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Preface

In this book we are about to study how data abstraction, and data structures programming
with the Standard Template Library can empower our programs. The Standard Template
Library (STL) was developed at Hewlett-Packard, based on the work of Alexander
Stepanov and others. Libraries similar to this have been developed for other languages
such as Ada and now Java. C++ however, has been special in that the standard for the
language has evolved specifically to support generic programming as seen in the STL.

The Standard Template Library provides a solid basis of fundamental abstract data
types and algorithms that are commonly needed in many software projects. It combines
efficiency of implementation with the safety of compile time type checking of arguments.
Once a student learns to use the library, it will no longer be necessary to rebuild common
data types such as lists and expandable arrays for each new project. The STL provides
these and many others without the compromise in efficiency that is the usual trade-off for
generality.

In many places in this book we shall speak about “the” implementation of the STL.
This is not precisely true as the STL is not defined in terms of an implementation, but in
terms of a specification of behavior and efficiency. Other implementation strategies can be
used than the ones that we detail here, provided that they meet the specification. What we
are actually describing is the so called "reference implementation" of the STL that was de-
veloped at Hewlett-Packard as the library standard was being developed.

Our technique for teaching data structures along with the STL is to develop C++
classes and functions that are similar to, though simpler than the reference implementa-
tion. In some cases our sample implementation does not meet all of the STL require-
ments, and we will point out the serious discrepancies as we go along. It is our belief that
students can learn from working with these simpler implementations and that they will
give appropriate background for examining the actual implementation if that is deemed
necessary. Some of the "simpler" implementations are actually quite sophisticated—more
so than is found in some books intended for this level.

There are some places where, in a sequence of exercises, each depends on the earlier
ones. This is a good place to put a team of students to work implementing different parts
based on prototypes agreed upon as a group.
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The Standard Template Library

Complete documentation of the STL can be found in the current C++ standards document
(see reference [13] in the Bibliography) and from:

Alexander Stepanov and Meng Lee
http://www.cs.rpi.edu/~musser/stl.html
look for doc.ps.gz

The STL code shown in this book is taken from the Hewlett-Packard version of STL
that is used as the basis of many commercial versions of the library. This material is:

Copyright (c) 1994
Hewlett-Packard Company.

Permission to use, copy, modify, distribute and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear

in supporting documentation. Hewlett-Packard Company makes no
representations about the suitability of this software for any
purpose. It is provided "as is" without express or implied warranty.

Reference versions of the STL may be obtained over the internet from David Musser
at address

ftp://ftp.cs.rpi.edu/pub/stl/
or from Hewlett-Packard at ftp://butler.hpl.hp.com/stl/

The software written specifically for this book may be obtained from
http://csis.pace.edu/~bergin/stl
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Chapter 1
Data Structures and Algorithms

1.1

Data Abstraction and Encapsulation

Niklaus Wirth, the creator of Pascal, Modula-2, and more recently, Oberon, once wrote a
book entitled Data Structures + Algorithms = Programs. A key idea of that book is that
data structures and algorithms must work together to produce a result. Further, the thesis
is proposed that data structures and algorithms must be developed together, and, using
modern languages, should be packaged together as a unit of functionality.

As an example, the built-in floating point types of C++, such as float and double,
come packaged within the language with a set of operations that manipulate them. Opera-
tors such as operator+ and operator< are intrinsically bound to and indispensable from the
values on which they operate. One of the great strengths of the C++ language is that it
permits the programmer to create data types and bind them to operations so that they op-
erate with all of the ease and power of the built-in types.

The idea of a data abstraction has three parts. First there is a set of values to be ma-
nipulated. The internal structure of these values is not of interest and may be hidden from
users. For example, the internal representation of the data type double is only infrequently
of interest to the programmer. These values are taken as atomic, or indivisible. The sec-
ond part of the definition of a data abstraction is a set of operations that manipulate the
values. The internal workings of the algorithms is also not of interest to the user, only
the specified results that the operations promise to provide. Again, the internal operations
of operator* are not as important to the user of doubles as the fact that the operator ap-
proximates the true mathematical result of a multiplication. The third element of a data
abstraction is a set of rules that define the operation of the operators. An example here
would be a specification that sets out the limits of the approximation of the multiplica-
tion of two doubles.

Question: What are all of the operators that C++ provides for type double?
The process of packaging the data and the operations of a data abstraction together into

a single unit is called encapsulation. Most modern computer languages provide some
means of encapsulation. Object-oriented programming employs one kind of encapsula-

J. Bergin, Data Structure Programming
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tion; namely that of packaging up the data and the operations that manipulate it into ob-
jects. These objects communicate with each other at run time by requesting the execution
of operations of one another.

One sort of data abstraction that is often of use in programming is that of a set. A set
is a container of values of some kind. As a container we need to insert values into it and
to check if a given value is stored. We also need operations for common set functions
such as union and intersection. The computer representation of the set values is not of
particular importance as long as it is adequate to support the specifications of the opera-
tions. Some representations won't do, however, since one of the specifications of an op-
eration will probably involve the speed with which an operation can be carried out. Some
representations will not be sufficiently efficient to support this part of the specification.
To be specific, we might want to specify that deletion from the set be achievable in con-
stant time, independent of the size of the set. We might desire this to be true if the use of
the set is within a program in which deletions must be done frequently. This requirement
might greatly restrict what implementations we might choose, but if the specifications
can be met, the user does not need to be aware of the details of the implementation. For
example, an implementation that required that each item in the set be examined to find the
one to be deleted would not be suitable if deletions must be done in constant time.

There are lots of categories of users, of course. The user of a spreadsheet program is,
perhaps, not especially aware of the details of computer programming, and may have little
interest in how a logarithm is implemented, or even that a power function is implemented
using logs. Most software, however, is written to be used by other programmers. This is
because most software is built by more than one person in a team. Most of the program-
mers are providing components to be used by other programmers to build the overall
product. Most of the time we will use the term user for another programmer who must
use the products of a programmer in his or her own work.

In fact, it is desirable that the user of sets not be aware of the implementation of either
the values or the operations. This will be especially true if the set abstraction is to be
used in a very large project developed by many people, even more if the set data type is to
be used in several projects over a long span of time. The reason for this is the inevitabil-
ity of change. Problems change over time and software must be built in such a way as to
permit changes to the programs themselves. The main difficulty in exposing the details of
an implementation to a user is that of coupling. When a user knows the details of an im-
plementation, he or she may somehow take advantage of those details. If these details
change, as they probably will, then the software built subsequently will also need to be
modified. This is very undesirable. We should be able to build programs out of independ-
ent parts, so that replacing one part with a functionally equivalent part will not require
modification of the parts that depend on it. This can be achieved only if the details are ef-
fectively hidden from users.

An analogy can be made here with hardware integrated circuits (ICs). Engineers build
electronic equipment from off-the-shelf components based on the specifications of the
signals that can be expected on the various pins of the IC. The internal wiring of the cir-
cuit is not of importance, only the overall effect as presented to the external interface,
namely the pins. This greatly decreases the complexity of design, and increases its modu-
larity.
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This de coupling of the parts of a software project can be enhanced if the details are ac-
tually hidden from other programmers so that they can be manipulated only by the opera-
tions provided. This is called information hiding and is an important feature of modern
computer languages.

In C++ we would build a set data abstraction by encapsulating the details within a Set
class. The public members of the class would be the operations on our sets, and the pri-
vate members would be the implementation details. The users of our abstraction would
use the class to create objects of type Set and would manipulate the sets by requesting
execution of the operations such as union and intersection. We will take up the details of
classes later in this chapter and the details of sets in a later chapter.

Since sets need to be able to store different kinds of things, and since it is not very
productive to define a set as containing only a single kind of thing (int set, or float set),
we would like to be able to define our set abstraction independent of the type to be con-
tained therein. In C++ we may use templates to provide parameters to our abstractions, so
that they may be specialized when used and do not need to be rewritten for each different
use.

The Standard Template Library (STL) is one of the standardized components of the
C++ language. It provides a large set of data abstractions such as set, list, and stack that
have proved useful in many different kinds of applications. These abstractions are all pre-
sented as templates so that they may be specialized in many ways when needed by users
(other programmers) without being modified. The STL also has a large number of algo-
rithms for manipulating the provided abstractions using techniques of proven efficiency
and generality.

Classes, Data Abstraction, Encapsulation, and Information
Hiding

The main means of encapsulation in C++ is the class, which evolved from the C struct or
the Pascal record idea. The main difference between classes and more primitive records is
that classes also define functional elements as well as data elements. Thus we have
Wirth's Data Structures + Algorithms. In C++, classes are types. Values with a class
type are called objects. Since a class defines both data and functional elements, each object
has both data and functional elements. Therefore, instead of the data being treated as pas-
sive, to be acted on by functions, the data (i.e., objects) are treated as active since they
have functional parts.

Here is a very simple class that encapsulates the idea of a die. Dice usually come in
pairs, but we shall implement only a single die. Most dice are small cubes with a differ-
ent number of spots on each face. They are used in board games to generate player moves.
We will use a die to generate random values that we will store in some data structures
seen later so that we may test those structures. First we present the class declaration,
which defines what functions are available for use in a Die. The class declaration also
shows the variables that are used to implement a Die.



Data Structure Programming with the Standard Template Library in C++

class Die
{ public:
Die(unsigned int faces = 6);

int roll();

static void randomize(int seed = 0);
private:

unsigned int _faces;

};

The class is divided into public and private sections. The private section here contains
only a member variable _faces. We intend to be able to create dice with any number of
faces: even physically impossible numbers of faces. The public part contains a construc-
tor Die(int) and two member functions: roll() and randomize(int). Function randomize is
marked static. The constructor will automatically be called whenever we create a new Die
object. It just sets the _faces variable to its parameter. We provide a default value of 6 for
this parameter, so that the user can create a standard six-sided die by creating a Die but
without giving any parameter. For example,

Die standard; // Creates a 6 sided die.
Die special(l12); // Creates a 12 sided die.

The definition of the constructor follows. Notice how the member variable is initial-
ized between the parameter list and the (empty) statement part.

Die: :Die(unsigned int faces)
_faces(faces)

{

}

To roll a die, we call the standard function rand() that is exported from <stdlib.h>. We
take the remainder modulo the number of faces, which gives a number between 0 and
_faces - 1. We finally add one to this result and return it.

int Die::roll()
{ return rand() % _faces + 1;

}

The way that rand() works, each time we re run our program we will get exactly the
same random numbers. This is useful while testing, but if we really want random num-
bers, then we must seed the random number generator. We do this by calling the function
srand(int). This is the purpose of the randomize member function. We randomize with the
user’s parameter, or, if that is zero, we use the system clock to give us a seed. The type
time_t and the function time() are exported by interface <time.h>.
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void Die::randomize(int seed)
[ if (seed == 0)
{ time_t now = time(NULL);
srand(now % 32763);
}
else
srand(seed);

};

Each Die object will contain a _faces variable and will have access to a roll() function.
Once we create a Die object named standard, we can roll it with standard.roll (), as
in

cout << standard.roll();
cout << special.roll();

The constructor and the static function are not available in the same way. Constructors
are called implicitly when we declare variables of class type. Static member functions are
not part of the objects of the class, but part of the class itself. If we want to execute the
static randomize function of the Die class, we need to say something like

Die:: randomize();

What follows is the definition of a StopWatch class that we shall use to empirically
determine the running time of certain algorithms. The class depends on a built-in interface
<time.h> that comes with C++. The StopWatch class is user-defined and can be found in
the interface StopWatch.h.

class StopWatch
{ public:
StopWatch();
// Start a new timer at system
// reference time
// (UNIX and PC: GMT 0:0:0 Jan 1 1970)
// (Macintosh: Midnight Jan 1 1904)
// The resolution is one second.

StopWatch (const StopWatch &d);
~StopWatch();
StopWatch & operator =
(const StopWatch &d);
time_t start();
// Returns the absolute time of start.

time_t stop();
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// Returns the absolute time of stop.

time_t mark();
// Returns the absolute time of mark.
// Prints (cout) the elapsed time

// (seconds) since start
// and the elapsed time since last
// mark.

void reset();
// Resets all times to system reference
// time.

private:

time_t _startTime;

time_t _markTime;

time_t _stopTime;

Y

Every class has a name and a feature list. The features, called members, may be either
variables, such as _startTime, or functions, such as stop (). Each object created
from this type definition will have all of these features.

Some of the features are declared public and some private. The public members
are accessible to other program sections. The private members are available only within
the code of this class. Here all of the variable members are private, which is the usual
case, and all of the functions are public, which is common, but not universal. This visi-
bility control is up to the creator of the class. Thus, within a class, we see both encapsu-
lation and information hiding.

Some of the class features are special in a number of ways. Here we have two con-
structors, which are functional members that have the same name as the class. We also
have a destructor, that has the name of the class preceded by the “~” character and no pa-
rameters. Constructors are not contained within the objects, but are used to create the ob-
jects themselves. When we include a constructor in a class, we provide the means of ini-
tialization for objects so that each object we use will always be in a consistent internal
state. This construction by a member of the class is needed since it is the data members
that need to be initialized, but they are private and not accessible to client code, including
the main function that drives our computation.

Note that some of the parameters of member functions are marked const. This simply
means that the function will not attempt to modify them. It will then be possible to pass
constants as well as variables for the real parameters (arguments) when the functions are
called.

This class illustrates the standard idiom of C++ encapsulation by providing two con-
structors, a destructor, and an assignment operator. This class is actually too simple to re-
quire all of this. They would be required if the class managed any dynamic memory. If the
user does not provide them, then standard versions will be provided by the compiler.
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Here we have two constructors. The first has no parameters, and constructs a Stop-
Watch from standard values—here the system clock. The second constructs one Stop-
Watch as a copy of another. The constructor with no parameters is called a default con-
structor and is needed by the C++ system as well as by users. If no constructor is
provided by the programmer, then C++ will provide a default constructor. The constructor
that copies an object of the same type is called a copy constructor, and it will also be
provided if the user provides no constructors at all. The copy constructor is needed by the
system whenever we call a function and attempt to pass a StopWatch object as an argu-
ment. The provided copy constructor just copies the individual fields from one object to
another. The provided default constructor merely gives default values to contained objects.

Destructors are called automatically by the C++ system when an object is no longer
available. They provide the means for a programmer to specify clean up processing done
when an object is destroyed. When you declare a StopWatch object as a local variable
within a function, the variable has a lifetime that is the same as the running time of the
function. When the function returns, all of its local data cease to be. The system will call
destructors on all of your local objects at this time. Objects created on the free store using
operator new, and objects declared to be static are handled differently, as will be seen later.
The system will provide a destructor if the programmer does not, though this provided de-
structor will take no actions other than to call destructors of any other objects that are
contained within the one being destroyed. This will be the case if one object has members
of class type.

The StopWatch class also defines a new version of the assignment operator,
operator=, so that the programmer can specify what will happen when one StopWatch
object is assigned to a StopWatch variable. This ability to give operators new meanings
for new kinds of data is what makes it possible for C++ objects to behave just as built-in
values do. We could, for example, provide a difference function representing the (last mark
time) difference between two StopWatch objects. We could use operator- to imple-
ment this operation. The system will always provide operator= if the programmer does
not. It provides for memberwise assignment of the members of the object.

Most of the operators of C++ may be given new meanings. This mechanism is called
operator overloading. One small weakness of the implementation of operator overloading
in C++ is that it is not possible to change the precedence or associativity of the operators
when giving a new version. In particular operator= has relatively low precedence and it as-
sociates from the right. All overloaded versions of this operator will behave in the same
way.

In the above class declaration, we have omitted the definitions of the member func-
tions. Some programmers prefer to include these definitions with the classes themselves
and others prefer to list them separately in an implementation file. For example, in the
separate file StopWatch.cpp, we have

StopWatch: : StopWatch()
_startTime(0),
_markTime(0),
_stopTime(0)
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{
}

and

time_t StopWatch: :stop()
{ _stopTime = time(NULL);
return _stopTime;

}

When defining member functions, constructors, and destructors separately, we must
give the class name as part of the definition, using the scope resolution operator: : as
well.

We create a new StopWatch object by using the name of the class as a type in the
usual way. The constructor will be called as part of the execution of this object creation.

StopWatch myWatch;

We operate on an object by sending it a message consisting of the name of one of its
member functions and any needed parameters. The result of the message will be the result
of calling the member function:

time_t now = myWatch.start();

Philosophically, we treat the execution of one of the member functions as if it were
executed by the object itself acting as if it were a computer. Therefore, we say that my-
Watch receives the start message and executes the start member function, returning the
start time to the message sender. Thus we think of the sender of a message as a client, and
the object that receives the message as a server that provides information to the client.

Destructors are not called directly. The system sees to their execution when an object
ceases to exist. Objects that are local to a function are destroyed when the function exits.
Static objects are destroyed when the program terminates. Finally, objects created on the
heap are destroyed when the user uses the delete operator.

If we look back at the constructor definition above, we see that the member variables
of the class are initialized in a special section, outside the statement part, introduced by a
colon symbol. We give the name of a member variable and, in parentheses, the values
that we want it to have. This initialization syntax is used only in constructors.

Another thing to keep in mind when defining classes is that if you don't include a
public section, then everything is automatically private. This is rarely, though occasion-
ally, useful. As a point of style, we name classes with capitalized words, member func-
tions starting with a lowercase letter, and member variables beginning with an initial un-
derscore character. This particular style isn't necessary, though it does make it easier to
see what things are when reading code. Some style is very important to the readability of
your programs. The standard template library itself uses a different capitalization conven-
tion. There, the class names are not capitalized, just as the built-in type names of C++
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are not capitalized. We also use a style in which all grouping symbols such as “{*“ and “}’
either line up horizontally on the same line or vertically.

Exercise. Examine the rest of the code of the StopWatch class provided with the code
that came with this book. Devise a test of the code and run it. One way to do this is to
take a program you have written previously and “instrument” it with one or more Stop-
Watches to time its behavior. You will need to include StopWatch.h, of course, and link
to StopWatch.cpp.

Here is another class that we shall use in future chapters. Class CountedInt defines
very simple objects that merely keep a value that remembers the order of creation of ob-
jects of the class. This class contains a static data member c. Such a variable is not a
member of each object of the class, as there is only one such variable for the entire class
and all objects in the class have access to it. Notice that such a member must be initial-
ized outside the class but at the global level. The scope resolution operator “::” must be
used to access c. Static data is also called shared data, since it is shared among objects
within a class. In this example, we have included the definitions of the member functions
and constructors within the class itself.

class CountedInt
{ public:

CountedInt(int x = 0)
_order(c++t),
_value(x)

{

}

CountedInt(const CountedInt& count)
_order (ct+),
_value (count._value)

{

}

CountedInt& operator=

(const CountedInt& count)
{ if(this != &count)

{ _value = count._value;

}
return *this;
}

int getValue()const{ return _value;}

void setValue(int v){ _value = v;}
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int getOrder()const{ return _order;}

private:
int _value;
int _order;
static int c;

1;

int CountedInt::c = 0;
// Initialize c from class CountedInt.

This class shows additional features as well. First, it is possible to give default values
to parameters of functions in C++, including member functions. Here we have given the
constructor CountedInt(int) a default parameter value of 0. This means that if we use the
constructor and don't give an argument, then the value 0 will be assumed for x. This also
means that this constructor serves as a default constructor, since it may be called without
arguments.

Within the assignment operator=, we have used the reserved term this. Variable
this is a pointer variable that points to the object that received the message that caused
this code to be executed. It stands for the object in control of the computer at that time.
The assignment operator = is treated as a message to the object on the lefthand side of op-
erator =, with the object on the righthand side treated as a parameter. Here we check to see
if this is the same object as count, by comparing this to the address at which count oc-
curs. If they are the same, then this isn't really the assignment of a different object, so we
do nothing. Otherwise we make the object known as this a copy of the parameter ob-
ject. But since the assignment does not result in a new object (we had two objects before
the assignment and we have two objects when we are done), we don't give a new value to
the _order member variable. It retains the value that it had. The return statement returns
the object to which the variable this points. Pointers and addresses will be taken up in
detail in the next chapter.

Also note that two of the member functions are marked const by including this re-
served word after the parameter list. This means that the member function will not try to
modify the object this. In other words, it won't directly or indirectly modify any of the
member variables of this class.

The copy constructor also illustrates that private features of a class are not private to
the objects in the class only. They are really private to the member functions of the class.
Therefore, within the class we may refer to the _value and _order members of any of the
objects of the class, including those of the parameter object named count.

Exercise. Test the above class. Make certain that you have tested all constructors and
member functions. Is it possible to modify the member variable _value from main?
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Derived Classes. Object Orientation

In C++, one class can be derived from another, called the base. The meaning of this is
that the derived class has all of the public features of the base class and may add additional
features. We say that the derived class inherits the features of the base. The derived class
can also give new procedure bodies to any of the member functions of the base class. This
is not exactly the same as overloading, in which we have several functions in a class with
the same name but different parameters. Here we have only a single function in different
classes with the same parameters, but different implementations in the base and in the de-
rived class. This is called overriding.

For example, suppose that we are building a spreadsheet program. We will use some
container to hold the individual spreadsheet cells. It might be advantageous to (a) define
the cells as a class, and (b) make the container hold pointers to this class. The cell class
can define properties common to all spreadsheet cells, such as a getValue function. We
can then derive additional classes from this cell class for the different kinds of cells in the
spreadsheet. Some cells hold just a numeric value (NumericCell) and some hold a formula
to be evaluated (FormulaCell). Each of these classes will define its own version of get-
Value. The spreadsheet can then hold pointers to any of these specialized cells.

class SpreadsheetCell

{ public:
SpreadsheetCell(...);
double getValue();

}

class NumericCell: public SpreadsheetCell
{ public:

NumericCell(...);

double getvalue();

}

class FormulaCell: public SpreadsheetCell
{ public:

FormulaCell(...);

double getvalue();

Notice that we declare the base class of a new derived class after a colon. We also
make the inheritance public. This means that a client of the NumericCell class, for exam-
ple, will be able to utilize features of the SpreadSheetCell class as well. Inheritance can
also be private, though it is seldom used.
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Derived classes do not have access to private members of their base classes. Some-
times it is desirable to give derived classes access to some features that are not publicly
visible. C++ provides an additional level of visibility control called protected. A protected
member is visible to its own class and to any derived class. Some programmers make the
implementation variables of a class protected. Others prefer to leave them private and to
provide access functions to them. These access functions may be public or protected as
necessary, depending on the specific needs. This latter method lessens the likelihood that a
change in one class will necessitate a change in another class, even a derived class. For
example, each cell of a spreadsheet has some format that is independent of whether the
cell is numeric or formula. Assuming that we also have a Format type defined, we might
have something like the following in our SpreadSheetCell class:

class SpreadsheetCell
{ public:
SpreadsheetCell(...);
double getValue();
protected:
Format getFormat();
void setFormat(Format newFormat);
private:
Format _format;

}

class NumericCell: public SpreadsheetCell
{ public:

NumericCell(...);

double getValue();

}

class FormulaCell: public SpreadsheetCell
{ public:

FormulaCell(...);

double getvalue();

The derived classes will have access to getFormat() and setFormat(). This means that
the member functions of these derived classes may call the protected functions, and may
directly refer to protected variables if there are any. The ordinary clients of the cells will
not have such access.

The best way to use inheritance is to conceptualize relationships between different
kinds of data in your program. If one kind of data seems to be a specialization of another
kind, then the more specialized kind is a good candidate for a derived class and the more
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generalized kind a good choice for its base class. Inheritance models specialization well
and other relationships poorly. In particular, it models part relationships badly. An auto-
mobile is made up of parts: body, frame, engine, wheels, and so on. We don't use inheri-
tance to model this relationship, however, but member variables. An Automobile object
has a body member, a frame member, etc. On the other hand, there are different kinds of
automobile engines. It might make sense to have a base class Engine, with derived
classes for HighPerformanceEngine, Diesel Engine, and whatever other kinds are neces-
sary.

The Standard Template Library does not depend heavily on object-oriented features of
C++. Relatively little inheritance is involved in this library. In contrast, other libraries
use inheritance extensively, some to the extent that every class is derived from a common
base class. Some other object-oriented languages (Smalltalk, Modula-3, Java) make this a
requirement, in fact.

Exercise. Suppose in a software library we needed both an Integer class and a Fraction
class. Is either of these a good candidate for a base class of the other? Explain your answer
thoroughly. Consider both the concepts involved and the use of the classes.

Templates

Templates are another important means of providing abstractions in C++. They permit us
to define entire collections of functions or classes at once and then tailor them for use as
needed. The STL depends fundamentally on this facility, as you can guess from the name.
The basic idea of templates is that they allow us to write functions and classes in a very
general way and then specialize them when they are actually put to use.

In C++ there are two different kinds of templates: function templates and class tem-
plates. Function templates are used when the same algorithm can be applied to different
kinds of arguments. Class templates are used when the same class structure can utilize dif-
ferent types in the same way.

The most commonly seen example of a function template is one that defines the algo-
rithm for swapping the values of two variables. As an ordinary function, if we want to
swap the values in two integer variables we would write the following:

void swap(int& a, int& b)
{ int temp = a;

a =b;

b = temp;

We desire to generalize this, of course, since exactly the same algorithm works for
floats, or indeed any assignable data types. We can do so with a function template as fol-
lows:
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template <class T>
void swap(T& a, T& b)
{ T temp = a;

a=b>b;

b = temp;

To define this template we have done two things. We replaced all occurrences of the
type int with a template parameter symbol T, and we indicated that we wanted a function
template instead of a function by including the template preamble to the function defini-
tion. In this context, the template parameter T is defined in angle brackets, “<” and “>,”
and it is preceded by the word class. This use of class is not related to classes as defined
above, but simply means that the parameter is required to be a type.

A function template defines a family of functions, one for each possible set of values
of the parameters. Yes, you can have several parameters. We use such a function template
simply by calling one or more of the functions that it defines. For example,

int x =5, y = 3;
swap(x, Y)i

float r = 5.2, s = 1.1;
swap(r, s);

The system will create two different functions for us using the function template.
These template functions will be able to swap ints and floats respectively. The function
template mechanism is a function factory facility, since it creates functions as needed.

Class templates are used when we write one class that must depend on another type,
but that other might be different for different uses. For example, a set needs to contain ob-
jects of some kind, but what kind is of little importance when we define what we mean
by a set. Therefore, instead of defining set as a class, it would be better to define it as a
class template, and let the user decide what kind of object should be put into his or her
sets.

Extending the example above, in which we built a class of counted ints, there was no
reason that we needed to restrict ourselves to type int. We could instead have provided a
class template so that we could count creations in any kind of values. Consider how we
do this. First we come up with a name: CountedValue. Then we decide on a name for our
parameter: V. Then we replace all occurrences of int that refer to the value collected, by
the parameter V and precede the whole by a template preamble. We will have a few diffi-
culties in this particular case.

template <class V>
class CountedvValue
{ public:
Countedvalue(V x)
_order(c++),
_value(x)
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{
}

Countedvalue(const CountedValue& count)
{ _order = c++;
_value = count._value;

}

CountedValue& operator=

(const CountedValue& count)
{ if(this != &count)

{ _value = count._value;

}

return *this;

}

V getvValue()const{ return _value;}
void setValue(V v){ _value = v;}
int getOrder()const{ return _order; }

private:
V _value;
int _order;
static int c;
};

The first difficulty is that it is harder to give default values to parameters here, since
we don't know their types when we write the template. One possibility is to use V() as
the default value, as this syntax will construct a default value of type V, provided that V
is a type that provides a default constructor.

To use a class template, the user must explicitly give a value to the template parame-
ter. For example,

Countedvalue<int> cvi (5);
Countedvalue<double> cvd (4.1);

will define a new counted integer value and a counted double. Note that these objects are
from two different classes. A class template creates classes. The template mechanism for
classes is a type manufacturing facility.

The second difficulty concerns the initialization of static data, such as our variable c.
We can't provide for this in general, as we don't have template variables. We need to ex-
plicitly initialize these values for each class that we intend to instantiate. This must be
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done before we can execute the above definitions of cvi and cvd. Since the static variable
is private, this initialization must be done at the global level, outside of any function:

int CountedValue<int>::c = 0;
int Countedvalue<double>::c = 0;

This is not much of a problem in practice, as static members are quite rare in C++.

What types may be substituted for template parameters? C++ does not in itself place
any restriction on the type that may be used to instantiate a class template. However, the
code of the template itself may place restrictions. Some of these restrictions don't look
like restrictions at all until you really understand the working of C++, and especially its
constructors and operator structure. For example, in the template CountedValue, the pa-
rameter V appears once as the type of a parameter. This means that we may pass such a
value, which requires the presence of a copy constructor. If we attempt to instantiate
CountedValue with a type that does not support copy construction, then we will fail,
with a compiler message. All of the built-in types do support copying and most user-
defined classes will also. Some classes purposely fail to provide this mechanism. Such
classes can't be used with our CountedValue template.

Question. What other restrictions do we impose on type V in the CountedValue tem-
plate?

It is very important to realize and remember that C++ templates impose restrictions
on template parameters only through use of those parameters. This is very different from
the types given to function parameters in which the restriction is made by the type sys-
tem and not by the uses to which the parameter is put. So, when we define a function and
say that one of its parameters must be of type int, then no values are possible except int
values (and those compatible with int). The restriction on the parameter is not there be-
cause we happen to use an int operation, but because the declaration itself imposes it.
This is not the case with template parameters.

It is possible to define class templates (but not function templates) in which the pa-
rameters are values rather than types. One example simulates Pascal's range type. A range
is an integer value (more generalized in Pascal, actually) that has legal values only in
some fixed range, such as the integers between 10 and 20, inclusive. We can give the
Low and High bounds of the range as template parameters. We present an excerpt from
this class template here:

template <int Low, int High>
class Range
{ public:
Range(int v = Low)
_value(v)
{ if(Low > High)
userERROR("Illegal Range type.");
if(_value<Low || _value>High)
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userERROR( "Range error.");

}

Range<low, High> & operator =
(const int v)
{ if(v<Low || v>High)
userERROR( "Range error.");
_value = v;
return *this;

}
int first(){return Low;}
int last() {return High;}

operator int() // Produce an int
{ return _value;

}

private:
int _value;

}; // Could provide additional operators.
Then a range variable would be created with
Range<10, 20> x = 10;

If the appropriate operators are included, then all changes to the variable can be
checked for the validity of the new values. We can therefore guarantee that x is always
within range.

Newer versions of C++ even permit template parameters to have default values. For
example, we could give the range variable defaults that make them equivalent to ints with
the following:

template <int Low = minint, int High = maxint>
class Range

.. .1

If available, default template parameters apply also to type (<class...>) parameters.
The STL depends on this feature, and if it is not present, the STL can be only partially
implemented.
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There is one special difficulty with using templates, especially if you are a novice.
Since templates are not compiled until they are actually used by a program, it is both dif-
ficult to test a template and difficult to read the error messages produced by compilers
when you make errors in a template definition. To test them correctly, you need to test
every part with a variety of different arguments so that you don't make subtle assump-
tions about the requirements of the template. A minimum test for a template intended to
be used with most (or all) types uses a built-in type such as int, a pointer type such as
char*, and a user-defined struct or class type.

The error message problem is especially frustrating. It is often difficult to decide what
to do when you get an error message in a template. Often the errors are caused by incon-
sistency between the features of the argument type and the needs of the template. For ex-
ample, if a certain operator is applied to a value of the template parameter type within the
template, then that operator must be supplied by the actual argument used to instantiate
the template. It is worth the effort to construct an example in which this is not the case,
so that you see the message that will be produced by your compiler in this situation. For
example, with the following function template:

template <class T>
void junkt(T t) {cout << *t;}

and the instantiation/call
junkt(5);

one of my compilers flags an error within the template (not the call) that indicates that a
pointer or an array is required. The problem is not in the template, but in the call, how-
ever. Yes, a pointer or array is required to de-reference, but that is obvious. What the
compiler did not do, however, was show me which of possibly several instantiations
(calls), caused the message to occur.

Which Data Abstractions Are Useful?

The question posed in the title of this section is without a complete answer, as it is lim-
ited only by human ingenuity. Any time we can think of a binding of data and operations,
with rules defining the behavior of the operations, we have a good candidate for a data ab-
straction.

One set of abstractions used frequently today defines modern computer interfaces: the
so-called GUIs or Graphical User Interfaces. Window is one abstraction in this set. The
data elements define rectangular regions of a display. The operations open, close, paint,
and move these regions, as well as adorn them with controls. The controls themselves
form another subset of the abstractions of a GUIL The data define current settings and de-
fault behavior of things like scroll bars or buttons. The operations connect the user's
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movements with the mouse to changes in the display. It is not our purpose in this book
to take up the details of such data abstractions.

Another class of abstractions define numeric objects of various kinds. for example, int
and float are built-in data abstractions in C++ as well as in many other languages. A user-
defined abstraction could be built to define rational numbers (fractions) made up of a nu-
merator and a denominator. Another could define complex numbers with real and imagi-
nary parts. Here the operations would be mostly arithmetic. We would want operator+ and
operator<, for example.

Similar to this, and very useful in C++, is a String abstraction, that makes manipula-
tion of character strings less error-prone and more convenient than is possible when using
char* values. For example, we could overload operator+ to provide a string catenation op-
eration, as is done with the built-in string class of C++.

Some abstractions come from the problem domain in which we happen to be work-
ing. For example, a game programmer might want an abstraction of a game board. This
abstraction would allow for user pieces to be moved according to rules of the game. A
programmer developing medical systems might attempt to build an abstraction of an
automated pharmacy that would dispense drugs based on symptoms of patients. In the air-
craft industry, programmers use abstractions of aircraft flight surfaces and behaviors.
These kind of abstractions are quite specialized to a single industry, or even to a single
project.

One very useful class of data abstractions is that of containers. A container contains
values of some kind, or references (actually pointers) to values of some kind. An example
of a container is a set. Another kind of container is a list. The difference between a set and
a list is that a list imposes a physical, though not necessarily a logical, ordering on the
elements that it contains. A set imposes nothing on the values it contains other than the
fact of containment. We have a lot to say about containers, as they are one major compo-
nent of the Standard Template Library. In some other libraries, containers are called col-
lections—they collect values. It turns out that containers are closely related to other data
abstractions called iterators. Iterators are used to refer to the individual elements of con-
tainers and to provide the means of applying operations to the contents of containers.
Think of some numbers written on a blackboard at the front of a room as being a con-
tainer. Think of sitting a few feet away with a laser pointer (a finely focused light beam)
that you can use to point to any one of the numbers. You can point to only one at a
time, but you can easily move the pointer from number to number. To add up all the
numbers, you could start with a running sum of zero and then point to each of the num-
bers in turn, adding that number to the running sum. When you had visited (iterated over)
each of the elements exactly once, you would have the sum. Yes, iterators do something
like what is done with integers and for loops. That similarity is part of the design of itera-
tors.
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Abstractions Provided by the STL

The data abstractions provided by the Standard Template Library fall into several catego-
ries. First there are the container classes and their iterators. The algorithms that manipu-
late containers are a separate category. Additionally, there are function objects, adaptors,
and allocators. Function objects give us a way to specify characteristics of the objects
stored in containers. Adaptors modify either the interface or the behavior of some other
component, and allocators give us control over how the system allocates space for our ob-
jects. While there are many parts, they all revolve around the container classes, and the
other components merely support containers. There are eight basic container types of two
kinds. The sequential containers are arrays, vectors, deques, and lists. The associative con-
tainers are sets, multisets, maps, and multimaps. In addition, adaptors may be used to
transform these containers into three additional forms: stacks, queues, and priority queues.
There are versions of the STL that also include hash table containers. For the rest of this
chapter, we will examine these container-based data abstractions conceptually. We will
look at each of them again in detail in a later chapter. We will also look at how some of
them might be useful in developing programs of various kinds.

Arrays represent densely stored blocks of cells of some type. The dense storage per-
mits any individual cell to be quickly accessed. Arrays in the STL are the built in arrays
of C++. They have fixed size. The dense storage permits the system to compute the ac-
tual position of any cell from its relative position in the container. Because of the speed
of retrieval, arrays support many sophisticated algorithms efficiently. Arrays are the ab-
straction of choice if the problem requires fast retrieval, or the data must be sorted into
logical order. Arrays are discussed in detail in Chapter 2. Much of the STL can be consid-
ered to be a generalization of features of arrays. The main operations on arrays are storage
into and retrieval from a cell indicated by its relative position in the storage. In an aray
A, the first cell is denoted A[Q]. If the array has n cells, then the last cell is A[n-1]. Ar-
rays are used throughout computer science for many tasks, including the implementation
of other structures. Two dimensional arrays are just arrays in which the elements stored
are also arrays. A spreadsheet is just a two-dimensional array. A graphics screen is a two-
dimensional array of picture elements or pixels.

Vectors are similar to arrays except that they may be enlarged at one end to hold addi-
tional data. They may also be shrunk at that same end. They support efficient retrieval,
though not quite as efficiently as arrays. Vectors support the same algorithms as arrays
and a few more that require variable size containers. In addition to the storage/retrieval op-
erations of arrays, vectors support the push_back(T) operation that extends the length of
the vector and inserts the (template parameter) value at the end. Similarly, pop_back()
will remove the last item, shrinking the size of the vector. Vectors are used in graphics to
hold lists of figures to be drawn or lists of points to be connected.

Deque, pronounced as in “deck of cards,” sometimes spelled dequeue, is an acronym for
double-ended queue. A deque is also similar to an array except that it can grow and shrink
at either end. The dense storage again permits rapid retrievals. Deques permit push_front()
and pop_front() in addition to vector operations.
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Lists don't use dense storage. Instead the cells of a list are linked together using point-
ers or addresses of logically adjacent cells. The individual cell of a list may be physically
anywhere in memory. From a given cell it is efficient to access only the immediately pre-
ceding and the immediately following cells, if any. This means that some algorithms are
not appropriate for lists, as the accessing of elements would be too inefficient. On the
other hand, lists make it possible to insert values efficiently between existing values,
which is an expensive operation with Vectors and Deques. Therefore Lists are used where
we desire the maximum flexibility in insertion and deletion of cells at any point in the
container. An algorithm will be efficient on lists provided that we can execute the algo-
rithm by processing the elements in the order of the cells in the list. Otherwise, it is
likely to be very inefficient. Because it is sometimes necessary to sort lists into a given,
logical order, and because the generalized algorithms appropriate to Vectors and Deques
would be inefficient on Lists, the List class template defines a sort member function that
works well on lists, but would not work well on those other types. Lists are much more
useful than this brief introduction suggests. They are used extensively in artificial intelli-
gence and they permit highly complex programs to be written. The language lisp is built
of sophisticated uses of lists.

Among the sorted associative containers, sets are intended to behave like the sets of
mathematics. We can form unions and intersections, for example, as well as insert and
remove elements. Multisets are similar except that they permit an element to be contained
several times, while a set permits an element to be present only once if at all. Sometimes
multisets are called bags.

A map container is a set of pairs of a certain kind. These pairs consist of keys and as-
sociated information, where the key is used to define uniqueness of pairs. A pair is said to
associate the additional information with its key. Sometimes these pairs are called asso-
ciations. Generally, two pairs are considered equal if their keys are equal. A set of these, a
map, therefore implements something like a dictionary where the keys are the words to be
looked up and the information is the definitions. An alternate name for map is dictionary,
in fact. A map can also be thought of as implementing a function, where the set of keys
is the domain and the set of information values is the range. Because of the equality rela-
tionship on pairs, if a map contains (1,2) and we wish to insert (1,3), then (1,2) must be
removed since a map is like a set, and (1,2) and (1,3) are equal.

A multimap is like a map, except that a given pair may be present more than once, or
more precisely, two pairs with the same key may be present at the same time. Therefore
(1,2) and (1,3) may be in a multimap simultaneously. Maps and multimaps implement
simple kinds of databases in which we store and later look up data according to its keys.
Maps and multimaps are used extensively in artificial intelligence and in logic program-
ming. The programming language Prolog depends fundamentally on the idea of a map.

A stack, which can be formed from a vector, deque, or list by applying an adaptor, is a
container in which all insertions and retrievals are at one end. The push operation inserts
an item at this end and the pop operation removes the most recently inserted item. A
stack implements a storage strategy called last-in, first-out, or LIFO. Stacks are used ex-
tensively in programming and are indispensable in compilers and in the management of
runtime systems. We can often do processing on complex data structures such as trees and
certain kinds of graphs by employing stacks.
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A queue is a container that supports insertions at one end and deletion at the other.
Queues may be effectively created from deques and lists by applying an adaptor. Queues
are used in operating systems programming and in simulations of complex systems in
which events occur at random times and must be handled in the order in which they occur,
but in which a time delay may occur before they can be handled. We simply insert the
events in a queue when they occur and remove them when we are ready to handle them.
Queues have a protocol called first-in, first-out, or FIFO.

Priority queues are similar to queues except that the item that is removed is not the
item that has been in the queue for the longest time, but the one with the largest value.
The values are considered to be priorities and we always remove the item of highest prior-
ity. Priority queues can be efficiently created from vectors and deques by applying an adap-
tor. Priority queues are used in operating systems to keep track of user jobs that are wait-
ing to execute. We always run the job with the highest priority when a processor
becomes available. The previously running job is returned to the queue, perhaps with an
adjusted priority, if it has not completed when it was interrupted.

In the STL, containers are homogeneous. This means that they store elements of the
same kind. The type of element stored in a container is specified by its template argu-
ment. Thus we have list<int> and list<Window>. Because of the object-oriented features
of C++, it is possible to store things in containers that are not precisely of the same
kind, but of related kinds. To do so, however, requires pointers. This will be taken up in
the next chapter.

Summary
Make certain that you understand each of the following terms:

array

base class

class

class template
constructor
containers

copy constructor
coupling

data abstraction
default constructor
deque

derived class
destructor
encapsulation
function template
information hiding
inheritance
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instantiation (of a template)
iterators

list

map

multimap

multiset
overloaded operator
override

priority queue
private member
protected member
public member
queue

set

stack

static member
vector

Exercises

1. A standard list of ints may be defined by using
#include <list.h>
list<int> testList;

Try the following code:

#include <iostream.h>
#include <STL.h>
#include "stopWatch.h"

StopWatch watch;
list<int> ml;

void main(void)
{ watch.start();watch.mark();
int pwr = 1;
for(int 1 = 0; i < 50; ++i)
{ ml.push_back(pwr);
pwr *= 2;
}

list<int>::iterator w;

23
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for(w = ml.begin(); w != ml.end(); ++w)
cout << *w << ' ';
cout << endl;
w = max_element(ml.begin(), ml.end());
cout<< "Max is: "<< *w <<endl;
cout << "Size is "<< ml.size()<<endl;
watch.mark();
int query;
cout<< "Enter a positive number. "<<endl;
cin >> query;
query = abs(query);
int count = 0;
for
( w = ml.begin()
; w!l=ml.end() && *w < query
; +tw
)
++count;
if(*w != query)
{ --count;
--W;
}
cout <<"two to the "<<count<<" = "
<< *(w)<<endl;

Some entries produced by the above may be unexpected. Modify the above code to

erase them.

Use push_front instead of push_back. Modify the query so that it is consistent with

this change. We want to return the largest power of two that is not greater than the query.

What happens when you make the following errors? Run the code and verify your an-

SWers.

#include <iostream.h>
#include <STL.h>

StopWatch watch;
list ml;

void main(void)

{

watch.start();watch.mark():;
cout << ml.front() << endl;
ml.pop_back();
ml.pushBack(123);
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2. Create a template class to define a die, in which the number of faces of the die is an in-
teger template parameter rather than an argument to a constructor of an individual die.
What tradeoffs are there between the two approaches?

3. Add a member to the die class to obtain the number of faces of the die. Make this a
function. Don't just make the number of faces a public member variable.

4. Add a member function to the die class to obtain the value of the last roll without roll-
ing it again. What else do you need to add to the class to make this feasible?

5. Prove that the static variable c in the counted value class is always equal to the number
of counted values that have been created since the beginning of the program.

6. Add another static variable to the counted value class that is always equal to the num-
ber of counted values in existence in the program. Recall that destructors are called when
an object is deleted for any reason. Give the class a member function so that the value of
this variable may be obtained.

7. Write a program that rolls a standard (6-sided) die 720 times. (a). How long does it take
for this program to run? Use a StopWatch object to find out. (b). How many 6s do you
get in 720 rolls? How many do you expect to get?

8. How many pairs of 6s do you get in 720 rolls of a die? A pair of 6s is defined to be a 6
on an odd-numbered roll and another on the next even-numbered roll.

9. How many pairs of 6s do you get in 720 rolls of a die? A pair of 6s is defined to be a
six on any roll and another on the next roll. Note that four 6s in a row would be counted
as three pairs.

10. Save 120 rolls of a die in a list<int>, using push_back to insert new items. Then
write out the list to see what it contains. Use an iterator to write it out. How long does
this take? Repeat with a vector<int>. If you don't see any difference in time, try it with
1200 rolls instead. What can you conclude about the relative performance of lists and vec-
tors?

11. Save 120 rolls of a die in a list<int>. Use the sort member function of list to sort
your list. Write out the contents using an iterator. The prototype is:

void list<int>::sort()
How long does the sort take? How long does it take to sort 1,200 items in a list?

12. Save 120 rolls of a die in a vector<int>. Use the generic algorithm sort to sort your
list. Write out the contents using an iterator. The prototype is
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void sort(iterator first, iterator afterLast)

How long does the sort take? How long does it take to sort 1,200 items in a vector?



Chapter 2
Programming with Arrays and Pointers

2.1

In this chapter we will learn about programming with arrays and pointers. In the Standard
Template Library, arrays and pointers are one fundamental component, though they are
unchanged from standard C++. Most of the major features of the STL are generalizations
and abstractions based on features of arrays and pointers.

Arrays

An array is a block of memory consisting of several items of the same kind. These items
are called components of the array. The components are arranged sequentially, one after
the other, in computer memory. The computer will store the array with no wasted space
in a single block of data as in Figure 2.1. This storage method is sometimes called dense
or contiguous storage. An array has a fixed number of components, defined at the time the
array is created.

Figure 2.1. An Array.

There are two ways to define an array in C++. We are required to give the type of
components of the array as well as its length in the definition. The easiest is to use a
definition like the following, which defines an array of 12 doubles.

double monthlySalary[12];

This definition actually defines two things, which are most often treated as if there
were only one. The first thing created is the array itself. If doubles require 4 bytes of stor-
age, then this array will require a single block of 48 bytes. The second thing created is the
address of this block. The address of the block is also the address of the first component of
the block. The name monthlySalary actually has a value equal to this address. The loca-
tion of a component of an array is called a cell. The individual cells of the array are named
monthlySalary[0] through monthlySalary[11]. See Figure 2.2. These cells are variables
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like any other and can hold a value that can be changed. monthlySalary itself is a con-
stant, meaning that it will always refer to this same block of data. Notice that the length
of the array is 12, and, since we start with a cell numbered 0, there is no cell numbered
12. But note that monthlySalary[12] is the address of the location immediately following
the array.

0 1 11

Figure 2.2. An Array with markings indicating cell numbers.

When used as a cell number, an integer is called a subscript. This comes from mathe-
matical usage that would probably write A;, for the computer scientist's A[i]. A subscript
is also called an index.

A very common pattern of use of arrays is the following for loop, which reads 12
doubles from the standard input and assigns them to the 12 components of the array:

for (int i = 0; 1 < 12; ++1i)
cin >> monthlySalary([i];

Notice from the above that subscript expressions may, in fact, be variables. They may
also be arbitrarily complex integer-valued expressions. C++ has no restrictions here.

The location of the block of data defined by the array definition is up to the compiler
to arrange. If an array definition appears at the global level or is marked static, then the
block will continue to exist as long as your program continues to run. If the definition is
local to a function or to an object, then the array only exists while the function is run-
ning or the object exists. Because the lifetime of the array is managed by the system,
such data are often called automatic. This applies to all data, not just to arrays.

Be careful with array definitions. The following defines a single double (called a scalar
to distinguish it from an array) and an array.

double thisMonth, monthlySalary[12];

One of the important things to remember about arrays defined as above is that their
sizes are determined at compile time. It is not legal to use a variable expression as the
size of an array defined in this way.

An Example. A Guessing Game

Suppose we are building a game program in which the player guesses integer numbers.
Suppose that the game needs to remember the guesses made by the player in the order that
they are made. One way to do this is to create an array whose length is the maximum
number of guesses allowed, together with an auxiliary variable called an index.
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long guess[ 10 1;
int nextGuess = 0;

Then, when a guess is made by the player, we execute

guess|[ nextGuess ] = playerGuess;
nextGuess++;

which first uses that value as a subscript into the array to determine the component into
which we save the player's guess and then increments the index. We can, of course, com-
bine these two statements into the single one:

guess|[ nextGuesst+ ] = playerGuess;
Finally, we can process all of the guesses actually made with

for(int i = 0; i < nextGuess; itt)
.. guess[ 1 ]

For automatic arrays the built-in function sizeof will tell us the number of bytes
required by the array. We can apply sizeof to either a value, such as a variable, or to a
type. If we want the number of components, we can divide the size of the array by the
size of the component.

Another Example. Array of Objects

Often we want to create arrays in which the components are to be a user-defined type, es-
pecially a type defined by a class. There are special requirements that enable this to be
done. C++ requires a class used in this way to have a default constructor: a constructor
with no parameters. Since all classes should have such a constructor anyway, and since
C++ will provide one if you don't provide any constructors at all, this is a light require-
ment.

Recall the CountedlInt class from Chapter 1. This class has a default constructor since
we may call one of the constructors with no arguments. Now we can fill an array with
CountedInt values and look at what we have.

void main()
{ CountedInt All [10];
// The default constructor is called for each cell.
for(int i = 0; i < 10; i++)
cout << All[i].getOrder() << endl;
}

Exercise. Test the above code. First anticipate what it will produce. Were you correct?
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Pointers and Arrays

The second way to define an array actually splits the definitions of the two parts (name
and block) into two definitions. We may define a variable that will be used to refer to an
array of doubles with

double* dailyCosts;

Here, the variable dailyCosts is defined to be a pointer variable. While pointers can
be used in many ways in C++, one of the most important is to make them “point to” ar-
rays. Note that dailyCosts is a variable, not a constant, and so it could hold different val-
ues at different times. The above declaration does not give it any value, however. It is
useful to give every variable some value, and C++ provides a value named NULL for use
in initializing pointer variables. This is normally just the constant 0, but it guarantees
the pointer has a specific value that can be tested. A better definition of dailyCosts would
be

double* dailyCosts = NULL;

This both defines the variable, and initializes its value. This looks like an assignment,
but it is technically not. It is an initialization.

None of the above defines an array, just a variable that could be used to refer to an ar-
ray. We could actually define such a variable and make it point to our monthlySalary ar-
ray with

double* someSalary = monthlySalary;

This assumes that monthlySalary was previously defined. This defines someSalary as
an alias of monthlySalary, and someSalary could be used just as monthlySalary is used.
An alias is a name that refers to the same thing, usually a variable, as another name. Note
that someSalary is a variable, while monthlySalary (as a name) is a constant.
We could set the sixth monthly salary using an assignment such as

someSalary[5] = 1200.0;
// Set the sixth monthly salary.

However, since someSalary is a variable, it can be used to refer to any array of doubles
(or to any single double, for that matter). One way to make someSalary refer to an array
is to create the amray at run time. The computer reserves a large amount of storage in a
structure called the free store or heap, which can be used to create new values as the pro-
gram runs. We always refer to values in the free store with pointers, though pointers may
refer to locations elsewhere as well. We create these values in the free store by using the
C++ operator new. Operator new creates variables that are called dynamic. The life-
times of dynamic values are determined by the programmer, they are not automatic.
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someSalary = new double[6];

creates a new array of 6 doubles on the free store and assigns a value to someSalary,
which is the address of, or a pointer to, this block of data. This is shown in Figure 2.3.
Having done this, someSalary[0] through someSalary[5] are defined and legal, though the
computing system will not be able to detect an expression like someSalary[8] as an error.
An important lesson to learn about arrays is that the legality of subscript expressions is
up to the programmer to guarantee. The system provides little help here.

someSalary

Figure 2.3. A pointer variable and the value it points to.

The C++ system does not guarantee a particular layout of memory, so the following
may not work exactly as shown, but some variant will. Suppose we define two automatic
arrays with

long arrayl[5], array2[5];

Then array1[9] might well refer to the same component as array2[4]. This would be
the case if array2 were laid out exactly after array1 in the memory.

Exercise. Try the above on your computer and report on what you learn.

We need to distinguish between the pointer variable that refers to an array and the array
itself. Given the above, someSalary is an automatic variable that refers to a dynamic
value. If someSalary were local to a function, then its lifetime would end when the func-
tion returns. The array itself, however, continues to exist until the programmer deletes it
using something like

delete [] someSalary; // Delete an array.

The delete operator is the inverse of new. It returns previously defined free store values
to the heap. Note that delete is used for other values besides arrays. To use the above,
however, we would need to write it in a place where the name someSalary is defined. It is
possible for a dynamic value to outlive the variable used to create it. Consider the follow-
ing:
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double* getNewSalaries()
{ double* result = new double[12];
for(int i = 0; i < 12; ++i)
cin >> result[i];
return result;

This function creates and returns an array. Notice that the variable result is auto-
matic and ceases to be at the end of this function. The array itself, however, is returned to
the caller. Actually, the array itself isn't returned. A pointer to it is returned. The array it-
self just continues to exist in the free store. It is then the responsibility of the caller to
see to its eventual deletion. A function that returns a new dynamic value should clearly
say so in its documentation, since deletion of the value becomes the responsibility of the
caller.

Automatic arrays in C++ may be initialized with constant values. Suppose, for exam-
ple, that we need an array of strings, and we know the values of these strings in advance.
Then we may define and initialize the array at once with something like

char* days[ ] =
[ " Sun“ , "MOD n , n Tues n , uwedn ,
L Thur " , " Fri " , " Sat n

};

Here days is an array of seven strings (char *). Note that we let the system count the
length of the array for us. We could have made it explicit by writing the seven between
the brackets also. The system will create the array defined by the initializer and make days
a constant pointer to it. We could write out the contents of this array with

for(int i = 0; i< 7; ++1i)
cout << days([i]<<endl;

We cannot initialize dynamic arrays in the same way. The problem is that a dynamic
array must exist before we can give its components values, while an initialization such as
the above must exist before the pointer that is to refer to it. In particular, the following
will not work.

long* values = new long[5];
// Create a new dynamic array.
values = { 2, 3, 5, 7, 11 };

At the end of this sequence, values will be pointing to a static array and the dy-
namic array on the free store has no pointer pointing to it. It is a lost block in the heap
that cannot be recovered while the program runs. In general, you should never follow a
free store allocation by an assignment to the same variable. Between such statements you
should either delete the item or create an alias, so that you always have at least one
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should either delete the item or create an alias, so that you always have at least one
pointer to each free store item. This is true of arrays as well as other things in the free
store.

If you define an array dynamically, the sizeof function won't tell you the size of the ar-
ray if you apply it to a pointer to the array. This is because you are asking for the size of
a pointer (often 4 bytes), not the size of the array. Therefore, the sizeof(days) will proba-
bly be 4. If you ask for sizeof(*days), you will likely get 1, the size of a char. The best
way to know the size of a dynamic block is to remember it when you allocate it. Save the
length you use in a variable.

Pointer Arithmetic

If we have a pointer variable, we often need the thing that it points to. The prefix
operator * is called the dereferencing operator, and it will give us the value to which
a pointer points. For example, in the above string example, the array variable days is a
pointer that points to the beginning of the array. In other words, it points to its first
component (days[0]). Therefore, *days and days[0] may be used interchangeably.

We can also always create a pointer value. Suppose that we have a double value sal-
ary. We can create a pointer to it with &salary.

double salary = 4500.00;
double* aliasOfSalary = &salary;

Now salary and *aliasOfSalary are variables that refer to the same entity, namely the
4500.00. Thus the following will increase the salary by 2000.

salary += 1000.00;
*aliasOfSalary += 1000.00;

Thus “&” and “*” are inverse operators. One gives us an address from a value, and the
other a value from an address.
We can apply the above to arrays and array components as well.

double* sal = &monthlySalary[4];

gives us, in sal, the address of monthlySalary[4]. Notice that we are using two operators
in this expression, operator& and operator(]. The latter has the higher precedence, so this
is the address of monthlySalary[4], not the fifth component of &monthlySalary (which
doesn't really exist since &monthlySalary isn't an array).

Some arithmetic operators can be applied to pointers. In particular, an integer may be
added to or subtracted from any pointer, and the difference between two pointers (to the
same type of thing) may be computed. The meaning is illustrated in the following exam-
ples:
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long values [ ] =
{ 10, 20, 30, 40, 50,
60, 70, 80, 90, 100

b
long* somewhere = values; // Points to the 10.
somewhere++; // Points to the 20.
cout << (*somewhere) + 2; // Prints 22.
cout << *(somewhere + 2); // Prints 40.
cout << *somewhere + 2; // Prints 22.

cout << *(somewhere + 22);
// Prints garbage outside array.

cout << somewhere - values;
// Prints 1; the number of components
// between the two values.

cout << *somewhere - *values; // Prints 10.

Note that the addition operator has lower precedence than the dereferencing operator.
We can generate a pointer to the cell immediately following our array values with

long * afterEnd = &values[10];

or equivalently with

long * afterkEnd = values + 10; // See below.

It would not be safe to de-reference this pointer, but we shall see that we will eventu-
ally need this value in the STL.

If we have an array A, then A is a pointer and the expression &Ali] is exactly the
same as the expression A+i. In fact, the pointer duality law specifies the equivalence of
these two expressions. Note that A+i does not refer to a location i bytes past the begin-
ning of A, but the location i components after A. This will be true independent of the
component type of the array. The pointer duality law can also be written as A[i] is equiva-
lent to *(A+i).

Using the pointer duality law implies that the following for loop will process all of
the elements of our array, values.

for(long* p = values; p < values + 10; ++p)
cout << *p;

What can happen if you are not careful about your array subscripts and equivalent
pointer expressions? That depends on whether you are reading values or writing them. If
you are reading values from the “array” and your subscript does not fall in legal bounds,
then you will get a value, but the value will be meaningless. The computer will interpret
the values retrieved as if they had the component type, but, of course, they may not. It is
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for this reason that (a) you get garbage, and (b) it is hard to recognize it as such, since it
has the correct form.

If you are attempting to place data into the array (write the array), then the situation is
much worse. If you write into a valid cell then you change it, of course. If you write into
an illegal cell, one outside the legal bounds, then you change something. That location in
the computer memory is probably being used for something else, and when the value of
that item is later retrieved, it will not have the last value that was correctly placed into it,
but some value placed by our incorrect reference. There is no guarantee that the value
written has the same type as the value read, but any sequence of bits can be interpreted ac-
cording to (nearly) any type, so the user of that other data item will find a legal value, but
the wrong value.

In the worst case, on some computers you can do serious damage by making illegal
array references. For example, on many small computers, a technique called memory-
mapped I/O is used in which physical devices such as disks and printers are installed in
such a way that they look just like memory. They are controlled by “writing” into their
device control registers, which are just memory locations. If an out-of-bounds array refer-
ence were to accidentally write to a device register, that device would do something. Per-
haps, if it were a disk drive, it would erase that disk. This would be a very unhappy event.

A few final words on pointer arithmetic. Notice that it is bidirectional. You can
subtract from a pointer just as you can add. Therefore, continuing the above examples,
afterEnd - 1 isa pointer to the last cell of our array.

Actually, pointers are more than just bidirectional. They are actually random access.
This means that from a pointer to any cell in the array, we can move immediately, in one
step to any other cell. For example, suppose that third is a pointer to the third cell of
some array. Then third + 5 is automatically a pointer to the eighth cell, if such ex-
ists. Using the pointer duality law, if A[i] represents the third cell, then A[i+5] represents
the eighth. In either case we can move from any cell to any other, without visiting the in-
tervening, or any other, cells.

Finally, we may subtract two pointers into the same array. Thus, again referring to
the array values from above, afterEnd - values is the number of components of
the array: 10. Note again that it is not the number of bytes of storage occupied by the ar-
ray. Indeed, some computers are not even byte-oriented. Rather, it is the number of cells
between the two pointers.

Arrays with More than One Dimension

In C++ multiple dimension arrays are not technically possible. It is, however, possible to
define arrays whose components are arrays, and this has much the same effect. We can
give an alternate definition of our days array with

char days([7][5] =
{ " Sun " , "Monn , n Tues n , "Wed" ,
"Thur n , "Fri n , " Sat"
};
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Here we have an array of 7 arrays, each of 5 characters. We describe the array as “7 by
5” or as having 7 rows and 5 columns. See Figure 2.4. We need the “inner” arrays to hold
5 characters, since Thur has four letters plus the terminating null character. The extra
character is wasted in the other names, except Tues, of course. In C++ we may have an
arbitrary number of dimensions in this way, but be careful, since the size of the resulting
structure is the product of the sizes in the individual dimensions and the size of the ulti-
mate component type, here char. A large number of dimensions could result in a very
large structure, even if the length in each dimension is small. Sometimes an array with
two dimensions is called a matrix.

Figure 2.4. A Matrix with 7 rows and 5 columns.

This new declaration of days defines a slightly different structure than the original,
however. In this new definition it is clear that there are a few wasted bytes, since each in-
terior array is required to have five, though most of the values stored require only four. In
the original, this wasted space will not be present. The former method of definition is
somewhat more flexible because it admits components of differing sizes. The first defini-
tion of days defines an array whose components are pointers to characters. The second de-
fines one whose components are arrays of characters. Similar, but not quite the same. Use
sizeof to discover the difference.

Just as we can get access to the individual strings by indexing, we can also get access
to the individual characters, though we need to use double indexing.

days[ 2 1 [ 0 ]; // Refers to the T of Tues.
days[ 51 [ 2 1; // Refers to the i of Fri.
days[ 4 1:; // Refers to the array

// containing Thur.
Exercise. Prove that if array has declaration:
int array[A][B]

that &array[m][n] is the same as array + B*m + n.
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Putting It Together. An Application

One of the topics in artificial intelligence is machine learning. In this section we present
a simple game that learns from its mistakes. It is almost too simple to be called artificial
intelligence, but it is only intended to introduce you to the concept and to show pro-
gramming with arrays.

The French Military Game is played on a graph with 11 nodes, numbered 0 to 10. The
game has two sides: the Police and the Fox. The Fox has only one piece that begins the
game at cell 5. The Police has 3 pieces, originally at 0, 1, and 3. The Police moves first
and the players alternate. On a turn each side may move one piece along one of the arcs.
The object of the Fox is to reach cell 0. The Police, who may only move vertically and
to the right, has the objective of trapping the Fox against a side wall For example, if the
Fox is at 6 and the Police at 3, 5, and 9, then the Police wins. If the Fox reaches cell 0,
then it wins. A game with over 20 moves is forfeited to the Fox. (The Fox is a spy, try-
ing to elude the Police and reach its base.) Play the game a few times with two human
players to get a feel for it. Note that there is only one side for the Police , not three sepa-
rate players. When the Police moves, it may move only one piece.

In this computer simulation, the computer plays the Fox. Initially the computer plays
randomly, with a bias toward moving left. However, the Fox learns from its mistakes and
after only a few games it becomes nearly impossible for the human player to win.

To represent this game board, we use a two dimensional array of integers as shown be-
low.

02220000000
10202200000
12020200000
10200220000
01000202000
01112022220
00010200020
00001100202
00000102022
00000110202
00000001110
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This is a definition of the board. It has 11 rows and 11 columns, one for each cell in
the graph. A zero at a row, column entry indicates there is no arc from the row entry to
the column entry. A nonzero entry indicates an arc, hence a possible path for the Fox.
The Police can't travel all arcs in all directions, so a 2 is used to show a legal Police
move. The 2 on row 1 (the second row, since they are numbered from 0) and column 2,
indicates it is legal for the Police to move from cell 1 to cell 2. Such an array is called an
adjacency matrix, since it defines which cells in a graph are adjacent (have arcs between
them).

We can store this game board definition in a file of 121 integers. This file is read in at
the beginning of play and stored in a two-dimensional array.

The key to the learning aspect of this game is that there are only 165 legal positions
for white, and 11 positions for black. During one play of the game, the computer keeps a
record (in an array) of all of the positions that occur.

A single game is stored in a two-dimensional array with 20 rows and 2 columns. Col-
umn 0 is used for a Police position (a number from 0 to 164), and the second column is
used to store the Fox position (a number from 0 to 10).

At the end of the game it updates a 165 X 11 matrix of weights, increasing all the
weights of positions occupied if the computer won, and decreasing them if it lost. When
the computer tries to choose a move, it consults this table and chooses one with the
highest weight value. This means that the complete results of all positions of all games
played can be summarized in a rectangular array of 165 x 11 integer entries. Finding a
best move is just searching for the maximum value in a portion of an array. Very simple.

The Police position is translated into a number by computing 22 + 2b + 2¢, where a,
b, and c are the cell numbers occupied by the Police. Since no two Police pieces can oc-
cupg the same cell, and since they are all less than 11, the maximum value of this is 29

+ 210 and no two positions result in the same value. Only 165 different values ac-
tually occur. (The number of ways to choose 3 items from a set of 11 without replace-
ment, in the language of combinatorics. 165 = (11!) / (3!)(8!)) The 165 different values of
this sum are all between 7 and 1792. These are stored in another array. We search this lat-
ter array for a Police position value and the cell number in which we find the result is
used as a row index into the memory array.

From this description you can try to build the game.

How the STL Generalizes Arrays and Pointers

In the Standard Template Library there are several other data structures that have compo-
nents. These data structures are called, collectively, containers. Each of them has some
feature different from arrays. Vectors are like arrays except that their length may be
changed. Deques can grow also, but at either end. Lists do not use dense, contiguous,
storage. Sets don't have a linear or sequential structure. There are several other container
classes as well.

Pointers are generalized in the STL to objects called iterators. An iterator has the
property that it refers to a specific location in a container, and this location may be moved
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by doing simple arithmetic operations. One of the features of iterators in the STL is that
they may be used with for loops in a way completely analogous to the way we use
pointers and for loops with arrays. Some iterators, like pointers, are bidirectional. Some
iterators, like pointers, are random access. Other iterators are more restricted, such as for-
ward iterators that can only move in one direction through their container. Different kinds
of containers support different kinds of iterators.

The algorithms provided by the Standard Template Library for the manipulation of
containers are all defined in terms of iterators. In other words, to manipulate a container
using one of these algorithms, we pass the algorithm one or more iterators over that con-
tainer. This philosophy that the algorithms are defined in terms of the iterators, rather
than the containers themselves, makes it possible to write the algorithms in a very gen-
eral way. In particular, an algorithm that works for lists may well also work for sets or
for vectors. Finally, this philosophy makes it possible for these same algorithms to work
with the built-in arrays of C++, as well as the components of the STL proper.

Some Common Problems. Searching and Sorting

When we save data in some container, we often want to retrieve the values we have
stored. The efficiency with which we can do this is greatly determined by the ordering of
the data within the container. Sorting is the problem of putting a collection of data into
some particular ordering or relationship. Searching is the retrieval process itself.

Linear Search in Arrays

One common problem that occurs in dealing with arrays is that of searching for an ele-
ment that may or may not be in the array. While loops are especially helpful in this.
Suppose we have an array A in which we are certain that a value x occurs, and we would
like to know the cell number in which it occurs. The following loop will tell us.

int i = 0;
while(A[i] != x) i++;

This loop exits as soon as Afi] = x and so we have the desired index. If we are not
certain whether x is in the array or not, however, we need to be a bit more careful to avoid
searching past the end of the array. The following will serve, where we replace lengthOfA
with the actual length of the array A.

int i = 0;
while (i < lengthOfA && A[i] != x) i++;

The test for the length must be made first, so that we can guarantee that an index used
to retrieve a value (A[i]) represents a legal subscript. C++ will guarantee that if i >=
lengthOfA, the second test will not be evaluated and the loop will exit. This is the advan-
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tage of short circuiting the evaluation of Boolean expressions. The value is returned as
soon as enough of the expression is evaluated to make the answer clear. The same is true
of the OR operator]| |. Note that in this search, if the item is not present, the value of
i will be left at lengthOfA. This can be tested. Remember that when you write a loop
with a compound exit condition such as we did here, when it exits, you don't know which
condition caused the exit. Therefore, an additional test after the loop is often required.

A for loop can also be used in conjunction with the break statement.

for (int i = 0;
]

i < lengthOfA; ++i)
if (Al i =

== X ) break;
This loop will also exit with either A[ i ] containing the desired value or the index
equal to lengthOfA.

Exercise. Use the pointer duality law to change the above for loop into an equivalent
one that uses pointers instead of subscripts.

The above process is called sequential search, since we look for the item of interest se-
quentially, starting at the first component. If the array is long, then this can take quite a
while. It is possible to search faster if the array is sorted, as we shall see.

Selection Sort

Next we attack the problem of putting an array in order, assuming that the elements in
the array are sortable. To be sortable means that the elements of the component type must
support operator<. This is certainly the case for the built-in types of C++ and it may
be true for user-defined types, since it is possible for the programmer to give alternate
definitions of operator< for user-defined data. As we shall see later, there are other
ways that a type can be made sortable.

One of the simplest algorithms for sorting is called selection sort. The idea behind se-
lection sort is to remove the smallest element from the array, then sort the remainder with
the same process, and then attach that smallest element back to the beginning. The pic-
ture in Figure 2.5 should help.

Sorted and Smallest

0 i length

Figure 2.5. Selection sort, outer loop.
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This is intended to be a picture of the sort function in the middle of its operation. The
implication is that there is an index i, somewhere between 0 and length-1, and all cells
strictly to the left of cell i have been sorted and also contain the smallest values in the en-
tire array.

Each array picture that we draw, called an array section, is intended to represent the
state of some array, part way through an algorithm. Usually they represent the state of
some loop or recursion partly completed. The above picture actually represents a for
loop with control variable i in the middle of its execution, as we shall see. When we put
a value below the rectangle representing the array, we intend it to represent a subscript.
When it is inside the rectangle, it represents a value. A vertical bar in the rectangle sepa-
rates the array into two parts that may have different characteristics. If something is
known about the elements in some section, then we write a description within the rectan-
gle. The positioning of subscripts and vertical lines is significant and in the above case,
the fact that the subscript i is to the right of the vertical line indicates that the description
“Sorted and Smallest” applies only to subscripts 0 through i - 1. A statement, such as the
one defined by Figure 2.5 is called an invariant because it’s truth will not change. We
will keep it true throughout our process.

Our job is to complete the process by getting i up to value length-1 so that the part to
the left will be the entire array except for one cell. Since that part is sorted and since its
values are no greater than the value in cell i = length - 1, then the entire array is sorted,
which is our aim. The problem then is how to get this figure true, keep it true, and get i
up to length - 1.

First, it is easy to make this picture true. All we need to do is to set i to be 0. Since
there are no cells to the left of i = 0, it is certainly true that it is sorted. Likewise, noth-
ing in the left part is any larger than anything in the part from i through length-1, since
there are no cells at all in that left part.

The goal of getting i up to length - 1 can be achieved if we keep increasing i as we
progress. We will use a for loop to do this for us. The part about keeping the picture in
Figure 2.5 true is the challenging part, and this is where the original idea comes in.

What we want to do is to find the smallest value in the part i...length-1 and move it
to cell i. Then, when we increase i, the picture is still true. Make sure that you understand
why before you read further.

To handle this last part of the task, it will be helpful to consider the picture in Figure
2.6.

Sorted and Smallest

0 i 7 length

s j
smallest in i...j

Figure 2.6. Selection sort, inner loop.
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The implication here is that we have a picture of the portion between i and length - 1.
In this section we have an index j and an index s, and cell s contains the smallest element
in the section between i and j. If we can get this true, keep this true, and get j up to
length - 1, we will have found the smallest value in i...length - 1. We can then swap cells
i and s to achieve our goal of getting the smallest value to cell i. We can make this pic-
ture true initially just by setting s and j to be i and keeping an auxiliary value named
small to hold the smallest value discovered so far: the one in cell s. We can get j in-
creased with a for loop. We can keep the picture true just by setting s to j whenever we
discover a value at j, smaller than the value at s as we move j along. This leaves us with
the following code for the selection sort. Note that the only requirement we make on the
type to be sorted is that it support operator<.

const int length = ...;
float elements[length];

void selectionSort()
{ for(int i = 0; i < length - 1; ++i)
{ int s = i;
float small = elements(s];
unsigned j;
for(j = i + 1; j < length; ++j)
if(elements[j] < small)
// operator< used.
{ s=173;
small
}
elements[s] = elements[i];
elements([i] small;

elements|[s];

}

This is not a very good function, since it will only sort an array named elements,
and only if its length is named 1ength and only if it contains floats. We can do better.
One way is to pass in the array to be sorted along with the length, so the function sorts
its parameter instead of a global value. That would certainly be an improvement. In C++
this would look like the following.

void selectionSort(float elements[], int length)
{ for(int i = 0; i < length - 1; ++i)
{ int s = i;
float small = elements(s];
for(unsigned j = i + 1; j < length; ++j)
if(elements[j] < elements[s])
{ s=73;
small = elements(s];
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}
elements([s] = elements[il];
elements[i] small;

This is much better, but we still can sort only floats. One way to improve this further
is to turn it into a function template. The result won't be a function, but a means of creat-
ing functions as needed.

template < class T >
void selectionSort(T elements[], int length)
{ for(int i = 0; i < length - 1; ++i)
{ int s = i;
T small = elements(s];
for(unsigned j = i + 1; j < length; ++j)
if(elements[j] < small)
{ s=173;
small

]

elements|[s];
}

elements|s]

elements[i]

elements[i];
small;

Note that here, both occurrences of the type float have been replaced by a reference to
the template parameter T. This parameter is a type. Later if we need to sort an array of
ints, then the system will use this function template, with T equal to int, to create a sort-
ing function for us. It will also be used to create a different function that will sort floats if
we need it. The compiler sees to this creation (instantiation) of functions from the tem-
plate by examining which functions we make use of in our code. This instantiation of
template functions from function templates is automatic, but note that it requires the sys-
tem to create different functions for different values of the template parameter.

int intArray[6] = {5, 4, 3, 6, 2, 1};

float floatArray(5] = {1.2, 3.4, 2.5, 0.4, 1.1};
selectionSort(intArray, 6);
selectionSort(floatArray, 5);

One requirement that the writer of a function template must remember is that the tem-
plate parameter must appear in the parameter list of the function itself. This is the means
that the compiler uses to determine which template function to create. It is not enough to
specialize the return type or the body of the function. The template parameter must appear
in the function parameter list.
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Another means of improving on our selection sort algorithm is to include it as a
member function in a class. Suppose we build a class Array to provide additional support
that C++ arrays do not have. For example, our Array class could provide bounds checking
which C++ does not do for built-in arrays. This class would actually be a class template
rather than a class, with the element type (component type) as the template parameter. If
this were the case, and it is attractive to do, then we might consider making selection sort
one of the member functions of this class. In this case, the array elements would be
one of the member variables of this class, implementing the class with a built-in array.

These last two solutions, a function template or a member function, are both great
improvements over our original version, but note that they still have a restriction. They
can only sort arrays. In the function template case, we have used an array declaration as
the type of one of the parameters. If we have a member function of class Array, we are
obviously restricted to sorting objects of that type.

However, if we apply the pointer duality rule uniformly, we can remove even this re-
quirement. We are going to change selectionSort again. Suppose we pass in two pointers,
one that points to the first component of the array and one that points just after the array.
A typical call might look something like the following:

int elements[20];

int * start = elements;

int * after = elements + 20;
selectionSort(start, after);

To make this work, we change the prototype of the function template to

template < class T >
void selectionSort(T* start, T* end)

Now, selectionSort can sort elements without referring to an array directly in any way.
The important thing to recognize is the pointer duality law, which states that if A is any
pointer to the start of an array, then A[i] is equivalent to A + i. The replacements we
shall make are defined as follows:

replace elements[s] by *loc or equivalently &elements[s] by loc
replace elements[i] by *where
replace elements[j] by *inner

See Figure 2.7 and compare it to Figure 2.6.
This gives us the following version, which no longer makes reference to any array,
only to pointers that point in to the array.



Chapter 2. Programming with Arrays and Pointers 45

Sorted and Smallest

where/{ ;nd
LI

inner

start

smallest in where...inner

Figure 2.7. Selection sort, inner loop with pointers.

template < class T >
void selectionSort(T* start, T* end)
{ for(T* where = start ; where < end ; wheret+)
{ T* loc = where;
T small = *loc;
for
( T* inner = where + 1;
inner < end;
inner++

if(*inner < *loc)
{ 1loc = inner;
small = *1loc;
}
*loc = *where;
*where = small;

The algorithms of the Standard Template Library are all defined using this last idea.
While it is entirely equivalent to the above when we are sorting arrays, the fact that the
algorithm doesn't refer directly to arrays but only to pointers means that the same algo-
rithm can be used for other structures that have the property that they can be referred to by
pointers. Do note, however, that this last version is not nearly as easy to read, especially
for novices. Being less easy to read and understand, it is more likely to have an error.

What essential features of pointers have we used in the above? All we need to do is
examine the uses. We have applied operator++ to the pointer variables in several
places. We have used operator* to de-reference the pointers in several places. We have
used operator< for pointers (as well as their de-referenced values). We have assigned
one pointer value to another with operator=. We have done pointer arithmetic (e.g.,
where + 1).Finally, we have implicitly assumed that if we execute start++ suffi-
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ciently often, then eventually start < end will be false. The implication of all this is
that we don't even need pointers. Any datatype that has these essential features could be
used in place of pointers here. The iterators of the STL have all of these properties.

It is important to note that we refer to the contents of a container in the STL using
two iterators. The first of these refers to some element in the container: its “first” ele-
ment. The other, however, does not refer to any element. It refers to a location “past the
end” of the container. In mathematics, a range of real numbers is called an interval. There
are several kinds of intervals depending on whether they include or exclude their end-
points. The interval [a, b], for example, includes all of the numbers between a and b, in-
cluding both of these values, as well. This is called a “closed” interval. The open interval
(a,b) excludes both endpoints, but contains the values strictly between a and b. The half
open interval [a,b) includes a, but excludes b. In the STL we uniformly use something
like this half open interval to refer to our containers, except that the “end points” are itera-
tors, rather than numbers.

It is also possible to sort an array into decreasing order, in which the largest value is
first, rather than last. To do so we replace operator< with operator> of course.

Binary Search

Once an array is sorted, it is possible to search it much more efficiently than if it is not.
One commonly used mechanism is called binary search, which is similar to a guessing
game that you may have played. One player announces that she has thought of a number,
say between 1 and 100. The other players guess what the number is, and for each guess
the original player informs the guesser whether the guess is correct, too high, or too low.
A correct sequence of guesses can arrive at the remembered number quite quickly. In fact,
if the number remembered is between 1 and 1 million, it only requires about 20 guesses
to arrive at the answer.

The correct next guess, of course, is halfway between the largest previous guess that
was too low, and the smallest previous guess that was too high. So your first guess in
the 1...100 version is 50 and if that is too high, you next try 25, which if too low, you
next guess either 37 or 38, etc.

In binary search over a sorted array, we first look in the cell in the middle of the array.
If that is the desired value we are done, but if that value is larger than the one we seek,
then, since the array is sorted, the desired value must be to the left (assuming the sort was
increasing). Binary search is called binary, by the way, since it splits the portion of the
array yet to be searched into two equal parts at each step. In other words, each failure re-
duces the remaining work by a factor of 2.

Here is a recursive version of binary search over an array. It returns the cell number in
which it finds the item, or an arbitrary cell number if the target is not present. Because
the process is recursive over a portion of the array, we must pass parameters to indicate
the subscript bounds of the search.
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template<class T>
unsigned int binarySearch
( T* elements, // Array of Ts.
const T& t,
// Searching for t in elements.
unsigned int first, // Starting here.
unsigned int last // Ending here.

{ if(first >= last) return first;
unsigned int mid = (first + last)/2;
// Middle of the array.
if(t == elements[mid]) return mid;
if(elements[mid] < t )
return binarySearch(t, mid + 1, last);
else
return binarySearch(t, first, mid - 1);

}

Exercise. Modify binary search by applying the pointer duality law throughout. The pa-
rameters of your modified version should be the target plus two pointers, one to the first
cell of interest, and the other to the location just after the last. It should return a pointer
to the cell that contains the value if found, and an arbitrary pointer into the array other-
wise. Be careful about the translation of mid. Test both the original version and your new
version.

Quicksort

Quicksort is called quick because it sorts faster than sorts like selection sort. This is be-
cause it does more work each time it scans the array. In particular, what we will attempt
to do is to use a linear scan of the array to establish the truth of the logical statement em-
bodied in Figure 2.8.

=t t >t

0 m length-1

Figure 2.8. Quicksort partition.

The idea here is to split the array approximately in the middle around a value t with
the property that all values to the left of t are less than or equal to it, and all values to the
right are strictly larger. Once we establish this “partition step” we will then recursively
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repeat the process on the two side pieces: the piece from 0 to m-1 and the piece from m +
1 to length - 1. Since this is to be done recursively, and since we need to say in the recur-
sion step what the limits of the sorting are to be, quickSort will need to have two pa-
rameters so that we may pass in these bounds. We can establish our plan in an outline as
follows:

quicksort(first, last) is
if (first < last)
partition, finding m
quicksort(first, m-1)
quicksort(m+1 last)

There are a variety of ways to carry out the partition step. One of the clearest and easi-
est follows. What we will do first is establish the truth of Figure 2.9.

t <=t >t

first lastLow last

Figure 2.9. Quicksort partition postcondition.

This will be a bit easier to do, since we know where the special “pivot” value will be:
always in cell first. Instead of m, we now use an index named lastLow, that marks the
cell in which we find the last “small” value. Note that if we can establish the truth of
Figure 2.9 then a swap of cells first and lastLow will establish Figure 2.8.

To establish Figure 2.9, we will carry out a process described in Figure 2.10.

t] <=t >t 7

first lastLow i last

Figure 2.10. Quicksort partition invariant.

What we do here is to use an index i, which we move along so that it is eventually
equal to last. Cells between first+1 and lastLow are <=t, those between lastLow+1 and i
are > t, and we don't know about those beyond i, since we haven't examined them yet. We
make this picture true initially by setting i and lastLow to be first. Then all parts are
empty except the first cell and the “??” part. We get i to be last eventually, by increasing
it in a for loop. We keep Figure 2.10 true in the following way. Each time we increase i,
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we examine the new cell i. If its value is > t, then nothing needs to be done. On the other
hand, if it is <= t, we can increase lastLow and then swap cells i and lastLow. This will
reestablish the truth of 2.10 for the new i. Putting all of this together, we arrive at the
following code for quickSort. We employ an auxiliary function swap that exchanges the
values of two cells.

template<class T>
void swap(T* elements, int i, int j)
{ T temp = elements([i];
elements[i] = elements[]j];
elements[j] = temp;

}

template<class T>

void quickSort

( T * elements,
unsigned int first,
unsigned int last

{ if(first < last)
{ Tt = elements|[first];
// t is the pivot.
unsigned lastlLow = first;
unsigned i;
for (i = first + 1; i <= last; i++)
if(elements[i] < t)
{ ++lastLow;
swap(lastLow, 1i);
}
swap(first, lastLow);
if(lastLow != first)
quickSort
(elements, first, lastLow - 1);
if(lastLow != last)
quickSort(elements, lastLow + 1,last);

Note that the portion of this algorithm up to the recursive calls is the partition step,
and its result (Figure 2.8) is called a partition of the array.

Exercise. Modify quickSort by applying the pointer duality law throughout. Your func-
tion should have two parameters. They are pointers to the beginning and the “after” posi-
tion, as usual. Test both the original version and your new version.
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The Efficiency of These Algorithms

After correctness, the most important aspect of any algorithm is its efficiency. There are
two aspects to efficiency, namely the efficiency of the algorithm itself and the efficiency
of its implementation. It turns out that the latter measure is not nearly so important as
the former and merely requires that the programmer take care not to execute unneeded in-
structions. The essential efficiency of the algorithm itself is much more important, as it
sets limits that no details of implementation can overcome.

Efficiency can be measured various ways. One measure is the space required. If an al-
gorithm is written to run on a multiprocessor system, then the number of processors re-
quired may be an important measure. Usually, however, efficiency means time efficiency.
How much time can we expect an algorithm to take to complete?

It must first be recognized that this question cannot be answered in specific, concrete,
exact terms. Computers differ in their speeds. Disk drives have differing transfer rates.
Multiuser computers have different loads that affect the speed of programs running on
them. Most importantly, each time we run a program, we likely do so with a different set
of input data. This can have a large effect, and we expect that a run with a small amount
of data will be faster than one with a large amount of data.

Therefore, efficiency is always expressed in terms of some measure of the input re-
quirements (size of the data) or the resources required (memory, processors, etc.). Here we
will consider only the time efficiency of our algorithms as a function of the size of the
input data. We also adopt a measure that will be independent of the speed of a particular
computing system on which a program implementing the algorithm might be run.

Some algorithms always take the same amount of time when run on a given system
in a given start state (system load, available memory, etc.). For example, an algorithm
that returns the first element of an array can be expected to run in constant time independ-
ently of the size of the array. However, an algorithm that uses a simple for loop to sum
the elements of an integer array must visit each cell of the array, so we expect that its
running time will be proportional to the size of the array, approximately doubling if we
double the size of the array. But this doubling isn't a precise measure either, since any
such algorithm will have a certain amount of overhead (initializing the sum, etc.) that
must be done no matter what the number of data items that it processes. Therefore, for
example, summing an array of two items using our for loop algorithm will not run ex-
actly twice as long as when applied to one element. However, between 1000 and 10,000
elements, the time will be very nearly related in a 1 to 10 ratio, since this fixed overhead
will be amortized, or spread out over a large number of repetitions.

In order to be as precise as possible when presenting the run-time characteristics of an
algorithm, we resort to a mathematical means of expressing the upper and lower bounds
of functions, here the running time, as a function of the amount of the data processed.
What we do, essentially, is to compare the running time function to functions of well
known behavior, such as polynomials, logarithms, and exponential functions. These
functions have been extensively studied and characterized using calculus. When the value
of function g is always less than the value of function f for a given input x, we say that f
dominates g, or gives an upper bound for g. If, on the other hand, function g is always
greater than function h at each point of the domain, we say that h forms a lower bound of
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g. If functions f and h are also quite close together at all input values, then we have
pinned down the behavior of function g quite well.

Computers run relatively fast today, so the behavior of an algorithm on a small
amount of data is only seldom of interest. For most algorithms, the time is nearly instan-
taneous. The problem gets interesting only when the data set gets large, the time gets
long, and we reach the limit of how long we are willing to wait for an answer. So, we are
usually willing to ignore the bounds problem for small inputs. With all of this in mind,
we can give a definition of a precise measure of the upper bound of a function, in terms of
another function.

Let f and g both be functions of an integer variable. We say that function g is O(f),
read “big oh of f,” provided that there is an integer M and a constant C, such that for all
x>M, it is true that g(x) <= C - f(x). The purpose of M is to ignore small values of x
(the size of the input in our application). In effect, this lets us ignore the fixed overhead
of the algorithm. The purpose of C is to provide a constant of proportionality that lets us
ignore the specific speed of processors. Different systems will just have different values of
C.

Note that if our running time is O(f) for some function f, this just means that the
running time for input size n is less than some multiple of f(n) for all n that are relatively
large. It might be nearly C-f(n) or considerably less. To get a sharp estimate of the run-
ning time, we also need a lower bound.

Lower bounds are expressed quite differently, though it sounds similar. We say that a
function g is Q (f), read “big omega of f,” if there is a constant C such that for any inte-
ger N there is ann > N such that g(n) >= C-f(n). Said another way, g is bigger than a
fixed multiple of f for infinitely many values. All this means is that it is sometimes
large, not that it is necessarily always large. In terms of running time, this means that for
some sets of inputs, the program will run for a long time and that this behavior will be
observed for more than just a finite number of values.

Normally, however, when we give a “big oh” bound for a function, we mean that the
running time is indeed close to that bound. So, while it is technically true to describe a
function as O(x2), when it is also O(x), that won't normally be done. Note that if a func-
tion is big O of some polynomial function, then it is also big O of x1!, where n is the
degree of that polynomial, since any given polynomial of degree n is O(x™).

We call an al§orithm linear if it is O(x), since f(x) = x is a linear function. An algo-
rithm that is O(x<) is called quadratic. One that is O(x3) is cubic. As one extreme, an al-
gorithm with constant running time is O(1), and at the other extreme an algorithm is
called exponential if it is O(2™). Exponential running time algorithms take extremely
long to execute on large sets of data, as illustrated by the following exercise. Another
commonly used bound function is the logarithmic function logy(n). An algorithm with
such a bound is described as logarithmic.

Exercise. Suppose that you have an exponential algorithm that takes 1 second to com-
plete if the size of the input is 16 items. For each additional item the time doubles. How
much time does it take on a set of 64 items? Suppose your computing cost (cost of time
and depreciation on the machine plus electricity consumed) is one penny for 16 items.
What does it cost for 64 items using the same formula?
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The sequential search algorithm presented above is linear, of course. The number of
steps it executes is directly proportional to the length of the array, as can be inferred from
the use of the for loop. Likewise, the selection sort algorithm is quadratic, since it con-
tains two nested loops, each of which is linear. In general, algorithms built out of loops
are relatively easy to analyze for their runtime bounds. Recursive algorithms and some
others are a bit more challenging.

One means of analyzing the running time of an algorithm is to write down an equa-
tion that describes the running time and then solve it. Even though we know that sequen-
tial search has linear running time, let us use this technique to analyze the efficiency as an
illustration of how to go about it.

In sequential search we look at one item in a set of n and if that is not the target of the
search, we still need to examine n-1 others. Therefore, if there is a single item in our con-
tainer we take one unit of work to verify whether or not that item is the target. If there is
more than one item, say n, then the work required is one unit to check the first item plus
the work required for the other n-1 items. If we write down this work equation, where Wy,

represents the work done for n ittms and Wy,_1 the work for n-1 items, we get the follow-
ing.

Wp=1+W, 1,if N>1land Wy = 1.

Equations like these are called recurrence relations because they are recursive defini-
tions of a value. As in all recursive systems, note the necessity of a base (non-recursive)
case to which we reduce.

We can solve this by repeated substitution, replacing a work term on the righthand
side by its definition using this formula itself. Notice that we start with n-1 on the right
and a single 1. If we substitute the meaning of W, 1 = 1 + W, 5 into the above formula,

we get
Wp=1+(1+Wy2)=2+Wy 9
If we repeat this, we get
Wh=2+W,92=3+Wy3...=n

That is to say, the work to process n items is n times the work to process one item.
This again justifies the statement that the work of sequential search is proportional to the
length of the array.

Suppose that we try to analyze the running time of binary search in this same way.
The binary search proceeds by doing one unit of work to look in the center location in the
array. If that is not a hit, then the recursion says that the binary search must do the same
process over a data set half as large. Of course if the array only has one item, it only takes
one unit of work. We just verify that that item is, or is not, the target of the search. Sup-
pose that we again let Wy, represent the work done (time expended) for exactly n items.
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Then an equation defining this work that corresponds to the first two sentences of this
paragraph is

Wh =1+Wypp,ifn>1,and Wy =1.

This can be solved if we substitute n = 2K into the equation and then do repeated sub-
stitutions on the righthand side using this definition itself.

Wok =1+ Wok-1,ifn>1,and Wy = 1.
=1+1+Wok-2

=1+1+1+Wpk-3

=k

Therefore, W, = k = logy(n), and we have a logarithmic algorithm. This is very good,

since the log of a number is small in comparison to the number. This justifies our earlier
claim that we can binary search an array with a million items with only about 20 repeti-
tions.

Exercise. Normally the quicksort exhibits the following behavior. The partition step
splits the array into two parts of about equal size. Therefore, the work done is the work
done to do the partition, which is linear, plus the work done to quick sort the two halves.
But sorting the two halves separately is just twice the work required to sort an array half
as big. Of course, an array with only one element takes no work at all to sort, since it al-
ready is sorted. Use this idea to verify the claim that quick sort is O(n logy(n)).

Some algorithms work well on most data sets but perform badly on a few. Quick sort
as presented here is such an algorithm. In an average case the quick sort is O(n logp(n)).

However, the algorithm as presented has a very strange behavior if we give it a sorted ar-
ray to start with. In this case, the partition doesn't divide the array into two parts of equal
size, but into one part that is empty and the other which has just one less element. So, in
this case, the running time is the time required to do the partition (linear) plus the time
required to sort an array with one less item. Now the recurrence is

Wh=n+W, {,ifn>1,and Wy =0.

It is easy to show that the solution of this recurrence relation is a quadratic function of
n. Therefore, quick sort is no better than insertion sort on a few cases. For quick sort we
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say that the average running time is O(n logy(n)), but the worst case running time is

O(n2). As a shorthand, we will use lg(n) in place of logy(n), as the log base 2 commonly
occurs when measuring efficiency.

Exercise. Actually, if we use big O to measure efficiency, any log base is equivalent to
any other and so the base doesn't matter. Why?

There is another measure of running time that is occasionally useful, though not for
these algorithms. Suppose we want to build a class to implement arrays that can be ex-
panded. A nice technique is to do the following. The class has a member variable that is
an array of some convenient size at creation. If we later learn that the array was too small,
we expand the array as follows. Allocate a new array, twice as long as the original, copy
the elements from the old array into the new one, and then delete the old array, assigning
the new one to the member variable. If we ask how much time it takes to insert an ele-
ment into this “array class”, the answer is that it depends. If it is not time to expand, the
time is constant. If an expansion is required, the time is linear in the number of items
currently stored, to account for the copying time. But if we average this out over all inser-
tions, we find that the (average) time is still constant, actually about twice the time of
one of the atomic instructions. Note that to make this work, you must double the size
when you expand, not just increase it by a fixed amount. Such an algorithm is called am-
ortized constant, since we amortize the cost of an expensive operation out over several
cheap operations, with the average being constant.

Using Arrays with the STL

Most of the algorithms provided with the Standard Template Library work for arrays as
well as those additional containers provided by the STL itself. This was one of the pri-
mary design decisions of the STL. They work because pointers into arrays satisfy the re-
quirements of random access iterators. Since most of the algorithms work with such itera-
tors, they work with arrays.

To use the algorithms you must include the header <algo.h> provided with the STL
and probably provided with your C++ compiler. To sort an array, we need a pointer to the
beginning of it and a pointer to the cell that would immediately follow the array (not a
pointer to the last cell, a pointer to the following cell). Consider the following test ex-
ample:

int testArray[] = ( 3, 1, 4, 2, 5 };

int * first = testArray;

int * last = &testArray([5]; // Or testArray + 5;
sort(first, last);

for (int i =0; i< 5; ++i)
cout << testArray[il<<end];



2.9

Chapter 2. Programming with Arrays and Pointers 55

This produces
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Notice that the sort function doesn't mention the array that it is sorting. It only needs
pointers to the first cell and the “last” position. Technically, in the language of the STL,
sort takes two iterators as arguments and sorts the section of the container between the
two iterators, including the item at the location of the first iterator and not including the
position of the second. Sort works for many (but not all) of the container classes, and
most algorithms take one or more iterators as arguments.

There are two requirements for using the sort routine of the STL. The first is that the
pointer must de-reference to a type that supports operator<. In other words, the compo-
nent type must support this operator. The second is that the operator< of that type must
have the property that if a < b, then it is not true also that a = b. If your type doesn't
meet this specification, then you might get a compiler error that operator< is not defined,
or if it is but the operator fails to satisfy its condition, then using sort may result in an
infinite computation.

A somewhat less obvious requirement of the STL sort is automatically fulfilled by ar-
rays and array pointers. Sort requires that the iterators (here pointers) passed in satisfy the
requirements of random access iterators. Since array pointers have this property this is not
a problem, but applying sort to some other data structures (e.g., linked lists) might not
be possible.

The STL sort algorithm is a variation of quickSort. It is a bit more sophisticated than
the one shown above, as it works efficiently for already sorted arrays, though it will be
inefficient for some collections of data. The STL has other sort routines that are slower
on average than sort, though they can be guaranteed to always be faster than quadratic al-
gorithms like selection sort. See sort_heap in the index or in Chapter 6, for example.

Another STL algorithm that can be used in exactly the same way as sort is reverse,
which reverses the elements of an array (or other container).

Note that when you apply one of the STL algorithms using an iterator, the value of
that iterator may change. It may no longer point to the location to which it originally
pointed. We say that an iteration “consumes its iterator.”

Another Example. A Simple Database

One of the important problems in computer processing is how to efficiently and effec-
tively store large amounts of information. The solution is called a database. We shall pre-
sent an extremely simple solution here that is not really adequate for large amounts of
data, but it introduces a few key concepts.
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Data is stored so that it may later be retrieved. Usually the data is stored once, updated
infrequently, but accessed frequently. Eventually the data will likely be removed. For ex-
ample, when a new employee is hired, a new record is placed into the employee database,
describing the relevant information about that person. The data is modified or updated
only when some piece of information changes, such as name or address. The data is re-
trieved at least as frequently as the pay cycle, since it is needed to write a paycheck. Fi-
nally, when the person leaves employment the data is removed from the active part of the
database, though the information may simply be moved to an archival region.

Since retrieval is done more frequently than creation/modification/removal, it is im-
portant to organize the database so that lookups are fast, even if this somewhat slows the
speed of insertions. One of the chief ways that this is achieved is to choose from among
all of the data to be stored, some portion that can be guaranteed to be uniquely associated
with the data entity (here person), and that will not be the same for any other entity. This
portion of the record is called the key, and the remainder of the data for that entity is called
the information. Therefore, data is a collection of key-information pairs. social security
numbers are often used in the United States as a key for employee records, since they are
required to be maintained by employers (for taxing purposes) and they are also (supposed
to be) unique. In general, however, the type of the key and the type of the information dif-
fer from one database to another, and even from one portion of the same database to an-
other, so it is useful to abstract these types. We can do this with a class template.

template <class Key, class Information>
class DataRecord
{ public:

DataRecord(Key k, Information v)
key(k),
information(v)

{

}

Information getInformation() const
{ return information;

}

Key getKey() const { return key; 1}

bool match(const Key k) const
{ return k == key;
}

private:
Key key;
Information information;
DataRecord(){}
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// Needed to create arrays of
// DataRecords.
friend class Database<Key, Information>;

};

We can now build a database using an array to hold DataRecords. This solution, as
mentioned before, is overly simplified, as it requires that we know the maximum size of
the database in advance, which is seldom the case.

template <class Key, class Information>
class Database
{ public:

Database(int size)
currentSize(0),
storage
( new DataRecord<Key,

Information> [size]
)
{
}

void store
( const Key k,
const Information v
)
{ storage[currentSize++] =
DataRecord<Key, Information> (k, v);
}

Information retrieve(const Key k) const
{ for(int i = 0; i < currentSize; i++)
if(storage[i] .key == k)
return storage[i].information;
return Information();
// The default value of type
// Information;

}

private:
DataRecord<Key, Information> * storage;
// Save the data in an array.
int currentSize;
}i
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We can now store information into our database, where it is saved in the next avail-
able slot in the array. We can also retrieve the information associated with any key,
though it takes a sequential search of the database to achieve it. Thus, though it works, it
does not satisfy the efficiency requirements that specify that lookups should be fast. Here
insertions are fast but retrievals are very slow.

To create a database, you need to specify the key and information types as well as the
maximum size.

Database< int, char*> BonMot(100);

BonMot .store(22, "Have a nice day.");

BonMot.store(11l, "Have an OK day.");

BonMot.store(33, "Have a wonderful day.");
BonMot.store( 5, "Have a day.");

cout << BonMot.retrieve(ll) << endl;

cout << BonMot.retrieve(99) << endl; // Prints garbage.

Exercise. Speed up retrievals, even at the expense of insertions. One way to do this is
to sort the database after each insertion. This requires that DataRecords have an operator<,
which you will need to write. This operator should consider only the keys and ignore the
information values.

Exercise. Devise a better mechanism for signaling that the data sought is not to be
found. You can change retrieve into a boo1l function that returns its information value in
areference parameter, for example. Throwing an exception is another possibility.

Arrays That Contain Pointers

If we assign a value to some component of an array, then a copy of the value is made and
stored at that component. Sometimes we want to avoid this copying because of its cost,
or because the logic of the problem dictates that we not make copies of things. In this
case we may store pointers to values rather than values themselves as the components of
the arrays. This same technique may be applied to other containers as well, of course.

For example, in a database, it might be desirable to store the same objects in several
places without copying. We try to keep only a single copy of data in a database to sim-
plify the problem of updating values. If several copies of a piece of data are stored, then
all must be updated at the same time. One way to achieve this is to avoid copies alto-
gether, keep one copy of each piece of data, and use pointers as needed to simulate replica-
tion.

To do this our database will store pointers to data records rather than data records. Each
cell of the array will contain just a pointer to some actual data record, or possibly be
NULL.

Aside from the avoidance of copying, there is another major advantage of using point-
ers as the contents of our containers. This is the possibility of making the containers het-
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erogeneous: of storing different types of things in the same container. This can't be done
with complete freedom in C++, however, since pointers have a type that includes the type
of the value that they point to. However, we may use the object-oriented features of C++
to achieve heterogeneity. We return again to derived classes.

Since we define a new class when we derive one class from another, we have different
types. However, these types are partly compatible with each other. In particular, a pointer
to a base type may hold a value that is a pointer to a derived class. This means that if we
have a container, such as an array, defined to hold pointers to some class, then it may in
fact hold pointers to any class derived from that class. For example, we may create an ar-
ray of pointers to SpreadSheetCells and store pointers to NumericCells and FormulaCells
as well.

SpreadsheetCell* lotsOfCells [100];
// Array of cell pointers

lotsOfCells[0] = new FormulaCell(...);
lotsOfCells[1] new NumericCell(...);

Another Use for Pointers—Lists

As a final brief note, we mention that pointers may be used to refer to other values than
arrays. One of the most fruitful uses is to use pointers as links to chain data cells to-
gether. Each cell will now contain not only a value, such as an array cell does, but also
the address of another cell. In this way the cells do not need to be stored contiguously, but
can be anywhere in the free store. The advantage of this is that it is quite easy to insert a
cell “between” two other cells and nothing needs to be moved. All that is required is that
the addresses that impose the physical ordering on the cells be updated. In this way we can
build sequential structures called linked lists. More generally, we can use more than one
such address in a cell and build nonsequential structures such as trees and graphs. Lists
will be taken up in detail in Chapter 7.

Summary

Make certain that you understand each of the following terms:

array

array section
alias

big O

binary search
cell
component



60 Data Structure Programming with the Standard Template Library in C++

half open interval [a, b)
index

initialization
invariant

iterator

pointer

pointer duality law
quicksort
recurrence relation
searching

selection sort
sequential search
sorting

subscript

2.13 Exercises

1. Build a calendar generation program. Fill in a 6 by 7 array with numbers representing
the days of a month. Consider columns to represent the days Sunday through Saturday.
Input a date and build a calendar for the month containing that date. If a cell does not cor-
respond to a day in that month, give it a zero or negative value. Provide a print routine to
print nicely formatted monthly calendars.

2. The following sequence of exercises should be worked together. The following ordinary
function will compare CountedInts:

bool cmpi

(const CountedInt& a, const CountedInts& b)
{ return a.getValue() < b.getValue();
}

It returns true provided that the first parameter has a value less than the second. Such a
function is very useful if CountedInts are to be placed in STL containers. For example,
create an array of 20 CountedInts. They will be initialized automatically by the default
constructor. Notice that the definition of the array itself will call the default CountedInt
constructor on all elements. Verify this by scanning over the array and writing out the
“order” of each element using getOrder.

CountedInt ci[20];

for(CountedInt* cip = ci; cip != ci+20; ++cip)
cout << cip->getOrder()<<' ';

cout<<endl;
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Now verify that all of the values stored are zeros.

3. Set some values into the CountedInts stored in the array of the last exercise. Then ver-
ify that you have your values by printing out the entire array again. Then shuffle the val-
ues around with the STL algorithm random_shuffle:

random _shuffle(ci, ci + 20);

Now verify that you have the same values by printing out the values. Also print out
the orders, to show that you have the same objects as before in the same cells.

4. Now sort the array with
sort(ci, ci+10, cmpi);

Again verify that the values have been sorted. Note that we need the comparison op-
erator as the last parameter of sort.

5. We would not need the last parameter of sort in exercise 4 if we had given CountedInt
an operator<. In that case, sort would have used this operator if we had not supplied the
third parameter. Try this.

6. Save 10 rolls of a ten-sided die in an array. Print out the array. Sort the array. Reverse
the sorted array. Shuffle the array. Sort it again. Scan the array to find the number of rolls
on which the value was even. Use iterators (pointers) for all of this. You should not use
subscripts anywhere. Perform all of the above again using subscripts to get access to the
cells. You should not use pointers (iterators) anywhere. Unless you have access to another
library of algorithms, this last part is much harder. Why?

7. Build a database in which the keys are strings and the data values are also strings.
Sometimes such databases are called property lists. The keys name some property, and the
data value is the value of that property. Property lists are attached to various objects. For
example, a window object could have a property named “HasVerticalScrollbar” with the
value “true.” The advantage of using strings for the keys is the flexibility to add additional
properties without rebuilding the database system, as we are not using a fixed set of prop-
erties. To enable the next two exercises, first write a function that will write out a com-
plete database. This could be a friend function with prototype

template <class Key, class Info>
ostream& operator<< (ostream & o, const Database<Key, Info>&
db)

Such a function should return the same ostream that it gets as a parameter after send-
ing all elements of the database to the stream o, with appropriate formatting. Such friend
functions are the standard way of giving objects print capabilities.
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8. It is sometimes necessary to sort a database. If we store the DataRecords in an array,
then this can be arranged with a few changes to the database system. One typical way is
to add a sort member to the Database class. Implement this idea. The prototype should be

void sort();

9. A better way to permit sorting of a database is to provide a mechanism compatible
with STL iterators. To do so requires only that we provide begin() and end() members to
our Database class that return pointers to array cells. We can return variable storage for
the value of begin() and & (storage[currentSize] ) for the after then end value re-
quired by end(). With these functions provided, we can use the STL algorithm sort, which
requires such iterators for its parameters. Note that sorting char* strings is a bit tricky
since the ordinary operator< won't work. If you use this kind of string, then you need to
provide a string comparison routine like

bool cmp(char* a, char* b)
{ return strcmp(a,b) < 0;

}

In this particular case we need to be able to compare DataRecords based on only their
keys. The following function will do this.

bool cmp
( DataRecord<char*, char#*> a,
DataRecord<char*, char*> b

)
{ return cmp(a.getKey(), b.getKey());
}

This function could be passed to the generic sort routine of the STL as a third parame-
ter, as in

sort(db.begin(), db.end(), cmp);
where db is the name of our database.

10. C++ does a pretty good job of handling strings. You can allocate a fixed amount of
space for a string, just by using a string value

char * x = "These are the times."

You can allocate a large buffer in which to put a string as you read it when you don't
know how big it will be:

char buf [256];
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You can also allocate a string on the free store when you know its length:
char * ans = new char[18];

Only the last method gives you the flexibility to decide at run time how big the string
will be. But there is another way, called a string buffer. It has the advantage of not requir-
ing calls to the allocator new, which can take a lot of time if done frequently. Suppose we
have an array in our program that is large enough to hold several strings:

char spellbuffer[4096];

We are going to pack strings into this buffer, one after the other. A string will then be
referenced by knowing the index of its first character in the buffer, which we obtain when
we insert it. We keep an integer variable, nextFree, initially O that is always the index of
the next cell of the array that has not yet been filled. We can insert a string S into the ar-
ray with two statements:

strcpy(spellbuffer + nextFree, S)
nextFree += strlen(S)+1;

The location of the spelling of S in the buffer is the original value of nextFree before
we increment it.

Write functions insert and retrieve. The insert function takes a char* and inserts it into
the buffer, returning the integer index at which it starts. Function retrieve takes an integer
index and returns the string at that index.



Chapter 3
Overview of Container Mechanisms

3.1 Storage Mechanisms

In this chapter we are going to examine a number of ways that a programmer can store
relatively large amounts of data for a program. We have already examined arrays, which
use dense storage, and we saw that we can allocate such storage either automatically or on
the free store. Two other methods of importance and frequent use are linked storage and
hashed storage. Normally, linked storage is done only in the free store and hashed storage
may be a combination of linked and dense storage and may involve either automatic or
free store data or even a combination.

Dense storage is needed when we need to access elements in a random order and do so
quickly. It is also useful if we can predict the total number of items to be stored in ad-
vance. Linked storage is needed when we need to be able to insert items between existing
items frequently. Hashed storage is often used when we need to retrieve items quickly, do
not need to rearrange them or retrieve them in a particular order. Hashed storage is also
useful when you can't predict in advance the total number of items to be stored, though
there are variations of hashed storage that require this knowledge in advance.

Linked storage is the most flexible of the methods considered here. With links it is
possible to build sequential structures called Lists (Linked Lists), as well as non-
sequential structures such as trees and graphs, with complete generality.

3.2 Dense Storage

Dense storage, as used in arrays, has many advantages and only a few disadvantages. The
main advantage is that when we know where the structure is, we know automatically
where every part of it is. Internally, when we use a subscript reference like A[i], the sys-
tem multiplies i by the size of a cell and adds that to the address A to obtain the address of
cell i. This multiplication and addition are very fast, so the access is very fast. When you
use a struct or a class in C++, the system also uses dense storage for the value. In this
case, each member of the struct or class is given a fixed offset from the beginning of the
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value. Then a member access like B.x is evaluated by adding the fixed offset of x to the
beginning address of B to obtain the member's address.

The main disadvantage of dense storage is the difficulty of extending the size of fixed
blocks, especially if they have large size. A running program has many items to be stored
and a fixed amount of memory in which to store them. In order to make good use of
memory, a compiler will pack data items together in memory without much wasted
space. This means that our array or struct is surrounded by other data items. Therefore, it
is usually impossible to expand the size of an array in place. If we underestimate the size
of an array initially and want to expand it, then we will need to allocate a new, larger ar-
ray on the free store, and copy the elements from the old to the new array. This is time-
consuming, and if done frequently, can greatly slow an algorithm.

A secondary, though important, disadvantage of dense storage is the difficulty of mak-
ing room for additional components in the middle of a block. The very nature of dense
storage implies that the old values must be moved to make room for the new value. This
moving of old values takes time that, generally speaking, is proportional to the number
of elements to be moved.

An Extended Example Part 1: The Array Stack

A stack is a container object that keeps items in the order in which they were inserted.
When we remove an item from a nonempty stack, it is always the item most recently in-
serted of those still remaining. The standard name for this protocol is LIFO, for Last-In,
First-Out. A stack can be defined formally in terms of its state, which is modified by its
operations. The operations on a stack are empty(), which tells us if the stack is empty;
full(), which tells us if it is full and should not be inserted into; push(val), which is the
insert operation; pop(), the removal operation, which removes the most recently inserted
item and returns it to the caller; and top(), which returns the most recently inserted item
without removing it. The rules defining a stack are as follows:

Immediately after creation, empty returns true.

Immediately after push, empty returns false.

If a stack is in a state in which empty returns true, then pop and top are errors.

If a stack is in a state in which full returns true, then push is an error.

(If a stack is in state S in which full returns false and we push an element E and then
immediately pop, then the pop will return E to us and the stack will again be in state
S.

6. Immediately after a (successful) push(E), top returns E without changing the state.

MIF S

In actuality we have defined a bounded stack here, since it can hold a fixed number of
items. If we remove this restriction, or otherwise guarantee that full always returns false,
we have a stack proper.

One of the classic uses of a stack is to evaluate postfix expressions. Such expressions
have each operator written after all of the operands of that operator. For example, the ex-
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pression (a + b)*(c + d) would be written in postfix as ab + c d + *. The way to evaluate
an expression written in postfix is to read the expression, one symbol at a time, from left
to right. If we read an operand, then simply push it on a stack. If you see an operator,
then pop the appropriate number of operands for that operator from the stack, apply the
operator to the values popped, and then push the result back onto the stack. When you
reach the end of the expression, you have the value on the top of the stack.

We can implement a Stack class in many ways. We will do so first with dense stor-
age, employing an array as our internal storage mechanism. We will use a dynamic array
so that we can decide when we create a stack how large it should be. It is possible to ob-
tain a stack very easily from the STL. However, we will build one here ourselves to see
what is involved. Even given the fact that we intend to use dense storage for the elements,
there are still many decisions that need to be made to build our stack abstraction. The
choices we shall make here will all be such as to illustrate what goes on in the STL con-
tainers, though it is certainly possible to implement things differently. We should em-
phasize, however, that what we shall build is quite a bit simpler than what occurs in the
STL. We shall only be illustrating concepts here, not attempting to extend the Standard
Template Library.

As a minimum, our class needs a constructor, a destructor, copy constructor, over-
loaded assignment operator, and the specific operations of a stack. In addition we shall de-
fine an associated iterator class and a means of generating certain iterators from any given
stack. The name of our class is ArrayStack, which is not a particularly good name, but it
does emphasize the implementation, which is our intention here.

The implementation of our stack will require three variables: _size is the physical size
of the array that we allocate; _top is an index of the topmost element in the stack; and
_elements is a dynamic array of size _size, initialized in the constructor. When we insert a
new element, we first increase _top by one and then insert the new item in the slot refer-
enced by _top.

We will intersperse the complete definition of the ArrayStack class with our com-
ments.

template <class T>
class ArrayStack
{ public:
typedef T value_type;
typedef ArrayStackIterator<T> iterator;

These types are for convenience. They let other classes get access to the types that we
are using by employing standard names such as iterator, rather than the proper names.

ArrayStack(int size = 100)
_size(size),
_top(-1),
_elements(new T[size])
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Here we allocate a new array according to the parameter, which, by the way, has a de-
fault value.

ArrayStack(const ArrayStack<T>& S)
_size(S._size),
_top(S._top),
_elements(new T[S._size])
{ for(int i = 0; i<= _top; it++)
_elements[i] = S._elements[i];

}

The copy constructor is used when we create one stack from another. We must allocate
anew array for the new stack. We don't want two stacks to share the implementation ar-

ray. Otherwise, changing one stack would change the other as well. This would be a dis-
aster in this situation. Why?

ArrayStack<T> operator=
(const ArrayStack<T>& S)
{ if(this != &S)

{ delete [] _elements;
_elements = new T[S._sizel];
_size = S._size;

_top = S._top;
for(int i = 0; i<= _top; i++)
_elements[i] = S._elements[i];
}
return *this;

}

This is the assignment operator. Note that it guarantees that we aren't trying to assign
the same array to this one. Again, without this check we could have a disaster. What hap-
pens if we would delete the current _elements before copying the old values without this
check? Note how much code is shared between the copy constructor and the assignment
operator. This is typical of C++. It is convenient to factor out this common code into a
private procedure so that it is easier to maintain.

~ArrayStack(){ delete [] _elements; }
The destructor must delete the array that the constructor created.
void push(const T& V)

{ _elements[++_top] = v;

1
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To push onto a stack, we must first advance the _top member and then store the new
element into the resulting component. Notice that we do not check for legal array limits
here. It might be preferable to do so, though it would take time. The user has the ability
to check for overflow using the function full() and must generally do so in any case. A
test here would likely just repeat a test done elsewhere in a correct program.

T pop(){ return _elements|[_top--]; }

A pop is the opposite of a push. We must return the element at the current _top and
then reduce the _top value. Again there is no test for underflow. The user will likely (and
should) use empty() before calling pop().

T top()const{ return _elements|[_top]; }
Top is like pop except that we don't change the _top member.
bool empty()const{ return _top < 0; }
bool full()const{ return _top >= _size; }
In empty and full, we just return information about the state of the stack.

iterator begin()const
{ return
ArrayStackIterator<T>(_elements, 0);

}

The begin() function returns an iterator, which is an ArrayStacklterator<T> according
to the typedef seen above. We shall examine the iterator class in a moment.

iterator end()const

{ return
ArrayStackIterator<T>
(_elements, _topt+l);

}

The end() function also returns an iterator. We initialize it with the index of the first
empty slot after the active elements of the stack. Notice that this is not the slot after the
array necessarily, but the slot after the active part of the array.

private:
int _size;
int _top;

T* _elements;
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These are the member variables that implement the structure. The order in which these
are listed can be important. This is because constructor defined above initializes them in
the initialization section rather than in the code block. The rule is that the initializations
are done in the order in which the member variables are defined, not in the order in which
the initializations occur in the constructor definition. They happen to be the same order
here, but if, for example, we had defined _elements first (before _size) and then used _size
rather than size as the initializing value in the constructor definition, then _elements
would not be properly initialized. This can lead to subtle errors if you forget the rule.

friend class ArrayStackIterator<T>;
b

Finally, we note that the ArrayStacklterator<T> is declared to be a friend class. This
implies that the member functions of that class will have access to the member variables
(all the private members, actually) of this one.

All of this seems pretty straightforward, except possibly the need for the begin and
end functions. Why bother? The stack seems complete. What can be done with these two
functions and the values they return? We shall return to these questions momentarily, but
first a simple example of use.

void main()
{ ArrayStack<int> as;
as.push(3);
as.push(5);
as.push(1);
cout << as.top() << ' '
<< as.pop() << as.pop() << endl;
ArrayStack<char*> ss;
ss.push("Hi.");
ss.push("Bye.");

The creator of every class has a dilemma to face and a problem to solve. If the class
properly employs information hiding so that details of the implementation are hidden
from users, then how does a user get necessary algorithms implemented? One way is to
assure that the class has all necessary algorithms for use implemented as member func-
tions (or combinations of member functions). This is a rather heavy requirement and re-
quires a lot of foresight. Suppose that we discover after the fact that some required proc-
essing is missing. What do we do? One option is to modify the class itself to add the
required functionality, and this is often done. Modifying existing code, however, is prob-
lematic, since it can introduce errors and make previously working code break. Another
option is to build a derived class and to implement the new functionality there. This is
also often done and in many cases is superior to the first solution. The STL takes a differ-
ent approach to this problem, however.
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In the Standard Template Library, very few of the algorithms needed to manipulate an
abstraction are implemented in the class corresponding to that abstraction. Instead, the
class defines functions that make certain information about the abstraction—here a
stack—available in such a way that the user can implement any needed algorithm without
modifying the structure itself. In fact, it is possible to build such algorithms in such a
way that they work with other data abstractions as well as the one for which they were
originally designed. This is the purpose of iterators.

Tterators are any types, built-in or user-defined, that have certain characteristics similar
to those of pointers. In particular, we need to be able to de-reference an iterator to get ac-
cess to the value that it references. We need to be able to advance an iterator using opera-
tor++, and we need to be able to test two iterators for equality. Specialized iterators have
additional properties, as we shall see. What follows is a user-defined class that imple-
ments an iterator type corresponding to our ArrayStack type. It is much simplified from
what is actually available in the STL, but again, it is intended primarily to introduce the
concepts needed and not to be an extension of the STL. We shall see that it gives us
enough power to be able to use a variation of our selectionSort algorithm of the previous
chapter to sort stacks, although sorting a stack is a somewhat foreign concept.

In this implementation, an iterator (ArrayStacklterator) uses an integer representing an
index and a pointer to an array. This array is actually the same array (not a copy) that rep-
resents the implementation of the ArrayStack that this iterator is iterating over.

template <class T>
class ArrayStacklIterator
{ public:

typedef T value_type;
The value_type is the type of data stored in the associated array.

T& operator* ()
{ return _array->_elements|[_where];

}

This is the de-reference operator. It gives us access to the item the iterator references at
the time. Note that by returning a T& rather than a T, we return the value itself, not a
copy. This means that we can store into this value as well as retrieve the current value.
This means we can modify the associated stack without pushing or popping, of course.
This might be undesirable. We could prevent this by making the operation const and re-
turning a const reference instead.

bool operator<(const ArrayStackIterator<T>& i)
{ return _where < i._where;

}



72

Data Structure Programming with the Standard Template Library in C++

Here we compare two iterators using <. The implication is that the iterators are iterat-
ing over the same stack. Any other use will return garbage information. We just compare
the _where member variables of the two iterators.

ArrayStackIterator<T> operator+(int i)
{ return
ArrayStackIterator<T>(_array, _where + 1i);

}

Operator+ lets us add an integer to an iterator. This is the exact analogue of pointer
arithmetic in which we add an integer to a pointer. We want the addition of i to point us
up i slots in the stack.

T& operator++()
{ return _array->_elements[++_wherel;}

T& operator++(int)
{return _array->_elements[_where++];}

These are the two auto increment operators. The first is the preincrement version that
moves the iterator along one cell and returns the value in the new position. We increment
_where before we use it to retrieve an element (reference). The version with the unused int
parameter is a C++ hack that defines the post-increment operator. Again, we use
_where++ as the basis of the implementation. Note that we could turn this iterator class
into something like a bidirectional iterator if we also implement the two operator-- ver-
sions.

private:
ArrayStackIterator
( ArrayStack<T>* s, int where = 0
)
_where(where),
_array(s)
{
}

The constructor just makes a copy of a pointer to an ordinary array and an index.
These come from the array that creates the iterator. These iterators are created only by
functions such as begin() and end() of the ArrayStack class. We guarantee that iterators are
created only by ArrayStacks by making the constructor private. Note that we don't need a
copy constructor here or an overloaded assignment or a destructor, since the supplied ver-
sions will suffice.

int _Where;
T* _array;
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friend class ArrayStack<T>;

This friendship relation gives the ArrayStack class access to the private constructor of
this class.

};

Exercise. What we have done with ArrayStacklterators is a little backwards when you
think of it. In reality, an iteration over a stack should start at the top and proceed to the
bottom. Qurs proceeds in the opposite order. Rebuild ArrayStack and ArrayStacklterator
as necessary to implement this improved idea.

In order to see what we can do with this, lets reexamine the selection sort from Chap-
ter 2. The last version we had of that function template was

template < class T >
void selectionSort(T* start, T* end)
{ for(T* where = start ; where < end ; where++)
{ T* loc = where;
T small = *loc;
for
( T* inner = where + 1;
inner < end;
inner++

if(*inner < *loc)
{ 1loc = inner;
small = *loc;
}
*loc = *where;
*where = small;

This is close to what we want, but not exactly. Here we explicitly use pointers to T
as parameters and as locals. We want to replace these pointers with iterators. To do so we
are going to change the template parameter type to TI and let this refer to an iterator type,
rather than the type of data collected in the array (or other container). We won't have a pa-
rameter for the collected type at all, which gives us a problem since the type of local vari-
able small must be this collected type. This was the purpose for the typedef value_type
defined in the iterator class. We replace T* in the above by our new template parameter TI
and replace T by TI::value_type.

template < class TI>
void selectionSort(TI start, TI end)
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{

}

Note: The STL is a bit more sophisticated about providing this value_type for iterators.
In the STL it is done indirectly through the use of generic functions, while we have done
it directly. The STL solution is preferable, as it permits ordinary arrays and pointers to be
used as well as other containers and iterators. Our selectionSort will not work with arrays
and pointers since, being built-in rather than defined by classes, they can't provide this

for(TI where = start ; where < end ; where+t+)
{ TI loc = where;

TI::value_type small = *loc;
for
( TI inner = where + 1;
inner < end;
inner++

if(*inner < *loc)
{ loc = inner;
small = *loc;
}
*loc = *where;
*where = small;

value_type. This topic will be taken up again in Chapter S.

Notice what operations we apply to the variables of the template parameter type:
variables start, end, where, and loc. We assign one iterator to another. We use operator<,
operator++ (postfix), and operator*. All of these are implemented in our class (except the
assignment, which the system provides). We can therefore pass this function
ArrayStackIterators and expect that it will sort the region of our stack between these itera-
tors.

void main()

{

ArrayStack<int> as;
as.push(3);
as.push(5);
as.push(1l);
as.push(4);

selectionSort(as.begin(), as.end());

cout << as.pop() << endl;
cout << as.pop() << endl;
cout << as.pop() << endl;
cout << as.pop() << endl;
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Note that the selectionSort algorithm is not part of the ArrayStack class, which did
not need to be modified in order to provide this new functionality. This gives us power in
two ways. First, the same algorithm will be used with a LinkStack that we intend to
build in the next section. Second, we can add algorithms to a program without modifying
existing code. Of course this is only possible because the iterator mechanism is very gen-
eral and very powerful.

We close by noting that in the STL the array, vector, and deque types all use varia-
tions of dense storage. We shall examine some of the details in future chapters.

Exercise. Transform the quickSort algorithm in the same way that we have translated
the selectionSort. Test it by sorting ArrayStacks.

Exercise. Use the StopWatch class of Chapter 1 to verify in practice that selectionSort
is O(n2) and quickSort on random data is O(n log(n)). Create a rather large stack and sort
it, timing the operation. Now do the same on stacks twice as large and four times as
large. What did you learn?

Linked Storage

With dense storage, our data structure is compactly stored in one place in memory. With
linked storage, on the other hand, it is distributed in small pieces that are linked together.
Think of taking lots of bits of paper with values on them and lots of bits of string with
their ends glued to the bits of paper. The strings represent the links. We could connect the
paper bits into a single chain, or a ring, or lots of other geometries if we permit more
than two bits of string to be glued to the same piece of paper. This is similar to linked
storage but not exactly the same, as we shall see.

The main difference between the links, which are actually pointers, and the bits of
string is that pointers can only be traversed in one direction by using the de-referencing
operator. We need two pointers to be able to move in two directions between adjacent bits
of paper (data). Suppose that you glue lots of bits of paper-string into a linear chain.
Then it is pretty clear that you can pick up the entire chain by picking up any piece. This
is not so if you have a chain of links (pointers) and use only single linking from some
first piece to some last piece. In this case, to pick up the entire chain, you need to pick
up its first link. Since you can't move backwards along pointers if you pick it up else-
where, you won't have access to the items “before” the place you pick it up.

Pointers are very much like string in other ways, however. A similarity between
strings and links is that if you cut a linear chain, you lose access to the part cut away un-
less you are careful to hold on to both pieces at the time the cut is made.

To build a linked implementation of a data structure, we normally use two structs or
classes. One of these classes defines nodes and the other defines the data abstraction of in-
terest: a stack, for example. The nodes are an implementation detail and are not, properly,
part of the abstraction. They are just the stuff out of which we build our stack, or list, or
whatever. A Node normally contains a data value of some type: the type that we collect in
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the container, or occasionally a pointer or a reference to such a type. The Node also has
one or more link fields. These are just pointers to other Nodes. If we want a linear, se-
quential structure or a ring, we only need one pointer per Node. If we want bi-directional
links, we need two pointers per Node. Trees and graphs may require more, even a variable
number of pointer variables in each Node.

A standard form for Nodes of a singly linked structure would look like the following:

template <class T>
class Node
{ private:
Node(T val, Node<T>* next = NULL)
_value(val),

_next(next)
{
}
T _value;

Node<T>* _next;
friend class .

}:

We have made everything in the class private and have indicated that some class will
be a friend of this class. This is because this class defines an implementation detail only,
so its features should be private to the class that uses it and not available to others. The
constructor “links” in its parameter, which is a Node*, to this Node, in effect attaching it
after the Node being constructed.

In the absence of the other class, and assuming that the constructor, at least, is public,
we can construct a sequentially linked structure by repeatedly calling the constructor
(carefully).

Node<int> * head = new Node<int>(5);
head = new Node<int> (4, head);
head = new Node<int> (3, head);
head = new Node<int> (2, head);
head = new Node<int> (1, head);

At this point, head points to a Node with a 1 in it. That Node is followed by a Node
with a 2, then a 3, etc., until the last Node with the 5 in it has a _next field of NULL.
Note that each time we set a new value into head, we first use the old value as the “tail”
of the Node being created. The following sequence of pictures, Figure 3.1 through 3.3,
should help.

head —¥|5 NULL

Figure 3.1. After: Node<int> * head = new Node<int>(5);
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head —9»| 4 —+—p |5 NULL

Figure 3.2. After: head = new Node<int> (4, head);

head —P»| 3 —»| 4 >

Figure 3.3. After: head = new Node<int> (3, head);

5 NULL
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The boxes represent the Nodes, and the arrows from one box to another represent the
_next field of each Node. Note that we have only one variable here. To get access to the
Nodes after the first (head) we must use expressions, not simple variable names.

It is generally a mistake to build a linked list in this way, using just a pointer to refer
to its head. Instead we normally define a second class that will encapsulate (and hide) this

head pointer.

template <class T>
class List
{ public:

List()
_first(NULL)

{

}

void insertFirst(T val)
{ _first = new Node<T>(val, _first);

}

private:
Node<T>* _first;
Y

This class will be the friend class of the Node class.
We would now create the same list with the following code:

List<int> L;
L.insertFirst(5);
L.insertFirst(4);
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L.insertFirst(3);
L.insertFirst(2);
L.insertFirst(l);

There are many variations on linked storage as indicated above. One of the easiest is to
circularly link the list so that the last Node, rather than having a NULL pointer in its
_next field, has a pointer to the first Node. Maintaining this circularity requires care when
we insert and remove data. Its advantage is that it lets us “back up” along links by going
around the other way. This also takes care, however, so that you don't go around and
around forever.

Another variation is double linking. Put two Node* fields in each Node: _next and
_previous. It is then very useful to put two Node* fields into the List class as well: _first
and _last. In fact, even with single linking, it is often of use to maintain a pointer in the
list class to both the first and last Nodes of the chain. This gives us access to both ends
of the chain. Note that it is easy to do inserts at either end, easy to do deletions at the
front, but difficult to delete at the rear, as we shall see in a moment.

If a list is singly linked, then we can effectively only provide forward iterators: those
that can move from beginning to end in the direction of the linking. If we doubly link a
list, then we can easily provide bidirectional iterators. This is the approach taken in STL
lists.

To delete a Node at the front of a List we could use a member function like the fol-
lowing:

void deleteFirst()

{ Node<T>* temp = _first;
_first = _first-> next;
delete temp;

The difficulty of deleting elsewhere is illustrated by Figure 3.4, in which we suppose
we want to delete the Node with the 5, but all we have is a pointer to that Node.

head — 9| 3 ——»| 4 —+— |5 NULL

delete_this

Figure 3.4. Problematic deletions.
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The difficulty is not in deleting the Node itself, but in keeping the rest of the List le-
gal. We always want the last link in a list to be in some specific state, usually NULL.
The problem is that this new last link will be the link in the Node with the 4 after we de-
lete the last Node. We can get access to this Node only with difficulty, since we don't
have a direct link to it and we can't follow links backwards. The correct way to delete a
Node in a singly linked list is to have a pointer to the Node that precedes it, not to the
Node itself. See Figure 3.5. We are much better off if we have a pointer to the Node with
the 4, since the _next field of this Node needs to be updated to keep the List intact.

head —| 3 ——P| 4 —~+—p |5 NULL

delete_after_this /

Figure 3.5. Correctly positioned for deleting Node 5.

Well, how do we get such a pointer? The answer again involves our iterator concept.
Suppose we build the List class with a member function begin() that returns an iterator to
the beginning. The implementation of this iterator class can be just a Node*, perhaps
named _here, since it names a position within a list. Then we can continually advance the
iterator, with operator++, until we refer to the Node preceding the one we seek. We can
check where we are using the de-reference operator*. Then, from the iterator itself, we can
execute the deleteAfter operation, which is a member of the iterator class, not the list
class.

void deleteAfter()
{ Node<T>* temp = _here->_next;
// The node to be deleted
_here->_next = temp->_next;
// Point around temp
delete temp;

This function works correctly even if the Node to be deleted is not the last Node in the
chain, since it doesn't set the _next of the current position to be NULL, but to the current
value of the Node to be removed, which completes the chain. Of course, all depends on
first getting our iterator to the right location.

79
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Exercise. Draw a sequence of link pictures, similar to Figures 3.1 through 3.3, that il-
lustrate the operation of the deleteAfter function step by step.

Using such an iterator we can also insert a new Node between two existing Nodes. To
do so again requires having a pointer (iterator actually) to the first of the two Nodes. We
need to create the new Node, make its _next refer to the second of the two Nodes we are
inserting between, and then make the first Node refer to the new Node. Therefore, the fol-
lowing can be part of our Listlterator class. The first statement carries out the first two of
the above three steps.

void insertAfter(T val)
{ Node<T>* temp =
new Node<T>(val, _here->_next);
_here->_next = temp;

Figures 3.6 through 3.8 detail the operation of this member assuming we are attempt-
ing to insert the value 7 into a list. We assume that we have previously positioned an it-
erator to the location of the insertion. Note again that this is not a list member, but a list
iterator member.

head —| 3 | 4 —+—9 |5 NULL

_here

Figure 3.6. Before inserting between the 4 and the 5.

head —9| 3 P 4 $ |5 NULL

here
—en temp — 7

Figure 3.7. After the first statement, inserting a 7.
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head — 9| 3 —+—»| 4 \ 5 NULL

v 4

_here temp — | 7

Figure 3.8. After the last statement, inserting a 7.

While we have described the deleteAfter and insertAfter members as being actions of
an iterator rather than a list, there is an alternative way to implement them. We CAN put
code like this into the list class if we pass an iterator as a parameter to each of these. We
would then use _here member of this iterator to implement the above operations. This is
the method chosen in the STL, since it puts fewer restrictions on the iterators themselves,
leaving them more general.

Exercise. Look at Figure 3.8. Novices sometimes delete temp, as the last statement of
insertAfter, thinking that they don't need the pointer anymore. Carefully explain the effect
of this and why it is a disaster.

An Extended Example Part 2: The Linked Stack

In this section we will rebuild our Stack using a linked implementation. Notice that the
interface of this LinkStack class has identical functions with identical parameter lists. In
other words, a LinkStack is functionally equivalent to an ArrayStack. There will be one
difference in efficiency, as we shall note near the end of the section. We shall also need to
build an associated LinkStackIterator class. First, however, we need a Node class as indi-
cated above. We call this class LinkNode. It is as advertised above, except that it declares
both the LinkStack and LinkStacklterator classes as friends. It also has an additional
(recursive) member function copyAll() that we shall discuss when we look at the Link-
Stack class.

template <class T>
class LinkNode
{ private:
LinkNode(T val, LinkNode<T>* next = NULL)
_value(val),
_next(next)
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LinkNode<T>* copyAll()
{ if(_next == NULL)
return new LinkNode<T>(_value);

else
return
new LinkNode<T>
(_value, _next->copyAll());
}
T _value;

LinkNode<T>* _next;
friend class LinkStack<T>;

friend class LinkStackIterator<T>;
};

To push onto a LinkStack, we insert a new Node at the front. To pop we remove from

the front. This means that single linking is sufficient, with no need for an additional
pointer to the end.

template <class T>
class LinkStack
{ public:

typedef LinkStackIterator<T> iterator;

LinkStack()
_first(NULL)

{

}

An empty LinkStack has its _first == NULL.

LinkStack(const LinkStack<T>& S)
{ copy(S);
}

~LinkStack(){ free();}

LinkStack<T>& operator=
(const LinkStack<T>& S)
{ if(this != &S)

{ free();

} copy(S);

return *this;
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The copy constructor, destructor, and assignment operator have been factored into two
auxiliary functions copy and free. Free deletes all of the Nodes in the current stack and
copy sets the Nodes to be copies of the Nodes of its parameter. Copy is careful to pre-
serve the order of the Nodes it copies. We will discuss these functions below.

void push(const T& v)
{ _first = new LinkNode<T>(v, _first);}

This is just an insert at the beginning of the list of Nodes as indicated above.

T pop()
{ T temp = _first->_value;
LinkNode<T>* oldnode = _first;

_first = oldnode->_next;
delete oldnode;
return temp;

}

Here we remove the Node at the beginning of the list of Nodes, but we also return the

value stored in that Node. This will result in an error if the stack is empty when it is exe-
cuted.

T top()const{ return _first->_value; }

We just return the first value. Again, it is an error if the stack is empty. We could
also return a const reference here, const T&, rather than a copy. This would let us look at,
but not change the value returned. We could also return a T& in fact, which would let us
modify the top in place, without removing it from the stack.

Exercise. Explore the following three versions of top().

T top()const{ return _first->_value; }
T& top()const{ return _first->_value; }
const T& top()const

{ return _first-> value;

}

In each case, try to modify the returned value and then look at the stack as a whole.
bool empty()const

{ return _first == NULL;
}

bool full()const{ return false; }
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These are straightforward. It is empty if its _first is NULL. The user of our LinkStack
must be careful to use these functions or otherwise keep track of when the stack is empty.
Such a stack is never full. Well, actually, it would be full if the allocator were unable to
allocate a new Node. The allocator can in fact be used to return a sensible value for full in
this case. We ignore this complication here.

iterator begin()const
{ return LinkStackIterator<T>(_first);

}

An iterator to the beginning of the stack contains a pointer to the first Node.

iterator end()const
{ return LinkStackIterator<T>(NULL);

}

An after-the-end iterator contains a pointer to the same spot as the last Node in the
list. In this case that is the NULL pointer.

private:
LinkNode<T>* _first;

void free()
{ while(_first != NULL)
{ LinkNode<T>* temp = _first;
_first = temp->_next;
delete temp;

}

Free is used in the destructor and in the assignment operator. It deletes all of the Nodes
in the list, leaving it empty. Note that it could as easily have called pop() repeatedly,
though this is somewhat more efficient.

void copy(const LinkStack& S)
{ if(s._first == NULL)
_first = NULL;
else
_first = S._first->copyAll();
}

This member function sets the current value to the same value as the parameter. It is
used by the copy constructor and by the assignment operator. If the parameter is empty it
sets itself (this) to be empty. Otherwise, it sets its _first to be the result of calling
LinkNode::copyAll on the _first of the parameter. The effect of that is to recursively copy
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all of the Nodes that start with S._first, making a new chain. Function copyAll works by
creating a new Node and installing as its next a copy of its own next. If its own next is
NULL, then the copy is just NULL also, but otherwise, the copy may be made by calling
copyAll recursively on its _next.

friend class LinkStackIterator<T>;
};

What we have above is a new class that implements the same interface as the Ar-
rayStack class. Except for the type name, they may be used interchangeably. Let us now
turn to the associated iterator class, LinkStacklIterator. Again we will comment the code
as we go along. Note that this class implements the same interface as ArrayStacklterator,
though we will see in a moment that it probably should not. An iterator here is imple-
mented with a field _where, that is just a Node pointer.

template <class T>
class LinkStackIterator
{ public:

typedef T value_type;

LinkStackIterator(LinkNode<T>* where)
_where(where)

{

}

We just remember the parameter in the _where field. No copy constructor, destructor,
or assignment operator is needed here, since we are not managing memory in this class.
The Node pointed to will not be destroyed, for example, until the stack that contains it is
destroyed or the Node is popped.

T& operator#*()
{ return _where->_value;

}

The de-reference operator just de-references the current pointer. The pointer points to a
Node, however, and we want the value, so we extract and return that.

Question. What happens if we de-reference an iterator that was created with LinkStackIt-

erator(NULL)?

bool operator<

(const LinkStackIterator<T>& i)

{ if(_where != NULL && i._where == NULL)
return true;
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if ( _where == NULL
|| _where == i._where
)
return false;
LinkNode<T>* temp = _where->_next;
while(temp != NULL)
{ if( temp == i._where) return true;
temp = temp->_next;
}
return false;

}

This is expensive to implement correctly. We require that the two iterators compared
are “into” the same stack, of course. We are testing whether if we follow _next pointers
from the current position we will eventually arrive at the position of i. This requires time
that is linear in the number of elements in the stack. The bidirectional iterators of STL
lists do not provide this operation because of its cost.

LinkStackIterator<T> operator+(int i)
{ LinkNode<T>* temp = _where;
for(int x = 0; x < 1; xt++)
temp = temp->_next;
return LinkStackIterator<T>(temp);
}

This is the pointer arithmetic operation again. Note that it cannot be done in constant
time. It takes time proportional to the integer i because of the for loop. Perhaps it
would be better to omit this function altogether for reasons of efficiency. Bidirectional it-
erators in the STL do not have such an operation.

T& operator++()
{ _where = _where->_next;
return _where->_value;

}

This is the prefix increment operator. Note that we move before we de-reference.

T& operator++(int)

{ LinkNode<T>* temp = _where;
_where = _where->_next;
return temp->_value;

}

The postfix increment is a bit messier since we need to remember where we were as
the basis of the returned value, but also move forward.
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private:
LinkNode<T>* _where;

};

Well, there it is, with a few problems as indicated. However, since it does implement
the same interface as the ArrayStacklterator, we can use these interchangeably. In particu-
lar, we can sort a LinkStack with our selectionSort algorithm.

void main()

{ LinkStack<int> as;
as.push(3);
as.push(5);
as.push(1);
as.push(4);

selectionSort(as.begin(), as.end());

cout << as.pop() << endl;
cout << as.pop() << endl;
cout << as.pop() << endl;
cout << as.pop() << endl;

There will be a difference in performance, however, since the operator+ works more
slowly here. For this reason the STL list class does not include the operator+ in its itera-
tor. It is too expensive in general. This means that the generalized sort algorithm of the
STL won't work with lists, because it requires this operator (random access iterators de-
pend on it). Instead, the list class supplies its own specialized sort algorithm that works
efficiently on lists but less efficiently elsewhere. We will examine that algorithm later.

One important lesson that you should learn from the above is that a linked list iterator
behaves like a pointer, is implemented as a pointer, but is, in fact, an encapsulated object
with a limited interface. It is not a *“naked” pointer, but an object that contains and con-
trols a pointer. This extra level of packaging provides safety, as it makes inappropriate
pointer operations impossible.

Exercise. Just how inefficient is sorting lists with selectionSort and quickSort? Analyze
these two algorithms, taking into account the fact that operator< and operator+ are linear
time algorithms; the first is linear in the number of elements in the list and the second is
linear in its parameter. The inefficiency of operator+ has little effect on selectionSort,
since we only add one to any iterator there.

Exercise. Use a StopWatch object to verify your conclusions from the above exercise.
Build a large ListStack and time its sort with the two sorts. Then double the size of the
stack and repeat. Double again and repeat your measurements. Does this support your
conclusions from above?
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Exercise. Redo the selection sort algorithm so that it uses only operator++ and opera-
tor==in place of operator+ and operator<. What is the advantage of this change? Rebuild
the two stack iterator classes so that they also implement operator==.

Tree Storage

Trees are normally treated as a variation on linked storage, though it is possible to store
certain trees densely. The difference between the sequential linkages defined above and tree
storage is in the number of links in a node. The simplest kind of tree is a binary tree in
which each node has exactly two “next” nodes, called its children. See Figure 8.1 for ex-
ample. A binary tree node might look like the following:

template <class T>
class BinaryTreeNode
{ private:
Node
( T val,
BinaryTreeNode<T>* left = NULL,
BinaryTreeNode<T>* right = NULL

_value(val),

_left(left),
_right(right)
{
}
T _value;

BinaryTreeNode<T>* _left;
BinaryTreeNode<T>* _right;
friend class .
}i

The analogue of double linking in a tree is to provide a pointer in each node to its par-
ent: the node above it in the tree. The single node with no parent is called the root node,
and most often trees are drawn with the root at the top. If the BinaryTree class that uses
these node types needs to provide iterators, then parent links are very helpful.

template <class T>
class BinaryTreeNode
{ private:
Node
( T val,
BinaryTreeNode<T>* left = NULL,
BinaryTreeNode<T>* right = NULL,
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BinaryTreeNode<T>* parent = NULL

_value(val),

_left(left),
_right(right),
_Pparent(parent)

{

}

T _value;

BinaryTreeNode<T>* _left;

BinaryTreeNode<T>* _right;

BinaryTreeNode<T>* _parent;
friend class .

};

A node in a tree is called a leaf if it has no children. The root has no parent. In our
implementation this means that both (all) children must be NULL. The height of a node
is the number of links back to the root of the tree from that node. The height of the root
is zero, that of its children is one, etc. The height of a tree is the maximum of the heights
of all of its nodes. The height of a tree is important since we search for things in a tree
starting at the root. If we arrange the tree appropriately we need only search a single path
from root to leaf for an item. We would like these paths to be as short as possible.

A binary tree is called balanced when all of its leaf nodes are at approximately the
same height. More specifically, a tree is balanced when the minimum and maximum leaf
heights differ by only one. When a tree is balanced, the height of the tree is the logarithm
of the number of nodes. Thus, we can store about a million values in a balanced binary
tree of height twenty.

A binary search tree is a binary tree in which the elements inserted support the opera-
tor<, and the elements are kept in the tree in a special order. The rule is that the value in
any node, A, is less than that of any node in the subtree whose root is the right child of A
and the value in any node in the left subtree is not greater than the value in node A.

If we have a binary search tree and we list the values in the nodes in the order called
inorder, then we shall list the values in increasing order according to operator<. Inorder
listing of the nodes of a binary tree require that we list all of the nodes in the left subtree
of any node before we list the value in the node, and that we list or otherwise process the
values in the right subtree after listing the node. This can be easily arranged with a recur-
sive function of the form

void inorder( BinaryTreeNode<T> * n)

{ if(n->_left != NULL) inorder(n->_left);
process (n->_value);
if(n->_right != NULL) inorder(n->_right);
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In contrast, preorder processing of a tree requires that we process the root before its
children. The form for this is as follows:

void preorder ( BinaryTreeNode<T> * n)

{ process (n->_value);
if(n->_left != NULL) preorder (n->_left);
if(n->_right != NULL) preorder (n->_right);

Finally, postorder requires that we process a node after both of its children.

One major advantage of a binary search tree is that it is easy to retrieve data stored in
it. If we are looking for a certain value, then by examining the value at the root of the
tree or any subtree, we always know whether to continue the search to the right or to the
left if we haven't yet found the desired item.

The naive way to insert into a binary search tree always inserts at the bottom of the
tree, inserting a new leaf. We compare the value to be inserted with the root node first and
if the new value is less than the root, we move down to the left; otherwise, we move
down to the right. We again compare and move down, until we reach a spot where the
node that we are trying to move to is missing: a NULL pointer. We insert a new node at
this point.

The problem with the above insert algorithm into binary search trees is that it might
leave us with a tree that is not tree-like, but list-like. The ideal binary tree is balanced,
meaning that each leaf node is at about the same depth. The reason for this is that a tree
holds the maximum number of nodes for its height when it is balanced. This means that
in a balanced binary search tree, we can search quickly for an item among a lot of data.

Question. What happens if we use the naive insert method in a binary search tree and
then insert data into it that is already sorted?

Some algorithms for inserting into a balanced binary search tree require that the tree be
rebalanced after each insertion. This balancing takes place along a path from leaf to root
and only requires that a few pointers be adjusted, and so can be done in logarithmic time.
The STL set class is based on a variation of a balanced binary tree. It does require that op-
erator< be implemented on the values to be included in the set, however. Lookups in a
balanced binary search tree are logarithmically related to the number of values in the tree
and so it proceeds very quickly, since a logarithm of a number is small in comparison to
the number.

A balanced binary tree can be stored efficiently in an array. We store the root in cell
one (not zero, which is often kept free as a temporary location in the algorithms that
process the tree). The left child of the node in cell n is stored in cell 2n and the right child
is stored in cell 2n+1. Verify that this works and that it wastes relatively little space if
the tree is balanced. The number of cells required in the array is 2h 4+ 1, where h is the
height of the tree. We can find the parent of a node in such a tree just by dividing the cell
number of a value by 2.



3.7

3.8

Chapter 3. Overview of Container Mechanisms 91
Graph Storage

A graph is composed of nodes (or vertices), and links (or arcs). An arc connects a pair of
the vertices. We can store data in the vertices, and in some graphs we also store data along
the arcs. A graph with data on its arcs is sometimes called a network. Graphs are more
complicated than trees, as you would suppose. One obvious way to build a graph is to
keep in each node a list of the neighbors of that node. Another implementation is often
more convenient. In this latter method, we keep a list of all the nodes in the graph. For
each node we keep a list, not necessarily in the node itself, that gives the neighbors of the
given node. Graphs can be directed or undirected. In a directed graph (digraph), the arcs are
unidirectional like pointers. See Figure 5.4 for an example of a digraph. In an undirected
graph, the arcs are just connections and have no direction. One can implement these with
a pair of pointers.

Traversing all of the vertices of a graph may be easy or difficult. If we keep a list of
the vertices it is easy, of course. If we do not, then it may be necessary to keep a “mark”
value in each vertex. Before traversing the graph, we set all of the marks to false. Then
when we process a vertex, we set its mark to true so that we don't process it again. Two
common protocols for processing the vertices of a graph are depth first and breadth first.
In breadth first, we process all of the near neighbors of a node before processing their
neighbors: process the near neighbors before the far neighbors. In depth first protocol,
when we process a neighbor of the first node we process its neighbors before returning to
the next neighbor of the first. When we search a graph for an item starting at a given
node, we might use breadth first if we expect that the target will be near the original node.
If not, we might use depth first search.

The STL does not have a class representing graphs. However, using lists and arrays it
is quite easy to build a graph abstraction.

Hashed Storage

Dense storage is a mechanism for achieving very fast lookup of stored items based on
where the data is stored. To retrieve an item in constant time, you must know the sub-
script in which to look for the item. Hashed Storage, on the other hand, tries to achieve
fast lookup based on what the data is. In other words, the value of the data, or some part
of the data, is used to compute the storage location. Since it is not normally useful to
look up data when we already have the value of the data, this sounds like a useless idea.
However, it is commonly the case that we store a variety of information about a person
or thing and we desire to look up the information while knowing the name or some other
characteristic of the target. A telephone book is a simple example of this idea. We store
names, addresses, and phone numbers in the directory. We use the name as a key to re-
trieve the rest of the information. The data itself consists of key-information pairs. We
use the key to get access to the information. An individual in a phone book database
might have a record like the following:
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class cell
{ public:
cell
( char* name,
char* address,
char* phone
)i
unsigned int hash();

private:
char* _name;
char* _address;
char* _phone;

}

In fact, a phone book stores the data in key order, making something like binary
search possible. Hashed storage is quite different. In fact it is called “hash” because of the
fact that the data, when viewed as a whole, appear to be mixed up in order, similar to the
ingredients in the culinary delight (?) corned beef hash. This seemingly random mixing is
only superficial, however, and there is a deeper structure.

In hashed storage, a computation is done on the value of the key. The value of this
computation, called the hash, is used to indicate where in a storage structure the corre-
sponding data will be stored. Depending on the specifics of the storage itself, the hash
may result in a unique storage location in which the target may be found if it is stored at
all, or simply indicate the place to start a search. This latter method is the most common
and, while it may not result in constant retrieval time, it can greatly speed lookups by
greatly reducing the number of items that must be examined to find the target or verify
that it is not stored.

One common hash function on name data is to take the length of the name and its
first character value, treated as a numeric ASCII code, and multiply these values together,
resulting in an integer. Notice that this value is completely well determined and repro-
ducible given the spelling of the name.

Suppose that our storage mechanism consists of an array of 100 linked lists. If we
take the hash value of a given key, and take the remainder upon division by 100, we ob-
tain a number between 0 and 99. This may be taken as a subscript into the array. If we
wish to store data for this key, we store it on the list at this computed index. Then, if we
wish to retrieve data for this key, we recompute the hash, reduce it to an index in the
same way, and then search the corresponding linked list for the key. The expected time to
find the item is the average length of the lists, which is about 1 percent of the total num-
ber of data items.

Of course, achieving fast lookup in practice involves two things. The first is having a
hash function that distributes the keys to be stored uniformly over the resulting hash val-
ues and so uniformly over the lists, which, by the way, are called “hash buckets.” The
term bucket is used since it indicates a storage mechanism with little if any internal struc-
ture. The second essential feature of hash storage mechanism is correctly choosing the
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number of buckets so that the lists will all be short. This assumes that we may estimate
the total number of items to be stored, though this need not be completely accurate.

When the keys consist of things like names or words in some human language, it
turns out to be a bad idea to use all of the characters in the key as a basis for the hash
function, especially if the hash function simply adds the character encodings. This is not
just because it is time-consuming to do so. The problem, rather, involves the fact that
some of the characters appear much more frequently than others, which skews the results.
This can easily make some of your lists short and others very long. This can greatly
lengthen the retrieval time, which is undesirable.

It is possible to build a self-organizing hash system in which the number of buckets
expands or contracts dynamically as data is inserted and removed. To do so involves peri-
odically examining the buckets for length, expanding or contracting the number of buck-
ets as appropriate, and redistributing the stored data among the new buckets by recom-
puting the hash values. If the number of buckets is always a power of two, then this is
particularly easy if remainders are the last step in the computation of the index. This is
because if the remainder when we divide by 21 is k, then when we divide by 2“*1, it will
be either k or k+21. This means that the new bucket for an item is either the same as the
old one or possibly one other bucket.

When we can predict precisely how many items will be stored, it is possible to avoid
the lists altogether. Suppose that we know that we will store exactly m values. Then we
can allocate an array of m cells. If we know all of the keys in advance and work hard
enough, we can find a hash function that will compute a different value for each of the
keys. We store the data for this key in the cell computed by this hash function. Otherwise
we use the computed value simply as a place to start a linear search for the data within the
array. We must search “circularly,” however, so that if we come to the end of the array be-
fore finding the item, we resume our search at the beginning. This method of hashing is
called circular hashing, as opposed to the separate chaining which uses the array of lists
described above.

When two keys result in the same hash value, we say we have a collision. A hash
function with no collisions is called perfect. They are difficult to find, but possible, pro-
vided that we have a fixed, finite number of known keys.

One advantage of hashed storage over binary search trees is that we don't need a com-
parison like operator< for hashed storage. This makes hashed storage feasible in some
situations in which binary search trees are not. Of course we require that the data provide
either a hash function, or a means of devising one.

Indexed Storage

Indexed storage is somewhat like the index of a book. The words (keys) are arranged in a
definite (usually alphabetical) order and are associated with some sort of pointing mecha-
nism to the data records (pages) of interest. In a book index these are just page numbers,
of course. The sorted order of the index makes it easy to search, and the pointers give us
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quick access to the desired information. Similarly, a phone book is like an index to peo-
ple, represented by their phone numbers.

The main advantage of an index is that it lets us simulate having one file sorted on
different criteria. For example, in an employee database, it might be advantageous to
physically arrange the records according to an employee number. This would make it dif-
ficult to find a person based on their name or office, however. An index with key name
and another with key office can be used to solve this problem.

To build a name index into the employee database, we would proceed as follows. First
we scan the entire employee file, building a list of employee numbers (the primary key)
and the associated names. When we are done we have a list that is in employee number
order. We then sort this list by name. This sorted file is our index. Since it is sorted by
name, it is easy to look up names. The associated employee numbers give us quick access
to the full employee record, using the main file. A given file can have any number of in-
dices.

The above described a record index. A related idea is called a block index. Suppose that
the employee records are packed several to a block on a disk or similar device. Such
blocks have block addresses, which we can think of as being numbers, though in reality
they sometimes have a more complex structure. Given a block number, the disk device
can quickly access the block. Suppose that we build an index by recording, for each record
in the block, its first employee number and the disk block number. Recall that the file
was sorted physically by employee number, so other employee records in the same block
will have successive employee numbers. If we sort this index file by employee number,
then we can get quick access to the block number for a given employee and hence, quick
access to the rest of the data.

Part of the key to making the above work well is that the index is usually much
smaller than the original file. We can take special advantage of this in the following way.
Suppose we have a block index with employee number as the key and suppose that we
store this index itself in disk blocks. Call this file the first level index. Suppose that we
then build a (second level) block index to the first level index file. This file will be even
smaller, since many indexing records will fit into a single block. We can, of course, con-
tinue this process to build higher level (and smaller) indexes to indexes at a lower level,
until an index is small enough to hold it in computer memory. With such a multilevel
indexing scheme, we can then get access to the records in the original file by finding the
record in the highest level index that covers the record sought, tracing the associated block
address to a single block of the next level index, searching it again for the record number
desired, etc. Eventually we get to the lowest level index and then to the original file. This
works in practice because we don't usually need many levels unless the original file is
huge. Storing 20 to 100 index records in each block of an index is common. This means
that for each level of the index, the number of available records expands by a factor of 20
to 100 for each level. This exponential growth implies that large files can be covered with
indexes without much depth.

What we have described above, of course, is very similar to a tree structure, with the
highest level index being the root, and the original file representing the leaves. It is com-
plicated by the fact that we may need to insert and delete records. We wouldn't want to
have to generate all of the index levels for each insert or deletion. The solution to this is
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to only partially fill the index blocks when the file is first created, leaving room for addi-
tional index records at each level. This complicates the algorithms that manipulate the in-
dex tree, but greatly speeds up the overall operation of the system. One variation on this
idea is called a b-tree. This is not to be confused with binary tree, however. A b-tree is an
n-way tree (up to n children at each level) where each leaf is at exactly the same height
and where each internal node has between /2 and n children.

At the other extreme is a simple two level structure, in which we maintain the data at
one level and the index at another level. We shall see this technique used in a later chapter
(Chapter 6).

Summary

Make certain that you understand each of the following terms:

binary search tree
binary tree

circular hashing
collision

dense storage

graph

hashed storage
indexed storage
linked storage
multilevel indexing
perfect hash function
separate chaining
stack (including the defining rules)

Exercises

1. Add a size() function to each of our stack classes. It should return the number of ele-
ments stored in the stack. For the linked stack it may require linear time.

2. Rewrite LinkStack::size() so that it can be done in constant time. What other changes
to the stack are required to make this possible? What does that do to the efficiency of the
other member functions?

3. A queue is a structure similar in some ways to a stack. Stacks implement a LIFO, or
last-in, first-out, protocol, whereas queues implement FIFO, or first-in, first-out. This
means that the item removed from a queue is the one that has been in the queue for the
longest amount of time rather than the shortest. Another way to think of it is that it is



96

Data Structure Programming with the Standard Template Library in C++

sequential structure with inserts at one end and deletions at the other. The protocol for a
Queue class template might be

template <class E>
class Queue
{ public:
typedef E value_type;
Queue();
~Queue();
Queue(const Queue<E>&);
Queue<E>& operator=(const Queue<E>&);

bool empty() const;
value_type& front();
const value_type& front() const;
void push(const value_type& X);
void pop();
private:
. _front;
. _back;
b

Give a linked implementation of a queue. Private member variables _front and _back
point to the first and last nodes of the implementing list. push() inserts the value at the
location following _back. pop() removes the item pointed to by _front, and front() returns
that item without removing it. An empty queue can be represented with both _front and
_back NULL.

The formal rules for a queue are

Just after creation, empty returns true.

Just after push, empty returns false.

If empty would return true, then pop(); is an error; and t = front(); is an error.

If empty would return true, then push(x); pop() leaves the queue empty.

If empty would return true, then push(x); t = front(); returns x to variable t.

If empty would return false, then push(x); pop() is the same as pop(); push(x); also
push(x); t = front(); is the same as t = front(); push(x);

U

4. It is somewhat difficult to define an iterator for the above implementation. It is made
easier if we use a trailer node that does not contain data. An empty queue has a single
node with both _front and _back pointing to it. This node is created when the queue is,
and is never deleted until the queue is.

The iterator can be a separate class that maintains a pointer to a QueueNode as its
main implementation variable.
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Build an iterator class for the modified Queue class. The new Queue class needs public
members begin() and end(). begin() returns an iterator to the first item. end() returns an it-
erator to the after-the-end location of the trailer node.

5. Test the stack implementations given in the text. Use a StopWatch object to time their
operations over several thousand insertions and deletions.
Create An STL stack with a linked implementation. All this takes is the declaration

stack< list< int> > aStack;

You may now push and pop this stack. Be careful to put a space between the two
“>'s” in the declaration, however, or the compiler may misinterpret what you have. How
does the performance of this implementation compare with that of the linked stack im-
plementation from the text?

Create an STL stack with a dense implementation with
stack< vector<int> > anotherStack;

How is the performance of this one?

6. Test your queue implementation against that of the STL queues in a similar way. You
can create a linked queue with

queue< list< int> > aQueue;
and a dense queue with
queue< deque< int> > anotherQueue;

You can actually create a queue from a vector but the performance will be poor, since
a vector has inefficient operations at the front. (Try it.)

7. Build a class DoubleLinkedDeque. It uses a doubly linked implementation and permits
insertions and deletions at either end.

8. Build a hash table to implement a phone book. The key should be the name (a string)
of the person and the data can have the phone number along with other information. Build
a hashing function that works on the names. Note that it will not be possible with this
implementation to list the names in alphabetical order without a separate sorting opera-
tion.

9. Build a Binary Search Tree phone book using the names as keys. Write a function that
will compare the names using an operation like operator<.
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10. Which of the two implementations of a phone book (See Exercises 6 and 7) give a
better performance. Evaluate it theoretically as well as using a StopWatch object to time
insertions and retrievals.

11. Build an index to a phone book so that we may look up people in the phone book by
knowing their phone numbers and retrieve the names. You may use either the hash or the
tree class for the basic phone book. The index, however, should have phone numbers for
keys and provide access to an individual record in the phone book.

12. Postfix expressions are written with the operator symbol following all of its operands
rather than between them (infix notation). For example, the ordinary expression (a+b) * ¢
is written a b + ¢ * in postfix. There are no parentheses in postfix notation, one of its ad-
vantages. Postfix expressions can be evaluated easily using a stack. The algorithm is
quite simple. As you read the postfix expression left to right, if you see an operand
(value), just push it onto a stack. If you see an operation, pop the correct number of oper-
ands for that operation from the stack, apply the operation to them, and push the result
back onto the stack. You must be careful with noncommutative operations like subtrac-
tion, that you get the operands in the correct order: the first item popped becomes the
rightmost operand. Implement this idea.



Chapter 4
Overview of the Standard Template Library

4.1. Components of the STL

The Standard Template Library has six different kinds of components. There are different
subcategories of each of these component types. Here in one place is the complete listing
of the library elements.

1. containers
sequential containers
array
vector
deque
list
sorted associative containers
set
multiset
map
multimap
hashed associative containers
(an extension)
2. iterators
input iterators
output iterators
forward iterators
bidirectional iterators
random access iterators
3. generic algorithms
nonmutating sequence algorithms
mutating sequence algorithms
sort related algorithms
numeric algorithms
4. function objects

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998
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arithmetic operations
comparison operations
logical operations
5. adaptors
function adaptors
negators
binders
pointer to function adaptors
container adaptors
stack
queue
priority queue
iterator adaptors
reverse adaptors
insert adaptors
6. allocators
default allocator
custom allocators

We use the STL when we want to be able to store data in some structured way and to
execute algorithms on the saved data. Depending on the nature of our problem and the
type of algorithms we need to execute, some containers will be more suited to the task
than others. Most of the algorithms work with most of the containers, but there are ex-
ceptions. It will become clear from the nature of the algorithms and the containers when
there is a poor match. For example, the sort algorithms don't work on lists because of the
difficulty of moving from one cell to a nonadjacent cell in a list. Instead, a specialized
sort algorithm is provided for lists.

Each of the algorithms in the library is specified with its big O run-time bounds. This
lets the user be sure about the performance of his or her programs. Most of the algo-
rithms work with iterators. In fact, iterators are the interface between containers and algo-
rithms that operate on them. This library was designed in this way so that the algorithms
could be written in as general a way as possible so as not to have to duplicate the code for
each container type. We create iterators by executing member functions of the container
classes. For example, the member function begin () of each of the container classes re-
turns an appropriate iterator for that container, initialized to point to the “first” element of
the container. Similarly, function end () returns an iterator that points just after the
“last” item. If we continually execute operator++ on the iterator returned by begin(), it
will eventually reach the iterator returned by end(). If we pass these two iterators to an ap-
propriate algorithm, the algorithm will be applied to our container.

There are different kinds of iterators, of course, and different kinds are associated with
the different containers. For example, as we have seen, pointers behave like random access
iterators. Likewise, vectors use random access iterators, so the begin() member of vector
returns a random access iterator. On the other hand, list::begin() returns a bidirectional it-
erator. For this reason, the standard sort algorithm does not work with lists: sort requires
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a random access iterator. The reason for this is not that it is impossible to sort lists, just
that the standard sorting mechanism (quicksort) is too inefficient on lists.

Adaptors are used so as to minimize the number of classes and functions in the library
without reducing its power. For example, we can turn a vector or a list or a deque into a
stack by using the stack adaptor. We don't need three kinds of stacks in the library, one
for each way of using memory, because a single adaptor can provide these for us. Like-
wise, we can make any (bidirectional) iterator work backwards, from the last element to
the first, by applying a reverse iterator adaptor.

A Motivating Example: A Spell Checker

Suppose that we want to build a rudimentary spell checker. One of the tools that we shall
need is a dictionary of correct spellings that we can compare against. One way to generate
such a file is to take a large text file, read it into some data structure, sort the words, re-
move adjacent duplicates, and then save the result. If we pick a large enough file, then we
shall have a lot of words as the basis of our dictionary. Of course the original file needs to
have correctly spelled words if this is to be useful, and it will be especially helpful if we
can allow this file to grow over time by appending additional words to it.

Since we don't know in advance how large a word file we shall be processing, and
since we want to sort the structure efficiently, we can choose to use a vector as the basis
of our solution. Arrays aren't flexible enough in terms of size, and lists don't sort as effi-
ciently. We could also use a deque, but the added flexibility of deques in being able to
grow at either end, which we don't need, comes at the cost that the algorithms that we
wish to use will operate more slowly (by a constant factor) than will be the case if we use
a vector.

In order to see the results of our work, and as an aid in debugging, it will be helpful to
have a function that writes vectors.

template <class T>
void writeVector (vector<T> v)
{ for
( vector<T>::iterator i = v.begin();
i < v.end();
++i
)
cout << *i << ' ';
cout << endl<<endl;

This function writes out a space-separated listing of the elements of a vector. We will
be using strings (char*) as our template argument, and strings can contain spaces, though
ours won't, so the above function might not be the best for strings. It is useful for most
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other types, however. We can get a special version of writeVector for just strings simply
by writing it.

void writeVector(vector<char #*> v)
{ for
( vector<char #*>::iterator i = v.begin();
i < v.end();
++i
)
cout << *i << endl;
cout << endl;

One of the nice features of C++ is that the compiler will choose the most appropriate
version of writeVector for us. If we write a vector<char*>, then this latter function will
be used. If we write a vector<int>, then the template will be used to build us a writeVec-
tor for ints.

It is even easier to use an ostream iterator to output a vector.

ostream_iterator<int> out (cout);
// creates the iterator

Once we have the iterator we can use the copy algorithm of the STL to copy the vec-
tor to the stream:

copy(v.begin(), v.end(), out);

The type char* is quite finicky, as you know. We need to be careful to allocate mem-
ory correctly for such strings. It is useful to read a string into a fixed length buffer, but
for storage, it is most useful if the length of the storage block is tailored to the length of
the string so that we don't waste space. The following function will read from an input
file stream and store one word in each cell of a vector<char*>:

void readStrVec
( ifstream & inp,
vector<char*> &V
)
{ char* input;
char buf[80];
do
{ inp >> buf;
if (strncmp(buf,"",80) == 0) break ;
int len = strlen(buf);
input = new char [len+l];
strcpy(input, buf);
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V.push_back( input );
}

while (true);

We could also use an istream iterator and the copy algorithm to read a vector. For ex-
ample, to read a set of int values into a vector v from cin, we can say

istream_iterator<int> in(cin);

// Iterator to the "beginning".
isteram_jiterator<int> end;

// Iterator to the "end" of the stream.
copy(in, end, v.begin());

This would be harder for char* values, since we want to allocate storage for them be-
fore storing them into the vector. This last assumes that the vector is big enough to hold
all of the values to be input. Note that the copy algorithm is not part of the vector class.
It can be used to copy many kinds of things, but those things need to be specified using
iterators. We can even copy a vector v to a vector w using copy (if w is at least as big as
V).

copy(v.begin(), v.end(), w.begin());

The vector class template defines a number of members for inserting, removing, and
accessing values stored in the vector. Member function push_back inserts a new item at
the right end of the vector. We can also compare two vectors for equality if the element
type values can be compared for equality. The same is true of less than comparisons. One
container is less than another if some prefix of each is the same (equal to) the correspond-
ing prefix of the other, and at the first point of difference, the element of the first is less
than the corresponding element of the other. This is called lexicographic ordering.

The main function that calls readStrVec might look something like the following:

void main()

{ ifstream inp("words.txt");
vector<char *> V;
readStrVec(inp,V);
writeVector(V);

Suppose that our file “words.txt” contains the following:

these are the
times that
try us

all the more
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The input operator>> for strings breaks at spaces, so we shall get one word of this file
in each cell of the vector V. The output of our main fragment will be

these
are
the
times
that
try
us
all
the
more

Our next task is to sort the results of reading the file of words. Unfortunately, if we do
this naively, we won't get what we desire. The usual way to sort a container that has ran-
dom access iterators is the following:

sort(V.begin(), V.end());
writeVector(V);

This won't work in this case, since what we are storing in the vector V are pointers.
Sort works by applying operator< to the elements, and operator< for pointers simply
compares pointer values (addresses), not the values that the pointers reference. When I ran
the above on my computer, I got

more
the
all
us
try
that
times
the
are
these

We need to do better. In fact, we need the alternate form of algorithm sort, that uses a
third parameter to specify how the comparison is to be made. This third parameter needs
to be a function object.

A function object is an object (value of a class type) that supports operator().
Supporting this operator means that the object may be “called” as if it is a function. We
need to build a class (or struct) in which operator() defines the string comparison <. This
is very simple to do. We use a struct, rather than a class, simply to make everything pub-
lic.
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struct strless

{ bool operator()(char* x, char* y) const
{ return strcmp(x, y) < 0;
}

};

This struct has only one member: operator(), which returns the “<“ comparison for
strings. This is just what we require. The correct code for sorting our vector<char*> then
is

sort(V.begin(), V.end(), strless());
writeVector(V);

The third parameter passes in a new strless object. It looks like a function call, but it
is a constructor call that initializes our strless object. Algorithm sort will use this object
as a function to compare strings during the sort. In any case, the result of the above code
fragment is

all
are
more
that

A function object that returns bool, or a type convertible to bool, is called a predicate.
The above class strless defines a binary predicate, since operator() has two parameters. A
unary predicate takes a single argument and returns bool. The STL uses these extensively.

We could, by the way, reverse the order of the sort, simply by changing the “<“ to a
“>“ in the definition of strless::operator(). There is a better way to get this reverse sort
done, however, given struct strless. That is to apply a function adaptor to it to reverse the
sense of the comparison. To do this, we must first be a bit more sophisticated in our
function objects. We built a simple class strless above, but we didn't put quite enough
into it to make it work properly with the STL. The easiest way to complete it is to derive
strless from the built-in less function object class that comes with the STL.

struct strless: public less<char*>

{ bool operator()(char* x, char* y) const
{ return strcmp(x, y) < 0;
}

b
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The major difference here is that we need to define certain types to the STL so that the
various algorithms know what types we have for our parameters. This is similar to what
we did with the value_type in our stack classes in Chapter 3. Having done this (and
we should do it with strequal as well), we can now sort in reverse order with

sort(V.begin(), V.end(), not2(strless()));
writevector(V);

The function adaptor not2 takes a binary predicate (2 arguments) and transforms it
into its negation. It actually constructs a new function object whose operator() returns the
negation of that of the parameter. We apply not2 to our function object strless()
to get another function object that is used by sort. The result of this sort would be

us
try
times
these
the
the
that
more
are
all

Notice that we have some repeated words here and in the original sort, since we had
duplicate words in the original file. We wish to remove such duplicates. This is a two
step process with the STL. First we use algorithm unique, which simply rearranges the
contents of the vector (or other container) so that its unique elements are at the beginning.
It returns an iterator to us to tell us the end of the range of this initial interval of unique
values. Again, we must not be naive in calling it, however. Usually we would write sim-

ply

vector<char*>::iterator tail
= unique(V.begin(), V.end());
writeVector(V);

But again this won't work here. (Try it.) The problem again is that our vector saves
pointers and unique uses operator==to determine what values are the same. This will be
pointer comparison here, and since our values are held in strings with different addresses,
none of them will look like duplicates. Again we need to use a function object to evaluate
equality between strings.

struct strequal: equal<char *>
{ bool operator()(char* x, char* y) const
{ return strcmp(x, y) == 0;
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i
The correct call of unique is

vector<char*>::iterator tail
= unique(V.begin(), V.end(), strequal());
writeVector (V);

The output of this is as follows (assuming we did an increasing sort). Note that the
vector V has not changed its length, and it does not have the same contents.

all
are
more
that
the
these
times
try
us

us

What has happened here is that the unique elements were copied to the front and kept
in the same relative order. This may result in some values getting overwritten. The sec-
ond copy of “the” was overwritten by the “these.” This leaves us with two copies of “us”
at the end. The iterator that is returned from unique will reference the second copy of “us,”
which is the end of the unique range. We next need to delete the tail of extra values.

V.erase(tail, V.end());
writeVector (V);

This will leave us with the desired values: one each of the words in the original file,
sorted alphabetically.

all
are
more
that
the
these
times
try
us
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At this point the vector contains nine elements, as we can observe by evaluating
V.size(). The size of a vector is its current size. Its size will grow as we execute member
function push_back(T). This function pushes a value onto the back of the vector, so that
it grows at the end. The original size was zero when we created it at the beginning of
main(). The physical size doesn't grow with each push_back, however, as this is time-
consuming (as we shall see in the next chapter). Instead, the vector is created with a cer-
tain capacity. The vector won't grow physically until we try to exceed this capacity. You
can discover the capacity by evaluating V.capacity(). Here it is 1,024.

Containers

In this section we shall consider the design elements of container classes, focusing espe-
cially on those elements that are common to the various classes. In later chapters we will
look at the differences and the specifics of each class. As indicated above, many of the
most important algorithms for manipulating containers are not defined as members of the
container classes, but externally as generic algorithms. However, it is necessary to have
some support, especially for inserting, deleting, and accessing elements within the con-
tainers.

All container classes in the STL support a common functionality in addition to some
specialized operations. They may differ in the efficiency with which they perform some of
the common operations, however. Arrays are a special case. They have this functionality,
but often use different syntax to achieve it. For example the accessor function begin()
that returns an iterator to the beginning of a container corresponds to a pointer to the be-
ginning of the array.

The common functionality falls into seven categories: types, constructors, destructor,
accessing, comparison, assignment, and swap.

Types. All containers define at least nine types. These are defined by typedefs within
the class declarations. The purpose of these is to make it easy for the algorithms to
declare appropriate temporary data.

value_type is the type of data stored in the container. This is the same as the
template parameter type. For example, the value_type of a vector<int> is

vector<int>::value_type. It will be int, of course. While it seems silly to define
this, recall that we must be able to recover this type from within a function template,
where we do not have knowledge of what the template parameter will be.

reference is the type of references to values in the container. Usually this is
just &T, where T is the parameter, but it can be otherwise.

const_reference is the type of const references to data stored.

iterator is the type of iterators appropriate to this container type.

const_iterator is the type of iterators over constant containers of this
type.

reverse_iterator is the type of iterators that can iterate over the container
in reverse of the usual direction.
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const_reverse_iterator is the type of reverse iterators into const con-
tainers of this type.

size_type is a numeric type that can represent the size of containers of this
type.

difference_type is a numeric type adequate to hold any generated value of
the difference between two iterators.

All of the iterator types provided by containers are at least bidirectional. The vector
and deque iterators, as well as the pointers used with arrays, are random access iterators.
Note that, since arrays are not defined by a class but are the built-in arrays of C++, the
above types are not formally defined for arrays.

Constructors. All containers have a default constructor and a copy constructor. The
copy constructor requires linear time.

Destructor. All containers have a destructor. It applies the destructor to each ele-
ment of the container. The destructor requires linear time in the number of elements
stored. Be aware, however, that if destruction of the individual elements is slow, then
so will be the destruction of the container.

Accessing. All containers support seven member functions for obtaining informa-
tion about the container and its contents.

begin () returns an iterator to the first position in the container.

end () returns an iterator to a position just after the last position in the con-
tainer. [ begin(), end() ) form a valid interval in the container that includes all ele-
ments stored. For an empty container, this interval will be empty.

rbegin () returns an iterator to the last position.

rend () returns an iterator to a position just before the first item.
[ rbegin(), rend() ) forms a valid interval that includes all elements stored. It provides
for reverse iteration over the container.

empty () returns true if and only if there are no elements in the container.

size () returns the current size of the container. This is the number of values
stored. The physical capacity may be higher.

max_size () returns the size of the largest possible container of this type.

All of the accessing operations require only constant time.

Comparison. All container classes support the usual comparison operators. The
operator== and operator< are used to define the other four comparisons, so they be-
have as expected. They depend on the presence of operator==and operator< of the pa-
rameter type, which is the element type of the container. The comparison operations
take linear time as they are applied to all (or many) corresponding elements of the
containers.



110

4.3.1

Data Structure Programming with the Standard Template Library in C++

Assignment. All container classes overload the assignment operator to make as-
signment of containers safe.

Swap. All containers support a swap operation that will swap the contents of two
containers of the same type in constant time. For example, if a and b are vectors,
then a.swap(b) will exchange their contents.

As a simple illustration of the generality of the design of the STL, the following
function template will correctly write out the contents of any container in the library.
This is because every container defines an iterator type, begin() and end() iterators. All it-
erators can be de-referenced, and all iterators produced from containers are bidirectional and
support the operator!=. Note that not all support operator<, however, which is a property
of random access iterators.

template<class container>
void writeContainer (container C)

{ for
( container::iterator i = C.begin();
i 1= C.end();
++i

)
cout << *ig<' ';
cout << endl;

Note that while we said that all iterator types may be de-referenced, it is not the case
that all values of iterators may be safely de-referenced. For example, the vector::end() it-
erator does not refer to a valid slot in the vector and so should not be de-referenced. This is
exactly similar to the situation with C++ pointer variables. They are a de-referencable
type, but not all values of a pointer refer to a valid item. A pointer may be NULL, or it
may be uninitialized. The same kind of thing is true of iterators (though they may not, in
general, be NULL).

Sequence Containers

The sequence containers are vectors, deques, and lists. Vectors use dense storage, similar
to arrays, though vectors may change in size as a computation proceeds. Deques use a
simple tree of dense blocks. Lists use doubly linked storage.

In addition to the general requirements of containers, all sequence containers have addi-
tional members. These fall into three categories: constructors, insertion, and deletion.

Constructors. All sequence containers have a constructor that will place n copies
of a value into the new container. They also have a constructor that will create a new
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container with the values defined by any valid iterator interval. Even one from a dif-
ferent kind of container.

Insertion. Sequence containers have three member functions named insert. They
all have an iterator as first parameter. It gives the location at which we shall insert.
The first version of insert will insert a given value at the location of the iterator.
Note that it makes room available for the new item. It does not overwrite existing
items, but inserts "before" the item to which the iterator refers. This version returns
an iterator to the newly inserted position. The second version of insert inserts n cop-
ies of a value at the location of the iterator. The last inserts the contents of a valid
range at the location of the first parameter.

Note that the insertion routines all change the size of the container. Also be
aware that the iterator returned by last() is a valid point of insert.

Deletion. Sequence containers all have two member functions named erase. The
first removes an item at the location of an iterator. The second removes all values in
a given valid interval. They both change the size of the container.

Note that insertions and deletions may invalidate iterators into that container. For ex-
ample, in a vector, if we insert into the middle of the container, all iterators after that lo-
cation will become invalid. We should not write programs that depend on the stability of
iterators while insertions are in progress.

Finally, we note that the individual sequence containers have additional members as
appropriate. We also note that container adaptors may be used to turn sequence containers
into more restricted types, such as stack, queue, and priority queue.

More on the Spell Checker

Suppose that we wish to remove the word “the” from our spelling dictionary. Since the
vector is sorted, we can use binary search to find the location of this word in the vector.
The generic algorithm binary_search simply returns a bool value telling us whether the
target is present or not. We need more: the actual location of the target. For this we can
use the lower_bound or upper_bound function. These give us the locations (as iterators)
of the earliest and latest place in the container at which we could insert the target without
destroying the sort. Since, in general, a sorted container can have duplicates, this just
gives us the interval of values equal to the target if it is present. We don't need both val-
ues here, however, so we will just use lower_bound. This function requires a pair of itera-
tors delineating the range over which it will search. It also requires the target of the
search. Since we are using char* values, which require a special comparison function, we
pass in the function object also. Note that we pass a strless object since that was the
comparison used to sort the vector. Therefore, it is also used to binary search it.

vector<char*>: :iterator where;
where = lower_bound
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(V.begin(), V.end(), "the", strless());
Now that we know the position of the word “the,” we can remove it with erase.
V.erase(where);

Now suppose that we wish to insert the word “souls” into the dictionary, but we want
to insert it into its proper location. We can use lower_bound again to find this position.

where = lower_bound
(V.begin(), V.end(), "souls", strless());

Now that we have an iterator to the proper location of insert, we may use insert to
place the word into this location.

V.insert (where, "souls");

We don't want to do so here, but we could insert three copies of the word into the vec-
tor at this location with

V.insert(where, 3, "souls");

Finally, if we wanted a separate vector of all of the words that begin with “t”, we can
first find the interval in which they lie with

vector<char*>: :iterator start, stop;
start = lower_bound

(V.begin(), V.end(), "t", strless());
stop = lower_bound

(V.begin(), V.end(), "u", strless());

We can now construct a new vector with just the “t” words using
vector<char*> t_words(start, stop);

The same strings are now in both vectors, V and t_words. We don't have copies of the
strings in the two vectors, but they share pointers to the buffers containing the strings.
This means that if we alter the spelling of one of the strings, it will show up as changed
in both vectors. We also need to be careful about deleting a string held in a container, re-
membering that we hold a pointer to its buffer there. If we delete the string, then other
pointers to it become invalid. For this reason we would be better off using a String class
rather than char*, so that we could better control allocation, copying, and deallocation.
The string class provided by the C++ standard would be a good choice.

We don't want to remove all of the “t” words from our dictionary, but we could do so
with
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start = lower_bound

(V.begin(), V.end(), "t", strless());
stop = lower_bound

(V.begin(), V.end(), "u", strless());
V.erase(start, stop)

Notice that we need to reset start and stop if they have been passed to some algorithm
such as the constructor above. This is because the algorithms may modify the iterators.
Again, we note that many of the algorithms “consume” their iterator parameters.

Algorithms such as lower_bound return iterators. These iterators may be used in many
ways. The iterators returned by a vector are random access iterators, so we may do arith-
metic with them, adding an integer to them, for example. We need to be careful with our
operations on iterators, since it is possible to make the same kinds of errors with iterators
as it is with pointers. In particular, it is possible to make an iterator point outside the
container that generated it. If we try to de-reference where+10, for example, we are
likely to get into trouble. The user needs to be aware that the STL was optimized for
flexibility and efficiency, not for safety. Therefore, the user needs to take all care when
manipulating iterators. In general, the same techniques you have learned for keeping out
of trouble with pointers also work for iterators, because of the design that makes them so
similar to pointers.

Exercise. In the Appendix, find the generic algorithms mentioned in this section and
explain the template parameters and function parameters of each of them.

Sorted Associative Containers

There are four kinds of sorted associative containers in the STL: set, multiset, map, and
multimap. Sets and maps have the property that an item may be present in the container
only once if at all. Multisets and multimaps permit the “same” item to occur several
times. The reason the word “same” is quoted in the last sentence is that the definition of
sameness is up to a programmer and so needs to be interpreted in terms of what kinds of
things are stored in the container. The values stored in maps and multimaps are pairs of
items. The first element of a pair, its key, is used to retrieve items, and as the basis of
“sameness.” The second element of the pair, the information, may be of any kind. An ex-
ample of a <key, information> value is a social security number as the key, with em-
ployee information as the information component. In sets and multisets the values stored
are just the keys.

As implied by the name, sorted associative containers are sorted. This means that the
contents need to be compared. Instead of doing this directly, with operator<, however,
these containers use a function object to define the relationship. The default object, named
Compare, is given as a template argument, but the user is free to substitute another. The
STL provides a number of possible values of the template argument. One of these is
less<T>() that uses the operator< as the basis of comparison. The comparison object
must obey certain principles, however, if the algorithms are to work correctly.
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As an aid in defining and using the sorted associative containers, the STL defines a
struct template named pair that can be used to define ordered pairs of any types. These
pairs are used as the values stored in maps and multimaps, and as the return type of func-
tion equal_range, defined below. This template is defined in <pair.h>. A pair has public
member variables to set or retrieve the first and second elements of the pair.

The requirements of comparison objects are as follows:

To define a comparison object, you create a class and name it. We will suppose that
the name “Comp” is to be used. Comp must define a binary operator(), returning a bool,
that defines the ordering on the keys to be stored. If this operator returns true for a pair of
values a, b, then we write a R b, (read “a is related to b”). Note that operator() may return
true for a, b in that order, but false in the other order.

Transitivity. If a, b, and c are key values, and aR b, and also b R ¢, then aR ¢
must also be true.

Trichotomy. If a and b are values, then exactly one of a R b, b R a, and "a is the
same as b" is true.

When a function object obeys the above, we say that it a strict total ordering on the
values. Notice that the law of trichotomy implies that aR b and b R a are never true si-
multaneously. This implies that operator<= will not serve as the basis of a comparison
object.

Implied in the definition of a strict total ordering is the notion of “sameness” used in
the first paragraph of this section. In particular, we say that two items, a and b, are the
same if botha R b and b R a are false. This is not the same thing as saying a — b, of
course. Whena R b and b R a are both false, we say that a and b are equivalent to each
other.

When we create a sorted associative container, we also give it a comparison object. If
none is supplied, then the default object is used, which was defined by the template argu-
ment. We can also specify this operator using the constructor less<T>(), where T is the
type of values to be stored. The STL also defines object greater<T>().

Note that operator< as defined on the built-in types of C++ acts as a strict total order-
ing.

In addition to the features shared by all containers, sorted associative containers have
the following members.

constructors

Sorted associative containers have constructors that permit initialization with a
comparison object. When present, this is the last argument of the constructor call. In
general, you can construct a container from an arbitrary range, even a range from a
different kind of container. This may not be fully implemented, given the current
state of compilers, however.

access
key_comp ( ) returns the key comparison object.



Chapter 4. Overview of the Standard Template Library 115

value_comp () returns a constructed comparison object that works on values
stored (keys for sets and multisets, pairs for maps and multimaps). In the case of
maps and multimaps, the comparison object still works by comparing only the keys.

insert () (sets and maps only) inserts its argument only if it is not already
present. The comparison object is used. The object will not be inserted if it is equiva-
lent to an object already stored.

insert () (multisets and multimaps) inserts its argument into the sorted loca-
tion. There are various forms of insert, including insertion of a range. This is prop-
erly defined using a template member function, which may not be fully implemented
in your compiler. If this is the case, then you may be restricted to ranges defined by
ordinary pointers only.

erase (k) deletes the object whose key is k if present. It returns the number of
items erased. It erases all copies in a multiset or multimap.

erase (i) deletes the object to which the iterator i refers. There is also a ver-
sion that will erase a range given by two iterators.

find (k) returns an iterator referring to the object with key k, if present, or
end() otherwise.

count (k) returns the number of items whose key is k.

lower_bound (k) returns an iterator pointing to the first location whose key
is not less than k according to the comparison object.

upper_bound (k) returns an iterator pointing to the first location whose key
is greater than k.

equal_range(k) returns a pair of iterators consisting of the pair
(lower_bound(), upper_bound)

4.3.4 Rebuilding the Spelling Dictionary as a Set

The spelling dictionary problem is easier if we use sets, since we don't need to sort them
or remove duplicates. This is already implied by the use of sets. We do need to pass com-
parison objects, but we have been doing this already because of the special needs of char*
values. Notice that our function object strless satisfies the requirements of a strict total
ordering. We will want a different function to read a file into a set, since sets don't sup-
port push_back, but rather just insert. We first define a type called stringSet.

typedef set<char*, strless > stringSet;

void readStrSet(ifstreams inp, stringSets V)
{ int 1 = 0;
char * input;
char buf[80];
do
{ inp >> buf;
if (strncmp(buf,"",80) == 0) break ;
int len = strlen(buf);
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input = new char [len+l];
strcpy(input, buf);
i++;
V.insert( input );
}
while (true);

Now the result of
void main()
{ ifstream inp("words.txt");
stringSet V;

readstringSet(inp, V);
writeContainer(V);

is
all are more that the these times try us

As we see, the container is already sorted, and the second “the” was not inserted, since
one was already present. If we don't want even the one copy of “the,” we can remove it
with

V.erase("the");
and if we wish to insert the word “souls,” the following will do:
char* temp = new char[6];
strcpy(temp, "souls");
V.insert(temp);
writeContainer(V);
Now the result is

all are more souls that these times try us

Notice that we allocated a new buffer to hold the new word. While either of the next
two calls to insert are legal, both will result in eventual problems.

V.insert("souls");
// points to a static value
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or

char temp [6] = "souls";
V.insert (temp);
// points to an automatic value

This is not a problem with containers or the insert member. The problem lies in the
nature of pointers. In the last example above, if we change the value of the temp buffer,
we will change what is in the set. The first of these would be useful only in a set of con-
stant strings.

Again supposing that we wish to have a listing of just the “t” words in a separate set,
the following will work:

stringSet: :const_iterator start
= V.lower_bound( "t");

stringSet: :const_iterator stop
= V.lower_bound( "u");

stringSet t_words(start, stop);
writeContainer (t_words);

Assuming we did remove “the,” this will produce

that these times try

Iterators

We have used iterators in many ways already, but have only scratched the surface of their
capabilities and complexity. The STL defines many kinds of iterators, as we have already
noted. Chief among these are random-access, bidirectional, and forward iterators. There are
also two generalizations of forward iterators called input iterators and output iterators.
These, in turn, have special versions called istream iterators and ostream iterators, respec-
tively. We will explore some of the differences between these in this section.

The reason for having different iterator categories is dual. On the one hand, certain
container types can only provide certain kinds of iterators efficiently. We want all iterator
operations to be doable in constant time, so that the iterator operations don't slow down
the operation of algorithms in which they are used. Thus, a list cannot efficiently provide
random access iterators, but since they are doubly linked, they can provide bidirectional it-
erators efficiently. When we specify a container, we specify the strongest iterator type that
it can (efficiently) provide. The second aspect of the need for different iterator categories
has to do with the needs of the algorithms. Sorting algorithms, for example, may need to
compare items at widely separated locations in the containers they sort. To do so may re-
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quire more power in the iterator than would be required in a searching algorithm. When
we specify an algorithm, we specify the weakest iterator type that can be used with it.

Most of the iterator types are not defined by classes in the STL. Instead they are in-
formally defined by what services they provide—especially, which operators they over-
load. Thus, there is no class for forward iterators. The collection of requirements for an
object like a forward iterator are informally called a concept. Any class or built-in type
(pointers) that has the forward iterator operations defined (chiefly operator++) conforms to
the concept and can therefore serve as a forward iterator. This is because the iterator classi-
fications are used as template parameters, not as actual types. The categories of iterators
are defined as an aid in documentation to aid the user of an algorithm understand what is
required of the iterators that are passed. For example, the specification of the copy algo-
rithm that will copy a range into a container is

template <class InputlIterator, class OutputlIterator>
OutputIterator copy
( InputIterator first,

InputIterator last,

OutputIterator result

)i

This is a way of saying that the template parameters have certain requirements, which
if satisfied, we can guarantee the correct operation of the algorithm.

In addition to the presence of certain operators, the STL requires that the operators
obey certain laws if the algorithms are to work correctly. We have already seen one sim-
ple example of this in our specification of an interval or range [a,b), where we assume
that repeatedly executing a++ will eventually get us to b.

We will detail each of the iterator categories below. There are two varieties of each of
these iterators, however. Since it is possible to build const containers that cannot be
modified, we also need const iterators, so that we don't try to modify a const container by
de-referencing an iterator. We therefore classify iterators as either const or mutable. A mu-
table iterator returns a reference from operator*, so that we can assign to such a de-
reference. A const iterator returns a const reference (or possibly a value). The container
classes all define a type called iterator and another named const_iterator. The first of these
is generally mutable. The category of these iterators depends on the container. For exam-
ple, vector<T>::iterator is a mutable random access iterator and vector<T>::const_iterator
is a const random access iterator.

A given value of an iterator may be de-referencable or not. An iterator A is de-
referenceable if it refers to a location within a container, and so *A is a value of the con-
tained type. If a container C is nonempty, then C.begin() will return a de-referencable it-
erator. C.end() will return an iterator also, but it is not de-referencable. Instead, it refers to
a past-the-end value. This location is a valid place for inserts in most containers, but not
for retrievals.

There may also be a singular value for an iterator. This is a legal value of the iterator
that does not refer to any location or any container. For example, NULL is the singular
value of ordinary pointers. Some constructions of iterators result in a singular value as
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indicated. The algorithms are not guaranteed to work if passed singular values when they
require iterators.

Iterator categories, then, are defined by the operators they provide. Somewhat more is
required, however. It is not enough just to have an operator present for an iterator to work
correctly. Since it is possible for the programmer to overload operators, he or she can
give any desired meaning to any operator. The operators have to be consistent with each
other for the iterators to work correctly with the algorithms. For example, a random ac-
cess iterator must provide for the difference between iterators, b - a, as an integer n. The
type must also provide an operator ++. However, these two operators must also be con-
sistent with each other for things to work. This means that if b - a = n, then exactly n
iterations of a++ will take us to b. If this is not the case, then our program may compile
correctly, but is unlikely to operate correctly. It may work with poor efficiency, or it may
fail altogether.

Iterators are used to define ranges. Most of the algorithms take a pair of iterators and
define a range or interval that includes the first position and includes everything up to but
not including the second. This is expressed as

[a, b)

where a and b are iterators. In order for this to be a valid range, b must be reachable from
a. This means that repeatedly applying a++ will eventually have a == b. If this is not the
case, the algorithm will fail, perhaps as an infinite iteration. It is up to the user to guar-
antee this, although the containers are helpful in returning iterators with begin() and end()
that guarantee that end() is reachable from begin().

Forward Iterators

Forward iterators mark a location in a container and can be moved forward with opera-
tor++. A newly created forward iterator might be a singular value. If it is de-referencable,
then it must support both prefix and postfix operator++ as well as operator== and opera-
tor!=. There is an additional requirement that may sound like it could not possibly be
false. We require that if two mutable forward iterators obey a == b, then it must also be
true that *a == *b, and ++a == ++b. We will show how this can be false when we look at
input iterators.

Bidirectional Iterators

Bidirectional iterators have all of the properties of forward iterators. In addition, they may
be moved backwards with operator--. Both pre and posfix forms of this operator are re-
quired. Furthermore, if --r == --s for de-referencable iterators, then r ==s.
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Random Access Iterators

Random access iterators have all of the properties of bidirectional iterators. In addition,
they support iterator arithmetic with such operators as operator+ and operator-. They also
support operator<. In particular, we need an operator+ and an operator+= that lets us add
an integer to a random access iterator. We also need operator- and operator-=. We need two
forms of operator+, actually, so that we can add an iterator and an integer in either order.
We also need to be able to take the difference between two random access iterators into the
same container. The value n that is returned should be consistent with the operator+, as
well, so that if a - b returns n, then a + n should be b. Also, exactly n iterations of a++
should take you to b.

Random access iterators can also be indexed using operator{]. This should behave con-
sistently with iterator arithmetic, as in the pointer duality law.

Finally, we need to be able to compare iterators with operator<, operator>, opera-
tor<=, and operator>=. Furthermore, operator< and operator> must be total ordering rela-
tions (as well as defining “opposite” orderings). This means that they obey the following
two laws:

Trichotomy. For any two values, a and b, exactly one of a<b, a=>b, andb < a
is true.

Transitivity. If a < b, and also b < c, then a < c.

Actually, this is a bit more than is required. Operator = doesn't have such a special
place here. In fact, we can define a relation a E b to be true whenever a < b and b < a are
both false. What is required is that this relation E be an equivalence relation. This means
that E satisfies the following three laws:

Reflexivity. For any a, a E a.
Symmetry. If a E b, then also b E a.
Transitivity. f aEb,and bE c, thena E c.

If this is the case, then E partitions all of the values into disjoint sets called equiva-
lence classes. Any two elements a and b in one equivalence class satisfy a E b, and if ¢
and d come from different equivalence classes, then ¢ E d is false. As an example in which
a perfectly reasonable ordering relation does not satisfy the above requirement, consider
binary trees. Let an operation < be defined on the vertices of such a tree by a< b if a is an
ancestor of b, but not the same as b. Then the induced relation E satisfies a E b if a is
neither an ancestor or a descendant of b. It is possible to show that E does not satisfy the
law of transitivity. (Four vertices on three levels will do.) Therefore, this operator< would
not be a suitable candidate for a random access iterator operator<.

Note that the operator< defined on the built-in types of C++ satisfies the law, as the
induced relation E is just operator== on those types (even for pointers).



Chapter 4. Overview of the Standard Template Library 121

4.4.4 Input Iterators

4.4.5

Input iterators are a generalization of forward iterators. This means that every forward it-
erator satisfies the requirements of an input operator, and more. Another way to think of
this is that input iterators drop some of the requirements of forward iterators.

Input iterators need to implement operators == and != for comparison. They need pre-
fix and postfix versions of operator++ for advancing, and they need to be de-referencable.
They do not provide operator=, however, so that we may not be able to assign one iterator
to another. More importantly, the template argument is not required to be mutable. We
may not be able to use a de-reference of an iterator to change the container. This is be-
cause such iterators are used only for retrieving information from a container, not for put-
ting information into it.

The final quirk of input operators is that, for two iterator values a and b, a = b does-
n't necessarily imply that ++a = ++b. This is because an input iterator is permitted to
change the global state of its container, for example, by advancing a read buffer. It is pos-
sible to associate an input iterator with an input stream in such a way that operator++
reads from the stream. If two iterators into the stream are positioned at the same location
and we use operator++ with one of them, the other will be “advanced” as well. Because of
this restriction on use, all algorithms that use input (or output) iterators are required to be
single pass algorithms. The iterator is consumed by its use and can't be reused.

Output Iterators

Output iterators are another generalization of forward iterators and are intended for putting
information into a container, but not for retrieving information. As such, they may be as-
sociated with output streams in which operator++ writes to the stream. Output operators
do not need operators == or !=. Operator++ (prefix and postfix) are used to advance. And
we need to be able to assign a value to a de-reference of such an iterator. We are not re-
quired to be able to read from such a de-reference, however. Therefore, if a is an output it-
erator that points into a container of ints, then

would be legal, but
int x = *a;

would not be.

Input and output iterators are often used together. For example, in copying one con-
tainer to another, an input iterator may be used on the source, and an output iterator on
the destination.
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Istream and Ostream Iterators

The STL defines two classes to easily associate streams with input and output iterators.
This makes it easy to treat streams as containers like the other containers in the library.
Thus, we may apply some algorithms directly to streams without providing intermediate
storage to hold the contents. Input streams provide input iterators and output streams pro-
vide output iterators.

We specify an istream_iterator by supplying (at least) the type of data to be read from
the stream as a template argument. We construct an istream iterator by specifying a par-
ticular input stream. The end_of_stream iterator of a stream is constructed without pa-
rameters. Then, each execution of operator++ on the iterator is translated into an execu-
tion of operator>> on the stream. The value read is stored within the iterator, and will be
returned by de-referencing the iterator.

istream_ iterator<int> start(cin);
// iterate over cin
istream iterator<int> finish;
// end_of_stream.
vector<int> vec(start, finish);
ostream_iterator<int> dump(cout);
copy(vec.begin(), vec.end(), dump);

Important Note: This example requires two features from C++ that may not yet be
implemented, and hence this may not work with your version of the STL. In particular,
istream_iterator actually has two template parameters, the second of which is the differ-
ence type between pointers to the first parameter. In this case the type is ptrdiff_t, defined
by C++. We could have stated it here, but chose instead to use the new feature of default
template arguments. In fact, ptrdiff_t is the default value of the second parameter. If these
are not available, you need to specify the second argument, as in

istream_iterator<int, ptrdiff_ t> start(cin);
// iterate over cin

The second advanced feature that this example depends on is template members. In ear-
lier versions of C++, individual member functions could not be templates: only classes
and free functions. The latest standard provides for template members. The constructor we
have used for vec is such a template member, in which the template argument is an input
iterator. Hopefully by the time you read this, compilers will have caught up with the
standard. This requirement is not so easily bypassed. Early versions of STL use various
ways to compensate (partially) for this, usually by adding additional members to cover
important cases that would be covered by a templated member.
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Generic Algorithms

While containers are the most visible feature of the STL and iterators are its backbone, it
is the algorithms that form its purpose. As indicated earlier, most of the algorithms are
not provided within container classes, but interface to the containers through iterators.
This permits many algorithms to be written only once and to operate correctly with many
container types. One version of the STL that I use has 106 generic algorithms. There are
a few places where a generalized algorithm won't work efficiently with some container
type but a specialized algorithm will. If the algorithm is important enough, it may be in-
cluded within the class of that container. This is exactly the case when sorting a list.
Therefore, the list template provides a sort member, while vectors and deques use the gen-
eral template algorithm.

Some of the algorithms work “in place,” modifying the container on which they oper-
ate. Sort is like this. Other algorithms work on and return a copy of the input container.
Some algorithms have both an in place and a copying version. For example, replace will
replace old values with new in a range. This is an in place version. replace_copy will re-
place old values with new, but does not modify its input. Instead it puts a modified copy
of the input into another container. The copying algorithms all have a _copy suffix. For
example,

replace(start, done, oldvalue, newValue)
will replace all copies of oldValue by newValue over the range, but

replace_copy
(start, done, toWhere, oldvValue, newValue)

will write the range [start, done) starting at iterator toWhere, replacing oldValue by
new Value as it copies.

Some of the algorithms require that we pass in a unary or binary predicate as a func-
tion object. These algorithms only operate on elements or pairs of elements that satisfy
the predicate: i.e., only if it returns true. These algorithms all end in _if. For example,
replace_if will process a range replacing values that satisfy a unary predicate with a new
value. There is also a copying version called replace_copy_if. Predicates are assumed not
to modify their arguments. That is, they are supposed to merely return a value of true or
false, without changing anything. Note that the predicates are called by these algorithms
by applying them to the result of de-referencing iterators. Therefore, if we call replace_if
with

replace_if(start, done, big, newValue);

where start and done are iterators, big is a unary predicate and new Value is the replacement
value, then somewhere within the execution of replace_if will appear big(*i), where i is
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some iterator, perhaps iterator start. If this predicate execution returns true, then *i =
newValue will be carried out.

Also, many of the algorithms have two versions depending on whether a predicate is
passed or a standard predicate is assumed. For example,

sort(start, done);
will sort a range using the operator< on the elements of the range, while
sort(start, done, strless)

will sort using the binary predicate strless. These versions are not suffixed _if, since the
predicate is not used to determine if the value should be included, but how the algo-
rithms should operate.

If we don't count multiple versions and variations, there are about 56 fully generic al-
gorithms in the STL. There are also a few public support algorithms and a very large
number of support functions. The public generic algorithms can be organized loosely into
ten categories.

The remainder of this section is intended to serve as a reference to the generic algo-
rithms. As such, it need not be read completely through. The prototypes of all of the al-
gorithms may be found in the Appendix. We will introduce each of the algorithms with a
sample call, somewhat stylized, to indicate what kinds of parameters are required. Refer-
ence parameters in which values are returned will be shown in italics.

Minimum and Maximum Algorithms

The STL includes simple min/max comparisons written as templates so that other types
won't need to provide these. It is not our intention to show many of the algorithms of the
STL, but these are particularly simple.

value = min(valueA, valueB);
value = min(valueA, valueB, binaryPred);
value = max(valueA, valueB);
value = max(valueA, valueB, binaryPred);

The two versions of min might look like the following. Note that the first version
uses operator< for the comparison, while the second uses a comparison object. Note that
the class of the comparison object is a template argument, leaving maximum flexibility.
Any class providing a binary predicate operator() may be used for this argument. Ordinary
functions may also be used.

template <class T>

inline const T& min(const T& a, const T& b)
{ return b<a?b: a;

}
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template <class T, class Compare>
inline const T& min
( const T& a,

const T& b,

Compare comp

)

{ return comp(b, a) ? b : a;

}
Forwardlter = min_element(ForwardIterl, ForwardIter2);
ForwardlIter = min_element(ForwardIterl, ForwardIter2, binaryPred);
ForwardIter = max_element(ForwardIterl, ForwardIter2);

ForwardIter = max_element(ForwardIterl, ForwardIter2, binaryPred);

There are also two algorithms that return the minimum value in a range: one using
operator< and the other using the comparison object. As is generally true of the algo-
rithms that process a range, the input range is defined by the first two parameters. These
algorithms are linear.

template <class ForwardIterator, class Compare>
ForwardIterator min_element
( ForwardIterator first,

ForwardIterator last,

Compare comp

Generalized Numeric Algorithms

Each of these algorithms performs some arithmetic operation on a range or on a pair of
ranges. Each has an alternate version in which the user can specify a particular binary op-
eration to be used in place of the standard version. When present, this binary operation is
defined by a function object, and that parameter is last.

total = accumulate(first, last, init);
total = accumulate(first, last, init, binaryOp);

Algorithm accumulate will add (using operator+) all elements of the range [first, last)
to init and return the result. This is a single pass, linear algorithm, so all that is required
is an input iterator. The type of init is a template parameter, and this type is also the re-
turn type. The alternate version repeatedly applies binaryOperation(init, *first++) and re-
turns the result.

value = inner_product(Inputlterl, Inputlter2, Outputlter, val);



126

Data Structure Programming with the Standard Template Library in C++

value = jnner_product
(Inputlterl, Inputlter2, Outputlter, val, binOpl, binOp2);

An inner product is the sum of the products of corresponding elements of two contain-
ers. Two ranges are required for input, but this is done with only three iterators, since the
length of the second range must be the same as the length of the first. A fourth parameter
gives the initial value of the total. The final value is returned. The second form passes
two binary operations as the last two parameters, with the first replacing the sum and the
other replacing the product. For example, we can get the product of sums of two int vec-
tors of the same length with something like

inner_product

( vl.begin(),
vl.end(),
v2.begin(),
1,

times<int>(),
plus<int>()

)i
Note that the function objects plus and times are provided with the STL.

Outputlter = partial sum(Inputiterl, Inputiter2, Outputlterl);
Outputlter = partial sum(Inputlterl, Inputlter2, Outputlterl,
binaryOp);

The partial_sum algorithm efficiently computes a sequence of running totals of an in-
put range. For example, if a set contains 1, 2, 3, 4, 5, then the partial sums would be 1,
3, 6, 10, 15. This result is placed into a second range that may be the same as the first. A
second version replaces operator+ with any binary operator.

partial_sum

( setl.begin(),
setl.end(),
vec2.begin(),
times<int> ()

)i

This assumes that the vector vec2 has a size large enough to hold the resulting se-
quence of values.

Outputlter = adjacent difference(inputiterl, Inputiter2, Outputiterl);

Outputlter = adjacent_difference
(inputlterl, Inputiter2, Outputlterl, binaryOp);
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The adjacent_difference algorithm is similar. It puts adjacent differences between val-
ues into a second range. The first “adjacent difference” is just the first value from the first
range. Adjacent_difference and partial_sum perform inverse computations.

Nonmutating Sequence Operations

These algorithms operate on sequences, but they do not change them. While they work on
sequences, they are not restricted to sequential containers since they use iterators to define
their operations, and iterators return sequences of values even from nonsequential contain-
ers.

IterPair = mismatch(Inputiterl, Inputiter2, Inputlter3);
IterPair = mismatch(Inputiterl, Inputiter2, Inputlter3, binaryPred);

Algorithm mismatch compares corresponding values in two ranges (again defined by
three iterators) and returns a pair of iterators indicating the first location in each range at
which the corresponding values fail to be the same using operator==. The two iterators re-
turned are equidistant from the beginnings of the input ranges. A second version, as ex-
pected, replaces operator== with a binary predicate of the user’s choice.

boolVal = equal(inputlterl, Inputlter2, Inputlter3);
boolVal = ggqual(inputiterl, Inputlter2, Inputlter3, binaryPred);

Algorithm equal (again two versions) compares two ranges and determines if they are
the same up to the end.

funObj = for_each( inputlterl, Inputlter2, Inputlter3, funObj);

One of the most powerful and general operations in the STL is algorithm for_each,
which applies a user-supplied function to each element of a range. Any result produced by
the supplied function is ignored. The function can, however, set global variables or even
modify the elements of the collection. It should not, however, attempt to modify the col-
lection itself. For example, suppose we consider the CountedValue template that we cre-
ated in Chapter 1. We can write a function object to set the value in any given Counted-
Value<int> to zero.

struct setzero

{ void operator() (CountedvValue<int>& c)
{ c.setvalue(0);
}

}i

If we have a vector vec4 of CountedValue<int> objects, we can set all of their values
to zero with
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for_each(vecd.begin(), vecd.end(), setzero());

Inputlter = find(Inputlterl, Inputlter2, value);
Inputlter = find_if(Inputlterl, Inputlter2, unaryPred);

Algorithm find and find_if search for a value in a range and return an iterator to the lo-
cation of the value if found and the end of the range otherwise. Algorithm find has a pa-
rameter to specify the value sought and uses == to determine a “hit.” On the other hand,
find_if uses a supplied unary predicate, but no value. It returns the first location in the
range for which the predicate returns true.

Forwardlter = adjacent find(ForwardIterl, ForwardIter2);
ForwardIter = adjacent_find(Forwardlterl, ForwardIter2, binaryPred);

Algorithm adjacent_find looks for two adjacent values in a range that are the same
with operator==. An alternate version uses a supplied binary predicate instead of the opera-
tor. Both return an iterator to the first location satisfying the goal, or the end of the range
if there are no matches.

count(Inputiterl, Inputlter2, value, init);
count_if(Inputlterl, Inputlter2, unaryPred, init);

Algorithm count counts values that match a given value. Interestingly, the count is
returned as a reference parameter, rather than as a function result, so that the user may
specify the type of the count itself using a template argument.

template <class Inputlterator, class T, class Size>
void count
( Inputlterator first,

InputIterator last,

const T& value,

Size& n

);

Since n is incremented once for each “hit” with operator++, any type that implements
this function may be used as the last parameter, including user-defined classes. The alter-
nate version, count_if, replaces the value with a unary predicate. Each value of the range
for which this function returns true causes the count to be incremented. This algorithm is
a very good example of the total generality of the STL approach. Most libraries would
just return an int or a long from such an operation, as this is the most common case.
Here, we get to choose the type of the value to be incremented with complete freedom.
We could even pass in an object from a class that changes the appearance of a dial each
time its operator++ is executed.
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ForwardIter = search
(ForwardIter1l, ForwardIter2, Forwardlter3, ForwardIterd);
Forwardlter = search

( ForwardIterl, Forwardlter2,
ForwardIter3, ForwardlIterd,
binaryPred

);

Algorithm search is passed two ranges, using four iterators this time. It determines
whether the second range is a subrange of the first. If so it returns an iterator to the start-
ing point of the subrange. The standard version uses operator== and the other uses a bi-
nary predicate passed by the caller. This algorithm is quadratic in the worst case, but be-
haves better in most actual uses.

Mutating Sequence Operations

These algorithms also act on sequences, but they modify some range as they operate. This
is the largest category of operations, with about thirty algorithms. Notice that if the des-
tination is a vector, for example, then the algorithms do not in general extend the length
when they reach the end. The user is responsible for guaranteeing that the destination has
sufficient size.

Outputlter = copy(Inputiterl, Inputiter2, Outputlter);

Algorithm copy copies one range to another. Be careful that the second container has
sufficient room to hold the values. The two ranges can actually overlap as long as the
first range (source) does not contain the first location of the second range(destination). It
returns an iterator to the last item inserted into the destination.

Bidirectlter = copy_backward
(BidirectiterIterl, BidirectIterIter2, BidirectIterIterl);

Algorithm copy_backward, which needs bidirectional iterators, copies one range to an-
other, but using last element first. The source range must not contain the last location in
the destination range, but otherwise overlap is possible. Note that this doesn't reverse the
order of the elements, just the order in which they are copied. It does copy into the desti-
nation working to the “left” of the initial point, however. This also returns an iterator to
the last item inserted.

Outputlter = fill_n(Outputlter, count, value);
Algorithm fill_n inserts n copies of a value into a container.

template
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< class OutputIterator,
class Size,
class T

>

OutputIterator fill n

( OutputIterator first,
Size n,
const T& value

)i
The return value points to the last item inserted.

swap(valuel, value2);
ForwardIter swap_ranges(Forwardlterl, ForwardIter2, Forwardlter3);

Swap exchanges two values. Algorithm swap_ranges swaps two intervals of equal
length, returning an iterator just after the last item in the second range.

Outputlter = transform(Inputiterl, Inputlter2, Outputlterl, unaryOp);

This function applies the unary operator to each element of the first range, writing re-
sults to the second range. It returns an iterator after the last item inserted. The output
range may be the same as the input range.

Outputlter = transform
(Inputlterl, Inputlter2, Inputlter3, Outputlterl, binaryOp);

This version of transform applies a binary operator to corresponding elements of the
two input ranges, writing results to the output range. It returns a past-the-end value of the
second range. The output range may be the same as either input range.

replace(ForwardIterl, ForwardIter2, oldValue, newValue);
replace_if(ForwardIterl, ForwardIter2, unaryPred, newValue);
Outputlter = replace_copy

(Inputlterl, Inputlter2, QOutputlterl, oldVal, newVal);

Outputlter = replace_copy_if
(Inputlterl, Inputlter2, Outputlterl, unaryPred, newVal);

Replace replaces all copies of oldValue in the input range with newValue. Replace_if
replaces all values for which the predicate is true with newValue. The copy versions are
similar, except that they place the results into an output range instead of modifying the
input range.

generate(Forwardlterl, ForwardIter2, GenFunc);
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Outputlter = generate_n(Outputlterl, count, GenFunc);

These algorithms fill a range by repeatedly calling a generating function and saving
the results.

ForwardIter = remove(ForwardIterl, ForwardIter2, value);
ForwardIter = remove_if(ForwardIterl, ForwardIter2, unaryPred);
Outputlter = remove_copy(Inputlterl, Inputlter2, Outputlterl, value);

Outputlter = remove_copy_if
(Inputlterl, Inputlter2, Outputliterl, unaryPred);

These algorithms remove values from a range. The first removes all copies of the
value. The second removes all values for which the predicate is true. The other versions
are similar, except that they write the results to an output range instead of modifying the
input range. If two elements of the input range are not removed, then their relative posi-
tion after execution is the same as before. Therefore, the algorithm is called stable.

ForwardIter = unique(ForwardIterl, ForwardIter2);
ForwardIter = unique(ForwardIterl, ForwardIter2, binaryPred);
Outputlter = unique_copy(Inputiterl, Inputlter2, Outputlterl);

Outputlter = unique_copy

( Inputlterl,
Inputlter2,
Outputlterl,
binaryPred

)3

Algorithm unique removes successive equal values from a range. The first version
uses operator== to determine equality of pairs of values. The second version uses the bi-
nary predicate instead. The copy versions write results to an output range.

reverse(Bidirectiterl, BidirectIter2);
Outputlter = reverse_copy(BidirectIterl, BidirectIter2, Outputlterl);

These algorithms reverse the order of the values in a range. The first modifies the in-
put range and the second produces an output range.

rotate(ForwardIterl, ForwardIter2, ForwardIter3);

Outputlter = rotate _copy
(ForwardIterl, ForwardIter2, ForwardIter3, Outputlter);

The input to a rotation is defined by three iterators: the beginning, the middle, and the
end. The rotate algorithms shift values leftward in the range so that the middle of the in-
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put becomes the beginning of the output and values shifted out are copied to the back.
Therefore, the old beginning comes just after the old end in the output.

random_shuffle(RandomAclterl, RandomAclter2);
random_shuffle(RandomAclterl, RandomAclter2, randomGenFunc);

The random_shuffle algorithms permute the input range randomly. The first uses a
built-in uniform random number generator, so that all orderings of the input are about
equally likely. The second version allows the user to supply a random number generator,
which should return values in the interval [0, 1).

BidirectIter = partition(BidirectIterl, Bidirectlter2, unaryPred);
Forwardlter = stable partition(ForwardIterl, ForwardIter2,
unaryPred);

These algorithms rearrange the values in a range so that all values that satisfy the
supplied predicate come before those that do not. They return an iterator just after the last
true value. The stable version does not reorder items from the same part of the result. If
one item for which the predicate is true came before another for which it is also true prior
to the execution, then it will remain before that other value after. The same is true for the
false range.

Sorting Related Operations

The sorting related operations either sort a range, merge two sorted ranges into a sorted
output, or partially sort a range. They all have an optional compare function that can be
used to replace the standard operator<. If this object is used, then it must define a strict to-
tal order in the sense defined above in Section 4.4.3. That is to say, two elements, a and
b, are considered equivalent under a compare function, comp, if both comp(a,b) and
comp(b,a) are false. It is required that the function never return true for both comp(a,b)
and comp(b,a), and also that the induced definition of equivalence is an equivalence rela-
tion in the mathematical sense. That is, it must be reflexive, symmetric, and transitive.

sort(RandomAclterl, RandomAclter2);
sort(RandomAclterl, RandomAclter2, compareFunc);

The sort algorithms sort a range using operator< or a supplied compare function. The
compare function must define a strict total order. Sort is typically O(Nlg(N)), but can be
quadratic in a few cases. It won't be quadratic on a sorted range, however.

stable_sort(RandomAclterl, RandomAclter2);
stable_sort(RandomAclterl, RandomAclter2, compareFunc);
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Stable sort is like sort, except that “equal” values are not rearranged. In the second ver-
sion “equality” is the equivalence relation induced by the compare function, NOT opera-
tor==. Stable sort is O(NIg(N)) if there is enough workspace available to hold N/2 ele-

ments, where N is the size of the range. Otherwise, stable_sort is O(ng(N)z).

partial_sort(RandomAclterl, RandomAclter2, RandomAclter3);
partial_sort
( RandomAclterl,
RandomAclter2,
RandomAclter3,
compareFunc
)3

A partial sort is defined by three iterators. The second should point into the range de-
fined by the other two. The input range is rearranged, but only the portion between the
first and middle positions is sorted and they are the same elements that would appear there
if the entire range were sorted. In the above example, the range [RandomAclterl, Ran-
domAclter2) will be sorted.

RandomAclter = partial_sort_copy
(Inputlterl, Inputlter2, RandomAclterl, RandomAclter2);

RandomAclter = partial_sort_copy

( Inputlterl, Inputlter2,
RandomAclterl, RandomAcIlter2,
compareFunc

)3

The copying partial sort is defined by an input range and an output range that may be
of a different length. If the output range is shorter than the input range, then it is filled
with the sorted “smallest” values of the input range. If the output range is larger, then the
sorted input range is placed into the initial portion of the output range, with the remainder
left unchanged. The copying partial sort is O(Nlg(K)), where N is the length of the input
and K is the smaller of the lengths of the two ranges.

nth_clement(RandomAclterl, RandomAclter2, RandomAclter3);

nth_element

(  RandomAclterl,
RandomAclIter2,
RandomAcIter3,
compareFunc

)3

The nth_element algorithm is defined by three iterators. The first and third define a
range and the second a position within that range. The elements in the range will be rcar-
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ranged so that the element pointed to by the second iterator will be in its correct location
as if the range were sorted. Furthermore, all items “smaller” than that item will be to its
left, and the larger items to the right. For the first version, smaller is defined by operator<
and in the second, by the compare function. This is a linear algorithm in the average, but
could be quadratic in a few cases.

Forwardlter = lJower_bound(ForwardIterl, ForwardIter2, value);
ForwardIter = lower_bound

(ForwardIterl, ForwardlIter2, value, compareFunc);

Forwardlter = upper_bound(ForwardIterl, ForwardIter2, value);
Forwardlter = upper_hound

(ForwardlIterl, ForwardIter2, value, compareFunc);

Algorithm lower_bound returns the first location in a range at which the value can be
inserted, assuming that the range is sorted. The range doesn't need to be sorted, however.
The returned iterator points to the first location that is “not less” than the item. up-
per_bound returns the first location that is “greater” than the value. In a sorted list,
lower_bound and upper_bound return, respectively, the first and last positions into which
value may be inserted while maintaining the sorted order. These algorithms are linear in
general, but logarithmic if the iterators are random access.

IterPair = gqual_range(ForwardIterl, Forwardlter2, value);

IterPair
= equal_range(Forwardlterl, ForwardIter2, value, compareFunc);

The equal_range algorithms return a pair of forward iterators that would be returned in-
dividually by lower_bound and upper_bound. These algorithms are linear in general, but
logarithmic if the iterators are random access.

boolVal = binary_search(ForwardIterl, ForwardIter2, value);
boolVal = hinary_search
( ForwardlIterl,
ForwardlIter2,
value,
compareFunc
)s

These algorithms carry out a binary search on the indicated range and return whether or
not they were able to find the value. They do not return where the value may be found,
however. These algorithms are linear in general, but logarithmic if the iterators are ran-
dom access.

Outputlter = merge
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(Inputlterl, Inputiter2, Inputlter3, Inputiter4, Outputiterl);
Outputlter = merge

( Inputiterl, Inputlter2,
Inputiter3, Inputlterd,
Outputlterl,
compareFunc

)3

These algorithms merge two sorted input ranges into a sorted output range. The merge
is stable, so that items with equivalent values from one of the input ranges will maintain
their relative positions in the output. They are both linear algorithms.

inplace_merge(BidirectIteratorl, BidirectIterator2, BidirectIterator3);
inplace_merge
( BidirectIteratorl,
BidirectIterator2,
BidirectIterator3,
compareFunc
)3

These algorithms merge two halves of a range in place. It is assumed that each half of
the range, namely [Bidirectlterator], Bidirectlterator2) and [Bidirectlterator2, Bidirectltera-
tor3) is sorted. The result will be sorted. These algorithms are linear if there is room for a
copy of the entire range, and O(NIg(N)) otherwise.

4.5.6 Set Operations on Sorted Structures

These algorithms all assume that the input ranges are sorted. This will automatically be
the case for sorted associative containers, of course. The union, intersection, and difference
algorithms work by merging ranges, so they work on multiset and multimap structures as
well. The union of multisets contains the maximum of the number in the two inputs (not
the total). The intersection of two multisets contains the minimum of the two. The algo-
rithms are all linear. If an output range is used (all but algorithm includes), then it must
not overlap with the input range.

boolVal = jncludes(Inputiterl, Inputlter2, Inputlter3, Inputlterd);

boolVal = includes
(Inputlterl, Inputlter2, Inputlter3, Inputlter4, compareFunc);

Returns true if everything in the second range is contained in the first range.

Outputlter = set_union
( Inputlterl, Inputlter2,
Inputiter3, Inputlterd4,
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Outputlterl

)s

Outputlter = set_union

( Inputliterl, Inputlter2,
Inputlter3, Inputlter4,
Outputlterl,
compareFunc

)s

Produces those elements that are in either range.

Outputlter = set_intersection

( Inputliterl, Inputlter2,
Inputlter3, Inputlterd,
Outputlterl

);

Outputlter = set_intersection

( Inputliterl, Inputlter2,
Inputlter3, Inputlter4,
Outputlterl,
compareFunc

);

Produces only those elements that are in both ranges.

Outputlter = set_difference

( Inputiterl, Inputlter2,
Inputlter3, Inputlterd,
Outputlterl

)s

Outputlter = set_difference

( Inputlterl, Inputlter2,
Inputliter3, Inputlterd,
Outputlterl,
compareFunc

)s

Produces those elements in the first range that are not in the second.

Outputlter = set_symmetric_difference
( Inputlterl, Inputlter2,

Inputlter3, Inputlterd,
Outputlterl

);
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Outputlter = set_symmetric_difference

( Inputliterl, Inputlter2,
Inputlter3, Inputlterd4,
Outputlterl,
compareFunc

)3

Produces those elements that are in either range but absent from the other.

4.5.7 Heap Operations

These operations all produce or manipulate a data structure called a heap. Heaps require
random access iterators, so are ideally suited for vectors. Logically a heap is like a binary
tree in which each node is larger than either of its children, putting the largest value at the
root. A heap may be stored in an array-like structure, with the children of the node in cell
n stored in cells 2n and 2n+1. This permits insertions and removals to be done in loga-
rithmic time, while maintaining the heap property. Since the largest item is easy to find
and remove, heaps are often used to implement priority queues. We shall return to heaps
in Chapter 6.

A heap is defined with respect to a comparison operator, which is operator< by de-
fault. Note, however, that it is the “largest” value that is at the root of the heap.

push_heap(RandomAclterl, RandomAclter2);
push_heap(RandomAclterl, RandomAclter2, compareFunc);

Insert an item into the heap and maintain the heap property. The item inserted is
originally just before location RandomAclter2, and [RandomAclterl, RandomAclter2 - 1)
is originally assumed to be a heap. The full range will be a heap on completion.

pop_heap(RandomAclterl, RandomAclter2);
pop_heap(RandomAclterl, RandomAclter2, compareFunc);

Remove the largest item from the heap [RandomAclter], RandomAclter2) and restore
the heap property. When done, only [RandomAclterl, RandomAclter2 - 1) forms a heap.
The item “popped” can be found in the last location of the range (RandomAclterl - 1).

make_heap(RandomAclterl, RandomAclter2);
make_heap(RandomAcIterl, RandomAclter2, compareFunc);

Rearrange the range so that it satisfies the heap property. It requires linear time.

sort_heap(RandomAclterl, RandomAclter2);
sort_heap(RandomAclterl, RandomAclter2, compareFunc);
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Assuming that the range is originally a heap, this will sort the range. The time com-
plexity is O(NIg(N)).

Lexicographical Compare Operations

These algorithms compare two ranges. They compare corresponding elements and as long
as the elements are equivalent, the process continues. At the first difference, if the first is
less than the second, then true is returned, otherwise false. If the comparisons continue
until the end of one and the first is shorter, then return true. In all other cases return false,
including when the ranges are identical.

boolVal = lexicographical compare
( Inputliterl, Inputlter2,
Inputlter3, Inputlterd,
);
boolVal = lexicographical compare
( Inputliterl, Inputiter2,
Inputliter3, Inputlterd,
compareFunc
);

Permutation Generation Operations

These algorithms generate all permutations of a sequence. next_permutation generates the
lexicographically next reordering and prev_permutation gives the previous one. These are
linear algorithms.

boolVal = next_permutation(BidirectIterl, Bidirectlter2);
boolVal
= pext_permutation(BidirectIterl, Bidirectlter2, compareFunc);

boolVal = prev_permutation(BidirectIterl, BidirectIter2);
boolVal
= prev_permutation(BidirectIterl, BidirectIter2, compareFunc);

4.5.10 Miscellaneous Additional Operations

distance(Inputlterl, Inputlter2, distVal);

Distance computes and returns the distance between two iterators that form a valid
range. It is done in constant time for a random access iterator and in linear time otherwise.
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Actually, it increments the value of the third argument by the distance between the first
two.

advance(Inputlter, distVal);

This advances an iterator a fixed number of times. It is done in constant time for a
random access iterator and in linear time otherwise.

Function Objects

As we have seen, function objects are used in place of ordinary functions to pass proce-
dural information to an algorithm. The advantage of this is that it permits the template
mechanism to choose an appropriate function based on how the template is used, without
the programmer needing to provide several different versions of an algorithm. The func-
tion object categories that are the most used are the following:

unary predicates
binary predicates
compare functions
binary operators
unary operators

Because several particular function objects are often used, they are provided by the
STL itself. The classes are all derived from either the binary_function class or the un-
ary_function class. Both of these export typedefs that define the argument types and the
result types of the function. In this way a function using the template can get access to
the actual template arguments. For example, here is the definition of binary_function:

template <class Argl, class Arg2, class Result>
struct binary_function

{ typedef Argl first_arqument_type;

typedef Arg2 second_argument_type;

typedef Result result_type;

}i

So a binary function has two arguments, possibly of different types, as well as a re-
sult type. There is a corresponding class unary_function<Argl, Result> that defines op-
erators of a single parameter. Note that, generally speaking, an ordinary function of two
arguments can be used in place of a binary function object when necessary. One advantage
of an object, however, is the ability to store variables in it, which will retain their values
between uses.
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Arithmetic Operations

The STL provides six function object classes to define the most common arithmetic op-
erations. Typical is the plus class, shown here in its entirety.

template <class T>

struct plus : binary_function<T, T, T>

{ T operator()(const T& x, const T& y) const
{ return x + y;
}

}i

Note that we don't require that the arguments be built-in types, just that type T sup-
ports an operator+.

Also provided are classes minus<T>, times<T>, divides<T>, modulus<T>,
and negate<T>. The last of these is a unary function, while all of the others are binary.

Comparison Operations

Similar to the arithmetic operations are the comparison operations. Note that the return
type is bool, but the argument types may be any type supporting the individual operator
used.

template <class T>

struct equal_to : binary_function<T, T, bool>

{ bool operator()(const T& x, const T& y) const
{ return x == y;
}

}i

The others are not_equal_to<T>, greater<T>, less<T>, greater_equal<T>,
and less_equal<T>. These are all binary functions. Note that less<T> and greater<T>,
may be used as compare functions in the sort algorithms, but the others may not, due to
the restrictions on compare functions.

Logical Operations

The STL also provides two binary functions and one unary function for performing the
common logical operations. These are logical_and<T>, logical_or<T>, and
logical_not<T>. Again, these just apply the corresponding operator and return boolean
results.
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Adaptors

Adaptors take some object in the STL and transform it into something similar. There are
adaptors for functions, containers, and iterators. We shall look at each of these in turn.

Function Adaptors

There are three kinds of function adaptors: negators, binders, and pointer-to-function adap-
tors. All function adaptors are functions that return a modified object from a given object.
The negator adaptor not1 takes a unary predicate and returns another unary predicate that
negates the first one. Similarly, not2 negates binary predicates. Thus
not2(less<int>()) returns a  binary  predicate  equivalent to
greater_equal<int>().

The binder adaptors take a binary function object and a value and produce a unary func-
tion object that uses that value as one of the parameters of the original binary function.
Thus, bind1st(less<int>(), 5) produces a unary function that evaluates 5 < x for an ar-
gument of x. We say we bind 5 to the first parameter. Likewise, bind2nd will bind a
value to the second parameter. Therefore, bind2nd( divides<int> (), 5) produces a function
that divides its argument by 5.

The pointer-to-function adaptors take a pointer to an ordinary function and transform it
into a function object so that it may be used with the library. There is both a
pointer_to_unary_function adaptor and a pointer_to_binary_function adaptor.
The first takes a pointer to a function of one argument and creates and returns a corre-
sponding function object of one argument. In this way, ordinary C++ functions may be
used wherever the STL requires function objects.

Container Adaptors

The STL defines three container adaptors: stack, queue, and priority_queue. These
transform a container of another type into one of these. For example, the stack container
adaptor can transform a vector, list, or deque into a stack. It does this simply by providing
a restricted interface for the user. The container adaptors are defined as class templates.
Thus stack< list<int> > provides a stack implemented as a list. The template argument
for a container adaptor is a container of some type. Each adaptor works with only certain
container types.

4.7.2.1 Stack Adaptor

A stack adaptor may be applied to any vector, list, or deque. The stack adaptor provides
the following operations

bool empty(); const
size_type size(); const // number of elements
void push(const value_typeé&);
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void pop();

value_type& top():

const value_type & top() const;

template <class T>

bool operator==( const stack<T>&, const stack<T>&)
// Determines if two stacks have the same
// elements.

template <class T>

bool operator<

( const stack<T>g,
const stack<T>&

) // Compares the contents lexicographically.

4.7.2.2 Queue Adaptor

A queue adaptor may be applied to any list or deque. It won’t work with vectors because
of the difficulty of working at the front of a vector, which is required for a queue. The
queue adaptor provides the following operations.

bool empty(); const

size_type size(); const // number of elements
void push(const value_type&); // Insert at rear
void pop(); // Remove at front.

value_type& front(); // Element at front.

const value_type & front() const;

value_type& back(); // Element at rear.

const value_type & back() const;

template <class T>

bool operator==

( const queue<T>&,
const queue<T>&

) // Determines if two queues have the same
// elements.

template <class T>
bool operator<
( const queue<T>&,
const queue<T>&
)y // Compares the contents lexicographically.

4.7.2.3 Priority Queue Adaptor

A priority queue adaptor may be applied to any vector or deque. It also requires that a
comparison object be supplied. For example,
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priority_queue< vector< float>, greater<float> >

will provide a vector-based priority queue of floats in which greater is used as the com-
parison object. Since priority queues remove the “highest priority” element on a pop and
since greater's “highest priority” element is the smallest, this reverses the usual sense of a
priority queue.

The priority_queue adaptor provides the following operations:

bool empty(); const
size_type size(); const // number of elements
void push(const value_type&); // Insert
void pop(); // Remove highest priority item.
value_type& top();

// Element of highest priority.
const value_type & top() const;

Iterator Adaptors

There are two kinds of iterator adaptors: reverse iterators, and insert iterators. An iterator
adaptor transforms an iterator so that it behaves differently when executing its operators,
especially operator++ and operator=.

4.7.3.1 Reverse Iterators

A reverse iterator adaptor transforms a bidirectional iterator into one in which the direc-
tions of travel are reversed. Thus, operator++ will be transformed into operator--, and vice
versa. Each of the STL container types produces two reverse iterators rbegin() and rend()
that perform the reverse iteration. There are special versions of the reverse iterator adaptor
for bidirectional and for random access iterators.

The constructor reverse_bidirectional_iterator(Bidirectlter x) will produce a re-
verse iterator equivalent to x. If x is a random access iterator, then use
reverse_iterator(RandomAclter x) instead, and the result will also be a random access
iterator, but it will operate in the opposite direction from x.

4.7.3.2 Insert Iterators

Normally iterators apply operator= to de-references to modify existing positions in a con-
tainer. When using an insert iterator, these applications are translated into insertions in-
stead.

Suppose, for example, that we want to compute the partial sums of an existing
set<int> and put the results into a new vector. The following will produce an error:

vector<int> V; // New vector
partial_sum
( setl.begin(),
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setl.end(),
V.begin()
)i

The problem, of course, is that the vector has no room for the data: it has size zero.
We could initialize V with the size of the set, of course, but there is another solution. In-
stead of using V.begin() (or V.end(), which is just as bad), we can use a
back_insert_iterator instead.

vector<int> V; // New vector
partial_sum
( setl.begin(),
setl.end(),
back_insert_iterator< vector<int> >(V)

)i

This iterator will take the *V = ... operations done within partial_sum and translate
them into push_back(*V) operations instead. Thus, the vector will be properly extended
when necessary. A back insert iterator can be generated from the function back_inserter
by simply passing a container as the parameter. The container must support push_back,
of course. The result is a back_insert_iterator over that container. Note that the parameters
here are containers, not iterators.

There is also a front_insert_iterator that can be produced from any collection that
has a push_front operation. These can be conveniently constructed using the function
front_inserter.

Finally, there is an insert_iterator adaptor that can be produced from any container
that has an insert operation. This version requires that we pass both the container and an
iterator into that container.

For example, if we have a list L, and an iterator I into that list, then insert_iterator
(L,I) will produce an iterator that will do insertions at the point of 1.

Allocators

In STL an allocator is an encapsulation of a memory model. Some computers, such as In-
tel-based PCs have many different systems for organizing memory, and an allocator can
be used to separate the details of the memory model so that other parts of the library need
not be written to depend on a certain model. For example, in some memory models a
pointer need only be 16 bits long. In others it is required to be 32 bits. The new operator
of C++ depends on a certain memory model, but can be tailored to any such model. An
allocator exports a number of types such as pointer and reference, that other classes can
use. In particular, the reference type exported by a container class is defined in terms of a
particular allocator's reference type. An allocator also defines an allocation function that
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can be used to obtain blocks from the free store. It is not our purpose to discuss alloca-
tors. Additional material can be found in the STL Tutorial and Reference Guide. [3]

49 Summary
Make certain that you understand each of the following terms:

adaptor

allocator
bidirectional iterator
concept

container

forward iterator
function object
generic algorithm
input iterator
istream iterator
iterator

ostream iterator
output iterator
past-the-end values
random access iterator
reflexivity
symmetry
transitivity
sequence container
sorted associative container
singular values
strict total ordering

4.10 Exercises

1. Find a long piece of text to process. Read it into a vector using an istream iterator with
one word per cell. Then sort the vector and remove duplicate values with unique. How
long does this take? Now read the same text into a set. Note that it is already sorted with
duplicates removed. How long does this take?

2. Use binary search to find a large number of values (1000 or more) in the vector-based
spelling table of Exercise 1. How long does it take to find all of the values? Compare this
with the time required for the set-based spell table. Compare these times with the times
required to find twice as many values. Be careful to not always search for one (or only a
few) value.
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3. How long does it take to print out a long vector that was previously sorted? How long
does it take to print out a set with the same values?

4. An alternate method of maintaining a sorted container is to use a vector, but insert each
item into its sorted location rather than sorting after inserting all items. How long does it

take to do this, compared to the operations asked for in Exercises 1 and 2?

5. Repeat Exercise 1 using a list instead. You can sort it with the sort member of list,
rather than the generic sort algorithm. How long does this take?

6. Repeat Exercise 1 using a deque. What can you say about the relative efficiency of a
deque and a vector on these operations?

7. Compare stable_sort with sort for its time requirements on a large vector.

8. Merge two spelling tables with set_union. How much difference in time is there for set
and vector implementations?

9. Build a spelling table by reading into a multiset and then removing duplicates with
unique. How long does this take compared to set operations?

10. Use count to determine how many items are in your spelling table. Use count_if to
find the words with an even number of characters.

11. Use an appropriate STL generic algorithm to find the longest word in your spelling
table.

12. Use an appropriate STL generic algorithm to put quote marks around each word in the
spelling table. Don't change the original table, but produce a new one instead.
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5.1.

Vectors—Expandable Arrays

Suppose that you have a problem in which you need an array, but the size of the amray
can't be known at the time at which you create it. An example is when you need to read
in data from a file of unknown size and process it. You need to create the array in which
you wish to put the data before you begin to read the file, but you won't know until the
end of the file how much data there is. Vectors are ideal for this kind of problem, provided
that the problem only requires the array to grow at one end. If it must grow at both ends,
then a deque is better suited to the task. Here we are assuming, of course, that the other
processing required of the data requires an array-like structure. If we don't require random
access iterators in our processing, then a list will probably be a better choice in which to
hold the data.

The basic strategy for an expandable array is to initially allocate an array whose size is
a good guess at the size of the data. If this is difficult to do, then make a guess that is
adequate for a relatively small data set. Then begin to fill the array, keeping track of how
much data you have inserted relative to the size of the array allocated. If you reach the end
of the array, then simply allocate a larger array, copy the original array into the new one,
and then continue with the new, larger, array after deleting the original one. This sounds
like it might be slow, and it is. However, if the right strategy is chosen for allocating the
new array, then the time expended won't be so bad—on the average. This is because for
most allocations the insertion time is a small constant. It is only when we reach the
boundary that we absorb a large cost.

If an array can expand, then it can also shrink. If we discover that a large part of the ar-
ray is unused, and likely to remain unused, then we could also allocate a new, smaller ar-
ray, copy the old to the new, and continue with the new array. This might free up mem-
ory on the free store for use elsewhere in the program.

J. Bergin, Data Structure Programming
© Springer-Verlag New York, Inc. 1998
pring )
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The Indexing Problem

One problem that occurs frequently in applications is that of building an index to a file.
Suppose that we have a file that consists of records with two fields. The first field is the
key that is used to retrieve records. The purpose of retrieving a record is to get access to
the second field, the value. If the file is large, then it is useful to keep the file sorted by
key. There are many problems, however, in which it is not desirable to sort the records by
key, since they may need to be often processed in some other order, so that processing re-
quires that the ordering not be by key. In this case an index file will be very helpful. Fig-
ure 5.1 shows an example of a simple file and Figure 5.2 shows its index.

Smith, John 123 Main St Anytown

Jones, Mary 234 Oak Ave Gotham City
Kumar, Sue 345 Jefferson Ln Oak Island
Woo, Mark 456 Maple Ln Village Home
Kahn, J. P. 567 Front Street Uptown

Figure 5.1. A sample file.

Jones, Mary
Kahn, J. P.
Kumar, Sue
Smith, John
Woo, Mark

LWON =

Figure 5.2. An index file.

If we store the original records in a vector, so that we may easily extend its length,
then records may be accessed by subscript, assuming that we know which subscript to use
to obtain a given value. An index is a file of records, also with two fields. The first field
consists of the keys of the original file and the second field is just integer subscripts into
the first file. The subscript stored with a key in the index file is the location in the first
file at which a record with that key can be found. We suppose that we store the index file
in a vector also. Then, we can sort the index file by key, leaving the original file (vector)
in its original order. To get access to a record we first search the index vector, perhaps us-
ing binary search. This give us a subscript into the original file's vector.

As an overly simplified example, suppose that we have a file consisting of standard
C++ string objects for keys and float values. We store this file in a vector< pair< string,
float> >. To get access to the string class you should include <string> (not <string.h> )
into your file. The index is stored in a vector<pair< string, int> >. We can create the in-
dex when we read in the data file. The following function will read both the file and create
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the index. Note that strings are normally read a word at a time from an input stream. This
is because the stream will break at any whitespace character.

void readStrVec

( ifstream & inp,
vector<pair<string, float> > &V,
vector<pair<string, int> >&I

{ int i = 0;
string input;
float val;

while( inp >> input)
{ inp >> val;
V.push_back
( pair<string, float> (input, val) );
pair<string, int> p(input, i++);
I.push_back(p):;

After reading the file and creating the index, we sort the index with
sort(Index.begin(), Index.end());

This requires that we provide a special operator< so that pairs will be compared using
strcmp on the keys.

inline bool operator<
( const pair<string, int>& x,
const pair<string, int>& y
) .
{ return x.first < y.first;

// compare 2 string objects.

}

We can now search the index to obtain subscripts into the original file. The subscript
gives us the desired original pair with the desired key.

vector<pair<string , int> > :: const_iterator where;
where = lower_bound
( Index.begin(),
Index.end(),
pair<string , int>("times",0)
)
float val = Data[where->second] .second;



150

53

Data Structure Programming with the Standard Template Library in C++

Note that only the index file was sorted. This can be a big advantage when the original
file may not be sorted and also when it contains very large value fields, which are expen-
sive to move and hence expensive to sort. Note also that in this particular case, we have
not even copied the keys into the index file. We simply have pointers to the original key
strings. Therefore, the index file itself may be small in comparison to the original file. If
the size of the file is known in advance, we may use an armray instead of a vector, of
course. Indexed files on disk use a variation of this technique in which the integers in the
value fields of the index are replaced by disk block addresses.

How We Can Implement Vectors

In this section we will explore the implementation of a class that is much like the STL
vector class, though a little less sophisticated. It will give us a chance to see some im-
plem<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>