse the list to count the values. 

If insertions and deletions need to be done only at the ends, then a deque or vector will 
be faster on average than a list. This is because of the more frequent allocations that are 
needed for lists (one per node). Allocation of new storage is an expensive operation gener­
ally. Actual implementations can lessen this cost somewhat by maintaining blocks of 
nodes and allocating them in blocks rather than individually. This speeds the code, but 
complicates it, since the program must also manage these node blocks. 

Experiment. Use a stopwatch object to push_back a few thousand items onto a vector 
and then again onto a list. What can you learn about the relative speed of a vector and a 
list on this operation? 

If the primary need is to keep a collection sorted as insertions are done, rather than 
sorting it afterwards, then lists might be a good choice, but sets or multisets might be 
better. If processing is frequent and must be done according to the sort order, then lists 
might be better. Insertions would be faster for sets, though lists would have the edge dur­
ing traversals. 

Lists also have an advantage in that iterators are not invalidated by insertions, nor by 
deletions (with member erase) unless a deletion removes a value that the iterator refer­
ences. In complex algorithms involving many iterators, it is not always easy to know 
how many iterators refer to a given location, so great care must be taken when deleting. 
Even if we resplice nodes from one list to another, any iterators referencing that item will 
stay valid, though this is not always an advantage. 

One example of an application for which lists are ideal is in managing the objects to 
be drawn in a complex graphics system. Suppose each object is to be drawn in its own 
layer so that objects can partially overlap each other. Suppose that we also need to be able 
to rearrange the layers, moving some objects forward and others backward in the scene. 
One way to do this is to have a draw function that takes a list of objects to be drawn as an 
argument. This list is called a display list. The draw function draws them from last to 
first, representing the back of the scene to the front. In this way the objects properly over­
lap each other. A list is used since we want to be able to rearrange the layers. We do this 
just by changing the position of an object in its display list. 
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7.3 A Simple Implementation of Circular Lists 

It is easy to build a circularly linked list with a header node that is less sophisticated than 
that of the STL. Our lists will only be singly linked which is a great simplification, but 
it leads to a few complications as well. We will build a class template CircleList, and two 
nested classes CircleList::Node, and CircleList::Iterator. We shall show these last two 
classes separately, though they are contained within the definition of CircleList. The nest­
ing structure looks like the following: 

template <class E> 
class CircleList II singly linked circular list. 
{ public: 

typedef Iterator iterator; 
typedef E value_type; 
typedef E& reference; 
typedef E* pointer; 

protected: 
class Node 
II Nested class. The nodes of the list. 
{ 

} ; 
class Iterator 
{ 

} ; 
friend class Iterator; 

Node* head; 
} ; 

This permits us to use the template argument E within the Node and Iterator classes. 
The nested Node class is very simple. 

class Node 
II Nested class. The nodes of the list. 
{ public: 

}; 

E value; 
bool header; 
Node *next; 
Node(E val, Node * n) 

value(val) , 
next(n) I 

header(false) 
{ 
} 
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The class is entirely public. though it is nested within the protected part of its con­
tainer class. It has a constructor that takes a value to be saved and another node that is to 
follow it in the list. The last node in a list will point to the head node of that same list. 
We need the boolean value header to distinguish header nodes from other nodes. This will 
help us implement after-the-end values of iterators. The other classes (CircleList and Itera­
tor) will operate directly on the fields of Node. 

The Iterator class is implemented using a Node pointer named here and a boolean value 
named isEnd. This latter variable is used to distinguish an iterator at the beginning of a 
CircleList from one after the end. Both of these lterators will actually point to the head 
node of their list. The complication single linking introduces that we mentioned in the 
opening paragraph of this section is that when an iterator refers to a value within a node, 
it must actually point to the previous node. This is because it is expensive to back up in 
a singly linked list (we must run around the list to find the previous location), and many 
of our operations require modifying the node that points to the one under consideration. 
For example, to remove a value (and its node), we must change the pointer in the previ­
ous node, not the pointer in the node being removed which, after all, is about to be 00-
leted. 

We create a new Iterator by making it point to the head node of its list and setting is­
End to be true if the list is empty and false otherwise. An empty list's new Iterator is al­
ready at the end. 

class Iterator 
II This is only a forward iterator. 
II An iterator points to the node before the 
II one it logically references. 
{ Iterator(const CircleList<E> *const L) 

here (L->head) I 

{ 
} 

isEnd(L->empty(» 

private: 
CircleList<E>: : Node *here; 
bool isEnd; 

friend class CircleList; 
} ; 

An Iterator to the end of the list will also point to the head node, but its isEnd will 
always be true. 

To de-reference an Iterator, we extract the value from the next node, not the current 
one. 



reference operator*()const 
{ return here->next->value; 
} 
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We advance an Iterator with the usual node walk operation. However, we also advance 
to the header node if we move past the logical end of the list. Thus, if the here variable 
points to the last data node, then it logically references the following header node, so we 
move there and set isEnd to be true. 

iterator& operator++() 
{ here = here->next; 

} 

if (here->next->header) 
here = here->next; 

if( here->header) isEnd 
return *this; 

true; 

Two lterators are equal if they reference the same node and have equal isEnd values 

bool operator==(const iterator& it)const 
{ return here == it. here 

&& isEnd == it.isEnd; 
} 

There is also a post increment operator++ and an assignment operator=, not shown 
here. 

A CircleList itself is created by creating a new head node and linking it to itself in a 
self-circular way. We must reset the default values of the created node. 

CircleList():head(new Node(E(), NULL» 
{ head->next = head; 

head->header = true; 

The copy constructor, destructor, and overloaded operator= are implemented in terms of 
two hidden helper functions free and copy, as is typically done. We will show copy and 
free later. 

CircleList(const CircleList& L) II copy constructor 
{ copy(L) ; 
} 

-CircleList(){ free();} 

CircleList& operator= (const CircleList& L) 
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{ if ( this == &L) return *this; 
free() ; 
copy(L) ; 
return *this; 

} 

A CircleList is empty whenever its head points to itself. Since we don't maintain a 
node count, we need to walk around the list to determine its size. It would be easy to fix 
this, of course. We push a new value onto the front of our list by creating a new node to 
hold it. Notice how the constructor of the Node class makes it easy to link the new node 
in using only a single statement here. 

void push_front(const E& val) 
{ head->next = newNode(val, head->next); 
} 

Most list operations use iterators. We provide the usual begin and end functions. 

iterator begin()const 
{ return iterator(this); 
} 

iterator end()const 
{ iterator result(this); 

result.isEnd = true; 
return result; 

} 

For example, we can insert a new item into the middle of a list by moving an iterator 
to the point of insertion. The new value will be inserted before the logical position of the 
iterator (but after the physical position). The comments refer to the logical position. 

void insert(iterator& i, const E& val) 
II Insert before i. 
{ i.here->next = newNode(val, i.here->next); 
} 

We can erase an element in the middle of a list by first moving an iterator to its loca­
tion and then using CircleList::erase. This function removes the node after the one to 
which the iterator points, but it never removes the head node, which would destroy the 
list itself. 

void erase(iterator& i) 
II Removes value at location of i and 
II moves to following location. 



{ if(i.here->next == head) return; 
CircleList<E>: : Node *temp 

} 

= i.here->next->next; 
delete i.here->next; 
i.here->next = temp; 
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Note that, after erasing an element, the iterator refers to the following location auto­
matically. 

We can then erase all of the elements of a list with clear. We can also use erase to im­
plement pop_front. We can then use clear to implement the hidden free function used in 
the destructor. 

void clear() 
II Removes all elements from the list, 
II leaving it empty. 

{ iterator i = begin(); 
while(!empty(» erase(i); 

} 

void pop_front(){ erase(begin(»;} 

void free ( ) 
{ clear() ; 

delete head; 
} 

7.3.1 Sorting a List 

We can quicksort a list as easily as we do a vector or array. This is true even though we 
have only a forward iterator into a list. We provide two versions of sort, one defined in 
terms of iterators and the other that refers to only the list itself. Quicksort is not a stable 
sort and the STL requires its List class to have a stable sort. Therefore, this one isn't quite 
good enough. The STL sort uses a variation on merge sort. 

void sort(iterator& start, iterator& done) 
II PRE: done does not precede start. 
{ if(start!= done) 

} 

{ iterator mid(done); 
partition_aux(start, mid, done); 
sort(start, mid); 
sort(++mid, done); 

} 
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The partition_aux is the same one we saw in an exercise in Section 6.9 when we stud­
ied order statistics. The second version can easily use the first. 

void sort() 
II NOT stable, Therefore does not meet STL 
II requirements. Requires a forward_iterator 
II version of partition_aux. 
{ if(size() > 1) sort(begin(), end(»; 
} 

7.3.2 Recursive List Operations 

The STL prefers to implement most algorithms independently of its containers since we 
can save effort and runtime code by doing so. However, as a general technique, there is a 
very interesting way to implement list operations within a list class using recursion. A 
list is a recursive data structure at the node level. The node consists of a value and another 
node. We can use this idea to write functions (at the node level) that parallel the node 
structure itself. 

For example, we can copy a list by copying nodes recursively. To do so requires that 
the copy function (of the CircleList class) use a function that works at the node level. Re­
call that copy is used in the copy constructor and in operator=. 

void copy(const CircleList& L) 
{ head = new Node(E() ,NULL); 

head->next = head; 
head->header = true; 

} 

Node *here L.head->next; 
head->next = copy_aux(here, head); 

Member copy works by first creating a new head node for the list this. It then sets the 
next field of the head to be a pointer to a list that looks just like the list of elements of L, 
with the exception that this list must terminate with the head of this, rather than the head 
ofL. We use the recursive function copy_aux to create this list of nodes. We pass in a 
pointer to the first actual data node of L and the head of this. 

Node *copy_aux 
(Node *here, Node *OriginalHead) 
{ if (here->header) return OriginalHead; 

Node *n = new Node 
here->value, 
copy_aux 
( here->next, 

OriginalHead 
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) ; 
return n; 

} 

If we call copy_aux pointing to a header node, it returns the original head node it was 
sent. Otherwise, we create and return a new node that is constructed by taking the value 
from the list being copied, and the next from a recursive call of copy_aux, that automati­
cally creates the rest of the list. Notice that this recursion creates the new list from the 
back forwards, since the recursion in the parameter position must return before the new 
operator completes. Some time spent understanding this function will be well spent. 

For example, suppose we wish to copy a list containing 1, 2, and 3. Then the list's 
nodes can be represented as head -> [1] -> [2] -> [3] -> head, where the second head is the 
same as the first, closing the circle. 

Copy_aux is passed the head of the new list being created and a pointer to [1]. It 
works by creating a new node with a 1 in it and with a next that it first gets from a recur­
sive call that is passed the pointer to [2] and the same original head. This recursive call 
tries to create and return a node with a 2 in it and a next that it first gets from another re­
cursive call: one with a pointer to [3] and the same original head. 

This recursive call creates a node with 3 in it and a recursive call that passes a pointer 
to the head node of the list being copied. This last recursion, seeing that it is at a head 
node, returns the original head node of the list being created. It returns this node to the "3" 
recursion that pastes this node as the next node of the node it creates and passes this 
newly created node to the "2" recursion that uses it for the tail of the node it creates, etc., 
until we finally return back to the copy member that originally called copy_aux. 

While this is difficult to explain and to understand at first, it is not especially difficult 
to program correctly, and it is a very powerful technique. 

A similar technique could be used to replace the clear member function with a recur­
sive equivalent. We again need an auxiliary function to get to the node level, where the 
recursion takes place. 

void clear_aux(Node * n) 
{ if( n == head) return; 

head->next = n->next; 
delete n; 
clear_aux(head->next); 

void clear_rec ( ) 
clear_aux(head->next); 
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7.3.3 Some Difficulties with This Implementation 

This implementation is simple, but it is not perfect, especially when we compare it to 
the STL specification. We noted above that the STL wants a stable sort defined for lists. 
The one presented here, while efficient, is not stable. 

A more fundamental issue, however, is invalidation of iterators. If we have two itera­
tors to two adjacent nodes and pass the first one to erase, then we have invalidated the 
second one, since it actually points to the node just erased. This is a very serious diffi­
culty and limits the uses to which we can put iterators. If we have lots of iterators in a 
given algorithm, it is especially troublesome. If there is only one, it is not a difficulty. 

Note also what happens if we have two iterators to the same location and we pass one 
of them to insert. Then the other iterator will still be valid, but it will reference the newly 
inserted value instead of the original. This might cause problems in some algorithms un­
less they were coded carefully. 

Of course, the fact that we link singly and provide only forward iterators doesn't match 
the specification of the STL either, but this is easily remedied. 

The most serious flaw in CircleList is discussed in the exercises. 

7.4 An Alternate Implementation of Lists 

In this section we shall look at an implementation of lists that has some very interesting 
properties, though it won't quite meet the specifications of the standard. The weakness 
will be in the STL requirement that insertions and deletions not invalidate iterators. We 
will also show a sort algorithm for lists that is interesting, but not stable. It therefore 
doesn't meet the standard either, though a different sort could be used instead. 

The first interesting property of this implementation illustrates a classic computer sci­
ence problem: that of the space-time tradeoff. It is often possible in algorithms and data 
structures to trade space for time, where more space can be exchanged for faster algo­
rithms, or less space for slower ones. The programmer is encouraged not to be naive 
about space vs. time, however, especially when using a modern operating system. Some­
times a smaller program will also run faster since it has a better fit with respect to the 
page quota provided by a paged virtual memory management system such as UNIX. A 
smaller program loads faster and generates fewer page faults; therefore, it runs faster. 

The classic implementation of doubly linked lists uses two pointers in each node as 
described above. This is true even when circular linking is used, as with the standard im­
plementation of STL list. We then have iterators that use a single pointer to refer directly 
to some node. It is possible to turn this around, however, with one "pointer" in each node 
and two pointers to adjacent nodes in each iterator. This is a positive tradeoff in space, 
since we expect to have a lot of nodes, but few iterators. We put "pointer" in quotes 
above, since the value saved in a node won't actually be a pointer to another node. Instead 
it will be an access value that gives us the ability to generate a pointer to either the node 
to the left or the node to the right as needed. To fully explain this, we need to examine 
the properties of the exclusive or operator, called XOR, and represented in C++ by the 
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standard operator'. For boolean values, XOR is true if and only if the two operands have 
different truth values. The usual mathematical symbol for XOR is ®. 

Properties of XOR 

(l) Commutative 
(2) Associative 
(3) Identity 
(4) SelfInverse 
(5) Distinctness 
(6) Cancellation 
(7) Substitution 

a®b=b®a 
a ® (b ® c) = (a ® b) ® c 
a®O=a 
a® a=O 
a ® b = 0 if and only if a = b 
(a ® x) ® x = a 
a ® b = (a ® c) ® (c ® b) 

These properties can all be verified by looking at truth tables. 
In this implementation (see [7]) of lists, we shall build a class template List<T>, 

where the nodes hold a value of type T and an access value. This access of a node is the 
XOR of pointers to the nodes to the immediate left and right of that node. This is depicted 
in Figure 7.5. 

value 

access 
.... ~ 

Figure 7.5. A node in an "access" list. 

Iterators will be represented with normal pointers to two adjacent nodes. A few nodes 
of a list and one iterator are depicted in Figure 7.6. We have also informally named the 
nodes, a, b, c, and d. Then the iterator's left pointer refers to b. 

55 a 22 b 31 c 18 d 

~ axorc ~ 

Figure 7.6. An iterator into an "access" list. 
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Then, if we have an iterator with pointers left and right and an access value, 
left ->access = (a ® c), we can form right ® left ->access = c ® (a ® c) = a 
by the commutative and cancellation properties. Likewise, we can get a pointer to node d, 
with left ® right->access = b ® (b ® d) = d. Unfortunately, an iterator now refers to two 
nodes, and removing either of them will invalidate that iterator. It is also a consequence of 
this that we cannot navigate the list except with the use of iterators, since the access 
value alone is not enough information to navigate. We need the additional external point­
ers provided in the iterators. 

Note. however, that the nodes are smaller, by one pointer, than in the classic imple­
mentation, though traversal takes longer since we must also compute xors as we go. 

We can compute the xor of two pointers with the following function. It is a static 
member of the Node class. First we cast the two pointers to long values, then take the 
xor and finally cast the result back to a pointer to a node of the desired type. 

static Node* ExclOr(Node* a, Node* b) 
{ return (Node*)«long)aA(long)b)i 
} 

So far we have seen List nodes and iterators, but we have not seen the lists them­
selves. A List is represented by two nodes, one for the head, which represents a before­
the-beginning location, and another for the tail, representing an after-the-end location. An 
iterator can be thought of as representing the location of its right pointer. Therefore, the 
beginO iterator of a list points to the head node and the first actual data node. Likewise, 
the endO iterator points to the last actual data node and the tail node. An empty list can be 
thought of as an iterator that points to the head and tail nodes. This is shown in Figure 
7.7 where we have four data nodes and the head and tail. 

list 

~~G;JG:JQ8 
t:;:J~~~~~ , 

c xor (axor c) = a 

Figure 7.7 An "access" list with its nodes and an iterator. 
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This figure also illustrates the computation of a node pointer. If we xor the right 
pointer in an iterator (here a pointer to c) with the access value in the node to the left 
(here a xor c), we get a pointer to a node one step farther to the left (here a). This can be 
used as the basis of operator--. Reversing left and right in this description gives us opera­
tor++ from the Iterator class. 

iterator& operator++() 
{ List<data>: : Node *temp lefti 

left = righti 
right = Node: : ExclOr 

(temp, right->access)i 
return *thisi 

Notice that the access values stored in the head and tail nodes imply that the logical 
representation is also circular, but with two extra nodes instead of one. It doesn't fit the 
philosophy of the STL, but this implementation mechanism can be used to create itera­
tors and list operations that are completely left-right symmetric. We could use the same 
operations for moving left or right. This is because an iterator in this scheme faithfully 
represents the location between two nodes and does so in a symmetric way. 

In this implementation an iterator really represents the position between two nodes. 
For this reason these iterators are sometimes called cursors because of the similarity of 
cursors in word processing programs that represent the position between two characters in 
a document. When we create an iterator, we locate it between the head and the first data 
node. 

Iterator(const List<data> *const L) 
left(L->head) , 

{ 
} 

right 
( Node:: ExclOr 

( L->tail, 
L->head->access 

As stated above, an iterator is said to reference its right location: 

reference operator*()const 
{ return right->valuei 
} 

Unlike our simple CircleList, however, we can walk to the left as easily as to the 
right. 
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iterator& operator--() 
{ List<data>: : Node *temp right; 

right = left; 

} 

left = Node: : ExclOr 
(temp, left->access); 

return *this; 

Lists provide iterators to the beginning and the end of themselves, as usual. 

iterator begin()const 
{ return iterator(this); 
} 

iterator end()const 
{ iterator result(this); 

result.right = tail; 
result. left = Node: : ExclOr 

} 

(head, tail->access); 
return result; 

Many of the remaining operations of this List class are the same as those of the Cir­
cleList class, since they just use iterators and do not depend on the implementation of the 
lists themselves. 

Since we provide a bidirectional iterator in this class, we can also provide reverse itera­
tors. A reverse iterator is one that iterates backwards from the usual way. To use them we 
first export a type from the List class. 

typedef reverse_bidirectional_iterator 
< iterator, 
data, 
data&, 
long 
> 

reverse_iterator; 

Reverse iterators are defined within the STL using a template with four parameters. 
The first is the iterator type it reverses. The next two are the value type and the reference 
type of the iterator it reverses, and the last is an integer type that can be used to represent 
differences between iterators. Here we assume long will work, though we could be more 
sophisticated about this. 

Next we provide rbegin and rend: 



reverse_iterator rbegin() 
{ return reverse_iterator(end()); 
} 
reverse_iterator rend() 
{ return reverse_iterator(begin()); 
} 
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Finally, we need a constructor so that we can capture the position of a reverse iterator 
in an ordinary iterator. Reverse iterators work by maintaining an ordinary iterator called 
the base. 

Iterator(List<data>: :reverse_iterator& r) 
left(r.base().left), 
right(r.base().right) 

Having a reverse iterator type will allow us to apply many of the STL algorithms in 
the reverse of the usual order. 

7.5 The Iterator Invalidation Problem and Its Solution 

Suppose we wish to write a series of algorithms on lists that will require lots of iterators. 
Suppose also that the algorithms require frequent insertions and deletions from the lists. 
Then the invalidations that occur when we delete a node may be unacceptable. Note that 
iterators in the second implementation above also become invalid when we insert values. 
This is because such iterators refer to two adjacent nodes. If we put a new node between 
the two referenced by another iterator, we invalidate that iterator. 

Lets examine a mechanism by which iterators may be updated automatically when the 
list that they reference becomes modified. To do this we will build a subclass of whatever 
list class we wish to extend. Before doing so, we should change all of the base class pri­
vate data to protected so that we may get access to it in the subclass. The new class will 
be called SafeList. We will extend the "access" list of Section 7.4, for example. 

In a safe list we require an additional member variable and also derived "safe" versions 
of the Iterator and Node classes. A SafeList will be built out of SafeNodes and will permit 
the use of Safelterators, as well as ordinary iterators. A Safelterator is one that is auto­
matically updated when a node that it references becomes deleted, or when a node is in­
serted between the two that it references. The overall structure of our new template fol­
lows. 

template <class data> 
class SafeList:public List<data> 
{ 
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} ; 

ers. 

class Safelterator:public List<data>::iterator 
{ 

friend class SafeList<data>; 
} ; 

class SafeNode:public List<data>: : Node 
{ 

} ; 

friend class SafeList<data>; 
friend class Safelterator; 

The extra variable of SafeList is actually a pointer to a List of SafeList iterator point-

List< Safelterator *> *_Iterators; 

The basic idea is that when we create a new safe iterator, we insert it into the 
_Iterators list of its Safe List. Then, when any change is about to be made to the nodes, 
the list notifies each of the iterators in its _Iterators list of the node to which the change 
is being made. If that node is of interest to an iterator, it has a chance to change its posi­
tion, anticipating the change. 

When we want a safe iterator, we ask a safe list for one using begin_safe. 

iterator begin_safe{) 
{ Safelterator result{*this); 

return result; 
} 

The constructor of the safe iterator inserts it into the safe list's iterator list. 

Safelterator{SafeList<data> & L) 
Itera tor ( &L) , 

{ 

} 

_owner{L) 

if{!L._Iterators) 
L._Iterators 

= new List<Safelterator *>(); 
L._Iterators->push_front{this); 

Then when a change is made, we can notify all of the iterators, though usually we 
don't notify the iterator that is responsible for the change, since it knows about the 
change already. 
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void insert 
(List<data>: :iterator& i, const data& val) 

II Creates a new location at this 
II position. Leaves the location with 
II the new value to the left. Notifies 
II all safe iterators of the change. 

{ Node* oldLeft = i.left; 
Node* oldRight = i.right; 
List<data>: :insert(i, val); 
Node* aNode = i.left; 
notifyOthers 

( &i,oldLeft, oldRight, aNode); 

We require a new member of SafeList to perform this notification: 

void notifyothers I/Notify all except 

} 

II skip (may be NULL) 
List<data>: : Iterator* skip, 
Node *N, 
Node *M = NULL, 
Node *ptr = NULL 

if <-Iterators) 
{ List< Safelterator* > .. 

} 

Iterator nextlterator 
= _Iterators->begin(); 

while 
(nextlterator != _Iterators->end(» 
{ if (*nextlterator != skip) 

(*nextlterator)-> 
notify(N,M,ptr); 

++nextlterator; 

When an iterator gets the notify message, it must update itself. 

void notify 
( Node *N, 

Node *M, 
Node *ptr 

) 
{ if(!M) II Removing N 



230 Data Structure Programming with the Standard Template Library in C++ 

} 

{ if(left == N) 

} 

left = List<data>: : Node: : ExclOr 
( right, 

«SafeNode*)N)->getaccess() 
) ; 

else if (right == N) 
right = List<data>: : Node: : ExclOr 

( left, 
«SafeNode*)N)->getaccess() 

) ; 

else II Inserting between Nand M 
if(left == N && right == M) 
{ left = ptr; 

II NOT Symmetric, always Left. 
} 

We need safe nodes as well, since SafeLists and Safelterators won't be able to get ac­
cess to the access value of the Node class. Therefore, we must provide members in 
SafeNode to get and set these access values. 

Finally, when a Safelterator is destroyed, it must get removed from the list's _Iterators 
list. 

-Safelterator() 
{ «SafeList<data> &) _owner) 

.deregister(this); 
} 

The deregister member of SafeList does the actual removal. 

void deregister(SafeIterator *C) 
{ if(_Iterators)_Iterators->remove(C); 
} 

This technique is not unique to lists. It can be applied as necessary to other container 
classes. 

7.6 Techniques for STL Lists 

Next we will return to the STL itself and show a few techniques for programming with 
lists. We will briefly illustrate some common problems and their solutions. Along the 
way we will also discuss some additional STL algorithms. 
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7.6.1 Finding an Item in a Sorted List 

Suppose that we have a list that has been sorted with operator<. Suppose we need to 
search it for a value named target of type data. We may not be sure that target is present 
in the list at all. However, when we search sequentially from the beginning, we may stop 
searching when any of the following conditions is true. 

(1) We reach the end of the list. 
(2) We find the value we seek. 
(3) We find a value bigger than the one we seek. 

We can combine the last two conditions into one: 

(2') We find a value not less than the one we seek. 

Combining this with requirement (1), we get 

List<data>:: iterator i = L.begin(); 
while ( i != L.end() && *i < target) ++i; 

Note that the order of the two conditions is important so that we don't move past the 
end of the list before checking to see if we have reached the end. 

The find generic algorithm will search beyond the point at which the value would oc­
cur in a sorted list when it is not present and keep searching to the end of the list. How­
ever, algorithm find_if may be used in this case. This algorithm takes a predicate to 00-
termine when it should return a location. 

bool notBigger(data v) 
{ return! (v < target); 
} 

List<data>: :iterator i 
notBigger) ; 

find_if(L.begin(), L.end(), 

Note that with both of these methods, we don't know at the end whether the value was 
found. We must do an additional check of iterator i. This is because both have a com­
pound exit condition. 

7.6.2 Inserting into a Sorted List 

To insert a value into a sorted list without destroying the sort property, we first must 
move an iterator to the point of insertion and then use that iterator to insert. The methods 
of Section 7.6.1 leave us in an appropriate location for inserting the value target. This is 
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because they leave us at the first location not less than the target, and insert inserts its pa­
rameter before the location of the iterator. 

List<data>: :iterator i = find_if(L.begin(), L.end(), 
notBigger) ; 
L.insert(i, target); 

7.6.3 Applying an Arbitrary Function to Each Element of a List 

Sometimes we need to apply some operation to each element of a list or other structure. 
If this is just a data-gathering operation (summing the elements, for example), then it can 
be applied to a list of const values using a const iterator. It might also be a data­
modifying operation, however, in which case a normal iterator is used. If we are applying 
only data-gathering operations (const operations), then we may use algorithm for_each. 
This algorithm applies a function of one parameter to each of the elements of a range. If 
the function returns a value when called, these values are ignored. How does such a func­
tion do any work, then, if it is const and returns no usable value? The answer depends on 
nested scopes and global variables. For example, we can sum the elements of an array of 
float values with the following: 

float total = 0.0; 
void addNext(float v) 
{ total += v; 
} 

for_each (L.begin(), L.end(), addNext); 

In fact, for_each returns the function object that it was passed, though this value is of­
ten ignored, as here. This object can, of course, have member variables that were modified 
each time the object was called "as a function." These variables can collect information 
for us. 

The foceach algorithm cannot be used to modify the contents of the list, but if the 
list contains values that are themselves mutable (as floats are not), then we could apply a 
function to each of them that would perhaps modify the state of the values stored. For ex­
ample, if we had a list LS of Stacks and wanted to push the same value on each of the 
stacks in our list, we could use for_each with the following function: 

void pushNext(Stack& S) 
{ S.push(value); 
} 

Note that we only get to pass one parameter to the function for3ach, so the value to 
be pushed on each stack must be a global value. Note that 
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for_each (LS.begin(), LS.end(), pushNext); 

leaves us with a list of the same stacks, but each of those stacks has been modified. The 
reference parameter of pushNext is required so that we push onto the actual stacks in the 
list and not onto copies passed by value to pushNext. 

For each does not depend on lists. It is defined in terms of input iterators, which 
makes it very general. 

7.6.4 Splicing Lists 

Splicing is an operation that is unique to lists and other linked structures. Instead of copy­
ing values from nodes or other similar cells, it is possible to relink the nodes themselves, 
first unpinning a node from its location in a list and then linking it into some other posi­
tion in the same or another list. The list template has three member functions that ac­
complish this task. The first unlinks all of the nodes of one list as a unit and links them 
into the current list at the location of an iterator. Here, "at the location of an iterator" 
means just before the value that the iterator references. This can involve thousands of 
nodes, but takes constant time. Just the time to adjust a few pointers. It leaves the other 
list empty, however, and any iterators into that list will now refer to nodes of the current 
list. 

void splice(iterator position, list<T>& x); 

The second version unlinks a single value (node actually) from an iterator position i in 
a list x and relinks it into an iterator location named position in the current list. 

void splice 
( iterator position, 

list<T>& x, 
iterator i 

) ; 

The last version unlinks a range from a given list back into a given position in the 
current list. 

void splice 
( iterator position, 

list<T>& x, 
iterator first, 
iterator last 

) ; 

Splicing is especially useful when very large data values are stored in list nodes. We 
can move them around without the overhead of actually copying the values. Splicing also 
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has the advantage that an iterator, which is logically a reference to a value, "moves" with 
the node automatically, leaving it a reference to the same value. When we move values 
between nodes, an iterator, being implemented as a pointer to a node, stays with the node 
and hence references a new value. 

7.6.5 Merging Sorted Lists 

The merge algorithm of the STL is defined in terms of input iterators, so is suitable for 
use with lists. It may be, however, that a splicing version is more appropriate in some 
situations. This would be the case if we didn't need the input ranges after the merge. We 
would also avoid allocator calls when splicing. As usual, splicing is especially useful 
when the values stored in the list are large and hence have a high copying cost. The STL 
provides this function as a member of the list template. 

7.6.6 Reversing a List 

The reverse algorithm can be used with lists, since it uses bidirectional iterators. The ba­
sic idea of reversing a range is to swap values at the extremes of a list (or other range) us­
ing two iterators, and then move both iterators toward the middle. The algorithm halts 
when they reach the middle. (Why?) A specialized version could be provided for lists that 
would avoid copying the elements. If the next and prev pointers in each node were 
switched, then the list would be reversed. This would also automatically reverse the direc­
tion of any iterators into the list. 

For the "access" list implementation that we showed in Section 7.4, a list can be re­
versed simply by swapping the head and tail pointers in the list itself. This would have an 
unfortunate effect on iterators, however, as a bit of study will show. 

7.6.7 Building a Spelling Dictionary 

Suppose that we need to build a large sorted list of correctly spelled words for use as a 
spelling dictionary. The list needs to be sorted so that we can use binary search to find a 
given word in it quickly. Actually, there are other mechanisms as well that will provide 
quick lookups-hashing for example-but we focus on sorting here. 

One way to build such a dictionary is to start with several large text files, such as on­
line novels and technical reports and the like. We first read them into a sequential struc­
ture such as a list or a vector, with one word per location. Next we sort this list with an 
efficient algorithm. This might take a long time if there are a lot of words, as there 
should be. Next, we apply algorithm unique to the sorted structure, which removes all ai­
jacent repeats of elements. This leaves us with exactly one copy of each word. If we 00 
this separately with several files, we can merge them together with a specialized merge 
that doesn't create copies. (See algorithm set_union.) 

Finally, we can write our sorted structure to a file for later use. When actually used as 
a spelling dictionary, it should not be stored in a list, however, as lookups would take too 
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long. A sorted array or vector would be better, or a set, to be discussed in the next chap­
ter. There are also specialized data structures that let us store such a word list efficiently. 
One such commonly used structure is called a trie (pronounced tree). Briefly, a trie is a 
tree in which each node has many children. The actual root of the tree is a dummy node, 
and its children hold the various possibilities for the first characters in the words of our 
word lists. For English, if we pennit both capitalized and uncapitalized words, we need 
fifty-two children of the root. If any word begins "ab" (several do), then there is a b below 
the a node. If any word begins "abo" (several), then there is an 0 below the b node that is 
below the a node. Since "about" and "above" both occur in English, there is both a ''v'' 
and a "u" below our 0 node. When we traverse this tree, we get a correctly spelled word. 
When we reach a missing node, we complete a spelling. We will have more to say about 
trees in the next chapter. 

7.6.8 A Merge Sort Suitable for Lists 

The standard merge sort works by dividing a vector or array into two equal parts at the 
middle element. It then recursively sorts those two parts and then merges the sorted re­
sults into a sorted whole. When you think about what really happens in the recursion, 
however, you discover that since the division comes first in the original, it will come 
first in the recursions as well. This means that the algorithm works by first continually 
dividing and redividing, etc., until there is nothing left to divide (minilists of just one 
element, which are sorted of course), and then it starts to merge the little pieces together 
into sorted larger pieces. The important thing about the algorithm, however, is the merg­
ing, not where it gets the items to merge, or the order in which it does the many different 
merges that make up the whole. 

Suppose that we start with an unsorted list. As an auxiliary storage structure we will 
use an array or a vector of lists. The lists in this array (say) are composed of nodes ex­
tracted from the list to be sorted by unsplicing them from the original and splicing them 
onto one of the lists of the array. When we unsplice a node from one list and splice it 
into another, we say we transfer the node. Initially this array is composed of empty lists, 
and in general each list in the array will be kept sorted. 

We start the algorithm by transferring the first node of the original list into the first of 
the lists in the array. Next we take one node from the original list and merge it with the 
single element in the list in the array to get a two-element sorted work list. We install 
this work list as the second element of the array. We now repeat the above until we get a 
second two-element sorted list in the work list. We can now merge this with the other 
two-element list in the array to get a sorted four-element list that goes into the third slot 
in the array. Now we repeat all of the above until we obtain another four-element sorted 
list that we merge with the one we already have to get an eight-element list for the next 
slot of the array. This process continues until we empty the original array, though at the 
last stages we won't have work lists of the maximum length. This is no problem for 
merging, however. This entire process can be managed with a loop that on each pass cre­
ates a sorted list whose length is the next higher power of two by first creating one of the 
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same length as the one on the previous pass and then merging with the one created on 
that pass. 

Notice that we only need to move forward in each of the lists that we process, so this 
is easily done with only forward iterators or the equivalent. This technique can be used as 
the basis of the sort member of the list class. 

7.7 Summary 

Make certain that you understand each of the following terms: 

circularly linked list 
cursors 
doubly linked list 
iterator invalidation 
nested classes 
reverse iterators 
splicing 
xor 

7.8 Exercises 

1. Write a recursive member for CircleList that removes all elements between two itera­
tors. The second iterator should be a past-the-end location for the range to be removed. 

2. Notice that CircleList becomes more useful within the context of the STL if we re­
think the idea of front and back. In particular, if we change the name of push_front to 
push_back, and front to back, we can use a CircleList with a Stack adaptor. Discuss this 
and implement it. 

3. CircleList has a very serious flaw. What happens if we attempt the following? 

CircleList<int> C; 
c.push_front(S); 
c.push_front(6); 
C.insert(begin(), 7); 
C.insert(end(), 8); 

Analyze this problem and solve it. 

4. Doubly link the CircleList class. Every node needs an additional pointer: previous, that 
points to the previous node. Change the Iterator class so that an iterator points to the 
node that contains the value it references. Note that this requires some changes to the Cir-
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cleList members as well. Do we still need the isEnd field of Iterator? Be sure to do this 
exercise in a way that insertions and deletions don't invalidate other iterators, unless we 
delete a node that an iterator refers to. 

5. Provide a bidirectional iterator for the doubly linked CircleList class of Exercise 4. 

6. Build a safe version of your updated doubly linked circular list. 

7. In Section 7.6.6, we mentioned a bad effect of reversing access lists by simply revers­
ing their head and tail pointers. Carefully explain this problem. 

8. Implement the merge sort algorithm discussed at the end of this chapter as a member 
function of the CircleList class discussed near the beginning. 

9. Discuss the tradeoffs in space and time as well as the compromises in functionality of 
the different list implementations discussed in the text. 

10. Should the STL have a singly linked list structure as well as list? Justify your an­
swer. 

11. What is the comparative cost of a free store allocation of a small block compared to a 
simple assignment statement? Devise an experiment to find out. Carry out the experiment 
and report on your results. 



Chapter 8 
Sets, Maps, Multisets, and MultiMaps 

8.1. Sequential Versus Sorted Containers 

In Chapter 2 and in 3 through 7, we studied container mechanisms in which there was a 
direct linear, or sequential, structure. Elements had a physical order. When we sort them 
we make their logical order conform in some way with the physical order. STL sorted 
containers are quite different. These containers are always kept logically sorted, so that if 
we write them out the values are reported in increasing order according to some rule. 
When we insert into a sorted container, it is placed somewhere internally consistent with 
that logical order. As we shall see, however, there is no necessary physical relationship 
between the logical position and its physical location. In fact, many different physical ar­
rangements can be equivalent to the same logical one, since the physical structure is not 
sequential. 

In some ways the term set for the STL template of that name is misleading, since 
STL sets require that the elements inserted obey a comparison relation. This relation is 
usually operator<, though we can substitute others. In mathematics we can have sets of 
things that can't be easily compared like this. Also, STL sets are always sorted, though 
order and sorting is not part of the mathematician's idea of set. 

Otherwise the name is well chosen, since in a mathematical set, if we insert an item 
into it and it was already present, we don't change its state. This is true of STL sets also. 
In other words, a given value can only be present once in a set, if at all. Multisets, how­
ever, permit multiple inclusions of the same element. We can also perform set like opera­
tions on STL sets (and Maps, etc.). For example, secunion and seUntersection are STL 
algorithms, but they only work correctly if the containers that they operate on are sorted. 
Therefore, they work most naturally with structures such as sets and maps. 

The four templates we discuss here are sets, multisets, maps, and multmaps. They are 
called sorted associative containers, though the word associative really only applies to 
maps and multimaps. Map and multi map containers are used to associate pairs of values 
together. Each pair consists of two parts, a key and a value. The keys must be compara­
ble, and the containers are kept in key order. In a map, only one pair with a given key 
may be present at any time. With multimaps, a key may be present several times. There­
fore a map is like a set of ordered pairs, with the first element (the key) being unique 
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within the map. Mathematically this is called afunction. Another name for a mUltimap is 
relation. 

Sorted containers could be implemented many ways, of course, including with lists 
and vectors. We could even impose a set-like property on lists or vectors, but each of 
these structures has an important disadvantage. This is because to insert an item we need 
to know if it is present already. With a vector this can be easily determined using binary 
search. But then comes a difficulty, for which, lists would provide a better solution. Once 
we decide an item belongs (and we know where it belongs), we must make room for it 
somehow. In a vector we need to move other items, perhaps a lot of other items. With a 
list we can simply insert a new node at the desired location. So each of the existing struc­
tures has important advantages, but serious disadvantages for use as sorted containers. 
Therefore, we seek an alternate storage mechanism. It will take us around a bit of a diver­
sion, but we shall get to this soon. Trees are what we need, but a certain kind of tree. 

8.2 Binary Trees 

Trees are linked structures like lists, but in a list a node is connected to at most two other 
nodes, while in a tree, a node can be connected to many other nodes. Mathematically a 
tree is a connected graph without cycles, meaning that there is exactly one path between 
any two vertices. Normally one vertex, or node, is singled out and called the root of the 
tree. Given a root, some nodes are connected to only a single other node. These are called 
leaves of the tree. All other nodes are called internal nodes. Of all the nodes connected to a 
given node (other than the root), one will be closer to the root than the others. The others 
are called the children of the given node. The one closer to the root is called the parent. 
The height of a node is the number of links from that node back to the root. The height 
of a tree is the maximum height of all of the nodes of the tree. 

The simplest kind of tree is one in which each of the internal nodes are connected to 
three nodes, the parent and two children. These binary trees were discussed in Chapter 3. 
To implement binary trees, we need to implement the nodes and the links. The usual way 
is to implement the nodes with a class and the links with pointers. In Chapter 3 we pro­
vided only two pointers in each node: to the two (potential) children. This makes move­
ment toward the root difficult and expensive, however, so we will provide a pointer to the 
parent node as well here. Therefore, a binary tree node is something like the following: 

struct node 
{ T _data; 

nodeptr _left; 
nodeptr _right; 
nodeptr -parent; 
node 
( T data = TO, 

nodeptr parent = NULL, 
nodeptr left = NULL, 



} ; 

{ 

} 
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nodeptr right = NULL 

_left(left) , 
_right (right) , 
-parent (parent) , 
_data (data) 

Processes for manipulating these nodes are very similar to those for lists. It is just 
that there is about twice as much work. We also need to be careful that we don't try to 
make the same node the child of two others, because then we wouldn't have a tree any­
more. 

8.3 Binary Search Trees 

A binary search tree is a binary tree, but it holds data that can be compared with some­
thing like operator<. The built-in types of c++ have such a comparison, though the 
comparison for strings (or any pointers) is quite meaningless. Therefore, the STL permits 
the user to define alternate comparison operations using function objects. A comparison 
object is either a binary function returning bool, or an object in a class that has such an 
operatorO defined. For example, a comparison function to compare strings might be 

class stringLess 
{ bool operator(char* sl, char* s2) 

{ return strcrnp(sl, s2) < 0); 
} 

} 

If we have two strings, a and b, and an object compare of type stringLess, then 

cornpare(a, b) 

returns true if string a comes before string b. 
Given a type with a suitable comparison operation, a binary search tree keeps values 

of that type in a binary tree maintaining a certain "sort" property. In particular, for any 
given node storing a value v, all values that compare less than v will be in the left child 
subtree rooted at v's node and all values that compare greater than v will be to the right of 
that node. Those that are equivalent to v could be to the left or the right. We can quickly 
find a value if present in a binary search tree by starting at the root. If it is equal to the 
value we seek, we stop. If our value is smaller than the root, we search left, otherwise 
right. We can repeat the same process at each node, stopping when we find our target, or 
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when we reach a missing node. It is here that we should insert the value if that is our 
goal. 

An interesting feature of binary search trees is that if we list all of the elements by re­
cursively listing all of the children to the left of a node before we list the value in that 
node, and all of the values in children to the right afterwards, then the values are listed in 
sorted order. 

Another interesting feature of binary search trees is that they can provide very fast in­
sertions and deletions of values. This is because a binary tree can hold a lot of nodes for a 
given height. If we only need to search a single path from root to leaf to insert or remove 
a value, then the time required can be logarithmically related to the number of nodes in 
the tree. This is because in a tree with all leaves at about the same height, up to about 
half of the nodes are in the leaves. So each time we increase the height by one, we double 
the potential number of nodes that the tree can hold. Given this potential high density of 
a binary tree, combined with the easy mechanism for fmding a value or finding the place 
in which a new value could be put, we get very fast searches, inserts, and deletions. 

8.4 Balanced Binary Search Trees 

One potential problem with the above characterization of binary search trees is that "it 
ain't necessarily so." That is to say, binary search trees don't need to be full, or hold the 
maximum number of nodes for their height. In particular, we could think of a linked list 
as a binary search tree in which there are no left children and all "next nodes" represent 
right children. Here the height of the tree is the same as the length of the list, in which 
case searches take linear time, not logarithmic time. There is a huge difference between 
these for large values of n. For example, the log of one million (base 2) is about 20. This 
is quite a bit less than a million. Therefore, to achieve good running times for binary 
search trees, we must keep them balanced. 

A balanced binary tree is one in which the leaf nearest to the root is not too much 
closer than the one farthest from the root. A good rule of thumb is that the farthest leaf 
should be no farther than twice the distance of the nearest leaf. This is reasonably easy to 
maintain by a variety of mechanisms while providing good performance. Keeping a tree 

full (where the farthest leaf is no more than one link farther than the nearest) is much 
harder to maintain as we insert and remove items, adding to the cost of doing so. 

8.5 2-3-4 Trees 

We digress for a moment and describe a slightly different kind of tree. See [6]. It is not a 
binary tree in that its nodes don't all have two children. In a 2-3-4 tree, each node has ei­
ther two or three or four children. It stores one less value than it has children, so a 4 node 
has 3 values stored in it. It is convenient to think of the values as being stored between 
the pointers that represent the children. The values in a node are stored in order. The val-
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ues in a subtree stored below a node have values between the values that bracket that sub­
tree's pointer. See, for example, the 3 node and its children shown in Figure 8.1. 

10 20 

Figure 8.1. A 3 node with its subtrees. 

It is possible to insert into a 2-3-4 tree keeping all of the leaves at exactly the same 
height. The tree only needs to be increased in height when all of its nodes are 4 nodes. 
For example, if the tree consists of a single 4 node it has height zero and stores three val­
ues. When we add the fourth value we can split the root node into a 2 node with one value 
and two children, a 2 node and a 3 node. This gives room for four values altogether. The 
height is one and all leaves are at height one. 

The disadvantage of the 2-3-4 tree is the fact that the algorithms are all complicated by 
the several values stored in the nodes. It is much easier to maintain a binary tree with 
only one value in each node. 

8.6 Red-Black Trees 

A red-black tree can be thought of as a way to implement a 2-3-4 tree. A 2 node (binary 
node) in a 2-3-4 tree is, of course, the same as a binary tree node. A three node can be rep­
resented by two linked binary nodes as shown in Figure 8.2. Actually there are two differ­
ent (symmetric) ways to represent this node. 

To distinguish the "true root" of such a node (the node with the 10) from the node that 
implements the internal structure of the 2-3-4 node it represents, it is convenient to speak 
of the true root node as being black and the other as being red. Similarly, a 4 node in a 2-
3-4 tree can be built from a black node and two red nodes. The resulting red-black tree is 
balanced in the sense defined above: no leaf is more than twice the height of any other. 
This can be seen from the observation that a red node always has black nodes both above 
and below it. And it comes from a completely balanced 2-3-4 tree. 
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Figure 8.2. The 3 node of Figure 8.1 as two 2 nodes. 

Figure 8.3 shows a red-black tree with twenty-two elements. The red nodes are marked 
with ovals. Figure 8.4 shows the equivalent 2-3-4 tree with the "colors" of the values 
preserved. This is not, of course, the only red-black tree that can hold these items. It W­
pends on the order in which the items are inserted (55, 22, 33, 88, 11, 13, 42, 75, 8, 31, 
17,29,34,51,93, 12,9,7,63,70, 15,32). A different order would likely lead to a dif­
ferent tree. 

33 

Figure 8.3. A red-black tree. 

Note that the height of the red-black tree is four, while the leaf closest to the root has 
height three. In the 2-3-4 tree, however, all leaves are at height two. 
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Figure 8.4. An equivalent 2-3-4 tree. 

If we sort the input data before inserting it into the tree we get a dramatically different 
tree, as shown in Figure 8.5. As a red-black tree it has height six, though as a 2-3-4 tree 
the height is three. Note that the value 33 was the root of the first tree, but a leaf in this 
one. 

Figure 8.5. Another red-black tree with the same data. 
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Note that in this latter tree, the leaf with 93 is at a height of six, and no node has a 
height less than three. No node is at a height more than twice that of any other. 

8.7 Sets and Multisets 

Multisets are the simplest STL sorted associative containers. A multiset simply contains 
comparable values in a sorted collection. There may be repeats of the data, so that in a 
multiset<int> the value 5 could appear several times. Since the container is sorted, a list­
ing of it would list all of the 5s together, of course. An STL set is somewhat more so­
phisticated in that it guarantees that an item is present only once, if at all. The interface 
of set and multiset is nearly identical, however. They support exactly the same opera­
tions. This interface is shown below. 

template <class Key, class Compare> 
class set 
{ public: 

typedef Key key_type; 
typedef Key value_type; 
typedef Compare key_compare; 
typedef Compare value_compare; 

typedef rep_type: :const_reference reference; 
typedef rep_type: :const_reference 

const_reference; 
typedef rep_type: :const_iterator iterator; 
typedef rep_type: :const_iterator 

const_iterator; 
typedef rep_type: :const_reverse_iterator 

reverse_iteratori 
typedef rep_type: :const_reverse_iterator 

const_reverse_iterator; 
typedef rep_type: : size_type size_type; 
typedef rep_type: : difference_type 

difference_type; 

set(const Compare& comp 
II empty set 

set 

Compare ( ) ) ; 

( const value_type* first, 
canst value_type* last, 
const Compare& comp = Comparee) 

); II Create a set from an iterator range 
set(const set<Key, Compare>& x); 



} ; 
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set<Key, Compare>& operator= 
( const set<Key, 

Compare>& x 
) ; 

key_compare key_comp() const; 
II returns the compare function 

value_compare value_comp() const; 
II returns the compare function 

iterator begin() const; 
iterator end() const; 
reverse_iterator rbegin() const; 
reverse_iterator rend() const; 
bool empty() const; 
size_type size() const; 
size_type max_size() const; 
void swap (set<Key, Compare>& x); 

II Swap contents of 2 sets. 

pair<iterator, bool> insert 
( canst value_type& x 
) ; 

iterator insert 
iterator position, 
const value_type& x 

) ; 
void insert 

) ; 

const value_type* first, 
const value_type* last 

void erase(iterator position); 
size_type erase(const key_type& x); 

II Returns number of elements erased. 
void erase(iterator first, iterator last); 

II set operations: 
iterator find(const key_type& x) const; 
size_type count(const key_type& x) const; 
iterator lower_bound(const key_type& x) 

const; 
iterator upper_bound(const key_type& x) canst; 

pair<iterator, iterator> equal_range 
( const key_type& x 
) const; 
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Sets and multisets are one area in which the C++ standard is ahead of the state of C++ 
compilers (in early 1997). The actual standard for STL sets has a default value for the 
Compare template parameter (as well as for an allocator): 

template < class Key, 

class set 
{ ... 
} 

> 

class Compare less<Key>, 
class Allocator = allocator 

This means that the user does not need to specify the Compare function (or function 
object) if the standard less (which uses operator<) is the desired comparison. Most current 
compilers, however require the user to give the argument, so that to create a set you write 
something like 

set< int, less<int> > tokens; 

The Compare argument is only used as the default, however, and you can create a set 
using a different comparison by specifying it in the constructor. Note that the Allocator 
argument specified in the standard doesn't need to be given currently, as compiler writers 
assume a default allocator and don't give the user much opportunity to substitute another 
one currently. This will change as compilers are updated to accept default template pa­
rameters. 

As usual, set exports several types. The most important one is value_type, which 
gives the type of values that may be inserted. It is the same as the Key type provided as 
the template parameter. The key_type and the value_type are the same for sets and mul­
tisets. We will see that they can be different when we examine maps and multimaps 
shortly. 

Sets provide bidirectional iterators, so a number of the algorithms that require random 
access iterators can't be used. For this reason, some of those algorithms have specific ana­
logs here. In particular, the set operations, find, lower_bound, upper_bound, and 
equal_range provide the functionality of the binary search algorithms provided elsewhere. 
Those generic algorithms require sorted ranges (which sets are) specified by random access 
iterators (which sets do not provide). As we have seen, the tree implementation of sets 
provides efficient search mechanisms, just as does binary search. 

Note, however, that sets (and multi sets) only provide const iterators. You can't use an 
iterator over a set to change a value in the set. This is because the only values are the 
keys themselves. To change the key requires repositioning the item. This is not a prob­
lem for maps and multimaps, since we store pairs in which the key is itself a const value. 
An iterator can be used there to modify the data part. 

A few of the above function prototypes might not be obvious. One surprising mem­
ber of the set interface is the insert function, since it returns a pair of an iterator and a 
bool. When we go to insert an item into a set, it might already be present. If it is not 
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present, the insert function returns an iterator to the point of insertion and true for the 
bool. If it was already in the set, then we do not insert the new copy, but return an itera­
tor to the original value and false for the bool. Since the equivalent multiset operation 
always inserts, it returns only the iterator to the newly inserted element. 

One other insert member might be puzzling: 

iterator insert 
iterator position, 
const value_type& x 

) ; 

This function uses the position argument as a hint as to where to start looking for the 
proper location of the value. If the hint is accurate (namely an ancestor of the proper loca­
tion), then the insert will be sped up. 

The erase (value) member erases all copies of the value, which for a set is at most 
one. For a multiset, however, it might erase several elements. It returns the number w­
leted. We need to be careful in the interpretation of what is erased by this function. The 
algorithm does not use operator= to check for a match between the parameter and the 
item stored. Instead, it uses the comparison operator to look for equivalent values. Values 
are equivalent if the comparison operator applied in both directions returns false: i.e., 
!compare(a,b) && !compare(b,a). 

Knowing that the implementation is a balanced binary tree, we can deduce the running 
time of most of the setlmultiset operations. Insertion takes Ig(N) time per item inserted, 
where N is the current size. 

If we erase an item "by value," the time is logarithmic, but if we do so "by position," 
it is amortized constant. This is because we can avoid the search for the item initially. It 
is not actually constant, since the tree needs to be rebalanced after a deletion and that can 
take time, but as we are balancing a subtree, and the overall tree is growing smaller as we 
delete, the time averages out to a constant. The set operations are all logarithmic in run­
ning time. 

One use of sets is in analyzing the variables in mathematical formulas or program­
ming constructs. Consider the following fragment: 

int x = 0; 
while(x < 10) 

Y = Y + x; 

Here we see a simple programming fragment that uses two variables. The usage of the 
two variables is somewhat different, however, since x is defined within the fragment it­
self, and y is not. We say that x has one definitional occurrence and two applied occur­
rences, while y has only two applied occurrences. We also say that the applied occurrences 
of x are bound to the definitional occurrence, since that definition determines what vari­
able is used when the name x is used. We also say that the two occurrences of y are free, 
meaning not bound to any definition within this fragment. 
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Compilers and other language processors often need to know which variables are free 
and which are bound in a fragment of code such as a function body. One way to do this is 
using sets. When we see a definition of a variable we insert it into a set of bindings. 
When we see an applied occurrence, we check to see if that name is currently bound by 
examining the binding set. If so, we insert an item into the bound occurrence set, other­
wise into the free occurrence set. If we come to the end of the scope of a definition (end of 
a function body, for example), we can remove the variables defined in that definition from 
the bindings set. 

8.8 Maps and Multimaps 

Maps and multimaps are similar to sets and multi sets in that they keep a collection in 
sorted order using a binary tree structure as implementation. The interfaces are quite simi­
lar also. The big difference, however, is that maps and multimaps store pairs of values 
rather than just values. These pairs are special also. The first component of the pair is 
called its key and the second component is the data. The data can have any type whatever, 
but the keys need to define a compare operation. Maps and multimaps are ordered by key. 
A map or a multimap is just a simple database in which we want to store information 
distinguished by some characteristic called the key. 

A phone book is such a database (like a multimap) in which the keys are the names of 
individuals or businesses and the phone numbers and other information are the data. A dic­
tionary is another example of a sorted container of key-data pairs. 

The pairs that are stored in maps and multimaps are sometimes called associations. It 
is from this that the terminology sorted associative containers for sets, multisets, maps, 
and multimaps arises. The reason that both key_type and value_type are exported from 
sets and multisets, when a single type would do, is to keep the interfaces between these 
classes as close as possible to each other. In maps and multimaps, the value_type is the 
pair type consisting of the key and data types. 

When we create a map or multimap, we need to supply both key and data types as 
well as a compare operation on keys. For example, 

map< int, char*, less<int> > errorDB; 

defines a map with integer keys and string data using the standard operator< for its key 
comparison. One use of this structure might be to keep error numbers and the associated 
error messages together in a large program that wanted to do meaningful error reporting to 
its users. The program could generate error numbers and the map could be used to generate 
messages to the user. 

Maps permit only a single occurrence of a given key to be present, so that they are 
set-like. In particular, two pairs with the same key but different data cannot be simultane­
ously present in a map, though they can be in a multimap. If you try to insert a pair into 
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a map and another pair with an equivalent key is already present, the insertion will not be 
done. Instead you will get back an <iterator, boo!> pair pointing to the already present 
pair and the bool false. You can use the iterator to erase the existing element and then re­
insert the original pair if desired. 

A map has two compare functions. The first, and the one given when the map is cre­
ated, is the keY30mpare function. The other is called value30mpare and compares pairs 
by comparing the keys in the pairs. The data values are ignored during the comparisons. 

Maps also implement operator[] with a key _type argument so that subscript notation 
may be used to access data values. This is most natural when the key _type is an integer 
type, but is useful in any case. This operator is not present in the multimap interface. 
Otherwise, the map and multi map interfaces are like the set and multi set interfaces. 

There is nothing inherent in the notion of a map or set that requires order. A proposal 
has been made to the c++ standards committee to provide an alternate notion of sets, 
multi sets, maps, and multimaps to permit hashed implementations as well as sorted im­
plementations. The runtime characteristics would also be somewhat different, but would 
adi to the usefulness of the library. Hewlett-Packard provides a sample implementation 
appropriate to this proposal, which we will examine in the next chapter. 

For that matter, we have been describing balanced binary trees as THE implementation 
of sets, etc. That is not precisely accurate, as the standard does not mandate an implemen­
tation. What the standard does require is a certain runtime behavior and certain rules con­
cerning under which circumstances an iterator may be invalidated. For example, with 
these four classes, iterators are only invalidated when they refer to an item being removed 
from a structure. This is unlike the vector rules that permit iterators to be invalidated by 
insertions as well as deletions of unrelated items. It turns out that balanced binary trees, 
of which red-black trees are an example, have all of the required characteristics for sets, 
etc. 

8.9 An Implementation of Red-Black Trees 

In this section we will look at an implementation of red-black trees that is somewhat 
simpler than that typically used in the STL sorted associative containers. We make the 
following simplifications. We will provide after-the-end locations for iterators, but not 
before-the-beginning. This will make reverse iterators impossible, so we will implement 
only forward iterators. We won't provide as many exported types or all of the functions, 
though many others could be easily implemented. We will assume that operator< will be 
used to compare items. Finally, we will provide a structure suitable for multi sets arxl 
multimaps only, as we won't restrict inserts. 

Note that the elements stored in our tree (type T in the following code) could either be 
simple values, hence implementing a multiset, or key-data pairs, giving us an implemen­
tation of multimap. 

What follows is the basic structure, showing nested node and iterator classes as well as 
the implementing variables. We omit only the function bodies. 
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template <class T> 
class RedBlackTree 
{ protected: 

struct node; 
typedef node* nodeptr; 
static nodeptr Z; 

II used to terminate all chains 

struct node 
{ enum color{red, black, none}; 

T _data; 
color _color; 
nodeptr _left; 
nodeptr _right; 
nodeptr -parent; 
node(T data = T(), color c 

} ; 

nodeptr _root; 

none) ; 

II This node is a dummy "header." 
II The actual tree is to its right. 

nodeptr _trailer; 
II This node is the root of an empty 
II tree and is the right child of the 
II rightmost logical entry in other 
II trees. It represents a past-the-end 
II location. 

long _nodeCount; 

public: 
typedef T value_type; 
typedef T* pointer; 
typedef T& reference; 

RedBlackTree(); 

bool empty()const; 

class iterator 
II Bidirectional Preorder iterator. 
II Inorder would be far superior. 

{ public: 
iterator(RedBlackTree<T> & t); 
bool operator== 
( const RedBlackTree<T>:: 
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iterator& i 
const; 

T& operator*(); 
iterator& operator++(); 
iterator& operator--(); 

protected: 

} ; 

nodeptr _here; 
RedBlackTree<T>& _tree; 
friend class RedBlackTree<T>; 

iterator begin()const; 

iterator end()const; 

protected: 

enum rotation{left, right}; 

nodeptr rotate 
( bool rightRotation, 

nodeptr where 
) ; 

II where is the point of rotation. 
II If rightRotation is true we will rotate 
II right, otherwise the rotation will be 
II left. We must always rotate to the 
II right of the _root, however. 

nodeptr split 
( const T& val, 

nodeptr grand, 
nodeptr parent, 
nodeptr here 

); II Split a 4-node into 2 2-nodes. 

public: 
iterator insert(const T& t); 
II Returns an iterator to the inserted 
II item. 

iterator find(const T& t); 
II Return an iterator to t's location if 
II present. Returns a past-the-end 
II location otherwise. 



254 Data Structure Programming with the Standard Template Library in C++ 

}; 

iterator findNext(iterator from); 
II finds the next occurrence of *from or 
I I returns end ( ) 

void erase(iterator where); 
II Erase the item pointed to by where. 
II Works by finding a node near a leaf to 
II swap with the node at where. It then 
II removes this node and rebalances the 
II tree by working upwards from that leaf. 

friend class RedBlackTree<T>::iterator; 
friend class RedBlackTree<T>::node; 

When we create a tree we give it two special nodes that do not contain tree data. The 
ftrst is the _root node that serves as a physical root of the tree. The topmost (root) logical 
node in the tree will be the right child of _root. The second node is _trailer and represents 
a past-the-end value for this tree. It is always the leaf node farthest to the right in the tree 
and so is initially the right child of _root. There is another node Z that is used to termi­
nate all node pointer chains. In other words, we don't use NULL to represent a missing 
value in the tree but a pointer to node Z. Z's left and right child pointers are Z itself. Note 
that there is only one node Z, even though we may have several trees. Using Z rather than 
NULL makes certain tests easier within the algorithms. 

The nodes have _left, _right and _parent pointers as we saw at the beginning of this 
chapter. They also have a color field, with the color being defined in an enumeration that 
is also nested within the RedBlackTree::node class deftnition. We provide color none for 
the trailer nodes and the Z node. Note that the node class is protected, making it available 
within subclasses of RedBlackTree, but not to ordinary clients. The RedBlackTree: :iterator 
class, by contrast, is public. We create a new node by setting its pointers all to Z. 

node(T data = T(), color c = none) 
_color (c) , 

{ 
} 

_left(Z) , 
_right(Z) , 
...,parent ( Z ) , 
_data (data) 

The node Z presents special problems, since it must be created and initialized before 
the ftrst tree is created. The declaration (nested) above is not sufficient, since it is declared 
static. We must also provide two additional fragments. The frrst is a deftnition of the 
node, which is done outside of the class deftnition. 



Chapter 8. Sets, Maps, Multisets, and Multimaps 255 

template <class T> 
RedBlackTree<T>: :nodeptr RedBlackTree<T>::Z = NULLi 

This defines storage for the node pointer and sets it to be null. We must also define 
the node itself and initialize it. This is handled by the RedBlackTree constructor, which 
tests to see if Z is NULL. The code here is a bit awkward. We initialize the fields of the 
new tree in the usual way, creating new nodes for the _root and _trailer. If Z is still 
NULL, however, the constructions of these two nodes will be incorrect since their crea­
tion refers to Z explicitly. Therefore, if we find Z NULL, we must redo part of that con­
struction. 

RedBlackTree() 
_nodeCount(O), 
_root(new node(», 
_trailer(new node(» 

{ if (Z == NULL) 
{ Z = new node()i 

Z->_left = Zi 
Z->_right = Zi 
Z->-parent = Zi 
_root->_left = Zi 
_root->-parent = Zi 
_trailer->_left = Zi 
_trailer->_right = Zi 

_root->_right = _traileri 
_trailer->-parent = _rooti 

Therefore, an empty RedBlackTree looks like the structure in Figure 8.6. Note that the 
Z node, while it has a _parent pointer, does not point back to the parent since there is ac­
tually only one Z node in the whole system. 

Recall that an invariant of a red-black tree is that a red node has black nodes both 
above and below it. This is essential in understanding the correctness of the following. A 
black node with both of its children red is a 4 node in the equivalent 2-3-4 tree and a black 
node with exactly one red child represents a 3 node. The work involved in keeping the tree 
balanced when we insert and delete is carried by two auxiliary routines, rotate and split. 
The latter splits a 4 node into two equivalent 2 nodes without changing the balance. 0p­
eration rotate transforms a left or right 3 node into the opposite, shortening one path am 
lengthening the other. 
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RBTree 

Figure 8.6. An empty RedBlackTree. 

Rotation can be done either to the left or the right. In Figure 8.7 we show a left rota­
tion. A right rotation would transform in the other direction. Notice that the C node gets 
promoted while the A node gets demoted. Likewise, E moves up and B moves down as 00 
any nodes below B. D stays at the same level, but changes its parent from C to A. This, 
then, has the effect of lengthening some paths and shortening others. We haven't shown 
color here, since rotate is used in various contexts and the colors are adjusted elsewhere. A 
rotation one direction about a node, followed by a rotation in the opposite direction about 
its parent, is called a double rotation. A double rotation is shown in Figure 8.8 and Fig­
ure 8.9. Note that node D stays at the same height, nodes F and G rise one level and Node 
C moves down one level. The nodes below these move accordingly. 

Figure 8.7. The effect of a left rotation. 
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Figure 8.8. Before a double rotation (left about B, then right about A). 

Figure 8.9. After a double rotation. 

The rotate function returns the new root of the tree fragment. It also pins this new 
fragment properly into the tree. 

nodeptr rotate 
( bool rightRotation, 

nodeptr where 
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II where is the point of rotation. 
II If rightRotation is true, we will rotate 
II right, otherwise the rotation will be left. 
II We must always rotate to the right of the 
II _root, however. 
{ nodeptr parent = where->-parent, result; 

bool leftChild = (where == parent->_left); 
II Is here a left child of its parent? 

if (rightRotation) 
{ result = where->_left; 

where->_left = result->_right; 
where->_left->-parent = where; 
result->_right = where; 

} 

else 
{ result = where->_right; 

where->_right = result->_left; 
where->_right->-parent = where; 
result->_left = where; 

where->-parent = result; 
if ( leftChild) 
{ parent->_left = result; 
} 

else 
{ parent->_right = result; 
} 
result->-parent 
return result; 

parent; 

Split requires pointers to the 4 node that we wish to split as well as pointers to its 
parent and grandparent. If a node is near the root of the tree the parent and grandparent 
could be the same. This procedure is only called after we verify that the node is indeed a 4 
node. Note that it may do a double rotation (about parent then about grand) or only a sin­
gle rotation. The first parameter passed in (val) is a data value that is used to determine if 
the double rotation needs to be done. Split is used only in insert and the val passed is the 
value being inserted. We need a double rotation if the values in the parent and grandparent 
nodes are on opposite sides of val with one larger and the other smaller than val. 

While we could technically tum a 4 node into two 2 nodes simply by recoloring the 
two red nodes, this would lengthen paths on the equivalent 2-3-4 tree, unbalancing it. We 
need to avoid this unbalancing. The node at which we split is necessarily originally black. 
We want to make the split node red so as not to lengthen a path in the equivalent 2-3-4 
tree. There are actually a number of cases that can all be handled by proper use of Boolean 
values. The hardest case is when the parent of the split node is red. We must then make 
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further adjustments. If the parent were black then just coloring is enough, but not if it is 
already red. If so, we do a single or double rotation to readjust the local height of the tree 
and fix the colors. 

nodeptr split 
( const T& val, 

nodeptr grand, 
nodeptr parent, 
nodeptr here 

) 
II Split a 4-node into 2 2-nodes. 
{ here->_color = node: :red; II it was black 

here->_left->_color = node: :black; 
here->_right->_color = node: :black; 
if(parent->_color == node: :red) 

} 

II then the grandparent must be black 
{ grand->_color = node: :red; 

if ( (val < grand->_data) 
!= (val < parent->_data) 

II double 
parent = rotate 

( val < parent->_data, parent); 
here = rotate(val < grand->_data, grand); 
here->_color = node: :black; 

_root->_right->_color = node: :black; 
return here; 

Note that the logical root of the tree is _root-> _right and it never needs to be red. The 
last statement of split before the return guarantees that we don't leave it red with the other 
changes. Split is used in insert as we search down the tree for the location in which to in­
sert the new element. We split any 4 node that we encounter along the way. It also short­
ens the path along which we search because we are about to lengthen that path by insert­
ing the new element at a leaf along that path. 

Insert works by starting at the root of the tree, and moving left or right at each node 
depending on the value there and the value to be inserted until we reach a leaf. As we 
search, we split any 4 nodes that we find, biasing the rotations so as not to lengthen the 
path on which the new item will lie. The reason we want to break up four nodes is that 
we can't insert into them. That is to say, if we were working in 2-3-4 tree and wanted to 
insert into a 2 node or a 3 node, all we would need to do is promote it to a larger node arxl 
insert into the result with no change in tree heights or balance. We can't do that with 4 
nodes so we try to eliminate them. 
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We will also return an iterator to the location of the insert. In the STL version, 
though not in this one, the returned iterator can be used as the hint for further inserts. If 
the tree is empty, it is, of course, easier to do the insertion. 

iterator insert(const T& t) 
II Returns an iterator to the inserted item. 
{ _nodeCount++; 

iterator result(*this); 
if ( empty () ) 
{ nodeptr newRoot = new node 

(t, node: :black); 
newRoot->_right = _trailer; 
_trailer->-parent = newRoot; 
_root->_right = newRoot; 
newRoot->-parent = _root; 
result._here = newRoot; 

} 

else 
{ nodeptr grand = _root; 

parent = _root; 
here = _root; 
do 
{ grand = parent; parent here; 

if( here 1= _root && t < here->_data) 
here = here->_lefti 

else here = here->_righti 
II Split any 4-nodes you encounter 
if ( here->_left->_color == node: : red 

&& 
here->_right->_color == node: : red 

here = split 
(t, grand, parent, here); 

} while(here 1= _trailer && here 1= Z); 
nodeptr temp = here; 
here = new node(t,node::black); 
here->_right = temp; 

II Preserve the trailer. 
if(temp == _trailer) 

_trailer->-parent = here; 
here->-parent = parent; 
if(t < parent->_data) 

parent->_left = here; 
else 

parent->_right = here; 
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result._here = here; 
here = split(t, grand, parent, here); 

} 
return result; 

} 

As we search for the insert point we keep track of the grandparent and parent nodes of 
the current search point. This aids in the splits that we will do. The final split treats the 
newly inserted value as if it were the middle value in a 4 node and splits that node also. 

The erase operation is much harder than insert. We will only outline it here. The only 
version of erase that we consider is one that is passed an iterator to the point at which we 
want to remove a value. If we don't have such an iterator we can use fmd to obtain one. 
The difficulties arise because the erase location need not be a leaf. We search the tree from 
the erase point for a suitable value to replace the one we are removing. This can be the 
largest value to the left of the value being removed, or the smallest value to the right. A 
moment's reflection shows that either of these could occupy the location of the item be­
ing removed without destroying the binary search tree property. Once we fmd this node 
we will unpin it from its current (leaf) location and repin it at the erase point. This leaves 
any iterators to it intact. We can then delete the leaf node, but we must also rebalance the 
tree. This is the hard part. 

Rebalancing works by starting at the leaf location that was deleted and moving up­
wards, attempting to lengthen the path on which we search without shortening other 
paths. This can be done in some cases by rotations. When we can do this we quit. If we 
work all the way back to the root without doing so, then we must shorten all paths in the 
tree to account for the one shortened path on which the deleted item was originally found. 
The details are very tedious. 

The find operation looks for a value and returns one equal to it. In the STL version we 
would not use operator== to determine when we had found a match, but rather the induced 
equivalence relation defined by the comparison operation. In either case we search from 
the root, moving left or right as determined by the values that we find. If we do not find 
the item desired, then we return a past-the-end iterator, namely an iterator to the trailer. 
Note that we may safely ignore the color of the nodes when searching, so that the ldhl 
structure of a red-black tree does not slow lookups. This is an important advantage of the 
technique. 

iterator find(const T& t)const 
II Return an iterator to tIs location if 
II present. 
II Returns a past-the-end location otherwise. 
{ iterator result(*this); 

nodeptr here = _root->_right; 
while(here != Z && here->_data != t) 

if(here->_data < t) 
here = here->_right; 

else 
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} 

here = here->_left; 
if(here == Z) here = _trailer; 
result._here = here; 
return result; 

Operation findNext searches from an iterator for the next item that has the same value 
as that at the iterator location. Note that this search may proceed upwards or downwards in 
the tree. The iterator does all of the work in its operator++, as we shall see. 

iterator findNext(iterator from) 
II finds the next occurrence of *from or 
II returns end() 
{ iterator result = from; 

iterator top = find(*from); 

} 

II top is the topmost occurrence of the 
II desired value. If we reach it we have 
II returned all of the values. 
do 
{ ++result; 
} while result._here != _trailer 

&& result != top 
&& *result != *from 

) ; 
if(result == top) result._here _trailer; 
return result; 

The nested iterator class has interface, as shown above and repeated here, along with 
the simpler operations. It uses the preorder protocol to move over the elements using op­
erator++. This is far from ideal, since an inorder protocol would actually list the elements 
in their natural order. An exercise will correct this situation. 

class iterator 
II 
II 
{ 

Bidirectional Preorder iterator. 
Inorder would be far superior. 
public: 

iterator(RedBlackTree<T> & t) 
_here(t._root->_right), 
_tree(t) 

{ } 
bool operator== 
( const RedBlackTree<T>: : 

iterator& i 
const 



} ; 
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{ return _here == i._here; } 
T& operator*() {return _here->_data;} 
iterator& operator++(); 
iterator& operator--(); 

protected: 
nodeptr _here; 
RedBlackTree<T>& _tree; 
friend class RedBlackTree<T>; 

An iterator is implemented using a node pointer to mark the current location and also 
a reference to the tree over which it iterates. The reference to the tree helps us to know the 
root and trailer of that tree when we arrive at them. 

Operator++ needs to move to the next preorder node from its current position. If we 
are currently at the trailer there is nowhere to move to. Otherwise if there is a left node 
(not Z), then we need to move there. If there is no left node but there is a right one, then 
that is our final position. Finally, if we are at a leaf, then we must search upwards until 
we have a node to the right that we haven't visited yet. This means that the first time that 
we move upward from a left child to its parent and that parent has a right child, that the 
right child is the next node. The implementation of operator-- is similar. 

iterator& operator++() 
{ if( _here == _tree._trailer) {return *this;} 

if( _here->_left != Z) 
_here = _here->_left; 

else if(_here->_right != Z) 
_here = _here->_right; 

else 
{ nodeptr old; 

do 

} 

{ old = _here; 
_here 
while 

) ; 

_here->-parent; 
_here->_right == Z 
II _here->_right old 

_here = _here->_right; 

return *this; 
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8.1 0 Summary 

Make certain that you understand each of the following tenos: 

balanced binary tree 
binary search tree 
binary tree 
logarithmic running time 
red-black tree 
2-3-4 tree 

8.11 Exercises 

1. Build an inorder iterator for the RedBlackTree class discussed in the text. 

2. Modify RedBlackTree to make it more suitable for implementing sets. When you cre­
ate a RedBlackTree, pass a parameter that indicates whether inserts should always be done, 
or only when the item to be inserted is not already present. 

3. Predict what will happen if we add value 100 to the tree in Figure 8.5. 

4. Modify the RedBlackTree class so that it uses a comparison operator in place of opera­
tor<. The comparison operator should be a template parameter. 

5. Investigate AVL trees in the literature. Other data structures and algorithms text books 
may be helpful. What is available on the World Wide Web? 

6. Investigate the structure called the B-Tree. These are used extensively in databases to 
store large files. How are these related to 2-3-4 trees? 

7. Build a node class suitable for implementing 2-3-4 trees. 

8. Write a program to produce figures like Figure 8.5. 

9. Give RedBlackTree a const reference type and a const iterator type. 

10. Give RedBlackTree a way to return the size of the tree. The size is the number of 
elements stored. 

11. Give RedBlackTree a member that will erase all copies of a given element and return 
the number of items erased. 
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12. Using the RedBlackTree as the implementation, build the template Multiset with the 
following interface: 

template <class Key, class Compare> 
class Multiset 
{ private 

typedef RedBlackTree<Key, Compare> rep_type; 
public: 

II typedefs: 
typedef Key key_type; 
typedef Key value_type; 
typedef Compare key_compare; 
typedef Compare value_compare; 
typedef rep_type: :const_reference reference; 
typedef rep_type: :const_iterator iterator; 

II allocation/deallocation 
Multiset () {} 
Multiset 

const value_type* first, 
const value_type* last 

{ } 

Multiset (const Multiset <Key, Compare>& XlI} 
Multiset <Key, Compare>& operator= 
( const Multiset <Key, Compare>& x 
){} 

II accessors: 
key_compare key_comp() const {} 
value_compare value_comp() const {} 
iterator begin() const {} 
iterator end() const {} 
bool empty() const {} 
long size() const {} 

II insert/erase 
iterator insert(const value_type& x) {} 
iterator insert 

iterator position, 
const value_type& x 

{} 

void insert 
const value_type* first, 
const value_type* last 

{} 
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void erase(iterator position) {} 
long erase(const key_type& x) {} 
void erase(iterator first, iterator last) {} 

II multiset operations: 

}i 

iterator find(const key_type& x) const {} 
size_type count(const key_type& x) const {} 
iterator lower_bound(const key_type& x) const{} 
iterator upper_bound(const key_type& x) const{} 

13. In Chapter 5 we saw a DiGraph class built from STL vectors. It is also possible to 
build a digraph using a map from graph nodes to lists of graph nodes. Discuss and im­
plement this idea. 

14. In Chapter 5 we saw a DiGraph class built from STL vectors. It is also possible to 
build a digraph using a multi map from graph nodes to graph nodes. Discuss and im­
plement this idea. 



Chapter 9 
Hash Tables 

9.1. Hashed Associative Containers and the STL 

The Standard Template Library does not currently have hashed data structures, though it 
might have in the future, as a proposal has been made to the standards committee to adopt 
them. This chapter is based on two separate implementations that have been suggested as 
the basis of further action by the committee. One of these is by Robert Fraley of Hewlett­
Packard and the other is by Javier Barreirro and David Musser of Rensselaer Polytechnic 
Institute. 

Hashing is an alternative means of providing for sets, multisets, maps, and multi­
maps, though not sorted structures. Hashing attempts to provide an alternate mechanism 
by which items may be stored and quickly retrieved when there is no natural ordering pos­
sible on the elements. Elements to be placed in hashed containers have other requirements 
placed on them, however. The advantage of hashed structures over binary tree implementa­
tions is that some of the operations such as insert and find can be made to be constant 
time rather than logarithmic. Giving up the sorted order may be either an advantage or a 
disadvantage, depending on the anticipated use. 

A hashed structure is one in which the physical placement of an item is somehow 00-
termined by the value to be inserted and in which that location can be determined by per­
forming simple computations on the inserted value. An item is later found either by ex­
haustively searching for it, or by repeating the computation. This is most useful in the 
case of maps, where the computation is done on the key of the pair being inserted. The re­
trieval "by key" is then simply done by repeating the computation on the key whose data 
is desired. The elements of hashed storage were introduced in Chapter 3. 

While hashed structures are not currently part of the standard, they are a mature exten­
sion of it that meshes well with the other elements. The four containers hash_set, 
hash_multi set, hash_map, and hash_multimap are similar to their tree-based counterparts 
except for the sort requirements and except for more stringent requirements on the effi­
ciency of some operations. The hashed containers provide iterators, as we would suspect. 
The formal proposal only requires forward iterators, but it is not difficult to provide for 
bidirectional iterators, as was done in one of the two implementations here discussed. The 
cost is relatively small in both time and space. It is actually easier to provide bidirectional 
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iterators because parts of the implementation can be built with vectors and lists, each of 
which provide (at least) bidirectional iterators. 

An interface for an implementation of hash_set might have the following outline. 
(This would look slightly different if template member functions were implemented in the 
C++ compiler.) 

template <class Key, class Hasher, class Equal> 
class hash_set 
{ public: 

typedef Key key_type; 
typedef Key value_type; 
typedef Hasher hasher; 
typedef KeyEqual key_equal; 
typedef ... size_type; 
typedef hash_set<Key, Hasher, Equal> 

self_type; 

typedef pointer; 
typedef reference; 
typedef const_reference; 
typedef difference_type; 

// constructors/destructor 
hash_set 
( size_type size=l009, 

const Hasher& hash = Hasher(), 
const Equal& comp = Equal(), 
auto_rehash_modes rm 

= auto_rehash_intermittent, 
size_type ts = 4, 
size_type grow-power = 3 

) ; 
hash_set 
( const value_type* first, 

const value_type* last, 
size_type size, 
const Hasher& hash, 
const Equal& camp = Equal() 

) ; 
hash_set(const self_type & x); 

// Extraction 
const Key & extract_key 
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const value_type & x 
const; II Simply returns its input. 

II Assignment 
self_type & operator=(const self_type & x); 
void swap(self_type & xx); 

II Insertion and deletion 
pair<iterator,bool> insert 
( const value_type& x 
) ; 

void insert 

) ; 

const value_type* first, 
const value_type* last 

void erase(iterator position); 
size_type erase(const Key& x); 
void erase(iterator first, iterator last); 

II Accessors 
key_equal key_eq() const; 

II Get the equivalence op. 
hasher hash_funct() const; 

II Get the hash function. 
iterator begin(); 

II Actually a const_iterator 
const_iterator begin() const; 
iterator end(); 
const_iterator end() const; 
reverse_iterator rbegin(); 
const_reverse_iterator rbegin() const; 
reverse_iterator rend(); 
const reverse iterator rend() const; 
bool empty() const; 
size_type size() const; 
size_type max_size() const; 

II Find operations: 
iterator find(const Key& Xli 

const_iterator find(const Key& x) const; 
pair<iterator, iterator> equal_range 
( const Key& x 
) ; 
pair<const_iterator, const_iterator> 
( const Key& x 
) const; 
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II Hash specific operations 
Vector::size_type bucket_count() const; 
void resize (size_type new_size); 

II Iterators -- bidirectional here, only Forward 
II are required. 

} ; 

class iterator; 
II bidirectional const_iterator 

typedef iterator const_iterator; 
class reverse_iterator; 
typedef reverse_iterator 

const_reverse_iterator; 

The first template parameter is the kind of values to be inserted into the set. For 
hash_map and hash_multi map, we would need another parameter for the data type. The 
second parameter is a function object that defines a hash function on the Key type. A hash 
function must take as input a value of the key type and produce an unsigned long int as 
output. Moreover, the hash function should ideally uniformly cover the unsigned longs, 
which means that a given Key is as about as likely to be in any given range of unsigned 
longs as it is in any other range of the same length. The hash function must also be able 
to reproduce the value for a given Key when it is called again on that same key. 

The third template parameter is a comparison object that determines when two values 
of the Key type can be considered equivalent. This is most important for sets and maps, 
where we insist that only one value of a given key be present. It is this function object 
Equal rather than operator== that determines equivalence. Note that the comparison opera­
tor behaves like an equality operator, not like the "less than" test that is used with sets 
and maps. 

Given this comparison operator, we can also define the equal_range function to return 
a range of values that contains all stored keys equal to the parameter. This requires, how­
ever, that the hasher and the comparison operator have a very precise relationship to each 
other. It is necessary that the hash function return the same value for any values that the 
comparison operator determines are equal. Otherwise such equal values would be stored in 
different buckets, making equal_range impossible (or at least extremely expensive). For 
some sets of data this can be a very difficult requirement. If so, a binary tree-based class 
might be preferable. 

Most of the member functions are familiar. Member extract_value is provided for con­
sistency. In maps and multi_maps it returns a key for a given value, but here the key am 
value types are the same, so it just returns its input. The parameters of the constructors 
set various characteristics of the implementation as will be discussed below. 

The iterators provided are all const_iterators. In particular, this means that operator* 
applied to an iterator returns a const reference to the value stored rather than a reference to 
it. In hash_sets and hash_multisets, changing the value (which is the key itself) would be 
disastrous, as the key determines the placement of the value within the structure. If it 
could be freely changed but remained in its old location, then the new value could not be 
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found. In hash_map and hash_multi map, there are distinct iterators and consUterators, 
since the iterator only gives access to the data part of the pair in those cases and the data 
in the pair can be freely modified. In fact, one of the main purposes of maps and multi­
maps in general is to store such updatable values. 

One final note about these structures. Suppose we have a hash_multiset that stores 
several values that are equivalent according to the Equal comparison type. Then an iterator 
will report these values consecutively. Likewise, equal_range will return a pair of iterators 
that bracket all of the values. This feature is not common in hash structures generally, 
which nonnally place no such requirements on retrieval order at all. In fact, the values 
with "equal" keys will be stored together. (Caveat. If your equal comparison isn't com­
patible with your hasher, it is possible that two values are "equal" but hash to different 
buckets. The above only applies to those values stored in the same hash bucket.) 

9.2 Simple Hashing-Separate Chaining 

In this and the next few sections we will examine some hash storage mechanisms in 
some detail. The first, separate chaining, is very common. The components consist of a 
hash function, the hasher that will produce integers in a given fixed range; an index struc­
ture such as an array or a vector; and a collection of buckets, each of which is a list or a 
vector. The most common implementation uses an array for the index and lists for the 
buckets. The data values are stored in the buckets. When we insert an item whose key is 
A, we first pass A through the hasher, resulting in an integer in the same range as the 
subscript range of the index. The item A then belongs in the bucket with that index. We 
then index into the index array to obtain a reference to the list onto which to insert the 
item A. Retrieval of A follows the same path. We pass A through the hasher, and use the 
result to index a list. We now know which list the item is on if present at all. We must 
then search that list for an item with key A. When found we may return an iterator to this 
location. See Figure 9.1. The name separate chaining arises from the notion of a linked 
list as a chain. The name is used even though the buckets might be implemented as vec­
tors rather than lists. 

An iterator into such a structure could be implemented as an index integer and a 
pointer to a list node. It would be advanced by moving down the current list to the end 
and then moving to the beginning of the next nonempty list. If we use vectors for the 
buckets then bidirectional iterators are easy to provide, but not random access iterators, 
since the sizes of the vectors are all different. Random access would therefore be too inef­
ficient. Using STL lists for the buckets also pennits bidirectional iterators. If we use sin­
gly linked lists, however, we can only provide forward iterators. There would be some 
space and time advantage in doing so, since the back pointers in the lists don't need to be 
saved or updated. 



272 Data Structure Programming with the Standard Template Library in C++ 

index buckets 
anObject 

o 

hasher 

max 

Figure 9.1. Separate chaining hashing. 

The special requirements of the STL (proposal), namely making equivalent values, 
appear as if they are stored together, seems to imply that lists (or singly linked lists) 
should be used rather than vectors. This is because the easiest way to implement the re­
quirement is to actually store such items together. This implies that an item when in­
serted won't always be inserted at the beginning (or end) of its bucket, but might need to 
be inserted in the middle. Lists would be better for this, of course. The after-the-end posi­
tion of the last list is the after-the-end position of the entire hash structure. 

9.3 Simple Hashing-Circular Hashing 

Sometimes we want to store items in a hash structure and we know exactly what values 
will be stored, including, of course, the exact number of values to be stored. For example, 
in a compiler, we might need to store information about the keywords (reserved words) of 
the language being translated. Since these words form a fixed finite set of values, we can 
use them as keys into another kind of hash structure, one that uses circular hashing. In 
this method we avoid the buckets altogether. We have a hasher, of course, and a storage 
structure that can be an array or vector of values. The result of passing the key through 
the hasher is used as the index into the storage at which the associated item belongs. Re-
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call that collisions may occur when we compute with the hash function. Collisions are 
caused when two distinct keys produce the same index value. If we can arrange a hasher 
that does not produce any collisions on the set of keys being stored (a perfect hash func­
tion). then no more needs to be done. Retrieval again uses the hasher to compute the in­
dex at which the item may be found. See Figure 9.2. 

Iteration over such a structure can simply walk through the storage array or vector, 
taking account of the fact that some cells may be empty. 

storage 
anObject 

o 

hasher 

max 

Figure 9.2. Circular Hashing 

If collisions can occur, then we need to be a bit more sophisticated. If we hash a key 
to an index when inserting and find that the cell is already occupied, then we can simply 
begin a search from there for the next empty cell. If we come to the end of the structure, 
then we wrap around to the beginning and continue the search. Retrieval must then also 
follow the same path. starting at the value given by the hasher. searching circularly for 
the key. The search may terminate when we come to an empty cell or return to the item 
we started with. 

The outline above fails, however. if items may also be deleted from the hash table. If 
an item between the hash index of a key and the cell it is actually stored in is removed. 
then the search will stop at the empty cell and report failure of the search even when the 
desired key is still present. This can be fixed by keeping two bits in each storage cell. The 
first tells whether the cell is currently filled or empty. The second tells whether the cell 
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has ever been used. This second bit is originally off (false) for all cells, but is turned on 
when the cell is first filled. It is not turned off if the cell is later emptied. The search can 
then use this bit while searching, terminating when it comes to a cell that has never been 
used. 

9.4 Variations on Simple Hashing 

There is a simple variation on separate chaining that works well with the STL. In this 
method we use a vector for the index set but store all of the values in a single list. The 
index set, instead of holding references to separate lists, one per bucket, holds iterators 
into a single list: the bucket list. A pair of consecutive iterators in the index array form a 
range that defines the contents of a bucket. There is some space advantage in that only a 
single list needs to be generated, but the real advantage is in simplifying the operation of 
iterators into the hash structure, which now need only to move down a single list. Again, 
if it is an STL list, then the iterators can easily be bidirectional. See Figure 9.3. 

anObject index 

o bucket list 

hasher 

max 

Figure 9.3. A variation on separate chaining. 

A list is used rather than a vector, since we need to be able to keep equivalent items in 
a bucket together. Notice that during a retrieval the hasher yields us an iterator at which to 
begin the search. We only need to search a single bucket, however. We can either store a 
bucket number with the value to aid us with this, or we can just use the following itera­
tor as a termination point. We could even use STL generic algorithms that search a range. 

Achieving good performance in any of these structures depends fundamentally on keep­
ing the buckets small. This is because we must linearly search a bucket (but only one) for 
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an item. If our hash function is poor, we might have a lot of buckets, but all values con­
centrated in only a few. The storage would be much slower than expected. The worst case, 
of course, is when only one bucket is not empty. We must also tailor the number of 
buckets to the number of data items to be stored. Sometimes the number of values to be 
stored can be well determined in advance, in which case it is easy to choose a good num­
ber of buckets. The best situation is when each bucket contains exactly one item. This 
can only be achieved through marvelous good luck in general. However, if you know the 
keys in advance and there is a relatively small number of them, then it is possible to find 
a minimal perfect hash function. This is one that produces no collisions but also produces 
a minimal range of outputs so that if there are exactly n keys, then the hash function will 
produce exactly n values in the range O ... n-l. Finding such a function is computationally 
expensive, however. It would be worth doing so if the set of keys is stable and the pro­
gram is to be used often. 

9.5 Hash Functions 

Obtaining good overall behavior from a hash table depends in important ways on the qual­
ity of the hash function that is used. A poor function guarantees poor performance. Most 
hash tables depend on the user supplying a hash function that produces integers or long 
integers. The system itself will then reduce the integer produced by the hasher to a suit­
able range for the index structure. Since this is usually done by remaindering, the hasher 
must provide good behavior relative to the remainder function. 

When you spread butter on bread, you like to get uniform coverage, with no lumps or 
gaps. The same is true of a desirable hasher. You would like to take the values that will 
be inserted (the keys, actually) and spread them uniformly over the integers with no gaps. 
They don't need to satisfy any locality constraints with "similar" keys producing similar 
integers--quite the contrary-but they do need to cover the integers with no gaps and no 
"lumps." A lump would occur if more than an average number of keys mapped to the 
same integer. It is a bit more involved than that, even. Suppose more keys bunched up at 
multiples of 367, say, than at other integers. Suppose that we happened to have 367 cells 
in the index. Then remaindering by 367 would put more than an average number of keys 
in the same bucket, which would degrade performance. 

Suppose that our keys are an integer type. Then we might be able to use the key itself 
as the value of the hasher, though this would depend on the actual integers used as keys in 
the values stored. If we store only keys with small integer values, then we will not get 
good coverage. For this reason, an integer key is often multiplied by a fairly large prime 
integer to get a hash value. A prime number is one with no integer factors other than it­
self and 1. If the integer chosen is large enough that multiplication often overflows the 16 
or 32 bits used to store an int or long, all the better. 

If the keys are floats, then there is a nice way to generate an integer, assuming that 
there is an integer type that requires the same number of bits as the floating type (float, or 
double) that we are using for keys. Consider the struct type 
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struct confuse 
{ double real; 

unsigned long integer; 
} 

Then a hasher like 

unsigned long hasher(double d) 
{ confuse c; 

c.real = d; 
return c.integer; 

} 

will produce random seeming long values from doubles. This assumes that double and 
long require the same 32 bits, however. 

Strings are more problematical. This is because strings usually hold words in human 
languages like English, which do not have uniform distributions of characters. For this 
reason the following is a poor hasher on strings. 

unsigned long hasher(char * c) 
{ unsigned long result = 0; 

} 

for(int i = 0; i < strlen(c); ++i) 
result += *c++; 

return result; 

This function has difficulties, since a string is more likely to be short than long, giv­
ing values more likely to be small than large, though this could be compensated for with 
a suitable multiplier, and because there are likely more vowels than consonants in the 
string c. A better one dips into the character encodings. 

unsigned long hasher(char * c) 
{ unsigned long result = 0; 

} 

for(int i = 0; i < strlen(c); ++i) 
{ result += *c++; 

result «= 1; 
} 
return result * bigPrime; 

This function shifts the result left one bit for each character added. This is equivalent 
to mUltiplying by two each time, but has the effect that the order in which the characters 
appear also affects the result. 

If the type of the key is a struct or class, then some suitable field (or fields) of it 
might be used to construct the hasher, provided that when that field changes we consider 
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that we have a different key. Remember that the hasher must be functional so that if we 
give it the "same" key twice, we get the same integer back. 

If the key is a pointer, then you must choose a field or fields of the value pointed to to 
construct a hasher. In some systems, the value (an address) of the pointer works for a hash 
value, but it is not often wise to depend on it. Some systems relocate objects in the free 
store, so that a value might have one address for a while and then be moved, giving it a 
different address and therefore any pointer to it a different value. This will almost assur­
edly be the case if your system uses a garbage collector to manage memory on the free 
store. 

9.6 Reorganization of a Hash Table 

The STL proposal for hash tables requires that certain operations such as fmd be done in 
constant time. With the implementations suggested above, this will not be the case if the 
hash table grows without bound. This is because the buckets will also grow in size, mak­
ing the searches increasingly costly. In that case a search will take time proportional to a 
fraction of the size of the table, but that is still linear, not constant time. 

To achieve constant search times in a growing table, the bucket sizes must be kept 
limited. This requires two things: a good hash function and an increasing number of 
buckets. In fact, the number of buckets must be allowed to grow (and probably shrink) as 
the number of elements changes. This leads us to the idea of self-reorganizing hash tables. 
There are two basic methods: periodic and continuous reorganization. The easiest to re­
scribe is the periodic variation. Suppose that as we perform table operations, we keep 
some statistic about the table such as the number of elements stored or the number of 
elements we need to examine when executing find. When our statistic surpasses some 
trigger point, we execute a special reorganizing operation. 

One method of reorganizing is very common. Suppose that the number of buckets is 
always a power of 2, such as 32, 64, etc. Then when it is time to reorganize. we double 
the number of buckets and then examine each element in the table at that time and redis­
tribute it to a new bucket. If the last step in the hash function is taking the remainder 
modulo the number of buckets, then the nature of division allows us to conclude that any 
item is either already in the bucket that it belongs in, or it belongs in the bucket half the 
length of the new index farther on. In other words, if it is in bucket n before reorganiza­
tion, then it belongs either in n or n+k, where k was the old number of buckets. (See 
Figure 9.4.) This is because m mod 64, for example, is either m mod 32 or 32 + m mod 
32. 

We also need to modify the last step of the hash function to divide now by the new 
number of buckets. Each bucket will thus be about half of its length before reorganiza­
tion. The buckets at index nand n+ k are called buddy buckets. 
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Figure 9.4. Before and after reorganizing a hash table. 

You can likewise shrink the number of buckets in half as the table shrinks in overall 
size by folding buckets into one and readjusting the hasher accordingly. Note that chang­
ing the number of buckets also requires changing the length of the index, making vector 
the structure of choice for this. Likewise, lists are useful for the buckets when reorganiz­
ing, since we can simply unpin the elements from one list and pin them into another as 
necessary. This avoids calling the allocator, which can be a large time savings. 

While periodic expansion works and does achieve constant search times (when the 
hasher is a good one), it has one unfortunate feature. The constant search time is only 
amortized constant time, and the insert or search that triggers a reorganization will be very 
costly. Some applications cannot afford such a situation. In some circumstances an appli­
cation can anticipate when it won't be very busy and can trigger a reorganization anticipat­
ing future growth, but that is not always possible. 
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Expansion of a hash table can also be done continuously-with every insert. This 
works as follows. Suppose that we start with a small number of buckets, even just one. 
Then, every time we do an insert we expand the number of buckets by one. We then ;d­

just the hasher appropriately and rehash all elements into the new buckets. This is sim­
pler than you might expect, however, since if all is chosen well we only need to rehash 
the elements in one other bucket (the buddy), and those elements will belong either where 
they are originally or in the new bucket. The implementation of this idea is closely re­
lated to that of the periodic expansion discussed above. 

To achieve this, suppose that we keep two values: maxBuckets and currentBuckets. 
maxBuckets is always a power of 2, and just after a major reorganization, currentBuckets 
is half of maxBuckets. The hasher uses remainders modulo maxBuckets at the end, except 
that if the result is greater than currentBuckets, the hasher reduces it by maxBucketsl2. 

When we insert a new item, we increase currentBuckets by one. If that leaves the 
value less than maxBuckets, we just create a new bucket by increasing the size of the in­
dex, and then insert the new item into the new structure. We must also rehash the buddy 
bucket which is maxBucketsl2 slots below the new bucket. When currentBuckets eventu­
ally reaches maxBuckets, we must also double maxBuckets and adjust the hasher accord­
ingly. This is the major reorganization step. The table can also be decreased in size sym­
metrically, by folding a bucket that we are removing into its buddy. 

Note that if we store the buckets in a single list, then increasing the number of buck­
ets is very easy. We just increase the size of the index and store an after -the-end iterator to 
the end of the bucket list into the new index cell. 

Continuous reorganization makes each insert more expensive, but avoids the problem 
of a periodic expansion being so time-consuming that it might halt the application for an 
appreciable time. We are still subject to some of this effect, however, if we use STL vec­
tors for the index. This is because the vector itself is self-organizing and requires periodic 
reallocation of storage. Notice that the index grows at the same rate as the hash table in 
this case, but vectors use reserve space so the reallocations would be less frequent than 
with the above periodic scheme. Using a deque for the index would even avoid some of 
this, since its major reorganizations are very infrequent. On the other hand, deque opera­
tions are a bit slower than vector operations. 

Note that the average size of each bucket is only one with the continuous scheme just 
described. This doesn't mean that all buckets will have only one item, of course. This w­
pends on the hasher. If it is a good one, they should all be small. 

9.7 Using Hashed Structures 

One of the major components of a compiler that translates languages such as C++ into 
machine code is a symbol table. When the programmer defmes a new name, such as a 
function name or a variable name, the compiler makes an entry in the symbol table for 
the new name and stores information about the name along with it. Then, when the name 
is seen again, the compiler looks in the symbol table to see if the name has been defined, 
and if so, what kind of thing it represents to verify that the current usage is legal. Since 
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names are frequently used in programs and since we want compiling to be fast, the lookup 
step in the symbol table must be fast. Hashed structures are often used to build symbol 
tables. Balanced binary trees are another good choice also. Thus a hash_map or 
hash_multimap might be a good choice as the basis of a symbol table. The keys would 
be the names defined by the programmer, and the data values would be objects holding the 
other information. 

Some database programs use hashed structures for at least part of the data in the data­
base. In fact, any program that requires fast retrieval by key should consider a hash struc­
ture as an implementation. However, doing so requires paying attention to the characteris­
tics of the hash function that is to be used and verifying its adequacy somehow: either 
analytically, or through testing. The programmer should be prepared to try several hash 
functions on the anticipated set of values and the designed structure of the table to see if 
behavior will be good or poor. 

One situation occurs in which hash tables should not be considered. Suppose you have 
a situation in which the keys are repeated very frequently, perhaps because there are only a 
very small number of keys, but they are associated in a nonunique way with a large set of 
data. Then you are guaranteed that all data will fall into a small number of buckets no 
matter what else you do. In a case like this, a balanced tree would be a much better 
choice, so use a multimap rather than a hash_multimap. 

All of the algorithms that are defined in terms of forward iterators work with hash ta­
bles. In addition, so do those that work with bidirectional iterators if the specific imple­
mentation provides these. Sorting and binary searching won't work with hash tables, of 
course, nor is there a specialized sort algorithm provided within these classes as there is 
with the list class, because the idea of sorting is inconsistent with a hashed structure. If 
the data stored in a hashed structure permit comparisons and need to be sorted, then an it­
erator could be used to transfer them to a vector or tree-based structure first. 

9.8 Elements of an Implementation 

Let us examine a simple class that is similar in flavor to the hash table implementations 
suitable for the STL, but simpler in many ways. This class will show how to grow the 
number of buckets in the table incrementally as we insert data. We will not enforce the 
STL requirement that hash keys with equal values be kept together, however. Nor will we 
shrink the number of buckets as we erase data from the hash table. 

9.8.1 The Hash Table 

Our implementation uses a vector to hold the index and a single list to hold all of the 
buckets, as was discussed in Section 9.4. To do this the index entries will be list itera­
tors. Two successive entries in the index vector give a range of entries in the bucket list 
that defmes a single bucket. This implementation will be aided by the ability to decre­
ment an iterator, since we can then insert before the position of the beginning of a bucket 
and then decrement the begin iterator for that bucket. 



Chapter 9. Hash Tables 281 

The advantage of this implementation is not its simplicity, because it complicates in­
sertion as we shall see. It does make hash table iterators easy to build, since all a hash ta­
ble iterator needs to do is iterate over a single list. Therefore, we just use a list iterator 
rather than build a new one. 

While we want the hash buckets to be small, so that searching for a value within a 
bucket will be fast, there is no advantage to having empty buckets. Therefore, we will 
start with no buckets at all in an empty hash table. We will then add one additional 
bucket for each entry that we insert into the table. This keeps the average length of the 
buckets to be one. We also continually split buckets, so that no bucket has a chance to 
grow by much unless the hash function is extremely bad. 

As usual we define a number of types for export. These include the type of the data to 
be stored and two iterator types. These are bidirectional iterators. We also export the type 
of the hash function object and the comparison object. 

Actually, we do more than that. When the user constructs a hash table, an object 00-
fining a hash function object and one defining a comparison object are passed as template 
parameters. These are used internally in the hash_table constructor to create a hasher func­
tion object and a compare function object that are maintained as member variables. This 
lets us return these objects as the results of member functions. Thus a client can have ac­
cess to the actual hashing object and the comparison object. An example will be shown 
in Section 9.8.3. 

template <class T, class HASHER, class EQUAL> 
class hash_table 
{ public: 

typedef T key_type; 
typedef list<key_type >: :iterator iterator; 
typedef list<key_type >: :const_iterator 

const_iterator; 

typedef HASHER hash_type; 
typedef EQUAL equal_type; 

hash_table ( ) 
rnaxbuckets ( 1) , 
halfbuckets ( 0 ) , 
currentbuckets(O) , 
index ( ), 
buckets ( ), 
cornpare(EQUAL()), 
hasher(HASHER()) 

{ index.push_back(buckets.end()); 
II Creates the after-the-end iterator. 

hash_type hash_function() {return hasher;} 
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equal_type comparer(){return comparei} 

long size()const{ return buckets.size()i} 
bool empty()const{return buckets.empty();} 
iterator begin() {return buckets.begin()i} 
iterator end() {return buckets.end();} 
const_iterator begin()const 
{ return buckets.begin()i 
} 
const_iterator end() const 
{ return buckets.end(); 
} 

private: 

} 

unsigned long maxbuckets; 
unsigned long halfbuckets; 

//(always half of maxbuckets) 
unsigned long currentbuckets; 

vector<iterator > index; 
list<T> buckets; 

hash_type hasher; 
equal_type comparei 

Note that a number of the member functions of hash_table just return information 
about the buckets list. 

Variable maxbuckets is always a power of 2 and is the maximum number of buckets 
that we can have before a major reorganization. This value is used in the hash function 
that reduces the value returned by the hasher to one in the legal range for the index vector. 
Member variable halfbuckets is maintained as a convenience and is always half of max­
buckets. Currentbuckets is the current number of buckets that grows by one for each in­
sert. When currentbuckets reaches maxbuckets, we do a major reorganization. 

The hash function that we actually use is not the one provided by the hasher, but the 
value returned by hasher reduced to the legal range for the index. We first call the hasher 
to get an unsigned long. Then we reduce this value modulo the maxbuckets value. Then if 
that value is less than currentbuckets, we are done. However, when the value is greater 
than or equal to the currentbuckets variable, we have an illegal bucket number. Therefore, 
we return the number of the buddy bucket instead. The buddy of any bucket is the one at a 
distance halfbuckets away. In this case the buddy is always before the one that we just 
computed, so we reduce the value by halfbuckets. 

unsigned long hash(const key_type& t) const 
{ unsigned long result = hasher(t); 



} 

result %= maxbuckets; 
if (result >= currentbuckets) 

result -= halfbuckets; 
return result; 
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Suppose that we have been inserting a few entries into our hash table. For each insert 
we are going to expand the number of buckets by one. We will then have to rehash all of 
the entries of the buddy of the new bucket, which distributes those values between their 
original buckets and the one newly added. This gives us average bucket size one, but we 
can hardly assume each bucket has only one element. Therefore, there will certainly be 
empty buckets. If we think about what the index looks like, we will see a potential prob­
lem. Each entry in the index vector is an iterator to the beginning of a bucket. This 
means that index[i] is the beginO iterator for bucket i, but also that index[i+ 1] is the after­
the-end iterator for that same bucket. If we have empty buckets, however, then the begin 
and end iterators point to the same place, which is the after-the-end location. This will ei­
ther be the end of the entire bucket list or to some list element. In the latter case, there are 
several iterators to the same list location: the beginO iterator of the corresponding bucket, 
and the begin iterators of all of the empty buckets immediately to the left of that bucket. 
If we insert into one of these buckets, we will have to adjust all of the iterators of empty 
buckets to the left. This gives us the insert algorithm. 

The insert is done at the end of the bucket rather than at the beginning, since if the 
bucket isn't empty, then we don't need to adjust other iterators in this case. But if the 
bucket into which we insert an item is empty, then its iterator entry in the index list 
must be made to point to the new entry. Also, the index iterators of any empty buckets to 
the left must be made to point to the new item also. Figure 9.5 shows the situation in 
which buckets 1 and 2 are empty. Their begin and end iterators are the same. They are 
also equal to the begin iterator of bucket 3. 
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Figure 9.5. Two empty buckets. 
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If we now insert into bucket 2, we will be left with a situation like Figure 9.6. 
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Figure 9.6. After inserting into bucket 2. 

The insert member is shown next. Note the adjustments to iterators to empty buckets 
to the left of the insert point. If the hash function is adequate, there will be few empty 
buckets. However, in the worst case this is linear in the number of buckets. 

iterator insert(key_type t) 
{ expand ( ) ; 

} 

unsigned long b hash(t); 
unsigned long w b+l; 
iterator where 

= buckets.insert(index[w], t); 
II Inserts "before" the beginning of the 
II next bucket-- i.e. at the end of bucket 
II b. 
while(index[b] == index[w]) 

II Adjust for empty buckets. 
index[b--] = where; 

return where; 

To find an item requires that we hash the key and then search the corresponding 
bucket. We compare for a match using the comparison object that was created in the con­
structor and saved as a member. We can search the buckets list using the iterators saved in 
the index vector and algorithm find_if. We return a pair consisting of an iterator and a 
boolean. The boolean tells whether or not we found the item. If so, the iterator points to 
it. 
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pair<iterator, bool> find(const key_type& t) 
{ if(buckets.size() > 0) 

} 

{ unsigned long bucket = hash(t); 
iterator where = : : find_if 

} 

( index[bucket], 
index[bucket+l], 
bindlst(compare,t) 

) ; 
if(where != index[bucket+l]) 

return 
pair<iterator, bool> (where, true); 

return 
pair<iteratar, bool> 
( index[currentbuckets], false 
) ; 

There are two versions of this algorithm. The other is identical except that it returns a 
const iterator within the pair, as is a const function as well. This is good practice in gen­
eral, but vital for our use here, since seChash has only const iterators, but map_hash has 
nonconst iterators and we intend to build both using this class. 

Since we aren't reorganizing when we remove items, the erase algorithm is as follows. 
Note again that we must adjust all iterators to the item that is being removed. There may 
be several if this item is at the beginning of its bucket and there are empty buckets to the 
left. We return the number of items erased. We repeatedly use find to locate the item to be 
removed. When we find an item, we must increment the iterator to its bucket if that itera­
tor points to the item being removed. We also depend on the fact that the comparison ob­
ject is consistent with the hash function, though the dependence is subtle here. Note that 
we only hash once here to find a bucket number and we check for empty buckets only to 
the left of that bucket. 

int erase(key_type t) 
{ int result = 0; 

unsigned long where = hash(t); 
pair<iterator, bool> lac = find(t); 
while(loc.second) 
{ int i = where; 

} 

while(index[i] == lac. first) 
++index[i--]; 

buckets.erase(lac.first); 
result++; 
loc = find(t); 
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return result; 
} 

Critical to efficiency overall is the expand member that adds a new bucket for each in­
sertion. We maintain two values: currentbuckets, the current number of buckets; aM 
maxbuckets, the maximum number of buckets before a major reorganization. When cur­
rentbuckets reaches maxbuckets, we double maxbuckets. Actually a major reorganization 
is very little extra work. Its main purpose is to define the basic divisor for the hash func­
tion. We also maintain variable haltbuckets as a convenience. It is always half of max­
buckets and is the distance between any bucket and its buddy bucket. When a bucket is 
created, its buddy bucket is split. The code is a bit longer than the other members aM 
contains a loop. Since buckets are small on the average, the loop won't be iterated too of­
ten. We also need to be careful about the empty bucket problem when removing items 
from one bucket and inserting them into another. If we remove the first item from a 
bucket with empty buckets to the left, we adjust. If we insert into an empty bucket with 
empty buckets to its left, we also adjust. We use the splice algorithm to avoid calling the 
allocator. 

The algorithm also uses shifts rather than multiplies. The shift operator« effectively 
and quickly multiplies an integer by two. Some compilers will actually use this operator 
instead of multiplication when you multiply by any power of 2. 

void expand ( ) 
{ currentbuckets++; 

index.push_back(buckets.end(»; 
if(currentbuckets > maxbuckets) 
{ halfbuckets 

= maxbuckets; maxbuckets «= 1; 
} 
unsigned long buddy 

= currentbuckets -1 - halfbuckets; 
II split the buddy bucket. 
for 
( iterator start = index[buddy); 

start 1= index[buddy+l); 
II nothing 
) 

{ iterator next = start; 
++next; II Remember the "next" item. 
if (hash(*start) 1= buddy) 

II must move this item 
if(next == index[currentbuckets-l]) 
II can just adjust pointers 
{ --index[currentbuckets-l]; 

unsigned long adjust 
= currentbuckets-2; 



} 
} 

} 

} 
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while(index[adjust] == next) 
--index[adjust--]; 

return; 

else II must actually move it 
{ unsigned long k = buddy; 

} 

while(start == index[k]) 
++index [k- -] ; 

buckets. splice 
( index [currentbuckets-1], 

buckets, start 
) ; 
iterator temp 

= index[currentbuckets-1]; 
k = currentbuckets - 1; 
while(index[k] == temp) 

--index[k--]; 

start = next; 

else ++start; 

9.8.2 Sets and Maps 

A minimal implementation of sets based on the hash table above is shown next. Note 
that most of the members just pass on instructions to the hash_table representation. 
Note, however, that the iterator is a consUterator. This is required by the notion of the 
hash implementation. If we change the value of an element in a set, it should be hashed 
to a different location. We could, of course, do this internally, but the easiest way is to 
disallow changes to the values. You can erase a value and then insert a modified value 
rather than change a value saved in the set. 

We maintain the set property (unique inserts) by checking to see if an element is al­
ready present before inserting it. We can use the find member of the hash_table representa­
tion for this. 

template <class KEY, class HASHER, class EQUAL> 
class set_hash 
{public: 

typedef hash_table<KEY, HASHER, EQUAL> 
: :const_iterator iterator; 
II bidirectional const iterator 

typede£ KEY key_type; 
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typedef KEY value_type; 
typedef HASHER hash_type; 
typedef EQUAL equal_type; 

set_hash(): rep(){} 

hash_type hash_function() 
{ return rep.hash_function(); 
} 

equal_type comparer(){return rep.comparer();} 

iterator insert (key_type t) 
{ pair<rep_type::iterator, bool> where 

= rep. find(t); 

} 

if(!where.second) 
return rep.insert(t); 

return where. first; 

int erase(key_type t){ return rep.erase(t); } 

iterator find(const key_type& k) const 
{ pair<iterator, bool> where = rep.find(k); 

if(where.second) return where. first; 
return end ( ) ; 

} 

iterator begin()const{ return rep.begin();} 
iterator end()const{return rep.end();} 

bool empty() const { return rep.empty();} 
int size()const{return rep.size();} 

protected: 

} ; 

typedef hash_table<key_type, HASHER, EQUAL> 
rep_type; 

rep_type rep; 

Note that since find is const and returns a const iterator, it uses the second version of 
hash_table::find; the one that is itself const returning a const iterator. 

The code for map is nearly identical. The exception is that we save pairs instead of 
keys, and we don't require const iterators, though we permit them. We protect against 
changing the keys in a pair by storing const KEY values rather than KEY values in the 
pairs. Therefore, we can return (nonconst) iterators to these pairs, knowing that only the 
data value in the pair can be changed. 
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template 
< class KEY, 

class DATA, 
class HASHER, 
class EQUAL 

> 
class map_hash 
{public: 

typedef pair<const KEY, DATA> value_type; 
typedef KEY key_type; 
typedef hash_table<value_type, HASHER, EQUAL> 

: :iterator iterator; 
II bidirectional iterator 

typedef KEY key_type; 
typedef DATA& reference; 
typedef HASHER hash_type; 
typedef EQUAL equal_type; 

map_hash(): rep(){} 

iterator insert (KEY t, DATA v) 
{ value_type p(t,v); 

pair<rep_type: :iterator, bool> where 
= rep. find(p); 

if(!where.second) 
return rep.insert(p); 

return where. first; 

hash_type hash_function() 
{ return rep.hash_function(); 
} 

equal_type comparer() {return rep.comparer();} 

int erase(KEY t) 
{ value_type p(t,DATA()); 

return rep.erase(p); 

iterator find(const key_type& k) 
{ pair<iterator, bool> where 

} 

= rep.find(value_type(k,DATA())); 
if (where. second) return where. first; 
return end ( ) ; 
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iterator begin(){ return rep.begin();} 
iterator end() {return rep.end();} 
bool empty() const { return rep.emptY()i} 
int size()const{return rep.size();} 

reference operator[] (const key_type& k) 
{ return (*(insert(k, DATA(»».secondi 
} II NOTE that this inserts the DATA default 

II value into the map for your key if the 
II key is not originally present. 

protected: 

} ; 

typedef hash_table<value_type, HASHER, EQUAL> 
rep_typei 

rep_type rep; 

We depend here on the fact that the hash depends on only the key. We can find a value 
knowing only the key by putting a dummy value into the data slot of the pair we seek. 

We also provide an operator[] to permit index-like searching of the map. We supply a 
key between the brackets and get a reference to the associated value if present, and to the 
default value of the data type otherwise. 

9.8.3 Using the Sets and Maps 

Before we can create a set or a map, we must create the hash and comparison objects that 
it will use. This is easiest in the case of a set, since we have only the keys to worry 
about. For example, if we want to create a set of int values, we can use the following 
hash function and comparison object. We multiply the key value by a large prime number 
to guard against the insertion of a lot of small integers that would tend to overload some 
buckets. Note that the inthasher and the compare template provide consistent values: If 
two integers are the same according to compare<int>(), then the hash values are the same 
also. 

class inthasher 
{public: 

}; 

unsigned long operator() (const int& m) const 
{ return m * 1073741827; 
} 

template <class T> 
class compare public binary_function<T, T, bool> 
{public: 



} ; 

bool operator() 
( const T& first, 

const T& second 
const 
return first == second; 
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The compare function object should derive from the binary function class to be consis­
tent with the rest of the STL. We can now create a set of ints with the following: 

set_hash <int, inthasher, cornpare<int> > intSet; 

To use maps requires a bit more work. First we need a hasher that works on pairs, but 
considers only the key to create the value. Suppose we want to build a map with ints for 
both keys and data values. 

class pair_hasher 
{public: 

} ; 

unsigned long operator() 
( const pair<const int, 

int>& rn 
) const 
{ return rn.first * 1073741827; 
} 

We also need a comparison object that is consistent with this and compares only the 
keys of a pair. Again, this should be derived from binary_function. 

template <class T, class S> 
class cornpare-pair : public 
binary_function<pair<T,S>, pair<T,S>, bool> 
{ public: 

} ; 

bool operator ( ) 
( const pair<T,S>& first, 

const pair<T,S>& second 
) const 
{ return first. first == second. first; 
} 

Now a map from ints to ints may be created with 
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map_hash 
< int, 

int, 
pair_hasher, 
compare-pair<const int, int> 

> hashMapi 

We could then read pairs from a file and insert them into our map with the following 
fragment of code. 

ifstrearn aFile("somedata.in")i 
int k, Vi 
while (aFile»k) 
{ aFile» Vi 

hashMap.insert(k,v)i 
} 

9.9 Design Issues 

A number of important pieces have been left out of this implementation and some other 
features could be improved with better design. First, efficiency demands that we shrink the 
number of buckets at least occasionally. Otherwise, we get too many empty buckets aOO 
the adjustments necessary for empty buckets start to playa dominant role. 

Another place at which we could improve the efficiency is in our separation of func­
tionality between hash_table and the classes built from it. In particular, we could avoid 
extra searching by giving the hash_table class itself knowledge of whether it was being 
used in a set-like or multi set-like way. When we insert an item into a set, we search to 
see if it is present. If it is not we insert it, but that requires an extra search also. We could 
do it all with one search if the implementation had an insert_only_iCnocpresent member 
or something equivalent. 

Another interesting idea is to provide additional constructors, so that we don't need to 
use the default value of the compare class as the comparison object. We could provide a 
constructor that passes in a comparison object to be used. This would permit us to 
parameterize the comparison class, adding to flexibility. We could do all of this for the 
hasher class as well, of course. 

9.10 Extending the Standard Template Library 

We see in the hashed structures provided in this proposal what it takes to extend the STL 
with an additional container. We need to define the container type, of course, and give it 
the usual exported types. We also need to give it an interface that includes all of the re­
quired container interface elements, such as insert and erase. We also need to define aOO 
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perhaps construct an associated iterator type-especially if ordinary pointers won't work 
for the new container. Careful analysis needs to be done to assure that the new container 
will work with the appropriate generic algorithms, and on those occasions that this is 
impossible, provide special analogs of them as appropriate. Efficiencies of all of the 
member functions need to be given careful analysis. 

More importantly, before attempting to add the new structures to the STL, the pro­
grammer should analyze the container and its iterator to be sure that it is designed with 
sufficient generality to be useful in a wide range of problems. This analysis of usefulness 
is closely related to the efficiency considerations mentioned above. 

For example, it would be difficult to design a graph container to integrate with the 
STL, not because graphs aren't useful. Indeed many graph problems are very important. 
However, graphs can already be built with the existing elements as was shown earlier. 
Also, it would be difficult to design a graph interface with sufficient generality to satisfy 
critics. This is because there are very many ways to build graphs, each with different effi­
ciency constraints, and each suitable for a certain set of problems, but unsuitable for 
many others. 

9.11 Summary 

Make certain that you understand each of the following terms: 

bucket 
circular hashing 
continuous reorganization 
hash table reorganization 
periodic reorganization 
separate chaining 

9.12 Exercises 

1. Build a hash table class template with a vector index and using STL lists for buckets. 
Use one list per bucket. Your template arguments should include at least the value type to 
be inserted and a hash function for values of that type. 

2. Build a periodic reorganizer for your hash table. Use the total size of the table as the 
trigger. When the number of elements doubles, double the number of buckets. Does this 
give us amortized constant search times assuming a perfectly uniform hash function? 

3. Build an iterator class for your hash table. Note that insertions should not invalidate it­
erators (even in the presence of reorganizations), and deletions do so only when they delete 
the item that an iterator references. The advantage of this implementation is that the 
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"empty bucket" problem of the hash_table shown in the text does not occur in this im­
plementation. 

4. Modify the hash table implementation described in the text so that it continuously 
shrinks the hash table structure when we remove items. Shrink one bucket per erasure. 

5. Build a multiseChash class similar to our seChash. Base it on either the hash table 
implementation given in the text, or the one developed in the earlier exercises. 

6. Build a multi map_hash class similar to our map_hash. Base it on either the hash table 
implementation given in the text, or the one developed in the earlier exercises. 

7. Improve the hash_table class as suggested in Section 9.9. Reimplement the seChash 
and map_hash classes to take advantage of the changes in hash_table. 

8. Construct a set of data that can be inserted into either a red-black tree or a hash table. 
Provide relative timings of the two structures on a series of inserts and also on a series of 
deletes. Use the implementations discussed in this chapter and the previous one. Are the 
experimental timings consistent with the theory? 

9. See Exercise 8. If you have access to the reference hash implementation (See [8]), then 
do the same for the STL set and hash_set structures. 

10. From your experience in computer science, what additional structures could/should be 
added to the STL? Write an essay detailing your choice and the reasons. If you think that 
it is complete, write an essay justifying your decision. 



Appendix 
STLSummary 

A.I Algorithms Prototypes 

A.I.I Maximum and Minimum 

template <class T> 
inline const T& min(const T& a, const T& b); 

template <class T, class Compare> 
inline const T& min(const T& a, const T& b, Compare comp); 

template <class T> 
inline const T& max(const T& a, const T& b); 

template <class T, class Compare> 
inline const T& max(const T& a, const T& b, Compare comp); 

template <class Forwardlterator> 
Forwardlterator max_element 

Forwardlterator first, 
Forwardlterator last 

) ; 

template <class Forwardlterator, class Compare> 
Forwardlterator max_element 

Forwardlterator first, 
Forwardlterator last, 
Compare comp 

) ; 

template <class Forwardlterator> 
Forwardlterator min_element 

Forwardlterator first, 
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Forwardlterator last 
) ; 

template <class Forwardlterator, class Compare> 
Forwardlterator min_element 

Forwardlterator first, 
Forwardlterator last, 
Compare comp 

) ; 

A.l.2 Generalized Numeric Operations 

template <class Inputlterator, class T> 
T accumulate 
( Inputlterator first, 

Inputlterator last, 
T init 

) ; 

template < class Inputlterator, 
class T, 
class BinaryOperation 

> 
T accumulate 
( InputIterator first, 

InputIterator last, 
T init, 
BinaryOperation binary_op 

) ; 

template < class Inputlteratorl, 
class Inputlterator2, 
class T 

> 
T inner_product 
( Inputlteratorl firstl, 

InputIteratorl lastl, 
Inputlterator2 first2, 
T init 

) ; 

template < class Inputlteratorl, 
class InputIterator2, 
class T, 



> 

class BinaryOperationl, 
class BinaryOperation2 

T inner_product 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
T init, 

) ; 

BinaryOperationl binary_opl, 
BinaryOperation2 binary_op2 
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template <class Inputlterator, class Outputlterator> 
Outputlterator partial_sum 
( Inputlterator first, 

) ; 

Inputlterator last, 
Outputlterator result 

template < class Inputlterator, 
class Outputlterator, 
class BinaryOperation 

> 
Outputlterator partial_sum 
( Inputlterator first, 

Inputlterator last, 
outputlterator result, 
BinaryOperation binary_op 

) ; 

template <class Inputlterator, class Outputlterator> 
Outputlterator adjacent_difference 
( Inputlterator first, 

) ; 

Inputlterator last, 
Outputlterator result 

template < class Inputlterator, 
class Outputlterator, 
class BinaryOperation 

> 
Outputlterator adjacent_difference 
( Inputlterator first, 

Inputlterator last, 
outputlterator result, 
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BinaryOperation binary_op 
) i 

A.l.3 Nonmutating Sequence Operations 

template < class Inputlteratorl, 
class Inputlterator2 

> 
pair<Inputlteratorl, Inputlterator2> mismatch 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2 

) i 

template < class Inputlteratorl, 
class Inputlterator2, 
class BinaryPredicate 

> 
pair<Inputlteratorl, Inputlterator2> mismatch 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
BinaryPredicate binary-pred 

) i 

template <class Inputlteratorl, class Inputlterator2> 
inline bool equal 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2 

) i 

template < class Inputlteratorl, 
class Inputlterator2, 
class BinaryPredicate 

> 
inline bool equal 

Inputlteratorl firstl, 
Inputlteratorl lastl, 
Inputlterator2 first2, 
BinaryPredicate binary-pred 

) i 
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template <class Inputlterator, class Function> 
Function for_each 

Inputlterator first, 
Inputlterator last, 
Function f 

) ; 

template <class Inputlterator, class T> 
Inputlterator find 
( Inputlterator first, 

Inputlterator last, 
const T& value 

) ; 

template <class Inputlterator, class Predicate> 
Inputlterator find_if 
( Inputlterator first, 

) ; 

Inputlterator last, 
Predicate pred 

template <class Forwardlterator> 
Forwardlterator adjacent_find 
( Forwardlterator first, 

Forwardlterator last 
) ; 

template <class Forwardlterator, class BinaryPredicate> 
Forwardlterator adjacent_find 
( Forwardlterator first, 

) ; 

Forwardlterator last, 
BinaryPredicate binary-pred 

template <class Inputlterator, class T, class Size> 
void count 

Inputlterator first, 
Inputlterator last, 
const T& value, 
Size& n 

) ; 

template <class Inputlterator, class Predicate, class Size> 
void count_if 

Inputlterator first, 
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) ; 

Inputlterator last, 
Predicate pred, 
Size& n 

template <class Forwardlteratorl, class Forwardlterator2> 
inline Forwardlteratorl search 

Forwardlteratorl firstl, 
Forwardlteratorl lastl, 
Forwardlterator2 first2, 
Forwardlterator2 last2 

) ; 

template < class Forwardlteratorl, 
class Forwardlterator2, 
class BinaryPredicate 

> 
inline Forwardlteratorl search 

Forwardlteratorl firstl, 
Forwardlteratorl lastl, 
Forwardlterator2 first2, 
Forwardlterator2 last2, 
BinaryPredicate binary-pred 

) ; 

A.l.4 Mutating Sequence Operations 

template <class Inputlterator, class Outputlterator> 
Outputlterator copy 
( Inputlterator first, 

Inputlterator last, 
Outputlterator result 

) ; 

template < class Bidirectionallteratorl, 
class Bidirectionallterator2 

> 
Bidirectionallterator2 copy_backward 
( Bidirectionallteratorl first, 

Bidirectionallteratorl last, 
Bidirectionallterator2 result 

) ; 
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template <class Outputlterator, class Size, class T> 
Outputlterator fill_n 
( Outputlterator first, 

Size n, 
const T& value 

) ; 

template <class T> 
void swap(T& x, T& y); 

template <class Forwardlteratorl, class Forwardlterator2> 
Forwardlterator2 swap_ranges 
( Forwardlteratorl firstl, 

) ; 

Forwardlteratorl lastl, 
Forwardlterator2 first2 

template < class Inputlterator, 
class Outputlterator, 
class UnaryOperation 

> 
Outputlterator transform 
( Inputlterator first, 

Inputlterator last, 
Outputlterator result, 
UnaryOperation op 

) ; 

template < class InputIteratorl, 
class InputIterator2, 
class OutputIterator, 
class BinaryOperation 

> 
Outputlterator transform 
( InputIteratorl firstl, 

Inputlteratorl lastl, 
InputIterator2 first2, 
Outputlterator result, 
BinaryOperation binary_op 

) ; 

template <class Forwardlterator, class T> 
void replace 
( Forwardlterator first, 

Forwardlterator last, 
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) i 

const T& old_value, 
const T& new_value 

template <class Forwardlterator, class Predicate, class T> 
void replace_if 
( Forwardlterator first, 

Forwardlterator last, 
Predicate pred, 
const T& new_value 

) i 

template < class Inputlterator, 
class Outputlterator, 
class T 

> 
Outputlterator replace_copy 
( Inputlterator first, 

Inputlterator last, 
Outputlterator result, 
const T& old_value, 
const T& new_value 

) i 

template < class Iterator, 

> 

class Outputlterator, 
class Predicate, 
class T 

Outputlterator replace_copy_if 
( Iterator first, 

) i 

Iterator last, 
Outputlterator result, 
Predicate pred, 
const T& new_value 

template <class Forwardlterator, class Generator> 
void generate 
( Forwardlterator first, 

Forwardlterator last, 
Generator gen 

) i 
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template <class Output I terator, class Size, class Generator> 
Outputlterator generate_n 
( Outputlterator first, 

) ; 

Size n, 
Generator gen 

template < class Inputlterator, 
class Outputlterator, c 
lass T 

> 
Outputlterator remove_copy 
( Inputlterator first, 

Inputlterator last, 
Outputlterator result, 
const T& value 

) ; 

template < class Inputlterator, 
class Outputlterator, 
class Predicate 

> 
Outputlterator remove_copy_if 
( Inputlterator first, 

Inputlterator last, 
Outputlterator result, 
Predicate pred 

) ; 

template <class Forwardlterator, class T> 
Forwardlterator remove 

Forwardlterator first, 
Forwardlterator last, 
const T& value 

) ; 

template <class Forwardlterator, class Predicate> 
Forwardlterator remove_if 

Forwardlterator first, 
Forwardlterator last, 
Predicate pred 

) ; 
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template <class Inputlterator, class Outputlterator> 
inline Outputlterator unique_copy 
( Inputlterator first, 

) i 

Inputlterator last, 
Outputlterator result 

template < class Inputlterator, 
class Outputlterator, 
class BinaryPredicate 

> 
inline Outputlterator unique_copy 

Inputlterator first, 
Inputlterator last, 
Outputlterator result, 
BinaryPredicate binary-pred 

) i 

template <class Forwardlterator> 
Forwardlterator unique 
( Forwardlterator first, 

Forwardlterator last 
) i 

template <class ForwardIterator, class BinaryPredicate> 
Forwardlterator unique 
( ForwardIterator first, 

Forwardlterator last, 
BinaryPredicate binary-pred 

) i 

template <class Bidirectionallterator> 
inline void reverse 

Bidirectionallterator first, 
BidirectionalIterator last 

) i 

template <class Bidirectional Iterator, class Outputlterator> 
Outputlterator reverse_copy 
( Bidirectionallterator first, 

Bidirectionallterator last, 
Outputlterator result 

) i 



template <class Forwardlterator> 
inline void rotate 

Forwardlterator first, 
Forwardlterator middle, 
Forwardlterator last 

) ; 
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template <class Forwardlterator, class Outputlterator> 
Outputlterator rotate_copy 
( Forwardlterator first, 

) ; 

Forwardlterator middle, 
Forwardlterator last, 
Outputlterator result 

template <class RandomAccesslterator> 
inline void random_shuffle 

RandomAccesslterator first, 
RandomAccesslterator last 

) ; 

template <class RandomAccesslterator, class 
RandomNumberGenerator> 
void random_shuffle 

) i 

RandomAccesslterator first, 
RandomAccesslterator last, 
RandomNumberGenerator& rand 

template <class Bidirectionallterator, class Predicate> 
Bidirectionallterator partition 
( Bidirectionallterator first, 

) ; 

Bidirectionallterator last, 
Predicate pred 

template <class Forwardlterator, class Predicate> 
inline Forwardlterator stable-partition 
( Forwardlterator first, 

) ; 

Forwardlterator last, 
Predicate pred 
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A.l.5 Sorting Related Operations 

template <class RandomAccesslterator> 
void sort(RandomAccesslterator first, RandomAccesslterator 
last) 

template <class RandomAccesslterator, class Compare> 
void sort 

RandomAccesslterator first, 
RandomAccesslterator last, 
Compare comp 

) i 

template <class RandomAccesslterator> 
inline void stable_sort 
( RandomAccesslterator first, 

RandomAccesslterator last 
) i 

template <class RandomAccesslterator, class Compare> 
inline void stable_sort 

RandomAccesslterator first, 
RandomAccesslterator last, 
Compare comp 

) i 

template <class RandomAccesslterator> 
inline void partial_sort 
( RandomAccesslterator first, 

RandomAccesslterator middle, 
RandomAccesslterator last 

) i 

template <class RandomAccesslterator, class Compare> 
inline void partial_sort 
( RandomAccesslterator first, 

RandomAccesslterator middle, 
RandomAccesslterator last, 
Compare comp 

) i 

template <class Inputlterator, class RandomAccesslterator> 
inline RandomAccesslterator partial_sort_copy 

Inputlterator first, 
Inputlterator last, 



) ; 

RandomAccesslterator result_first, 
RandomAccesslterator result_last 

template < class Inputlterator, 
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class RandornAccesslterator, 
class Compare 

> 
inline RandornAccesslterator partial_sort_copy 

Inputlterator first, 

) ; 

Inputlterator last, 
RandomAccesslterator result_first, 
RandomAccesslterator result_last, 
Compare comp 

template <class RandornAccesslterator> 
inline void nth_element 

RandornAccesslterator first, 
RandornAccesslterator nth, 
RandornAccesslterator last 

) ; 

template <class RandornAccessIterator, class Compare> 
inline void nth_element 
( RandornAccesslterator first, 

RandornAccesslterator nth, 
RandomAccesslterator last, 
Compare comp 

) ; 

template <class Forwardlterator, class T> 
inline Forwardlterator lower_bound 

Forwardlterator first, 
Forwardlterator last, 
const T& value 

) ; 

template <class Forwardlterator, class T, class Compare> 
inline Forwardlterator lower_bound 

Forwardlterator first, 
Forwardlterator last, 
const T& value, 
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Compare comp 
) ; 

template <class Forwardlterator, class T> 
inline Forwardlterator upper_bound 
( Forwardlterator first, 

) ; 

Forwardlterator last, 
const T& value 

template <class Forwardlterator, class T, class Compare> 
inline Forwardlterator upper_bound 
( Forwardlterator first, 

) ; 

Forwardlterator last, 
const T& value, 
Compare comp 

template <class Forwardlterator, class T> 
inline pair<Forwardlterator, Forwardlterator> equal_range 
( Forwardlterator first, 

) ; 

Forwardlterator last, 
const T& value 

template <class Forwardlterator, class T, class Compare> 
inline pair<Forwardlterator, Forwardlterator> equal_range 
( Forwardlterator first, 

) ; 

Forwardlterator last, 
const T& value, 
Compare comp 

template <class Forwardlterator, class T> 
bool binary_search 
( Forwardlterator first, 

Forwardlterator last, 
const T& value 

) ; 

template <class Forwardlterator, class T, class Compare> 
bool binary_search 
( Forwardlterator first, 

Forwardlterator last, 
const T& value, 



Compare comp 
) ; 

template < class Inputlteratorl, 
class Inputlterator2, 
class Outputlterator 

> 
Outputlterator merge 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2, 
Outputlterator result 

) ; 

template < class Inputlteratorl, 
class Inputlterator2, 
class Outputlterator, 
class Compare 

> 
Outputlterator merge 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2, 
Outputlterator result, 
Compare comp 

) ; 

template <class BidirectionalIterator> 
inline void inplace_merge 
( BidirectionalIterator first, 

BidirectionalIterator middle, 
BidirectionalIterator last 

) ; 
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template <class Bidirectionallterator, class Compare> 
inline void inplace_merge 
( Bidirectionallterator first, 

BidirectionalIterator middle, 
BidirectionalIterator last, 
Compare comp 

) ; 
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A.l.6 Set Operations on Sorted Structures 

template <class Inputlteratorl, class Inputlterator2> 
bool includes 

Inputlteratorl firstl, 
Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2 

) i 

template < class Inputlteratorl, 
class Inputlterator2, 
class Compare 

> 
bool includes 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2, 
Compare comp 

) i 

template < class Inputlteratorl, 
class Inputlterator2, 
class Outputlterator 

> 
outputlterator set_union 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2, 
Outputlterator result 

) i 

template < class Inputlteratorl, 
class Inputlterator2, 
class Output I terator, 
class Compare 

> 
Outputlterator set_union 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2, 
Outputlterator result, 



Compare comp 
) ; 

template < class Inputlteratorl, 
class Inputlterator2, 
class Outputlterator 

> 
Outputlterator set_intersection 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2, 
Outputlterator result 

) ; 

template < class Inputlteratorl, 
class Inputlterator2, 
class Outputlterator, 
class Compare 

> 
Outputlterator set_intersection 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2, 
Outputlterator result, 
Compare comp 

) ; 

template < class Inputlteratorl, 
class Inputlterator2, 
class Outputlterator 

> 
Outputlterator set_difference 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2, 
Outputlterator result 

) ; 

template < class Inputlteratorl, 
class Inputlterator2, 
class Outputlterator, 
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class Compare 
> 

outputlterator set_difference 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2, 
outputlterator result, 
Compare comp 

) ; 

template < class Inputlteratorl, 
class Inputlterator2, 
class outputlterator 

> 
outputlterator set_symmetric_difference 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2, 
outputlterator result 

) ; 

template < class Inputlteratorl, 
class Inputlterator2, 
class outputlterator, 
class Compare 

> 
outputlterator set_symmetric_difference 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2, 
Outputlterator result, 
Compare comp 

) ; 

A.t.7 Heap Operations 

template <class RandomAccesslterator> 
inline void push_heap 
( RandornAccesslterator first, 

RandomAccesslterator last 
) ; 
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template <class RandomAccesslterator, class Compare> 
inline void push_heap 
( RandomAccesslterator first, 

RandomAccesslterator last, 
Compare comp 

) ; 

template <class RandomAccesslterator> 
inline void pop_heap 
( RandomAccesslterator first, 

RandomAccesslterator last 
) ; 

template <class RandomAccesslterator, class Compare> 
inline void pop_heap 
( RandomAccesslterator first, 

RandomAccessIterator last, 
Compare comp 

) ; 

template <class RandomAccessIterator> 
inline void make_heap 
( RandomAccesslterator first, 

RandomAccesslterator last 
) ; 

template <class RandomAccesslterator, class Compare> 
inline void make_heap 
( RandomAccessIterator first, 

RandomAccessIterator last, 
Compare comp 

) i 

template <class RandomAccessIterator> 
void sort_heap 
( RandomAccessIterator first, 

RandomAccessIterator last 
) i 

template <class RandomAccessIterator, class Compare> 
void sort_heap 
( RandomAccessIterator first, 

RandomAccessIterator last, 
Compare comp 

) i 
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A.I.S Lexicographical Compare Operations 

template <class Inputlteratorl, class Inputlterator2> 
bool lexicographical_compare 
( Inputlteratorl firstl, 

) ; 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2 

template < class Inputlteratorl, 
class Inputlterator2, 
class Compare 

> 
bool lexicographical_compare 
( Inputlteratorl firstl, 

Inputlteratorl lastl, 
Inputlterator2 first2, 
Inputlterator2 last2, 
Compare comp 

) ; 

A.I.9 Permutation Generator Operations 

template <class Bidirectionallterator> 
bool next_permutation 
( Bidirectionallterator first, 

Bidirectionallterator last 
) ; 

template <class Bidirectionallterator, class Compare> 
bool next_permutation 
( Bidirectionallterator first, 

Bidirectionallterator last, 
Compare comp 

) ; 

template <class Bidirectionallterator> 
bool prey_permutation 
( Bidirectionallterator first, 

Bidirectionallterator last 
) i 
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template <class Bidirectionallterator, class Compare> 
bool prey_permutation 
( Bidirectionallterator first, 

Bidirectionallterator last, 
Compare comp 

) ; 

A.I.I0 Miscellaneous Operations 

template <class Inputlterator, class Distance> 
inline void distance 

Inputlterator first, 
Inputlterator last, 
Distance& n 

) ; 
II constant time for random access iterator else linear 

template <class Inputlterator, class Distance> 
inline void advance(Inputlterator& i, Distance n); 
II constant time for random access iterator else linear 

A.2 Containers 

Note that only the public members are shown here. 

A.2.1 Sequential Containers 

template <class T> 
class deque 
{ public: 

typedef T value_type; 
typedef Allocator<T> data_allocator_type; 
typedef Allocator<T>: : pointer pointer; 
typedef Allocator<T>: : reference reference; 
typedef Allocator<T>: :const_reference const_reference; 
typedef Allocator<T>: : size_type size_type; 
typedef Allocator<T>: : difference_type difference_type; 
typedef Allocator<pointer> map_allocator_type; 

class iterator 
public random_access_iterator<T, difference_type> 

{ public: 
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} i 

iterator()i 
reference operator*() consti 
difference_type operator-(const iterator& x) consti 
iterator& operator++()i 
iterator operator++(int)i 
iterator& operator--()i 
iterator operator--(int)i 
iterator& operator+=(difference_type n)i 
iterator& operator-=(difference_type n); 
iterator operator+(difference_type n) consti 
iterator operator-(difference_type n) consti 
reference operator[] (difference_type n)i 
bool operator==(const iterator& x) consti 
bool operator«const iterator& x) const; 

class const_iterator 
public random_access_iterator<T, difference_type> 

{ public: 

} ; 

const_iterator()i 
const_iterator(const iterator& X)i 

const_reference operator*() consti 
difference_type operator-

( const const_iterator& x) const; 
const_iterator& operator++(); 
const_iterator operator++(int); 
const_iterator& operator--(); 
const_iterator operator--(int); 
const_iterator& operator+=(difference_type n); 
const_iterator& operator-=(difference_type n); 
const_iterator operator+(difference_type n) const; 
const_iterator operator-(difference_type n) const; 
const_reference operator[] (difference_type n)i 
bool operator==(const const_iterator& x) consti 
bool operator«const const_iterator& x) const; 

typedef reverse_iterator 
< const_iterator, 

value_type, 
const_reference, 
difference_type 

> 
const_reverse_iterator; 
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typedef reverse_iterator 
<iterator, value_type, reference, difference_type> 
reverse_iterator; 

deque() ; 
deque(size_type n, const T& value = T(»; 

/* If template members are available: 
template<class Iterator> 

*/ 
deque(Iterator first, Iterator last); 

deque(const T* first, const T* last); 
deque(const deque<T>& x); 
deque<T>& operator=(const deque<T>& x); 
-deque() ; 
iterator begin(); 
const_iterator begin() const; 
iterator end(); 
const_iterator end() const; 
reverse_iterator rbegin(); 
const_reverse_iterator rbegin() const; 
reverse_iterator rend(); 
const_reverse_iterator rend() const; 
bool empty() const; 
size_type size() const; 
size_type max_size() const; 
reference operator[] (size_type n); 
const_reference operator[] (size_type n) const; 
reference front(); 
const_reference front() const; 
reference back(); 
const_reference back() const; 
void push_front(const T& x); 
void push_back(const T& x); 
void pop_front(); 
void pop_back(); 
void swap(deque<T>& x); 
iterator insert(iterator position, const T& x); 
void insert(iterator position, size_type n, const T& x); 

/* If template members are available: 
template <class Iterator> void insert 
( iterator position, 

Iterator first, 
Iterator last 

) ; 

*/ 
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}; 

void insert 
( iterator position, 

const T* first, 
const T* last 

) ; 
void erase(iterator position); 
void erase(iterator first, iterator last); 

template <class T> 
class list 
{ public: 

typedef T value_type; 
typedef Allocator<T> value_allocator_type; 
typedef Allocator<T>: : pointer pointer; 
typedef Allocator<T>: : reference reference; 
typedef Allocator<T>: :const_reference const_reference; 
typedef Allocator<list_node> list_node_allocator_type; 
typedef Allocator<list_node>: : pointer link_type; 
typedef Allocator<list_node>: : size_type size_type; 
typedef Allocator<list_node> 

: : difference_type difference_type; 

typedef reverse_bidirectional_iterator 
< const_iterator, 

value_type, 
const_reference, 
difference_type 

> 
const_reverse_iterator; 

typedef reverse_bidirectional_iterator 
<iterator, value_type, reference, difference_type> 
reverse_iterator; 

list() ; 
list(size_type n, const T& value = T(»; 
list(const T* first, const T* last); 
list(const list<T>& x) ; 
-list() ; 
list<T>& operator=(const list<T>& x); 
iterator begin(); 
const_iterator begin() const; 
iterator end() { return node; } 
const_iterator end() const; 
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reverse_iterator rbegin(); 
const_reverse_iterator rbegin() const; 
reverse_iterator rend(); 
const_reverse_iterator rend() const ; 
bool empty() const; 
size_type size() const; 
size_type max_size() const; 
reference front(); 
const_reference front() const; 
reference back(); 
const_reference back() const; 
void swap(list<T>& x); 
iterator insert(iterator position, const T& x); 
void insert 

) ; 

iterator position, 
const T* first, 
const T* last 

void insert 

) ; 

iterator position, 
const_iterator first, 
const_iterator last 

void insert(iterator position, size_type n, const T& x); 
void push_front(const T& x); 
void push_back(const T& x); 
void pop_front(); 
void pop_back ( ) ; 
void erase(iterator position); 
void erase(iterator first, iterator last); 
void splice(iterator position, list<T>& x); 
void splice(iterator position, list<T>& x, iterator i); 
void splice 

) ; 

iterator position, 
list<T>& x, 
iterator first, 
iterator last 

void remove(const T& value); 
void unique(); 
void merge(list<T>& x); 
void reverse(); 
void sort(); 

II Nested iterator classes 
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} ; 

class iterator : public bidirectional_iterator 
<T, difference_type> 
{ public: 

} ; 

iterator() ; 
bool operator==(const iterator& x) const; 
reference operator*() const; 
iterator& operator++(); 
iterator operator++(int); 
iterator& operator--(); 
iterator operator--(int); 

class const_iterator 
public bidirectional_iterator <T, difference_type> 

{ public: 

} ; 

const_iterator(); 
const_iterator(const iterator& x); 
bool operator==(const const_iterator& x) const; 
const_reference operator*() const; 
const_iterator& operator++(); 
const_iterator operator++(int); 
const_iterator& operator--() ; 
const_iterator operator--(int); 

template <class T> 
class vector 
{ public: 

typedef Allocator<T> vector_allocator; 
typedef T value_type; 
typedef vector_allocator: : pointer pointer; 
typedef vector_allocator: : pointer iterator; 
typedef vector_allocator::const-pointer const_iterator; 
typedef vector_allocator: : reference reference; 
typedef vector_allocator: :const_reference 

const_reference; 
typedef vector_allocator: : size_type size_type; 
typedef vector_allocator: : difference_type 

difference_type; 
typedef reverse_iterator 

< const_iterator, 
value_type, 
const_reference, 



} ; 

difference_type 
> const_reverse_iterator; 

typedef reverse_iterator 
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<iterator, value_type, reference, difference_type> 
reverse_iterator; 

iterator begin(); 
const_iterator begin() const; 
iterator end ( ); 
const_iterator end() const; 
reverse_iterator rbegin(); 
const_reverse_iterator rbegin() const; 
reverse_iterator rend(); 
const_reverse_iterator rend() const; 
size_type size() const; 
size_type max_size() const; 
size_type capacity() const; 
bool empty() const; 
reference operator[] (size_type n); 
const_reference operator[] (size_type n) const; 
vector() : start(O), finish(O), end_of_storage(O); 
vector(size_type n, const T& value = T(»; 
vector(const vector<T>& x); 
vector(const_iterator first, const_iterator last); 
-vector ( ); 
vector<T>& operator=(const vector<T>& x); 
void reserve(size_type n; 
reference front(); 
const_reference front() const; 
reference back(); 
const_reference back() const; 
void push_back(const T& x); 
void swap(vector<T>& x); 
iterator insert(iterator position, const T& x); 
void insert 

) ; 

iterator position, 
const_iterator first, 
const_iterator last 

void insert (iterator position, size_type n, const T& x); 
void pop_back(); 
void erase(iterator position); 
void erase(iterator first, iterator last); 
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A.2.2 Sorted Associative Containers 

template <class Key, class T, class Compare> 
class map 
{ public: 

typedef Key key_type; 
typedef pair<const Key, T> value_type; 
typedef Compare key_compare; 

class value_compare 
public binary_function <value_type, value_type, bool> 

{ public: 

} ; 

bool operator() 
( const value_type& x, 

const value_type& y 
const; 

typedef rep_type::pointer pointer; 
typedef rep_type: : reference reference; 
typedef rep_type: :const_reference const_reference; 
typedef rep_type::iterator iterator; 
typedef rep_type::const_iterator const_iterator; 
typedef rep_type: :reverse_iterator reverse_iterator; 
typedef rep_type::const_reverse_iterator 

const_reverse_iterator; 
typedef rep_type: : size_type size_type; 
typedef rep_type: : difference_type difference_type; 
map(const Compare& comp = Comparee»~; 
map(const value_type* first, const value_type* last, 
const Compare& comp = Comparee»~; 
map(const map<Key, T, Compare>& x); 
map<Key, T, Compare>& operator= 
( const map<Key, T, Compare>& x 
) ; 
key_compare key_compel const; 
value_compare value_compel const; 
iterator begin(); 
const_iterator begin() const; 
iterator end ( ); 
const_iterator end() const; 
reverse_iterator rbegin(); 
const_reverse_iterator rbegin() const; 
reverse_iterator rend(); 
const_reverse_iterator rend() const; 



}; 

bool empty() const; 
size_type size() const; 
size_type max_size() const; 
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Allocator<T>::reference operator[] (const key_type& k); 
void swap (map<Key, T, Compare>& x); 
pair<iterator, bool> insert(const value_type& x); 
iterator insert(iterator position, const value_type& x); 
void insert 

) ; 

const value_type* first, 
const value_type* last 

void erase(iterator position); 
size_type erase(const key_type& x); 
void erase(iterator first, iterator last); 
iterator find(const key_type& x); 
const_iterator find(const key_type& x) const; 
size_type count(const key_type& x) const; 
iterator lower_bound(const key_type& x); 
const_iterator lower_bound(const key_type& x) const; 
iterator upper_bound(const key_type& x); 
const_iterator upper_bound(const key_type& x) const; 
pair<iterator, iterator> equal_range(const key_type& x); 
pair <const_iterator, const_iterator> equal_range 

(const key_type& x) const; 

template <class Key, class T, class Compare> 
class multimap 
{ public: 

typedef Key key_type; 
typedef pair<const Key, T> value_type; 
typedef Compare key_compare; 

class value_compare 
public binary_function<value_type, value_type, bool> 

( public: 

} ; 

bool operator() 
( const value_type& x, 

const value_type& y 
const; 

typedef rep_type::reference reference; 
typedef rep_type::const_reference const_reference; 
typedef rep_type::iterator iterator; 
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typedef rep_type::const_iterator const_iterator; 
typedef rep_type: :reverse_iterator reverse_iterator; 
typedef rep_type: :const_reverse_iterator 

const_reverse_iterator; 
typedef rep_type: : size_type size_type; 
typedef rep_type::difference_type difference_type; 
multimap(const Compare& comp = Comparee»~; 
multimap 
( const value_type* first, 

const value_type* last, 
const Compare& comp = Comparee) 

) ; 
multimap(const multimap<Key, T, Compare>& x); 
multimap<Key, T, Compare>& operator= 

(const multimap<Key, T, Compare>& x); 
key_compare key_compel const; 
value_compare value_compel const; 
iterator begin(); 
const_iterator begin() const; 
iterator end(); 
const_iterator end() const; 
reverse_iterator rbegin(); 
const_reverse_iterator rbegin() const; 
reverse_iterator rend(); 
const_reverse_iterator rend() canst; 
bool empty ( ) const; 
size_type size() const; 
size_type max_size() const; 
void swap (multimap<Key , T, Compare>& x); 
iterator insert(const value_type& x); 
iterator insert(iterator position, canst value_type& x); 
void insert 

) ; 

const value_type* first, 
const value_type* last 

void erase(iterator position); 
size_type erase(const key_type& x); 
void erase(iterator first, iterator last); 
iterator find(const key_type& x); 
const_iterator find(const key_type& x) const; 
size_type count(canst key_type& x) const; 
iterator lower_bound(const key_type& x); 
const_iterator lower_bound(const key_type& x) const; 
iterator upper_bound(const key_type& x); 
const_iterator upper_bound(const key_type& x) const; 



} ; 
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pair<iterator, iterator> equal_range(const key_type& x); 
pair<const_iterator, const_iterator> equal_range 

(const key_type& x) const; 

template <class Key, class Compare> 
class set 
{ public: 

typedef Key key_type; 
typedef Key value_type; 
typedef Compare key_compare; 
typedef Compare value_compare; 
typedef rep_type::const_reference reference; 
typedef rep_type: :const_reference const_reference; 
typedef rep_type: :const_iterator iterator; 
typedef rep_type: :const_iterator const_iterator; 
typedef rep_type::const_reverse_iterator 

reverse_iterator; 
typedef rep_type: :const_reverse_iterator 

const_reverse_iterator; 
typedef rep_type::size_type size_type; 
typedef rep_type: : difference_type difference_type; 
set(const Compare& comp = Comparee»~; 
set 
( const value_type* first, 

const value_type* last, 
const Compare& comp = Comparee) 

) ; 
set(const set<Key, Compare>& X); 
set<Key, Compare>& operator=(const set<Key, Compare>& x); 
key_compare key_compel const; 
value_compare value_comp() const; 
iterator begin() const; 
iterator end() const; 
reverse_iterator rbegin() const; 
reverse_iterator rend() const; 
bool empty() const; 
size_type size() const; 
size_type max_size() const; 
void swap(set<Key, Compare>& x); 
pair<iterator, bool> insert(const value_type& x); 
iterator insert(iterator position, const value_type& x); 
void insert 
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} ; 

) ; 

const value_type* first, 
const value_type* last 

void erase(iterator position); 
size_type erase(const key_type& x); 
void erase(iterator first, iterator last); 
iterator find(const key_type& x) const; 
size_type count(const key_type& x) const; 
iterator lower_bound(const key_type& x) const; 
iterator upper_bound(const key_type& x) const; 
pair<iterator, iterator> equal_range 

(const key_type& x) const; 

template <class Key, class Compare> 
class multiset 
{ public: 

typedef Key key_type; 
typedef Key value_type; 
typedef Compare key_compare; 
typedef Compare value_compare; 
typedef rep_type::const_reference reference; 
typedef rep_type: :const_reference const_reference; 
typedef rep_type: :const_iterator iterator; 
typedef rep_type: :const_iterator const_iteratar; 
typedef rep_type: :const_reverse_iterator 

reverse_iterator; 
typedef rep_type: :const_reverse_iterator 

const_reverse_iterator; 
typedef rep_type::size_type size_type; 
typedef rep_type: : difference_type difference_type; 
multiset(const Compare& comp = Comparee»~; 

multiset 
( const value_type* first, 

const value_type* last, 
const Compare& comp = Comparee) 

) ; 
multiset(const multiset<Key, Compare>& x); 
multiset<Key, Compare>& operator= 

(const multiset<Key, Compare>& x); 
key_compare key_compel const; 
value_compare value_compel const; 
iteratar begin() const; 
iterator end() canst; 
reverse_iterator rbegin() const; 



} ; 

reverse_iterator rend() const; 
bool empty() const; 
size_type size() const; 
size_type max_size() const; 
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void swap (multiset<Key, Compare>& x); 
iterator insert(const value_type& x); 
iterator insert(iterator position, const value_type& x); 
void insert 

) ; 

const value_type* first, 
const value_type* last 

void erase(iterator position); 
size_type erase(const key_type& x); 
void erase(iterator first, iterator last); 
iterator find(const key_type& x) const; 
size_type count(const key_type& x) const; 
iterator lower_bound(const key_type& x) const; 
iterator upper_bound(const key_type& x) const; 
pair<iterator, iterator> equal_range 

(const key_type& x) const; 

A.3 Adaptors 

A.3.1 Container Adaptors 

A.3.1.1 Stack Adaptor 

template <class Container> 
class stack 
{ friend bool operator== 

( const stack<Container>& x, 
const stack<Container>& y 

) ; 
friend bool operator< 
( const stack<Container>& x, 

const stack<Container>& y 
) ; 

public: 
typedef container: :value_type value_type; 
typedef Container: : size_type size_type; 

protected: 
Container c; 
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public: 

} ; 

bool empty() const; 
size_type size() const; 
value_type& tope); 
const value_type& tope) const; 
void push(const value_type& x); 
void pop ( ); 

A.3.1.2 Queue Adaptor 

template <class Container> 
class queue 
{ friend bool operator== 

( const queue<Container>& x, 
const queue<Container>& y 

) ; 
friend bool operator< 
( const queue<Container>& x, 

const queue<Container>& y 
) ; 

public: 
typedef Container: :value_type value_type; 
typedef Container::size_type size_type; 

protected: 
container c; 

public: 

} ; 

bool empty() const; 
size_type size() const; 
value_type& front(); 
const value_type& front() const; 
value_type& back(); 
const value_type& back() const; 
void push(const value_type& x); 
void pop ( ); 

A.3.1.3 Priority Queue Adaptor 

template <class Container, class Compare> 
II Compare = less<Container::value_type> > 
II default argument if available 

class priority_queue 
{ 

public: 
typedef Container: :value_type value_type; 
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typedef Container: : size_type size_type; 
protected: 

Container c; 
Compare comp; 

public: 
priority_queue(const Compare& x = Comparee»~; 
priority_queue 
( const value_type* first, 

const value_type* last, 
const Compare& x = Comparee) 

) ; 

/* If template members are available: 
template <class InputIterator> 
priority_queue 

*/ 

} ; 

( InputIterator first, 
InputIterator last, 
const Compare& x = Comparee) 

) ; 

bool empty() const; 
size_type size() const; 
value_type& tope); 
const value_type& tope) const; 
void push(const value_type& x); 
void pop ( ); 
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