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Preface

This book is designed as a stepping stone for the students to enter into the world of computer science 
and engineering. All the students irrespective of different domain of technology if want to build carrier 
in the Computer Science and Engineering domain have to have enough knowledge in data structures. 
The Data structure is a course that helps students to accumulate knowledge about how data are stored 
and manipulated in the memory of any computing device. This book is written for the students who have 
knowledge about C and now are going to open their eyes in the domain of data structure. Hence, the 
prospective audience for this book consists primarily of sophomores and juniors majoring in computer 
science or computer engineering.

Chapter 1, in this book is designed in such a way that the students having no knowledge in data 
structure can boldly step forward into the zone of data structure.  This chapter has a detail overview on a 
data structure that includes definition of data structure, the categorisation of data structure. Operation on 
different data structure is also included in this chapter. The chapter ends with application of data structure.

Chapter 2, can be defined as a soul of this book. This chapter includes details of the algorithm. 
Definition of algorithm, life cycle of algorithm. Time complexity and space complexity measurement is 
explained in this chapter. Students will come to know about asymptotic notation and the manipulation 
of asymptotic notation in this chapter. Classification of the algorithm is also a major part of this chapter.

In the chapter 3, array is defined in broad way. The chapter includes details of one dimensional (1-D) 
array. Multidimensional array is also explained here. Address calculations of one and two dimensional 
array are shown in this chapter. Representation of a sparse matrix is given here. Manipulation of string 
is a major part of this chapter.

Chapter 4 can be defined as a heart of this chapter. This includes classification of pointers and array 
of pointers. Dynamic memory allocation (DMA) is one of the major contributions in this chapter. Stu-
dents will learn about different predefined functions that are used for DMA. They will also build their 
knowledge about need of DMA and the  shortcomings of DMA. Dynamically allocated spaces are how 
to de-allocate that is also explained here. Creation of one dimensional and two dimensional arrays using 
dynamic memory allocation is explained here.

In the chapter 5, detail of another a linear data structure is described. The name of this data structure 
is “Link List”. This chapter initiates with linear link list and finally it concludes with a doubly link list. 
Creation, traversal, insertion, deletion, reverse operations on the single link list, circular link list and the 
doubly link list are explained in broad way. Both algorithms and programs are given for each operation 
to make this chapter more student approachable. This chapter is application of DMA.

Chapter 6 deals with different aspects of Stack and Queue. The first part of this chapter explains 
Stack definition and basic operations on Stack. It is followed by the application of Stack in POSTFIX, 
PREFIX expression. Implementations of Stack using link list and array are also included in this chapter. 
Second part of this chapter is all about Queue. Definition of the Queue and basic operations on queue are 
specified here. Then categorisation of Queue is also given here. Different types of Queues like circular 
queue, de-queue and priority queue are explained with example. Each operation on Stack and Queue is 
accompanied with algorithm and programs.
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In chapter 7, recursion is explained in a comprehensive way. When students reach at this chapter 
they have acquired knowledge about non recursive functions. After completion of this chapter, students 
will come to know about recursive function. This chapter deals with the need of recursion, depth of 
recursion, type of recursion and the shortcomings of recursive functions. This chapter concludes with 
bags of programs on recursion that make students more familiar with recursion.

Chapter 8 involves a non-linear data structure. Until now the students accumulate their knowledge 
about the linear data structure. With this chapter they will reveal another look of data structure. This 
chapter focuses on Tree structure. This chapter initiates with binary tree followed by a binary search tree 
and end with multi way search tree. Each type of tree structure is explained with some basic operations 
on tree like creation, insertion of node, traversal, and deletion of nodes. Height balance tree is one of the 
major contributions of this chapter.

Chapter 10 focuses on another very important part of data structure that is Graph. Here, the graph is 
explained in detail. The chapter introduces the different terminology of graph like nodes, link, adjacent 
node, complete graph, path, circuit, walk, degree of vertex, etc.; it is followed by the memory repre-
sentation of the  graph. Then memory representation of a graph is explained in terms of the adjacency 
matrix, adjacency list, multi list, incident matrix. Then different graph traversal algorithm is explained. 
Spanning tree formation is also shown here by the means of Prim’s algorithm and Kruskal algorithm. 
The chapter also includes some algorithm to find shortest path using Bellman-Ford algorithm, Dijkstra’s 
algorithm, and Floyed-Warshall algorithm. The chapter concludes with different application of graph in 
different aspects of computer science and engineering fields. To make it easy -for student  programs are 
also written for all the algorithm explain in this chapter. Some lemmas are written for students who are 
going to study design analysis and algorithm.

In chapter 10, different types of searching and sorting algorithms are explained. For each searching 
and sorting algorithm recurrence relation is also derived using different approaches. The algorithms are 
explained with the help of examples in each case. Each sorting and searching algorithm is accompanied 
with programs so that the students can easily understand the algorithm and run the program without any 
difficulties. This chapter includes some basic sorting algorithm like bubble sort, insertion sort, merge 
sort, quick sort and also some advance sorting technique like radix sort, heap sort and shell sort.

Chapter 11 deals with hashing technique. It explains different terminology relates to hashing like 
hash function, hash table. This chapter also describes different types of hashing procedure with examples. 
Collision resolution techniques are also described in this chapter. Here, creation of hash table, insert in 
a hash table and delete from a hash table is explained with algorithm and program.

Chapter 12, the concluding chapter of this book gives a glimpse on file handling. Here, different 
ways of storing records in a file are explained. Indexing of records and searching of records from a file 
are also described in this chapter.

Debdutta Pal
Suman Halder 
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INTRODUCTION 
 

“Those who wise succeed must ask the right preliminary questions”. – Aristotle 

 

n Computer Science, one of the core fields that belongs to its 
foundations, with the design, analysis, and implementation of 
algorithms for the efficient solutions of the problem 
concerned. The data structure is one of the subjects that 

intrinsically connected with the design and implementations of 
efficient algorithms. 

The subject ‗Data Structure‘ deals with the study of methods, 
techniques, and tools to organize or structure data in computer 
memory. 

Now before defining Data Structure, we should know ―what is data?‖ and ―what is the difference 
between data and information?‖ 

Data and Information 

Data is a plural of datum, which is originally a Latin noun meaning ―something given.‖ 
The Oxford dictionary meaning of data is: 
i) Facts or statistics used for reference or analysis. 
ii) The quantities, characters or symbols operated by a computer. 
For our purpose, the second meaning is more important. Therefore, we can say that:  
The data represent quantities, characters, or symbols on which operations are performed by 

a computer, stored and recorded on either magnetic, optical, or mechanical recording media, and 
transmitted in the form of digital electrical signals.  

Definition: Data is the basic entity or fact that is used in a calculation or manipulation process. 
Data is commonly processed by some stages. Unprocessed data or raw data is a collection of 

numbers, characters, that may be considered as an input of a stage and processed data is the output of 
the stage. 

There are two types of data, such as numerical and alphanumerical data. Data may be a single 
value or a set of values and it is to be organized in a particular fashion. This organization or structuring 
of data will have a profound impact on the efficiency of the program. 

Most of the individuals consider that the terms "Data" and "Information" are interchangeable and 
mean the same thing. However, there is a distinct difference between the two words.  Data are raw 
facts without context, whereas Information is data with context. Data are an abstraction of Information 
in a problem-solving system. Data requires interpretation to become an Information.  

Data can be any character, text, words, number, pictures, sound, or video and if not put into 
context means nothing to a human or computer. For example, 10409 is a data, whereas information 

K E Y  F E A T U R E S  

 Data and Information 

 Data Structure 

 Data Type 

 Abstract Data Type 

 Classification of Data Structure 
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Processing 

Information Raw Data 

may be 1/04/09-the date of birth of Avinaba, 10409 a zip code of somewhere or Rs. 10409 is the salary 
of someone. 

 

 

 

Figure 1.1: Data and Information 

Representation of Data 

Almost all the high-level languages, e.g. FORTRAN, COBOL, C, Pascal, C++, Java, etc. allow data to 
be represented in computer memory of mainly two types: 

i) Numerical Data 
ii) Alphanumerical Data 
Most of the high-level languages classified numerical data into two types: 
i) Integer 
ii) Floating-point 
In C language, the following Data types are used to represent numerical data. 

Table 1.1: Ranges of numerical data types 

Data types Memory requirement Ranges 

char or signed char 1 byte -128 to +127 
unsigned char 1 byte 0 to 255 
short signed int or short int 
or signed int or int 2 bytes -32768 to +32767 

long signed int or long int 4 bytes -2147483648 to +2147483647 
signed int or int ( for 32 bit compiler) 4 bytes -2147483648 to +2147483647 
unsigned int 2 bytes 0 to 65,535 
long unsigned int 4 bytes 0 to 4294967295 
float 4 bytes -3.4e38 to +3.4e38 
double 8 bytes -1.7e308 to +1.7e308 
long double 10 bytes -1.7e4932 to +1.7e4932 

Integer  

For small integer data, most of the high-level languages generally use two bytes to represent both 
positive and negative decimal integers. Negative integer numbers are represented by 2‘s complement 
notation. For large integer data, generally, four bytes are used to represent both positive and negative 
decimal integers. 

Floating-Point 

In the representation of small floating-point data, most of the high-level languages, e.g. C language, 
use four bytes for fractional decimal numbers. For large numbers, double and long double are used to 
accommodate in memory. 

Alphanumerical data are classified into two types: 
i) Character 
ii) String 
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Character 

The characters may be alphabets, digits, special characters and white spaces. In C language, characters 
are represented by char data type and one-byte memory space is used for storing the same. The ASCII 
format has been used in C language to represent the characters. While storing character ‗C‘ in the 
computer, ASCII value 67 is stored in memory. 

String 

The string is a sequence of characters may consist of any number and any combination of characters. 
The characters may be alphabets, digits, special characters and white spaces. In C language, the string 
can be defined as an array of character terminated with a null character. 

Data Type 

Generally, computer programs do exist for a single purpose: how to process data. The type of data, the 
format of data that is going to be returned and the correctness of the processing are the primary 
concerns of a computer program. When a program is written, how the computer handles the data 
internally is usually a secondary concern.  

Definition: A data type refers to the type of data that variables hold. 
Now, depending on the representation of different forms of data, different data types are used. The 

data types are names given to a set of variables, which have common properties. A data type refers to 
the type of data that variables hold. 

 
  

Figure 1.2: Data Types 

The C language supports three classes of data types: 
i) Primary or Basic data types 
ii) Derived data types 
iii) User-defined data types 
Basic or primary data types are language built-in. The C language supports five primary or basic 

data types. They are 
i) char  ii)  int   iii) float   iv) double  v) void 

Data Structure 

Data Structure is the representation of the logical relationship between individual elements of data. In 
Computer Science, Data Structure is defined as a mathematical or logical model of organizing the data 
items into computer memory in such a way that they can be used efficiently. The purpose of studying 

Data types 

int char 

Primary Data types Derived Data types User-defined Data types 

float double void 
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data structure is to learn how to organize data into memory so that it can be accessed quickly and 
conveniently. 

Data Structure refers to the study of data and representation of data objects within the program; 
i.e., the implementation of structured relationships among different data objects. 

Example: lists, stacks, queues, heaps, search trees, hash tables, etc. 
Different sets of operations can be performed on different data structures. The operations that can 

be performed on different data elements within a data structure are accessing, traversing, inserting, 
deleting, modifying etc. While writing a program, a minimal data structure must be chosen that 
supports all the operations as per need. 

Data Structure can be used for the following purpose: 
i) Organizing the data – How data items are organized in the main memory? 
ii) Accessing methods – How data items can be accessed? 
iii) Specifying the degree of associativity – How data items are interrelated?  
iv) Processing alternatives for data – How many different ways are there in which these data 
items can be processed? 
A program is a set of instructions, which involve a computer performing some kind of 

computation or algorithm. Data Structure affects the design of both structural and functional aspects of 
a program. To implement a program of an algorithm, we should select an appropriate data structure for 
that algorithm. Therefore, the programs are inherited by an algorithm and its associated data structure.  

Algorithm + Data Structure = Program 

Programming languages provide facilities for representatives of algorithm and data. High-level 
Programming Language, like C, facilitates structured and modular programming by providing 
algorithm structures. 

Classifications of Data Structure 

Data Structure can be classified into two categories: 
i) Primitive data structure 
ii) Non-Primitive data structure 

Primitive Data Structure 

The primitive data structures are defined that can be manipulated or operated by the machine 
instruction. There are numerous types of data structures, generally built upon simpler primitive data 
types, called Primitive data structures, which are represented in computer memory. 

Example: Integer, floating point, characters, pointer, boolean, etc. are some of the different 
primitive data structure. 

In C language, the different primitive data structures are defined using the data type such as int, 
char, float, double etc. 

Non-primitive Data Structure 

The non-primitive data structures are a data structure that cannot be manipulated or operated directly 
by the machine instructions. These are more sophisticated data structures. Non-primitive data 
structures are derived from the primitive data structure. These are a group of homogeneous or 
heterogeneous data items. 

Example: Arrays, structure, stack, queues, linked lists etc. 
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The Non-primitive data structures are classified into two categories: 
i) Linear data structure 
ii) Non-linear data structure 

 
 
 
 
  
 

 

 

 
 

 

 

 
 
 
 

 
 

 

Figure 1.3: Classification of Data Structure 

Linear Data Structures 

The data structure is linear if every data item is related to its previous and next data items (e.g., array, 
linked list). In the linear data structure, data items are arranged in memory in a linear sequence and 
data items are accessed linearly. The traversing of the linear data structure is exactly once. 

Linear data structures are two types: 
i) Sequential 
ii) Linked 
Sequential Data Structures are based on arrays where objects are stored in a sequence of 

consecutive memory locations. 
Example: Arrays, Stacks, Queues 
Linked Data Structure is a data structure, which consists of a set of nodes linked together and 

organized with links. 
Example: Linked Lists, Linked Stacks, Linked Queues 

Non-linear Data Structures 

A data structure is non-linear if every data item attaches to many other data items in specific ways to 
reflect relationships (e.g., tree). In non-linear data structures, the data elements are not in sequence, i.e., 
insertion and deletion are not possible in a linear manner. The traversing of the non-linear data 
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structure is always more than one. 
Example: Graphs, Trees 

Static Data Structure 

The static data structure is a kind of data structure, in which once memory space is allocated it cannot 
extend, i.e. the memory allocation for the data structure takes place at compile-time that cannot be 
changed afterwards. 

Example: Array 

Dynamic Data Structure 

Dynamic Data Structure is another kind of data structure, which can be extended or shrink during the 
execution, i.e., the memory allocation as well as memory de-allocation for the data structure takes 
place at run-time and allocates memory as required amount at any time. 

Example: linked list, stack, queue, tree 

Applications of Data Structure 

Different Data Structure is used in real life, such as the representation of an image in the form of a bit-
map, implement printer spooler so that jobs can be printed in the order of their arrival, store 
information about the directories and files in a system, etc. Data Structure is used in various fields of 
Computer Science, such as: 

 Compiler Design 
 Operating System 
 Database Management System 
 Statistical Analysis Package 
 Numerical Analysis 
 Graphics 
 Artificial Intelligence 
 Simulation   
Different kinds of data structures are suitable for different kinds of applications. Some data 

structures are highly specialized for specific tasks. For example, databases use B-tree indexes for small 
percentages of data retrieval, and compilers and databases use dynamic hash tables as lookup tables, 
operating systems use queues for process management, I/O request handling. 

Abstract Data Type 

A data type refers to the type of data that variables hold. Thus, integer, real, characters are referred to 
as primitive data types. 

Data Object represents an object having a data. The study of classes of objects whose logical 
behavior is defined by a set of values and a set of operations. 

Definition: An Abstract Data Type (ADT) describes the data objects, which constitute the data 
structure and the fundamental operations supported on them. 

An ADT promotes data abstraction and focuses on what a data structure does, rather than how it 
implements (does). 

 An ADT is a conceptual model of information structure. 
 An ADT specifies the components, their structuring relationships and a list of operations that 

https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Hash_table
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are allowed to perform. 
 It is just a specification, no design or implementation information is included. 
 Specification involves the ―what‖ the operations, not the ―how‖. 
 ADT‘s are generalizations of primitive data types. 
A data structure is the design representation of an ADT. 
 The same ADT may be represented by several data structures. 
 There are many data structures corresponding to the ADT ―set‖. 

Operations Perform on Data Structure 

Data are processed by means of certain operations, which appear in the data structure. The particular 
data structure is chosen largely depends on the frequency of the operation that needs to be performed 
on the data structure. Different kinds of operations are to be performed on data structures. 

Table 1.2: Operations on Data Structures 

Operation Description 

Creation Allocation of memory for the data structure, the creation of data structure 
may take place either during compile-time or during run-time. 

Insertion Insert a data item in the data structure. 
Deletion Delete a data item from the data structure. 

Traversing Accessing and processing each data item of the data structure exactly once. 
Searching Find the location of the key value within the data structure. 

Sorting Arranging all the data items in a data structure either in ascending or in 
descending order or in lexicographical order (for Strings). 

Merging Combining the data items of two different sorted lists into a single sorted list. 

Overview of Different Data Structures 

Different data structures can be defined as follows: 

Array 

An array is a collection of the same type of data items, which are stored in consecutive memory 
locations under a common name. In arrays, there is always a fixed relationship between the addresses 
of two consecutive elements as all the items of an array must be stored contiguously. 

Stack 

A stack is a collection of elements into which new elements may be inserted and from which elements 
may be deleted only at one end called the top of the stack. Since all the insertion and deletion in a stack 
is done from the top of the stack, the last added element will be first to be removed from the stack. 
That is the reason why stack is also called Last-In-First-Out (LIFO) data structure. 

Queue 

A queue is a homogeneous collection of elements in which deletions can take place only at the front 
end, known as dequeue and insertions can take place only at the rear end, known as enqueue. The 
element, which inserts in the queue first, will delete the queue first. In this order, a queue is called 
First-In-First-Out (FIFO) system. 
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Linked List 

A linked list is an ordered collection of finite homogeneous data elements called node where the linear 
order is maintained by means of links or pointers. In linked list, data items may be scattered arbitrarily 
all over the memory. In a linked list, there is no relationship between the addresses of elements; each 
element of a linked list must store explicitly the address of the element, next to it. 

Tree 

The tree is a non-linear data structure. A Tree may be defined as a non-empty finite set of nodes, such 
that 
i) There is a specially designated node called the root,  
ii) The remaining nodes are partitioned into zero or more disjoint trees T1, T2, … Tn are called the 

subtrees of the root R. 

Graph 

The graph is another non-linear data structure. A Graph G is defined as an ordered set G = (V, E), 
consists of finite non-empty set of objects V, where V (G) = {v1, v2, v3, … vn} called vertices (or nodes 
or points) and another set E where E (G) = {e1, e2, e3, …em} whose elements are called edges, that 
connects these vertices. 

Summary 

 Data is the basic entity or fact that is used in the calculation or manipulation process. 
 Data are raw facts without context, whereas information is data with context. 
 Data Structure is defined as a mathematical or logical model of the particular organization of data 

items in computer memory so that it can be used efficiently. 
 An Abstract Data Type (ADT) describes the data objects, which constitute the data structure, and 

the fundamental operations supported on them. 

Exercises 

1. What are the differences between linear and non-linear data structures? 
2. What are the operations can be performed on data structures? 
3. What is an Abstract Data Type? What do you mean by a Dynamic Data Structure? 
4. Choose the correct alternatives for the following: 
i) Which of the following data structure is a linear data structure? 
 a) Trees b) Graphs c) Arrays d) None of these 
ii) The operation of processing each element in the list is known as 
 a) Sorting b) Merging c) Inserting d) Traversal 
iii) Finding the location of the element with a given key in the list  is known as 
 a) Traversal b) Searching c) Sorting d) None of these 
iv) Representation of data structure in memory is known as 
 a) Recursion b) Abstract data type c) Storage structure d) File structure 
v) An ADT is defined to be a mathematical model of a user-defined type along with the collection 

of all__________operations on that model 
 a) Cardinality b) Assignment c) Primitive d) Structured 
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ANALYSIS OF ALGORITHM  
 

“Programming is the art of telling another human being what one wants the computer to do”. – 

Donald Knuth 

 
n algorithm is a well-defined computational procedure that 
transforms inputs into outputs achieving the desired input-
output relationship. We must design a process to solve a 

specific problem before programming. This process must be 
formulated as a detailed sequence of basic steps, which is called an 
algorithm. An algorithm can perform the calculation, data processing 
and automated reasoning task in a finite time. 

The word ―algorithm‖ is a Persian word algorism derived from 
the name of the Persian author and great mathematician ―Abu Abd 
Allh Jafar Mohammad bin Musba al Khowarzimi‖ (Born in 780 A.D. in Baghdad). He worked on 
algebra, geometry, and astronomy. He designs the first algorithm for adding numbers represented in 
the numerical system. 

ALGORITHM 

Definition: Algorithm is a finite sequence of instructions/steps, each of which is very elementary that 
must be followed to solve a problem.  

All algorithms must satisfy the following criteria: 
 Input: There are some inputs (zero or more quantities), which are externally supplied. 
 Output: The result (at least one quantity) should be produced after completion of the job to 

the user. 
 Definiteness: The instructions should be unique, concise, clear and unambiguous. 
 Finiteness: The instructions should be relative in nature and should not be of an infinite type. 

Should be terminated after a finite number of steps. 
 Effectiveness: Every instruction must be elementary, so that it can be carried out, in principle, 

by a person using only pencil and paper. Repetition of same steps should be avoided. It must 
be feasible. 

Types of Algorithms 

Algorithms that use a similar problem-solving approach can be grouped together. This classification 
scheme is neither exhaustive nor disjoint. The purpose of this classification is to highlight the various 
ways in which a problem can be solved. Using different techniques, one can develop many algorithms 
for the same problem. These techniques are not only applicable in Computer Science but also to other 
fields such as Operation Research, Electrical Engineering etc. We can formulate/develop a good 
algorithm by studying all the techniques. 

K E Y  F E A T U R E S  

 Algorithm 

 Types of Algorithm 

 Time Complexity 

 Space Complexity 

 Asymptotic Notations 

A 

CHAPTER 2 
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Algorithm types we will consider  
 Divide and conquer 
 Dynamic programming 
 Greedy Method 
 Backtracking 
 Branch and Bound 
 Serial or parallel or distributed algorithm 
 Deterministic or non-deterministic algorithm 

Algorithm Development Life Cycle 

In the life cycle of an algorithm for the development of an algorithm, the following phases are 
involved: 

i) Algorithm design / Design Phase 
ii) Writing Phase 
iii) Testing / Experiment Phase 
iv) Analysis of Algorithm / Analysing Phase 

Algorithm Design 

Algorithmic design patterns, which provide general techniques for designing algorithms, including 
divide-and-conquer, dynamic programming, greedy method, backtracking, and branch-and-bound. In 
the design phase of an algorithm, one of the algorithmic design techniques and the data structure is 
used. 

Writing Phase 

An algorithm generally is written in a modular approach. An algorithm may have the following 
structures or steps: 

Input Step, Initialization Step, Assignment Step, Decision Step, Repetition Step and Output Step. 
To make each and every step clear in the algorithm, comments are written whenever necessary. 
An algorithm is written using the following basic methods: 
 Sequential: Steps are performed sequentially. 
 Selection/Decision: One of the several alternative actions is selected. 
 Repetition: One or more than one step(s) are performed repeatedly. 
The following example describes a formal representation of an algorithm that converts 

temperature from Celsius to Fahrenheit. 

Algorithm to convert temperature from Celsius to Fahrenheit. 

Algorithm: Convert(C, F) 

[The variable C is used as Celsius value and F is used as Fahrenheit 

value] 

1. Read C 

2. Set F = 1.8 * C + 32 

3. Print F 

4. Return 
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The following algorithm calculates the summation of N natural numbers. First, we have to read the 
value of N. 

Algorithm to calculate the sum of N natural numbers. 

Algorithm: Sum (N) 

[The variable N is represented the number of natural numbers.] 

1. Set S = 0 and I = 1 

2. Read N 

3. S = S + I 

4. I = I + 1 

5. If I<=N Goto Step 3 

6. Print S 

7. Return 

Searching refers to the operation of finding the location of any element in the array. The search is 
successful if the item is found; otherwise, it is unsuccessful. Linear search is a method where the 
search starts from the beginning of the array until the desired key is found or the end of the array is 
reached. 

Algorithm of Linear search. 

Algorithm: Linear_Search (A, N, Key) 

[An array A with N elements and an item Key are given. This 

algorithm searches the location of the Key in the array A] 

1. Set I = 1 

2. Repeat Steps 3 while I <= N and A[I]≠ Key 

3. I = I + 1 

   [End of while]  

4. IF I <= N then  

        Print: Item found at location I 

   Else 

        Print: Item not found 

   [End of IF] 

5. Return 

Testing Phase 

After writing an algorithm, it is necessary to check whether the algorithm is correct or not. One must 
perform each step using paper and pencil by some required valid input, use the algorithm and get the 
required output in a finite time. Testing or Experiment is another step in the development of the 
algorithm. When any error is found, then go back to the algorithm design phase and redesign the 
algorithm. 

Analysis of Algorithms 

Algorithms are to be analysed to compute the objective criteria for different input size before actual 
implementation. Suppose P is a problem and A & B are two different algorithms to solve the problem 
P. There must have some performance measurement system to decide that which algorithm is better 
than the other. 

Suppose M is an algorithm and n is the size of the input data. The time and space used by the 
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algorithm M are two main measures for the efficiency of M. 
The complexity of an algorithm M is the function f (n) which gives the running time and/or 

storage space requirement of the algorithm in terms of the size n of the input data. 
There are some qualitative aspects of algorithms, e.g., simplicity, readability, modularity, 

modifiability, well documented, etc. However, based on these, there can only be some subjective 
judgment about algorithms. Moreover, the objective criteria for the qualities of an algorithm are the 
amount of memory used and execution time. 

Therefore, the performance of the algorithm can be measured on the scales of time and space. 
Time means, we are looking for the fastest algorithm for the problem. Space means we are looking for 
an algorithm that consumes or needs minimum memory space for its execution. 

When performance is measured in terms of space, it is known as space complexity and when 
performance is measured in terms of time, it is termed as time complexity. 

There are two kinds of analysis of algorithm may be possible:  
i) Apriori Analysis 
ii) Posteriori Analysis 

Theoretical / Apriori Analysis  

Apriori meaning "from the earlier". It is on a theoretical basis, independent of programming languages 
and machine structures. Here, we do analysis (space and time) of an algorithm prior to running it on a 
specific system. That means we can determine time and space complexity of an algorithm of getting 
the algorithm rather than running it on a particular system (with different processor and compiler). The 
stress is laid on the frequency of execution of statements in the algorithm. 

Empirical / Posteriori Analysis  

Posteriori means "from the latter". The actual amount of space and time taken by the algorithms are 
recorded during execution. It is dependent on the programming language used and machine structure. 
Here, we do an analysis of the algorithm only after running it on the system. It directly depends on the 
system and changes from system to system.  

In real-life, we cannot do posteriori analysis as software is generally made for an anonymous user, 
which runs it on a system different from those present in the industry. Therefore, in Apriori analysis, 
we use asymptotic notations to determine time and space complexity as they change from computer to 
computer but asymptotically they are same 

Space Complexity 

The space complexity is the amount of space (memory) is needed for an algorithm to solve the 
problem. An efficient algorithm takes space as small as possible. 

Space needed by a program is the sum of the following components: 
1. Instruction space: Space needed to store the executable version of the program and it is fixed.  
2. Data Space: Space needed to store all constants, variable values and has further following 
components: 

a) Space needed by constants and simple variables. This space is fixed. 
b) Space needed by fixed sized structured variables, such as arrays and structure. 
c) Dynamically allocated space from memory pool called heap. This space usually varies. 

3. In-build stack space: Space needed to store the information needed to resume the suspended 
functions. Each time a function, the following data is saved on the In-build stack. 
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d) Return address i.e. from where it has to resume after completion of the called function. 
e) Values of all local variables and the values of formal parameters in the function being 

involved. 
In general, the total space needed  
1. Fixed Space Requirement: Includes space for code, space for simple variables, constants. 
2. Variable Space Requirement: Includes space needed by component variables, structured 

variable and dynamically allocated space and the recursive stack space. 
Therefore, space complexity of a program P is 
S (P) = C + Sp (I) 
Where C is the fixed space requirement independent of a particular problem and Sp (I) is the 

variable Space requirement depends on the instance characteristics I. Space complexity can express 
that result in big O notation. Consider the following algorithm. 

Algorithm: INT SUM (A, N)  

1. IF N ≠ 0 then return SUM (A, N-1) + A [N-1] 

2. Return 0 

The above recursive function for summing a list of numbers, memory space is required for each 
recursion call of the function, 2 bytes of the parameter A, 2 bytes for the parameter N and 2 bytes for 
the return value. The total space required per recursive call 6 bytes and N number of recursive calls are 
required to summing the list.  Therefore, we get SSUM (I) = SSUM (n) = 6n.  

Hence, we can write the space complexity of the above function in big-O notation is O (n). 
Often, there is a time-space trade-off in a problem, where we compromise; that is, we cannot have 

both low computing time and low memory consumption, so depending on the algorithm we choose 
whether low computing time is essential or memory consumption. 

Time complexity 

The time complexity of an algorithm is a number of computer time needs in execution to complete. It 
allows comparing the algorithms to check which one is efficient.  

There are different factors affecting the execution time, e.g. programmer skills, compiler options, 
hardware characteristics (instruction set, clock speed), the algorithm used, input size, etc. Generally, an 
estimate of the growth rate of execution time with input size is sufficient for comparison. 

The rules for computing running time 
1. Sequence: Add the time of the individual statements. The maximum is the one that counts. 
2. Alternative structures: Time for testing the condition plus the maximum time taken by any of 

the alternative paths. 
3. Loops: Execution time of a loop is at most the execution time of the statements of the body 

(including the condition tests) multiplied by the number of iterations. 
4. Nested loops: Analyze them inside out. 
5. Subprograms: Analyze them as separate algorithms and substitute the time wherever 

necessary. 
6. Recursive Subprograms: Generally, the running time can be expressed as a recurrence 

relation. The solution of the recurrence relation yields the expression for the growth rate of 
execution time. 

Now, Time taken by a program P means, 
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T (P) = compile time + run time  
While measuring the time complexity of an algorithm, we concentrate on the frequency count of 

all key statements (important statement). 
Let us consider three algorithms. 
Algorithm 

a = a + 1 

In this algorithm, the frequency count of key statement a = a + 1, is one. 
Algorithm 

For I = 1 to n 

        a = a + 1 

[End of loop] 

In this algorithm, the frequency count of key statement a = a + 1, is n. 
Algorithm 

For I = 1 to n 

  For J = 1 to n 

           a = a + 1 

      [End of loop] 

[End loop]   

In this algorithm, the frequency count of key statement a = a + 1, is n2. 
In the first algorithm the statement ―a = a + 1‖ is executed only once, in the second algorithm, ―a = 

a + 1‖ is executed n times and in the third algorithm, ―a = a + 1‖ is executed n2 times. 
If an algorithm performs f (n) basic operations when the size of input is n, then its total running 

time will be t × f (n), where t is the time required to perform a basic operation. 

Note: Different operations consume different times to execute, however for simplicity, we are 
assuming that each basic operation consumes same time to execute, which is say t in the above case. 

There are three types of time complexities, which can be found in the analysis of an algorithm: 
1. Best case time complexity 
2. Average case time complexity 
3. Worst case time complexity 

Best-case time complexity 

The best-case time complexity of an algorithm is a measure of the minimum time that the algorithm 
will require. For example, the best case for a simple linear search on a list occurs when the desired 
element is the first element of the list. 

Worst-case time complexity    

The worst-case time complexity of an algorithm is a measure of the maximum time that the algorithm 
will require. A worst-case estimate is normally computed because it provides an upper bound for all 
inputs including the extreme slowest case also. For example, the worst case for a simple linear search 
on a list occurs when the desired element is found at the last position of the list or not on the list. 

Average-case time complexity 

The average-case time complexity of an algorithm is a measure of average time of all instances taken 
by an algorithm. Average case analysis does not provide the upper bound and sometimes it is difficult 
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to compute. 
Average-case time complexity and worst-case time complexity are the most used in algorithm 

analysis. Best-case time complexity is rarely found but is does not have any uses.  

ASYMPTOTIC NOTATIONS 

There are some notations commonly used in performance analysis to characterize the complexity of an 
algorithm. Big Oh (O), little oh (o), omega (Ω), theta (Θ) and little omega (ω) are related notations to 
describe different kinds of bounds on asymptotic growth rates. 

Big O notation introduced in 1894 by Paul Bachmann, popularized in Computer Science by 
Donald Knuth, who re-introduced the related Omega and Theta notations. 

Big-O (“big oh”) Notation (Upper Bound) 

The big-O notation is the formal method of expressing the upper bound of an algorithm's running time. 
It is a measure of the longest amount of time it could possibly take for the algorithm to complete. This 
notation allows us to compare a function to a set of functions that are bounded by some other function, 
allowing us to describe the performance of a particular algorithm. 

 

 

 

 

 
 

 

 

 

Figure 2.1: Big-O Notation  

If f (n) and g (n) are functions defined for positive integers, then we write f (n) = O (g (n)) if there 
exist positive constants n0 and c such that | f (n) | ≤ c | g (n |, for all n ≥ n0. 

In general, O (g (n)) = {f (n): there exist positive constants c and n0 such that 0 ≤ f (n) ≤ cg (n) for 
all n, where n ≥ n0}. 

That is the right of n0, the value of f (n) always lies on or below cg (n). This notation gives an 
upper bound for a function to within a constant factor. 

Example: 

Suppose f (n) = 3n + 2 

Now we can write f (n) = 3n + 2 ≤ 4n, for all n≥2, here g (n) = n, c = 4, n0 = 2 

Hence, we can write f (n) = O (g (n)) = O (n) 

Example: 

Suppose f (n) = 10n2 + 4n + 2 
Now we can write f (n) = 10n2 + 4n + 2 ≤ 11n2, for all n ≥ 5, here g (n) = n2, c = 11, n0 = 5 

Hence, we can write f (n) = O (g (n)) = O (n2) 

cg(n) 

f(n) 

no 
f(n)=O(g(n)) 

n 
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Example: 

Suppose f (n) = 2n3 + n2 + 2n 
Now we can write f (n) = 2n3 + n2 + 2n ≤ 3n3, for all n ≥ 2, here g (n) = n3, c = 3, n0 = 2 

Hence, we can write f (n) = O (g (n)) = O (n
3
) 

Big-Ω (Omega) Notation (Lower Bound) 

Big-Ω notation is the formal method of expressing the lower bound on an algorithm's running time. It 
describes the best that can happen for a given data size. If f (n) and g (n) are functions defined for 
positive integers, then we write f (n) = Ω (g (n)) if there exist positive constants n0 and c such that          
| f (n) | ≥ c | g (n) |, for all n≥ n0. 

 
 

 

 

 

 

  

 

Figure 2.2: Omega Notation 

In general, Ω (g (n)) = {f (n): there exist positive constants c and n0 such that 0≤ cg (n) ≤ f (n) for 
all n, where n≥ n0}. 

That is the right of n0, the value of the function f (n) always lies on or above cg (n). This notation 
gives a lower bound for a function to within a constant factor. 

Example: 

Suppose f (n) = 3n + 2 

Now we can write f (n) = 3n + 2 ≥ 3n, for all n ≥ 1, here g (n) = n, c = 3, n0 = 1 

Hence, we can write f (n) = Ω (g (n)) = Ω (n)  

Example: 

Suppose f (n) = 10n2 + 4n + 2 

Now we can write f (n) = 10n2 + 4n + 2 ≥ 10n2, for all n≥1, here g (n) = n2 , c = 10, n0 = 5 

Hence, we can write f (n) = Ω (g (n)) = Ω (n2) 

Example: 

Suppose f (n) = 2n3 + n2 + 2n 
Now we can write f (n) = 2n3 + n2 + 2n ≥ 2n3, for all n ≥ 1, here c = 2, n0 = 1 

Hence, we can write f (n) = Ω (g (n)) = Ω (n3) 

cg(n) 

no f(n)=Ω(g(n)) 

f(n) 

n 
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Θ (Theta) -Notation (Tight Bound) 

If f (n) & g (n) are functions defined for positive integers, then we say f (n) = Θ (g (n)) if there exists 
positive constants n0, c1 and c2 such that  

c1 | g (n) |, ≤ | f (n) | ≤ c2 | g (n) |, for all n ≥  n0 

In general, Θ (g (n)) = {f (n): there exist positive constants c1, c2 and n0 such that c1 g (n) ≤ f (n) ≤ 

c2 g (n) for all n, where n≥ n0}. 
That is the right of n0 the value of the function f (n) always lies between c1 g (n) and c2 g (n) 

inclusive. This notation bounds a function to within constant factors. This is saying that the function, f 
(n) is bounded from both the top and bottom by the same function, g (n).  

 

 

 

 

 

 

 
 

 

 

Figure 2.3: Theta Notation 

Example: 

Suppose f (n) = 3n + 2 

Now we can write 3n  ≤  3n + 2 ≤  4n, for all n ≥ 2, here g (n) = n, c1 = 3, c2 = 4, n0 = 1 

Hence, we can write f (n) = Θ (g (n)) = Θ (n) 

Example: 

Suppose f (n) = 10n2 + 4n + 2 

Now we can write 10n2  ≤  10n2 + 4n + 2 ≤  11n2, for all n ≥ 5 

Here g (n) = n2, c1 = 10, c2 = 11, n0 = 5 

Hence, we can write f (n) = Θ (g (n)) = Θ (n2) 

Example: 

Suppose f (n) = 2n3 + n2 + 2n 
Now we can write 2n3  ≤  2n3 + n2 + 2n ≤  3n3 for all n ≥ 2, here, c1 =2, c2 = 3, n0 = 2 

Hence, we can write f (n) = Θ (g (n)) = Θ (n3) 

o (“little oh”) - Notation  

For non-negative functions, f(n) and g(n), f(n) is little o of g(n) if and only if f(n) = O(g(n)), but f(n) ≠ 
Θ(g(n)). This is denoted as "f(n) = o(g(n))". 

f(n)=Ө(g(n)) 

c2g(n) 

no 

f(n) 

c1g(n) 

n 
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= 0 
lim 

n → ∞ 
n4 

lim 

n → ∞ 
4n3+2n+3 

――― 
     n2 

= ∞ 

(2n3 + 3n2 + n + 10) 

lim 

n → ∞ 

f(n) 

― 
g(n) 

= ∞ 

This represents a loose bounding version of Big O; g(n) bounds from the top, but it does not bound 
the bottom. Little-o notation represents a loose bounding version of Big O, g (n) bounds from the top, 
but it does not bound the bottom. 

If f (n) & g (n) are functions defined for positive integers, then we say f (n) = o (g (n)) iff 

  
Example: 

Suppose f (n) =2n3 + 3n2 + n + 10 

 
Now we can write,   

 
i.e. here g (n) = n

4 

Hence, we can write f (n) = o (g (n)) = o (n4) 
Another definition of little oh (o) is that,  
If f (n) & g (n) are functions defined for positive integers, then we say f (n) = o (g (n)) iff 
f (n) = O (g (n)) and f (n) ≠ Θ (g (n)) 

ω (little omega)-Notation 

Little-ω notation represents a loose bounding version of Big-Ω; g (n) is a loose lower boundary of the 
function f (n); it bounds from the bottom, but not from the top.  For non-negative functions, f(n) and 
g(n),  f(n) is little omega of g(n) if and only if f(n) = Ω(g(n)), but f(n) ≠ Θ(g(n)). This is denoted as 
"f(n) = ω(g(n))". 
We can write f (n) = ω (g (n)) iff 

 

 

 

Example: 

Suppose f (n) = 4n3 + 2n + 3 
Now we can write, 
 
 
Here g (n) = n2 
Hence we can write f (n) = ω (g (n)) = ω (n2) 

Growth Functions of Algorithm 

The big-O notation is used to classify algorithms by how they respond in their processing time or 
working space requirements to changes in the input size. Order of growth in algorithm means how the 
time or space for computation increases with input size, i.e. how the growth function grows with the 
input size. Now, based on growth functions, the algorithm can be categorized as follows: 
 

lim 

n → ∞ = 0 

f(n) 

― 
g(n) 
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1. Constant time algorithms [ O(1) ]:  
This means that the algorithm requires the same fixed number of steps regardless of the size 
of the task. 

Example: Array access, Push and pop operations for a stack, enqueue and dequeue operations 
for a queue, other atomic operations. 

2. Logarithmic time algorithms [ O (    ) ]: 

Logarithm time algorithms mean that T(n) is upper bounded by logarithmic of the input size, 
i.e. T(n) =     .  

Example: Binary search in a sorted list of n elements, Insert and Find operations for a binary 
search tree with n nodes, Insert and Remove operations for a heap with n nodes, etc. 

3. Linear time algorithms [ O (n) ]:  

Linear time algorithm means that for large enough input sizes the running time increases 
linearly with the size of the input.  

Example: Array traversal 

4. Linearithmic time algorithm [ O (n    ) ]: 

An algorithm is said to run in linearithmic time when T(n) =  O (n    ). Thus, a linearithmic 
term grows faster than a linear term, but slower than any polynomial in n with degree greater 
than 1. 

Example: Merge sort, Heap sort 

5. Polynomial time algorithms [O (n
k
), for k > 1 ]: 

i) Quadratic time (O (n2)) algorithm: The number of operations is proportional to the 
size of the task squared. 

Example: Slow sorting algorithms, for example, selection sort of n elements. 

ii) Cubic time (O (n3)) algorithm: The number of operations is proportional to the size 
of the task cubed. 

Example: Matrix multiplication 

6. Exponential time algorithms [ O (k
n
), for k>1 ]:  

Exponential time algorithm means that T(n) is upper bounded by exponential expression of 
input size, i.e. T(n) = kn 

Example: Towers of Hanoi, implementation of recursive Fibonacci, generating all 
permutations of n symbols. 

7. Factorial time algorithms [ O (n!) ]:  

Polynomial time algorithm means that T (n) is upper bounded by the factorial of the input 
size, i.e. T(n) = n!.  

Example: Non-attacking n queen problem, traveling salesman problem by brute-force search 

The best time in the above list is obviously constant time, and the worst is exponential time, 
which, as we have seen, quickly overwhelms even the fastest computers even for relatively small n. 
Polynomial growth (linear, quadratic, cubic, etc.) is considered manageable as compared to 

https://en.wikipedia.org/wiki/Degree_of_a_polynomial
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exponential growth. 

Table 2.1: Values for different growth functions 

n log2n nlog2n n
2
 n

3
 2

n
 

1 0 0 1 1 2 
2 1 2 4 8 4 
4 2 8 16 64 16 
8 3 24 64 512 256 
16 4 64 256 4096 65536 
32 5 160 1024 32768 2147483648 

Order of asymptotic behavior of the functions from the above list, we can compare among time 
complexities: 

O (1) < O (    ) < O (n) < O (nk) < O (kn) < O (n!)   

 

 

 

 

Figure 2.4: Big-O Complexity 

Some important points: 
 Factorial time algorithms are worst 
 Factorial and exponential time algorithms are impractical 
 Even polynomial time algorithms of  greater than O (n3) are impractical 
 It may be possible to reduce the time complexity significantly by changing the algorithm 

design strategy 
 For logarithmic time algorithms, if the input is to be read, the total solution may become 

linear time. 
Many algorithms such as advanced sorting algorithms - quicksort, merge sort, heap sort are of 

growth function O (n     ), known as linearithmic time; comparisons between O (n     ) and other 
growth functions 

O (n) < O (n     ) < O (n2) 
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Manipulation of Asymptotic Notations 

A number of rules to manipulate asymptotic notations are followed: 
Rule 1: O ( c f (n)) = O (f (n)) 
Rule 2: O (O (f (n)) = O (f (n)) 
Rule 3: O (f (n) g (n)) = f (n) O (g (n)) 

Rule 4: O (f (n) O (g (n)) = O (f (n) g (n)) 

Rule 5: O (f (n) + g (n)) = O (max (f (n), g (n)) 

Rule 6: If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)). [Transitivity Rule] 

Rule 7: f(n) = O(g(n)) iff g(n) = Ω(f(n)). [Symmetry Rule] 

Suppose, in an algorithm consists of two independent parts-A1 and A2. These parts may be 
considered as a sub-algorithm or a single instruction. Let us assume that A1 and A2 take time t1 and t2 
respectively for computation.  

Now, whenever these two parts are in a sequential structure that means first A1 is computed, and 
then A2 is computed, denoted by A1: A2, the total computation time is t1 + t2. According to maximum 
rule, the computation time denoted by max (t1, t2). 

Example: 

Suppose t1 = O (n2) and t2 = O (n), calculate the total computation time for A1:A2 
Answer: For A1:A2, computation time  = t1 + t2 
     = max (t1, t2) 
     = max (O (n2), O (n)) 
     = O (n2) 

Again reconsider A1 and A2 are two independent parts of an algorithm, with t1 and t2 as 
computation times respectively. Now, whenever these two parts are in a decision structure, that means 
A1 is computed only when the given condition is true, otherwise, A2 is computed when the condition is 
false, denoted by A1 / A2, the total computation time is t1 / t2. According to maximum rule, the 
computation time denoted by max (t1, t2). 

Example: 

Suppose t1 = O (n2) and t2 = O (n), calculate the total computation time for A1/A2 
Answer: For A1/A2, computation time  = t1 / t2 
     = max (t1, t2) 
     = max (O (n2), O (n)) 
     = O (n2) 

Example: 

sum = 0; 

for (i=0; i<3; i++) 

 for (j=0; j<n; j++) 

  sum++; 

Here, the statement sum++ executes 3n times.  

Answer: The complexity is O (n)  
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Example: 

sum = 0; 

for (i=0; i<n*n; i++) 

 sum++; 

Here, the statement sum++ executes n2 times.  

Answer: The complexity is O (n2) 

Example: 

sum = 0; 

for (i = 0; i < n; i++){ 

 if (is_even(i)) { 

 for (j = 0; j < n; j++) 

  sum++; 

 }  

 else 

 sum = sum + n; 

} 

Here, inside the loop: if ―true‖ clause executed for half the values of n, that is O(n) and  if ―false‖ 
clause executed for the other half of n, O(1), so innermost loop is O(n). The outer loop is O (n). 

Answer: The complexity is O (n2) 

Example:  

for(i=1;i<=n;i++){ 

 for(j=1;j<=2*i;j++){ 

  k=j; 

  while(k>=0) 

   k=k-1; 

 } 

} 

At first, consider the innermost while loop: it is executed k = j, j − 1, j − 2. . . 0.  Time consumed 
inside the while loop is constant. Let I () be the time consumed in the while loop. Thus,  

I (j) =     


j

0k
1     + 1 

Consider the middle for loop, its running time is determined by i. Let M (i) be the time consumed 
in the for loop: 

  M (i) = 


i2

1j
)j(I   

         = 



i2

1j
)1j(  

         = 


i2

1j
j  + 



i2

1j
1  
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          =  
2

)1i2(i2    + 2i 

         = 2i2 + 3i 
Finally, the out-most for loop, it is executed i = 1, 2, 3. . . n. Let T (n) be running time of the entire 

algorithm: 

  T (n) = 


n

1i
)i(M  

         =  



n

1i
)i32i2(  

         =  


n

1i
2i2  +  



n

1i
i3  

         = 2 6
n2n33n2   + 3

2
)1n(n   

         =  
6

n11n15n4 23   

        = O (n3)  

Answer: The complexity is O (n3) 

Example:  

T (n) = 4n2 + 3n    , express T (n) in Big-O notation 
Ta = 4n2 = O (n2) and 
Tb = 3n     = O (n    ) 
Now, T (n)  = O (max (Ta, Tb)) 
  = O (max (O (n2), O (n    ))) 
  = O (n2) [because n >    , hence n2 > n    ] 

Summary 

 The algorithm is a finite sequence of instructions/steps, each of which is very elementary that must 
be followed to solve a problem.  

 The space complexity of a program is the amount of memory it needed to run to completion. 
 The time complexity of a program is the amount of computer time needs to run to completion. 
 The asymptotic notations commonly used in performance analysis to characterize the complexity 

of an algorithm. 
 The big-O notation is the formal method of expressing the upper bound of an algorithm's running 

time. 

Exercises 

1. Show that the function f (n) defined by 
f (1) = 1 
f (n) = f (n-1) +  

 
 for n > 1 

has a time complexity O(    ). 
2. Define Big-O notation, Θ notation, Ω notations. 
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3. The designer of an algorithm needs to balance between space complexity and time complexity.‖-
Comment on the validity of the statement in the context of recursion algorithms. 

4. Choose the correct alternatives for the following: 
i) Which of the following is the best time for an algorithm? 
 a) O (n) b) O (    ) c) O (2n) d) O (n     ) 
ii) Which of the following algorithm should execute the slowest for large value of N 
 a) O (n) b) O (n2)  c) O (    ) d) None of these 
iii) Let us consider a function f (n) = 1000n     + 500 n4 + 0.52n. We can say that f (n) is   
 a) O (n4)  b) O (n     ) c) O (2n)  d) None of the above 
iv) An algorithm is made up of two independent time complexities f(n) and g(n). Then the 

complexities of the algorithm is in the order of 
 a) f(n) ×g(n) b) Max(f(n), g(n)) c) Min(f(n),g(n)) d) f(n) + g(n) 
v) Two main measures of the efficiency of an algorithm are 
 a) complexity and capacity b) Processor and memory 
 c) Time and space d) Data and space 
vi) Which of the following shows the correct relationship between some of the more common 

computing time for the algorithm? 
 a)  O (    ) < O (n) < O (n*    ) < O (2n) < O (n2) 
 b)  O (n) < O (    ) < O (n*    ) < O (2n) < O (n) 
 c)  O (n) < O (    ) < O (n*    ) < O (n2) < O (2n) 
 d) O (    ) < O (n) < O (n*    ) < O (n2) < O (2n) 
 

***** 



 

 
 
 

 
 
 

  ARRAY AND STRING 
 

"Computers make it easier to do a lot of things, but most of the things they make it easier to do don't 
need to be done." -Andy Rooney  

 
 

any applications require the processing of multiple data 
items, that have common characteristics. For example, 
let say we have to find the average marks obtained in a 

subject by students of a class. In this case, we have a couple of 
choices. Either we can store all the values in different variables or 
we can create an array that will hold all these values in contiguous 
memory location. If they are stored in different variables and the 
number of such variables is quite large then it is quite 
unmanageable as these variables are scattered throughout the 
memory. In such situations, it is often convenient to place the data 
items into an array, where they will all share the same name. 

ARRAY 

Definition: An array is a collection of the same type of data items, which are stored in consecutive 

memory locations under a common name. 

An array variable must be followed by square bracket enclosing size specification of the array. 
The size signifies the number of elements of the array. That number should be a positive integer 
number (greater than 0).  

One-dimensional Array 

A one-dimensional array is one in which only one subscript is needed to specify a particular element of 
the array. 

Declaration of One-Dimensional Array 

The one-dimensional array can be declared as follows: 
data_type array_name [size]; 
where array_name is the name of an array and size is the number of elements of data type 

data_type and size must be an integer constant specified within a pair of square brackets. 

Example: 

int a[10]; 

The above declaration states an array, named ―a‖, consisting of ten elements, each of type int. 
Simply speaking, an array is a variable that can hold more than one value. (Arrays in programming are 
similar to vectors or matrices in mathematics.) We represent the array in above with a picture like this: 

K E Y  F E A T U R E S  

 One dimensional array 

 Processing an array 

 Two-dimensional array 

 Representation of 2D array 

 Sparse Matrix 

 String 

M 

CHAPTER 3 
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 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
a:             

Figure 3.1: Array of size 10  
Sometimes symbolic constant can be used to define array size rather than an integer number. 

Example: 

#define N 10 

int a[N]; 

In C, arrays are zero-based, that means the index of an array starts from zero. The ten elements of 
a 10-element array are numbered from 0 to 9. The subscript, which specifies a single element of an 
array, is simply an integer expression in square brackets. The first element of the array is a[0], the 
second element is a[1], etc. 

Example: 

a[0] = 10; 

a[1] = 20; 

a[2] = a[0] + a[1]; 

Notice that the subscripted array references (i.e. expressions such as a[0] and a[1]) can appear on 
either side of the assignment operator.  

The subscript does not have to be a constant like 0 or 1; it can be any integral expression; it is 
common to loop over all elements of an array:  

Example: 

int i; 

for(i = 0; i < 10; i++) 

    a[i] = 0; 

This loop sets 0 to all ten elements of the array a[0] to a[9] .  
Arrays are a real convenience for many problems, but there is not a lot that C will do with them 

automatically. In particular, you can neither set all elements of an array at once, nor assign one array to 
another; both of the assignments are illegal. 

Example: 

int a[10]; 

a = 0;   /* illegal */ 

and 
int b[10]; 

b = a;   /* illegal*/ 

To set all of the elements of an array to some value, you must do so one by one, as shown in the 
loop example above. To copy the contents of one array to another, you must again do so one by one. 

Example: 

int b[10]; 

for(i = 0; i < 10; i++) 

   b[i] = a[i]; 

Remember that for an array declared  
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int a[10]; 

there is no element a [10]; the end element is a [9]. 
Arrays are not limited to type int; you can have arrays of char or float or double or any other type. 

Example: 

char name[30]; 

float x[10]; 

double d[100]; 

There are some important points about arrays. These are as follows: 
 Arrays are always stored in consecutive memory locations. 
 An array can store multiple values that can be referenced by a single name. 
 An array name is actually an address of the first element of the array. 
 An array can be either an integer, character or floating-point data type can be initialized only 

during declaration. 
 In C, array index starts from zero. 
 There is no bound checking concept for arrays in C. 

Size of One-Dimensional Array  

The one-dimensional array can be declared as: 
data_type array_name[size]; 
The total size of the array in bytes can be calculated by using the following expression: 
sizeof(data_type)*size  

where data_type is the data type of the array and size specifies the total number of elements of the 
array. 

Another way to calculate the total size of the array in bytes is simpler; that uses the following 
expression 

sizeof(array_name) 

where array_name is the name of the array. 

Initialization of One-Dimensional Array 

Although it is not possible to assign values to all elements of an array at once using an assignment 
expression, it is possible to initialize some or all elements of an array when the array is defined.  

The syntax looks like this:  
int a[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; 

The list of values, enclosed in braces {}, separated by commas, provides the initial values for 
successive elements of the array. The individual array elements are as follows: 
a[0] = 0 

a[1] = 1 

a[2] = 2 

a[3] = 3 

a[4] = 4 

a[5] = 5 

a[6] = 6 

a[7] = 7 
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a[8] = 8 

a[9] = 9 

If there are fewer initializers than elements in the array, the remaining elements are automatically 
initialized to 0. 

Example: 

int a[10] = {0, 1, 2, 3, 4, 5, 6}; 

would initialize a[7], a[8], and a[9] to 0. When an array definition includes an initializer, the array 
dimension may be omitted, and the compiler will infer the dimension from the number of initializers. 
For example,  

int b[] = {10, 11, 12, 13, 14}; 

would declare, define, and initialize an array b of 5 elements (i.e. just as if you'd typed int b[5]). 
Only the dimension is omitted; the brackets [ ] remain to indicate that b is an array.  

Reading array elements 

As an array may contain more than one element, so to read all the elements, a single call to the scanf 
function will not serve our purpose. 

Example: 

If we have an array declared as 
int a[10]; 

to read all the elements we can use the following statements: 
for(i = 0; i < 10; i++) 

 scanf (“%d”, &a[i]); 

When the value of i is 0 then scanf() will read the value of a[0] element, if i is 1 it will read the 
value of a[1] and so on. 

Writing array elements 

Similarly, to print all the array elements of an array we can use the printf statement within a loop. 
Considering the above array declaration int a [10]. We can use the following statements: 

Example: 

for(i = 0; i < 10; i++) 

 printf (“%d\t”, a[i]); 

Program 3.1: Find out the minimum and maximum of n given numbers. 

#include<stdio.h> 

main() 

{ 

 int a[10], max, min, i, n; 

 printf(“\nEnter the number of elements:”); 

 scanf (“%d”,&n); 

 printf(“\nEnter %d elements:”,n); 

 for( i = 0 ; i < n; i++ ) 

  scanf(“%d”, &a[i]); 

    /* Initialization */ 
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 max = a[0]; 

 min = a[0]; 

    /* Finding Maximum and Minimum element */  

 for(i = 0; i < n; i++) { 

  if(a[i] > max) max = a[i]; 

  if(a[i] < min) min = a[i]; 

 } 

 printf (“\n The maximum element is: %d”, max); 

 printf (“\n The minimum element is: %d”, min); 

} 

Output: 

Enter the number of elements: 5 

Enter 5 elements: 3 2 9 5 4 

The maximum element is: 9 

The minimum element is: 2 

Address Calculation in One Dimensional Array 

The address of a particular element in a one–dimensional array is given by the relation: 
Address of element a[i] = B + W × i 
Where B is the base address of the array and W is the size of each element in the array. 

Example: 

Consider the following array declaration, 
int a[10]; 

Let the size of the elements stored in the above array be 4 bytes each. If the base address of the 
array is 1000, then the address of a [5] will be 1000 + (4 × 5) = 1020. 

Multi-Dimensional Arrays 

Multi–dimensional array is nothing but Array of Arrays. In fact, a two-dimensional array is an array of 
one-dimensional array. A three-dimensional array is an array of two-dimensional arrays. Similarly, any 
d dimensional array is an array of (d-1) dimensional arrays. 

Generally, when we talk about multi-dimensional arrays, we generally talk of two-dimensional 
arrays. Since more than two-dimensional is rarely needed. 

` There is a need to store and manipulate two-dimensional data structure such as matrices and 
tables. 

A two-dimensional array is one in which two subscript specifications are needed to specify a 
particular element of the array. 

Here the array has two subscripts. One subscript denotes the row and the other the column. 

Declaration of Two-Dimensional Array 

The declaration of two-dimensional arrays is as follows:  
data_type array_name [row_size][column_size]; 

Example: 

int m[2][3]; 
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Here m is declared as a matrix having 2 rows (numbered from 0 to 1) and 3 columns (numbered 0 
through 2). The first element of the matrix is m [0][0] and the last row last column is m[1][2]. 

The two-dimensional array m[2][3] is shown in figure 3.2. The first element of this array denoted 
by m [0][0]  and the second element is denoted by m [0][1] and so on.  

 [0] [1] [2] 

[0] m[0][0]  m[0][1] m[0][2] 

[1] m[1][0]  m[1][1] m[1][2] 

Figure 3.2: Two-dimensional array m [2][3] 

Address Calculation in two-dimensional Array 

A two-dimensional array can be implemented in a programming language in two ways: 
 Row-major Implementation  
 Column–Major  Implementation  

Note: In C language a two Dimensional Array is implemented only by row major order. 

Row-major Implementation 

In a row-major implementation, memory allocation is done row by row; i.e. all the elements of the first 
row is stored then the second row is stored and so on. 

 [0] [1] [2] 

[0] A[0][0] A[0][1] A[0][2] 

[1] A[1][0] A[1][1] A[1][2] 

[2] A[2][0] A[2][1] A[2][2] 

 
A[0][0] A[0][1] A[0][2] A[1][0] A[1][1] A[1][2] A[2][0] A[2][1] A[2][2] 

row1 row2 row3 

Figure 3.3: Two- dimensional array and row-major representation 

The two-dimensional array can be implanted in row major order like the above figure 3.3. 
Address of element A[i][j] = B + W(n(i – Lr) + (j – Lc))  
Where B is the base address of the array 

W is the size of each array element  
Lr is the lower bound of row 
Lc is the lower bound of column 
Ur is the upper bound of row. 
Uc is the upper bound of column  
n is the number of columns , n = ( Uc – Lc ) + 1 
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Column-major Implementation 

In a column-major implementation, memory allocation is done column by column; i.e. all the elements 
of the first column are stored then the second column is stored and so on. 

 [0] [1] [2] 

[0] A[0][0] A[0][1] A[0][2] 

[1] A[1][0] A[1][1] A[1][2] 

[2] A[2][0] A[2][1] A[2][2] 

Figure 3.4: Two-dimensional array and column-major representation 

The two-dimensional array can be implanted in column-major order like the above figure 3.4. 
Address of element A[i][j] = B + W((i - Lr)+ m(j – Lc)) 
Where B is the base address of the array 

W is the size of each array element  
Lr is the lower bound of row 
Lc is the lower bound of column 
Ur is the upper bound of row. 
Uc is the upper bound of column 
m is the number of rows, m = ( Ur – Lr ) +1  

Example: 

Let the size of the elements stored in an 8 × 3 matrix be 4 bytes each. If the base address of the matrix 
is 3500, then find the address of A [5][2] for both row major and column major cases. 
Answer: As the lower bounds of row and column are not given, they are assumed as 0. [As in C lower 
bounds are always 0]  
So,  Lr  = 0 

Lc  = 0  
Number of rows m = 8 
Number of columns n = 3 
Size of each element W = 4 
Base address B = 3500 

So, in row major order address of element A[5][2] 
   = 3500 + 4 × ((5 – 0) × 3 + (2 – 0)) 
   = 3568 

And in column major order address of element A[5][2] 
   = 3500 + 4 × ((5 – 0) + (2 – 0) × 8) 
   = 3584 

A[0][0] A[1][0] A[2][0] A[0][1] A[1][1] A[2][1] A[0][2] A[1][2] A[2][2] 
column1 column2 column3 
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Initialization of two-dimensional Arrays 

Like the one-dimensional arrays, two-dimensional arrays may be initialized by following their 
declaration with a list of initial values enclosed in braces. 

Example: 

int matrix[2][3] = {1, 1, 1, 2, 2, 2};  

Initializes all the elements of first row to 1 and the second row to 2. The individual array elements 
are as follow: 
matrix [0][0] = 1   matrix [0][1] = 1 matrix[0][2] = 1 

matrix [1][0] = 2   matrix [1][1] = 2 matrix[1][2] = 2 

The initialization is done row by row. The above statement can be equivalently written as  
int matrix[2][3] = {{1, 1, 1}, {2, 2, 2}}; 

When a two dimensional array is completely initialized with all the elements then there is no 
explicit need of specifying the first dimensional. That is the statement 

Example: 

int matrix[][3] = {{1, 1, 1}, {2, 2, 2}};  /* valid */ 

The compiler will automatically supply the first dimension. However, we have to specify the 
second dimension. 

So the statement  
int matrix[2][] = {{1, 1, 1},{2, 2, 2}};       /* invalid */ 

is invalid , also the statement  
int matrix[][]={{1, 1, 1}, {2, 2, 2}};  /* invalid */ 

is invalid as the second dimension is missing. 
If some of the elements are missing, they are automatically initialized to zero by the compiler. So 

consider the following case   
int matrix[2][3] = {{1,1},{2,2}}; 

matrix[0][0] = 1 matrix[0][1] = 1 matrix[0][2] = 0 

matrix[1][0] = 2 matrix[1][1] = 2  matrix[1][2] = 0 

Here the element matrix[0][2] and matrix[[1][2] are initialized to zero.  
Now consider the following case 

int matrix[2][3] = {1, 1, 2, 2}; 

The first four elements are initialized to 1, 1, 2 and 2 respectively and the remaining elements are 
initialized to 0 by default by the compiler. Therefore, the matrix elements are 
matrix[0][0] = 1 matrix[0][1] = 1 matrix[0][2] = 2  

matrix[1][0] = 2 matrix[1][1] = 0  matrix[1][2] = 0 

Reading and Writing a two-dimensional array 

We have already discussed how to read and write a one-dimensional array. Since there is only one 
subscript specification, it requires only one running variable; hence, we can use a single loop. 

However, in the case of the two-dimensional array, there are two subscripts. So it requires two 
running variables, one for a row and other for a column. Therefore, we have to use nested loops. Now 
consider the following example. 
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Example: 

int m[3][3]; 

/* Reading */ 

for(i = 0; i < 3; i++) 

   for(j = 0; j < 3; j++) 

 scanf(“%d”, &m[i][j]); 

Therefore, the above code will read all the elements of the two-dimensional array m row by row. 
Similarly, the following code can be used to print all the elements of the two-dimensional array m 

in matrix form. 

Example: 

/* Writing */ 

for(i = 0; i < 3; i++){ 

 for(j = 0 j < 3; j++) 

  printf(“%d  ”, m[i][j]); 

 printf (“\n “); 

} 

By surrounding the elements of each row by braces. C allows arrays of three or more dimensions. 
The compiler determines the maximum number of dimensions. The general form of a 
multidimensional array declaration is:  

data_type array_name[s1][s2][s3]…[si]…[sn]; 

where si is the size of the ith dimensional. Some examples are: 

Example: 

int survey[3][5][12]; 

float table [5][4][5][3]; 

Here survey is a three-dimensional array and table is a four-dimensional array. 

Operations Perform on Arrays 

Arrays are most important and commonly used data structures. They are also used to implement many 
other data structures. Almost all types of operations are performed on Arrays. 

Table 3.1: Operations on Arrays 

Operation Description 

Traversing Accessing and processing each data item of the array exactly once. 
Insertion Insert a data item into the array. 
Deletion Delete a data item from the array. 

Merging Combining the data items of two different sorted arrays into a single sorted 
array. 

Searching Find the location of the key value within the array. 
Sorting Arranging all the array elements either in ascending or in descending order. 

Traversing a Linear Array 

The method of accessing and processing each element of the array exactly once is known as traversing. 
In an array, traversal beginning from the first element in the array and ends at the last element of the 
array. 
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Algorithm to traverse a linear array 

Algorithm: Traverse (A, N) 

[A is the name of the array and N is the number of elements of the 

array] 

1. Set I=0 

2. Repeat steps 3 and 4 while I < N 

3.  Visit A[I] 

4. Set I=I+1 

   [End of loop] 

5. Return 

Inserting an Element into a Linear Array 

On array, insertion operation can be performed in different ways. Insert an element in an array can be 
done in the following ways: 

 To a specific position into the unsorted array 
 By value of the inserted element in the sorted array 

Inserting an Element to a Specific Position 

Now, to insert a key element to a specific position in a linear array, at first, it needed to move each 
element from the back up one position until getting the specified position. Then insert a key element 
into a given position. Finally, increment array size by one.  

Example: 

Insert 50 to the 2nd position of the array with 5 elements. 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
   40 84 21 14 77      
 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
   40 84 21 14 77 77     
 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
   40 84 21 14 14 77     
 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
   40 84 21 21 14 77     
 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
   40 84 50 21 14 77     

Figure 3.5: (a-e) Insertion in the array to a specific position 

Algorithm to insert an element to a specific position into a linear array 

Algorithm: Insert (A, N, P, KEY) 

[A is an array of N elements; P is the position of the inserted 

item, KEY is the inserted item] 

1. Set I=N-1 

a)  Initial Array 

 
 
b) Move from 4th position to 5th 
position 

 
c) Move from 3rd position to 4th 
position 

 
d) Move from 2nd position to 3rd 
position 

 
e) Insert 50 to the 2nd position  
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2. Repeat steps 3 and 4 while I>=P 

3.  Set A[I+1]=A[I] 

4. Set I=I-1 

   [End of loop] 

5. Set A[P]=KEY 

6. Set N=N+1 

7. Return 

Inserting an Element in a sorted Array 

While inserting an element into a sorted linear array, at first, it needs to find the correct position to 
insert the key element. When the position cannot be found, then insert at the end. Otherwise, move 
each element from the back up one position until getting to position into the insert. Then insert a key 
element into required position. Finally, the array size is incremented by one. 

Example: 

Insert 50 into a sorted array with 5 elements. 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
   14 21 40 77 84      
 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
   14 21 40 77 84 84     
 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
   14 21 40 77 77 84     
 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
   14 21 40 50 77 84     

Figure 3.6: (a-d) Insertion in the sorted Array 

Algorithm to insert an element in the sorted Array 

Algorithm: Insert (A, N, KEY) 

[A is the sorted array of N elements and KEY is the inserted item] 

1. Set I = N - 1 

2. Repeat steps 3 and 4 while A[I]>KEY 

3.  Set A[I+1]=A[I] 

4. Set I=I-1 

   [End of loop] 

5. Set A[I+1]=KEY 

6. Set N=N+1 

7. Return 

Deleting an element from a Linear Array 

In the array, delete operation can be performed in different ways. Delete an element in an array can be 
done in the following ways: 
 

a)  Initial Array 

 
 
b) Move from 4th position to 
5th position 

 
c) Move from 3rd position to 
4th position 

 
d) Insert in 3rd position since 
50 is greater than 2nd element  
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 From a specific position of the deleted element 
 By value of the deleted element 

Deleting an element from a specific position 

To delete a key element from a specific position of a linear array, at first, it needed to move each 
element from one after the given position forward one position until end of the array. Finally, the array 
size is decrement by one. 

Example: 

Delete an element from 3rd position (i.e. 21) of the array with 6 elements. 

 

 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
   40 84 50 14 14 77     
 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
   40 84 50 14 77 77     

Figure 3.7: (a-c) Delete element from a specific position  

Algorithm to delete an element from a specific position 

Algorithm: Delete (A, N, P, KEY) 

[A is an of N number of elements, P is the position of the deleted 

item; KEY is the deleted item returns by reference] 

1. Set I = P 

2. KEY = A[P] 

3. Repeat steps 4 and 5 while I < N - 1 

4.  Set A[I] = A[I+1] 

5. Set I = I + 1 

   [End of loop] 

6. Set N = N - 1 

7. Return 

Deleting an element by value 

When deleting operation performed on the array by the value of the element, then it needed to search 
through the array to find its position. 

Now there are two ways to find out the position of the deleted element. In the case of the sorted 
array, we can use binary search to find the position; otherwise if the array is unsorted then perform a 
linear search to find the position. 

The following algorithm, deleting a key element from a specific position of an unsorted array. At 
first, it needed to search the array to find its position using linear searching. After getting the position, 
move each element from one after that position forward one position until end of the array. Finally, the 
array size is decremented by one. 

The following algorithm, deleting an element of the linear array. 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
   40 84 50 21 14 77     

a)  Initial Array 

 
 
b)  Move from 4th position 
to 3rd position 

 
c) Move from 5th position 
to 4th position 
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Algorithm to delete an element using by value 

Algorithm: Delete (A, N, KEY) 

[A is the name of the array, N is the number of elements of the 

array, P is the position of the deleted item, KEY is the deleted 

item] 

1. Set I = 0 

2. Repeat while A[I] ≠ KEY AND I < N 

3. Set I = I + 1 

   [End of loop] 

4. Repeat steps 5 and 6 while I < N-1 

5.   Set A[I] = A[I+1] 

6.   Set I = I + 1 

   [End of loop]  

7. Set N = N - 1 

8. Return 

Merging 

Merging is an operation of combining more than one sorted array together so that resulting array 
remains sorted. The merge algorithm used in the merge-sort algorithm, a comparison-based sorting 
algorithm. 

Merging of two sorted arrays, one can be done in linear time and space. Let, two sorted arrays, A 
of m elements and B of n elements merge to form a sorted array C of total m + n elements. 

The first element of array A is compared with the first element of array B.  If the first element of 
array A is smaller than the first element of array B, the element from array A is moved to the new array 
C.  The subscript of the array A is now increased since the first element is now set and we move on.   

Otherwise, the element from array B should be smaller; it is moved to the new array C. The 
subscript of array B is increased. This process of comparing the elements in the two arrays continues 
until either array A or array B is empty. When one array is empty, any elements remaining in the other 
(non-empty) array are appended to the end of array C and the merge is complete. 

Example: 

Merge two sorted arrays A of 6 elements and B of 5 elements to form a sorted array C of 11 elements 
 
 
 

 
 

(a) Since 3 > 2, hence copy 2 and increment indices of B and C 

 
 

(b) Since 3 < 5, hence copy 3 and increment indices of A and C 

 
 

(c) Since 6 > 5, hence copy 5 and increment indices of B and C 

 [0] [1] [2] [3] [4] [5] 
A: 3 6 9 12 14 17 

 [0] [1] [2] [3] [4] 
B: 2 5 8 11 15 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 
C: 2           

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 
C: 2 3          

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 
C: 2 3 5         
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(d) Since 6 < 8, hence copy 6 and increment indices of A and C 

 
 

(e) Since 9 > 8, hence copy 8 and increment indices of B and C 

 
 

(f) Since 9 < 11, hence copy 9 and increment indices of A and C 

 
 

(g) Since 12 > 11, hence copy 11 and increment indices of B and C 

 
 

(h) Since 12 < 15, hence copy 12 and increment indices of A and C 

 
 

(i) Since 14 < 15, hence copy 14 and increment indices of A and C 

 
 

(j) Since 17 > 15, hence copy 15 and increment indices of B and C 

 
 

(k) Since the B array is empty, hence remaining element of A (i.e. 17) copy to C 

  Figure 3.8 (a-k): Merging two sorted arrays 

Algorithm to merge two sorted arrays 

Algorithm: MERGE (A, B, M, N, C) 

[A and B are two sorted arrays, M is the number of elements of A, N 

is the number of elements of B and C is the resultant array] 

1. Set I=0, J=0, K=0 

2. Repeat while I<M and J<N 

 If A[I]<B[J] then 

 a) Set C[K]=A[I] 

 b) Set I=I+1 

 c) Set K=K+1 

 ELSE 

 a) Set C[K]=B[J] 

 b) Set J=J+1 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 
C: 2 3 5 6        

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 
C: 2 3 5 6 8       

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 
C: 2 3 5 6 8 9      

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 
C: 2 3 5 6 8 9 11     

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 
C: 2 3 5 6 8 9 11 12    

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 
C: 2 3 5 6 8 9 11 12 14   

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 
C: 2 3 5 6 8 9 11 12 14 15  

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 
C: 2 3 5 6 8 9 11 12 14 15 17 
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  c) Set K=K+1 

  [End of If] 

  [End of Loop] 

3. Repeat while I<M  

 a) Set C[K]=A[I] 

 b) Set I=I+1 

 c) Set K=K+1 

  [End of Loop] 

4. Repeat while J<N 

 a) Set C[K]=B[J] 

 b) Set J=J+1 

  c) Set K=K+1 

  [End of Loop] 

5. Return  

Time Complexity 

In traversing operation, it required to access all the elements of the array exactly once. Therefore, the 
time complexity is O (n). 

During insertion operation, a best case occurs when insert element at the last position of the array, 
then no array element movement is required. Therefore, the time complexity of the insertion operation 
in the best case is O (1), since not depends on the size of the array. The worst case occurs when insert 
element at the first position of the array then all the array elements required moving one position; n 
number of movements are required. Therefore, the time complexity of the insertion operation in the 
worst case is O (n), since depends on the size of the array. On an average, about half the elements of 
the array need to be moved. Therefore, the time complexity of the insertion operation in average case 
is O (n). 

Similarly, in deletion operation, a best case occurs when deletes an element from the last position 
of the array and worst case occurs when deleting an element from the first position of the array. 
Therefore, the time complexity of deletion operation in the best case is O (1), in the worst case and 
average case is O (n). 

The time complexity of this merging algorithm is O (m + n), where m + n is the number of output 
elements or the number of source elements combined. 

Applications of Array 

Arrays are used to implement mathematical elements like vectors, matrices (including sparse matrices), 
polynomials and different kinds of tables. Many databases consist of one-dimensional arrays whose 
elements are recorded. Arrays are used to implement other data structures, such as heaps, hash tables, 
deques, queues, stacks and strings. 

Representation of Polynomials 

A polynomial p(x) is an expression of the form (anxn + an-1xn-1 + … + a3x3 + a2x2 + a1x +a0). 
Each aixi  is a term of the polynomial, where x is a variable, ai is respective coefficient and n is a 

non-negative integer. The number n is called the degree of the polynomial. If ai = 0, then the term is 
zero term, otherwise it is non-zero term 

An important characteristic of a polynomial is that each term in the polynomial expression 
consists of two parts – one is a coefficient and the other is an exponent. 
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Consider the following polynomials: 
10x5 + 15x3 – 7x2 – x 
Here (10, 15, −7, −1) are coefficients and (5, 3, 2, 1) are exponents. 

Representation of Polynomials using Array 

All the terms of a polynomial can be represented using array in two different ways: 
i) Linear array representation 
ii) Array of structure representation 

Linear array representation 

In this representation, the exponent/degree of a term can be treated as an index of the linear array and 
the coefficient of the term stored in that index of the array. 

For Example, polynomial 10x5 + 15x3 – 7x2 – x can be represented as follows: 

 

 

Figure 3.9: Polynomial representation using linear array 

The drawback of this representation is most of the entries of the linear array may be remains zero 
for higher order polynomials. 

Array of Structure representation 

In this representation, each term defined as structure variable to store degree and coefficient of the 
corresponding term and polynomial can be represented by an array of structures as follows: 
typedef struct poly 

{ 

 int deg; 

 int coef; 

}poly; 

poly term[100]; 

 Now, if we represent the polynomials using an array, then we have to define the size of the array 
in advance. Therefore, there is a possibility of wastage of computer memory. However, this 
representation is simple enough. 

The polynomial can also be represented by using linked list. We have discussed polynomial 
representation using a linked list in Chapter 5 in this book. 

SPARSE MATRIX 

One of the most important developments in scientific computing is a sparse matrix. This includes the 
data structures to represent the matrices, the techniques for manipulating them, the algorithms used and 
efficient mapping of the data structures and algorithms for high performance.  

Definition: A matrix is said to be Sparse Matrix if most of its elements are zero (near more than 
2/3 elements are zero), having a relatively small number of non-zero elements. A matrix that is not 
sparse is called Dense Matrix. 

A sparse matrix is a two-dimensional array in which most of the elements have a null value or 
zero. However, for sparse matrices, this invokes wastage of a lot of memory space.  

[0] [1] [2] [3] [4] [5] 

0 −1 −7 15 0 10 
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20 0 0 15 0         −10 
0 10 3 0 0 0 
0 0 0          −6 0 0 
0 0 0 0 0 0 
90 0 0 0 0 0 
0 0 30 0 0 0 

2 5 1 4
  
3 6 9 0
  
10 8 0 0 
 
7 0 0 0 

(i) 

3 6 10 5
  
0 9 2 4
  
0 0 7   1 
  
0 0 0 8 

(ii) 

0 0 0 4
  
0 0 9 8
  
0 8 10 3 
  
7 1 6 2 

(iv) 

3 0 0 0
  
6 9 0 0
  
10 4 7   0 
  
5 1 2 8 

(iii) 

For example, when we are using with matrices of size 100 X 100 and if only 1000 entries are non-
zeros and remaining locations are filled with zeros.  This leads to huge amounts of memory 
wastage.  The waste memory locations are 10000-1000=9000 i.e., 9000 memory locations filled with 
zeros.  Hence, a huge amount of memory is wasted.   

The operations like transpose, addition, multiplication also take a lot of processing time if we store 
null values of a matrix in the array. To avoid such circumstances different techniques are used such as 
linked list. In simple words, sparse matrices are matrices that allow special techniques to take 
advantage of a large number of null elements and the structure.  

Consider the following is an example of a sparse matrix: 
 

 

 

 

 

Figure 3.10: A Sparse Matrix 

Sparse Matrix can be classified into two groups: 
i) Triangular Matrices and  
ii) Band Matrices 

Triangular Matrices 

Triangular matrices have the same number of rows, as they have columns, that they are square 
matrices. In the triangular matrix, both main and lower diagonals are filled with non-zero values or 
main diagonal and upper diagonals are filled with non-zero values.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Examples of Triangular Matrices (i) Upper left triangular matrix, (ii) Upper right triangular matrix,                 
(iii) Lower left triangular matrix, (iv) Lower right triangular matrix. 
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Triangular Matrices can also classify into four types: 
i) Upper Left Triangular,  
ii) Upper Right Triangular,  
iii) Lower Left Triangular and  
iv) Lower Right Triangular 
A matrix A is an upper triangular matrix if its non-zero elements are found only in the upper 

triangle of the matrix, including the main diagonal. 
A matrix A is a lower triangular matrix if its non-zero elements are found only in the lower 

triangle of the matrix, including the main diagonal. 

Representation of Triangular Matrix 

Storage optimization is one of the main objectives of the data structure. Optimizing storage is done by 
storing only non-zero elements. For example, a triangular matrix can be represented using a one- 
dimensional array, where only non-zero elements are stored. 

 
 
 
 
 

 

Figure 3.12: Elements of lower left triangular matrix 

In the above Lower Left Triangular Matrix, Aij ≠ 0, for i ≥ j, where i represent row and j represent 
column. In general, the position of the Aij may be found by observing that there are (i -1) rows before 
it, which occupies a total of 1 + 2 + 3 + … + i = i * (i + 1) / 2 elements. 

In addition, in the same row there are j number of elements before it. Thus, this displacement of 
the Aij, is i * (i + 1) / 2 + j from the start of the array. 

 
 
 

Figure 3.13: Representation of lower left triangular matrix into linear array 

For example, A32 can be put into the 8th location of the one-dimensional array.  
Therefore, the storage required for the original matrix is of n2, whereas considering the one-

dimensional array, actual it required n * (n + 1) / 2 locations. 
In the same way, storage optimization is done for the other triangular matrices and for the 

symmetric matrices. 

Band Matrix 

An important special type of sparse matrices is a band matrix, defined as follows: 
Let a matrix A of order n × n. If all matrix elements are zero outside a diagonally bordered band 

whose range is determined by constants α and β, where 
Aij = 0 when α <  i – j or  β < j – i:  where α, β ≥ 0 and i, j= 1 to n, then α and β are called the 

lower and upper bandwidth respectively. The bandwidth of the matrix is the maximum of α and β. 
A matrix is called a band matrix or banded matrix if its bandwidth is reasonably small. 

A00 0 0 0 
A10 A11 0 0 
A20 A21 A22 0 
A30 A31 A32 A33 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
A00 A10 A11 A20 A21 A22 A30 A31 A32 A33 
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2 0 0 0
  
0 6 0 0
  
0 0 8 0 
 
0 0 0 3 

(i) 

3 6 0 0
  
10 9 2 0
  
0 1 7   1 
  
0 0 4 8 

(ii) 

2 8 0 0
  
7 3 9 0
  
4 8 1 3 
  
0 1 6 2 

(iv) 

3 7 4 0
  
6 9 3 6
  
10 4 7   1 
  
0 1 2 8 

(iii) 

Band Matrices can also classify into four types: 
i) Diagonal 
ii) Tri-diagonal 
iii) Penta-diagonal 
iv) αβ Band  
A diagonal matrix is a square matrix, if all the off-diagonal entries of A is zero, that is a band 

matrix with α = β = 0 is a diagonal matrix. 
A tridiagonal matrix is a matrix that has non-zero elements only on the main diagonal, the first 

diagonal below this and the first diagonal above the main diagonal, that is a band matrix with α = β = 1 
is a tri-diagonal matrix. 

A penta-diagonal matrix is a matrix that has non-zero elements only on the main diagonal, the first 
two diagonals below this and the first two diagonals above the main diagonal, that is a band matrix 
with α = β = 2 is a penta-diagonal matrix. 

A αβ band matrix is a matrix that has non-zero elements only on the main diagonal, the first 
limited diagonal below this and the first limited diagonal above the main diagonal, that is a band 
matrix with α ≠ β is a αβ band matrix. 

When one puts α = 0, β = n−1, one obtains the definition of an upper triangular matrix; similarly, 
for α = n−1, β = 0 one obtains a lower triangular matrix. When a sparse matrix stored in a two-
dimensional array of order m×n then there is a large amount of wastage of computer memory. 

 
  

Figure 3.14: Band Matrices (i) Diagonal matrix, (ii) Tri-diagonal matrix, (iii) Penta-diagonal, (iv) αβ Band 

Three-Tuple Representation  

In the case where non-zero terms did not form any pattern such as a triangle or a band, then the 
nonzero values of a sparse matrix can be stored as a list of three-tuples of the form (I, J, Value).  

In this representation of the sparse matrix will be a two-dimensional array consisting three 
columns and (T+1) rows, where T is the number of non-zero terms of the sparse matrix. 

I= Row position 
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J= Column position 
Value= Non-zero value at position (I, J) 
The first row contains the number of rows, columns and non-zero elements of the matrix. 

Subsequent rows contain the positions of the non-zero elements and the non-zero value. The no. of 
columns of this representation is always fixed at three.  Hence, it is called as three-tuples. 

 
 

 

 

 
  

 

 

 

 

 
 
 
 

Figure 3.15: Three-tuple representation of a sparse matrix 

In the above, figure 3.14 displays a three-tuple representation of a sparse matrix given in figure 
3.10. 

Algorithm of three-tuple representation of a sparse matrix 

Algorithm: THREE_TUPLE (A, M, N, B) 

[A is a sparse matrix of order M x N stored in matrix B] 

1. Set C=1 

2. For I=0 to M-1 do 

 For J=0 to N-1 do 

  If A[I][J]≠0 then 

   Set B[C][0] = I 

       Set B[C][1] = J 

   Set B[C][2] = A[I][J] 

   Set C = C + 1  

  [End of If] 

 [End of Loop] 

   [End of Loop] 

3. Set B[0][0]=M, B[0][1]=N, B[0][2] = C-1 

4. Return 

Importance of Sparse: Matrices Sparse matrices occur in many applications including solving 
partial differential equations (PDEs), text-document matrices used for latent semantic indexing (LSI), 
linear and non-linear optimization, and manipulating network and graph models. 

 [0] [1] [2] 

[0] 6 6 8 

[1] 0 0 20 

[2] 0 3 15 

[3] 0 5 -10 

[4] 1 1 10 

[5] 1 2 3 

[6] 2 3 -6 

[7] 4 0 90 

[8] 5 2 30 
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STRINGS  

A string is a sequence of characters. In C language, the end of the string is marked with a special 
character, the null character, which is simply the character with the ASCII value 0 ( the null character 
has no relation except in name to the null pointer) .The null or string terminating character is 
represented by a character escape sequence ‗\0‘. However, remember that \ and 0, they are not two 
separate characters. 

Any sequence or set of characters defined by double quotation symbols is a constant string. 
Whenever we write a string, enclosed in double quotes, ‗C‘ automatically creates an array of characters 
for us, containing that string terminating character ‗\0‘. Programs rarely get to see this end marker as 
most functions which handle strings use it or add it automatically. To do anything else with strings, we 
must typically call functions. 

Strings are stored in memory as ASCII codes of characters that make up the string appended with 
‗\0‘ (ASCII value of null). Normally, each character is stored in one byte (may depend on the 
compiler); successive characters are stored in successive bytes. 

Character H E L L O  I N D I A \0 

ASCII Code 72 101 108 108 111 32 87 111 114 108 100 0 

Address 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Figure 3.16: String representation 

The last character is the null character having the ASCII value zero. 

Declaring and Initializing Strings 

As discussed earlier, strings in C are represented by an array of characters. Therefore, to declare a 
string, we will declare a character array. The general form of declaring a string is: 

char string_name [size]; 
The size determines the no of characters that a string can hold. When the compiler assigns a 

character string to a character array, then it automatically supplies a null character at the end of the 
string. Therefore, while choosing the length or size of the string it must be one more than the number 
of characters you want to accommodate in the string. If the null character is not assigned at the end of 
the string, then the extra characters may be displayed. 

Following are the examples of string declaration: 

Example: 

char name[30]; 

char city[25]; 

A string is initialized only when it is declared. We can initialize a string in the following ways: 
char city[8] = {„K‟,‟o‟,‟l‟,‟k‟,‟a‟,‟t‟,‟a‟,‟\0‟}; 

Then the string city is initializing to Kolkata.  
The above initialization is perfectly valid but C offers a special way to initialize strings.  
The above string can be initialized as 
char city[8] = ”Kolkata”; 
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The characters of the string are enclosed within a part of double quotes. The compiler takes care of 
string enclosed within a pair of double quotes. The compiler takes care of storing the ASCII codes of 
the characters of the string in the memory and stores the null terminator at the end.  

While initializing a string the dimension may be optional (like numeric arrays) and in this case if 
the dimension is not specified the compiler will infer the dimension from the number of initializers. 
For example, the following initialization is valid. 

char city[] = ”Kolkata”; 

In this case, the compiler will assume the size of the string as 8. 
In addition, the size may be more than the number of characters in the initialize; in this case, the 

remaining memory cells will be padded with null characters. For example, consider the following: 
char city[10] = ”Kolkata”; 

Therefore, the storage in the memory will be like: 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
K o L k a t a \0 \0 \0 

Figure 3.17: String Representation 

However, keep in mind that size cannot be less than the number of characters in the initials. 
For example the initialization   
char city[7] = ”Kolkata”; 

is invalid and this time compiler may produce a compile time error or there will be no string 
terminator (\0) as a result, if we print it we may get some undesirable result. 

Reading String 

In general, the function scanf() with %s format specification is used to read the character string from 
the terminal.  

Example: 

char city[15]; 

scanf(“%s”, city); 

The scanf() statement has a drawback that it just terminates the statement as soon as it finds a 
whitespace character (new lines, tabs, blank spaces, etc.), suppose if we type the string Hello India 
then only the string Hello will be read and since there is a blank space after word Hello it will 
terminate the string. Therefore, in general, it is not possible to read a line of text using scanf(). 

Example: 

char city [15]; 

scanf(“%[^\n]”, city); 

printf(“\n %s”, city); 

Note: We can use the scanf() without the ampersand symbol before the variable name.  

In addition, the unformatted input function gets can be used to read a string. The general form of 
the function gets is 

gets(string_name); 
The function gets reads characters into the string from the terminal until a newline character is 

encountered and at last it assigns a null character at the end of the string. 
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Example: 

char city[15]; 

gets(city); 

Writing String 

The printf statement along with format specifier %s can be used to display strings onto the screen.  

Example: 

printf(“%s”, string); 

can be used to display the entire contents of the array string. 
Also, printf function can be used to print a constant string like: 

Example: 

printf(“Hello India”); 

We can also use the unformatted output function puts() to display a string onto the screen. 

Example: 

puts(string); 

To display a constant string we can use puts like this:  
puts(“Hello India!”); 

We cannot manipulate strings since C does not provide any operators for the string. For instance, 
we cannot assign one string to another directly. 

Example: 

char String1[30], String2[30];                                     

String1 = ”Hello”;  /* Invalid */ 

String2 = ”India”;  /* Invalid */ 

String1 = string2;      /* direct assignment not possible */ 

Are not valid. To copy the characters in one string to another string we may do so on a character-
to-character basis. 

Similarly, it is also not possible to compare two strings directly through the relational operator 
(==). 

Example: 

char String1[] = ”Hello”; 

char String2[] = ”India”; 

if(String1 == String2) /* direct comparison not possible */

 printf(“\n Strings are same”); 

else 

printf(“\n Strings are not  same”); 

Array of strings 

So far, we have been discussing the processing of only a single string, which is a one-dimensional 
array of characters. However, in many applications, it requires processing a set of strings. In such 
situation, we require a two-dimensional array of characters, which is called Array of Strings. Each 
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element of a one-dimensional character array is an ASCII character. However, each element of a two-
dimensional array is a string. 

So for example, consider the following declaration: 
char os[5][10]= { "Unix", 

    "Linux", 

    "Windows", 

    "Macintosh", 

    "DOS" 

     }; 

The above array of strings can hold maximum of five strings. In addition, each string can hold 
maximum of ten characters including null. 

After the above declaration, we may have the following situation in memory: 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 

os[0] U  N I x \0      

os[1] L I N u x \0     

os[2] W I N d o w s \0   

os[3] M A C i n t o S h \0 

os[4] D O S \0       

  Figure 3.18: Array of strings 

Here, os[0] means the string ―Unix‖, os[1] means the string ―Linux‖, os[2] means ―Windows‖, 
os[3] means ―Macintosh‖ and os[4] means ―DOS‖. 

Operations Perform on Strings 

Different kinds of operations are to be performed on Strings. 

Table 3.2: Operations on Strings 

Operation Description 

Find length Finds the length of the string 

Copy  Copies one string to another string. 
Concatenation Appends one string at the end of another string. 
Compare Compares two strings to find whether they are identical or not. 
Reverse Reverse the string. 
Uppercase Converts lowercase alphabets (if any) of a string to uppercase. 
Lowercase Converts uppercase alphabets (if any) of a string to lowercase. 
Sorting Arranging all the strings in lexicographical order. 
String matching  Searching a pattern within a string. 

Length of a String 

The length of a string returns the total number of characters of the string, which is not necessarily 
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equal to its storage capacity. The length of the empty string is zero. 

Algorithm to find the length of a string 

Algorithm: STRING_LENGTH (S) 

[S is a given string] 

1. Set N = 0 

2. Repeat step 3 while S[N] ≠ Null do 

3.  N = N + 1 

   [End of loop] 

4. Return N 

In C language, strlen() function counts and returns the number of characters in a string. The 
length does not include a null character, but spaces. The general form of strlen() function is 

n = strlen(string); 

Here n is an integer variable that receives the value of the length of the given string. 

Program 3.2: Find the length of the string using strlen() function 

#include<stdio.h> 

#include<string.h> 

main() 

{  

   char str[100]; 

   int length; 

   printf(“Enter the string:”); 

   gets(str); 

   length = strlen(str); 

   printf(“\nNumber of characters in the string=%d”,length); 

} 

Output: 

Enter the string:Hello world 

Number of characters in the string=11 

String Copy 

Copy the current value of the string into another string that has the same value as the original string. 
One cannot copy a string using the assignment operator. 

Algorithm to copy a string to another string 

Algorithm: STRING_COPY (T, S) 

[S is a source string and T is a target string] 

1. Set I = 0 

2. Repeat step 3 while S[I] ≠ Null do 

3.    T[I] = S[I] 

4.    I = I + 1 

   [End of loop] 

5. Set T[I] = Null 

6. Return 
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In C language, the strcpy() function used to copy the string. The syntax of the function is 
illustrated below: 

strcpy(string1, string2); 

The strcpy function assigns the contents of string2 to string1, where string2 may be a 
character array variable or a string constant. However, string1 should be big enough to hold the 
string that would be copied to it. 

Program 3.3 : Copy the content of a string to another string using strlen() function 

#include<stdio.h> 

#include<string.h> 

main() 

{ 

 char string1[30]; 

 char string2[] = "Hello World"; 

 printf("\nSecond string was %s",string2); 

 strcpy(string1, string2); 

 printf("\n Now first strings is:%s",string1); 

} 

Output: 

Second string was:  Hello World 

Now first strings is: Hello World 

Concatenation of two Strings 

When combine two strings, that is, appends the contents of one string at the end of another string. This 
operation is called concatenation. 

Algorithm to concatenate two strings 

Algorithm: STRING_CONCAT (T, S) 

[string S appends at the end of string T] 

1. Set I = 0, J = 0 

2. Repeat step 3 while T[I] ≠ Null do 

3.    I = I + 1 

   [End of loop] 

4. Repeat step 5 to 7 while S[J] ≠ Null do 

5.    T[I] = S[J] 

6.    I = I + 1 

7.    J = J + 1 

   [End of loop] 

8. Set T[I] = Null 

9. Return 

In C language, The strcat() function joins two strings together. The general form of 
strcat() function is:  
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strcat(string1, string2); 

where string1 and string2 are character arrays. When the function strcat() is executed string2 
is appended to string1. The string at string2 remains unchanged. 

Program 3.4: Concatenate of two strings using strcat() function 

#include<stdio.h> 

#include<string.h> 

main() 

{ 

   char str1[100], str2[100]; 

   int length; 

   printf(“Enter the first string:”); 

   gets(str1); 

   printf(“Enter the second string:”); 

   gets(str2); 

   strcat(str1, str2); 

   printf(“\nString 1 after concatenation = %s”, str1); 

   printf(“\nString 2 after concatenation = %s”, str2); 

} 

Output: 

Enter the first string:Taj 

Enter the second string:mahal 

String 1 after concatenation = Tajmahal 

String 2 after concatenation = mahal 

From the above program segment, the value of str1 becomes Tajmahal. The string at str2 remains 
unchanged as mahal. 

Comparison of two Strings 

Comparison of two strings to decide whether they represent a same string or not. 

Algorithm to compare two strings 

Algorithm: STRING_COMPARE (T, S) 

[Compare between string S and T] 

1. Set I = 0 

2. Repeat step 3 while S[I] ≠ Null and S[I] = T[I] do 

3.    Set I = I + 1 

   [End of loop] 

4. If S[I] = Null and T[I] = Null  Return True 

5. Return False 

In C you cannot directly compare the value of two strings in a condition like 
if(string1==string2). 
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Most libraries, however, contain the strcmp() function, which compares two strings and returns 
a zero if two strings are identical , or a non-zero number if the strings are not the same. The syntax of 
strcmp() is given below:  

strcmp(string1, string2); 

where string1 and string2 may be string variables or string constants. The function returns a 
negative number if string1 is alphabetically less than the string2 and a positive number if string1 is 
greater than string2. More correctly, strcmp() returns the numeric difference between the first two 
non-matching characters. 

Example: 

strcmp(“Newyork”, ”Newyork”); 

it will return zero because 2 strings are equal.  
strcmp(“their”, ”there”);  

it will return  -9 which is the numeric difference between ASCII ‗i‘ and ASCII ‘r‘.  
strcmp(“The”, “the”); 

it will return -32 which is the numeric difference between ASCII ―T‖ & ASCII ―t‖.  

Program 3.5 : Compare two strings using strcmp() function 

#include<stdio.h> 

#include<string.h> 

main() 

{  

 int r; 

 char string1[] = "The"; 

 char string2[] = "the"; 

 r = strcmp(string1, string2); 

 if(r == 0) 

  printf("Strings are identical"); 

 else 

  printf("Strings are not identical"); 

} 

Output: 

Strings are not identical 

String Reversal 

The reverse of a string is a string with the same characters, but in the reverse order. For example, if a 
given string is ―abcd‖, then the reverse of the string is ―dcba‖. Whenever a string is the reverse of itself 
(e.g. madam) is called a palindrome. 

Algorithm to reverse a string 

Algorithm: STRING_REVERSE (S) 

[S is a given string] 

1. Set N = Length (S) 
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2. Set I = 0 and J = N-1 

3. Repeat while I < J do 

4.  Set Temp = S[I] 

5.  Set S[I] = S[J] 

6.  Set S[J] = Temp 

7.    Set I = I + 1 and J= J -1 

      [End of Loop] 

8. Return 

In C language, strrev() function reverses the characters in a string. The general form of 
strrev() function is 

strrev(string); 

Program 3.6: Reverse a string using strcmp() function 

#include<stdio.h> 

#include<string.h> 

main() 

{ 

 char string[] = "HELLO"; 

 printf("\nThe string in reverse:%s", strrev(string)); 

} 

Output: 

The string in reverse: OLLEH 

String Matching 

String matching (or string searching) is an operation to find the position of all occurrences of a pattern 
within a given string or text. String matching is used for different application software like text editors 
to find and replace all. 

Brute Force (Naïve) String Matching 

Brute Force string matching technique is a simple way to test where a pattern occurs within a string in 
all the possible positions. Brute Force string matching algorithm also known as Naïve algorithm. Naive 
means basic. 

Consider m is the length of a pattern and n is the length of the searchable string or text. The 
algorithm can be interpreted as a sliding a pattern P over the text string S and observe for which shift 
all the characters in the pattern match the corresponding character in the string. Specifically, the pattern 
is shifting successively from I = 0 to n - m, and for each shifting compare the pattern P[1 to m] with 
the string S[I + 1 to I + m]. 

Example: 

Suppose a given text string S = ‖abbcdabcd‖ and pattern string P = ―bcda‖. 
 

     
 

S A b b c d a b c d 

P B c d a no match 
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Now, T is shifted one position right 
 

     
                                                             
            
 

Again, T is shifted one position right 
 

     
                                                             
            

                

Pattern string P is a substring of text string S 

Figure 3.19: String matching 

Brute Force (Naïve) string matching algorithm 

Algorithm: STRING_MATCHING (S, P) 

[S is a text string and P is a pattern string] 

1. Set N = Length (S) 

2. Set M = Length (P)  

3. Repeat For I = 0 to N-M do 

4.  Set J = 0 

5.  Repeat while J < M and S[I + J] = P[J] do 

6.     Set J = J + 1 

7.     If J ≥ M Return I  

       [End of Loop] 

   [End of Loop] 

8. Return -1 

In the above algorithm, the for-loop is executed at most n - m + 1 times and the while loop are 
executed at most m times. Therefore, in the worst case, the running time complexity of this algorithm 
is O ((n – m + 1) m), which is O (nm), if n<<m. Consider an example where searching for a pattern 
like "xxxxy" in a string like "xxxxxxxxxy". In the average case, the running time complexity of this 
algorithm is O (m + n).  

The advantage of this algorithm that it is a very simple technique and that does not require any 
pre-processing. Therefore, total running time is the same as its matching time. Although, it is a very 
inefficient method. Because this method takes only one position movement in each time. 

In C language, the strstr() function finds the first occurrence of a substring in another string. 
On success, strstr() returns a pointer to the element in str1 where str2 begins (points to str2 in 
str1). On error (if str2 does not occur in str1), strstr() returns null. The general form of 
strstr() function is 

ptr = strstr(str1, str2); 

S A b b c d a b c d 

P b c d a 

S A b b c d a b c d 

P b c d a 

no match 

match 
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Program 3.7: Search a string using strstr() function 

#include<stdio.h> 

#include<string.h> 

main() 

{  

 char string[] = "International"; 

 char searchstring[] = "nation"; 

 char substring[30]; 

 strcpy(substring, strstr(string, searchstring)); 

 printf("\nSub strings is: %s", substring); 

} 

Output: 

Sub strings is: national 

Summary 

 An array is a collection of variables of the same data type that are stored in consecutive memory 
location under a common name.  

 An array can be an integer, character or floating-point data type can be initialized only during 
declaration.  

 An array name is an address of the first element of the array.  
 A matrix is said to be Sparse Matrix if most of its elements are having a relatively small number of 

non-zero elements.  
 The string is a sequence of characters. 

Exercises 

1. A two-dimensional array A with n rows time and m columns can be represented in either row 
major or column major form. Establish the address translation functions to locate any element 
from the one-dimensional array. The element is specified by two-dimensional parameters along 
with the data type. 

2. Write an algorithm to calculate the address of any element A [I, J] of a two-dimensional array A 
[1: M, 1: N]. Assume the array is stored in column major order, B is the base address of the array 
and w is the size of the each element in the array. 

3. Explain row major and column major implementation of a two-dimensional array. 
4. Consider the array int p [10][10] and base address 2000, then calculate the address of p[[2][3] in 

the row and column major order. 
5. How can we represent sparse matrix efficiently in the memory? Write an algorithm to find the 

transpose of a sparse matrix. 
6. Explain with a suitable example the storage and manipulation of elements of a sparse matrix. 
7. Choose the correct alternatives for the following: 

i) In C language, arrays are stored in which representation 
 a) Column major b) Row major c) Layer major d) None of these 
ii) Each element of an array arr[20][50] requires 4 bytes of memory. The base address of arr 

is 2000. The location of arr[10][10] when the array is stored as column major order. 
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 a) 2820 b) 2840  c) 4048 d) 4840 
iii) The expression which accesses the (i, j)th entry (i = 0, 1…m-1, j = 0, 1…n-1) of an m×n 

matrix (stored in column major order) is 
 a) n × (i – 1) + j  b) m × (j – 1) + i c) n × (i–1) + (j – 1) d) m ×(j–1) + (i– 1 ) 
iv) If the address of A[1][1] and A[2][1] are 1000 and 1010 respectively and each element 

occupies 2 bytes then the array has been stored in __________ order. 
 a) Column major b) Row major c) Layer major d) Matrix major 
v)  The largest element of an array index is called its 
 a) lower bound b) range c) upper bound  d) None of these 

***** 



 

 

 

 
 
 
 

POINTER  
 

“The duties of the Pointer were to point out, by calling their names, those in the congregation who 

should take note of some point made in the sermon.” —H. B. Otis 

 
he pointers are one of the most important and powerful 
data structure. A pointer is a variable that is used to store 
an address or location of another variable. We can say 

that the pointer points to another variable. A pointer declaration 
consists of a data type, the indirection operator (*) and a variable 
name. The indirection operator is also called the dereference 
operator. Do not confuse the indirection operator with the 
multiplication operator, although they have the same symbol. 
The indirection operator is a unary operator, whereas 
multiplication operator is a binary operator. 

The pointers are very useful in dynamic memory allocation, 
and used to modify variable arguments passed to a function.  

Pointer Declaration  

The general form of pointer declaration is: 
data-type *pointer-variable-name; 

The data type specifies the type of data to which the pointer points, that means it can store an 
address of that data type. 

 Example: 

int *p; 

char *q; 

float *r; 

In the above declaration, p is a pointer to an integer; it can store an address of integer type 
variables. The q is a pointer to a character, it can store an address of character type variables (it does 
not mean that q holds the character value rather it means that q contain the address of a character 
variable). Similarly r is a pointer to a floating-point, it can store an address of floating-point type 
variables. Remember that address is always an unsigned integer.   

Address of Operator 

The address-of operator (&) can return an address in memory of its operand. Do not confuse the 
address-of operator with the bitwise AND operator, although they have the same symbol. The address-
of operator is a unary operator, whereas bitwise AND operator is a binary operator. 

In the following example, display the addresses of the variables c, a and f along with their values. 
The addresses of the variables are dependent on compiler and operating system. 

K E Y  F E A T U R E S  

 Null Pointer 

 Void pointer 

 Generic Function 

 Dangling Pointer 

 Pinter to Pointer 

 Array of Pointer 

 Pointer to an Array 

 Pointer to Function 

 Dynamic memory allocation 

T 

CHAPTER 4 
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Example: 

#include<stdio.h> 

main() 

{ 

char c = „C‟; 

int a = 50; 

float f = 3.45; 

printf(“Address of c = %u, Value of c = %c\n”, &c, c); 

printf(“Address of a = %u, Value of a = %d\n”, &a, a); 

printf(“Address of f = %u, Value of f = %f\n”, &f, f); 

} 

Output: 

Address of c = 65529, Value of c = C 

Address of a = 65522, Value of a = 50 

Address of f = 65518, Value of f = 3.450000 

 

Address Value Variable name 

 :  

65529 67 c 

65522 50 a 

65518 3.45 f 

 :  

 Memory  

Figure 4.1: Variables in memory 

We can store the address of a variable in a pointer variable. It is also possible to store the address 
of a variable into an unsigned integer variable. That is useless, you cannot use the indirection operator 
as a prefix of a variable except a pointer variable. 

Example: 

int *p;  

int a = 50; 

p = &a; 

Suppose, the variable a is stored at memory location 65522 and size of it four bytes. That means 
variable a is stored from memory location 65522 to 65525. Since its size four bytes, four memory 
locations are required to store the value. 

In the above example, the memory location of the variable a stored into variable p. The variable p 
is an integer pointer that means it can store an address of integer type variables. Variable a has a value 
of 50. Then, after the assignment statement, pointer p will have the value 65522, which is the starting 
memory location of variable a and we can say pointer p points to the variable a. 

Indirection Operator 

The indirection operator (*) returns the value of the memory address which is stored in its operand. It 
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is essentially the opposite of the address of operator. This operator is also known as pointer operator.  

Note: Address of operator (&) returns the address of a variable and indirection operator (*) return the 
value of that address. 

Example: 

int a, b, *p;  

a = 50; 

p = &a; 

b = *p; 

Suppose, the variable a is at memory location 65522 and a has a value of 50. Now, the memory 
location of variable a is assigned to the pointer variable p, hence p will have 65522. The assignment 
statement sets the value of the memory location 65522, which is stored into p. Now b has the value 50 
because 50 are stored at location 65522. The indirection operator and address-of operators are the 
complements of each other. 

Example: 

#include<stdio.h> 

main() 

{ 

int a = 50, b; 

int *p; 

p = &a; 

b = *p; 

printf(“Value of a = %d\n”, a); 

printf(“Address of a = %u\n”, &a); 

printf(“Value of p = %u\n”, p); 

printf(“Value of *p = %d\n”, *p); 

printf(“Value of b = %d\n”, b); 

printf(“Address of b = %u\n”, &b); 

printf(“Address of p = %u\n”, &p); 

} 

Output: 

Value of a = 50 

Address of a = 65524 

Value of p = 65524 

Value of *p = 50 

Value of b = 50 

Address of b = 65522 

Address of p = 65520 

We can get the value of  b in the following manner, 
b = *p that means b = *(65524) [since  p = 65524] 
      =  50   [value of address 65524]  

 
 



4.4 | Data Structures and Algorithms with C 

 

 

 
 

 

 

 

 

 

 

Figure 4.2: Variables in memory 

Type casting of Pointers 

The pointer variables have their own data type. Unlike basic data types, the pointers do not support 
implicit type conversion. Therefore, pointer types can be converted to other pointer types using the 
explicit type casting mechanism. 

Example: 

int a = 10; 

float b = 12.3; 

int *p; 

float *q; 

p = &a; 

q = &b; 

q = p;   /* this is invalid */ 

p = q;   /* this is invalid */ 

q = (float*)p;  /* this is valid */ 

p = (int*)q;  /* this is valid */ 

Note: If the compiler encountered some conversion of a pointer that caused the pointer to point to a 
different type then the compiler gives an error message like “Suspicious pointer conversion”.  

Null Pointer 

A null pointer is a pointer value that points to no valid location. A null pointer is a constant pointer 
(often represented by address zero) that is compatible with any pointer. It is not compatible with 
function pointers. When a pointer is equivalent to NULL it is guaranteed not to point to any variable 
defined within the program. 

A null pointer value is an address that is different from any valid pointer. Assigning the integer 
constant 0 to a pointer assigns a null pointer value to it. The mnemonic NULL (defined in the standard 
library header file, stdio.h) can be used for legibility.  

Example: 

int *p; 

*p = 12; 

Since p is not defined, therefore p may contain a garbage value (say, p = 65550). Now purposely 
or accidentally when a value assigning to *p then there are chances that modify that memory location 

Address Value Variable name 

 :  

65524 50 a 

65522 50 b 

65520 65524 p 

 :  

 Memory  
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(e.g. 65550) which is not allocated by the program. Therefore, you should use  
int *p =  NULL; 

Dereferencing a null pointer is meaningless, typically resulting in a run-time error. Therefore, 
before the use of pointer we should check it with NULL value. All pointers can be successfully tested 
for equality or inequality to NULL which is logically equivalent to false.  

In dynamic memory allocation, when calloc() or malloc() function fails to allocate memory block 
then they return NULL. Therefore, after the function call, it requires checking whether the memory 
block is allocated or not, before the use of the memory.  

Example: 

int *p; 

p = malloc(10 * sizeof(int)); 

if(p==NULL) 

{ 

 printf(“Insufficient Memory”); 

 exit(1); 

} 

The null pointer also indicates the failure of a search operation, such as in the linked-list programs. 

Void Pointer 

A void pointer is a pointer, which may store the address of any type of variable. That means void 
pointer is a pointer to anything. The void pointer is also known as a type-less pointer or generic 
pointer. 

Note that a variable of type void cannot be declared. However, the return type of a function may 
be void. 

void a;  /* this is invalid */ 

void *r;  /* valid */ 

The void pointers are used to store the address of any type of variable temporarily. Since the void 
pointer is a typeless pointer, the compiler has no information that how many bytes of data it will 
retrieve from the memory starting from stored address. Therefore, the indirection operator cannot be 
used with a void pointer. 

Example: 

int a = 10; 

float b = 12.3; 

int *p; 

float *q; 

void *r; 

p = &a; 

q = &b; 

printf(“%d”, *p);   

r = p; 

/* this is invalid */ 

printf(“%d”, *r);  

A void pointer may be assigned to any non-void pointer without explicit type casting operator. 
Non-void pointer may also be assigned to void pointer without explicit type casting.  



4.6 | Data Structures and Algorithms with C 

 

Example: 

r = p; 

p = r; 

or 
r = q; 

q = r; 

where p, q, and r are declared as in the previous example. 
The void pointer may be used as a lvalue or as a rvalue. Therefore, by using this concept, void 

pointer allows violating the basic rule of the type conversion of the pointer.  

Example: 

r = p; 

q = r; 

where p is an integer pointer and q is a floating point pointer. This implies, 
q = p; 

Generic Functions 

The void pointer is used to write generic functions, which can accept any type of parameter. A group 
of functions that look the same, except the types of one or more of their arguments. A generic function 
allows defining a function to replace that group of functions. 

Suppose we have a function that can be used to interchange the value of two integer type 
variables. Now we require another function to interchange the value of two floating-point type 
variables. For interchange the value of two long double type variables, we need one more function. 
Therefore, for the different data type, we require to write different function. 

Example: 

/* Interchange the value of two variables */ 

#include<stdio.h> 

void swapi(int *a, int *b); 

void swapf(float *a, float *b); 

main() 

{ 

int i = 10, j = 20; 

float x = 12.3, y = 53.4; 

swapi(&i, &j); 

printf(“i = %d, j = %d”, i, j); 

swapf(&x, &y); 

printf(“x = %f, y = %f”, i, j); 

} 

/* Function to interchange two integer type variables*/ 

void swapi(int *a, int *b) 

{ 

int temp; 

temp = *a; 

*a = *b; 

*b = temp; 
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} 

/* Function to interchange two floating-point type variables*/ 

void swapf(float *a, float *b) 

{ 

float temp; 

temp = *a; 

*a = *b; 

*b = temp; 

} 

Instead of a group of similar type functions, we can use a generic function. A generic function 
permits to define a function to replace that group of functions. 

Example: 

/*Interchange the value of two variable using generic function */ 

#include<stdio.h> 

void swap(void *a, void *b, int n); 

main() 

{ 

int i = 10, j = 20; 

float x = 12.5, y = 53.5; 

swap(&i, &j, sizeof(int)); 

printf(“i = %d, j = %d\n”, i, j); 

swap(&x, &y, sizeof(float)); 

printf(“x = %f, y = %f\n”, x, y); 

} 

/* Generic function to interchange two variables */ 

void swap(void *a, void *b, int n) 

{ 

char *p, *q, temp; 

p = (char*)a; 

q = (char*)b; 

while(n>0) 

{ 

temp = *p; 

*p = *q; 

*q = temp; 

p++; 

q++; 

n--; 

} 

} 

Output: 

i = 20, j = 10 

x = 53.500000, y = 12.500000 

Note that a character is always a byte and a character pointer works as a byte pointer. The sizeof 
operator calculates the size of the data type in bytes. The generic function sequentially interchanges 
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each byte of the two variables, since every type of variable can be treated as sequence of character.  

Dangling Pointer 

Dangling pointers are pointers that do not point to a valid variable of the proper type. Dangling 
pointers are created when memory is deallocated, without modifying the value of the pointer, so that 
the pointer still points to the memory location of the deallocated memory. When the system reallocates 
the previously freed memory to another process and the original program dereferences the dangling 
pointer, then it may produce an unpredictable result, as the memory may now contain completely 
different data. 

Example

{ 

 int *cp; 

  { 

     int c; 

       cp = &c; 

      }   

/* c is in out of scope, cp is now a dangling pointer */ 

} 

A solution to the above is to assign NULL to cp immediately before the inner block is exited. 
Another frequent source of dangling pointers is a combination of malloc () and free () library function 
calls: a pointer becomes dangling when the block of memory it points to is freed. As with the previous 
example, one way to avoid this is to make sure to reset the pointer to null after freeing its reference. 

Example: 

#include <stdlib.h> 

{ 

    int *cp = malloc (100); 

    free ( cp );    /* cp now becomes a dangling pointer */ 

    cp = NULL;      /* cp is no longer dangling */ 

} 

Allowable Operations with Pointer 

There are only a few numbers of operations of pointer are allowed. The allowable operations of pointer 
as follows: 

 Increment and decrement operations with pointer variables. 
 Subtraction of two pointer variables. 
 Addition and subtraction of integer value with pointers. 
 Relational operations between two pointer variables. 
 Assignment Operation. 

Note: Addition of two pointer variables of any type is not accepted. 

Arithmetic Operation with Pointer 

Addition and subtraction of integer value with pointer variable are permitted. However, other 
arithmetic operations, including multiplication, division are not permitted with pointers. Non-integer 
values such as floats or double value addition or subtraction with pointer variables are not accepted.  
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The format for adding or subtracting an integer to a pointer is: 
Pointer-variable + integer-value 

Pointer-variable - integer-value 

One pointer may be subtracted from another pointer of the same type and the result will be an 
integer, not a pointer. 

Example: 

int a[5] = {10, 20, 30, 40, 50}; 

int i, *p, *q; 

p = a + 1; 

q = a + 3; 

printf(“%d”, q - p); 

Output: 

2 

Increment and Decrement operations with Pointer 

Increment operation can be used with pointer variable that is similar to add one with pointer variable. 
Decrement operation can also be used with pointer variable that is similar to subtract one from pointer 
variable. The formats for incrementing or decrementing a pointer are:  

Pointer-variable++ 

Pointer-variable-- 

There is three possible mix pointer increment and indirection are as follows: 
i) *p++  
ii) *++p  
iii) ++*p 
Where p is a pointer variable. 
i) *p++ returns the content at the location being pointed by p and then increment the pointer by 

one. The pointer p will point the next element. The decrement operator can be used with pointers, in 
the same manner, to move to the previous element. Note that the compiler may give some warning or 
error message if next memory location is not allocated by the program statically or dynamically. 

Example: 

int a[5] = {10, 20, 30, 40, 50}; 

int *p; 

p = a; 

printf(“%d ”, *p++); 

printf(“%d ”, p - a); 

printf(“%d ”, *p); 

Output: 

10 1 20 

It should be noted that increment (++) and decrement (--) operators have a higher precedence than 
the precedence of indirection operator (*). 

ii) *++p increments the pointer by one and then it returns the content at the location being pointed 
by p. The pointer p will point the next element. The decrement operator can be used with pointers, in 
the same manner, to move to the previous element. Note that the compiler may give some warning or 
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error message if the next memory location is not allocated by the program statically or dynamically. 

Example: 

int a[5] = {10, 20, 30, 40, 50}; 

int *p; 

p = a; 

printf(“%d ”, *++p); 

printf(“%d ”, p - a); 

printf(“%d ”, *p); 

Output: 

 20 1 20 

ii) ++*p increments the value at the location being pointed by p. The pointer p will be points same 
element. The decrement operator can be used with pointers in the same manner to decrement the value 
at the location being pointed. 

Example: 

int a[5] = {10, 20, 30, 40, 50}; 

int *p; 

p = a; 

printf(“%d ”, ++*p); 

printf(“%d ”, p - a); 

printf(“%d ”, *p); 

Output: 

11 0 11 

Relational Operation with Pointer 

A pointer variable can be compared with another pointer variable of the same type using different 
relational operators. Table 4.1 describes allowable relational operations with pointer. 

Table 4.1: Relational operators with pointer 

Operators Description 

< Less than 
<= Less than or equal to 
> Greater than 

>= Greater than or equal to 
== Equal to 
!= Not equal to 

A pointer variable can also be compared with a NULL pointer. 
The Table 4.2 shows pointer notations and array notations. The notations are based on the 

following code: 
int arr[] = {10, 20, 30, 40, 50}; 

int *ptr; 

ptr = arr; 
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Table 4.2: Pointer notation and array notation 

Pointer Notation Array Notation  Results 

ptr  arr, &arr[0]  Address of the first element of the array.  
ptr++  &arr[x++]  Move the pointer to the next element of the array.  
ptr + 1  &arr[1]  Address of the second element of the array.  
*ptr  arr[0]  Value of the first element of the array.  
*(ptr + 1)  arr[1]  Value of the second element of the array.  
*(ptr) + 1  arr[0] + 1  Add 1 and the first element of the array together.  
*ptr++  arr[x++]  Move to the next element in the array after the value 

is used.  
*ptr--  arr[x--]  Move to the previous element in the array after the 

value is used.  
*++ ptr  arr[++x]  Move to the next element in the array before using 

the value.  
*-- ptr  arr[--x]  Move to the previous element in the array before 

using the value.  
(* ptr)++  arr[0]++  Increment the first element of the array by 1.  
(* ptr)--  arr[0]--  Decrement the first element of the array by 1.  
(*( ptr + 2))++  arr[2]++  Increment the third element of the array by 1.  
(*( ptr + 2))--  arr[2]--  Decrement the third element of the array by 1.  

Implicit Scaling in Pointer Addition 

When several data items of the same type are placed consecutively in the memory, then a unit 
increment or decrement to a pointer to any of the data items, always gives the address of the next or 
previous items. This works independently of the data item. 

Example: 

int *p; 

float *q; 

Now, when we write p + i where i is an integer number, then the system evaluates as 
p + i × sizeof(int).  

Similarly, q + i systematicaly evaluate as q + i × sizeof(float). 
Therefore, we always get the address of ith element independently of the data item. 

Pointer to Pointer 

A pointer is a variable that is used to store an address or location of another variable. That variable 
may also be a pointer. The pointer to pointer is a special type of pointer that is used to store an address 
of another pointer variable. 

Example: 

#include<stdio.h> 

main() 

{ 
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int a = 50, b, c; 

int *p;  

int **q; 

p = &a; 

b = *p; 

printf(“Value of a = %d\n”, a); 

printf(“Address of a = %u\n”, &a); 

printf(“Value of p = %u\n”, p); 

printf(“Value of *p = %d\n”, *p); 

printf(“Value of b = %d\n”, b); 

q = &p; 

c = **q; 

printf(“Value of p = %u\n”, p); 

printf(“Address of p = %u\n”, &p); 

printf(“Value of q = %u\n”, q); 

printf(“Value of **q = %u\n”, **q); 

printf(“Value of c = %d\n”, c); 

printf(“Address of q = %u\n”, &q); 

} 

 

Output: 

Value of a = 50 

Address of a = 65524 

Value of p = 65524 

Value of *p = 50 

Value of b = 50 

Value of p = 65524 

Address of p = 65518 

Value of q = 65518 

Value of **q = 50 

Value of c = 50 

Address of q = 65516 

 

 

 
Value Variable name 

 :  

65524 50 a 

65518 65524 p 

65516 65518 q 

 :  

 Memory  

 Figure 4.3: Variables in memory 
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Pointers and Arrays 

In the C language, pointers and arrays are closely related. The name of an array is also the address of 
the first element of the array and points to the location in memory of the first element in the array.  

Arrays are nothing but pointers. Hence, there is no index overflow or underflow checking. Arrays 
are also called as a static pointer. Since the name of an array is a constant pointer.  

Example: 

int a[5] = {10, 20, 30, 40, 50}; 

int i; 

a[5] = 5;  /* overflow */ 

a[-5] = -5;  /* underflow */ 

No index overflow or underflow error message will be given by the compiler and index overflow 
or underflow checking does not take place at runtime. 

Example: 

int a[5] = {10, 20, 30, 40, 50}; 

int *p; 

a = p;  /* this is invalid */ 

Here, the pointer variable p is assigned to the base address of the array. This is not accepted 
because the base address of the array is a constant and a pointer is the variable. 

Example: 

int a[5] = {10, 20, 30, 40, 50}; 

int i, *p; 

p = a; 

for(i=0; i<5;i++) 

 printf(“%d”, p[i]); 

The base address of the array is assigned to the pointer variable p. The pointer variable p can be 
used just like as it is an array name and the printf statement outputs the value of the each element of 
the array.  

An alternative way doing the same thing with the following statement that uses the address of the 
first element of the array is assigned to the pointer variable p. 

p = &a[0]; 

An array element a[i] can be written as *(a+i) in pointer representation and a+i signify the 
address of that element. 

Example: 

int a[5] = {10, 20, 30, 40, 50};  

int i; 

for(i=0; i<5;i++) 

 printf(“%d”, *(a+i)); 

A two-dimensional array can be thought as a one-dimensional array and that may be represented 
by a pointer. 

Example: 

int a[3][4] = {{11, 12, 13, 14},{21, 22, 23, 24},{31, 32, 33, 34}}; 
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int *p; 

int i, j; 

p = a[0]; 

for(i=0;i<12;i++) 

printf("%5d", p[i]); 

The base address of the array a[0] is assigned to the pointer variable p. The pointer variable p 
can be used just like as it is a one-dimensional array and printf statement outputs the value of the each 
element of the array. Figure 4.4 shows how two-dimensional array stores in memory. 

4000 4002 4004 4006 4008 4010 4012 4014 4016 4018 4020 4022 

11 12 13 14 21 22 23 24 31 32 33 34 

Figure 4.4: Two-dimensional array stores in memory, such as one-dimensional array 

Suppose a two-dimensional array is declared as 
int a[3][4]; 

An array element a[i][j] of the two dimensional array can be accessed through a pointer by 
following different syntaxes: 

a[i][j] = *(*(a+i)+j) 

a[i][j] = *(a[i]+j) 

a[i][j] = (*(a+i))[j] 

a[i][j] = *((*a)+(i*4+j)) 

Both addition operations are following the rules of pointer arithmetic, but pointers to different 
types are involved. The inner arithmetic operation involves with a pointer to an array of size 4. That is 
why we need to specify the number of columns of the two-dimensional array in function definition 
when it is used as a formal argument. The outer arithmetic operation involves with a pointer to an 
integer. 

Example: 

#include<stdio.h> 

main() 

{ 

   int a[5]={3, 5, 6, 8}; 

   printf(“%d %d ”, a[3], 3[a]); 

} 

Output: 

8 8 

Do not get surprised! It is a correct syntax:  
3[a] equals to *(3+a) 
Array variable always returns the base address, [ ] does sum with array index (i.e. *(base + index)) 

and addition (+) is commutative. Therefore, *(base + index) is equal to *(index + base). 
Since 3[a] has represented *(3+a) and *(3+a) is equal to *(a+3). Therefore, a[3] is same 

as 3[a] since a[3] represents *(a+3).  
But on the other hand [a]3 or [3]a is not correct syntax and will result into syntax error, 

since(a + 3)* and (3 + a)* are not valid expressions. 
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Array of Pointers 

An array of pointers is nothing more than an array of elements that contain the addresses of values in 
memory. The format for creating an array of pointers is similar to the format for creating any other 
array: 

data_type *array_name[size]; 

The array type should match the data type it points to; the indirection operator precedes the name 
of the array; and the number of elements (pointers) is enclosed in the braces. To assign an address to an 
element in an array of pointers, use the address operator, as in the following example: 

Example: 

#include<stdio.h> 

main() 

{ 

int x,y,z; 

int *a[3]; 

int **p; 

x = 10; 

y = 20; 

z = 30; 

a[0] = &x; 

a[1] = &y; 

a[2] = &z; 

printf("x = %d\n", *a[0]); 

printf("y = %d\n", *a[1]); 

printf("z = %d\n", *a[2]); 

p = a; 

printf("x = %d\n", *p[0]); 

printf("y = %d\n", *p[1]); 

printf("z = %d\n", *p[2]); 

} 

Output: 

x = 10 

y = 20 

z = 30 

x = 10 

y = 20 

z = 30 

The address of each integer variable x, y and z is assigned to an element in the array of pointers. 
The format *a[0] indirectly refers to the value of x by using the address stored in a[0].  

The base address of the array is assigned to the pointer variable p. The pointer variable p can be 
used just like as it is an array name and the printf statement outputs the value of the each element of 
the array.  

Pointer to an Array 

A two-dimensional array name is a composite pointer that means it is a pointer to arrays, each of the 
same size as the number of columns. A one-dimensional array can be represented by an elementary 
pointer variable and a two-dimensional array can be represented by a composite pointer variable that is 
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a pointer to an array.  
The format for creating a pointer to an array: 
data_type (*pointer_name)[size]; 

where the data_type should match the data type it points to; the size within bracket equals to the 
number of columns and pointer_name is the name of the pointer. 

The objective of declaring a pointer to an array is to ensure that the unit increment of the 
corresponding pointer always takes from beginning of one row to the beginning of next row, 
independent of the data type. Remember that pointer to an array is different from the array of pointer. 

Example: 

int a[3][4] = {{11, 12, 13, 14}, 

               {21, 22, 23, 24}, 

               {31, 32, 33, 34}}; 

int (*p)[4];  /* pointer to an array of size 4 */ 

int i, j; 

p = a; 

for(i=0;i<3;i++) 

{ 

    for(j=0;j<4;j++) 

  printf(“%5d”, p[i][j]); 

    printf(“\n”); 

} 

Here, the pointer to an array of size 4 is declared that should be equal to the column size of the 
two-dimensional array. The base address of the array is assigned to the pointer variable p. The pointer 
variable p can be used just like as it is an array name and the printf statement outputs the value of the 
each element of the array.  

Pointer to Function 

Pointers can point to integer, character, array, pointer as well as pointers can also point to the C 
function. The functions are loaded into computer memory before they are invoked by the program. 
Therefore, they have also addresses, from where they are loaded into the memory. When a function 
address is known then a pointer can point to it. The pointer can provide another way to invoke the 
function. Note that, the function name itself is an address of the function. 

The format for creating a pointer to a function: 
data_type (*pointer_name)(); 

where data_type same as the return type of the function and pointer_name is the name of the 
pointer that points to a function. 

Example: 

#include<stdio.h> 

int show(); 

main() 

{ 

int (*p)(); 

p = show; 

printf("Address of Function show is %u\n", show); 
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/* Function show is called using pointer */ 

(*p)(); 

} 

int show() 

{ 

printf(“Hello India!”); 

return 0; 

} 

Output: 

Address of Function show is 4198701 

Hello India! 

Pointers can point to user-defined functions as well as they can point to library functions. 
The uses of the pointer to the function are as follows: 
 To write memory resident programs. 
 To write viruses (i.e. Worms, Trojan horses, etc.) and vaccines (i.e. anti-virus) to remove 

viruses. 

Passing Addresses to Function 

A function can pass a value, as well as it can pass addresses to the function i.e. can pass a reference. 
The addresses of actual arguments in the calling function are copied to formal arguments of the called 
function. The addresses of the actual arguments are copied to formal arguments as a value, not a 
reference. In C language functions are called by value and C does not support reference data types. 
That means the called function uses the values of its arguments as temporary variables rather than the 
originals. When the temporary variables are modified in the called function, then it has no effect on the 
actual arguments in the calling function. 

It is possible to create a function that can modify a variable in the calling function. Generally, a 
function can return only one value to the calling function. However, a function can return more than 
one value at a time to the calling function by passing addresses. The calling function passes the 
addresses of the variables and the called function must declare the arguments to be a pointer and access 
the variable indirectly through it. 

Example: 

#include<stdio.h> 

void swap(int *a, int *b); 

main() 

{ 

int i = 10, j = 20; 

printf(“Before calling function i = %d, j = %d\n”, i, j); 

swap(&i, &j); 

printf(“After calling function i = %d, j = %d\n”, i, j); 

} 

void swap(int *a, int *b) 

{ 

int temp; 

temp = *a; 
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*a = *b; 

*b = temp; 

} 

Output: 

Before calling function i = 10, j = 20 

After calling function i = 20, j = 10 

Function Returning Pointer 

The functions can return an integer, a floating point or any other data type; as well as it can also return 
a pointer. To create a function returning a pointer should explicitly mention in the function prototype 
and in the function definition. 

The format of function returning pointer: 
data-type *function-name(argument-list) 

Example: 

#include<stdio.h> 

#include<stdlib.h> 

char *xstrcat(char*,char*); 

main() 

{ 

char *dest, *source = "India!", *target = "Hello "; 

dest=xstrcat(target, source); 

printf("source = %s\n",source); 

printf("target = %s\n",target); 

printf("dest = %s\n",dest); 

} 

char *xstrcat(char* t,char* s) 

{ 

int i; 

char *temp; 

temp=(char*)malloc(25); 

for(i=0;*(t+i)!='\0';i++) 

  *(temp+i)=*(t+i); 

while(*s) 

{ 

*(temp+i)=*s; 

*s++; 

i++; 

} 

return(temp); 

} 

Output: 

source = India! 

target = Hello 

dest = Hello India! 
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Dynamic Memory Allocation 

When memory has been needed by a program, it has been set aside by declaring the desired type of 
variables. For variables declared in any function, space in memory is set aside to hold the value 
assigned to the variable. This memory is reserved until the function finishes.  

Another problem may arise when declared an array in a program. The user may provide a less 
number of elements than the number of elements of the declared array, and then the rest of the memory 
space will be wasted. This leads to the inefficient use of memory. As well as the user may also enter a 
number of elements more than the number of elements of the declared array, then the user may get 
unexpected result or user may face a runtime error or system may be crushed. 

This may not always be the optimal way to allocate memory. Fortunately, you can instead write 
your programs and obtain memory as they are running. With dynamic memory allocation, memory is 
not reserved or set aside at the start of the program; rather, it is allocated on an as-needed basis.  

When a program is compiled, many of the memory locations needed for the program to hold 
variable and constant data can be determined in advance. As the compiler works through the main part 
of the program and each of the other functions, it can figure out what memory will be needed when the 
program runs. The memory can be divided into four regions as shown in the figure. 

When the program is loaded, it can request the needed memory from the operating system before 
the program actually begins to run. The operating systems reserve the needed memory locations by 
stacking one variable on top of another in memory, in a tight, neat block. Because of the way this 
process works, this part of the memory is known as the stack. Memory reserved within the stack 
cannot be freed up until the program quits running.  

Stack 

Heap 

Global Variables 

Program Code 

Figure 4.5: Four regions of memory 

Some programs need to use a large block of memory to hold data, but they only need those blocks 
for a short period of time. Rather than use all that memory the entire time the program is running, such 
programs can temporarily allocate storage locations from another portion of memory, known as the 
heap. When the program is done using a particular block of heap memory, it simply tells the operating 
system that it is done, and the system returns that memory to the heap, where it can be freed out to 
other needy programs. For best utilization of memory, clearly having a heap is a good idea.  

A compiled C program creates and uses four logically distinct regions of memory. The first region 
is the memory that actually holds the program's executable code. The next region is a memory where 
global variables are stored. The remaining two regions are the stack and the heap. The stack is used for 
a great many things while your program executes. It holds the return addresses of function calls, 
arguments to functions, and local variables. It will also save the current state of the CPU. The heap is a 
region of free memory that your program can use via C's dynamic memory allocation functions. 
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Although the exact physical layout of each of the four regions of memory differs among CPU 
types and C implementations, the diagram in Figure shows conceptually how your C programs appear 
in memory. The important functions involved in dynamic memory allocation are malloc(), calloc(), 
realloc() and free().  

Table 4.3: Functions in dynamic memory allocation 

Functions Description 

malloc() The malloc() function allocates a block of size bytes from the memory 
heap. 

calloc calloc() allocates a block of size bytes from the memory heap and block is 
initialized to zero. 

realloc() realloc() function reallocates the memory block that means it attempts to 
reduce or increase the previously allocated block. 

free() free() function is used  to de-allocate a memory block allocated by a 
previous call to calloc(), malloc(), or realloc(). 

The malloc Function 

The malloc() function is a library function that uses to allocate a block of memory (size in bytes) from 
the memory heap. This function allows a program to allocate memory dynamically (i.e. in run time) 
when it is needed and in the exact amounts. The contents of the block are left unchanged. 

The general form of the malloc function is 
void *malloc(size) 

The malloc() function returns a void pointer to the newly allocated block of memory. When there 
is not enough space exists for the new block or if the size argument is given zero then malloc function 
returns NULL. 

Example: 

int *p; 

p = (int*) malloc(10 * sizeof(int)); 

In the example, the malloc() function, allocate a memory block for 10 integer elements at runtime. 
After the memory allocation, it returns a pointer to the memory block. It is possible to guess how much 
memory is required. However, because the size of an integer varies from system to system, therefore 
problems can arise when run the code to another platform. The sizeof operator is used to avoid 
problems. The sizeof operator is used to evaluate the size of each integer element in bytes. The 
multiplication operator calculates the total size of the memory block. The explicit type conversion is 
optional. 

 The heap is used for dynamic allocation of variable-sized blocks of memory. Many data 
structures, for example, trees and lists, naturally employ a heap memory allocation. 

The calloc Function 

The calloc() function is used to allocate a block of memory (size in bytes) from the memory heap. This 
function allows a program to allocate memory dynamically (i.e. at run time) when it is needed and in 
the exact amounts. The block is cleared to zero 

The general form of the calloc() function is 
void *calloc(nitems, size) 

Where nitems is the number of item and size represents the size of each item in bytes. The 
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calloc() function allocates a block of memory of size nitems * size. 

Example: 

int *p; 

p = (int*) calloc(10, sizeof(int)); 

In the example, the calloc() function allocates a memory block for 10 integer elements at runtime. 
After the memory allocation, it returns a pointer to the memory block and the block is initialized to 
zero. The sizeof operator is used to evaluate the size of each integer element in bytes. The explicit type 
conversion is optional. 

The calloc() function returns a void pointer to the newly allocated block of memory. When there is 
not enough space exists for the new block or if the argument size or nitem is zero then the calloc 
function returns NULL. 

The heap is available for dynamic allocation of variable-sized blocks of memory. Many data 
structures, such as trees and lists, naturally employ a heap memory allocation. 

The realloc Function 

The realloc() function reallocates the memory block that means it attempts to reduce or increase the 
previously allocated block. 

The general form of the calloc() function is 
void *realloc(void *p , size) 

Here, p is a pointer to block that is previously allocated and size is representing the size of the 
memory block. 

If size is zero, the memory block is freed and NULL is returned. The block argument points to a 
memory block previously obtained by calling malloc, calloc() or realloc(). If the block is a NULL 
pointer, the realloc () function works just like malloc. The realloc() function adjusts the size of the 
allocated block to size, copying the contents to a new location if necessary. 

The realloc() function returns the address of the reallocated block, which can be different than the 
address of the original block. When the block cannot be reallocated then the realloc() function returns 
NULL. If the value of size is zero, the memory block is freed and realloc() returns NULL. 

The free Function 

The free() function is used to deallocate a memory block allocated by a previous call to calloc(), 
malloc(), or realloc(). The general form of the calloc() function is 

void free(void *p); 

Here, p is a pointer to block that is previously allocated. It returns nothing.  

Example: 

int *p; 

p = malloc(10 * sizeof(int)); 

free(p); 

The free() function releases the memory block, which is previously allocated by malloc() function. 

Example: 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 
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main() 

{ 

    char *s; 

    /* allocate memory for string */ 

    s = (char *) malloc(10); 

    if (s == NULL) 

    { 

       printf("Not enough memory to allocate memory"); 

       exit(1);  /* terminate program if out of memory */ 

    } 

    /* copy "Hello" into string */ 

    strcpy(s, "Hello"); 

    /* display string */ 

    printf("String is %s", s); 

    /* free memory */ 

    free(s); 

} 

Creating One-dimensional Array  

Sometimes we can use a pointer variable instead of an array. Suppose, a is declared as a one-
dimensional array of integer and p is declared as a pointer to integer. 

int a[10]; 

we can write instead of the array 
int *p; 

but p is not automatically allocated a block of a memory, therefore before the use of the pointer 
variable in the place of a array we need to allocate a block of memory for it. 

The one-dimensional array can be created by using malloc () or calloc () function. 

Example: 

#include<stdio.h> 

#include<stdlib.h> 

main() 

{ 

int *p, n, i; 

printf("Enter the number of elements"); 

scanf("%d", &n); 

p =(int*)malloc(n * sizeof(int)); 

if(p==NULL) 

{ 

   printf(“Insufficient Memory”); 

   exit(1); 

} 

printf("Enter the elements of the array"); 

for(i=0;i<n;i++) 

 scanf("%d", p+i); 

printf("Elements of the array"); 
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for(i=0;i<n;i++) 

 printf("%5d",*(p+i)); 

} 

Output: 

Enter the number of elements 5 

Enter the elements of the array 3 5 6 7 9 

Elements of the array    3    5    6    7    9 

Creating Two-dimensional Array 

There are two methods of creating two-dimensional arrays dynamically. 
In the first method, the number of columns of the two-dimensional array has been known before 

compile time, but the number of rows will be known only at the execution time. The two-dimensional 
array is allocated dynamically which is represented by using a pointer to array having the same size of 
a number of columns of the two-dimensional array. 

Example: 

#include<stdio.h> 

#include<stdlib.h> 

main() 

{ 

int (*p)[4], m, i, j; 

printf("Enter number of rows: "); 

scanf("%d", &m); 

p = (int (*)[4])malloc(m*4*sizeof(int));  

if(p==NULL) 

{ 

 printf(“Insufficient Memory”); 

 exit(1); 

} 

printf("Enter the elements of the array\n"); 

for(i=0;i<m;i++) 

 for(j=0;j<4;j++) 

  scanf("%d", &p[i][j]); 

printf("Elements of the array\n"); 

for(i=0;i<m;i++) 

{ 

   for(j=0;j<4;j++) 

   printf("%5d",p[i][j]); 

   printf(“\n”); 

} 

} 

Output: 

Enter numner of rows: 3 

Enter the elements of the array 

11 12 13 14 
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21 22 23 24 

31 32 33 34 

Elements of the array    

   11   12   13   14 

   21   22   23   24 

   31   32   33   34 

Note that p may now be used as an array of size 4. 
In the second method, the numbers of rows, as well as a number of columns both, are unknown at 

compile time they will be known at the execution time. The following steps are used to create a two-
dimensional array dynamically: 

i) At first, an array of pointers is to be created dynamically. This array of pointers will have the 
same size as the number of rows of the two-dimensional array. The ith array element should 
point to the beginning of the ith row. 

ii) Allocate memory space for the entire array dynamically. The total space may be contiguous or 
may not be so. However, the minimum condition is that all the elements of each row must be 
allocated space contiguously. 

iii) The value of each element of the pointer array that created in the first step is to be properly 
initialized.  

Contiguous Allocation of Two-dimensional Array  

In the contiguous allocation of memory space for the two-dimensional array, the whole array is 
allocated dynamically. The total memory space of two-dimensional array should be contiguous. An 
array of pointers is also to be created dynamically. This array of pointers will have the same size as the 
number of rows of the two-dimensional array and the ith array element should point to the beginning of 
the ith row. 

 

Figure 4.6:   Contiguous allocation of entire 2D array 

Note that the array of pointers can be represented by pointer to pointer. 

Example: 

#include<stdio.h> 

#include<stdlib.h> 

main() 

{ 

int **p, *q, m, n, i, j; 

printf("Enter number of rows"); 

scanf("%d", &m); 

printf("Enter number of columns"); 

p[0] 

p[1] 

p[2] 

11 12 13 14 

21 22 23 24 

31 32 33 34 

 
 
 

Pointer array 
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scanf("%d", &n); 

p =(int**)malloc(m * sizeof(int*)); 

q =(int*)malloc(m * n * sizeof(int)); 

if(p==NULL || q==NULL) 

{ 

 printf(“Insufficient Memory”); 

 exit(1); 

} 

for(i=0; i<m; i++) 

{ 

   p[i] = q; 

   q += n; 

} 

printf("Enter the elements of the array\n"); 

for(i=0;i<m;i++) 

 for(j=0;j<n;j++) 

     scanf("%d", &p[i][j]); 

printf("Elements of the array\n"); 

for(i=0; i<m; i++) 

{ 

 for(j=0; j<n; j++) 

     printf("%5d",p[i][j]); 

 printf(“\n”); 

}  

} 

Output: 

Enter number of rows3 

Enter number of columns3 

Enter the elements of the array 

11 12 13 

21 22 23 

31 32 33 

Elements of the array    

   11   12   13 

   21   22   23 

   31   32   33 

Non-contiguous Allocation of Two-dimensional Array  

Non-contiguous allocation of two-dimensional array is used when we need to create a large two-
dimensional array (for example 1000 x 1000) and/or contiguous memory may not available. For non-
contiguous allocation of memory, space for each row is to be allocated separately as the need arises. 
Therefore, the total space is not being contiguous. However, all the elements of each row must be 
allocated space contiguously.  

An array of pointers is created dynamically. This array of pointers will have the same size as the 
number of rows of the two dimensional array and the ith array element should point to the beginning of 
the ith row. 



4.26 | Data Structures and Algorithms with C 

 

 
Figure 4.7:   Non-contiguous allocation of 2D array, but each row must be allocated space contiguously 

Example: 

#include<stdio.h> 

#include<stdlib.h> 

main() 

{ 

int **p, m, n, i, j; 

printf("Enter number of rows"); 

scanf("%d", &m); 

printf("Enter number of columns"); 

scanf("%d", &n); 

p =(int**) malloc(m * sizeof(int*)); 

for(i=0; i<m; i++) 

   p[i] = (int*)malloc(n * sizeof(int)); 

printf("Enter the elements of the array"); 

for(i=0;i<m;i++) 

 for(j=0;j<n;j++) 

 scanf("%d", &p[i][j]); 

printf("Elements of the array"); 

for(i=0;i<m;i++){ 

 for(j=0;j<n;j++) 

    printf("%5d", p[i][j]); 

     printf(“\n”); 

} 

} 

Output: 

Enter number of rows3 

Enter number of columns3 

Enter the elements of the array 

11 12 13 

21 22 23 

31 32 33 

Elements of the array    

   11   12   13 

   21   22   23 

   31   32   33 

p[0] 

p[1] 

p[2] 

11 12 13 14 

21 22 23 24 

31 32 33 34 

 
 
 

Pointer array 
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However, the drawbacks of dynamic memory allocation for the two-dimensional array are to be 
followed: 

 Extra memory space is required for storage of pointer array. 
 Access to the individual array element is obtained only after the first level of indirect 

addressing. 

Pointers, Arrays and Strings 

Sometimes we can use a pointer variable instead of an array. Suppose, a is declared as a one-
dimensional array of integer and p is declared as a pointer to an integer. 

int a[10]; 

we can write instead of the array 
int *p; 

Since p is not defined so p may contain a garbage value and p is not automatically allocated a 
block of a memory. Therefore, before the use of the pointer variable in the place of an array we need to 
allocate a memory for it. 

Example: 

p = (int *)malloc(100*sizeof(int)); 

This statement allocates a memory block for 100 integer values. 

Example: 

char *s; 

scanf(“%s”,s);  /* invalid */ 

or 
char *s; 

s = ”Hello”   /* invalid */ 

We should require allocating a block of memory before the use of pointer variable. Otherwise, it 
may display a runtime error like: ―Segmentation fault‖.  

Example: 

char *s; 

s = (char*)malloc(10); 

scanf(“%s”,s);   

However in the case of array, memory block is allocated at compile time. 
char t[10]; 

scanf(“%s”, t);    /* valid */ 

but we cannot assign a value to a string variable 
char t[10]; 

t = ”Hello”; 

we should use the library function strcpy() to do this 

Example: 

char t[10]; 

strcpy(t, ”Hello”); 
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Program: How to find size of int data type without using sizeof operator. 

#include<stdio.h> 

main() 

{ 

  int *ptr = 0; 

  ptr++; 

  printf("Size of int data type:  %d",ptr); 

} 

Summary 

 A pointer is a variable that can point to another variable. 
 That variable may be an integer type, character type or floating-point type. 
 A pointer can also point to another pointer variable then the pointer is known as pointer-to-pointer. 
 The void pointer is a pointer, which may store the address of any type of variable. 
 Sometimes we need to allocate memory space when a program is running. This type of memory 

allocation is called dynamic memory allocation. 
 The malloc() and calloc() functions are used to allocate memory space at runtime. 
 The realloc() function is required to modify the previously allocated memory space. 
 The free() function is used to release the memory space that allocated previously call of malloc(), 

calloc() or realloc() function. 

Exercises 

1. What is a pointer?  
2. What is the purpose of indirection operator? How can the indirection operator be used to access a 

multidimensional array element? 
3. What is pointer to pointer? 
4. What is a void pointer? What is a generic function? 
5. What is a dangling pointer? 
6. How do you get access to an element in an array by using a pointer? Explain with suitable 

example. 
7. How pointer to function works?  
8. How can a function return a pointer to its calling function? Explain with a suitable example. 
9. What is dynamic memory allocation? What is the advantage of dynamic memory allocation over 

static memory allocation? 
10. What are the differences between malloc() and calloc() function? 
11. Write a program using pointers to compute the sum of all elements stored in an array. 
12. Write a program using pointers to determine the length of a character string. 
13. Write a function using pointers to exchange the values stored in two locations in the memory. 
14. Write a program to generate an array of N elements dynamically and sort then in ascending order. 
15. Write a program of matrix multiplication by using dynamic memory allocation. 
16. What is the output of the following C program? 

(i) main() 

{ 
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   const int x = 5; 

   int *prt; 

   ptr = &x; 

   *prt = 10; 

   printf(“%d”, x); 

} 

(ii) main() 

{ 

int a=2, *f1, *f2; 

f1 = f2 =&a; 

*f1+=*f2+=a+=2.5; 

printf(“%d %d %d”, a, *f1, *f2); 

} 

(iii) main() 

{ 

register int i =5; 

printf(“Address of a=%u”, &i); 

printf(“Value of a=%d”, i); 

}  

(iv) main() 

{ 

int a=10; 

void *j; 

j=&a; 

j++; 

printf(“%u”, j); 

} 

(v) main() 

{ 

char *p=”Hello”; 

printf(“%c”, *p); 

} 

(vi) main() 

{ 

int i=320; 

char *ptr=(char *)&i; 

printf("%d",*ptr);  

} 

(vii) main() 

{ 

static char str[]=”Limericks”; 

char *s; 

s=&str[6]-6; 

while(*s) 

printf(“%c”, *s++); 

} 

*****





 

 

 

 

 
 

 

LINKED LIST  
 

“The whole is equal to the sum of its parts”. - Euclid 
 
 

ink list, as the name suggests, is a linear list of linked 
elements. Like arrays, linked list represents another linear data 
structure. Arrays are very commonly useful data structure in 

most of the programming languages. Since it has several limitations 
and drawbacks; therefore, an alternative approach is required. These 
limitations can be overcome by using Linked List data structure. 

Allen Newell, Cliff Shaw and Herbert A. Simon at RAND 
Corporation developed linked lists as the primary data structure in 
1955–1956 for their Information Processing Language. 

Limitations of Array 

The array is the most common data structure used to store a collection of homogeneous elements. In 
most languages, arrays are convenient to declare, and fast to access any element in a constant amount 
of time. The address of an element is computed as an offset from the start of the array which only 
requires one multiplication and one addition. 

In many applications, the array is not suitable as it has some drawback. The drawbacks of Array 
are listed below: 

 The maximum size of the array needs to be predicted beforehand. One cannot change the size 
of the array after allocating memory, but, many applications require resizing. Most often this 
size is specified at compile time with a simple declaration. The size of the array can be 
deferred until the array is created at runtime, but after that it remains fixed. When arrays are 
allocating dynamically from the heap and then one can dynamically resize it with realloc(), 
but that requires some real programmer effort. 

 Most of the space in the array is wasted when programmer allocates arrays with large size. On 
the other hand, when program ever needs to process more than the specify size then the code 
breaks. 

 Storage of the array must be available contiguously. Required storage not always immediately 
available. 

 Insertion and deletion operation may be very slow. The worst case occurs when the first 
element is to be deleted or inserted. Almost all the elements of the array need to be moved. 
On an average about half the elements of the array need to be moved. Thus, the time 
complexity depends on the total no of elements rather than the actual operation. 

 Joining and splitting of two or more arrays is difficult. 

 

K E Y  F E A T U R E S  

 Singly Linked List 

 Doubly Linked List 

 Circular Linked List 

 Linked Stack 

 Linked Queue 

 Polynomial Representation 
 

L 

CHAPTER 5 
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LINKED LIST 

In arrays, there is always a fixed relationship between the addresses of two consecutive elements as all 
the items of an array must be stored contiguously. However, note that this contiguity requirement 
makes expansion or contraction of the size of the array difficult. In linked list, data items may be 
scattered arbitrarily all over the memory, but we can achieve fast insertion and deletion in a dynamic 
situation. 

Definition: A linked list is a linear ordered collection of finite homogeneous data elements called 
node, where the linear order is maintained by means of links or pointers. 

A linked list allocates space for each element separately in its own block of memory called a 
"linked list element" or "node". The list structure is created by the use of pointers to connect all its 
nodes together like the links in a chain. 

In an array if the address of one element is known, addresses of all other elements become 
automatically known. Since, in a linked list, there is no relationship between the addresses of elements, 
each element of a linked list must store explicitly the address of the element next to it.  

Table 5.1: Difference between Array and Linked list 

Property Array Linked List 

Storage Storage of the array must be available 
contiguously. 

Storage need not be contiguous. 

Memory 
utilization 

The size of the array needs to be 
predicted beforehand because memory 
allocation is done in advance. 

Memory  of linked list is not pre-allocated, 
memory is allocated whenever it is 
required. 

Memory 
utilization 

Not necessary for storing addresses of 
any element. 

Extra memory space is necessary for 
storing addresses of the next node 

Change of 
size 

The array size is fixed, extend or shrink 
not possible during the execution of a 
program 

Linked list may extend or shrink during the 
execution of a program 

Insertion/ 
deletion 

Insertion/deletion operations are slow, 
half of the elements are required to 
move on an average 

Insertion/deletion operations are performed 
very fast, in a constant amount of time 

Searching 
Linear searching, binary searching, 
interpolation searching are possible 

Binary searching, interpolation searching 
not possible, only linear searching is 
possible 

Access 
element 

Fast access to any element in a constant 
amount of time. 

To access any element in a linked list, 
traversing is required.  

Joining/ 
splitting 

Joining and splitting of the two arrays 
is difficult. 

Joining and splitting of two linked list is 
very easy. 

Advantages of linked list 

Linked lists have many advantages. Some of the very important advantages are: 
i) Linked list are dynamic data structures. That is, they can extend or shrink during the execution of 

a program. 
ii) Storage need not be contiguous.  
iii) Efficient memory utilization. Here memory is not pre-allocated. Memory is allocated whenever it 

is required. 
iv) Insertion or deletion is easy and efficient, may be done very fast, in a constant amount of times, 
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independent of the size of the list. 
v) The joining of two linked lists can be done by assigning pointer of the second linked list in the last 

node of the first linked list. 

Splitting can be done by assigning a null address in the node from where we want to split one linked 
list into two parts.  

Types of Linked list 

There are different types of linked list. We can put linked lists into the following four types:  
i) Singly linked list 
ii) Circular Linked list 
iii) Doubly Linked list 
iv) Circular Doubly linked list 

Singly linked list 

An element in a linked list is specially termed as a node. In a singly linked list, each node consists of 
two fields: 

i) DATA field that contains the actual information of the element. 
ii) LINK field, contains the address of the next node in the list. 
A "DATA" field to store whatever element type the list holds for the user, and a "LINK" field, 

which is a pointer, used to link one node to the next node. Each node is allocated in the heap with a call 
to malloc() function. The node memory becomes free when it is explicitly de-allocated with a call to 
free() function. The front of the list is a pointer to the first node. Here is what a list containing the 
numbers 1, 2, and 3 might look like. 
 
 
 
 
   
        
  
  

Figure 5.1: Linked list representation 

Operations on Singly linked list 

Operations supported by a singly linked list are as follows: 

Table 5.2: Various Operation on Linked list 
Operation Description 

Createlist This operation creates a linked list. 
Traverse This operation traverse/visit all the elements of the linked list exactly once 
Insertion This operation inserts an element to the linked list 
Deletion This operation removes an element from the linked list 

Searching This operation performs linear searching for a key value in the linked list 
Reverse This operation performs the reverse of the linked list 
Merging This operation performs merging of two linked lists in a single linked list 

1006 2001 3004 

1 2001 2 3004 

1  2      3  Head 

3  
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Before going to the detail operation on singly linked list, we need two data types: Node and Node 
pointer. 

A linked list is constructed by the nodes. These nodes are allocated in the heap. Each node 
contains a single data element and a pointer to the next node in the list.   
struct node 

{ 

   int DATA;  

   struct node *LINK;  

};   

The Node structure of a linked list is shown here. Where DATA contains value  and LINK holds 
the address of the next node. 

DATA LINK 

Figure 5.2: Symbolic representation of a node 

The LINK field of a node in a linked list points to the next node of list. LINK pointer is termed as 
self-referential pointer as it points to the address of a node of the same type. 

Create a Singly Linked List 

The following algorithm creates a node and appends it at the end of the existing list. ‗HEAD‘ is a 
pointer which holds the address of the HEADER of the linked list and ‗ITEM‘ is the value of the new 
node. NEW is a pointer which holds the address of the new node and ‗Temp‘ is a temporary pointer. 

Algorithm to create a singly Linked List 

Algorithm: CREATE (HEAD, ITEM) 

1. [Create NEW node] 

   a) Allocate memory for NEW node. 

   b) IF NEW = NULL then Print: “Memory not Available” and Return 

   c) Set NEW→DATA = ITEM 

   d) Set NEW→LINK = NULL 

2. [Whether List is empty, head is the content of HEADER] 

   If HEAD = NULL then Set HEAD = NEW 

3. Else 

   a) Set Temp = HEAD 

   b) While Temp→LINK ≠ NULL do  

         Set Temp = Temp→LINK   

      [End of while] 

   c) Set Temp→LINK = NEW 

   [End of IF] 

4. Return  

At first creates a NEW node from the heap using dynamic memory allocation and checks whether 
is NULL or not. If the NEW node is NULL, then memory is not available for creating the linked list. 
Otherwise, stores the value of ITEM to the DATA part of the NEW node and stores NULL to the 
LINK part of the NEW node. 
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The following diagrams explain the creation of a singly linked list. 
At first HEAD is assigned with NULL value  

 
   

(a) 

 
After that a new node is created and the address of this node is assigned to HEAD, 

 
 
  
 
 

(b) 

 
In the next step another node is created and linked to HEAD node. 

  
  
 

 
 

(c) 

 
 
  
 
 

(d) 

Figure 5.3 (a-d):  Create a Singly Linked List 

Traversing / Display a Linked List 

This algorithm traverses a linked list and prints the data part of each node of the linked list. The 
‗HEAD‘ is a pointer which points to the starting node of the linked list and ‗Temp‘ is a temporary 
pointer to traverse the list. 

Algorithm to traverse a Linked List 

Algorithm: TRAVERSE(HEAD) 

1. If HEAD = NULL then 

 i) Print: “The linked list is empty”  

 ii) Return  

2. Temp = HEAD 

3. Repeat while Temp ≠ NULL 

 i) Print: Temp→DATA 

 ii) Set Temp = Temp→LINK 

   [End of Loop] 

4. Return  

HEAD NULL 

2010 

HEAD 

    1 NEW 

HEAD 

2010 
   1    2 

HEAD 

2010 
   1       2024    2 

2024 

Temp 

Temp NEW 
 

NEW 
 

2024
0 
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Insertion in Singly Linked List 

Insertion operation in a singly linked list can be done in different ways using position. 
 Insertion at beginning. 
 Insertion in the middle. 
 Insertion at end. 

Insertion of a node at first position of a singly linked list 

In the following algorithm insertion of node at beginning position is described. The ‗HEAD‘ is a 
pointer which points to the starting node of the linked list. NEW points to the new node. 

Algorithm to insert a node at the beginning 

Algorithm:ADD_BEG (HEAD, ITEM) 

1. [Create the new node] 

   a) Allocate memory for NEW node. 

   b) IF NEW = NULL then Print: “Memory not Available” and Return  

   c) Set NEW→DATA = ITEM 

   d) Set NEW→LINK = HEAD 

2. [Make the HEADER to point to the NEW node] 

   Set HEAD = NEW 

3. Return  

At first creates a NEW node from the heap using dynamic memory allocation and checks whether 
is  NULL or not. If the NEW node is NULL, then memory is not available. Otherwise, stores the value 
of ITEM of the DATA part of the NEW node. 

The following diagrams explain the insertion operation at the beginning of a singly linked list. 
At first HEAD points to the first node of the list containing two nodes. 

 
 
 

 

(a) 

A new node is created and pointed by pointer NEW. LINK field of new node contains the address 
of head node.  
 
 
 

(b) 

Now, HEAD pointer points to the new node 
 
 
 
 

(c) 

 Figure 5.4 (a-c): Node insertion in a single linked list at beginning 
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Insertion of a node before a specified node of a singly linked list 

This algorithm creates a node and inserts it before the node pointer P. The HEAD is a pointer that 
points to the first node of the linked list and ITEM is the value of the new node. NEW is a pointer that 
holds the address of the new node. Temp and PTemp are two temporary pointers to traverse the list. 

Algorithm to insert a node before a given node pointer 

Algorithm: ADD_BEFORE (HEAD, ITEM, P) 

1. Set Temp = HEAD   [to make temp to point to the first node] 

2. Repeat step 3 while Temp ≠ P 

3. a) Set PTemp = Temp  

   b) Set Temp = Temp→LINK 

   c) If Temp = NULL then  

      i) Print: “Not Found”  

      ii) Return  

   [End of loop] 

4. [Create the new node] 

   a) Allocate memory for NEW node 

   b) IF NEW = NULL then Print: “Memory not Available” and Return 

   c) Set NEW→DATA = ITEM 

   d) Set NEW→LINK = Temp 

   e) Set PTemp→LINK = NEW 

5. Return 

At the beginning traversing the linked list from HEAD to node pointer P to get the location of the 
previous node. Then, create a NEW node from the heap using dynamic memory allocation and checks 
whether is NULL or not. If the NEW node is NULL, then memory is not available. Otherwise, stores 
the value of ITEM of the DATA part of the NEW node.  

The following diagrams explain the insertion operation before a node pointer of a singly linked 
list. 

At first, Temp is assigned to HEAD. 
 
 
 
 
 

(a) 

In the next step, Temp is moved to the next node and PTemp is assigned to the address of the 
previous node 
 
 
 
 
 
 

(b) 

2010 
   1       4004    
1         2400 

   2    

HEAD 4004 
   4         2010 
4           2010 
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1600 Temp 
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HEAD 4004 
   4         2010 

1600 

PTemp 

Temp 
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After that a NEW node is created and linked with previous and next node. 
 
 
 
 
 
 
 
  

(c) 

Figure 5.5 (a-c): Node insertion before any position in a linked list 

Insertion of a node after a node of a singly linked list 

In the following algorithm, it is described how to insert a node after a specific node pointer P in a 
linked list. The HEAD is a pointer which points to the first node of the linked list and ITEM is the 
value of the new node. NEW is a pointer which holds the address of the new node. POST is a 
temporary pointer that points to the next node of P. 

Algorithm to insert a node after a given node pointer 

Algorithm: ADD_AFTER (HEAD, ITEM, P) 

1. Set POST = P→LINK 

2. [Create the new node] 

   a) Allocate memory for NEW node 

   b) IF NEW = NULL then Print: “Memory not Available” and Return 

   c) Set NEW→DATA = ITEM 

   d) Set NEW→LINK = POST 

   e) Set P→LINK = NEW 

3. Return 

At the beginning, set POST pointer by the link part of P pointer. Now, POST points to the to the 
next node of P. Then creates a NEW node and stores the value of ITEM of the DATA part of the NEW 
node. The following diagrams explain the insertion operation after a node pointer of a singly linked 
list. In the figure 5.6a, POST holds the address of the node after a specific node P. 
 

 

 

 

 

(a) 

After that a NEW node is created, ITEM is placed in DATA field and POST is assigned to the 
LINK field which is shown in figure 5.6b. 

 

 

(b) 
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At last, NEW node is assigned to LINK of node P 
 

 

 

 

 

Figure 5.6 (a, b, c): Node insertion after any position in a linked list 

Insertion of a node at the end of a singly linked list 

The following algorithm describes how the new node is inserted at the end of a singly linked list. The 
HEAD is a pointer which points to the first node of the linked list and NEW is a pointer which holds 
the address of the new node. ITEM is the value of the new node. Temp holds the address of header 
node.  

Algorithm to insert a node at end 

Algorithm: ADD_END (HEAD, ITEM) 

1. [Create the new node] 

   a) Allocate memory for NEW node 

   b) IF NEW = NULL then Print: “Memory not Available”  and Return 

   c) Set NEW→DATA = ITEM 

   d) Set NEW→LINK = NULL 

2. Set Temp = HEAD   [to make Temp to point to the first node] 

3. Repeat while Temp→LINK ≠ NULL 

      Set Temp = Temp→LINK 

   [End of loop] 

4. Set Temp→LINK = NEW 

5. Return 

At the beginning creates a NEW node and stores the value of ITEM of the DATA part of the NEW 
node. Then, traversing the linked list from HEAD to the last node to get the location of the last node. 
Then The following diagrams explain the insertion operation at the end of a singly linked list. 

At first Temp is assigned to the address of the HEAD node of the linked list 

 

 

(a) 

Now, Temp moves to the end of the linked list. 

 

 

 

 

(b) 

(c) 
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A NEW node is created ITEM is placed in DATA field and NULL is assigned to LINK field. 
 

 

 

(c) 

At last, NEW is assigned to the LINK field of the last node of the linked list.  

  

 

  

(d) 

Figure 5.7 (a, b, c, d): Node insertion at last position in a linked list 

Deletion from a singly linked list 

Deletion operation in a singly linked list can be done in different ways using position. 
 Deletion from beginning. 
 Deletion in the middle. 
 Deletion from end. 

Deleting a node from the beginning 

In the following algorithm deletion of head node of a linked list is described. Temp is a temporary 
pointer holds the address of a header node (HEAD). ITEM variable is used to store the value of the 
deleted node. 

Algorithm to delete a node from the beginning 

Algorithm: DELETE_BEG (HEAD, ITEM) 

1. [Check for empty list] 

   IF HEAD = NULL then Print: “The linked list is empty” and Return 

2. Set Temp = HEAD      [To make Temp to point the first node] 

3. Set HEAD = Temp→LINK 

4. Set ITEM = Temp→DATA 

5. Set Temp→LINK = NULL 

6. Deallocate memory for Temp Node 

7. Return 

At the beginning checks whether the linked list is empty or not. Temp pointer points to the first 
node of the linked list, then HEAD moves to the next node and stores the DATA part of the Temp 
node to ITEM. The following diagrams explain the deletion operation from a singly linked list. 

In the first step Temp is assigned to the address of the HEAD. 

 

 

(a) 
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In the next step HEAD moves to the next node. 

  

 

(b) 

Finally, the first node of the linked list is deleted which is pointed by Temp. 

 

 

(c) 

Figure 5.8 (a, b, c): Node deletion from first position of a linked list 

Deletion from a singly linked list from end position 

Deletion of a node from the end of a singly linked list is described in the following algorithm. Temp is 
a temporary pointer points to HEAD node. Temp pointer is used to traverse the linked list to keep 
HEAD pointer in its position. PTemp is an another temporary pointer that holds the address of the 
previous node of the node to be deleted. 

Algorithm to delete a node from the end  

Algorithm: DELETE_END (HEAD, ITEM) 

1. [Check for empty list]  

   IF HEAD = NULL then Print: “The linked list is empty” and Return 

2. Set Temp = HEAD  

3. Repeat while Temp→LINK ≠ NULL 

      a) PTemp = Temp 

      b) Set Temp = Temp→LINK 

   [End of loop] 

4. Set ITEM = Temp→DATA 

5. Set PTemp→LINK = NULL 

6. Deallocate memory for Temp Node 

7. Return 

At the beginning checks whether the linked list is empty or not. Then, traversing the linked list 
from HEAD to the last node to get the location of the last node and the second last node. Stores the 
DATA part of the Temp node to ITEM.  

The following diagrams explain the deletion operation from a singly linked list. 
At first Temp is assigned with HEAD. 

  

 

(a) 
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Temp is moved to the end of the list PTemp holds the address of the previous node. 

  

 

 

  

(b) 

At last, PTemp LINK field is assigned to NULL and Temp is deleted. 

 

 

 

 

 

(c) 

Figure 5.9 (a, b, c): Node deletion from end position of a linked list 

Deletion from a singly linked list after any intermediate node 

In the following algorithm the deletion of a node from a specific position is described. P holds the 
address of the previous node of Temp node which has to be deleted. 

Algorithm to delete a node after a given node pointer 

Algorithm: DELETE_AFTER (ITEM, P) 

1. Set Temp = P→LINK 

2. Set P→LINK = Temp→LINK 

3. Set ITEM = Temp→DATA 

4. Set Temp→LINK = NULL 

5. Deallocate memory for Temp Node 

6. Return 

At the beginning stores the DATA part of the Temp node to ITEM. P points to the previous node 
of the Temp node that has to be deleted. LINK part of P node points to the next node of Temp node. 
LINK of Temp is set to NULL. Then, Temp is de-allocated. 

Deletion from a singly linked list with a given ITEM 

This algorithm finds and deletes a node whose value is taken as ITEM. Temp is a pointer which holds 
the address of HEADER of the linked list.  Temp and old are two temporary pointers to traverse the 
list.  

Algorithm to delete a node by value 

Algorithm: DELETE_ITEM (HEAD, ITEM) 

1. [Make temp to point the first node] 

   Set Temp = HEAD        

2. [Check for empty list]  
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   IF HEAD = NULL then  

 a) Print: “The linked list is empty”  

      b) Return 

3. Repeat Step 4 to 5 until Temp is NULL 

4. If Temp→DATA = ITEM then  

 a) If Temp = HEAD then  // node to be deleted is the first node 

  Set HEAD = Temp→LINK 

         Else 

  Set PTemp→LINK = Temp→LINK 

 b) Deallocate memory for Temp Node// de allocate node   

 c) Return 

 5. Else 

 Set PTemp = Temp and Temp = Temp→LINK 

    [End of loop] 

 6. Print: “Element not found” 

 7. Return 

At first, Temp points to the first node of the list which is shown in the following diagram. 

 

 

(a) 

Then it is checked whether the list is empty or not, if not empty then the first node is deleted as  
shown in the figure 5.10b. 

 

 (free temp) 

 (b)  

To delete any other node Temp is assigned to that node and P holds the address of the previous 
node.  

 

 

 

(c) 

Node of the node to be deleted. Then, LINK of P is assigned with LINK of Temp. After that Temp 
is deleted. 
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(d) 

 

  

(e) 

Figure 5.10 (a-e): Node deletion at any position in a linked list 

Searching a singly linked list 

This algorithm finds the location of a node in a linked list whose value is ITEM. Temp is a pointer 
which points to the starting node of the linked list. ‗Temp‘ is a temporary pointer to traverse the list. 
‗LOC‘ is the variable to store the location of the search item.  

Algorithm to search Linked List by given value 

Algorithm: SEARCH(HEAD, ITEM, LOC) 

1. Set Temp = HEAD, LOC=NULL 

2. If Temp = NULL then  

 i) “The linked list is empty”  

 ii) Return 

3. Repeat step 4 while Temp ≠ NULL 

4.   If Temp→DATA = ITEM then 

  i) Print: “Element found” 

  ii) Set LOC = Temp 

  iii) Return 

 Else 

  Temp = Temp→LINK 

 [End of If] 

   [End of Loop] 

5. Print: “Element not found” 

6. Return  

 
At first Temp is assigned to the address of HEAD 
 
 
 

(a) 

 
After that Temp→DATA is compared with ITEM=1 and Temp moves accordingly 

P  
   4         2010 

1600 HEAD 2010 
   1       4002    2 

4002 

   8          
5002 2001 

   1       4002    2         5002        

HEAD 
4002 

   4        2001 
1600 

Temp 

   6        2010 
1500 

   4      1500 
1600 

P 

HEAD 2010 
   1       4002    2 

4002 

Temp (free temp) 

 

 



Linked List | 5.15 

 

 
 
 
 
 

 (b)  

When the ITEM is found LOC points to the index of that node in the list.  
 
 
 
 

(c) 

Figure 5.11(a, b, c): Searching of an ITEM in linked list 

Reverse of a Linked List 

Reversing of linked list means that the last node becomes the first node and first becomes the last. 
HEAD is a pointer which holds the address of HEADER of the linked list. PRE, POST and CUR are 
temporary pointers.  

Algorithm to reverse Linked List 

Algorithm: REVERSE (HEAD) 

1. Set PRE = NULL and CUR = HEAD    

2. Repeat step 3 to 6 while CUR ≠ NULL 

3.  Set POST =CUR→LINK 

4. Set CUR→LINK=PRE 

5. Set PRE = CUR 

6.  Set CUR = POST 

 [End of Loop] 

7. HEAD = PRE 

8. Return 

In the first step NULL is assigned to PRE pointer and CUR pointer is assigned to the HEAD node 
of the linked list. 

  

 

(a) 

After first iteration POST points to the next node of the current node   

  

  

(b) 
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In the next step CUR is assigned to PRE and POST is assigned to CUR. LINK field of the PRE 
node is assigned to NULL. 

 
 

  

(c) 

After a second iteration LINK field of CUR node is linked with PRE and POST moves to the next 
node. 

   

 

(d) 

After that CUR is assigned with POST. 

 

 

   

(e) 

After 4th iteration the single linked list look like the following figure 5.11f 

 

 

(f) 

Figure 5.12 (a-f): Reverse of a linked list 

Reverse Display of a Linked List 

In this algorithm the linked list is displayed in reverse order. HEAD points to the first node of the list. 
P is used to forward the loop to the end of the list. Then R is set to the last node of the list. After that R 
is used for displaying the list in reverse order. 

Algorithm to reverse display the Linked List 

Algorithm: REVERSE_DISPLAY (HEAD) 

1. Set R = NULL and Q = HEAD    

2. Repeat step 3 to 7 while Q≠R  

3. Set P = Q 

4.  Repeat step 5 while P→ LINK ≠ R 

5.   Set P = P→LINK 
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 [End of Loop] 

6. Print: P→INFO 

7.  Set R =P 

   [End of Loop]  

8. Return  

Convert Array to Singly Linked List 

We can convert a singly linked list using an existing array. The following algorithm creates a node, 
stores an array element and appends it at the beginning of the existing list. 

This algorithm creates a node and inserts it at the beginning of the list. ‗HEAD‘ is a pointer which 
holds the address of the HEADER of the linked list and ITEM is the value of the new node. NEW is a 
pointer which holds the address of the new node.  

Algorithm to convert Linked-List from an existing Array 

Algorithm: CONVERT (A, N, HEAD) 

1. Set HEAD = NULL 

2. Repeat steps 3 to 8 while N ≠ -1 

3.     Allocated memory for NEW node 

4.     IF NEW = NULL then Print: “Memory not Available” and Return 

5.     Set NEW→DATA = A[N-1] 

6.     Set NEW→LINK = HEAD 

7.     Set HEAD = NEW 

8.     Set N = N - 1 

   [End of loop] 

9. Return 

Representation of polynomials using linked list 

In this representation, the polynomial can also be represented by linking list and a node in the linked 
list represents a term in the polynomial.  

At first, we have to store exponent/degree and coefficient of the polynomial f (x). For that, we 
have to define a structure as follows: 
typedef struct poly 

{ 

 int exp; 

 int coef; 

 struct poly *LINK; 

 } term; 

poly *head; 

We will always store terms of the polynomial in descending order of degree. 
4x6 + 2x4 + 3x + 1 would be represented by linked list like:  

 
   
 

Figure 5.13:Linked list representation of polynomials 
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The addition of two Polynomial using Linked List 

In the following algorithm addition of two polynomials are described. Two linked lists consisting of 
two polynomials are headed by HEAD1 and HEAD2 respectively. Insert function is used to insert a 
node in a new linked list which is headed by R. 

Algorithm to addition of two polynomials  

Algorithm: POLYADD(HEAD1, HEAD2) 

1. Set P=HEAD1, Q=HEAD2, R=NULL 

2. Repeat while P≠NULL and Q ≠NULL 

 i) If P→EXP > Q→EXP then 

  Call INSERT(R, P→EXP, P→COEF) 

  Set P=P→LINK 

 ii) Else If P→EXP < Q→EXP then 

  Call INSERT(R, Q→EXP,Q→COEF) 

  Set Q=Q→LINK 

 iii) Else If P→COEF + Q→COEF ≠ 0 

  Call INSERT(R, P→EXP, P→COEF + Q→COEF) 

  Set P=P→LINK  

  Set Q=Q→LINK 

      [End of If] 

    [End of Loop] 

3. Repeat while P≠NULL  

 i) Call INSERT(R, P→EXP, P→COEF) 

 ii) Set P=P→LINK 

    [End of Loop] 

4. Repeat while Q≠NULL  

 i) Call INSERT(R, Q→EXP, Q→COEF) 

 ii) Set Q=Q→LINK 

    [End of Loop] 

5. Return 

Function: INSERT(R, EXP, COEF) 

1. Allocate memory for NEW node 

2. If NEW=NULL then 

 i) Print: Out of Memory 

 ii) Return 

3. Set NEW→EXP=EXP, NEW→COEF=COEF, NEW→LINK=NULL 

4. If R=NULL then  

 HEAD3=R=NEW 

   Else 

 Set R→LINK=NEW and R=NEW 

    [End of If] 

5. Return 
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Complexity of a singly linked list 

The cost to insert or delete an element into a known location in the singly linked list is O(1). Whereas 
for a linear array the insert or delete operation cost is O(n). This is because, in the case of linked list 
insert or delete operation do not involve any data movement just by performing pointer exchange 
among nodes the insertion or deletion take place. In case of array both the operations involve data 
replacement by n places. 

Table 5.3: Comparison of Array and Linked list 

Operations Array Linked List 

Insert/delete at the beginning O(n) O(1) 
Insert/delete at the end O(1) O(1) 
Insert/delete in the middle O(n) O(1) 
Indexing  O(1) O(n) 
Wastage space O(1) O(n) 

Circular Linked List 

A circular linked list is the variation of singly linked list in which the last node points to the first node 
of the list. The circular linked lists have neither a beginning nor an end. 

In a circular linked list, there are two methods to know if a node is the first node or not.  
i) Either an external pointer, list, points the first node or  
ii) A header node is placed as the first node of the circular list.  
The header node can be separated from the others by either having a sentinel value as the info part 

or having a dedicated flag variable to specify if the node is a header node or not. 
A linked list can be implemented either in two ways: 
i) A single pointer is used to point to the header node of the linked list and the last node of the 

list points to the header node of the list. 
ii) Two different pointers can be used to point to the first and last node of the circular linked list 

respectively.  
In a linear linked list once we traverse the list, then it is difficult to return back to the first node of 

the list. A circular linked list provides a solution to this problem. In a circular linked list the last node 
points to the first node of the linked list so, there is no difficulty to return back to the first node when 
the list is traversed. 

A circular linked list can easily be formed from a linear linked list where the last node of linear 
linked list points to the first node of the linked list. 

The circular linked list can be represented by three nodes as follows 

 
 
 
 
 

Figure 5.14: Circular linked list 

Here, HEAD points to the first node of the list and last node points to the first node forming a 
circular list. 

HEAD 

FIRST LAST 

  3   2   1 



5.20 | Data Structures and Algorithms with C 

 

Operations on Circular linked list 

Operations supported by a singly linked list are as follows: 

Table 5.4: Operation of Circular Linked list 

Operation Description 

Createlist This operation creates a linked list. 
Traverse This operation traverse/visit all the elements of the linked list exactly once. 
Insertion This operation inserts an element to the linked list. 
Deletion This operation removes an element from the linked list. 

Searching This operation performs linear searching for a key value in the linked list. 
Reverse This operation performs the reverse of the linked list. 
Merging This operation performs merging of two linked lists in a single linked list. 

Create a Circular linked list 

This algorithm creates a node and appends it after the last node (which points to the first node) of the 
existing list. HEAD is a pointer which holds the address of the FIRST pointer of the linked list and 
‗DATA‘ is the value of the new node. ‗NEW‘ is a pointer which holds the address of the new node and 
‗temp‘ is a temporary pointer.  

Algorithm to create a Circular Linked List 

Algorithm: CIRCULAR_ADD (HEAD, ITEM) 

1. [Create the new node] 

   a) Allocate memory for NEW node 

   b) IF NEW = NULL then Print: “Memory not Available” and Return 

   c) Set NEW→DATA = ITEM 

   d) Set NEW→LINK = NEW 

2. [Check whether List is empty or not] 

   If HEAD = NULL then  

Set HEAD = NEW 

3. Else 

   a) Set Temp = HEAD 

   b) Repeat while Temp→LINK ≠ HEAD do  

         Set Temp = Temp→LINK   

      [End of loop] 

c) Set Temp→LINK = NEW 

4. [Make a new node to point to the first node] 

   Set NEW→LINK=HEAD 

5. Return 

Primarily HEAD is assigned with NULL when there is no node in a circular linked list indicates 
first node of the linked list. Initially it is pointing to NULL. 
 
         

(a) 

HEAD NULL 
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After that a NEW node is created the address is assigned with HEAD. The LINK field is assigned 
to the address of the HEAD node.   

 
 
 

(b) 

In the next step another node is created and linked with first node. The LINK field of the NEW 
node is linked with first node. 

  
 
 
 

(c) 

Figure 5.15 (a, b, c): Circular linked list 

Add a New Node at The Beginning of the Circular Linked list 

This algorithm creates a node and inserts it at the beginning of the list. HEAD is a pointer, which holds 
the address of the first node of the linked list and ITEM is the value of the new node. NEW is a pointer 
which holds the address of the new node and ‗Temp‘ and ‗ln‘ are temporary pointers.  

Algorithm to insert a node at the beginning 

Algorithm: CIRADD_BEG (HEAD, ITEM) 

1. [Create the new node] 

a) Allocate memory for NEW node. 

b) IF NEW = NULL then Print: “Memory not Available”  and Return 

c) Set NEW→DATA= ITEM 

d) Set NEW→LINK= HEAD 

2. a) Set Temp=HEAD 

   b) Repeat while Temp→LINK ≠ HEAD do  

         Set Temp = Temp→LINK   

      [End of loop] 

3.  [Make FIRST to point to the new node] 

  Set HEAD = NEW    // to make new node the first node 

       Set Temp→LINK=HEAD 

4. Return  

A NEW node is created and linked with the HEAD node of Circular linked list. 
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At last, the address of the NEW node is assigned to the LINK field of the last node of the linked list. 
  
 

 

(b) 

Figure 5.16(a, b): Insertion in a Circular linked list before a node 

Add the New Node after a specific location of the Circular Linked list 

This algorithm creates a node and inserts it after the node at location loc. HEAD is a pointer which 
points to the first node and ITEM is the value of the new node. NEW is a pointer which holds the 
address of the new node. ‗Temp‘ and ‗PTemp‘ are two temporary pointers to traverse the list.  

Algorithm to insert a node after given node pointer 

Algorithm: CIRADD_AFTER (HEAD, ITEM, LOC) 

1. [Create the new node] 

    a) Allocate memory for new node. 

    b) IF NEW = NULL then Print: “Memory not Available” and Return 

    b) Set NEW→DATA = ITEM 

    c) Set NEW→LINK= Temp 

2. [Make Temp point to the first node] 

   Set Temp = HEAD 

3. Repeat step 3 for i=1 to LOC 

3.  a) Set  PTemp = Temp and   Temp = Temp→LINK 

    b) If Temp = HEAD then  

       Print: “There are less than loc+1 elements” and Return  

4. Set PTemp→LINK = NEW 

5. Return 

In the first step Temp points to the first node of the circular linked list. 
 
 
 

 

  (a) 

In the next step Temp is moved until loc is found. Temp points to the node at loc position. PTemp 
holds the address of the previous node. A NEW node is created whose LINK field is assigned with the 
address of the HEAD node. 

 
 
 
 
 

(b) 

At last the NEW node is inserted at the position before loc. For this example loc is considered to 
be 2.That means the  NEW node is inserted at 2nd position of the circular linked list. 
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(c) 

Figure 5.17 (a, b, c): Insertion in a Circular linked list 

Delete a Node from The Beginning of the Circular Linked list 

This algorithm deletes a node from the beginning of a circular linked list. HEAD is a pointer which 
holds the address of the FIRST pointer of the linked list. Temp is a temporary pointer. ITEM is the 
variable to store the value of the deleted item.   

Algorithm to delete a node from the beginning 

ALGORITHM: CIRDEL (HEAD) 

1. [Make Temp to point the first node] 

   Set Temp = HEAD    

2. [Check for empty list]  

   If HEAD = NULL then 

 Print: “The linked list is empty”  

3. Else 

         [Linked list contains single element] 

a) If HEAD = Temp→LINK then 

  Set HEAD = NULL 

         Else 

            P=HEAD 

  Repeat while P→LINK ≠ HEAD do  

              Set P = P→LINK   

            [End of loop]   

      b)HEAD=HEAD→LINK    

      c)P→LINK=HEAD     

4. Set ITEM = Temp→DATA 

5. Deallocate memory for Temp          

6. Return 

Firstly, Temp is assigned to the HEAD node of the circular linked list. 

 
 
 
 

(a) 
In the succeeding step it is checked whether the list is empty or have only one node, if the list has 

only one node then HEAD points to NULL and the node is deleted. This phenomena are depicted in 
the following figure 5.16b 
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(b) 

If the list contains more than one node, then Temp is assigned to HEAD and HEAD moves to the 
next node. Then Temp is deleted. The LINK field of the last node contains the address of the new first 
node. 
 
 
 
 
 

  (c) 

Figure 5.18 (a, b, c): Deletion from a Circular linked list 

Traverse a circular Linked list 

This algorithm traverses a circular linked list and prints the data part of each node of the linked list. ‗f‘ 
is a pointer which points to the starting node of the linked list . ‗Temp‘ is a temporary pointer to 
traverse the list.  

Algorithm to display a Circular Linked List 

ALGORITHM: DISPLAY (HEAD) 

1. [Make Temp to point to the first node] 

   Set Temp = HEAD    

2. [Check for empty list] 

   If HEAD = NULL then  

 Print: “The linked list is empty” and Return  

3. Print: Temp→DATA 

 Set Temp = Temp→LINK 

4. Repeat While Temp! = HEAD  

 Print: Temp→DATA 

 Set Temp = Temp→LINK 

5. Return 

Complexity of a circular linked list 

The cost to add or delete an element from a known location in the circular linked list is O(1).  

Application of Circular Linked List 

 The real life application where the circular linked list is used is our Personal Computers, where 
multiple applications are running. All the running applications are kept in a circular linked list and 
the OS is given a fixed time slot to all for running. The Operating System keeps on iterating over 
the linked list until all the applications are completed. 

 Another example, can be Multiplayer games. All the Players are kept in a Circular Linked List and 
the pointer keeps on moving forward as a player's chance ends. 
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 Circular Linked List can also be used to create Circular Queue. In a Queue we have to keep two 
pointers, FRONT and REAR in memory all the time, where as in Circular Linked List, only one 
pointer is required. 

Josephus Problem 

The Josephus problem consists of a group of soldiers surrounded by an overwhelming enemy force. 
There is only a single horse available for escape. To determine which soldier is to escape, they form a 
circle & a number n is picked from a hat. A name is also picked from the hat. They begin to count 
clockwise around the circle, beginning with the soldier, whose name is picked. One soldier is removed 
from the circle on which count reaches n & the count starts again with next soldier, removing another 
soldier each time the count reaches n & the last remaining soldier is the one to take the horse. 

Our problem is to find the order in which soldier will escape. The input to our program is the 
number n and a list of names. The names are according to the clockwise; ordering of circle beginning 
with the soldier from whom the count is to start. The program prints the names in the order in which 
they are eliminated & the name of the soldier who escapes. The data structure used is, a circular linked 
list in which each node represents one soldier as it is possible to reach any node from any other node 
by moving around the circle. 

The structure of the node in the circular linked list consist of name and link part 
struct node 

{ 

 char name[30]; 

 struct node *link; 

} 

Algorithm to solve Josephus problem 

ALGORITHM: JOSEPHUS(HEAD)  

1. Read N and Name 

2. Set count= number of soldiers 

  Set Temp=HEAD 

3. Repeat until Name=Temp→name 

  Temp=Temp→LINK 

[End of loop] 

4. Repeat until Count=1 

 a) Set C=1 

 b) Repeat until C= N 
    i)   Set Prev=Temp 

    ii)  Set Temp=Temp→LINK          

    iii) Set C=C+1 

    [End of loop] 

 c) Prev→LINK=Temp->LINK 

       Print Temp→DATA “soldier remove” 

 d) Set Count=Count-1 

[End of loop] 

5. Print Prev→name “soldier escape” 

6. Return 
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Doubly Linked List 

A double linked list is defined as a collection of nodes in which each node has three parts: data, llink, 
rlink. Data contains the data value for the node, llink contains the address of node before it and rlink 
contains the address of node after it.   

A generic doubly linked list node can be designed as:  
struct node  

{ 

   int data;  

   struct node* rlink;  

   struct node* llink; 

}; 

Each node contains three parts: 
i) An information field contains data. 
ii) A pointer field rlink, which contains the location of the next node. 
iii) A pointer field llink, which contains the location of the preceding node. 
The following figure, explain how the doubly linked list looks like: 

LLINK DATA RLINK 
 
 
 
 

Figure 5.19: Structure of a doubly linked list 

In the figure Head and Tail pointer points to the header node and tailor node of the list 
respectively. 

Algorithm for Creation of Doubly Linked list 

This algorithm creates a node and appends it at the end of existing list. Temp is a pointer which holds 
the address of the HEADER of the linked list and ITEM is the value of the new node. NEW is a 
pointer which holds the address of the new node and ‗Temp‘ is a temporary pointer.  

Algorithm to create Doubly Linked List 

Algorithm: DLL_CREATE(HEAD, ITEM) 

1. [Create the new node] 

   a) Allocate memory for NEW node 

   b) IF NEW = NULL then Print: “Memory not Available” and Return 
   c) Set NEW→DATA = ITEM 

   d) Set NEW→LLINK = NULL 

   e) Set NEW→RLINK = NULL 

2. [Whether List is empty, head is the content of HEADER] 

   If HEAD = NULL then Set HEAD = NEW 

3. Else 

   a) Set Temp = HEAD 

   b) While Temp→RLINK ≠ NULL do  

           1         2                                                               3 

Head Tail 
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         Set Temp = Temp→RLINK   

      [End of while] 

   c) Set Temp→RLINK = NEW 

   d) Set NEW→LLINK = Temp 

  [End of IF] 

4. Return 

Initially HEAD is assigned to NULL. Then a NEW node is created and HEAD points to that node. 
 
 
 
 
 

 
(a) 

After creation of HEAD node, next node is created and linked with first node. HEAD node is 
pointed by Temp. rlink of HEAD node holds the address of NEW node and llink of NEW node holds 
the address of HEAD node. 
  
 
 
 
 
 
 
 
 
 

(b) 

Figure 5.20 (a, b): Creation of a doubly linked list 

Addition at the Beginning of the Doubly Linked list 

This algorithm creates a node and inserts it at the beginning of the list. ‗head‘ is a pointer which holds 
the address of the HEAD of the linked list and ITEM is the value of the new node. NEW is a pointer 
which holds the address of the new node. 

Algorithm to insert a node at the beginning 

Algorithm: DLL_ADD_BEG (HEAD, ITEM) 

1. [Create the new node] 

   a) Allocate memory for NEW node. 

   b) IF NEW = NULL then Print: “Memory not Available”  and Return  

   c) Set NEW→DATA = ITEM 

   d) Set NEW→RLINK = HEAD 

   e) Set NEW→LLINK = NULL 

2. Set HEAD→LLINK =NEW 

3. [Make the HEADER to point to the NEW node] 

HEAD 

2010 
            2 

Temp NEW 4010 
         1 

HEAD 

NEW 
          1 

2010 
HEAD NULL 

HEAD 

 2010   2          1     4010  

Temp NEW 4010 2010 
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   Set HEAD = NEW 

4. Return  

Initially a NEW node is created where rlink of NEW node contains the address of the HEAD node. 
 
       
 
 

 

 

(a) 

After that llink of HEAD node is assigned to the address of NEW node. 
 

 

 

 

 

(b) 

At last the HEAD pointer moves to the NEW node which is depicted in the following figure 5.19c 
 
 

 

 

 

 

(c) 

Figure 5.21 (a, b, c): Addition of node at the beginning of  doubly linked list 

Addition at the Beginning of the Doubly Linked list 

Following algorithm describes the addition of a node before any specific node in a doubly linked list. 
PRE holds the address of the previous node of P before which NEW node to be inserted. 

Algorithm to insert a node before a node pointer 

Algorithm: DLL_ADD_BEFORE (HEAD, ITEM, P) 

1. Set PRE = P→LLINK 

2. [Create the new node] 

   a) Allocate memory for NEW node 

   b) IF NEW = NULL then Print: Overflow and Return 

   c) Set NEW→DATA = ITEM 

   d) Set NEW→LLINK = PRE 

   e) Set NEW→RLINK = P 

3. Set PRE→RLINK = NEW 

4. Set P→LLINK = NEW 

5. Return 

Initially PRE holds the address of the previous node where NEW node to be inserted and P holds 
the address of the next node. 

3010 4010 2010 
         1     4010  

HEAD 

         3     2010 

NEW 

  2010   2 

 2010   2 3010    1     4010  
4010 2010 
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         3     2010 
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  2010   2 3010    1     4010 
4010 2010 
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         3     2010 
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(a) 

A NEW node is created whose rlink holds the address of the P node and llink holds the address of 
the PRE node. 
 
 
 
 
 
 

(b) 

At last, rlink of PRE is linked with NEW node and llink of P is linked with NEW node. 
 

 
 
 
 
 

(c) 

Figure 5.22 (a, b, c): Insertion in a doubly linked list 

Addition after any position of the Doubly Linked list 

This algorithm creates a node and inserts it after the node at location P. HEAD is a pointer which 
points to the first node, i.e. it holds the content of HEADER of the linked list and ITEM is the value of 
the new node. NEW is a pointer which holds the address of the new node. POST holds the address of 
the next node where a new node to be inserted. 

Algorithm to insert a node after a given node pointer 

Algorithm: DLL_ADD_AFTER (HEAD, ITEM, P) 

1. Set POST = P→RLINK 

2. [Create the new node] 

   a) Allocate memory for NEW node 

   b) IF NEW = NULL then Print: “Memory not Available” and Return 

   c) Set NEW→DATA = ITEM 

   d) Set NEW→RLINK = POST 

   e) Set NEW→LLINK = P 

3. Set P→RLINK = NEW 

4. Set POST→LLINK = NEW 

5. Return 

At first POST is assigned with the RLINK of the node P after which a new node to be inserted. 
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(a) 

After that a NEW is created where ITEM is placed in DATA field and RLINK holds the address 
of the POST where LLINK contains the address of the P node. 
 
 
 
 
 
 
 

(b) 

 
At last, RLINK of node P is linked with NEW node and LLINK link of POST node is linked with 

NEW node 
 
 
 
  

(c) 
Figure 5.23 (a, b, c): Addition of a node after any position in a doubly linked list 

Addition at last position of the Doubly Linked list 

In the following algorithm addition of node at the end of the doubly linked list is described.  Here 
Temp points to the HEAD node. Then Temp moves to the end of the linked list. At last NEW node is 
linked with RLINK of Temp node. 

Algorithm to insert a node at the end 

Algorithm: ADD_END (HEAD, ITEM) 

1. [Make temp to point to the first node] 

   Set Temp = HEAD  

2. Repeat while Temp→RLINK ≠ NULL 

      Set Temp = Temp →RLINK 
   [End of loop] 

3. [Create the new node] 

   a) Allocate memory for NEW node 

   b) IF NEW = NULL then Print: Overflow and Return 

   c) Set NEW→DATA = ITEM 

   d) Set NEW→RLINK = NULL 

   e) Set NEW→LLINK = Temp 

4. Set Temp→RLINK = NEW 

5. Return 

     P HEAD 
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Firstly, Temp is assigned to the HEAD node. 
 
 
 
 
 

(a) 

 
 Now, move Temp to the end of the doubly linked list. 

 
 
 
 
 

(b) 

  At last a NEW node is created and linked with Temp 
 
  
 
 
 

(c) 

Figure 5.24 (a, b, c): Insertion of a new node at the end of a doubly linked list 

Traverse a Doubly Linked list in Forward Direction 

This algorithm traverses a linked list and prints the DATA part of each node of the linked list in the 
forward direction (from the first node to last). HEAD is a pointer which points to the starting node of 
the linked list. Temp is a temporary pointer to traverse the list.  

Algorithm to traverse in  forward direction  

Algorithm: DLL_FTRAVERSE (HEAD) 

1. [Check for empty list] 

   If HEAD = NULL then 

 i) Print: “The linked list is empty”  

 ii) Return 

2. Set Temp = HEAD  

3. Repeat while Temp ≠ NULL 

   i) Print: Temp→DATA 

   ii) Set Temp = Temp→RLINK 

   [End Of Loop] 

4. Return 

Traverse a Doubly Linked list in Backward Direction 

This algorithm traverses a linked list and prints the data part of each node of the linked list in backward 
direction (from the last node to first). HEAD is a pointer which points to the starting node of the linked 
list. Temp is a temporary pointer to traverse the list. At first Temp moves in forward direction using 
RLINK and then Temp is used for backward traverse of the doubly linked list using LLINK. 
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Algorithm to traverse in  backward direction  

Algorithm: DLL_BTRAVERSE (HEAD) 

1. [Check for empty list] 

   If HEAD = NULL then 

 i) Print: “The linked list is empty”  

 ii) Return 

2. [Make temp to point to the first node] 

   Set Temp = HEAD  

3. Repeat while Temp→RLINK ≠ NULL 

      Set Temp = Temp →RLINK 
   [End of loop] 

4. Repeat while Temp ≠ NULL 

      i) Print: Temp→DATA 

      ii) Set Temp = Temp →LLINK 
   [End of loop] 

5. Return  

Search an Item in a doubly linked list 

This algorithm describes searching of an ITEM in a doubly linked list. P is a pointer that assigned the 
Head node address of the doubly linked list. P moves from left to right until the ITEM is found or the 
list end. 

Algorithm to search an item in  doubly linked list   
Algorithm: DLL_SEARCH (HEAD, ITEM, LOC) 

1. Set P = HEAD, LOC=NULL 

2. [Check for empty list] 

   If P = NULL then  

 i) “The linked list is empty”  

 ii) Return 

3. Repeat step 4 while P ≠ NULL 

4.   If P→DATA = ITEM then 

  i) Print: “Element found” 

  ii) Set LOC = P 

  iii) Return 

 Else 

  P = P→RLINK 

 [End of If] 

   [End of Loop] 

5. Print: “Element not found” 

6. Return  

In the first step P is assigned with the address of the first node of the doubly linked list. 
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(a) 

 
Let us consider the ITEM to be searched is 2 which is at 3rd position. P moves until ITEM is 

found. 
 

 

 

(b) 

Figure 5.25 (a, b): Searching of an ITEM in doubly linked list 

Delete a Node from the Beginning of a doubly linked list 

In the following algorithm the process of deleting a node from the beginning of a doubly linked list is 
described. HEAD denotes the first node of the list. In the figure 5.26b this phenomena are depicted. 

Algorithm to delete a node from the beginning 

Algorithm: DLL_DELETE_BEG (HEAD) 

1. [Check for empty list]  

   IF HEAD = NULL then  

 a) Print: “The linked list is empty”  

      b) Return 

2. [Make temp to point the first node] 

   Set Temp = HEAD       

3. Set HEAD = Temp→RLINK 

4. Set HEAD→LLINK = NULL 

5. Set ITEM = Temp→DATA 

6. Set Temp→RLINK = NULL 

7. Set Temp→LLINK = NULL 

8. Deallocate memory for Temp Node 

9. Return 

Delete a Node from the End of a doubly linked list 

The following algorithm describes the procedure of removing a node from the end of a doubly linked 
list. Here, HEAD denotes the first node of the list. Temp is used to move the pointer from the first 
node to last node. PTemp is used to hold the address of the preceding node of the node to be deleted. 
After reaching at last position the Temp is de-allocated. Figure 5.24c depicts this phenomenon 
pictorially. 

Algorithm to delete a node from the end 

Algorithm: DLL_DELETE_END (HEAD, ITEM) 

1. [Check for empty list]  
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   IF HEAD = NULL then  

 a) Print: “The linked list is empty”  

      b) Return 

2. Repeat step while Temp→RLINK ≠ NULL 

      a) Set PTemp = Temp 

      b) Set Temp = Temp→RLINK 

   [End of loop] 

3. Set ITEM = Temp→DATA 

4. Set Temp→LLINK = NULL 

5. Set PTemp→RLINK = NULL 

6. Deallocate memory for Temp Node 

7. Return 

Delete a Node after a specified position (P) of a doubly linked list 

Here, the algorithm specifies the procedure of deleting a node which is after a node P. Temp holds the 
address of the next node of the node P and POST holds the address of the next node of the node Temp 
which is to be deleted. Figure 5.24d describes this process. 

Algorithm to delete a node after a given node pointer 

Algorithm: DLL_DELETE_AFTER (HEAD, ITEM, P) 

1. Set Temp = P→RLINK 

2. Set POST = Temp→RLINK 

3. Set P→RLINK = POST 

4. IF POST ≠ NULL then Set POST→LLINK = P 

5. Set ITEM = Temp→DATA 

6. Set Temp→RLINK = NULL 

7. Set Temp→LLINK = NULL 

8. Deallocate memory for Temp Node 

9. Return 

Delete a Node before a specified position (P) of a doubly linked list 

Here, the algorithm specifies the procedure of deleting a node which is before a node P. Temp holds 
the address of the preceding node of the node P and PRE holds the address of the preceding node of the 
node Temp which is to be deleted. Figure 5.24e describes this process. 

Algorithm to delete a node before given node pointer  

Algorithm: DLL_DELETE_BEFORE (HEAD, ITEM, P) 

1. Set Temp = P→LLINK 

2. Set PRE= Temp→LLINK 

3. IF PRE ≠ NULL then Set PRE→RLINK = P 

4. Set P→LLINK = PRE 

5. Set ITEM = Temp→DATA 

6. Set Temp→RLINK = N ULL 

7. Set Temp→LLINK = NULL 
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8. Deallocate memory for Temp Node 

9. Return 

Delete a Node from the doubly linked list having a specific DATA value 

This algorithm finds and deletes a node whose value is ‗NO‘. Temp is a pointer which holds the 
address of HEADER of the linked list .    

Algorithm to delete a node by value  

ALGORITHM: DDEL (HEAD, NO) 

1. Set Temp = HEAD //to make temp to point the first node 

2. [Check for empty list]  

   If HEAD = NULL then  

 Print: “The linked list is empty” and Return 

3. Repeat Step 4 to 5 until temp is NULL 

  a) If Temp→DATA = NO then  

     i) If TEMP = HEAD then// node to be deleted is the first node 

  Set HEAD = Temp→RLINK 

  Set Temp→RLINK→LLINK = NULL 

   Else if Temp→RLINK = NULL //Check for last node 

            Set P=Temp→LLINK 

            Set POST= Temp→RLINK 

  Set P→RLINK=NULL 

   Else  

  Set POST→LLINK = Temp→LLINK 

  Set P→RLINK=Temp→RLINK 

     ii) Deallocate memory for Temp Node  // de allocate node   

     iii)Return 

    Else 

   Set Temp = Temp→RLINK 

4. Print: “Element not found” 

5. Return 

Following figure 5.26a denotes a doubly linked list where HEAD points to the first node of the 
list. 
 

 

 

 

(a) 

If the first node to be deleted, then how the list will like is presented in the following figure 5.26b. 
 

 
 
               
 

    (b) 
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In the following figure 5.26c deletion of a node from last position of doubly linked list is 
described. 

 
 

 

 

 

(c) 

In the following figure 5.26d, the deletion of a node Temp which is after a specific node P is 
shown. 
 

 

 

 

 

 

(d) 

In the succeeding figure it is pictorially presents that how a node to be deleted which is before a 
specific node of a doubly linked list. 

 

 

 

(e) 

Figure 5.26 (a-e): Node deletion at any position in a doubly linked list 

Time Complexity of Doubly Linked list 

The time complexity for insertion and deletion from a doubly linked list is O (1), as there is no 
movement of nodes just by exchanging some pointers the a new node can be inserted or an existing 
node can be deleted. Whereas for traversal, the complexity is O(n). 

Circular Doubly Linked List: 

The advantages of both double linked list and circular linked list are incorporated into another list 
structure that is called circular doubly linked list and it is known to be the best of its kind.  

The following is a schematic representation of a circular doubly linked list.  

 

 

 

 

Figure 5.27: Circular Doubly linked list 
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As per above shown illustrations, following are the important points to be considered. 
 Last Link's rlink points to the first node of the list in both cases of singly as well as doubly 

linked list. 
 First Link's llink points to the last node of the list in case of doubly linked list. 

Disadvantages of Linked List 

 Linked list consumes more memory space for storing addresses of the next node. 
 Searching will be slow as only linear searching will be possible. 
 Direct access to any node not possible, therefore, if a node required to access it is required to 

traverse from the first node onwards until the desired node is found. 
Therefore, arrays are suitable when a large number of searching operations are necessary, but 

insertion/deletion is very small in number. Whereas linked-list are suitable, when there will be frequent 
insertion/deletion, but very few search operations are required. 

Summary 

 A linked list is a linear ordered collection of finite homogeneous data elements called node. 
 The linked list overcomes the demerits of array in terms of memory allocation. 
 Linked list can be classified into 4 types single linked list, circular linked list, doubly linked list 

and circular doubly linked list. 
 Polynomial addition can be done using linked list. 
 Addition, Deletion and Insertion of a node in a linked list is faster than array. 

Exercises 

1. What are the advantages and disadvantages of linked list data structure over an array? 
2. Write an algorithm to insert a data X after a specific data item Y in the linked list. 
3. Write a function to delete the nth node of a singly linked list. The error conditions are to be 

handled properly. 
4. Write an algorithm to delete any node from the singly liked list where the key value of the node is 

known.  
5. Write an algorithm to delete a node from a doubly linked list.  
6. Write an algorithm to delete all nodes having greater than a given value, from a given singly 

linked list. 
7. Write a function to reverse the direction of all links of a singly linked list. 
8. Write an algorithm to add two polynomials using linked list. 
9. How the polynomial 4x3-10x2+3 can be represented using linked list? 
10. Write a C program to create a doubly linked list in ascending order of information. 
11. Write a C program to join two sorted linked list so that the third list is in sorted order. 
12. Write a C program to show the information of a doubly linked list in reverse order. 
13. Write a C program to INSERT and DELETE node in a circularly doubly linked list. Display the 

elements of the list. 
14. Write C program to insert an element in a sorted doubly linked list, so that the list remain in sorted 

order after insertion. 
15. Write a program in C language to find the predecessor of a node in linked list. 
16. Choose the correct alternatives for the following: 



5.38 | Data Structures and Algorithms with C 

 

i) The situation when in a linked list START = NULL is 
a) Underflow b)  Overflow c) Saturated d) None 

ii) A linked list follows 
a) random access mechanism 
c) no access mechanism 

b) sequential access mechanism 
d) none of these. 

iii) A linear collection of data elements where the linear node is given by means of pointer is called  
a) Linked list b) Node list c) Primitive list d) None of these. 

iv) 
 

In linked list representation a node contains at least 
a) node address field, data field 
c) next address field, information field 

b) node number field, data field 
d) none of these. 

v) Inserting a new node after a given node in a doubly linked list requires 
a) four pointer exchanges          
c) one pointer exchanges 

b) two pointer exchanges 
d) nppointer exchange. 

vi) The nth node in a singly linked list can be accessed via 
a)  The head node b) The tail node c)  (n-1)th node d)  None 

vii) Linear order in linked list is provided through 
a) Index number b) The implied position of the node c) Pointer d) None 

viiii) Null pointer is used to tell 
a) End of a linked list 
c) The linked list is empty 

b) Empty pointer field of a structure 
d) All the above 

ix) In linked list the successive elements 
a) Must occupy contiguous space in memory 
b) Need not occupy contiguous space in memory  
c) Must not occupy contiguous space in memory 
d) None of the above 

x) Searching in a linked list requires linked list be created 
a) In sorted order      b) In any order      c) Without underflow condition d) None of the above 

xi) Deletion of a node in linked list involves keeping track of the address of the node 
a) Which immediately follows the node that is to be deleted 
b) Which immediately precedes the node that is to be deleted 
c) The node to be deleted 
d) None of the above 

xii) Header in a linked list is a special node at the 
a) End of the linked list  
c) Beginning of the linked list 

b) At middle of a linked list 
d) None of the above 

xiii) Header linked list in which last node points to the header node is called 
a) Grounded header list   b) Circular header list   c) General header list   d) None of the above 

xiv) Representing polynomial using linked list requires each node having 
a)  Two fields               b)  Three fields           c) More than three fields    d) None of the above 

xv) Inserting a node after a given node in a doubly linked list requires 
a) One pointer change   b) Two pointer change  c) Four pointer change   d)  None of the above 

***** 



 

 

 

 

 

 

 

STACK AND QUEUE 
 

“The art of programming is the art of organizing complexity”. - W. W. Dijkstra 

 
 

n this chapter, we discuss some elementary data structures like 
stack and queue along with their properties, different operations 
that are performed on them, algorithms of their different 

operations and applications of them.  
In 1946, Alan M. Turing first proposed the stack, in the 

computer design. In 1955, Klaus Samelson and Friedrich L. 
Bauer of Technical University Munich proposed the idea of the 
stack and filed a patent in 1957. The Australian Charles Leonard 
Hamblin in the first half of 1957 developed the same concept, 
independently. 

STACK 

A stack is a one of the most important and useful non-primitive linear data structure in computer 
science. Real-life examples of the stack are a stack of books, a stack of plates, a stack of cards, a stack 
of coins, etc. 

Definition: A stack is a sequential collection of elements into which new elements are inserted 
and from which, elements are deleted only at one end.  

As all the insertion and deletion in a stack is done from the top of the stack, the lastly added 
element will be first to be removed from the stack. That is the reason why stack is also called Last-In-

First-Out (LIFO) data structure. Note that the most frequently accessed element in the stack is the top 
most elemental, whereas the least accessible element is the bottom of the stack.  

In the stack, the top variable is used to point the top of the stack. The following tasks are 
performed by the top variable: 

 To keep track, how many cells are used,  
 Whether the stack is full or empty 
 Insert new element in the stack 
 Delete elements from the stack 

Operations on Stack 

The stack is an abstract data type since it is defined in terms of operations on it and its implementation 
is hidden. Therefore, we can implement a stack using either array or linked list. The stack includes a 
finite sequence of the same type of items with the different operations described in table 6.1. 
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Table 6.1: Operations on Stack 

Operation Description 

Creation This operation creates a stack and initializes the stack. 
Isempty This operation checks whether the stack is empty or not. 
Isfull This operation checks whether the stack is full or not. 
Insertion (Push) This operation inserts an item only at the top of the stack when the stack is 

not full. 
Deletion (Pop) This operation deletes an item only from the top of the stack when the stack is 

not empty. 
Peek This operation returns the value of the top of the stack without removing the 

element from the stack. 

The insertion (or addition) operation is referred as push, and the deletion (or remove) operation as 
pop. A stack is said to be empty if the stack contains no elements. At this point, the top of the stack is 
present at the bottom of the stack. In addition, it is full when the stack becomes full, i.e., no other 
elements can be pushed onto the stack. At this point, the top pointer is at the highest location of the 
stack. If the pop operation in the stack when it is in the empty state then underflow occurs. Similarly, if 
the push operation is done in a full stack, then stack overflow happens. 

Stack as an ADT promotes data abstraction and focuses on what operations it does rather than how 
it does (implements). Therefore, the stack can be implemented with an array or with the linked list.  

Stack representation with Array 

The array can be used to implement a stack of fixed size, therefore only fixed a number of data items 
can be pushed and popped. Consider the following figure 6.1, the stack of size 4; therefore, maximum 
only 4 data items can be inserted. The top index always keeps track of the last inserted element of the 
stack, which is the top of the stack. Initially, the top is initialized by -1 (for the zero-based array) when 
there are no items in the stack, i.e. stack is empty. 

 
 
 
 
 

 
 
 
 
 
 
 

 
 

Figure 6.1: Stack Operations 
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When a new item is inserted in the stack, the top is incremented by 1 before the item is stored in 
the stack. Once all the four items are inserted then pop is 3, as shown in the figure. Now, if we try to 
insert next item, it leads to an overflow condition. It indicates that the stack is full and we cannot insert 
the new item. If the size of the array is MAXSIZE then when the top equals to MAXSIZE -1 then the 
stack is full. 

When an item is deleted from the stack, the top is decremented by 1, after the item is removed 
from the queue. Now, if top = -1 then if we try to delete an item, it results in underflow condition. It 
indicates that the stack is empty and we cannot delete an item.  

Therefore, it is required to check these conditions whenever push and pop operations take place.  

Algorithm to insert (push) onto the stack 

Algorithm: PUSH (STACK, ITEM) 

[STACK is an array of MAXSIZE and ITEM is an item to be pushed onto 

stack] 

1. [Check for stack overflow] 

   If TOP = MAXSIZE - 1 then  

   a) Print: Overflow  

   b) Return 

2. [Increase top by 1] 

   Set TOP = TOP + 1 

3. [Insert item in new top position] 

   Set STACK[TOP] = ITEM 

4. Return 

Algorithm to deletes (pop) the top element from the stack. 

Algorithm: POP (STACK, ITEM) 

[STACK is an array and ITEM is an item to be popped from stack] 

1. [Check for stack underflow] 

   If TOP = -1 then 

    a) Print: Underflow 

    b) Return 

2. [Assign top element to item] 

   Set ITEM = STACK[TOP] 

3. [Decrease top by 1] 

   Set TOP = TOP - 1 

4. Return 

The stack can be represented using the following structure: 
struct STACK 

{ 

   int a[MAXSIZE]; 

   int top; 

}; 
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Stack Representation with Linked List 

Another way to represent stack is by using the singly linked list, which is also known as Linked Stack. 
A linked list is a dynamic data structure and each element of a linked list is a node that contains a value 
and a link to its neighbor. The link is a pointer to another node that contains a value and another 
pointer to another node and so on. 

The linked list header acts as the top of the Stack. All push or pop operations are taking place at 
the front of the linked list. Each operation always changes the header of the linked list. When the stack 
is empty then HEAD is null. If the stack has at least one node, the first node is the top of the stack. In 
the push operation, it needs to add a new node to the front of the list. The pop operation removes the 
first node of the linked list when the stack is not empty.  

Algorithm of the push operation using linked list 

Algorithm: PUSH (HEAD, ITEM) 

[HEAD is a pointer to the first node and ITEM is an item to be 

pushed onto stack] 

1. [Create the new node] 

   Allocate memory for NEW node 

2. If NEW = NULL then 

 i) Print: Out of memory 

 ii) Return 

3. Set NEW→DATA = ITEM 

4. Set NEW→LINK = HEAD 

5. Set HEAD = NEW 

6. Return 

Algorithm of pop operation using linked list 

Algorithm: POP (HEAD, ITEM) 

[HEAD is a pointer to the first node and ITEM is an item to be 

popped from stack] 

1. [Whether List is empty] 

   If HEAD = NULL then 

 i) Print: Stack is underflow 

 ii) Return 

2. ITEM = HEAD→DATA 

3. Set P = HEAD 

4. HEAD = HEAD→LINK 

5. Set P→LINK = NULL 

6. De-allocate memory for node P 

7. Return 

Comparisons of stack representation using linked list over array 

 The array is fixed size, therefore, a number of elements will be limited in the stack. Since 
linked list is dynamic and can be changed easily, so the number of elements can be changed.  



 

Stack and Queue | 6.5 

 

main( )    

{ 

 

 A ( ); 

 

} 

A ( )    

{ 

 

 B ( ); 

 

} 

B ( )    

{ 

 

 C ( ); 

 

} 

 The pointers in linked list consume additional memory compared to an array. 
 In array and linked list push, pop operations can be done in O(1). 

Applications of Stack 

The stack is a very useful data structure. Most of the modern computers and microprocessor provide an 
inbuilt hardware stack. Even there are stack-oriented computer architectures. 

1. A very important application of stack is to implement recursive function call and processing 
of function calls such as passing arguments. 

2. Evaluation of Arithmetic expressions. 
3. To simulate recursion. 
4. The scope rule and block structure can also be implemented using the stack.Stacks are used in 

the development of Compilers, System programs, Operating systems and in many elegant 
application algorithms. 

5. Stack is used to implement different algorithms, Depth first search, Quicksort, Mergesort etc. 

Processing of Function calls 

One of the most important applications of the stack is the processing of subprogram calls and their 
termination. 

The program must remember the place where the call was made: so that it can return back after the 
subprogram is complete. 

Suppose we have three subprograms called A ( ), B ( ), C ( ) and one main program and main ( ) 
invokes A ( ), A ( ) invokes B ( ) and B ( ) in turn invokes C ( ). Then B will not have finished its work 
until C ( ) has finished and returned. Similarly main ( ) is the first to start work, but it is the last to be 
finished. 

 
 
 
 
  
 
 
 
  
 
 
 
 

 

Figure 6.2:  Function call processing 

These function calls are pushed into the stack according to the order in which they were called 
along with their parameters and processed according to the order in which they are popped from the 
stack. The stack, which is used in function-call, is generally implemented in physical memory and in 
the reverse order. That means the stack top locates the last address. 
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main( ) 

C ( )    
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} 
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Evaluation of Arithmetic Expressions 

An expression is defined as a number of operands or data items combined with several operators. An 
Arithmetic expression consists of arithmetic operators and operands.  

There are three types of notations in an arithmetic expression. 
i) Infix Notation  
ii) Prefix Notation 
iii) Postfix Notation 

Infix Notation 

Most usually, in arithmetic expressions, the binary operator appears between its two operands. This is 
called infix notation. The general form of the infix notation is: 

Op1 operator Op2 where Op1 and Op2 are two operands 

Example: 

a + b 

Prefix Notation 

In prefix notation, binary operators appear before its two operands. This notation is also known as 
Polish notation. In prefix notation, the operations that are to be performed is absolutely determined by 
the positions of the operators and operands in the expression. Therefore, parentheses are never used 
when writing expressions in prefix notation. The general form of the prefix notation is: 

operator Op1 Op2 where Op1 and Op2 are two operands 

Example: 

+ a b      

Postfix Notation 

In postfix notation, binary operators appear after its two operands. This notation is also known as 
Reverse Polish notation. In postfix notation, the operations are to be performed is absolutely 
determined by the positions of the operators and operands in the expression. Therefore, parentheses are 
never used when writing expressions in postfix notation. The general form of the postfix notation is: 

Op1 Op2 operator where Op1 and Op2 are two operands 

Example: 

a b + 

We are familiar with the conventional infix notation. However, postfix notation is most suitable 
for a computer to calculate any expression and it is the universally accepted notation for designing 
Arithmetic Logic Unit (ALU) of CPU. Therefore, it is necessary for us to study the postfix notation. 
Postfix expression is the way the computer looks towards any arithmetic expression. 

Disadvantages of infix expression 

 The infix expression is evaluated by traversing in more than one passes.  
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 The infix expression does not exclusively define the order in which the operators are to be 
evaluated. In infix expression, the operators are evaluated on basis of operator precedence 
convention. 

 In infix notation, one can increase the operator precedence by using parentheses. Therefore, 
parentheses can change the order of evaluation in an infix expression. 

 While storing the fully parenthesized expression is wasteful, since the parentheses in the 
expression need to be stored to evaluate the expression properly.   

Advantages of postfix expression 

 The postfix expression is evaluated by traversing only one pass. Therefore, evaluation of 
postfix expression is faster than infix expression. 

 Postfix expression is already arranged according to the operator precedence. Therefore, one 
never needs to look at the precedence of the operator during evaluation 

 In postfix expression, parentheses are never used. 

The Computer usually evaluates an expression written in infix notation in two steps: 
i) Converts the infix expression to equivalent postfix expression 
ii) Evaluates the postfix expression in a single pass 

Converting infix expression to postfix form 

The order of evaluation can be fixed by assigning a priority to each operator. The operators within 
parentheses having the highest priority will be evaluated first. When an expression has two operators 
with same priority then the expression is evaluated according to its associativity (left to right or right to 
left) order. In table 6.2, the priorities of different operators are specified. 

Table 6.2: Priority of Operators in the order of evaluation 

Operator Description  Priority 

+     - Unary operator 5 
^  Power operator 4 
*  /  % Multiplication, Division, Remainder 3 
+    -  Addition, Subtraction 2 
< <=  > >= == != Relational operators 1 

There is an algorithm to convert an infix expression to the equivalent postfix expression. A stack 
is used here to store operators rather than operand. The purpose of the stack is to reverse the order of 
the operators in the expression. 

Algorithm converts an infix expression to the equivalent postfix expression. 

Algorithm: POSTFIX (Q, P) 

[Q is a given infix expression and P is a postfix expression] 

1. Push “(“ onto stack & add “)” to the end of Q. 

2. Scan Q from left to right and repeat step 3 to 6  

   for each element (symbol) of Q while the stack is not empty 

3. If the element is an operand then add it to P. 
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4. If the element is left parenthesis “(“ then push it onto the 

   stack. 

5. If the element is an operator then: 

 a) Repeatedly pop from stack (until the element on top of 

        the stack has higher or same precedence than the operator 

        currently scanned) and add it to P. 

      b) Add the operator to stack. 

6. If the element is a right parenthesis “)” then: 

      a) Repeatedly pop from stack and add to P each operator  

         until a left parenthesis “(“ is found 

      b) Pop the left parenthesis from the stack. 

[End of Loop] 

7. Return  

Example: 

Find the postfix expression of the following infix expression:  
Q = A + (B * C – (D / E ↑ F) * G) * H 

Serial Number Symbol Scanned Stack Postfix Expression (P) 

Initial  (  
1 A ( A 
2 + ( + A 
3 ( ( + ( A 
4 B ( + ( A B 
5 * ( + ( * A B 
6 C ( + ( * A B C 
7 - ( + ( - A B C * 
8 ( ( + ( - ( A B C * 
9 D ( + ( - ( A B C * D 
10 / ( + ( - ( / A B C * D 
11 E ( + ( - ( / A B C * D E 
12 ↑ ( + ( - ( / ↑ A B C * D E 
13 F ( + ( - ( / ↑ A B C * D E F 
14 ) ( + ( -  A B C * D E F ↑ / 
15 * ( + ( - * A B C * D E F ↑ / 
16 G ( + ( - * A B C * D E F ↑ / G 
17 ) ( +  A B C * D E F ↑ / G * - 
18 * ( + * A B C * D E F ↑ / G * - 
19 H ( + * A B C * D E F ↑ / G * - H 
20 ) STACK EMPTY A B C * D E F ↑ / G * - H * + 

Postfix expression A B C * D E F ↑ / G * - H * + 
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Example: 

Find the postfix expression of the following infix expression:  
Q = (a + b * x) / (!a – d). s – c ˄ y 

Serial Number Symbol Scanned STACK Postfix Expression 

Initial  (  
1 ( ( (  
2 A ( (  A 
3 + ( ( + A 
4 B ( ( +  a b 
5 * ( ( + * a b 
6 X ( ( + * a b x 
7 ) (  a b x * + 
8 / ( / a b x * + 
9 ( ( / ( a b x * + 
10 A ( / ( a b x * + a  
11 ! ( / ( ! a b x * + a 
12 - ( / ( - a b x * + a ! 
13 D ( / ( - a b x * + a ! d 
14 ) ( /  a b x * + a ! d - 
15 . ( . a b x * + a ! d - / 
16 S ( . a b x * + a ! d - / s 
17 - ( - a b x * + a ! d - / s . 
18 C ( - a b x * + a ! d - / s .c 
19 ˄ ( - ˄ a b x * + a ! d - / s .c  
20 Y ( - ˄ a b x * + a ! d - / s .c y  
21 ) stack empty a b x * + a ! d - /s .c y ˄ - 

The equivalent postfix expression of the given infix expression is a b x * + a ! d - /s .c y ˄ - 
The time complexity of evaluation algorithm is O (n) where n is a number of characters in input 

expression. 

Evaluation of a Postfix Expression  

Algorithm finds the value of an arithmetic expression P written in postfix notation. 

Algorithm: EVALUATION (P) 

[P is a postfix expression] 

1. Add a right parenthesis “)” at the end of P. 

2. Read P from left to right and repeat step 3 and 4  

   for each element of P until the “)” is found. 

3. If an operand is found, put it onto the stack. 
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4. If an operator # is found then 

 a) Pop the two top elements of the stack, 

      Where A is the top element and B is the next to top element  

 b) Evaluate R = B # A 

 c) Push R onto the stack 

   [End of If] 

  [End of Loop] 

5. Set Result equals to the top element on stack 

6. Return  

Example: 

Find the value of following postfix expression: 
5 3 2 * 8 + *  

Serial Number Symbol Scanned Stack Output 

1 5 5  
2 3 5 3  
3 2 5 3 2  
4 * 5 6  
5 8 5 6 8  
6 + 5 14  
7 * 70  
   70 

The time complexity of evaluation algorithm is O(n) where n is a number of characters in input 
expression. 

Converting infix expression to prefix form 

There is an algorithm to convert an infix expression to the equivalent prefix expression. A stack is used 
here to store operators rather than operand.  

Algorithm converts an infix expression to the equivalent prefix expression. 

Algorithm: PREFIX (A, B) 

[A is a given infix expression and B is a prefix expression] 

1. Push “)” onto STACK, and add “(“ to end of the A 

2. Scan A from right to left and repeat step 3 to 6  

   for each element(symbol) of A while the STACK is not empty 

3. If the element is an operand then add it to B 

4. If the element is a right parenthesis then push it onto STACK 

5. If the element is an operator then: 

   a) Repeatedly pop from STACK and add to B, each operator (on the 

top of STACK) which has same or higher precedence than the operator. 

   b) Add operator to STACK 

6. If the element is a left parenthesis then 
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   a) Repeatedly pop from the STACK and add to B (each operator on 

top of stack until a left parenthesis is found) 

   b) Pop the left parenthesis from stack. 

   [End of loop] 

7. Return 

We can also convert an infix expression to prefix expression in three steps. In the first step reverse 
the infix expression and convert left parenthesis to right parenthesis and vice versa. Then in the second 
step, the modified infix expression is converted into postfix expression which algorithm is discussed 
above. Finally, the postfix expression is reversed to get the equivalent prefix expression. 

QUEUE 

The queue is also another useful non-primitive linear data structure in computer science. A real-life 
example of the queue is line or sequence of people or vehicles awaiting their turn to be attended to or 
to proceed. 

Definition: A queue is a homogeneous collection of elements in which deletions can take 
place only at the front end, known as dequeue and insertions can take place only at the rear end, 
known as enqueue. 

The element to enter the queue first will be deleted from the queue first. That is why a queue 
is called First-In-First-Out (FIFO) system. 

The concept of the queue can be understood by our real life problems. For example, a customer 
comes and join in a queue to take the train ticket at the end (rear) and the ticket is issued from the front 
end of the queue. That is, the customer who arrived first will receive the ticket first. It means the 
customers are serviced in the order in which they arrive at the service center. 

Operations on Queue 

The queue is an abstract data type since it is defined in terms of operations on it and its implementation 
is hidden. Therefore, the queue can be implemented with an array or with the help of the linked list. 
The queue includes a finite sequence of the same type of items with the different operations described 
in table 6.3. 

Table 6.3: Operations on Queue 

Operation Description 

Creation This operation creates a queue and initialization is done here. 
isempty This operation checks whether the queue is empty or not. 
isfull This operation checks whether the queue is full or not. 
Insertion 
(Enqueue) 

This operation inserts an item only at the rear of the queue when the queue is 
not full. 

Deletion (Dequeue) This operation deletes an item only from the front of the queue when the 
queue is not empty. 

Peek This operation returns the value of the front of the queue without removing 
the element from the queue. 
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Table 6.4: Difference between stack and queue 

Stack Queue 

In the stack, items are inserted and deleted at 
the one end of the list 

In the queue, items are inserted at one end (called 
rear) and deleted at another end (called the front) 

Stack is Last-in-First-out system The queue is  the First-in-First-out system 

Queue Representation with Array 

The array can be used to implement a queue of fixed size, therefore only fixed a number of data items 
can be inserted and deleted. Consider the following example, the queue of size 5, therefore, maximum 
only 5 data items can be inserted. The front index always keeps track of the last deleted item from the 
queue and rear index always keep track of the last inserted item in the queue. Initially, front and rear 
both are initialized by -1 (for the zero-based array) when there are no items in the queue, i.e. the queue 
is empty. 

When a new item is inserted in the queue, the rear is incremented by 1 before the item is stored in 
the queue. Once all the five items are inserted, then rear is 4, as shown in the figure 6.4. Now, if we try 
to insert next item, it leads to an overflow condition. It indicates that the queue is full and we cannot 
insert the new item.  

Algorithm to insert an item to rear of a queue by using an array 

Algorithm: ENQUEUE (Q, ITEM) 

[Q is an array represent queue and ITEM is deleted item] 

1. [check overflow] 

    If Rear = MAX - 1 then 

  a) Print: Queue is Full 

 b) Return 

2. Set Rear = Rear + 1 

3. Q[Rear] = ITEM 

4. Return  

When an item is deleted from the queue, the front is incremented by 1, before the item is removed 
from the queue. Now, if front = rear then if we try to delete an item, it results in underflow condition. It 
indicates that the queue is empty and we cannot delete an item. Whenever the queue is found empty, 
then to reuse the empty slots at the front of the queue we can reset the front and rear by -1. 

Algorithm to delete from the front of a queue by using an array 

Algorithm: DEQUEUE (Q, ITEM) 

[Q is an array represent queue and ITEM is inserted item] 

1. [Check underflow] 

   If Rear = Front then 

  a) Print: Queue is Empty 

 b) Return 

2. Set Front = Front+1 

3. ITEM = Q[Front] 

4. If Rear = Front then  
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[4]  [3] [2] [1]   [0] 

Front = Rear = -1 
(a) Initially empty 

     5  20  15 
[4]  [3] [2] [1]   [0] 

Front = -1, Rear = 2 
(b) Insert 15, 20, 5 

 25  30  5  20  15 
[4]  [3] [2] [1]   [0] 

Front = -1, Rear = 4 
(c) Insert 30, 25 

 25  30  5  20  15 
[4]  [3] [2] [1]   [0] 

Front = -1, Rear = 4 
(d) Insert 10, Overflow 

 25  30       
[4]  [3] [2] [1]   [0] 

Front = 2, Rear = 4 
(f) Insert 10, Overflow 

 

25     30 

[4]  [3] [2] [1]  [0] 

Front = 2, Rear = 4 
(e) Delete 15, 20, 5 

   Set Front = Rear = -1 

5. Return  

Therefore, it is required to check overflow and underflow conditions whenever insertions and 
deletions operations take place. 

Figure 6.4:  Different operations on Queue 

Queue Representation with Linked List 

Singly linked list can be used to represent a queue, which is also known as Linked Queue. In this 
representation, any number of data items can be inserted and deleted. The front and rear pointers 
always keep track of the first node and the last node in the linked list respectively. Initially, front and 
rear are initialized by null (i.e. front = rear = null), when there are no items in the queue, that means the 
queue is empty. The linked list header acts as the front of the queue. All deletion operations take place 
at the front of the list. All insertion operations take place at the end of the list. If the queue contains a 
single element then front and rear points to head/new node (i.e. front = rear = head). 

When a new item is inserted in the queue, a new node is inserted at the end of the linked list, the 
rear points to the new node. When an item is deleted from the queue, the node from the front of the 
queue is deleted. Now, if front = null then if we try to delete an item, it results in underflow condition. 
It indicates that the queue is empty and we cannot delete an item. Whenever the queue is found empty, 
we can reset the front and rear by null. 

Algorithm to insert an item to rear of a queue using linked list 

Algorithm: ENQUEUE (FRONT, REAR, ITEM) 

[FRONT points to the first node and REAR points to the last node of 

the linked list. ITEM is the inserted value] 

1. Allocate memory for NEW node. 

2. If NEW = NULL then Print: Out of memory and Return 

3. Set NEW → DATA = ITEM 
4. Set NEW → LINK = NULL 
5. If REAR = NULL then 

 Set FRONT = REAR = NEW 

   Else  
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 Set REAR → LINK = NEW 

 Set REAR = NEW 

   [End of If] 

6. Return  

Algorithm to delete from the front of a queue using linked list 

Algorithm: DEQUEUE (FRONT, REAR, ITEM) 

[FRONT points to the first node and REAR points to the last node of 

the linked list. ITEM is the deleted value] 

1. If FRONT = NULL then Print: Stack is underflow and Return 

2. Set P = FRONT 

3. Set ITEM = P → DATA 

4. Set FRONT = P → LINK 

5. If FRONT = NULL then Set REAR = NULL  

6. Set P → LINK = NULL 
7. De-allocate memory for node P 

8. Return 

Comparisons of queer representation using linked list over the array 

 The array is fixed size, therefore, a number of elements will be limited in the queue. Since 
linked list is dynamic and can be changed easily, so the number of elements can be changed.  

 The pointers in linked list consume additional memory compared to an array. 
 In array implementation, sometimes dequeue operation not possible, although there are free 

slots. This drawback can be overcome in linked list representation. 
 In array and linked list enqueue and dequeue operations can be done in O (1). 

Application of Queue 

 A major application of the queue is in simulation [see Kruse for example]. 
 In operating systems, queues are used for process management, I/O request handling, etc. 

Examples: Print queue of DOS, Message queue of Unix IPC. 
 Queues are also used in some elegant algorithms like graph algorithms (breadth first search), 

radix sort etc. 
 Different types of customer service software are designed using a queue for proper service to 

the customer. 
Example: Railway ticket reservation system 

Drawbacks of Linear Queue 

The linear queue, when represented using an array, suffers from drawbacks. Once the queue is full, 
even though few elements are deleted from the front end and some free slots are created, it is not 
possible to insert new elements, as the rear has already reached the queue‘s rear most position. 
Consider the figure, the queue of size 5 and the front is 2, rear is 4. Now, we are not able to insert new 
data item into the queue, although there are free slots (first and second location) in the front of the 
queue, because of rigid rule followed by linear queue (insertion can be done at the rear end of the 
queue). It is also known as a boundary case problem. 
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[6] 

[7] [0] 

[5] [2] 

[4] [3] 

[2] [5] 

[4] [3] 

[1] 

Front = Rear = -1, count=0 
(a) Initially empty 

 

Front = -1, Rear = 3, count=4 
(b) Insert 15, 20, 5, 30 

  
Front = 0, Rear = 3, count=3 

(c) Delete 15 

Front = 0, Rear = 0, count=8   
(d) Insert 25, 35, 10, 40, 55 

Front = 5, Rear = 0, count=3 
(e) Delete 20, 5, 30, 25, 35 

Front = 0, Rear = 0, count=0 
(f) Delete 10, 40, 55 
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5 

30 25 

35 

30 

40 55 

This drawback can be overcome in two different ways. The first solution is by left shifting all 
elements after every deletion. However, this is not suitable since after every deletion, the entire 
elements required shifting left and front and rear should be readjusted according to that. 

The second solution is by implementing a circular queue and it is a suitable method to overcome 
the above drawback.  

CIRCULAR QUEUE 

A circular queue (also known as a circular buffer) is a linear data structure that uses a single, fixed-size 
buffer as if it were connected end-to-end. A circular queue is just one of the efficient ways to 
implement a queue. It also follows First-in-First-out (FIFO) principle.  

Circular Queue Representation with Array 

In array representation, the queue is considered as circular queue when the positions 0 and MAX-1 are 
adjacent. It means when rear (or front) reaches MAX-1 position then increment in rear (or front) causes 
rear (or front) to reach the first position that is 0.  

One solution of the problem is if not all the elements of the array can be used to accommodate 
queue elements; in particular, an array of size n can accommodate a maximum of n – 1 elements and 
one of the slot always remains unused. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.5:  Different operations on Circular Queue 

[1] [6] 

5 
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Consider the circular queue with n = 8 in figure 6.5. 
Another solution is that if an extra variable counter is used for the identification of the empty 

queue and full queue. At first, the variable counter initialized by zero. When an element is inserted into 
the circular queue, the counter is increased by one and when an element is removed from the circular 
queue, the counter is decreased by one. Now, if the value of the counter is zero that means, a circular 
queue is empty and if the value of the counter equals to n (the size of the array) then the circular queue 
is full.  

Note: Circular Queue‘s circularity is only logical. There cannot be a physical circularity in main 
memory. 

Algorithm to insert an item to the rear of a circular queue. 

Algorithm: ENQUEUE (Q, ITEM) 

[Q is an array represent circular queue and ITEM is inserted item] 

1. [Check for overflow] 

   If Count = MAX then 

  a) Print: Queue is Full 

 b) Return 

2. Set Rear = (Rear + 1) mod MAX 

3. Set Q[Rear] = ITEM 

4. Set Count = Count + 1 

5. Return  

Algorithm to delete from the front of a circular queue 

Algorithm: DEQUEUE (Q, ITEM) 

[Q is an array represent queue and ITEM is deleted item] 

1. [Check for underflow] 

   If Count = 0 then 

  a) Print: Queue is Empty 

 b) Return 

2. Set Front = (Front + 1) mod MAX 

3. ITEM = Q[Front] 

4. Set Count = Count - 1 

5. Return 

DEQUEUE 

A Double-ended Queue (Dequeue often abbreviated to Deque) is a linear list that generalizes a queue, 
for which elements can be inserted or deleted from either the front end or from the rear end but not in 
the middle. It is also often called a head-tail linked list.  

There are two variations of a Dequeue 
i)  Input-restricted Dequeue: Input-restricted dequeue is dequeue, where insertions can be made 
at only one end of the list but deletions can be made from both ends of the list. 
ii) Output-restricted Dequeue: Output-restricted dequeue is dequeue, where deletions can be 
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made from only one end of the list but insertions can be made at both ends of the list. 
Both the basic and most common list types in computing, queues and stacks can be considered 

specializations of dequeue and can be implemented using dequeue. 
Note: Deque is sometimes written dequeue, but this use is generally deprecated in technical writing 
because dequeue is also a verb meaning, "to remove from a queue". 

Operations on Dequeue 

The operations are supported by Dequeue as follows: 

Table 6.5: Operations on Dequeue 

Operation Description 

Insertion at Rear This operation inserts the element into dequeue at rear end. 
Insertion at Front This operation inserts the element into dequeue at front end. 
Deletion from Rear This operation removes an element from dequeue from rear end. 
Deletion from Front This operation removes an element from dequeue from front end. 

PRIORITY QUEUE 

A Priority Queue is a collection of elements such that each element has been assigned a priority and 
the elements are arranged on the basis of priority. The order in which elements are deleted and 
processed comes from the following rules: 

i) The element having a higher priority is processed before any elements of lower priority. 
ii) The two elements that have the same priority are processed according to the order in which 

that are inserted into the priority queue. 
There are two types of priority queue: 
i) Ascending priority queue: In this type of the priority queue, the elements can be inserted 

arbitrarily, but only the element with the smallest priority can be removed. 
ii) Descending priority queue: In this type of the priority queue, the elements can be inserted 

arbitrarily, but only the element with the highest priority can be removed. 
Here we discuss the operations and algorithms for descending priority queue.  

Abstract Data Type 

A priority queue is an abstract concept. A priority queue can be implemented with an array, a linked 
list or a heap. Priority Queue supports the operations as follows: 

Table 6.6: Operations on Priority Queue 

Operation Description 

Insert This operation inserts the element into the priority queue with an 
associated priority 

Peek This operation returns the element that has the highest priority. 
Extract-Maximum  
or Remove 

This operation removes the element from the priority queue that has the 
highest priority. 
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Representation of Priority Queue 

The priority queue can be represented using a (unsorted or sorted) linked list or array. For an unsorted 
array or for a linked list, insertion operation is done at the end or the head of the linked list, or at the 
end of the array, therefore, it runs in O (1). In the peek operation, to return the highest-priority element, 
it required searching (linear search) the highest-priority element in the entire array or the linked list, 
therefore it runs in O (n). To remove the highest-priority element, it required searching (linear search) 
the highest-priority element in the entire array or the linked list. In an array, we also have to shift array 
contents to fill the gap. Therefore, it runs in O (n). 

However, a linked list or unsorted array are great for inserting elements, but not good at searching 
high-priority elements (or removing them). An alternative is to sort the array (or List or linked list) 
according to the priority, with the highest priority at the end of the array. For a sorted array or for a 
linked list, in insertion operation at first it needs to search for the correct position using binary search 
in an array (O (    ) and linear search in a linked list (O (n)). Once the correct position is found, insert 
the element thereby keeping the entries in the array or linked list in order (as in insertion sort). In an 
array, this involves shifting all elements to the right of the inserted element over by one position. 
Therefore, in either case, the cost is O (n). In peek operation, to return the highest-priority element, it 
required returning the last element of the array or linked list as the highest-priority element is always at 
the end. Therefore, it runs in O (1). To remove the highest-priority element, it required removing the 
last element of the array or linked list as the highest-priority element is always at the end. In the array, 
by decreasing the size counter. Therefore, it takes O (1). 

A sorted array or linked list is fast at looking up and removing high-priority elements, but pays 
with linear insertion cost. 

Priority Queue Representation with Heap  

The priority queue can be represented efficiently using a max-heap; the representation would be as 
follows:  

Insert Operation 

Since we maintain the property of the complete binary tree, insert the element as a new leaf, as far to 
the left as possible, i.e. at the end of the array; increment the size of the heap. After insertion, it may 
violate the heap property when the newly added element has higher priority than its parent. Therefore, 
to restore the heap condition shift-up through the heap with that element. The running time of the insert 
operation on a n element heap is O (    ). 

Algorithm to insert an item to Priority Queue 

Algorithm: Insert (Q, N, ITEM) 

[Q is an array represent priority queue, N is the number of items 

and ITEM is an item to be inserted into priority queue] 

1. Set N = N + 1 

2. Set I = N and J = I/2 

3. Repeat step 4 and 5 while I>1 and Q[J] < ITEM 

4.  Set Q[I] = Q[J] 

5. Set I = J and J = I/2 
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 [End of loop] 

6. Set Q[I] = ITEM 

7. Return 

Peek Operation 

To return the highest-priority element, it required returning the root element of the heap as the highest-
priority element will always be at the root of the max-heap. Therefore, it runs in O (1). 

Remove Operation 

To remove the highest-priority element, it required removing the top element of the heap; decrement 
the size of the heap, and then shift-down through the heap with that item to restore the heap condition. 
The running time of remove operation on an n element heap is O (    ). 

Algorithm to delete an item from Priority Queue 

Algorithm: Remove (Q, N, ITEM)  

[Q is an array represent priority queue, N is the number of items 

and ITEM is an item to be removed from priority queue] 

1. [check whether queue is empty] 

   If N < 1 then Print: Queue Underflow and Return 

2. Set ITEM = Q[1] 

3. Set Q[1] = Q[N] 

4. Set N = N – 1 

5. Call Heapify(Q, 1) 

6. Return  

In the following table (Table 6.7) the time complexity of different operations on priority queue are 
given where different data structures are used. From the table, it is observed that the time complexity 
of Heap data structure is the best choice for implementing a priority queue.  

Table 6.7: Time complexity of different operation with different representation 

Operation 

Priority queue representation with 

Unsorted  array or  

linked list 

Sorted array or  

linked list 

Heap 

Insert O(1) O(n) O(    ) 
Peek O(n) O(1) O(1) 
Remove O(n) O(1) O(    ) 

Summary 

 A stack is an ordered collection of elements into which new elements may be inserted and from 
which elements may be deleted only at one end called the top of the stack. 

 A queue is a homogeneous collection of elements in which deletions can take place only at the 
front end, known as dequeue and insertions can take place only at the rear end, known as enqueue. 
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 A Double-ended Queue (Dequeue often abbreviated to Deque) is a linear list that generalizes a 
queue, in which elements can be inserted or deleted from either the front end or from the rear end 
but not in the middle. 

 A Priority Queue is a collection of elements such that each element has been assigned a priority 
and the elements are arranged on the basis of priority. 

Exercises 

1. What is a queue? Write an algorithm to insert an element in such a queue. 
2.  Why is the queue data structure called the FIFO? 
3. Define circular queue. Write an algorithm to insert an item in the circular queue. 
4. What are the disadvantages of the linear queue? How can we overcome these disadvantages in 

case of the circular queue? Explain with an example. 
5. What is priority queue?  Implement the operations of the priority queue. 
6. What is input restricted dequeue? 
7. Write an algorithm to convert an infix expression to its corresponding postfix expression, using 

the stack. 
8 Write the differences between stack and queue. 
9. Write short notes on Dequeue- operations and applications. 
10. . Evaluate following expression. 

a. 10+3-2-8/2*6-7 
b. (12-(2-3)+10/2+4*2) 

11. Convert following infix expression to postfix expression: 
a. ((a+b)/d-((e-f)+g) 
b. 12/3*6+6-6+8/2 

12. Convert following infix expression to prefix expression: 
a. ((a+b)/d-((e-f)+g) 
b. 12/3*6+6-6+8/2 

13. Explain application of Stack. 
10.  Choose the correct alternative in each of the following: 
i) Reverse Polish notation is often known as 
 a)  Infix  b) Prefix c) Postfix d) none of these 
ii) The postfix equivalent of the prefix *+ab-cd is  
 a)  ab+cd-* b) abcd+-* c) ab+cd*- d) ab+-cd* 
iii) The following sequence of operations is performed on a stack: push(1), push(2), pop, push(1), 

push(2), pop, pop, pop, push(2), pop. The sequence of popped out values are: 
 a) 2, 2, 1, 1, 2 b) 2, 2, 1, 2, 2 c) 2, 1, 2, 2, 1 d) 2, 1, 2, 2, 2 
iv) The initial configuration of queue is a, b, c, d (‗a‘ is at the front). To get the configuration d, 

c, b, a one needs a minimum of 
 a) 2 deletions and 3 additions b) 3 deletions and 2 additions 
 c) 3 deletions and 3 additions d) 3 deletions and 4 additions  
v) A linear list that allows elements to be added or removed at either end but not in the middle is 

called: 
 a)  Stack b) Deqeue c) Deque d) Priority queue 
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vi) If we evaluate the following post-fix expression, 23 5 7 * –12 +, the result will be 
 a) 12 b) 0 c) -12 c) 35 
vii) The evaluation of the postfix expression 3 5 7 * + 12 % is 
 a) 2 b) 3 c) 0 d) 3.17 
viii) The integers 1, 2, 3, 4 are pushed into the stack in that order. They may be popped out of the 

stack in any valid order. The integers, which are popped out produce a permutation of the 
members 1, 2, 3, 4. Which of the following permutation can never produce in such a way? 

 a) 1, 2, 3, 4 b) 4, 2, 3, 1 c) 4, 3, 2, 1 d) 3, 2, 4, 1 
ix) The prefix expression for the infix expression a * (b + c) / e –f is 
 a) / *a+bc-ef b) -/*+abcef c) -/*a+bcef d) none of these 
x) A stack is implemented using an array with the following declaration: 

 int stack[100]; int stack_top=0; 

To perform the POP operation, which of the following is correct? 
 a) x = stack[stack_top++]  b) x = stack[++stack_top] 
 c) x = stack[stack_top--] d) x = stack[--stack_top] 
xi) Translating the infix expression P =A+(B*C->D/(E+F)*G)*H into postfix notation, we get, 
 a) ABC*DEF/+G*-H*+ b) ABC*+DEF+/-G*H— 
 c) ABC*DEF+/G*-H*+ d) None of these 
xii) The number of stacks required to implement mutual recursion is 
 a) 3 b) 2 c) 1 d) none of these 
xiii) Queue can be used to implement? 
 a) Radix sort b) Quick sort c) Recursion d) Depth first search 
xiv) Stack is useful for implementing 
 a) Radix sort b) Recursion c)Breadth first search d) Depth first search 
xv) The postfix expression for the infix expression A+B*(C+D)/F+D*E is 
 a) AB+CD+*F/D+E* b) ABCD+*F/+DE*+ 
 c) A*B+CD/F*DE++ d) A+*BCD/F*DE++ 
xvi) Stack is sometimes called a ___________  
 a) Push down list b) Pushdown array c) Pop down list d) Pop up array 
xvii) The prefix expression for the infix expression : a+b*c/d 
 a) +ab*/cd b)+*ab/cd c) +a*b/cd d)none 
xviii) Which of the following is not the operation on stack? 
 a) Push b) Pop c) Peep d) Enqueue 
xix) Which of the following is related to Queue? 
 a) Round Robin 

algorithm 
b) Traffic Control 
System 

c) All d) None 

xx) Which of the following is not a application of Stack? 
 a) Evaluation of 

Police notation 
b) Tower of Hanoi c) Stack Machine d) None 

      
    

*****  





 

 

 

 

 

 
 
 

RECURSION 
 

“Intelligence is the ability to avoid doing work, yet getting the work done” -Linus Torvalds 

 
 

here are two approaches for writing repetitive algorithms. 
One uses iteration/loop and the other uses recursion. 
Iteration is one of the categories of control structures. It 

allows for the processing of some action many times.  Iteration is 
also known as looping and repetition. The math term "to iterate" 
means to perform the statement parts of the loop. Many 
problems/tasks require the use of repetitive algorithms. Recursion is 
defined as defining anything in terms of itself.  

With most programming languages, this can be done with 
either: 

i) Looping control structures, specifically the for loop (an iterative approach)  
ii) The recursive calling of a function  
Both approaches provide repetition, and either can be converted to the other's approach.  
Definition: Recursion is a repetitive process in which a function calls itself either directly or 

indirectly. 
In the other words, recursion is a technique that allows us to break down a problem into one or 

more sub-problems that are similar in form to the original problem.  
In recursion, each time when the recursive function is called, the current state including all the 

local variables, formal parameters, and return address are pushed into the stack. A block of memory of 
contiguous locations set aside for this purpose. When the return statement is encountered, the control 
comes back to the previous function call, by restoring the state that resides on the stack.  

Recursion Essentials 

There are two key requirements to make sure that the recursion is successful: 
 A recursion definition must always have certain criteria, called base criteria or base case for 

which the function stop calling itself. 
 Every recursive call must simplify the computation in some way, which is known as an inductive 

clause. In other words, each time a function does call itself (directly or indirectly), it must be 
closer to the base criteria that terminates the recursion. 

Infinite Regress 

When the recursion does not terminate, we have an infinite regress. Infinite regress often occurs when: 
i) A base criterion is omitted or  
ii) When a base criterion is never reached. 

K E Y  F E A T U R E S  

 Recursion essentials 

 Types of Recursion 

 Recursion tree 

 Tower of Hanoi 

 Non-attacking 8 queens 

T 
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A circular definition may have no base criteria and define the value of a function in terms of that 
value itself, rather than on other values of the function. Such a situation would lead to an infinite 
regress. 

Note: If infinite recursion occurs in a program then you may get a runtime error message, e.g. “Stack 

overflow”. 

Depth of Recursion 

Suppose P is a recursive function. During the execution of a program, which contains P a level number 
is assigned. The original execution of P is assigned level 1 and each time P is executed because of the 
recursive call, its level is one more than the level of execution that had made the recursive call. 

The depth of the recursive function P, with given set of arguments, refers to the maximum level 
number of P during its execution.  

Recursion Tree 

A recursion tree is a tree that is generated by tracing the execution of a recursive function. A recursion 
tree shows the relationship between calls to the function. Recursion tree is a pictorial representation of 
recursion call, which is in the forms of a tree, where at each level nodes are expanded. Each node 
represents how recursive function calls are generated. Descendants of a function call are further 
recursive calls. Calls in the tree with no descendants involve evaluation of the base case(s). Example of 
recursion tree  is shown in figure 7.2. 

Types of Recursion 

The ways in which recursive functions are characterized are: 
 Whether the function calls itself or not (direct or indirect/mutual recursion). 
 How many internal recursive calls are made there within the body (linear, binary, and non-linear 

recursion)? 
 Whether there are pending operations or not at each recursive call (tail or non-tail recursion). 

Recursion is mainly two types depending on whether a function calls itself or not. 
i) Direct Recursion 
ii) Indirect Recursion or Mutual Recursion 

Direct Recursion 

In direct recursion, a function calls itself from the body of the function. A function is directly recursive 
if it contains an explicit call to itself. The format of direct recursion is as follows: 

function F() 

{   

 if base condition satisfied 

then return some value(s) 

    else 

{ 

         : 

         call F(); 

   : 

     } 

}  
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Examples: Factorial, Fibonacci, GCD, etc. 

Indirect Recursion 

In indirect recursion, two functions call one another directly. A function is indirectly recursive if it 
contains a call to another function, which ultimately calls it. Indirect recursion also is known as mutual 
recursion. The format of indirect recursion is as follows: 

function A() 

{ 

: 

call to B; 

: 

} 

 

function B() 

{  

: 

call to A;  

 : 

} 

Examples: Recursive Descent Compilation, Hilbert Curves, etc. 

Recursion is categories into three types depending on the number of recursion calls: 
i) Linear Recursion 
ii) Binary Recursion 
iii) Non-Linear or Multiple Recursion 

Linear Recursion 

In linear recursion, a single recursion call is performed. A recursive function in which only one internal 
recursive call is made within the body is called linearly recursive. The format of linear recursion is as 
follows: 

function L () 

{  

 if base condition satisfied 

then return some value(s) 

    else 

{ 

          : 

          call L(); 

: 

     } 

}  

Examples: Factorial, GCD, Binary Search, etc. 

Binary Recursion 

In binary recursion, two recursion calls are performed. A function that makes two internal calls to itself 
is said to be binary recursive. The format of binary recursion is as follows: 
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function B (…) 

{   

 if base condition satisfied  

     then perform actions/ return value(s) 

else 

{  

  perform some action(s); 

      make a call to B to solve one smaller problem ; 

      make a call to B to solve the other smaller problem ; 

} 

} 

Examples: Fibonacci sequence, Quick sort, Merge sort, Binary Tree algorithms, General Divide–and–
conquer algorithms. 

Non-linear recursion  

In non-linear recursion, more than two recursion call are performed. A function using a number of 
more than two internal recursive calls within the body of the function is non-linear recursive. Non-
linear recursion also is known as multiple recursion. The format of non-linear recursion is as follows: 

function N(…) 

{  

 for j= k to n do 

   {  

  perform some action(s); 

       if base condition not satisfied  

       then make a call to N 

       else perform some action(s); 

     } 

} 

Examples: Non-attacking 8-queens, Sample Generation, Combination generation, Permutation 
generation, etc. 

Tail Recursion 

A special form of recursion where the last operation of a function is a recursive call. That is a recursive 
function is said to be tail recursive if there are no pending operations to be performed on return from a 
recursive call. 

Example: 

int fact (int n) 

{   

   if(n==1) 

      return 1; 

   else   

      return n * fact(n-1) 

} 

Notice that there is pending operation namely multiplication, to be performed on return from each 
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recursive call. Whenever there is a pending operation, the function is non-tail recursive. 
The factorial function can be written in a tail-recursive way: 

int fact_aux(int n, int result) 

{  

   if (n==1) 

     return result; 

   else  

     return fact_aux(n-1, n*result) 

} 

int fact(n) 

{  

    return fact_aux(n,1); 
} 

Here fact_aux is a recursive function, not fact. 

Advantages of Recursion 

i) Recursion functions can be written easily. We can write a simple version of programs using 
recursion. 

ii) There are some complex problems such as Tower of Hanoi, Non-attacking Queen, etc. can be 
easily understood and implements using recursion. 

iii) The recursive definitions can be translated into recursive function easily. 

Disadvantages of Recursion 

i) Recursion consumes more storage space because each time a new recursive call is made; a 
new memory space is allocated to each automatic variable used by the recursive function. 

ii) The computer may run out of memory if base criteria are not checked. 
iii) Recursion is not efficient in terms of speed and execution time, as function call require storing 

the current state of the function onto the stack, jump to execute recursion call, restoring state 
from the stack. 

Table 7.1: Differences between iteration and recursion 

Iteration Recursion 

Iteration is a process of executing a block of 
statements repeatedly until some specific 
condition. 

Recursion is a technique that breaks down a 
problem into one or more subproblems that are 
similar to the original problem. 

The iterative process is more efficient in terms 
of storage space and execution time. 

Recursion is not efficient in terms of storage 
space and execution time. 

Any recursive problem can be solved iteratively. Not all problems have a recursive solution. 
Iteration process sometimes not easy to 
implement. Complicated problems are difficult 
to solve in iteratively; e.g. tower of Hanoi 
problem, eight queen problem etc. 

Recursive functions are easier to implement and 
maintain. Complicated problems are solved 
easily. 

Iteration has four steps: initialization, condition 
checking, execution statements and updating. 

A recursive function must have base criteria for 
which the function does not call itself. Each time 
a function does call itself (directly or indirectly); 
it must be closer to the base criteria. 
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When should we use iteration, and when use recursion? There are three factors to consider: 
i) Iterative functions are typically faster than their recursive alternatives. Therefore, if speed 

were an issue, you would normally use iteration. 
ii) If the stack limit is too constraining then you will prefer iteration over recursion.  
iii) Some procedures are very naturally programmed recursively, and all but unmanageable 

iteratively. Here, the choice is clear. 

Factorial 

Factorial of a number n is the product of the positive integer from 1 to n. 
n! = 1 × 2 × 3 × …× (n-1) × n 
Factorial of number can be defined in recursively as follows: 

 
        

Factorial (n) =          
 

 

Function to compute the factorial of a given number using recursion 

Function: INT FACTORIAL (N) 

[N is a number] 

1. [Base condition] 

   If N < 2  

      Then Return 1 

2. Else 

   [Call itself] 

      Return (N*FACTORIAL (N-1)) 

The above function obtains the factorial of a given number n in a recursive manner. If the number 
is one then factorial is computed otherwise for one the function returns 1. 

The above function fact is a recursive function because it calls itself; namely, factorial (n) is 
calling fact (n -1). 

 
 
 
 
 
 
 
 
 
 
 

Figure 7.1: Recursive Function call processing 

1,   when n = 0 or 1 
 
n × Factorial (n-1),  when n > 1 
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4*fact(3) 
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Fib 5 

Fib 3 

Fib 3 Fib 2 Fib 2 Fib 1 

Fib 2 Fib 1 

Fib 4 

Therefore, if the function factorial is called by a value say 4, the function call factorial (4) invokes 
itself with the value 3. The function call factorial (3) invokes factorial (2), the factorial (2) invokes 
factorial (1). Then we have no further function call because it has reached the base condition. 

Therefore, in Stack first fact (3) is pushed, then fact (2) and at last, the fact (1) is pushed. 
Moreover, these function calls are processed according to the sequence they are popped from the stack. 

Fibonacci sequence 

Fibonacci sequence is a series of positive number in a manner that the next term of the series is the 
addition of two previous terms: 
 0 1 1 2 3 5 8 13 21 34…. 

Fibonacci series can be defined in recursively as follows: 

 
                   

Fib (n) =  
  
 
   

A function to generate a Fibonacci number using recursion       

Function: INT FIB(N) 

1. [Base condition] 

   If N = 1  

      Then Return 0 

2. [Base condition] 

   If N = 2  

      Then Return 1 

3. [Call itself] 

   Return (FIB (N-1) + FIB (N-2)) 

The above function for obtaining a Fibonacci number of a given number n in a recursive manner. 
If the number is greater than 2 then Fibonacci number is calculated otherwise for one or two the 
function returns 0 or 1 respectively. 
  

 

 

 

 

 

 

 
 

Figure 7.2: Recursion Tree for Fib (5) 

0,    when n = 1 
1,   when n = 2 

Fib (n-1) + Fib (n-2), when n > 2 
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The recursion tree for obtaining the Fibonacci number of a given number 5. Finally, the function 
adding all values of the leaf nodes. 

FIB (5) = FIB (2) + FIB (2) + FIB (1) + FIB (2) + FIB (1) = 1 + 1 + 0 + 1 + 0 = 3 
Therefore, the function calculated 5th term of the Fibonacci series, which is 3. 

GCD 

The greatest common divisor (GCD) or highest common factor (HCF) of two non-negative, not- both-
zero integers a and b, denoted by GCD (a, b), is defined by the greatest integer that divides both a and 
b evenly, that is with no remainder. 

GCD can be defined by Euclid‘s algorithm on recursively as follows: 

 
 
GCD (a, b) =        

           
 
where a mod b is the remainder of the division of a by b, until b is equal to zero and final value of 

a is the greatest common factor of the first value a and b. 

Function to find out GCD of two numbers using recursion       

Function: INT GCD(A, B) 

1. [Base Condition] 

   If B = 0  

      then Return A 

2. [Call itself] 

   Else  

      Return GCD(B, A MOD B) 

In the above algorithm, there is no need to check whether A is greater than B or not.  
For example, A = 4 and B = 6 then the GCD (A, B) function is called in the following sequence: 
GCD (4, 6) → G CD(6, 4) → GCD(4, 2) → GCD(2, 0) 
and when A = 6 and B = 4 then the GCD (A, B) function is called in the following sequence: 
GCD(6, 4) →  GCD(4, 2) → GCD(2, 0) 
Therefore, when B is greater than A, the GCD (A, B) function is called just one more time. 
This algorithm runs very fast, but division (taking remainders) is a more time-consuming 

operation than simple addition and subtraction. 

Integer Power 

Integer power problem is to find xn where x is real and n is a positive integer, using a minimal number 
of multiplications. The naïve one-at-a-time algorithm required n number of repeated multiplication. 

xn = x × x × …× x 
 
 
 

a,   when b = 0 
 
GCD (b, a mod b), otherwise 

n times 
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x.(x2)(n-1)/2, if n is odd 

 

(x2)n/2,  if n is even
  

1,   if n = 0 

 

x . xn-1,  Otherwise 

We can call this as ―x to the power of n‖ or ―x raised to the power of n‖. Here, x is the base and n 
is the exponent or the power.  

Now, xn can be defined recursively as follow: 

 
 
xn =     

 

 

Function to find out power using recursion     

Function: INT Power(X, N) 

[X is the base and N is the exponent] 

1. [Base Condition] 

   If N=0 Return 1 

2. [Check whether negative exponent] 

   Else If N<0 then Call Power(X, N+1)/X 

3. Else Call Power(X, N-1)*X 

   [End of If] 

4. Return 

Power by the squaring method can minimize the number of multiplications. Power by the squaring 
method can be defined on recursively as follows: 

 
 

xn =  
 

 

When n is an even number then  
xn = x2z = (x2)z, where n = 2z,  
When n is an odd number then  
xn = x2z+1 = x.(x2)z where n = 2z+1. 

Function to find out power using recursion 

Function: INT Power(X, N) 

1. If N=0 then Return 1 

2. If N<0 then Call Power(1/X, -N) 

3. Set P = 1 

4. If N mod 2 = 1 then P = X 

5. P = P * Power(X*X, N/2) 

6. Return P 

By using this method, we can minimize the multiplication operations. This algorithm uses ⌊     ⌋ 
squares and at most ⌊     ⌋ multiplications. For instance, when n=15, the above algorithm required 3 
squares and 3 multiplications, 6 multiplications in total. However, it does not always do the fewest 
possible number of multiplications. 
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Tower of Hanoi 

Tower of Hanoi problem has a historical basis in the ritual of ancient Vietnam. This Problem is a 
classic example of the application of recursion. The problem is stated as follows: 

Suppose, there are three towers A, B, C. There are n disks of decreasing size so that no two disks 
are of the same size. Initially, all the disks are stacked on one tower in their decreasing order of size. 
Let this tower be A. Other two towers are empty. The problem is to move all the disks from one tower 
to other using third tower. 

i) Only one disk may be moved at a time. 
ii) Only the top disc on any tower may be moved to any other tower. 
iii) A large disk cannot be placed on a smaller one. 
A solution of this problem can be stated recursive as follows:  
Move n disks from tower A to C through the tower B using three steps 
i) Move first (n - 1) disks from tower A to B 
ii) Move the nth disk from tower A to C. 
iii) Move all (n - 1) disks from tower B to C. 
Our objective is to find all possible moves to be performed to solve the problem. 

Function to tower of Hanoi using recursion 

Algorithm: Tower (A, B, C, N) 

1. If N > 0 then 

2.  Call Tower (A, C, B, N-1) 

3 Print: Move Nth disk from tower A to tower C 

4.   Call Tower (B, A, C, N-1) 

5. Return 

Example:  

When a number of disks are 2, i.e. n = 2 we have the following moves. 
i) Move 1st disk from A to B 
ii)  Move 2nd disk from A to C 
iii) Move 1st disk from B to C 
So when a number of disks are 3, i.e. n=3 we have the following call tree:  

 

 

 

 

 

 

 

 

 

 
--------------- 

--------------- Tower (A, C, B, 2) 

Tower (B, A, C, 2) 

--------------------------------------------------- 

Tower (B, C, A, 1) 

Tower (A, B, C, 1) 

Tower (A, B, C, 1) 

Tower(C, A, B, 1) 

A→C 

A→B 

C→B 

A→C 

B→A 

B→C 

A→C 

Tower (A, B, C, 3) 

Figure 7.3: Recursion Tree for three disks 
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Figure 7.4: Disk Movements for three disks 

Therefore, when n = 3 the moves are:  
i) Move 1st disk from A to C 
ii) Move 2nd disk from A to B 
iii) Move 1st disk from C to B 
iv) Move 3rd disk from A to C 
v) Move 1st disk from B to A 
vi) Move 2nd disk from B to C 
vii) Move 1st disk from  A to C 

Table 7.2: Total number of moves required for different number of disks 

Number of disks Number of moves required 

1 21-1=1 
2 22-1=3 
3 23-1=7 
4 24-1=15 
5 25-1=31 

Time Complexity 

The time required by the procedure move is denoted by T(n), where n is the number of disks. 
Now, 

 

T(n) =                  

 

Where c is a constant 
T(n) = 2T(n-1) + c (when n>1) 

 = 2[2T(n-2) + c] +c 

c,  when n=1 

2T(n-1)+c,  when n>1 
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 = 22T(n-2) + c(1+2) 

 = 23T(n-3) + c(1 + 2 + 22) 

 : 

  = 2rT(n-r) + c(1 + 2 + 22 +… + 2r-1) 

 = 2n-1T(n-n+1) + c(1 + 2 + 22 +… + 2n-2)  [when r=n-1] 

 = 2n-1T(1) + c(1 + 2 + 22 +… + 2n-2) 

 = 2n-1.c + c(1 + 2 + 22 +… + 2n-2)  [Hence, T(1)=c] 

 = c (1 + 2 + 22 +… + 2n-2+ 2n-1)  

 = c(2n-1)  

 = O (2n) 

Non-Attacking 8 Queens 

The problem is to place eight queens in such a manner on an 8-by-8 chessboard that no two queens 
attack each other. Remember that a queen can attack another if they lie on the same row or same 
column or on the same diagonal in either direction. This problem can be solved by using backtracking 
method. However, there is more than one solution of this problem. 

Backtracking is a general algorithm technique for finding all possible solution for the problem and 
discards partial solution as soon as possible without following them till the end. Backtracking is a 
depth-first traversal of the path in the graph where nodes are states of the solution and edge between 
two states of solution only if one state can be reached from another state. Each path may lead to a 
solution, taking one path at a time and as soon as if the path does not lead to the solution then go back 
and try with the alternate path. 

In a non-attacking n queen problem, where n is the number of queens/rows/columns, it can be seen 
that for n = 1, the problem has a trivial solution, and it is easy to see that there is no solution for n = 2 
and n = 3. Therefore, at first, we consider the four queens problem, solve it by the backtracking 
technique, and then generalized it to 8-queens problems and an n-queens problem. 

Now start with the empty board and then place the first queen in the first possible position at the 
first row, which is in the first column. The second queen 2 at the second row cannot be placed on the 
first or second column but can be placed on the third column that is the first acceptable position for it. 

After that, it reaches a dead end, because there is no acceptable position for the third queen. 
Therefore, the algorithm backtracks and puts the second queen in the next possible position at 2nd row 
4th column. Then the third queen can be placed at 3rd row 2nd column, which reaches to another dead 
end. The algorithm then backtracks all the way to 1st queen replaced to 1st row 2nd column,  2nd queen 
replaced to 2nd row 4th column, 3rd queen placed to 3rd row 1st column, and 4th queen placed to 4th row 
3rd column, which is a solution to the problem. The state-space tree of this search is shown in Figure 
7.7. 

A chessboard may be represented by a two-dimensional array. It is known that each row in the 
array contains exactly one queen in the solution configuration. Thus, a one-dimensional array is 
sufficient as a suitable data structure, where the index of the array is row number and the value of the 
array is column number. For example, A[i] = j means the queen is placed on ith row and of the jth 
column. 
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Figure 7.5: State-space tree of solving the four queens‘ problem by backtracking. × denotes an unsuccessful 
attempt to place a queen in the indicated column. The numbers above the nodes indicate the order in which the 

nodes are generated. 

For a 8-queen problem, constructs a search tree by considering one row of the board at a time and 
eliminating most non-solution board positions at a very early stage in their construction. Now, start 
with the empty board and then place the first queen in the first possible position at the first row, that is 
first column, so set A[1] to 1. The second queen at the second row cannot be placed on the first or 
second columns but can be placed on the third column, that is first acceptable position for it, so set 
A[2] to 3. Now the next queen at the third row cannot be placed on 1st, 2nd, 3rd and 4th columns, 
however it can be placed on the 5th column; hence, set A[3] to 5. Similarly, the fourth queen can be 
placed on the 2nd column, so A[4] may be set to 2. The fifth queen can be placed on the 4th column, 
so A[5] may be set 4. After that, it reaches a dead end, because it is impossible to place the queen in 
the 6th row. This situation is shown in figure 7.8. 

Therefore, it is needed to revisit the position of the fifth queen in the previous row and place it in a 
different column. That means a backtracking is required to solve this problem. 
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Figure 7.6:  A deadlock situation of non-attacking 8-queen problem  

Algorithm to solve Non-Attacking-Queen problem using recursion 

Algorithm: Non-Attacking-Queen(ROW, N) 

1. Repeat steps 2 to 4 For COL = 1 to N do 

2.  If PLACE(ROW, COL) = True then 

3     Set A[ROW] = COL 

4.      If ROW = N then 

   Display Board Configuration 

          Else 

        Call Non-Attacking-Queen (ROW+1, N) 

     [End of If] 

      [End of If] 

  [End of Loop] 

5. Return 

Function: PLACE(R , C) 

1. Repeat steps 2 and 3 while For J=1 TO R-1 do 

2.  If A[J] = C then Return False 

3.    If ABS(A[J]-C)= R-J then Return False 

   [End of Loop] 

4. Return True 

In the above algorithm, the initial value of ROW and N would be 1 and 8 respectively for the non-
attacking 8-queen problem. 

Before placing a queen in a cell, it is sufficient to check whether any of the placed queens attack it 
or not. The function PLACE(R, C) checks this. Note that a queen of position (R, C) may attack 
another queen place at cell (J, A[J]) of the chessboard if any of the following conditions is true: 

 1 2 3 4 5 6 7 8 

1         

2 X X       

3 X X X X     

4 X        

5 X X X      

6 X X X X X X X X 

7         

8         
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i) The queens are placed on the same column. That is, A[J] equals to C. 
ii) The queens are placed on the either diagonal. That is, the value of A [J]-C equals to   R-J. 
Suppose one queen already placed at (i, j) and another queen going to place at (m,n) cell, 

then they are on the same diagonal either 
 m – i = n - j 

 or 
 m – i = j - n  
Therefore two queens lie on the same diagonal if and only if m - i = |j - n|.  
Considering the set of combinations, we find that, there are 92 solutions (11x8 + 1x4) to the 8 x 8 

problem. Many of these are reflections and rotations of some of the others, and there are only 12 
unique solutions. 

 A solution configuration, shown in the figure where eight queens are placed on a chessboard in a 
manner that they cannot attack each other. 

 

        

        

        

        

        

        

        

        

  
Figure 7.7: One Solution of Non-attacking 8-queen problem  

Time Complexity 

The time required by the procedure move is denoted by T(n), where n is the number of 
queens/rows/columns. It can be seen that for n = 1, the problem has a trivial solution, and it is easy to 
see that there is no solution for n = 2 and n = 3. 
Now, 

 

T(n) =  

  

Where c is a constant 
T(n)= nT(n-1) + c  (when n>1) 

    = n[(n-1)T(n-2) + c ] + c 

c,    when n=1 

 

n*T(n-1) + c,    when n>1 
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 = n(n-1)T(n-2) + c[1 + n] 
 = n(n-1)(n-2)T(n-3) + c[1 + n + n(n-1)] 
 : 
 =n(n-1)(n-2)(n-3)…3.2.T(1) + c[1 + n + n(n-1)+ …+ n(n-1)(n-2)…3] 
 = n(n-1)(n-2)(n-3)…3.2.c + c[1 + n + n(n-1)+ …+ n(n-1)(n-2)…3] [Hence T(1) = c] 
 = c[ 1 + n + n(n-1) ..n(n-1)(n-2)…2] 
 = O(n!) 

Space complexity for this algorithm is O(n). The algorithm uses an auxiliary array of length n to 
store just n positions. 

Converting Recursive function into Iterative  

The recursive function may be converted into iterative by using the following two steps: 
Step 1: Converting Recursive Functions to be Tail Recursive  

A non-tail recursive function can often be converted to a tail recursive function by means of 
an auxiliary parameter. This parameter is used to form the result. 

Step 2: Converting Tail Recursive Functions to iterative  
Let us assume that tail recursive functions can be expressed in the general form 

F(x) 

{  

 if(P(x)) return G(x) 

 return F(H(x)); 

} 

That is, we established a base case based on the truth-value of the function P(x) of the parameter. 
Given that P(x) is true, the value of F(x) is the value of some other function G(x). Otherwise, the value 
of F(x) is the value of the function F on some other value, H(x).  

Given this formulation, we can immediately write an iterative version as 

F(x) 

{  

  int temp_x=x; 

  while( p(x) is not true) 

   {   

      temp_x=x; 

      x=H(temp_x); 

   }   

  return G(x); 

} 

Example:  Factorial function 

int fact_aux(int n, int result) 

{  

   if (n==1) 

     return result; 

   else  
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     return fact_aux(n-1,n*result) 

} 

int fact(n) 

{  

   return fact_aux(n,1); 

} 

Consider the above tail recursive function  
 the function F is fact_aux 
 x is composed  of the two parameters , n, and result 
 the value of P (n , result) is the value of (n==1) 
 the value of G(n , result) is the result 
 the value of H(n, result) is (n-1, n*result) 
Therefore the iterative version is: 

int fact_iter(int n, int result) 

{  

   int temp_n; 

   int temp_result; 

   while(n !=1) 

   {  

       temp_n=n; 

       temp_result=result; 

       n= temp_n * temp_result; 

   } 

   return result; 

} 

Summary 

 Recursion is a repetitive process in which a function calls itself either directly or indirectly. 
 Infinite recursion occurs in a program when base criteria are omitted or base criteria are never 

reached, it results in a stack overflow. 
 Recursion tree is a pictorial representation of recursion call, which is in the forms of a tree, where 

at each level nodes are expanded. 
 A recursive function is said to be tail recursive if there are no pending operations to be performed 

on return from a recursive call.  
 Recursion consumes more storage space and execution time. 

Exercises 

1. ―The designer of an algorithm need to balance between space complexity and time completely.‖—
Comment on the validity of the statement in the context of recursive algorithms. 

2. Are recursion routines more efficient than non-recursive routines?  
3. What do you mean by recursion? Write a function to find out the GCD of two numbers using 

recursion technique. 
4. Write down the recursive definition for generating the Fibonacci sequence. 
5. Assuming Fib(x) is a recursive function; draw a recursion tree for Fib (6). 
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6. Write a recursive algorithm to find x^n. 
7. What is tail recursion? Explain with a suitable example. 
8. Write an algorithm to solve the Tower of Hanoi problem. Also, calculate the time complexity of 

your algorithm. 
9. Write the recursive function for the Tower of Hanoi problem. Also, draw the recursion tree for any 

set of initial values. 
10. Let, a and b denotes positive integers. Suppose a function Q is defined as follows: 

Q (a, b) = 0   if a<b  
       = Q (a-b, b) + 1 if b<=a 
Find the value of Q (2, 3) and Q (14, 3). 

11. Choose the correct alternatives for the following: 
i) The Ackerman function, for all non-negative values of m and n, is recursively defined as 
 
 
A (m, n) =  
  

 Therefore, the value of A (1, 2) is 
 a) 4  b) 3  c) 5  d) 2 

ii) Which of the following statement is not true? 
 a) Each time a procedure calls itself, it must be nearer in some sense to solution 
 b) Recursion functions are always fast and use less memory 
 c) When last executed statement at a function in a recursive call then it is known as tail 
recursion 
 d) Recursion uses the top down and backtracking approach for solving a problem. 

***** 

n + 1,   if m = 0 
A (m-1, 1),  if m!= 0 but n = 0 

A (m-1, A(m, n-1)), if m!=0 and n!=0 
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TREE  
 

"Computers do not solve problems, they execute solutions." -Laurent Gasser 

 
 

ree is one of the most important non-linear data structure in 
computer algorithms. The drawbacks of linked list can be 
overcome by using a tree. Many real life problems can be 

represented and solved using trees. Trees are very flexible, versatile 
and powerful non-linear data structure that can be used to represent 
data items possessing a hierarchical relationship among the nodes of 
the tree.  

Definition: A Tree may be defined as a non-empty finite set of 
nodes, such that, 
i) There is a specially designated node called the root,  
ii) The remaining nodes are partitioned into zero or more disjoint 
trees T1, T2 …Tn are called the subtrees of the root R. 
 
 
 
 
 
 
 
 

 

Figure 8.1:  A Tree 

Terminology of Tree 

Node (or vertex): A node stands for the item of information with the branches to other items. Consider 
the tree in the above figure. This tree has 11 nodes (A, B, C, D, E, F, G, H, I, J and K). 
Root: A node without any parent is called root node. In the above figure, A is the root node.  
Parent node (or predecessor): Suppose N is a node in a tree with successors s1, s2… sn then N is 
called the parent (or predecessor) of the successors. Each node in the tree, except the root, has a 
unique parent. In the above figure, node D is the parent of H, I and J.  
Children: The successors are called children of N. The left and rght successors of node N are called  
left child and right child of node N respectively. In the above figure, H, J and I are children of node D. 

K E Y  F E A T U R E S  

 Binary Tree 

 Binary Search Tree 

 Threaded Tree 

 Expression Tree 

 AVL Tree 

 Multi-way Search Tree 

 B-tree 

T 

CHAPTER 8 
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Siblings: The children (or the nodes) of the same parent are said to be siblings. In the above figure, H, 
I and J are siblings. 
The degree of a node:  The number of subtrees (or children) of a node is called its degree. In the 
above figure, the degree of node A and D are 3, the degree of B is 2, degree of C is 1, the degree of E, 
F, G, H, I and K are zero. 
The degree of tree: The degree of a tree is the maximum degree of the nodes in the tree. In the above 
figure, degree 3 is the maximum. Therefore, the degree of the tree is 3. 
Internal node (or non-terminal node): The node with at least one child is called internal nodes. In 
the above figure, A, B, C, D and J are internal nodes. 
External nodes (or leaf node): The nodes that have degree zero are called external node or leaf or 
terminal nodes. In the above figure, E, F, G, H, I and K are the leaf nodes. 
Level: The level of a node is defined as follows: 

i) The root of the tree is at level one.  
ii) If a node is at level L, then its children are at level L + 1.  

Note:  In some literature, the level of a node is defined in such a way that the root of the tree is at level 
zero. 

In the above figure, the corresponding levels are shown; node A is at level 1, nodes B, C, and D 
are at level 2, nodes E, F, G, H, I and J are at level 3 and node K at level 4. 
Height (or depth): The height or depth of a tree is defined to be the maximum level of any node in the 
tree. In the above figure, the height of the tree is 4. 
Forest: A forest is a set of zero or more disjoint trees. The removal of the root node from a tree results 
in a forest. 
Descendant: A node M in the tree is called a descendant of another node N, if M  reachable from the 
N by repeated proceeding from parent to child. 
Ancestor and Descendant: A node N is called an ancestor of node M if N is either the parent of M or 
the parent of some ancestor of M, i.e., there is a succession of children from N to M; the node M is 
called descendant of the node N. In the above figure, node D is the ancestor of H, I, J and K. 
Edge: The line from a node N in the tree to a successor is called an edge. 

Path and path length: A sequence of consecutive edges from the source node to the destination node 
is called a path. The number of edges in a path is path length. In the above figure, A→D→J is a path 
and the path length is 2. 
Internal path length: The sum of the levels of all the internal nodes in the tree is called internal path 
length. 
External path length: The sum of the levels of all the external nodes in the tree is called external path 
length. 
Branch: A path ending in a leaf node is called a branch. In the above figure, A→D→J→K is a branch. 

Binary Tree 

A binary tree is a finite set of nodes, which is either empty or consists of a root and two disjoint binary 
trees called left subtree and the right subtree. In a binary tree, the degree of any node is either zero, one 
or two. A binary tree is a special case of an ordered k-ary tree, where k is 2. 
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Figure 8.2: Some Binary Trees 

Different Types of Binary Trees 

Different types of binary trees are possible. Following are common types of binary trees: 
 Strictly Binary Tree 
 Extended Binary Tree 
 Complete Binary Tree 
 Full Binary Tree 
 Skewed Binary Tree 
 Binary Expression Tree 
 Balanced Binary Tree 
 Threaded Binary Tree 
 Binary Search Trees 

Strictly Binary Tree 

A binary tree is called strictly binary tree if every non-terminal node has non-empty left and right 
subtree. All the non-terminals nodes must always have exactly two non-empty children. Strictly Binary 
tree is also known as a 2-ary tree. In the strictly binary tree, the degree of any node is either zero or 
two, never degree one. A strictly binary tree with n leaves always contains 2n–1 nodes. 

 

 

 

 

 

 

 

Figure 8.3: Strictly binary trees 

Extended Binary Tree 

A binary tree can be converted to an extended binary tree by adding special nodes to its leaf nodes and 
the nodes that have only one child. The extended binary tree also is known as 2-tree. The nodes of the 
original tree are called internal nodes and the special nodes that are added to the binary tree are called 
external nodes. 
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Figure 8.4: Binary tree and its corresponding extended binary tree 

Now, we can define the external path length of a binary tree is the sum of all external nodes of the 
lengths of the paths from the root to those nodes.  For example, the external path length E is: 

E = 2 + 2 + 4 + 4 + 3 + 3 + 3 = 21 
The internal path length is defined as the sum of all internal nodes of the lengths of the paths from 

the root to those nodes. For example, the internal path length I is: 
I = 0 + 1 + 1 + 2 + 2 + 3 = 9 

Complete Binary Tree 

A binary tree is called a complete binary tree in which all the levels are filled and the last level 
possibly be partially filled from left to right and some rightmost leaves may be missing. The complete 
binary tree is maximally space efficient. The number of internal nodes in a complete binary tree of n 
nodes is ⌊   ⌋. Consider the figure, all the terminal nodes are at the adjacent levels. Practical example 
of a complete binary tree is Heap. 

Full Binary Tree 

A binary tree of depth k>=1, contains 2k-1 nodes, is called full binary tree or perfect binary tree. Note 
that, a binary tree can have the maximum number of nodes 2k-1. In the other word, in a full binary tree, 
all the internal nodes have two children and all the leaves are at the same level. Consider the figure, a 
full binary tree of depth 3. All full binary tree is a complete binary tree, but all complete binary trees 
are not full binary tree. 
  

 

 

 

 

 

 

      (a)       (b) 

 Figure 8.5: (a) Complete Binary Tree, (b) Full Binary Tree 
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Skewed Binary Tree 

A binary tree, which is dominated solely by left child nodes or right child nodes, is called a skewed 
binary tree. A left-skewed binary tree has only left child nodes and a right-skewed binary tree has only 
right child nodes. The height of a skewed binary tree of n nodes is n. In the figure 8.6, the first is a left-
skewed binary tree, skewed to left and the second is a right-skewed binary tree, skewed to right. 
Skewed binary trees are performed worst in all types of trees; such trees are performed similarly as 
linked list. 

 

Figure 8.6: Left skewed Binary Tree and Right skewed Binary Tree 

Binary Expression Tree 

A binary expression tree is a strictly binary tree, which is used to represent a mathematical expression. 
Two common types of expressions that an expression tree can represent are algebraic and boolean.  

This is not necessary that expression tree is always a binary tree. In this example, there are all the 
binary operators. Therefore, this tree is a binary tree. Although, it is possible to a node to have one 
child as in the case of a unary operator. 

Applications of expression trees: 
 Evaluation of expression 
 Performing symbolic mathematical operations (such as differentiation) on the expression. 
 Generating correct compiler code to actually compute the expression's value at execution 

time. 
Properties of expression tree: 
 Expression tree does not contain parenthesis.  
 The leaf nodes contain the operands such as constants or variables. 
 The non-leaf nodes contain the operators. 
Inorder traversal of the expression tree produces infix form of the expression without parenthesis. 

When the expression tree is traversed in preorder, the prefix (polish) form of the expression is 
obtained. Similarly, when the expression tree is traversed in postorder then the postfix (reverse polish) 
form of the expression is obtained. A prefix or postfix form corresponds to exactly one expression tree. 

 An infix form may correspond to more than one expression tree. Therefore, it is not suitable for 
expression evaluation.   

Consider the infix expression A + B * C. The expression is ambiguous because it produces more 
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than one expression trees with same infix form. 
 

 

 

 

 

Figure 8.7: Expression Tree of infix expression A + B * C 

Table 8.1: Different forms of expression 

Expression Prefix form Infix form Postfix form 

A + (B * C) + A*BC A + B * C ABC*+ 
(A + B) * C *+ABC A + B * C AB+C* 

Construction of Expression Tree 

An expression can be converted to it equivalent postfix expression. The following algorithm 
constructed an expression tree from a valid postfix expression P containing binary operators: 

Algorithm to create expression tree 

Algorithm: CREATE_EXPRESSION_TREE (P) 

1. Repeat while not the end of the expression P 

2.    Read the postfix expression one symbol S at a time 

3.    If S is an operand then 

         i) Create a node for the operand  

        ii) Push the pointer to the created node onto a stack 

4.    If S is a binary operator then 

         i) Create a node for the operator 

        ii) T1 = Pop from the stack a pointer to an operand  

       iii) T2 = Pop from the stack a pointer to an operand 

        iv) Make T2 the left subtree and T1 the right subtree of the 

            operator node 

         v) Push the pointer to the operator node onto the stack 

    [End of while] 

5. T = Pop from the stack a pointer to expression tree 

6. Return 

Example:  

Draw a expression tree from the following expression: 

A * B ^ C / D + E 

Now, at first converts the above expression to its equivalent postfix expression: A B C ^ * D / E +  
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Figure 8.8: Expression Tree 

The preorder traversal of the above expression tree is + / * A ^ B C D E, this is the prefix form of 
the expression. The postorder traversal of the above expression tree is A B C ^ * D / E +, this is the 
postfix form of the expression. 

Evaluation of Expression Tree 

A postfix expression can be converted to expression tree using the above algorithm. Now we can 
evaluate the expression tree, using the following algorithm: 

Algorithm to evaluation of expression tree 

Algorithm: EVALUATION (T) 

1. If T is a leaf then 

2.    Return value of T‟s operand 

3. Else  

4.    Operator = T.Element 

5.    Operand1 = EVALUATION(T.Left) 

6.    Operand2 = EVALUATION(T.Right) 

7.    Return (Operation (Operand1, Operator, Operand2)) 

   [End of If] 

8. End 

Balanced Binary Tree 

There are mainly two types of balanced binary trees. 
i) Weight balanced binary tree 
ii) Height balanced binary tree 

Weight Balanced Binary Tree 

A weight-balanced binary tree is a binary search tree if for each node it holds that the number of inner 
nodes in the left subtree and the number of inner nodes in the right subtree differ by at most one. These 
trees can be used to implement dynamic sets, dictionaries (maps) and sequences. The weight-balanced 
binary trees were introduced by Nievergelt and Reingold in 1972. It is purely functional 
implementations are widely used in functional programming languages. 

+ 

/ 
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A ^ 

B 

D 

E 

C 
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G Null 
 

 

F E Null 

 
 D Null  

Root  

The balance of weight-balanced binary tree is based on the sizes (number of elements) of the 
subtrees in each node. The size of the leaf node is zero. The size of the internal nodes is the sum of 
sizes of its two children, plus one (size [n] = size [n.left] + size [n.right] + 1). Based on the size, one 
defines the weight as either equal to the size, or as weight [n] = size [n] + 1. Now, insertion and 
deletion operations that modify the tree must make sure that the weight of the left and right subtrees of 
every node remain within some factor α of each other.  

Height Balanced Binary Tree 

A height-balanced binary tree has the minimum height for the leaf nodes. A binary tree is height 
balanced if height of the tree is O (    ) where n is number of nodes. One common height-balanced 
tree structure is a binary tree structure in which the left and right subtrees of every node differ in height 
by no more than one.  

For Example, AVL tree (Adel‘son-Vel‘skii and E. M. Landis, 1962) maintain O (    ) height by 
making sure that the difference between heights of left and right subtrees is at most ±1. Red-Black 
trees (Guibas and Sedgewick, 1978) maintain O (    ) height by making sure that the number of 
Black nodes on every root to leaf paths are same and there are no adjacent red nodes. Balanced Binary 
Search trees are performed good as they provide O (    ) time for search, insert and delete operations. 

Threaded Binary Tree 

A threaded binary tree is a binary tree in which having a loop. In a binary tree, most of the entries in 
the link field will contain null elements. These null entries are replaced by special pointers, which 
point to nodes higher in the tree. These special pointers are called threads and binary trees with such 
pointers are called threaded tree. 

For a n-node binary tree, there exists 
 total 2n number of pointers or link fields 
 total n-1 number of actual (not null) pointers or link fields 
 total n+1 number of null pointers or link fields 
For optimizing null pointers, the concept of the thread is used. There are different types of 

threaded binary trees are possible, inorder threaded binary trees, preorder threaded binary trees, and 
postorder threaded binary trees correspond to inorder, preorder and postorder traversals. Each type of 
threaded binary trees can be of two representations: one-way threading and two-way threading. 

 
 

  
 

 

 

 

 
 

 Figure 8.9: One-way inorder threaded binary tree  
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In the one-way inorder threaded binary tree, an only right null pointer used as a thread that will 
point to the next node in the inorder traversal (i.e. inorder successor). However, the right null pointer 
of the last node remains unused.  In the two-way inorder threaded binary tree, left null pointer acts as a 
thread that will point to the previous node in the inorder traversal (i.e. inorder predecessor) and right 
null pointer acts as a thread that will point to the next node in the inorder traversal (i.e. inorder 
successor). However, the left null pointer of the first node and the right null pointer of the last node 
remains unused. 

 

 
 

 

 

 

 

 
 

Figure 8.10: Two-way inorder threaded binary tree 

The structure definition for a node of two-way inorder threaded binary tree as follows: 
struct Node 

{ 

 struct Node *left; 

 char lthread; 

 int info; 

 struct Node *right; 

 char rthread; 

}; 

typedef struct Node ThreadedTreeNode; 

Properties of Binary Tree 

Lemma 1: A binary tree with n nodes has exactly n – 1 edges (same as any normal tree). 
Proof: The property can be proof by induction. 
Induction Base: Let n = 1. That is there is only one node in the tree. Therefore, a number of the edge is 
0. Hence, the property is true for one node. 
Induction Hypothesis: Assume the property is true for n = k i.e., for k nodes there is k – 1 edges.  
Induction Step: The number of edges for k nodes is k - 1 edges by the induction hypothesis. Now 
addition of one node (i.e. n = k + 1) includes one extra edge. Therefore, total number of edges are = (k 
– 1) + 1 = k. Hence proved. 

Lemma 2: The maximum number of nodes on level i of a binary tree is 2i-1, i ≥ 1 

Proof: The property can be proof by induction on i. 
Induction Base: The root is the only node on level i=1.  
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Hence the maximum number of nodes on level = 1 is 20 = 2i-1. 
Induction Hypothesis: For all j, i ≤ j < i, the maximum number of nodes on level j is 2j-1. 
Induction Step: The maximum number of nodes on level i-1 is 2i-2, by the induction hypothesis. Since 
each node in a binary tree has maximum degree 2, the maximum number of nodes on level i is two 
times the maximum number on level i-1, i.e. 2×2i-2 = 2i-1. 

Lemma 3: The maximum number of nodes in a binary tree of depth k is 2i-1, k≥1.  
Proof:  The maximum number of nodes on level i of a binary tree is 2i-1. Therefore, the maximum 
number of nodes in a binary tree of depth k is, 

= ∑                                      
    

= ∑        
     

= 2k-1 

Lemma 4: For any non-empty binary tree T, if n0 is the number of leaves (terminal nodes) and n2 be 
the number of nodes having degree 2 then n0 = n2 + 1. 
Proof: Let n1 be the number of nodes of degree 1 and n is the total number of nodes. Since all the 
nodes in T are of degree ≤ 2 we have, 
    n = n0 + n1 + n2              (i) 

Now, if we count the number of branches in a binary tree, we see that every node except for the 
root has a branch leading into it. If B is the number of branches, then n = B + 1. All the branches come 
either from a node of degree one or from a node of degree two. Thus, B = n1 + 2n2. Hence, we obtain 

n = 1 + n1 + 2n2   (ii) 
Subtracting (ii) from (i) and rearranging terms we get 

    n0 = n2 + 1 

Lemma 5: If n is the total number of nodes in a complete binary tree of height h, then  
h = ⌊     ⌋ + 1. 
Proof: From the definition of a complete binary tree of height h, it is filled up to height h – 1 and in the 
last level, it may have partially filled with nodes. Hence, we can write: 

2h-1 -1 < n ≤ 2h – 1      
Since the maximum number of nodes at height h-1 is 2h-1 -1 and at height, h is 2h – 1. 
or we can write  2h-1  ≤  n < 2h                (iii) 
Taking the logarithm of (iii) we get 
h - 1 log2 n < h 
Therefore, the value of log2 n lies between h and h-1. Now if we take floor value of log2 n then it 

will be h-1. 
Hence, h = ⌊     ⌋ + 1 or h ≤ ⌊       ⌋ 

Representation of Binary Tree  

Tree is a widely used abstract data type since it is defined in terms of operations on it and its 
implementation is hidden. Therefore, we can implement a tree using either array or linked list. Binary 
Tree also can be representation with two different ways. 

i) Using array 
ii) Using linked list 
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Binary Tree Representation with Array 

Binary Tree can be represented by the array. There are two different ways to represent a binary tree 
with array. 

 Linked Representation 
 Sequential Representation 

Linked Representation 

In Linked representation, a Binary Tree can be stored in computer memory by using three parallel 
arrays, DATA, LCHILD and RCHILD and a pointer variable ROOT. Now, each node N of binary tree 
T will correspond to a location k such that, 

i) DATA[K] contains the data at the node N 
ii) LCHILD[K] contains the location of the left child of node N 
iii) RCHILD[K] contains the location of the right child of node N 

 
 
 
 
 
 
 
 
 

Figure 8.11: A Binary Tree 

 
 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
DATA E  A  G C  B  F  D   H 
LCHILD 0  8  0 1  12  5  0   0 
RCHILD 0  6  0 10  0  15  0   0 

Figure 4.12: Linked Representation of above Binary Tree  

Sequential Representation 

There is an efficient way of maintaining or to store a Binary Tree in computer memory when the tree is 
complete or nearly complete. Since heap is a complete binary tree, therefore a heap can also be 
represented by this representation.  

In the sequential representation, a Binary Tree T can be represented by using only a single linear 
array TREE, such that 

i) The root of T is stored in TREE[1]. 
ii) When a node N stores in TREE[K], then its left child will be stored in TREE[2*K] and 

right child will be stored in TREE[2*K+1].  
Therefore, if K is the index of current node, then parent node is stored in the FLOOR (K/2). 
 

Root 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A B C D  E F       G H 

Figure 8.13: Sequential Representation of above Binary Tree  

For a zero-based array,  
i) The root of T is stored in TREE[0] 
ii) When a node N stores in TREE[K], then its left child will be stored in TREE[2*K+1] and 

right child will be stored in TREE[2*K+2]. 
Therefore, if K is the index of a current node then parent node is stored in FLOOR ((K-1)/2). 
For a complete binary tree, sequential representation is perfect as no space is wasted. However, it 

is wasteful for many other binary trees.  For a skewed binary tree, less than half the array can be 
utilized. In the worst case, a skewed binary tree of depth k will require 2k-1 memory space. In addition, 
insertion or deletion of a node in the middle of the tree requires movement of many nodes.  These 
problems can be overcome using linked list representation. 

Threaded Binary Tree Representation with Array 

Threaded Binary Tree T may be stored in computer memory by using a linked representation. Here, the 
thread can be represented by a negative value of the location and ordinary pointer can be represented 
by the positive value of the location. 

  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
DATA E  A  G C  B  F  D   H 
LCHILD −3  8  −6 1  12  5  0   −10 
RCHILD −6  6  −10 10  −3  15  −8   0 

Figure 8.14: Linked Representation of above Two-way Inorder Threaded Binary Tree  

Binary Tree Representation with Linked List 

Binary Tree can be also representation with Linked List. In this representation, each node of a binary 
tree consists three fields such that 

 The first field contains the pointer field, which points to the left child. 
 The second field contains the data. 
 The third field contains the pointer field, which points to the right child. 

 
 
The structure definition for a node of binary tree as follows: 
struct Node 

{ 

 struct Node *left; 

 int info; 

 struct Node *right; 

}; 

typedef struct Node BTreeNode; 

LChild Data RChild 

Root 
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Figure 8.15: Linked Representation of Binary Tree 

Binary Tree Traversal  

Tree traversal is the operation of visiting each node in the tree exactly once. There are mainly two 
traversals are: 

i) Depth First Search (DFS) 
ii) Breadth First Search (BFS) 

Depth First Search 

Depth first search traversal can be implemented easily using a stack, including recursion. Starting from 
the root of the binary tree, there are three main steps that can be performed. These steps are moving left 
(L), visiting node (D) and moving right (R), then there are six possible combinations of traversal: 
LDR, LRD, DLR, DRL, RDL and RLD. Now if we traverse left before right then only three traversal 
remains: LDR, LRD and DLR; LDR is known as inorder, LRD is postorder and DLR is preorder, these 
three are only standard binary tree traversals. 
 

 

 

 

 

 

 

Figure 8.16: Binary Tree 

Inorder Traversal 

The inorder traversal of a non-empty binary tree is defined as follows, starting from root node: 
i) Traverse the left subtree of root in inorder. 
ii) Visit the root node. 
iii) Traverse the right subtree of the root in inorder. 
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Algorithm finds the inorder traversal of a binary tree using recursion 

Algorithm: INORDER (ROOT) 

1. IF ROOT ≠ NULL THEN 

 a) INORDER(ROOT → LCHILD) 

 b) PRINT: ROOT → INFO 

 c) INORDER(ROOT → RCHILD) 

2. RETURN 

The inorder of the above binary tree is: 
D B A E C G F H 

Algorithm finds the inorder traversal of a binary tree in a non-recursive mode. 

Algorithm: INORDER (ROOT) 

1. P = ROOT 

2. Initialize Stack 

3. Repeat while Stack is not empty or P ≠ null 

4.  Repeat while P ≠ null 

  a) PUSH(Stack, P) 

 b)P = P → LCHILD 

 [End of loop]  

5.  If Stack is not empty then 

 a) P = POP(Stack) 

 b)Print: P → Info 

 c)P = P → RCHILD 

   [End of loop] 

6. Return 

Preorder Traversal 

The preorder traversal of a non-empty binary tree is defined as follows, starting from root node: 
i) Visit the root node. 
ii) Traverse the left subtree of root in preorder. 
iii) Traverse the right subtree of the root in preorder. 

Algorithm finds the preorder traversal of a binary tree using recursion. 

Algorithm: PREORDER (ROOT) 

1. IF ROOT ≠ NULL THEN 

  a) PRINT: ROOT → INFO  

       b) PREORDER(ROOT → LCHILD) 

       c) PREORDER(ROOT → RCHILD) 

2. RETURN 

The preorder of the above binary tree is: 
A B D C E F G H 
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Algorithm finds the preorder traversal of a binary tree in a non-recursive way 

Algorithm: PREORDER (ROOT) 

1. Initialize Stack  

2. PUSH(Stack, ROOT) 

3. Repeat while Stack is not empty  

      a)P = Pop(Stack) 

      b)If P ≠ null then 

      i) Print: P → Info 

     ii) Push(Stack, P → RCHILD) 

    iii) Push(Stack, P → LCHILD) 

   [End of loop]  

4. Return 

Postorder Traversal 

The postorder traversal of a non-empty binary tree is defined as follows, starting from root node: 
i) Traverse the left subtree of root in postorder. 
ii) Traverse the right subtree of the root in postorder. 
iii) Visit the root node. 

Algorithm finds the postorder traversal of a binary tree using recursion. 

Algorithm: POSTORDER (ROOT) 

1. IF ROOT ≠ NULL THEN 

 a) POSTORDER(ROOT → LCHILD) 

 b) POSTORDER(ROOT → RCHILD) 

 c) PRINT: ROOT → INFO 

2. RETURN 

The preorder of the above binary tree is: 
D B E G H F C A 

Algorithm finds the postorder traversal of a binary tree in a non-recursive way. 

Algorithm: POSTORDER (ROOT) 

1.  Initialize Stack 

2.  P = ROOT 

3.  Repeat while Stack is not empty  

4. Repeat while P ≠ null 

5.       Push(Stack, P) 

6.    If P → RCHILD ≠ null 

7.  Push(Stack, null) 

8.    P = P → LCHILD 

 [End of while] 

9.  Q = Pop(Stack) 
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10. If Q ≠ null 

11.    PRINT: Q → INFO 

12. Else 

13.    Q = Pop(Stack) 

14.    P = Q → RCHILD 

15.    Push(Stack, Q) 

    [End of If] 

    [End of loop]  

16. Return 

Breadth First Search 

Binary trees can also be traversed in level-order, where every node are visited on a level before the 
next level. This search is known as Breadth First Search (BFS). Breadth first search traversal can be 
implemented easily using a queue. 
 

 

 

 

 

 

 

Figure 8.17: A Binary Tree 

The breadth first search of the above binary tree is: 

A B C D E F G H 

Reconstruction Binary Tree from its Traversals 

An original tree cannot be reconstructed given by its inorder or preorder or postorder traversal alone. 
However, a unique binary tree can be reconstructed either by inorder and preorder traversals, or by 
inorder and postorder traversals. However, preorder and postorder traversals give some ambiguity in 
the tree structure. 

 The first node visited in a preorder traversal of a binary tree is the root, and then left subtree 
and right subtree are traversed. 

 In postorder traversal of a binary tree, left subtree and right subtree are traversed then the last 
node visited is the root. 

 In inorder traversal of a binary tree, left subtree is traversed first, then the root node is visited, 
finally right subtree is traversed. 

Example: 

The inorder and preorder traversal sequence of nodes in a binary tree are given below: 
Preorder: A, B, D, I, E, J, C, F, G, K 
Inorder : D, I, B, E, J, A, F, C, K, G 
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A 

Preorder: C, F, G, K 
Inorder:   F, C, K, G 

Preorder: B, D, I, E, J 
Inorder:   D, I, B, E, J 

A 

B C 

F Preorder: E, J 
Inorder:   E, J 
 

Preorder: D, I 
Inorder:   D, I 
 

A 

B C 

E F G D 

I J K 

The following steps are used to reconstruct the binary tree: 
In preorder traversal of a binary tree, the root node is visited first and then left subtree is traversed, 

and finally, the right subtree is traversed. In inorder traversal of a binary tree, left subtree is traversed 
first, then the root node is visited, finally, the right subtree is traversed. Therefore, in the preorder 
traversal, the first node A must be root. Now by searching node A in inorder traversal we can find out 
all elements on the left side of A are an inorder traversal of left subtree and elements on right are an 
inorder traversal of right subtree. Therefore, inorder and preorder traversal of left subtree and right 
subtree can be obtained. 
 
  
 
 
 
 

(a) 

Similarly, node B is the root of the left subtree and node C is the root of the right subtree. Inorder 
and preorder traversal of left subtree and right subtree of B and C can be found. The node F is the 
obviously left child of node C.   
 
 
 
 
 
 
 
     
 

(b) 

Similarly, node D and E are the roots of the left subtree and the right subtree of node B. the node 
G is the right subtree of node C. In addition, node I is the right child of node D, node J is the right child 
of node E and node K is the left child of node K. 

 

 
 
 
 
 
 
 
 

(c) 

Figure 8.18 (a, b, c): Reconstruction of Binary Tree 

 

Preorder: G, K 
Inorder:   K, G 
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Binary Search Tree  

A Binary search tree (BST) is an ordered binary tree. P. F. Windley, A. D. Booth, A. J. T. Colin and T. 
N. Hibbard invent binary search tree, in 1960. 
Definition: A Binary Search Tree, which is either empty or each node in the tree contains a key and 

i) All keys in the left subtree are less than the keys in the root node, 
ii) All keys in the right subtree are greater than the keys in the root node, 
iii) The left and right subtrees are also binary search tree. 

 

 

 

 

 

 

 

Figure 8.19: Binary Search Tree 

Operations on Binary Search Tree 

Operations supported by a Binary search tree are as follows: 

Table 8.2: Various Operation on Binary Search Tree 

Operation Description 

Traverse This operation traversing all the nodes of binary search tree exactly once. 
Insertion This operation insert a node in the binary search tree 
Deletion This operation removes a node from the binary search tree 

  Searching This operation searches a desired key value within the binary search tree. 
Successor This operation finds the successor of a given node in the binary search tree. 

Predecessor This operation finds the predecessor of given node in the binary search tree. 

Binary Search Tree Traversal  

The tree traversal algorithm (preorder, postorder and inorder) are the standard way of traversing a 
binary search tree, which is similar as traversing in a binary tree. In a binary search tree, inorder 
traversal always retrieves data items in increasing sorted order. 

Insertion in Binary Search Tree 

Suppose a new data item having a key and the tree in which the key is inserted are given as an input. 
Insertion operation starts from the root node. If the tree is empty then the new item inserted as the root 
node. Otherwise, if the tree is non-empty then compare the value of the key with the root node. If the 
key is less than the root node then it is inserted in the left subtree, otherwise it is inserted in the right 
subtree. 
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Example: 

Insert the keys in the Binary Search Tree: 50, 30, 10, 90, 100, 40, 60, 20, 110, 5 

Insert 50:   

(a) 

Insert 30:  

 

 

(b) 

Insert 10:  

 

 

 

(c) 

Insert 90: 

 

 

 

  
(d) 

Insert 100: 

 

 

 

  

(e) 

Insert 40:  
 
 
 
 
 
 
   (f) 

50 

50 

30 

10 

90 

50 

30 

10 

100 

90 

50 

30 

10 

50 

30 

10 

90 

100 40 



8.20 | Data Structures and Algorithms with C 

  

Insert 60:  

 

 

 

 

(g) 

 
Insert 20:       

 

 

 

 

 

(h) 

 

Insert 110: 

 

 

 

 

 

(i) 

 

Insert 5:  

 

  
 

 

(j) 

Figure 8.20(a-j): Insertion in Binary Search Tree 
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Algorithm to insert an item to binary search tree using recursion method 

Algorithm: INSERT (ROOT, DATA) 

1. IF ROOT = NULL THEN 

 i) Allocate Memory for ROOT node. 

 ii) ROOT->INFO=DATA 

 iii) ROOT->LCHILD=NULL 

 iv) ROOT->RCHILD=NULL 

2. ELSE IF ROOT->INFO>DATA THEN 

 CALL INSERT(ROOT->LCHILD, DATA) 

3. ELSE IF ROOT->INFO<DATA THEN 

 CALL INSERT (ROOT->RCHILD,DATA) 

4. RETURN  

Searching in Binary Search Tree 

Similar to traversing, insertion operations in the binary search tree, search algorithm also utilized the 
recursion technique. 

Suppose a key and the tree in which the key is searched for are given as an input. Now starting 
from the root node, check whether the value of the current node equals to the key or not. In the case, 
when a current node is null then the searched key value does not exist in the binary search tree. If the 
node has the key that is being searched for, then the search is successful.  

Otherwise, the key of the current node is either smaller than or greater than the searching key 
value. In the first case, all the keys in the left subtree are less than the searching key value. That means 
do not need to search in the left subtree. Thus, it needs to search only the right subtree. Similarly, in the 
second case, it needs to search only the right subtree. 

Algorithm to search an item from a binary search tree using recursion 

Algorithm: BSTSearch (ROOT, DATA, P) 

1. IF ROOT = NULL THEN 

 i) PRINT: NOT FOUND 

 ii) P = NULL 

 iii) RETURN 

2. IF ROOT->INFO=DATA THEN 

 SET P=ROOT 

3. ELSE IF ROOT->INFO>DATA THEN 

 CALL BSTSearch(ROOT->LCHILD,DATA,P) 

4. ELSE CALL BSTSearch(ROOT->RCHILD,DATA,P) 

5. RETURN  

Algorithm to search an item from a binary search tree using iterative methods 

Algorithm: BSTSearch (ROOT, DATA, P) 

1. P = ROOT 

2. Repeat while P ≠ Null 
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3.   If DATA = P->INFO then Return 

4.   Else If DATA < P->INFO then 

5.        P = P->LCHILD 

6.   Else P = P->RCHILD 

   [End of loop] 

7. Return 

Suppose a binary search tree contains n data items. Therefore, there are n! Permutations of the n 
items. The average depth of the n! numbers of the tree is approximately c     , where c = 1.4. The 
average running time f(n) to search for an item in a binary search tree with n elements is proportional 
to      , that is f (n) = O(    ). 

Inorder Successor of a Node 

In a binary tree, inorder seccessor of a node is the next node in inorder traversal of the binary tree. 
Inorder successor is NULL for the last node in inorder traversal. In binary search tree, inorder 
successor of a node with key k is a smallest key value that belongs to the tree and that is strictly greater 
than k. The idea for finding the successor of a given node x:  

i) If the x has a right child then its inorder successor will the left most element in the right suB-
tree of x (i.e. the minimum in the right subtree of x). 

ii) Otherwise, if the x doesn‘t have a right child then its inorder successor will the one of its 
ancestors, the inorder successor is the farthest node that can be reached from x by following 
only right branches backward. 

iii) Otherwise, if x is the right most node in the tree then its inorder successor will be NULL. 

Algorithm to find the inorder successor from binary search tree 

Algorithm: BST_SUCCESSOR(X) 

1. If X → RCHILD ≠ NULL then 

2.    Y = X → RCHILD 

3.    Repeat while Y→LCHILD ≠ NULL 

4.       Y = Y → LCHILD 

5.    [End of loop] 

6.    Return Y 

7. Else  

8.    Y = X 

9.    Repeat while Parent(X) → RCHILD = X 

10.     X = Parent(X) 

     [End of loop] 

11.  If Parent(X) ≠ NULL then Return Parent(X) 

12.  Else Print: No successor 

     [End of If] 

   [End of If] 

13. Return 
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Example: 

 

 

 

 

 

 

 
Figure 8.21: Binary Search Tree 

Deletion in Binary Search Tree 

Deletion operation in the binary search tree, there are three possible cases has to consider. 
Case 1: When the deleting node with no children or leaf node (i.e. deleted node is a leaf node), 

then simply remove the node from the tree and set null to the parent‘s corresponding link. 
Case 2: When the deleting node with one child, either left or right child (i.e. deleted node has 

exactly one non-empty subtree), then simply replace the node with its unique child. 
Case 3: when the deleting node (P) with two children (i.e. deleted node has exactly two subtrees), 

then select its inorder successor node or its inorder predecessor node (R). Copy the key value from 
node R to node P and then recursively delete the R node until satisfying one of the first two cases. In a 
binary tree, inorder successor (R) of a node is only its right subtree's left-most child, as right subtree is 
not null (in the present case the node has two children). Now inorder successor may have zero children 
or only one right child, therefore it can be deleted using one of the first two cases. 

Algorithm to delete an item from binary search tree 

Algorithm: DELETE (ROOT, P, PARENT, DATA) 

1. IF P→LCHILD=NULL AND P→RCHILD=NULL THEN 

 i) IF PARENT→LCHILD=P THEN 

  SET PARENT→LCHILD=NULL 

 ii) ELSE SET PARENT→RCHILD=NULL 

2. ELSE IF P→LCHILD=NULL THEN 

 i) IF PARENT→LCHILD=P THEN 

  SET PARENT→LCHILD=P→RCHILD 

 ii) ELSE SET PARENT→RCHILD=P→RCHILD 

3. ELSE IF P→RCHILD=NULL THEN  

 i) IF PARENT→LCHILD=P THEN 

  SET PARENT→LCHILD=P→LCHILD 

 ii) ELSE SET PARENT→RCHILD=P→LCHILD 

4. ELSE P→LCHILD≠NULL AND P→RCHILD≠NULL THEN  

 i) SET PARENT = P 

 ii) SET IN=P→RCHILD 

Inorder successor of  1 is 5 
Inorder successor of  7 is 10 
Inorder successor of  15 is 17 
 

15 

10 20 

5 40 17 25 

7 30 1 
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 iii) REPEAT WHILE IN→LCHILD≠ NULL 

  a) SET PARENT = IN 

  b) SET IN=IN→LCHILD 

  [END OF LOOP] 

 iv) SET P→INFO=IN→INFO 

 v) SET P = IN 

 vi) Call DELETE(ROOT, P, PARENT, DATA) 

    [END OF IF] 

5. Deallocate memory for P node. 

6. RETURN. 

Example: 

Delete the keys from the following Binary Search Tree: 1, 30, 5, 15 

 

 

 

 

 

 

 

(a) 

 

Delete 1:  Here the deleted node is the left child of its parent node. Hence after setting 
PARENT→LCHILD=NULL we get, 

 

 

 

 

 

 

 

(b) 

 

 

 

 

15 

10 20 

5 40 17 25 

7 30 1 

15 

10 20 

5 40 17 25 

30 7 
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Delete 30:  Here the deleted node is the right child of its parent node. Hence, after setting 
PARENT→RCHILD=NULL we get, 
 
 
 
 
 
 

 
 
 

(c) 

Delete 5:  Here the deleted node is the left child of its parent node and it has a right subtree. Hence, 
after setting PARENT→LCHILD=P→RCHILD we get, 
 
 
 

 

 

 

(d) 

Delete 15:  Here the deleted node has two subtrees. At first, find the inorder successor of the deleted 
node then substituting the key of the deleted node by the key of its inorder successor. Finally, delete 
the inorder successor. 

 

 

 

 

  

(e) 

Figure 8.22(a-e): Deletion in Binary Search Tree 

On a binary search tree of height h, different operations like search, minimum, maximum, 
successor, predecessor, insert and delete can be made to run O (h) time. On average, binary search 
trees with n nodes have      height and in the worst-case, binary search trees can have n height. 
Therefore, different operations like search, minimum, maximum, successor, predecessor, insert and 
delete take O (      time in average-case and O (n) in worst-case. 
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14 
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9 6 10 

2 

7 5 

9 6 10 

Binary search trees are a basic data structure used to construct abstract data structures such as sets, 
multisets, associative arrays. To sort a sequence of numbers, at first, all numbers are required to insert 
into a new binary search tree then traverse the tree in inorder. 

Advantages of Binary Search Tree 

The major advantage of binary search tree over other data structures are as follows: 
i) Sorting and search algorithm can be very efficient. 
ii) Easy to the coding of most of the operations that performed on binary search tree. 

Disadvantages of Binary Search Tree 

i) The shape of the binary search tree fully depends on the sequence of insertions and deletions 
operations may result in skewness. 

ii) The height of the binary search tree is much higher than      in the most of the cases, as a 
result, runtime may increase. 

iii) As the binary search tree is not a balanced tree, run time of most of the operations is O (n) in 
the worst case. 

HEAP 

Heap is a binary tree that must satisfy the following properties: 
i) The binary tree essentially complete that means the tree completely filled all levels, the last 

level may be partially filled from left to right, and some rightmost leaves may be missing. 
ii) All keys in the tree, other than the root node, are greater/smaller than or equal to the key in the 

parent node. 
There are two types of the heap:  
i) Max Heap and ii)  Min Heap 

 
 
 
 
  
  
 

   (a)              (b) 

Figure 8.23:  (a) Max Heap and (b) Min Heap 

Max Heap 

A Max Heap is defined to be a complete binary tree with the property that the key of each node is 
greater than or equal to the keys of its children nodes. 

Min Heap 

A Min Heap is also a complete binary tree with the property that the key of each node is smaller than 
or equal to the keys of its children nodes. 

Operations on Heap 

Operations supported by a Heap are as follow: 
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Table 8.3: Various Operation on Heap 

Operation Description 

Heapify 
This operation restores the heap condition. For example, if a node changed in 
the tree, the heap condition is not valid anymore. Then it needs to restore the 
condition by moving nodes up or down the tree. 

Insertion This operation inserts a node in the heap. 
Deletion This operation removes a node from the heap. 

Shift-up This operation moves a node up in the tree, as long as needed (depending on the 
heap condition: min-heap or max-heap). 

Shift-down This operation moves a node down in the tree. 

Application of Heap 

 Operating Systems- Jobs / Process scheduling 
 Heap Sorting 
 Graph Application 
 Priority Queue 

AVL Tree 

A binary tree is height balanced binary tree if it is either empty or if T is a non-empty binary search 
tree with TL and TR as its left and right subtrees, if and only if  

i) TL and TR are height balanced and  
ii) |hL-hR| <= 1 where hL and hR are the heights of TL and TR respectively.  
It is introduced by two Russian mathematicians, G. M. Adelson-Velskii and E. M. Landis, in 

1962. Hence, such trees are known as AVL trees. 
The balance factor BF (T) of a node T in a binary tree is defined to be hL – hR where hL and hR 

are the heights of the left and right subtrees of T. For any node in an AVL tree BF (T) = –1, 0 or 1. 

Operations on AVL Tree 

Operations supported by an AVL tree are as follow: 

Table 8.4: Various Operation on AVL Tree 

Operation Description 

Traverse This operation traversing all the nodes of AVL tree exactly once. 
Insertion This operation inserts a node in the AVL tree 
Deletion This operation removes a node from the AVL tree 

Searching This operation searches a desired key value within the AVL tree. 

Insertion in an AVL Tree 

When a new node is inserted to a balanced binary search tree, as a result the tree could be unbalanced. 
The re-balancing was carried out using four different kinds of rotations LL, RR, LR and RL. 

These rotations are characterized by nearest ancestor A on the path from the inserted node B to the 
root node, whose balanced factor becomes ±2. 
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Insert B 

LL Rotation  

In this rotation, new node B is inserted in the left subtree of the left subtree of A. That means B 
inserted in the left subtree CL of node C. 

 
Figure 8.24 : Before and after Insertion 

After insertion, the balanced factor node A and C are changed and the tree becomes unbalanced. 

 
Figure 8.25: After LL Rotation 

It can be easily seen in the following figure, after inserting node B in the AVL tree, we get 
unbalanced AVL tree. By performing LL rotation, the resultant tree becomes balanced AVL tree. 
 

 
Figure 8.26: LL Rotation 
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A 

C 

B 

C 

A B 
RR 

0 0 
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0 

-1 

-2 

RR Rotation 

In this rotation, new node B is inserted in the right subtree of the right subtree of node A. That means 
node B inserted in the right subtree CR of node C. 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 8.27: Before and after insertion 

After insertion, the balanced factor node A and C are changed and the tree becomes unbalanced. 

 
 

Figure 8.28: After RR rotation 

It can be easily seen in the following figure, after inserting node B in the AVL tree, we get 
unbalanced AVL tree. By performing RR rotation, the resultant tree becomes balanced AVL tree. 

 

 

 

 

 

Figure 8.29: RR Rotation 
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LR Rotation 

In this rotation, new node D is inserted in the right subtree of the left subtree of A node. That means 
node D inserted in the left subtree BL of node B. LR = LL(RR). 

 

 

 

 

 

 

 
Figure 8.30: Before and after insertion 

 

 

 
 
 

 

 

 

Figure 8.31: After LR rotation 

It can be easily seen in the following figure, after inserting node B in the AVL tree, we get 
unbalanced AVL tree. By performing LR rotation, the resultant tree becomes balanced AVL tree. 

 
 
 

 
 
 
 

Figure 8.32: LR Rotation 
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Figure 8.35: RL Rotation 

RL Rotation 

In this rotation, new node B is inserted in the left subtree of the right subtree of A. That means node D 
inserted in the left subtree BL of the node. RL = RR(LL). 

 

 

 

 

 

 

 

 
Figure 8.33: Before and after insertion 

Figure 8.34: After RL rotation 

It can be easily seen in the following figure, after inserting node B in the AVL tree, we get unbalanced 
AVL tree. By performing RL rotation, the resultant tree becomes balanced AVL tree.  
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Example: 

Insertion of following items in AVL tree: 
Mar, May, Nov, Aug, Apr, Jan, Dec, Jul, Feb, Jun, Oct, Sep 

Insert Mar:  

 

(a) 

Insert May:          

 

 

(b) 

Insert Nov: 

 

 

 

(c) 

Insert Aug: 

 

 

 

(d) 

Insert Apr: 

 

 

 

 

(e) 
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Insert Jan:  

 

 

 

 

(f) 

Insert Dec: 

  

 

 

 

(g) 

Insert Jul: 

 

 

 

 

(h) 

Insert Feb: 
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Insert Jun: 

 

  

 

 

 

 

 

(j) 

Insert Oct: 

 

 

 

 

 

 

(k) 

Insert Sep: 

 

 

 

 

 

(l) 

Figure 8.36 (a-l): Insertion in AVL Tree 
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Deletion in an AVL Tree 

The deletion operation in an AVL tree is perform using the following steps: 
i) Search the AVL tree to find out the node to be deleted as in the Binary Search Tree 
ii) After delete the node, check the balance factor of each node of the tree. 
iii) Rebalance the AVL tree if the tree is unbalanced by using AVL rotations. 
Suppose X is the deleted node from the AVL tree and A be the closest ancestor node on the path 

from X to the root node, with a balance factor ±2 after deletion. For balancing the AVL tree, the 
rotation is classified as L or R depending on whether the deletion occurred on the left or right subtree 
of A. Moreover, depending on the balanced factor of B, where B is the root of the left or right subtree 
of A, the R or L rotations is classified as R0, R1 and R-1 or L0, L1 and L-1.  

R0 Rotation 

Suppose right subtree of node A is AR of height h, left and right subtree of node B are BL and BR of 
height h each. Now a node X from AR is deleted, then the height of AR becomes h-1 and A be the 
nearest ancestor node of X, with balance factor +2. The node B is the root of the left subtree of A with 
balance factor 0 and node X deleted from the right subtree of A, therefore R0 rotation is used. 

 

 

 

 

 

 

 

Figure 8.37: Before and after delete node X 

 

 

 

 

 

 

Figure 5.38: After R0 Rotation 

L0 Rotation 

The left subtree of node A is AL of height h, left and right subtree of node B are BL and BR of height h 
each. Now a node X from AL is deleted, then the height of AL becomes h-1 and A be the nearest 
ancestor node of X, with balance factor -2. The node B is the root of the right subtree of A with 
balance factor 0 and node X deleted from left subtree of A, therefore L0 rotation is used. L0 rotation is 
similar with R0 rotation.  
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Figure 8.39: Before and after delete node X 

 

 

 

 

 

Figure 8.40: After L0 Rotation 

R1 Rotation 

Suppose right subtree of node A is AR of height h, left and right subtree of node B are BL and BR of 
height h and h-1 respectively. Now a node X from AR is deleted, then the height of AR becomes h-1 
and A be the nearest ancestor node of X, with balance factor +2. The node B is the root of the left 
subtree of A with balance factor +1 and node X deleted from the right subtree of A, therefore R1 
rotation is used. 

 

 

  

 

 

 

Figure 8.41: Before and after delete node X 

Delete x 

A 

B 

x 

-1 

0 

AL 

BR BL 

h h 

h 
AL 

A 

B 

-2 

0 

BR BL 

h h 

h-1 

h 



Tree | 8.37 

 

0 

BL 

B 

h-1 

AL 

h-1 

A 

BR 

h 

0 

 

Figure 8.42: After R1 Rotation 

L-1 Rotation 

The left subtree of node A is AL of height h, left and right subtree of node B are BL and BR of height h-
1 and h respectively. Now a node X from AL is deleted, then the height of AL becomes h-1 and A be 
the nearest ancestor node of X, with balance factor -2. The node B is the root of the right subtree of A 
with balance factor -1 and node X deleted from left subtree of A, therefore L-1 rotation is used. L-1 
rotation is similar with R1 rotation. 

 
Figure 8.43: After L-1 Rotation 

 

 

 

 

 

Figure 8.44: Before and after delete node X 

R-1 Rotation 

The right subtree of node A is AR of height h, left subtree of node B is BL of height h-1, left and right 
subtree of node C are CL and CR of height h-1 each. Now a node X from AR is deleted, then the height 
of AL becomes h-1 and A be the nearest ancestor node of X, with balanced factor +2. The node B is the 
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root of the right subtree of A with balance factor -1 and node X deleted from the right subtree of A, 
therefore R-1 rotation is used. 

 

Figure 8.45: Before and after delete node X 

 

 

 

 

   

 

Figure 8.46: After R-1 Rotation 

L1 Rotation 

The left subtree of node A is AL of height h, right subtree of node B is BR of height h-1, left and right 
subtree of node C are CL and CR of height h-1 each. Now a node X from AL is deleted, then the height 
of AL becomes h-1 and A be the nearest ancestor node of X, with balance factor -2. The node B is the 
root of the right subtree of A with balance factor +1 and node X deleted from the left subtree of A, 
therefore L1 rotation is used. L1 rotation is similar with R-1 rotation. 
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Figure 8.47: Before and after delete node X 

 

Figure 8.48: After L1 Rotation 

Red-Black Tree 

The red-black tree is a balanced binary search tree in which each node is colored either red or black. 
The red-black tree is introduced by Guibas and Sedgewick, in 1978. The tree is named after a red-
black tree, as they had red and black pens to draw the trees. 

In the red-black tree, ordering of the keys are the same as for binary search trees: all the keys to 
the left of a node are smaller, and all the keys to the right of a node are larger than the key at the node 
itself. The number of black nodes on every path from the root to each leaf is the same, called the black 
height of the tree. There are no two adjacent nodes are red. When a node is red, then both its children 
are black. 

In insertion and deletion operation, when the tree is modified, the tree is rearranged and recolored 
to restore the properties. The tree is designed in such a way that this rearranging and recoloring can be 
performed efficiently. The searching, insertion, deletion operations are performed in O (    ) time. 
One extra bit per node is required to represent the colour (red or black) of the node. 

Number of Binary Trees 

Now, we count the binary trees having n nodes. When n = 0, then there is one empty binary tree and 
when n = 1 then there is only one binary tree with one node. If n = 2 then there are two distinct binary 
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trees. If n = 3 then there are five distinct binary trees. 
Consider the nodes of a binary tree of n nodes are numbered from 1 to n. The inorder permutation 

defined by such a binary tree is the order in which its nodes are visited during an inorder traversal of 
the tree. A preorder permutation can be defined similarly. 

Now, if the nodes of a binary tree are numbered such that its preorder permutation is 1, 2…n then 
distinct binary tree define distinct inorder permutation. For example, if the nodes of binary tree 
numbers 1, 2, 3 then possible permutations obtain by a stack are 
 1, 2, 3  1, 3, 2  2, 1, 3  2, 3, 1  3, 2, 1 

It is not possible to obtain 3, 1, 2. Each of these five permutations corresponding to one of the five 
distinct binary trees with three nodes. 

 

 

 

 

 

Figure 8.49: Five distinct binary trees with three nodes 

It can calculate the total numbers of binary trees of n nodes by using Catalan numbers from a 
sequence of natural numbers 

Cn =  ∑         
 
     =   

   
 (  

 
) =      

        
  for n ≥ 0 

The Catalan numbers for n = 0, 1, 2, 3, 4, 5, 6… are 1, 1, 2, 5, 14, 42, 132… 

Multi-way Search Tree or M-way Search Tree 

Although it is possible to use binary trees for fast searching, insertion and deletion in the internal 
memory (i.e. main memory), but binary trees are not appropriate for data that stored in external 
memory (i.e. storage devices such as disks etc.). When accessing data on a disk, an entire block (or 
page) of data is input at once. Therefore, it makes sure to design such tree special so that each node of 
the tree essentially occupies one entire block. Multi-way search tree, B-tree, B+ tree are examples of 
such data structures. 

An m-way search tree (also known as multi-way search tree) of order m is a tree, which is either 
empty or for a non-empty m-way search tree has following properties: 

i) All the nodes are of maximum m degree and any node contains maximum m-1 values. 
ii) The nodes contain 1 to m-1 distinct keys K1, K2,…,Km-1 and keys in each node are sorted such 

that K1 < K2 <…< Km-1. 
iii) A node with n values has n+1 subtrees such that A0, A1, A2,…,An. The subtrees may be 

empty. 
iv) All the key values in the subtree Ai of a node [K1, K2,…,Kn] may hold only values K in the 

range Ki ≤ K ≤ Ki+1 
v) All key values in the leftmost subtree A0 are less than K1. 
vi) All key values in the rightmost subtree An are greater than Kn. 
vii) All the subtrees are also m-way search trees. 
However, m-way search trees can become unbalance. 
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Figure 8.50: M-way search Tree of order 4 

B-tree 

B-tree is a good example of a data structure for external memory; it uses multi-way search tree rather 
than a binary tree. The B-tree optimized the system to read and write a large block of data to external 
memory because they allow for large amounts of data to be stored in a node. B-tree performs 
searching, insertion and deletion operation in O (    )  time. B-tree is commonly used in databases 
and file systems. 

B-trees are balanced trees and an m-way search tree of order m (where m ≥ 3). B-tree is a 
generalization of a binary search tree in that a node can have more than two children and only one key  
(where m = 2).  

Definition: B-tree can be defined as follows: 
A B-tree is either empty or for a non-empty B-tree satisfies the following properties: 
i) All the non-terminal nodes, except root node, each node has maximum m children and 

minimum ⌈   ⌉ children. The non-terminal root node has maximum m children and 
minimum two children. 

ii) If a node has m number of children then it must have m-1 distinct key values K1, K2,…,Km-1 
and all the key values of each node are in sorted order such that K1 < K2 <…< Km-1. 

iii) All the key values in the subtree Ai of a node [K1, K2,…Kn] may hold only values K in the 
range Ki ≤ K ≤ Ki+1 

iv) Each terminal nodes must contain minimum ⌈   ⌉ – 1 keys. 
v) All the terminal nodes must be at same level. 
These restrictions make B-trees always at least half full, have few levels, and remain perfectly 

balanced. Therefore, in B-trees do not need re-balancing as frequently as other self-balancing search 
trees but may waste some space, since nodes are not entirely full.  The lower and upper bounds on the 
number of children nodes are typically fixed for a particular implementation. 

For example, for a B-tree of order 4, i.e. when m = 4 then each internal nodes has from 2 to 4 
children and from 1 to 3 keys. Another B-tree order of 7, i.e., when m = 7 then each internal nodes has 
from 4 to 7 children and from 3 to 6 keys (except the root node which may have as few as 2 children 
and 1 key). 

 
 

64   

90   

50 60 80 
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52   54   
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The structure definition for a node of B-tree as follows: 
struct BTreeNode 

{ 

int nchild; 

struct *BTreeNode[M]; 

int key[M-1]; 

}; 

Operations on B-tree 

Operations supported by a B-tree are as follow: 

Table 8.5: Various Operation on B-tree 

Operation Description 

Traverse This operation traversing all the nodes of B-tree exactly once. 
Insertion This operation inserts a node in the B-tree. 
Deletion This operation removes a node from the B-tree. 

Searching This operation searches a desired key value within the B-tree. 

Searching in B-tree 

Searching in a B-tree for a key is the generalization form of the searching in Binary Search Tree. An 
internal node with keys K1 < K2 <…< Km-1 can search for a searching key k in either linearly or by 
binary searching. If the key is found in the node then searching is over. Otherwise, determine the index 
i such that Ki < k < Ki+1 and recursively search the subtree Ai. Finally, search all the keys in the leaf 
node. If the key is not found there then searching is unsuccessful.  

Insertion in a B-tree 

Insertion operation into a B-tree of order m is performed by searching the appropriate leaf node where 
we insert the key. There are three cases for insert a key into B-tree. 

Case 1: when the leaf node is not at full capacity (i.e. it has fewer than m – 1 keys), then simply 
insert it into proper position so that after insertion the keys remains sorted. Therefore, it requires to 
movement keys within leaf node for the newly inserted key. Since m is assumed a constant, so the 
constant time overhead may be ignored. 

Case 2:  When the node is full (i.e. it has exactly m – 1 keys), then check its immediate left or 
right siblings in the B-tree, which may have fewer than the maximum of m – 1 keys. Suppose Q is the 
right siblings has less than m – 1 keys and P is the node has m – 1 keys. Now, after inserting the new 
key, transfer the key k of the parent node to the Q node and make it minimum key. The maximum key 
transfers from P and places it in the parent node. Finally, transfer the rightmost subtree from P to 
become leftmost subtree of Q. At this point, the B-tree is balanced and no further rebalancing is 
required. This method is known as key rotation. Similarly, when left siblings have less than m – 1 
keys then key rotation also can be performed. 

Case 3: When the node along with its both siblings is full, then key rotation is not possible. 
Suppose, after inserting the new key, the node becomes overfull with k keys. Now, split this node into 
three parts, one with the smallest ⌈       ⌉ keys, a single central key and one with the largest 
⌊       ⌋ keys. Then, create a new B-tree node with the smallest keys, insert the single central node 
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into parent node and leave the largest keys in the existing node. At this point, the parent node may be 
overfull, and then repeat this process recursively. This method is known as node split. 

Example: 

Insert the following keys in a B-tree of order 4 
74, 72, 19, 87, 51, 10, 35, 18, 39, 60, 76, 58, 19 and 45 

Insert 74: 

 

(a) 

Insert 72:  
 

(b) 

 
Insert 19:    

 

 

(c) 

 
Insert 87:        

 
 

 

 

(d) 

 
Insert 51:  

 
 

 

 

 

 (e) 

 
Insert 10:  

 

 
 

 

(f) 

Insert 35:     

 
 
 
 
 

72   74   

19   

72 

74   87   

74   87   19   51   

72 

74   87   

72 

19   51   10   

72   74   19   

72   74   19   87   

74   

74   87   

72 

19   35   10   51   
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(g) 

Insert 18:    

 

 
 

 

 

(h) 

Insert 39:  

 

 
 

 

 

(i) 

Insert 60:  

 
 
 
 
 

 

 

 

 

 
 

 

 

(j) 

Insert 76:  

 
 

 

 

 

(k) 

 

35   

10   

35   

74   87   

74   87   

74   87   

74   87   

10   18   

10   18   

10   18   

10   18   35   51   

35   51   

51   60   

51   60   

19 72 

19 39 72 

76   87   74   

39   51   35   

19 72 

19 72 

19 72 

19 39 72 

74   87   10   18   39   51   35   60   
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Insert 58:  

 
 

 

 

 

  (l) 

Insert 19:  

 

 

 

 

 

(m) 

Insert 45:    

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

  

 

 
 

 

 

 

 

 (n) 

Figure 8.51 (a-n): Insertion in B-tree 

  

10   18   19   35   58   60   45   

39 

19 51 72 

76   87   74   

10   18   19   35   45   58   60   

19 39 51 72 

76   87   74   

35   10   18   

19 39 72 

76   87   74   58   60   51   

10   18   19   35   

19 39 72 

76   87   74   58   60   51   

10   18   19   35   

19 39 72 

76   87   74   51   58   45   60   
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Example: 

Insert the keys in a B-tree of order 3: p, q , r, d, h, m, l, s, k and n 

Insert p:  
 

 (a) 

 
Insert q:     

 
(b) 

   
Insert r:  

 
 
 
 

(c) 

 
Insert d:  

 
 
 

 

   (d) 

Insert h:   

 
 
 
 
 

 (e) 

  
Insert m: 

  
 

 
 

(f) 

 
Insert l:  

 

 

 

 

p   

p   q   

q 

r   p   

r   d   m   p   

h q 

r   

q 

h   p   d   

r   

q 

d   p   

r   p   d   

h q 

q   r   p   

h q 

m   p   l   r   d   r   d   l   p   

h m q 
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(g) 

 
Insert s: 

  

 

 

 

 
 

 
 

(h) 

Insert k: 

 
 

 

 

  

 

 

 

 

(i) 

Insert n: 

 
 
 
 
 
 

 
 

(j) 

Figure 8.52 (a-j): Insertion in B-tree 

 

d   l   p   r   s   

m 

h q 
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Deletion in a B-tree 

Deletion operation into a B-tree of order m is performed by searching the node where we delete 
the key. If the key is found then delete the key from the node. When an underflow (a leaf node has less 
than ⌈m/2⌉ - 1 entries or an internal node has less than  ⌈m/2⌉ nonempty subtrees) occurred after the 
key deletion, then an adjustment must be done. Now two cases need to consider, whether the key at 
leaf node or non-leaf node.  

Case 1: When deleting a key in a non-leaf node, we must find substitute data. We use the 
immediate predecessor, which is the largest node in the left subtree of the entry to be deleted. In the 
subtree, the largest node is the rightmost subtree. 

Case 2: When deleting a key in a leaf node and it contains more than the minimum number of 
entries, then delete the key without any adjustment. However, when a node is underflow, we need to 
do some adjustment, which is called reflow. Suppose one of the subtree contains underflow node, two 
situations need to consider: If the other subtree has more entries than the minimum number, then just 
move some entry from the subtree to the underflow node, which is called balance. If the other subtree 
only has a minimum number of entries, then we need to combine two nodes to one node together with 
the root entry. This is called combine. 

Example:  

Delete the keys from the following B-tree: 10, 87, 39, 60, 72, 35. 
 
 
 
 
 

 

 (a) 

Delete 10: Borrow from right  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

74   87   18   19   

35 72 

51   60   39   

10   18   74   87   

19 72 

39   51   35   60   39   51   35   60   

74   87   10   18   

19 72 

39   51   35   60   
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Delete 87: Borrow from right 
 
 
 

 

 

 

 

 

 
 

 

 

 

 

 
(c) 

Delete 39: Combine 51, 60, 72, 74 
 

 

 

 

 

 

(d) 

Delete 60: 

 

 

 

 

 

 
(e) 

 

Delete 72: 

 

 

 

 

 

(f)  

Delete 35: At first copy 19 to parent node, then delete 19 from leaf node and finally combine 18, 19, 
51 and 74. 

 

 

 

18   19   72   74   39   51   

35 60 

18   19   51   74   

35 

18   19   

35 

72   74   51   

51   74   18   19   

35 

35 72 

74   87   18   19   51   60   39   

35 

18   19   60   72   51   74   

51   74   18   19   

19 
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(g) 

Figure 8.53 (a-g): Deletion in B-tree 

2-3 Tree 

The 2-3 tree is a tree, which is either empty or non-empty balance tree has following properties: 
i) Each non-terminal node has either two children with one data element (2-node) or three 

children with two data items (3-nodes). 
ii) The terminal nodes have one or two data elements. 
iii) All the keys values of each node [K1, K2] are in sorted order (K1 < K2). 
iv) The key values in the left subtree of a 3-node [K1, K2] are less than K1, the key values in the 

right subtree are greater than K2 and the middle subtree contains only the k values in the range 
K1 ≤ k ≤ K2. 

v) The key values in the left subtree of a 2-node [K] are less than K, the key values in the right 
subtree are greater than K. 

vi) All the terminal nodes must be at same level. 
vii) All the subtrees are also 2-3 trees. 
The 2-3 trees are B-tree of order 3, like B-tree they can perform search, insert and delete in 

O(    ) time. 
 
 
 
 
  

  Figure 8.54: Complete 2-3 Tree 

2-3-4 Tree 

The 2-3-4 tree is a tree, which is either empty or non-empty balance tree has following properties: 
i) Each non-terminal node has two children with one data element (2-node), three children with 

two data items (3-nodes) or four children with three data items (4-nodes). 
ii) The terminal nodes have one, two or three data elements. 
iii) All the keys values of each node [K1, K2, K3] are in sorted order (K1 < K2 < K3). 
iv) All key values in the leftmost subtree A0 are less than K1. 
v) All key values in the rightmost subtree A3 are greater than K3. 
vi) All the key values in the subtree Ai of a node [K1, K2, K3] may hold only values K in the 

range Ki ≤ K ≤ Ki+1 
vii) All the terminal nodes must be at same level. 
viii) All the subtrees are also 2-3-4 trees. 

51   74   

19 

18   

19   51   18   74   

35 60 

10   25   40   55   75   85   
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The 2-3-4 tree also called 2-4 tree. It is a specialization version of B-tree of order 4. Like B-tree, in 
2-3-4 tree, searching, insertion, deletion operations are performed in O (    ) time. 

 
 
 
 
 
 

 
 

Figure 8.54: 2-3-4 Tree 

Summary 

 Tree is a non-linear data structure with a root node and subtrees that can be used to represent data 
items possessing a hierarchical relationship among the nodes of the tree. 

 A binary tree is a finite set of nodes, which is either empty or consists of a root and two disjoint 
binary trees called left subtree and the right subtree. 

 A Binary search tree is a binary tree, which is either empty or each node in the tree contains a key. 
Such that all keys in the left subtree of X are less than X, all keys in the right subtree of X are 
greater than X  and the left and right subtrees are also binary search tree. 

 AVL tree is a height-balanced binary tree where the heights of the two subtrees of any node differ 
by at most ±1. After insertion or deletion if they differ by more than one, then rebalancing is done 
to restore its property. 

Exercises 

1. What is a max heap? 
2. Draw a minimum heap tree from the following list: 

12, 11, 7, 3, 10, -5, 0, 9, 2 
3. Prove that the maximum number of nodes in a binary tree of depth k is 2k-1. 
4. Show the following integers can be inserted in an empty binary search tree in the order they are 

given and draw the tree in each step. 
50, 30, 10, 90, 100, 40, 60, 20, 110, 5 

5. Prove that for any non-empty binary tree T, if n0 is the number of leaves and n1 be the number of 
nodes having degree 2 then n0 = n1 +1. 

6. What is a binary tree? Is it possible to represent binary trees with the help of array? If yes, then 
how? 

7. Define AVL tree and give a sequence of AVL and non-AVL trees.  
8. Insert the following keys in order given to build them into an AVL tree: 

i)  a,  z,  b,  y,  c,  x,  d,  w,  e,  v  
ii) k, m, u, t, v, p 
iii) 12, 11, 13, 10, 9, 15, 14, 18, 7, 6, 5, 4 
iv) 6, 3, 1, 2, 4, 5, 9, 7, 8, 10, 12 
Clearly, mention different rotations used and a balanced factor of each node. 

16 21 78 

42 

57 91 

11   95   45   17   19   63   65   85   90   23   34   22   
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9. The inorder and preorder traversal sequence of nodes in a binary tree are given below: 
a)    Inorder  : E, A, C, K, F, H, D, B, G 

Preorder  : F, A, E, K, C, D, H, G, B 
b)   Preorder  : A, B, D, I, E, J, C, F, G, K 

Inorder  : D, I, B, E, J, A, F, C, K, G 
Draw the actual binary tree. State briefly the logic used to construct the tree. Write its 
postorder traversal. 

10. Construct a binary tree using the inorder and postorder traversal of the nodes given below: 
a) Inorder  : D, B, F, E, A, G, C, L, J, H, K 

Postorder : D, F, E, B, G, L, J, K, H, C, A 
b)   Inorder  : A, B, C, D, F, G, K, L, N, P, T 
 Postorder : B, C, A, P, N, T, L, K, G, F, D 

11. What are the differences between AVL tree and binary search tree? 
12. Write an algorithm to insert a node in a given binary search tree. 
13. What is binary search tree (BST)? State with an example the techniques for deletion at an element 

from a binary search tree. 
14. Write a function to find the inorder successor of the root of a binary tree. 
15. Write a non-recursive algorithm for inorder traversal of a binary tree. 
16. Show the stages in the growth of 4 order B-tree when the following keys are inserted in the given 

order: 
74, 72, 19, 87, 51, 10, 35, 18, 39, 60, 76, 58, 19, 45 

17. What is a B-tree? Insert the following keys into a B-tree of order 3: 
p, g, r, d, h, m, l, s, k, n 

18. Construct an expression tree for the expression E = (2x + y) * (5a – b)3. 
19. What is a threaded binary tree? Write an algorithm for non-recursive inorder traversal of a 

threaded binary tree. 
20. Show the steps in the creation of a height-balanced binary AVL tree using an insertion of items in 

the following order. Show the balancing steps required. 
(March, May, November, August, April, January, December, July, February, June, October, 
September) 

21. Write short notes on the following: 
a) Threaded binary tree 
b) B-tree 

22. What are the problems of a binary tree? Explain the improvement of performance by the use of the 
height-balanced tree. Explain how a height-balanced tree can be formed by inserting the following 
elements in the given order: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 7, 11 
Show the root element that can be deleted from the above tree. 

23. Choose the correct alternatives for the following: 
i) If a binary tree is threaded for inorder traversal a right NULL link of any node is replaced by 

the address of its 
 a) Successor b) predecessor c) root d) own 
ii) In a height-balanced tree, the heights of two subtrees of a node never differ by more than 
 a) 2 b) 0 c) 1 d) -1 
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iii) Number of all possible binary trees with three nodes is 
 a) 3 b) 2 c) 4 d) 5 
iv) Total nodes in a 2-tree (strictly binary tree) with thirty leaves is 
 a) 60 b) 58 c) 59 d) 57 
v) Maximum possible height of an AVL tree with 7 nodes is 
 a) 3 b) 4 c) 5 d) 6 
vi) The inorder and postorder traversal of a binary tree are DBEAFC and DEBFCA respectively. 

What will be the total number of nodes in the left subtree of the given tree? 
 a) 1 b) 4 c) 5 d) None of these 
vii) The postorder traversal of some binary tree produces the sequence CDBFEA and the inorder 

traversal of the same produced the sequence CBDAFE. What will be the total number of nodes 
in the left subtree? 

 a) 2 b) 3 c) 4 d) 5 
viii) A B-tree is 
 a) Always balanced b) an ordered tree c) a directed tree d) all of these 
ix) A binary tree is a special type of tree 
 a) that is ordered  b) such that no node has degree more than 2 
 c) for which both (a) and (b) above correct d) in which non-leaf nodes will have degree 2 
x) The depth of a complete binary tree with n nodes 
 a) log (n+1) -1 b)      c) log(n-1) +1 d) log (n) +1 
xi) In a binary search tree, if the number of nodes of a tree is 9, then the minimum height of the 

tree is 
 a) 9 b) 5 c) 4 d) none of these 
xii) Which of the following traversal techniques list the elements of a binary search tree in 

ascending order? 
 a) Preorder b) Postorder c) Inorder d) None of these 
xiii) In traversing non-empty binary tree, visit the root node is made in the last in 
 a) Preorder b) Postorder c) Inorder d) None of these 

***** 





 

 

 
 
 
 

 
 
 

GRAPH  
 

"Computers make it easier to do a lot of things, but most of the things they make it easier to do don't 

need to be done."-Andy Rooney  

 

 
raph is an abstract data structure that is used to implement 
the mathematical concept of graphs. It is also used to model 
networks, complex data structures, scheduling, computation 

and a variety of other systems, where the relationship between 
objects in the system plays a key role. 

A Graph G = (V, E) consists of finite non-empty set of objects 
V, where V (G) = {v1, v2, v3…vn} called vertices and another set E 
where E (G) = {e1, e2, e3…em} whose elements are called edges.  

Definition: A Graph G is defined as an ordered set G = (V, E), 
where V represents a set of elements called vertices (or points or 
vertices) and E represents a set of edges in G, that connects these vertices. 

In the figure 9.1 shows a graph with five vertices, V = {A, B, C, D, E} and six connecting edges, 
E = {(A, B), (B, C), (A, D), (B, D), (D, E), (C, E)}. 

 
Figure 9.1: Graph with five Vertices and six Edges  

Terminology of Graph 

Undirected Graph: A Graph can be directed or undirected. In an undirected graph edge, do not have 
any direction associated with them. That is, if there is an edge between vertex A and B then the 
vertices can be traversed A to B, as well as B to A. Figure 9.1 shows an undirected graph. 
Directed Graph: A directed graph or digraph is a graph, where the vertices are connected together and 
all the edges are directed from one vertex to another. 

In a directed graph, edges form an ordered pair. If there is a directed edge from A to B, then there 
is a path from A to B but not from B to A. The edge (A, B) is supposed to initiate from vertex A (initial 
vertex) and terminate at vertex B (terminal vertex). Figure 9.2 shows a directed graph. 

K E Y  F E A T U R E S  

 Categorization of Graph 

 Graph Representation 

 Graph traversals 

 Shortest Path 

 Spanning Tree 

 Application of Graph 
 

G 

A 

E D 

C 
  

B 

CHAPTER 9 
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  Figure 9.2: Directed Graph with Five Vertices and self-loop 

Adjacent vertices or neighbors: For every edge e = (u, v), that connects vertices u and v, the vertices 
u and v are endpoints and are said to be the adjacent vertices or neighbors. 
Degree: The degree of a vertex of a graph is the number of edges incident to the vertex, with self-loops 
counted twice. The degree of a vertex v is denoted by deg (v) or deg v. If deg (v) = 0, it means that u 
does not belong to any edge and such a vertex is known as an isolated vertex. In figure 9.2, deg (c) = 4.  

The maximum degree of a graph G, denoted by  (G) and a minimum degree of a graph, denoted 
by δ(G), are the maximum and minimum degree of its vertices. 

In a digraph, the number of edges coming out of a vertex is called the out-degree of that vertex. A 
number of edges coming in of a vertex is the in-degree of that vertex.  

For a digraph G = (V, E),  
∑               = ∑                = | E |, where |E| means the cardinality of the set E (i.e. the 

number of edges).  
For an undirected graph G = (V, E), ∑            = 2| E |. 

Regular graph: It is a graph, where each vertex has same no of neighbors. That is, every vertex has 
the same degree. A regular graph with the vertex of degree k is called a k-regular graph. Figure 9.3 
shows some regular graphs. 

 (a) (b) (c) 

Figure 9.3: Graph with Four Vertices (a) 0-regular graph, (b) 1-regular graph, (c) 3-regular graph 

Walk: A walk of a graph is a finite altering sequence of vertices and edges beginning and ending with 
vertices. In a walk, no edge is traversed more than one. 
Open Walk: An open walk is that where no edge is repeated. V1 e1 V2 e5 V5 e7 V3 e3 V4 in the following 
graph G is an open walk as no edge is repeated. 
Closed walk: A walk having same starting and end point is called closed walk. V1 e1 V2 e2 V4 e11 V3 e4 

V1 is a closed walk where both starting and end vertex is V1. 
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Figure 9.4: Walk of Graph 

Path: A path P has written as P = {v0, v1, v2...vn), of length n from a vertex u to v is defined as a 
sequence of (n+1) vertices. Here, u = v0, v = vn, and vi-1 is adjacent to vi for i = 1, 2, 3… n. 
Closed Path: A path is known as a closed path if the edge has same endpoints. In figure 9.4, V1  V2  V4, 
V3, V1 is a closed path with same end point V1. 
 
 
 

 

 

 

 

 

 
  (a)       (b) 

Figure 9.5: (a) connected undirected graph, (b) connected directed graph 

Simple/Open Path: A path is known as a simple path if all the vertices in a path are distinct. In figure 
9.4, V1 e1 V2 e5 V5 e7 V3 e11 V4 is an open path as no vertex is repeated. 
Cycle: A path in which the first and last vertices are same and no repeated edges or vertices. In figure 
9.4,  V1 e1 V2 e2 V4 e11 V3 e12 V1 form a circuit or circle. A graph is said to be acyclic if it contains no 
cycles. A directed graph that is acyclic is called Directed Acyclic Graph (DAG).  
Connected Graph: A graph is called connected graph, if and only if there is a simple path between 
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any two vertices of a graph. A connected graph without any cycle is a tree. Figure 9.5 (a) is an example 
of a connected graph. 
Complete Graph: A graph is said to be complete if there is a path between one vertex and every other 
vertex in the graph. A complete graph with n number of vertices has n(n-1)/2 edges. In the above 
figure 9.5 graph G is a complete undirected graph. 
Clique: In an undirected graph G = (V, E), a clique is a subset of the vertex set, such that for every two 
vertices in this set, there is an edge that connects two vertices.  
 

 

 
 

 

 

 

 

 
Figure 9.6: (b) Clique of Connected Undirected graph (a) 

Weighted Graph: A graph is called weighted if every edge in the graph is assigned some weight data. 
The edge weight generally denotes by w (e) is a positive value, which indicates the cost of traversing 
the edge in figure 9.8c.  
Parallel or Multiple Edges: Distinct edges, which connect the same endpoints, are called multiple 
edges. That is, e = (u, v) and e‟ = (u, v) are known as multiple edges of a graph. 
Loop: An edge has identical endpoints is called a loop. That is e = (u, u) given in figure 9.1. 

                                            
                               
 
                          
 
 
                             
 
 

(a) 

 
 

 
 
 
 
 
 
 

(b) 

Figure 9.7: (a) and (b) are isomorphic graph 

Isomorphism: Two graphs G = (V, E) and G‘ = (V, E) are said to be isomorphism graphs if there 
exists a one-to-one correspondence between their vertices and their edges such that the incidence 
relationship preserved, i.e. they contain the same number of vertices connected in the same way,  the 
same number of edges and both have same degree sequences. In figure 9.7 example of isomorphism is 
given. 
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A directed graph G, also called as a digraph, is a graph in which every edge has a direction 
assigned to it. An edge of a directed graph is given as an ordered pair (u, v) of vertices in G. For an 
edge (u, v) . 

 The edge begins at u and terminates at v. 
 u is known as an initial vertex of e, whereas v is the terminal vertex. 
 u is the predecessor of v and correspondingly v is the successor of u. 
 u and v vertices  are adjacent to each other. 

Multigraph: A graph with multiple edges and/or loops is called multi-graph shown in figure 9.8a. 
Subgraph: A subgraph H of a graph G, is a graph whose vertices are a subset of the vertex set of G 
and whose edges are a subset of the edge set of G. H  G if V‟  V and E‟  E. Figure 9.6b is an 
example of the subgraph. 

 
 
 
 
 
 
 
 
 
 
(a) 

 

 
(b) 

 
 
 

 
 

(c) 

Figure 9.8: (a) Multi Graph, (b) Tree, (c) Weighted Graph 

Lemma 1 (Hand Shaking Lemma): In a regular undirected graph the sum of the degree of all the 
vertices is twice the number of edges. That is for an undirected graph G = (V, E), ∑            = 2|E| 

Proof: Let P be the proposition ―In any graph, the sum of the degrees of all vertices is equal to twice 
the number of edges‖ for a graph G = (V, E) 
P(n): ∑      | |   )=2n  where |E|=n 
Base case: P(0):2n=0|n=0. Since there is not any edge the number of vertices must be equal to 11or 0. 
∑      | |    =      | |) = 0 the number of degrees is equal to 0. Thus P(0) is true. 
Induction step: Assuming that P(n)  is true for a given natural number. Let show that P(n)⇒P(n+1). 
P (n): ∑      | |   ) = 2n 
∑      | |   ) + 2 = 2n + 2 
∑      | |   ) + 2 = 2 (n + 1) which yields by adding 2   
Vertices of degree 1 
      ∑      | |   ) = 2|E| 
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Terminology of a Directed Graph 

Isolated vertex: The vertex with degree zero. Such vertex is not an end point of any edge. Vertex F in 
figure 9.9 is an isolated vertex. 
Pendant vertex: A vertex is said to be pendant vertex if the vertex has degree one. It is also known as 
leaf vertex. Vertices G and H in figure 9.9 are pendant vertex. 
Pendant edge: An edge is said to be pendant edge if the edge incident with the pendant vertex. The 
edge between G and H in figure 9.9. 
Cut vertex: The vertex which when deleted would disconnect the remaining graph. If vertices B and D 
are deleted, then graph G become disconnected. So B and D are cut vertices in figure 9.9. 

 

 

 

 

Figure 9.9: Directed Graph G 

Source: The vertex with positive out-degree, but no in-degree. Vertex A and G in graph G has out-
degree 2 and 1 respectively and in-degree 0. Therefore, they are source vertices in figure 9.9. 
Sink: The vertex with positive in-degree, but no out-degree. Vertex H has I in degree and 0 out degree. 
Therefore, it is sink vertex in figure 9.9. 
Reachability: A vertex v is said to be reachable from vertex u, if and only if there exists a path from 
vertex u to v. Vertex B is reachable from C but vertex G is not reachable from vertex C in figure 9.9. 
Connected Graph: A graph G is a connected graph if, between every pair of vertices in G, there 
always exists a path in G. 
Strongly connected directed graph: A digraph is said to be strongly connected, if and only if there 
exists a path between every pair of vertices. That is, if there is a path from vertex u to v then there must 
be a path from vertex v to u. Figure 9.10a is an example of a strongly connected graph. 

 
 

Figure 9.10a: Strongly Connected Directed Graph 
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Figure 9.10b: Weakly Connected Directed Graph 

Unilaterally connected graph: A digraph is said to be unilaterally connected, if there exists a path 
between any pair of vertices u, v in such that there is a path from u to v or a path from v to u, but not 
both. Figure 9.10a also is a unilaterally connected graph. 
Weakly connected digraph: A digraph is said to be weakly connected if it is connected by ignoring 
the direction of edges. That is, in such a graph, it is possible to reach any vertex from any other vertex 
by traversing edges in any direction. The vertices in a weakly connected digraph must have either out-
degree or in-degree of at least 1. Figure 9.10b is an example of a weakly connected graph. 

Lemma 2: Prove that every connected graph with n vertices has at least n − 1 edges. 
Proof: This can be proved by induction 
Base case: n=1 
In such situation, only one vertex is there in a graph i.e. isolated vertex. There is no edge, so n-1=0. 
Induction step: n  . Assume that there are  n-1 number of vertices. 
Let G is a graph with n vertices. Choose a vertex v from the set V and edge e from the set E where e= 
{v, w} a unique edge. 
Remove v and e from the graph G and a subgraph G‘ is formed where 
         (i) G‘ is connected with only one path went to/ from v. 
         (ii) G‘ has no cycles 
         (iii) So G‘ is a graph with n-1 vertices. 
By the induction hypothesis G‘ has n - 2 edges. 
Then G has (n - 2) + 1 = (n -1) edges. 
Simple directed graph:  A directed graph G is said to be a simple directed graph if and only if it has 
no parallel edges. However, a simple directed graph may contain cycles with an exception that is it 
cannot have more than one loop at a given vertex. 

The graph G is a directed graph in which there are four vertices and eight edges. Note that, the 
edges e3 & e5 are parallel since both begin with C and end at D. The edge e8 is a loop since both 
originates at single vertex B. 
 

V1 

V2 

V3 

e3 

e1 

e2 
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                                           e8 
                               

e1 
      e7 

                         e6 
 
           e4                                e2                     
            
 
                             e3 
   e5 

(a)  

 

(b) 

Figure 9.11: (a) Directed acyclic graph (b) Strongly connected directed acyclic graph 

Biconnected Graphs 

In graph theory, a biconnected graph is a connected and "non-separable" graph, meaning that if any 
vertex were to be removed, the graph will remain connected. Therefore, a biconnected graph has no 
articulation vertices. 

 
Figure 9.12: (a, b) non-Bi Connected Graph, (c, d, e) Bi-Connected 

Lemma 3: There are even numbers of vertices of odd degree. 
Proof: From Hand Shaking Lemma, it is proved that for a graph G = (V, E) 
∑      | |   ) = 2|E| 
Partitioning the vertices into those of even degree and those of odd degree, we know 

∑        ∑        ∑                                 

By the Handshaking Lemma, the value of the left-hand side of this equation equals twice the number 
of edges, and so is even. On the right-hand side, the first summand is even since it is a sum of even 

0 1 
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values. Therefore, the second summand on the right-hand side must also be even. However, since it is 
given that the degree of the vertices must be odd, so a number of vertices should be even. 

Operations on Graph 

Operations supported by a graph are as follows: 

Table 9.1: Different operations on graph 

Operation Description 

Create This operation representation/storing a graph in memory. 
Traverse This operation traverse/visit all the vertices of the graph exactly once. 
Insertion This operation inserts a vertex to the graph. 
Deletion This operation removes a vertex from the graph. 

Searching This operation performs searching for a key value in the graph. 

Representation of Graphs  

There are three common ways of representing a graph or storing a graph in computer memory. They 
are: 
 Sequential representation by using an adjacency matrix. 
 Linked representation by using adjacency lists using a linked list. 
 The adjacency multi - list, which is an extension of linked representation. 

Adjacency Matrix 

Let G (V, E) be a graph with ‗n‘ vertices where n >= 1. The adjacency matrix of G is a two-
dimensional (n × n) array say A, with the property that A[i][j] = 1, if the edge for undirected graph (Vi, 
Vj) is in E(G) or for a directed graph an edge from Vi to Vj exist in E(G). A[i][j] = 0, if there is no such 
edges in G. Adjacency matrix represents vertex to vertex relation. The adjacency matrix is also known 
as bit matrix or Boolean matrix. 

Adjacency Matrix representation of graphs 

An adjacency matrix is used to represent which vertices are adjacent to one another. By definition, to 
vertices are said to be adjacent, if there is an edge connecting them. 

An adjacency matrix is a way of representing n vertex graph G= (V, E) by a n×n matrix, a, whose 
entries are Boolean values. 

The matrix entry a[i][j] is defined as  

 
a[i][j] =  

 

 
Adjacency Matrix Representation for an Undirected Graph (G) 

In an undirected graph, the adjacency matrix A of graph G will be symmetric matrix, in which A[i][j] = 
A[j][i] for every i and j. 
 

true    if (i, j)   E 

false   otherwise 
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Example: 

                                                  

 

 

 

 

Figure 9.13: Adjacency Matrix representation of undirected graphs 

Adjacency Matrix Representation for a Directed Graph (G’) 

The adjacency matrix of a directed graph G is defined as 
 
A[i][j] =  

  
 

Example: 

 

 

 

 

 

 

Figure 9.14: Adjacency Matrix representation of directed graphs G‘ 

Table 9.2: Difference between Adjacency Matrix of Directed Graph (G‘) and Undirected Graph (G) 

Adjacency Matrix Representation for an Undirected Weighted Graph (G) 

The adjacency matrix of a weighted graph G is defined as 
  

 

 

 

 V1 V2 V3 V4 
V1 0 1 1 1 
V2 1 0 1 0 
V3 1 1 0 1 
V4 1 0 1 0 

 V1 V2 V3 V4 
V1 0 1 0 1 
V2 0 0 1 0 
V3 1 0 0 0 
V4 0 0 1 0 

Feature Directed Graph Undirected Graph 

Symmetric May or may not be symmetric. If all 
the vertices are both ways connected, 
then only the adjacency matrix will 
be symmetric 

Adjacency matrix is always symmetric 

Degree of 
vertex 

Row sum is out-degree of a vertex 
Column sum is in-degree of a vertex. 

Both row sum and column sum are 
same for a vertex. Row sum is the 
degree of a vertex. No question of in-
degree and out-degree. 

V1 V2 

V4 V3 

V3 V4 

V2 V1 

1, If Vi is adjacent to Vj  

      i.e. if there is an edge (Vi, Vj) 

   

0, Otherwise 

   w, If there is an edge (Vi, Vj) of weight w    
A[i][j] =   
  0, Otherwise 
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Example: 

 

 

 

 

 

Figure 9.15: Adjacency Matrix representation of undirected weighted graph 

Advantages of adjacency matrix 

The adjacency matrix is very convenient to work with. Add or remove an edge can be done in O (1) 
time, the same time is required to check if there is an edge between two vertices. It is very easy to 
implement adjacency matrix of a graph. 

Disadvantages of adjacency matrix 

i) Adjacency matrix consumes a huge volume of memory for storing big graph. For dense graph 
adjacency matrix is optimal, but for a sparse graph where not much edges are connected this 
matrix is not essential. 

ii) The complexity of scanning an adjacency matrix during the implementation of graph searching 
algorithm like DFS is very high O (V2), which can be reduced to O (|V|+|E|). 

iii) To analyses, a graph using adjacency matrix is time-consuming, as we need to go through all the 
rows and columns. 

Incident Matrix 

Let G (V, E) be a graph with ‗n‘ vertices where n >= 1 and m edges where m >= 1.The incident matrix 
of G is the two-dimensional (n×m) array say A, with the property that A[i][j] = 1 if there is a relation 
between the edge ej and vertex vi in E(G).A[i][j] = 0, if there is no relation between the edge ej and 
vertex vi. The relation between edge and vertex is known as ―Incident‖ relation. 

Incident Matrix Representation for an Undirected Graph (G) 

Example: 

 

 

 

 

Figure 9.16: Incident Matrix representation of undirected graphs 

Incident Matrix Representation for a Directed Graph (G’) 

For a directed graph, the relation between vertex and edge is represented in two ways. This is because 
in the case of directed graphs the edges are either outgoing edge that are coming out from a vertex or 
incoming edge that is the edge incident on the vertex. Depending on the relation, there are two types of 
incident matrix. 

 V1 V2 V3 V4 
V1 0 3 4 1 
V2 3 0 2 0 
V3 4 2 0 3 
V4 1 0 3 0 

 e1 e2 e3 e4 e5 
V1 1 0 1 1 0 
V2 1 1 0 0 0 
V3 0 1 1 0 1 
V4 0 0 0 1 1 

V1 V2 

V4 V3 

2 

3 

4 
1 

3 

e1 v1 v2 

v4 v3 

e4 

e5 

e2 
e3 
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Example: 

 
 
 
 

 

 
 

 

 

 

 

 

                          (a) Out-degree          (b) In degree 

Figure 9.17: Incident Matrix representation of directed graphs (a) in degree & (b) out degree 

Advantage 

It is easy to draw and analyze a undirected graph by the use of Incident graph. 

Disadvantage 

i) Require more memory space for storing a graph. 
ii) For a directed graph in degree and out degree, the matrix should be computed during 

implementation. 
iii) Time-consuming. 

Adjacency Lists 

In this representation, the ‗n‘ rows of the adjacency matrix are represented as ‗n‘ linked list. There is 
one list for each vertex in G. The vertex in the list I represent the vertex that is adjacent to vertex i. 
Each vertex has at least two fields, one for vertex and another for the link with next vertex. The vertex 
field contains the index of the vertex adjacent to vertex i. 

Structure definition of a vertex in Adjacency list is: 

struct vertex 

{ 

    int vertex; 

    struct vertex *link; 

}; 

Adjacency list representation for an Undirected Graph (G) 

In the case of the undirected graph with ‗n‘ vertices and ‗e‘ edges, this representation requires ‗n‘ head 
vertices and ‗2e‘ list vertices. The degree of any vertex in an undirected graph may be determined by 
just counting the number of a vertex in the adjacency list. The total number of edges in graph G may 
be determined in time O (n+2e). If n<<e then time complexity is O (2e) = O(e). 
 
 

 e1 e2 e3 e4 e5 
V1 0 0 1 0 0 
V2 1 0 0 0 0 
V3 0 1 0 1 0 
V4 0 0 0 0 1 

 e1 e2 e3 e4 e5 
V1 1 0 0 0 1 
V2 0 1 0 0 0 
V3 0 0 1 0 0 
V4 0 0 0 1 0 

V3 V4 

V2 V1 e1 

e2 e3 

e4 

e5 
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Example: 

 
 
 
 

 
  

Figure 9.18: Adjacency list representation for an Undirected Graph (G) 

Adjacency list representation for a Directed Graph (G’) 

In the case of directed graph number of head vertices ‗n‘ and a number of list vertices ‗e‘. The out-
degree of a directed graph of any vertex may be determined by counting the number of vertices on its 
adjacency list. The total amount of time can, therefore, be determined O (n + e). If n << e, then 
complexity is O(e). 

Example: 

 

 

 

Figure 9.19: Adjacency list representation for a Directed Graph (G) 

Inverse Adjacency list representation for a Directed Graph (G’) 

To determine the in-degree of a vertex of a directed graph another list is considered which is termed as 
an inverse adjacency list of a directed graph. 
 
 
 
 

 

Figure 9.20: Inverse Adjacency list representation for a Directed Graph (G) 

Advantages 

The adjacency list allows us to store the graph in more compact form, than adjacency matrix, but the 
difference decreasing as a graph becomes denser. Next advantage is that adjacent list allows getting the 
list of adjacent vertices in O(1) time, which is a big advantage for some algorithms. 

Disadvantages 

i) Adding/removing an edge to/from the adjacent list is not as easy as for adjacency matrix. It 
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requires, on the average (|E| / |V|) time, which may result in cubical complexity for dense graphs to 
add all edges. 

ii) The adjacency list does not allow us to make an efficient implementation if a dynamic change of 
vertex number is required. Adding a new vertex can be done in O (V), but removal results in O 
(E) complexity. 

Orthogonal List 

Alternatively, one could adopt a simplified version of the list structure called orthogonal list used for 
sparse matrix representation. Each vertex would now have four fields and would represent one edge.  

The vertex structure be would 
struct vertex  

{ 

   int head, tail; 

   struct vertex *hp, *tp; 

}; 

Example: 

 
 
 
 
 
 
 
 
 

Figure 9.21: Orthogonal list representation for a Directed Graph (G) 

Adjacency Multi-lists 

Adjacency multi-lists are an edge based, rather than vertex based in the graph representation. In the 
adjacency list representation of an undirected graph, each edge (vi, vj) is represented by two entries. 
One on the list for vi and the other on the list vj. As it is observed in some situation, it is necessary to 
be able to determine the second entry for a particular edge and mark that edge as already having been 
examined. This can be accomplished easily if the adjacency lists are actually maintained as multi-list. 

For each edge, there will be exactly one vertex, but this vertex will be in two lists. The vertex 
structure is 

struct vertex 

{ 

   int m; 

   int  v1, v2; 

   struct vertex *p1, *p2; 

};  

Mark(m ) 1st vertex(v1) 2nd  vertex(v2) 1st path(p1) 2nd  path(p2) 

V3 V3    V1     0        0 

V1 

V2 

V3 

Head 
Vertex 

V2 

 V1 V1    V2    0       0 

V2    V3        0       0 V2    V1      0       V2 

V1 V3 
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Example: 

 
 
 
 
 
 

 

List of edges: 

 Edge (1, 2) → N1 

 Edge (1, 3) → N2 

 Edge (1, 4) → N3 
 Edge (2, 3) → N4 

 Edge (2, 4) → N5 

 Edge (3, 4) → N6 

List of vertices\paths: 

Vertex 1:  N1  N2  N3 

Vertex 2:  N1  N4  N5 
Vertex 3:  N2  N4  N6 

Vertex 4:  N3  N5  N6 

 

 

 

 

 

Figure 9.22: Adjacency Multi-list representation for a Directed Graph (G) 

Algorithm for Adjacency Matrix Creation for A graph G 

In the following algorithm, N represents a number of vertices and Adj[][] is the adjacency matrix of the 
graph. Adj[i][j] is set to 1 if there is an edge between the vertices i and j else it is set to 0. 
Algorithm to create an adjacency matrix of a graph 

Algorithm: CREATE (G) 

[G is a given graph of N vertices] 

V1 V2 

V4 V3 

Edge(1,2) V1 

V2 

V3 

V4 

  V1      V2     N2     N4 
 
 

N1 

N2 

N3 

N4 

N5 

N6 

       V1      V3      N3        N4 
 
        V1       V4    0       N5 
        V2    V3         N5     N6 
 
        V2     V4        0       N6 

       V3    V4         0        0 
 

Edge(1,3) 

Edge(1,4) 

Edge(2.3) 

Edge(2,4) 

Edge(3,4) 
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1. Set N = number of vertices 

2. Repeat For I = 1 to N 

3.     Repeat For J = 1 to N 

4.         If I = J then   [avoid self-loop] 

                 Adj[I][J] = 0   

                 Else 

                 Adj[i][j] = 1 

           [End of If] 

       [End of Loop] 

   [End of Loop] 

5. Return 

Algorithm for Deletion of a vertex for A graph G 

Following algorithm describes the procedure for deletion of a vertex from a graph. If the vertex V is to 
be deleted, the status of Adj[I][V] is set to 0 and the status of Adj[V][V] is set to 0. 
Algorithm to delete a vertex from a graph 

Algorithm: Delete (G) 

[G is a given graph of N vertices] 

1. Set N = number of vertices 

2. Set V = vertex to be deleted 

3. Repeat For I = 1 to N 

4.     Adj[I][V]=0   

       Adj[v][V]=0 

   [End of Loop] 

5. Return 

Graph Traversal 

Graph traversal technique is used to reach to a vertex u from a vertex v of a graph G. There are two 
ways of traversing the graph. 

Depth First Search 

In a depth first search the vertex (v) explored first when a new vertex (u) is found the exploration of 
vertex v is stopped and the new vertex is then explored. After an exploration of all child vertices, the 
parent vortex again explored. 

Given an undirected graph G = (V, E) with n vertices and an array VISITED[n] initially set to 
zero, this algorithm visits all vertices reachable from s. G and VISITED are global. 
Algorithm to traverse a graph using depth first search  

Algorithm: DFS (G, s) 

[G is a given graph of N vertices, s is the source node] 

1. Set VISITED [s] = 1 

2. Visit s 

3. Repeat for each vertex v adjacent to s do 
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4.   If VISITED [v] = 0 then  

5.       Call DFS (v) 

     [End of if] 

   [End of For loop] 

6. Return  

Algorithm to traverse a graph using depth first search in non-recursive/iterative process. 

Algorithm: DFS (G, s) 

[G is a given graph of N vertices, s is the source node] 

1. Repeat for all vertices v of graph G do 

2.    Set VISITED [v] = 0 

   [End of loop] 

3. Initialize Stack STK to be empty 

4. Set VISITED [s] = 1 

5. Call PUSH (STK, s) 

6. While ISEMPTY(STK) = false do 

7.    Call POP(STK, s) 

8.    Visit s 

9.    Repeat for all vertices v adjacent to s do 

10.       If VISITED[v] = 0 then           

11.          Call PUSH (STK, v) 

12.          Set VISITED[v] = 1        

      [End of For loop] 

   [End of While loop] 

13. Return  

In case G is represented by its adjacency lists, then the vertices, w adjacent to v can be determined 
by following a chain of links. Since the algorithm, DFS would examine each vertex in the adjacency 
lists at most once and there are 2e list vertices, the time to complete the search is O (e). If G is 
represented by its adjacency matrix, then the time to determine all vertices adjacent to v is O (n). Since 
at most n vertices are visited, the total time is O (n2). 

Example:  

 

 

 
 
 
 

Figure 9.23: Depth First Search for a Directed Graph (G) 
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In the above example, the graph is traversed starting from vertex A to vertex F. In DFS recursive 
call is used, and recursion always uses stack data structure. So here, stack position is also given. 

Table 9.2: Depth First Search 

 
 
 

 
 
 
 
 
 
 
 
 
 
During DFS, directed graph edges can be classified into the following: 
Back edges: An edge (u, v) in which v is assumed as an ancestor of in the tree (though it may not 

be in proper order). Thus, a self-loop is considered as back edge. 
Forward edges: An edge (u, v) in which v is a proper descendant of u in the tree. These types of 

edges are known as forward edges. 
Cross edges: An edge (u, v) in which u and v are not an ancestor or a descendant of one another. 

Such type of edges is known as cross edges. 

Spanning Tree of Depth First Search  

In depth-first search sequence in which vertices of a graph G are visited can form a spanning tree of 
that graph G. Following is te DFS spanning tree of the above-mentioned graph G. 

 

 

 

 

 

 

 

Figure 9.24: Spanning tree of Depth First Search for a Directed Graph (G) 

Breadth First Search (BFS) 

In breadth first search we visit a vertex (v) first and then explore all its adjacent vertices and make 
them visited. A vertex (v) is said to be explored when all its adjacent vertices are visited. The newly 
visited vertex is put into the list of unexplored vertices. 

Operation Stack Display 

PUSH A A - 
POP A 
PUSH B, C, D 

B,C,D A 

POP D 
PUSH E 

B,C,E A, D 

POP E 
PUSH F 

B,C,F A, D, E 

POP F B,C A, D, E, F 
POP C B A, D, E, F, C 
POP B 
PUSH G 

G A, D, E, F, C, B 

POP G - A, D, E, F, C, B, G 

A 

D 

C 

B 

E 

F 

G 
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In BFS, a queue Q is used to implement unexplored vertices. A breadth first search of G is carried 
out beginning at vertex s. All vertices visited are marked as VISlTED[i] = 1. The graph G and 
array VISITED are global and VISITED is initialized to zero. 

Algorithm of Breadth First Search (BFS) 

Algorithm: BFS (G, s) 

[G is a given graph of N vertices, s is the source node] 

1. Repeat for all vertices v of graph G do 

2.    Set VISITED [v] = 0 

   [End of loop] 

3. Initialize queue Q to be empty 

4. Set VISITED [s] = 1 

5. Call ENQUE (Q, s) 

6. While ISEMPTY(Q) = false do 

7.    Call DEQUE(Q, s) 

8.    visit s 

9.    Repeat for all vertices v adjacent to s do 

10.       If VISITED[v] = 0 then           

11.          Call ENQUE (Q, v) 

12.          Set VISITED[v] = 1        

      [End of For loop] 

   [End of While loop] 

13. Return  

 

 

 

 

 

 

 

 

Figure 9.25: Traversal for Breadth First Search for a Directed Graph (G) 

In BFS, the queue data structure is used so here in the above example, the position of the queue is 
given for BFS traversal. 
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 Table 9.3: Breadth First Search 

 

 

 

 

 

 

 

 
 

 

 

 

Spanning Tree of Breadth First Search 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 9.26: Spanning tree for Breadth First Search for a Directed Graph (G)                                                                                                                                                                                    

Lemma 4:   The length of the shortest path from S to V is denoted by         Then, on completion of 
BFS dist[V] =        
Proof: The proof is based on induction taking the length of the shortest path. 
Consider the shortest path from S                                                                                                                                                                                                                                                                                                                                                                                                                                                 
to V, u be the predecessor of V and BFS processes it first among all such vertices. 
Thus,          =       +1        (i) 
When u is processed, then by induction we have   dist[u] =           (ii) 
Since V is a neighbour of u we set  
dist[V] = dist[u]+1    (iii) 
thus from equation (ii) 
dist[V]=       +1   (iv)      
from equation (i) we have 
dist[V]=        

Operation Queue(q) Print 

ENQUEUE  A A - 
DEQUEUE  A 
ENQUEUE  B, C, D 

B, C, D A 

DEQUEUE  B 
ENQUEUE  G 

C, D, G A, B 

DEQUEUE  C 
ENQUEUE  F 

D, G, F A, B, C 

DEQUEUE  D 
ENQUEUE  E 

G, F, E A, B, C, D 

DEQUEUE  G F, E A, B, C, D, G 
DEQUEUE  F E A, B, C, D, G, F 
DEQUEUE  E - A, B, C, D, G, F, E 

A 

D 

C 

B 

E 

F 

G G 

F 

E 

A 

D 

C 

B 



Graph | 9.21 

 

 

 

Table 9.4 Difference between Breadth First Search and Depth First Search 

Feature Breadth First Search Depth First Search 

Memory Space More space requires Less space requires 

Backtrack Backtracking is not required If the wrong path is followed, then 
backtracking is required. 

Speed Slow searches Fast searches 

Time We can reach goal early. If we follow, a wrong path then more 
time is required to reach the goal. Else, 
we can reach the goal faster than BFS. 

Complexity   O(V+E) O(V+E) 

Spanning Trees and Minimum Spanning Trees 

A subgraph T of an undirected graph G = (V, E) is a spanning tree if it is a tree that contains all the 
vertices of the graph G and has no cycle. 

There will be more than one Spanning tree of a graph. This is shown in the following diagram. 
 
 
  
 
 
 
 
 
  
 
 
 
 
 
 
 

Figure 9.27: (a) An undirected graph. (b, c, d, e) different spanning tree of the graph 

If the edges of a graph are weighted the graph is said to be ―weighted graph‖. For a weighted 
graph, cost of a spanning tree is measured by computing the sum of all the edges of that spanning tree. 

Lemma 5: The number of spanning trees of a graph is the value of any cofactor of the Laplacian 
matrix of G. 
Proof: Let L = L (G) be the Laplacian matrix of G with eigen values 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.  

The (i, j)-cofactor of a matrix M is by definition 

A connected 
Undirected Graph 

(a) 
(b) (c) 

(d) (e) 
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lxy= (−1)i+jdet M(i, j),  
Where M (I, j) is the matrix obtained from M by deleting row i and column j. Let lxy be the (x, y)-

cofactor of L. Note that lxy does not depend on an ordering of the vertices of G. We set N = t(G) and 
show that  

N = lxy= det(L + 1/n2. J) = 1/n. λ2 . . . λn for any x, y   V (G). 
Let L S , for S ⊂ V(G), denote the matrix obtained from L by deleting the rows and columns 

indexed by S, so that lxx = det L {x} . The equality N = lxx follows by induction on n, and for fixed n > 1 
on the number of edges incident with x. Indeed, if n = 1 then lxx = 1. Otherwise, if x has degree 0, then 
lxx = 0 since L{x} has zero row sums. Now, if xy is an edge, then deleting this edge from G decreases lxx 
by  

det L{x,y} , which by induction is the number of spanning trees of G with edge xy collapsing to a 
point, which is the number of spanning trees containing the edge xy. This shows N = lxx . Since the 
sum of the columns of L is zero, so that one column is minus the sum of the other columns, we have lxx 
= lxy for any x, y. 

Now, we consider the Laplacian polynomial  
µ(G, t) = det(tl-L) = tΠn

j=2 (t − λi) for graph G  then 
(-1)n-1 λ2….λnis the coefficient of t , that is   
d/dt(det(tl-L)) = Σxdel(tl-L{x}) 
Putting, t = 0 it is obtained that λ2….λn =Σxlxx= nN 
Finally, the eigenvalues of L+1/n2.J are 1/n and λ2….λn, so 
det(L + 1/n 2. J) = 1/ n( λ2 . . . λn.) 

Case Study: 

 
                                      
 
 
 

Figure 9.28: Undirected Graph G 

Degree Matrix D = [

    
    
    
    

]  

 

Adjacency Matrix A = [

    
    
    
    

]   Laplacian Matrix  L = D – A = [

      
       
       
      

] 

 
 Compute (2. 2) cofactor of matrix D-A 
(i, j) co-factor = (-1)i+j [det of (n-1) × (n-1) matrix obtained by removing i th row and jth                                                                                                                                                
Column] 

l2,2 = (-1)2+2[
    
     
    

]  = 2[    
   

] - (-1) [    
  

] = 2 (6-1) +  (-2) = 10 - 2 = 8 

V1 V2 

V3 V4 
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A number of possible spanning tree for the above-mentioned graph G is 8. 
 
 

 

 

 

 

 

 

 

Figure 9.29: Possible Spanning Tree of Undirected Graph G 

Minimal Spanning Tree 

A Minimal spanning tree of a weighted graph is the spanning tree that has minimum cost. That implies 
the sum of the cost of all the edges is guaranteed to be a minimum of all possible spanning trees in the 
graph. 

There are several different ways to construct a minimum spanning tree. 

Kruskal's Algorithm 

Let G = (V, E) be a graph with |v| = n. T is the set of minimum cost edges which is initially empty or 
null. N is the number of vertices of a graph G. Assume v and w be any two adjacent vertexes of G. 

Kruskal’s Algorithm for finding minimum spanning tree 

Algorithm: MST(G) 

[G is a given graph of N number of edges and V number of vertices] 

1. T = NULL 

2. Repeat step 3 to 5 while T contains less than (N-1) edges and 

   E not empty 

3.     Choose an edge (v, w) from E of lowest cost. 

4.     Delete (v, w) from E 

5.     If the edge (v, w) does not create a cycle in T then 

            Add(v, w) to T 

       Else 

            Discard (v, w) 

   [End of loop] 

6. If T contains fewer than (N-1) edges, then there is no spanning 

tree. 

7. Return 

V1 V2 

V3 V4 

V1 V2 

V3 V4 

V1 V2 

V3 V4 

V1 V2 

V3 V4 

V1 V2 

V3 V4 

V1 V2 

V3 V4 

V1 V2 

V3 V4 

V1 V2 

V3 V4 
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Example : 

 
 
 
 
 
 
 
 

 
E = {(v1, v2), (v1, v3), (v1, v5), (v2, v4), (v2, v5), (v2, v6), (v3, v5), (v3, v6)} 

  
 
 
 
 
  
 

 

 
 

Figure 9.30: Minimal Spanning Tree of Undirected Weighted Graph G by Kruskal‘s Algorithm 

T={(v1, v3), (v1, v2), (v2, v4), (v3, v5), (v3, v6)} 
Minimum cost=6 

Complexity of Kruskal‘s Algorithm is O(|E|log|E|) 

Prim’s Algorithm 

Suppose V = {v1, v2, v3, v4…vn} of a weighted undirected graph G = (V, E). The Prim‘s algorithm 
begins with a set V‟initialize to you, i.e. V‟ = {u}. It then grows a spanning tree one edge at a time. 
At each step it finds the shortest edge (u, v) that connects W and (V−V‟) and then adds v, the vertex in 
(V−V‟) to V‟. It repeats this step until V‟= V.  

E is the set of edges, which are to be extracted to obtain the minimum cost spanning tree.  
Prim’s Algorithm for finding minimum spanning tree 

Algorithm: MST(G) 

[G is a given graph of N number of edges and V number of vertices] 

1. Initialization E‟ to a null set i.e. E‟= NULL 

2. Select minimum cost edge (u, v) from E 

3. V‟ = {u} 

4. Repeat step 5 to 7 until V‟= V 

5.   Select lowest cost edge (u, v) such that u is in V‟ and  

     v is in (V- V‟) 

6.   Add edge to set E‟ i.e. E‟ = E‟ U {(u, v)} 

V1 1 1 

 
 1 

1 2 

V2 V3 

V5 

V6 
V4 

2 

1 1 

 
 1 

1 
1 

2 

2 

4 

3 

V1 

V2 V3 
V5 

V4 V6 
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7.   Add v to V‟ i.e. V‟ = V‟ U {v} 

   [End of loop] 

8: Return 

Example: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 9.31: Minimal Spanning Tree of Undirected Weighted Graph G by Prim‘s Algorithm 

Complexity of Prim‘s Algorithm is O (n + E    ), where n is a number of vertices and E implies 
a number of edges. 

Shortest Paths 

Shortest path problem states a way to find the path in a weighted graph connecting two given vertices u 
and v with the property that the sum of the weights of all the edges is minimized over all such paths. 

There are a few variants of the shortest path problem: 
1. Single-source shortest-path problem 
2. Single-destination shortest paths problem 
3. Single-pair shortest-path problem 
4. All-pairs shortest paths problem 
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Single-source shortest-path 

The starting vertex of the path is considered to be the source(S) vertex and the last vertex is the 
destination vertex. There are two ways for solving single source shortest path problem. 

Dijkstra’s Algorithm 

This algorithm finds the shortest path to a vertex to the rest of the vertices in a graph. First, it explores 
the shortest path from the source to a vertex nearest to it, then to a second nearest, and so on. The 
algorithm both directed and undirected graphs. The one constraint for this algorithm is that all the 
edges must be non-negative edges. 

G = (V, E) is a weighted connected graph,  
W = weight matrix 
S = set of visited vertices from source vertex to destination vertex, initially it is empty. 
s = source vertex, dist[v] = distance of vertex v from s 

Dijkstra’s Algorithm for single source shortest path 

Algorithm: Shortest_path(G, s) 

[G is a given graph of N number of edges and V number of vertices, s 

is the sourse vertex] 

1. Initialize S = {s} 

2. Initialize dist[s] = 0 

3. Repeat for all v € V-{s} 

     dist[v] = α 

   [End of loop] 

4. Repeat while S ≠ V 

5.  Find a vertex w € V-S such that dist[w] is a minimum distance 

6.  S=S U {w} 

7.      Repeat for all v € V-S 

8.            dist[v] = min(dist[v],dist[w] + W(w,v)) 

     [End of loop) 

   [End of loop] 

9. Return  

Example: 

 

   

 

 

 

 
Figure 9.32: Shortest Path Using Dijkstra Algorithm 
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 Table 9.5: Shortest Path By Dijkstra 

Bellman Ford Algorithm  

In this algorithm authors Richard Bellman, Samuel End and Lester Ford. Jr. have considered negative 
weighted edge that was not focused in Dijkstra‘s Algorithm. The algorithm finds the shortest path 
repeating a vertex of a graph. G=(V, E) is a directed graph with source S and weight function W:E->R. 
This algorithm returns a Boolean value TRUE if and only if the graph contains a negative weight cycle 
that is reachable from the source. 
Bellman Ford algorithm for single source shortest path 

Algorithm: Shortest_path() 

[G is a given graph of N number of edges and V number of vertices, s 

is the sourse vertex] 

1. Repeat step 2 for all vertices  

2.    dist[i] = cost[v, i] 

   [End of loop] 

3. Repeat step 4-6 for k = 2 to n-1 do 

4.  For each u such that u≠v and  

    u has atleast one incoming edge do  

5.       For each (i,u) in graph do 

6.          if dist[u]>dist[i]+cost[i,u] then 

                dist[u]=dist[i]+cost[i,u] 

7. Return 

Iteration S W dist[w] dist[v2] 

 

dist[v3] 

 

dist[v4] 

 

dist[v5] 

 

dist[v6] 

 

dist[v7] 

 

 { v1 } 
 

- - ∞ ∞ ∞ ∞ ∞ ∞ 

 { v1} 
 

- - 2 ∞ 1 ∞ ∞ ∞ 

1 { v1, v4} 
 

v4 1 2 3 1 3 9 5 

2 
{ v1, v4, v2} 

 
v2 2 2 3 1 3 9 5 

3 
{ v1, v4, v2, v3} 

 
v3 3 2 3 1 3 8 5 

4 
{ v1, v4, v2, v3, v5} 

 
v5 3 2 3 1 3 8 5 

5 
{ v1, v4, v2, v3, v5, v7} 

 
v7 5 2 3 1 3 6 5 

6 
{ v1, v4, v2, v3, v5, v7, v6 } 

 
v6 6 2 3 1 3 6 5 
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Example: 

 
 
 
  

 

 

  

 

 

 

 

 

 

Figure 9.33: Shortest Path Using Bellman Ford Algorithm 

The shortest path from source vertex v1 is v1 → v3 → v4 → v2 
Another shortest path from source vertex v1 is v1 → v2 → v5 

The complexity of this algorithm is O (VE). Since initialization takes O(V) and traversing each 
edge associated with the vertex O(E). So, total complexity O(VE) 

All Pairs Shortest Paths 

Consider a weighted digraph G = (V, E). Solving All Pair Shortest Path problem consists of computing 
the shortest distance or path in terms of cost/weight between every pair of vertices(u, v) where u, v V 
in the graph G. It is assumed that the graph does not contain any negative or zero weight cycle. 

Floyd-Warshall Algorithm 

Robert Floyd and Stephen Warshall had invented this algorithm. In a single execution of the algorithm, 
the shortest path between all pairs of vertices is discovered. This algorithm is based on dynamic 
programming. 

Cost[1:n,1:n] is the cost adjacency matrix of a graph with n vertices. A[i, j] is the cost of a shortest 
path from vertex i to vertex j. cost[i,j]=0, for 1<=i<=n. 

Floyd-Warshall Algorithm for all pairs shortest path 

Algorithm: Shortest_path(A, cost) 

[A[i, j] is the cost of a shortest path from vertex i to vertex j] 
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1. Repeat For I = 1 to N do 

2.   Repeat For J = 1 to N do 

3.      A[I][J] = cost[I][J] 

     [End of loop] 

   [End of loop] 

4. Repeat For k = 1 to N do 

5.   Repeat For I = 1 to N do 

6.     Repeat For J = 1 to N do 

7.         A[I][J] = min(A[I][J], A[I][K] + A[K][J]) 

       [End of loop] 

     [End of loop] 

   [End of loop] 

8. Return  

Example: 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.34: All Pair Shortest Path Using Bellman Ford Algorithm 
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Time complexity: The time complexity of this algorithm is easy to determine because the loop is 
independent of the data in the matrix. The cost computing statement will execute n3 time, so time 
complexity is O (n3). 

Travelling Sale’s Man Problem 

Before describing Travelling Salesman Problem, we need to know Hamilton circuit. 
Hamilton Circuit: A Hamilton circuit is a circuit that uses every vertex of a graph once. 

 
 
 
 
 
 
 

Figure 9.35: Hamilton Circuit 

In this example the Hamilton circuit is  
1. V5 V4 V3 V1 V2 V4 →V5 
2. V1 V2 V4 V5 V3 V1 
3. V1 V2 V4 V3 V5 V1 

Minimum cost Hamilton circuit: In a weighted graph, a minimum Hamilton circuit is a Hamilton 
circuit with the smallest possible weight. 
 
 
 
 
 
 
 
  

Figure 9.36: Minimal Cost Hamilton Circuit 

Solution By Brute Force Algorithm 

This algorithm describes the process of finding minimal cost shortest path from vertex i to vertex j. 

Algorithm: Bute_frce(A, cost)  

[A[i, j] is the cost of a shortest path from vertex i to vertex j] 

1. Choose A starting Point, here it is V1. 

2. List all possible Hamilton circuits with total cost. 

3. Find weight of each circuit. 

4. Find minimum Hamilton circuit with the lowest cost. 

5. Return 
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Table 9.6: Minimal Cost Hamilton Circuit 

Circuit Weight of circuit 

V1  V2  V4  V3  V1 14 
V1  V2  V3  V4  V1 14 
V1  V4  V2  V3  V1 16 
V1  V4  V3  V2  V1 14 
V1  V3  V4  V2  V1 14 
V1  V3  V2  V4  V1 16 

Travelling Sale’s Man Problem 

In this problem, the salesman needs to visit ‗n‘ cities in such a way that all the cities must be visited 
only once and at the end, he returns to the city from where he started with minimum cost. 

The following assumptions are taken for traveling salesman problem: 
 Complete Directed Graph 
 A non-empty finite set of vertices on a graph V where V = {1,2,3…….,n} 
 The set of edges is in E 
 The distance from i to j Cij   Cji 
 The series of line (S)               
 The weight of shortest paths that start at vertex i that through all vertices in S and ends at 

vertex 1.  
Algorithm: TSP (A, cost) 

[A is the adjacency matrix of the graph G, C is the distance matrix 

that consist of shortest distance between vertices, S is the subset 

of cities] 

1. Initialise distance matrix or cost matrix C[i,j] = 0 

2. Repeat until all vertices have discovered in V 

   a. Repeat for all subset SЄ{1,2,3,…n} and containing 1 

   b. Set C(S,1)= ∞ 

   c. Repeat for all jЄS nd j≠1 

        C(S,j)= min{C(S-{j},i)+d(i,j) for iЄS and i≠j}  

      [End of loop] 

     [End of loop] 

  [End of loop] 

3. Return minj C({1,2,3….n),j)+_d(j,i) 

 
 
 
 
 
 

Figure 9.37: Travelling Salesman Problem 
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As a number of vertices in this graph is 4. So, number of Hamilton circuit is (n-1)! = 3! = 6 
We need to find all possible circuits to find minimum one. 

Summary 

 A Graph consists of finite non-empty set of vertices and finite non-empty set of edges that 
connects these vertices. 

 A graph can be represented in memory using matrices and linked list. 
 A graph can be traversed either using Breadth First Traversal or Depth First Traversal. 
 A spanning tree is a subgraph of an undirected graph G = (V, E) if it is a tree that contains all the 

vertices of the graph G. 
  Minimum cost spanning tree of a weighted graph can be formed either by using Prim‘s or 

Kruskal‘s algorithm. 

Exercises 

1. Choose the correct alternatives for the following: 
i) Graph is a 

a) linear data structure 
c) Either (a) or (b) depending on situation 

b) non-linear data structure 
d) None of these. 

ii) A complete directed graph of 5 vertices has_______number of edges 
a) 5 b) 10 c) 20 d) 25. 

iii) Breadth-first-search algorithm uses …………… data structure 
a) stack b) queue c) binary tree d) dequeue 

iv) The number of edges in a complete graph with 'n' vertices is  
a) n ( n – 1 ) b) n ( n – 1 )/2 c) n2 d) 2n – 1. 

v) An adjacency matrix representation of a graph cannot contain information of 

a) vertices b) edges c) direction of edge d) parallel edge 
vi) A vertex of degree one is called 

a) Isolated vertex b) Pendant vertex c) Colored vertex d) Null vertex. 
vii) Any connected graph with x vertices must have at least 

a) x + 1 edges b) x – 1 edges c) x edges d) x/2 edges. 
viii) The adjacency matrix of an undirected graph is 

a) unit matrix b) asymmetric matrix c) symmetric matrix d) none of  these 
ix) BFS constructs 

a) a minimal cost spanning tree of a graph 
c) a breadth first spanning tree of a graph 

b) a depth-first spanning tree of a graph 
d) None of these. 

x) A digraph in which out degree and in degree are same is called  
a) balanced b) symmetric c) regular d)none of the above 

xi) Which is not a representation of a graph 
a) Adjacency matrix      b) Adjacency list c) Edge list d) All of the above 

xii) In adjacency matrix, parallel edges are represented by 
a)Similar column b) Similar row c) Not representable d) None of the above 

xiii) Spanning tree consist of 
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a) All vertices b) All edges           c)All vertices and all edges d) None of the above 

xiv) Self-loop in adjacency matrix is represented by 
a) 1st row all 1 b) 1st  column all 1 c) Diagonal all 1 d) None of the above 

xv) A graph G with n vertices  bipartite if it contains: 
a) n edges  b) a cycle of odd length  c) no cycle of odd length d)n2 edges 

xvi) vertex of in-degree zero in a directed graph is called 
a) Articulation point   b) sink c) isolated vertex d) root vertex 

xvii) The vertex, removal of which makes a graph disconnected, is called 
a) Pendant vertex          b) bridge c) articulation point 

xviii) Bellman-Ford algorithm is used for 
a) All pair shortest path b)Single source shortest path 
b) Single Destination Shortest Path d)None of the above 

2. What is a minimum spanning tree? Describe Huffman‘s algorithm. 
3. What is a complete graph? Show that the sum of the degree of all the vertices in a graph is 

always even. 
4. State two different data structure for representing graphs. 
5. Write down breadth first search algorithm for searching a graph. 
6. Write down the DFS algorithm for searching a graph. 
7. Write down a program to find out the shortest path using Dijkstra algorithm. 
8. Compare BFS and DFS. Discuss the two different ways of representing a graph. 
9. Draw the minimum cost spanning tree for the graph given below and find its cost. 

 
 

10. Show the result of running BFS and DFS on the directed graph given below using vertex 3 as a 
source. Show the status of the data structure used at each stage : 
 

 
 
 
 
 

11. A rat has entered a checkerboard maze through one corner, whose the white boxes are open 
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and black boxes represent obstacles. Develop an algorithm by which the rat can exit the maze 
through the opposite corner. Clearly, explain their presentation of the maze and any specific 
data structure you have used for the algorithm. 

 
***** 



 

 

 
 
 
 

 
 
 

SEARCHING AND SORTING 
 

"You think you know when you learn, are more sure when you can write, even more when you can 

teach, but certain when you can program."-Alan J. Perlis 

 
earching for items and sorting through items are tasks that we 
do everyday. We search for all occurrences of a word in a file 
in order to replace it with another word. We sort the items on 

a list into alphabetical or numerical order. Searching and sorting are 
also most common operations in computer programs. 

SEARCHING 

Searching refers to the operation of finding the location of the 
desired key element within some data structures. Data structures can 
include linked lists, arrays, search trees or hash tables. The search is 
successful if the item is found, and then returns its location; 
otherwise, the search is unsuccessful. The appropriate search 
algorithm often depends on the data structure being searched. 

There are many different searching techniques such as  
 Linear Search 
 Binary Search 
 Interpolation Search 

Linear Search 

Linear search, or sequential search is a method for finding the position of a particular key value in a 
list, where the search starts from beginning of the list and checking every element, one at a time in 
sequence until the desired key is found or the end of the list is reached.  

Algorithm of Linear Search 

Algorithm: LINEAR_SEARCH (A, N, KEY, LOC) 

[A is an array of N elements, Key is the searching key] 

1. Set I = 0 

2. Repeat while I < N and A[I] ≠ KEY 

 Set I = I + 1 

   [End of loop] 

3. If I < N then Set LOC = I 

   ELSE LOC = -1 

4. Return 

K E Y  F E A T U R E S  

 Linear Search 

 Binary Search 

 Interpolation Search 

 Bubble Sort 

 Selection Sort 

 Insertion Sort 

 Quick Sort 

 Merge Sort 

 Shell Sort 

 Heap Sort 

S 

CHAPTER 10 
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Linear search is the simplest searching technique. Suppose A is an array with N elements from A 
[0] to A[N - 1]. The linear search algorithm for finding the KEY item performs as below. 

At first, the algorithm compares KEY with the first element A[0] of the list. If KEY = A[0] then 
the search is successful and return the location. Otherwise, compares KEY with the second element 
A[1] , third element A[2], so on until the KEY is found or the end of the list is reached. Finally, after 
successfully searching return the location of the KEY by reference, otherwise in the case of 
unsuccessful search return -1. 

Now, the total 2n number of comparisons are required in the worst case for an unsuccessful 
search, but for the best case, it is only two. A sentinel element may be used to reduce the number of 
comparisons. The word sentinel comes from sentry (means guard). An extra memory location is used 
for sentinel element. At the beginning, put the searching key as a sentinel at the end of the list 
(A[N]=KEY), outside the valid array area. Now there is a guarantee of success, but it needs to be 
examined when the success occurs. When the searching key found at Nth position, then actually it is an 
unsuccessful search. Otherwise, the key is found at Ith position. 

Algorithm of Modified Linear Search 

Algorithm: LINEAR_SEARCH (A, N, KEY, LOC) 

[A is an array of N elements, Key is the searching key, LOC is the 

location of the KEY] 

1. Set A[N] = KEY 

2. Set I = 0 

3. Repeat while A[I] ≠ KEY 

 Set I = I + 1 

   [End of loop] 

4. If I < N then Set LOC = I 

   ELSE Set LOC = -1 

5. Return 

Therefore, in the modified algorithm, the number of comparisons in worst case has become n+1 
instead of 2n. The element can be found in the worst case for an unsuccessful search at the Nth 
location, so array bound checking is not necessary. 

Time complexity of Linear Search 

The linear search runs at a worst time as it makes at most and comparisons, where n is the length of the 
list. In the average case, the number of comparisons calculated by the average of all possible instances: 

f(n) = [1 + 2 + 3 + … + (n-1)]/n =1/n  = = = O(n) 

The best case occurs when the key is found at first position, so only one comparison is required 
and the worst case occurs when the key is found at the last position, hence n+1 comparisons are 
required. 

Linear Searching 
algorithm 

Best Case Average Case Worst Case 

O(1) O(n) O(n) 
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Binary Search 

Binary search is an efficient searching technique that operates on ordered list. Binary search is also 
known as logarithmic search or bisection. Binary search or half-interval search algorithm is a method 
for finding the position of a particular key value within a sorted list. 

Suppose A is an array, which is sorted in ascending order. The variables I and J denote the first 
and last location of the array respectively. Now binary searching is used for finding the KEY item 
within the sorted list: 

A[I], A[I + 1], A[I + 2]…A[J - 1], A[J] 
The Binary Searching algorithm is performed as below: 
At first, the algorithm compares KEY with the middle element A[MID] of the list, where MID is 

obtained by MID = (I + J) / 2. If KEY = A[MID] then the search is successful and return the location. 
Otherwise, sub-array is obtained as follows: 

i) If KEY < A[MID] then KEY item can appear only in the lower half of the array: 
A[I], A[I + 1], A[I + 2]…A[MID - 2], A[MID - 1] 
Therefore, we reset the value of J by using J = MID - 1 and start searching for lower half of 
the array. 

ii) If KEY > A[MID] then KEY item can appear only in the upper half of the array: 
A[MID + 1], A[MID + 2], A[MID + 3]…A[J - 1], A[J] 
Therefore, we reset the value of I by using I = MID+1 and start searching for upper half of the 
array. 

Finally, after successfully searching return the location of the KEY by reference, otherwise in the 
case of unsuccessful search return -1. 

Example: 

We want to search for 31 
[0] [1] [2] [3] [4] [5] [6] [7] [8] 
10 14 19 26 27 31 33 35 42 

(a) 

First, we shall determine the middle position of the array using this formula: 
MID = (I + J) / 2 = (0 + 8) / 2 = 4 
It is observed that the value to be searched is more than the A[MID] = 27, where MID = 4. 
As the value is more than 27 so, searching area is in the upper half of the area. 

[5] [6] [7] [8] 

31 33 35 42 

(b) 

Now, modify the start index of the sub-array: 
I = MID + 1 = 4 + 1 = 5 
MID = (I + J) / 2 = (5 + 8) / 2 = 6 
Target value is 31 which is less than the A[MID] = 33, so search zone will be left side of MID where, 
 J = MID – 1 = 6 – 1 = 5 
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Figure 10.1 (a-c): Binary Search 

Now, MID = (I + J) / 2 = (5 + 5) / 2 = 5 
Where the item is found at the A[MID]. Here, the searching procedure ends successfully. 

Algorithm of Binary Search 

Algorithm: BINARY_SEARCH(A, N, KEY, LOC) 

[A is an array of N elements, Key is the searching key, LOC is the 

location of the KEY] 

1. Set I = 0, J = N-1 

2. Repeat steps 3 and 4 while I<=J 

3. MID = (I+J)/2 

4.    If KEY = A[MID] then Goto step 5  

 Else If KEY < A[MID] Set J = MID-1 

 Else Set I = MID+1 

 [End of If] 

   [End of Loop]  

5. If A[MID] = KEY then Set LOC = MID 

   Else Set LOC = -1 

  [End of If] 

6. Return 

Time complexity of Binary Search 

In binary search, after each iteration, we try to discard half elements of the array. Suppose, the array 
size is 10 and A [0] ≤ A[1] ≤ A[2] ≤ A[3] ≤ A[4] ≤ A[5] ≤ A[6] ≤ A[7] ≤ A[8] ≤ A[9] 

Initially I = 0 and J = 9, therefore MID = (I+J)/2 = 4 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 10.2: Comparison Tree for Binary Search 
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Key element 
equals to A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] 

No. of 
Comparisons 3 2 3 4 1 3 4 2 3 4 

Average case = 29/10 ≈ 3 (approx) and worst case = 4 
Worst-case time complexity: In worst case, total number of comparisons can be calculated recursively 
 
         

T(n) =         

             

 
Where c is a constant  
Now,  
T(n)  = T(n/2) + c 

 = [T(n/4) +c] + c 

 = T(n/4) + 2c 

 : 

 = T(n/2
r
) + rc 

 = T(n/n) + clog2n   [when 2r= n then r = log2n] 
 = T(1) + clog2n   [hence T(1)=c] 
 = c + clog2n 

 = c[1 + log2n] 

 = O(    ) 

The number of comparisons in ⌈       ⌉ worst case is the depth or height of the binary tree. 
The number of comparisons in average case is approximately equals to the number of comparisons in 
worst case. The best case occurs when the key found at first comparison. 

Binary Searching 
algorithm 

Best Case Average Case Worst Case 

O(1) O(    ) O(    ) 

Table 10.1: Differences between Linear Searching and Binary Searching 

Linear Searching Binary Searching 

Linear Searching performed on sorted as well as 
a unsorted list of items. 

Binary Searching performed on sorted list only. 

Linear searching is performed with an array and 
linked list. 

Binary searching has only performed with an 
array, but not on linked lists. 

In average case, more comparisons are required. Comparisons are less in the average case. 
Complexity is in the average case and worst case 
O (n) 

The complexity is O (log n) in the average case 
and worst case.  

Limitation of the Binary Searching algorithm 

The algorithm requires two conditions: 
1. The list must be sorted 
2. One must have direct access to the middle element 

c, when n=1 

 

T(n/2) + c, Otherwise 



10.6 | Data Structures and Algorithms with C 

  

Binary searching cannot perform on linked lists, as in linked list we cannot get direct access to the 
middle element. 

Interpolation Search 

Another efficient searching technique that operates on ordered list is interpolation search. The list of 
elements must be sorted and the elements should be uniformly or near uniformly distributed on the list. 
Interpolation search estimates the position of the key value, taking into account the lowest and highest 
elements in the array and the length of the array. For example, if the key value is close to the highest 
element in the array, it is likely to be located near the end of the array.  

Suppose we are searching for a key K in the list A. 

Algorithm of Interpolation Search 

Algorithm: INTERPOLATION_SEARCH(A, N, KEY, LOC) 

[A is an array of N elements, Key is the searching key, LOC is the 

location of the KEY] 

1. Set I = 0, J = N-1 

2. Repeat steps 3 and 4 while I<=J 

3. MID = I + (KEY-A[I])(J-I)/(A[J]-A[I]) 

4.    If KEY = A[MID] then Goto step 5 

 Else If KEY < A[MID] Set J=MID-1 

 Else Set I = MID+1 

 [End of If] 

   [End of Loop]  

5. If A[MID] = KEY then  

 Set LOC = MID 

   Else Set LOC = -1 

  [End of If] 

6. Return 

Time complexity of Interpolation Search 

Interpolation search is slower than binary search for small arrays, as interpolation search requires extra 
computation, and the slower growth rate of its time complexity compensates for this only for large 
arrays. 

Interpolation Searching 
algorithm 

Best Case Average Case Worst Case 

O(1) O(log    ) O(n) 

SORTING  

Sorting refers to the operation of rearranging the data elements of a list in some specified order 
(ascending or descending). Many applications require sorting of a list of data elements. Given a list of 
data elements of an array of n elements (A1, A2, A3..An), which can be arranged in ascending 
(increasing) order or in descending (decreasing) order. Such that: 

Ascending order: A1 < A2 < A3 <...< An. 
Descending order: A1 > A2 > A3 >...> An. 
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In this chapter, we will discuss different sorting techniques to sort data elements of the array in 
ascending order. 

There are many different sorting techniques such as  
1. Bubble Sort 
2. Insertion Sort 
3. Selection Sort 
4. Quick Sort 
5. Merge Sort 
6. Heap Sort  
7. Shell Sort  
8. Radix Sort 
9. Bucket Sort 
10. Counting Sort 

Internal and External Sorting 

When the list of elements or records to be sorted are small enough to be accommodated in the internal 
(primary) memory of the computer, then it is referred to as internal sorting. Bubble sort, insertion sort, 
selection sort, merge sort, shell sort, quick sort, heap sort, radix sort is internal sorting techniques.  

On the other hand, if the list of elements or records to be sorted in files is accommodated in 
external storage devices (secondary memory, such as hard disks) then the sorting is referred to as 
external sorting. One example of external sorting is the external merge sort algorithm. 

In-Place and Stable Sorting 

The sorting algorithms can be divided into two main classes: In-Place and Stable. 
A sorting algorithm is in-place only if a constant amount of data elements of an input array is 

never stored outside the array. No additional storage is required and hence it is possible to sort a large 
list without the need of additional array for storage. Bubble sort, insertion sort, selection sort, Quick 
sort and Heap sort are in-place sorting algorithms. Merge-sort is not an in-place algorithm, as it 
requires extra array storage. 

7 31 32 51 8 52 2 1 33 

(a) 

1 2 31 32 33 51 52 7 8 

(b) 

1 2 32 31 33 52 51 7 8 

(c) 

Figure 10.3: (a) Unsorted list, (b) Stable sort, (c) Unstable sort 

A sorting algorithm is said to be stable if two elements that are equal (i.e. duplicate element) 
remain in the same relative order even after performing sorting. Suppose K1 and K2 are two keys such 
that k1 = k2, and POS (K1) < POS (K2) where POS (Ki) is the position of the keys in the unsorted list, 
then after sorting, POS (K1) < POS (K2) where POS (Ki) is the position of the keys in the sorted list. 
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Bubble sort and insertion sort can be implemented as stable algorithms, but selection sort cannot 
(without significant modifications). Merge-sort is a stable algorithm, but Quicksort and Heapsort are 
not stable algorithms. 

Online and Offline Sorting 

A sorting algorithm can start even if not all the elements are available at the beginning, is known as 
online sorting. Suitable when data items are arriving over a communication channel one by one. 
Insertion sort is an online sorting algorithm.  

An offline sorting algorithm cannot start unless all the data items are present at the beginning. All 
the elements must be available beforehand. Bubble sort, selection sort, quick sort, merge sort are 
offline sorting algorithm. 

Comparison based Sorting and Non-comparison based Sorting 

A comparison sort examines the list of data elements only by comparing two elements with a 
comparison (relational) operator. In comparison-based sorting access input array elements only by 
using comparisons. It is a general-purpose sorting method. Bubble sort, insertion sort, selection sort, 
merge sort, quick sort, heap sort, shell sort, etc. are examples of comparison-based sorting algorithms. 
It can be proved that every comparison-based sorting algorithm must have an average or worst case 
running time lower bound of Ω(n    ), that means comparison based sorting algorithms cannot 
perform better than O(n    ) in the average or worst case. 

Other sorting algorithms are not comparison sorts. As such, they are not limited by a Ω (n    ) 
lower bound. Bucket sort, counting sort, radix sort are examples of non-comparison-based sorting, they 
are faster than the Ω (n    ), although they have some limitations. Non-comparison-based sorting 
typically require specialized versions for each data-type and applicable only for a small range of 
elements. 

Bubble Sort 

Bubble sort (also known as sinking sort) is a simple sorting algorithm that performs comparisons on 
each pair of adjacent elements, the first two elements in the array, then between the second and third 
element, then the third and fourth element, and so on and interchanging them if they are in the wrong 
order. The algorithm is named in the way smaller elements "bubble" to the top of the list. 

Suppose A is an array with n elements from A [0] to A[N-1]. The bubble sorting algorithm 
performs as below. 

 In the first pass, compare each pair of adjacent elements A [0] and A[1], A[1] and A[2], A[2] 
and A[3], until A[N-2] and A[N-1] and arrange them in proper order by interchanging them if 
they are in the wrong order. Therefore, in this pass, N-1 comparisons are required and the 
trivially largest element is placed in the N-1 position of the array at the end of pass 1. 

 In the second pass, compare each adjacent element A [0] and A [1], A [1] and A[2], A[2] and  
A[3], until A[N-3] and A[N-2] and arrange them in proper order. Therefore, in this pass, N-2 
comparisons are required and the second largest element is placed in the N-2 position of the 
array at the end of pass 2. 

 In the third pass, compare each adjacent element A [0] and A [1], A [1] and A[2], A[2] and  
A[3], until A[N-4] and A[N-3] and arrange them in proper order. Therefore, in this pass, N-3 
comparisons are required and the third largest element is placed in the N-3 position of the 
array at the end of pass 3. 
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 Finally, in the N-1 pass, compare A [0] and A [1] and arrange them in proper order. 
Therefore, in this pass one comparison is required.  

 The first array element A [0] is the apparently smallest element of the array. 
Therefore, array A of N elements from A [0] to A [N-1] is sorted after N-1 passes. 

Example: 

Input Date: 14, 33, 27, 35 and 10 

[0] [1] [2] [3] [4] 
14 33 27 35 10 

(a) 

In the first pass compare each adjacent element and change their position if they are in reverse 
order. In this pass four comparisons and two interchanges are required: 33↔27 and 35↔10. At the end 
of the first pass largest element is placed in the N-1 position. So after first pass the array will be: 

[0] [1] [2] [3] [4] 
14 27 33 10 35 

(b) 

In the 2nd pass perform the same task. In this pass three comparisons and one interchange is 
needed: 33↔10. After 2nd pass, the array will be: 

[0] [1] [2] [3] [4] 
14 27 10 33 35 

(c) 

In the 3rd pass two comparisons and one interchange is needed 27↔10. After 3rd pass, the array 
will be as follows: 

[0] [1] [2] [3] [4] 
14 10 27 33 35 

(d) 

In the 4th pass one comparison and one interchange are needed 14↔10. After performing 4th pass 
the array will look like: 

[0] [1] [2] [3] [4] 
10 14 27 33 35 

(e) 

Figure 10.4 (a-e): Bubble Sort 

It is observed that after the 4th pass the array becomes sorted. So, the desired goal is achieved here. 

Algorithm of Bubble Sort 

Algorithm: BUBBLE_SORT(A, N) 

[A is an array of N elements] 

1. Set K = 1 
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2. Repeat steps 3 to 5 while K<N 

3. Set I = 0 

4. Repeat while I< = N - K then 

  a) If A[I] > A[I+1] then 

         Temp = A[I] 

   A[I] = A[I+1] 

   A[I+1] = Temp 

     [End of If] 

  b) Set I = I + 1 

  [End of Loop]  

5. Set K = K + 1 

   [End of Loop]  

6. Return 

Analysis / Time complexity of Bubble Sort 

Best case / Worst case / Average case time complexity: In all the cases, the total number of 
comparisons: 

f(n) = (n-1) + (n-2) +  … + 3 + 2 + 1  =  = = O(n2) 

Bubble Sort algorithm 
Best Case Average Case Worst Case 

O(n2) O(n2) O(n2) 

Refined Bubble Sort 

Bubble sort may run in O (n) on sorting the data and works well on nearly sorted data. Refined bubble 
sort uses an extra Flag variable to indicate when no interchange takes place during a pass. When 
Flag=False after any pass, then the list is already sorted and there is no need to continue. This may cut 
down the number of passes. However, while using such Flag variable, one must initialize, reset and 
compare the variable during each pass. 

Algorithm of Refined Bubble Sort 

Algorithm: BUBBLE_SORT (A, N) 

[A is an array of N elements] 

1. Set K = 1 

2. Repeat steps 3 to 5 while K<N 

3. Set I = 0, Flag = False 

4. Repeat while I<= N-K then 

  a) If A[I]>A[I+1] then 

         Temp = A[I] 

   A[I] = A[I+1] 

   A[I+1] = Temp 

   Flag = True 

     [End of If] 
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  b) Set I = I + 1 

  [End of Loop]  

 If Flag = False then Return 

5. Set K = K + 1 

   [End of Loop]  

6. Return 

Time complexity of Refined Bubble Sort 

Best-case time complexity: The best case occurs when the array is already sorted. Total number of 
comparisons: 
f(n) = n-1 = O(n) 

Average-case / Worst-case time complexity: In both cases total number of comparisons: 

f(n) = (n-1) + (n-2) +  … + 3 + 2 + 1  =  = = O(n
2
) 

 

Refined Bubble Sort 
algorithm 

Best Case Average Case Worst Case 

O(n) O(n2) O(n2) 

Although popular, bubble sort has poor performance on random data. This observation is justified 
as shown in the following figure where bubble sort is nearly three times as slow as insertion sort. 

 

Figure 10.5: Performance graph of Insertion, Selection and Bubble sort 






1

1

n

i

i
2

)1( nn



10.12 | Data Structures and Algorithms with C 

  

Insertion Sort 

The intuitive idea is to insert a new element in the sorted array one by one (known as card player sort). 
As the insertion operation is performed in this sorting technique, hence it is named as insertion sort. 
This algorithm is known as on-line sorting algorithm as it can start even if not all the elements are 
present at the beginning. 

Suppose A is an array with n elements from A[0] to A[N-1]. The insertion sort algorithm, inserts 
each element A[K] into the sorted sub-array A[0], A[1]],… A[K-1], so that after insertion the sub-array 
A[0], A[1], A[2],..A[K]  remains sorted. 

 The first array element A[0] by itself is trivially sorted.  
 In the first pass, A[1] is inserted into its proper position so that, A[0], A[1] is sorted.  
 In the second pass, A[2] is inserted into its proper position in A[0], A[1] , so that, A[0], A[1], 

A[2]  is sorted.  
 In the third pass, A[3] is inserted into its proper position in A[0], A[1], A[2] , so that, A[0], 

A[1], A[2], A[3] is sorted. 
 In the N-1 pass, A[N-1] is inserted into its proper position in A[0], A[1], A[2], A[3], A[N-2], 

so that, A[0], A[1], A[2],..A[N-1] is sorted. 

Algorithm of Insertion Sort 

Algorithm: INSERTION_SORT (A, N) 

[A is an array of N elements] 

1. Repeat steps 2 to 4 For K = 1 to N 

2.  Set Temp = A[K] and P = K - 1 

3.  Repeat while Temp < A[P] and P >= 0  

 a) Set A[P+1] = A[P] 

 b) Set P = P - 1 

  [End of loop] 

4. Set A[P+1] = Temp 

  [End of loop] 

5. Return 

In this algorithm, two types of comparisons are required: one comparison checks for the element 
being searched for, and another comparison is required to check the search remains within the bounds 
of the list being searched. The number of comparisons can be reduced into one by using a so-called 
sentinel. 

Generally, sentinels can be used in insert sort algorithms to make them more efficient, effectively 
halving the number of comparisons in a loop. We can use minimum element of the list as a sentinel. It 
takes three steps to sort the list:  

i) Find the minimum element of the list. 
ii) Interchange the minimum element with the 1st element of the list. 
iii) Finally, perform an efficient insertion sort on the list. 
However, finding the minimum element of the list requires extra time. Alternatively, we can use a 

special value as a sentinel that requires extra memory space. Assume that the array of size n actually 
stored from 1 to N positions and initialize A [0] with -∞. Here, -∞ used as a sentinel element, in C 
language that can be represented by INT_MIN. This ensures that whatever may be the value of Temp, 
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Pass A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] 

1 -∞ 60 80 20 50 10 15 95 90 

2 -∞ 60 80 20 50 10 15 95 90 

3 -∞ 20 60  80 50 10 15 95 90 

4 -∞ 20 50 60 80 10 15 95 90 

5 -∞ 10 20 50 60 80 15 95 90 

6 -∞ 10 15 20 50 60 80 95 90 

7 -∞ 10 15 20 50 60 80 95 90 

Sorted 

List: 
-∞ 10 15 20 50 60 80 90 95 

 

always A[0]≤Temp. 
Temp will be found among the location 1, 2… N, but never occupy the first position of the array. 

The first two array elements A[0] and A[1] by themselves are trivially sorted. 

Example: 

Input Data: 60, 80, 20, 50, 10, 15, 95 and 90 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 10.6: Insertion Sort 

Algorithm of Efficient Insertion Sort 

Algorithm: INSERTION_SORT (A, N) 

[A is an array of N elements] 

1. Set A[0] = -∞ 

2. Repeat steps 3 to 5 for K = 2 to N 

3.  Set Temp = A[K] and P = K-1 

4.  Repeat while Temp < A[P] 

 a) Set A[P+1] = A[P] 

 b) Set P = P - 1 

  [End of loop] 

5. Set A[P+1] = Temp 

  [End of loop] 

6. Return 

Time complexity of Insertion Sort 

Best-case time complexity: The best case occurs when the array is already sorted. Thus, only one 
comparison is required in each pass, which is between the newly inserted elements with the last 
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element of the sorted sub-list. In this case, total number of comparisons: 

f(n) = 1 + 1 + 1 + … + 1 =  = n-1 = O(n) 

Worst-case time complexity: The worst case occurs when the array is in reverse order. Thus, we need 
to compare with all the elements of sorted sub-list in each pass. In this case, total number of 
comparisons: 

f(n) = 1 + 2 + 3 + … + (n-1) =  = = O(n
2
) 

Average-case time complexity: In average case, as on an average, half of the elements of the sorted 
sub-list are less than the inserted element and half of the elements are greater. Thus, we need to 
compare half of the size of sorted sub-list in each pass. In this case, total number of comparisons: 

f(n) =  +  +  + … + (n-1) =  = = O(n
2
) 

Insertion Sort 
algorithm 

Best Case Average Case Worst Case 

O(n) O(n2) O(n2) 

Selection Sort 

In selection sorting algorithm, first select the smallest element in the list and place it in the first 
position. Then select the second smallest element in the list and place it in the second position, and so 
on. As selection operation is performed in this sorting technique, hence it is named as selection sort. 

Suppose A is an array with N elements from A[0] to A[N-1]. The selection sorting algorithm, 
select the Kth smallest element A [K] from the array and place into the K-1 position.  

 In the pass 1, select the position POS of the smallest element in the list of N elements and 
then swapping A[POS] and A[0] so that, A[0] is sorted.  

 In the pass 2, select the position POS of the smallest element in the sub-list of N-1 elements 
A[1], A[2]…A[N-1] and then swapping A[POS] and  A[1] so that, A[0], A[1] is sorted.  

 In the pass 3, select the position POS of the smallest element in the sub-list of N-2 elements 
A[2], A[3],… ,A[N-1] and then swapping A[POS] and  A[2] so that, A[0], A[1], A[2] is 
sorted.  

 In the pass N-1, select the position POS of the smallest element in the sub-list of 2 elements 
A[N-2], A[N-1] and then swapping A[POS] and  A[N-2] so that, A[0], A[1], A[2],…,A[N-2] 
is sorted.  

 The last array element A [N-1] is the apparently largest element of the array. 
Therefore, array A of N elements from A [0] to A [N-1] is sorted after N-1 passes. 

Algorithm of Selection Sort 

Algorithm: SELECTION_SORT (A, N) 

[A is an array of N elements] 

1. Repeat steps 2 and 3 for K=1 to N-1 

2. Call MIN(A, K, N, LOC) 

3. If A[K] ≠ A[LOC] then 
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 a) Temp = A[K] 

 b) A[K] = A[LOC] 

 c) A[LOC] = Temp 

   [End of If] 

4. Return 

Function: MIN (A, K, N, LOC) 

[A is an array of N elements, K is the starting index of sub-array, 

LOC is the the location the minimum element of the sub-array] 

1. Set MIN = A[K], LOC = K 

2. Repeat for J = K + 1 to N  

 If MIN > A[J] then 

    a) Set MIN = A[J] 

  b) Set LOC = J 

 [End of If] 

  [End of loop] 

3. Return  

Time complexity of Selection Sort 

Best case / Worst case / Average case time complexity: In the first pass, all the adjacent elements are 
compared and the largest element is placed in its proper position after (n-1) comparisons. In pass 2, 
second largest element is placed at after (n-2) comparisons. After (n-1) passes, total number of 
comparisons: 

f(n) = (n-1) + (n-2) +  … + 3 + 2 + 1  =  = = O(n
2
) 

Selection Sort 
algorithm 

Best Case Average Case Worst Case 

O(n2) O(n2) O(n2) 

Quick Sort 

The Quicksort (also called partition-exchange sort) is one of the fastest sorting algorithm known and it 
is the method of choice in most sorting libraries. As this sorting technique has best average behaviour 
among all the sorting methods, hence it is named as quick sort. Quicksort is based on the divide-and-
conquer strategy, which is developed by C.A.R. Hoare in 1959.  

In quick sort, we select an element from the array called pivot and then partitions the array into 
two sub-arrays.  So that, all the elements that are less than the pivot are placed in its left sub-array and 
all the elements that are greater than the pivot, are placed in its right sub-array. This is called the 
partition operation. After the partition, the pivot is in its final position. Next, we apply the same 
process recursively to two independent sub-array of smaller size. 

Suppose A is an array with N elements from A [0] to A [N-1]. At first, select the A[0] as a pivot, 
placed it in POS position in such a way that it partitions the array into two sub-arrays, all the elements 
that are less than pivot are placed from A[0] to A[POS-1] and all the elements that are greater than 
pivot are placed from A[POS+1] to A[N-1]. In the next step, apply the same process recursively to two 
sub-arrays A[0] to A[POS-1] and A[POS+1] to A[N-1]. 
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There are many variants of partition operation, mainly Hoare partition scheme and Lomuto 
partition scheme.  The Hoare partition scheme is more efficient than the Lomuto partition scheme.  

Example: 

Input Data: 54, 26, 93, 17, 77, 31, 44, 55 and 20. 
Let, 54 is the pivot element. The last element is denoted by L. and the first element is denoted by F. 

[0] [1] [2] [3] [4] [5] [6] [7] [8] 
54 26 93 17 77 31 44 55 20 

              ↑         ↑ 
 Pivot Last (L) 

(a) 

As the pivot element is greater than the last element, so a swapping (54↔20) is performed among 
them resulting in the following array. 

[0] [1] [2] [3] [4] [5] [6] [7] [8] 
20 26 93 17 77 31 44 55 54 

                                            ↑                                        ↑ 
                                              First (F)    Pivot 

(b) 

Now, read the array from left to right until an element is found to be more than pivot element. 
After swapping (93↔54), the array becomes: 

[0] [1] [2] [3] [4] [5] [6] [7] [8] 
20 26 54 17 77 31 44 55 93 

                                           ↑                  ↑                                  
                                              Pivot                           Last (L) 

(c) 

Read the array from right to left until an element is found to be less than pivot element. After 
swapping (54↔44) with the elements, the array becomes: 

[0] [1] [2] [3] [4] [5] [6] [7] [8] 
20 26 44 17 77 31 54 55 93 

                                                                          ↑                              ↑    
                                                                              First                         Pivot  

(d) 

Now, read the array from left to right until an element is found to be more than pivot element. 
After swapping (77↔54), the array becomes 

[0] [1] [2] [3] [4] [5] [6] [7] [8] 
20 26 44 17 54 31 77 55 93 

                                                                           ↑             ↑     
                                                                               Pivot      Last (L) 

(e) 
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Read the array from right to left until an element is found to be less than pivot element. After 
swapping (54↔31) with the element the array becomes 

0 1 2 3 4 5 6 7 8 
20 26 44 17 31 54 77 55 93 

                                                                                          ↑     
                                                                                      Pivot 

(f) 

Figure 10.7 (a-f) : Partition operation in Quick Sort 

Now, the pivot element is placed in the proper position. All the elements in left subarray are less 
than pivot element and all the elements in the right subarray are greater than pivot element. The same 
procedure is performed with both subarrays to sort the entire array. 

Algorithm of Quick Sort 

Algorithm: QUICK_SORT(A, F, L) 

[A is an array of N elements, F is the first position and L is the 

last position of the sub-array] 

1. If F >= L then Return 

2. Call PARTITION(A, F, L, POS) 

3. Call QUICK_SORT(A, F, POS-1) 

4. Call QUICK_SORT(A, POS+1, L) 

5. Return 

Function: PARTITION(A, F, L, POS) 

[A is an array, F is the first position and L is the last position 

of the sub-array, POS is the position of the pivot] 

1. Set I = F, J = L, POS = F 

2. Repeat steps 3 and 4 while TRUE 

3. a) Repeat while A[POS] <= A[J] and POS ≠ J 

 J = J - 1 

 [End of Loop] 

   b) If POS = J then Return 

   c)  A[POS] > A[J] then 

 i) Temp = A[POS], A[POS] = A[J], A[J] = Temp 

 ii) Set POS = J 

4. a) Repeat while A[POS] >= A[I] and POS ≠ I 

 I = I + 1 

 [End of Loop] 

   b) If POS = I then Return 

   c)  A[POS] < A[I] then 

 i) Temp = A[POS], A[POS] = A[I], A[I] = Temp 

 ii) Set POS = I 

   [End of Loop] 

 5. Return 
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Time complexity of Quick Sort 

Best-case time complexity: In Quick sort best case occurs when the partitions are as evenly balanced as 
possible: their sizes are almost equal, each partition has at most n/2 elements and the tree of 
subproblem sizes looks like the following figure. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 Figure 10.8: Subprogram size in Quick Sort for best case 

The total number of comparisons can be calculated recursively: 
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Worst-case time complexity: In quick sort worst case occurs when the array is already sorted or when 
the pivot chosen by the partition function is always either the smallest or the largest element in the n 

element subarray. Then one of the partitions will contain no elements and the other partition will 
contain n-1elements all but the pivot. Therefore, the recursive calls will be on subarrays of sizes 0 
and n-1 elements. The tree of subproblem sizes looks like the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

     ,   Figure 10.9: Subprogram size in Quick Sort for worst case 

The original call takes cn time for some constant c, the recursive call on n-1 elements takes c(n−1)  
time. The recursion call on n-2 elements takes c(n-2) time, and so on. 

In worst case, total number of comparisons can be calculated recursively: 
 
         

T(n) =         

             

Where c is a constant  
Now,  
T(n)  = T(n-1) + cn 

 = [T(n-2) +c(n-1)] + cn 

 = T(n-2) + c[n + (n-1)] 

 : 

 = T(n-r) + c[n + (n-1) + … +(n-r+1)] 

 = T(n-n+1) + c[n + (n-1) + … +(n-n+1+1)] [when r = n-1] 
 = T(1) + c[n + (n-1) + …+2]       [hence T(1) = c] 
 = c + c[n + (n-1) + … +2] 

 = c[n + (n-1) + …+2+1] 

 = c.n(n+1)/2 

 = O(n
2
) 

c,    when n=1 

T(n-1) + cn, Otherwise 

n 

0 
n-1 

0 n-2 

0 n-3 

2 

0 1 

Subproblem 
Size 

 

Total partitioning time for all 
Subproblems of this type 
 

cn 

c(n-1) 

c(n-2) 

c(n-3) 
: 

2c 
 
 
0 



10.20 | Data Structures and Algorithms with C 

  

In the worst case of quick sort n passes and each pass n number of comparisons are required. 
Average-case time complexity: In average case, not always get evenly balanced partitions, but always 
get at worst a 3-to-1 split on an average. Let, each time we get one partition with n/4 elements and 
other partition with 3n/4 elements. The tree of subproblem sizes and partitioning time looks like the 
following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.10: Subprogram size in Quick Sort for average case 

There are maximum         levels in the tree and partitioning time for every level at most cn. 
Therefore, if all the splits are 3-to-1 then total average running time is cn          =   

      
     = 

O(n    ). 

Quick Sort algorithm 
Best Case Average Case Worst Case 

O(n    ) O(n    ) O(n2) 

In the quicksort, the leftmost element of the array would often be chosen as the pivot element. 
However, for this reason, when the array is sorted then the time complexity becomes O (n2) in worst-
case, which is a rather common use-case. The problem was easily solved by either choosing a random 
index for the pivot or choosing the middle index of the partition or (especially for longer partitions) 
choosing the median of the first, middle and last element of the partition for the pivot. Then the time 
complexity will become O (n     ) in worst case. 

Merge Sort 

Mergesort algorithm is a classic example of recursive divide and conquer. This algorithm was invented 
by John von Neumann. As the merging operation is performed in this sorting technique, hence it is 
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named as merge sort. The Mergesort algorithm can be described in general terms as consisting of the 
following three steps: 

Suppose A is an array with N elements from A[0] to A[N-1]. 
1. Divide Step: If given array A has zero or one element, then return, as it is already sorted. 

Otherwise, divide A into two sub-arrays, A1 = A[0], A[1], ..., A[N/2-1] and A2 = A[N/2], 
A[N/2+1],…,A[N-1], each containing about half of the elements of A.  

2. Recursion Step: Recursively sort two sub-array A1 and A2. 
3. Conquer Step: Combine the elements back in A by merging the two sorted arrays A1 and A2 

into a single sorted sequence. 

Example: 

Input Data: 8, 6, 3, 5, 2, 7, 4 and 1. 

 
(a)  

 
(b) 

Figure 10.116: (a) Divide phase and (b) Combine phase 
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Algorithm of Merge Sort 

Algorithm: MERGE_SORT(A, F, L) 

[A is an array of N elements, F is the first position and L is the 

last position of the sub-array] 

1. If F < L then  

 a) Set MID = (F + L)/2 

 b) Call MERGE_SORT(A, F, MID) 

 C) Call MERGE_SORT(A, MID+1, L) 

 d) Call MERGE(A, F, L, MID) 

2. Return 

Function: MERGE(A, F, L, MID) 

[A is an array, F is the first position, L is the last position and 

MID is the middle position of the sub-array] 

1. Set I = F, J = MID + 1, K = F 

2. Repeat while I <= MID and J <= L 

 If A[I] < A[J] then 

 a) Set C[K] = A[I] 

 b) Set I = I + 1 

 c) Set K = K + 1 

 ELSE 

 a) Set C[K] = A[J] 

 b) Set J = J + 1 

  c) Set K = K + 1 

  [End of If] 

  [End of Loop] 

3. Repeat while I<= MID  

 a) Set C[K] = A[I] 

 b) Set I = I + 1 

 c) Set K = K + 1 

  [End of Loop] 

4. Repeat while J <= L 

 a) Set C[K] = A[J] 

 b) Set J = J + 1 

  c) Set K = K + 1 

  [End of If] 

  [End of Loop] 

5. Repeat For I = F to K 

 Set A[I] = C[I] 

6. Return  

Time complexity of MergeSort 

Best-case / Worst-case / Average-case time complexity: In Merge-sort the partitions are always evenly 
balanced, their sizes are equal, each partition has n/2 elements. Each of the subproblems of size n/2 
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recursively sorts two subarrays of size n/4. There are four subproblem of size n/4 and merging time for 
each will be cn/4, for a total merging time of 4.cn/4 = cn. The tree of subproblem sizes and total 
merging time for all subproblems looks like the following figure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.12: Subprogram size in Merge Sort 
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60 

50 

Heap Sort 

The Heapsort is more efficient and improved version of Selection sort. It also works by determining 
the largest element of the list, placing that at the end of the list, then continuing with the rest of the list. 
Heapsort is an in-place sorting algorithm, but it is not a stable sort. Heap-sort was invented by 
J. W. J.  Williams in 1964. 

The heapsort is based on a data structure called heap, a special kind of binary tree. Recall that, in 
heap, the left child of A[K] is stored at A[2*K] and right child is stored at A[2*K+1]. As this sorting 
technique uses heap data structure, hence it is named as heap sort. 

Once the data list has been made into a max-heap, the root node is guaranteed to be the largest 
element. When it is removed and placed at the end of the list, the heap is rearranged so the largest 
element remaining moves to the root.  

The operation for creating a heap is also referred as heapify helps to build a heap from a list of 
data items. Now, heapify operation has two variations: shift-up and shift-down.  

The shift-up process begins with an empty heap, then successive inserts elements in the tree and 
build a heap by the shift-up operation. Here, the building of heap is done using top-down approach.  In 
shift-up operation, if the newly inserted element is greater (max-heap) or smaller (min-heap) than its 
parent then it needs to be interchanged with parent. 

Example: 

Build the heap using shift-up process: 60, 50, 30, 10, 80, 70, 20 and 40 

Insert 60:   

  (a) 

Insert 50:  

 

 

(b) 

Insert 30: 

 

 
  

(c) 

Insert 10: 

 

 

 

  

(d) 

60 

30 

60 

50 

30 

60 

50 

10 
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Insert 80:  
 
 
 
 
 
 
 

   (e) 

 

Now, since 80 is greater than its parent node 50, so interchange with its parent node. 
 

 
 
 
 
 
 

 

  (f) 

Now, again 80 is greater than its parent node 60, so interchange with its parent node. 
 

 
 
 
 
 
 
 

(g) 

 
Insert 70:  

 

 

 

 

(h) 
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Now, since 70 is greater than its parent node 30, so interchange with its parent node. 
 
 
 
 
 
 
 
 

 
(i) 

 
Insert 20:       

 

 

 

 

(h) 

Insert 40: 

 

 

 

  

 

(i) 

Now, since 40 is greater than its parent node 10, so interchange with its parent node. 

 

 

 

 

 

 

(j) 

Figure 10.13 (a-j): Create Max-heap using shift-up 
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The shift-down process presents the entire input array as a complete binary tree, but non-heap and 
maintains it starts from the last non-trivial sub-heap (that is, the last parent node). Here, the building of 
the heap is done using a bottom-up approach and nodes are successively shifting downward to 
establish the heap property. The elements A[N/2+1], A[N/2+2],…, A[N], have no children, each of 
these elements is a sub-heap of size 1. Now, shift-down operation is performed for each I where I= 
N/2, N/2-1,..,1. Each of the two children of A[I] are the root of a sub-heap, so calling shift-down 
makes A[I] into the root of its own sub-heap.  In shift-down operation, if one of the child is greater 
(max-heap) or smaller (min-heap) than its children, then it needs to be interchanged with that child. 

 

 

 

 

 

 

(a)                                                                      (b) 

Figure 10.14: (a) Bottom-up (Shift-Down), (b) Top-Down (Shift-Up). The number in the circle indicates the 
maximum time of interchanges are  needed when building the Heap. 

This shift-down version is more efficient than shift-up where insertion operation is called N times. 
Note that, for N/2 elements we call shift-down for N/4 elements on a sub-heap rooted at A[I] and 
whose height is 1. For N/8 elements, we call shift-down on a sub-heap whose height is two, and so on. 
In the figure 10.14, the number in the circle indicates the maximum time of interchanges are needed 
when building the heap. The shift-down version needs a less number of interchanges than shift-up 
version. Therefore, typically shift-down version is used to build a heap. 

Now, heap sort algorithm can be divided into two parts. Suppose A is an array with N elements 
from A[1] to A[N]. 

i) In the first step, a max-heap is built from the N data items. As a result, the root A[1] is to be 
the largest element. 

ii) In the second step,  
 The interchange between A[1] and A[N]. Trivially, the largest element is placed in the N 

position of the array at the end of pass 1. Decreasing the heap size by one and shifting 
down the new first value A[1] into its proper position to rebuild the heap. 

 The interchange between A[1] and A[N-1]. The second largest element is placed in the 
N-1 position of the array at the end of pass 2. Decreasing the heap size by one and 
shifting down the new first value A[1] into its proper position to rebuild the heap. 

 The interchange between A[1] and A[N-2]. The third largest element is placed in the N-2 
position of the array at the end of pass 3. Decreasing the heap size by one and shifting 
down the new first value A[1] into its proper position to rebuild the heap. 

 Finally, the interchange between A[1] and A[2]. Decreasing the heap size by one and 
trivially, the smallest element is in A [1].  

Therefore, the array of N elements from A[1] to A[N] is sorted after N-1 passes. 



10.28 | Data Structures and Algorithms with C 

  

15 

30 10 

25 20 5 

15 

30 20 

25 10 5 

15 

30 10 

25 20 5 

30 

15 20 

25 10 5 

Example: 

Input Data: 15, 30, 10, 5, 25 and 20. 
In the first step a max-heap is built from the given data items. The list represented as a complete tree, 
but not ordered. 
  
  

 

 

 

(a) 

Start from the node at N/2 = 6/2 = 3 position, it has one greater child and has to be downwards 
gradually. Therefore, the 3rd element has to be interchanged with 6th element. 
 
  

 

 

 

(b) 

After processing 3rd element: 
 
  

 

 

 

(c) 

Now for the 2nd element as its children are smaller, so no downward movement is required. Next 
the 1st element to be processed, its left child is greater of the children. So, the 1st element has to be 
down to the left, interchanged with 2nd element. Now the right child of 2nd element is greater and it has 
to be moved down to the right, interchange with 5th element.  

 
  

 

 

 

(d) 

15 30 10 5 25 20 

15 30 10 5 25 20 

15 30 20 5 25 10 

30 15 20 5 25 10 
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Now the tree is ordered and the max-heap is built. 
 
  

 

 

 

(e) 

After building the max-heap, sorting can be started. The root is to be the largest element of the 
max-heap, interchange with the last element (6th element) of the heap. 
 
  

 

 

 

(f) 

Decrease the size of the heap by deleting last element.  
 
  

 

 

 

(g) 

Now to rebuild the heap, the 1st element (10) will be gradually moved downwards. As its left child 
is greater of the children, so, the 1st element has to be down to the left, interchanged with 2nd element. 

 
 
  

 

 

 

(h) 
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Again, its right child is greater of the children, it has to be down to the right, interchanged with 5th 
element. 
 
  

 

  

 

(i) 

Now again the tree is ordered and the max-heap is built. The root is to be the largest element of the 
max-heap, interchange with the last element (5th element) of the heap. 
 
  

 

 

 

(j) 

Decrease the size of the heap by deleting last element. 
 
  

 

  

 

(k) 

Now to rebuild the heap, the 1st element (10) will be gradually moved downwards. As its right 
child is greater of the children, so, the 1st element has to be down to the right, interchanged with 3rd 
element. 

 
 
  

 

 

 

(l) 
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Now again the tree is ordered and the max-heap is built. The root is to be the largest element of the 
max-heap, interchange with the last element (4th element) of the heap. 
  

 

 

 

 

(m) 

Decrease the size of the heap by deleting last element. 
  

 

 

(n) 

Now to rebuild the heap, the 1st element (5) will be gradually moved downwards. As its left child 
is greater of the children, so, the 1st element has to be down to the left, interchanged with 2nd element. 
  

 

 

(o) 

Now again the tree is ordered and the max-heap is built. The root is to be the largest element of the 
max-heap, interchange with the last element (3rd element) of the heap. 
  

 

 

(p) 

Decrease the size of the heap by deleting last element. 

  

  

 

(p) 

 
As the left child is less than 1st element, no downward movement is required, the interchange 1st 

element with the last element (2nd element) of the heap. 

5 15 10 20 25 30 

5 15 10 20 25 30 

15 5 10 20 25 30 

10 5 15 20 25 30 

10 5 15 20 25 30 
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5 

5 

10 

 
 

 

(q) 

Decrease the size of the heap by deleting last element. 
  

 

(r) 

5 is the last element of the heap, therefore the array is now sorted. 

Figure 10.15 (a-r): Heap Sort 

Algorithm of Heap Sort 

Algorithm: HEAP_SORT(A, N) 

[A is an array of N elements] 

1. Repeat For I = N/2 to 1  

     Call SHIFT_DOWN(A, I, N)   

   End of Loop] 

2. Repeat For I = N TO 2 

a) Temp = A[I] 

b) A[I] = A[1] 

c) A[1] = Temp 

d) Call SHIFT_DOWN(A, 1, I-1) 

   [End of Loop] 

3. Return 

Function: SHIFT_DOWN(A, K, N) 

[A is an array of N elements, K is the position of the element that 

shifted down] 

1. Set Parent = K, Child = 2* Parent and Temp = A[Parent] 

2. Repeat while Child<=N 

a) If Child < N and A[Child +1] > A[Child]  

then Set Child = Child + 1 

b) If Temp >= A[Child] Goto Step 3 

c) Set A[Parent] = A[Child] 

d) Set Parent = Child and Child = 2* Parent 

   [End of Loop] 

3. Set A[Parent] = Temp 

4. Return 

In the above algorithm, efficient shift-down version is used to build a heap by shifting operations 
instead of interchange operation. When an element gradually moves downwards, it is stored in a 
temporary variable and if one child is greater than its children, then stores the child to its original 

5 10 15 20 25 30 

5 10 15 20 25 30 
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position. After that, it is compared with its descendants. Finally, when none of the descendants is 
greater than it then restores it to the position of the predecessor. 

Time complexity of Heap Sort 

The build heap operation is run once and has O (n) time complexity. The shift-down version of heapify 
has O (    ) time complexity and is called n times. Therefore, the performance of this algorithm is O 
(n + n    ) which evaluates to O (n     ). 

Heap Sort algorithm 
Best Case Average Case Worst Case 

O (n    ) O (n    ) O (n    ) 

Radix Sort 

The radix sort is a sorting algorithm that sort integers by processing individual digits. Radix sort is not 
limited to integers because integers can represent strings of characters (e.g., names or dates) and 
specially formatted floating-point numbers. As this sorting technique is based on the radix of the data 
items, hence it is named as radix sort. Radix sort is an example of non-comparison based sorting. 

Two classifications of radix sorts are least significant digit (LSD) radix sorts and most significant 
digit (MSD) radix sorts. LSD radix sorts process the integer representations starting from the least 
significant digit and moves towards the most significant digit. MSD radix sort process from most 
significant digit to least significant digit. 

LSD radix sort is suitable for sorting variable length integers and fixed length strings. MSD radix 
sort is suitable for sorting variable length strings and fixed-length integer representations. LSD radix 
sort illustrated in the following example. 

Example: 

Input Data: 347, 142, 361, 423, 538, 126, 320, 549, 365 

The numbers are sorted in the first pass according to the (least significant digits) unit digits. 

Input 0 1 2 3 4 5 6 7 8 9 

347        347   

142   142        

361  361         

423    423       

538         538  

126       126    

320 320          

549          549 

365      365     

(a) 
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On the second pass, the numbers are sorted according to the ten digits. 

Input 0 1 2 3 4 5 6 7 8 9 

320   320        

361       361    

142     142      

423   423        

365       365    

126   126        

347     347      

538    538       

549     549      

(b) 

On the third and last pass, the numbers are sorted according to the (most significant digit) hundred‘s 
digits. 

Input 0 1 2 3 4 5 6 7 8 9 

320    320       

423     423      

126  126         

538      538     

142  142         

347    347       

549      549     

361    361       

365    365       

(c) 

  Figure 10.16: LSD Radix Sort 

Finally sorted numbers after the third pass: 
126, 142, 320, 347, 361, 365, 423, 538, 549 
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Algorithm of Radix Sort 

Algorithm: RADIX_SORT(A, N) 

[Q is an array of Circular Queue of size 10] 

[A is an array of N elements] 

1. Initialize array Q 

2. Set X = maximum element of A 

3. Count the digits of X and Set pass = number of digits 

4. Set DIV = 1 

5. Repeat For I = 1 to pass do 

6. Repeat steps For J = 0 to N-1 do 

7.   Set Remainder = A[J] mod (DIV *10) 

8.  Set Remainder = Remainder / DIV 

9.   Call INSERT(Q[Remainder], A[J]) 

 [End of Loop] 

10. Set DIV = DIV * 10 

11. Delete the elements from the queue and place them into A 

12. [End of Loop] 

13 Return 

Time complexity of Radix Sort 

The lower bound of the comparison-based sorting algorithms (Quick sort, Merge sort, Heap sort etc.) is 
Ω(n    ), i.e. they cannot be better than n     to sort n keys. 

Now, let there be k average digits in the input data for Radix sort, b is the base for representing 
numbers, for example, for the decimal system, b is 10. An LSD radix sort takes O(k*(n+b) or O(nk) 
time. Sometimes k is presented as a constant, which would make the radix sort better (for sufficiently 
large n) than the best comparison-based sorting algorithms. The space complexity of the radix sort is 
O(n+b) as it needs space for the original numbers and b buckets to place the n items.  

Radix Sort algorithm 
Best Case Average Case Worst Case 

O(nk) O(nk) O(nk) 

Shell Sort 

Shell sort can be seen as a generalized form of insertion sort. Donald Shell published the first version 
of this sort in 1959. As Donald Shell developed this sorting technique, hence it is named as Shell sort. 
The difficulty for insertion sort is that an element moves towards its final position very slowly, one 
position at a time and it cannot make a long jump quickly to reach its destination.  

 
 

h number of  independent 
sub-arrays 

A[0] A[h] A[2h] A[3h] …… 
A[1] A[h+1] A[2h+1] A[3h+1] …… 
A[2] A[[h+2] A[2h+2] A[3h+2] …… 
. 

. 

. 

. 

. 

. 

. 

. 

 

A[h-1] A[2h-1] A[3h-1] A[4h-1] …… 

Figure 10.17: h independent sub-arrays 
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Sort the sub-array using insertion sorting technique. The difference between two consecutive 
elements of a sub-array is h. In general, an array is to be sorted for several values of h, which forms a 
monotone decreasing sequence and the last value of h sequence must be always one. The last pass is 
same as an ordinary insertion sort. More specifically, a sequence of numbers are 

ht > ht-1 > ht-2 > … > h2 > h1 = 1 

to be decided and the array is to be sorted over t different passes using the method. The general 
idea in insertion sort, the predecessor of a [i] is always a [i-1], but in the shell sort predecessor of a [i] 
is a [i-h] for some value of h. 

Example: 

Suppose A is an array with 12 elements from A[1] to A[12]. Array elements are: 60, 80, 20, 50, 10, 15, 
95, 90, 45, 70, 25 and 30 

 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] 

Input Data 60 80 20 50 10 15 95 90 45 70 25 30 

After 
5-sorting 15 30 20 45 10 25 80 90 50 70 60 95 

After 
3-sorting 15 10 20 45 30 25 70 60 50 80 90 95 

After 
1-sorting 10 15 20 25 30 45 50 60 70 80 90 95 

Figure 10.18: Shell sort 

 At the first pass, 5-sorting (h = 5) performs insertion sort on the separate sub-arrays (A[1], A[6], 
A[11]), (A[2], A[7], A[12]), (A[3], A[8]), (A[4], A[9]) and (A[5], A[10]).  

 In the second pass, 3-sorting (h = 3) performs insertion sort on the separate sub-arrays (A[1], A[4], 
A[7], A[10]), (A[2], A[5], A[8], A[11]) and (A[3], A[6], A[9], A[12]).  

 In the third and final pass, 1 sorting (h = 1), is an ordinary insertion sort of the entire array (A[1], 
A[2], …A[12]). 

Algorithm of Shell Sort  

Algorithm: SHELL_SORT(A, N) 

[A is an array of N elements] 

1. Set GAP = LAST_GAP_SEQUENCE 

2. Repeat steps 3 to 8 while GAP >= 1 

3. Set I = GAP 

4. Repeat steps 5 to 7 For I = GAP to N - 1 

5.  Set Temp = A[I]  

6.  Repeat while J >= GAP and A[J-GAP] > Temp  

 a) Set A[J] = A[J-GAP] 

 b) Set J = J - GAP 
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  [End of loop] 

7. Set A[J+GAP] = Temp 

  [End of loop] 

8. Set GAP = PREV_GAP 

  [End of Loop] 

9. Return 

There are different gap sequences; each of them gives correct sort. However, the properties of thus 
obtained versions of Shell sort may be different. Some of the gap sequences are given in the following 
table. These are increasing in infinite sequences, whose elements less than n should be used in reverse 
order. 

Table 10.1: Gap Sequences 

Gap Sequence General Term (k≥1) Worst-case time complexity 

1, 4, 13, 40, 121, … (3k-1)/2 less than  3/n  O(n3/2) 

1, 3, 5, 9, 17, 33, …. 2k+1, prefixed with 1 O(n3/2) 

1, 3, 7, 15, 31, …. 2k-1 O(n3/2) 

1, 2, 3, 4, 6, 8, 9, 12… 2p3q O(nlog2n) 

Time complexity of Shell Sort 

Worst-case time complexity: The worst-case time complexity of the shell sort depends on the gap 
sequence (increment sequence). For the gap sequence 1, 4, 13, 40, 121,... the time complexity is 
O(n3/2). It is easy for calculating the previous term of this gap sequence using integer arithmetic:  

GAP = GAP / 3 

For the gap sequence 1, 2, 3, 4, 6, 8, 9, 12,… the time complexity is O(nlog2n). This is the best 
known performance compare to any other gap sequences, but it uses too many increments. Almost all 
the gap sequences gives the running time complexity O(n3/2), some other gap sequences, time 
complexity is O(n4/3). 

Therefore, neither tight upper bounds on time complexity nor the best increment sequence are 
known.  

Shell Sort algorithm 
Best Case Average Case Worst Case 

O(nlog2n) O(n    ) O(n3/2) 

Shell sort is unstable and it has a higher cache miss ratio than quick sort. However, its low 
overhead (does not use the call stack), relatively simple implementation, adaptive properties, and sub-
quadratic time complexity, shell-sort may be a feasible alternative to the O (n    ) sorting algorithms 
for some applications when the data to be sorted is not very large. 

Time complexity of Sorting Algorithms 

The following table covers the space complexity and time complexity in Big-O notation for different 
sorting algorithms commonly used in Computer Science. 
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Table 10.1: Space complexity and time complexity of different sorting algorithms 

Algorithm 
Time Complexity 

Stable 
Space Complexity 

Best Case Average Case Worst Case Worst Case 

Refined 
Bubble Sort 

O(n) O(n2) O(n2) Yes O(1) 

Selection Sort O(n2) O(n2) O(n2) No O(1) 

Insertion Sort O(n) O(n2) O(n2) Yes O(1) 

Quick Sort O(n    ) O(n    ) O(n2) No O(    ) 

Merge Sort O(n    ) O(n    ) O(n    ) Yes O(n) 

Heap Sort O(n    ) O(n    ) O(n    ) No O(1) 

Shell Sort O(n) O(n1.5)  
or  

O(nlog2n) 

O(nlog2n) No O(1) 

Radix Sort O(nk) O(nk) O(nk) No O(n+k) 

Bucket Sort O(n+k) O(n+k) O(n+k) Yes O(n+k) 

Summary 

 Linear or sequential search is the simplest searching technique. 
 Binary search finding the position of a particular value within the sorted list. 
 A sorting algorithm is said to be stable, if two elements that are equal remain in the same relative 

order even after performing sorting. 
 A sorting algorithm is in-place only if a constant amount of data elements of an input array is 

never stored outside the array. 
 The lower bound of the comparison-based sorting algorithms is Ω(n    ). 
 Bubble sort is a simplest sorting technique that compares each pair of adjacent items and 

interchanging them if they are in the reverse order. 
 Quicksort and Mergesort algorithm are based on recursive divide-and-conquer technique. 
 Radix sort is an example of non-comparison based sorting. 

Exercises 

1. Write a Radix sort algorithm. Radix Sort the following list: 
189, 205, 986, 421, 97, 192, 535, 839, 562, 674 

2. Describe Radix sort with an algorithm. Show that it works in linear time. 
3. Write the insertion sort algorithm. 
4. What do you mean by external sorting? How does it differ from internal sorting? 
5. Write an algorithm for sorting a list of numbers in ascending order using selection sort technique. 
6. Compare the complexity of insertion sort and selection sort. Find the time complexity of the 

quicksort algorithm. 
7. Compare the time complexity between Quicksort and Bubble sort algorithm. 
8. What is the advantage of binary search over linear search?  
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9. Write down the algorithm for Merge sort and show the operation of Merge sort with a suitable 
sample data. Show that the running time for the Merge sort algorithm is O(nlog2n) 

10. Explain with a suitable example, the principle operation of Heapsort. 
11. Write short notes on the following 

a) Radix sort 
12. Choose the correct alternatives for the following: 

i) A sort, which compares adjacent elements in a list and switches where necessary is 
 a) Insertion sort b) Heapsort c) Quicksort d) Bubble sort 
ii) The best-case time complexity of insertion sort is 
 a)  O (n2) b) O (n Log2n) c) O (n3) d) O (n) 
iii) A machine needs a minimum of 100 sec. to sort 1000 names by quick sort. The minimum 

time needed to sort 100 names will be approximately 
 a) 72.7 sec. b) 11.2 sec. c) 50.2 sec. d) 6.7 sec. 
iv) What will be the time complexity for selection sort to sort an array of n elements? 
 a) O(    ) b) O(n    ) c) O(n)  d) O(n2) 
v) Priority queue can be implemented using 
 a) Array b) Linked list c) Heap d) All of these 
vi) In quick sort, a best desirable choice of pivot for partitioning the list will be 
 a) First element of the list b) The last element of the list 
 c) Median of the list  d) A randomly chosen element of the list 
vii) Stability of sorting algorithm is important for 
 a) Sorting records on the basis for analysis  
 b) Worst-case performance of sorting algorithm 
 c) Sorting alphanumeric because they are likely to be the same 
 d) None of these 
viii) The drawbacks of the binary tree sort are remedied by the 
 a) Linear sort b) Quick sort c) Heap sort d) Insertion sort 
ix)  Sorting is useful for 
 a) Report generation  b) Minimizing the storage needed 
 c) Making searching easier and efficient d) Responding to queries easily 
x)  Which of the following sorting method will be the best if number of swapping done, is 

the measure of efficiency? 
 a) Bubble sort b) Selection sort c) Insertion sort d) Merge sort 
xi)  The order of the binary search algorithm is 
 a) n b) n2 c) nlogn d) logn 
 

*****





 

 

 

 

 

 

 

 

  HASHING  
 

“Part of the inhumanity of the computer is that, once it is competently programmed and working 

smoothly, it is completely honest.” -Isaac Asimov 

 
n the previous chapters, we have talked about different data 
storing and data accessing technique in the data structure. 
Irrespective of linear and non-linear data structure, the data are 

stored sequentially and searching of data in done in a sequential 
order. However, in some cases when the amount of data, then too 
large parallels accessing of memory space can increase the efficiency 
of the program. This can be achieved by Hashing. 

Hashing or hash addressing is the process of mapping a large 
amount of data items to a smaller table with the help of a hash 
function. Hashing is a searching technique, which is essentially independent of the number of 
elements. 

A hash table or Hashmap is a data structure, which uses a hash function to generate a key 
corresponding to the associated value. The advantage of this searching method is its efficiency to 
handle a large amount of data item in a given collection. 

The two primary problems associated with the creation of hash tables are: 
i) The efficient hash function is designed so that it distributes the index values of inserting 

objects uniformly across the table. 
ii) The efficient collision resolution algorithm is designed so that it computes an alternative 

index for an object whose hash index corresponds to an object previously inserted into the 
hash table. 

Hash Functions 

A hash function is a function or process that map variable length data to fixed size data. The value 
generated by the hash function is called hash value, hash codes, hash sum or simply hashes. A hash 
function is used to speed up table lookup or data comparison task such as searching for an item in a 
database, find redundant data in a database or large files. 

Definition: The fixed process to convert a key to a hash value is known as the hash function. 
Hashing function or hash function maps the key with the corresponding key address or location. It 

provides the key to address transformation. Hash function (H) is used by a hash table to compute a set 
(L) of a memory address from the set K of the key. Thus, hash function denoted as: H : K    

The mapping between the key value and the location is not easy to maintain. The hash function 
will generally map several different keys to the same index. If the desired record is in the location 
given by the index, then there will not be any problem. However, if the record is not found, then either 
another hash function or same hash function is used. 

K E Y  F E A T U R E S  

 Hash Functions 

 Linear Probing 

 Quadratic Probing 

 Double Hashing 

 Separate Chaining 

I 

CHAPTER 11 
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Choice of Hash Function 

The choice of the hash function is a very difficult job in hashing. It is not possible for selecting a 
perfect hash function, which is suitable for all different kinds of problem. There may be three possible 
ways to choose a hash function. 

 Perfect Hash Function: There is no feasibility of this type of hash function if the data is large 
because practically it is not possible for huge data. 

 Desirable Hash Function: For these hash function the address space should be small and 
collision should be kept very less or minimum. 

Criteria of Hash Function 

The two main criteria used in selecting a hash function are: 
 Function H should be very easy and quick to compute. 
 The function H should as far as possible uniformly distribute the hash address throughout the 

set L. So, there is a minimum number of the collision. 
Typical Hash functions are as follows: 

Division method 

Division method is the simplest and most common way of implementing a hash function for a large 
volume of data. The aim of this function is to compute the index of a hash table. 

The hash function H is defined by  
H(K) = K mod m,   [generates index value from 0 to m-1] 
or      
H(K) = (K mod m) + 1,   [generates index value from 1 to m] 
The number m is usually chosen to be a prime number (since this frequently minimizes the 

number of collisions). Here, the first function denotes the remainder when k is divided by m. The 
second function is used if the hash address ranges from 1 to m rather than from 0 to m-1. 

Example: 

Suppose key values are 3205, 7148, 2345 and table size 100. Select M = 97 is a prime number 
H (3205) = 3205 mod 97 = 4 
H (7148) = 7148 mod 97 = 67 
H (2345) = 2345 mod 97 = 17 

Mid squares method 

In mid square method, the key is multiplied by itself (i.e. k2) and select a number of digits from the 
middle of the result. How many digits you select will depend on your table size and the size of your 
hash key. If the square is considered as the decimal number, the table size must be a power of 10. The 
mid square method squares the key value and then takes out the middle digits of the square result. 

Example: 

Suppose key values are 3205, 7148, 2345 and table size 100. 
K:    3205        7148                     2345   
K2:     10272025                            51093904 5499025 
H(K):       72   93  99 



Hashing | 11.3 

  

Folding method 

The key K is partitioned into a number of parts, K1, K2, … Kr, where each part except possibly the last 
has the same number of digits as the required address. Then the parts are added together, ignoring the 
last carry.  

H(K) = K1 + K2 +….+ Kr    
Folding method can be classified into three types. 
 Pure Fold method 
 Fold Shifting method 
 Fold Boundary 

Pure Fold method: In this technique, parts of numbers are added together without any change. 

Example: 

Suppose key values are 3205, 7148, 2345 and table size 100. 
H (3205) = 32 + 05 = 37     
H (7148) = 71 + 48 = 19      [ignoring the last carry] 
H (2345) = 23 + 45 = 68 

Fold Shifting method: In this method the alternate parts are reversed before addition. 

Example: 

Suppose key is 1522756 
H (1522756) = 01   52   27  56 ( as the number contains 7 digits, so 0 is padded with left most digit) 
H (1522756) =10 + 52 + 72 + 56 = 36 [ignoring the last carry] 

Fold Boundary: Here, the first and last part of the number are reversed before addition. 

Example: 

Suppose key is 1522756 
H (1522756) = 01   52   27  56 ( as the number contains 7 digits, so 0 is padded with left most digit) 
H (1522756) = 10 + 52 + 27 + 65 = 54  [ignoring the last carry] 

Operations on Hash Table 

The hash functions used to perform different operations on hash tables. 

Table 11.1 Operations on Hash table  

Operation Description 

Insertion This operation inserts a  key in the Hash Table. 
Deletion This operation removes a key from the Hash Table. 

Searching This operation searches a desired key value within the Hash Table. 

Collision Resolutions 

Sometimes a hash function H may produce the same values rather than distinct values; it is possible 
that two different keys K1 and K2 will produce the same hash address. This situation is called 
Collision. Some methods must be used to resolve it. 

There are two broad ways of collision resolution technique. 
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i) Open Addressing /Closed Hashing (in array based implementation) 
ii) Separate Chaining / Open  Hashing (in array of linked list implementation) 
There are many ways of Open Addressing/ Close Hashing  
 Linear Probing 
 Quadratic Probing 
 Double Hashing or Rehashing 

Linear Probing 

Linear probing is a collision resolution technique that used to resolve the collision by sequentially 
searching the hash table for a first available location. We assume that the hash table T with m location 
is circular so that T(0) comes after T(m - 1). 

For insertion, a new record with key k is to be added to the hash table T, with a memory location 
H (K) = h, if an empty slot is available, otherwise try with h+1, h+2, … etc. for first available location. 

For searching a record R with key K, find out memory location H (k) = h, and then searches the 
table T by linearly searching the location, which h+1, h+2, … until finding R or meeting an empty 
location, which indicates an unsuccessful search. 

Insertion in a Hash Table 

In the linear probing, key will be inserted into the hash table if an empty slot is available. When a 
collision occurs, the key will be stored in the next available slot in the hash table, assuming that the 
table is not already full. This is done by linear search (i.e. Linear probe) for an empty slot from the 
collision slot. When end of table reached during linear search, the search will wrap around to the 
beginning of the table and continue from there. If an empty slot is not found, then the table is full. 

Example: 

Suppose input keys in hash table are {65, 12, 27, 38, 49, 80, 10, 35, 97} and hash table size is 10, 
where, hash key = key mod table size 

 
  
 
 
 

 

 
 

 
 
 
 
 
 

Figure 11.1a: Linear Probing without collision 

Index Value 

[0] 80 

[1]  

[2] 12 

[3]  

[4]  

[5] 65 

[6]  

[7] 27 

[8] 38 

[9] 49 

65 mod 10 = 5                               
12 mod 10 = 2                                                                                                                                                                      
27 mod 10 = 7                                                                                                                                  
38 mod 10 = 8                                                                                                                                       
49 mod 10 = 9 
80 mod 10 = 0 
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Add remaining keys 10, 35, 97 to 
the previous hash table: 
10 mod 10 = 0, collision occurs, 
inserted in the next slot. 
35 mod 10 = 5, collision occur, 
inserted in the next slot 
97 mod 10 = 7, collision occur, 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

Figure 11.1b:  Linear Probing Showing Collision 

Following algorithm describes the process of insertion of key in a hashtable using a Linear 
Probing collision resolution technique. The Flag array is used to indicate whether HashTable consist of 
key value at HashIndex. If HashTable has key at HashIndex then HashIndex of flag array is set to true 
else it is set to false. Initially flag array is initialised with false. 

Algorithm of Insertion in Linear Probing 

Algorithm: INSERT_LINEAR_PROBING (HashTable, Key, Size) 

[HashTable is an array represents a hash table, Key is a value to be 

inserted as key and Size is the size of the HashTable] 

1. Set HashIndex = Key mod Size 

2. Repeat while HashTable[hashIndex] ≠ NULL 

3. If HashTable[hashIndex] = NULL then 

       i)   Set HashTable[hashIndex] = Key 

       ii)  Set Flag[HashIndex] = true 

       iii) Return  

   Else 

       Set HashIndex =(HashIndex + 1) mod Size 

   [End of If] 

   [End of while] 

4. Return 

Searching in Hash Table 

In linear probing, searching a key in the hashtable with the slot at location H (K) = h, and continue 
linear search the adjacent slots in the table with h+1, h+2, … until finding either an empty slot, which 
indicates an unsuccessful search or finding a slot whose stored key. 

Following algorithm describes the process of searching a key in a hash table using a Linear 
Probing technique. 

Index Value 

[0] 80 

[1] 10 

[2] 12 

[3] 97 

[4]  

[5] 65 

[6] 35 

[7] 27 

[8] 38 

[9] 49 
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Algorithm of Searching with Linear Probing 

Algorithm: SEARCH_PROBING (HashTable, Key, Size) 

[HashTable is an array represents a hashtable, Key is a searching 

key and Size is the size of the HashTable] 

1. Set HashIndex = Key mod Size 

2. Set count=0 

3. Repeat while HashTable[hashIndex] ≠ Key and count<size   

      Set hashIndex = (hashIndex + 1) mod Size 

      count = count+1 

    [End of While] 

4. If HashTable[hashIndex] = Key then 

   Print “FOUND” 

   Else 

   Print “NOT FOUND” 

  [End If] 

5. Return 

Deletion in a Hash Table 

In the following algorithm, the process of deleting a key in a hashtable using a Linear Probing 
technique is described. Primarily searching a key in the hashtable with the slot at location H(K) = h, 
and continue linear search the adjacent slots in the table with h+1, h+2, … until finding either an empty 
slot, which indicates an unsuccessful search or finding a slot whose stored key. When the key is found, 
then that location is set to NULL and flag at that location is set to false. 

Algorithm of Deletion in Linear Probing 

Algorithm: DELETE_PROBING (HashTable, Key, Size) 

[HashTable is an array represents a hash table, Key is value to be 

deleted from HashTable and Size is the size of the HashTable] 

1. Set HashIndex = Key mod Size 

2. Set count = 0 

3. Repeat while HashTable[HashIndex] ≠ Key and count<size   

      Set HashIndex=(HashIndex + 1) mod Size 

      count = count + 1 

   [End of while] 

4. If HashTable[HashIndex] = Key then 

   i) Set HashTable[HashIndex] = NULL 

   ii)Set Flag[HashIndex] = false 

   Else 

   Print “NOT FOUND” 

  [End If] 

5. Return 

The main drawback of linear probing is that records tend to form primary cluster, that is a 
contiguous block of items and when a new key hashes in the cluster, then the cluster size increases and 
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the cluster need several attempts to resolve the collision. As a result increases the average search time 
for a record. Insertion and searching time depend on the length of the cluster. 

An example of primary clustering: 

Example: 

Suppose input keys {89. 18, 49, 58, 69} and table size is 10. Using Linear probing keys are inserted in 
the index shown in the following table. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 11.2: Primary Clustering in Linear Probing 

To overcome this limitation of linear probing another collision resolution technique is used which 
is known as Quadratic Probing. 

Quadratic Probing 

Suppose a record R with key K has the hash address H (K) = h. Then, instead of searching the location 
with address h, h+1, h+2….we search the locations by address 

h, h + 1, h + 4, h + 9, h + 16,….h + i2,………. 
If the number m of location in the table T is a prime number, then the above sequence will access 

half of the locations in T. Quadratic probing is a more efficient algorithm in a closed hash table, since 
it better avoids the primary clustering problem that can occur linear probing. 

With quadratic probing, there is no guarantee of finding an empty cell once the table gets more 
than half-full or even before the table gets half full if the table size is not prime. This is because at most 
half of the table can be used as alternative locations to resolve the collision. 

Quadratic probing leads to secondary clustering, when two keys do only have the same collision 
chain if their initial position is the same. As it turns out, secondary clustering prevents us from 
guaranteeing an insert if the table is greater than half full. 

Secondary clustering is less severe in terms of performance hit than primary clustering. It is a 
process to keep clusters formation by using Quadratic Probing. The idea is to probe more widely 
separated cells, instead of those adjacent to the primary hash site. 

 

 

Index Value 

[0] 49 

[1] 58 

[2] 69 

[3]  

[4]  

[5]  

[6]  

[7]  

[8] 18 

[9] 89 
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Example: 

Suppose input keys are {89, 18, 49, 58, 69}, hash table size is 10, where, hashkey = key mod table-size 
 

 

 

 

 
 
 
 

 

 

 

 

 

 

Figure 11.3: Linear Probing with cluster 

Using quadratic probing there is a probability of secondary clustering when more than half of the 
hash table is filled up. That means elements that hash to the same hash key will always probe the same 
alternative cells. 

Searching a key in a Hash Table using Quadratic Probing 

Following algorithm describes the process of inserting a key in a hash table using a Quadratic Probing 
technique. 

Algorithm of Searching in Quadratic Probing 

Algorithm: INSERT_QUAD_PROB(HashTable, key, size) 

[HashTable is an array represents a hash table, Key is a searching 

key and Size is the size of the HashTable] 

1. Set HashIndex = Key mod size 

2. If HashTable[HashIndex]= NULL then 

    a) Set HashTable[HashIndex] = Key 

    b) Set flag[HashIndex] = 1 

    c) Return 

   else 

    a) Set count = 0 

    b) Set index = HashIndex 

    c) Repeat while  HashTable[HashIndex] ≠ NULL 

       Set count = count + 1 

                   Set HashIndex = HashIndex + count * count 

Index Value 

[0] 49 

[1]  

[2] 58 

[3] 69 

[4]  

[5]  

[6]  

[7]  

[8] 18 

[9] 89 

89 % 10 = 9                                             
18 % 10 = 8 
49 % 10 = 9,  1 attempt needed 1

2
= 1 spot movement is 

required 
58 % 10 = 8,  2 attempt needed 2

2
 = 4 spots movement 

are required 
69 % 10 = 9,  2 attempt needed 2

2 
= 4 spots movement  

are  required 
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       Set HashIndex = HashIndex mod size 

     [End of Loop] 

    d) If HashTable[HashIndex] = NULL then 

        Set HashTable[HashIndex] = Key 

        Set flag[HashIndex] = 1 

       [End of If]      

   [End of IF] 

3. Return 

Double Hashing 

Double hashing is a popular collision resolution technique in open addressed hash table. It uses two 
hash functions:  

i) Like linear probing First hash function H is used as a starting address and 
ii) Second hash function H‘ is used to find out the interval to skip a variable amount. Suppose a 

record R with key K has the hash address H(K) = h and H‘(K) = h‘   m, then we search the 
location with the address 
h, h + h‘, h + 2h‘, h + 3h‘… 
If m is a prime number, then the above sequence will access all the location in the table T. 

Second hash function in double hashing has the following couple of requirements 
 It must never evaluate to 0. 
 Must make sure that all cells can be probed. 
A popular hash function for double hashing is Hash2(key) = R - (key % R) where R is a prime 

number that is smaller than the size of the table. 

Example:  

Suppose input keys {89, 18, 49, 58, 69} and table size:10 

 

 

 

 

 

 

 

 

  

Figure 11.4: Double Hashing 

Index Value 

[0] 69 

[1]  

[2]  

[3] 58 

[4]  

[5]  

[6] 49 

[7]  

[8] 18 

[9] 89 

Largest prime number less than 10 is 7 
Hash1(key) = key % 10 and Hash2(key) = 7- (key % 7) 
Hash1(89) = 89 % 10 = 9 
Hash1(18) = 18 % 10 = 8 
Hash1(49) = 49 % 10 = 9, collision occur 
Hash2(49) = 7 - (49 % 7) 
                 = 7 position move from [9] 
Hash1(58) = 58 % 10 = 8, collision occur 
Hash2(58) =  7- (58 % 7) 
                 = 5 position move from [8] 
Hash1(69) = 69 % 10 = 9, collision occur 
Hash2(69)  =7 - (69 % 7) 
                  =1 position move from [9] 
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Advantage: 

 It effectively eliminates clustering. 
 It can allow the table to become nearly full. 

Disadvantage 

The main drawback of this method is in the implementation of deletion. 

Insertion a key in a Hash Table using Double Probing 

Following algorithm describes the process of inserting a key in a hash table using a Double Probing 
collision resolution technique. 

Algorithm of Insertion in Double Probing 

Algorithm: INSERT_DOUBLE_PROB(HashTable, Key, Size) 

[HashTable is an array represents a hash table, Key is a searching 

key and Size is the size of the HashTable] 

1. Set HashIndex = Key mod size 

   Set Flag[HashIndex] = false 

2. If HashTable[HashIndex] = NULL then 

     a) Set HashTable[HashIndex] = Key 
  b) Set Flag[HashIndex] = true 

    else 

   i)  Set move = prime -(Key mod prime) 

   ii) set count = 1 

   iii)Repeat while  HashTable[HashIndex] ≠ NULL 

      a) Set HashIndex = HashIndex + count * move 

      b) Set HashIndex = HashIndex mod size 

      c) set count=count+1 

            [End of Loop] 
       iv)   Set HashTable[HashIndex] = Key 
    v) Set Flag[HashIndex] = true 

   [End of IF] 

3. Return 

Separate Chaining 

In this technique, each bucket is independent and has the same sort of list of entries with the same key 
value. The time for hash table operation is the time to find the bucket, in addition, the time for the list 
operation.  

Suppose, the hash table contains m slots. Each slot in the hash table contains a pointer to a linked 
list (separate chain) and the list stores the elements hashed to that slot. Hence, this method is known as 
Separate Chaining. A new key can be placed anywhere within a chain, as no ordering among the keys 
is used. As such, the new node is inserted at the end of a chain. 

The hash table containing m pointers can be defined as follows: 
node *Hash[m]; 
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Example: 

Suppose input keys are {20, 10, 1, 44, 64, 36, 30, 17, 46} and hash function h(K) = K mod 10. 

 
 

Figure 11.5: Separate Chaining 

The main drawback to chaining is that one needs more memory spaces for the link field and there 
are m memory slots for the pointer array. An additional disadvantage is that traversing a linked list has 
poor cache representation. 

 Cost is proportional to the length of the list: Cost in terms of time complexity is proportional 
to the length of the list. 

 Worst case: If the hash function is not efficient then it generates same hash key that increases 
the length of one list. 

 M too large: if the value of m is too large then the number of chains becomes a more and 
more chain will be empty. 

 M too small: If the value of m is too small, that increase the length of the list. 

Table 11.2: Type of Collision Resolution Technique 

Feature Linear Probing Quadratic Probing Double Hashing 

Efficiency Fastest among three. Easy to implement and 
deploy 

Make more efficient use 
of memory 

Probe use Use few probes. 
Uses extra memory for 

links and it does not probe 
all locations in the table. 

Use few probes, but 
take more time. 

Demerit Primary clustering is a 
limitation. 

Secondary clustering is the 
limitation. 

More complicated to 
implement. 

Computing Interval The interval between 
probes is fixed and it is 1. 

The interval between 
probes increases 

proportionally to the hash 
value. 

The interval between 
probes is computed 

using the second hash 
function. 

[0]  

[1]  

[2]  

[3]  

[4]  

[5]  

[6]  

[7]  

[8]  

[9]  

 36 

 20  10  30 

  1 

 46 

 44 

 17 

 64 

hashkey = key % table size 
0=20%10 
0=10%10 
1=1%10 
4=44%10 
4=64%10 
6=36%10 
0=30%10 
7=17%10 
6=46%10 
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Problems for which Hash Tables are not suitable are: 

 The problem for which data ordering is required. 
 Problems having multi-dimensional data. 
 Prefix searching if keys are long and of variable length. 
 The problem that has dynamic data. 
 The problem in which data does not have any unique key. 

Advantages of Hash Table 

 It can efficiently handle a large volume of data. 
 The speed of searching a data item increased as parallel searching can be applied here. 
 Look up cost may be reduced by proper hash function, hash table size and internal data structure. 

Disadvantages of Hash Table 

 Hash table implementation is more difficult than search tree. 
 Hash table does not allow duplicate keys. 
 In some cases, the cost of a good hash function is more than that of the search tree. 
 For a dynamic hash table cost of insertion and searching of the element in the hash table is more. 
 If collision occurs very frequently in the hash table then the efficiency of hash table degrades. 

Load Factor 

The performance of hash table depends on two factors, initial capacity and load factor. Initial capacity 
is the number of cells in the hash table. A Load Factor (α) of a hash table is defined as the ratio of the 
number of elements (n) in the hash table to the table size (tsize). 

α = n/tsize 

Load Factor is a measure which decides when exactly to increase the hash table capacity, so that 
get and put operation can still have O (1) complexity.  

For linear probing α tends to 1 (0 ≤ α ≤1), that implies collision probability is higher in linear 
probing. Load Factor tends to zero (0) implies that the proportion of unused space on hash table is 
increasing. However, there is no necessary reduction in search cost. The result is wasted memory. 

Generally, the default load factor (0.75) indicates better performance for a hash table. The 
expected number of entries in the hash table and its‘ load factor should be considered when the initial 
capacity of the hash table is defined. If the initial capacity is more than the maximum number of 
entries divided by the load factor, no rehash operation will ever occur. 

Summary 

 Hashing is one of the most suitable techniques for storing and retrieving data when data volume is 
more than the storage volume. 

 The choice of best hash function depends on the application. 
 Collision resolution is one of the key feature of hashing process. 

Exercises 

1. What do you mean by hashing? What are the applications where you will prefer hash tables to 
other data structures?  

2. Why do the hash functions need to be simple?  
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3. What do you mean by a collision? How is it handled? Discuss two collision resolution techniques 
and compare their performance. 

4. What is the primary advantage of hashing over deterministic search algorithms? 
5. Why is hashing referred as a heuristic search method? 
6. Explain with a suitable example the collision resolution scheme using linear probing with open 

addressing. 
7. Choose the correct alternatives for the following: 

i) The ratio of items present in the hash table, to the total table size, is called 
 a) Balanced factor  b) Load factor c) Item factor d) None of these 
ii) What causes a collision? 
 a) The program you are running crashes b) There are too many hash keys in the array 
 c) Two hash keys are the same d) The program is out of the memo 
iii) What does hashing do?  
 a) Delete old files b) Create new files 
 c) Improve the air quality of the room d) None of the above 
iv) How is a hash key computed? 
 a) Long division b) Subtraction 
 c) Random number generation d) Modulo division 
v) What can be done to compute the hash key value of a string? 
 a) Convert them all to their ASCII values  
 b) Generate random numbers for the letters every time 
 c) a and b only  
 d) Give them each a value according to their place in the alphabet 
vi) What is a restriction of the regular 'Direct Address Tables'? 
 a) The range of the key must be severely bounded 
 b) It takes up too much memory on the hard drive 
 c) The range of the key is unlimited. 
 d) It is far too slow 
vii) What is the hash key value of ‗Donaldson‘ if you assign each letter its corresponding 

number in the alphabet (i.e. f = 6) and if you use 9 as the divisor? 
 a) 12 b) 3 c) 7 d) 9 
viii) The goal of hashing is to produce a search that takes 
 a)  O(1) time b) O(n2) time c) O(logn) time d) O(nlogn) time  

*****





 

 

 
 
 
 

 
 
 

FILE STRUCTURE  
 

"The most beautiful thing we can experience is the mysterious. It is the source of all true art and 

science."-Albert Einstein 
 

n computing, a  file system  is a method for storing and 
organizing computer files and the data they contain to 
make it easy to find and access them. File systems may 

use a data storage device such as a hard disk or CD-ROM 
and involve maintaining the physical location of the files, 
they might provide access to data on a file server by acting 
as clients for a network protocol. 

ELEMENTS OF FILE SYSTEM 

There are four building blocks of the file system. 
 Field:  Basic element of data contains a single value fixed or variable length 
 Record:  A collection of related fields that can be treated as a unit by some application program 

fixed or variable length. 
 File: a collection of similar records treated as a single entity may be referenced by name access 

control restrictions usually apply at the file level. 
 Database: It is a collection of related data. The relationships among elements of data are explicit. 

It is designed for use by a number of different applications consists of one or more types of files. 

Needs of File Management System 
File Management System is essential for managing the data in a file. An optimized file management 
system is required to manipulate the data in the file. It provides support to a variety of storage device 
type. It also provides a set of I/O interfaces routine to user processes. 

File System Architecture 
 
 
 
 

 

              

 

K E Y  F E A T U R E S  

 File system 

 Elements of File System 

 Software Architecture of file system 

 Objective of file management system 

 Category of file Organization 

I 

CHAPTER 12 

User Program 

 
Basic I/O superviser 

Pile Sequential Index Sequential Index Hashed 

Basic File System 

Disk Device Driver Tape Device Driver 

          Logical I/O 

Figure 12.1: Architecture of File system 
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Device Driver: It is the lowest level component of the file system that directly communicates with 
hardware devices. It is responsible for I/O operation on a device. It provides an interface for the I/O 
peripherals to communicate with the operating system of the computing device. 
Basic File System: This component of the file system is considered as the interface between the 
memory device and the environment outside. The access methodology of secondary memory is defined 
by this interface. The memory block size, placement of memory block in secondary memory is also 
described by the basic file system. Buffering in main or primary memory is also the task of this file 
system. 
Basic I/O Supervisor: This component is responsible for all I/O initiation and termination process. It 
controls the scheduling disk and tape access to optimize performance. I/O buffers are assigned and 
secondary memory is allocated by this I/O Supervisor. 
Logical I/O: It presents a logical view of devices. Details of hardware devices and error handling are 
made hidden from the application. It optimise the use of I/O devices and CPU. Sharing and scheduling 
of devices are also done by logical I/O component of the file system. 

File Organization Type 

The basic file operations that are performed on files are  
a) Insertion of record 
b) Deletion of records 
c) Manipulation of records 
d) Retrieval of records 
File organization is defined as the activity of planning data records onto a storage medium in such 

a way as to facilitate ease of access to the stored data records. The effective file organization is 
required to reduce file access time for needed information, to store a large quantity of data records in 
the minimum space possible, to speed up computerized information storage and retrieval process, and 
to handle several sets of files using a hierarchy of storage device. Selection of the type of file 
organization is to be chosen depends upon several factors: 

 Type of application 
 The method of processing for updating files 
 The size of the file 
 The inquiry capabilities 
 The volatility 
 Response time 

Category of file organization 

There are many ways of organizing the records in a file. Depending on the process of records are 
organized the file organization is categorized into various ways. The following figure describes the 
taxonomy of file organization: 
 

 

  

 

File Organization 

Figure 12.2: Taxonomy of File Organization 

Sequential File 
organization 

Heap File 
organization 

Index Sequential 
File organization 

Hash File 
organization 
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Sequential File Organization 

In a sequential file organization the records are stored by maintaining an order either descending or 
ascending order determined by the key field. Sequentially organized files that are processed by the 
computer system are normally stored on storage media such as magnetic tape, punched paper tape, 
punched cards or magnetic disks. To access these records, the computer must read the file in sequence 
from the beginning. During searching of a record from a file, each record is examined sequentially 
until and unless the desired key field is matched. This method is suitable for taking backup for a 
database file where all the records should be processed at one time. 

Advantages  

 Simple to understand approach. 
 Easy to organize, maintain and understand. 
 Loading a record requires only the record key. 
 Efficient and economical if the activity rate, i.e. the preparation of file records to be processed is 

high. 
 Relatively inexpensive I/O media and devices may be used. 
 Errors in file remain localized. 
 Files may be relatively easy to reconstruct since a good measure of built-in backup is usually 

available. 

Disadvantages 

 Random inquiries are usually impossible to handle. 
 Data redundancy is typically high since the same data may be stored in several files sequenced in 

different ways. 
 The entire file is needed to be processed even when it is not required. 
 Increase time complexity during searching for a single record. 

Heap File Organization 

It is the simplest file organization where the records are stored without any order. As the records are 
inserted they are stored in that manner. A new record is inserted in the last page of the file; if there is 
insufficient space on the last page, a new page is added to the file. This makes insertion very efficient. 
However, as the heap file does not maintain any order so the records are retrieved using a linear search.  
A linear search involves reading pages from the file until the required is found. This makes retrievals 
from heap files that have more than a few pages relatively slow unless the retrieval involves a large 
proportion of the records in the file. During deletion of a record from a heap file, the required page first 
has to be retrieved, the record marked as deleted, and the page written back to disk. The space with 
deleted records is not reused. Consequently, performance progressively deteriorates as deletion occurs. 
This means that heap files have to be periodically reorganized by the Database Administrator (DBA) to 
reclaim the unused space of deleted records.  

Heap files are one of the best organizations for bulk loading data into a table, as records are 
inserted at the end of the sequence; there is no overhead of calculating what page the record should go 
on.  

Advantage 

 It is useful when we deal with the bulk of data at a time. 
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 The relation is only a few pages long. In this case, the time to locate any tuple is Short, even if the 
entire relation has been searched serially. 

 When every tuple in the relation has to be retrieved (in any order) every time the relation is 
accessed. For example, retrieve the name of all the students. 

Disadvantages 

 Heap file organization is not good when we deal with selected records of  a file, this will increase 
processing time and thus degrade the performance. 

Hash File organization 

In hash file organization the records are stored in the file using a hash function. A hash function is 
defined over a key field and that field is known as Hash Field. Hash function generates a value which 
is mapped to the key and accordingly the record is placed in the file. This file organization is also 
termed as Direct or Random file organization. These types of files are used in a direct access storage 
device (DASD) like a floppy disk, computer disk, optical disk, etc. in such storage devices, the records 
are stored in random order that allows immediate access as direct access to the individual records. 
Commonly some arithmetic function is applied to the hash field so that the records will be evenly 
distributed throughout the file.  

Advantages 

 Access and retrieval of records become easy and fast. 
 Transaction need not be sorted and placed in sequence prior to processing. 
 Accumulation of transactions into batches is not required before processing them. 
 Immediate updating of several files as a result of the single transaction is possible. 

Disadvantages 

 These files must be stored on a direct- access storage device. Hence, relatively expensive hardware 
and software resources are required. 

 Special precaution should be taken during manipulation of records. 
 Updating of records becomes difficult. 
 Less efficient than sequential file organization. 

Index Sequential File Organization 

In this file organization the records are organized in a sequential manner. The difference with 
Sequential file organization is that here an index table is maintained for easy and fast access to the 
record. The records of the files can be stored in a random sequence but the index table is in a sorted 
sequence on the key value. The file management system simply accesses the data records in the order 
of the index value. These, indexed sequential files provide the user sequential access, even though the 
file management system is accessing the data records in a physically random order.  

Index file contains two fields 
i) Index field 
ii) Pointer field 

Depending upon these two fields, file indexing is categorized into following classes: 

Primary Index 

If the primary key of the table is used as an index field then the corresponding indexing is known as 
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primary indexing.  
 
 

 

 

 

 

 

 

 

 
 

 
 

  Figure 12.3: Dense Primary Index 

In the figure 12.3, the dense primary index is explained. In dense primary index, all primary key 
values are present in the index file. Each record of relation is pointed by each block pointer. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.4: Sparse Primary Index 

Student 

Student_Roll Student_Name Student_Dept 

R1 Rahul Information Technology 

R2 Smita Computer Science 

R3 Ajay Electrical Engineering 

   

R4 Raj Information Technology 

R5 Vikas Information Technology 

R6 Bina Computer Science 

   

R7 Puja Electrical Engineering 

R8 Amit Computer Science 
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In the above example, primary indexing is explained. In the Student relation, Student_Roll is the 
primary key. It is used to identify a record in the relation uniquely. In the index file, the Student_Roll 
is used as a primary key value, block pointers are used to point the block that contains the record. The 
indexing that is used here is called Sparse Index, where each primary key is not present in the index 
file rather some blocks are created where the first record of each block is indexed by the block pointer 
of the index file. 

Table 12.1: Comparison between Dense and Sparse Primary Index 

Secondary Index 

To assist primary key index, a secondary index is created to improve search performance. This 
secondary index is created to improve search performance. This secondary key is generally on a non-
key attribute and may have duplicate values. Generally, a base table is associated with one primary 
index and several secondary indices. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 12.5: Secondary Index 

In the above figure, secondary indexing is explained. Here, Student_Dept is considered as a key 
value, which is not the primary key. Depending on the key value the block pointer points to the 
corresponding records in the relation.  

Clustering Index 

When records of a file are physically ordered on a non-key attribute which does not have a unique 
value for each record, the ordering attribute is called clustering attribute. If the values of indexing 
attribute for all records are not unique, but ordered, al clustering index is used to facilitate the search 
option. 

Feature Dense Primary Index Sparse Primary Index 

Indexing Pointer field directly points to a record 
for a search key. 

Pointer corresponds to the first record 
of each block. 

Searching Time Searching is fast. Searching takes more time. 
Space Allocation Consumes greater space. Consume less space. 

Student 
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In the figure 12.6, clustering index is described. Where the primary Key value is not the primary 
key (Student_Roll) of the relation rather a non-key attribute, Student_Dept which has redundant value. 
Here the Student_Dept form cluster, where each cluster is pointed by the block pointer. 

 

 

 

 

 

 

 

 

Figure 12.6: Clustering Indexing 

Multilevel Indexing 

Initially, the content of index file are stored in many fashions but when the number of records increases 
obviously the size of index file also increases. Though the contents are stored in sorted fashion the 
searching time cannot be less than  ⌈     ⌉      . 

In order to reduce the searching time, tree structure will be the first choice but binary tree will not 
be the appropriate tree structure because it can not reduce searching time. 

In order to reduce the height of the tree structure m-way tree like B-tree or B+ tree are selected 
where ‗m‘ depends on the size of the disk. 

Here at first the root node block is accessed where pointers point to the inner block node. 
Generally, leaf node pointer points to a particular record or block where the desired record is placed. 

B-tree 

A B-tree of order m is an m way search tree where a node may have m children. A B-tree allows 
dynamic multilevel indexing. An index entry is nothing but a pair of key value and a pointer. In B-tree 
the leaf nodes are not connected that may increase the search time. This difficulty of B-tree is 
overcome in B+ tree. 

B + Tree 

A B+ tree is modified B-tree where searching time is decreased and searching performance is 
increased. 

Following are the properties of B + tree: 
 Every node should store (m-1) key-pointer pair(k, Pb), value m should be odd. 
 Each node should have my three pointers (PT) to another node at the next level. 
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R7 Puja Electrical Engineering 

R3 Ajay Electrical Engineering 
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 Every non-terminal node except root node has at least ⌈  ⁄ ⌉ non null pointers. The root 
node has at least 2 non-null pointers. 

 All leaf nodes are at the same level and the tree is balanced. 
 If a node has (m+1) children it must contain m key-pointers pairs. 
 For each node key- value pair is less than next key-value pair. 
 Each and every key- value pair of non-terminal node should be present at leaf level. 
 All the leaf nodes must be linked with each other and form a linked structure at leaf level. 

Insertion in a B+ Tree 

Insertion operation into a B+ tree of order m is performed by searching the appropriate leaf node where 
we insert the key. There are three cases for insert a key into B+ tree. 

Case 1: When the leaf node is not at full capacity (i.e. it has fewer than m – 1 keys), then simply 
insert it into proper position so that after insertion the keys remain seated. Therefore, it requires to 
movement keys within leaf node for the newly inserted key. Since m is assumed a constant, so the 
constant time overhead may be ignored. 

Case 2: When the node is full (i.e. it has exactly m – 1 keys), then one key is moved to immediate 
upper level. The key at ⌈   ⌉th position is moved upward. If m is even, then key at (⌈m/2⌉+1) the 
position can be moved upward. The rule of insertion should be same for inserting key elements 
at any level. When a key is moved then a copy of that key is stored at the leaf level. Intermediate 
nodes do not contain any duplicate values. Each leaf node makes link with succeeding leaf node 
to reduce searching time. 

Example: 

Insert the following keys in a B+ tree of order 4 
1, 4, 7, 10, 17, 21, 31, 25, 19, 20, 28, 42 
Since the order of the B + tree is 4, the node of this tree can hold maximum 4 children, which implies 
the key pointers for each node is 4 whereas the key value is 3. 

Insert 1, 4, 7   

(a) 

 

Insert 10  

 

 

 

 

(b) 

  

1 4 7 

1 4 7 10 

7   

1 4  7 10  
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Insert 17, 21 

 

 

 

 

 

 

(c) 

Insert 31, 25  

 

 

 

 

 

 

 

(d) 

Insert 19, 20 

 

  

 

 

(e) 

 

17 21 25 31 

7 17 
 

 

1 4  7 10  

7   

1 4  7 10 17 21 

7 17 
 

 

1 4  7 10  17 21  

1 4  17 21  7 10  25 31  

7 17 
 

25 

7 17 
 

25 

1 4  17 19 20 25 31  21 7 10  
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Insert 28, 42 

   

 

 

 

 

 

 

 

 (f)  

Figure 12.3 (a, b, c, d, e, f): B+ tree insertion  

Summary 

 The file management system is must for storing and retrieving data in an organized manner. 
 Different file organization processes are used for different type of application. 
 B+ tree is the most suitable indexed sequential file organization. 

Exercises 

1. What is the utility of file management system? 
2. What is the relationship between file organization and file management system? 
3. Compare different file organization method. 
4. Compare and contrast among different indexed file organization. 
5. Discuss file system architecture. 
6. Draw a B+ tree of order 3 with the following key 

January, March, December, February, April, May, July, August, November, June, September,  
October. 

7. Choose the correct alternatives for the following: 
i)  Storage media that is operated directly from computer's central processing unit is considered as 

a) Primary storage b) Secondary storage c) Tertiary storage d)All of above 
ii) Hashing technique which allocates a fixed number of buckets is classified as 

a) Dynamic hashing b) Static hashing c) External hashing d) Internal hashing 

iii) Kind of allocation in which file blocks contain pointer to next blocks of file is classified as 

a) Linked allocation b) Indexed allocation c) Header allocation d) Contiguous 
allocation 

20 21  1 7 10  17 19 4   

7 17 
 

20 25 

25 31  

20   

25   7 17  

1 4  7 10  17 19  20 21  25 31  
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iv) Field on which equality condition is placed is hashing technique is called 
a) Hash field b) Cluster filed c) Spanned field d) Sequential field 

v) Additional access path added into ordered file is called 
a) Ternary index b) Tertiary index c) Primary index d) secondary index 

vi) Type of organization in which records are inserted at end of stored file is classified as 
a) Pile file b) Linear search file c) Relative file d) External file 

vii) Kind of field with which record searching is done is classified as 
a) Sorting field b) Relative field c) Linear field d) Ordering field 

viii) File which consists of ordering fields for records is called 
a) Sequential file b) Ordered file c) Spanned file d) Both a and b 

ix) File which consists of ordering attribute which is non-key in nature called 
a) Sequential file b) Spanned file c) Master file d) Clustered file 

x) Type of allocation in which blocks of file are allocated to consecutive blocks of disks is 
classified as 
a) Indexed 
allocation 

b) Header allocation c) Contiguous 
allocation 

d) Linked allocation 

xi)  The difference between linear array and a record is 
 a) An array is suitable for homogeneous data, but the data items in a record may have different 

data type.  
 b) In a record, there may not be a natural ordering in opposed to linear array. 
 c) A record form a hierarchical structure, but a linear array does not. 
 d) All of the above 
xii) Which one of the following is a key factor for preferring B-trees to binary search trees for 

indexing database relations? 
 a) Database relations have a large number of records  
 b) Database relations are sorted on the primary key 
 c) B-trees require less memory than binary search trees 
 d) Data transfer form disks is in blocks. 
xiii) B+ trees are preferred to binary trees in databases because 
 a) Disk capacities are greater than memory capacities 
 b) Disk access is much slower than memory access 
 c) Disk data transfer rates are much less than memory data transfer rates 
 d) Disks are more reliable than memory 

***** 





 

Appendix A:  Data Structure Operations 
 

he following table covers the space complexity and time complexity in Big-O notation for 
different operations like access, search, insertion and deletion in different data structures 
commonly used in Computer Science. 

 

Data 

Structure 

Time Complexity 

Space 

Complexity 

Average Case Worst Case 
Worst Case 

Access Search Insertion Deletion Access Search Insertion Deletion 

Array 
  O(1) O(n) O(n) O(n) O(1) O(n) O(n) O(n) O(n) 

Stack 
 O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1) O(n) 

Queue 
 O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1) O(n) 

Singly-
Linked  

List 
O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1) O(n) 

Doubly-
Linked List O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1) O(n) 

Binary 
Search Tree O(    ) O(    ) O(    ) O(    ) O(n) O(n) O(n) O(n) O(n) 

AVL Tree 
 O(    ) O    ) O(    ) O(    ) O(    ) O(    ) O(    ) O(    ) O(n) 

B-tree 
 O(    ) O(    ) O(    ) O(    ) O    ) O(    ) O(    ) O(    ) O(n) 

Hash Table  
 O(1) O(1) O(1)  O(n) O(n) O(n) O(n) 

 
 
 
 
 
 

T 



 

 

GLOSSARY 
 
 
 
Abstract Data Type (ADT) describes the data objects, which constitute the data structure and the 
fundamental operations supported on them.  
Algorithm a finite sequence of steps, each of which is elementary that must be followed to solve a 
problem. 
Array a collection of the similar type of data items, which is stored in the consecutive memory 
locations under a common name. 
AVL tree is a height-balanced binary tree if it is either empty or if T is a non-empty binary search tree 
with TL and TR as its left and right subtrees, if and only if i) TL and TR are height balanced and ii) |hL-
hR| <=1 where hL and hR are the heights of TL and TR respectively. 
Binary tree is a finite set of nodes, which is either empty or consists of a root and two disjoint binary 
trees called left subtree and the right subtree. 
Complete binary tree is a binary tree in which all the levels are filled and the last level possibly is 
partially filled from left to right and some rightmost leaves may be missing. 
Data is the basic entity or fact that is used in calculation or manipulation process. 
Data type refers to the type of data that variables hold. 
Double-ended Queue (Deque) is a linear list that generalizes a queue, for which elements can be 
inserted or deleted from either the front end or from the rear end but not in the middle. There are two 
variations of a Deque: Input-restricted Deque and Output-restricted Deque 
Dynamic Data Structure is one kind of data structure, which can be extended during execution. 
Dynamic memory allocation allocates storage locations at execution time from part of memory, 
known as the heap. 
Expression tree is a binary tree, which is used to represent a mathematical expression. 
Extended binary tree can be converted from a binary tree by adding new nodes to its leaf nodes and 
the nodes that have only one child. The extended binary tree also is known as 2-tree. 
External sorting is a type of sorting, when the list of elements or records to be sorted in files are 
accommodated in external storage devices (secondary memory such as hard disks). 
Full binary tree is a binary tree of depth k>=1, that contains the maximum number of nodes 2k-1. 
Graph G is defined as an Ordered set G= (V, E), where V represents a set of elements called nodes (or 
points or vertices) and E represents a set of edges in G, that connects these vertices. 
In-place sorting algorithm when a constant amount of data elements of an input array is never stored 
outside the array. No additional array is required.  
Internal Sorting is a type of sorting, when the list of elements or records to be sorted are small enough 
to be accommodated in the internal (primary) memory of the computer. 
Linear data structure is a type of data structure in which every data item is related (or attached) to its 
previous and next data item and data items are arranged in memory in a linear sequence. 
Linked list is an ordered collection of finite homogeneous data elements called node where the linear 
order is maintained by means of links or pointers. 
Non-linear data structure is a type of data structure in which every data item is attached to many 
other data items in specific to reflect relationships and the data items are not in sequence. 



  

Non-primitive data structures are derived from the primitive data structure and that cannot be 
manipulated or operated directly by the machine instructions. 
Merging is an operation that combining the data items of two or more different sorted lists into a 
single sorted list. 
Offline sorting algorithm cannot start unless all the data items are present at the beginning. All the 
elements must be available beforehand. 
Pointer a variable that is used to store an address or location of another variable. 
Polish notation where binary operators appear before its two operands. This notation also is known as 
prefix notation. 
Primitive data structure is defined that can be manipulated or operated by the machine instruction 
and generally built upon simpler primitive data types. 
Priority Queue is a collection of elements such that each element have been assigned a priority and 
the elements are arranged based on priority. 
Queue is a homogeneous collection of elements in which deletions can take place only at the front end, 
known as dequeue and insertions can take place only at the rear end, known as enqueue. 
Recursion a repetitive process in which a function calls itself either directly or indirectly. 
Reverse Polish notation where binary operators appear after its two operands. This notation also is 
known as postfix notation. 
Searching is an operation of finding the location of the desired key value within the data structure. 
Skewed binary tree is a binary tree, which is dominated solely by left child nodes or right child nodes, 
more specifically left skewed binary tree, or right skewed binary tree. 
Sparse Matrix a matrix most of its elements are zero, having a relatively small number of non-zero 
elements. 
Sorting means arranging all the data items in a data structure either in ascending or in descending 
order or in lexicographical order (for Strings). 
Stable Sorting is a type of sorting when two elements that are equal (i.e. duplicate element) remain in 
the same relative order even after performing sorting. 
Stack a collection of elements into which new elements may be inserted and from which elements may 
be deleted only at one end called the top of the stack. 
Static data structure is a kind of data structure, in which once memory space is allocated it cannot 
extend. 
Strictly binary tree is a binary tree when every non-terminal node has non-empty left and right 
subtree. 
String is a sequence of characters. 
Tail recursion is a special form of recursion where the last operation of a function is a recursive call 
and there are no pending operations to be performed on return from a recursive call.  
Traversing is an operation of accessing and processing each data item of the data structure exactly 
once. 
Tree is a non-linear data structure. A Tree may be defined as a non-empty finite set of nodes, such 
that, i) There is a specially designated node called the root, ii) The remaining nodes are partitioned into 
zero or more disjoint trees T1, T2 … Tn are called the subtrees of the root R. 
 

***** 
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Q6. Let G be a weighted graph with edge weights greater than one and G' be the graph constructed by 
squaring the weights of edges in G. Let T and T' be the minimum spanning trees of G and G', 
respectively, with total weights t and t'. Which of the following statements is TRUE? 
(A) T' = T with total weight t' = t2  (B) T' = T with total weight t' < t2 
(C) T' != T but total weight t' = t2  (D) None of the above 
Ans: ( D) 

Q7. Suppose a circular queue of capacity (n – 1) elements is implemented with an array of n elements. 
Assume that the insertion and deletion operation are carried out using REAR and FRONT as array 
index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and 
queue empty are 
(A) Full: (REAR+1) mod n == FRONT, empty: REAR == FRONT 
(B) Full: (REAR+1) mod n == FRONT, empty: (FRONT+1) mod n == REAR 
(C) Full: REAR == FRONT, empty: (REAR+1) mod n == FRONT 
(D) Full: (FRONT+1) mod n == REAR, empty: REAR == FRONT 
Ans: (A) 
Q8. A list of n strings, each of length n, is sorted into lexicographic order using the merge-sort 
algorithm. The worst case running time of this computation is 
(A) O(n log n)    (B) O(n2 log n)    (C) O(n2 + log n)   (D) O(n2) 
Ans: (B) 

Q9. The height of a tree is defined as the number of edges on the longest path in the tree. The function 
shown in the pseudocode below is invoked as height (root) to compute the height of a binary tree 
rooted at the tree pointer root 
int height(treeptn n) 
{ 
if(n==NULL) return -1; 
 if(n→left==NULL) 
     if(n→right==NULL) return 0; 
     else return B1         //Box1 
 else {h1 = height(n→left); 
       if(n→right==NULL) return(1+h1); 
       else {h2 = height(n→right); 
            return B2;      //Box2 
            } 
       } 
} 
The appropriate expression for the two boxes B1 and B2 are 
(A) B1 : (1 + height(n->right)), B2 : (1 + max(h1,h2)) 
(B) B1 : (height(n->right)), B2 : (1 + max(h1,h2)) 
(C) B1 : height(n->right), B2 : max(h1,h2) 
(D) B1 : (1 + height(n->right)), B2 : max(h1,h2) 
Ans: (A) 

Q10. What is the time complexity of Bellman-Ford single-source shortest path algorithm on a 
complete graph of n vertices?  
(A) Ө(n2)      (B) Ө(n2logn)   (C) Ө(n3)     (D) Ө(n3logn) 
Ans. C 
Time complexity of Bellman-Ford algorithm is O(VE) where V is number of vertices and E is number 
of edges. For a complete graph with n vertices, V = n, E = O(n^2). So overall time complexity 
becomes O(n^3) 
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Q11. Which of the following statements is/are TRUE for undirected graphs? 
P: Number of odd degree vertices is even. 
Q. Sum of degrees of all vertices is even. 
(A) P only    (B) Q only     (C) Both P and Q   (D) Neither P nor Q 
Ans. C 
P is true for undirected graph as adding an edge always increases degree of two vertices by 1.Q is true: 
If we consider sum of degrees and subtract all even degrees, we get an even number because every 
edge increases the sum of degrees by 2. So total number of odd degree vertices must be even. 

Q12. The line graph L(G) of a simple graph G is defined as follows: There is exactly one vertex v(e) in 
L(G) for each edge e in G. · For any two edges e and e' in G, L(G) has an edge between v(e) and v(e'), 
if and only if e and e' are incident with the same vertex in G. Which of the following statements is/are 
TRUE? 
(A) The line graph of a cycle is a cycle. 
(B) The line graph of a clique is a clique. 
(C) The line graph of a planar graph is planar. 
(D) The line graph of a tree is a tree. 
Ans: (A)  

Q13. The number of elements that can be sorted in \Theta(log n) time using heap sort is 

(A) Ө(1)   (B) Ө log (C) Ө( )      (D) Ө(log n) 

Ans. C 

Q14. Consider the following function: 
int unknown(int n) { 
    int i, j, k = 0; 
    for (i  = n/2; i <= n; i++) 
        for (j = 2; j <= n; j = j * 2) 
            k = k + n/2; 
    return k; 
 } 
(A) Ө(n2)   (B) Ө(n2log n)     (C) Ө(n3)     (D) Ө(n3logn) 
Ans. B 

Q15. Consider the following operation along with Enqueue and Dequeue operations on queues, where 
k is a global parameter. 
MultiDequeue(Q){ 
   m = k 
   while (Q is not empty and m  > 0) { 
      Dequeue(Q) 
      m = m - 1 
   } 
} 
What is the worst case time complexity of a sequence of n MultiDequeue() operations on an initially 
empty queue? 
(A) Ө(n)   (B) Ө(n + k)  (C) Ө(nk)  (D) Ө(n2) 
Ans. A  

Q16. Consider the function func shown below: 
int func(int num) 
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{ 
    int count = 0; 
    while (num) 
    { 
        count++; 
        num >>= 1; 
    } 
    return (count); 
} 
Run on IDE 
The value returned by func(435)is __________. 
(A) 8    (B)  9      (10)  10    (D) 11 
Ans.  (B) 

Q17. Suppose n and p are unsigned int variables in a C program. We wish to set p to nC3. If n is large, 
which of the following statements is most likely to set p correctly? 
(A) p = n * (n-1) * (n-2) / 6                 (B) p = n * (n-1) / 2 * (n-2) / 3; 
(C) p = n * (n-1) / 3 * (n-2) / 2;           (D)  p = n * (n-1) * (n-2) / 6.0; 
Ans. As n is large, the product n*(n-1)*(n-2) will go out of the range(overflow) and it will return a 
value different from what is expected. So we consider a shorter product n*(n-1). n*(n-1) is always an 
even number. So the subexpression "n * (n-1) / 2 " in option B would always produce an integer, which 
means no precision loss in this subexpression. And when we consider `n*(n-1)/2*(n-2)`, it will always 
give a number which is a multiple of 3. So dividing it with 3 won't have any loss. 

Q18. Let G be a graph with n vertices and m edges. What is the tightest upper bound on the running 
time of Depth First Search on G, when G is represented as an adjacency matrix? 
(A) Ө(n)    (B) Ө(n+m)    (C) Ө(n2)    (D) Ө(m2) 
Ans. C  

Q19. Consider a rooted Binary tree represented using pointers. The best upper bound on the time 
required to determine the number of subtrees having exactly 4 nodes O(na Logn b). Then the value of a 
+ 10b is ________ 
(A)1      (B)11   (C)12       (D)21 
Ans. A  
We can find the subtree with 4 nodes in O(n) time. The following can be a simple approach. 
1) Traverse the tree in bottom up manner and find the size of the subtree rooted with the current node 
2) If size becomes 4, then print the current node. 

Q20. Consider the following graph 

Figure G.3 

Which one of the following is true? 
(A) The graph does not have any topological ordering 
(B) Both PQRS and SRPQ are topological ordering 

P Q

R S
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(C) Both PSRQ and SPRQ are topological ordering 
(D) PSRQ is the only topological ordering 
Ans. C  
The graph does not contain any cycle, so there exist topological ordering. 
P and S must appear before R and Q because there are edges from P to R and Q, and from S to R and 
Q. 

Q21. Let P be a QuickSort Program to sort numbers in ascending order using the first element as a 
pivot. Let t1 and t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 
3, 2} respectively. Which one of the following holds? 
(A) t1 = 5  (B) t1 < t2     (C) t1 > t2       (D) t1 = t2 
Ans. C  

Q22. Consider a hash table with 9 slots. The hash function is ℎ(k) = k mod 9. The collisions are 
resolved by chaining. The following 9 keys are inserted in the order: 5, 28, 19, 15, 20, 33, 12, 17, 10. 
The maximum, minimum, and average chain lengths in the hash table, respectively, are 
(A) 3, 0, and 1    (B) 3, 3, and 3  (C) 4, 0, and 1  (D) 3, 0, and 2 
Ans: A 

Q23. Consider an undirected graph G where self-loops are not allowed. The vertex set of G is {(i, j): 1 
<= i <= 12, 1 <= j <= 12}. There is an edge between (a, b) and (c, d) if |a − c| <= 1 and |b − d| <= 1. 
The number of edges in this graph is __________. 
(A) 500   (B) 502     (C) 506     (D) 510 
Ans: C 

Q24. A priority queue is implemented as a Max-Heap. Initially, it has 5 elements. The level-order 
traversal of the heap is: 10, 8, 5, 3, 2. Two new elements 1 and 7 are inserted into the heap in that 
order. The level-order traversal of the heap after the insertion of the elements is: 
(A) 0, 8, 7, 3, 2, 1, 5    (B) 10, 8, 7, 2, 3, 1, 5  (C) 10, 8, 7, 1, 2, 3, 5    (D)10, 8, 7, 5, 3, 2, 1 
Ans: A 

Q25. Consider the tree arcs of a BFS traversal from a source node W in an unweighted, connected, 
undirected graph. The tree T formed by the tree arcs is a data structure for computing. 
(A) The shortest path between every pair of vertices. 
(B) The shortest path from W to every vertex in the graph. 
(C) The shortest paths from W to only those nodes that are leaves of T. 
(D) The longest path in the graph 
Ans: B  

Q26. The order in which the nodes are visited during in-order traversal is 
(A)SQPTRWUV    (B) SQPTURWV    (C)SQPTWUVR    (D)SQPTRUWV 
Ans: (A) Go through the in-order traversal of the tree 

Q27. You have an array of n elements. Suppose you implement quicksort by always choosing the 
central element of the array as the pivot. Then the tightest upper bound for the worst case performance 
is 
(A)O(n2)  (B)O(nLogn)  (C)Ө (nLogn)  (D)O(n3) 

Q28. Over all possible choices of the values at the leaves, the maximum possible value of the 
expression represented by the tree is ___.  
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Figure G.4 

(A) 4        (B)6      (C)8      (D)10 

Q29. A cycle on n vertices is isomorphic to its complement. The value of n is _____. 
(A) 2      (B) 4       (C) 6       (D) 5 
Ans.(D)5 
The complement graph is also isomorphic (same number of vertices connected in same way) to given 
graph. 

Figure G.5 

Q30. Consider the pseudocode given below. The function DoSomething() takes as argument a pointer 
to the root of an arbitrary tree represented by the leftMostChild-rightSibling representation. Each node 
of the tree is of type treeNode. 
typedef struct treeNode* treeptr; 
struct treeNode 
{ 
    treeptr leftMostChild, rightSibling; 
}; 
int DoSomething (treeptr tree) 
{ 
    int value=0; 
    if (tree != NULL) 
    { 
        if (tree->leftMostChild == NULL) 
            value = 1; 
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        else 
            value = DoSomething(tree->leftMostChild); 
        value = value + DoSomething(tree->rightSibling); 
    } 
    return(value); 
} 
When the pointer to the root of a tree is passed as the argument to DoSomething, the value returned by 
the function corresponds to the 
(A) number of internal nodes in the tree.   (B) height of the tree. 
(C) number of nodes without a right sibling in the tree. (D) number of leaf nodes in the tree 
Ans: (D)  

Q31. Which of the following is/are correct inorder traversal sequence(s) of binary search tree(s)? 
1. 3, 5, 7, 8, 15, 19, 25 
2. 5, 8, 9, 12, 10, 15, 25 
3. 2, 7, 10, 8, 14, 16, 20 
4. 4, 6, 7, 9, 18, 20, 25  
(A) 1 and 4 only    (B)2 and 3 only      (C)2 and 4 only    (D)2 only 
Ans: A  

Q32. What are the worst-case complexities of insertion and deletion of a key in a binary search tree? 
(A) Θ(logn) for both insertion and deletion 
(B) Θ(n) for both insertion and deletion 
(C) Θ(n) for insertion and Θ(logn) for deletion 
(D) Θ(logn) for insertion and Θ(n) for deletion 
Ans: (B)  

Q33. The height of a tree is the length of the longest root-to-leaf path in it. The maximum and 
minimum number of nodes in a binary tree of height 5 are 
(A)63 and 6, respectively    (B)64 and 5, respectively 
(C) 32 and 6, respectively    (D)31 and 5, respectively 
Ans: (A)  

Q34. A file is organized so that the ordering of data records is the same as or close to the ordering of 
data entries in some index. Then that index is called 
(A) Dense    (B) Sparse      (C) Clustered   (D) Unclustered 
Ans: (C) 

Q35. Consider a max heap, represented by the array: 40, 30, 20, 10, 15, 16, 17, 8, 4. Now consider that 
a value 35 is inserted into this heap. After insertion, the new heap is 
(A) 40, 30, 20, 10, 15, 16, 17, 8, 4, 35   (B) 40, 35, 20, 10, 30, 16, 17, 8, 4, 15 
(C) 40, 30, 20, 10, 35, 16, 17, 8, 4, 15   (D) 40, 35, 20, 10, 15, 16, 17, 8, 4, 30 
Ans: (B) 

Q36. The graph shown below 8 edges with distinct integer edge weights. The minimum spanning tree 
(MST) is of weight 36 and contains the edges: {(A, C), (B, C), (B, E), (E, F), (D, F)}. The edge 
weights of only those edges which are in the MST are given in the figure shown below. The minimum 
possible sum of weights of all 8 edges of this graph is  
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Q43. Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have 
exactly two children are _________. 

(A) 199        (B) 200  
(C) Any number between 0 and 199    (D) Any number between 100 and 200 
Ans: (A) This can be proved using Handshaking Lemma. Refer below post to see complete proof. 

Q44. Assume that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. 
Which of the following most closely approximates the maximum input size of a problem that can be 
solved in 6 minutes? 
(A) 256     (B) 512     (C) 1024   (D)2048 
Ans: (B) 

Q45. Consider the following recursive C function. If get(6) function is being called in main() then how 
many times will the get() function be invoked before returning to the main()? 
void get (int n) 
{ 
   if (n < 1) return; 
   get(n-1); 
   get(n-3); 
   printf("%d", n); 
} 
(A) 15     (B) 25   (C) 35     (D) 45 
Ans: (B) 

Q46. Let G be connected undirected graph of 100 vertices and 300 edges. The weight of a minimum 
spanning tree of G is 500. When the weight of each edge of G is increased by five, the weight of a 
minimum spanning tree becomes ________. 
(A) 1000   (B) 995     (C) 2000    (D) 1995 
Ans: (B) 

Q47. Consider B+ tree in which the search key is 12 bytes long, block size is 1024 bytes, record 
pointer is 10 bytes long and block pointer is 8 bytes long. The maximum number of keys that can be 
accommodated in each non-leaf node of the tree is 
(A) 49     (B) 50     (C) 51     (D)52 
Ans: (B)  

Q48. A queue is implemented using an array such that ENQUEUE and DEQUEUE operations are 
performed efficiently. Which one of the following statements is CORRECT (n refers to the number of 
items in the queue)? 
(A)  Both operations can be performed in O(1) time 
(B) At most one operation can be performed in O(1) time but the worst case time for the other 
operation will be Ω(n) 
(C) The worst case time complexity for both operations will be Ω(n) 
(D) Worst case time complexity for both operations will be Ω(log n) 
Ans: (A)  

Q49. In an adjacency list representation of an undirected simple graph G = (V, E), each edge (u, v) has 
two adjacency list entries: [v] in the adjacency list of u, and [u] in the adjacency list of v. These are 
called twins of each other. A twin pointer is a pointer from an adjacency list entry to its twin. If |E| = m 
and |V | = n, and the memory size is not a constraint, what is the time complexity of the most efficient 
algorithm to set the twin pointer in each entry in each adjacency list? 
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Q54. Breadth First Search (BFS) is started on a binary tree beginning from the root vertex. There is a 
vertex t at a distance four from the root. If t is the n-th vertex in this BFS traversal, then the maximum 
possible value of n is ________ [This Question was originally a Fill-in-the-blanks Question] 
(A) 15    (B) 16   (C) 31   (D) 32 
Ans: C 

Q55. The value printed by the following program is 
void f(int* p, int m) 
{ 
    m = m + 5; 
    *p = *p + m; 
    return; 
} 
void main() 
{ 
    int i=5, j=10; 
    f(&i, j); 
    printf("%d", i+j); 
} 
Run on IDE 
(A) 10   (B) 20    (C) 30   (D) 40 
Ans: C 

Q56. N items are stored in a sorted doubly linked list. For a delete operation, a pointer is provided to 
the record to be deleted. For a decrease-key operation, a pointer is provided to the record on which the 
operation is to be performed. An algorithm performs the following operations on the list in this order: 
Θ(N) delete, O(log N) insert, O(log N) find, and Θ(N) decrease-key What is the time complexity of all 
these operations put together 
(A) O(Log2N)   (B) O(N)   (C ) O(N2)    (D) Θ(N2 Log N) 
Ans: C 

Q57. B+ Trees are considered BALANCED because 
(A) the lengths of the paths from the root to all leaf nodes are all equal. 
(B) the lengths of the paths from the root to all leaf nodes differ from each other by at most 1. 
(C) the number of children of any two non-leaf sibling nodes differ by at most 1. 
(D) the number of records in any two leaf nodes differ by at most 1. 
Ans: A 

Q58. A complete binary min-heap is made by including each integer in [1, 1023] exactly once. The 
depth of a node in the heap is the length of the path from the root of the heap to that node. Thus, the 
root is at depth 0. The maximum depth at which integer 9 can appear is  
(A) 6    (B) 7    (C) 8   (D) 9 
Ans: C  

Q59. Consider the following New-order strategy for traversing a binary tree: Visit the root; Visit the 
right subtree using New-order Visit the left subtree using New-order The New-order traversal of the 
expression tree corresponding to the reverse polish expression 3 4 * 5 - 2 ˆ 6 7 * 1 + - is given by: 
(A)+ - 1 6 7 * 2 ˆ 5 - 3 4 *   (B)- + 1 * 6 7 ˆ 2 - 5 * 3 4 
(C)- + 1 * 7 6 ˆ 2 - 5 * 4 3   (D)1 7 6 * + 2 5 4 3 * - ˆ - 
Ans: C 
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