
UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Springer Science+Business Media, LLC

Editors
David Gries

Fred B. Schneider

UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Beidler, Data Structures and Algorithms

Bergin, Data Structure Programming

Brooks, Problem Solving with Fortran 90

Grillmeyer, Exploring Computer Science with Scheme

Jalote, An Integrated Approach to Software Engineering, Second Edition

Kizza, Ethical and Social Issues in the Information Age

Kozen, Automata and Computability

Merritt and Stix, Migrating from Pascal to C++

Pearce, Programming and Meta-Programming in Scheme

Zeigler, Objects and Systems

Joseph Bergi n

Data Structure
Programming

With the Standard Template
Library in C++

With 49 Illustrations

i Springer

Joseph Bergin
Department of Computer Science
Pace University
New York, NY
USA

Series Editors
David Gries
Fred B. Schneider
Department of Computer Science
Cornell University
Upson Hali
Ithaca, NY 14853-7501
USA

On the cover: Cover photo taken by Richard Embery/FPG International LLC.

Library of Congress Cataloging-in-Publication Data
Bergin, Joseph.

Data structure programming : with the standard template library in
C++ I Joseph Bergin.

p. cm. - (Undergraduate texts in computer science)
ISBN 978-1-4612-7223-6 ISBN 978-1-4612-1630-8 (eBook)
DOI 10.1007/978-1-4612-1630-8
1. C++ (Computer program language) 2. Data structures (Computer

science) 3. Standard template Iibrary. 1. Title. II. Series.
QA76.73.CI53B457 1998
005.7'3-dc21 97-45234

Printed on acid-free paper.

© 1998 Springer Science+BusinessMedia New York
Originally published by Springer-Verlag New York, loc. in 1998
Softcover reprint ofthe hardcover Ist edition 1998
AII rights reserved. This work may not be translated or copied in whole or in part without the written permission
of the publisher Springer Science+Business Media, LLC. except for
brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are
not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and
Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Natalie Johnson; manufacturing supervised by Jeffrey Taub.
Photocomposed copy prepared using Springer's svwide style macro.

987654321

ISBN 978-1-4612-7223-6

Preface

In this book we are about to study how data abstraction, and data structures programming
with the Standard Template Library can empower our programs. The Standard Template
Library (STL) was developed at Hewlett-Packard, based on the work of Alexander
Stepanov and others. Libraries similar to this have been developed for other languages
such as Ada and now Java. C++ however, has been special in that the standard for the
language has evolved specifically to support generic programming as seen in the STL.

The Standard Template Library provides a solid basis of fundamental abstract data
types and algorithms that are commonly needed in many software projects. It combines
efficiency of implementation with the safety of compile time type checking of arguments.
Once a student learns to use the library, it will no longer be necessary to rebuild common
data types such as lists and expandable arrays for each new project. The STL provides
these and many others without the compromise in efficiency that is the usual trade-off for
generality.

In many places in this book we shall speak about "the" implementation of the STL.
This is not precisely true as the STL is not defined in terms of an implementation, but in
terms of a specification of behavior and efficiency. Other implementation strategies can be
used than the ones that we detail here, provided that they meet the specification. What we
are actually describing is the so called "reference implementation" of the STL that was re­
veloped at Hewlett-Packard as the library standard was being developed.

Our technique for teaching data structures along with the STL is to develop C++
classes and functions that are similar to, though simpler than the reference implementa­
tion. In some cases our sample implementation does not meet all of the STL require­
ments, and we will point out the serious discrepancies as we go along. It is our belief that
students can learn from working with these simpler implementations and that they will
give appropriate background for examining the actual implementation if that is reemed
necessary. Some of the "simpler" implementations are actually quite sophisticated-more
so than is found in some books intended for this level.

There are some places where, in a sequence of exercises, each depends on the earlier
ones. This is a good place to put a team of students to work implementing different parts
based on prototypes agreed upon as a group.

v i Data Structure Programming with the Standard Template Library in C++

The Standard Template Library

Complete documentation of the STL can be found in the current C++ standards document
(see reference [13] in the Bibliography) and from:

Alexander Stepanov and Meng Lee
http://www.cs.rpi.edul-musserlstl.html
look for doc.ps.gz

The STL code shown in this book is taken from the Hewlett-Packard version of STL
that is used as the basis of many commercial versions of the library. This material is:

Copyright (c) 1994
Hewlett-Packard Company.

Permission to use, copy, modify, distribute and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear
in supporting documentation. Hewlett-Packard Company makes no
representations about the suitability of this software for any
purpose. It is provided "as is" without express or implied warranty.

Reference versions of the STL may be obtained over the internet from David Musser
at address

ftp://ftp.cs.rpi.edulpub/stl/
or from Hewlett-Packard at ftp://butler.hpl.hp.comlstll

The software written specifically for this book may be obtained from
http://csis.pace.edul-berginlstl

Acknowledgments

Carroll Zahn showed me the alternate representation of lists discussed in Chapter 7. David
Musser answered many questions by email concerning the state of the standard. Hewlett
Packard and Silicon Graphics provided interesting implementations of the standard that are
worthy of study.

Dedication

To my teachers,
my colleagues,
and my students.

Preface vii

Joseph Bergin
Pace University
New York City

Contents

Preface v

The Standard Template Library... vi

Acknowledgments... vi

I>edication.. vii

Chapter 1. Data Structures and Algorithms 1
1.1 Data Abstraction and Encapsulation

1.2 Classes, Data Abstraction, Encapsulation, and

Infonnation Hiding... 3

1.3 Derived Classes. Object Orientation... 11

1.4 Templates... 13

1.5 Which Data Abstractions Are Useful? .. 18

1.6 Abstractions Provided by the STL... 20

1.7 Summary ... 22

1.8 Exercises.. 23

Chapter 2. Programming with Arrays and Pointers 27
2.1 Arrays.. 27

2.1.1 An Example. A Guessing Game.. 28
2.1.2 Another Example. Array of Objects 29

2.2 Pointers and Arrays.. 30

2.3 Pointer Arithmetic........................... .. 33

2.4 Arrays with More than One Dimension.. 35

2.5 Putting It Together. An Application.. 37

2.6 How the STL Generalizes Arrays and Pointers................................... 38

2.7 Some Common Problems. Searching and Sorting.............................. 39
2.7.1 Linear Search in Arrays 39

x Data Structure Programming with the Standard Template Library in C++

2.7.2 Selection Sort.. 40
2.7.3 Binary Search .. 46
2.7.4 Quicksort.. 47
2.7.5 The Efficiency o/These Algorithms..................................... 50

2.8 Using Arrays with the STL......... 54

2.9 Another Example. A Simple Database... 55

2.1 0 Arrays That Contain Pointers... 58

2.11 Another Use for Pointers-Lists................ 59

2.12 Summary.. 59

2.13 Exercises.. 60

Chapter 3. Overview of Container Mechanisms 65
3.1 Storage Mechanisms............. 65

3.2 Dense Storage ... 65

3.3 An Extended Example Part 1: The Array Stack 66

3.4 Linked Storage 75

3.5 An Extended Example Part 2: The Linked Stack................................. 81

3.6 Tree Storage............... 88

3.7 Graph Storage ... 91

3.8 Hashed Storage.. 91

3.9 Indexed Storage.. 93

3.10 Summary.. 95

3.11 Exercises .. 95

Chapter 4. Overview of the Standard Template Library 99
4.1 Components of the STL.. 99

4.2 A Motivating Example: A Spell Checker ... 101

4.3 Containers.. 108
4.3.1 Sequence Containers .. '" 110
4.3.2 More on the Spell Checker... 111
4.3.3 Sorted Associative Containers... 113
4.3.4 Rebuilding the Spelling Dictionary as a Set 115

4.4 lterators.. 117
4.4.1 Forward [terators .. 119
4.4.2 Bidirectional [terators .. 119
4.4.3 Random Access [terators .. 120
4.4.4 Input [terators .. 121
4.4.5 Output [terators... 121
4.4.6 [stream and Ostream [terators .. 122

Contents xi

4.5 Generic Algorithms.. 123
4.5.1 Minimum and Maximum Algorithms 124
4.5.2 Generalized Numeric Algorithms ... 125
4.5.3 Nonmutating Sequence Operations....................................... 127
4.5.4 Mutating Sequence Operations .. 129
4.5.5 Sorting Related Operations... 132
4.5.6 Set Operations on Sorted Structures 135
4.5.7 Heap Operations... 137
4.5.8 Lexicographical Compare Operations...................... 138
4.5.9 Permutation Generation Operations...................................... 138
4.5.10 Miscellaneous Additional Operations 138

4.6 Function Objects... 139
4.6.1 Arithmetic Operations... 140
4.6.2 Comparison Operations... 140
4.6.3 Logical Operations ... 140

4.7 Adaptors... 141
4.7.1 Function Adaptors .. 141
4.7.2 Container Adaptors... 141
4.7.3lterator Adaptors... 143

4.8 Allocators... 144

4.9 Summary ... 145

4.10 Exercises.. 145

Chapter 5. Vector Programming 147
5.1 Vectors-Expandable Arrays .. 147

5.2 The Indexing Problem... 148

5.3 How We Can Implement Vectors.. 150

5.4 Memory Management... 154

5.5 Adding to the Functionality of ExpandableArrays............................... 156

5.6 Programming with Expandable Arrays ... 158

5.7 Building a Stack Adaptor... 161

5.8 The STL vector Template.. 163

5.9 A Graph Implemented with STL vectors... 168

5.10 Summary.. 175

5.11 Exercises 175

Chapter 6. Dequeue Programming 179
6.1 Queues and Double-Ended Queues... 179

6.2 Implementing a Dequeue... 180
6.3 A Simple deque Example.. 182

xii Data Structure Programming with the Standard Template Library in C++

6.4 The deque Interface... 183

6.5 Efficiency of deque .. 184

6.6 More on Container Adaptors-The queue Adaptor............................ 184

6.7 Priority Queues and Heaps... 186
6.7.1 Heaps... 186
6.7.2 Priority Queues.. 190

6.8 STL Generic Algorithms-Searching and Sorting.............................. 192
6.8.1 Generalized Searching... 192
6.8.2 Sorting... 196
6.8.3 Searching Sorted Containers... 199

6.9 Median and Other Order Statistics.. 202

6.10 Merging... 206

6.11 Summary.. 208

6.12 Exercises.. 209

Chapter 7. Lists 211
7.1. Implementation Strategies of STL Lists.. 211

7.2. Properties of STL Lists.. 213

7.3 A Simple Implementation of Circular Lists 215
7.3.1 Sorting a List.. 219
7.3.2 Recursive List Operations .. 220
7.3.3 Some Difficulties with This Implementation......................... 222

7.4 An Alternate Implementation of Lists.. 222

7.5 The Iterator Invalidation Problem and Its Solution.............................. 227

7.6 Techniques for STL Lists.. 230
7.6.1 Finding an Item in a Sorted List.. 231
7.6.2 Inserting into a Sorted List... 231
7.6.3 Applying an Arbitrary Function to Each Element of a List....... 232
7.6.4 Splicing Lists....................... 233
7.6.5 Merging Sorted Lists 234
7.6.6 Reversing a List... 234
7.6.7 Building a Spelling Dictionary........ 234
7.6.8 A Merge Sort Suitable for Lists.. 235

7.7 Summary ... 236

7.8 Exercises.. 236

Chapter 8. Sets, Maps, Muitisets, and MuitiMaps 239
8.1 Sequential Versus Sorted Containers.. 239

8.2 Binary Trees.. 240

8.3 Binary Search Trees.. 241

Contents xiii

8.4 Balanced Binary Search Trees.. 242

8.5 2-3-4 Trees ... 242

8.6 Red-Black Trees... 243

8.7 Sets and Multisets.. 246

8.8 Maps and Multimaps.. 250

8.9 An Implementation of Red-Black Trees .. 251

8.10 Summary.. 264

8.11 Exercises.. 264

Chapter 9. Hash Tables 267
9.1. Hashed Associative Containers and the STL..................................... 267

9.2 Simple Hashing-Separate Chaining.. 271

9.3 Simple Hashing-Circular Hashing.. 272

9.4 Variations on Simple Hashing... 274

9.5 Hash Functions.. 275

9.6 Reorganization of a Hash Table ... 277

9.7 Using Hashed Structures ... 279

9.8 Elements of an Implementation.. 280
9.8.1 The Hash Table....... 280
9.8.2 Sets and Maps... 287
9.8.3 Using the Sets and Maps 290

9.9 Design Issues.. 292

9.10 Extending the Standard Template Library.. 292

9.11 Summary.. 293

9.12 Exercises .. 293

Appendix. STL Summary 295
A.1 Algorithms Prototypes... 295

A.l.1 Maximum and Minimum.. 295
A1.2 Generalized Numeric Operations... 296
A.1.3 Nonmutating Sequence Operations...................................... 298
A.1.4 Mutating Sequence Operations... 300
A .1.5 Sorting Related Operations.. 306
A.1.6 Set Operations on Sorted Structures.................................... 310
A/.7 Heap Operations.. 312
A1.8 Lexicographical Compare Operations................................... 314
A1.9 Permutation Generator Operations....................................... 314
A.1.lO Miscellaneous Operations 315

xiv Data Structure Programming with the Standard Template Library in C++

A.2 Containers ... 315
A.2.1 Sequential Containers... 315
A.2.2 Sorted Associative Containers .. 322

A.3 Adaptors.. 327
A.3.1 Container Adaptors .. 327

Bibliography 331

Index 333

Chapter 1
Data Structures and Algorithms

1.1 Data Abstraction and Encapsulation

Niklaus Wirth, the creator of Pascal, Modula-2, and more recently, Oberon, once wrote a
book entitled Data Structures + Algorithms = Programs. A key idea of that book is that
data structures and algorithms must work together to produce a result. Further, the thesis
is proposed that data structures and algorithms must be developed together, and, using
modem languages, should be packaged together as a unit of functionality.

As an example, the built-in floating point types of C++, such as float and double,
come packaged within the language with a set of operations that manipulate them. Opera­
tors such as operatoH and operator< are intrinsically bound to and indispensable from the
values on which they operate. One of the great strengths of the C++ language is that it
permits the programmer to create data types and bind them to operations so that they op­
erate with all of the ease and power of the built-in types.

The idea of a data abstraction has three parts. First there is a set of values to be ma­
nipulated. The internal structure of these values is not of interest and may be hidden from
users. For example, the internal representation of the data type double is only infrequently
of interest to the programmer. These values are taken as atomic, or indivisible. The sec­
ond part of the definition of a data abstraction is a set of operations that manipulate the
values. The internal workings of the algorithms is also not of interest to the user, only
the specified results that the operations promise to provide. Again, the internal operations
of operator* are not as important to the user of doubles as the fact that the operator ap­
proximates the true mathematical result of a multiplication. The third element of a data
abstraction is a set of rules that define the operation of the operators. An example here
would be a specification that sets out the limits of the approximation of the multiplica­
tion of two doubles.

Question: What are all of the operators that C++ provides for type double?

The process of packaging the data and the operations of a data abstraction together into
a single unit is called encapsulation. Most modem computer languages provide some
means of encapsulation. Object-oriented programming employs one kind of encapsula-

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998

2 Data Structure Programming with the Standard Template Library in C++

tion; namely that of packaging up the data and the operations that manipulate it into ob­
jects. These objects communicate with each other at run time by requesting the execution
of operations of one another.

One sort of data abstraction that is often of use in programming is that of a set. A set
is a container of values of some kind. As a container we need to insert values into it am
to check if a given value is stored. We also need operations for common set functions
such as union and intersection. The computer representation of the set values is not of
particular importance as long as it is adequate to support the specifications of the opera­
tions. Some representations won't do, however, since one of the specifications of an op­
eration will probably involve the speed with which an operation can be carried out. Some
representations will not be sufficiently efficient to support this part of the specification.
To be specific, we might want to specify that deletion from the set be achievable in con­
stant time, independent of the size of the set. We might desire this to be true if the use of
the set is within a program in which deletions must be done frequently. This requirement
might greatly restrict what implementations we might choose, but if the specifications
can be met, the user does not need to be aware of the details of the implementation. For
example, an implementation that required that each item in the set be examined to fmd the
one to be deleted would not be suitable if deletions must be done in constant time.

There are lots of categories of users, of course. The user of a spreadsheet program is,
perhaps, not especially aware of the details of computer programming, and may have little
interest in how a logarithm is implemented, or even that a power function is implemented
using logs. Most software, however, is written to be used by other programmers. This is
because most software is built by more than one person in a team. Most of the program­
mers are providing components to be used by other programmers to build the overall
product. Most of the time we will use the term user for another programmer who must
use the products of a programmer in his or her own work.

In fact, it is desirable that the user of sets not be aware of the implementation of either
the values or the operations. This will be especially true if the set abstraction is to be
used in a very large project developed by many people, even more if the set data type is to
be used in several projects over a long span of time. The reason for this is the inevitabil­
ity of change. Problems change over time and software must be built in such a way as to
permit changes to the programs themselves. The main difficulty in exposing the details of
an implementation to a user is that of coupling. When a user knows the details of an im­
plementation, he or she may somehow take advantage of those details. If these details
change, as they probably will, then the software built subsequently will also need to be
modified. This is very undesirable. We should be able to build programs out of independ­
ent parts, so that replacing one part with a functionally equivalent part will not require
modification of the parts that depend on it. This can be achieved only if the details are ef­
fectively hidden from users.

An analogy can be made here with hardware integrated circuits (ICs). Engineers build
electronic equipment from off-the-shelf components based on the specifications of the
signals that can be expected on the various pins of the IC. The internal wiring of the cir­
cuit is not of importance, only the overall effect as presented to the external interface,
namely the pins. This greatly decreases the complexity of design, and increases its modu­
larity.

Chapter 1. Data Structures and Algorithms 3

This de coupling of the parts of a software project can be enhanced if the details are ac­
tually hidden from other programmers so that they can be manipulated only by the opera­
tions provided. This is called information hiding and is an important feature of modem
computer languages.

In C++ we would build a set data abstraction by encapsulating the details within a Set
class. The public members of the class would be the operations on our sets, and the pri­
vate members would be the implementation details. The users of our abstraction would
use the class to create objects of type Set and would manipulate the sets by requesting
execution of the operations such as union and intersection. We will take up the details of
classes later in this chapter and the details of sets in a later chapter.

Since sets need to be able to store different kinds of things, and since it is not very
productive to define a set as containing only a single kind of thing (int set, or float set),
we would like to be able to define our set abstraction independent of the type to be con­
tained therein. In C++ we may use templates to provide parameters to our abstractions, so
that they may be specialized when used and do not need to be rewritten for each different
use.

The Standard Template Library (STL) is one of the standardized components of the
C++ language. It provides a large set of data abstractions such as set, list, and stack that
have proved useful in many different kinds of applications. These abstractions are all pre­
sented as templates so that they may be specialized in many ways when needed by users
(other programmers) without being modified. The STL also has a large number of algo­
rithms for manipulating the provided abstractions using techniques of proven efficiency
and generality.

1.2 Classes, Data Abstraction, Encapsulation, and Information
Hiding

The main means of encapsulation in C++ is the class, which evolved from the C struct or
the Pascal record idea. The main difference between classes and more primitive records is
that classes also define functional elements as well as data elements. Thus we have
Wirth's Data Structures + Algorithms. In C++, classes are types. Values with a class
type are called objects. Since a class defines both data and functional elements, each object
has both data and functional elements. Therefore, instead of the data being treated as pas­
sive, to be acted on by functions, the data (i.e., objects) are treated as active since they
have functional parts.

Here is a very simple class that encapsulates the idea of a die. Dice usually come in
pairs, but we shall implement only a single die. Most dice are small cubes with a differ­
ent number of spots on each face. They are used in board games to generate player moves.
We will use a die to generate random values that we will store in some data structures
seen later so that we may test those structures. First we present the class declaration,
which defines what functions are available for use in a Die. The class declaration also
shows the variables that are used to implement a Die.

4 Data Structure Programming with the Standard Template Library in C++

class Die
{ public:

Die(unsigned int faces 6);

int roll ();
static void randomize(int seed 0);

private:
unsigned int _faces;

} ;

The class is divided into public and private sections. The private section here contains
only a member variable jaces. We intend to be able to create dice with any number of
faces: even physically impossible numbers of faces. The public part contains a construc­
tor Die(int) and two member functions: rollO and randomize(int). Function randomize is
marked static. The constructor will automatically be called whenever we create a new Die
object. It just sets the _faces variable to its parameter. We provide a default value of 6 for
this parameter, so that the user can create a standard six-sided die by creating a Die but
without giving any parameter. For example,

Die standard;
Die special(12);

II Creates a 6 sided die.
II Creates a 12 sided die.

The definition of the constructor follows. Notice how the member variable is initial­
ized between the parameter list and the (empty) statement part.

Die::Die(unsigned int faces)
_faces (faces)

{
}

To roll a die, we call the standard function randO that is exported from <stdlib.h>. We
take the remainder modulo the number of faces, which gives a number between 0 arxl
jaces - 1. We finally add one to this result and return it.

int Die: : roll ()
{ return rand() % _faces + 1;
}

The way that randO works, each time we re run our program we will get exactly the
same random numbers. This is useful while testing, but if we really want random num­
bers, then we must seed the random number generator. We do this by calling the function
srand(int). This is the purpose of the randomize member function. We randomize with the
user's parameter, or, if that is zero, we use the system clock to give us a seed. The type
time_t and the function timeO are exported by interface <time.h>.

Chapter 1. Data Structures and Algorithms 5

void Die: :randomize{int seed)
{ if (seed == 0)

};

{ time_t now = time (NULL) ;
srand{now % 32763);

}
else

srand (seed) ;

Each Die object will contain a jaces variable and will have access to a rollO function.
Once we create a Die object named standard, we can roll it with standard. roll (), as
in

cout « standard.roll{);
cout « special.roll{);

The constructor and the static function are not available in the same way. Constructors
are called implicitly when we declare variables of class type. Static member functions are
not part of the objects of the class, but part of the class itself. If we want to execute the
static randomize function of the Die class, we need to say something like

Die:: randomize () ;

What follows is the definition of a StopWatch class that we shall use to empirically
determine the running time of certain algorithms. The class depends on a built-in interface
<time.h> that comes with C++. The StopWatch class is user-defined and can be found in
the interface StopWatch.h.

class stopwatch
{ public:

StopWatch () ;
II Start a new timer at system
II reference time
II (UNIX and pc: GMT 0:0:0 Jan 1 1970)
II (Macintosh: Midnight Jan 1 1904)
II The resolution is one second.

stopWatch (const StopWatch &d);
-StopWatch {);
StopWatch & operator =

(const StopWatch &d);
time_t start {);

II Returns the absolute time of start.

time_t stop {);

6 Data Structure Programming with the Standard Template Library in C++

} ;

II Returns the absolute time of stop.

time_t mark () ;
II Returns the absolute time of mark.
II Prints (cout) the elapsed time
II (seconds) since start
II and the elapsed time since last
II mark.

void reset () ;
II Resets all times to system reference
I I time.

private:
time_t _startTime;
time_t _markTime;
time_t _stopTime;

Every class has a name and a feature list. The features, called members, may be either
variables, such as _startTime, or functions, such as stop (). Each object created
from this type definition will have all of these features.

Some of the features are declared public and some private. The public members
are accessible to other program sections. The private members are available only within
the code of this class. Here all of the variable members are private, which is the usual
case, and all of the functions are public, which is common, but not universal. This visi­
bility control is up to the creator of the class. Thus, within a class, we see both encapsu­
lation and information hiding.

Some of the class features are special in a number of ways. Here we have two con­
structors, which are functional members that have the same name as the class. We also
have a destructor, that has the name of the class preceded by the "-" character and no pa­
rameters. Constructors are not contained within the objects, but are used to create the ob­
jects themselves. When we include a constructor in a class, we provide the means of ini­
tialization for objects so that each object we use will always be in a consistent internal
state. This construction by a member of the class is needed since it is the data members
that need to be initialized, but they are private and not accessible to client code, including
the main function that drives our computation.

Note that some of the parameters of member functions are marked const. This simply
means that the function will not attempt to modify them. It will then be possible to pass
constants as well as variables for the real parameters (arguments) when the functions are
called.

This class illustrates the standard idiom of C++ encapsulation by providing two con­
structors, a destructor, and an assignment operator. This class is actually too simple to re­
quire all of this. They would be required if the class managed any dynamic memory. If the
user does not provide them, then standard versions will be provided by the compiler.

Chapter 1. Data Structures and Algorithms 7

Here we have two constructors. The first has no parameters, and constructs a Stop­
Watch from standard values-here the system clock. The second constructs one Stop­
Watch as a copy of another. The constructor with no parameters is called a default con­
structor and is needed by the C++ system as well as by users. If no constructor is
provided by the programmer, then C++ will provide a default constructor. The constructor
that copies an object of the same type is called a copy constructor, and it will also be
provided if the user provides no constructors at all. The copy constructor is needed by the
system whenever we call a function and attempt to pass a StopWatch object as an argu­
ment. The provided copy constructor just copies the individual fields from one object to
another. The provided default constructor merely gives default values to contained objects.

Destructors are called automatically by the C++ system when an object is no longer
available. They provide the means for a programmer to specify clean up processing done
when an object is destroyed. When you declare a StopWatch object as a local variable
within a function, the variable has a lifetime that is the same as the running time of the
function. When the function returns, all of its local data cease to be. The system will call
destructors on all of your local objects at this time. Objects created on the free store using
operator new, and objects declared to be static are handled differently, as will be seen later.
The system will provide a destructor if the programmer does not, though this provided de­
structor will take no actions other than to call destructors of any other objects that are
contained within the one being destroyed. This will be the case if one object has members
of class type.

The StopWatch class also defines a new version of the assignment operator,
operator=, so that the programmer can specify what will happen when one StopWatch
object is assigned to a StopWatch variable. This ability to give operators new meanings
for new kinds of data is what makes it possible for C++ objects to behave just as built-in
values do. We could, for example, provide a difference function representing the (last mark
time) difference between two StopWatch objects. We could use operator- to imple­
ment this operation. The system will always provide operator= if the programmer does
not. It provides for memberwise assignment of the members of the object.

Most of the operators of C++ may be given new meanings. This mechanism is called
operator overloading. One small weakness of the implementation of operator overloading
in C++ is that it is not possible to change the precedence or associativity of the operators
when giving a new version. In particular operator= has relatively low precedence and it as­
sociates from the right. All overloaded versions of this operator will behave in the same
way.

In the above class declaration, we have omitted the definitions of the member func­
tions. Some programmers prefer to include these definitions with the classes themselves
and others prefer to list them separately in an implementation file. For example, in the
separate file StopWatch.cpp, we have

StopWatch: :StopWatch()
_startTime(O),
_markTime(O),
_stopTime(O)

8 Data Structure Programming with the Standard Template Library in C++

{
}

time_t StopWatch::stop()
{ _stopTime = time(NULL)i

return _stopTimei
}

When defining member functions, constructors, and destructors separately, we must
give the class name as part of the definition, using the scope resolution operator: : as
well.

We create a new StopWatch object by using the name of the class as a type in the
usual way. The constructor will be called as part of the execution of this object creation.

StopWatch myWatchi

We operate on an object by sending it a message consisting of the name of one of its
member functions and any needed parameters. The result of the message will be the result
of calling the member function:

time_t now = myWatch.start()i

Philosophically, we treat the execution of one of the member functions as if it were
executed by the object itself acting as if it were a computer. Therefore, we say that my­
Watch receives the start message and executes the start member function, returning the
start time to the message sender. Thus we think of the sender of a message as a client, and
the object that receives the message as a server that provides information to the client.

Destructors are not called directly. The system sees to their execution when an object
ceases to exist. Objects that are local to a function are destroyed when the function exits.
Static objects are destroyed when the program terminates. Finally, objects created on the
heap are destroyed when the user uses the delete operator.

If we look back at the constructor definition above, we see that the member variables
of the class are initialized in a special section, outside the statement part, introduced by a
colon symbol. We give the name of a member variable and, in parentheses, the values
that we want it to have. This initialization syntax is used only in constructors.

Another thing to keep in mind when defining classes is that if you don't include a
public section, then everything is automatically private. This is rarely, though occasion­
ally, useful. As a point of style, we name classes with capitalized words, member func­
tions starting with a lowercase letter, and member variables beginning with an initial un­
derscore character. This particular style isn't necessary, though it does make it easier to
see what things are when reading code. Some style is very important to the readability of
your programs. The standard template library itself uses a different capitalization conven­
tion. There, the class names are not capitalized, just as the built-in type names of C++

Chapter I. Data Structures and Algorithms 9

are not capitalized. We also use a style in which all grouping symbols such as "{" and "r'
either line up horizontally on the same line or vertically.

Exercise. Examine the rest of the code of the StopWatch class provided with the code
that came with this book. Devise a test of the code and run it. One way to do this is to
take a program you have written previously and "instrument" it with one or more Stop­
Watches to time its behavior. You will need to include StopWatch.h, of course, and link
to StopWatch.cpp.

Here is another class that we shall use in future chapters. Class CountedInt defines
very simple objects that merely keep a value that remembers the order of creation of ob­
jects of the class. This class contains a static data member c. Such a variable is not a
member of each object of the class, as there is only one such variable for the entire class
and all objects in the class have access to it. Notice that such a member must be initial­
ized outside the class but at the global level. The scope resolution operator "::" must be
used to access c. Static data is also called shared data, since it is shared among objects
within a class. In this example, we have included the definitions of the member functions
and constructors within the class itself.

class Countedlnt
{ pUblic:

Countedlnt(int x 0)
_order(c++),
_value (x)

{
}

Countedlnt(const Countedlnt& count)
_order (c++) ,

{
}

_value (count._value)

Countedlnt& operator=
(const Countedlnt& count)

{ if(this!= &count)

}

{ _value = count._value;
}

return *this;

int getValue()const{ return _value;}

void setValue(int v){ _value = v;}

1 0 Data Structure Programming with the Standard Template Library in C++

} ;

int getOrder()const{ return _order;}

private:
int _value;
int _order;
static int c;

int CountedInt::c = 0;
II Initialize c from class CountedInt.

This class shows additional features as well. First, it is possible to give default values
to parameters of functions in C++, including member functions. Here we have given the
constructor CountedInt(int) a default parameter value of O. This means that if we use the
constructor and don't give an argument, then the value 0 will be assumed for x. This also
means that this constructor serves as a default constructor, since it may be called without
arguments.

Within the assignment operator=, we have used the reserved term this. Variable
this is a pointer variable that points to the object that received the message that caused
this code to be executed. It stands for the object in control of the computer at that time.
The assignment operator = is treated as a message to the object on the lefthand side of op­
erator =, with the object on the righthand side treated as a parameter. Here we check to see
if this is the same object as count, by comparing this to the address at which count oc­
curs. If they are the same, then this isn't really the assignment of a different object, so we
do nothing. Otherwise we make the object known as this a copy of the parameter ob­
ject. But since the assignment does not result in a new object (we had two objects before
the assignment and we have two objects when we are done), we don't give a new value to
the _order member variable. It retains the value that it had. The return statement returns
the object to which the variable this points. Pointers and addresses will be taken up in
detail in the next chapter.

Also note that two of the member functions are marked const by including this re­
served word after the parameter list. This means that the member function will not try to
modify the object this. In other words, it won't directly or indirectly modify any of the
member variables of this class.

The copy constructor also illustrates that private features of a class are not private to
the objects in the class only. They are really private to the member functions of the class.
Therefore, within the class we may refer to the _value and _order members of any of the
objects of the class, including those of the parameter object named count.

Exercise. Test the above class. Make certain that you have tested all constructors aOO
member functions. Is it possible to modify the member variable _value from main?

Chapter 1. Data Structures and Algorithms 11

1.3 Derived Classes. Object Orientation

In C++, one class can be derived from another, called the base. The meaning of this is
that the derived class has all of the public features of the base class and may a&:l additional
features. We say that the derived class inherits the features of the base. The derived class
can also give new procedure bodies to any of the member functions of the base class. This
is not exactly the same as overloading, in which we have several functions in a class with
the same name but different parameters. Here we have only a single function in different
classes with the same parameters, but different implementations in the base and in the 00-
rived class. This is called overriding.

For example, suppose that we are building a spreadsheet program. We will use some
container to hold the individual spreadsheet cells. It might be advantageous to (a) define
the cells as a class, and (b) make the container hold pointers to this class. The cell class
can define properties common to all spreadsheet cells, such as a getValue function. We
can then derive additional classes from this cell class for the different kinds of cells in the
spreadsheet. Some cells hold just a numeric value (NumericCell) and some hold a formula
to be evaluated (FormulaCell). Each of these classes will define its own version of get­
Value. The spreadsheet can then hold pointers to any of these specialized cells.

class SpreadsheetCell
{ public:

SpreadsheetCell(...);
double getValue();

class NumericCell: public SpreadsheetCell
{ pUblic:

}

NumericCell(...);
double getValue();

class FormulaCell: public SpreadsheetCell
{ public:

}

FormulaCell(...);
double getValue();

Notice that we declare the base class of a new derived class after a colon. We also
make the inheritance public. This means that a client of the NumericCell class, for exam­
ple, will be able to utilize features of the SpreadSheetCell class as well. Inheritance can
also be private, though it is seldom used.

12 Data Structure Programming with the Standard Template Library in C++

Derived classes do not have access to private members of their base classes. Some­
times it is desirable to give derived classes access to some features that are not publicly
visible. C++ provides an additional level of visibility control called protected. A protected
member is visible to its own class and to any derived class. Some programmers make the
implementation variables of a class protected. Others prefer to leave them private and to
provide access functions to them. These access functions may be public or protected as
necessary, depending on the specific needs. This latter method lessens the likelihood that a
change in one class will necessitate a change in another class, even a derived class. For
example, each cell of a spreadsheet has some format that is independent of whether the
cell is numeric or formula. Assuming that we also have a Format type defined, we might
have something like the following in our SpreadSheetCell class:

class SpreadsheetCell
{ public:

}

SpreadsheetCell(...);
double getValue();

protected:
Format getFormat();
void setFormat(Format newFormat);

private:
Format _format;

class NumericCell: public SpreadsheetCell
{ public:

}

NumericCell(...);
double getValue();

class FormulaCell: public SpreadsheetCell
{ public:

}

FormulaCell(...);
double getValue();

The derived classes will have access to getFormatO and setFormatO. This means that
the member functions of these derived classes may call the protected functions, and may
directly refer to protected variables if there are any. The ordinary clients of the cells will
not have such access.

The best way to use inheritance is to conceptualize relationships between different
kinds of data in your program. If one kind of data seems to be a specialization of another
kind, then the more specialized kind is a good candidate for a derived class and the more

Chapter 1. Data Structures and Algorithms 13

generalized kind a good choice for its base class. Inheritance models specialization well
and other relationships poorly. In particular, it models part relationships badly. An auto­
mobile is made up of parts: body, frame, engine, wheels, and so on. We don't use inheri­
tance to model this relationship, however, but member variables. An Automobile object
has a body member, a frame member, etc. On the other hand, there are different kinds of
automobile engines. It might make sense to have a base class Engine, with derived
classes for HighPerformanceEngine, Diesel Engine, and whatever other kinds are neces­
sary.

The Standard Template Library does not depend heavily on object-oriented features of
C++. Relatively little inheritance is involved in this library. In contrast, other libraries
use inheritance extensively, some to the extent that every class is derived from a common
base class. Some other object-oriented languages (Smalltalk, Modula-3, Java) make this a
requirement, in fact.

Exercise. Suppose in a software library we needed both an Integer class and a Fraction
class. Is either of these a good candidate for a base class of the other? Explain your answer
thoroughly. Consider both the concepts involved and the use of the classes.

1.4 Templates

Templates are another important means of providing abstractions in C++. They permit us
to define entire collections of functions or classes at once and then tailor them for use as
needed. The STL depends fundamentally on this facility, as you can guess from the name.
The basic idea of templates is that they allow us to write functions and classes in a very
general way and then specialize them when they are actually put to use.

In C++ there are two different kinds of templates: function templates and class tem­
plates. Function templates are used when the same algorithm can be applied to different
kinds of arguments. Class templates are used when the same class structure can utilize dif­
ferent types in the same way.

The most commonly seen example of a function template is one that defines the algo­
rithm for swapping the values of two variables. As an ordinary function, if we want to
swap the values in two integer variables we would write the following:

void swap(int& a, int& b)
{ int temp = ai

a bi
b = tempi

}

We desire to generalize this, of course, since exactly the same algorithm works for
floats, or indeed any assignable data types. We can do so with a function template as fol­
lows:

14 Data Structure Programming with the Standard Template Library in c++

template <class T>
void swap(T& a, T& b)
{ T temp = a;

a b;
b = temp;

}

To define this template we have done two things. We replaced all occurrences of the
type int with a template parameter symbol T, and we indicated that we wanted a function
template instead of a function by including the template preamble to the function defini­
tion. In this context, the template parameter T is defined in angle brackets, "<" and ">,"
and it is preceded by the word class. This use of class is not related to classes as defined
above, but simply means that the parameter is required to be a type.

A function template defines a family of functions, one for each possible set of values
of the parameters. Yes, you can have several parameters. We use such a function template
simply by calling one or more of the functions that it defines. For example,

int x = 5, Y = 3;
swap(x, y);
float r = 5.2, s = 1.1;
swap(r, s);

The system will create two different functions for us using the function template.
These template functions will be able to swap ints and floats respectively. The function
template mechanism is a function factory facility, since it creates functions as needed.

Class templates are used when we write one class that must depend on another type,
but that other might be different for different uses. For example, a set needs to contain ob­
jects of some kind, but what kind is of little importance when we define what we mean
by a seL Therefore, instead of defining set as a class, it would be better to define it as a
class template, and let the user decide what kind of object should be put into his or her
sets.

Extending the example above, in which we built a class of counted ints, there was no
reason that we needed to restrict ourselves to type int. We could instead have provided a
class template so that we could count creations in any kind of values. Consider how we
do this. First we come up with a name: CountedValue. Then we decide on a name for our
parameter: V. Then we replace all occurrences of int that refer to the value collected, by
the parameter V and precede the whole by a template preamble. We will have a few diffi­
culties in this particular case.

template <class V>
class CountedValue
{ public:

CountedValue(V x)
_order (c++) ,
_value(x)

} ;

{
}

Chapter 1. Data Structures and Algorithms 15

CountedValue(const CountedValue& count)
{ _order c++;

_value = count._value;

CountedValue& operator=
(const CountedValue& count)

{ if(this!= &count)

}

{ _value = count._value;
}

return *this;

V getValue()const{ return _value;}

void setValue(V v){ _value = v;}

int getorder()const{ return _order;}

private:
V _value;
int _order;
static int c;

The first difficulty is that it is harder to give default values to parameters here, since
we don't know their types when we write the template. One possibility is to use VO as
the default value, as this syntax will construct a default value of type V, provided that V
is a type that provides a default constructor.

To use a class template, the user must explicitly give a value to the template parame­
ter. For example,

CountedValue<int> cvi (5);
CountedValue<double> cvd (4.1);

will define a new counted integer value and a counted double. Note that these objects are
from two different classes. A class template creates classes. The template mechanism for
classes is a type manufacturing facility.

The second difficulty concerns the initialization of static data, such as our variable c.
We can't provide for this in general, as we don't have template variables. We need to ex­
plicitly initialize these values for each class that we intend to instantiate. This must be

1 6 Data Structure Programming with the Standard Template Library in C++

done before we can execute the above definitions of cvi and cvd. Since the static variable
is private, this initialization must be done at the global level, outside of any function:

int CountedValue<int>: :c = 0;
int CountedValue<double>: :c = 0;

This is not much of a problem in practice, as static members are quite rare in C++.
What types may be substituted for template parameters? C++ does not in itself place

any restriction on the type that may be used to instantiate a class template. However, the
code of the template itself may place restrictions. Some of these restrictions don't look
like restrictions at all until you really understand the working of C++, and especially its
constructors and operator structure. For example, in the template CountedValue, the pa­
rameter V appears once as the type of a parameter. This means that we may pass such a
value, which requires the presence of a copy constructor. If we attempt to instantiate
CountedValue with a type that does not support copy construction, then we will fail,
with a compiler message. All of the built-in types do support copying and most user­
defined classes will also. Some classes purposely fail to provide this mechanism. Such
classes can't be used with our CountedValue template.

Question. What other restrictions do we impose on type V in the CountedValue tem­
plate?

It is very important to realize and remember that C++ templates impose restrictions
on template parameters only through use of those parameters. This is very different from
the types given to function parameters in which the restriction is made by the type sys­
tem and not by the uses to which the parameter is put. So, when we define a function ard
say that one of its parameters must be of type int, then no values are possible except int
values (and those compatible with int)o The restriction on the parameter is not there be­
cause we happen to use an int operation, but because the declaration itself imposes it.
This is not the case with template parameters.

It is possible to define class templates (but not function templates) in which the pa­
rameters are values rather than types. One example simulates Pascal's range type. A range
is an integer value (more generalized in Pascal, actually) that has legal values only in
some fixed range, such as the integers between 10 and 20, inclusive. We can give the
Low and High bounds of the range as template parameters. We present an excerpt from
this class template here:

template <int LoW, int High>
class Range
{ public:

Range(int v = Low)
_value (v)

{ if(Low > High)
userERROR("Illegal Range type. ");

if(_value<Low I I _value>High)

Chapter 1. Data Structures and Algorithms 1 7

userERROR("Range error. ");
}

Range<Low, High> & operator
(const int v)

(if(v<Low I I v>High)

}

userERROR (II Range error. II) ;

_value = v;
return *this;

int first() {return Low;}

int last() {return High;}

operator int() II Produce an int
{ return _value;
}

private:
int _value;

}; II Could provide additional operators.

Then a range variable would be created with

Range<10, 20> x = 10;

If the appropriate operators are included, then all changes to the variable can be
checked for the validity of the new values. We can therefore guarantee that x is always
within range.

Newer versions of C++ even permit template parameters to have default values. For
example, we could give the range variable defaults that make them equivalent to ints with
the following:

template <int Low rninint, int High rnaxint>
class Range
{ . . . }

If available, default template parameters apply also to type «class ... » parameters.
The STL depends on this feature, and if it is not present, the STL can be only partially
implemented.

18 Data Structure Programming with the Standard Template Library in C++

There is one special difficulty with using templates, especially if you are a novice.
Since templates are not compiled until they are actually used by a program, it is both dif­
ficult to test a template and difficult to read the error messages produced by compilers
when you make errors in a template definition. To test them correctly, you need to test
every part with a variety of different arguments so that you don't make subtle assump­
tions about the requirements of the template. A minimum test for a template intended to
be used with most (or all) types uses a built-in type such as int, a pointer type such as
char*, and a user-defined struct or class type.

The error message problem is especially frustrating. It is often difficult to decide what
to do when you get an error message in a template. Often the errors are caused by incon­
sistency between the features of the argument type and the needs of the template. For ex­
ample, if a certain operator is applied to a value of the template parameter type within the
template, then that operator must be supplied by the actual argument used to instantiate
the template. It is worth the effort to construct an example in which this is not the case,
so that you see the message that will be produced by your compiler in this situation. For
example, with the following function template:

template <class T>
void junkt(T t) {cout « *ti}

and the instantiation/call

junkt(5) i

one of my compilers flags an error within the template (not the call) that indicates that a
pointer or an array is required. The problem is not in the template, but in the call, how­
ever. Yes, a pointer or array is required to de-reference, but that is obvious. What the
compiler did not do, however, was show me which of possibly several instantiations
(calls), caused the message to occur.

1.5 Which Data Abstractions Are Useful?

The question posed in the title of this section is without a complete answer, as it is lim­
ited only by human ingenuity. Any time we can think of a binding of data and operations,
with rules defining the behavior of the operations, we have a good candidate for a data ab­
straction.

One set of abstractions used frequently today dermes modem computer interfaces: the
so-called GVIs or Graphical User Interfaces. Window is one abstraction in this set. The
data elements derme rectangular regions of a display. The operations open, close, paint,
and move these regions, as well as adorn them with controls. The controls themselves
form another subset of the abstractions of a GUI. The data derme current settings and w­
fault behavior of things like scroll bars or buttons. The operations connect the user's

Chapter 1. Data Structures and Algorithms 19

movements with the mouse to changes in the display. It is not our purpose in this book
to take up the details of such data abstractions.

Another class of abstractions define numeric objects of various kinds. for example, int
and float are built-in data abstractions in c++ as well as in many other languages. A user­
defmed abstraction could be built to define rational numbers (fractions) made up of a nu­
merator and a denominator. Another could defme complex numbers with real and imagi­
nary parts. Here the operations would be mostly arithmetic. We would want operator+ and
operator<, for example.

Similar to this, and very useful in C++, is a String abstraction, that makes manipula­
tion of character strings less error-prone and more convenient than is possible when using
char* values. For example, we could overload operator+ to provide a string catenation op­
eration, as is done with the built-in string class of C++.

Some abstractions come from the problem domain in which we happen to be work­
ing. For example, a game programmer might want an abstraction of a game board. This
abstraction would allow for user pieces to be moved according to rules of the game. A
programmer developing medical systems might attempt to build an abstraction of an
automated pharmacy that would dispense drugs based on symptoms of patients. In the air­
craft industry, programmers use abstractions of aircraft flight surfaces and behaviors.
These kind of abstractions are quite specialized to a single industry, or even to a single
project.

One very useful class of data abstractions is that of containers. A container contains
values of some kind, or references (actually pointers) to values of some kind. An example
of a container is a set. Another kind of container is a list. The difference between a set aJXl
a list is that a list imposes a physical, though not necessarily a logical, ordering on the
elements that it contains. A set imposes nothing on the values it contains other than the
fact of containment. We have a lot to say about containers, as they are one major compo­
nent of the Standard Template Library. In some other libraries, containers are called col­
lections-they collect values. It turns out that containers are closely related to other data
abstractions called iterators. Iterators are used to refer to the individual elements of con­
tainers and to provide the means of applying operations to the contents of containers.
Think of some numbers written on a blackboard at the front of a room as being a con­
tainer. Think of sitting a few feet away with a laser pointer (a finely focused light beam)
that you can use to point to anyone of the numbers. You can point to only one at a
time, but you can easily move the pointer from number to number. To add up all the
numbers, you could start with a running sum of zero and then point to each of the num­
bers in tum, adding that number to the running sum. When you had visited (iterated over)
each of the elements exactly once, you would have the sum. Yes, iterators do something
like what is done with integers and for loops. That similarity is part of the design of itera­
tors.

20 Data Structure Programming with the Standard Template Library in C++

1.6 Abstractions Provided by the STL

The data abstractions provided by the Standard Template Library fall into several catego­
ries. First there are the container classes and their iterators. The algorithms that manipu­
late containers are a separate category. Additionally, there are function objects, adaptors,
and allocators. Function objects give us a way to specify characteristics of the objects
stored in containers. Adaptors modify either the interface or the behavior of some other
component, and allocators give us control over how the system allocates space for our ob­
jects. While there are many parts, they all revolve around the container classes, and the
other components merely support containers. There are eight basic container types of two
kinds. The sequential containers are arrays, vectors, deques, and lists. The associative con­
tainers are sets, multisets, maps, and multimaps. In addition, adaptors may be used to
transform these containers into three additional forms: stacks, queues, and priority queues.
There are versions of the STL that also include hash table containers. For the rest of this
chapter, we will examine these container-based data abstractions conceptually. We will
look at each of them again in detail in a later chapter. We will also look at how some of
them might be useful in developing programs of various kinds.

Arrays represent densely stored blocks of cells of some type. The dense storage per­
mits any individual cell to be quickly accessed. Arrays in the STL are the built in arrays
of C++. They have fixed size. The dense storage permits the system to compute the ac­
tual position of any cell from its relative position in the container. Because of the speed
of retrieval, arrays support many sophisticated algorithms efficiently. Arrays are the ab­
straction of choice if the problem requires fast retrieval, or the data must be sorted into
logical order. Arrays are discussed in detail in Chapter 2. Much of the STL can be consid­
ered to be a generalization of features of arrays. The main operations on arrays are storage
into and retrieval from a cell indicated by its relative position in the storage. In an array
A, the first cell is denoted A[O]. If the array has n cells, then the last cell is A[n-l]. Ar­
rays are used throughout computer science for many tasks, including the implementation
of other structures. Two dimensional arrays are just arrays in which the elements stored
are also arrays. A spreadsheet is just a two-dimensional array. A graphics screen is a two­
dimensional array of picture elements or pixels.

Vectors are similar to arrays except that they may be enlarged at one end to hold addi­
tional data. They may also be shrunk at that same end. They support efficient retrieval,
though not quite as efficiently as arrays. Vectors support the same algorithms as arrays
and a few more that require variable size containers. In addition to the storage/retrieval op­
erations of arrays, vectors support the push_back(T) operation that extends the length of
the vector and inserts the (template parameter) value at the end. Similarly, pop_backO
will remove the last item, shrinking the size of the vector. Vectors are used in graphics to
hold lists of figures to be drawn or lists of points to be connected.

Deque, pronounced as in "deck of cards," sometimes spelled dequeue, is an acronym for
double-ended queue. A deque is also similar to an array except that it can grow and shrink
at either end. The dense storage again permits rapid retrievals. Deques permit pushjrontO
and pop_frontO in addition to vector operations.

Chapter 1. Data Structures and Algorithms 21

Lists don't use dense storage. Instead the cells of a list are linked together using point­
ers or addresses of logically adjacent cells. The individual cell of a list may be physically
anywhere in memory. From a given cell it is efficient to access only the immediately pre­
ceding and the immediately following cells, if any. This means that some algorithms are
not appropriate for lists, as the accessing of elements would be too inefficient. On the
other hand, lists make it possible to insert values efficiently between existing values,
which is an expensive operation with Vectors and Deques. Therefore Lists are used where
we desire the maximum flexibility in insertion and deletion of cells at any point in the
container. An algorithm will be efficient on lists provided that we can execute the algo­
rithm by processing the elements in the order of the cells in the list. Otherwise, it is
likely to be very inefficient. Because it is sometimes necessary to sort lists into a given,
logical order, and because the generalized algorithms appropriate to Vectors and Deques
would be inefficient on Lists, the List class template defines a sort member function that
works well on lists, but would not work well on those other types. Lists are much more
useful than this brief introduction suggests. They are used extensively in artificial intelli­
gence and they permit highly complex programs to be written. The language lisp is built
of sophisticated uses of lists.

Among the sorted associative containers, sets are intended to behave like the sets of
mathematics. We can form unions and intersections, for example, as well as insert arxl
remove elements. Multisets are similar except that they permit an element to be contained
several times, while a set permits an element to be present only once if at all. Sometimes
multisets are called bags.

A map container is a set of pairs of a certain kind. These pairs consist of keys and as­
sociated information, where the key is used to define uniqueness of pairs. A pair is said to
associate the additional information with its key. Sometimes these pairs are called asso­
ciations. Generally, two pairs are considered equal if their keys are equal. A set of these, a
map, therefore implements something like a dictionary where the keys are the words to be
looked up and the information is the definitions. An alternate name for map is dictionary,
in fact. A map can also be thought of as implementing a function, where the set of keys
is the domain and the set of information values is the range. Because of the equality rela­
tionship on pairs, if a map contains (1,2) and we wish to insert (1,3), then (1,2) must be
removed since a map is like a set, and (1,2) and (1,3) are equal.

A multimap is like a map, except that a given pair may be present more than once, or
more precisely, two pairs with the same key may be present at the same time. Therefore
(1,2) and (1,3) may be in a multimap simultaneously. Maps and multimaps implement
simple kinds of databases in which we store and later look up data according to its keys.
Maps and multimaps are used extensively in artificial intelligence and in logic program­
ming. The programming language Prolog depends fundamentally on the idea of a map.

A stack, which can be formed from a vector, deque, or list by applying an adaptor, is a
container in which all insertions and retrievals are at one end. The push operation inserts
an item at this end and the pop operation removes the most recently inserted item. A
stack implements a storage strategy called last-in, first-out, or LIFO. Stacks are used ex­
tensively in programming and are indispensable in compilers and in the management of
runtime systems. We can often do processing on complex data structures such as trees arxl
certain kinds of graphs by employing stacks.

22 Data Structure Programming with the Standard Template Library in C++

A queue is a container that supports insertions at one end and deletion at the other.
Queues may be effectively created from deques and lists by applying an adaptor. Queues
are used in operating systems programming and in simulations of complex systems in
which events occur at random times and must be handled in the order in which they occur,
but in which a time delay may occur before they can be handled. We simply insert the
events in a queue when they occur and remove them when we are ready to handle them.
Queues have a protocol called first-in, first-out, or FIFO.

Priority queues are similar to queues except that the item that is removed is not the
item that has been in the queue for the longest time, but the one with the largest value.
The values are considered to be priorities and we always remove the item of highest prior­
ity. Priority queues can be efficiently created from vectors and deques by applying an adap­
tor. Priority queues are used in operating systems to keep track of user jobs that are wait­
ing to execute. We always run the job with the highest priority when a processor
becomes available. The previously running job is returned to the queue, perhaps with an
adjusted priority, if it has not completed when it was interrupted.

In the STL, containers are homogeneous. This means that they store elements of the
same kind. The type of element stored in a container is specified by its template argu­
ment. Thus we have list<int> and list<Window>. Because of the object-oriented features
of C++, it is possible to store things in containers that are not precisely of the same
kind, but of related kinds. To do so, however, requires pointers. This will be taken up in
the next chapter.

1.7 Summary

Make certain that you understand each of the following terms:

array
base class
class
class template
constructor
containers
copy constructor
coupling
data abstraction
default constructor
deque
derived class
destructor
encapsulation
function template
information hiding
inheritance

instantiation (of a template)
iterators
list
map
multimap
multi set
overloaded operator
override
priority queue
private member
protected member
public member
queue
set
stack
static member
vector

1.8 Exercises

Chapter 1. Data Structures and Algorithms 23

1. A standard list of ints may be defined by using

#include <list.h>

list<int> testList;

Try the following code:

#include <iostream.h>
#include <STL.h>
#include "stopWatch.h"

stopWatch watch;
list<int> ml;

void main(void)
(watch.start();watch.mark();

int pwr = 1;
for(int i = 0; i < 50; ++i)
(ml.push_back(pwr);

pwr *= 2;
}

list<int>: :iterator w;

24 Data Structure Programming with the Standard Template Library in C++

for(w = ml.begin(); w 1= ml.end(); ++w)
cout « *w « ' ';

cout « endl;
w = max_element(ml.begin(), ml.end(»;
cout« "Max is: "« *w «endl;
cout « "Size is "« ml.size()«endl;
watch.mark();
int query;
cout« "Enter a positive number. "«endl;
cin » query;
query = abs(query);
int count = 0;
for
(w = ml. begin ()

w != ml.end() && *w < query
++w

++count;
if (*w ! = query)
{ --count;

--Wi

}
cout «"two to the "«count«"

« * (w)«endl;
"

Some entries produced by the above may be unexpected. Modify the above code to
erase them.

Use pushjront instead of push_back. Modify the query so that it is consistent with
this change. We want to return the largest power of two that is not greater than the query.

What happens when you make the following errors? Run the code and verify your an­
swers.

#include <iostream.h>
#include <STL.h>

StopWatch watch;
list ml;

void main(void)
{ watch.start();watch.mark();

cout « ml.front() « endl;
ml . pop_back () ;
ml.pushBack(123);

}

Chapter 1. Data Structures and Algorithms 25

2. Create a template class to define a die, in which the number of faces of the die is an in­
teger template parameter rather than an argument to a constructor of an individual die.
What tradeoffs are there between the two approaches?

3. Add a member to the die class to obtain the number of faces of the die. Make this a
function. Don't just make the number of faces a public member variable.

4. Add a member function to the die class to obtain the value of the last roll without roll­
ing it again. What else do you need to add to the class to make this feasible?

5. Prove that the static variable c in the counted value class is always equal to the number
of counted values that have been created since the beginning of the program.

6. Add another static variable to the counted value class that is always equal to the num­
ber of counted values in existence in the program. Recall that destructors are called when
an object is deleted for any reason. Give the class a member function so that the value of
this variable may be obtained.

7. Write a program that rolls a standard (6-sided) die 720 times. (a). How long does it take
for this program to run? Use a StopWatch object to find out. (b). How many 6s do you
get in 720 rolls? How many do you expect to get?

8. How many pairs of 6s do you get in 720 rolls of a die? A pair of 6s is defined to be a 6
on an odd-numbered roll and another on the next even-numbered roll.

9. How many pairs of 6s do you get in 720 rolls of a die? A pair of 6s is defined to be a
six on any roll and another on the next roll. Note that four 6s in a row would be counted
as three pairs.

10. Save 120 rolls of a die in a list<int>, using push_back to insert new items. Then
write out the list to see what it contains. Use an iterator to write it out. How long does
this take? Repeat with a vector<int>. If you don't see any difference in time, try it with
1200 rolls instead. What can you conclude about the relative performance of lists and vec­
tors?

11. Save 120 rolls of a die in a list<int>. Use the sort member function of list to sort
your list. Write out the contents using an iterator. The prototype is:

void list<int>: :sort()

How long does the sort take? How long does it take to sort 1,200 items in a list?

12. Save 120 rolls of a die in a vector<int>. Use the generic algorithm sort to sort your
list. Write out the contents using an iterator. The prototype is

26 Data Structure Programming with the Standard Template Library in C++

void sort(iterator first, iterator afterLast)

How long does the sort take? How long does it take to sort 1,200 items in a vector?

Chapter 2
Programming with Arrays and Pointers

In this chapter we will learn about programming with arrays and pointers. In the Standard
Template Library, arrays and pointers are one fundamental component, though they are
unchanged from standard C++. Most of the major features of the STL are generalizations
and abstractions based on features of arrays and pointers.

2.1 Arrays

An array is a block of memory consisting of several items of the same kind. These items
are called components of the array. The components are arranged sequentially, one after
the other, in computer memory. The computer will store the array with no wasted space
in a single block of data as in Figure 2.1. This storage method is sometimes called dense
or contiguous storage. An array has a fixed number of components, defined at the time the
array is created.

Figure 2.1. An Array.

There are two ways to defme an array in C++. We are required to give the type of
components of the array as well as its length in the definition. The easiest is to use a
definition like the following, which defines an array of 12 doubles.

double monthlySalary[12];

This definition actually defmes two things, which are most often treated as if there
were only one. The first thing created is the array itself. If doubles require 4 bytes of stor­
age, then this array will require a single block of 48 bytes. The second thing created is the
address of this block. The address of the block is also the address of the first component of
the block. The name monthlySalary actually has a value equal to this address. The loca­
tion of a component of an array is called a cell. The individual cells of the array are named
monthlySalary[O] through monthlySalary[ll]. See Figure 2.2. These cells are variables

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998

28 Data Structure Programming with the Standard Template Library in C++

like any other and can hold a value that can be changed. monthlySalary itself is a con­
stant, meaning that it will always refer to this same block of data. Notice that the length
of the array is 12, and, since we start with a cell numbered 0, there is no cell numbered
12. But note that monthlySalary[12J is the address of the location immediately following
the array.

o 1 11

Figure 2.2. An Array with markings indicating cell numbers.

When used as a cell number, an integer is called a subscript. This comes from mathe­
matical usage that would probably write Ai, for the computer scientist's A[iJ. A subscript
is also called an index.

A very common pattern of use of arrays is the following for loop, which reads 12
doubles from the standard input and assigns them to the 12 components of the array:

for (int i = 0; i < 12; ++i)
cin » monthlySalary[i);

Notice from the above that subscript expressions may, in fact, be variables. They may
also be arbitrarily complex integer-valued expressions. c++ has no restrictions here.

The location of the block of data defined by the array definition is up to the compiler
to arrange. If an array definition appears at the global level or is marked static, then the
block will continue to exist as long as your program continues to run. If the definition is
local to a function or to an object, then the array only exists while the function is run­
ning or the object exists. Because the lifetime of the array is managed by the system,
such data are often called automatic. This applies to all data, not just to arrays.

Be careful with array definitions. The following defines a single double (called a scalor
to distinguish it from an array) and an array.

double thisMonth, monthlySalary[12);

One of the important things to remember about arrays defined as above is that their
sizes are determined at compile time. It is not legal to use a variable expression as the
size of an array defined in this way.

2.1.1 An Example. A Guessing Game

Suppose we are building a game program in which the player guesses integer numbers.
Suppose that the game needs to remember the guesses made by the player in the order that
they are made. One way to do this is to create an array whose length is the maximum
number of guesses allowed, together with an auxiliary variable called an index.

Chapter 2. Programming with Arrays and Pointers 29

long guess[10]i
int nextGuess = Oi

Then, when a guess is made by the player, we execute

guess[nextGuess] = playerGuessi
nextGuess++i

which first uses that value as a subscript into the array to determine the component into
which we save the player's guess and then increments the index. We can, of course, com­
bine these two statements into the single one:

guess [nextGuess++] = playerGuessi

Finally, we can process all of the guesses actually made with

for(int i = Oi i < nextGuessi i++)
... guess [i] ...

For automatic arrays the built-in function sizeof will tell us the number of bytes
required by the array. We can apply sizeof to either a value, such as a variable, or to a
type. If we want the number of components, we can divide the size of the array by the
size of the component.

2.1.2 Another Example. Array of Objects

Often we want to create arrays in which the components are to be a user-defined type, es­
pecially a type defmed by a class. There are special requirements that enable this to be
done. C++ requires a class used in this way to have a default constructor: a constructor
with no parameters. Since all classes should have such a constructor anyway, and since
C++ will provide one if you don't provide any constructors at all, this is a light require­
ment.

Recall the CountedInt class from Chapter 1. This class has a default constructor since
we may call one of the constructors with no arguments. Now we can fill an array with
CountedInt values and look at what we have.

void main ()
{ Countedlnt All [10]i

}

II The default constructor is called for each cell.
for(int i = Oi i < 10; i++)

cout « All[i] .getOrder() « endl;

Exercise. Test the above code. First anticipate what it will produce. Were you correct?

30 Data Structure Programming with the Standard Template Library in C++

2.2 Pointers and Arrays

The second way to define an array actually splits the defmitions of the two parts (name
and block) into two defmitions. We may define a variable that will be used to refer to an
array of doubles with

double* dailyCosts;

Here, the variable dailyCosts is defined to be a pointer variable. While pointers can
be used in many ways in C++, one of the most important is to make them "point to" ar­
rays. Note that dailyCosts is a variable, not a constant, and so it could hold different val­
ues at different times. The above declaration does not give it any value, however. It is
useful to give every variable some value, and C++ provides a value named NULL for use
in initializing pointer variables. This is normally just the constant 0, but it guarantees
the pointer has a specific value that can be tested. A better definition of dailyCosts would
be

double* dailyCosts = NULL;

This both defines the variable, and initializes its value. This looks like an assignment,
but it is technically not. It is an initialization.

None of the above defmes an array, just a variable that could be used to refer to an ar­
ray. We could actually define such a variable and make it point to our monthlySalary ar­
ray with

double* someSalary = monthlySalary;

This assumes that monthlySalary was previously defined. This defines someSalary as
an alias of monthlySalary, and someSalary could be used just as monthlySalary is used.
An alias is a name that refers to the same thing, usually a variable, as another name. Note
that someSalary is a variabl~, while monthlySalary (as a name) is a constant.
We could set the sixth monthly salary using an assignment such as

someSalary[5] = 1200.0;
II set the sixth monthly salary.

However, since someSalary is a variable, it can be used to refer to any array of doubles
(or to any single double, for that matter). One way to make someSalary refer to an array
is to create the array at run time. The' computer reserves a large amount of storage in a
structure called the free store or heap, which can be used to create new values as the pr0-

gram runs. We always refer to values in the free store with pointers, though pointers may
refer to locations elsewhere as well. We create these values in the free store by using the
C++ operator new. Operator new creates variables that are called dynamic. The life­
times of dynamic values are determined by the programmer, they are not automatic.

Chapter 2. Programming with Arrays and Pointers 3 1

someSalary = new double[6]i

creates a new array of 6 doubles on the free store and assigns a value to someSalary,
which is the address of, or a pointer to, this block of data. This is shown in Figure 2.3.
Having done this, someSalary[O] through someSalary[5] are defined and legal, though the
computing system will not be able to detect an expression like someSalary[8] as an error.
An important lesson to learn about arrays is that the legality of subscript expressions is
up to the programmer to guarantee. The system provides little help here.

I
someSalary

Figure 2.3. A pointer variable and the value it points to.

The C++ system does not guarantee a particular layout of memory, so the following
may not work exactly as shown, but some variant will. Suppose we define two automatic
arrays with

long arrayl[5] , array2[5]i

Then arrayl[9] might well refer to the same component as array2[4]. This would be
the case if array2 were laid out exactly after array 1 in the memory.

Exercise. Try the above on your computer and report on what you learn.

We need to distinguish between the pointer variable that refers to an array and the array
itself. Given the above, someSalary is an automatic variable that refers to a dynamic
value. If someSalary were local to a function, then its lifetime would end when the func­
tion returns. The array itself, however, continues to exist until the programmer deletes it
using something like

delete [] someSalarYi II Delete an array.

The delete operator is the inverse of new. It returns previously defined free store values
to the heap. Note that delete is used for other values besides arrays. To use the above,
however, we would need to write it in a place where the name someSalary is defined. It is
possible for a dynamic value to outlive the variable used to create it. Consider the follow­
ing:

32 Data Structure Programming with the Standard Template Library in C++

double* getNewSalaries()
{ double* result = new double[12];

for(int i = 0; i < 12; ++i)
cin » resu1t[i];

return result;

This function creates and returns an array. Notice that the variable result is auto­
matic and ceases to be at the end of this function. The array itself, however, is returned to
the caller. Actually, the array itself isn't returned. A pointer to it is returned. The array it­
self just continues to exist in the free store. It is then the responsibility of the caller to
see to its eventual deletion. A function that returns a new dynamic value should clearly
say so in its documentation, since deletion of the value becomes the responsibility of the
caller.

Automatic arrays in C++ may be initialized with constant values. Suppose, for exam­
ple, that we need an array of strings, and we know the values of these strings in advance.
Then we may define and initialize the array at once with something like

char* days [] =

{ "Sun", "Mon", "Tues", "Wed",
"Thur", "Fri", "Sat"

} ;

Here days is an array of seven strings (char *). Note that we let the system count the
length of the array for us. We could have made it explicit by writing the seven between
the brackets also. The system will create the array defined by the initializer and make days
a constant pointer to it. We could write out the contents of this array with

for(int i = 0; i< 7; ++i)
cout « days[i]«endl;

We cannot initialize dynamic arrays in the same way. The problem is that a dynamic
array must exist before we can give its components values, while an initialization such as
the above must exist before the pointer that is to refer to it. In particular, the following
will not work.

long* values = new long[5];
II Create a new dynamic array.

values = { 2, 3, 5, 7, 11 };

At the end of this sequence, values will be pointing to a static array and the dy­
namic array on the free store has no pointer pointing to it. It is a lost block in the heap
that cannot be recovered while the program runs. In general, you should never follow a
free store allocation by an assignment to the same variable. Between such statements you
should either delete the item or create an alias, so that you always have at least one

Chapter 2. Programming with Arrays and Pointers 33

should either delete the item or create an alias, so that you always have at least one
pointer to each free store item. This is true of arrays as well as other things in the free
store.

If you define an array dynamically, the sizeof function won't tell you the size of the ar­
ray if you apply it to a pointer to the array. This is because you are asking for the size of
a pointer (often 4 bytes), not the size of the array. Therefore, the sizeof(days) will proba­
bly be 4. If you ask for sizeof(*days), you will likely get I, the size of a char. The best
way to know the size of a dynamic block is to remember it when you allocate it. Save the
length you use in a variable.

2.3 Pointer Arithmetic

If we have a pointer variable, we often need the thing that it points to. The prefix
operator * is called the dereferencing operator, and it will give us the value to which
a pointer points. For example, in the above string example, the array variable days is a
pointer that points to the beginning of the array. In other words, it points to its first
component (days[O]). Therefore, *days and days[O] may be used interchangeably.

We can also always create a pointer value. Suppose that we have a double value sal­
ary. We can create a pointer to it with &salary.

double salary = 4500.00;
double* aliasOfSalary = &salary;

Now salary and *aliasOfSalary are variables that refer to the same entity, namely the
4500.00. Thus the following will increase the salary by 2000.

salary += 1000.00;
*aliasOfSalary += 1000.00;

Thus "&" and "*,, are inverse operators. One gives us an address from a value, and the
other a value from an address.

We can apply the above to arrays and array components as well.

double* sal = &monthlySalary[4];

gives us, in sal, the address of monthlySalary[4]. Notice that we are using two operators
in this expression, operator& and operator[]. The latter has the higher precedence, so this
is the address of monthlySalary[4], not the fifth component of &monthlySalary (which
doesn't really exist since &monthlySalary isn't an array).

Some arithmetic operators can be applied to pointers. In particular, an integer may be
added to or subtracted from any pointer, and the difference between two pointers (to the
same type of thing) may be computed. The meaning is illustrated in the following exam­
ples:

34 Data Structure Programming with the Standard Template Library in C++

long values [) =

{ 10, 20, 30, 40, 50,
60, 70, 80, 90, 100

} ;
long* somewhere = values;
somewhere++;

II Points to the 10.
II Points to the 20.

cout « (*somewhere) + 2;
cout « *(somewhere + 2);
cout « *somewhere + 2;
cout « *(somewhere + 22);

II Prints garbage outside
cout « somewhere - values;

II Prints 1; the number of
II between the two values.

cout « *somewhere - *values;

II Prints 22.
II Prints 40.
II Prints 22.

array.

components

II Prints 10.

Note that the addition operator has lower precedence than the dereferencing operator.
We can generate a pointer to the cell immediately following our array values with

long * afterEnd = &values[10);

or equivalently with

long * afterEnd = values + 10; II See below.

It would not be safe to de-reference this pointer, but we shall see that we will eventu­
ally need this value in the STL.

If we have an array A, then A is a pointer and the expression &A[i] is exactly the
same as the expression A+i. In fact, the pointer duality law specifies the equivalence of
these two expressions. Note that A+i does not refer to a location i bytes past the begin­
ning of A, but the location i components after A. This will be true independent of the
component type of the array. The pointer duality law can also be written as A[i] is equiva­
lent to *(A+i).

Using the pointer duality law implies that the following for loop will process all of
the elements of our array, values.

for(long* p = values; p < values + 10; ++p)
cout « *p;

What can happen if you are not careful about your array subscripts and equivalent
pointer expressions? That depends on whether you are reading values or writing them. If
you are reading values from the "array" and your subscript does not fall in legal bounds,
then you will get a value, but the value will be meaningless. The computer will interpret
the values retrieved as if they had the component type, but, of course, they may not. It is

Chapter 2. Programming with Arrays and Pointers 35

for this reason that (a) you get garbage, and (b) it is hard to recognize it as such, since it
has the correct form.

If you are attempting to place data into the array (write the array), then the situation is
much worse. If you write into a valid cell then you change it, of course. If you write into
an illegal cell, one outside the legal bounds, then you change something. That location in
the computer memory is probably being used for something else, and when the value of
that item is later retrieved, it will not have the last value that was correctly placed into it,
but some value placed by our incorrect reference. There is no guarantee that the value
written has the same type as the value read, but any sequence of bits can be interpreted ac­
cording to (nearly) any type, so the user of that other data item will find a legal value, but
the wrong value.

In the worst case, on some computers you can do serious damage by making illegal
array references. For example, on many small computers, a technique called memory­
mapped 110 is used in which physical devices such as disks and printers are installed in
such a way that they look just like memory. They are controlled by "writing" into their
device control registers, which are just memory locations. If an out-of-bounds array refer­
ence were to accidentally write to a device register, that device would do something. Per­
haps, if it were a disk drive, it would erase that disk. This would be a very unhappy event.

A few final words on pointer arithmetic. Notice that it is bidirectional. You can
subtract from a pointer just as you can add. Therefore, continuing the above examples,
afterEnd - 1 is a pointer to the last cell of our array.

Actually, pointers are more than just bidirectional. They are actually random access.
This means that from a pointer to any cell in the array, we can move immediately, in one
step to any other cell. For example, suppose that third is a pointer to the third cell of
some array. Then third + 5 is automatically a pointer to the eighth cell, if such ex­
ists. Using the pointer duality law, if A[i] represents the third cell, then A[i+5] represents
the eighth. In either case we can move from any cell to any other, without visiting the in­
tervening, or any other, cells.

Finally, we may subtract two pointers into the same array. Thus, again referring to
the array values from above, afterEnd - values is the number of components of
the array: 10. Note again that it is not the number of bytes of storage occupied by the ar­
ray. Indeed, some computers are not even byte-oriented. Rather, it is the number of cells
between the two pointers.

2.4 Arrays with More than One Dimension

In C++ multiple dimension arrays are not technically possible. It is, however, possible to
define arrays whose components are arrays, and this has much the same effect. We can
give an alternate definition of our days array with

char days [7] [5] =
{ "Sun" I "Mon" I "Tues" I "Wed" I

"Thur" I "Fri" I "Sat"
};

36 Data Structure Programming with the Standard Template Library in C++

Here we have an array of 7 arrays, each of 5 characters. We describe the array as "7 by
5" or as having 7 rows and 5 columns. See Figure 2.4. We need the "inner" arrays to hold
5 characters, since Thur has four letters plus the terminating null character. The extra
character is wasted in the other names, except Tues, of course. In C++ we may have an
arbitrary number of dimensions in this way, but be careful, since the size of the resulting
structure is the product of the sizes in the individual dimensions and the size of the ulti­
mate component type, here char. A large number of dimensions could result in a very
large structure, even if the length in each dimension is small. Sometimes an array with
two dimensions is called a matrix.

Figure 2.4. A Matrix with 7 rows and 5 columns.

This new declaration of days defines a slightly different structure than the original,
however. In this new definition it is clear that there are a few wasted bytes, since each in­
terior array is required to have five, though most of the values stored require only four. In
the original, this wasted space will not be present. The former method of definition is
somewhat more flexible because it admits components of differing sizes. The first defmi­
tion of days defines an array whose components are pointers to characters. The second <b­
fines one whose components are arrays of characters. Similar, but not quite the same. Use
sizeof to discover the difference.

Just as we can get access to the individual strings by indexing, we can also get access
to the individual characters, though we need to use double indexing.

days [2] [0] i
days [5] [2] i
days[4]i

II Refers to the T of Tues.
II Refers to the i of Fri.
II Refers to the array
II containing Thur.

Exercise. Prove that if a r ray has declaration:

int array [A] [B]

that &array[m][n] is the same as array + B*m + n.

Chapter 2. Programming with Arrays and Pointers 37

2.5 Putting It Together. An Application

One of the topics in artificial intelligence is machine learning. In this section we present
a simple game that learns from its mistakes. It is almost too simple to be called artificial
intelligence, but it is only intended to introduce you to the concept and to show pro­
gramming with arrays.

The French Military Game is played on a graph with 11 nodes, numbered ° to 10. The
game has two sides: the Police and the Fox. The Fox has only one piece that begins the
game at cell 5. The Police has 3 pieces, originally at 0, 1, and 3. The Police moves first
and the players alternate. On a tum each side may move one piece along one of the arcs.
The object of the Fox is to reach cell 0. The Police, who may only move vertically arxl
to the right, has the objective of trapping the Fox against a side wall For example, if the
Fox is at 6 and the Police at 3, 5, and 9, then the Police wins. If the Fox reaches cell 0,
then it wins. A game with over 20 moves is forfeited to the Fox. (The Fox is aspy, try­
ing to elude the Police and reach its base.) Play the game a few times with two human
players to get a feel for it. Note that there is only one side for the Police , not three sepa­
rate players. When the Police moves, it may move only one piece.

1--4--7
11\ 1 11\

1 1 \ 1 1 1 \

0--2--5--8--10
\ 1 11\ 1 1
\1/ 1 \11
3--6--9

In this computer simulation, the computer plays the Fox. Initially the computer plays
randomly, with a bias toward moving left. However, the Fox learns from its mistakes and
after only a few games it becomes nearly impossible for the human player to win.

To represent this game board, we use a two dimensional array of integers as shown be­
low.

0 2 2 2 0 0 0 0 0 0 0
1 0 2 0 2 2 0 0 0 0 0
1 2 0 2 0 2 0 0 0 0 0
1 0 2 0 0 2 2 0 0 0 0
0 1 0 0 0 2 0 2 0 0 0
0 1 1 1 2 0 2 2 2 2 0
0 o 0 1 0 2 0 o 0 2 0
0 o 0 0 1 1 0 0 2 0 2
0 0 0 o 0 1 0 2 0 2 2
0 o 0 0 0 1 1 0 2 o 2
0 o 000 0 0 1 1 1 0

38 Data Structure Programming with the Standard Template Library in C++

This is a definition of the board. It has 11 rows and 11 columns, one for each cell in
the graph. A zero at a row, column entry indicates there is no arc from the row entry to
the column entry. A nonzero entry indicates an arc, hence a possible path for the Fox.
The Police can't travel all arcs in all directions, so a 2 is used to show a legal Police
move. The 2 on row 1 (the second row, since they are numbered from 0) and column 2,
indicates it is legal for the Police to move from cell 1 to cell 2. Such an array is called an
adjacency matrix, since it defines which cells in a graph are adjacent (have arcs between
them).

We can store this game board definition in a file of 121 integers. This file is read in at
the beginning of play and stored in a two-dimensional array.

The key to the learning aspect of this game is that there are only 165 legal positions
for white, and 11 positions for black. During one play of the game, the computer keeps a
record (in an array) of all of the positions that occur.

A single game is stored in a two-dimensional array with 20 rows and 2 columns. Col­
umn 0 is used for a Police position (a number from 0 to 164), and the second column is
used to store the Fox position (a number from 0 to 10).

At the end of the game it updates a 165 x 11 matrix of weights, increasing all the
weights of positions occupied if the computer won, and decreasing them if it lost. When
the computer tries to choose a move, it consults this table and chooses one with the
highest weight value. This means that the complete results of all positions of all games
played can be summarized in a rectangular array of 165 x 11 integer entries. Finding a
best move is just searching for the maximum value in a portion of an array. Very simple.

The Police position is translated into a number by computing 2a + 2b + 2c, where a,
b, and c are the cell numbers occupied by the Police. Since no two Police pieces can oc­
cUPi the same cell, and since they are all less than 11, the maximum value of this is 29
+ 2 + 210 and no two positions result in the same value. Only 165 different values ac­
tually occur. (The number of ways to choose 3 items from a set of 11 without replace­
ment, in the language of combinatorics. 165 = (11!) / (3!)(8!» The 165 different values of
this sum are all between 7 and 1792. These are stored in another array. We search this lat­
ter array for a Police position value and the cell number in which we find the result is
used as a row index into the memory array.

From this description you can try to build the game.

2.6 How the STL Generalizes Arrays and Pointers

In the Standard Template Library there are several other data structures that have compo­
nents. These data structures are called, collectively, containers. Each of them has some
feature different from arrays. Vectors are like arrays except that their length may be
changed. Deques can grow also, but at either end. Lists do not use dense, contiguous,
storage. Sets don't have a linear or sequential structure. There are several other container
classes as well.

Pointers are generalized in the STL to objects called iterators. An iterator has the
property that it refers to a specific location in a container, and this location may be moved

Chapter 2. Programming with Arrays and Pointers 39

by doing simple arithmetic operations. One of the features of iterators in the STL is that
they may be used with for loops in a way completely analogous to the way we use
pointers and for loops with arrays. Some iterators, like pointers, are bidirectional. Some
iterators, like pointers, are random access. Other iterators are more restricted, such as for­
ward iterators that can only move in one direction through their container. Different kinds
of containers support different kinds of iterators.

The algorithms provided by the Standard Template Library for the manipulation of
containers are all defmed in terms of iterators. In other words, to manipulate a container
using one of these algorithms, we pass the algorithm one or more iterators over that con­
tainer. This philosophy that the algorithms are defined in terms of the iterators, rather
than the containers themselves, makes it possible to write the algorithms in a very gen­
eral way. In particular, an algorithm that works for lists may well also work for sets or
for vectors. Finally, this philosophy makes it possible for these same algorithms to work
with the built-in arrays of C++, as well as the components of the STL proper.

2.7 Some Common Problems. Searching and Sorting

When we save data in some container, we often want to retrieve the values we have
stored. The efficiency with which we can do this is greatly determined by the ordering of
the data within the container. Sorting is the problem of putting a collection of data into
some particular ordering or relationship. Searching is the retrieval process itself.

2.7.1 Linear Search in Arrays

One common problem that occurs in dealing with arrays is that of searching for an ele­
ment that mayor may not be in the array. While loops are especially helpful in this.
Suppose we have an array A in which we are certain that a value x occurs, and we would
like to know the cell number in which it occurs. The following loop will tell us.

int i = 0;
while(A[i] != x) i++;

This loop exits as soon as A[i] = x and so we have the desired index. If we are not
certain whether x is in the array or not, however, we need to be a bit more careful to avoid
searching past the end of the array. The following will serve, where we replace lengthOfA
with the actual length of the array A.

int i = 0;
while (i < lengthOfA && A[i] != x) i++;

The test for the length must be made first, so that we can guarantee that an index used
to retrieve a value (A[i]) represents a legal subscript. C++ will guarantee that if i >=
lengthOfA, the second test will not be evaluated and the loop will exit. This is the advan-

40 Data Structure Programming with the Standard Template Library in c++

tage of short circuiting the evaluation of Boolean expressions. The value is returned as
soon as enough of the expression is evaluated to make the answer clear. The same is true
of the OR opera tor I I. Note that in this search, if the item is not present, the value of
i will be left at lengthOfA. This can be tested. Remember that when you write a loop
with a compound exit condition such as we did here, when it exits, you don't know which
condition caused the exit. Therefore, an additional test after the loop is often required.

A for loop can also be used in conjunction with the break statement.

for (int i 0; i < lengthOfA; ++i)
if (A[i] == x) break;

This loop will also exit with either A[i] containing the desired value or the index
equal to lengthOfA.

Exercise. Use the pointer duality law to change the above for loop into an equivalent
one that uses pointers instead of subscripts.

The above process is called sequential search, since we look for the item of interest se­
quentially, starting at the first component. If the array is long, then this can take quite a
while. It is possible to search faster if the array is sorted, as we shall see.

2.7.2 Selection Sort

Next we attack the problem of putting an array in order, assuming that the elements in
the array are sortable. To be sortable means that the elements of the component type must
support operator<. This is certainly the case for the built-in types of c++ and it may
be true for user-defined types, since it is possible for the programmer to give alternate
definitions of operator< for user-defmed data. As we shall see later, there are other
ways that a type can be made sortable.

One of the simplest algorithms for sorting is called selection sort. The idea behind se­
lection sort is to remove the smallest element from the array, then sort the remainder with
the same process, and then attach that smallest element back to the beginning. The pic­
ture in Figure 2.5 should help.

Sorted and Smallest

o length

Figure 2.5. Selection sort, outer loop.

Chapter 2. Programming with Arrays and Pointers 41

This is intended to be a picture of the sort function in the middle of its operation. The
implication is that there is an index i, somewhere between 0 and length-I, and all cells
strictly to the left of cell i have been sorted and also contain the smallest values in the en­
tire array.

Each array picture that we draw, called an array section, is intended to represent the
state of some array, part way through an algorithm. Usually they represent the state of
some loop or recursion partly completed. The above picture actually represents a for
loop with control variable i in the middle of its execution, as we shall see. When we put
a value below the rectangle representing the array, we intend it to represent a subscript.
When it is inside the rectangle, it represents a value. A vertical bar in the rectangle sepa­
rates the array into two parts that may have different characteristics. If something is
known about the elements in some section, then we write a description within the rectan­
gle. The positioning of subscripts and vertical lines is significant and in the above case,
the fact that the subscript i is to the right of the vertical line indicates that the description
"Sorted and Smallest" applies only to subscripts 0 through i-I. A statement, such as the
one defined by Figure 2.5 is called an invariant because it's truth will not change. We
will keep it true throughout our process.

Our job is to complete the process by getting i up to value length-l so that the part to
the left will be the entire array except for one cell. Since that part is sorted and since its
values are no greater than the value in cell i = length - 1, then the entire array is sorted,
which is our aim. The problem then is how to get this figure true, keep it true, and get i
up to length - 1.

First, it is easy to make this picture true. All we need to do is to set i to be O. Since
there are no cells to the left of i = 0, it is certainly true that it is sorted. Likewise, noth­
ing in the left part is any larger than anything in the part from i through length-I, since
there are no cells at all in that left part.

The goal of getting i up to length - 1 can be achieved if we keep increasing i as we
progress. We will use a for loop to do this for us. The part about keeping the picture in
Figure 2.5 true is the challenging part, and this is where the original idea comes in.

What we want to do is to find the smallest value in the part i .. .length-l and move it
to cell i. Then, when we increase i, the picture is still true. Make sure that you understand
why before you read further.

To handle this last part of the task, it will be helpful to consider the picture in Figure
2.6.

Sorted and Smallest

o

Figure 2.6. Selection sort, inner loop.

42 Data Structure Programming with the Standard Template Library in C++

The implication here is that we have a picture of the portion between i and length - 1.
In this section we have an index j and an index s, and cell s contains the smallest element
in the section between i and j. If we can get this true, keep this true, and get j up to
length - 1, we will have found the smallest value in i...length - 1. We can then swap cells
i and s to achieve our goal of getting the smallest value to cell i. We can make this pic­
ture true initially just by setting s and j to be i and keeping an auxiliary value named
small to hold the smallest value discovered so far: the one in cell s. We can get j in­
creased with a for loop. We can keep the picture true just by setting s to j whenever we
discover a value at j, smaller than the value at s as we move j along. This leaves us with
the following code for the selection sort. Note that the only requirement we make on the
type to be sorted is that it support operator<.

const int length = ..• ;

float elements[length];

void selectionSort()
{ for(int i = 0; i < length - 1; ++i)

}

{ int s = i;

}

float small elements[s];
unsigned j;
for(j = i + 1; j < length; ++j)

if(elements[j] < small)
II operator< used.

{ s = j;
small elements[s]i

}
elements[s]
elements[i]

elements [i] ;
small;

This is not a very good function, since it will only sort an array named elements,
and only if its length is named length and only if it contains floats. We can do better.
One way is to pass in the array to be sorted along with the length, so the function sorts
its parameter instead of a global value. That would certainly be an improvement. In C++
this would look like the following.

void selectionSort(float elements[], int length)
{ for(int i = 0; i < length - 1; ++i)

{ int s = i;
float small elements[s]i
for(unsigned j = i + 1; j < length; ++j)

if(elements[j] < elements[s])
{ s = j;

small = elements[s];

}

}

elements[s]
elements[i]

Chapter 2. Programming with Arrays and Pointers 43

elements[i];
small;

This is much better, but we still can sort only floats. One way to improve this further
is to tum it into a function template. The result won't be a function, but a means of creat­
ing functions as needed.

template < class T >
void selectionSort(T elements[], int length)
{ for(int i = 0; i < length - 1; ++i)

{ int s = i;
T small = elements[s];
for(unsigned j = i + 1; j <

if(elements[j] < small)
{ s = j;

small

elements[s]
elements[i]

elements[s];

elements[i];
small;

length; ++j)

Note that here, both occurrences of the type float have been replaced by a reference to
the template parameter T. This parameter is a type. Later if we need to sort an array of
ints, then the system will use this function template, with T equal to int, to create a sort­
ing function for us. It will also be used to create a different function that will sort floats if
we need it. The compiler sees to this creation (instantiation) of functions from the tem­
plate by examining which functions we make use of in our code. This instantiation of
template functions from function templates is automatic, but note that it requires the sys­
tem to create different functions for different values of the template parameter.

int intArray[6] = {5, 4, 3, 6, 2, l};
float floatArray[5] = {1.2, 3.4, 2.5, 0.4, l.l};
selectionSort(intArray, 6);
selectionSort(floatArray, 5);

One requirement that the writer of a function template must remember is that the tem­
plate parameter must appear in the parameter list of the function itself. This is the means
that the compiler uses to determine which template function to create. It is not enough to
specialize the return type or the body of the function. The template parameter must appear
in the function parameter list.

44 Data Structure Programming with the Standard Template Library in C++

Another means of improving on our selection sort algorithm is to include it as a
member function in a class. Suppose we build a class Array to provide additional support
that C++ arrays do not have. For example, our Array class could provide bounds checking
which C++ does not do for built-in arrays. This class would actually be a class template
rather than a class, with the element type (component type) as the template parameter. If
this were the case, and it is attractive to do, then we might consider making selection sort
one of the member functions of this class. In this case, the array elements would be
one of the member variables of this class, implementing the class with a built-in array.

These last two solutions, a function template or a member function, are both great
improvements over our original version, but note that they still have a restriction. They
can only sort arrays. In the function template case, we have used an array declaration as
the type of one of the parameters. If we have a member function of class Array, we are
obviously restricted to sorting objects of that type.

However, if we apply the pointer duality rule uniformly, we can remove even this re­
quirement. We are going to change selectionSort again. Suppose we pass in two pointers,
one that points to the first component of the array and one that points just after the array.
A typical call might look something like the following:

int elements[20];
int * start = elements;
int * after = elements + 20;
selectionSort(start, after);

To make this work, we change the prototype of the function template to

template < class T >
void selectionSort(T* start, T* end)

Now, selectionSort can sort elements without referring to an array directly in any way.
The important thing to recognize is the pointer duality law, which states that if A is any
pointer to the start of an array, then A[i] is equivalent to A + i. The replacements we
shall make are defmed as follows:

replace
replace
replace

elements[s] by *loc or equivalently &elements[s] by loc
elements[i] by *where
elements[j] by *inner

See Figure 2.7 and compare it to Figure 2.6.
This gives us the following version, which no longer makes reference to any array,

only to pointers that point in to the array.

Chapter 2. Programming with Arrays and Pointers 45

Sorted and Smallest

where
start

smallest in where .. .inner inner

Figure 2.7. Selection sort, inner loop with pointers.

template < class T >
void selectionSort(T* start, T* end)
{ for(T* where = start ; where < end

}

{ T* loc = where;
T small = *loc;
for

}

T* inner = where + 1;
inner < end;
inner++

if(*inner < *loc)
{ loc = inner;

small = *loc;

*loc *where;
*where = small;

where++)

The algorithms of the Standard Template Library are all defined using this last idea.
While it is entirely equivalent to the above when we are sorting arrays, the fact that the
algorithm doesn't refer directly to arrays but only to pointers means that the same algo­
rithm can be used for other structures that have the property that they can be referred to by
pointers. Do note, however, that this last version is not nearly as easy to read, especially
for novices. Being less easy to read and understand, it is more likely to have an error.

What essential features of pointers have we used in the above? All we need to do is
examine the uses. We have applied operator++ to the pointer variables in several
places. We have used operator* to de-reference the pointers in several places. We have
used operator< for pointers (as well as their de-referenced values). We have assigned
one pointer value to another with operator=. We have done pointer arithmetic (e.g.,
where + 1). Finally, we have implicitly assumed that if we execute start++ suffi-

46 Data Structure Programming with the Standard Template Library in C++

ciently often, then eventually start < end will be false. The implication of all this is
that we don't even need pointers. Any datatype that has these essential features could be
used in place of pointers here. The iterators of the STL have all of these properties.

It is important to note that we refer to the contents of a container in the STL using
two iterators. The first of these refers to some element in the container: its "first" ele­
ment. The other, however, does not refer to any element. It refers to a location "past the
end" of the container. In mathematics, a range of real numbers is called an interval. There
are several kinds of intervals depending on whether they include or exclude their erxl­
points. The interval [a, b], for example, includes all of the numbers between a and b, in­
cluding both of these values, as well. This is called a "closed" interval. The open interval
(a,b) excludes both endpoints, but contains the values strictly between a and b. The half
open interval [a,b) includes a, but excludes b. In the STL we uniformly use something
like this half open interval to refer to our containers, except that the "end points" are itera­
tors, rather than numbers.

It is also possible to sort an array into decreasing order, in which the largest value is
first, rather than last. To do so we replace operator< with operator> of course.

2.7.3 Binary Search

Once an array is sorted, it is possible to search it much more efficiently than if it is not.
One commonly used mechanism is called binary search, which is similar to a guessing
game that you may have played. One player announces that she has thought of a number,
say between 1 and 100. The other players guess what the number is, and for each guess
the original player informs the guesser whether the guess is correct, too high, or too low.
A correct sequence of guesses can arrive at the remembered number quite quickly. In fact,
if the number remembered is between 1 and 1 million, it only requires about 20 guesses
to arrive at the answer.

The correct next guess, of course, is halfway between the largest previous guess that
was too low, and the smallest previous guess that was too high. So your first guess in
the 1...100 version is 50 and if that is too high, you next try 25, which if too low, you
next guess either 37 or 38, etc.

In binary search over a sorted array, we first look in the cell in the middle of the array.
If that is the desired value we are done, but if that value is larger than the one we seek,
then, since the array is sorted, the desired value must be to the left (assuming the sort was
increasing). Binary search is called binary, by the way, since it splits the portion of the
array yet to be searched into two equal parts at each step. In other words, each failure re­
duces the remaining work by a factor of 2.

Here is a recursive version of binary search over an array. It returns the cell number in
which it finds the item, or an arbitrary cell number if the target is not present. Because
the process is recursive over a portion of the array, we must pass parameters to indicate
the subscript bounds of the search.

Chapter 2. Programming with Arrays and Pointers 47

template<class T>
unsigned int binarySearch
(T* elements, II Array of Ts.

const T& t,

)

II Searching for t in elements.
unsigned int first, II Starting here.
unsigned int last II Ending here.

{ if(first >= last) return first;
unsigned int mid = (first + last)/2;

II Middle of the array.

}

if(t == elements[mid) return mid;
if (elements [mid) < t)

return binarySearch(t, mid + I, last);
else

return binarySearch(t, first, mid - 1);

Exercise. Modify binary search by applying the pointer duality law throughout. The pa­
rameters of your modified version should be the target plus two pointers, one to the first
cell of interest, and the other to the location just after the last. It should return a pointer
to the cell that contains the value if found, and an arbitrary pointer into the array other­
wise. Be careful about the translation of mid. Test both the original version and your new
version.

2.7.4 Quicksort

Quicksort is called quick because it sorts faster than sorts like selection sort. This is be­
cause it does more work each time it scans the array. In particular, what we will attempt
to do is to use a linear scan of the array to establish the truth of the logical statement em­
bodied in Figure 2.8.

<=t >t

o m length-l

Figure 2.8. Quicksort partition.

The idea here is to split the array approximately in the middle around a value t with
the property that all values to the left of t are less than or equal to it, and all values to the
right are strictly larger. Once we establish this "partition step" we will then recmsively

48 Data Structure Programming with the Standard Template Library in C++

repeat the process on the two side pieces: the piece from 0 to m-I and the piece from m +
I to length - 1. Since this is to be done recursively, and since we need to say in the recur­
sion step what the limits of the sorting are to be, quickSort will need to have two pa­
rameters so that we may pass in these bounds. We can establish our plan in an outline as
follows:

quicksort(first, last) is
if (first < last)

partition, finding m
quicksort(first, m-I)
quicksort(m+ I last)

There are a variety of ways to carry out the partition step. One of the clearest and easi­
est follows. What we will do first is establish the truth of Figure 2.9.

>t

first last Low last

Figure 2.9. Quicksort partition postcondition.

This will be a bit easier to do, since we know where the special "pivot" value will be:
always in cell first. Instead of m, we now use an index named lastLow, that marks the
cell in which we fmd the last "small" value. Note that if we can establish the truth of
Figure 2.9 then a swap of cells first and lastLow will establish Figure 2.8.

To establish Figure 2.9, we will carry out a process described in Figure 2.10.

>t ??

first lastLow last

Figure 2.10. Quicksort partition invariant.

What we do here is to use an index i, which we move along so that it is eventually
equal to last. Cells between firsH I and lastLow are <= t, those between lastLow+ I and i
are> t, and we don't know about those beyond i, since we haven't examined them yet. We
make this picture true initially by setting i and lastLow to be first. Then all parts are
empty except the first cell and the "??" part. We get i to be last eventually, by increasing
it in a for loop. We keep Figure 2.10 true in the following way. Each time we increase i,

Chapter 2. Programming with Arrays and Pointers 49

we examine the new cell i. If its value is > t, then nothing needs to be done. On the other
hand, if it is <= t, we can increase lastLow and then swap cells i and lastLow. This will
reestablish the truth of 2.10 for the new i. Putting all of this together, we arrive at the
following code for quickSort. We employ an auxiliary function swap that exchanges the
values of two cells.

template<class T>
void swap(T* elements, int i, int j)
{ T temp = elements[i];

elements[i] elements[j];
elements[j] = temp;

template<class T>
void quickSort
(T * elements,

unsigned int first,
unsigned int last

)
{ if(first < last)

}

{ T t = elements[first];
II t is the pivot.

unsigned lastLow = first;
unsigned i;
for (i = first + 1; i <= last; i++)

if(elements[i] < t)
{ ++lastLow;

swap(lastLow, i);
}

swap(first, lastLow);
if(lastLow != first)

quickSort
(elements, first, lastLow - 1);

if(lastLow != last)
quickSort (elements , lastLow + l,last);

Note that the portion of this algorithm up to the recursive calls is the partition step,
and its result (Figure 2.8) is called a partition of the array.

Exercise. Modify quickSort by applying the pointer duality law throughout. Your func­
tion should have two parameters. They are pointers to the beginning and the "after" posi­
tion. as usual. Test both the original version and your new version.

50 Data Structure Programming with the Standard Template Library in C++

2.7.5 The Efficiency of These Algorithms

After correctness, the most important aspect of any algorithm is its efficiency. There are
two aspects to efficiency, namely the efficiency of the algorithm itself and the efficiency
of its implementation. It turns out that the latter measure is not nearly so important as
the former and merely requires that the programmer take care not to execute unneeded in­
structions. The essential efficiency of the algorithm itself is much more important, as it
sets limits that no details of implementation can overcome.

Efficiency can be measured various ways. One measure is the space required. If an al­
gorithm is written to run on a multiprocessor system, then the number of processors re­
quired may be an important measure. Usually, however, efficiency means time efficiency.
How much time can we expect an algorithm to take to complete?

It must first be recognized that this question cannot be answered in specific, concrete,
exact terms. Computers differ in their speeds. Disk drives have differing transfer rates.
Multiuser computers have different loads that affect the speed of programs running on
them. Most importantly, each time we run a program, we likely do so with a different set
of input data. This can have a large effect, and we expect that a run with a small amount
of data will be faster than one with a large amount of data.

Therefore, efficiency is always expressed in terms of some measure of the input re­
quirements (size of the data) or the resources required (memory, processors, etc.). Here we
will consider only the time efficiency of our algorithms as a function of the size of the
input data. We also adopt a measure that will be independent of the speed of a particular
computing system on which a program implementing the algorithm might be run.

Some algorithms always take the same amount of time when run on a given system
in a given start state (system load, available memory, etc.). For example, an algorithm
that returns the first element of an array can be expected to run in constant time independ­
ently of the size of the array. However, an algorithm that uses a simple for loop to sum
the elements of an integer array must visit each cell of the array, so we expect that its
running time will be proportional to the size of the array, approximately doubling if we
double the size of the array. But this doubling isn't a precise measure either, since any
such algorithm will have a certain amount of overhead (initializing the sum, etc.) that
must be done no matter what the number of data items that it processes. Therefore, for
example, summing an array of two items using our for loop algorithm will not run ex­
actly twice as long as when applied to one element. However, between 1000 and 10,000
elements, the time will be very nearly related in a 1 to 10 ratio, since this fixed overhead
will be amortized, or spread out over a large number of repetitions.

In order to be as precise as possible when presenting the run-time characteristics of an
algorithm, we resort to a mathematical means of expressing the upper and lower bounds
of functions, here the running time, as a function of the amount of the data processed.
What we do, essentially, is to compare the running time function to functions of well
known behavior, such as polynomials, logarithms, and exponential functions. These
functions have been extensively studied and characterized using calculus. When the value
of function g is always less than the value of function f for a given input x, we say that f
dominates g, or gives an upper bound for g. If, on the other hand, function g is always
greater than function h at each point of the domain, we say that h forms a lower bound of

Chapter 2. Programming with Arrays and Pointers 5 1

g. If functions f and h are also quite close together at all input values, then we have
pinned down the behavior of function g quite well.

Computers run relatively fast today, so the behavior of an algorithm on a small
amount of data is only seldom of interest. For most algorithms, the time is nearly instan­
taneous. The problem gets interesting only when the data set gets large, the time gets
long, and we reach the limit of how long we are willing to wait for an answer. So, we are
usually willing to ignore the bounds problem for small inputs. With all of this in mind,
we can give a definition of a precise measure of the upper bound of a function, in terms of
another function.

Let f and g both be functions of an integer variable. We say that function g is O(t),
read "big oh of f," provided that there is an integer M and a constant C, such that for all
x>M, it is true that g(x) <= C . f(x). The purpose of M is to ignore small values of x
(the size of the input in our application). In effect, this lets us ignore the fixed ovethead
of the algorithm. The purpose of C is to provide a constant of proportionality that lets us
ignore the specific speed of processors. Different systems will just have different values of
C.

Note that if our running time is O(t) for some function f, this just means that the
running time for input size n is less than some mUltiple of f(n) for all n that are relatively
large. It might be nearly C·f(n) or considerably less. To get a sharp estimate of the run­
ning time, we also need a lower bound.

Lower bounds are expressed quite differently, though it sounds similar. We say that a
function g is g (t), read "big omega of f," if there is a constant C such that for any inte­
ger N there is an n > N such that g(n) >= C· f(n). Said another way, g is bigger than a
fixed multiple of f for infinitely many values. All this means is that it is sometimes
large, not that it is necessarily always large. In terms of running time, this means that for
some sets of inputs, the program will run for a long time and that this behavior will be
observed for more than just a finite number of values.

Normally, however, when we give a "big oh" bound for a function, we mean that the
running time is indeed close to that bound. So, while it is technically true to describe a
function as 0(x2), when it is also O(x), that won't normally be done. Note that if a func­
tion is big 0 of some polynomial function, then it is also big 0 of xn, where n is the
degree of that polynomial, since any given polynomial of degree n is O(xn).

We call an algorithm linear if it is O(x), since f(x) = x is a linear function. An algo­
rithm that is 0(x2) is called quadratic. One that is 0(x3) is cubic. As one extreme, an al­
gorithm with constant running time is 0(1), and at the other extreme an algorithm is
called exponential if it is 0(2n). Exponential running time algorithms take extremely
long to execute on large sets of data, as illustrated by the following exercise. Another
commonly used bound function is the logarithmic function !og2(n). An algorithm with
such a bound is described as logarithmic.

Exercise. Suppose that you have an exponential algorithm that takes 1 second to com­
plete if the size of the input is 16 items. For each additional item the time doubles. How
much time does it take on a set of 64 items? Suppose your computing cost (cost of time
and depreciation on the machine plus electricity consumed) is one penny for 16 items.
What does it cost for 64 items using the same formula?

52 Data Structure Programming with the Standard Template Library in C++

The sequential search algorithm presented above is linear, of course. The number of
steps it executes is directly proportional to the length of the array, as can be inferred from
the use of the for loop. Likewise, the selection sort algorithm is quadratic, since it con­
tains two nested loops, each of which is linear. In general, algorithms built out of loops
are relatively easy to analyze for their runtime bounds. Recursive algorithms and some
others are a bit more challenging.

One means of analyzing the running time of an algorithm is to write down an equa­
tion that describes the running time and then solve it. Even though we know that sequen­
tial search has linear running time, let us use this technique to analyze the efficiency as an
illustration of how to go about it.

In sequential search we look at one item in a set of n and if that is not the target of the
search, we still need to examine n-I others. Therefore, if there is a single item in our con­
tainer we take one unit of work to verify whether or not that item is the target. If there is
more than one item, say n, then the work required is one unit to check the first item plus
the work required for the other n-I items. If we write down this work equation, where W n

represents the work done for n items and W n-I the work for n-I items, we get the follow­

ing.

W n = I + W n-I ' if N > I and WI = 1.

Equations like these are called recurrence relations because they are recursive defini­
tions of a value. As in all recursive systems, note the necessity of a base (non-recursive)
case to which we reduce.

We can solve this by repeated substitution, replacing a work term on the righthand
side by its definition using this formula itself. Notice that we start with n-l on the right
and a single I. If we substitute the meaning of W n-I = I + W n-2 into the above formula,

we get

If we repeat this, we get

Wn = 2 + Wn-2 = 3 + Wn-3 ... = n

That is to say, the work to process n items is n times the work to process one item.
This again justifies the statement that the work of sequential search is proportional to the
length of the array.

Suppose that we try to analyze the running time of binary search in this same way.
The binary search proceeds by doing one unit of work to look in the center location in the
array. If that is not a hit, then the recursion says that the binary search must do the same
process over a data set half as large. Of course if the array only has one item, it only takes
one unit of work. We just verify that that item is, or is not, the target of the search. Sup­
pose that we again let W n represent the work done (time expended) for exactly n items.

Chapter 2. Programming with Arrays and Pointers 53

Then an equation defining this work that corresponds to the first two sentences of this
paragraph is

W n = I + W nl2' if n > I, and WI = 1.

This can be solved if we substitute n = 2k into the equation and then do repeated sub­
stitutions on the righthand side using this definition itself.

=k

Therefore, W n = k = log2(n), and we have a logarithmic algorithm. This is very good,

since the log of a number is small in comparison to the number. This justifies our earlier
claim that we can binary search an array with a million items with only about 20 repeti­
tions.

Exercise. Normally the quicksort exhibits the following behavior. The partition step
splits the array into two parts of about equal size. Therefore, the work done is the work
done to do the partition, which is linear, plus the work done to quick sort the two halves.
But sorting the two halves separately is just twice the work required to sort an array half
as big. Of course, an array with only one element takes no work at all to sort, since it al­
ready is sorted. Use this idea to verify the claim that quick sort is O(n log2(n)).

Some algorithms work well on most data sets but perform badly on a few. Quick sort
as presented here is such an algorithm. In an average case the quick sort is O(n log2(n)).

However, the algorithm as presented has a very strange behavior if we give it a sorted ar­
ray to start with. In this case, the partition doesn't divide the array into two parts of equal
size, but into one part that is empty and the other which has just one less element. So, in
this case, the running time is the time required to do the partition (linear) plus the time
required to sort an array with one less item. Now the recurrence is

W n = n + W n-l' if n > 1, and WI = O.

It is easy to show that the solution of this recurrence relation is a quadratic function of
n. Therefore, quick sort is no better than insertion sort on a few cases. For quick sort we

54 Data Structure Programming with the Standard Template Library in C++

say that the average running time is O(n log2(n», but the worst case running time is

0(n2). As a shorthand, we will use 19(n) in place of log2(n), as the log base 2 commonly

occurs when measuring efficiency.

Exercise. Actually, if we use big 0 to measure efficiency, any log base is equivalent to
any other and so the base doesn't matter. Why?

There is another measure of running time that is occasionally useful, though not for
these algorithms. Suppose we want to build a class to implement arrays that can be ex­
panded. A nice technique is to do the following. The class has a member variable that is
an array of some convenient size at creation. If we later learn that the array was too small,
we expand the array as follows. Allocate a new array, twice as long as the original, copy
the elements from the old array into the new one, and then delete the old array, assigning
the new one to the member variable. If we ask how much time it takes to insert an ele­
ment into this "array class", the answer is that it depends. If it is not time to expand, the
time is constant. If an expansion is required, the time is linear in the number of items
currently stored, to account for the copying time. But if we average this out over all inser­
tions, we find that the (average) time is still constant, actually about twice the time of
one of the atomic instructions. Note that to make this work, you must double the size
when you expand, not just increase it by a fixed amount. Such an algorithm is called am­
ortized constant, since we amortize the cost of an expensive operation out over several
cheap operations, with the average being constant.

2.8 Using Arrays with the STL

Most of the algorithms provided with the Standard Template Library work for arrays as
well as those additional containers provided by the STL itself. This was one of the pri­
mary design decisions of the STL. They work because pointers into arrays satisfy the re­
quirements of random access iterators. Since most of the algorithms work with such itera­
tors, they work with arrays.

To use the algorithms you must include the header <algo.h> provided with the STL
and probably provided with your c++ compiler. To sort an array, we need a pointer to the
beginning of it and a pointer to the cell that would immediately follow the array (not a
pointer to the last cell, a pointer to the following cell). Consider the following test ex­
ample:

int testArray[] = { 3, I, 4, 2, 5 };
int * first = testArray;
int * last = &testArray[5]; II Or testArray + 5;
sort(first, last);

for (int i =0; i< 5; ++i)
cout « testArray[i]«endl;

1
2
3
4
5

This produces

Chapter 2. Programming with Arrays and Pointers 55

Notice that the sort function doesn't mention the array that it is sorting. It only needs
pointers to the first cell and the "last" position. Technically, in the language of the STL,
sort takes two iterators as arguments and sorts the section of the container between the
two iterators, including the item at the location of the first iterator and not including the
position of the second. Sort works for many (but not all) of the container classes, and
most algorithms take one or more iterators as arguments.

There are two requirements for using the sort routine of the STL. The first is that the
pointer must de-reference to a type that supports operator<. In other words, the compo­
nent type must support this operator. The second is that the operator< of that type must
have the property that if a < b, then it is not true also that a = b. If your type doesn't
meet this specification, then you might get a compiler error that operator< is not defined,
or if it is but the operator fails to satisfy its condition, then using sort may result in an
infinite computation.

A somewhat less obvious requirement of the STL sort is automatically fulfilled by ar­
rays and array pointers. Sort requires that the iterators (here pointers) passed in satisfy the
requirements of random access iterators. Since array pointers have this property this is not
a problem, but applying sort to some other data structures (e.g., linked lists) might not
be possible.

The STL sort algorithm is a variation of quickSort. It is a bit more sophisticated than
the one shown above, as it works efficiently for already sorted arrays, though it will be
inefficient for some collections of data. The STL has other sort routines that are slower
on average than sort, though they can be guaranteed to always be faster than quadratic al­
gorithms like selection sort. See sort_heap in the index or in Chapter 6, for example.

Another STL algorithm that can be used in exactly the same way as sort is reverse,
which reverses the elements of an array (or other container).

Note that when you apply one of the STL algorithms using an iterator, the value of
that iterator may change. It may no longer point to the location to which it originally
pointed. We say that an iteration "consumes its iterator."

2.9 Another Example. A Simple Database

One of the important problems in computer processing is how to efficiently and effec­
tively store large amounts of information. The solution is called a database. We shall pre­
sent an extremely simple solution here that is not really adequate for large amounts of
data, but it introduces a few key concepts.

56 Data Structure Programming with the Standard Template Library in C++

Data is stored so that it may later be retrieved. Usually the data is stored once, updated
infrequently, but accessed frequently. Eventually the data will likely be removed. For ex­
ample, when a new employee is hired, a new record is placed into the employee database,
describing the relevant information about that person. The data is modified or updated
only when some piece of information changes, such as name or address. The data is re­
trieved at least as frequently as the pay cycle, since it is needed to write a paycheck. Fi­
nally, when the person leaves employment the data is removed from the active part of the
database, though the information may simply be moved to an archival region.

Since retrieval is done more frequently than creation/modification/removal, it is im­
portant to organize the database so that lookups are fast, even if this somewhat slows the
speed of insertions. One of the chief ways that this is achieved is to choose from among
all of the data to be stored, some portion that can be guaranteed to be uniquely associated
with the data entity (here person), and that will not be the same for any other entity. This
portion of the record is called the key, and the remainder of the data for that entity is called
the information. Therefore, data is a collection of key-information pairs. social security
numbers are often used in the United States as a key for employee records, since they are
required to be maintained by employers (for taxing purposes) and they are also (supposed
to be) unique. In general, however, the type of the key and the type of the information dif­
fer from one database to another, and even from one portion of the same database to an­
other, so it is useful to abstract these types. We can do this with a class template.

template <class Key, class Information>
class DataRecord
{ public:

DataRecord(Key k, Information v)
key(k) ,

{
}

information (v)

Information getInformation() const
{ return information;
}

Key getKey() const { return key; }

bool match(const Key k) const
{ return k == keYi
}

private:
Key key;
Information information;
DataRecord(){}

} ;

Chapter 2. Programming with Arrays and Pointers 57

II Needed to create arrays of
II DataRecords.

friend class Database<Key, Information>;

We can now build a database using an array to hold DataRecords. This solution, as
mentioned before, is overly simplified, as it requires that we know the maximum size of
the database in advance, which is seldom the case.

template <class Key, class Information>
class Database
{ public:

} ;

Database(int size)
currentSize(O),
storage

{
}

(new DataRecord<Key,
Information> [size]

void store
const Key k,
const Information v

storage [currentSize++]
DataRecord<Key, Information> (k, v);

}

Information retrieve(const Key k) const
{ for(int i = 0; i < currentSize; i++)

if(storage[i] . key == k)

}

return storage[i] . information;
return Information();

II The default value of type
II Information;

private:
DataRecord<Key, Information> * storage;

II Save the data in an array.
int currentSize;

58 Data Structure Programming with the Standard Template Library in C++

We can now store information into our database, where it is saved in the next avail­
able slot in the array. We can also retrieve the information associated with any key,
though it takes a sequential search of the database to achieve it. Thus, though it works, it
does not satisfy the efficiency requirements that specify that lookups should be fast. Here
insertions are fast but retrievals are very slow.

To create a database, you need to specify the key and information types as well as the
maximum size.

Database< int, char*> BonMot(lOO);
BonMot.store(22, "Have a nice day.");
BonMot.store(ll, "Have an OK day.");
BonMot.store(33, "Have a wonderful day.");
BonMot.store(5, "Have a day.");
cout « BonMot.retrieve(ll) « endl;
cout « BonMot.retrieve(99) « endl; II Prints garbage.

Exercise. Speed up retrievals, even at the expense of insertions. One way to do this is
to sort the database after each insertion. This requires that DataRecords have an operator<,
which you will need to write. This operator should consider only the keys and ignore the
information values.

Exercise. Devise a better mechanism for signaling that the data sought is not to be
found. You can change retrieve into a bool function that returns its information value in
a reference parameter, for example. Throwing an exception is another possibility.

2.10 Arrays That Contain Pointers

If we assign a value to some component of an array, then a copy of the value is made and
stored at that component. Sometimes we want to avoid this copying because of its cost,
or because the logic of the problem dictates that we not make copies of things. In this
case we may store pointers to values rather than values themselves as the components of
the arrays. This same technique may be applied to other containers as well, of course.

For example, in a database, it might be desirable to store the same objects in several
places without copying. We try to keep only a single copy of data in a database to sim­
plify the problem of updating values. If several copies of a piece of data are stored, then
all must be updated at the same time. One way to achieve this is to avoid copies alto­
gether, keep one copy of each piece of data, and use pointers as needed to simulate replica­
tion.

To do this our database will store pointers to data records rather than data records. Each
cell of the array will contain just a pointer to some actual data record, or possibly be

NULL.
Aside from the avoidance of copying, there is another major advantage of using point­

ers as the contents of our containers. This is the possibility of making the containers het-

Chapter 2. Programming with Arrays and Pointers 59

erogeneous: of storing different types of things in the same container. This can't be done
with complete freedom in C++, however, since pointers have a type that includes the type
of the value that they point to. However, we may use the object-oriented features of C++
to achieve heterogeneity. We return again to derived classes.

Since we define a new class when we derive one class from another, we have different
types. However, these types are partly compatible with each other. In particular, a pointer
to a base type may hold a value that is a pointer to a derived class. This means that if we
have a container, such as an array, defined to hold pointers to some class, then it may in
fact hold pointers to any class derived from that class. For example, we may create an ar­
ray of pointers to SpreadSheetCells and store pointers to NumericCells and FormulaCells
as well.

SpreadsheetCell* lotsOfCells [100];
II Array of cell pointers

lotsOfCells[O]
lotsOfCells[l]

new FormulaCell(...);
new NumericCell(...);

2.11 Another Use for Pointers-Lists

As a final brief note, we mention that pointers may be used to refer to other values than
arrays. One of the most fruitful uses is to use pointers as links to chain data cells to­
gether. Each cell will now contain not only a value, such as an array cell does, but also
the address of another cell. In this way the cells do not need to be stored contiguously, but
can be anywhere in the free store. The advantage of this is that it is quite easy to insert a
cell "between" two other cells and nothing needs to be moved. All that is required is that
the addresses that impose the physical ordering on the cells be updated. In this way we can
build sequential structures called linked lists. More generally, we can use more than one
such address in a cell and build nonsequential structures such as trees and graphs. Lists
will be taken up in detail in Chapter 7.

2.12 Summary

Make certain that you understand each of the following terms:

array
array section
alias
big 0
binary search
cell
component

60 Data Structure Programming with the Standard Template Library in C++

half open interval [a, b)
index
initialization
invariant
iterator
pointer
pointer duality law
quicksort
recurrence relation
searching
selection sort
sequential search
sorting
subscript

2.13 Exercises

1. Build a calendar generation program. Fill in a 6 by 7 array with numbers representing
the days of a month. Consider columns to represent the days Sunday through Saturday.
Input a date and build a calendar for the month containing that date. If a cell does not cor­
respond to a day in that month, give it a zero or negative value. Provide a print routine to
print nicely formatted monthly calendars.

2. The following sequence of exercises should be worked together. The following ordinary
function will compare Countedlnts:

bool crnpi
(const Countedlnt& a, const Countedlnt& b)

{ return a.getValue() < b.getValue();
}

It returns true provided that the first parameter has a value less than the second. Such a
function is very useful if CountedInts are to be placed in STL containers. For example,
create an array of 20 Countedlnts. They will be initialized automatically by the default
constructor. Notice that the defmition of the array itself will call the default CountedInt
constructor on all elements. Verify this by scanning over the array and writing out the
"order" of each element using getOrder.

Countedlnt ci[20);
for(Countedlnt* cip ci; cip != ci+20; ++cip)

cout «cip->getOrder()«' ';
cout«endl;

Chapter 2. Programming with Arrays and Pointers 61

Now verify that all of the values stored are zeros.

3. Set some values into the CountedInts stored in the array of the last exercise. Then ver­
ify that you have your values by printing out the entire array again. Then shuffle the val­
ues around with the STL algorithm random_shuffle:

random_shuffle(ci, ci + 20);

Now verify that you have the same values by printing out the values. Also print out
the orders, to show that you have the same objects as before in the same cells.

4. Now sort the array with

sort(ci, ci+l0, crnpi);

Again verify that the values have been sorted. Note that we need the comparison op­
erator as the last parameter of sort.

5. We would not need the last parameter of sort in exercise 4 if we had given CountedInt
an operator<. In that case, sort would have used this operator if we had not supplied the
third parameter. Try this.

6. Save 10 rolls of a ten-sided die in an array. Print out the array. Sort the array. Reverse
the sorted array. Shuffle the array. Sort it again. Scan the array to find the number of rolls
on which the value was even. Use iterators (pointers) for all of this. You should not use
subscripts anywhere. Perform all of the above again using subscripts to get access to the
cells. You should not use pointers (iterators) anywhere. Unless you have access to another
library of algorithms, this last part is much harder. Why?

7. Build a database in which the keys are strings and the data values are also strings.
Sometimes such databases are called property lists. The keys name some property, and the
data value is the value of that property. Property lists are attached to various objects. For
example, a window object could have a property named "HasVerticalScrollbar" with the
value "true." The advantage of using strings for the keys is the flexibility to add additional
properties without rebuilding the database system, as we are not using a fixed set of prop­
erties. To enable the next two exercises, first write a function that will write out a com­
plete database. This could be a friend function with prototype

template <class Key, class Info>
ostrearn& operator« (ostrearn & 0, const Database<Key, Info>&
db)

Such a function should return the same ostream that it gets as a parameter after send­
ing all elements of the database to the stream 0, with appropriate formatting. Such friend
functions are the standard way of giving objects print capabilities.

62 Data Structure Programming with the Standard Template Library in C++

8. It is sometimes necessary to sort a database. If we store the DataRecords in an array,
then this can be arranged with a few changes to the database system. One typical way is
to add a sort member to the Database class. Implement this idea. The prototype should be

void sort () ;

9. A better way to permit sorting of a database is to provide a mechanism compatible
with STL iterators. To do so requires only that we provide beginO and endO members to
our Database class that return pointers to array cells. We can return variable storage for
the value ofbeginO and & (storage [currentSize]) for the after then end value re­
quired by endO. With these functions provided, we can use the STL algorithm sort, which
requires such iterators for its parameters. Note that sorting char* strings is a bit tricky
since the ordinary operator< won't work. If you use this kind of string, then you need to
provide a string comparison routine like

boo1 cmp(char* a, char* b)
{ return strcmp(a,b) < 0;
}

In this particular case we need to be able to compare DataRecords based on only their
keys. The following function will do this.

boo1 cmp
(DataRecord<char*, char*> a,

DataRecord<char*, char*> b
)
{ return cmp(a.getKey(), b.getKey(»;
}

This function could be passed to the generic sort routine of the STL as a third parame­
ter, as in

sort(db.begin(), db.end(), cmp);

where db is the name of our database.

10. c++ does a pretty good job of handling strings. You can allocate a fixed amount of
space for a string, just by using a string value

char * x = "These are the times."

You can allocate a large buffer in which to put a string as you read it when you don't
know how big it will be:

char buf [256];

Chapter 2. Programming with Arrays and Pointers 63

You can also allocate a string on the free store when you know its length:

char * ans = new char[18];

Only the last method gives you the flexibility to decide at run time how big the string
will be. But there is another way, called a string buffer. It has the advantage of not requir­
ing calls to the allocator new, which can take a lot of time if done frequently. Suppose we
have an array in our program that is large enough to hold several strings:

char spellbuffer[4096];

We are going to pack strings into this buffer, one after the other. A string will then be
referenced by knowing the index of its first character in the buffer, which we obtain when
we insert it. We keep an integer variable, nextFree, initially 0 that is always the index of
the next cell of the array that has not yet been filled. We can insert a string S into the ar­
ray with two statements:

strcpy(spellbuffer + nextFree, S)
nextFree += strlen(S)+l;

The location of the spelling of S in the buffer is the original value of nextFree before
we increment it.

Write functions insert and retrieve. The insert function takes a char* and inserts it into
the buffer, returning the integer index at which it starts. Function retrieve takes an integer
index and returns the string at that index.

Chapter 3
Overview of Container Mechanisms

3.1 Storage Mechanisms

In this chapter we are going to examine a number of ways that a programmer can store
relatively large amounts of data for a program. We have already examined arrays, which
use dense storage, and we saw that we can allocate such storage either automatically or on
the free store. Two other methods of importance and frequent use are linked storage and
hashed storage. Normally, linked storage is done only in the free store and hashed storage
may be a combination of linked and dense storage and may involve either automatic or
free store data or even a combination.

Dense storage is needed when we need to access elements in a random order and do so
quickly. It is also useful if we can predict the total number of items to be stored in a:l­
vance. Linked storage is needed when we need to be able to insert items between existing
items frequently. Hashed storage is often used when we need to retrieve items quickly, 00
not need to rearrange them or retrieve them in a particular order. Hashed storage is also
useful when you can't predict in advance the total number of items to be stored, though
there are variations of hashed storage that require this knowledge in advance.

Linked storage is the most flexible of the methods considered here. With links it is
possible to build sequential structures called Lists (Linked Lists), as well as non­
sequential structures such as trees and graphs, with complete generality.

3.2 Dense Storage

Dense storage, as used in arrays, has many advantages and only a few disadvantages. The
main advantage is that when we know where the structure is, we know automatically
where every part of it is. Internally, when we use a subscript reference like A[i], the sys­
tem multiplies i by the size of a cell and adds that to the address A to obtain the address of
cell i. This multiplication and addition are very fast, so the access is very fast. When you
use a struct or a class in C++, the system also uses dense storage for the value. In this
case, each member of the struct or class is given a fixed offset from the beginning of the

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998

66 Data Structure Programming with the Standard Template Library in c++

value. Then a member access like B.x is evaluated by adding the fixed offset of x to the
beginning address of B to obtain the member's address.

The main disadvantage of dense storage is the difficulty of extending the size of fixed
blocks, especially if they have large size. A running program has many items to be stored
and a fixed amount of memory in which to store them. In order to make good use of
memory, a compiler will pack data items together in memory without much wasted
space. This means that our array or struct is surrounded by other data items. Therefore, it
is usually impossible to expand the size of an array in place. If we underestimate the size
of an array initially and want to expand it, then we will need to allocate a new, larger ar­
rayon the free store, and copy the elements from the old to the new array. This is time­
consuming, and if done frequently, can greatly slow an algorithm.

A secondary, though important, disadvantage of dense storage is the difficulty of mak­
ing room for additional components in the middle of a block. The very nature of dense
storage implies that the old values must be moved to make room for the new value. This
moving of old values takes time that, generally speaking, is proportional to the number
of elements to be moved.

3.3 An Extended Example Part 1: The Array Stack

A stack is a container object that keeps items in the order in which they were inserted.
When we remove an item from a nonempty stack, it is always the item most recently in­
serted of those still remaining. The standard name for this protocol is LIFO, for Last-In,
First-Out. A stack can be defined formally in terms of its state, which is modified by its
operations. The operations on a stack are emptyO, which tells us if the stack is empty;
fullO, which tells us if it is full and should not be inserted into; push(val), which is the
insert operation; popO, the removal operation, which removes the most recently inserted
item and returns it to the caller; and topO, which returns the most recently inserted item
without removing it. The rules defining a stack are as follows:

1. Immediately after creation, empty returns true.
2. Immediately after push, empty returns false.
3. If a stack is in a state in which empty returns true, then pop and top are errors.
4. If a stack is in a state in which full returns true, then push is an error.
S. (If a stack is in state S in which full returns false and we push an element E and then

immediately pop, then the pop will return E to us and the stack will again be in state
S.

6. Immediately after a (successful) push(E), top returns E without changing the state.

In actuality we have defined a bounded stack here, since it can hold a fixed number of
items. If we remove this restriction, or otherwise guarantee that full always returns false,
we have a stack proper.

One of the classic uses of a stack is to evaluate postfix expressions. Such expressions
have each operator written after all of the operands of that operator. For example, the ex-

Chapter 3. Overview of Container Mechanisms 67

pression (a + b)*(c + d) would be written in postfix as a b + c d + *. The way to evaluate
an expression written in postfix is to read the expression, one symbol at a time, from left
to right. If we read an operand, then simply push it on a stack. If you see an operator,
then pop the appropriate number of operands for that operator from the stack, apply the
operator to the values popped, and then push the result back onto the stack. When you
reach the end of the expression, you have the value on the top of the stack.

We can implement a Stack class in many ways. We will do so first with dense stor­
age, employing an array as our internal storage mechanism. We will use a dynamic array
so that we can decide when we create a stack how large it should be. It is possible to ob­
tain a stack very easily from the STL. However, we will build one here ourselves to see
what is involved. Even given the fact that we intend to use dense storage for the elements,
there are still many decisions that need to be made to build our stack abstraction. The
choices we shall make here will all be such as to illustrate what goes on in the STL con­
tainers, though it is certainly possible to implement things differently. We should em­
phasize, however, that what we shall build is quite a bit simpler than what occurs in the
STL. We shall only be illustrating concepts here, not attempting to extend the Standard
Template Library.

As a minimum, our class needs a constructor, a destructor, copy constructor, over­
loaded assignment operator, and the specific operations of a stack. In addition we shall de­
fine an associated iterator class and a means of generating certain iterators from any given
stack. The name of our class is ArrayStack, which is not a particularly good name, but it
does emphasize the implementation, which is our intention here.

The implementation of our stack will require three variables: _size is the physical size
of the array that we allocate; _top is an index of the topmost element in the stack; mxl
_elements is a dynamic array of size _size, initialized in the constructor. When we insert a
new element, we first increase _top by one and then insert the new item in the slot refer­
enced by _top.

We will intersperse the complete definition of the ArrayStack class with our com­
ments.

template <class T>
class ArrayStack
{ public:

typedef T value_type;
typedef ArrayStacklterator<T> iterator;

These types are for convenience. They let other classes get access to the types that we
are using by employing standard names such as iterator, rather than the proper names.

ArrayStack(int size = 100)
_size(size) I

{
}

_top(-l) I

_elements(new T[size])

68 Data Structure Programming with the Standard Template Library in C++

Here we allocate a new array according to the parameter, which, by the way, has a w­
fault value.

ArrayStack(const ArrayStack<T>& S)
_size(S ._size) I

_topeS ._top) I
_elements(new T[S._size])

{ for(int i = 0; i<= _top; i++)
_elements[i] = S._elements[i];

}

The copy constructor is used when we create one stack from another. We must allocate
a new array for the new stack. We don't want two stacks to share the implementation ar­
ray. Otherwise, changing one stack would change the other as well. This would be a dis­
aster in this situation. Why?

ArrayStack<T> operator=
(const ArrayStack<T>& S)
{ if(this!= &S)

}

{ delete [] _elements;
_elements = new T[S._size];
_size = S._size;

}

_top = S._top;
for(int i = 0; i<= _top; i++)

_elements[i] = S._elements[i];

return *this;

This is the assignment operator. Note that it guarantees that we aren't trying to assign
the same array to this one. Again, without this check we could have a disaster. What hap­
pens if we would delete the current _elements before copying the old values without this
check? Note how much code is shared between the copy constructor and the assignment
operator. This is typical of c++. It is convenient to factor out this common code into a
private procedure so that it is easier to maintain.

-ArrayStack(){ delete [] _elements; }

The destructor must delete the array that the constructor created.

void push(const T& v)
{ _elements [++_top] = v;
}

Chapter 3. Overview of Container Mechanisms 69

To push onto a stack, we must first advance the _top member and then store the new
element into the resulting component. Notice that we do not check for legal array limits
here. It might be preferable to do so, though it would take time. The user has the ability
to check for overflow using the function fullO and must generally do so in any case. A
test here would likely just repeat a test done elsewhere in a correct program.

T pop(}{ return _elements[_toP--]i }

A pop is the opposite of a push. We must return the element at the current _top am
then reduce the _top value. Again there is no test for underflow. The user will likely (am
should) use emptyO before calling popO.

T top()const{ return _elements[_top]i }

Top is like pop except that we don't change the _top member.

bool empty()const{ return _top < 0; }

bool full()const{ return _top >= _size; }

In empty and full, we just return information about the state of the stack.

iterator begin()const
{ return

ArrayStacklterator<T>(_elements, 0);
}

The beginO function returns an iterator, which is an ArrayStackiterator<T> according
to the typedef seen above. We shall examine the iterator class in a moment.

iterator end()const
{ return

ArrayStacklterator<T>
(_elements, _top+l);

}

The endO function also returns an iterator. We initialize it with the index of the first
empty slot after the active elements of the stack. Notice that this is not the slot after the
array necessarily, but the slot after the active part of the array.

private:
int _sizei
int _toPi
T* _elements;

70 Data Structure Programming with the Standard Template Library in C++

These are the member variables that implement the structure. The order in which these
are listed can be important. This is because constructor defined above initializes them in
the initialization section rather than in the code block. The rule is that the initializations
are done in the order in which the member variables are dermed, not in the order in which
the initializations occur in the constructor definition. They happen to be the same order
here, but if, for example, we had defined _elements first (before _size) and then used _size
rather than size as the initializing value in the constructor definition, then _elements
would not be properly initialized. This can lead to subtle errors if you forget the rule.

friend class ArrayStacklterator<T>;
} ;

Finally, we note that the ArrayStackIterator<'f> is declared to be a friend class. This
implies that the member functions of that class will have access to the member variables
(all the private members, actually) of this one.

All of this seems pretty straightforward, except possibly the need for the begin am
end functions. Why bother? The stack seems complete. What can be done with these two
functions and the values they return? We shall return to these questions momentarily, but
first a simple example of use.

void main ()
{ ArrayStack<int> as;

as . push (3) ;

}

as . push (5) ;
as. push(1) ;
cout «as. top() « ' ,

« as.pop() « as.pop() « endl;
ArrayStack<char*> ss;
ss. push("Hi. ") ;
ss.push("Bye.");

The creator of every class has a dilemma to face and a problem to solve. If the class
properly employs information hiding so that details of the implementation are hidden
from users, then how does a user get necessary algorithms implemented? One way is to
assure that the class has all necessary algorithms for use implemented as member func­
tions (or combinations of member functions). This is a rather heavy requirement and re­
quires a lot of foresight. Suppose that we discover after the fact that some required proc­
essing is missing. What do we do? One option is to modify the class itself to !lid the
required functionality, and this is often done. Modifying existing code, however, is prob­
lematic, since it can introduce errors and make previously working code break. Another
option is to build a derived class and to implement the new functionality there. This is
also often done and in many cases is superior to the first solution. The STL takes a differ­
ent approach to this problem, however.

Chapter 3. Overview of Container Mechanisms 71

In the Standard Template Library, very few of the algorithms needed to manipulate an
abstraction are implemented in the class corresponding to that abstraction. Instead, the
class defmes functions that make certain information about the abstraction-here a
stack-available in such a way that the user can implement any needed algorithm without
modifying the structure itself. In fact, it is possible to build such algorithms in such a
way that they work with other data abstractions as well as the one for which they were
originally designed. This is the purpose of iterators.

Iterators are any types, built-in or user-defined, that have certain characteristics similar
to those of pointers. In particular, we need to be able to de-reference an iterator to get ac­
cess to the value that it references. We need to be able to advance an iterator using opera­
tor++, and we need to be able to test two iterators for equality. Specialized iterators have
additional properties, as we shall see. What follows is a user-defmed class that imple­
ments an iterator type corresponding to our ArrayStack type. It is much simplified from
what is actually available in the STL, but again, it is intended primarily to introduce the
concepts needed and not to be an extension of the STL. We shall see that it gives us
enough power to be able to use a variation of our selectionSort algorithm of the previous
chapter to sort stacks, although sorting a stack is a somewhat foreign concept.

In this implementation, an iterator (ArrayStackIterator) uses an integer representing an
index and a pointer to an array. This array is actually the same array (not a copy) that rep­
resents the implementation of the ArrayStack that this iterator is iterating over.

template <class T>
class ArrayStacklterator
(public:

typedef T value_type;

The value_type is the type of data stored in the associated array.

T& operator* ()
{ return _array->_elements[_where];
}

This is the de-reference operator. It gives us access to the item the iterator references at
the time. Note that by returning a T& rather than a T, we return the value itself, not a
copy. This means that we can store into this value as well as retrieve the current value.
This means we can modify the associated stack without pushing or popping, of course.
This might be undesirable. We could prevent this by making the operation const and re­
turning a const reference instead.

bool operator«const ArrayStacklterator<T>& i)
{ return _where < i._where;
}

72 Data Structure Programming with the Standard Template Library in C++

Here we compare two iterators using <. The implication is that the iterators are iterat­
ing over the same stack. Any other use will return garbage information. We just compare
the _where member variables of the two iterators.

ArrayStacklterator<T> operator+(int i)
(return

ArrayStacklterator<T> (_array, _where + i);
}

Operator+ lets us IKkl an integer to an iterator. This is the exact analogue of pointer
arithmetic in which we add an integer to a pointer. We want the addition of i to point us
up i slots in the stack.

T& operator++()
{ return _array->_elements[++_where];}

T& operator++(int)
(return _array->_elements[_where++];}

These are the two auto increment operators. The ftrst is the preincrement version that
moves the iterator along one cell and returns the value in the new position. We increment
_where before we use it to retrieve an element (reference). The version with the unused int
parameter is a c++ hack that deftnes the post-increment operator. Again, we use
_ where++ as the basis of the implementation. Note that we could turn this iterator class
into something like a bidirectional iterator if we also implement the two operator-- ver­
sions.

private:
Arraystacklterator
(ArrayStack<T>* s, int where 0
)

(
}

_where (where) ,
_array(s)

The constructor just makes a copy of a pointer to an ordinary array and an index.
These come from the array that creates the iterator. These iterators are created only by
functions such as beginO and endO of the ArrayStack class. We guarantee that iterators are
created only by ArrayStacks by making the constructor private. Note that we don't need a
copy constructor here or an overloaded assignment or a destructor, since the supplied ver­
sions will suffice.

int _where;
T* _array;

Chapter 3. Overview of Container Mechanisms 73

friend class ArrayStack<T>;

This friendship relation gives the ArrayStack class access to the private constructor of
this class.

} ;

Exercise. What we have done with ArrayStackIterators is a little backwards when you
think of it. In reality, an iteration over a stack should start at the top and proceed to the
bottom. Ours proceeds in the opposite order. Rebuild ArrayStack and ArrayStackIterator
as necessary to implement this improved idea.

In order to see what we can do with this, lets reexamine the selection sort from Chap­
ter 2. The last version we had of that function template was

template < class T >
void selectionSort(T* start, T* end)
{ for(T* where = start ; where < end

}

{ T* loc = where;
T small = *loc;
for

}

(T* inner = where + 1;
inner < end;
inner++

if(*inner < *loc)
{ loc = inner;

small = *loc;
}

*loc *where;
*where = small;

where++)

This is close to what we want, but not exactly. Here we explicitly use pointers to T
as parameters and as locals. We want to replace these pointers with iterators. To do so we
are going to change the template parameter type to TI and let this refer to an iterator type,
rather than the type of data collected in the array (or other container). We won't have a pa­
rameter for the collected type at all, which gives us a problem since the type of local vari­
able small must be this collected type. This was the purpose for the typedef value_type
defined in the iterator class. We replace T* in the above by our new template parameter TI
and replace T by TI::value_type.

template < class TI>
void selectionSort(TI start, TI end)

74 Data Structure Programming with the Standard Template Library in C++

{ for(TI where = start ; where < end ; where++)

}

{ TI loc = where;

}

TI: :value_type small = *loc;
for
(TI inner = where + 'I;

inner < end;
inner++

if(*inner < *loc)
{ loc = inner;

small = *loc;
}

*loc *where;
*where = small;

Note: The STL is a bit more sophisticated about providing this value_type for iterators.
In the STL it is done indirectly through the use of generic functions, while we have done
it directly. The STL solution is preferable, as it permits ordinary arrays and pointers to be
used as well as other containers and iterators. Our selectionSort will not work with arrays
and pointers since, being built-in rather than dermed by classes, they can't provide this
value_type. This topic will be taken up again in Chapter 5.

Notice what operations we apply to the variables of the template parameter type:
variables start, end, where, and loco We assign one iterator to another. We use operator<,
operator++ (postfix), and operator*. All of these are implemented in our class (except the
assignment, which the system provides). We can therefore pass this function
ArrayStackIterators and expect that it will sort the region of our stack between these itera­
tors.

void main()
{ ArrayStack<int> as;

as.push(3);
as.push(S);
as . push (1) ;
as . push (4) ;

selectionSort(as.begin(), as.end(»;

}

cout « as. pop ()
cout « as.pop()
cout « as.pop()
cout « as.pop()

« endl;
« endl;
« endl;
« endl;

Chapter 3. Overview of Container Mechanisms 75

Note that the selectionS art algorithm is not part of the ArrayStack class, which did
not need to be modified in order to provide this new functionality. This gives us power in
two ways. First, the same algorithm will be used with a LinkStack that we intend to
build in the next section. Second, we can add algorithms to a program without modifying
existing code. Of course this is only possible because the iterator mechanism is very gen­
eral and very powerful.

We close by noting that in the STL the array, vector, and deque types all use varia­
tions of dense storage. We shall examine some of the details in future chapters.

Exercise. Transform the quickSort algorithm in the same way that we have translated
the selectionSort. Test it by sorting ArrayStacks.

Exercise. Use the StopWatch class of Chapter 1 to verify in practice that selectionS art
is 0(n2) and quickSort on random data is O(n log(n». Create a rather large stack and sort
it, timing the operation. Now do the same on stacks twice as large and four times as
large. What did you learn?

3.4 Linked Storage

With dense storage, our data structure is compactly stored in one place in memory. With
linked storage, on the other hand, it is distributed in small pieces that are linked together.
Think of taking lots of bits of paper with values on them and lots of bits of string with
their ends glued to the bits of paper. The strings represent the links. We could connect the
paper bits into a single chain, or a ring, or lots of other geometries if we permit more
than two bits of string to be glued to the same piece of paper. This is similar to linked
storage but not exactly the same, as we shall see.

The main difference between the links, which are actually pointers, and the bits of
string is that pointers can only be traversed in one direction by using the de-referencing
operator. We need two pointers to be able to move in two directions between adjacent bits
of paper (data). Suppose that you glue lots of bits of paper-string into a linear chain.
Then it is pretty clear that you can pick up the entire chain by picking up any piece. This
is not so if you have a chain of links (pointers) and use only single linking from some
first piece to some last piece. In this case, to pick up the entire chain, you need to pick
up its first link. Since you can't move backwards along pointers if you pick it up else­
where, you won't have access to the items "before" the place you pick it up.

Pointers are very much like string in other ways, however. A similarity between
strings and links is that if you cut a linear chain, you lose access to the part cut away un­
less you are careful to hold on to both pieces at the time the cut is made.

To build a linked implementation of a data structure, we normally use two structs or
classes. One of these classes defines nodes and the other defines the data abstraction of in­
terest: a stack, for example. The nodes are an implementation detail and are not, properly,
part of the abstraction. They are just the stuff out of which we build our stack, or list, or
whatever. A Node normally contains a data value of some type: the type that we collect in

76 Data Structure Programming with the Standard Template Library in C++

the container, or occasionally a pointer or a reference to such a type. The Node also has
one or more link fields. These are just pointers to other Nodes. If we want a linear, se­
quential structure or a ring, we only need one pointer per Node. If we want bi-directional
links, we need two pointers per Node. Trees and graphs may require more, even a variable
number of pointer variables in each Node.

A standard form for Nodes of a singly linked structure would look like the following:

template <class T>
class Node
{ private:

};

Node(T val, Node<T>* next NULL}
_value (val) ,

{
}

_next (next)

T _value;
Node<T>* _next;

friend class . . .

We have made everything in the class private and have indicated that some class will
be a friend of this class. This is because this class defines an implementation detail only,
so its features should be private to the class that uses it and not available to others. The
constructor "links" in its parameter, which is a Node*, to this Node, in effect attaching it
after the Node being constructed.

In the absence of the other class, and assuming that the constructor, at least, is public,
we can construct a sequentially linked structure by repeatedly calling the constructor
(carefully).

Node<int> * head = new Node<int>(5};
head new Node<int> (4, head);
head new Node<int> (3, head);
head new Node<int> (2, head);
head new Node<int> (1, head);

At this point, head points to a Node with a 1 in it. That Node is followed by a Node
with a 2, then a 3, etc., until the last Node with the 5 in it has a _next field of NULL.
Note that each time we set a new value into head, we first use the old value as the "tail"
of the Node being created. The following sequence of pictures, Figure 3.1 through 3.3,
should help.

head ~15 NULL I
Figure 3.1. After: Node<int> * head = new Node<int>(5);

Chapter 3. Overview of Container Mechanisms 77

head ~I L-_4 _---I-+---I.P 15 NULL I
Figure 3.2. After: head = new Node<int> (4, head);

head ~I _3 __ -=1-----11 •. 1 _4 __ -=.-1-----11 •• 15 NULL I
Figure 3.3. After: head = new Node<int> (3, head);

The boxes represent the Nodes, and the arrows from one box to another represent the
_next field of each Node. Note that we have only one variable here. To get access to the
Nodes after the first (head) we must use expressions, not simple variable names.

It is generally a mistake to build a linked list in this way, using just a pointer to refer
to its head. Instead we normally define a second class that will encapsulate (and hide) this
head pointer.

template <class T>
class List
{ public:

List()
_first (NULL)

void insertFirst(T val)
{ _first = new Node<T>(val, _first);
}

private:
Node<T>* _first;

} ;

This class will be the friend class of the Node class.
We would now create the same list with the following code:

List<int> L;
L.insertFirst(S);
L.insertFirst(4);

78 Data Structure Programming with the Standard Template Library in c++

L.insertFirst(3)i
L.insertFirst(2)i
L.insertFirst(l)i

There are many variations on linked storage as indicated above. One of the easiest is to
circularly link the list so that the last Node, rather than having a NULL pointer in its
_next field, has a pointer to the first Node. Maintaining this circularity requires care when
we insert and remove data. Its advantage is that it lets us "back up" along links by going
around the other way. This also takes care, however, so that you don't go around am
around forever.

Another variation is double linking. Put two Node* fields in each Node: _next am
_previous. It is then very useful to put two Node* fields into the List class as well: _first
and _last. In fact, even with single linking, it is often of use to maintain a pointer in the
list class to both the fIrst and last Nodes of the chain. This gives us access to both ends
of the chain. Note that it is easy to do inserts at either end, easy to do deletions at the
front, but difficult to delete at the rear, as we shall see in a moment.

If a list is singly linked, then we can effectively only provide fOlWard iterators: those
that can move from beginning to end in the direction of the linking. If we doubly link a
list, then we can easily provide bidirectional iterators. This is the approach taken in STL
lists.

To delete a Node at the front of a List we could use a member function like the fol­
lowing:

void deleteFirst()
{ Node<T>* temp = _first;

_first = _first->_next;
delete temp;

}

The difficulty of deleting elsewhere is illustrated by Figure 3.4, in which we suppose
we want to delete the Node with the 5, but all we have is a pointer to that Node.

1 .15 NUlL I
/

Figure 3.4. Problematic deletions.

Chapter 3. Overview of Container Mechanisms 79

The difficulty is not in deleting the Node itself, but in keeping the rest of the List le­
gal. We always want the last link in a list to be in some specific state, usually NULL.
The problem is that this new last link will be the link in the Node with the 4 after we w­
lete the last Node. We can get access to this Node only with difficulty, since we don't
have a direct link to it and we can't follow links backwards. The correct way to delete a
Node in a singly linked list is to have a pointer to the Node that precedes it, not to the
Node itself. See Figure 3.5. We are much better off if we have a pointer to the Node with
the 4, since the _next field of this Node needs to be updated to keep the List intact.

Figure 3.5. Correctly positioned for deleting Node 5.

Well, how do we get such a pointer? The answer again involves our iterator concept.
Suppose we build the List class with a member function beginO that returns an iterator to
the beginning. The implementation of this iterator class can be just a Node*, perhaps
named _here, since it names a position within a list. Then we can continually advance the
iterator, with operator++, until we refer to the Node preceding the one we seek. We can
check where we are using the de-reference operator*. Then, from the iterator itself, we can
execute the deleteAfter operation, which is a member of the iterator class, not the list
class.

void deleteAfter()
{ Node<T>* temp = _here->_nexti

II The node to be deleted
_here->_next = temp->_nexti

II Point around temp
delete tempi

}

This function works correctly even if the Node to be deleted is not the last Node in the
chain, since it doesn't set the _next of the current position to be NULL, but to the current
value of the Node to be removed, which completes the chain. Of course, all depends on
first getting our iterator to the right location.

80 Data Structure Programming with the Standard Template Library in C++

Exercise. Draw a sequence of link pictures, similar to Figures 3.1 through 3.3, that il­
lustrate the operation of the deleteAfter function step by step.

Using such an iterator we can also insert a new Node between two existing Nodes. To
do so again requires having a pointer (iterator actually) to the first of the two Nodes. We
need to create the new Node, make its _next refer to the second of the two Nodes we are
inserting between, and then make the first Node refer to the new Node. Therefore, the fol­
lowing can be part of our Listlterator class. The first statement carries out the first two of
the above three steps.

void insertAfter(T val)
{ Node<T>* temp =

}

new Node<T>(val, _here->_next)i
_here->_next = tempi

Figures 3.6 through 3.8 detail the operation of this member assuming we are attempt­
ing to insert the value 7 into a list. We assume that we have previously positioned an it­
erator to the location of the insertion. Note again that this is not a list member, but a list
iterator member.

head ~I L.... 3 __ :1-/,---1.~1 L.... _4 __ -,...:----1.~ 15 NULL I
_here

Figure 3.6. Before inserting between the 4 and the 5 .

head ~I 3 I ·1 4 • 15 NULL I
/'

_here
temp 7

Figure 3.7. After the first statement, inserting a 7.

Chapter 3. Overview of Container Mechanisms 81

head

Figure 3.8. After the last statement, inserting a 7.

While we have described the deleteAfter and insertAfter members as being actions of
an iterator rather than a list, there is an alternative way to implement them. We CAN put
code like this into the list class if we pass an iterator as a parameter to each of these. We
would then use _here member of this iterator to implement the above operations. This is
the method chosen in the STL, since it puts fewer restrictions on the iterators themselves,
leaving them more general.

Exercise. Look at Figure 3.8. Novices sometimes delete temp, as the last statement of
insertAfter, thinking that they don't need the pointer anymore. Carefully explain the effect
of this and why it is a disaster.

3.5 An Extended Example Part 2: The Linked Stack

In this section we will rebuild our Stack using a linked implementation. Notice that the
interface of this LinkStack class has identical functions with identical parameter lists. In
other words, a LinkStack is functionally equivalent to an ArrayStack. There will be one
difference in efficiency, as we shall note near the end of the section. We shall also need to
build an associated LinkStackIterator class. First, however, we need a Node class as indi­
cated above. We call this class LinkNode. It is as advertised above, except that it declares
both the LinkStack and LinkStackIterator classes as friends. It also has an additional
(recursive) member function copyAllO that we shall discuss when we look at the Link­
Stack class.

template <class T>
class LinkNode
{ private:

LinkNode(T val, LinkNode<T>* next
_value(val),

{
}

_next (next)

NULL)

82 Data Structure Programming with the Standard Template Library in c++

} ;

LinkNode<T>* copyAll()
{ if(_next == NULL)

}

return new LinkNode<T>(_value);
else

return
new LinkNode<T>
<_value, _next->copyAll(»;

T _value;
LinkNode<T>* _next;

friend class LinkStack<T>;
friend class LinkStacklterator<T>;

To push onto a LinkStack, we insert a new Node at the front. To pop we remove from
the front. This means that single linking is sufficient, with no need for an additional
pointer to the end.

template <class T>
class LinkStack
{ public:

typedef LinkStacklterator<T> iterator;

LinkStack()

{
}

_first (NULL)

An empty LinkStack has its _first == NULL.

LinkStack(const LinkStack<T>& S)
{ copy(S);
}

-LinkStack(){ free();}

LinkStack<T>& operator=
(const LinkStack<T>& S)
{ if(this!= &S)

}

{ free();
copy(S) ;

}

return *this;

Chapter 3. Overview of Container Mechanisms 83

The copy constructor, destructor, and assignment operator have been factored into two
auxiliary functions copy and free. Free deletes all of the Nodes in the current stack and
copy sets the Nodes to be copies of the Nodes of its parameter. Copy is careful to pre­
serve the order of the Nodes it copies. We will discuss these functions below.

void push(const T& v)
{ _first = new LinkNode<T>(v, _first);}

This is just an insert at the beginning of the list of Nodes as indicated above.

T pop()
{ T temp = _first->_value;

LinkNode<T>* oldnode = _first;
_first = oldnode->_next;
delete oldnode;
return temp;

Here we remove the Node at the beginning of the list of Nodes, but we also return the
value stored in that Node. This will result in an error if the stack is empty when it is exe­
cuted.

T top()const{ return _first->_value; }

We just return the first value. Again, it is an error if the stack is empty. We could
also return a const reference here, const T &, rather than a copy. This would let us look at,
but not change the value returned. We could also return a T& in fact, which would let us
modify the top in place, without removing it from the stack.

Exercise. Explore the following three versions of topO.

T top()const{ return _first->_value; }
T& top()const{ return _first->_value; }
const T& top()const
{ return _first->_value;
}

In each case, try to modify the returned value and then look at the stack as a whole.

bool empty()const
{ return _first
}

NULL;

bool full()const{ return false; }

84 Data Structure Programming with the Standard Template Library in C++

These are straightforward. It is empty if its jirst is NULL. The user of our LinkStack
must be careful to use these functions or otherwise keep track of when the stack is empty.
Such a stack is never full. Well, actually, it would be full if the allocator were unable to
allocate a new Node. The allocator can in fact be used to return a sensible value for full in
this case. We ignore this complication here.

iterator begin()const
{ return LinkStacklterator<T>(_first)i
}

An iterator to the beginning of the stack contains a pointer to the first Node.

iterator end()const
{ return LinkStacklterator<T>(NULL)i
}

An after-the-end iterator contains a pointer to the same spot as the last Node in the
list. In this case that is the NULL pointer.

private:
LinkNode<T>* _firsti

void free ()
{ while(_first!= NULL)

}

{ LinkNode<T>* temp = _firsti
_first = temp->_nexti
delete tempi

}

Free is used in the destructor and in the assignment operator. It deletes all of the Nodes
in the list, leaving it empty. Note that it could as easily have called popO repeatedly,
though this is somewhat more efficient.

void copy(const LinkStack& S)
{ if(S._first == NULL)

_first NULLi
else

S._first->copyAll()i
}

This member function sets the current value to the same value as the parameter. It is
used by the copy constructor and by the assignment operator. If the parameter is empty it
sets itself (this) to be empty. Otherwise, it sets its _first to be the result of calling
LinkNode::copyAll on the _first of the parameter. The effect of that is to recursively copy

Chapter 3. Overview of Container Mechanisms 85

all of the Nodes that start with S._first, making a new chain. Function copy All works by
creating a new Node and installing as its next a copy of its own next. If its own next is
NULL, then the copy is just NULL also, but otherwise, the copy may be made by calling
copyAll recursively on its _next.

friend class LinkStacklterator<T>;
} ;

What we have above is a new class that implements the same interface as the Ar­
rayStack class. Except for the type name, they may be used interchangeably. Let us now
tum to the associated iterator class, LinkStackIterator. Again we will comment the code
as we go along. Note that this class implements the same interface as ArrayStackIterator,
though we will see in a moment that it probably should not. An iterator here is imple­
mented with a field _where, that is just a Node pointer.

template <class T>
class LinkStacklterator
{ pUblic:

typedef T value_type;

Linkstacklterator(LinkNode<T>* where)
_where (where)

{
}

We just remember the parameter in the _where field. No copy constructor, destructor,
or assignment operator is needed here, since we are not managing memory in this class.
The Node pointed to will not be destroyed, for example, until the stack that contains it is
destroyed or the Node is popped.

T& operator*()
{ return _where->_value;
}

The de-reference operator just de-references the current pointer. The pointer points to a
Node, however, and we want the value, so we extract and return that.

Question. What happens if we de-reference an iterator that was created with LinkStackIt­
erator(NULL)?

bool operator<
(canst LinkStacklterator<T>& i)
{ ifC_where!= NULL && i._where

return true;
NULL)

86 Data Structure Programming with the Standard Template Library in C++

}

if _where == NULL
I I _where i . _where

return false;
LinkNode<T>* temp = _where->_next;
while(temp != NULL)
{ if(temp == i._where) return true;

temp = temp->_next;
}
return false;

This is expensive to implement correctly. We require that the two iterators compared
are "into" the same stack, of course. We are testing whether if we follow _next pointers
from the current position we will eventually arrive at the position of i. This requires time
that is linear in the number of elements in the stack. The bidirectional iterators of STL
lists do not provide this operation because of its cost.

LinkStacklterator<T> operator+(int i)
{ LinkNode<T>* temp = _where;

for(int x = 0; x < i; x++)
temp = temp->_next;

return LinkStacklterator<T>(temp);

This is the pointer arithmetic operation again. Note that it cannot be done in constant
time. It takes time proportional to the integer i because of the for loop. Perhaps it
would be better to omit this function altogether for reasons of efficiency. Bidirectional it­
erators in the STL do not have such an operation.

T& operator++()
{ _where = _where->_next;

return _where->_value;
}

This is the prefix increment operator. Note that we move before we de-reference.

T& operator++(int)
{ LinkNode<T>* temp = _where;

_where = _where->_next;
return ternp->_valuei

}

The postfix increment is a bit messier since we need to remember where we were as
the basis of the returned value, but also move forward.

Chapter 3. Overview of Container Mechanisms 87

private:
LinkNode<T>* _where;

} ;

Well, there it is, with a few problems as indicated. However, since it does implement
the same interface as the ArrayStackIterator, we can use these interchangeably. In particu­
lar, we can sort a LinkStack with our selectionSort algorithm.

void main ()
{ LinkStack<int> as;

as.push(3);
as.push(S);
as . push (1) ;
as.push(4);

selectionSort(as.begin(), as.end());

cout « as.pop()
cout « as. pop ()
cout « as.pop()
cout « as.pop()

«
«
«
«

endl;
endl;
endl;
endl;

There will be a difference in performance, however, since the operator+ works more
slowly here. For this reason the STL list class does not include the operator+ in its itera­
tor. It is too expensive in general. This means that the generalized sort algorithm of the
STL won't work with lists, because it requires this operator (random access iterators 00-
pend on it). Instead, the list class supplies its own specialized sort algorithm that works
efficiently on lists but less efficiently elsewhere. We will examine that algorithm later.

One important lesson that you should learn from the above is that a linked list iterator
behaves like a pointer, is implemented as a pointer, but is, in fact, an encapsulated object
with a limited interface. It is not a ''naked'' pointer, but an object that contains and con­
trols a pointer. This extra level of packaging provides safety, as it makes inappropriate
pointer operations impossible.

Exercise. Just how inefficient is sorting lists with selectionSort and quickSort? Analyze
these two algorithms, taking into account the fact that operator< and operator+ are linear
time algorithms; the first is linear in the number of elements in the list and the second is
linear in its parameter. The inefficiency of operator+ has little effect on selectionSort,
since we only add one to any iterator there.

Exercise. Use a StopWatch object to verify your conclusions from the above exercise.
Build a large ListStack and time its sort with the two sorts. Then double the size of the
stack and repeat. Double again and repeat your measurements. Does this support your
conclusions from above?

88 Data Structure Programming with the Standard Template Library in C++

Exercise. Redo the selection sort algorithm so that it uses only operator++ and opera­
tor== in place of operator+ and operator<. What is the advantage of this change? Rebuild
the two stack iterator classes so that they also implement operator==.

3.6 Tree Storage

Trees are normally treated as a variation on linked storage, though it is possible to store
certain trees densely. The difference between the sequential linkages defmed above and tree
storage is in the number of links in a node. The simplest kind of tree is a binary tree in
which each node has exactly two "next" nodes, called its children. See Figure 8.1 for ex­
ample. A binary tree node might look like the following:

template <class T>
class BinaryTreeNode
{ private:

} ;

Node
(T val,

{

}

BinaryTreeNode<T>* left = NULL,
BinaryTreeNode<T>* right = NULL

_value(val),
_left (left) ,
_right(right)

T _value;
BinaryTreeNode<T>* _left;
BinaryTreeNode<T>* _right;

friend class . . .

The analogue of double linking in a tree is to provide a pointer in each node to its par­
ent: the node above it in the tree. The single node with no parent is called the root node,
and most often trees are drawn with the root at the top. If the BinaryTree class that uses
these node types needs to provide iterators, then parent links are very helpful.

template <class T>
class BinaryTreeNode
{ private:

Node
T val,
BinaryTreeNode<T>* left = NULL,
BinaryTreeNode<T>* right = NULL,

} ;

Chapter 3. Overview of Container Mechanisms 89

BinaryTreeNode<T>* parent = NULL

{
}

_value(val) ,
_left (left) ,
_right(right) ,
-parent (parent)

T _value;
BinaryTreeNode<T>* _left;
BinaryTreeNode<T>* _right;
BinaryTreeNode<T>* -parent;

friend class . . .

A node in a tree is called a leaf if it has no children. The root has no parent. In our
implementation this means that both (all) children must be NULL. The height of a node
is the number of links back to the root of the tree from that node. The height of the root
is zero, that of its children is one, etc. The height of a tree is the maximum of the heights
of all of its nodes. The height of a tree is important since we search for things in a tree

starting at the root. If we arrange the tree appropriately we need only search a single path
from root to leaf for an item. We would like these paths to be as short as possible.

A binary tree is called balanced when all of its leaf nodes are at approximately the
same height. More specifically, a tree is balanced when the minimum and maximum leaf
heights differ by only one. When a tree is balanced, the height of the tree is the logarithm
of the number of nodes. Thus, we can store about a million values in a balanced binary
tree of height twenty.

A binary search tree is a binary tree in which the elements inserted support the opera­
tor<, and the elements are kept in the tree in a special order. The rule is that the value in
any node, A, is less than that of any node in the subtree whose root is the right child of A
and the value in any node in the left subtree is not greater than the value in node A.

If we have a binary search tree and we list the values in the nodes in the order called
inorder, then we shall list the values in increasing order according to operator<. Inorder
listing of the nodes of a binary tree require that we list all of the nodes in the left subtree
of any node before we list the value in the node, and that we list or otherwise process the
values in the right subtree after listing the node. This can be easily arranged with a recur­
sive function of the form

void inorder(BinaryTreeNode<T> * n)
{ if(n->_left!= NULL) inorder(n->_left);

process (n->_value);
if(n->_right != NULL) inorder(n->_right);

}

90 Data Structure Programming with the Standard Template Library in C++

In contrast, preorder processing of a tree requires that we process the root before its
children. The form for this is as follows:

void preorder (BinaryTreeNode<T> * n)
{ process (n->_value);

}

if(n->_left != NULL) preorder (n->_left);
if(n->_right != NULL) preorder (n->_right);

Finally, postorder requires that we process a node after both of its children.
One major advantage of a binary search tree is that it is easy to retrieve data stored in

it. If we are looking for a certain value, then by examining the value at the root of the
tree or any subtree, we always know whether to continue the search to the right or to the
left if we haven't yet found the desired item.

The naive way to insert into a binary search tree always inserts at the bottom of the
tree, inserting a new leaf. We compare the value to be inserted with the root node first and
if the new value is less than the root, we move down to the left; otherwise, we move
down to the right. We again compare and move down, until we reach a spot where the
node that we are trying to move to is missing: a NULL pointer. We insert a new node at
this point.

The problem with the above insert algorithm into binary search trees is that it might
leave us with a tree that is not tree-like, but list-like. The ideal binary tree is balanced,
meaning that each leaf node is at about the same depth. The reason for this is that a tree

holds the maximum number of nodes for its height when it is balanced. This means that
in a balanced binary search tree, we can search quickly for an item among a lot of data.

Question. What happens if we use the naive insert method in a binary search tree and
then insert data into it that is already sorted?

Some algorithms for inserting into a balanced binary search tree require that the tree be
rebalanced after each insertion. This balancing takes place along a path from leaf to root
and only requires that a few pointers be adjusted, and so can be done in logarithmic time.
The STL set class is based on a variation of a balanced binary tree. It does require that op­
erator< be implemented on the values to be included in the set, however. Lookups in a
balanced binary search tree are logarithmically related to the number of values in the tree

and so it proceeds very quickly, since a logarithm of a number is small in comparison to
the number.

A balanced binary tree can be stored efficiently in an array. We store the root in cell
one (not zero, which is often kept free as a temporary location in the algorithms that
process the tree). The left child of the node in cell n is stored in cell 2n and the right child
is stored in cell 2n+ 1. Verify that this works and that it wastes relatively little space if
the tree is balanced. The number of cells required in the array is 2h + I, where h is the
height of the tree. We can find the parent of a node in such a tree just by dividing the cell
number of a value by 2.

Chapter 3. Overview of Container Mechanisms 91

3.7 Graph Storage

A graph is composed of nodes (or vertices), and links (or arcs). An arc connects a pair of
the vertices. We can store data in the vertices, and in some graphs we also store data along
the arcs. A graph with data on its arcs is sometimes called a network. Graphs are more
complicated than trees, as you would suppose. One obvious way to build a graph is to
keep in each node a list of the neighbors of that node. Another implementation is often
more convenient. In this latter method, we keep a list of all the nodes in the graph. For
each node we keep a list, not necessarily in the node itself, that gives the neighbors of the
given node. Graphs can be directed or undirected. In a directed graph (digraph), the arcs are
unidirectional like pointers. See Figure 5.4 for an example of a digraph. In an undirected
graph, the arcs are just connections and have no direction. One can implement these with
a pair of pointers.

Traversing all of the vertices of a graph may be easy or difficult. If we keep a list of
the vertices it is easy, of course. If we do not, then it may be necessary to keep a "mark"
value in each vertex. Before traversing the graph, we set all of the marks to false. Then
when we process a vertex, we set its mark to true so that we don't process it again. Two
common protocols for processing the vertices of a graph are depth first and breadth first.
In breadth first, we process all of the near neighbors of a node before processing their
neighbors: process the near neighbors before the far neighbors. In depth first protocol,
when we process a neighbor of the first node we process its neighbors before returning to
the next neighbor of the first. When we search a graph for an item starting at a given
node, we might use breadth first if we expect that the target will be near the original node.
If not, we might use depth first search.

The STL does not have a class representing graphs. However, using lists and arrays it
is quite easy to build a graph abstraction.

3.8 lIashedStorage

Dense storage is a mechanism for achieving very fast lookup of stored items based on
where the data is stored. To retrieve an item in constant time, you must know the sub­
script in which to look for the item. Hashed Storage, on the other hand, tries to achieve
fast lookup based on what the data is. In other words, the value of the data, or some part
of the data, is used to compute the storage location. Since it is not normally useful to
look up data when we already have the value of the data, this sounds like a useless idea.
However, it is commonly the case that we store a variety of information about a person
or thing and we desire to look up the information while knowing the name or some other
characteristic of the target. A telephone book is a simple example of this idea. We store
names, addresses, and phone numbers in the directory. We use the name as a key to re­
trieve the rest of the information. The data itself consists of key-information pairs. We
use the key to get access to the information. An individual in a phone book database
might have a record like the following:

92 Data Structure Programming with the Standard Template Library in C++

class cell
{ public:

cell

}

(char* name,
char* address,
char* phone

) ;
unsigned int hash();

private:
char* _name;
char* _address;
char* -phone;

In fact, a phone book stores the data in key order, making something like binary
search possible. Hashed storage is quite different. In fact it is called "hash" because of the
fact that the data, when viewed as a whole, appear to be mixed up in order, similar to the
ingredients in the culinary delight (?) corned beef hash. This seemingly random mixing is
only superficial, however, and there is a deeper structure.

In hashed storage, a computation is done on the value of the key. The value of this
computation, called the hash, is used to indicate where in a storage structure the corre­
sponding data will be stored. Depending on the specifics of the storage itself, the hash
may result in a unique storage location in which the target may be found if it is stored at
all, or simply indicate the place to start a search. This latter method is the most common
and, while it may not result in constant retrieval time, it can greatly speed lookups by
greatly reducing the number of items that must be examined to find the target or verify
that it is not stored.

One common hash function on name data is to take the length of the name and its
first character value, treated as a numeric ASCII code, and multiply these values together,
resulting in an integer. Notice that this value is completely well determined and repro­
ducible given the spelling of the name.

Suppose that our storage mechanism consists of an array of 100 linked lists. If we
take the hash value of a given key, and take the remainder upon division by 100, we ob­
tain a number between 0 and 99. This may be taken as a subscript into the array. If we
wish to store data for this key, we store it on the list at this computed index. Then, if we
wish to retrieve data for this key, we recompute the hash, reduce it to an index in the
same way, and then search the corresponding linked list for the key. The expected time to
find the item is the average length of the lists, which is about 1 percent of the total num­
ber of data items.

Of course, achieving fast lookup in practice involves two things. The first is having a
hash function that distributes the keys to be stored uniformly over the resulting hash val­
ues and so uniformly over the lists, which, by the way, are called "hash buckets." The
term bucket is used since it indicates a storage mechanism with little if any internal struc­
ture. The second essential feature of hash storage mechanism is correctly choosing the

Chapter 3. Overview of Container Mechanisms 93

number of buckets so that the lists will all be short. This assumes that we may estimate
the total number of items to be stored, though this need not be completely accurate.

When the keys consist of things like names or words in some human language, it
turns out to be a bad idea to use all of the characters in the key as a basis for the hash
function, especially if the hash function simply adds the character encodings. This is not
just because it is time-consuming to do so. The problem, rather, involves the fact that
some of the characters appear much more frequently than others, which skews the results.
This can easily make some of your lists short and others very long. This can greatly
lengthen the retrieval time, which is undesirable.

It is possible to build a self-organizing hash system in which the number of buckets
expands or contracts dynamically as data is inserted and removed. To do so involves peri­
odically examining the buckets for length, expanding or contracting the number of buck­
ets as appropriate, and redistributing the stored data among the new buckets by recom­
puting the hash values. If the number of buckets is always a power of two, then this is
particularly easy if remainders are the last step in the computation of the index. This is
because if the remainder when we divide by 2n is k, then when we divide by 2n+ I, it will
be either k or k+2n. This means that the new bucket for an item is either the same as the
old one or possibly one other bucket.

When we can predict precisely how many items will be stored, it is possible to avoid
the lists altogether. Suppose that we know that we will store exactly m values. Then we
can allocate an array of m cells. If we know all of the keys in advance and work hard
enough, we can find a hash function that will compute a different value for each of the
keys. We store the data for this key in the cell computed by this hash function. Otherwise
we use the computed value simply as a place to start a linear search for the data within the
array. We must search "circularly," however, so that if we come to the end of the array be­
fore finding the item, we resume our search at the beginning. This method of hashing is
called circular hashing, as opposed to the separate chaining which uses the array of lists
described above.

When two keys result in the same hash value, we say we have a collision. A hash
function with no collisions is called perfect. They are difficult to find, but possible, pro­
vided that we have a fixed, finite number of known keys.

One advantage of hashed storage over binary search trees is that we don't need a com­
parison like operator< for hashed storage. This makes hashed storage feasible in some
situations in which binary search trees are not. Of course we require that the data provide
either a hash function, or a means of devising one.

3.9 Indexed Storage

Indexed storage is somewhat like the index of a book. The words (keys) are arranged in a
definite (usually alphabetical) order and are associated with some sort of pointing mecha­
nism to the data records (pages) of interest. In a book index these are just page numbers,
of course. The sorted order of the index makes it easy to search, and the pointers give us

94 Data Structure Programming with the Standard Template Library in C++

quick access to the desired information. Similarly, a phone book is like an index to peo­
ple, represented by their phone numbers.

The main advantage of an index is that it lets us simulate having one file sorted on
different criteria. For example, in an employee database, it might be advantageous to
physically arrange the records according to an employee number. This would make it dif­
ficult to find a person based on their name or office, however. An index with key name
and another with key office can be used to solve this problem.

To build a name index into the employee database, we would proceed as follows. First
we scan the entire employee file, building a list of employee numbers (the primary key)
and the associated names. When we are done we have a list that is in employee number
order. We then sort this list by name. This sorted file is our index. Since it is sorted by
name, it is easy to look up names. The associated employee numbers give us quick access
to the full employee record, using the main file. A given file can have any number of in­
dices.

The above described a record index. A related idea is called a block index. Suppose that
the employee records are packed several to a block on a disk or similar device. Such
blocks have block addresses, which we can think of as being numbers, though in reality
they sometimes have a more complex structure. Given a block number, the disk device
can quickly access the block. Suppose that we build an index by recording, for each record
in the block, its first employee number and the disk block number. Recall that the file
was sorted physically by employee number, so other employee records in the same block
will have successive employee numbers. If we sort this index file by employee number,
then we can get quick access to the block number for a given employee and hence, quick
access to the rest of the data.

Part of the key to making the above work well is that the index is usually much
smaller than the original file. We can take special advantage of this in the following way.
Suppose we have a block index with employee number as the key and suppose that we
store this index itself in disk blocks. Call this file the first level index. Suppose that we
then build a (second level) block index to the first level index file. This file will be even
smaller, since many indexing records will fit into a single block. We can, of course, con­
tinue this process to build higher level (and smaller) indexes to indexes at a lower level,
until an index is small enough to hold it in computer memory. With such a multilevel
indexing scheme, we can then get access to the records in the original file by finding the
record in the highest level index that covers the record sought, tracing the associated block
address to a single block of the next level index, searching it again for the record number
desired, etc. Eventually we get to the lowest level index and then to the original file. This
works in practice because we don't usually need many levels unless the original file is
huge. Storing 20 to 100 index records in each block of an index is common. This means
that for each level of the index, the number of available records expands by a factor of 20
to 100 for each level. This exponential growth implies that large files can be covered with
indexes without much depth.

What we have described above, of course, is very similar to a tree structure, with the
highest level index being the root, and the original file representing the leaves. It is com­
plicated by the fact that we may need to insert and delete records. We wouldn't want to
have to generate all of the index levels for each insert or deletion. The solution to this is

Chapter 3. Overview of Container Mechanisms 95

to only partially fill the index blocks when the file is first created, leaving room for addi­
tional index records at each level. This complicates the algorithms that manipulate the in­
dex tree, but greatly speeds up the overall operation of the system. One variation on this
idea is called a b-tree. This is not to be confused with binary tree, however. A b-tree is an
n-way tree (up to n children at each level) where each leaf is at exactly the same height
and where each internal node has between nl2 and n children.

At the other extreme is a simple two level structure, in which we maintain the data at
one level and the index at another level. We shall see this technique used in a later chapter
(Chapter 6).

3.10 Summary

Make certain that you understand each of the following terms:

binary search tree
binary tree
circular hashing
collision
dense storage
graph
hashed storage
indexed storage
linked storage
multilevel indexing
perfect hash function
separate chaining
stack (including the defining rules)

3.11 Exercises

1. Add a sizeO function to each of our stack classes. It should return the number of ele­
ments stored in the stack. For the linked stack it may require linear time.

2. Rewrite LinkStack::sizeO so that it can be done in constant time. What other changes
to the stack are required to make this possible? What does that do to the efficiency of the
other member functions?

3. A queue is a structure similar in some ways to a stack. Stacks implement a LIFO, or
last-in, first-out, protocol, whereas queues implement FIFO, or first-in, first-out. This
means that the item removed from a queue is the one that has been in the queue for the
longest amount of time rather than the shortest. Another way to think of it is that it is

96 Data Structure Programming with the Standard Template Library in c++

sequential structure with inserts at one end and deletions at the other. The protocol for a
Queue class template might be

template <class E>
class Queue
{ public:

typedef E value_type;
Queue () ;
-Queue ();
Queue(const Queue<E>&);
Queue<E>& operator=(const Queue<E>&);

bool empty() const;
value_type& front();
const value_type& front() const;
void push(const value_type& x);
void pop ();

private:
_front;

... _back;
} ;

Give a linked implementation of a queue. Private member variables _front and _back
point to the first and last nodes of the implementing list. pushO inserts the value at the
location following _back. popO removes the item pointed to by _front, and frontO returns
that item without removing it. An empty queue can be represented with both jront am
_back NULL.

The formal rules for a queue are

1. Just after creation, empty returns true.
2. Just after push, empty returns false.
3. If empty would return true, then popO; is an error; and t = frontO; is an error.
4. If empty would return true, then push(x); popO leaves the queue empty.
5. If empty would return true, then push(x); t = frontO; returns x to variable t.
6. If empty would return false, then push(x); popO is the same as popO; push(x); also

push(x); t = frontO; is the same as t = frontO; push(x);

4. It is somewhat difficult to define an iterator for the above implementation. It is made
easier if we use a trailer node that does not contain data. An empty queue has a single
node with both jront and _back pointing to it. This node is created when the queue is,
and is never deleted until the queue is.

The iterator can be a separate class that maintains a pointer to a QueueNode as its
main implementation variable.

Chapter 3. Overview of Container Mechanisms 97

Build an iterator class for the modified Queue class. The new Queue class needs public
members beginO and endO. beginO returns an iterator to the first item. endO returns an it­
erator to the after-the-end location of the trailer node.

5. Test the stack implementations given in the text. Use a StopWatch object to time their
operations over several thousand insertions and deletions.

Create An STL stack with a linked implementation. All this takes is the declaration

stack< list< int> > aStack;

You may now push and pop this stack. Be careful to put a space between the two
">'s" in the declaration, however, or the compiler may misinterpret what you have. How
does the performance of this implementation compare with that of the linked stack im­
plementation from the text?

Create an STL stack with a dense implementation with

stack< vector<int> > anotherStack;

How is the performance of this one?

6. Test your queue implementation against that of the STL queues in a similar way. You
can create a linked queue with

queue< list< int> > aQueue;

and a dense queue with

queue< deque< int> > anotherQueue;

You can actually create a queue from a vector but the performance will be poor, since
a vector has inefficient operations at the front. (Try it.)

7. Build a class DoubleLinkedDeque. It uses a doubly linked implementation and permits
insertions and deletions at either end.

8. Build a hash table to implement a phone book. The key should be the name (a string)
of the person and the data can have the phone number along with other information. Build
a hashing function that works on the names. Note that it will not be possible with this
implementation to list the names in alphabetical order without a separate sorting opera­
tion.

9. Build a Binary Search Tree phone book using the names as keys. Write a function that
will compare the names using an operation like operator<.

98 Data Structure Programming with the Standard Template Library in C++

10. Which of the two implementations of a phone book (See Exercises 6 and 7) give a
better performance. Evaluate it theoretically as well as using a StopWatch object to time
insertions and retrievals.

11. Build an index to a phone book so that we may look up people in the phone book by
knowing their phone numbers and retrieve the names. You may use either the hash or the
tree class for the basic phone book. The index, however, should have phone numbers for
keys and provide access to an individual record in the phone book.

12. Postfix expressions are written with the operator symbol following all of its operands
rather than between them (infix notation). For example, the ordinary expression (a+b) * c
is written a b + c * in postfix. There are no parentheses in postfix notation, one of its !d­
vantages. Postfix expressions can be evaluated easily using a stack. The algorithm is
quite simple. As you read the postfix expression left to right, if you see an operand
(value), just push it onto a stack. If you see an operation, pop the correct number of oper­
ands for that operation from the stack, apply the operation to them, and push the result
back onto the stack. You must be careful with noncommutative operations like subtrac­
tion, that you get the operands in the correct order: the first item popped becomes the
rightmost operand. Implement this idea.

Chapter 4
Overview of the Standard Template Library

4.1. Components of the STL

The Standard Template Library has six different kinds of components. There are different
subcategories of each of these component types. Here in one place is the complete listing
of the library elements.

1. containers
sequential containers

array
vector
deque
list

sorted associative containers
set
multiset
map
multimap

hashed associative containers
(an extension)

2. iterators
input iterators
output iterators
forward iterators
bidirectional iterators
random access iterators

3. generic algorithms
nonmutating sequence algorithms
mutating sequence algorithms
sort related algorithms
numeric algorithms

4. function objects

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998

lOO Data Structure Programming with the Standard Template Library in C++

arithmetic operations
comparison operations
logical operations

5. adaptors
function adaptors

negators
binders
pointer to function adaptors

container adaptors
stack
queue
priority queue

iterator adaptors
reverse adaptors
insert adaptors

6. allocators
default allocator
custom allocators

We use the STL when we want to be able to store data in some structured way and to
execute algorithms on the saved data. Depending on the nature of our problem and the
type of algorithms we need to execute, some containers will be more suited to the task
than others. Most of the algorithms work with most of the containers, but there are ex­
ceptions. It will become clear from the nature of the algorithms and the containers when
there is a poor match. For example, the sort algorithms don't work on lists because of the
difficulty of moving from one cell to a nonadjacent cell in a list. Instead, a specialized
sort algorithm is provided for lists.

Each of the algorithms in the library is specified with its big 0 run-time bounds. This
lets the user be sure about the performance of his or her programs. Most of the algo­
rithms work with iterators. In fact, iterators are the interface between containers and algo­
rithms that operate on them. This library was designed in this way so that the algorithms
could be written in as general a way as possible so as not to have to duplicate the code for
each container type. We create iterators by executing member functions of the container
classes. For example, the member function beg in () of each of the container classes re­
turns an appropriate iterator for that container, initialized to point to the "first" element of
the container. Similarly, function end () returns an iterator that points just after the
"last" item. If we continually execute operator++ on the iterator returned by beginO, it
will eventually reach the iterator returned by endO. If we pass these two iterators to an ap­
propriate algorithm, the algorithm will be applied to our container.

There are different kinds of iterators, of course, and different kinds are associated with
the different containers. For example, as we have seen, pointers behave like random access
iterators. Likewise, vectors use random access iterators, so the beginO member of vector
returns a random access iterator. On the other hand, list::beginO returns a bidirectional it­
erator. For this reason, the standard sort algorithm does not work with lists: sort requires

Chapter 4. Overview of the Standard Template Library 101

a random access iterator. The reason for this is not that it is impossible to sort lists, just
that the standard sorting mechanism (quicksort) is too inefficient on lists.

Adaptors are used so as to minimize the number of classes and functions in the library
without reducing its power. For example, we can tum a vector or a list or a deque into a
stack by using the stack adaptor. We don't need three kinds of stacks in the library, one
for each way of using memory, because a single adaptor can provide these for us. Like­
wise, we can make any (bidirectional) iterator work backwards, from the last element to
the first, by applying a reverse iterator adaptor.

4.2 A Motivating Example: A Spell Checker

Suppose that we want to build a rudimentary spell checker. One of the tools that we shall
need is a dictionary of correct spellings that we can compare against. One way to generate
such a file is to take a large text file, read it into some data structure, sort the words, re­
move adjacent duplicates, and then save the result. If we pick a large enough file, then we
shall have a lot of words as the basis of our dictionary. Of course the original file needs to
have correctly spelled words if this is to be useful, and it will be especially helpful if we
can allow this file to grow over time by appending additional words to it.

Since we don't know in advance how large a word file we shall be processing, and
since we want to sort the structure efficiently, we can choose to use a vector as the basis
of our solution. Arrays aren't flexible enough in terms of size, and lists don't sort as effi­
ciently. We could also use a deque, but the 00ded flexibility of deques in being able to
grow at either end, which we don't need, comes at the cost that the algorithms that we
wish to use will operate more slowly (by a constant factor) than will be the case if we use
a vector.

In order to see the results of our work, and as an aid in debugging, it will be helpful to
have a function that writes vectors.

template <class T>
void writeVector(vector<T> v)
{ for

}

vector<T>: :iterator i = v.begin();
i < v .end();
++i

cout « *i « ' ';
cout « endl«endl;

This function writes out a space-separated listing of the elements of a vector. We will
be using strings (char*) as our template argument, and strings can contain spaces, though
ours won't, so the above function might not be the best for strings. It is useful for most

102 Data Structure Programming with the Standard Template Library in C++

other types, however. We can get a special version of writeVector for just strings simply
by writing it.

void writeVector(vector<char *> v)
{ for

}

(vector<char *>::iterator i = v.begin();
i < v .end();
++i

cout « *i « endl;
cout « endl;

One of the nice features of c++ is that the compiler will choose the most appropriate
version of writeVector for us. If we write a vector<char*>, then this latter function will
be used. If we write a vector<int>, then the template will be used to build us a writeVec­
tor for ints.

It is even easier to use an ostream iterator to output a vector.

ostream_iterator<int> out (cout);
II creates the iterator

Once we have the iterator we can use the copy algorithm of the STL to copy the vec­
tor to the stream:

copy(v.begin(), v.end(), out);

The type char* is quite finicky, as you know. We need to be careful to allocate mem­
ory correctly for such strings. It is useful to read a string into a fixed length buffer, but
for storage, it is most useful if the length of the storage block is tailored to the length of
the string so that we don't waste space. The following function will read from an input
file stream and store one word in each cell of a vector<char*>:

void readStrVec
ifstream & inp,
vector<char*> &V

)
{ char* input;

char buf[80];
do
(inp» buf;

if (strncmp(buf,"",80) 0) break
int len = strlen(buf);
input = new char [len+l];
strcpy(input, buf);

Chapter 4. Overview of the Standard Template Library 103

V.push_back(input);

while (true);
}

We could also use an istream iterator and the copy algorithm to read a vector. For ex­
ample, to read a set of int values into a vector v from cin, we can say

istream_iterator<int> in(cin);
II Iterator to the "beginning".

isteram_iterator<int> end;
II Iterator to the "end" of the stream.

copy(in, end, v.begin(»;

This would be harder for char* values, since we want to allocate storage for them be­
fore storing them into the vector. This last assumes that the vector is big enough to hold
all of the values to be input. Note that the copy algorithm is not part of the vector class.
It can be used to copy many kinds of things, but those things need to be specified using
iterators. We can even copy a vector v to a vector w using copy (if w is at least as big as
v).

copy(v.begin(), v.end(), w.begin(»;

The vector class template defines a number of members for inserting, removing, and
accessing values stored in the vector. Member function push_back inserts a new item at
the right end of the vector. We can also compare two vectors for equality if the element
type values can be compared for equality. The same is true of less than comparisons. One
container is less than another if some prefix of each is the same (equal to) the correspond­
ing prefix of the other, and at the first point of difference, the element of the first is less
than the corresponding element of the other. This is called lexicographic ordering.

The main function that calls readStrVec might look something like the following:

void main()
{ ifstream inp("words. txt");

vector<char *> V;
readStrVec(inp,V);
writeVector(V) ;

}

Suppose that our file "words. txt" contains the following:

these are the
times that
try us
all the more

104 Data Structure Programming with the Standard Template Library in c++

The input operator» for strings breaks at spaces, so we shall get one word of this file
in each cell of the vector V. The output of our main fragment will be

these
are
the
times
that
try
us
all
the
more

OUT next task is to sort the results of reading the file of words. Unfortunately, if we do
this naively, we won't get what we desire. The usual way to sort a container that has ran­
dom access iterators is the following:

sort(V.begin(), V.end(»;
writeVector(V) ;

This won't work in this case, since what we are storing in the vector V are pointers.
Sort works by applying operator< to the elements, and operator< for pointers simply
compares pointer values (addresses), not the values that the pointers reference. When I ran
the above on my computer, I got

more
the
all
us
try
that
times
the
are
these

We need to do better. In fact, we need the alternate fonn of algorithm sort, that uses a
third parameter to specify how the comparison is to be made. This third parameter needs
to be a function object.

A function object is an object (value of a class type) that supports operator ().
Supporting this operator means that the object may be "called" as if it is a function. We
need to build a class (or struct) in which operatorO defines the string comparison <. This
is very simple to do. We use a struct, rather than a class, simply to make everything pub­
lic.

Chapter 4. Overview of the Standard Template Library 105

struct strless
{ bool operator() (char* x, char* y) const

{ return strcmp(x, y) < 0;
}

} ;

This struct has only one member: operator(), which returns the "<" comparison for
strings. This is just what we require. The correct code for sorting our vector<char*> then
is

sort(V.begin(), V.end(), strless(»;
writeVector(V) ;

The third parameter passes in a new strless object. It looks like a function call, but it
is a constructor call that initializes our strless object. Algorithm sort will use this object
as a function to compare strings during the sort. In any case, the result of the above code
fragment is

all
are
more
that
the
the
these
times
try
us

A function object that returns bool, or a type convertible to bool, is called a predicate.
The above class strless defines a binary predicate, since operator() has two parameters. A
unary predicate takes a single argument and returns bool. The STL uses these extensively.

We could, by the way, reverse the order of the sort, simply by changing the "<" to a
">" in the definition of strless::operatorO. There is a better way to get this reverse sort
done, however, given struct strless. That is to apply a function adaptor to it to reverse the
sense of the comparison. To do this, we must first be a bit more sophisticated in our
function objects. We built a simple class strless above, but we didn't put quite enough
into it to make it work properly with the STL. The easiest way to complete it is to derive
strless from the built-in less function object class that comes with the STL.

struct strless: public less<char*>
{ bool operator() (char* x, char* y) const

{ return strcmp(x, y) < 0;
}

} ;

106 Data Structure Programming with the Standard Template Library in C++

The major difference here is that we need to define certain types to the STL so that the
various algorithms know what types we have for our parameters. This is similar to what
we did with the value_type in our stack classes in Chapter 3. Having done this (and
we should do it with strequal as well), we can now sort in reverse order with

sort(V.begin(), V.end(), not2(strless(»);
writeVector(V) ;

The function adaptor not2 takes a binary predicate (2 arguments) and transforms it
into its negation. It actually constructs a new function object whose operatorO returns the
negation of that of the parameter. We apply not2 to our function object strless ()
to get another function object that is used by sort. The result of this sort would be

us
try
times
these
the
the
that
more
are
all

Notice that we have some repeated words here and in the original sort, since we had
duplicate words in the original file. We wish to remove such duplicates. This is a two
step process with the STL. First we use algorithm unique, which simply rearranges the
contents of the vector (or other container) so that its unique elements are at the beginning.
It returns an iterator to us to tell us the end of the range of this initial interval of unique
values. Again, we must not be naive in calling it, however. Usually we would write sim­
ply

vector<char*>: :iterator tail
= unique(V.begin(), V.end(»;

writeVector(V) ;

But again this won't work here. (Try it.) The problem again is that our vector saves
pointers and unique uses operator== to determine what values are the same. This will be
pointer comparison here, and since our values are held in strings with different addresses,
none of them will look like duplicates. Again we need to use a function object to evaluate
equality between strings.

struct strequal: equal<char *>
{ bool operator() (char* X, char* y) const

{ return strcmp(x, y) == 0;

Chapter 4. Overview of the Standard Template Library 107

}
} ;

The correct call of unique is

vector<char*>: :iterator tail
= unique(V.begin(), V.end(), strequal(»;

writeVector(V) ;

The output of this is as follows (assuming we did an increasing sort). Note that the
vector V has not changed its length, and it does not have the same contents.

all
are
more
that
the
these
times
try
us
us

What has happened here is that the unique elements were copied to the front and kept
in the same relative order. This may result in some values getting overwritten. The sec­
ond copy of "the" was overwritten by the "these." This leaves us with two copies of "us"
at the end. The iterator that is returned from unique will reference the second copy of "us,"
which is the end of the unique range. We next need to delete the tail of extra values.

V.erase(tail, V.end(»;
writeVector(V) ;

This will leave us with the desired values: one each of the words in the original file,
sorted alphabetically.

all
are
more
that
the
these
times
try
us

108 Data Structure Programming with the Standard Template Library in C++

At this point the vector contains nine elements, as we can observe by evaluating
V.sizeO. The size of a vector is its current size. Its size will grow as we execute member
function push_back(T). This function pushes a value onto the back of the vector, so that
it grows at the end. The original size was zero when we created it at the beginning of
mainO. The physical size doesn't grow with each push_back, however, as this is time­
consuming (as we shall see in the next chapter). Instead, the vector is created with a cer­
tain capacity. The vector won't grow physically until we try to exceed this capacity. You
can discover the capacity by evaluating V.capacityO. Here it is 1,024.

4.3 Containers

In this section we shall consider the design elements of container classes, focusing espe­
cially on those elements that are common to the various classes. In later chapters we will
look at the differences and the specifics of each class. As indicated above, many of the
most important algorithms for manipulating containers are not defined as members of the
container classes, but externally as generic algorithms. However, it is necessary to have
some support, especially for inserting, deleting, and accessing elements within the con­
tainers.

All container classes in the STL support a common functionality in addition to some
specialized operations. They may differ in the efficiency with which they perform some of
the common operations, however. Arrays are a special case. They have this functionality,
but often use different syntax to achieve it. For example the accessor function begin ()
that returns an iterator to the beginning of a container corresponds to a pointer to the be­
ginning of the array.

The common functionality falls into seven categories: types, constructors, destructor,
accessing, comparison, assignment, and swap.

Types. All containers define at least nine types. These are defined by typedefs within
the class declarations. The purpose of these is to make it easy for the algorithms to
declare appropriate temporary data.

val ue_ type is the type of data stored in the container. This is the same as the
template parameter type. For example, the value_type of a vector<int> is

vector<int>::value_type. It will be int, of course. While it seems silly to define
this, recall that we must be able to recover this type from within a function template,
where we do not have knowledge of what the template parameter will be.

reference is the type of references to values in the container. Usually this is
just &T, where T is the parameter, but it can be otherwise.

canst_reference is the type of const references to data stored.
i teratar is the type of iterators appropriate to this container type.
const_i terator is the type of iterators over constant containers of this

type.
reverse_i teratar is the type of iterators that can iterate over the container

in reverse of the usual direction.

Chapter 4. Overview of the Standard Template Library 109

const_reverse_i terator is the type of reverse iterators into const con­
tainers of this type.

size_type is a numeric type that can represent the size of containers of this
type.

difference_type is a numeric type adequate to hold any generated value of
the difference between two iterators.

All of the iterator types provided by containers are at least bidirectional. The vector
and deque iterators, as well as the pointers used with arrays, are random access iterators.
Note that, since arrays are not defined by a class but are the built-in arrays of C++, the
above types are not formally defined for arrays.

Constructors. All containers have a default constructor and a copy constructor. The
copy constructor requires linear time.

Destructor. All containers have a destructor. It applies the destructor to each ele­
ment of the container. The destructor requires linear time in the number of elements
stored. Be aware, however, that if destruction of the individual elements is slow, then
so will be the destruction of the container.

Accessing. All containers support seven member functions for obtaining informa­
tion about the container and its contents.

beg in () returns an iterator to the first position in the container.
end () returns an iterator to a position just after the last position in the con­

tainer. [beginO, endO) form a valid interval in the container that includes all ele­
ments stored. For an empty container, this interval will be empty.

rbeg in () returns an iterator to the last position.
rend () returns an iterator to a position just before the first item.

[rbeginO, rendO) forms a valid interval that includes all elements stored. It provides
for reverse iteration over the container.

ernpt y () returns true if and only if there are no elements in the container.
s i z e () returns the current size of the container. This is the number of values

stored. The physical capacity may be higher.
rnax_s i z e () returns the size of the largest possible container of this type.

All of the accessing operations require only constant time.

Comparison. All container classes support the usual comparison operators. The
operator= and operator< are used to defme the other four comparisons, so they be­
have as expected. They depend on the presence of operator== and operator< of the pa­
rameter type, which is the element type of the container. The comparison operations
take linear time as they are applied to all (or many) corresponding elements of the
containers.

110 Data Structure Programming with the Standard Template Library in C++

Assignment. All container classes overload the assignment operator to make as­
signment of containers safe.

Swap. All containers support a swap operation that will swap the contents of two
containers of the same type in constant time. For example, if a and b are vectors,
then a.swap(b) will exchange their contents.

As a simple illustration of the generality of the design of the STL, the following
function template will correctly write out the contents of any container in the library.
This is because every container defines an iterator type, beginO and endO iterators. All it­
erators can be de-referenced, and all iterators produced from containers are bidirectional am
support the operator!=. Note that not all support operator<, however, which is a property
of random access iterators.

ternplate<class container>
void writeContainer(container C)
{ for

}

(container: :iterator i = C.begin();
i ! = C. end () ;
++i

cout «*i«' ';
cout « endl;

Note that while we said that all iterator types may be de-referenced, it is not the case
that all values of iterators may be safely de-referenced. For example, the vector::endO it­
erator does not refer to a valid slot in the vector and so should not be de-referenced. This is
exactly similar to the situation with c++ pointer variables. They are a de-referencable
type, but not all values of a pointer refer to a valid item. A pointer may be NULL, or it
may be uninitialized. The same kind of thing is true of iterators (though they may not, in
general, be NULL).

4.3.1 Sequence Containers

The sequence containers are vectors, deques, and lists. Vectors use dense storage, similar
to arrays, though vectors may change in size as a computation proceeds. Deques use a
simple tree of dense blocks. Lists use doubly linked storage.

In addition to the general requirements of containers, all sequence containers have addi­
tional members. These fall into three categories: constructors, insertion, and deletion.

Constructors. All sequence containers have a constructor that will place n copies
of a value into the new container. They also have a constructor that will create a new

Chapter 4. Overview of the Standard Template Library II I

container with the values defined by any valid iterator interval. Even one from a dif­
ferent kind of container.

Insertion. Sequence containers have three member functions named insert. They
all have an iterator as first parameter. It gives the location at which we shall insert.
The first version of insert will insert a given value at the location of the iterator.
Note that it makes room available for the new item. It does not overwrite existing
items, but inserts ''before'' the item to which the iterator refers. This version returns
an iterator to the newly inserted position. The second version of insert inserts n cop­
ies of a value at the location of the iterator. The last inserts the contents of a valid
range at the location of the first parameter.

Note that the insertion routines all change the size of the container. Also be
aware that the iterator returned by lastO is a valid point of insert.

Deletion. Sequence containers all have two member functions named erase. The
first removes an item at the location of an iterator. The second removes all values in
a given valid interval. They both change the size of the container.

Note that insertions and deletions may invalidate iterators into that container. For ex­
ample, in a vector, if we insert into the middle of the container, all iterators after that lo­
cation will become invalid. We should not write programs that depend on the stability of
iterators while insertions are in progress.

Finally, we note that the individual sequence containers have additional members as
appropriate. We also note that container adaptors may be used to tum sequence containers
into more restricted types, such as stack, queue, and priority queue.

4.3.2 More on the Spell Checker

Suppose that we wish to remove the word "the" from our spelling dictionary. Since the
vector is sorted, we can use binary search to find the location of this word in the vector.
The generic algorithm binary_search simply returns a bool value telling us whether the
target is present or not. We need more: the actual location of the target. For this we can
use the lower_bound or upper_bound function. These give us the locations (as iterators)
of the earliest and latest place in the container at which we could insert the target without
destroying the sort. Since, in general, a sorted container can have duplicates, this just
gives us the interval of values equal to the target if it is present. We don't need both val­
ues here, however, so we will just use lower_bound. This function requires a pair of itera­
tors delineating the range over which it will search. It also requires the target of the
search. Since we are using char* values, which require a special comparison function, we
pass in the function object also. Note that we pass a strless object since that was the
comparison used to sort the vector. Therefore, it is also used to binary search it.

vector<char*>: :iterator where;
where = lower_bound

112 Data Structure Programming with the Standard Template Library in C++

(V.begin(), V.end(), "the", strless(»;

Now that we know the position of the word "the," we can remove it with erase.

V. erase (where) ;

Now suppose that we wish to insert the word "souls" into the dictionary, but we want
to insert it into its proper location. We can use lower_bound again to find this position.

where = lower_bound
(V.begin(), V.end(), "souls", strless(»;

Now that we have an iterator to the proper location of insert, we may use insert to
place the word into this location.

V.insert(where, "souls");

We don't want to do so here, but we could insert three copies of the word into the vec­
tor at this location with

V.insert(where, 3, "souls");

Finally, if we wanted a separate vector of all of the words that begin with "t", we can
first find the interval in which they lie with

vector<char*>: :iterator start, stop;
start = lower_bound

(V.begin(), V.end(), "t", strless(»;
stop = lower_bound

(V.begin(), V.end(), "u", strless(»;

We can now construct a new vector with just the "t" words using

vector<char*> t_words(start, stop);

The same strings are now in both vectors, V and t_words. We don't have copies of the
strings in the two vectors, but they share pointers to the buffers containing the strings.
This means that if we alter the spelling of one of the strings, it will show up as changed
in both vectors. We also need to be careful about deleting a string held in a container, re­
membering that we hold a pointer to its buffer there. If we delete the string, then other
pointers to it become invalid. For this reason we would be better off using a String class
rather than char*, so that we could better control allocation, copying, and deallocation.
The string class provided by the c++ standard would be a good choice.

We don't want to remove all of the "t" words from our dictionary, but we could do so
with

Chapter 4. Overview of the Standard Template Library 113

start = lower_bound
(V.begin(), V.end(), "tn, strless());

stop = lower_bound
(V.begin(), V.end(), "un, strless());

V.erase(start, stop)

Notice that we need to reset start and stop if they have been passed to some algorithm
such as the constructor above. This is because the algorithms may modify the iterators.
Again, we note that many of the algorithms "consume" their iterator parameters.

Algorithms such as lower_bound return iterators. These iterators may be used in many
ways. The iterators returned by a vector are random access iterators, so we may do arith­
metic with them, adding an integer to them, for example. We need to be careful with our
operations on iterators, since it is possible to make the same kinds of errors with iterators
as it is with pointers. In particular, it is possible to make an iterator point outside the
container that generated it. If we try to de-reference where+ 1 0, for example, we are
likely to get into trouble. The user needs to be aware that the STL was optimized for
flexibility and efficiency, not for safety. Therefore, the user needs to take all care when
manipulating iterators. In general, the same techniques you have learned for keeping out
of trouble with pointers also work for iterators, because of the design that makes them so
similar to pointers.

Exercise. In the Appendix, fmd the generic algorithms mentioned in this section and
explain the template parameters and function parameters of each of them.

4.3.3 Sorted Associative Containers

There are four kinds of sorted associative containers in the STL: set, multiset, map, and
multimap. Sets and maps have the property that an item may be present in the container
only once if at all. Multisets and multimaps permit the "same" item to occur several
times. The reason the word "same" is quoted in the last sentence is that the definition of
sameness is up to a programmer and so needs to be interpreted in terms of what kinds of
things are stored in the container. The values stored in maps and multimaps are pairs of
items. The first element of a pair, its key, is used to retrieve items, and as the basis of
"sameness." The second element of the pair, the information, may be of any kind. An ex­
ample of a <key, information> value is a social security number as the key, with em­
ployee information as the information component. In sets and multi sets the values stored
are just the keys.

As implied by the name, sorted associative containers are sorted. This means that the
contents need to be compared. Instead of doing this directly, with operator<, however,
these containers use a function object to define the relationship. The default object, named
Compare, is given as a template argument, but the user is free to substitute another. The
STL provides a number of possible values of the template argument. One of these is
less<T>O that uses the operator< as the basis of comparison. The comparison object
must obey certain principles, however, if the algorithms are to work correctly.

114 Data Structure Programming with the Standard Template Library in C++

As an aid in defming and using the sorted associative containers, the STL defines a
struct template named pair that can be used to defme ordered pairs of any types. These
pairs are used as the values stored in maps and multimaps, and as the return type of func­
tion equal_range, defined below. This template is defined in <pair.h>. A pair has public
member variables to set or retrieve the first and second elements of the pair.

The requirements of comparison objects are as follows:
To define a comparison object, you create a class and name it. We will suppose that

the name "Comp" is to be used. Comp must define a binary operatorO, returning a bool,
that defines the ordering on the keys to be stored. If this operator returns true for a pair of
values a, b, then we write aRb, (read "a is related to b"). Note that operatorO may return
true for a, b in that order, but false in the other order.

Transitivity. If a, b, and c are key values, and aRb, and also b R c, then aRc
must also be true.

Trichotomy. If a and b are values, then exactly one of aRb, bRa, and "a is the
same as b" is true.

When a function object obeys the above, we say that it a strict total ordering on the
values. Notice that the law of trichotomy implies that aRb and bRa are never true si­
multaneously. This implies that operator<= will not serve as the basis of a comparison
object.

Implied in the definition of a strict total ordering is the notion of "sameness" used in
the first paragraph of this section. In particular, we say that two items, a and b, are the
same if both aRb and bRa are false. This is not the same thing as saying a = b, of
course. When aRb and bRa are both false, we say that a and b are equivalent to each
other.

When we create a sorted associative container, we also give it a comparison object. If
none is supplied, then the default object is used, which was defined by the template argu­
ment. We can also specify this operator using the constructor less<T>O, where T is the
type of values to be stored. The STL also defines object greater<T>O.

Note that operator< as defined on the built-in types of C++ acts as a strict total order­
ing.

In addition to the features shared by all containers, sorted associative containers have
the following members.

constructors
Sorted associative containers have constructors that permit initialization with a

comparison object. When present, this is the last argument of the constructor call. In
general, you can construct a container from an arbitrary range, even a range from a
different kind of container. This may not be fully implemented, given the current
state of compilers, however.

access
key_camp () returns the key comparison object.

Chapter 4. Overview of the Standard Template Library 115

va 1 ue_comp () returns a constructed comparison object that works on values
stored (keys for sets and multi sets, pairs for maps and multimaps). In the case of
maps and multimaps, the comparison object still works by comparing only the keys.

insert() (sets and maps only) inserts its argument only if it is not already
present. The comparison object is used. The object will not be inserted if it is equiva­
lent to an object already stored.

insert () (multi sets and multimaps) inserts its argument into the sorted loca­
tion. There are various forms of insert, including insertion of a range. This is prop­
erly defined using a template member function, which may not be fully implemented
in your compiler. If this is the case, then you may be restricted to ranges defIned by
ordinary pointers only.

erase (k) deletes the object whose key is k if present. It returns the number of
items erased. It erases all copies in a multiset or multimap.

erase (i) deletes the object to which the iterator i refers. There is also a ver­
sion that will erase a range given by two iterators.

find (k) returns an iterator referring to the object with key k, if present, or
endO otherwise.

count (k) returns the number of items whose key is k.
lower_bound (k) returns an iterator pointing to the first location whose key

is not less than k according to the comparison object.
upper_bound (k) returns an iterator pointing to the first location whose key

is greater than k.
equal_range (k) returns a pair of iterators consisting of the pair

(lower_boundO, upper_bound)

4.3.4 Rebuilding the Spelling Dictionary as a Set

The spelling dictionary problem is easier if we use sets, since we don't need to sort them
or remove duplicates. This is already implied by the use of sets. We do need to pass com­
parison objects, but we have been doing this already because of the special needs of char*
values. Notice that our function object strless satisfies the requirements of a strict total
ordering. We will want a different function to read a fIle into a set, since sets don't sup­
port push_back, but rather just insert. We first defIne a type called stringSet.

typedef set<char*, strless > stringSet;

void readStrSet(ifstream&
{ int i = 0;

inp, stringSet& V)

char * input;
char buf[80];
do
{ inp » buf;

if (strncmp(buf,"",80)
int len = strlen(buf);

0) break

116 Data Structure Programming with the Standard Template Library in C++

}

}

input = new char [len+l];
strcpy(input, buf);
H+;
V.insert(input);

while (true);

Now the result of

void main ()
{ ifstream inp ("words. txt") ;

stringSet V;
readstringSet(inp, V);
writeContainer(V);

}

is

all are more that the these times try us

As we see, the container is already sorted, and the second "the" was not inserted, since
one was already present. If we don't want even the one copy of "the," we can remove it
with

V. erase("the");

and if we wish to insert the word "souls," the following will do:

char* temp = new char[6];
strcpy (temp, " souls") ;
V. insert (temp) ;
writeContainer(V);

Now the result is

all are more souls that these times try us

Notice that we allocated a new buffer to hold the new word. While either of the next
two cans to insert are legal, both will result in eventual problems.

V. insert ("souls") ;
II points to a static value

or

Chapter 4. Overview of the Standard Template Library 117

char temp [6] = "souls";
V. insert (temp) ;

II points to an automatic value

This is not a problem with containers or the insert member. The problem lies in the
nature of pointers. In the last example above, if we change the value of the temp buffer,
we will change what is in the set. The first of these would be useful only in a set of con­
stant strings.

Again supposing that we wish to have a listing of just the "t" words in a separate set,
the following will work:

stringSet: :const_iterator start
= V.lower_bound("t"};

stringSet: :const_iterator stop
= V.lower_bound("u"};

stringSet t_words(start, stop};
writeContainer(t_words};

Assuming we did remove "the," this will produce

that these times try

4.4 Iterators

We have used iterators in many ways already, but have only scratched the surface of their
capabilities and complexity. The STL defines many kinds of iterators, as we have already
noted. Chief among these are random-access, bidirectional, and forward iterators. There are
also two generalizations of forward iterators called input iterators and output iterators.
These, in tum, have special versions called istream iterators and ostream iterators, respec­
tively. We will explore some of the differences between these in this section.

The reason for having different iterator categories is dual. On the one hand, certain
container types can only provide certain kinds of iterators efficiently. We want all iterator
operations to be doable in constant time, so that the iterator operations don't slow down
the operation of algorithms in which they are used. Thus, a list cannot efficiently provide
random access iterators, but since they are doubly linked, they can provide bidirectional it­
erators efficiently. When we specify a container, we specify the strongest iterator type that
it can (efficiently) provide. The second aspect of the need for different iterator categories
has to do with the needs of the algorithms. Sorting algorithms, for example, may need to
compare items at widely separated locations in the containers they sort. To do so may re-

118 Data Structure Programming with the Standard Template Library in C++

quire more power in the iterator than would be required in a searching algorithm. When
we specify an algorithm, we specify the weakest iterator type that can be used with it.

Most of the iterator types are not defined by classes in the STL. Instead they are in­
formally defined by what services they provide-especially, which operators they over­
load. Thus, there is no class for forward iterators. The collection of requirements for an
object like a forward iterator are informally called a concept. Any class or built-in type
(pointers) that has the forward iterator operations defined (chiefly operator++) conforms to
the concept and can therefore serve as a forward iterator. This is because the iterator classi­
fications are used as template parameters, not as actual types. The categories of iterators
are defined as an aid in documentation to aid the user of an algorithm understand what is
required of the iterators that are passed. For example, the specification of the copy algo­
rithm that will copy a range into a container is

template <class Inputlterator, class Outputlterator>
Outputlterator copy
(Inputlterator first,

Inputlterator last,
Outputlterator result

) ;

This is a way of saying that the template parameters have certain requirements, which
if satisfied, we can guarantee the correct operation of the algorithm.

In addition to the presence of certain operators, the STL requires that the operators
obey certain laws if the algorithms are to work correctly. We have already seen one sim­
ple example of this in our specification of an interval or range [a,b), where we assume
that repeatedly executing a++ will eventually get us to b.

We will detail each of the iterator categories below. There are two varieties of each of
these iterators, however. Since it is possible to build const containers that cannot be
modified, we also need const iterators, so that we don't try to modify a const container by
de-referencing an iterator. We therefore classify iterators as either const or mutable. A mu­
table iterator returns a reference from operator*, so that we can assign to such a de­
reference. A const iterator returns a const reference (or possibly a value). The container
classes all define a type called iterator and another named consUterator. The first of these
is generally mutable. The category of these iterators depends on the container. For exam­
ple, vector<T>::iterator is a mutable random access iterator and vector<T>::consCiterator
is a const random access iterator.

A given value of an iterator may be de-referencable or not. An iterator A is de­
reference able if it refers to a location within a container, and so * A is a value of the con­
tained type. If a container C is nonempty, then C.beginO will return a de-referencable it­
erator. C.endO will return an iterator also, but it is not de-referencable. Instead, it refers to
a past-the-end value. This location is a valid place for inserts in most containers, but not
for retrievals.

There may also be a singular value for an iterator. This is a legal value of the iterator
that does not refer to any location or any container. For example, NULL is the singular
value of ordinary pointers. Some constructions of iterators result in a singular value as

Chapter 4. Overview of the Standard Template Library 119

indicated. The algorithms are not guaranteed to work if passed singular values when they
require iterators.

Iterator categories, then, are defined by the operators they provide. Somewhat more is
required, however. It is not enough just to have an operator present for an iterator to work
correctly. Since it is possible for the programmer to overload operators, he or she can
give any desired meaning to any operator. The operators have to be consistent with each
other for the iterators to work correctly with the algorithms. For example, a random ac­
cess iterator must provide for the difference between iterators, b - a, as an integer n. The
type must also provide an operator ++. However, these two operators must also be con­
sistent with each other for things to work. This means that if b - a = n, then exactly n
iterations of a++ will take us to b. If this is not the case, then our program may compile
correctly, but is unlikely to operate correctly. It may work with poor efficiency, or it may
fail altogether.

Iterators are used to define ranges. Most of the algorithms take a pair of iterators and
define a range or interval that includes the first position and includes everything up to but
not including the second. This is expressed as

[a, b)

where a and b are iterators. In order for this to be a valid range, b must be reachable from
a. This means that repeatedly applying a++ will eventually have a == b. If this is not the
case, the algorithm will fail, perhaps as an infinite iteration. It is up to the user to guar­
antee this, although the containers are helpful in returning iterators with beginO and endO
that guarantee that endO is reachable from beginO.

4.4.1 Forward Iterators

Forward iterators mark a location in a container and can be moved forward with opera­
tor++. A newly created forward iterator might be a singular value. If it is de-referencable,
then it must support both prefix and postfix operator++ as well as operator== and opera­
tor!=. There is an additional requirement that may sound like it could not possibly be
false. We require that if two mutable forward iterators obey a = b, then it must also be
true that *a == *b, and ++a == ++b. We will show how this can be false when we look at
input iterators.

4.4.2 Bidirectionallterators

Bidirectional iterators have all of the properties of forward iterators. In addition, they may
be moved backwards with operator--. Both pre and posfix forms of this operator are re­
quired. Furthermore, if --r == --s for de-referencable iterators, then r == s.

120 Data Structure Programming with the Standard Template Library in C++

4.4.3 Random Access Iterators

Random access iterators have all of the properties of bidirectional iterators. In addition,
they support iterator arithmetic with such operators as operatoH and operator-. They also
support operator<. In particular, we need an operator+ and an operatoH= that lets us Idl
an integer to a random access iterator. We also need operator- and operator-=. We need two
forms of operatoH, actually, so that we can add an iterator and an integer in either order.
We also need to be able to take the difference between two random access iterators into the
same container. The value n that is returned should be consistent with the operator+, as
well, so that if a - b returns n, then a + n should be b. Also, exactly n iterations of a++
should take you to b.

Random access iterators can also be indexed using operator£]. This should behave con­
sistently with iterator arithmetic, as in the pointer duality law.

Finally, we need to be able to compare iterators with operator<, operator>, opera­
tor<=, and operator>=. Furthermore, operator< and operator> must be total ordering rela­
tions (as well as defining "opposite" orderings). This means that they obey the following
two laws:

Trichotomy. For any two values, a and b, exactly one of a < b, a = b, and b < a
is true.

Transitivity. If a < b, and also b < c, then a < c.

Actually, this is a bit more than is required. Operator = doesn't have such a special
place here. In fact, we can define a relation a E b to be true whenever a < b and b < a are
both false. What is required is that this relation E be an equivalence relation. This means
that E satisfies the following three laws:

Reflexivity. For any a, a E a.

Symmetry. If a E b, then also b E a.

Transitivity. If a E b, and b E c, then a E c.

If this is the case, then E partitions all of the values into disjoint sets called equiva­
lence classes. Any two elements a and b in one equivalence class satisfy a E b, and if c
and d come from different equivalence classes, then c E d is false. As an example in which
a perfectly reasonable ordering relation does not satisfy the above requirement, consider
binary trees. Let an operation < be defined on the vertices of such a tree by a < b if a is an
ancestor of b, but not the same as b. Then the induced relation E satisfies a E b if a is
neither an ancestor or a descendant of b. It is possible to show that E does not satisfy the
law of transitivity. (Four vertices on three levels will do.) Therefore, this operator< would
not be a suitable candidate for a random access iterator operator<.

Note that the operator< defined on the built-in types of C++ satisfies the law, as the
induced relation E is just operator== on those types (even for pointers).

Chapter 4. Overview of the Standard Template Library 121

4.4.4 Input Iterators

Input iterators are a generalization of forward iterators. This means that every forward it­
erator satisfies the requirements of an input operator, and more. Another way to think of
this is that input iterators drop some of the requirements of forward iterators.

Input iterators need to implement operators == and != for comparison. They need pre­
fix and postfix versions of operator++ for advancing, and they need to be de-referencable.
They do not provide operator=, however, so that we may not be able to assign one iterator
to another. More importantly, the template argument is not required to be mutable. We
may not be able to use a de-reference of an iterator to change the container. This is be­
cause such iterators are used only for retrieving information from a container, not for put­
ting information into it.

The final quirk of input operators is that, for two iterator values a and b, a = b does­
n't necessarily imply that ++a = ++b. This is because an input iterator is permitted to
change the global state of its container, for example, by advancing a read buffer. It is pos­
sible to associate an input iterator with an input stream in such a way that operator++
reads from the stream. If two iterators into the stream are positioned at the same location
and we use operator++ with one of them, the other will be "advanced" as well. Because of
this restriction on use, all algorithms that use input (or output) iterators are required to be
single pass algorithms. The iterator is consumed by its use and can't be reused.

4.4.5 Output Iterators

Output iterators are another generalization of forward iterators and are intended for putting
information into a container, but not for retrieving information. As such, they may be as­
sociated with output streams in which operator++ writes to the stream. Output operators
do not need operators == or !=. Operator++ (prefix and postfix) are used to advance. And
we need to be able to assign a value to a de-reference of such an iterator. We are not re­
quired to be able to read from such a de-reference, however. Therefore, if a is an output it­
erator that points into a container of ints, then

*a = 5;

would be legal, but

int x = *a;

would not be.
Input and output iterators are often used together. For example, in copying one con­

tainer to another, an input iterator may be used on the source, and an output iterator on
the destination.

122 Data Structure Programming with the Standard Template Library in C++

4.4.6 Istream and Ostream Iterators

The STL defines two classes to easily associate streams with input and output iterators.
This makes it easy to treat streams as containers like the other containers in the library.
Thus, we may apply some algorithms directly to streams without providing intermediate
storage to hold the contents. Input streams provide input iterators and output streams pro­
vide output iterators.

We specify an istream_iterator by supplying (at least) the type of data to be read from
the stream as a template argument. We construct an istream iterator by specifying a par­
ticular input stream. The end_oCstream iterator of a stream is constructed without pa­
rameters. Then, each execution of operator++ on the iterator is translated into an execu­
tion of operator» on the stream. The value read is stored within the iterator, and will be
returned by de-referencing the iterator.

istream_iterator<int> start(ein);
II iterate over ein

istream_iterator<int> finish;
II end_of_stream.

veetor<int> vee (start, finish);
ostream_iterator<int> dump(eout);
eopy(vee.begin(), vee.end(), dump);

Important Note: This example requires two features from C++ that may not yet be
implemented, and hence this may not work with your version of the STL. In particular,
istream_iterator actually has two template parameters, the second of which is the differ­
ence type between pointers to the first parameter. In this case the type is ptrdifCt, defined
by C++. We could have stated it here, but chose instead to use the new feature of default
template arguments. In fact, ptrdifCt is the default value of the second parameter. If these
are not available, you need to specify the second argument, as in

istream_iterator<int, ptrdiff_t> start(ein);
II iterate over ein

The second advanced feature that this example depends on is template members. In ear­
lier versions of C++, individual member functions could not be templates: only classes
and free functions. The latest standard provides for template members. The constructor we
have used for vee is such a template member, in which the template argument is an input
iterator. Hopefully by the time you read this, compilers will have caught up with the
standard. This requirement is not so easily bypassed. Early versions of STL use various
ways to compensate (partially) for this, usually by adding additional members to cover
important cases that would be covered by a templated member.

Chapter 4. Overview of the Standard Template Library 123

4.5 Generic Algorithms

While containers are the most visible feature of the STL and iterators are its backbone, it
is the algorithms that form its purpose. As indicated earlier, most of the algorithms are
not provided within container classes, but interface to the containers through iterators.
This permits many algorithms to be written only once and to operate correctly with many
container types. One version of the STL that I use has 106 generic algorithms. There are
a few places where a generalized algorithm won't work efficiently with some container
type but a specialized algorithm will. If the algorithm is important enough, it may be in­
cluded within the class of that container. This is exactly the case when sorting a list.
Therefore, the list template provides a sort member, while vectors and deques use the gen­
eral template algorithm.

Some of the algorithms work "in place," modifying the container on which they oper­
ate. Sort is like this. Other algorithms work on and return a copy of the input container.
Some algorithms have both an in place and a copying version. For example, replace will
replace old values with new in a range. This is an in place version. replace30py will re­
place old values with new, but does not modify its input. Instead it puts a modified copy
of the input into another container. The copying algorithms all have a _copy suffix. For
example,

replace (start, done, oldValue, newValue)

will replace all copies of oldValue by newValue over the range, but

replace_copy
(start, done, toWhere, oldValue, newValue)

will write the range [start, done) starting at iterator toWhere, replacing oldValue by
newValue as it copies.

Some of the algorithms require that we pass in a unary or binary predicate as a func­
tion object. These algorithms only operate on elements or pairs of elements that satisfy
the predicate: i.e., only if it returns true. These algorithms all end in _if. For example,
replace_if will process a range replacing values that satisfy a unary predicate with a new
value. There is also a copying version called replace_copy_if. Predicates are assumed not
to modify their arguments. That is, they are supposed to merely return a value of true or
false, without changing anything. Note that the predicates are called by these algorithms
by applying them to the result of de-referencing iterators. Therefore, if we call replace_if
with

replace_if (start, done, big, newValue);

where start and done are iterators, big is a unary predicate and new Value is the replacement
value, then somewhere within the execution of replace_if will appear big(*i), where i is

124 Data Structure Programming with the Standard Template Library in C++

some iterator, perhaps iterator start. If this predicate execution returns true, then *i =

newValue will be carried out.
Also, many of the algorithms have two versions depending on whether a predicate is

passed or a standard predicate is assumed. For example,

sort (start, done);

will sort a range using the operator< on the elements of the range, while

sort (start, done, strless)

will sort using the binary predicate strless. These versions are not suffixed _if, since the
predicate is not used to determine if the value should be included, but how the algo­
rithms should operate.

If we don't count multiple versions and variations, there are about 56 fully generic al­
gorithms in the STL. There are also a few public support algorithms and a very large
number of support functions. The public generic algorithms can be organized loosely into
ten categories.

The remainder of this section is intended to serve as a reference to the generic algo­
rithms. As such, it need not be read completely through. The prototypes of all of the al­
gorithms may be found in the Appendix. We will introduce each of the algorithms with a
sample call, somewhat stylized, to indicate what kinds of parameters are required. Refer­
ence parameters in which values are returned will be shown in italics.

4.5.1. Minimum and Maximum Algorithms

The STL includes simple min/max comparisons written as templates so that other types
won't need to provide these. It is not our intention to show many of the algorithms of the
STL, but these are particularly simple.

value = m.in(valueA, valueB);
value = m.i.n(valueA, valueB, binaryPred);
value = lIl.iU(valueA, valueB);
value = lDJlX(valueA, valueB, binaryPred);

The two versions of min might look like the following. Note that the first version
uses operator< for the comparison, while the second uses a comparison object. Note that
the class of the comparison object is a template argument, leaving maximum flexibility.
Any class providing a binary predicate operatorO may be used for this argument. Ordinary
functions may also be used.

template <class T>
inline const T& min(const T& a, const T& b)
{ return b < a ? b : a;
}

Chapter 4. Overview of the Standard Template Library 125

template <class T, class Compare>
inline const T& min

const T& a,
const T& b,
Compare comp

return comp(b, a) ? b a;

ForwardIter = min element(ForwardIterl, ForwardIter2);
ForwardIter = min element(ForwardIterl, ForwardIter2, binaryPred);
ForwardIter = max element(ForwardIterl, ForwardIter2);
ForwardIter = max element(ForwardIterl, ForwardIter2, binaryPred);

There are also two algorithms that return the minimum value in a range: one using
operator< and the other using the comparison object. As is generally true of the algo­
rithms that process a range, the input range is defined by the first two parameters. These
algorithms are linear.

template <class Forwardlterator, class Compare>
Forwardlterator min_element

Forwardlterator first,
Forwardlterator last,
Compare comp

4.5.2. Generalized Numeric Algorithms

Each of these algorithms performs some arithmetic operation on a range or on a pair of
ranges. Each has an alternate version in which the user can specify a particular binary op­
eration to be used in place of the standard version. When present, this binary operation is
defined by a function object, and that parameter is last.

total accumulate(first, last, init);
total accumulate(first, last, init, binaryOp);

Algorithm accumulate will add (using operator+) all elements of the range [first, last)
to init and return the result. This is a single pass, linear algorithm, so all that is required
is an input iterator. The type of init is a template parameter, and this type is also the re­
turn type. The alternate version repeatedly applies binaryOperation(init, *first++) and re­
turns the result.

value = inne[..product(InputIterl, InputIter2, OutputIter, val);

126 Data Structure Programming with the Standard Template Library in C++

value = jnner product
(InputIterl, InputIterl, OutputIter, val, binOpl, binOpl);

An inner product is the sum of the products of corresponding elements of two contain­
ers. Two ranges are required for input, but this is done with only three iterators, since the
length of the second range must be the same as the length of the first. A fourth parameter
gives the initial value of the total. The final value is returned. The second form passes
two binary operations as the last two parameters, with the first replacing the sum and the
other replacing the product. For example, we can get the product of sums of two int vec­
tors of the same length with something like

inner...,product
(v1.begin{),

v1.end{) ,
v2 .begin{),
1,

) ;

times<int> () ,
plus<int> ()

Note that the function objects plus and times are provided with the STL.

Outputlter = partjal sum(InputIterl, Inputlterl, OutputIterl);
Outputlter = partial sum(lnputIterl, InputIterl, OutputIterl,

binaryOp);

The partial_sum algorithm efficiently computes a sequence of running totals of an in­
put range. For example, if a set contains 1, 2, 3, 4, 5, then the partial sums would be 1,
3,6, 10, 15. This result is placed into a second range that may be the same as the first. A
second version replaces operator+ with any binary operator.

partial_sum
(set1. begin {),

setl. end {) ,
vec2 . begin () ,
times<int> ()

) ;

This assumes that the vector vec2 has a size large enough to hold the resulting se­
quence of values.

OutputIter = adjacent djfference(inputIterl, InputIterl, OutputIterl);
OutputIter = adjacent.,.djUerence

(inputIterl, InputIterl, OutputIterl, binaryOp);

Chapter 4. Overview of the Standard Template Library 127

The adjacenulifference algorithm is similar. It puts adjacent differences between val­
ues into a second range. The first "adjacent difference" is just the first value from the first
range. AdjacenCdifference and partiaCsum perform inverse computations.

4.5.3 Nonmutating Sequence Operations

These algorithms operate on sequences, but they do not change them. While they work on
sequences, they are not restricted to sequential containers since they use iterators to define
their operations, and iterators return sequences of values even from nonsequential contain­
ers.

lterPair = mjsmatcb(InputIterl, InputIter2, InputIter3)j
lterPair = mjsmatcb(lnputIterl, InputIter2, InputIter3, binaryPred);

Algorithm mismatch compares corresponding values in two ranges (again defined by
three iterators) and returns a pair of iterators indicating the first location in each range at
which the corresponding values fail to be the same using operator==. The two iterators re­
turned are equidistant from the beginnings of the input ranges. A second version, as ex­
pected, replaces operator== with a binary predicate of the user's choice.

boolVal tIlWll(inputIterl, InputIter2, InputIter3)j
boolVal tIlWll(inputIterl, InputIter2, InputIter3, binaryPred)j

Algorithm equal (again two versions) compares two ranges and determines if they are
the same up to the end.

funObj = for eacb(inputIterl, InputIter2, InputIter3, funObj);

One of the most powerful and general operations in the STL is algorithm for_each,
which applies a user-supplied function to each element of a range. Any result produced by
the supplied function is ignored. The function can, however, set global variables or even
modify the elements of the collection. It should not, however, attempt to modify the col­
lection itself. For example, suppose we consider the CountedValue template that we cre­
ated in Chapter l. We can write a function object to set the value in any given Counted­
Value<int> to zero.

struct setzero
{ void operator() (CountedValue<int>& C)

{ c.setValue(O);
}

} ;

If we have a vector vec4 of CountedValue<int> objects, we can set all of their values
to zero with

128 Data Structure Programming with the Standard Template Library in C++

for_each(vec4.begin(), vec4.end(), setzero(»;

InputIter = fiwI.(InputIterl, Inputlter2, value);
InputIter = find if(Inputlterl, InputIter2, unaryPred);

Algorithm find and find_if search for a value in a range and return an iterator to the lo­
cation of the value if found and the end of the range otherwise. Algorithm find has a pa­
rameter to specify the value sought and uses = to detennine a "hit." On the other hand,
find_if uses a supplied unary predicate, but no value. It returns the first location in the
range for which the predicate returns true.

ForwardIter = adjacent find(ForwardIterl, ForwardIter2);
ForwardIter = adjacentJind(ForwardIterl, ForwardIter2, binaryPred);

Algorithm adjacencfind looks for two adjacent values in a range that are the same
with operator==. An alternate version uses a supplied binary predicate instead of the opera­
tor. Both return an iterator to the first location satisfying the goal, or the end of the range
if there are no matches.

~(InputIterl, InputIter2, value, init);
count if(InputIterl, InputIter2, unaryPred, init);

Algorithm count counts values that match a given value. Interestingly, the count is
returned as a reference parameter, rather than as a function result, so that the user may
specify the type of the count itself using a template argument.

template <class Inputlterator, class T, class Size>
void count

Inputlterator first,
Inputlterator last,
const T& value,
Size& n

) ;

Since n is incremented once for each "hit" with operator++, any type that implements
this function may be used as the last parameter, including user-defined classes. The alter­
nate version, counUf, replaces the value with a unary predicate. Each value of the range
for which this function returns true causes the count to be incremented. This algorithm is
a very good example of the total generality of the STL approach. Most libraries would
just return an int or a long from such an operation, as this is the most common case.
Here, we get to choose the type of the value to be incremented with complete freedom.
We could even pass in an object from a class that changes the appearance of a dial each
time its operator++ is executed.

Chapter 4. Overview of the Standard Template Library 129

ForwardIter = K.il.Uh
(ForwardIterl, ForwardIter2, Forwardlter3, ForwardIter4);

ForwardIter = K.il.Uh
(ForwardIterl,

ForwardIter3,
binaryPred

ForwardIter2,
Forwardlter4,

) ;

Algorithm search is passed two ranges, using four iterators this time. It determines
whether the second range is a subrange of the first. If so it returns an iterator to the start­
ing point of the subrange. The standard version uses operator=- and the other uses a bi­
nary predicate passed by the caller. This algorithm is quadratic in the worst case, but be­
haves better in most actual uses.

4.5.4 Mutating Sequence Operations

These algorithms also act on sequences, but they modify some range as they operate. This
is the largest category of operations, with about thirty algorithms. Notice that if the des­
tination is a vector, for example, then the algorithms do not in general extend the length
when they reach the end. The user is responsible for guaranteeing that the destination has
sufficient size.

OutputIter = ~(InputIterl, InputIter2, OutputIter);

Algorithm copy copies one range to another. Be careful that the second container has
sufficient room to hold the values. The two ranges can actually overlap as long as the
first range (source) does not contain the first location of the second range(destination). It
returns an iterator to the last item inserted into the destination.

BidirectIter = copy backward
(BidirectIter Iter I, BidirectIter Iter2, Bidirectlter Iter I);

Algorithm copy_backward, which needs bidirectional iterators, copies one range to an­
other, but using last element first. The source range must not contain the last location in
the destination range, but otherwise overlap is possible. Note that this doesn't reverse the
order of the elements, just the order in which they are copied. It does copy into the desti­
nation working to the "left" of the initial point, however. This also returns an iterator to
the last item inserted.

Outputlter = fi.lL,o(OutputIter, count, value);

Algorithm fill_n inserts n copies of a value into a container.

template

130 Data Structure Programming with the Standard Template Library in C++

< class Outputlteratar,
class Size,
class T

>
Outputlteratar fill_n
(Outputlteratar first,

Size n,
canst T& value

) i

The return value points to the last item inserted.

swap(valuel, value2);
ForwardIter swap ranees(Forwardlterl, ForwardIter2, ForwardIter3);

Swap exchanges two values. Algorithm swap_ranges swaps two intervals of equal
length, returning an iterator just after the last item in the second range.

OutputIter = transform(InputIterl, InputIter2, OutputIterl, unaryOp);

This function applies the unary operator to each element of the first range, writing re­
sults to the second range. It returns an iterator after the last item inserted. The output
range may be the same as the input range.

OutputIter = transform
(InputIterl, InputIter2, Inputlter3, OutputIterl, binaryOp);

This version of transform applies a binary operator to corresponding elements of the
two input ranges, writing results to the output range. It returns a past-the-end value of the
second range. The output range may be the same as either input range.

replace(ForwardIterl, ForwardIter2, oldValue, newValue);
replace)f(Forwardlterl, ForwardIter2, unaryPred, newValue);
OutputIter = replace copy

(InputIterl, InputIter2, OutputIterl, oldVal, newVal);
OutputIter = replace copy if

(InputIterl, InputIter2, OutputIterl, unaryPred, newVal);

Replace replaces all copies of oldValue in the input range with newValue. Replace_if
replaces all values for which the predicate is true with newValue. The copy versions are
similar, except that they place the results into an output range instead of modifying the
input range.

eenerate(ForwardIterl, ForwardIter2, GenFunc);

Chapter 4. Overview of the Standard Template Library 131

OutputIter = Kenerate O(OutputIterl, count, GenFunc); •

These algorithms fill a range by repeatedly calling a generating function and saving
the results.

ForwardIter = remove(ForwardIterl, ForwardIter2, value);
ForwardIter = remove.if(ForwardIterl, ForwardIter2, unaryPred);
OutputIter = remove copy(InputIterl, InputIter2, OutputIterl, value);
OutputIter = remove copy if

(InputIterl, InputIter2, OutputIterl, unaryPred);

These algorithms remove values from a range. The first removes all copies of the
value. The second removes all values for which the predicate is true. The other versions
are similar, except that they write the results to an output range instead of modifying the
input range. If two elements of the input range are not removed, then their relative posi­
tion after execution is the same as before. Therefore, the algorithm is called stable.

ForwardIter = unjQue(ForwardIterl, ForwardIter2);
ForwardIter = unjQue(ForwardIterl, ForwardIter2, binaryPred);
OutputIter = unjQue copy(InputIterl, InputIter2, OutputIterl);
OutputIter = unique copy

(InputIterl,

) ;

InputIter2,
OutputIterl,
binaryPred

Algorithm unique removes successive equal values from a range. The first version
uses operator== to detennine equality of pairs of values. The second version uses the bi­
nary predicate instead. The copy versions write results to an output range.

reverse(BidirectIterl, BidirectIter2);
OutputIter = reverse cQPy(BidirectIterl, BidirectIter2, OutputIterl);

These algorithms reverse the order of the values in a range. The first modifies the in­
put range and the second produces an output range .

.t!llilk(ForwardIterl, ForwardIter2, ForwardIter3);
OutputIter = rotate.copy

(ForwardIterl, ForwardIter2, ForwardIter3, OutputIter);

The input to a rotation is defined by three iterators: the beginning, the middle, and the
end. The rotate algorithms shift values leftward in the range so that the middle of the in-

132 Data Structure Programming with the Standard Template Library in C++

put becomes the beginning of the output and values shifted out are copied to the back.
Therefore, the old beginning comes just after the old end in the output.

random shuffle(RandomAcIterl, RandomAcIter2);
random shuffle(RandomAcIterl, RandomAcIter2, randomGenFunc);

The random_shuffle algorithms permute the input range randomly. The first uses a
built-in uniform random number generator, so that all orderings of the input are about
equally likely. The second version allows the user to supply a random number generator,
which should return values in the interval [0, 1).

BidirectIter = partition(BidirectIterl, BidirectIter2, unaryPred);
Forwardlter = stable partition(ForwardIterl, ForwardIter2,

unaryPred);

These algorithms rearrange the values in a range so that all values that satisfy the
supplied predicate come before those that do not. They return an iterator just after the last
true value. The stable version does not reorder items from the same part of the result. If
one item for which the predicate is true came before another for which it is also true prior
to the execution, then it will remain before that other value after. The same is true for the
false range.

4.5.5 Sorting Related Operations

The sorting related operations either sort a range, merge two sorted ranges into a sorted
output, or partially sort a range. They all have an optional compare function that can be
used to replace the standard operator<. If this object is used, then it must define a strict to­
tal order in the sense defined above in Section 4.4.3. That is to say, two elements, a and
b, are considered equivalent under a compare function, comp, if both comp(a,b) and
comp(b,a) are false. It is required that the function never return true for both comp(a,b)
and comp(b,a), and also that the induced definition of equivalence is an equivalence rela­
tion in the mathematical sense. That is, it must be reflexive, symmetric, and transitive.

~(RandomAcIterl, RandomAcIter2);
~(RandomAcIterl, RandomAcIter2, compareFunc);

The sort algorithms sort a range using operator< or a supplied compare function. The
compare function must define a strict total order. Sort is typically O(Nlg(N», but can be
quadratic in a few cases. It won't be quadratic on a sorted range, however.

stable sort(RandomAcIterl, RandomAcIter2);
stable sort(RandomAcIterl, RandomAcIter2, compareFunc);

Chapter 4. Overview of the Standard Template Library 133

Stable sort is like sort, except that "equal" values are not rearranged. In the second ver­
sion "equality" is the equivalence relation induced by the compare function, NOT opera­
tOI"==. Stable sort is O(Nlg(N» if there is enough workspace available to hold NI2 ele-

ments, where N is the size of the range. Otherwise, stable_sort is O(Nlg(N)2).

partial sort(RandomAcIterl, RandomAcIter2, RandomAcIter3);
partial sort
(RandomAcIterl,

) ;

RandomAcIter2,
RandomAcIter3,
compareFunc

A partial sort is defined by three iterators. The second should point into the range <b­
fined by the other two. The input range is rearranged, but only the portion between the
first and middle positions is sorted and they are the same elements that would appear there
if the entire range were sorted. In the above example, the range [RandomAcIterl, Ran­
domAclter2) will be sorted.

RandomAcIter = partjal sort cgpy
(lnputIterl, InputIter2, RandomAcIterl, RandomAcIter2);

RandomAcIter = partjal_50rt_J:Opy
(InputIterl, Inputlter2,

RandomAcIterl, RandomAclter2,
compareFunc

) ;

The copying partial sort is defined by an input range and an output range that may be
of a different length. If the output range is shorter than the input range, then it is filled
with the sorted "smallest" values of the input range. If the output range is larger, then the
sorted input range is placed into the initial portion of the output range, with the remainder
left unchanged. The copying partial sort is O(Nlg(K», where N is the length of the input
and K is the smaller of the lengths of the two ranges.

nth element(RandomAcIterl, RandomAcIter2, RandomAcIter3);
nth element
(RandomAclterl,

);

RandomAcIter2,
RandomAcIter3,
compareFunc

The nth_element algorithm is defined by three iterators. The first and third define a
range and the second a position within that range. The elements in the range will be n;ar-

134 Data Structure Programming with the Standard Template Library in C++

ranged so that the element pointed to by the second iterator will be in its correct location
as if the range were sorted. Furthermore, all items "smaller" than that item will be to its
left, and the larger items to the right. For the first version, smaller is defined by operator<
and in the second, by the compare function. This is a linear algorithm in the average, but
could be quadratic in a few cases.

Forwardlter = lower bound(Forwardlterl, Forwardlter2, value);
Forwardlter = lower bound -

(Forwardlterl, Forwardlter2,. value, compareFunc);

Forwardlter = upper bound(Forwardlterl, Forwardlter2, value);
Forwardlter = upper bound

(Forwardlterl, Forwardlter2, value, compareFunc);

Algorithm lower_bound returns the first location in a range at which the value can be
inserted, assuming that the range is sorted. The range doesn't need to be sorted, however.
The returned iterator points to the first location that is "not less" than the item. up­
per_bound returns the first location that is "greater" than the value. In a sorted list,
lowecbound and upper_bound return, respectively, the first and last positions into which
value may be inserted while maintaining the sorted order. These algorithms are linear in
general, but logarithmic if the iterators are random access.

lterPair = equal ranee(Forwardlterl, Forwardlter2, value);
lterPair

= equal ranee(ForwardIterl, ForwardIter2, value, compareFunc);

The equaCrange algorithms return a pair of forward iterators that would be returned in­
dividually by lower_bound and uppecbound. These algorithms are linear in general, but
logarithmic if the iterators are random access.

boolVal
boolVal

(

) ;

binary search(Forwardlterl, Forwardlter2, value);
binary search
Forwardlterl,
ForwardIter2,
value,
compareFunc

These algorithms carry out a binary search on the indicated range and return whether or
not they were able to find the value. They do not return where the value may be found,
however. These algorithms are linear in general, but logarithmic if the iterators are ran­
dom access.

Outputlter = ~

Chapter 4. Overview of the Standard Template Library 135

(Inputlterl, Inputlter2, Inputlter3, Inputlter4, Outputlterl);
Outputlter = ~

(Inputlterl, Inputlter2,
Inputlter3, Inputlter4,
Outputlterl,
compareFunc

);

These algorithms merge two sorted input ranges into a sorted output range. The merge
is stable, so that items with equivalent values from one of the input ranges will maintain
their relative positions in the output. They are both linear algorithms.

inplace meree(Bidirectiteratorl, Bidirectlterator2, Bidirectlterator3);
inplace merae

Bidirectlteratorl,
Bidirectlterator2,
Bidirectlterator3,
compareFunc

);

These algorithms merge two halves of a range in place. It is assumed that each half of
the range, namely [Bidirectlteratorl, Bidirectlterator2) and [Bidirectlterator2, Bidirectltera­
tor3) is sorted. The result will be sorted. These algorithms are linear if there is room for a
copy of the entire range, and O(Nlg(N» otherwise.

4.5.6 Set Operations on Sorted Structures

These algorithms all assume that the input ranges are sorted. This will automatically be
the case for sorted associative containers, of course. The union, intersection, and difference
algorithms work by merging ranges, so they work on multiset and multimap structures as
well. The union of multisets contains the maximum of the number in the two inputs (not
the total). The intersection of two multi sets contains the minimum of the two. The algo­
rithms are all linear. If an output range is used (all but algorithm includes), then it must
not overlap with the input range.

boolVal = includes(InputIterl, Inputlter2, InputIter3, InputIter4);
boolVal = includes

(InputIterl, InputIter2, Inputlter3, InputIter4, compareFunc);

Returns true if everything in the second range is contained in the first range.

OutputIter = set union
(InputIterl, InputIter2,

InputIter3, InputIter4,

136 Data Structure Programming with the Standard Template Library in c++

Outputlterl
);

OutputIter = set union
(InputIterl, InputIter2,

Inputlter3, InputIter4,
Outputlterl,
compareFunc

);

Produces those elements that are in either range.

Outputlter = set intersectjon
(InputIterl, InputIter2,

Inputlter3, Inputlter4,
Outputlterl

);
OutputIter = set intersectjon

(InputIterl, InputIter2,
InputIter3, InputIter4,
Outputlterl,
compareFunc

);

Produces only those elements that are in both ranges.

OutputIter = seLdifference
(InputIterl, InputIter2,

InputIter3, InputIter4,
OutputIterl

);
OutputIter = seLdifference

(InputIterl, InputIter2,
InputIter3, InputIter4,
Outputlterl,
compareFunc

);

Produces those elements in the first range that are not in the second.

OutputIter = set symmetric difference
(InputIterl, InputIter2,

InputIter3, InputIter4,
Outputlterl

);

Chapter 4. Overview of the Standard Template Library 137

OutputIter = set symmetric difference
(InputIterl, InputIter2,

InputIter3, InputIter4,
OutputIterl,
compareFunc

);

Produces those elements that are in either range but absent from the other.

4.5.7 Heap Operations

These operations all produce or manipulate a data structure called a heap. Heaps require
random access iterators, so are ideally suited for vectors. Logically a heap is like a binary
tree in which each node is larger than either of its children, putting the largest value at the
root. A heap may be stored in an array-like structure, with the children of the node in cell
n stored in cells 2n and 2n+ 1. This permits insertions and removals to be done in loga­
rithmic time, while maintaining the heap property. Since the largest item is easy to find
and remove, heaps are often used to implement priority queues. We shall return to heaps
in Chapter 6.

A heap is defined with respect to a comparison operator, which is operator< by w­
fault. Note, however, that it is the "largest" value that is at the root of the heap.

push heap(RandomAcIterl, RandomAcIter2);
pusb_beap(RandomAciterl, RandomAcIter2, compareFunc);

Insert an item into the heap and maintain the heap property. The item inserted is
originally just before location RandomAcIter2, and [RandomAcIterl, RandomAclter2 - 1)
is originally assumed to be a heap. The full range will be a heap on completion.

pop beap(RandomAclterl, RandomAclter2);
pop beap(RandomAclterl, RandomAcIter2, compareFunc);

Remove the largest item from the heap [RandomAclterl, RandomAclter2) and restore
the heap property. When done, only [RandomAclterl, RandomAclter2 - 1) forms a heap.
The item "popped" can be found in the last location of the range (RandomAclterl - 1).

make heap(RandomAcIterl, RandomAcIter2);
make beap(RandomAciterl, RandomAcIter2, compareFunc);

Rearrange the range so that it satisfies the heap property. It requires linear time.

sort beap(RandomAciterl, RandomAcIter2);
sort beap(RandomAcIterl, RandomAcIter2, compareFunc);

138 Data Structure Programming with the Standard Template Library in c++

Assuming that the range is originally a heap, this will sort the range. The time com­
plexity is O(Nlg(N)).

4.5.8 Lexicographical Compare Operations

These algorithms compare two ranges. They compare corresponding elements and as long
as the elements are equivalent, the process continues. At the first difference, if the first is
less than the second, then true is returned, otherwise false. If the comparisons continue
until the end of one and the first is shorter, then return true. In all other cases return false,
including when the ranges are identical.

boolVal
(

);
boolVal

(

) ;

lexicographical compare
InputIterl, InputIter2,
InputIter3, InputIter4,

lexicographical compare
Inputlterl, Inputlter2,
InputIter3, InputIter4,
compareFunc

4.5.9 Permutation Generation Operations

These algorithms generate all permutations of a sequence. nexcpermutation generates the
lexicographically next reordering and prev _permutation gives the previous one. These are
linear algorithms.

boolVal = next permutation(BidirectIterl, BidirectIter2);
boolVal

= next permutation(Bidirectlterl, BidirectIter2, compareFunc);

boolVal = prey permutation(BidirectIterl, BidirectIter2);
boo IVai

= prey permutation(BidirectIterl, BidirectIter2, compareFunc);

4.5.10 Miscellaneous Additional Operations

distance(InputIterl, InputIter2, distVal);

Distance computes and returns the distance between two iterators that form a valid
range. It is done in constant time for a random access iterator and in linear time otherwise.

Chapter 4. Overview of the Standard Template Library 139

Actually, it increments the value of the third argument by the distance between the first
two.

adyance(Inputlter, distVal);

This advances an iterator a fixed number of times. It is done in constant time for a
random access iterator and in linear time otherwise.

4.6 Function Objects

As we have seen, function objects are used in place of ordinary functions to pass proce­
dural information to an algorithm. The advantage of this is that it permits the template
mechanism to choose an appropriate function based on how the template is used, without
the programmer needing to provide several different versions of an algorithm. The func­
tion object categories that are the most used are the following:

unary predicates
binary predicates
compare functions
binary operators
unary operators

Because several particular function objects are often used, they are provided by the
STL itself. The classes are all derived from either the binary _function class or the un­
ary 3unction class. Both of these export typedefs that defme the argument types and the
result types of the function. In this way a function using the template can get access to
the actual template arguments. For example, here is the definition of binary_function:

template <class Argl, class Arg2, class Result>
struct binary_function
{ typedef Argl first_argurnent_type;
typedef Arg2 second_argurnent_type;
typedef Result reSUlt_type;

} ;

So a binary function has two arguments, possibly of different types, as well as a re­
sult type. There is a corresponding class unary_function<Argl, Result> that defmes op­
erators of a single parameter. Note that, generally speaking, an ordinary function of two
arguments can be used in place of a binary function object when necessary. One advantage
of an object, however, is the ability to store variables in it, which will retain their values
between uses.

140 Data Structure Programming with the Standard Template Library in c++

4.6.1 Arithmetic Operations

The STL provides six function object classes to defme the most common arithmetic op­
erations. Typical is the plus class, shown here in its entirety.

template <class T>
struct plus : binary_function<T, T, T>
{ T operator() (const T& x, const T& y) const

{ return x + Yi
}

} i

Note that we donlt require that the arguments be built-in types, just that type T sup­
ports an operator+.

Also provided are classes minus<T>, times<T>, divides<T>, modulus<T>,
and negate<T>. The last of these is a unary function, while all of the others are binary.

4.6.2 Comparison Operations

Similar to the arithmetic operations are the comparison operations. Note that the return
type is bool, but the argument types may be any type supporting the individual operator
used.

template <class T>
struct equal_to : binary_function<T, T, bool>
{ bool operator() (const T& x, const T& y) const

{ return x == Yi
}

} i

The others are not_equal_to<T>, greater<T>, less<T>, greater_equaI<T>,
and less_equal<T>. These are all binary functions. Note that less<T> and greater<T>,
may be used as compare functions in the sort algorithms, but the others may not, due to
the restrictions on compare functions.

4.6.3 Logical Operations

The STL also provides two binary functions and one unary function for performing the
common logical operations. These are logical_and<T>, logical_or<T>, and
logical_not<T>. Again, these just apply the corresponding operator and return boolean
results.

Chapter 4. Overview of the Standard Template Library 141

4.7 Adaptors

Adaptors take some object in the STL and transform it into something similar. There are
adaptors for functions, containers, and iterators. We shall look at each of these in tum.

4.7.1. Function Adaptors

There are three kinds of function adaptors: negators, binders, and pointer-to-function adap­
tors. All function adaptors are functions that return a modified object from a given object.
The negator adaptor notl takes a unary predicate and returns another unary predicate that
negates the first one. Similarly, not2 negates binary predicates. Thus
not2 (less<int> ()) returns a binary predicate equivalent to
greater_equal <int> ().

The binder adaptors take a binary function object and a value and produce a unary func­
tion object that uses that value as one of the parameters of the original binary function.
Thus, bindlst(less<int>O, 5) produces a unary function that evaluates 5 < x for an ar­
gument of x. We say we bind 5 to the first parameter. Likewise, bind2nd will bind a
value to the second parameter. Therefore, bind2nd(divides<int> 0, 5) produces a function
that divides its argument by 5.

The pointer-to-function adaptors take a pointer to an ordinary function and transform it
into a function object so that it may be used with the library. There is both a
pointer_to_unary_function adaptor and a pointer_to_binary_function adaptor.
The first takes a pointer to a function of one argument and creates and returns a corre­
sponding function object of one argument. In this way, ordinary C++ functions may be
used wherever the STL requires function objects.

4.7.2 Container Adaptors

The STL defmes three container adaptors: stack, queue, and priority_queue. These
transform a container of another type into one of these. For example, the stack container
adaptor can transform a vector, list, or deque into a stack. It does this simply by providing
a restricted interface for the user. The container adaptors are defmed as class templates.
Thus stack< list<int> > provides a stack implemented as a list. The template argument
for a container adaptor is a container of some type. Each adaptor works with only certain
container types.

4.7.2.1 Stack Adaptor

A stack adaptor may be applied to any vector, list, or deque. The stack adaptor provides
the following operations

bool empty(); const
size_type size(); const II number of elements
void push(const value_type&);

142 Data Structure Programming with the Standard Template Library in C++

void pop ();
value_type& tope);
const value_type & tope) const;
template <class T>
bool operator==(const stack<T>&, const stack<T>&)

II Determines if two stacks have the same
II elements.

template <class T>
bool operator<
(const stack<T>&,

const stack<T>&
II Compares the contents lexicographically.

4.7.2.2 Queue Adaptor

A queue adaptor may be applied to any list or deque. It won't work with vectors because
of the difficulty of working at the front of a vector, which is required for a queue. The
queue adaptor provides the following operations.

bool empty(); const
size_type size(); const II number of elements
void push(const value_type&); II Insert at rear
void pope); II Remove at front.
value_type& front(); II Element at front.
const value_type & front() const;
value_type& back(); II Element at rear.
const value_type & back() canst;

template <class T>
bool operator==
(canst queue<T>&,

canst queue<T>&
II Determines if two queues have the same
II elements.

template <class T>
bool operator<
(canst queue<T>&,

canst queue<T>&
II Compares the contents lexicographically.

4.7.2.3 Priority Queue Adaptor

A priority queue adaptor may be applied to any vector or deque. It also requires that a
comparison object be supplied. For example,

Chapter 4. Overview of the Standard Template Library 143

priority_queue< vector< float>, greater<float> >

will provide a vector-based priority queue of floats in which greater is used as the com­
parison object. Since priority queues remove the "highest priority" element on a pop aOO
since greater's "highest priority" element is the smallest, this reverses the usual sense of a
priority queue.

The priority_queue adaptor provides the following operations:

bool empty(); const
size_type size(); const II number of elements
void push(const value_type&); II Insert
void pope); II Remove highest priority item.
value_type& tope);

II Element of highest priority.
const value_type & tope) const;

4.7.3 Iterator Adaptors

There are two kinds of iterator adaptors: reverse iterators, and insert iterators. An iterator
adaptor transforms an iterator so that it behaves differently when executing its operators,
especially operator++ and operator=.

4.7.3.1 Reverse Iterators

A reverse iterator adaptor transforms a bidirectional iterator into one in which the direc­
tions of travel are reversed. Thus, operator++ will be transformed into operator--, and vice
versa. Each of the STL container types produces two reverse iterators rbeginO and rendO
that perform the reverse iteration. There are special versions of the reverse iterator adaptor
for bidirectional and for random access iterators.

The constructor reverse_bidirectional_iterator(Bidirectlter x) will produce a re­
verse iterator equivalent to x. If x is a random access iterator, then use
reverse)terator(RandomAclter x) instead, and the result will also be a random access
iterator, but it will operate in the opposite direction from x.

4.7.3.2 Insert Iterators

Normally iterators apply operator= to de-references to modify existing positions in a con­
tainer. When using an insert iterator, these applications are translated into insertions in­
stead.

Suppose, for example, that we want to compute the partial sums of an existing
set<int> and put the results into a new vector. The following will produce an error:

vector<int> V; II New vector
partial_sum
(setl.begin(),

144 Data Structure Programming with the Standard Template Library in C++

setl. end () ,
V.begin()

The problem, of course, is that the vector has no room for the data: it has size zero.
We could initialize V with the size of the set, of course, but there is another solution. In­
stead of using V.beginO (or V.endO, which is just as bad), we can use a
back insert iterator instead. - -

vector<int> Vi II New vector
partial_sum
(setl. begin () ,

setl. end () ,
back_insert_iterator< vector<int> >(V)

This iterator will take the *v = ... operations done within partial_sum and translate
them into push_back(*V) operations instead. Thus, the vector will be properly extended
when necessary. A back insert iterator can be generated from the function back_inserter
by simply passing a container as the parameter. The container must support push_back,
of course. The result is a back_insert_iterator over that container. Note that the parameters
here are containers, not iterators.

There is also a front_insert)terator that can be produced from any collection that
has a push_front operation. These can be conveniently constructed using the function
front inserter.

Finally, there is an insert _iterator adaptor that can be produced from any container
that has an insert operation. This version requires that we pass both the container and an
iterator into that container.

For example, if we have a list L, and an iterator I into that list, then insert_iterator
(L,I) will produce an iterator that will do insertions at the point of I.

4.8 Allocators

In STL an allocator is an encapsulation of a memory model. Some computers, such as In­
tel-based PCs have many different systems for organizing memory, and an allocator can
be used to separate the details of the memory model so that other parts of the library need
not be written to depend on a certain model. For example, in some memory models a
pointer need only be 16 bits long. In others it is required to be 32 bits. The new operator
of C++ depends on a certain memory model, but can be tailored to any such model. An
allocator exports a number of types such as pointer and reference, that other classes can
use. In particular, the reference type exported by a container class is defined in terms of a
particular allocator's reference type. An allocator also defines an allocation function that

Chapter 4. Overview of the Standard Template Library 145

can be used to obtain blocks from the free store. It is not our purpose to discuss alloca­
tors. Additional material can be found in the STL Tutorial and Reference Guide. [3]

4.9 Summary

Make certain that you understand each of the following terms:

adaptor
allocator
bidirectional iterator
concept
container
forward iterator
function object
generic algorithm
input iterator
istream iterator
iterator
ostream iterator
output iterator
past-the-end values
random access iterator
reflexivity
symmetry
transitivity
sequence container
sorted associative container
singular values
strict total ordering

4.10 Exercises

1. Find a long piece of text to process. Read it into a vector using an istream iterator with
one word per cell. Then sort the vector and remove duplicate values with unique. How
long does this take? Now read the same text into a set. Note that it is already sorted with
duplicates removed. How long does this take?

2. Use binary search to find a large number of values (1000 or more) in the vector-based
spelling table of Exercise 1. How long does it take to find all of the values? Compare this
with the time required for the set-based spell table. Compare these times with the times
required to find twice as many values. Be careful to not always search for one (or only a
few) value.

146 Data Structure Programming with the Standard Template Library in C++

3. How long does it take to print out a long vector that was previously sorted? How long
does it take to print out a set with the same values?

4. An alternate method of maintaining a sorted container is to use a vector, but insert each
item into its sorted location rather than sorting after inserting all items. How long does it
take to do this, compared to the operations asked for in Exercises 1 and 2?

5. Repeat Exercise 1 using a list instead. You can sort it with the sort member of list,
rather than the generic sort algorithm. How long does this take?

6. Repeat Exercise 1 using a deque. What can you say about the relative efficiency of a
deque and a vector on these operations?

7. Compare stable_sort with sort for its time requirements on a large vector.

8. Merge two spelling tables with seCunion. How much difference in time is there for set
and vector implementations?

9. Build a spelling table by reading into a multi set and then removing duplicates with
unique. How long does this take compared to set operations?

10. Use count to determine how many items are in your spelling table. Use counUf to
find the words with an even number of characters.

11. Use an appropriate STL generic algorithm to fmd the longest word in your spelling
table.

12. Use an appropriate STL generic algorithm to put quote marks around each word in the
spelling table. Don't change the original table, but produce a new one instead.

Chapter 5
Vector Programming

5.1. Vectors-Expandable Arrays

Suppose that you have a problem in which you need an array, but the size of the array
can't be known at the time at which you create it. An example is when you need to real
in data from a file of unknown size and process it. You need to create the array in which
you wish to put the data before you begin to read the file, but you won't know until the
end of the file how much data there is. Vectors are ideal for this kind of problem, provided
that the problem only requires the array to grow at one end. If it must grow at both ends,
then a deque is better suited to the task. Here we are assuming, of course, that the other
processing required of the data requires an array-like structure. If we don't require random
access iterators in our processing, then a list will probably be a better choice in which to
hold the data.

The basic strategy for an expandable array is to initially allocate an array whose size is
a good guess at the size of the data. If this is difficult to do, then make a guess that is
adequate for a relatively small data set. Then begin to fill the array, keeping track of how
much data you have inserted relative to the size of the array allocated. If you reach the em
of the array, then simply allocate a larger array, copy the original array into the new one,
and then continue with the new, larger, array after deleting the original one. This sounds
like it might be slow, and it is. However, if the right strategy is chosen for allocating the
new array, then the time expended won't be so bad-on the average. This is because for
most allocations the insertion time is a small constant. It is only when we reach the
boundary that we absorb a large cost.

If an array can expand, then it can also shrink. If we discover that a large part of the ar­
ray is unused, and likely to remain unused, then we could also allocate a new, smaller ar­
ray, copy the old to the new, and continue with the new array. This might free up mem­
ory on the free store for use elsewhere in the program.

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998

148 Data Structure Programming with the Standard Template Library in C++

5.2 The Indexing Problem

One problem that occurs frequently in applications is that of building an index to a file.
Suppose that we have a file that consists of records with two fields. The first field is the
key that is used to retrieve records. The purpose of retrieving a record is to get access to
the second field, the value. If the file is large, then it is useful to keep the file sorted by
key. There are many problems, however, in which it is not desirable to sort the records by
key, since they may need to be often processed in some other order, so that processing re­
quires that the ordering not be by key. In this case an index file will be very helpful. Fig­
ure 5.1 shows an example of a simple file and Figure 5.2 shows its index.

Smith, John
Jones, Mary
Kumar, Sue
Woo,Mark
Kahn, J. P.

123 Main St
234 Oak Ave
345 Jefferson Ln
456 Maple Ln
567 Front Street

Figure 5.1. A sample file.

Jones,Mary
Kahn, J. P.
Kumar, Sue
Smith, John
Woo,Mark

Figure 5.2. An index file.

1
4
2
o
3

Any town
Gotham City
Oak Island
Village Home
Uptown

If we store the original records in a vector, so that we may easily extend its length,
then records may be accessed by subscript, assuming that we know which subscript to use
to obtain a given value. An index is a file of records, also with two fields. The first field
consists of the keys of the original file and the second field is just integer subscripts into
the first file. The subscript stored with a key in the index file is the location in the first
file at which a record with that key can be found. We suppose that we store the index file
in a vector also. Then, we can sort the index file by key, leaving the original file (vector)
in its original order. To get access to a record we first search the index vector, perhaps us­
ing binary search. This give us a subscript into the original file's vector.

As an overly simplified example, suppose that we have a file consisting of standard
c++ string objects for keys and float values. We store this file in a vector< pair< string,
float> >. To get access to the string class you should include <string> (not <string.h>)
into your file. The index is stored in a vector<pair< string, int> >. We can create the in­
dex when we read in the data file. The following function will read both the file and create

Chapter 5. Vector Programming 149

the index. Note that strings are normally read a word at a time from an input stream. This
is because the stream will break at any whitespace character.

void readStrVec
(ifstream & inp,

vector<pair<string, float> > &v,
vector<pair<string, int> >&1

)

{ int i = 0;
string input;
float val;

}

while(inp » input)
{ inp» val;

V.push_back
(pair<string, float> (input, val));

pair<string, int> p(input, i++);
I . push_back (p) ;

After reading the file and creating the index, we sort the index with

sort(Index.begin(), Index.end());

This requires that we provide a special operator< so that pairs will be compared using
strcmp on the keys.

inline bool operator<
(const pair<string, int>& x,

const pair<string, int>& y
)
{ return x.first < y.first;

II compare 2 string objects.
}

We can now search the index to obtain subscripts into the original file. The subscript
gives us the desired original pair with the desired key.

vector<pair<string , int> > .. const_iterator where;
where lower_bound

Index. begin (),
Index. end() ,
pair<string , int>("times",O)

) ;
float val = Data [where->second] . second;

150 Data Structure Programming with the Standard Template Library in C++

Note that only the index file was sorted. This can be a big advantage when the original
file may not be sorted and also when it contains very large value fields, which are expen­
sive to move and hence expensive to sort. Note also that in this particular case, we have
not even copied the keys into the index file. We simply have pointers to the original key
strings. Therefore, the index file itself may be small in comparison to the original file. If
the size of the file is known in advance, we may use an array instead of a vector, of
course. Indexed files on disk use a variation of this technique in which the integers in the
value fields of the index are replaced by disk block addresses.

5.3 How We Can Implement Vectors

In this section we will explore the implementation of a class that is much like the STL
vector class, though a little less sophisticated. It will give us a chance to see some im­
plementation tradeoffs as well as become more familiar with the philosophy and require­
ments of the STL. We will call the class template ExpandableArray. The template pa­
rameter is the type of data to be held in the structure. A minimally useful implementation
is presented below and discussed immediately after.

template <class T>
class ExpandableArray
{ public:

typedef T& reference;
typedef T value_type;
typedef T* iterator;

II Use ordinary pointers.

ExpandableArray()
_values(new T[lOO]),
_size(O) ,
_capacity(lOO)

{
}

ExpandableArray
(long n, canst T& val T(»
_values(new T[2*n]),
_size(n) ,
_capacity(2*n)

{ if(val!= T(»

}

for(long i = 0; i < n; ++i)
_values[i] = val;

Chapter 5. Vector Programming 151

ExpandableArray
(const ExpandableArray<T>& A)i

ExpandableArray<T>& operator=
(const ExpandableArray<T>& A)i

-ExpandableArraY()i

long size(){ return _sizei}

long capacity(){ return _capacitYi}

reference operator[](long w)
{ return _values[w]i
}

iterator begin(){ return &_values[O]i }

iterator end(){ return &_values[_size]i

void push_back(const T & t)
{ if(_capacity == _size)

{ reserve(2*_capacitY)i
}

_values [_size++] = ti

void reserve(long n)
II make capacity at least n

{ if(_capacity < n)

}

{ T* new_values = new T[n]i
_capacity = ni

}

for(int i = Oi i < _sizei ++i)
new_values [i) = _values[i]i

delete [] _values i
_values = new_valuesi

private:
T * _valuesi
long _sizei
long _capacitYi

152 Data Structure Programming with the Standard Template Library in C++

} i

void copy(const ExpandableArray<T>& A)i
void free () i

We emphasize that this class merely has the flavor of the STL vector class. It is much
less sophisticated. Notice the following STL-like features, however. First, we export sev­
eral types, so that a user can recover the value_type, for example. Second we define itera­
tors to the beginning and the end of the activ'e part of the structure. The iterators in this
case are just pointers. They could have been much more sophisticated, actually. They are,
however, random access iterators, so we can use all of the generic algorithms with them.
Third, we provide operator[] so that we can use the structure like an array. Finally, we
provide a means to extend the size of the structure in the member push_back. These are
all similar to the STL vector class.

Notice, importantly, that operator[] does not check the legality of its parameter. This
is in keeping with usual C++ practice that puts the responsibility for such checking on
the programmer who uses the structure, rather than on the one that builds it. An alterna­
tive implementation that does do checking is outlined next. Notice that the legal sub­
scripts are those between 0 and _size-I, not between 0 and 3apacity-l. The cells between
_size and 3apacity-l are not logically part of the ExpandableArray. They are there to
permit push_back operations to extend the logical size of the structure without having to
extend its physical size.

template <class T>
reference ExpandableArray<T>: :operator[]
(long w
)
{ if(w >= 0 && w < _size

else exit (1) i
} II Range checking version.

return _va1ues[w]i

Here we cause the program to exit if the user gives an illegal subscript. There are bet­
ter solutions available in C++ for this, including the throwing of an exception.

What is missing? The STL vector class provides more types and more member func­
tions, including the capability of shrinking the size of the structure as well as growing it.
The STL vector also provides members to insert an item between two existing items,
making room for the new item by moving all of the following items. Some of these op­
erations will be discussed below, and some will be exercises. We will study the STL vec­
tor class later in this chapter.

Our ExpandableArray class has three constructors. The default constructor creates an
empty structure with a nonempty capacity. The capacity of an ExpandableArray is the
maximum number of items that it can hold before it needs to be grown. It is the physical,
as opposed to the logical, size of the structure. The second constructor lets us set the size
and initialize all cells to a given value. If the value is not given, we use the default value
of the value_type. In this case we set a larger capacity than the size; in fact, it is twice as

Chapter 5. Vector Programming 153

large. The idea is that vectors are intended to be expanded, so we expect them to grow, and
hence allocate space to make this easy.

Exercise. Discuss the tradeoffs in overallocating space at the beginning. Do you think
this is a good idea or a bad idea? What factors should be considered in determining this? Is
100 cells in the default constructor too much or too little? Is doubling the size on reallo­
cation too much or too little? Modify the definition of ExpandableArray to suit your own
concept of what is appropriate.

Expansion in capacity of the structure is controlled by the push_back function. When
we reach capacity we call reserve, asking for a capacity twice that of the current structure.
This is achieved by allocating an array of the desired size and copying all elements into
the new array. We then keep this new array and delete the original. This copying is an ex­
pensive operation as it must be done with a loop, giving us linear time. Therefore, we
don't want to do it very often. Expanding the array by a fixed factor, rather than a fixed
amount, is an important means of achieving good performance in the push_back opera­
tion. Notice that push_back is very fast most of the time and slow only occasionally. If
we look at the average effort, however, we find that it is actually constant. The extra time
for the expansion averages out to a constant amount over the other insertions.

To see this, consider that if we start with a single cell and double the capacity each
time, then just after a capacity expansion to 2*n, we have n active cells in the structure.
We have reorganized about Ig(n) times at a total cost of copying of about 2*n. This is in
addition to the n simple insertions. Therefore, the total insertion cost is about 3 * n for n
items or about 3 per item. This is called amortized constant time. It is not actually con­
stant, but on the average it is constant.

This will not be the case if we expand the structure by a fixed amount, say 100 cells,
each time we need to expand capacity. In that case the reorganization step will be done
much more often and so the cost will be much larger on the average. In that case we will
have reorganized about k = n / 100 times at a total cost of copying of about k*(k+l) *
50. Since this inserts n items, we see that the copying cost alone is about 50*(k+ 1) per
item. This is a linear function so the costs would be amortized linear, rather than amor­
tized constant.

Notice that we are clearly trading space for time with the above solution. Doubling
the capacity when we need more does take up a lot of space. However, it also saves a lot
of time. In modem computers, space is generally much cheaper than time, so this is a
good tradeoff. Space is cheaper than time since it is cheaper to buy twice as much mem­
ory as it is to buy a processor twice as fast. There are situations, however, in which
memory is at a premium and cannot be expanded. In such a case, another solution would
be preferable.

154 Data Structure Programming with the Standard Template Library in c++

5.4 Memory Management

The definitions of five of the members of ExpandableArray were not shown above. These
are the destructor, the copy constructor, the overloaded assignment operator=, and the two
private functions used to implement these three members: copy and free. All classes that
manage memory need a destructor, a copy constructor, and an overloaded assignment. This
means most classes that have any pointer or reference members. The reason that we need
to write these members is that the compiler-supplied versions of them will not do the
right thing in most circumstances. This is because they only provide for memberwise op­
erations. Thus, if we assign one ExpandableArray object to another ExpandableArray vari­
able, we could wind up with two ExpandableArrays that share internal representation as in
Figure 5.3. That is to say, the _values pointer of each of two ExpandableArrays could
point to the same memory location. Then, modifying one of the ExpandableArrays would
automatically modify the other as well.

Figure 5.3. Two objects sharing an implementation.

The copy constructor, destructor, and overloaded assignment operator are designed to
solve this problem. The copy constructor and overloaded assignment are very similar, but
are quite different in purpose. They are both used for making copies of one object for in­
sertion into another. The copy constructor is used when you pass an object by value to a
function and when you create one object from another directly using initialization syntax.
In each of the following three cases a copy constructor will be called.

afunction(anObject)i
II Function call

AClass aNewObject(oldObject)i
II Create a new object from old.

AClass aNewObject = oldObjecti
II Initialization.

An assignment operator is used when you assign to a variable of class type.

Chapter 5. Vector Programming 155

aVariable = anObject;

An initialization looks like an assignment, but it is not the same, and different mem­
bers are used in the two cases. The difference is that in an initialization, the left side vari­
able doesn't hold a value yet, while in an assignment we must deal with the current value
of member variables before giving them new values from the righthand side object.

The three necessary operations can be provided in terms of two helper functions, copy
and free. Copy copies one object's member variables to another, and free cleans up any al­
located memory that should not be shared with other objects. Given these, we can easily
provide a destructor, a copy constructor, and an overloaded assignment.

template <class T>
ExpandableArray<T>:: -ExpandableArray ()
{ free() ;
}

template <class T>
ExpandableArray<T>:: ExpandableArray
(const ExpandableArray<T>& A
)
{ copy(A) ;
}

template <class T>
ExpandableArray<T>& ExpandableArray<T>:: operator=
(const ExpandableArray<T>& A
)
{ if(this!= &A)

{ free () ;
copy (A) ;

}
return *this;

}

In other classes, these three members nearly always look exactly like this. You need a
good reason to deviate from the above pattern. Notice that the assignment operator guards
against assignments in which the value held in the left side variable is exactly the same
object as that held in the right side expression. We need to do this since we are destroying
the contents of the left side object. If they are the same, this would be a disaster.

Member free is used to deallocate memory. Here we have the _values field that was
previously allocated and holds the contents of the ExpandableArray.

template <class T>
void ExpandableArray<T>:: free()
{ delete [J _values;
}

156 Data Structure Programming with the Standard Template Library in C++

The purpose of copy is to copy the internals of the parameter into the object this. We
assume that this has previously been cleared.

template <class T>
void ExpandableArray<T>:: copy
(const ExpandableArray<T>& A
)
{ size = A._size;

}

_capacity = A._capacity;
_values = new T [_capacity];
for(long i = 0; i < _size; ++i)

_values[i] = A._values[i];

There are a few classes in which we deviate from the above. These are classes in which
two or more objects may safely share an implementation. This could be the case if we
built objects out of pointers, but the objects could not be modified after they were created.
It would then be safe to share implementation as long as we can be sure when it is safe to
delete the implementation. This would happen when we delete the last object sharing that
implementation. This can be done by keeping a count in the shared data that keeps track
of how many objects share the implementation. This count would be updated in construc­
tors and destructors. This is an important technique, though it is used fairly rarely. We
won't discuss if further in this book, but you can study it further in [1]

5.5 Adding to the Functionality of ExpandableArrays

In this section we shall discuss several operations that should be 00ded to the Ex­
pandableArray template to extend its usefulness. Rather than present template preambles
with each of them, we shall assume that they are added inline in the definition of the tem­
plate itself.

Since iterators are fundamental to the STL and operator[] is fundamental to array like
structures, it is useful to have members that translate between subscripts and iterators.
Member index translates an iterator into an equivalent index into the array. It works be­
cause an iterator into an Expandable array is a random access iterator so that we may do
arithmetic on it.

long index(iterator i) {return i - _values;}

This is equivalent to i- beginO, of course.
To translate in the other direction, we use member location:

iterator location(long i) (return _values + i;}

which is equivalent to beginO + i.

Chapter 5. Vector Programming 157

In both of these we have assumed that the subscript type is long. This is not necessar­
ily the case, however. STL container templates export a difference_type that is some inte­
ger type sufficient to hold the difference between any two iterators into the container. It
might, indeed, be long for most implementations, but it might be otherwise. Declaring
and uniformly using difference_type adds to the efficiency and portability of the STL.
Likewise, the size and capacity functions return values of type size_type.

Next, we have an operator[] defined in ExpandableArray, but if we want to insert const
objects into our structure, we need another version that returns const references.

const reference operator[](long w)const
{ return _values[w]i
}

This member will be employed rather than the other whenever the container has const
objects in it. Note that the body of the function is the same; only the returned value is
different. This member is also, itself, marked const, since it cannot be used to modify the
container itself. In spite of the fact that the function bodies are the same, the effect is dif­
ferent, as the compiler enforces const operations. If we write code that implies modifying
a const object by applying a nonconst operation, the compiler will inform us of the error.

Occasionally it is necessary to insert an object into the middle of an expandable array.
Here we don't mean just changing a value at some iterator position, but actually making
room between two existing elements. This is not an especially efficient operation on ar­
ray-like structures, though it can be done. We must increase the size of the structure and
then move all elements "to the right" of the desired insertion position one cell to the
right. We then have an empty cell into which to insert the desired item. This operation is
linear in the size of the structure, though if the location of the insertion is near the back
of the structure, it goes quite quickly.

void insert(iterator i, const value_type& v)
{ if(_size == _capacity) reserve(2*_capacity);

for(iterator j = end()i j != ii --j)
*j = *(j-l) i

*i = Vi

_size++i

If we can insert new items at the back of an ExpandableArray, making its size larger,
then we ought to be able to remove them there as well. This operation will be left to an
exercise. We can also erase an item in the middle of an expandable array by closing up the
space to the right of the removed item. The insert and erase operations can also be used to
provide push_front and pop_front operations on expandable arrays.

158 Data Structure Programming with the Standard Template Library in C++

5.6 Programming with Expandable Arrays

In Chapter 2 we took subscript-based searching and sorting algorithms and turned them
into pointer-based versions using the pointer duality law. In Chapter 3 we went a bit far­
ther and modified these into iterator-based functions. These operations, as discussed in
Chapter 3, had the following prototypes, in which the iterator template parameter needs to
be a random access iterator.

template < class iterator >
void selectionSort

iterator start,
iterator end

template<class iterator>
iterator BinarySearch
(const iterator:: value_type& t,

iterator first,
iterator after

II Searching for t between first, after.

As defined above, these cannot be applied to expandable arrays. This is because itera­
tors over ExpandableArrays are ordinary pointers that, when treated as iterators, cannot w­
fine the value_type that is required. In this section we will see how to solve this problem,
though the solution is quite subtle and involved. It does show the power of templates,
however.

Our goal is to be able to sort and search any expandable array or any subsection of
such a structure. For example,

ExpandableArray<float> costs(20, 0.0);

selectionSort(costs.begin(), costs.end(»;

The solution for BinarySearch is actually easier. All we need to do is to provide an aj..

ditional template parameter for the value type of the iterator. This works because a value
of this type appears as a function parameter and it is function parameters that are used for
template function selection.

template<class iterator, class T>
II random access iterator with
II value type T with operator< and operator~~

iterator BinarySearch
const T& t, II Searching for t between

II first, after.

)

iterator first,
iterator after

Chapter 5. Vector Programming 159

{ if(first >= after) return first;
iterator mid = first + (after - first)/2;

II Middle of range.
if(t == *mid) return mid;
if(*mid < t)

return BinarySearch(t, mid + 1, after);
else

return BinarySearch(t, first, mid);

Note that the new template parameter is used not only as the type of a function pa­
rameter, but also to define a temporary variable within the function.

We can't apply this solution to selection sort because we will pass only iterators to
this function. But suppose that we do write a version that has an extra template parameter
for the value type. It might look as follows.

template < class iterator, class T >
void selectionSort_aux

iterator start,
iterator end,
T*

)

{ for

}

iterator where
where < end ;
where++

start

iterator loc = where;
T small = *loc;
for

iterator inner
inner < end;
inner++

if(*inner < *loc)
{ loc = inner;

small = *loc;

*loc *where;
*where = small;

where + 1;

160 Data Structure Programming with the Standard Template Library in C++

Note that we haven't named the extra function parameter of type T* since we don't in­
tend to actually use the value passed for this parameter. It can be used for template selec­
tion nevertheless. We have named this function selectionSorCaux, because we intend to
use it as an auxiliary function to define the iterator-based selectionSort function. We can
let this function do the work of selectionSort simply by calling it and passing some
dummy value of the required type for this extra parameter.

template < class iterator >
void selectionSort

iterator start,
iterator end

)
{ selectionSort_aux

(start, end, sorneValueOfType_T_star);
} II the _aux function does the work.

The problem is coming up with the right value to pass. In this particular case we
could de-reference the start iterator and then take the address of the result, letting some­
ValueOIType_T_star be &(*start). There is a small problem with this solution, however,
since in the case that start is not properly initialized, the address will not be valid. There­
fore, the solution in the STL is a bit more sophisticated.

The STL defines a collection of function templates for the value type of any iterator or
pointer. The definition for the pointer version is

template <class T>
inline T* value_type(const T*)
{ return (T*)(O);
}

This function returns a default object pointer for any pointer type passed to it. Notice
that the syntax (T*)(O) is actually a cast of NULL to type T*. The important thing is not
the value, but the fact that it is typed. It therefore produces the dummy value we need for
template selection. A similar function is also defined for each iterator type. Given this
family of functions, we can write the final version of selectionSort.

template < class iterator >
void selectionSort

iterator start,
iterator end

)
{ selectionSort_aux

(start, end, value_type(start»;
} II the _aux function does the work.

Chapter 5. Vector Programming 161

5.7 Building a Stack Adaptor

Adaptors are one of the major components of the STL. They also demonstrate a particu­
larly good use of template programming. In this section we shall create a stack adaptor
template called StackAdaptor. It is similar to the stack template of the STL itself, though
somewhat less sophisticated. This template uses a template variable that doesn't represent
the element type of the items to be included, but rather some container type, such as one
built from our ExpandableArray template. It is important to note, however, that any con­
tainer type could be used, provided that it has the functionality that the StackAdaptor
template demands.

As discussed in Chapter 3, a Stack is a FIFO mechanism that is very useful in proc­
essing when we may need to delay handling some item while we handle some other item
and then want to return to previous items. This is especially true when we handle com­
posite items made up of simpler parts. We may want to begin handling the whole object,
then discover that it contains some part that we need to handle before we can continue
processing the whole. Languages (including computer languages) are like this, where
large constructs are composed of smaller ones with their own structure. To handle such
situations it is often useful to push information about the larger object onto a stack while
we handle the part of interest. We can then return to handling the larger object by popping
the previously saved information.

The StackAdaptor template builds a Stack from some other container type. In particu­
lar, we could build a stack with

StackAdaptor< ExpandableArray< int> > aStack;

Here the implementation of the stack would be an expandable array of ints. We would
thus be able to stack ints. Furthermore, the operations we would perform would not be
ExpandableArray operations, but stack operations such as push and pop instead.

template <class container>
class StackAdaptor
{ public:

typedef container: : value_type value_type;
typedef container: :iterator iterator;

StackAdaptor():_elements(){}
void push(const value_type& v)
{ _elernents.push_back(v);
}

void pop() {_elements.pop_back();}
value_type& top()
{ return _elernents[_elements.size() - 1];
}
const value_type& top()const

162 Data Structure Programming with the Standard Template Library in C++

} ;

{ return _elements [_elements.size() - 1];
}
iterator begin()
{ return _elements.begin();
}
iterator end() {return _elements.end();}
bool empty()const
{ return _elements.empty();
};

long size()const{return _elements.size();}

private:
container _elements;

The constructor simply constructs a default object of type container as its 3lement
field and passes most operations to this internal representation object. We provide two
versions of top since a stack might contain const objects or mutable objects. We can ob­
tain a reference in either case. Note that the pop operation returns nothing. It simply re­
moves the top item from the stack. If you also need a reference to the object that pop
would remove, you should use top first. Some people prefer a pop that also returns a ref­
erence to the object removed. This is not provided here, nor in the STL itself.

It is very instructive to examine what is really needed from the container object. The
template makes use of only the following: a default constructor, push_back, pop_back,
size, begin, end, empty, iterator, value_type and operator[]. Therefore, any container type
that implements these would be acceptable as a template parameter for this adaptor. It
should be clear why this type of template is called an adaptor. It adapts the interface of its
representation object so that it seems to provide different operations than the underlying
class provides.

Notice how the definitions of types in classes like ExpandableArray help us here. We
can define an Iterator for the stack adaptor to be the same type as that of the container pa­
rameter without actually knowing what that type is when we write the stack adaptor tem­
plate. The template mechanism fills in the appropriate types for us when we instantiate
the template.

The use of operator[] in the above class is troubling, since few container types can ef­
ficiently implement it. In fact, all we use it for is obtaining access to the last element in
the representation object. This operation is much simpler to provide than a general opera­
tor[], so we can improve StackAdaptor by modifying it to use a required member back in­
stead of operator[].

template <class container>
class StackAdaptor
{ public:

typedef container: : value_type value_type;
typedef container: :iterator iterator;

};

Chapter 5. Vector Programming 163

stackAdaptor():_elements(){}
void push(const value_type& v)
{ _elements.push_back(v)i
}
void Pop(){_elements.pop_back()i}
value_type& top()
{ return _elements.back();
}

const value_type& top()const
{ return _elements.back();
}

iterator begin()
{ return _elements.begin();
}

iterator end() {return _elements.end();}
bool empty()const
{ return _elements.emptY()i
}

long size()const{return _elements.size();}

private:
container _elements;

As defined above, our expandable array class can't meet the requirements of this adap­
tor. It will be an exercise to provide it with the necessary members.

5.8 The STL vector Template

Now let's look at the actual vector class template from the STL. We will examine only
the interface of this class, leaving out almost all details of the implementation. We will
intersperse the interface with some commentary on the various members. Note that this
implementation was written before C++ fully supported the STL. In particular, future
versions of C++ will support default template parameters, in which case the allocator will
be a template parameter rather than assumed to be imported from class Allocator<T>, as
here.

II Copyright (c) 1994
II Hewlett-Packard Company
template <class T>
class vector {
public:

164 Data Structure Programming with the Standard Template Library in C++

typedef Allocator<T> vector_allocator;
typedef T value_type;
typedef vector_allocator: : pointer pointer;
typedef vector_allocator: :pointer iterator;
typedef vector_allocator::const-pointer

const_iterator;
typedef vector_allocator: : reference

reference;
typedef vector_allocator: :const_reference

const_reference;
typedef vector_allocator::size_type

size_type;
typedef vector_allocator: : difference_type

difference_type;
typedef reverse_iterator

< const_iterator,
value_type,
const_reference,
difference_type

> const_reverse_iterator;

typedef reverse_iterator
< iterator,

value_type,
reference,
difference_type

> reverse_iteratori

Class vector exports several types including pointer, reference, and iterator types. This
permits algorithms to declare these items as needed. In this case we just use the types d;}.

fined by the default allocator.

protected:
static Allocator<T> static_allocator;
iterator start;
iterator finish;
iterator end_of_storage;

These are the implementing member variables. The allocator obtains a block of stor­
age and start points to the beginning of it, end_oCstorage to the end, and finish to the end
of the active part of the vector.

void insert_aux

) i

iterator position,
const T& x

Chapter 5. Vector Programming 165

From an interface perspective this function is unimportant, as it is protected. It is used
to implement insert.

public:
iteratar begin();
canst_iteratar begin() canst;
iteratar end();
canst_iteratar end() canst;
reverse_iteratar rbegin();
canst_reverse_iteratar rbegin() canst;
reverse_iteratar rend();
canst_reverse_iteratar rend() canst;

The above functions generate the standard iterators that we have seen many times. The
reverse_iterator functions return iterators that iterate backwards over the vector: from last
element to first.

size_type size() canst;

This function tells us the current size of the vector: the number of elements currently
stored.

size_type max_size() canst;

The max_size is the limit that the system puts on a vector of this type. It is the
maximum capacity that the vector can have.

size_type capacity() canst;

The capacity is the maximum number of elements that can be stored without reallocat­
ing storage for the array. It is always at least as big as size, and never bigger than
max_size.

vaid resize(size_type sz, T c = T(»;

Member resize either truncates the vector on the right to size sz, or pads it with value
c on the right to reach size sz.

baal empty() canst;

This tells us the current state of the vector. Is it currently empty?

reference aperatar[] (size_type n);
canst_reference aperatar[] (size_type n)

canst;

166 Data Structure Programming with the Standard Template Library in c++

1.
These two members let vectors behave like arrays. We can index from 0 through size-

vector ();
vector(size_type n, const T& value
vector(const vector<T>& x);
vector

) ;

const_iterator first,
const_iterator last

T(» ;

The fIrst constructor creates an empty vector. The second creates a vector with n cop­
ies of value. The next is the copy constructor, and the last copies any iterator range into a
new vector. The defInition of the STL does not require that the source container be a vec­
tor, though with the above declaration it would. The standard specifIes that this last con­
structor should be defIned as

template<class Inputlterator>
vector

) ;

Inputlterator first,
Inputlterator second

This is an example of a template member function. Vector itself is a template, mxl
some of its member functions have additional template arguments. Not all compilers im­
plement this yet, so compromises are often made. See the STL home page for a complete
implementation of STL [11]. It may not be usable with your compiler, however.

-vector ();

The destructor releases storage for the vector as usual.

vector<T>& operator=(const vector<T>& x);

The overloaded assignment operator creates new storage for the copy as necessary. It
also releases the old storage associated with the variable on the righthand side of the as­
signment.

void reserve(size_type n);

Member reserve guarantees that the capacity is at least n elements.

reference front();
const_reference front() const;
reference back();
const_reference back() const;

Chapter 5. Vector Programming 167

Members front and back give us access to the elements stored in the vector. They are
not iterators, but the data themselves. Since they return references we can operate directly
on the values themselves, not copies.

void push_back(const T& x);

This is the primary insert operation. It inserts x efficiently at the rear of the vector.

void swap(vector<T>& x);

This member exchanges the contents of two vectors of the same type.

iterator insert
iterator position,
const T& x

) ;

This member inserts x at location position, moving all elements down to the right to
make room for the new value. The new item will be before the item originally referred to
by position. The reason that it is before and not after is to make it possible to use this to
insert before the first location in the vector. It requires time that is linear in the number of
elements to be moved. It returns an iterator to the item inserted.

void insert

) ;

iterator position,
const_iterator first,
const_iterator last

This second version of insert inserts a range of values before position. The source
range does not need to be a vector. In more recent versions of the STL this is a member
template function with the actual iterator type as the template parameter. Earlier versions
of c++ did not support classes in which the members were themselves template func­
tions.

void insert

) ;

iterator position,
size_type n,
const T& x

Member insert inserts n copies of x at location position.

void pop_back();

168 Data Structure Programming with the Standard Template Library in c++

This member removes the last element in the vector, decreasing the size. It may ~
crease the capacity as well.

void erase(iterator position);
void erase(iterator first, iterator last);

The erase members remove values from the vector, closing up space as required. The
first removes a single item at location position. The second removes a range of values.
They both decrease the size and, perhaps, the capacity.

} ;

5.9 A Graph Implemented with STL vectors

I~ this section we are going to use STL vectors in two different ways to build a variety of
graphs known as directed graphs (digraphs). A directed graph is composed of vertices, also
called nodes, and arcs which connect the vertices. The arcs are directed in the sense that
they go from one vertex to another. It is possible for the beginning and the end of an arc
to be the same vertex also. Figure 5.4 shows an example of a digraph with eight nodes
and nine arcs. We have numbered the nodes for convenience. If we want an ordinary
(undirected) graph, the arcs can simply be doubled: For each arc in the digraph, provide
another in the opposite direction.

Figure 5.4. An Example of a digraph.

Chapter 5. Vector Programming 169

A digraph can have any number of nodes and any number of arcs. Our implementation
of digraphs will need to be very flexible. It is also possible to store arbitrary data in the
nodes. For some problems it is also necessary to associate data with the arcs, though we
won't do that here. When a digraph has data along the arcs, it is sometimes called a net­
work.

Because the data stored in a node can have arbitrary type, we shall build a DiGraph
class template with parameter T representing the type of stored data. Because the DiGraph
is a container, it needs an associated iterator. We shall see that vector iterators will serve
here. Finally, we shall also build a class template for the nodes out of which the digraph
is composed. We won't need a class for the arcs, however, though it might be useful to
have one if we were building networks.

Because the nodes are considered to be internal to a graph, we won't permit the user to
create any nodes, except via the DiGraph of which they are to be a part. To create the
nodes of the above digraph, we can use the following:

DiGraph<int> G;
GraphNode<int>& gnO
GraphNode<int>& gnl
GraphNode<int>& gn2
GraphNode<int>& gn3
GraphNode<int>& gn4
GraphNode<int>& gn5
GraphNode<int>& gn6
GraphNode<int>& gn7

G.newGraphNode(O);
G.newGraphNode(l);
G.newGraphNode(2);
G.newGraphNode(3);
G.newGraphNode(4);
G.newGraphNode(5);
G.newGraphNode(6);
G.newGraphNode(7);

This creates the eight nodes and inserts them into the graph. It also gives us names by
which we can manipulate the nodes as needed. It doesn't create any arcs, however. To do
this, we can write

G.arc(gnl, gn2);
G.arc(gn2, gn3);
G.arc(gnl, gn3);
G.arc(gn4, gn2);
G.arc(gn3, gn5);
G.arc(gn5, gn6);
G.arc(gn2, gn7);
G.arc(gn7, gnO);
G.arc(gn6, gn2);

Our implementation of DiGraph will use a vector to store the nodes of the graph. The
constructor creates an empty vector and each invocation of newGraphNodeO creates and re­
turns a reference to new GraphNode, while also inserting the node into this vector. Note
that newGraphNode returns a reference only. The actual node is kept within the DiGraph
itself: in the vector.

170 Data Structure Programming with the Standard Template Library in C++

The next issue to deal with is the storage of the arc information. There are a number
of ways to do this, of course. We could store arc information in the DiGraph itself. This
would provide a centralized depository of arc data that might be advantageous in some
problems. It is also possible to distribute the arc information among the nodes, however,
with each node containing information about those arcs that point out from it. This is the
trick that we shall employ here. Each node will have a vector that contains references to
those nodes that can be reached by following one arc from that node. For example, the
vector within node 1 of our example graph will contain references to nodes 2 and 3.

It isn't quite as simple as detailed in the previous paragraph, however. Recall that we
also need iterators for our digraphs. We want to be able to iterate over the nodes of a
given graph, often to obtain ~ccess to the data stored within those nodes. Therefore, an it­
erator will be a sort of reference to a node. Thus, the _neighbors vector in a given
node will actually store iterators into the graph, not c++ references. But since the nodes
of the graph are stored in a vector, a vector (of graph nodes) iterator can be used as a graph
iterator.

We shall build two class templates:

template <class T> class GraphNode;
template <class T> class DiGraph;

The graph node class is quite simple. When we construct a new graph node, we also
create an empty vector of graph iterators. Note that the value of a node is a public mem­
ber, so it may be set directly. We can use operator* to get a copy of the stored value. In­
ternally, a graph node has two additional private member variables. Member _mark is
used in a number of graph traversal algorithms in which it is necessary to visit each node
once. To prevent visiting nodes multiple times (and perhaps trying to execute infinite
loops), we unmark each node in a graph before we begin the algorithm and mark a node
when we visit it. The algorithm is careful, then, to visit only unmarked nodes. All nodes
are created unmarked. We provide private member functions to mark and unmark a node.
These can only be called by members of DiGraph<T>.

template <class T>
class GraphNode
{ public: II No public constructor.

T value;
T operator*(){ return value; }

private:
int _index;
bool _mark;
vector< vector< GraphNode<T> >::iterator >

_neighborsi

void mark() {_mark truei}
void unmark() {_mark = falsei}

} ;

bool marked() {return _mark;}

GraphNode(const T& t = T(»
value(t), _index(-l),
_mark(false) ,
_neighbors ()

{}

Chapter 5. Vector Programming 1 71

GraphNode(const T& t, int index)
value(t) ,
_index (index) ,
_mark (false) ,
_neighbors ()

{}

friend class DiGraph<T>;
II Lets DiGraphs construct nodes.

friend class vector< GraphNode<T> >;
II Lets us keep the default constructor private.

The _index member of a node saves the index in the graph's vector at which this node
can be found. It is used primarily in creating arcs between the nodes and gives us an effi­
cient way to discover the physical location of a node from the node itself, without search­
ing for it. Thus, the sixth node created in a graph will be saved in the sixth slot of the
vector of that graph and will have an _index of five (since all counting is from zero). The
default node constructor sets an illegal value for this variable.

Note that nodes are relatively inactive. They don't have member functions for inserting
values into the _neighbors vector, for example. Nodes are acted upon rather than them­
selves being active. It is members of DiGraph<T> that will act on them. There isn't even
a public constructor in the node class.

template <class T>
class DiGraph II Directed graphs.
{ public:

typedef T value_type;
typedef GraphNode<T> node;
typedef vector<node>: :iterator iterator;
typedef vector<node>: :const_iterator

const_iterator;

As usual, we export a few types. The node type provides a convenient shorthand. It
also allows the user to use Digraph< ... >::node for the node type.

DiGraph():_vertices(){}

172 Data Structure Programming with the Standard Template Library in C++

The constructor creates an empty vector to hold the vertices.

II Create GraphNodes using the following member.
node& newGraphNode(const T& t)
{ _vertices.push_back

}

(node(t, _vertices.size(»);
return _vertices.back();

This is how we create new nodes. Note the constructor call of class node as an argu­
ment to the vector push_back call. By passing the _vertices.sizeO value to the node con­
structor, we initialize the node's _index member.

II Connect two nodes created with the
II above member. The arc is directed.
void arc(node& from, node& to)
{ from._neighbors.push_back(iterator(&to»;
}

We create an arc by naming first the tail and then the head of the arc. The _index vari­
able in a node correctly frods the slot of the _vertices vector in which that node resides.
We push an iterator to the "to" node onto the _neighbors vector of the "from" node.

iterator begin()const
{ return iterator(_vertices.begin(»;
}
iterator end ()const
{ return iterator(_vertices.end(»;
}

These are the standard container iterator generators. We just pass back vector iterators
as expected. Notice, then, that iteration over a vector is in node creation order. This might
not always be desirable. In fact, another standard ordering of the nodes of a graph is called
depth first ordering.

In depth first ordering, we start at some convenient node and list it. We then recur­
sively list the reachable neighbors of that node, but, by the nature of the recursion, when
we list the first neighbor of the first node we then list its neighbors before returning to
list the remaining neighbors of the first node. In this way we search deeply into the graph
relative to the first node. If not all nodes are reachable from the first, then we may repeat
the process from other nodes until all are listed. We provide a member function here that
will list the nodes reachable from a given node, which may not include all nodes in the
graph. It is also important that each node be listed only once. This is the purpose of the
_mark fields in the nodes. We begin the process by unmarking all of the nodes in the
graph. DiGraph provides a member to do this for us.

Chapter 5. Vector Programming 173

II Returns a depth first listing of the
II nodes of the graph
II that are reachable from node gn.
vector< iterator > depthFirst(node& gn)
{ vector< iterator > result;

}

unmark () ;
depthFirst_aux(iterator(&gn), result);
return result;

Member depthFirst returns a vector of iterators in which each node in the graph is rep­
resented by one iterator and these iterators are arranged in depth first order. The real work
is done by a private member function depthFirscaux, shown later.

private:
vector< node> _vertices;

This is, of course, the implementation.

void unmark ()
{ for

}

(iterator i begin();
i ! = end();
++i

(* i) . unmark () ;

Here we just send the unmark message to all of the nodes, using the begin and end it­
erators in the usual way.

The following private member function is the helper for depthFirst. It takes an iterator
indicating the current location, and if this location is not marked, inserts it into the sec­
ond parameter, a vector, and then recurses on each of its neighbor locations. Note that
(*gi) is a node and so has a _neighbors field. This field is a vector and so has begin am
end iterators. Therefore, a vector<iterator>:: iterator makes perfect sense. A value i of type
vector<iterator>:: iterator refers to an iterator so (*i) is an iterator: a DiGraph::iterator.

void depthFirst_aux
(iterator gi,

vector< iterator >& A
)

{ if(! (*gi).marked(»
{ (*gi) . mark () ;

A.push_back(gi);
for

174 Data Structure Programming with the Standard Template Library in c++

}
} ;

}

vector<iterator>::iterator i
gi->_neighbors.begin();

i != gi->_neighbors.end();
++i

depthFirst_aux(*i,A);

We also provide a function template to make it easy to write out a DiGraph. Note
how it is defined in terms of the DiGraph::iterator. This can only be used, however, if
type T, which is the type of the value of a node, also supports operator«.

template <class T>
ostream& operator«(ostream& os, const DiGraph<T>& g)
{ for

}

DiGraph<T>: :iterator i = g.begin();
i ! = g. end () ;
++i

os« (*i).value«" ";
return os;

Let's note a few things about this implementation. One of the most important is that
once a node is inserted into a graph, its physical location in the vector never changes.
This gives us complete freedom in referring to it either by its index in the vector or by a
pointer to the node. Also, the _index field in a node always refers to the index within the
node's graph at which the node can be found. This is an important class invariant of the
node class. A class invariant is a Boolean statement that is always true when the class is
viewed from without. Class invariants may be false, briefly, while member functions are
executing, but before any public function terminates, all class invariants must be restored
so that a client may never see an invariant that is not true. It is worth documenting class
invariants with comments. For example, just after the declaration of the _index variable,
we might write

II Invariant. The value of _index is always the
II location of the node within its graph's
II implementing structure.

Next, we should note that it will be difficult to use this design in a flexible way. In
particular, it will be hard or impossible to implement many graph algorithms without ac­
tually modifying the template itself. This is because the interface reveals very little about
the nodes and arcs of a graph that most algorithms will need to access. The marks main-

Chapter 5. Vector Programming 175

tained by the nodes are completely private, for example. It is a very flexible design from
within, but one that is limiting from without.

5.10 Summary

Make certain that you understand each of the following terms:

adaptor
copy constructor
destructor
digraph
invariant
memory management
network
overloaded assignment operator:
vector

5.11 Exercises

1. Add the necessary elements to the ExpandableArray class to meet the requirements of
the StackAdaptor class.

2. Build a QueueAdaptor class. What requirements does it have for its container template
argument?

3. Add the following member functions to the ExpandableArray class. Some of them are
discussed in Section 5.5.

a) void insert(iterator, const value_type&); insert the value at the location of the itera­
tor, making room as necessary.

b) void pop_back 0; remove the last element.

c) operator< ; One expandable array is less than another if they are identical up to
some point at which the first has a value less than the second. If one is shorter but con­
tains the same elements in the same order up to the end, then the shorter is less.

d) operator==; two expandable arrays are == if they have the same length and identical
elements.

e) const value_type &backOconst and value_type& backO; return a reference to the last
element of ExpandableArray. Why do we want both of these?

176 Data Structure Programming with the Standard Template Library in C++

f) void erase(iterator) and value_type erase(iterator); remove and perhaps return the
element at the location of the iterator, closing up the space as necessary.

g) void pop_frontO; remove the first element, closing up space.

h) void push_front(const value_type&); insert value at the beginning, making room as
necessary.

4. Modify the ExpandableArray class so that it also shrinks as the size grows smaller. For
example, when it is only half full we could reallocate a smaller array to hold the ele­
ments.

5. Build an undirected graph class. The implementation can be like our directed graph, but
with two iterators to represent each arc.

6. Build a network class. A network is like a graph except that the arcs may contain data
of some kind. You will need an arc class template as well as a node template.

7. Write a function depthFirstOrderO that creates and returns a list of all the nodes in a
graph in some depth frrst ordering.

8. Graph iterators are challenging. One way is to take a snapshot of the graph when the
iterator is created. This can be done by calling depthFirstOrder from Exercise 7. The itera­
tor can then be a list iterator into the resulting list. Note that such iterators can't be used
to insert and delete items, because you will be changing the graph after its snapshot, so
the iterator is invalid. They are useful for many purposes, however. If you do it carefully,
you can even use the iterators to modify values stored in the graph. Just be careful about
what you store in the list returned by depthFirstOrderO.

9. Test the stack adaptor shown in the text against the STL stack adaptor. For StackAdap­
tor (from the text), use ExpandableArray as the argument. For stack (from the STL), use
vector as the argument. What performance differences do you observe?

10. Assume you start with an empty vector and it doubles each time that it needs addi­
tional space. Suppose you insert into it and do not remove any items. If it has 10,000
items, how many times have you reorganized? How many times has each item been
moved from one implementing array to another because of reorganizations? Counting an
insertion and a move each as one step, how many steps have been executed? How many
per item? How many times have you had to call the allocator?

11. Another way to represent a graph is to use an adjacency matrix. Such a matrix is a
two-dimensional array with one row and one column for each node in the graph. The in­
tersection of a row and a column contains a one to indicate an arc from the row entry node
to the column entry node. There are zeros in the table where there are no arcs in the graph.
Or the table could contain data to be stored along the arcs, with a nodata object stored if

Chapter 5. Vector Programming 177

there is no arc. Implement such a graph representation. You will also need to store the
nodes in some (STL) container.

12. See Exercise 11. Implement a way to transform DiGraphs as implemented in the text
into adjacency matrix representations and back again.

Chapter 6
Dequeue Programming

6.1 Queues and Double-Ended Queues

A queue is a structure into which we can insert items at one end and remove them from
the other. It has the property that the next item removed is the one that has been in the
container for the longest amount of time. This is called first-in first-out (FIFO) storage.
Queues are used internally in computer operating systems to manage many resources,
such as current users. Since there is only a single CPU on most systems, only one user
process can be active at a time. When the currently executing process gets interrupted, it
is put into the user queue (an enqueue operation) and another process is removed
(dequeued) and allowed to run. This guarantees that each process gets its tum to execute.

A double-ended queue, or dequeue (or deque) is somewhat more general since we are al­
lowed to insert and remove from either end. A siding on a railroad is like a dequeue. See
Figure 6.1. We can insert railroad cars at either end of the siding and also remove them
there. If we restrict ourselves to inserting and removing at the same end, a dequeue be­
haves like a stack. If we always remove from one end and always insert at the other, it
behaves like a queue. A deck of cards is also like a dequeue since we can insert or remove
cards easily from either end: i.e., the top or bottom.

A Dequeue

11& : ~II
Figure 6.1. A railroad siding is like a double ended queue.

When implementing a dequeue in a computer program, we need to be especially care­
ful to make the insert and remove operations at the ends as efficient as possible, since
these are the most common operations.

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998

180 Data Structure Programming with the Standard Template Library in c++

6.2 Implementing a Dequeue

One simple implementation trick is not too bad in practice. We could use a scheme simi­
lar to what was done with vectors, except instead of starting to insert the first item entered
in the first cell of our implementing array, we could insert it into the middle cell. Then it
is easy to insert an item to the left or to the right, until we fill one end of the array. We
will need to keep track of where the left and right ends of the active section are, of course.
When we do reach the end of the array, we can allocate a new array, twice as large as the
original and copy the current elements to the new array, leaving about as much space at
each end in the new array.

There are a few difficulties with this plan, however. When the user is making the 00-
queue behave like a stack, we are reorganizing more often than necessary. The situation is
even worse when making a dequeue behave like a queue. In this case you might require a
reorganization when only one or two elements were stored in a structure with thousands
of open slots. More fundamental, however, is the problem of iterators. When we reorgan­
ize such a structure, each element moves its location in the implementing array. If it were
at subscript 341 before, it may wind up at subscript 243 afterwards. This doesn't happen
with vectors, since each element retains its location relative to the beginning of the struc­
ture after a reorganization. Thus, each reorganization will invalidate all indexes into the
array and perhaps all iterators as well, since these are often relative to the beginning of the
physical structure.

The STL deque class template uses a somewhat more sophisticated arrangement that is
partially based on the above simple plan. The implementation of the STL deque uses a
two-level storage structure consisting of an array called the map and a collection of
blocks. The actual data stored in the deque are stored in the blocks. The map contains
pointers to the blocks. Both the map and the blocks can be quite large, and in fact, the
map grows with use of the deque. See Figure 6.2. When we first insert an element into a
deque (with either push_front or push_back), we allocate a map and one block. We insert
a pointer to the block in the middle of the map. We insert the new item in the middle of
the block. If we do additional push_front and push_back operations the values are stored
in this same block, either to the left or to the right of the currently filled portion. The
map doesn't need to be modified.

When we reach one end of a block, we allocate a new block, insert a pointer to it in
the map (to the right if we ran off the right end, for example), and insert the new value at
the beginning of the new block. Figure 6.2 shows what state we will be in after many
such insertions. We can also see there the logical positions of the iterators begin and end.
Note that the values already in the deque don't move when we allocate a new block.

The only problem occurs when we allocate a new block and there isn't room in the
map for the pointer at the correct end. In this case we reallocate the map, making it twice
as large. We insert the existing pointers into the new map, centering them in the new
storage. We then have room to insert the new pointer to the new block. Again, the values
in the deque don't move, just the block pointers do.

Chapter 6. Dequeue Programming 181

Notice that in this scheme, all blocks except one or two will be completely filled. We
need to keep track of where we are in these two blocks, as well as where we are in the
map.

An iterator into such a structure is not a simple pointer into one of the blocks. This is
because we want to be able to execute operator++ on the iterator and, in fact, do pointer
arithmetic on the iterators, since we want deques to support random access iterators. We
can implement such an iterator by using three pointers into a block and one into the map.
If an iterator, i, refers to an object, then pointer ijirst points to the first cell of the block
of our object, pointer i.last points just after the last cell, pointer i.current points to the
object itself, and pointer i.node points to the cell in the map that holds the pointer to the
block of the object. We can then advance the iterator until current reaches last. At this
point we advance node and set first and last to refer to the beginning and end of the new
block. This is made somewhat easier because the sizes of the blocks are all the same and
they never change. Only the map changes size. Knowing the block size, we can even ch
pointer arithmetic on iterators.

start finish

}IT
blocks ~

full full

Figure 6.2. Storage for a deque.

The storage method discussed above makes insertions at the beginning and end of a re­
que very efficient. Reorganization is very infrequent if the block sizes are reasonably
large. Note, however, that reorganization invalidates all iterators into the deque. Therefore,
we need to be careful when using a deque (as well as a vector, by the way) not to do inser­
tions when iterator validity must be maintained. The advantage of this method over the
simpler one discussed at the beginning of this section lies in the less frequent reorganiza­
tions that occur.

182 Data Structure Programming with the Standard Template Library in C++

We note in passing that one common mechanism for organizing very large disk files
uses a variation on this method, but it uses multiple levels of maps. Pointers in each
level map point to the map below, with the bottom map level pointers pointing to disk
blocks. Some additional information is usually required in the maps in addition to the
pointers. This is called b-tree storage. This topic is beyond the range of this book. It is
commonly discussed in books on database programming.

6.3 A Simple deque Example

Sometimes we need to output a complex structure to a file and later restore it. For exam­
ple, we might like to save a DiGraph in a disk file and then later read it into another pro­
gram. For the DiGraph case, it would be useful to save the graph by first saving all of the
node data, and then all of the arc data. This is because when we restore, it is most conven­
ient to create all of the nodes first, before we attempt to create any arcs. Otherwise, we
might try to create an arc between nodes that hadn't been recreated yet. We can use a 00-
que, acting like a queue, to help perform this task. We want to add a new member func­
tion, archive, to the DiGraph class. It will write a representation of any DiGraph on an
ostream. For example, if G is the DiGraph that we created at the end of the last chapter,
then

G.archive(cout);

will produce the following.

o
1
2
3
4
5
6
7
(1,2)
(1,3)
(2,3)
(2,7)
(3,5)
(4,2)
(5,6)
(6,2)
(7,0)

We first write out a list of the data in the nodes (the values), and then we write a list
of all of the arcs using index numbers.

Chapter 6. Dequeue Programming 183

The function proceeds by first iterating over its own DiGraph. For each step of the it­
eration it outputs the value of the current node, and inserts the arcs pointing out from this
node into a deque. We use push_back for this. To get access to all of the neighbors of a
given node (which are stored in a vector), we use another iterator over the neighbors.
Then, after all of the nodes have been output, we next empt} the dequeue, outputting the
required arc data as we remove it. Each arc datum is saved in the deque as a pair of node
pointers. To write an arc, we write out the indices of the corresponding nodes.

void archive(ostream& out)
{ typedef pair<node *, node * > pri

typedef deque< pr > deq;

}

deq arcs;

for
(const_iterator i

i ! = end();
begin ();

}

++i

out« i->value«endl; II Output this node.
for II Save its arcs in the deque.
(vector<node*>: :const_iterator j

i->_neighbors.begin();
j != i->_neighbors.end();
++j

arcs.push_back(pr(i, *j));

while(! arcs.empty(» II Output the arcs.
{ pr p = arcs.front(); arcs.pop_front();

}

out« '(' «p.first->_index« ','
« p.second->_index« ')' « endl;

6.4 The deque Interface

Externally, a deque looks like a vector with a few exceptions. First is the push_front arxl
pop_front operations that are not part of the vector interface as they are for deques. Deques
don't have a capacity or reserve member since reorganization involves only the internal
map and not the elements themselves. This is somewhat problematic since we sometimes
use those vector members to detennine whether we can guarantee the preservation of itera­
tors during insertions and removals. These tools are not available to us with deques. This
means that the user should always assume that all iterators into a deque are invalid after

184 Data Structure Programming with the Standard Template Library in c++

any insertion or deletion. This is true even of the operations at the ends. Technically, ref­
erences into a deque may be invalidated by insertions and deletions as well as iterators,
though not all implementations do this. Be careful taking advantage of special features of
an implementation, however, since that can drastically affect portability of the code.

Deques provide random access iterators, so all of the STL algorithms work with de­
ques. There is also an operator[] so that deques can be made to look like arrays when nec­
essary. Be cautious with this, however. A pushjront operation changes the relative sub­
scripts of all elements and an insertion in the middle affects all subscripts either before or
after that point, whichever is closer. As with vectors, an insertion at the location of an it­
erator inserts the new item before the iterator's location. The space for the new item could
be created at either end, but the algorithm will choose the closer end for efficiency.

6.5 Efficiency of deques

The implementation of the deque optimizes the push_front operation. It is a constant time
operation, while for a vector, insertion at the beginning is linear time. The tradeoff is that
all operations are slowed down slightly compared to vector operations. So push_back on a
vector is faster than push_back on a deque, though only by a small constant multiple. In­
sertions in the middle of a deque take time proportional to the distance to the nearest end.
Therefore, insertions near the ends are quite fast. Inserting a block of values at the same
point in the middle is much faster than inserting the same elements individually, since
space needs to be made available only once for all of the elements.

If insertions and deletions are to occur largely at one end, a vector may be a better
choice than a deque. If insertions are to occur frequently in the middle, then a list is likely
preferable to a deque. For a structure in which insertions and deletions are to occur at the
ends, however, the deque is ideal. While a list also provides these operations efficiently, a
queue is slightly faster at the ends.

6.6 More on Container Adaptors-The queue Adaptor

When you need a structure that behaves like a queue and you want to restrict the interface
so that non queue-like operations are not possible, a queue adaptor can be used. You can
apply this adaptor to either a list or a queue. Actually, you can apply it to any container
that provides the required interface: namely empty, size, front, back, push_back, arxl
pop_front. Both deques and lists from the STL provide the necessary operations.

A complete implementation of the queue container adaptor (from the Hewlett-Packard
library) follows. It is extremely simple. All it does is pass operations on to the container
with which it is created. Its only purpose is to provide a restricted interface. Since all of
the members are inline, the efficiency of a queue will be the same as that of the underly­
ing container that it adapts.

template <class Container>
class queue
{ friend bool operator==

(const queue<Container>& X,

const queue<Container>& y
) ;

Chapter 6. Dequeue Programming 185

friend bool operator<bool operator<
(const queue<Container>& X,

const queue<Container>& y
) ;

public:
typedef Container: : value_type value_type;
typedef Container: : size_type size_type;

protected:
Container c;

public:

} ;

bool empty() const { return c.empty(); }
size_type size() const { return c.size();
va1ue_type& front() { return c.front(); }
const value_type& front() const
{ return c.front();
}

value_type& back() { return c.back();
const value_type& back() const
{ return c.back();
}

void push(const value_type& x)
{ c.push_back(x);
}

void pop()
{ c.pop_front();
}

template <class Container>
bool operator==
(const queue<Container>& X,

const queue<Container>& y
)
{ return x.c == y.c;
}

template <class Container>
bo01 operator<
(const queue<Container>& X,

186 Data Structure Programming with the Standard Template Library in C++

canst queue<Cantainer>& y
)
{ return x.c < y.c;
}

If the Container parameter also provides operator== or operator<, then so will the re­
sulting queue. Note that we could have used a queue adaptor in our DiGraph archiving
function, since we treated the deque like a queue there.

6.7 Priority Queues and Heaps

A priority queue is a structure into which we put values that have a size. When we re­
move an item from the priority queue, we always get the one with the largest size. You
can think of a priority queue as a waiting line in which each entering person has a priority
(his or her "size"). The person doesn't need to go to the end of the line but only to the po­
sition behind all others with the same or higher priority. The person (or thing) with the
highest priority is always first. When it comes time to remove a person from the line,
presumably to get served at some facility, the person at the head of the line gets service
next.

A heap is a structure that is useful in many ways, one of which is in implementing
priority queues. A heap is theoretically a binary tree structure that stores values with size.
As a binary tree, each node has zero, one, or two children. The largest item is always at
the root and each node contains a value that is larger than (or possibly equal to) the values
in any of its children. We shall see that it is usually possible to store this tree in an array
like structure. We shall see the details shortly, but the idea of implementing a priority
queue with a heap works because the largest item is easily available. We shall also see
that it is very efficient to insert an item into a heap (or remove an item) and keep the heap
property.

6.7.1 Heaps

We need to refine our definition of heap slightly. First we want a binary tree. This means
that each node has either zero, one, or two children. A node with no children is a leaf
node, and others are called interior nodes. The single node with no parent node is called
the root. The height of a node is the number of links between it and the root. In the tree
in Figure 6.3, the height of the node with a six in it is two. The height of a tree is the
maximum of the heights of the nodes. For the tree in Figure 6.3, the height is three. A
heap also has the property that only those nodes whose height is the height of the tree or
one less than the height have less than two children. Finally, we want all of the nodes at
height equal to the height of the tree to be as far to the left as possible. Therefore, the tree
in Figure 6.3 is a heap.

The reason for the restrictions on a heap are to make storage of the heap in an array as
efficient as possible. Suppose that we consider an array whose first subscript is one

Chapter 6. Dequeue Programming 187

(rather than the usual zero) and store the root of our heap there. Then for each node stored
in a subscript k, the children of that node are stored in cells 2*k and 2*k+ 1.

Figure 6.3. A heap shown as a tree.

Storing the heap of Figure 6.3 in this way leads us to an array such as shown in Fig­
ure 6.4. The restrictions on the heap guarantee that there are no gaps in the array between
active node elements. Thus, the storage in an array is as dense as possible. This also
means that, for a given height, there are about as many nodes in the tree as possible.
Looked at in another way, in such a tree, each node is about as close to the root as possi­
ble. In fact, for a tree of height H, there are between 2*H and 2*(H+ 1)-1 nodes that can be
stored. Thus in a tree of height ten, we can store over 1,000 nodes. But every node is no
farther from the root than ten arcs.

Figure 6.4. The heap of Figure 6.3 shown as an array.

The reason that it is nice to store a heap in such an array is that moving both up aOO
down the arcs of the tree is very easy. The children of a node can be found at fixed sub­
scripts relative to the subscript of the given node. Also, the parent of the node in cell k is
at subscript kl2. (For zero-based array storage, these formulas need to be adjusted slightly,
however.)

Exercise. Give the formulas for parent and child access in a heap stored in a zero-based
array, with the root at cell zero.

188 Data Structure Programming with the Standard Template Library in c++

One can insert into a heap and maintain the heap property in the following way.
Physically insert the value in the next available slot. For an array representation, this is
the first empty cell in the array. For a tree, it is the left-most slot on the last row. Then
compare that value with the value in the parent slot. If the value in the child is smaller or
the same, then you already have the heap property in place. Otherwise, exchange the two
values. If the value was bigger than the parent's value, it must also be bigger than the
parent's other child value. If you moved the inserted value, repeat the process looking at
the value in the new slot and its parent. Continue up the tree until you reach the root, or
until some exchange doesn't need to be made. Thus reheaping the heap after an insert
works along a single path from leaf to root.

If we combine the above algorithm with the knowledge about the relationship between
the number of nodes in a heap and its height, we discover that the reheap operation takes
only about log2(n) time, where n is the number of nodes in the tree. In formulas like this

we shall use Ig as the name of the logarithm base 2.
Similarly, we can remove the largest element from the heap in the following way,

which also takes about 19(n) time for n nodes. We first exchange the root node and the
last node in the tree. The node in which the old root now lies will eventually be pruned
away. First we downheap the structure, restoring the heap property. To do this we com­
pare the root node with both of its children. If it is bigger than both we are done and we
have a heap. Otherwise, we exchange the root and the larger of the children. We then
move down to the original location of the value we promoted and continue as above from
there, until we either reach a leaf or until we have a value that is bigger than all of the
children. This process also follows a single path, but this time from root to leaf.

The STL does not provide a heap container class or class template. Instead it supplies
six algorithms for maintaining heaps in any structure that has random access iterators.
Since such a structure can be thought of as a generalized array, this is very general and
useful. All of the heap operations occur in pairs. One element of each pair compares val­
ues using operator<. The other function uses a user-supplied comparison object. This is
just an object from a class that implements an operator() to compare two values. There
are requirements on such an operator. These were discussed in Section 4.3.3.

template <class RandomAccessIterator>
void make_heap
(RandomAccessIterator first,

RandomAccesslterator last
) ;

template
<class RandornAccessIterator, class Compare>
void make_heap
(RandomAccessIterator first,

RandomAccessIterator last,
Compare comp

) ;

Chapter 6. Dequeue Programming 1 89

Algorithm make_heap constructs a heap from the elements given in the range of any
random access iterator. It can work by successively reheaping starting with the first two
elements and adding one each time. The time is proportional to n*lg(n), where n is the
size of the range. There is actually a faster way. It takes only time proportional to n. If
we first note that a leaf is automatically a heap, then we only need to start reheaping in
the first node in the tree that actually has a child. In Figure 6.3, this is the node with the
six. We just downheap from there. We then consider the other nodes farther to the left in
the array, downbeaping from each of them in tum as we go. Our starting node is actually
the middle node in the array structure. With ten nodes, it is in slot five.

template <class RandornAccesslterator>
void push_heap
(RandornAccesslterator first,

RandornAccesslterator last
) ;

template
<class RandornAccesslterator, class Compare>
void push_heap
(RandornAccesslterator first,

RandornAccesslterator last,
Compare comp

) ;

Algorithm push_heap assumes that the range [first, last-I) is a heap, and that we want
to insert the item at location last. It restores the heap property so that the range [first,
last) is a heap. It doesn't actually insert anything. It is typically used by applying it to a
vector or array and first performing push_back followed by push_heap. This algorithm re­
quires only logarithmic time in the number of elements in the heap.

template <class RandornAccesslterator>
void pop_heap
(RandornAccesslterator first,

RandornAccesslterator last
) ;

template
<class RandornAccesslterator, class Compare>
void pop_heap
(RandornAccesslterator first,

RandornAccesslterator last,
Compare comp

) ;

190 Data Structure Programming with the Standard Template Library in C++

Algorithm pop_heap starts with a heap in range [first, last). It rearranges the elements
so that the old maximum value is in location last, and the range [first, last-I) is again a
heap. It is the opposite of push_heap, though they are not necessarily strict inverses,
since many rearrangements of the same values can constitute a valid heap. Again, this al­
gorithm doesn't actually remove anything, though it is often followed by operation back
which will then return the largest element and then pop_back, which will remove that
value. This algorithm is logarithmic in its time behavior.

Finally, the STL has (two versions of) an algorithm that will rearrange a heap into a
sorted range. Algorithm sort_heap assumes that it has a heap for a range and sorts that
range in time proportional to n*lg(n). It does this by repeatedly performing pop_heap on
a smaller and smaller range. The first call puts the largest value last and each successive
call puts one more "next largest" value in the correct slot.

template <class RandomAccesslterator>
void sort_heap
(RandomAccesslterator first,

RandomAccesslterator last
) ;

template
<class RandomAccesslterator, class Compare>
void sort_heap
(RandomAccesslterator first,

RandomAccesslterator last,
Compare comp

) ;

6.7.2 Priority Queues

The STL priority_queue container adaptor shows a nice relationship between containers,
adaptors, and algorithms. It requires a container with a random access iterator and treats it
as a heap. We also need to specify a comparison object to define the order of the values to
be inserted. The protocol, however, is nearly the same as that of a queue. We push to en­
ter into the priority queue and we pop to remove from it. As discussed in the last section,
we push by first doing a push_back on the underlying container, and then calling
push_heap. Popping performs the inverse operations. Here is a complete implementation.

template <class Container, class Compare>
II Compare = less<Container: :value_type> >
class priority_queue
{

public:
typedef Container: : value_type value_type;
typedef Container::size_type size_type;

Chapter 6. Dequeue Programming 1 91

protected:
Container c;
Compare comp;

public:
priority_queue

}

(const Compare& x = Compare(»
c(),

comp(x)
{
}
priority_queue
(const value_type* first,

II Should be an iterator
const value_type* last,
II Should be an iterator
const Compare& x = Compare()

c(first, last),
comp(x)

{ make_heap(c.begin(), c.end(), comp);

bool empty() canst { return c.emptY()i }
size_type size() const { return c.size()i }
value_type& top() { return c.front()i }
const value_type& top() const
{ return c.front();
}

void push(const value_type& x)
{ c.push_back(x)i

}

} ;

push_heap(c.begin(), c.end(), comp)i

void pop ()
{ pop_heap(c.begin(), c.end(), comp)i

c . pop_back () i
}

Normally we don't use priority queues to store simple datatypes like ints or floats.
The most important usage is when we have a complex datatype and one of its fields is a
comparison field. We create a compare object that compares our objects based on this
field. The priority queue will then prioritize our objects based on values of this field. For
example, suppose we have person objects with a last name field (a string). We provide a
compare object that (using operator(» tells us which of two persons has a "smaller" last
name. Then if we insert these person objects into a priority queue, then when we dequeue
them, they will be ordered by last name: largest first, of course.

192 Data Structure Programming with the Standard Template Library in C++

6.8 STL Generic Algorithms-Searching and Sorting

The deque and vector classes of the STL as well as arrays of c++ provide random access
iterators. The generality of these iterators permits a large collection of algorithms to be
written that will easily manipulate any of these structures. Sometimes we insert items
into a container that can be compared with operator<. Other times we insert data that has
no defined comparison. It is often necessary to find an item once it has been inserted into
a container. This process is called search. If the items can be compared, then it is much
faster to search a container if the container is sorted, with smaller items first and larger
ones last, for example. Putting a container into such a sorted state is called sorting. The
STL contains generalized algorithms for both searching and sorting of containers with
random access iterators. Many of the algorithms don't require random access iterators.

6.8.1 Generalized Searching

First we will look at searching in situations in which the container may not be sorted. In
this case any searching strategy that does not repeatedly look at the same components of
the container is about as good as any other. The most common technique is called sequen­
tial search and it proceeds by searching from the first element to the last, comparing each
element in tum with the target of the search. This is quite easily achieved with a for or
while loop. For generality, however, it is advantageous that we not apply the operation to
a container, but to a pair of iterators representing a range. Suppose we have iterators first
and last, representing a range [first, last) in the usual way. Suppose we search for a value
named target. Then either of the following two fragments will find the element if present.

while(first != last)
{ if(*first == target) return first;

++first;
}
return last;

for (; first
if(*first

return last;

!= last; ++first)
target) return first;

Of course, if we don't want to modify first then we need an auxiliary iterator to step
across the range.

It is also possible that we don't want to compare the elements with operatof==. In this
case we would use a comparison predicate instead. This would be a function of two argu­
ments that returns true if the first argument is considered to be the same as the second.
The algorithm could use this in place of the operator== in the above.

Actually, the STL takes a somewhat different approach that increases the usefulness.
Suppose that we drop the requirement that we are searching for a given value and think of
searching for an item about which something of interest happens to be true. For example,

Chapter 6. Dequeue Programming 193

if the elements have a feature called color, we might want to search for the first red item.
In this case we could replace the comparison in the above fragments with a predicate that
has a single argument and returns true if that element is red. For example,

while(first j= last)
{ if(isRed(*first)) return first;

++first;
}

return last;

The STL provides two algorithms that provide these services. They are called fmd and
find_if. The first version uses operator==.

template<class Inputlterator, class T>
Inputlterator find
(Inputlterator first,

Inputlterator last,
const T& value

) ;

This searches starting at first, looking for an element that is = to value. If it is not
found, then last is returned. Otherwise an iterator to the location of the found item is re­
turned. Note that we don't need random access iterators to do this. In particular, we may
also use it to search lists and sets. We may even search for items as they come in from a
stream, as they only need to look at one item at a time and only in the forward direction.

The second form of the find algorithm requires a unary predicate and will return an it­
erator to the first occurrence of a value for which that predicate returns true.

template
<class Inputlterator, class unaryPredicate>
Inputlterator find_if
(Inputlterator first,

) ;

Inputlterator last,
unaryPredicate pred

When calling this function, you can pass a function for this unaryPredicate, or you
can pass an object from a class that implements operatorO. In other words, a function or a
function object. The function or function object must have a single parameter and return a
boolean value.

As you might expect, these algorithms are both linear in time behavior.
Suppose that you want to find several copies of an item in the container. In this case,

you can call find several times, each time replacing first with the successor of the value
returned on the previous call.

194 Data Structure Programming with the Standard Template Library in c++

There is another possibility, however. Sometimes you want to fmd a location in a
container at which there are adjacent items that are the same. Here we need to compare
two items within the container rather than one item with something else. For this pur­
pose, the STL provides two versions of adjacentFind. The first uses operator= and the
second uses a binary predicate. They both return an iterator to the first element of a pair of
"equal" values, or location last, if all adjacent pairs are distinct.

template <class Forwardlterator>
Forwardlterator adjacent_find
(Forwardlterator first,

Forwardlterator last
) ;

template
<class Forwardlterator, class BinaryPredicate>
Forwardlterator adjacent_find
(Forwardlterator first,

) ;

Forwardlterator last,
BinaryPredicate pred

If you were to write these yourself, you would need to take a bit of care, remembering
that the next to last location of the iterator represents the last actual location in the range
and that this is never followed by an item to be compared with.

Another linear sequential search technique that is often needed is trying to determine if
two ranges are the same, and if not, finding the first location at which they differ. The
ranges need to be of the same length, of course, for this to be defined. Again, we could
search for a the first location at which a pair of values, one from each range, are not = or
for which a binary predicate returns false.

The STL provides two versions of algorithm mismatch for this purpose. We pass in
two ranges by passing in three iterators. The first two iterators give the beginning and end
(after the end, of course) locations of the first range, and the third iterator gives the begin­
ning of the second range. The end of the second range will be implied by the length of the
first range.

template < class Inputlteratorl,
class Inputlterator2

>
pair<Inputlteratorl, Inputlterator2> mismatch
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2

) ;

Chapter 6. Dequeue Programming 195

The algorithm returns a pair of iterators, one into each range. If all values are the
same, then both iterators represent after the end locations in the two ranges. Otherwise
they represent locations, one into each range, at which the values differ. Note that the
ranges may overlap if needed. The second version is similar except that comparisons are
done with a supplied binary predicate.

template < class Inputlteratorl,
class Inputlterator2,
class BinaryPredicate

>
pair<Inputlteratorl, Inputlterator2> mismatch
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
BinaryPredicate binary-pred

) ;

The last search algorithm that we shall consider here looks for one range within an­
other. For example, you might want to search for the word "liberty" in a document repre­
sented as a string. While such a search proceeds linearly, it has quadratic time complexity.
Note that there does exist a linear time algorithm (on the average) for this problem,
though it is not implemented in at least some versions of the STL. This is because of its
complexity and the fact that it is generally slow in typical use.

Algorithm search looks for one range duplicated within another. These ranges are rep­
resented by four iterators. The first range, given by the first two parameters, is the range
to be searched. The last two iterators give the range to be looked for. If the target is
found, search returns an iterator into the first range that represents the beginning of the
target. If the target cannot be located, then lastl is returned.

template
<class Forwardlteratorl, class Forwardlterator2>
Forwardlteratorl search

) ;

Forwardlteratorl firstl,
Forwardlteratorl lastl,
Forwardlterator2 first2,
Forwardlterator2 last2

The algorithm is surprisingly simple since we may use mismatch.

while(firstl != lastl)
{ pair

<Forwardlterator2, Forwardlteratorl> where
mismatch(first2, last2, firstl);

if (where. first == last2) return firstl;

196 Data Structure Programming with the Standard Template Library in C++

++firstl
}
return lastl;

There is a second version that uses a binary predicate for the comparison, as you
would expect.

The algorithms we have been discussing here are all of a kind that the STL classifies
as nonmutating sequence algorithms. In addition to the search algorithms, there are also
function templates to determine directly if two ranges are equal, and to count ranges. The
equal algorithm could be used in place of mismatch in implementing the search algo­
rithm.

6.8.2 Sorting

We discussed two sorts in Chapter 2: selection sort and quicksort. Selection sort is too
inefficient generally for inclusion in a general library such as the STL. Its main advantage
is its simplicity. Another simple sort is called insertion sort, and it has the advantage that
it behaves efficiently on small containers. The idea of insertion sort is to keep the range
to be sorted in two sections, an initial sorted section and another unexamined section.
This is shown in Figure 6.4.

Sorted Unexamined

first last

Figure 6.4. Loop invariant for the outer loop of insertion sort.

The idea is to keep this true while getting the iterator i up to the location of iterator
last. We can do this by making a copy of the contents of cell i in a variable copy. This
effectively leaves cell i "empty" since we know the value that was originally there. We
can then slide elements to the right starting at cell i-I, leaving a new cell "empty" each
time, until we come to the location j at which value copy actually belongs. Notice that
each slide to the right requires only one statement be executed and on the average we will
only have to slide about half of the elements in first. .. i-I to the right. This inner loop is
shown in Figure 6.5.

Chapter 6. Dequeue Programming 197

a) "copy" is a copy of i's original value.
b) Values in j+ 1 .. .i are> copy and sorted.
c) Values in first...j-1 are sorted.
d) Cell j is "empty."

Figure 6.5. Inner loop invariant for insertion sort.

The sort algorithm of the STL uses a combination of insertion sort and quicksort. If
the size of the range to be sorted is small, it uses insertion sort. Otherwise it uses quick­
sort. This gives the best average running time since for short ranges we don't need the re­
cursive overhead of quicksort and for longer ranges we don't absorb the quadratic time be­
havior of insertion sort.

As indicated in Chapter 2, the use of quicksort implies that for some ranges (sorted

ranges, for example) sort will take quadratic time. There is another sort algorithm, par­
tial_sort, in the STL that can be guaranteed to be n * 19(n) in its running time, though
slower on the average than sort. This algorithm will be discussed below in the section on
the median.

The standard version of sort uses operator< to compare elements. There is another ver­
sion that uses a binary comparison function instead. This comparison should return true if
its first argument should come before the second in a sorted list. This comparison needs
certain characteristics, however, if sorting is to be accomplished correctly. There are many
other algorithms that also require the same behavior for the comparison.

template <class RandornAccesslterator>
void sort

) ;

RandornAccesslterator first,
RandornAccesslterator last

template
<class RandornAccesslterator, class Compare>
void sort

) ;

RandornAccesslterator first,
RandornAccesslterator last,
Compare comp

198 Data Structure Programming with the Standard Template Library in c++

To understand the needs of the comparison operator, it is necessary to know that it is
used both to fmd if one element is "less" than another and also to determine if they are
"the same." Here the "same" does not mean that they are ==, however. Two elements x
and y are "equivalent" under a comparison C provided that C(x,y) and C(y,x) are both
false. Otherwise they are to be considered different. This means that a comparison operator
and a value x divide up all the values into three sets. Those for which C(x,y) are called
greater than x. Those for which C(y,x) are called less than x, and the rest are equivalent to
x. Note that if x is to be the same as x, C(x,x) must be false. This is very important. A
comparison that fulfills these requirements is said to define a strict partial order on the
elements.

All of this means that it is the user's responsibility to provide a comparison object
that satisfies the requirements of partial order. If not, the sorting and other similar algo­
rithms may not operate correctly. They may even loop infinitely. In particular, opera­
tor<= is not a valid candidate for a comparison operator. Again, we can pass a function for
the comparison operator, or a function object.

Be aware that even with the first version of sort, which uses operator<, it is important
that the version of operator< that is used also impose a strict partial order on the ele­
ments. The standard comparison on ints and floats does so, of course, but the programmer
must be careful that other overloaded versions do as well.

Fairly often, sorting a container is not just a matter of picking some simple basis for
the sort. We may have records of some kind with several fields. We might need to sort the
data on one of these fields. If the contents of this field have repeated values, it may not be
good enough to leave the order of elements with common values unspecified. For exam­
ple, it might be necessary to sort employees in a large company by department. Within
each department we might like the employees sorted alphabetically by name. To do this
requires two sorts. The first is by name. The second is by department. There is a problem,
however: in the second sort, there is no guarantee that the relative positions defined by the
first sort won't be changed. Of course some rearrangement is necessary, but we mean that
values with the same department field should not be rearranged relative to each other.

To achieve this requires that the second (and subsequent) sort be stable. A sort on a
field is stable if values of that field that are equivalent are not rearranged relative to each
other. Unfortunately, quicksort is not stable and so the STL sort algorithm is not stable
either.

For this reason, the STL provides another algorithm (two versions) called stable_sort
that is based on the merge sort process, which is stable.

template <class RandomAccesslterator>
void stable_sort

RandomAccesslterator first,
RandomAccesslterator last

) ;

template
<class RandomAccesslterator, class Compare>
void stable_sort

) ;

RandomAccesslterator first,
RandomAccesslterator last,
Compare comp

Chapter 6. Dequeue Programming 199

The merge_sort algorithm will be discussed in the section on merge, which follows.
Its two advantages over sort are that it is stable and is guaranteed to have n * 19(n) run­
ning time if there is enough extra memory available to make a copy of the range to be
sorted.

6.8.3 Searching Sorted Containers

Once a container is sorted using some criteria, we can search it efficiently using compati­
ble criteria. We examined binary search in Chapter 2. The STL includes a number of algo­
rithms that implement binary search. The simplest, called binary_search, just returns a
boolean value as to whether the target is present or not. The first version assumes that the
data are sorted using operator<.

template <class Forwardlterator, class T>
bool binary_search
(Forwardlterator first,

Forwardlterator last,
const T& value

) ;

This second version uses a binary predicate to compare elements. This should be the
same predicate that was used to sort the data originally.

template
<class Forwardlterator, class T, class Compare>
bool binary_search
(Forwardlterator first,

Forwardlterator last,
const T& value,
Compare comp

) ;

These algorithms will require logarithmic time if the iterators are random access itera­
tors. However, they also work on more general forward iterators, as the template parame­
ters imply. In case the iterators are not random access, the time behavior will be linear.
Therefore, it is possible to search lists and sets using binary_search. This is also true of
the other algorithms discussed in this section.

Usually we want to know more than whether the target is present. We want to know
where the element lies in the (sorted) container. Since duplicate values are possible, there

200 Data Structure Programming with the Standard Template Library in C++

can be many locations of a given target. There can also be none, as the target might be
absent from the container. Algorithm lowecbound will return an iterator to the first oc­
currence of the target. Formally, it returns an iterator to the first location at which the
target could be inserted while maintaining the sorted order. If the target is not present, this
will be to the first value that is "larger" according to the sort criteria.

template <class Forwardlterator, class T>
Forwardlterator lower_bound

Forwardlterator first,
Forwardlterator last,
const T& value

) ;

There is another version that has an additional parameter giving a comparison operator
to defme the sort, and hence the search, criteria. There are also two versions of
uppecbound, which gives the last location at which the target could be inserted.

Finally, equal_range returns a pair of iterators that would be returned individually by
lower_bound and uppecbound.

template <class Forwardlterator, class T>
pair<Forwardlterator, Forwardlterator> equal_range
(Forwardlterator first,

) ;

Forwardlterator last,
const T& value

All of the values from the first iterator returned up to, but not including the second,
should refer to values that are equivalent to the target value. As usual, there is another
version with the additional search predicate. Again, the behavior of these is logarithmic if
the iterators are random access, and linear otherwise.

There are also a number of algorithms that operate on containers that are not necessar­
ily sorted, but whose contents are sortable. For example, min_element will search a
range, whether sorted or not, for the minimum value of the sort criteria.

template <class Forwardlterator>
Forwardlterator min_element

Forwardlterator first,
Forwardlterator last

) ;

There are also corresponding max_element algorithms and versions of both that take
the usual comparison operator. These return an iterator to the desired element or to last for
an empty range.

Algorithm lexicographical_compare compares two ranges according to the following
rule. We compare corresponding elements of the two ranges starting at their first ele-

Chapter 6. Dequeue Programming 201

ments. Let f be the element from the first range and s be that from the second. If f < s for
a given comparison, stop the process and return true. If f > s, stop and return false. If they
are the same, then proceed to the next pair of corresponding elements. If you come to the
end of the first range, with all comparisons having come out "the same," then return true;
otherwise, return false. Thus, lexicographical30mpare tells us whether the first range rep­
resents a string of values that would come before that of the second in a dictionary-like
ordering.

template
<class Inputlteratorl, class Inputlterator2>
bool lexicographical_compare
(Inputlteratorl firstl,

) ;

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2

In fact, if we apply this operation to ordinary C++ strings, it will give us the diction­
ary ordering. A second version takes an additional comparison operator.

Finally, we look at three algorithms that don't put a range in order, but rather destroy
the order.

Algorithm random_shuffle puts a range into random order in linear time. It uses either
a built-in random number generator, or one supplied as a parameter. It works by comput­
ing a random location to swap with each successive location.

template < class RandornAccesslterator,
class RandornNumberGenerator

>
void random_shuffle

RandornAccesslterator first,
RandornAccesslterator last,
RandornNumberGenerator& rand

) ;

If supplied, this RandomNumberGenerator should be a function object of no parame­
ters. It should return values in the interval [0, 1). The standard generator is built in and is
approximately uniform. If this is what is desired, the third parameter need not be given.
Also note that this algorithm does not require sortable elements. It works for any sort of
contents, but does require random access iterators to define the range to be shuffled.

It is also possible to systematically generate all possible rearrangements, or permuta­
tions, of a range. Algorithm nexCpermutation will shuffle the elements in such a way
that successive calls will generate all permutations. It also is guaranteed to generate them
in lexicographical order. It requires linear time. It returns true unless there is no
nexcpermutation, meaning that its input was the last permutation lexicographically.
This will be true (and the algorithm will return false) if the range is sorted from largest to

202 Data Structure Programming with the Standard Template Library in C++

smallest. When it returns false it also rearranges the range, but in sorted (smallest to larg­
est) order.

template <class Bidirectionallterator>
bool next_permutation
(Bidirectionallterator first,

Bidirectionallterator last
) ;

To generate all permutations, first sort the range and then repeatedly call
nexcpermutation. It will require n! (n factorial) calls, where n is the length of the range.
In this case, the first call will permute the last two elements. Starting with elements 1 2
345, the first 16 successive permutations are:

12345
12354
12435
12453
12534
12543
13245
13254
13425
13452
13524
13542
14235
14253
14325
14352

There is also a prev _permutation algorithm that also generates all permutations when
called repeatedly, but in reverse lexicographical order. Both of these have versions with
comparison operators as a final parameter as well.

6.9 Median and Other Order Statistics

The median of a set of values is the value that would appear in the middle location if the
set were sorted. It is expensive to sort, however, so a more efficient means of finding the
median and other similar order statistics is needed. The other common order statistics are
quartiles, deciles, and percentiles. The three quartiles are the values in locations one­
fourth, half and three-fourths of the way through the range of sorted data. The nine deciles
are each one-tenth further along, so that in a collection of 200 items, they would be the
values that would fall in slots 20, 40, etc. in the data if it were sorted. The 99 percentiles

Chapter 6. Dequeue Programming 203

are each 1 percent of the data apart. The 37th percentile in a collection of 1,000 would be
at the 370th location. Of course, if we ask for the 37th percentile in a list of 150, then we
must choose between two slots. Rounding can be used to choose the slot, or we can (with
some types of data) average the values in the two closest slots.

We can find the median in linear time by using a variation of the partition algorithm
that we used to help implement quicksort in Chapter 2. If we separate that algorithm and
rewrite it to use iterators, we get

template <class Iterator>
void partition_aux
(Iterator b,

)
{

}

Iterator& m,
Iterator e

Iterator J
m=b;
while(J < e)

b;

{ if(*J != *b)
{ m++;

swap(*m,
}

J++;
}
swap(*m, *b) ;

J++;

*J) ;

Exercise. What kinds of iterator do we require for partition_aux? Do we need a random
access iterator or will a forward or bidirectional iterator suffice? Why?

Exercise. Rewrite partition_aux so that it performs the same function, but only requires
a forward iterator.

The idea is to first partition the range, obtaining a location near the middle. If this lo­
cation is to the left of the middle, we repartition only the right section. If, on the other
hand, our returned iterator is actually to the right of the true middle, we recurse on the left
part only. Notice, however, that we can't keep recomputing the mid on each recursion.
We need the mid position of the original range, even though we recurse over portions of
this range. We therefore write an auxiliary function.

template <class Iterator>
void median_aux

Iterator b,
Iterator e,
Iterator mid

204 Data Structure Programming with the Standard Template Library in C++

{ if(b<e-l && mid>=b && mid<e)
{ Iterator t;

partition_aux(b, t, e);
if (t<rnid)

}
}

median_aux(t+l, e, mid);
else if (t>mid)

median_aux(b, t, mid);

Exercise. What kinds of iterator do we require for median_aux? Do we need a random ac­
cess iterator, or will a forward or bidirectional iterator suffice?

Median then, just calls median_aux. Note that calling median will rearrange your data,
but not completely sort it. It does move the median into the middle location rather than
return it. From that location it can be retrieved.

template <class RandomAccessIterator>
inline void median

RandomAccessIterator begin,
RandomAccessIterator end

median_aux
(begin, end, begin + (end-begin)/2);

}

Note the computation of the middle position. It can't be written as (end+begio)/2,
since operator+ (with two iterators) is not an iterator operation. Operator-, however, re­
turns an integer value, and integers can be added to random access iterators.

The median is not one of the algorithms in the STL. There are a number of similar
algorithms that can be used to generate the median and other order statistics, however.

Algorithm nth_element places the nth element from the smallest into that location. It
will partially rearrange the range, but not completely sort it.

template <class RandomAccessIterator>
void nth_element

RandomAccessIterator first,
RandomAccessIterator nth,
RandomAccessIterator last

) ;

For example, to find the median of an array you can use something like the following:

int A[300];

nth_element (A, A+150, A+300);

Chapter 6. Dequeue Programming 205

When this returns, the array will have been rearranged somewhat and the median will
be in A[150). These operations are linear on the average, but like the quicksort, they are
quadratic in some cases. The version shown uses operator< to define the sorted order. The
other version requires a comparison operator as the last parameter.

Related to the above are algorithms that will partially sort a range. The first of these
(with two versions as usual) rearranges a range so that the first part consists of the ele­
ments in sorted order that would occur there if the entire range were sorted. The elements
after the first part will not necessarily be in order, but the entire range is a permutation of
the original.

template <class RandomAccesslterator>
void partial_Bort
(RandomAccesslterator first,

RandomAccesslterator middle,
RandomAccesslterator last

) ;

The subrange from the first to the second parameter is sorted. The other version of this
takes a comparison operator.

There is also a version of partial sorting that makes a copy of the original range and
then partially sorts this range, leaving the original unmodified.

template < class Inputlterator,
class RandomAccesslterator

>
RandomAccesslterator partial_Bort_copy
(Inputlterator first,

) ;

Inputlterator last,
RandomAccesslterator result_first,
RandomAccesslterator result_last

If the second range, of size N, say, is smaller than the first, the algorithm leaves the N
smallest elements of the first range in the second range in sorted order. If the second range
is the same size or larger than the first, it places the entire first range into the second in
sorted order starting at result_first. Other locations in the second range are not modified.
In either case, partiaCsort_copy returns a past-the-end value of the sorted range that it cre­
ates.

Partial_sort and partial_sort30Py are guaranteed to be n * 19(n) in running time. Par­
tiaCsort will sort an entire range by making middle equal to last. Likewise, par­
tial_sort_copy will sort an entire range if the second range has length equal to that of the
first.

Finally, we discuss two algorithms that don't exactly belong with the sort routines,
but are similar in flavor. Algorithm partition also rearranges a range, but does so accml-

206 Data Structure Programming with the Standard Template Library in C++

ing to a predicate function rather than a comparison operator. Those elements for which
the predicate returns true are placed before those for which it is false.

template
<class Bidirectional Iterator, class Predicate>
Bidirectionallterator partition
(Bidirectionallterator first,

) ;

Bidirectionallterator last,
Predicate pred

The other algorithm is like this but is stable in the sense that it won't permute two
elements, both of which return true for the predicate, or both of which return false.

template
<class Forwardlterator, class Predicate>
Forwardlterator stable-partition
(Forwardlterator first,

) ;

Forwardlterator last,
Predicate pred

These algorithms could be used to put small elements before large ones or red ones be­
fore noored elements, etc. Algorithm partition is linear, as is stable_partition if there is
memory available for a copy of the input range. Otherwise, stable_partition requires
n*ln(n) time.

6.10 Merging

Merging is the process of creating a larger sorted list from two or more smaller sorted
lists. In the simplest version we need three ranges: two for the inputs and a separate third
one for the results.

Outputlterator merge
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result

) ;

The algorithm proceeds by examining the first elements in each of the inputs. The
smaller of these is copied to the output. The output iterator is advanced and also the itera-

Chapter 6. Dequeue Programming 207

tor that was the source of the copy. The process proceeds from this point until one of the
inputs is empty. The remainder of the other input range is then copied to the output. This
process is linear in the sizes of the inputs. A second version takes a comparison operator
as the last parameter, as we would expect.

Sometimes the two input ranges are two halves of a larger range. Note that each half
still needs to be sorted. We desire to provide a sorted range as usual. If we want to store
the results in the same range, we have two possibilities. The first and simplest uses some
auxiliary storage and the algorithm above. It is somewhat more complex, though possi­
ble, to merge in place without additional space for a copy of our data. To explain this re­
quires that we discuss another algorithm that rotates a range about a location within it.

template <class ForwardIterator>
void rotate

) ;

ForwardIterator first,
ForwardIterator middle,
ForwardIterator last

Assuming that middle is within the range [first, last), this algorithm relocates the
element at middle to the location first, rotating toward the left. Therefore, the old first
element winds up just after the old last element. When we finish the element that was
just before the original middle will be in last location. There is also a copying version ro­
tate30py, but we won't need that here for our inplace merge.

template <class BidirectionalIterator>
void inplace_merge
(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last

) ;

This process merges the sorted range [first, middle) and the sorted range [middle, last)
into a sorted range [first, last) without using additional space. It is similar to quicksort in
some ways. It proceeds as follows. First, we compute the exact middle point of the left
range, mid_left, and note what value, v, is stored there. This should be near the median
value of the result. We then use lower_bound to find the first occurrence of this value (or
a slightly larger one in case v is not present) in the right range. Call this location
mid_right. Then we compute the smaller of middle-mid_Ieft and mid_right-middle. We
call this value s. We next rotate(mid_Ieft, mid_left + s, mid_right). This leaves us with
value v near the middle in its correct final position. It also leaves us with all values to the
left of the mid_left + s smaller than v and all values to the right larger than or equivalent
to v. Finally, the subranges [first, mid_left) and [mid_left, mid_left + s) are each indi­
vidually sorted, as are the two corresponding subranges to the right of mid_left + s. We
can then recursively apply the same process to the left side and the right side of the point
mid_left + s. This leaves us with a sorted result. As described, the process requires n *

208 Data Structure Programming with the Standard Template Library in C++

19(n) time for the same reason that the quick sort has this time complexity. However, the
actual implementation will use merge and then copy back to the input range if space is
available, making it linear in that case.

Finally we discuss a process called merge sort that forms the basis of the stable_sort
described above. Merge_sort itself is not part of the STL.

We assume that we have a range of values that can be compared with operator< or
with a comparison operator. Merge_sort proceeds by splitting the input range in the exact
middle, assuming that there is more than one item. It then recursively sorts the two
halves of this range and then merges the two halves together into a whole. You can use
either merge or inplace_merge for this operation, depending on how much additional space
is available. If space is available, the overall algorithm requires n * log2(n) time. Other-

wise, it requires n * (log2(n))2 time. This is still better than quadratic time.

Merge_sort is stable because neither the split nor the merge permute equivalent ele­
ments. It takes some careful thought to see that rotate, as used in the inplace_merge,
swaps the left and right sides of the range to which it is applied, leaving relative locations
within each half unaffected.

6.11 Summary

Make certain that you understand each of the following terms. You should also understand
each of the algorithms discussed in this chapter.

binary search
container adaptor
decile
double-ended queue
heap
heap sort
insertion sort
nonmutating sequence algorithm
lexicographical order
median
merge sort
order statistic
partial order
percentile
permutation
priority queue
quartile
rotation
sequential search
stable sort

Chapter 6. Dequeue Programming 209

6.12 Exercises

1. Write a member function to read in a DiGraph that was written with archive.

2. Implement a heap container. Write reheap and downheap as described in the text.

3. Using a stopwatch object and the STL heap operations over a deque, verify that the
make_heap operation is linear in its time requirements. Show that, over a wide range of
deque sizes, doubling the size of the deque doubles the time necessary to make it into a
heap. Use random data for your tests.

4. Implement an insertion sort generic algorithm, as described in the text.

5. Implement inplace_merge, as described in the text.

6. Use partition_aux to find other order statistics than just the median. Start with the frrst
and third quartiles. The first quartile is larger than or equal to one fourth (quarter) of the
data and less than or equal to three fourths of it. Now try the 20th percentile. This value
is larger than or equal to 20 percent of the values. Test your functions on a large set of
data. Write a general percentile function.

7. In the STL, container adaptors like stack and queue do not have iterators. Discuss why
not. Can you find valid reasons? For the queue adaptor shown in the text, add an associ­
ated iterator. A queue iterator should produce the elements of the queue in the order from
front to back. Should operator* of your iterator return copies of the elements? references
to the elements? const references? Think about this before you start.

8. Give your own implementation of the first version of sort_heap. It should take a heap
and produce a sorted container. Test it by transforming a random vector into a heap ani
then sorting it. Use a stopwatch object to determine experimentally what the running
time can be expected to be as a function of the size of the heap.

9. Suppose you have a vector that contains items in no particular order and in which the
current order need not be maintained. Then one possible search technique is ran­
dom_search. Suppose we have N items in the vector and we have examined N-K of them
already. Pick a random number i in the range [O,K). Look in cell i to see if that is the
item of interest. If not, then swap cell i and cell N - K -I, reduce K, and repeat as neces­
sary. Implement random_search. Compare its running time with that of sequential_search.

10. Draw a picture or series of pictures to illustrate random_search. Use Figure 6.4 ani
6.5 as a rough guide.

210 Data Structure Programming with the Standard Template Library in C++

11. Draw a picture or series of pictures to explain what happens in algorithm rotate. You
may need to consider more than one case for a complete explanation. It might help to run
the algorithm a few times so that you thoroughly understand it.

Chapter 7
Lists

7.1. Implementation Strategies of STL Lists

The STL provides a container class template list that is very useful in situations in
which we need to frequently insert and remove items in the middle of a container. We
looked at simple lists in Chapter 3 and examined the basic insert and removal algorithms
there. STL lists provide bidirectional iterators. This means that the list should be built of
doubly linked nodes so that we can easily traverse in both directions. We also want to
provide after-the-end values for iterators. Therefore, a trailer node after the last actual data
node will be useful.

The basic node type in a list implementation could look like Figure 7.1.

value

.. --I-prev

Figure 7.l. A node from a doubly-linked list.

If we chain a number of these nodes together we get something like Figure 7.2. Each
node refers to the one that follows it and the one that precedes it. Somehow the process
must stop. One way to do this is to set the pointer to the previous node of the first node
and the pointer to the next node of the last node to be NULL, as is shown in Figure 7.2.

Value ~~value
null I -rJ.-f I

l ~ r Value ~ ~ VoJue =r .-fL-__ L-l _=t.......l .. - I null

Figure 7.2. A sequence of nodes in a doubly-linked list.

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998

212 Data Structure Programming with the Standard Template Library in C++

If this is used, then a list as a whole could be represented by maintaining a pointer to
each end of the list. This is shown in Figure 7.3.

Figure 7.3. Representing a list with begin and end pointers.

Figure 7.3 does not show a trailer node. We could replace the null pointer in the
rightmost node with a pointer to a trailer. There could be one trailer for all lists or there
could be a separate trailer for each list.

The STL takes a slightly different approach, however. Each list has a node known as
the header that is unique to each list. Both the previous pointer of the first node and the
next pointer of the last point to this header. In turn, the header points to each of these.
The list itself is implemented using a pointer to the header node. See Figure 7.4. Logi­
cally, the header node represents both a before-the-beginning and an after-the-end location.
It does not hold data from the list, but is purely positional. An empty list consists of just
a header node with both of its pointers pointing to itself. We call this structure circular
linking.

An iterator into such a container can be represented as just a pointer to a node. The
beginO iterator is a pointer to the node that follows the header. The endO iterator is a
pointer to the header node. Iterators are a class here, since the distance between nodes is
not fixed. We cannot do simple pointer arithmetic on a pointer to find the next node. It­
erators maintain a pointer to a node and to execute operation++, we need to set the value
of this pointer to the value of the next field in the node that the iterator currently refer­
ences. Similarly, the prev field is used to execute operation--. There are actually separate
classes for iterators and const iterators.

A list structure makes random access iterators extremely expensive, since the list must
actually be traversed to do pointer arithmetic. For this reason, lists provide only bidirec­
tional iterators. Once we establish an iterator at a location, however, it is just as simple
(and fast) to insert an item at that point as it is at the beginning or end.

Chapter 7. Lists 21 3

list

CJ ---.)1-_heT"ad_e_r n-l0de

Figure 7.4. Lists in the STL.

7.2. Properties of STL Lists

Lists have constructors to create empty lists, lists with any number of elements with the
same value, a copy of another list, or a copy of the elements of any iterator range.

As noted above, lists have only bidirectional iterators. This means that some algo­
rithms can't be used with lists. Sorting is the most important algorithm that we might
like to have with lists. The sort routines of the STL require random access iterators, how­
ever. For this reason, list provides a member function sort. The sort member function
is a stable sort and uses a variation on merge sort. Instead of trying to split the list in the
middle, which would be somewhat expensive, it starts by merging the first two elements
into a sorted minilist. It then repeats this with the next two, and then merges these two
minilists into a list of four. It then repeats this process until it gets a list of eight, etc.,
until it has incorporated all the elements into the work list. It also does this merging
without creating new nodes, since it just relinks the existing nodes into the work lists as
it proceeds.

Another special member function splices all of the nodes of one list into another,
making the first empty. We can also remove an item from one list and splice it into an­
other without recreating a node. A third version splices an iterator range from one list into
another. If movement of items from one list to another is frequent, splicing can be impor­
tant to efficiency. This is exactly the case in the sort algorithm mentioned above. The
ability to splice lists together in constant time makes lists useful in some algorithms in

214 Data Structure Programming with the Standard Template Library in C++

which containers must be frequently combined into larger containers. In contrast, the
other containers in the STL are all relatively expensive to combine.

Member function unique will remove all but the first element of any consecutive se­
quence of equal elements in the list.

Lists also have the usual functionality we would expect, such as pushing and popping
at both ends, similar to a deque. We also want the size function to work in constant time,
so lists keep a length field that is updated on inserts and removals. Without this, we
would need to traverse the list to count the values.

If insertions and deletions need to be done only at the ends, then a deque or vector will
be faster on average than a list. This is because of the more frequent allocations that are
needed for lists (one per node). Allocation of new storage is an expensive operation gener­
ally. Actual implementations can lessen this cost somewhat by maintaining blocks of
nodes and allocating them in blocks rather than individually. This speeds the code, but
complicates it, since the program must also manage these node blocks.

Experiment. Use a stopwatch object to push_back a few thousand items onto a vector
and then again onto a list. What can you learn about the relative speed of a vector and a
list on this operation?

If the primary need is to keep a collection sorted as insertions are done, rather than
sorting it afterwards, then lists might be a good choice, but sets or multisets might be
better. If processing is frequent and must be done according to the sort order, then lists
might be better. Insertions would be faster for sets, though lists would have the edge dur­
ing traversals.

Lists also have an advantage in that iterators are not invalidated by insertions, nor by
deletions (with member erase) unless a deletion removes a value that the iterator refer­
ences. In complex algorithms involving many iterators, it is not always easy to know
how many iterators refer to a given location, so great care must be taken when deleting.
Even if we resplice nodes from one list to another, any iterators referencing that item will
stay valid, though this is not always an advantage.

One example of an application for which lists are ideal is in managing the objects to
be drawn in a complex graphics system. Suppose each object is to be drawn in its own
layer so that objects can partially overlap each other. Suppose that we also need to be able
to rearrange the layers, moving some objects forward and others backward in the scene.
One way to do this is to have a draw function that takes a list of objects to be drawn as an
argument. This list is called a display list. The draw function draws them from last to
first, representing the back of the scene to the front. In this way the objects properly over­
lap each other. A list is used since we want to be able to rearrange the layers. We do this
just by changing the position of an object in its display list.

Chapter 7. Lists 215

7.3 A Simple Implementation of Circular Lists

It is easy to build a circularly linked list with a header node that is less sophisticated than
that of the STL. Our lists will only be singly linked which is a great simplification, but
it leads to a few complications as well. We will build a class template CircleList, and two
nested classes CircleList::Node, and CircleList::Iterator. We shall show these last two
classes separately, though they are contained within the definition of CircleList. The nest­
ing structure looks like the following:

template <class E>
class CircleList II singly linked circular list.
{ public:

typedef Iterator iterator;
typedef E value_type;
typedef E& reference;
typedef E* pointer;

protected:
class Node
II Nested class. The nodes of the list.
{

} ;
class Iterator
{

} ;
friend class Iterator;

Node* head;
} ;

This permits us to use the template argument E within the Node and Iterator classes.
The nested Node class is very simple.

class Node
II Nested class. The nodes of the list.
{ public:

};

E value;
bool header;
Node *next;
Node(E val, Node * n)

value(val) ,
next(n) I

header(false)
{
}

216 Data Structure Programming with the Standard Template Library in C++

The class is entirely public. though it is nested within the protected part of its con­
tainer class. It has a constructor that takes a value to be saved and another node that is to
follow it in the list. The last node in a list will point to the head node of that same list.
We need the boolean value header to distinguish header nodes from other nodes. This will
help us implement after-the-end values of iterators. The other classes (CircleList and Itera­
tor) will operate directly on the fields of Node.

The Iterator class is implemented using a Node pointer named here and a boolean value
named isEnd. This latter variable is used to distinguish an iterator at the beginning of a
CircleList from one after the end. Both of these lterators will actually point to the head
node of their list. The complication single linking introduces that we mentioned in the
opening paragraph of this section is that when an iterator refers to a value within a node,
it must actually point to the previous node. This is because it is expensive to back up in
a singly linked list (we must run around the list to find the previous location), and many
of our operations require modifying the node that points to the one under consideration.
For example, to remove a value (and its node), we must change the pointer in the previ­
ous node, not the pointer in the node being removed which, after all, is about to be 00-
leted.

We create a new Iterator by making it point to the head node of its list and setting is­
End to be true if the list is empty and false otherwise. An empty list's new Iterator is al­
ready at the end.

class Iterator
II This is only a forward iterator.
II An iterator points to the node before the
II one it logically references.
{ Iterator(const CircleList<E> *const L)

here (L->head) I

{
}

isEnd(L->empty(»

private:
CircleList<E>: : Node *here;
bool isEnd;

friend class CircleList;
} ;

An Iterator to the end of the list will also point to the head node, but its isEnd will
always be true.

To de-reference an Iterator, we extract the value from the next node, not the current
one.

reference operator*()const
{ return here->next->value;
}

Chapter 7. Lists 21 7

We advance an Iterator with the usual node walk operation. However, we also advance
to the header node if we move past the logical end of the list. Thus, if the here variable
points to the last data node, then it logically references the following header node, so we
move there and set isEnd to be true.

iterator& operator++()
{ here = here->next;

}

if (here->next->header)
here = here->next;

if(here->header) isEnd
return *this;

true;

Two lterators are equal if they reference the same node and have equal isEnd values

bool operator==(const iterator& it)const
{ return here == it. here

&& isEnd == it.isEnd;
}

There is also a post increment operator++ and an assignment operator=, not shown
here.

A CircleList itself is created by creating a new head node and linking it to itself in a
self-circular way. We must reset the default values of the created node.

CircleList():head(new Node(E(), NULL»
{ head->next = head;

head->header = true;

The copy constructor, destructor, and overloaded operator= are implemented in terms of
two hidden helper functions free and copy, as is typically done. We will show copy and
free later.

CircleList(const CircleList& L) II copy constructor
{ copy(L) ;
}

-CircleList(){ free();}

CircleList& operator= (const CircleList& L)

218 Data Structure Programming with the Standard Template Library in C++

{ if (this == &L) return *this;
free() ;
copy(L) ;
return *this;

}

A CircleList is empty whenever its head points to itself. Since we don't maintain a
node count, we need to walk around the list to determine its size. It would be easy to fix
this, of course. We push a new value onto the front of our list by creating a new node to
hold it. Notice how the constructor of the Node class makes it easy to link the new node
in using only a single statement here.

void push_front(const E& val)
{ head->next = newNode(val, head->next);
}

Most list operations use iterators. We provide the usual begin and end functions.

iterator begin()const
{ return iterator(this);
}

iterator end()const
{ iterator result(this);

result.isEnd = true;
return result;

}

For example, we can insert a new item into the middle of a list by moving an iterator
to the point of insertion. The new value will be inserted before the logical position of the
iterator (but after the physical position). The comments refer to the logical position.

void insert(iterator& i, const E& val)
II Insert before i.
{ i.here->next = newNode(val, i.here->next);
}

We can erase an element in the middle of a list by first moving an iterator to its loca­
tion and then using CircleList::erase. This function removes the node after the one to
which the iterator points, but it never removes the head node, which would destroy the
list itself.

void erase(iterator& i)
II Removes value at location of i and
II moves to following location.

{ if(i.here->next == head) return;
CircleList<E>: : Node *temp

}

= i.here->next->next;
delete i.here->next;
i.here->next = temp;

Chapter 7. Lists 21 9

Note that, after erasing an element, the iterator refers to the following location auto­
matically.

We can then erase all of the elements of a list with clear. We can also use erase to im­
plement pop_front. We can then use clear to implement the hidden free function used in
the destructor.

void clear()
II Removes all elements from the list,
II leaving it empty.

{ iterator i = begin();
while(!empty(» erase(i);

}

void pop_front(){ erase(begin(»;}

void free ()
{ clear() ;

delete head;
}

7.3.1 Sorting a List

We can quicksort a list as easily as we do a vector or array. This is true even though we
have only a forward iterator into a list. We provide two versions of sort, one defined in
terms of iterators and the other that refers to only the list itself. Quicksort is not a stable
sort and the STL requires its List class to have a stable sort. Therefore, this one isn't quite
good enough. The STL sort uses a variation on merge sort.

void sort(iterator& start, iterator& done)
II PRE: done does not precede start.
{ if(start!= done)

}

{ iterator mid(done);
partition_aux(start, mid, done);
sort(start, mid);
sort(++mid, done);

}

220 Data Structure Programming with the Standard Template Library in C++

The partition_aux is the same one we saw in an exercise in Section 6.9 when we stud­
ied order statistics. The second version can easily use the first.

void sort()
II NOT stable, Therefore does not meet STL
II requirements. Requires a forward_iterator
II version of partition_aux.
{ if(size() > 1) sort(begin(), end(»;
}

7.3.2 Recursive List Operations

The STL prefers to implement most algorithms independently of its containers since we
can save effort and runtime code by doing so. However, as a general technique, there is a
very interesting way to implement list operations within a list class using recursion. A
list is a recursive data structure at the node level. The node consists of a value and another
node. We can use this idea to write functions (at the node level) that parallel the node
structure itself.

For example, we can copy a list by copying nodes recursively. To do so requires that
the copy function (of the CircleList class) use a function that works at the node level. Re­
call that copy is used in the copy constructor and in operator=.

void copy(const CircleList& L)
{ head = new Node(E() ,NULL);

head->next = head;
head->header = true;

}

Node *here L.head->next;
head->next = copy_aux(here, head);

Member copy works by first creating a new head node for the list this. It then sets the
next field of the head to be a pointer to a list that looks just like the list of elements of L,
with the exception that this list must terminate with the head of this, rather than the head
ofL. We use the recursive function copy_aux to create this list of nodes. We pass in a
pointer to the first actual data node of L and the head of this.

Node *copy_aux
(Node *here, Node *OriginalHead)
{ if (here->header) return OriginalHead;

Node *n = new Node
here->value,
copy_aux
(here->next,

OriginalHead

Chapter 7. Lists 221

) ;
return n;

}

If we call copy_aux pointing to a header node, it returns the original head node it was
sent. Otherwise, we create and return a new node that is constructed by taking the value
from the list being copied, and the next from a recursive call of copy_aux, that automati­
cally creates the rest of the list. Notice that this recursion creates the new list from the
back forwards, since the recursion in the parameter position must return before the new
operator completes. Some time spent understanding this function will be well spent.

For example, suppose we wish to copy a list containing 1, 2, and 3. Then the list's
nodes can be represented as head -> [1] -> [2] -> [3] -> head, where the second head is the
same as the first, closing the circle.

Copy_aux is passed the head of the new list being created and a pointer to [1]. It
works by creating a new node with a 1 in it and with a next that it first gets from a recur­
sive call that is passed the pointer to [2] and the same original head. This recursive call
tries to create and return a node with a 2 in it and a next that it first gets from another re­
cursive call: one with a pointer to [3] and the same original head.

This recursive call creates a node with 3 in it and a recursive call that passes a pointer
to the head node of the list being copied. This last recursion, seeing that it is at a head
node, returns the original head node of the list being created. It returns this node to the "3"
recursion that pastes this node as the next node of the node it creates and passes this
newly created node to the "2" recursion that uses it for the tail of the node it creates, etc.,
until we finally return back to the copy member that originally called copy_aux.

While this is difficult to explain and to understand at first, it is not especially difficult
to program correctly, and it is a very powerful technique.

A similar technique could be used to replace the clear member function with a recur­
sive equivalent. We again need an auxiliary function to get to the node level, where the
recursion takes place.

void clear_aux(Node * n)
{ if(n == head) return;

head->next = n->next;
delete n;
clear_aux(head->next);

void clear_rec ()
clear_aux(head->next);

222 Data Structure Programming with the Standard Template Library in c++

7.3.3 Some Difficulties with This Implementation

This implementation is simple, but it is not perfect, especially when we compare it to
the STL specification. We noted above that the STL wants a stable sort defined for lists.
The one presented here, while efficient, is not stable.

A more fundamental issue, however, is invalidation of iterators. If we have two itera­
tors to two adjacent nodes and pass the first one to erase, then we have invalidated the
second one, since it actually points to the node just erased. This is a very serious diffi­
culty and limits the uses to which we can put iterators. If we have lots of iterators in a
given algorithm, it is especially troublesome. If there is only one, it is not a difficulty.

Note also what happens if we have two iterators to the same location and we pass one
of them to insert. Then the other iterator will still be valid, but it will reference the newly
inserted value instead of the original. This might cause problems in some algorithms un­
less they were coded carefully.

Of course, the fact that we link singly and provide only forward iterators doesn't match
the specification of the STL either, but this is easily remedied.

The most serious flaw in CircleList is discussed in the exercises.

7.4 An Alternate Implementation of Lists

In this section we shall look at an implementation of lists that has some very interesting
properties, though it won't quite meet the specifications of the standard. The weakness
will be in the STL requirement that insertions and deletions not invalidate iterators. We
will also show a sort algorithm for lists that is interesting, but not stable. It therefore
doesn't meet the standard either, though a different sort could be used instead.

The first interesting property of this implementation illustrates a classic computer sci­
ence problem: that of the space-time tradeoff. It is often possible in algorithms and data
structures to trade space for time, where more space can be exchanged for faster algo­
rithms, or less space for slower ones. The programmer is encouraged not to be naive
about space vs. time, however, especially when using a modern operating system. Some­
times a smaller program will also run faster since it has a better fit with respect to the
page quota provided by a paged virtual memory management system such as UNIX. A
smaller program loads faster and generates fewer page faults; therefore, it runs faster.

The classic implementation of doubly linked lists uses two pointers in each node as
described above. This is true even when circular linking is used, as with the standard im­
plementation of STL list. We then have iterators that use a single pointer to refer directly
to some node. It is possible to turn this around, however, with one "pointer" in each node
and two pointers to adjacent nodes in each iterator. This is a positive tradeoff in space,
since we expect to have a lot of nodes, but few iterators. We put "pointer" in quotes
above, since the value saved in a node won't actually be a pointer to another node. Instead
it will be an access value that gives us the ability to generate a pointer to either the node
to the left or the node to the right as needed. To fully explain this, we need to examine
the properties of the exclusive or operator, called XOR, and represented in C++ by the

Chapter 7. Lists 22 3

standard operator'. For boolean values, XOR is true if and only if the two operands have
different truth values. The usual mathematical symbol for XOR is ®.

Properties of XOR

(l) Commutative
(2) Associative
(3) Identity
(4) SelfInverse
(5) Distinctness
(6) Cancellation
(7) Substitution

a®b=b®a
a ® (b ® c) = (a ® b) ® c
a®O=a
a® a=O
a ® b = 0 if and only if a = b
(a ® x) ® x = a
a ® b = (a ® c) ® (c ® b)

These properties can all be verified by looking at truth tables.
In this implementation (see [7]) of lists, we shall build a class template List<T>,

where the nodes hold a value of type T and an access value. This access of a node is the
XOR of pointers to the nodes to the immediate left and right of that node. This is depicted
in Figure 7.5.

value

access
.... ~

Figure 7.5. A node in an "access" list.

Iterators will be represented with normal pointers to two adjacent nodes. A few nodes
of a list and one iterator are depicted in Figure 7.6. We have also informally named the
nodes, a, b, c, and d. Then the iterator's left pointer refers to b.

55 a 22 b 31 c 18 d

~ axorc ~

Figure 7.6. An iterator into an "access" list.

224 Data Structure Programming with the Standard Template Library in C++

Then, if we have an iterator with pointers left and right and an access value,
left ->access = (a ® c), we can form right ® left ->access = c ® (a ® c) = a
by the commutative and cancellation properties. Likewise, we can get a pointer to node d,
with left ® right->access = b ® (b ® d) = d. Unfortunately, an iterator now refers to two
nodes, and removing either of them will invalidate that iterator. It is also a consequence of
this that we cannot navigate the list except with the use of iterators, since the access
value alone is not enough information to navigate. We need the additional external point­
ers provided in the iterators.

Note. however, that the nodes are smaller, by one pointer, than in the classic imple­
mentation, though traversal takes longer since we must also compute xors as we go.

We can compute the xor of two pointers with the following function. It is a static
member of the Node class. First we cast the two pointers to long values, then take the
xor and finally cast the result back to a pointer to a node of the desired type.

static Node* ExclOr(Node* a, Node* b)
{ return (Node*)«long)aA(long)b)i
}

So far we have seen List nodes and iterators, but we have not seen the lists them­
selves. A List is represented by two nodes, one for the head, which represents a before­
the-beginning location, and another for the tail, representing an after-the-end location. An
iterator can be thought of as representing the location of its right pointer. Therefore, the
beginO iterator of a list points to the head node and the first actual data node. Likewise,
the endO iterator points to the last actual data node and the tail node. An empty list can be
thought of as an iterator that points to the head and tail nodes. This is shown in Figure
7.7 where we have four data nodes and the head and tail.

list

~~G;JG:JQ8
t:;:J~~~~~ ,

c xor (axor c) = a

Figure 7.7 An "access" list with its nodes and an iterator.

Chapter 7. Lists 225

This figure also illustrates the computation of a node pointer. If we xor the right
pointer in an iterator (here a pointer to c) with the access value in the node to the left
(here a xor c), we get a pointer to a node one step farther to the left (here a). This can be
used as the basis of operator--. Reversing left and right in this description gives us opera­
tor++ from the Iterator class.

iterator& operator++()
{ List<data>: : Node *temp lefti

left = righti
right = Node: : ExclOr

(temp, right->access)i
return *thisi

Notice that the access values stored in the head and tail nodes imply that the logical
representation is also circular, but with two extra nodes instead of one. It doesn't fit the
philosophy of the STL, but this implementation mechanism can be used to create itera­
tors and list operations that are completely left-right symmetric. We could use the same
operations for moving left or right. This is because an iterator in this scheme faithfully
represents the location between two nodes and does so in a symmetric way.

In this implementation an iterator really represents the position between two nodes.
For this reason these iterators are sometimes called cursors because of the similarity of
cursors in word processing programs that represent the position between two characters in
a document. When we create an iterator, we locate it between the head and the first data
node.

Iterator(const List<data> *const L)
left(L->head) ,

{
}

right
(Node:: ExclOr

(L->tail,
L->head->access

As stated above, an iterator is said to reference its right location:

reference operator*()const
{ return right->valuei
}

Unlike our simple CircleList, however, we can walk to the left as easily as to the
right.

226 Data Structure Programming with the Standard Template Library in C++

iterator& operator--()
{ List<data>: : Node *temp right;

right = left;

}

left = Node: : ExclOr
(temp, left->access);

return *this;

Lists provide iterators to the beginning and the end of themselves, as usual.

iterator begin()const
{ return iterator(this);
}

iterator end()const
{ iterator result(this);

result.right = tail;
result. left = Node: : ExclOr

}

(head, tail->access);
return result;

Many of the remaining operations of this List class are the same as those of the Cir­
cleList class, since they just use iterators and do not depend on the implementation of the
lists themselves.

Since we provide a bidirectional iterator in this class, we can also provide reverse itera­
tors. A reverse iterator is one that iterates backwards from the usual way. To use them we
first export a type from the List class.

typedef reverse_bidirectional_iterator
< iterator,
data,
data&,
long
>

reverse_iterator;

Reverse iterators are defined within the STL using a template with four parameters.
The first is the iterator type it reverses. The next two are the value type and the reference
type of the iterator it reverses, and the last is an integer type that can be used to represent
differences between iterators. Here we assume long will work, though we could be more
sophisticated about this.

Next we provide rbegin and rend:

reverse_iterator rbegin()
{ return reverse_iterator(end());
}
reverse_iterator rend()
{ return reverse_iterator(begin());
}

Chapter 7. Lists 227

Finally, we need a constructor so that we can capture the position of a reverse iterator
in an ordinary iterator. Reverse iterators work by maintaining an ordinary iterator called
the base.

Iterator(List<data>: :reverse_iterator& r)
left(r.base().left),
right(r.base().right)

Having a reverse iterator type will allow us to apply many of the STL algorithms in
the reverse of the usual order.

7.5 The Iterator Invalidation Problem and Its Solution

Suppose we wish to write a series of algorithms on lists that will require lots of iterators.
Suppose also that the algorithms require frequent insertions and deletions from the lists.
Then the invalidations that occur when we delete a node may be unacceptable. Note that
iterators in the second implementation above also become invalid when we insert values.
This is because such iterators refer to two adjacent nodes. If we put a new node between
the two referenced by another iterator, we invalidate that iterator.

Lets examine a mechanism by which iterators may be updated automatically when the
list that they reference becomes modified. To do this we will build a subclass of whatever
list class we wish to extend. Before doing so, we should change all of the base class pri­
vate data to protected so that we may get access to it in the subclass. The new class will
be called SafeList. We will extend the "access" list of Section 7.4, for example.

In a safe list we require an additional member variable and also derived "safe" versions
of the Iterator and Node classes. A SafeList will be built out of SafeNodes and will permit
the use of Safelterators, as well as ordinary iterators. A Safelterator is one that is auto­
matically updated when a node that it references becomes deleted, or when a node is in­
serted between the two that it references. The overall structure of our new template fol­
lows.

template <class data>
class SafeList:public List<data>
{

228 Data Structure Programming with the Standard Template Library in C++

} ;

ers.

class Safelterator:public List<data>::iterator
{

friend class SafeList<data>;
} ;

class SafeNode:public List<data>: : Node
{

} ;

friend class SafeList<data>;
friend class Safelterator;

The extra variable of SafeList is actually a pointer to a List of SafeList iterator point-

List< Safelterator *> *_Iterators;

The basic idea is that when we create a new safe iterator, we insert it into the
_Iterators list of its Safe List. Then, when any change is about to be made to the nodes,
the list notifies each of the iterators in its _Iterators list of the node to which the change
is being made. If that node is of interest to an iterator, it has a chance to change its posi­
tion, anticipating the change.

When we want a safe iterator, we ask a safe list for one using begin_safe.

iterator begin_safe{)
{ Safelterator result{*this);

return result;
}

The constructor of the safe iterator inserts it into the safe list's iterator list.

Safelterator{SafeList<data> & L)
Itera tor (&L) ,

{

}

_owner{L)

if{!L._Iterators)
L._Iterators

= new List<Safelterator *>();
L._Iterators->push_front{this);

Then when a change is made, we can notify all of the iterators, though usually we
don't notify the iterator that is responsible for the change, since it knows about the
change already.

Chapter 7. Lists 229

void insert
(List<data>: :iterator& i, const data& val)

II Creates a new location at this
II position. Leaves the location with
II the new value to the left. Notifies
II all safe iterators of the change.

{ Node* oldLeft = i.left;
Node* oldRight = i.right;
List<data>: :insert(i, val);
Node* aNode = i.left;
notifyOthers

(&i,oldLeft, oldRight, aNode);

We require a new member of SafeList to perform this notification:

void notifyothers I/Notify all except

}

II skip (may be NULL)
List<data>: : Iterator* skip,
Node *N,
Node *M = NULL,
Node *ptr = NULL

if <-Iterators)
{ List< Safelterator* > ..

}

Iterator nextlterator
= _Iterators->begin();

while
(nextlterator != _Iterators->end(»
{ if (*nextlterator != skip)

(*nextlterator)->
notify(N,M,ptr);

++nextlterator;

When an iterator gets the notify message, it must update itself.

void notify
(Node *N,

Node *M,
Node *ptr

)
{ if(!M) II Removing N

230 Data Structure Programming with the Standard Template Library in C++

}

{ if(left == N)

}

left = List<data>: : Node: : ExclOr
(right,

«SafeNode*)N)->getaccess()
) ;

else if (right == N)
right = List<data>: : Node: : ExclOr

(left,
«SafeNode*)N)->getaccess()

) ;

else II Inserting between Nand M
if(left == N && right == M)
{ left = ptr;

II NOT Symmetric, always Left.
}

We need safe nodes as well, since SafeLists and Safelterators won't be able to get ac­
cess to the access value of the Node class. Therefore, we must provide members in
SafeNode to get and set these access values.

Finally, when a Safelterator is destroyed, it must get removed from the list's _Iterators
list.

-Safelterator()
{ «SafeList<data> &) _owner)

.deregister(this);
}

The deregister member of SafeList does the actual removal.

void deregister(SafeIterator *C)
{ if(_Iterators)_Iterators->remove(C);
}

This technique is not unique to lists. It can be applied as necessary to other container
classes.

7.6 Techniques for STL Lists

Next we will return to the STL itself and show a few techniques for programming with
lists. We will briefly illustrate some common problems and their solutions. Along the
way we will also discuss some additional STL algorithms.

Chapter 7. Lists 231

7.6.1 Finding an Item in a Sorted List

Suppose that we have a list that has been sorted with operator<. Suppose we need to
search it for a value named target of type data. We may not be sure that target is present
in the list at all. However, when we search sequentially from the beginning, we may stop
searching when any of the following conditions is true.

(1) We reach the end of the list.
(2) We find the value we seek.
(3) We find a value bigger than the one we seek.

We can combine the last two conditions into one:

(2') We find a value not less than the one we seek.

Combining this with requirement (1), we get

List<data>:: iterator i = L.begin();
while (i != L.end() && *i < target) ++i;

Note that the order of the two conditions is important so that we don't move past the
end of the list before checking to see if we have reached the end.

The find generic algorithm will search beyond the point at which the value would oc­
cur in a sorted list when it is not present and keep searching to the end of the list. How­
ever, algorithm find_if may be used in this case. This algorithm takes a predicate to 00-
termine when it should return a location.

bool notBigger(data v)
{ return! (v < target);
}

List<data>: :iterator i
notBigger) ;

find_if(L.begin(), L.end(),

Note that with both of these methods, we don't know at the end whether the value was
found. We must do an additional check of iterator i. This is because both have a com­
pound exit condition.

7.6.2 Inserting into a Sorted List

To insert a value into a sorted list without destroying the sort property, we first must
move an iterator to the point of insertion and then use that iterator to insert. The methods
of Section 7.6.1 leave us in an appropriate location for inserting the value target. This is

232 Data Structure Programming with the Standard Template Library in c++

because they leave us at the first location not less than the target, and insert inserts its pa­
rameter before the location of the iterator.

List<data>: :iterator i = find_if(L.begin(), L.end(),
notBigger) ;
L.insert(i, target);

7.6.3 Applying an Arbitrary Function to Each Element of a List

Sometimes we need to apply some operation to each element of a list or other structure.
If this is just a data-gathering operation (summing the elements, for example), then it can
be applied to a list of const values using a const iterator. It might also be a data­
modifying operation, however, in which case a normal iterator is used. If we are applying
only data-gathering operations (const operations), then we may use algorithm for_each.
This algorithm applies a function of one parameter to each of the elements of a range. If
the function returns a value when called, these values are ignored. How does such a func­
tion do any work, then, if it is const and returns no usable value? The answer depends on
nested scopes and global variables. For example, we can sum the elements of an array of
float values with the following:

float total = 0.0;
void addNext(float v)
{ total += v;
}

for_each (L.begin(), L.end(), addNext);

In fact, for_each returns the function object that it was passed, though this value is of­
ten ignored, as here. This object can, of course, have member variables that were modified
each time the object was called "as a function." These variables can collect information
for us.

The foceach algorithm cannot be used to modify the contents of the list, but if the
list contains values that are themselves mutable (as floats are not), then we could apply a
function to each of them that would perhaps modify the state of the values stored. For ex­
ample, if we had a list LS of Stacks and wanted to push the same value on each of the
stacks in our list, we could use for_each with the following function:

void pushNext(Stack& S)
{ S.push(value);
}

Note that we only get to pass one parameter to the function for3ach, so the value to
be pushed on each stack must be a global value. Note that

Chapter 7. Lists 233

for_each (LS.begin(), LS.end(), pushNext);

leaves us with a list of the same stacks, but each of those stacks has been modified. The
reference parameter of pushNext is required so that we push onto the actual stacks in the
list and not onto copies passed by value to pushNext.

For each does not depend on lists. It is defined in terms of input iterators, which
makes it very general.

7.6.4 Splicing Lists

Splicing is an operation that is unique to lists and other linked structures. Instead of copy­
ing values from nodes or other similar cells, it is possible to relink the nodes themselves,
first unpinning a node from its location in a list and then linking it into some other posi­
tion in the same or another list. The list template has three member functions that ac­
complish this task. The first unlinks all of the nodes of one list as a unit and links them
into the current list at the location of an iterator. Here, "at the location of an iterator"
means just before the value that the iterator references. This can involve thousands of
nodes, but takes constant time. Just the time to adjust a few pointers. It leaves the other
list empty, however, and any iterators into that list will now refer to nodes of the current
list.

void splice(iterator position, list<T>& x);

The second version unlinks a single value (node actually) from an iterator position i in
a list x and relinks it into an iterator location named position in the current list.

void splice
(iterator position,

list<T>& x,
iterator i

) ;

The last version unlinks a range from a given list back into a given position in the
current list.

void splice
(iterator position,

list<T>& x,
iterator first,
iterator last

) ;

Splicing is especially useful when very large data values are stored in list nodes. We
can move them around without the overhead of actually copying the values. Splicing also

234 Data Structure Programming with the Standard Template Library in C++

has the advantage that an iterator, which is logically a reference to a value, "moves" with
the node automatically, leaving it a reference to the same value. When we move values
between nodes, an iterator, being implemented as a pointer to a node, stays with the node
and hence references a new value.

7.6.5 Merging Sorted Lists

The merge algorithm of the STL is defined in terms of input iterators, so is suitable for
use with lists. It may be, however, that a splicing version is more appropriate in some
situations. This would be the case if we didn't need the input ranges after the merge. We
would also avoid allocator calls when splicing. As usual, splicing is especially useful
when the values stored in the list are large and hence have a high copying cost. The STL
provides this function as a member of the list template.

7.6.6 Reversing a List

The reverse algorithm can be used with lists, since it uses bidirectional iterators. The ba­
sic idea of reversing a range is to swap values at the extremes of a list (or other range) us­
ing two iterators, and then move both iterators toward the middle. The algorithm halts
when they reach the middle. (Why?) A specialized version could be provided for lists that
would avoid copying the elements. If the next and prev pointers in each node were
switched, then the list would be reversed. This would also automatically reverse the direc­
tion of any iterators into the list.

For the "access" list implementation that we showed in Section 7.4, a list can be re­
versed simply by swapping the head and tail pointers in the list itself. This would have an
unfortunate effect on iterators, however, as a bit of study will show.

7.6.7 Building a Spelling Dictionary

Suppose that we need to build a large sorted list of correctly spelled words for use as a
spelling dictionary. The list needs to be sorted so that we can use binary search to find a
given word in it quickly. Actually, there are other mechanisms as well that will provide
quick lookups-hashing for example-but we focus on sorting here.

One way to build such a dictionary is to start with several large text files, such as on­
line novels and technical reports and the like. We first read them into a sequential struc­
ture such as a list or a vector, with one word per location. Next we sort this list with an
efficient algorithm. This might take a long time if there are a lot of words, as there
should be. Next, we apply algorithm unique to the sorted structure, which removes all ai­
jacent repeats of elements. This leaves us with exactly one copy of each word. If we 00
this separately with several files, we can merge them together with a specialized merge
that doesn't create copies. (See algorithm set_union.)

Finally, we can write our sorted structure to a file for later use. When actually used as
a spelling dictionary, it should not be stored in a list, however, as lookups would take too

Chapter 7. Lists 235

long. A sorted array or vector would be better, or a set, to be discussed in the next chap­
ter. There are also specialized data structures that let us store such a word list efficiently.
One such commonly used structure is called a trie (pronounced tree). Briefly, a trie is a
tree in which each node has many children. The actual root of the tree is a dummy node,
and its children hold the various possibilities for the first characters in the words of our
word lists. For English, if we pennit both capitalized and uncapitalized words, we need
fifty-two children of the root. If any word begins "ab" (several do), then there is a b below
the a node. If any word begins "abo" (several), then there is an 0 below the b node that is
below the a node. Since "about" and "above" both occur in English, there is both a ''v''
and a "u" below our 0 node. When we traverse this tree, we get a correctly spelled word.
When we reach a missing node, we complete a spelling. We will have more to say about
trees in the next chapter.

7.6.8 A Merge Sort Suitable for Lists

The standard merge sort works by dividing a vector or array into two equal parts at the
middle element. It then recursively sorts those two parts and then merges the sorted re­
sults into a sorted whole. When you think about what really happens in the recursion,
however, you discover that since the division comes first in the original, it will come
first in the recursions as well. This means that the algorithm works by first continually
dividing and redividing, etc., until there is nothing left to divide (minilists of just one
element, which are sorted of course), and then it starts to merge the little pieces together
into sorted larger pieces. The important thing about the algorithm, however, is the merg­
ing, not where it gets the items to merge, or the order in which it does the many different
merges that make up the whole.

Suppose that we start with an unsorted list. As an auxiliary storage structure we will
use an array or a vector of lists. The lists in this array (say) are composed of nodes ex­
tracted from the list to be sorted by unsplicing them from the original and splicing them
onto one of the lists of the array. When we unsplice a node from one list and splice it
into another, we say we transfer the node. Initially this array is composed of empty lists,
and in general each list in the array will be kept sorted.

We start the algorithm by transferring the first node of the original list into the first of
the lists in the array. Next we take one node from the original list and merge it with the
single element in the list in the array to get a two-element sorted work list. We install
this work list as the second element of the array. We now repeat the above until we get a
second two-element sorted list in the work list. We can now merge this with the other
two-element list in the array to get a sorted four-element list that goes into the third slot
in the array. Now we repeat all of the above until we obtain another four-element sorted
list that we merge with the one we already have to get an eight-element list for the next
slot of the array. This process continues until we empty the original array, though at the
last stages we won't have work lists of the maximum length. This is no problem for
merging, however. This entire process can be managed with a loop that on each pass cre­
ates a sorted list whose length is the next higher power of two by first creating one of the

236 Data Structure Programming with the Standard Template Library in C++

same length as the one on the previous pass and then merging with the one created on
that pass.

Notice that we only need to move forward in each of the lists that we process, so this
is easily done with only forward iterators or the equivalent. This technique can be used as
the basis of the sort member of the list class.

7.7 Summary

Make certain that you understand each of the following terms:

circularly linked list
cursors
doubly linked list
iterator invalidation
nested classes
reverse iterators
splicing
xor

7.8 Exercises

1. Write a recursive member for CircleList that removes all elements between two itera­
tors. The second iterator should be a past-the-end location for the range to be removed.

2. Notice that CircleList becomes more useful within the context of the STL if we re­
think the idea of front and back. In particular, if we change the name of push_front to
push_back, and front to back, we can use a CircleList with a Stack adaptor. Discuss this
and implement it.

3. CircleList has a very serious flaw. What happens if we attempt the following?

CircleList<int> C;
c.push_front(S);
c.push_front(6);
C.insert(begin(), 7);
C.insert(end(), 8);

Analyze this problem and solve it.

4. Doubly link the CircleList class. Every node needs an additional pointer: previous, that
points to the previous node. Change the Iterator class so that an iterator points to the
node that contains the value it references. Note that this requires some changes to the Cir-

Chapter 7. Lists 237

cleList members as well. Do we still need the isEnd field of Iterator? Be sure to do this
exercise in a way that insertions and deletions don't invalidate other iterators, unless we
delete a node that an iterator refers to.

5. Provide a bidirectional iterator for the doubly linked CircleList class of Exercise 4.

6. Build a safe version of your updated doubly linked circular list.

7. In Section 7.6.6, we mentioned a bad effect of reversing access lists by simply revers­
ing their head and tail pointers. Carefully explain this problem.

8. Implement the merge sort algorithm discussed at the end of this chapter as a member
function of the CircleList class discussed near the beginning.

9. Discuss the tradeoffs in space and time as well as the compromises in functionality of
the different list implementations discussed in the text.

10. Should the STL have a singly linked list structure as well as list? Justify your an­
swer.

11. What is the comparative cost of a free store allocation of a small block compared to a
simple assignment statement? Devise an experiment to find out. Carry out the experiment
and report on your results.

Chapter 8
Sets, Maps, Multisets, and MultiMaps

8.1. Sequential Versus Sorted Containers

In Chapter 2 and in 3 through 7, we studied container mechanisms in which there was a
direct linear, or sequential, structure. Elements had a physical order. When we sort them
we make their logical order conform in some way with the physical order. STL sorted
containers are quite different. These containers are always kept logically sorted, so that if
we write them out the values are reported in increasing order according to some rule.
When we insert into a sorted container, it is placed somewhere internally consistent with
that logical order. As we shall see, however, there is no necessary physical relationship
between the logical position and its physical location. In fact, many different physical ar­
rangements can be equivalent to the same logical one, since the physical structure is not
sequential.

In some ways the term set for the STL template of that name is misleading, since
STL sets require that the elements inserted obey a comparison relation. This relation is
usually operator<, though we can substitute others. In mathematics we can have sets of
things that can't be easily compared like this. Also, STL sets are always sorted, though
order and sorting is not part of the mathematician's idea of set.

Otherwise the name is well chosen, since in a mathematical set, if we insert an item
into it and it was already present, we don't change its state. This is true of STL sets also.
In other words, a given value can only be present once in a set, if at all. Multisets, how­
ever, permit multiple inclusions of the same element. We can also perform set like opera­
tions on STL sets (and Maps, etc.). For example, secunion and seUntersection are STL
algorithms, but they only work correctly if the containers that they operate on are sorted.
Therefore, they work most naturally with structures such as sets and maps.

The four templates we discuss here are sets, multisets, maps, and multmaps. They are
called sorted associative containers, though the word associative really only applies to
maps and multimaps. Map and multi map containers are used to associate pairs of values
together. Each pair consists of two parts, a key and a value. The keys must be compara­
ble, and the containers are kept in key order. In a map, only one pair with a given key
may be present at any time. With multimaps, a key may be present several times. There­
fore a map is like a set of ordered pairs, with the first element (the key) being unique

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998

240 Data Structure Programming with the Standard Template Library in C++

within the map. Mathematically this is called afunction. Another name for a mUltimap is
relation.

Sorted containers could be implemented many ways, of course, including with lists
and vectors. We could even impose a set-like property on lists or vectors, but each of
these structures has an important disadvantage. This is because to insert an item we need
to know if it is present already. With a vector this can be easily determined using binary
search. But then comes a difficulty, for which, lists would provide a better solution. Once
we decide an item belongs (and we know where it belongs), we must make room for it
somehow. In a vector we need to move other items, perhaps a lot of other items. With a
list we can simply insert a new node at the desired location. So each of the existing struc­
tures has important advantages, but serious disadvantages for use as sorted containers.
Therefore, we seek an alternate storage mechanism. It will take us around a bit of a diver­
sion, but we shall get to this soon. Trees are what we need, but a certain kind of tree.

8.2 Binary Trees

Trees are linked structures like lists, but in a list a node is connected to at most two other
nodes, while in a tree, a node can be connected to many other nodes. Mathematically a
tree is a connected graph without cycles, meaning that there is exactly one path between
any two vertices. Normally one vertex, or node, is singled out and called the root of the
tree. Given a root, some nodes are connected to only a single other node. These are called
leaves of the tree. All other nodes are called internal nodes. Of all the nodes connected to a
given node (other than the root), one will be closer to the root than the others. The others
are called the children of the given node. The one closer to the root is called the parent.
The height of a node is the number of links from that node back to the root. The height
of a tree is the maximum height of all of the nodes of the tree.

The simplest kind of tree is one in which each of the internal nodes are connected to
three nodes, the parent and two children. These binary trees were discussed in Chapter 3.
To implement binary trees, we need to implement the nodes and the links. The usual way
is to implement the nodes with a class and the links with pointers. In Chapter 3 we pro­
vided only two pointers in each node: to the two (potential) children. This makes move­
ment toward the root difficult and expensive, however, so we will provide a pointer to the
parent node as well here. Therefore, a binary tree node is something like the following:

struct node
{ T _data;

nodeptr _left;
nodeptr _right;
nodeptr -parent;
node
(T data = TO,

nodeptr parent = NULL,
nodeptr left = NULL,

} ;

{

}

Chapter 8. Sets, Maps, Multisets, and Multimaps 241

nodeptr right = NULL

_left(left) ,
_right (right) ,
-parent (parent) ,
_data (data)

Processes for manipulating these nodes are very similar to those for lists. It is just
that there is about twice as much work. We also need to be careful that we don't try to
make the same node the child of two others, because then we wouldn't have a tree any­
more.

8.3 Binary Search Trees

A binary search tree is a binary tree, but it holds data that can be compared with some­
thing like operator<. The built-in types of c++ have such a comparison, though the
comparison for strings (or any pointers) is quite meaningless. Therefore, the STL permits
the user to define alternate comparison operations using function objects. A comparison
object is either a binary function returning bool, or an object in a class that has such an
operatorO defined. For example, a comparison function to compare strings might be

class stringLess
{ bool operator(char* sl, char* s2)

{ return strcrnp(sl, s2) < 0);
}

}

If we have two strings, a and b, and an object compare of type stringLess, then

cornpare(a, b)

returns true if string a comes before string b.
Given a type with a suitable comparison operation, a binary search tree keeps values

of that type in a binary tree maintaining a certain "sort" property. In particular, for any
given node storing a value v, all values that compare less than v will be in the left child
subtree rooted at v's node and all values that compare greater than v will be to the right of
that node. Those that are equivalent to v could be to the left or the right. We can quickly
find a value if present in a binary search tree by starting at the root. If it is equal to the
value we seek, we stop. If our value is smaller than the root, we search left, otherwise
right. We can repeat the same process at each node, stopping when we find our target, or

242 Data Structure Programming with the Standard Template Library in c++

when we reach a missing node. It is here that we should insert the value if that is our
goal.

An interesting feature of binary search trees is that if we list all of the elements by re­
cursively listing all of the children to the left of a node before we list the value in that
node, and all of the values in children to the right afterwards, then the values are listed in
sorted order.

Another interesting feature of binary search trees is that they can provide very fast in­
sertions and deletions of values. This is because a binary tree can hold a lot of nodes for a
given height. If we only need to search a single path from root to leaf to insert or remove
a value, then the time required can be logarithmically related to the number of nodes in
the tree. This is because in a tree with all leaves at about the same height, up to about
half of the nodes are in the leaves. So each time we increase the height by one, we double
the potential number of nodes that the tree can hold. Given this potential high density of
a binary tree, combined with the easy mechanism for fmding a value or finding the place
in which a new value could be put, we get very fast searches, inserts, and deletions.

8.4 Balanced Binary Search Trees

One potential problem with the above characterization of binary search trees is that "it
ain't necessarily so." That is to say, binary search trees don't need to be full, or hold the
maximum number of nodes for their height. In particular, we could think of a linked list
as a binary search tree in which there are no left children and all "next nodes" represent
right children. Here the height of the tree is the same as the length of the list, in which
case searches take linear time, not logarithmic time. There is a huge difference between
these for large values of n. For example, the log of one million (base 2) is about 20. This
is quite a bit less than a million. Therefore, to achieve good running times for binary
search trees, we must keep them balanced.

A balanced binary tree is one in which the leaf nearest to the root is not too much
closer than the one farthest from the root. A good rule of thumb is that the farthest leaf
should be no farther than twice the distance of the nearest leaf. This is reasonably easy to
maintain by a variety of mechanisms while providing good performance. Keeping a tree

full (where the farthest leaf is no more than one link farther than the nearest) is much
harder to maintain as we insert and remove items, adding to the cost of doing so.

8.5 2-3-4 Trees

We digress for a moment and describe a slightly different kind of tree. See [6]. It is not a
binary tree in that its nodes don't all have two children. In a 2-3-4 tree, each node has ei­
ther two or three or four children. It stores one less value than it has children, so a 4 node
has 3 values stored in it. It is convenient to think of the values as being stored between
the pointers that represent the children. The values in a node are stored in order. The val-

Chapter 8. Sets, Maps, Multisets, and Multimaps 243

ues in a subtree stored below a node have values between the values that bracket that sub­
tree's pointer. See, for example, the 3 node and its children shown in Figure 8.1.

10 20

Figure 8.1. A 3 node with its subtrees.

It is possible to insert into a 2-3-4 tree keeping all of the leaves at exactly the same
height. The tree only needs to be increased in height when all of its nodes are 4 nodes.
For example, if the tree consists of a single 4 node it has height zero and stores three val­
ues. When we add the fourth value we can split the root node into a 2 node with one value
and two children, a 2 node and a 3 node. This gives room for four values altogether. The
height is one and all leaves are at height one.

The disadvantage of the 2-3-4 tree is the fact that the algorithms are all complicated by
the several values stored in the nodes. It is much easier to maintain a binary tree with
only one value in each node.

8.6 Red-Black Trees

A red-black tree can be thought of as a way to implement a 2-3-4 tree. A 2 node (binary
node) in a 2-3-4 tree is, of course, the same as a binary tree node. A three node can be rep­
resented by two linked binary nodes as shown in Figure 8.2. Actually there are two differ­
ent (symmetric) ways to represent this node.

To distinguish the "true root" of such a node (the node with the 10) from the node that
implements the internal structure of the 2-3-4 node it represents, it is convenient to speak
of the true root node as being black and the other as being red. Similarly, a 4 node in a 2-
3-4 tree can be built from a black node and two red nodes. The resulting red-black tree is
balanced in the sense defined above: no leaf is more than twice the height of any other.
This can be seen from the observation that a red node always has black nodes both above
and below it. And it comes from a completely balanced 2-3-4 tree.

244 Data Structure Programming with the Standard Template Library in C++

Figure 8.2. The 3 node of Figure 8.1 as two 2 nodes.

Figure 8.3 shows a red-black tree with twenty-two elements. The red nodes are marked
with ovals. Figure 8.4 shows the equivalent 2-3-4 tree with the "colors" of the values
preserved. This is not, of course, the only red-black tree that can hold these items. It W­
pends on the order in which the items are inserted (55, 22, 33, 88, 11, 13, 42, 75, 8, 31,
17,29,34,51,93, 12,9,7,63,70, 15,32). A different order would likely lead to a dif­
ferent tree.

33

Figure 8.3. A red-black tree.

Note that the height of the red-black tree is four, while the leaf closest to the root has
height three. In the 2-3-4 tree, however, all leaves are at height two.

Chapter 8. Sets, Maps, Multisets, and Multimaps 245

Figure 8.4. An equivalent 2-3-4 tree.

If we sort the input data before inserting it into the tree we get a dramatically different
tree, as shown in Figure 8.5. As a red-black tree it has height six, though as a 2-3-4 tree
the height is three. Note that the value 33 was the root of the first tree, but a leaf in this
one.

Figure 8.5. Another red-black tree with the same data.

246 Data Structure Programming with the Standard Template Library in C++

Note that in this latter tree, the leaf with 93 is at a height of six, and no node has a
height less than three. No node is at a height more than twice that of any other.

8.7 Sets and Multisets

Multisets are the simplest STL sorted associative containers. A multiset simply contains
comparable values in a sorted collection. There may be repeats of the data, so that in a
multiset<int> the value 5 could appear several times. Since the container is sorted, a list­
ing of it would list all of the 5s together, of course. An STL set is somewhat more so­
phisticated in that it guarantees that an item is present only once, if at all. The interface
of set and multiset is nearly identical, however. They support exactly the same opera­
tions. This interface is shown below.

template <class Key, class Compare>
class set
{ public:

typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;

typedef rep_type: :const_reference reference;
typedef rep_type: :const_reference

const_reference;
typedef rep_type: :const_iterator iterator;
typedef rep_type: :const_iterator

const_iterator;
typedef rep_type: :const_reverse_iterator

reverse_iteratori
typedef rep_type: :const_reverse_iterator

const_reverse_iterator;
typedef rep_type: : size_type size_type;
typedef rep_type: : difference_type

difference_type;

set(const Compare& comp
II empty set

set

Compare ()) ;

(const value_type* first,
canst value_type* last,
const Compare& comp = Comparee)

); II Create a set from an iterator range
set(const set<Key, Compare>& x);

} ;

Chapter 8. Sets, Maps, MuItisets, and Multimaps 247

set<Key, Compare>& operator=
(const set<Key,

Compare>& x
) ;

key_compare key_comp() const;
II returns the compare function

value_compare value_comp() const;
II returns the compare function

iterator begin() const;
iterator end() const;
reverse_iterator rbegin() const;
reverse_iterator rend() const;
bool empty() const;
size_type size() const;
size_type max_size() const;
void swap (set<Key, Compare>& x);

II Swap contents of 2 sets.

pair<iterator, bool> insert
(canst value_type& x
) ;

iterator insert
iterator position,
const value_type& x

) ;
void insert

) ;

const value_type* first,
const value_type* last

void erase(iterator position);
size_type erase(const key_type& x);

II Returns number of elements erased.
void erase(iterator first, iterator last);

II set operations:
iterator find(const key_type& x) const;
size_type count(const key_type& x) const;
iterator lower_bound(const key_type& x)

const;
iterator upper_bound(const key_type& x) canst;

pair<iterator, iterator> equal_range
(const key_type& x
) const;

248 Data Structure Programming with the Standard Template Library in C++

Sets and multisets are one area in which the C++ standard is ahead of the state of C++
compilers (in early 1997). The actual standard for STL sets has a default value for the
Compare template parameter (as well as for an allocator):

template < class Key,

class set
{ ...
}

>

class Compare less<Key>,
class Allocator = allocator

This means that the user does not need to specify the Compare function (or function
object) if the standard less (which uses operator<) is the desired comparison. Most current
compilers, however require the user to give the argument, so that to create a set you write
something like

set< int, less<int> > tokens;

The Compare argument is only used as the default, however, and you can create a set
using a different comparison by specifying it in the constructor. Note that the Allocator
argument specified in the standard doesn't need to be given currently, as compiler writers
assume a default allocator and don't give the user much opportunity to substitute another
one currently. This will change as compilers are updated to accept default template pa­
rameters.

As usual, set exports several types. The most important one is value_type, which
gives the type of values that may be inserted. It is the same as the Key type provided as
the template parameter. The key_type and the value_type are the same for sets and mul­
tisets. We will see that they can be different when we examine maps and multimaps
shortly.

Sets provide bidirectional iterators, so a number of the algorithms that require random
access iterators can't be used. For this reason, some of those algorithms have specific ana­
logs here. In particular, the set operations, find, lower_bound, upper_bound, and
equal_range provide the functionality of the binary search algorithms provided elsewhere.
Those generic algorithms require sorted ranges (which sets are) specified by random access
iterators (which sets do not provide). As we have seen, the tree implementation of sets
provides efficient search mechanisms, just as does binary search.

Note, however, that sets (and multi sets) only provide const iterators. You can't use an
iterator over a set to change a value in the set. This is because the only values are the
keys themselves. To change the key requires repositioning the item. This is not a prob­
lem for maps and multimaps, since we store pairs in which the key is itself a const value.
An iterator can be used there to modify the data part.

A few of the above function prototypes might not be obvious. One surprising mem­
ber of the set interface is the insert function, since it returns a pair of an iterator and a
bool. When we go to insert an item into a set, it might already be present. If it is not

Chapter 8. Sets, Maps, Multisets, and Multimaps 249

present, the insert function returns an iterator to the point of insertion and true for the
bool. If it was already in the set, then we do not insert the new copy, but return an itera­
tor to the original value and false for the bool. Since the equivalent multiset operation
always inserts, it returns only the iterator to the newly inserted element.

One other insert member might be puzzling:

iterator insert
iterator position,
const value_type& x

) ;

This function uses the position argument as a hint as to where to start looking for the
proper location of the value. If the hint is accurate (namely an ancestor of the proper loca­
tion), then the insert will be sped up.

The erase (value) member erases all copies of the value, which for a set is at most
one. For a multiset, however, it might erase several elements. It returns the number w­
leted. We need to be careful in the interpretation of what is erased by this function. The
algorithm does not use operator= to check for a match between the parameter and the
item stored. Instead, it uses the comparison operator to look for equivalent values. Values
are equivalent if the comparison operator applied in both directions returns false: i.e.,
!compare(a,b) && !compare(b,a).

Knowing that the implementation is a balanced binary tree, we can deduce the running
time of most of the setlmultiset operations. Insertion takes Ig(N) time per item inserted,
where N is the current size.

If we erase an item "by value," the time is logarithmic, but if we do so "by position,"
it is amortized constant. This is because we can avoid the search for the item initially. It
is not actually constant, since the tree needs to be rebalanced after a deletion and that can
take time, but as we are balancing a subtree, and the overall tree is growing smaller as we
delete, the time averages out to a constant. The set operations are all logarithmic in run­
ning time.

One use of sets is in analyzing the variables in mathematical formulas or program­
ming constructs. Consider the following fragment:

int x = 0;
while(x < 10)

Y = Y + x;

Here we see a simple programming fragment that uses two variables. The usage of the
two variables is somewhat different, however, since x is defined within the fragment it­
self, and y is not. We say that x has one definitional occurrence and two applied occur­
rences, while y has only two applied occurrences. We also say that the applied occurrences
of x are bound to the definitional occurrence, since that definition determines what vari­
able is used when the name x is used. We also say that the two occurrences of y are free,
meaning not bound to any definition within this fragment.

250 Data Structure Programming with the Standard Template Library in c++

Compilers and other language processors often need to know which variables are free
and which are bound in a fragment of code such as a function body. One way to do this is
using sets. When we see a definition of a variable we insert it into a set of bindings.
When we see an applied occurrence, we check to see if that name is currently bound by
examining the binding set. If so, we insert an item into the bound occurrence set, other­
wise into the free occurrence set. If we come to the end of the scope of a definition (end of
a function body, for example), we can remove the variables defined in that definition from
the bindings set.

8.8 Maps and Multimaps

Maps and multimaps are similar to sets and multi sets in that they keep a collection in
sorted order using a binary tree structure as implementation. The interfaces are quite simi­
lar also. The big difference, however, is that maps and multimaps store pairs of values
rather than just values. These pairs are special also. The first component of the pair is
called its key and the second component is the data. The data can have any type whatever,
but the keys need to define a compare operation. Maps and multimaps are ordered by key.
A map or a multimap is just a simple database in which we want to store information
distinguished by some characteristic called the key.

A phone book is such a database (like a multimap) in which the keys are the names of
individuals or businesses and the phone numbers and other information are the data. A dic­
tionary is another example of a sorted container of key-data pairs.

The pairs that are stored in maps and multimaps are sometimes called associations. It
is from this that the terminology sorted associative containers for sets, multisets, maps,
and multimaps arises. The reason that both key_type and value_type are exported from
sets and multisets, when a single type would do, is to keep the interfaces between these
classes as close as possible to each other. In maps and multimaps, the value_type is the
pair type consisting of the key and data types.

When we create a map or multimap, we need to supply both key and data types as
well as a compare operation on keys. For example,

map< int, char*, less<int> > errorDB;

defines a map with integer keys and string data using the standard operator< for its key
comparison. One use of this structure might be to keep error numbers and the associated
error messages together in a large program that wanted to do meaningful error reporting to
its users. The program could generate error numbers and the map could be used to generate
messages to the user.

Maps permit only a single occurrence of a given key to be present, so that they are
set-like. In particular, two pairs with the same key but different data cannot be simultane­
ously present in a map, though they can be in a multimap. If you try to insert a pair into

Chapter 8. Sets, Maps, Multisets, and Multimaps 251

a map and another pair with an equivalent key is already present, the insertion will not be
done. Instead you will get back an <iterator, boo!> pair pointing to the already present
pair and the bool false. You can use the iterator to erase the existing element and then re­
insert the original pair if desired.

A map has two compare functions. The first, and the one given when the map is cre­
ated, is the keY30mpare function. The other is called value30mpare and compares pairs
by comparing the keys in the pairs. The data values are ignored during the comparisons.

Maps also implement operator[] with a key _type argument so that subscript notation
may be used to access data values. This is most natural when the key _type is an integer
type, but is useful in any case. This operator is not present in the multimap interface.
Otherwise, the map and multi map interfaces are like the set and multi set interfaces.

There is nothing inherent in the notion of a map or set that requires order. A proposal
has been made to the c++ standards committee to provide an alternate notion of sets,
multi sets, maps, and multimaps to permit hashed implementations as well as sorted im­
plementations. The runtime characteristics would also be somewhat different, but would
adi to the usefulness of the library. Hewlett-Packard provides a sample implementation
appropriate to this proposal, which we will examine in the next chapter.

For that matter, we have been describing balanced binary trees as THE implementation
of sets, etc. That is not precisely accurate, as the standard does not mandate an implemen­
tation. What the standard does require is a certain runtime behavior and certain rules con­
cerning under which circumstances an iterator may be invalidated. For example, with
these four classes, iterators are only invalidated when they refer to an item being removed
from a structure. This is unlike the vector rules that permit iterators to be invalidated by
insertions as well as deletions of unrelated items. It turns out that balanced binary trees,
of which red-black trees are an example, have all of the required characteristics for sets,
etc.

8.9 An Implementation of Red-Black Trees

In this section we will look at an implementation of red-black trees that is somewhat
simpler than that typically used in the STL sorted associative containers. We make the
following simplifications. We will provide after-the-end locations for iterators, but not
before-the-beginning. This will make reverse iterators impossible, so we will implement
only forward iterators. We won't provide as many exported types or all of the functions,
though many others could be easily implemented. We will assume that operator< will be
used to compare items. Finally, we will provide a structure suitable for multi sets arxl
multimaps only, as we won't restrict inserts.

Note that the elements stored in our tree (type T in the following code) could either be
simple values, hence implementing a multiset, or key-data pairs, giving us an implemen­
tation of multimap.

What follows is the basic structure, showing nested node and iterator classes as well as
the implementing variables. We omit only the function bodies.

252 Data Structure Programming with the Standard Template Library in c++

template <class T>
class RedBlackTree
{ protected:

struct node;
typedef node* nodeptr;
static nodeptr Z;

II used to terminate all chains

struct node
{ enum color{red, black, none};

T _data;
color _color;
nodeptr _left;
nodeptr _right;
nodeptr -parent;
node(T data = T(), color c

} ;

nodeptr _root;

none) ;

II This node is a dummy "header."
II The actual tree is to its right.

nodeptr _trailer;
II This node is the root of an empty
II tree and is the right child of the
II rightmost logical entry in other
II trees. It represents a past-the-end
II location.

long _nodeCount;

public:
typedef T value_type;
typedef T* pointer;
typedef T& reference;

RedBlackTree();

bool empty()const;

class iterator
II Bidirectional Preorder iterator.
II Inorder would be far superior.

{ public:
iterator(RedBlackTree<T> & t);
bool operator==
(const RedBlackTree<T>::

Chapter 8. Sets, Maps, Multisets, and Multimaps 253

iterator& i
const;

T& operator*();
iterator& operator++();
iterator& operator--();

protected:

} ;

nodeptr _here;
RedBlackTree<T>& _tree;
friend class RedBlackTree<T>;

iterator begin()const;

iterator end()const;

protected:

enum rotation{left, right};

nodeptr rotate
(bool rightRotation,

nodeptr where
) ;

II where is the point of rotation.
II If rightRotation is true we will rotate
II right, otherwise the rotation will be
II left. We must always rotate to the
II right of the _root, however.

nodeptr split
(const T& val,

nodeptr grand,
nodeptr parent,
nodeptr here

); II Split a 4-node into 2 2-nodes.

public:
iterator insert(const T& t);
II Returns an iterator to the inserted
II item.

iterator find(const T& t);
II Return an iterator to t's location if
II present. Returns a past-the-end
II location otherwise.

254 Data Structure Programming with the Standard Template Library in C++

};

iterator findNext(iterator from);
II finds the next occurrence of *from or
I I returns end ()

void erase(iterator where);
II Erase the item pointed to by where.
II Works by finding a node near a leaf to
II swap with the node at where. It then
II removes this node and rebalances the
II tree by working upwards from that leaf.

friend class RedBlackTree<T>::iterator;
friend class RedBlackTree<T>::node;

When we create a tree we give it two special nodes that do not contain tree data. The
ftrst is the _root node that serves as a physical root of the tree. The topmost (root) logical
node in the tree will be the right child of _root. The second node is _trailer and represents
a past-the-end value for this tree. It is always the leaf node farthest to the right in the tree
and so is initially the right child of _root. There is another node Z that is used to termi­
nate all node pointer chains. In other words, we don't use NULL to represent a missing
value in the tree but a pointer to node Z. Z's left and right child pointers are Z itself. Note
that there is only one node Z, even though we may have several trees. Using Z rather than
NULL makes certain tests easier within the algorithms.

The nodes have _left, _right and _parent pointers as we saw at the beginning of this
chapter. They also have a color field, with the color being defined in an enumeration that
is also nested within the RedBlackTree::node class deftnition. We provide color none for
the trailer nodes and the Z node. Note that the node class is protected, making it available
within subclasses of RedBlackTree, but not to ordinary clients. The RedBlackTree: :iterator
class, by contrast, is public. We create a new node by setting its pointers all to Z.

node(T data = T(), color c = none)
_color (c) ,

{
}

_left(Z) ,
_right(Z) ,
...,parent (Z) ,
_data (data)

The node Z presents special problems, since it must be created and initialized before
the ftrst tree is created. The declaration (nested) above is not sufficient, since it is declared
static. We must also provide two additional fragments. The frrst is a deftnition of the
node, which is done outside of the class deftnition.

Chapter 8. Sets, Maps, Multisets, and Multimaps 255

template <class T>
RedBlackTree<T>: :nodeptr RedBlackTree<T>::Z = NULLi

This defines storage for the node pointer and sets it to be null. We must also define
the node itself and initialize it. This is handled by the RedBlackTree constructor, which
tests to see if Z is NULL. The code here is a bit awkward. We initialize the fields of the
new tree in the usual way, creating new nodes for the _root and _trailer. If Z is still
NULL, however, the constructions of these two nodes will be incorrect since their crea­
tion refers to Z explicitly. Therefore, if we find Z NULL, we must redo part of that con­
struction.

RedBlackTree()
_nodeCount(O),
_root(new node(»,
_trailer(new node(»

{ if (Z == NULL)
{ Z = new node()i

Z->_left = Zi
Z->_right = Zi
Z->-parent = Zi
_root->_left = Zi
_root->-parent = Zi
_trailer->_left = Zi
_trailer->_right = Zi

_root->_right = _traileri
_trailer->-parent = _rooti

Therefore, an empty RedBlackTree looks like the structure in Figure 8.6. Note that the
Z node, while it has a _parent pointer, does not point back to the parent since there is ac­
tually only one Z node in the whole system.

Recall that an invariant of a red-black tree is that a red node has black nodes both
above and below it. This is essential in understanding the correctness of the following. A
black node with both of its children red is a 4 node in the equivalent 2-3-4 tree and a black
node with exactly one red child represents a 3 node. The work involved in keeping the tree
balanced when we insert and delete is carried by two auxiliary routines, rotate and split.
The latter splits a 4 node into two equivalent 2 nodes without changing the balance. 0p­
eration rotate transforms a left or right 3 node into the opposite, shortening one path am
lengthening the other.

256 Data Structure Programming with the Standard Template Library in C++

RBTree

Figure 8.6. An empty RedBlackTree.

Rotation can be done either to the left or the right. In Figure 8.7 we show a left rota­
tion. A right rotation would transform in the other direction. Notice that the C node gets
promoted while the A node gets demoted. Likewise, E moves up and B moves down as 00
any nodes below B. D stays at the same level, but changes its parent from C to A. This,
then, has the effect of lengthening some paths and shortening others. We haven't shown
color here, since rotate is used in various contexts and the colors are adjusted elsewhere. A
rotation one direction about a node, followed by a rotation in the opposite direction about
its parent, is called a double rotation. A double rotation is shown in Figure 8.8 and Fig­
ure 8.9. Note that node D stays at the same height, nodes F and G rise one level and Node
C moves down one level. The nodes below these move accordingly.

Figure 8.7. The effect of a left rotation.

Chapter 8. Sets, Maps, Multisets, and Multimaps 257

Figure 8.8. Before a double rotation (left about B, then right about A).

Figure 8.9. After a double rotation.

The rotate function returns the new root of the tree fragment. It also pins this new
fragment properly into the tree.

nodeptr rotate
(bool rightRotation,

nodeptr where

258 Data Structure Programming with the Standard Template Library in C++

II where is the point of rotation.
II If rightRotation is true, we will rotate
II right, otherwise the rotation will be left.
II We must always rotate to the right of the
II _root, however.
{ nodeptr parent = where->-parent, result;

bool leftChild = (where == parent->_left);
II Is here a left child of its parent?

if (rightRotation)
{ result = where->_left;

where->_left = result->_right;
where->_left->-parent = where;
result->_right = where;

}

else
{ result = where->_right;

where->_right = result->_left;
where->_right->-parent = where;
result->_left = where;

where->-parent = result;
if (leftChild)
{ parent->_left = result;
}

else
{ parent->_right = result;
}
result->-parent
return result;

parent;

Split requires pointers to the 4 node that we wish to split as well as pointers to its
parent and grandparent. If a node is near the root of the tree the parent and grandparent
could be the same. This procedure is only called after we verify that the node is indeed a 4
node. Note that it may do a double rotation (about parent then about grand) or only a sin­
gle rotation. The first parameter passed in (val) is a data value that is used to determine if
the double rotation needs to be done. Split is used only in insert and the val passed is the
value being inserted. We need a double rotation if the values in the parent and grandparent
nodes are on opposite sides of val with one larger and the other smaller than val.

While we could technically tum a 4 node into two 2 nodes simply by recoloring the
two red nodes, this would lengthen paths on the equivalent 2-3-4 tree, unbalancing it. We
need to avoid this unbalancing. The node at which we split is necessarily originally black.
We want to make the split node red so as not to lengthen a path in the equivalent 2-3-4
tree. There are actually a number of cases that can all be handled by proper use of Boolean
values. The hardest case is when the parent of the split node is red. We must then make

Chapter 8. Sets, Maps, Multisets, and MuItimaps 259

further adjustments. If the parent were black then just coloring is enough, but not if it is
already red. If so, we do a single or double rotation to readjust the local height of the tree
and fix the colors.

nodeptr split
(const T& val,

nodeptr grand,
nodeptr parent,
nodeptr here

)
II Split a 4-node into 2 2-nodes.
{ here->_color = node: :red; II it was black

here->_left->_color = node: :black;
here->_right->_color = node: :black;
if(parent->_color == node: :red)

}

II then the grandparent must be black
{ grand->_color = node: :red;

if ((val < grand->_data)
!= (val < parent->_data)

II double
parent = rotate

(val < parent->_data, parent);
here = rotate(val < grand->_data, grand);
here->_color = node: :black;

_root->_right->_color = node: :black;
return here;

Note that the logical root of the tree is _root-> _right and it never needs to be red. The
last statement of split before the return guarantees that we don't leave it red with the other
changes. Split is used in insert as we search down the tree for the location in which to in­
sert the new element. We split any 4 node that we encounter along the way. It also short­
ens the path along which we search because we are about to lengthen that path by insert­
ing the new element at a leaf along that path.

Insert works by starting at the root of the tree, and moving left or right at each node
depending on the value there and the value to be inserted until we reach a leaf. As we
search, we split any 4 nodes that we find, biasing the rotations so as not to lengthen the
path on which the new item will lie. The reason we want to break up four nodes is that
we can't insert into them. That is to say, if we were working in 2-3-4 tree and wanted to
insert into a 2 node or a 3 node, all we would need to do is promote it to a larger node arxl
insert into the result with no change in tree heights or balance. We can't do that with 4
nodes so we try to eliminate them.

260 Data Structure Programming with the Standard Template Library in C++

We will also return an iterator to the location of the insert. In the STL version,
though not in this one, the returned iterator can be used as the hint for further inserts. If
the tree is empty, it is, of course, easier to do the insertion.

iterator insert(const T& t)
II Returns an iterator to the inserted item.
{ _nodeCount++;

iterator result(*this);
if (empty ())
{ nodeptr newRoot = new node

(t, node: :black);
newRoot->_right = _trailer;
_trailer->-parent = newRoot;
_root->_right = newRoot;
newRoot->-parent = _root;
result._here = newRoot;

}

else
{ nodeptr grand = _root;

parent = _root;
here = _root;
do
{ grand = parent; parent here;

if(here 1= _root && t < here->_data)
here = here->_lefti

else here = here->_righti
II Split any 4-nodes you encounter
if (here->_left->_color == node: : red

&&
here->_right->_color == node: : red

here = split
(t, grand, parent, here);

} while(here 1= _trailer && here 1= Z);
nodeptr temp = here;
here = new node(t,node::black);
here->_right = temp;

II Preserve the trailer.
if(temp == _trailer)

_trailer->-parent = here;
here->-parent = parent;
if(t < parent->_data)

parent->_left = here;
else

parent->_right = here;

Chapter 8. Sets, Maps, Multisets, and Multimaps 261

result._here = here;
here = split(t, grand, parent, here);

}
return result;

}

As we search for the insert point we keep track of the grandparent and parent nodes of
the current search point. This aids in the splits that we will do. The final split treats the
newly inserted value as if it were the middle value in a 4 node and splits that node also.

The erase operation is much harder than insert. We will only outline it here. The only
version of erase that we consider is one that is passed an iterator to the point at which we
want to remove a value. If we don't have such an iterator we can use fmd to obtain one.
The difficulties arise because the erase location need not be a leaf. We search the tree from
the erase point for a suitable value to replace the one we are removing. This can be the
largest value to the left of the value being removed, or the smallest value to the right. A
moment's reflection shows that either of these could occupy the location of the item be­
ing removed without destroying the binary search tree property. Once we fmd this node
we will unpin it from its current (leaf) location and repin it at the erase point. This leaves
any iterators to it intact. We can then delete the leaf node, but we must also rebalance the
tree. This is the hard part.

Rebalancing works by starting at the leaf location that was deleted and moving up­
wards, attempting to lengthen the path on which we search without shortening other
paths. This can be done in some cases by rotations. When we can do this we quit. If we
work all the way back to the root without doing so, then we must shorten all paths in the
tree to account for the one shortened path on which the deleted item was originally found.
The details are very tedious.

The find operation looks for a value and returns one equal to it. In the STL version we
would not use operator== to determine when we had found a match, but rather the induced
equivalence relation defined by the comparison operation. In either case we search from
the root, moving left or right as determined by the values that we find. If we do not find
the item desired, then we return a past-the-end iterator, namely an iterator to the trailer.
Note that we may safely ignore the color of the nodes when searching, so that the ldhl
structure of a red-black tree does not slow lookups. This is an important advantage of the
technique.

iterator find(const T& t)const
II Return an iterator to tIs location if
II present.
II Returns a past-the-end location otherwise.
{ iterator result(*this);

nodeptr here = _root->_right;
while(here != Z && here->_data != t)

if(here->_data < t)
here = here->_right;

else

262 Data Structure Programming with the Standard Template Library in C++

}

here = here->_left;
if(here == Z) here = _trailer;
result._here = here;
return result;

Operation findNext searches from an iterator for the next item that has the same value
as that at the iterator location. Note that this search may proceed upwards or downwards in
the tree. The iterator does all of the work in its operator++, as we shall see.

iterator findNext(iterator from)
II finds the next occurrence of *from or
II returns end()
{ iterator result = from;

iterator top = find(*from);

}

II top is the topmost occurrence of the
II desired value. If we reach it we have
II returned all of the values.
do
{ ++result;
} while result._here != _trailer

&& result != top
&& *result != *from

) ;
if(result == top) result._here _trailer;
return result;

The nested iterator class has interface, as shown above and repeated here, along with
the simpler operations. It uses the preorder protocol to move over the elements using op­
erator++. This is far from ideal, since an inorder protocol would actually list the elements
in their natural order. An exercise will correct this situation.

class iterator
II
II
{

Bidirectional Preorder iterator.
Inorder would be far superior.
public:

iterator(RedBlackTree<T> & t)
_here(t._root->_right),
_tree(t)

{ }
bool operator==
(const RedBlackTree<T>: :

iterator& i
const

} ;

Chapter 8. Sets, Maps, Multisets, and Multimaps 263

{ return _here == i._here; }
T& operator*() {return _here->_data;}
iterator& operator++();
iterator& operator--();

protected:
nodeptr _here;
RedBlackTree<T>& _tree;
friend class RedBlackTree<T>;

An iterator is implemented using a node pointer to mark the current location and also
a reference to the tree over which it iterates. The reference to the tree helps us to know the
root and trailer of that tree when we arrive at them.

Operator++ needs to move to the next preorder node from its current position. If we
are currently at the trailer there is nowhere to move to. Otherwise if there is a left node
(not Z), then we need to move there. If there is no left node but there is a right one, then
that is our final position. Finally, if we are at a leaf, then we must search upwards until
we have a node to the right that we haven't visited yet. This means that the first time that
we move upward from a left child to its parent and that parent has a right child, that the
right child is the next node. The implementation of operator-- is similar.

iterator& operator++()
{ if(_here == _tree._trailer) {return *this;}

if(_here->_left != Z)
_here = _here->_left;

else if(_here->_right != Z)
_here = _here->_right;

else
{ nodeptr old;

do

}

{ old = _here;
_here
while

) ;

_here->-parent;
_here->_right == Z
II _here->_right old

_here = _here->_right;

return *this;

264 Data Structure Programming with the Standard Template Library in C++

8.1 0 Summary

Make certain that you understand each of the following tenos:

balanced binary tree
binary search tree
binary tree
logarithmic running time
red-black tree
2-3-4 tree

8.11 Exercises

1. Build an inorder iterator for the RedBlackTree class discussed in the text.

2. Modify RedBlackTree to make it more suitable for implementing sets. When you cre­
ate a RedBlackTree, pass a parameter that indicates whether inserts should always be done,
or only when the item to be inserted is not already present.

3. Predict what will happen if we add value 100 to the tree in Figure 8.5.

4. Modify the RedBlackTree class so that it uses a comparison operator in place of opera­
tor<. The comparison operator should be a template parameter.

5. Investigate AVL trees in the literature. Other data structures and algorithms text books
may be helpful. What is available on the World Wide Web?

6. Investigate the structure called the B-Tree. These are used extensively in databases to
store large files. How are these related to 2-3-4 trees?

7. Build a node class suitable for implementing 2-3-4 trees.

8. Write a program to produce figures like Figure 8.5.

9. Give RedBlackTree a const reference type and a const iterator type.

10. Give RedBlackTree a way to return the size of the tree. The size is the number of
elements stored.

11. Give RedBlackTree a member that will erase all copies of a given element and return
the number of items erased.

Chapter 8. Sets, Maps, Multisets, and Multimaps 265

12. Using the RedBlackTree as the implementation, build the template Multiset with the
following interface:

template <class Key, class Compare>
class Multiset
{ private

typedef RedBlackTree<Key, Compare> rep_type;
public:

II typedefs:
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef rep_type: :const_reference reference;
typedef rep_type: :const_iterator iterator;

II allocation/deallocation
Multiset () {}
Multiset

const value_type* first,
const value_type* last

{ }

Multiset (const Multiset <Key, Compare>& XlI}
Multiset <Key, Compare>& operator=
(const Multiset <Key, Compare>& x
){}

II accessors:
key_compare key_comp() const {}
value_compare value_comp() const {}
iterator begin() const {}
iterator end() const {}
bool empty() const {}
long size() const {}

II insert/erase
iterator insert(const value_type& x) {}
iterator insert

iterator position,
const value_type& x

{}

void insert
const value_type* first,
const value_type* last

{}

266 Data Structure Programming with the Standard Template Library in C++

void erase(iterator position) {}
long erase(const key_type& x) {}
void erase(iterator first, iterator last) {}

II multiset operations:

}i

iterator find(const key_type& x) const {}
size_type count(const key_type& x) const {}
iterator lower_bound(const key_type& x) const{}
iterator upper_bound(const key_type& x) const{}

13. In Chapter 5 we saw a DiGraph class built from STL vectors. It is also possible to
build a digraph using a map from graph nodes to lists of graph nodes. Discuss and im­
plement this idea.

14. In Chapter 5 we saw a DiGraph class built from STL vectors. It is also possible to
build a digraph using a multi map from graph nodes to graph nodes. Discuss and im­
plement this idea.

Chapter 9
Hash Tables

9.1. Hashed Associative Containers and the STL

The Standard Template Library does not currently have hashed data structures, though it
might have in the future, as a proposal has been made to the standards committee to adopt
them. This chapter is based on two separate implementations that have been suggested as
the basis of further action by the committee. One of these is by Robert Fraley of Hewlett­
Packard and the other is by Javier Barreirro and David Musser of Rensselaer Polytechnic
Institute.

Hashing is an alternative means of providing for sets, multisets, maps, and multi­
maps, though not sorted structures. Hashing attempts to provide an alternate mechanism
by which items may be stored and quickly retrieved when there is no natural ordering pos­
sible on the elements. Elements to be placed in hashed containers have other requirements
placed on them, however. The advantage of hashed structures over binary tree implementa­
tions is that some of the operations such as insert and find can be made to be constant
time rather than logarithmic. Giving up the sorted order may be either an advantage or a
disadvantage, depending on the anticipated use.

A hashed structure is one in which the physical placement of an item is somehow 00-
termined by the value to be inserted and in which that location can be determined by per­
forming simple computations on the inserted value. An item is later found either by ex­
haustively searching for it, or by repeating the computation. This is most useful in the
case of maps, where the computation is done on the key of the pair being inserted. The re­
trieval "by key" is then simply done by repeating the computation on the key whose data
is desired. The elements of hashed storage were introduced in Chapter 3.

While hashed structures are not currently part of the standard, they are a mature exten­
sion of it that meshes well with the other elements. The four containers hash_set,
hash_multi set, hash_map, and hash_multimap are similar to their tree-based counterparts
except for the sort requirements and except for more stringent requirements on the effi­
ciency of some operations. The hashed containers provide iterators, as we would suspect.
The formal proposal only requires forward iterators, but it is not difficult to provide for
bidirectional iterators, as was done in one of the two implementations here discussed. The
cost is relatively small in both time and space. It is actually easier to provide bidirectional

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998

268 Data Structure Programming with the Standard Template Library in C++

iterators because parts of the implementation can be built with vectors and lists, each of
which provide (at least) bidirectional iterators.

An interface for an implementation of hash_set might have the following outline.
(This would look slightly different if template member functions were implemented in the
C++ compiler.)

template <class Key, class Hasher, class Equal>
class hash_set
{ public:

typedef Key key_type;
typedef Key value_type;
typedef Hasher hasher;
typedef KeyEqual key_equal;
typedef ... size_type;
typedef hash_set<Key, Hasher, Equal>

self_type;

typedef pointer;
typedef reference;
typedef const_reference;
typedef difference_type;

// constructors/destructor
hash_set
(size_type size=l009,

const Hasher& hash = Hasher(),
const Equal& comp = Equal(),
auto_rehash_modes rm

= auto_rehash_intermittent,
size_type ts = 4,
size_type grow-power = 3

) ;
hash_set
(const value_type* first,

const value_type* last,
size_type size,
const Hasher& hash,
const Equal& camp = Equal()

) ;
hash_set(const self_type & x);

// Extraction
const Key & extract_key

Chapter 9. Hash Tables 269

const value_type & x
const; II Simply returns its input.

II Assignment
self_type & operator=(const self_type & x);
void swap(self_type & xx);

II Insertion and deletion
pair<iterator,bool> insert
(const value_type& x
) ;

void insert

) ;

const value_type* first,
const value_type* last

void erase(iterator position);
size_type erase(const Key& x);
void erase(iterator first, iterator last);

II Accessors
key_equal key_eq() const;

II Get the equivalence op.
hasher hash_funct() const;

II Get the hash function.
iterator begin();

II Actually a const_iterator
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const reverse iterator rend() const;
bool empty() const;
size_type size() const;
size_type max_size() const;

II Find operations:
iterator find(const Key& Xli

const_iterator find(const Key& x) const;
pair<iterator, iterator> equal_range
(const Key& x
) ;
pair<const_iterator, const_iterator>
(const Key& x
) const;

270 Data Structure Programming with the Standard Template Library in C++

II Hash specific operations
Vector::size_type bucket_count() const;
void resize (size_type new_size);

II Iterators -- bidirectional here, only Forward
II are required.

} ;

class iterator;
II bidirectional const_iterator

typedef iterator const_iterator;
class reverse_iterator;
typedef reverse_iterator

const_reverse_iterator;

The first template parameter is the kind of values to be inserted into the set. For
hash_map and hash_multi map, we would need another parameter for the data type. The
second parameter is a function object that defines a hash function on the Key type. A hash
function must take as input a value of the key type and produce an unsigned long int as
output. Moreover, the hash function should ideally uniformly cover the unsigned longs,
which means that a given Key is as about as likely to be in any given range of unsigned
longs as it is in any other range of the same length. The hash function must also be able
to reproduce the value for a given Key when it is called again on that same key.

The third template parameter is a comparison object that determines when two values
of the Key type can be considered equivalent. This is most important for sets and maps,
where we insist that only one value of a given key be present. It is this function object
Equal rather than operator== that determines equivalence. Note that the comparison opera­
tor behaves like an equality operator, not like the "less than" test that is used with sets
and maps.

Given this comparison operator, we can also define the equal_range function to return
a range of values that contains all stored keys equal to the parameter. This requires, how­
ever, that the hasher and the comparison operator have a very precise relationship to each
other. It is necessary that the hash function return the same value for any values that the
comparison operator determines are equal. Otherwise such equal values would be stored in
different buckets, making equal_range impossible (or at least extremely expensive). For
some sets of data this can be a very difficult requirement. If so, a binary tree-based class
might be preferable.

Most of the member functions are familiar. Member extract_value is provided for con­
sistency. In maps and multi_maps it returns a key for a given value, but here the key am
value types are the same, so it just returns its input. The parameters of the constructors
set various characteristics of the implementation as will be discussed below.

The iterators provided are all const_iterators. In particular, this means that operator*
applied to an iterator returns a const reference to the value stored rather than a reference to
it. In hash_sets and hash_multisets, changing the value (which is the key itself) would be
disastrous, as the key determines the placement of the value within the structure. If it
could be freely changed but remained in its old location, then the new value could not be

Chapter 9. Hash Tables 271

found. In hash_map and hash_multi map, there are distinct iterators and consUterators,
since the iterator only gives access to the data part of the pair in those cases and the data
in the pair can be freely modified. In fact, one of the main purposes of maps and multi­
maps in general is to store such updatable values.

One final note about these structures. Suppose we have a hash_multiset that stores
several values that are equivalent according to the Equal comparison type. Then an iterator
will report these values consecutively. Likewise, equal_range will return a pair of iterators
that bracket all of the values. This feature is not common in hash structures generally,
which nonnally place no such requirements on retrieval order at all. In fact, the values
with "equal" keys will be stored together. (Caveat. If your equal comparison isn't com­
patible with your hasher, it is possible that two values are "equal" but hash to different
buckets. The above only applies to those values stored in the same hash bucket.)

9.2 Simple Hashing-Separate Chaining

In this and the next few sections we will examine some hash storage mechanisms in
some detail. The first, separate chaining, is very common. The components consist of a
hash function, the hasher that will produce integers in a given fixed range; an index struc­
ture such as an array or a vector; and a collection of buckets, each of which is a list or a
vector. The most common implementation uses an array for the index and lists for the
buckets. The data values are stored in the buckets. When we insert an item whose key is
A, we first pass A through the hasher, resulting in an integer in the same range as the
subscript range of the index. The item A then belongs in the bucket with that index. We
then index into the index array to obtain a reference to the list onto which to insert the
item A. Retrieval of A follows the same path. We pass A through the hasher, and use the
result to index a list. We now know which list the item is on if present at all. We must
then search that list for an item with key A. When found we may return an iterator to this
location. See Figure 9.1. The name separate chaining arises from the notion of a linked
list as a chain. The name is used even though the buckets might be implemented as vec­
tors rather than lists.

An iterator into such a structure could be implemented as an index integer and a
pointer to a list node. It would be advanced by moving down the current list to the end
and then moving to the beginning of the next nonempty list. If we use vectors for the
buckets then bidirectional iterators are easy to provide, but not random access iterators,
since the sizes of the vectors are all different. Random access would therefore be too inef­
ficient. Using STL lists for the buckets also pennits bidirectional iterators. If we use sin­
gly linked lists, however, we can only provide forward iterators. There would be some
space and time advantage in doing so, since the back pointers in the lists don't need to be
saved or updated.

272 Data Structure Programming with the Standard Template Library in C++

index buckets
anObject

o

hasher

max

Figure 9.1. Separate chaining hashing.

The special requirements of the STL (proposal), namely making equivalent values,
appear as if they are stored together, seems to imply that lists (or singly linked lists)
should be used rather than vectors. This is because the easiest way to implement the re­
quirement is to actually store such items together. This implies that an item when in­
serted won't always be inserted at the beginning (or end) of its bucket, but might need to
be inserted in the middle. Lists would be better for this, of course. The after-the-end posi­
tion of the last list is the after-the-end position of the entire hash structure.

9.3 Simple Hashing-Circular Hashing

Sometimes we want to store items in a hash structure and we know exactly what values
will be stored, including, of course, the exact number of values to be stored. For example,
in a compiler, we might need to store information about the keywords (reserved words) of
the language being translated. Since these words form a fixed finite set of values, we can
use them as keys into another kind of hash structure, one that uses circular hashing. In
this method we avoid the buckets altogether. We have a hasher, of course, and a storage
structure that can be an array or vector of values. The result of passing the key through
the hasher is used as the index into the storage at which the associated item belongs. Re-

Chapter 9. Hash Tables 273

call that collisions may occur when we compute with the hash function. Collisions are
caused when two distinct keys produce the same index value. If we can arrange a hasher
that does not produce any collisions on the set of keys being stored (a perfect hash func­
tion). then no more needs to be done. Retrieval again uses the hasher to compute the in­
dex at which the item may be found. See Figure 9.2.

Iteration over such a structure can simply walk through the storage array or vector,
taking account of the fact that some cells may be empty.

storage
anObject

o

hasher

max

Figure 9.2. Circular Hashing

If collisions can occur, then we need to be a bit more sophisticated. If we hash a key
to an index when inserting and find that the cell is already occupied, then we can simply
begin a search from there for the next empty cell. If we come to the end of the structure,
then we wrap around to the beginning and continue the search. Retrieval must then also
follow the same path. starting at the value given by the hasher. searching circularly for
the key. The search may terminate when we come to an empty cell or return to the item
we started with.

The outline above fails, however. if items may also be deleted from the hash table. If
an item between the hash index of a key and the cell it is actually stored in is removed.
then the search will stop at the empty cell and report failure of the search even when the
desired key is still present. This can be fixed by keeping two bits in each storage cell. The
first tells whether the cell is currently filled or empty. The second tells whether the cell

274 Data Structure Programming with the Standard Template Library in C++

has ever been used. This second bit is originally off (false) for all cells, but is turned on
when the cell is first filled. It is not turned off if the cell is later emptied. The search can
then use this bit while searching, terminating when it comes to a cell that has never been
used.

9.4 Variations on Simple Hashing

There is a simple variation on separate chaining that works well with the STL. In this
method we use a vector for the index set but store all of the values in a single list. The
index set, instead of holding references to separate lists, one per bucket, holds iterators
into a single list: the bucket list. A pair of consecutive iterators in the index array form a
range that defines the contents of a bucket. There is some space advantage in that only a
single list needs to be generated, but the real advantage is in simplifying the operation of
iterators into the hash structure, which now need only to move down a single list. Again,
if it is an STL list, then the iterators can easily be bidirectional. See Figure 9.3.

anObject index

o bucket list

hasher

max

Figure 9.3. A variation on separate chaining.

A list is used rather than a vector, since we need to be able to keep equivalent items in
a bucket together. Notice that during a retrieval the hasher yields us an iterator at which to
begin the search. We only need to search a single bucket, however. We can either store a
bucket number with the value to aid us with this, or we can just use the following itera­
tor as a termination point. We could even use STL generic algorithms that search a range.

Achieving good performance in any of these structures depends fundamentally on keep­
ing the buckets small. This is because we must linearly search a bucket (but only one) for

Chapter 9. Hash Tables 275

an item. If our hash function is poor, we might have a lot of buckets, but all values con­
centrated in only a few. The storage would be much slower than expected. The worst case,
of course, is when only one bucket is not empty. We must also tailor the number of
buckets to the number of data items to be stored. Sometimes the number of values to be
stored can be well determined in advance, in which case it is easy to choose a good num­
ber of buckets. The best situation is when each bucket contains exactly one item. This
can only be achieved through marvelous good luck in general. However, if you know the
keys in advance and there is a relatively small number of them, then it is possible to find
a minimal perfect hash function. This is one that produces no collisions but also produces
a minimal range of outputs so that if there are exactly n keys, then the hash function will
produce exactly n values in the range O ... n-l. Finding such a function is computationally
expensive, however. It would be worth doing so if the set of keys is stable and the pro­
gram is to be used often.

9.5 Hash Functions

Obtaining good overall behavior from a hash table depends in important ways on the qual­
ity of the hash function that is used. A poor function guarantees poor performance. Most
hash tables depend on the user supplying a hash function that produces integers or long
integers. The system itself will then reduce the integer produced by the hasher to a suit­
able range for the index structure. Since this is usually done by remaindering, the hasher
must provide good behavior relative to the remainder function.

When you spread butter on bread, you like to get uniform coverage, with no lumps or
gaps. The same is true of a desirable hasher. You would like to take the values that will
be inserted (the keys, actually) and spread them uniformly over the integers with no gaps.
They don't need to satisfy any locality constraints with "similar" keys producing similar
integers--quite the contrary-but they do need to cover the integers with no gaps and no
"lumps." A lump would occur if more than an average number of keys mapped to the
same integer. It is a bit more involved than that, even. Suppose more keys bunched up at
multiples of 367, say, than at other integers. Suppose that we happened to have 367 cells
in the index. Then remaindering by 367 would put more than an average number of keys
in the same bucket, which would degrade performance.

Suppose that our keys are an integer type. Then we might be able to use the key itself
as the value of the hasher, though this would depend on the actual integers used as keys in
the values stored. If we store only keys with small integer values, then we will not get
good coverage. For this reason, an integer key is often multiplied by a fairly large prime
integer to get a hash value. A prime number is one with no integer factors other than it­
self and 1. If the integer chosen is large enough that multiplication often overflows the 16
or 32 bits used to store an int or long, all the better.

If the keys are floats, then there is a nice way to generate an integer, assuming that
there is an integer type that requires the same number of bits as the floating type (float, or
double) that we are using for keys. Consider the struct type

276 Data Structure Programming with the Standard Template Library in C++

struct confuse
{ double real;

unsigned long integer;
}

Then a hasher like

unsigned long hasher(double d)
{ confuse c;

c.real = d;
return c.integer;

}

will produce random seeming long values from doubles. This assumes that double and
long require the same 32 bits, however.

Strings are more problematical. This is because strings usually hold words in human
languages like English, which do not have uniform distributions of characters. For this
reason the following is a poor hasher on strings.

unsigned long hasher(char * c)
{ unsigned long result = 0;

}

for(int i = 0; i < strlen(c); ++i)
result += *c++;

return result;

This function has difficulties, since a string is more likely to be short than long, giv­
ing values more likely to be small than large, though this could be compensated for with
a suitable multiplier, and because there are likely more vowels than consonants in the
string c. A better one dips into the character encodings.

unsigned long hasher(char * c)
{ unsigned long result = 0;

}

for(int i = 0; i < strlen(c); ++i)
{ result += *c++;

result «= 1;
}
return result * bigPrime;

This function shifts the result left one bit for each character added. This is equivalent
to mUltiplying by two each time, but has the effect that the order in which the characters
appear also affects the result.

If the type of the key is a struct or class, then some suitable field (or fields) of it
might be used to construct the hasher, provided that when that field changes we consider

Chapter 9. Hash Tables 277

that we have a different key. Remember that the hasher must be functional so that if we
give it the "same" key twice, we get the same integer back.

If the key is a pointer, then you must choose a field or fields of the value pointed to to
construct a hasher. In some systems, the value (an address) of the pointer works for a hash
value, but it is not often wise to depend on it. Some systems relocate objects in the free
store, so that a value might have one address for a while and then be moved, giving it a
different address and therefore any pointer to it a different value. This will almost assur­
edly be the case if your system uses a garbage collector to manage memory on the free
store.

9.6 Reorganization of a Hash Table

The STL proposal for hash tables requires that certain operations such as fmd be done in
constant time. With the implementations suggested above, this will not be the case if the
hash table grows without bound. This is because the buckets will also grow in size, mak­
ing the searches increasingly costly. In that case a search will take time proportional to a
fraction of the size of the table, but that is still linear, not constant time.

To achieve constant search times in a growing table, the bucket sizes must be kept
limited. This requires two things: a good hash function and an increasing number of
buckets. In fact, the number of buckets must be allowed to grow (and probably shrink) as
the number of elements changes. This leads us to the idea of self-reorganizing hash tables.
There are two basic methods: periodic and continuous reorganization. The easiest to re­
scribe is the periodic variation. Suppose that as we perform table operations, we keep
some statistic about the table such as the number of elements stored or the number of
elements we need to examine when executing find. When our statistic surpasses some
trigger point, we execute a special reorganizing operation.

One method of reorganizing is very common. Suppose that the number of buckets is
always a power of 2, such as 32, 64, etc. Then when it is time to reorganize. we double
the number of buckets and then examine each element in the table at that time and redis­
tribute it to a new bucket. If the last step in the hash function is taking the remainder
modulo the number of buckets, then the nature of division allows us to conclude that any
item is either already in the bucket that it belongs in, or it belongs in the bucket half the
length of the new index farther on. In other words, if it is in bucket n before reorganiza­
tion, then it belongs either in n or n+k, where k was the old number of buckets. (See
Figure 9.4.) This is because m mod 64, for example, is either m mod 32 or 32 + m mod
32.

We also need to modify the last step of the hash function to divide now by the new
number of buckets. Each bucket will thus be about half of its length before reorganiza­
tion. The buckets at index nand n+ k are called buddy buckets.

278 Data Structure Programming with the Standard Template Library in C++

anObject index index

; a

max

n+max

newhasher 2 * max

Figure 9.4. Before and after reorganizing a hash table.

You can likewise shrink the number of buckets in half as the table shrinks in overall
size by folding buckets into one and readjusting the hasher accordingly. Note that chang­
ing the number of buckets also requires changing the length of the index, making vector
the structure of choice for this. Likewise, lists are useful for the buckets when reorganiz­
ing, since we can simply unpin the elements from one list and pin them into another as
necessary. This avoids calling the allocator, which can be a large time savings.

While periodic expansion works and does achieve constant search times (when the
hasher is a good one), it has one unfortunate feature. The constant search time is only
amortized constant time, and the insert or search that triggers a reorganization will be very
costly. Some applications cannot afford such a situation. In some circumstances an appli­
cation can anticipate when it won't be very busy and can trigger a reorganization anticipat­
ing future growth, but that is not always possible.

Chapter 9. Hash Tables 279

Expansion of a hash table can also be done continuously-with every insert. This
works as follows. Suppose that we start with a small number of buckets, even just one.
Then, every time we do an insert we expand the number of buckets by one. We then ;d­

just the hasher appropriately and rehash all elements into the new buckets. This is sim­
pler than you might expect, however, since if all is chosen well we only need to rehash
the elements in one other bucket (the buddy), and those elements will belong either where
they are originally or in the new bucket. The implementation of this idea is closely re­
lated to that of the periodic expansion discussed above.

To achieve this, suppose that we keep two values: maxBuckets and currentBuckets.
maxBuckets is always a power of 2, and just after a major reorganization, currentBuckets
is half of maxBuckets. The hasher uses remainders modulo maxBuckets at the end, except
that if the result is greater than currentBuckets, the hasher reduces it by maxBucketsl2.

When we insert a new item, we increase currentBuckets by one. If that leaves the
value less than maxBuckets, we just create a new bucket by increasing the size of the in­
dex, and then insert the new item into the new structure. We must also rehash the buddy
bucket which is maxBucketsl2 slots below the new bucket. When currentBuckets eventu­
ally reaches maxBuckets, we must also double maxBuckets and adjust the hasher accord­
ingly. This is the major reorganization step. The table can also be decreased in size sym­
metrically, by folding a bucket that we are removing into its buddy.

Note that if we store the buckets in a single list, then increasing the number of buck­
ets is very easy. We just increase the size of the index and store an after -the-end iterator to
the end of the bucket list into the new index cell.

Continuous reorganization makes each insert more expensive, but avoids the problem
of a periodic expansion being so time-consuming that it might halt the application for an
appreciable time. We are still subject to some of this effect, however, if we use STL vec­
tors for the index. This is because the vector itself is self-organizing and requires periodic
reallocation of storage. Notice that the index grows at the same rate as the hash table in
this case, but vectors use reserve space so the reallocations would be less frequent than
with the above periodic scheme. Using a deque for the index would even avoid some of
this, since its major reorganizations are very infrequent. On the other hand, deque opera­
tions are a bit slower than vector operations.

Note that the average size of each bucket is only one with the continuous scheme just
described. This doesn't mean that all buckets will have only one item, of course. This w­
pends on the hasher. If it is a good one, they should all be small.

9.7 Using Hashed Structures

One of the major components of a compiler that translates languages such as C++ into
machine code is a symbol table. When the programmer defmes a new name, such as a
function name or a variable name, the compiler makes an entry in the symbol table for
the new name and stores information about the name along with it. Then, when the name
is seen again, the compiler looks in the symbol table to see if the name has been defined,
and if so, what kind of thing it represents to verify that the current usage is legal. Since

280 Data Structure Programming with the Standard Template Library in C++

names are frequently used in programs and since we want compiling to be fast, the lookup
step in the symbol table must be fast. Hashed structures are often used to build symbol
tables. Balanced binary trees are another good choice also. Thus a hash_map or
hash_multimap might be a good choice as the basis of a symbol table. The keys would
be the names defined by the programmer, and the data values would be objects holding the
other information.

Some database programs use hashed structures for at least part of the data in the data­
base. In fact, any program that requires fast retrieval by key should consider a hash struc­
ture as an implementation. However, doing so requires paying attention to the characteris­
tics of the hash function that is to be used and verifying its adequacy somehow: either
analytically, or through testing. The programmer should be prepared to try several hash
functions on the anticipated set of values and the designed structure of the table to see if
behavior will be good or poor.

One situation occurs in which hash tables should not be considered. Suppose you have
a situation in which the keys are repeated very frequently, perhaps because there are only a
very small number of keys, but they are associated in a nonunique way with a large set of
data. Then you are guaranteed that all data will fall into a small number of buckets no
matter what else you do. In a case like this, a balanced tree would be a much better
choice, so use a multimap rather than a hash_multimap.

All of the algorithms that are defined in terms of forward iterators work with hash ta­
bles. In addition, so do those that work with bidirectional iterators if the specific imple­
mentation provides these. Sorting and binary searching won't work with hash tables, of
course, nor is there a specialized sort algorithm provided within these classes as there is
with the list class, because the idea of sorting is inconsistent with a hashed structure. If
the data stored in a hashed structure permit comparisons and need to be sorted, then an it­
erator could be used to transfer them to a vector or tree-based structure first.

9.8 Elements of an Implementation

Let us examine a simple class that is similar in flavor to the hash table implementations
suitable for the STL, but simpler in many ways. This class will show how to grow the
number of buckets in the table incrementally as we insert data. We will not enforce the
STL requirement that hash keys with equal values be kept together, however. Nor will we
shrink the number of buckets as we erase data from the hash table.

9.8.1 The Hash Table

Our implementation uses a vector to hold the index and a single list to hold all of the
buckets, as was discussed in Section 9.4. To do this the index entries will be list itera­
tors. Two successive entries in the index vector give a range of entries in the bucket list
that defmes a single bucket. This implementation will be aided by the ability to decre­
ment an iterator, since we can then insert before the position of the beginning of a bucket
and then decrement the begin iterator for that bucket.

Chapter 9. Hash Tables 281

The advantage of this implementation is not its simplicity, because it complicates in­
sertion as we shall see. It does make hash table iterators easy to build, since all a hash ta­
ble iterator needs to do is iterate over a single list. Therefore, we just use a list iterator
rather than build a new one.

While we want the hash buckets to be small, so that searching for a value within a
bucket will be fast, there is no advantage to having empty buckets. Therefore, we will
start with no buckets at all in an empty hash table. We will then add one additional
bucket for each entry that we insert into the table. This keeps the average length of the
buckets to be one. We also continually split buckets, so that no bucket has a chance to
grow by much unless the hash function is extremely bad.

As usual we define a number of types for export. These include the type of the data to
be stored and two iterator types. These are bidirectional iterators. We also export the type
of the hash function object and the comparison object.

Actually, we do more than that. When the user constructs a hash table, an object 00-
fining a hash function object and one defining a comparison object are passed as template
parameters. These are used internally in the hash_table constructor to create a hasher func­
tion object and a compare function object that are maintained as member variables. This
lets us return these objects as the results of member functions. Thus a client can have ac­
cess to the actual hashing object and the comparison object. An example will be shown
in Section 9.8.3.

template <class T, class HASHER, class EQUAL>
class hash_table
{ public:

typedef T key_type;
typedef list<key_type >: :iterator iterator;
typedef list<key_type >: :const_iterator

const_iterator;

typedef HASHER hash_type;
typedef EQUAL equal_type;

hash_table ()
rnaxbuckets (1) ,
halfbuckets (0) ,
currentbuckets(O) ,
index (),
buckets (),
cornpare(EQUAL()),
hasher(HASHER())

{ index.push_back(buckets.end());
II Creates the after-the-end iterator.

hash_type hash_function() {return hasher;}

282 Data Structure Programming with the Standard Template Library in C++

equal_type comparer(){return comparei}

long size()const{ return buckets.size()i}
bool empty()const{return buckets.empty();}
iterator begin() {return buckets.begin()i}
iterator end() {return buckets.end();}
const_iterator begin()const
{ return buckets.begin()i
}
const_iterator end() const
{ return buckets.end();
}

private:

}

unsigned long maxbuckets;
unsigned long halfbuckets;

//(always half of maxbuckets)
unsigned long currentbuckets;

vector<iterator > index;
list<T> buckets;

hash_type hasher;
equal_type comparei

Note that a number of the member functions of hash_table just return information
about the buckets list.

Variable maxbuckets is always a power of 2 and is the maximum number of buckets
that we can have before a major reorganization. This value is used in the hash function
that reduces the value returned by the hasher to one in the legal range for the index vector.
Member variable halfbuckets is maintained as a convenience and is always half of max­
buckets. Currentbuckets is the current number of buckets that grows by one for each in­
sert. When currentbuckets reaches maxbuckets, we do a major reorganization.

The hash function that we actually use is not the one provided by the hasher, but the
value returned by hasher reduced to the legal range for the index. We first call the hasher
to get an unsigned long. Then we reduce this value modulo the maxbuckets value. Then if
that value is less than currentbuckets, we are done. However, when the value is greater
than or equal to the currentbuckets variable, we have an illegal bucket number. Therefore,
we return the number of the buddy bucket instead. The buddy of any bucket is the one at a
distance halfbuckets away. In this case the buddy is always before the one that we just
computed, so we reduce the value by halfbuckets.

unsigned long hash(const key_type& t) const
{ unsigned long result = hasher(t);

}

result %= maxbuckets;
if (result >= currentbuckets)

result -= halfbuckets;
return result;

Chapter 9. Hash Tables 283

Suppose that we have been inserting a few entries into our hash table. For each insert
we are going to expand the number of buckets by one. We will then have to rehash all of
the entries of the buddy of the new bucket, which distributes those values between their
original buckets and the one newly added. This gives us average bucket size one, but we
can hardly assume each bucket has only one element. Therefore, there will certainly be
empty buckets. If we think about what the index looks like, we will see a potential prob­
lem. Each entry in the index vector is an iterator to the beginning of a bucket. This
means that index[i] is the beginO iterator for bucket i, but also that index[i+ 1] is the after­
the-end iterator for that same bucket. If we have empty buckets, however, then the begin
and end iterators point to the same place, which is the after-the-end location. This will ei­
ther be the end of the entire bucket list or to some list element. In the latter case, there are
several iterators to the same list location: the beginO iterator of the corresponding bucket,
and the begin iterators of all of the empty buckets immediately to the left of that bucket.
If we insert into one of these buckets, we will have to adjust all of the iterators of empty
buckets to the left. This gives us the insert algorithm.

The insert is done at the end of the bucket rather than at the beginning, since if the
bucket isn't empty, then we don't need to adjust other iterators in this case. But if the
bucket into which we insert an item is empty, then its iterator entry in the index list
must be made to point to the new entry. Also, the index iterators of any empty buckets to
the left must be made to point to the new item also. Figure 9.5 shows the situation in
which buckets 1 and 2 are empty. Their begin and end iterators are the same. They are
also equal to the begin iterator of bucket 3.

I I - .& n j~ 0 Jl
1
2
3
4
5
6
7
'-

Figure 9.5. Two empty buckets.

284 Data Structure Programming with the Standard Template Library in C++

If we now insert into bucket 2, we will be left with a situation like Figure 9.6.

I I - & ~ ~l ~ 0 ~~
1
2
3
4
5
6
7 -

Figure 9.6. After inserting into bucket 2.

The insert member is shown next. Note the adjustments to iterators to empty buckets
to the left of the insert point. If the hash function is adequate, there will be few empty
buckets. However, in the worst case this is linear in the number of buckets.

iterator insert(key_type t)
{ expand () ;

}

unsigned long b hash(t);
unsigned long w b+l;
iterator where

= buckets.insert(index[w], t);
II Inserts "before" the beginning of the
II next bucket-- i.e. at the end of bucket
II b.
while(index[b] == index[w])

II Adjust for empty buckets.
index[b--] = where;

return where;

To find an item requires that we hash the key and then search the corresponding
bucket. We compare for a match using the comparison object that was created in the con­
structor and saved as a member. We can search the buckets list using the iterators saved in
the index vector and algorithm find_if. We return a pair consisting of an iterator and a
boolean. The boolean tells whether or not we found the item. If so, the iterator points to
it.

Chapter 9. Hash Tables 285

pair<iterator, bool> find(const key_type& t)
{ if(buckets.size() > 0)

}

{ unsigned long bucket = hash(t);
iterator where = : : find_if

}

(index[bucket],
index[bucket+l],
bindlst(compare,t)

) ;
if(where != index[bucket+l])

return
pair<iterator, bool> (where, true);

return
pair<iteratar, bool>
(index[currentbuckets], false
) ;

There are two versions of this algorithm. The other is identical except that it returns a
const iterator within the pair, as is a const function as well. This is good practice in gen­
eral, but vital for our use here, since seChash has only const iterators, but map_hash has
nonconst iterators and we intend to build both using this class.

Since we aren't reorganizing when we remove items, the erase algorithm is as follows.
Note again that we must adjust all iterators to the item that is being removed. There may
be several if this item is at the beginning of its bucket and there are empty buckets to the
left. We return the number of items erased. We repeatedly use find to locate the item to be
removed. When we find an item, we must increment the iterator to its bucket if that itera­
tor points to the item being removed. We also depend on the fact that the comparison ob­
ject is consistent with the hash function, though the dependence is subtle here. Note that
we only hash once here to find a bucket number and we check for empty buckets only to
the left of that bucket.

int erase(key_type t)
{ int result = 0;

unsigned long where = hash(t);
pair<iterator, bool> lac = find(t);
while(loc.second)
{ int i = where;

}

while(index[i] == lac. first)
++index[i--];

buckets.erase(lac.first);
result++;
loc = find(t);

286 Data Structure Programming with the Standard Template Library in C++

return result;
}

Critical to efficiency overall is the expand member that adds a new bucket for each in­
sertion. We maintain two values: currentbuckets, the current number of buckets; aM
maxbuckets, the maximum number of buckets before a major reorganization. When cur­
rentbuckets reaches maxbuckets, we double maxbuckets. Actually a major reorganization
is very little extra work. Its main purpose is to define the basic divisor for the hash func­
tion. We also maintain variable haltbuckets as a convenience. It is always half of max­
buckets and is the distance between any bucket and its buddy bucket. When a bucket is
created, its buddy bucket is split. The code is a bit longer than the other members aM
contains a loop. Since buckets are small on the average, the loop won't be iterated too of­
ten. We also need to be careful about the empty bucket problem when removing items
from one bucket and inserting them into another. If we remove the first item from a
bucket with empty buckets to the left, we adjust. If we insert into an empty bucket with
empty buckets to its left, we also adjust. We use the splice algorithm to avoid calling the
allocator.

The algorithm also uses shifts rather than multiplies. The shift operator« effectively
and quickly multiplies an integer by two. Some compilers will actually use this operator
instead of multiplication when you multiply by any power of 2.

void expand ()
{ currentbuckets++;

index.push_back(buckets.end(»;
if(currentbuckets > maxbuckets)
{ halfbuckets

= maxbuckets; maxbuckets «= 1;
}
unsigned long buddy

= currentbuckets -1 - halfbuckets;
II split the buddy bucket.
for
(iterator start = index[buddy);

start 1= index[buddy+l);
II nothing
)

{ iterator next = start;
++next; II Remember the "next" item.
if (hash(*start) 1= buddy)

II must move this item
if(next == index[currentbuckets-l])
II can just adjust pointers
{ --index[currentbuckets-l];

unsigned long adjust
= currentbuckets-2;

}
}

}

}

Chapter 9. Hash Tables 287

while(index[adjust] == next)
--index[adjust--];

return;

else II must actually move it
{ unsigned long k = buddy;

}

while(start == index[k])
++index [k- -] ;

buckets. splice
(index [currentbuckets-1],

buckets, start
) ;
iterator temp

= index[currentbuckets-1];
k = currentbuckets - 1;
while(index[k] == temp)

--index[k--];

start = next;

else ++start;

9.8.2 Sets and Maps

A minimal implementation of sets based on the hash table above is shown next. Note
that most of the members just pass on instructions to the hash_table representation.
Note, however, that the iterator is a consUterator. This is required by the notion of the
hash implementation. If we change the value of an element in a set, it should be hashed
to a different location. We could, of course, do this internally, but the easiest way is to
disallow changes to the values. You can erase a value and then insert a modified value
rather than change a value saved in the set.

We maintain the set property (unique inserts) by checking to see if an element is al­
ready present before inserting it. We can use the find member of the hash_table representa­
tion for this.

template <class KEY, class HASHER, class EQUAL>
class set_hash
{public:

typedef hash_table<KEY, HASHER, EQUAL>
: :const_iterator iterator;
II bidirectional const iterator

typede£ KEY key_type;

288 Data Structure Programming with the Standard Template Library in C++

typedef KEY value_type;
typedef HASHER hash_type;
typedef EQUAL equal_type;

set_hash(): rep(){}

hash_type hash_function()
{ return rep.hash_function();
}

equal_type comparer(){return rep.comparer();}

iterator insert (key_type t)
{ pair<rep_type::iterator, bool> where

= rep. find(t);

}

if(!where.second)
return rep.insert(t);

return where. first;

int erase(key_type t){ return rep.erase(t); }

iterator find(const key_type& k) const
{ pair<iterator, bool> where = rep.find(k);

if(where.second) return where. first;
return end () ;

}

iterator begin()const{ return rep.begin();}
iterator end()const{return rep.end();}

bool empty() const { return rep.empty();}
int size()const{return rep.size();}

protected:

} ;

typedef hash_table<key_type, HASHER, EQUAL>
rep_type;

rep_type rep;

Note that since find is const and returns a const iterator, it uses the second version of
hash_table::find; the one that is itself const returning a const iterator.

The code for map is nearly identical. The exception is that we save pairs instead of
keys, and we don't require const iterators, though we permit them. We protect against
changing the keys in a pair by storing const KEY values rather than KEY values in the
pairs. Therefore, we can return (nonconst) iterators to these pairs, knowing that only the
data value in the pair can be changed.

Chapter 9. Hash Tables 289

template
< class KEY,

class DATA,
class HASHER,
class EQUAL

>
class map_hash
{public:

typedef pair<const KEY, DATA> value_type;
typedef KEY key_type;
typedef hash_table<value_type, HASHER, EQUAL>

: :iterator iterator;
II bidirectional iterator

typedef KEY key_type;
typedef DATA& reference;
typedef HASHER hash_type;
typedef EQUAL equal_type;

map_hash(): rep(){}

iterator insert (KEY t, DATA v)
{ value_type p(t,v);

pair<rep_type: :iterator, bool> where
= rep. find(p);

if(!where.second)
return rep.insert(p);

return where. first;

hash_type hash_function()
{ return rep.hash_function();
}

equal_type comparer() {return rep.comparer();}

int erase(KEY t)
{ value_type p(t,DATA());

return rep.erase(p);

iterator find(const key_type& k)
{ pair<iterator, bool> where

}

= rep.find(value_type(k,DATA()));
if (where. second) return where. first;
return end () ;

290 Data Structure Programming with the Standard Template Library in C++

iterator begin(){ return rep.begin();}
iterator end() {return rep.end();}
bool empty() const { return rep.emptY()i}
int size()const{return rep.size();}

reference operator[] (const key_type& k)
{ return (*(insert(k, DATA(»».secondi
} II NOTE that this inserts the DATA default

II value into the map for your key if the
II key is not originally present.

protected:

} ;

typedef hash_table<value_type, HASHER, EQUAL>
rep_typei

rep_type rep;

We depend here on the fact that the hash depends on only the key. We can find a value
knowing only the key by putting a dummy value into the data slot of the pair we seek.

We also provide an operator[] to permit index-like searching of the map. We supply a
key between the brackets and get a reference to the associated value if present, and to the
default value of the data type otherwise.

9.8.3 Using the Sets and Maps

Before we can create a set or a map, we must create the hash and comparison objects that
it will use. This is easiest in the case of a set, since we have only the keys to worry
about. For example, if we want to create a set of int values, we can use the following
hash function and comparison object. We multiply the key value by a large prime number
to guard against the insertion of a lot of small integers that would tend to overload some
buckets. Note that the inthasher and the compare template provide consistent values: If
two integers are the same according to compare<int>(), then the hash values are the same
also.

class inthasher
{public:

};

unsigned long operator() (const int& m) const
{ return m * 1073741827;
}

template <class T>
class compare public binary_function<T, T, bool>
{public:

} ;

bool operator()
(const T& first,

const T& second
const
return first == second;

Chapter 9. Hash Tables 291

The compare function object should derive from the binary function class to be consis­
tent with the rest of the STL. We can now create a set of ints with the following:

set_hash <int, inthasher, cornpare<int> > intSet;

To use maps requires a bit more work. First we need a hasher that works on pairs, but
considers only the key to create the value. Suppose we want to build a map with ints for
both keys and data values.

class pair_hasher
{public:

} ;

unsigned long operator()
(const pair<const int,

int>& rn
) const
{ return rn.first * 1073741827;
}

We also need a comparison object that is consistent with this and compares only the
keys of a pair. Again, this should be derived from binary_function.

template <class T, class S>
class cornpare-pair : public
binary_function<pair<T,S>, pair<T,S>, bool>
{ public:

} ;

bool operator ()
(const pair<T,S>& first,

const pair<T,S>& second
) const
{ return first. first == second. first;
}

Now a map from ints to ints may be created with

292 Data Structure Programming with the Standard Template Library in C++

map_hash
< int,

int,
pair_hasher,
compare-pair<const int, int>

> hashMapi

We could then read pairs from a file and insert them into our map with the following
fragment of code.

ifstrearn aFile("somedata.in")i
int k, Vi
while (aFile»k)
{ aFile» Vi

hashMap.insert(k,v)i
}

9.9 Design Issues

A number of important pieces have been left out of this implementation and some other
features could be improved with better design. First, efficiency demands that we shrink the
number of buckets at least occasionally. Otherwise, we get too many empty buckets aOO
the adjustments necessary for empty buckets start to playa dominant role.

Another place at which we could improve the efficiency is in our separation of func­
tionality between hash_table and the classes built from it. In particular, we could avoid
extra searching by giving the hash_table class itself knowledge of whether it was being
used in a set-like or multi set-like way. When we insert an item into a set, we search to
see if it is present. If it is not we insert it, but that requires an extra search also. We could
do it all with one search if the implementation had an insert_only_iCnocpresent member
or something equivalent.

Another interesting idea is to provide additional constructors, so that we don't need to
use the default value of the compare class as the comparison object. We could provide a
constructor that passes in a comparison object to be used. This would permit us to
parameterize the comparison class, adding to flexibility. We could do all of this for the
hasher class as well, of course.

9.10 Extending the Standard Template Library

We see in the hashed structures provided in this proposal what it takes to extend the STL
with an additional container. We need to define the container type, of course, and give it
the usual exported types. We also need to give it an interface that includes all of the re­
quired container interface elements, such as insert and erase. We also need to define aOO

Chapter 9. Hash Tables 293

perhaps construct an associated iterator type-especially if ordinary pointers won't work
for the new container. Careful analysis needs to be done to assure that the new container
will work with the appropriate generic algorithms, and on those occasions that this is
impossible, provide special analogs of them as appropriate. Efficiencies of all of the
member functions need to be given careful analysis.

More importantly, before attempting to add the new structures to the STL, the pro­
grammer should analyze the container and its iterator to be sure that it is designed with
sufficient generality to be useful in a wide range of problems. This analysis of usefulness
is closely related to the efficiency considerations mentioned above.

For example, it would be difficult to design a graph container to integrate with the
STL, not because graphs aren't useful. Indeed many graph problems are very important.
However, graphs can already be built with the existing elements as was shown earlier.
Also, it would be difficult to design a graph interface with sufficient generality to satisfy
critics. This is because there are very many ways to build graphs, each with different effi­
ciency constraints, and each suitable for a certain set of problems, but unsuitable for
many others.

9.11 Summary

Make certain that you understand each of the following terms:

bucket
circular hashing
continuous reorganization
hash table reorganization
periodic reorganization
separate chaining

9.12 Exercises

1. Build a hash table class template with a vector index and using STL lists for buckets.
Use one list per bucket. Your template arguments should include at least the value type to
be inserted and a hash function for values of that type.

2. Build a periodic reorganizer for your hash table. Use the total size of the table as the
trigger. When the number of elements doubles, double the number of buckets. Does this
give us amortized constant search times assuming a perfectly uniform hash function?

3. Build an iterator class for your hash table. Note that insertions should not invalidate it­
erators (even in the presence of reorganizations), and deletions do so only when they delete
the item that an iterator references. The advantage of this implementation is that the

294 Data Structure Programming with the Standard Template Library in C++

"empty bucket" problem of the hash_table shown in the text does not occur in this im­
plementation.

4. Modify the hash table implementation described in the text so that it continuously
shrinks the hash table structure when we remove items. Shrink one bucket per erasure.

5. Build a multiseChash class similar to our seChash. Base it on either the hash table
implementation given in the text, or the one developed in the earlier exercises.

6. Build a multi map_hash class similar to our map_hash. Base it on either the hash table
implementation given in the text, or the one developed in the earlier exercises.

7. Improve the hash_table class as suggested in Section 9.9. Reimplement the seChash
and map_hash classes to take advantage of the changes in hash_table.

8. Construct a set of data that can be inserted into either a red-black tree or a hash table.
Provide relative timings of the two structures on a series of inserts and also on a series of
deletes. Use the implementations discussed in this chapter and the previous one. Are the
experimental timings consistent with the theory?

9. See Exercise 8. If you have access to the reference hash implementation (See [8]), then
do the same for the STL set and hash_set structures.

10. From your experience in computer science, what additional structures could/should be
added to the STL? Write an essay detailing your choice and the reasons. If you think that
it is complete, write an essay justifying your decision.

Appendix
STLSummary

A.I Algorithms Prototypes

A.I.I Maximum and Minimum

template <class T>
inline const T& min(const T& a, const T& b);

template <class T, class Compare>
inline const T& min(const T& a, const T& b, Compare comp);

template <class T>
inline const T& max(const T& a, const T& b);

template <class T, class Compare>
inline const T& max(const T& a, const T& b, Compare comp);

template <class Forwardlterator>
Forwardlterator max_element

Forwardlterator first,
Forwardlterator last

) ;

template <class Forwardlterator, class Compare>
Forwardlterator max_element

Forwardlterator first,
Forwardlterator last,
Compare comp

) ;

template <class Forwardlterator>
Forwardlterator min_element

Forwardlterator first,

296 Data Structure Programming with the Standard Template Library in C++

Forwardlterator last
) ;

template <class Forwardlterator, class Compare>
Forwardlterator min_element

Forwardlterator first,
Forwardlterator last,
Compare comp

) ;

A.l.2 Generalized Numeric Operations

template <class Inputlterator, class T>
T accumulate
(Inputlterator first,

Inputlterator last,
T init

) ;

template < class Inputlterator,
class T,
class BinaryOperation

>
T accumulate
(InputIterator first,

InputIterator last,
T init,
BinaryOperation binary_op

) ;

template < class Inputlteratorl,
class Inputlterator2,
class T

>
T inner_product
(Inputlteratorl firstl,

InputIteratorl lastl,
Inputlterator2 first2,
T init

) ;

template < class Inputlteratorl,
class InputIterator2,
class T,

>

class BinaryOperationl,
class BinaryOperation2

T inner_product
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
T init,

) ;

BinaryOperationl binary_opl,
BinaryOperation2 binary_op2

Appendix. STL Summary 297

template <class Inputlterator, class Outputlterator>
Outputlterator partial_sum
(Inputlterator first,

) ;

Inputlterator last,
Outputlterator result

template < class Inputlterator,
class Outputlterator,
class BinaryOperation

>
Outputlterator partial_sum
(Inputlterator first,

Inputlterator last,
outputlterator result,
BinaryOperation binary_op

) ;

template <class Inputlterator, class Outputlterator>
Outputlterator adjacent_difference
(Inputlterator first,

) ;

Inputlterator last,
Outputlterator result

template < class Inputlterator,
class Outputlterator,
class BinaryOperation

>
Outputlterator adjacent_difference
(Inputlterator first,

Inputlterator last,
outputlterator result,

298 Data Structure Programming with the Standard Template Library in C++

BinaryOperation binary_op
) i

A.l.3 Nonmutating Sequence Operations

template < class Inputlteratorl,
class Inputlterator2

>
pair<Inputlteratorl, Inputlterator2> mismatch
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2

) i

template < class Inputlteratorl,
class Inputlterator2,
class BinaryPredicate

>
pair<Inputlteratorl, Inputlterator2> mismatch
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
BinaryPredicate binary-pred

) i

template <class Inputlteratorl, class Inputlterator2>
inline bool equal
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2

) i

template < class Inputlteratorl,
class Inputlterator2,
class BinaryPredicate

>
inline bool equal

Inputlteratorl firstl,
Inputlteratorl lastl,
Inputlterator2 first2,
BinaryPredicate binary-pred

) i

Appendix. STL Summary 299

template <class Inputlterator, class Function>
Function for_each

Inputlterator first,
Inputlterator last,
Function f

) ;

template <class Inputlterator, class T>
Inputlterator find
(Inputlterator first,

Inputlterator last,
const T& value

) ;

template <class Inputlterator, class Predicate>
Inputlterator find_if
(Inputlterator first,

) ;

Inputlterator last,
Predicate pred

template <class Forwardlterator>
Forwardlterator adjacent_find
(Forwardlterator first,

Forwardlterator last
) ;

template <class Forwardlterator, class BinaryPredicate>
Forwardlterator adjacent_find
(Forwardlterator first,

) ;

Forwardlterator last,
BinaryPredicate binary-pred

template <class Inputlterator, class T, class Size>
void count

Inputlterator first,
Inputlterator last,
const T& value,
Size& n

) ;

template <class Inputlterator, class Predicate, class Size>
void count_if

Inputlterator first,

300 Data Structure Programming with the Standard Template Library in C++

) ;

Inputlterator last,
Predicate pred,
Size& n

template <class Forwardlteratorl, class Forwardlterator2>
inline Forwardlteratorl search

Forwardlteratorl firstl,
Forwardlteratorl lastl,
Forwardlterator2 first2,
Forwardlterator2 last2

) ;

template < class Forwardlteratorl,
class Forwardlterator2,
class BinaryPredicate

>
inline Forwardlteratorl search

Forwardlteratorl firstl,
Forwardlteratorl lastl,
Forwardlterator2 first2,
Forwardlterator2 last2,
BinaryPredicate binary-pred

) ;

A.l.4 Mutating Sequence Operations

template <class Inputlterator, class Outputlterator>
Outputlterator copy
(Inputlterator first,

Inputlterator last,
Outputlterator result

) ;

template < class Bidirectionallteratorl,
class Bidirectionallterator2

>
Bidirectionallterator2 copy_backward
(Bidirectionallteratorl first,

Bidirectionallteratorl last,
Bidirectionallterator2 result

) ;

Appendix. STL Summary 301

template <class Outputlterator, class Size, class T>
Outputlterator fill_n
(Outputlterator first,

Size n,
const T& value

) ;

template <class T>
void swap(T& x, T& y);

template <class Forwardlteratorl, class Forwardlterator2>
Forwardlterator2 swap_ranges
(Forwardlteratorl firstl,

) ;

Forwardlteratorl lastl,
Forwardlterator2 first2

template < class Inputlterator,
class Outputlterator,
class UnaryOperation

>
Outputlterator transform
(Inputlterator first,

Inputlterator last,
Outputlterator result,
UnaryOperation op

) ;

template < class InputIteratorl,
class InputIterator2,
class OutputIterator,
class BinaryOperation

>
Outputlterator transform
(InputIteratorl firstl,

Inputlteratorl lastl,
InputIterator2 first2,
Outputlterator result,
BinaryOperation binary_op

) ;

template <class Forwardlterator, class T>
void replace
(Forwardlterator first,

Forwardlterator last,

302 Data Structure Programming with the Standard Template Library in C++

) i

const T& old_value,
const T& new_value

template <class Forwardlterator, class Predicate, class T>
void replace_if
(Forwardlterator first,

Forwardlterator last,
Predicate pred,
const T& new_value

) i

template < class Inputlterator,
class Outputlterator,
class T

>
Outputlterator replace_copy
(Inputlterator first,

Inputlterator last,
Outputlterator result,
const T& old_value,
const T& new_value

) i

template < class Iterator,

>

class Outputlterator,
class Predicate,
class T

Outputlterator replace_copy_if
(Iterator first,

) i

Iterator last,
Outputlterator result,
Predicate pred,
const T& new_value

template <class Forwardlterator, class Generator>
void generate
(Forwardlterator first,

Forwardlterator last,
Generator gen

) i

Appendix. STL Summary 303

template <class Output I terator, class Size, class Generator>
Outputlterator generate_n
(Outputlterator first,

) ;

Size n,
Generator gen

template < class Inputlterator,
class Outputlterator, c
lass T

>
Outputlterator remove_copy
(Inputlterator first,

Inputlterator last,
Outputlterator result,
const T& value

) ;

template < class Inputlterator,
class Outputlterator,
class Predicate

>
Outputlterator remove_copy_if
(Inputlterator first,

Inputlterator last,
Outputlterator result,
Predicate pred

) ;

template <class Forwardlterator, class T>
Forwardlterator remove

Forwardlterator first,
Forwardlterator last,
const T& value

) ;

template <class Forwardlterator, class Predicate>
Forwardlterator remove_if

Forwardlterator first,
Forwardlterator last,
Predicate pred

) ;

304 Data Structure Programming with the Standard Template Library in C++

template <class Inputlterator, class Outputlterator>
inline Outputlterator unique_copy
(Inputlterator first,

) i

Inputlterator last,
Outputlterator result

template < class Inputlterator,
class Outputlterator,
class BinaryPredicate

>
inline Outputlterator unique_copy

Inputlterator first,
Inputlterator last,
Outputlterator result,
BinaryPredicate binary-pred

) i

template <class Forwardlterator>
Forwardlterator unique
(Forwardlterator first,

Forwardlterator last
) i

template <class ForwardIterator, class BinaryPredicate>
Forwardlterator unique
(ForwardIterator first,

Forwardlterator last,
BinaryPredicate binary-pred

) i

template <class Bidirectionallterator>
inline void reverse

Bidirectionallterator first,
BidirectionalIterator last

) i

template <class Bidirectional Iterator, class Outputlterator>
Outputlterator reverse_copy
(Bidirectionallterator first,

Bidirectionallterator last,
Outputlterator result

) i

template <class Forwardlterator>
inline void rotate

Forwardlterator first,
Forwardlterator middle,
Forwardlterator last

) ;

Appendix. STL Summary 305

template <class Forwardlterator, class Outputlterator>
Outputlterator rotate_copy
(Forwardlterator first,

) ;

Forwardlterator middle,
Forwardlterator last,
Outputlterator result

template <class RandomAccesslterator>
inline void random_shuffle

RandomAccesslterator first,
RandomAccesslterator last

) ;

template <class RandomAccesslterator, class
RandomNumberGenerator>
void random_shuffle

) i

RandomAccesslterator first,
RandomAccesslterator last,
RandomNumberGenerator& rand

template <class Bidirectionallterator, class Predicate>
Bidirectionallterator partition
(Bidirectionallterator first,

) ;

Bidirectionallterator last,
Predicate pred

template <class Forwardlterator, class Predicate>
inline Forwardlterator stable-partition
(Forwardlterator first,

) ;

Forwardlterator last,
Predicate pred

306 Data Structure Programming with the Standard Template Library in C++

A.l.5 Sorting Related Operations

template <class RandomAccesslterator>
void sort(RandomAccesslterator first, RandomAccesslterator
last)

template <class RandomAccesslterator, class Compare>
void sort

RandomAccesslterator first,
RandomAccesslterator last,
Compare comp

) i

template <class RandomAccesslterator>
inline void stable_sort
(RandomAccesslterator first,

RandomAccesslterator last
) i

template <class RandomAccesslterator, class Compare>
inline void stable_sort

RandomAccesslterator first,
RandomAccesslterator last,
Compare comp

) i

template <class RandomAccesslterator>
inline void partial_sort
(RandomAccesslterator first,

RandomAccesslterator middle,
RandomAccesslterator last

) i

template <class RandomAccesslterator, class Compare>
inline void partial_sort
(RandomAccesslterator first,

RandomAccesslterator middle,
RandomAccesslterator last,
Compare comp

) i

template <class Inputlterator, class RandomAccesslterator>
inline RandomAccesslterator partial_sort_copy

Inputlterator first,
Inputlterator last,

) ;

RandomAccesslterator result_first,
RandomAccesslterator result_last

template < class Inputlterator,

Appendix. STL Summary 307

class RandornAccesslterator,
class Compare

>
inline RandornAccesslterator partial_sort_copy

Inputlterator first,

) ;

Inputlterator last,
RandomAccesslterator result_first,
RandomAccesslterator result_last,
Compare comp

template <class RandornAccesslterator>
inline void nth_element

RandornAccesslterator first,
RandornAccesslterator nth,
RandornAccesslterator last

) ;

template <class RandornAccessIterator, class Compare>
inline void nth_element
(RandornAccesslterator first,

RandornAccesslterator nth,
RandomAccesslterator last,
Compare comp

) ;

template <class Forwardlterator, class T>
inline Forwardlterator lower_bound

Forwardlterator first,
Forwardlterator last,
const T& value

) ;

template <class Forwardlterator, class T, class Compare>
inline Forwardlterator lower_bound

Forwardlterator first,
Forwardlterator last,
const T& value,

308 Data Structure Programming with the Standard Template Library in C++

Compare comp
) ;

template <class Forwardlterator, class T>
inline Forwardlterator upper_bound
(Forwardlterator first,

) ;

Forwardlterator last,
const T& value

template <class Forwardlterator, class T, class Compare>
inline Forwardlterator upper_bound
(Forwardlterator first,

) ;

Forwardlterator last,
const T& value,
Compare comp

template <class Forwardlterator, class T>
inline pair<Forwardlterator, Forwardlterator> equal_range
(Forwardlterator first,

) ;

Forwardlterator last,
const T& value

template <class Forwardlterator, class T, class Compare>
inline pair<Forwardlterator, Forwardlterator> equal_range
(Forwardlterator first,

) ;

Forwardlterator last,
const T& value,
Compare comp

template <class Forwardlterator, class T>
bool binary_search
(Forwardlterator first,

Forwardlterator last,
const T& value

) ;

template <class Forwardlterator, class T, class Compare>
bool binary_search
(Forwardlterator first,

Forwardlterator last,
const T& value,

Compare comp
) ;

template < class Inputlteratorl,
class Inputlterator2,
class Outputlterator

>
Outputlterator merge
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result

) ;

template < class Inputlteratorl,
class Inputlterator2,
class Outputlterator,
class Compare

>
Outputlterator merge
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result,
Compare comp

) ;

template <class BidirectionalIterator>
inline void inplace_merge
(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last

) ;

Appendix. STL Summary 309

template <class Bidirectionallterator, class Compare>
inline void inplace_merge
(Bidirectionallterator first,

BidirectionalIterator middle,
BidirectionalIterator last,
Compare comp

) ;

31 0 Data Structure Programming with the Standard Template Library in C++

A.l.6 Set Operations on Sorted Structures

template <class Inputlteratorl, class Inputlterator2>
bool includes

Inputlteratorl firstl,
Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2

) i

template < class Inputlteratorl,
class Inputlterator2,
class Compare

>
bool includes
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Compare comp

) i

template < class Inputlteratorl,
class Inputlterator2,
class Outputlterator

>
outputlterator set_union
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result

) i

template < class Inputlteratorl,
class Inputlterator2,
class Output I terator,
class Compare

>
Outputlterator set_union
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result,

Compare comp
) ;

template < class Inputlteratorl,
class Inputlterator2,
class Outputlterator

>
Outputlterator set_intersection
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result

) ;

template < class Inputlteratorl,
class Inputlterator2,
class Outputlterator,
class Compare

>
Outputlterator set_intersection
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result,
Compare comp

) ;

template < class Inputlteratorl,
class Inputlterator2,
class Outputlterator

>
Outputlterator set_difference
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result

) ;

template < class Inputlteratorl,
class Inputlterator2,
class Outputlterator,

Appendix. STL Summary 311

312 Data Structure Programming with the Standard Template Library in C++

class Compare
>

outputlterator set_difference
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
outputlterator result,
Compare comp

) ;

template < class Inputlteratorl,
class Inputlterator2,
class outputlterator

>
outputlterator set_symmetric_difference
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
outputlterator result

) ;

template < class Inputlteratorl,
class Inputlterator2,
class outputlterator,
class Compare

>
outputlterator set_symmetric_difference
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result,
Compare comp

) ;

A.t.7 Heap Operations

template <class RandomAccesslterator>
inline void push_heap
(RandornAccesslterator first,

RandomAccesslterator last
) ;

Appendix. STL Summary 313

template <class RandomAccesslterator, class Compare>
inline void push_heap
(RandomAccesslterator first,

RandomAccesslterator last,
Compare comp

) ;

template <class RandomAccesslterator>
inline void pop_heap
(RandomAccesslterator first,

RandomAccesslterator last
) ;

template <class RandomAccesslterator, class Compare>
inline void pop_heap
(RandomAccesslterator first,

RandomAccessIterator last,
Compare comp

) ;

template <class RandomAccessIterator>
inline void make_heap
(RandomAccesslterator first,

RandomAccesslterator last
) ;

template <class RandomAccesslterator, class Compare>
inline void make_heap
(RandomAccessIterator first,

RandomAccessIterator last,
Compare comp

) i

template <class RandomAccessIterator>
void sort_heap
(RandomAccessIterator first,

RandomAccessIterator last
) i

template <class RandomAccessIterator, class Compare>
void sort_heap
(RandomAccessIterator first,

RandomAccessIterator last,
Compare comp

) i

314 Data Structure Programming with the Standard Template Library in c++

A.I.S Lexicographical Compare Operations

template <class Inputlteratorl, class Inputlterator2>
bool lexicographical_compare
(Inputlteratorl firstl,

) ;

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2

template < class Inputlteratorl,
class Inputlterator2,
class Compare

>
bool lexicographical_compare
(Inputlteratorl firstl,

Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Compare comp

) ;

A.I.9 Permutation Generator Operations

template <class Bidirectionallterator>
bool next_permutation
(Bidirectionallterator first,

Bidirectionallterator last
) ;

template <class Bidirectionallterator, class Compare>
bool next_permutation
(Bidirectionallterator first,

Bidirectionallterator last,
Compare comp

) ;

template <class Bidirectionallterator>
bool prey_permutation
(Bidirectionallterator first,

Bidirectionallterator last
) i

Appendix. STL Summary 315

template <class Bidirectionallterator, class Compare>
bool prey_permutation
(Bidirectionallterator first,

Bidirectionallterator last,
Compare comp

) ;

A.I.I0 Miscellaneous Operations

template <class Inputlterator, class Distance>
inline void distance

Inputlterator first,
Inputlterator last,
Distance& n

) ;
II constant time for random access iterator else linear

template <class Inputlterator, class Distance>
inline void advance(Inputlterator& i, Distance n);
II constant time for random access iterator else linear

A.2 Containers

Note that only the public members are shown here.

A.2.1 Sequential Containers

template <class T>
class deque
{ public:

typedef T value_type;
typedef Allocator<T> data_allocator_type;
typedef Allocator<T>: : pointer pointer;
typedef Allocator<T>: : reference reference;
typedef Allocator<T>: :const_reference const_reference;
typedef Allocator<T>: : size_type size_type;
typedef Allocator<T>: : difference_type difference_type;
typedef Allocator<pointer> map_allocator_type;

class iterator
public random_access_iterator<T, difference_type>

{ public:

316 Data Structure Programming with the Standard Template Library in C++

} i

iterator()i
reference operator*() consti
difference_type operator-(const iterator& x) consti
iterator& operator++()i
iterator operator++(int)i
iterator& operator--()i
iterator operator--(int)i
iterator& operator+=(difference_type n)i
iterator& operator-=(difference_type n);
iterator operator+(difference_type n) consti
iterator operator-(difference_type n) consti
reference operator[] (difference_type n)i
bool operator==(const iterator& x) consti
bool operator«const iterator& x) const;

class const_iterator
public random_access_iterator<T, difference_type>

{ public:

} ;

const_iterator()i
const_iterator(const iterator& X)i

const_reference operator*() consti
difference_type operator-

(const const_iterator& x) const;
const_iterator& operator++();
const_iterator operator++(int);
const_iterator& operator--();
const_iterator operator--(int);
const_iterator& operator+=(difference_type n);
const_iterator& operator-=(difference_type n);
const_iterator operator+(difference_type n) const;
const_iterator operator-(difference_type n) const;
const_reference operator[] (difference_type n)i
bool operator==(const const_iterator& x) consti
bool operator«const const_iterator& x) const;

typedef reverse_iterator
< const_iterator,

value_type,
const_reference,
difference_type

>
const_reverse_iterator;

Appendix. STL Summary 317

typedef reverse_iterator
<iterator, value_type, reference, difference_type>
reverse_iterator;

deque() ;
deque(size_type n, const T& value = T(»;

/* If template members are available:
template<class Iterator>

*/
deque(Iterator first, Iterator last);

deque(const T* first, const T* last);
deque(const deque<T>& x);
deque<T>& operator=(const deque<T>& x);
-deque() ;
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
bool empty() const;
size_type size() const;
size_type max_size() const;
reference operator[] (size_type n);
const_reference operator[] (size_type n) const;
reference front();
const_reference front() const;
reference back();
const_reference back() const;
void push_front(const T& x);
void push_back(const T& x);
void pop_front();
void pop_back();
void swap(deque<T>& x);
iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);

/* If template members are available:
template <class Iterator> void insert
(iterator position,

Iterator first,
Iterator last

) ;

*/

318 Data Structure Programming with the Standard Template Library in C++

};

void insert
(iterator position,

const T* first,
const T* last

) ;
void erase(iterator position);
void erase(iterator first, iterator last);

template <class T>
class list
{ public:

typedef T value_type;
typedef Allocator<T> value_allocator_type;
typedef Allocator<T>: : pointer pointer;
typedef Allocator<T>: : reference reference;
typedef Allocator<T>: :const_reference const_reference;
typedef Allocator<list_node> list_node_allocator_type;
typedef Allocator<list_node>: : pointer link_type;
typedef Allocator<list_node>: : size_type size_type;
typedef Allocator<list_node>

: : difference_type difference_type;

typedef reverse_bidirectional_iterator
< const_iterator,

value_type,
const_reference,
difference_type

>
const_reverse_iterator;

typedef reverse_bidirectional_iterator
<iterator, value_type, reference, difference_type>
reverse_iterator;

list() ;
list(size_type n, const T& value = T(»;
list(const T* first, const T* last);
list(const list<T>& x) ;
-list() ;
list<T>& operator=(const list<T>& x);
iterator begin();
const_iterator begin() const;
iterator end() { return node; }
const_iterator end() const;

Appendix. STL Summary 319

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const ;
bool empty() const;
size_type size() const;
size_type max_size() const;
reference front();
const_reference front() const;
reference back();
const_reference back() const;
void swap(list<T>& x);
iterator insert(iterator position, const T& x);
void insert

) ;

iterator position,
const T* first,
const T* last

void insert

) ;

iterator position,
const_iterator first,
const_iterator last

void insert(iterator position, size_type n, const T& x);
void push_front(const T& x);
void push_back(const T& x);
void pop_front();
void pop_back () ;
void erase(iterator position);
void erase(iterator first, iterator last);
void splice(iterator position, list<T>& x);
void splice(iterator position, list<T>& x, iterator i);
void splice

) ;

iterator position,
list<T>& x,
iterator first,
iterator last

void remove(const T& value);
void unique();
void merge(list<T>& x);
void reverse();
void sort();

II Nested iterator classes

320 Data Structure Programming with the Standard Template Library in C++

} ;

class iterator : public bidirectional_iterator
<T, difference_type>
{ public:

} ;

iterator() ;
bool operator==(const iterator& x) const;
reference operator*() const;
iterator& operator++();
iterator operator++(int);
iterator& operator--();
iterator operator--(int);

class const_iterator
public bidirectional_iterator <T, difference_type>

{ public:

} ;

const_iterator();
const_iterator(const iterator& x);
bool operator==(const const_iterator& x) const;
const_reference operator*() const;
const_iterator& operator++();
const_iterator operator++(int);
const_iterator& operator--() ;
const_iterator operator--(int);

template <class T>
class vector
{ public:

typedef Allocator<T> vector_allocator;
typedef T value_type;
typedef vector_allocator: : pointer pointer;
typedef vector_allocator: : pointer iterator;
typedef vector_allocator::const-pointer const_iterator;
typedef vector_allocator: : reference reference;
typedef vector_allocator: :const_reference

const_reference;
typedef vector_allocator: : size_type size_type;
typedef vector_allocator: : difference_type

difference_type;
typedef reverse_iterator

< const_iterator,
value_type,
const_reference,

} ;

difference_type
> const_reverse_iterator;

typedef reverse_iterator

Appendix. STL Summary 321

<iterator, value_type, reference, difference_type>
reverse_iterator;

iterator begin();
const_iterator begin() const;
iterator end ();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
size_type size() const;
size_type max_size() const;
size_type capacity() const;
bool empty() const;
reference operator[] (size_type n);
const_reference operator[] (size_type n) const;
vector() : start(O), finish(O), end_of_storage(O);
vector(size_type n, const T& value = T(»;
vector(const vector<T>& x);
vector(const_iterator first, const_iterator last);
-vector ();
vector<T>& operator=(const vector<T>& x);
void reserve(size_type n;
reference front();
const_reference front() const;
reference back();
const_reference back() const;
void push_back(const T& x);
void swap(vector<T>& x);
iterator insert(iterator position, const T& x);
void insert

) ;

iterator position,
const_iterator first,
const_iterator last

void insert (iterator position, size_type n, const T& x);
void pop_back();
void erase(iterator position);
void erase(iterator first, iterator last);

322 Data Structure Programming with the Standard Template Library in C++

A.2.2 Sorted Associative Containers

template <class Key, class T, class Compare>
class map
{ public:

typedef Key key_type;
typedef pair<const Key, T> value_type;
typedef Compare key_compare;

class value_compare
public binary_function <value_type, value_type, bool>

{ public:

} ;

bool operator()
(const value_type& x,

const value_type& y
const;

typedef rep_type::pointer pointer;
typedef rep_type: : reference reference;
typedef rep_type: :const_reference const_reference;
typedef rep_type::iterator iterator;
typedef rep_type::const_iterator const_iterator;
typedef rep_type: :reverse_iterator reverse_iterator;
typedef rep_type::const_reverse_iterator

const_reverse_iterator;
typedef rep_type: : size_type size_type;
typedef rep_type: : difference_type difference_type;
map(const Compare& comp = Comparee»~;
map(const value_type* first, const value_type* last,
const Compare& comp = Comparee»~;
map(const map<Key, T, Compare>& x);
map<Key, T, Compare>& operator=
(const map<Key, T, Compare>& x
) ;
key_compare key_compel const;
value_compare value_compel const;
iterator begin();
const_iterator begin() const;
iterator end ();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

};

bool empty() const;
size_type size() const;
size_type max_size() const;

Appendix. STL Summary 323

Allocator<T>::reference operator[] (const key_type& k);
void swap (map<Key, T, Compare>& x);
pair<iterator, bool> insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
void insert

) ;

const value_type* first,
const value_type* last

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
size_type count(const key_type& x) const;
iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
pair<iterator, iterator> equal_range(const key_type& x);
pair <const_iterator, const_iterator> equal_range

(const key_type& x) const;

template <class Key, class T, class Compare>
class multimap
{ public:

typedef Key key_type;
typedef pair<const Key, T> value_type;
typedef Compare key_compare;

class value_compare
public binary_function<value_type, value_type, bool>

(public:

} ;

bool operator()
(const value_type& x,

const value_type& y
const;

typedef rep_type::reference reference;
typedef rep_type::const_reference const_reference;
typedef rep_type::iterator iterator;

324 Data Structure Programming with the Standard Template Library in C++

typedef rep_type::const_iterator const_iterator;
typedef rep_type: :reverse_iterator reverse_iterator;
typedef rep_type: :const_reverse_iterator

const_reverse_iterator;
typedef rep_type: : size_type size_type;
typedef rep_type::difference_type difference_type;
multimap(const Compare& comp = Comparee»~;
multimap
(const value_type* first,

const value_type* last,
const Compare& comp = Comparee)

) ;
multimap(const multimap<Key, T, Compare>& x);
multimap<Key, T, Compare>& operator=

(const multimap<Key, T, Compare>& x);
key_compare key_compel const;
value_compare value_compel const;
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() canst;
bool empty () const;
size_type size() const;
size_type max_size() const;
void swap (multimap<Key , T, Compare>& x);
iterator insert(const value_type& x);
iterator insert(iterator position, canst value_type& x);
void insert

) ;

const value_type* first,
const value_type* last

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
size_type count(canst key_type& x) const;
iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;

} ;

Appendix. STL Summary 325

pair<iterator, iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range

(const key_type& x) const;

template <class Key, class Compare>
class set
{ public:

typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef rep_type::const_reference reference;
typedef rep_type: :const_reference const_reference;
typedef rep_type: :const_iterator iterator;
typedef rep_type: :const_iterator const_iterator;
typedef rep_type::const_reverse_iterator

reverse_iterator;
typedef rep_type: :const_reverse_iterator

const_reverse_iterator;
typedef rep_type::size_type size_type;
typedef rep_type: : difference_type difference_type;
set(const Compare& comp = Comparee»~;
set
(const value_type* first,

const value_type* last,
const Compare& comp = Comparee)

) ;
set(const set<Key, Compare>& X);
set<Key, Compare>& operator=(const set<Key, Compare>& x);
key_compare key_compel const;
value_compare value_comp() const;
iterator begin() const;
iterator end() const;
reverse_iterator rbegin() const;
reverse_iterator rend() const;
bool empty() const;
size_type size() const;
size_type max_size() const;
void swap(set<Key, Compare>& x);
pair<iterator, bool> insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
void insert

326 Data Structure Programming with the Standard Template Library in C++

} ;

) ;

const value_type* first,
const value_type* last

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
iterator find(const key_type& x) const;
size_type count(const key_type& x) const;
iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x) const;
pair<iterator, iterator> equal_range

(const key_type& x) const;

template <class Key, class Compare>
class multiset
{ public:

typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef rep_type::const_reference reference;
typedef rep_type: :const_reference const_reference;
typedef rep_type: :const_iterator iterator;
typedef rep_type: :const_iterator const_iteratar;
typedef rep_type: :const_reverse_iterator

reverse_iterator;
typedef rep_type: :const_reverse_iterator

const_reverse_iterator;
typedef rep_type::size_type size_type;
typedef rep_type: : difference_type difference_type;
multiset(const Compare& comp = Comparee»~;

multiset
(const value_type* first,

const value_type* last,
const Compare& comp = Comparee)

) ;
multiset(const multiset<Key, Compare>& x);
multiset<Key, Compare>& operator=

(const multiset<Key, Compare>& x);
key_compare key_compel const;
value_compare value_compel const;
iteratar begin() const;
iterator end() canst;
reverse_iterator rbegin() const;

} ;

reverse_iterator rend() const;
bool empty() const;
size_type size() const;
size_type max_size() const;

Appendix. STL Summary 327

void swap (multiset<Key, Compare>& x);
iterator insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
void insert

) ;

const value_type* first,
const value_type* last

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
iterator find(const key_type& x) const;
size_type count(const key_type& x) const;
iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x) const;
pair<iterator, iterator> equal_range

(const key_type& x) const;

A.3 Adaptors

A.3.1 Container Adaptors

A.3.1.1 Stack Adaptor

template <class Container>
class stack
{ friend bool operator==

(const stack<Container>& x,
const stack<Container>& y

) ;
friend bool operator<
(const stack<Container>& x,

const stack<Container>& y
) ;

public:
typedef container: :value_type value_type;
typedef Container: : size_type size_type;

protected:
Container c;

328 Data Structure Programming with the Standard Template Library in C++

public:

} ;

bool empty() const;
size_type size() const;
value_type& tope);
const value_type& tope) const;
void push(const value_type& x);
void pop ();

A.3.1.2 Queue Adaptor

template <class Container>
class queue
{ friend bool operator==

(const queue<Container>& x,
const queue<Container>& y

) ;
friend bool operator<
(const queue<Container>& x,

const queue<Container>& y
) ;

public:
typedef Container: :value_type value_type;
typedef Container::size_type size_type;

protected:
container c;

public:

} ;

bool empty() const;
size_type size() const;
value_type& front();
const value_type& front() const;
value_type& back();
const value_type& back() const;
void push(const value_type& x);
void pop ();

A.3.1.3 Priority Queue Adaptor

template <class Container, class Compare>
II Compare = less<Container::value_type> >
II default argument if available

class priority_queue
{

public:
typedef Container: :value_type value_type;

Appendix. STL Summary 329

typedef Container: : size_type size_type;
protected:

Container c;
Compare comp;

public:
priority_queue(const Compare& x = Comparee»~;
priority_queue
(const value_type* first,

const value_type* last,
const Compare& x = Comparee)

) ;

/* If template members are available:
template <class InputIterator>
priority_queue

*/

} ;

(InputIterator first,
InputIterator last,
const Compare& x = Comparee)

) ;

bool empty() const;
size_type size() const;
value_type& tope);
const value_type& tope) const;
void push(const value_type& x);
void pop ();

Bibliography

Books and articles

[1] Horstman, Mastering Object Oriented Design in C++, Wiley, 1995
[2] Glass and Schuchert, The STL <primer>, Prentice-Hall, 1996
[3] Musser and Saini, STL Tutorial and Reference Guide, Addison-Wesley, 1996
[4] Nelson, The C++ Programmer's Guide to the Standard Template Library, IDG, 1996
[5] Plauger, Stepanov, and Musser, The Standard Template Library, Prentice-Hall, 1996
[6] Sedgewick, Algorithms, 2ed. Addison-Wesley, 1988.
[7] Zahn, Bergin, "Object-Oriented Lists With Contexts", Journal of Computing in Small

Colleges, Volume 11, Number 4, March 1996

Information on the web

[8] http://www .cs.rpi.edul -musser/ stl.html
Information about STL, a reference implementation,

[9] ftp://butler.hlp.hp.comlstl
[10] ftp.cs.rpi.edulpub/stl

The HP reference implementation
[11] http://www.sgi.comlTechnology/STU

The STL Home Page
[12] http://weber .u. washington.edul -bytewave/bytewave _stl.html

A page of STL resources. Visit this. A newbie tutorial and more.
[13] ftp://research.att.comldistlc++stdlWP/

Draft C++ Standard defines the STL
[14] http://csis.pace.edul -bergin!

Joseph Bergin, Home Page

Index

2-3-4 tree 246

accumulate 125,296
adaptor 21, 100
adjacent_difference

126,297
adjacent_find 128, 194,

299
advance 139,315
alias 30
allocator 20, 144
amy 20
array section 41
automatic data28

back_inserter 144
back_insert_iterator

144
balanced binary tree 90, 242
base class 11
begin 109
bidirectional iterator 35, 100,

109, 119
big 0 51, 100
binary operator 139
binary predicate 139
binary search 46
binary search tree 89, 241
binary tree 88
binary_search 111, 134,

199, 308
bindlst 141
bind2nd 141

breadth first 91
bucket 92,271
buddy bucket 277

cell 27
circular hashing 93, 272
circularly linked list 78, 212
class 3
class invariant 174
class template 13
client 8
collision 93
compare function 132, 139
component 27
concept 118
constructor 4
const_iterator108
const_reference108
const_reverse_iterator

109
container adaptor 100, 111, 141
container 2, 19, 108
continuous reorganization 279
copy 102, 129,300
copy constructor 7
copy_backward 115, 129,

300
count 115, 128,299,323,

324
count_if 299
coupling 2
cursor 225

334 Data Structure Programming with the Standard Template Library in C++

data abstraction 1
decile 202
default constructor 7
dense storage 27, 65
depth fmt 91, 173
deque 20,110,315
derived class 11
destructor 6
difference_type 109, 157
DiGraph 171
digraph 168
distance 138,315
divides 140
double-ended queue 178
doubly linked list 76, 211
dynamic data 30

empty 109
encapsulation 1, 6
end 100, 109
equal 109, 127,298
equal_range 115, 134,200,

308
equal_to 140
erase 107, 113, 115
ExpandableArrayl50

fill_n 129,301
find 115, 128, 193,299
find_if 193,231,299
forward iterator 119
for_each 127,232,297
free store 30
front_inserter 144
front_insert_iterator

144
function adapter 105, 141
function object 20, 104, 139
function template 13

generate 130,302
generate_n 131,303
generic algorithm 123
graph 91, 168
greater 140

greater_equal 140

half open interval [a, b) 46
hash function 275
hash table 20, 267
hash table reorganization 277
hashed storage 91
hash_table 281
heap 30, 137, 186
heap sort 137
height (tree) 91

includes 135
index 28, 93, 310
indexed storage 93
information hiding 2, 6
inheritance 11
initialization 9, 15, 155
inner_product 125,296
inorder 189, 262
inplace_merge 135, 206,

309
input iterator 121
insert 111, 112, 114
insertion sort 196
insert_iteratorl44
instantiation (of a template) 15,

43
invariant 41
istream iterator 122
istream_iteratorl03
iterator 19, 38, 86, 99, 108,

111,113,117
iterator 108
iterator invalidation 111, 222,

227

less 105, 140
less_equal 140
lexicographical order 103
lexicographical_compare

138, 210, 314
linked storage 75

list 20,21, 110, 318
logical_and 140
logical_not 140
logical_or 140
lower_bound 111, 115, 134,

200, 307

make_heap 137, 188,313
map 21, 113, 250, 322
map_hash 289
max 124,295
max_element 125,295
max_size 109
median 204
merge 134, 206, 309
merge sort 207, 235
merging 234
message 8
min 124,295
minus 140
min_element 125,200,295
mismatch 127, 195,298
modulus 140
multimap 21, 113, 250, 323
multiset 21, 113,246,326
mutating sequence algorithm

129

negate 140
nested classes 216
network 169
next_permutation 138,

202,314
nonmutating sequence algorithm

127
not1 141
not2 141
not_equal_to 140
nth_element 133,204,307

object 2,3
order statistic 202
ostream iterator 122
ostream_iterator102
output iterator 121

Index 335

overload II
overloaded assignment operator=

7
override 11

partial_sort 133,205,
306

partial_sort_copy 133,
205, 306

partial_sum 126,297
partition 132,206,305
past-the-end values 46
percentile 202
perfect hash function 93
periodic reorganization 93, 277
permutation 201
plus 140
pointer 30
pointer duality law 34, 44
poi nter_to_b inary_

function 141
pointer_to_unary_

function 141
pop_heap 137, 189,313
predicate 105
preorder 90, 262
prey_permutation 138,

314
priority queue 23, 142,328
private member 6
protected member 12
public member 6
push_back 103
push_heap 137, 189,312

quartile 202
queue 22, 142, 184, 328
quicksort 47

random access iterator 99, 120
random_shuffle 132,201,

305
rbegin 109
recurrence relation 52
red-black tree 243

336 Data Structure Programming with the Standard Template Library in C++

RedBlackTree 252
reference 108
reflexivity 120
remove 131,303
remove_copy 131,303
remove_copy_if 131,303
remove_if 131,303
rend 109
replace 123, 130,301
replace_copy 123, 130,

302
replace_copy _if 130,302
replace_if 123, 130,302
reverse 131,234,304
reverse iterators 226
reverse_bidirectional

_iterator 143
reverse_copy 131,304
reverse_iterator 108,

109, 143
rota te 131, 206, 305
rotate_copy 131,305

SafeList 227
scope resolution operator:: 9
search 129, 195,300
searching 39
selection sort 40
separate chaining 93, 271
sequence container 20,110
sequential search 39
server 8
set 2, 21, 113, 246, 325
set_difference 135,311
set_hash 287
set_intersection 135,

311
set_symmetric_difference

135,312
set_union 133,239,310
size 108, 109
size_type 109

sort 104, 132, 197,219,306
sorted associative container 113,

250
sorting 40, 132, 213, 219
sort_heap 137, 190,313
splicing 213, 233
stable 133, 198
stable sort 198, 213
stable-parti tion 132,

206, 305
stable_sort 132, 198,306
stack 21, 142,327
StackAdapter161
static member 5,9
strict total ordering 114, 198
subscript 28
swap 110, 130,301
swap_ranges 130,301
symmetry 120

template parameter 14
this 10
times 140
transform 130, 301
transitivity 114, 120
tree storage 88
trichotomy 114, 120

unary operator 139
unary predicate 139
unique 106, 131,304
unique_copy 131,304
upper_bound 111,115,

134,308

value_comp 115
value_type 108
vector 20, 100, 108, 163, 320

xor 222

