
Data Structure anD
Software engineering

Challenges and Improvements

James L. Antonakos
Distinguished Professor of Computer Science,

Broome Community College, State University of New York,
Binghamton; Online Instructor and Faculty Advisor, Excelsior College,

Albany, New York and Sullivan University, Kentucky, U.S.A.

Apple Academic Press

© 2011 by Apple Academic Press, Inc.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

Apple Academic Press, Inc
3333 Mistwell Crescent
Oakville, ON L6L 0A2
Canada

© 2011 by Apple Academic Press, Inc.
Exclusive worldwide distribution by CRC Press an imprint of Taylor & Francis Group, an Informa
business

No claim to original U.S. Government works
Version Date: 20120813

International Standard Book Number-13: 978-1-4665-6260-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

For information about Apple Academic Press product
http://www.appleacademicpress.com

© 2011 by Apple Academic Press, Inc.

http://www.appleacademicpress.com/
http://www.copyright.com/
http://www.taylorandfrancis.com/
http://www.crcpress.com

contentS

 Introduction 7
 1. An Architecture to Support Learning, Awareness, and 9

Transparency in Social Software Engineering
 Wolfgang Reinhardt and Sascha Rinne
 2. Comprehending Software Architecture Using a Unified 22

Single-View Visualization
 Thomas Panas, Thomas Epperly, Daniel Quinlan, Andreas Sæbjørnsen

and Richard Vuduc
 3. Determination of Neural Fiber Connections Based on 42

Data Structure Algorithm
 Dilek Göksel Duru and Mehmed Özkan
 4. A Preliminary Analysis of Software Engineering Metrics-based 53

Criteria for the Evaluation of Learning Objects Reusability
 J. Sanz Rodríguez, J. M. Dodero and S. Sanchez-Alonso
 5. Extending Conceptual Schemas with Business Process Information 66
 Marco Brambilla, Jordi Cabot and Sara Comai
 6. Software Test Automation in Practice: Empirical Observations 110
 Jussi Kasurinen, Ossi Taipale and Kari Smolander

© 2011 by Apple Academic Press, Inc.

6 Data Structure and Software Engineering: Challenges and Improvements

 7. A Strategy for Automatic Quality Signing and Verification 149
Processes for Hardware and Software Testing

 Mohammed I. Younis and Kamal Z. Zamli
 8. A Tester-Assisted Methodology for Test Redundancy Detection 163
 Negar Koochakzadeh and Vahid Garousi
 9. Automatic Generation of Web Applications from Visual 192

High-Level Functional Web Components
 Quan Liang Chen and Takao Shimomura
10. Challenges and Improvements in Distributed Software 225

Development: A Systematic Review
 Miguel Jiménez, Mario Piattini and Aurora Vizcaíno
11. Vertical Mining of Frequent Patterns from Uncertain Data 256
 Laila A. Abd-Elmegid, Mohamed E. El-Sharkawi,

Laila M. El-Fangary and Yehia K. Helmy
12. An Open-Source Representation for 2-DE-Centric Proteomics 271

and Support Infrastructure for Data Storage and Analysis
 Romesh Stanislaus, John M. Arthur, Balaji Rajagopalan, Rick Moerschell,

Brian McGlothlen and Jonas S. Almeida
13. Pegasys: Software for Executing and Integrating Analyses of 286

Biological Sequences
 Sohrab P. Shah, David Y. M. He, Jessica N. Sawkins, Jeffrey C. Druce,

Gerald Quon, Drew Lett, Grace X. Y. Zheng, Tao Xu and
B. F. Francis Ouellette

14. An Application of a Game Development Framework in 311
Higher Education

 Alf Inge Wang and Bian Wu
 Index 338

© 2011 by Apple Academic Press, Inc.

introDuction

What I find most remarkable about the field of computer science is its vast scope.
Practically any topic you might imagine falls in some way under the umbrella
of computer science. Many topics may seem to naturally belong there, such as
research into advanced computer architectures, distributed and cloud computing
(and their associated high-speed networking components), computer forensics,
operating systems, and the details of many different programming languages. But
these areas are just a few of a wider array of topics and activities found in com-
puter science. Computer scientists spend a great deal of time and energy study-
ing compression algorithms for images, video, and data; encryption techniques;
efficient hardware computation pipelines; computer gaming and its associated
artificial intelligence; networking protocols that enable secure and reliable trans-
mission of information; image processing; database technologies; and new ways
of sharing information over the Internet.

Of course, many areas of computer science require a good foundation in
mathematics. Here it is remarkable to know that we use mathematics to prove
that some things are possible and that other things are impossible. Some concepts
or problems have not yet been proved either way, even with a great many research-
ers looking into them. When and if these open problems are eventually solved,
the solutions will usher in a new age in computer science and also new challenges.
For example, if we gain a deeper insight and understanding of random numbers,
what will be the effect on the security algorithms we use every day to encrypt our
private communication over the Internet?

© 2011 by Apple Academic Press, Inc.

8 Data Structure and Software Engineering: Challenges and Improvements

Let us also take note of the astounding visual reality now available, of com-
puter graphics algorithms so complex they render stunning visual effects in video
games in real time and produce “Is it real or computer generated?” effects in mo-
tion pictures. Again, here the computer scientist must have programming skills,
knowledge of mathematics, physics, optics, and the hardware details of the pro-
cessor or processors rendering the image. We can see for ourselves the fruits of
many researchers’ labors over the years.

The time spent by computer scientists examining arcane topics that appear to
have little practical application is very misleading. Advances in medical imaging,
understanding biological processes, recognizing human speech, mining data and
distinguishing patterns, and exploring the nature of memory via neural networks
have all been made possible by computer scientists toiling away in their labs.

Today the line between software and hardware is becoming blurred. A com-
puter scientist crafting a new optimizing compiler must have detailed knowledge
of the internal hardware workings of a processor in order to efficiently schedule
instructions and generate code that utilizes the processor pipeline, registers, and
cache memory to provide maximum performance. Even something as simple as
extending the life of the battery in a laptop computer is a combined effort be-
tween the hardware designers and the software writers.

Perhaps the most important quality a computer scientist can possess is curi-
osity, a constant desire to understand how things work. When this curiosity is
coupled with determination, the end result is often useful in ways that were not
originally intended. Keep this curiosity in mind as you read the papers on Data
Structure and Software Engineering contained within this book.

— James L. Antonakos

© 2011 by Apple Academic Press, Inc.

an architecture to Support
Learning, awareness, and

transparency in Social
Software engineering

Wolfgang Reinhardt and Sascha Rinne

abStract
Classical tools for supporting software engineering teams (collaborative de-
velopment environment, CDE) are designed to support one team during the
development of a product. Often the required data sources or experts reside
outside of the internal project team and thus not provided by these CDEs.
This paper describes an approach for a community-embedded CDE (CCDE),
which is capable of handling multiple projects of several organizations, pro-
viding inter-project knowledge sharing and developer awareness. The present-
ed approach uses the mashup pattern to integrate multiple data sources in or-
der to provide software teams with an exactingly development environment.

© 2011 by Apple Academic Press, Inc.

10 Data Structure and Software Engineering: Challenges and Improvements

Keywords: Learning Systems, Knowledge Management, Cooperative
Development Environments, Learning Communities

introduction
Traditional clichés about software developers lose their validity more and more.
Times, when programmers sat in dark cellars and tried to solve all problems on
their own are over once and for all. In the meantime software engineering has
become a very knowledge-intensive [5] and communicative process (not only but
also triggered by agile methods for software development) where the actors heav-
ily exchange data (see Google-Code), connect with like-minded (see Google Sum-
mer of Code), blog about experiences in their own weblogs, provide code snippets
free of charge (see Django-Snippets) or help novices with words and deeds in large
mailing lists. This social software engineering—the creation of software and relat-
ed artifacts within a social network—gained a lot of attention in recent software
engineering research [1,17]. Besides the improvements of integrated development
environments (IDE, e.g. Eclipse) or procedure models (e.g. eXtreme Program-
ming [3]) research is addressing improvements of the daily working and learning
environments of the developers. The main function of collaborative development
environments (CDE) [2] is to support the whole development process of a team
of software developers from start to finish. This includes version control of code
artifacts as well as process documentation, coordination of tasks or support for
division of labour.

CDEs usually are set up for one specific project; the possibilities for inter-
project-collaboration within an organization with multiple software projects are
very limited because the single CDEs are not able to exchange data.

Furthermore many developers are using data pools (bulletin boards, developer
communities, mailing lists and a lot more) outside the organization in order to
solve a specific problem. Furthermore existing CDEs lack in providing a transpar-
ent view on the progress of a project, awareness of developers’ competencies and
support for individual informal learning processes.

This paper describes an approach for a community-embedded CDE (CCDE),
which is capable of handling multiple projects of several organizations, provid-
ing inter-project knowledge sharing and developer awareness. The presented ap-
proach uses the mashup pattern to integrate multiple data sources in order to
provide software teams with an exactingly development environment. Further-
more we present requirements for a community of developers and sketch a first
prototypical architecture for such a CCDE.

© 2011 by Apple Academic Press, Inc.

An Architecture to Support Learning, Awareness, and Transparency 11

related work
The goal of this section is to behold the main aspects enlisted in the conception
and implementation of a CCDE in order to derivate functional and technical
requirements. Furthermore this section serves for definition and dissociation of
the used terms.

Knowledge Management and Learning in Software
engineering

The different facets of the concept of knowledge have been discussed for over
2000 years now. Based on a fuzzy understanding of knowledge several theories
for knowledge management came up and raised the idea of simply exchanging
knowledge between individuals or organizations (among others [8]). It is prob-
ably the most important assessment to be made in this context that “you cannot
store knowledge”[7] as in interpersonal communication only data is exchanged.
Information emerges by interpreting this data with own prior knowledge in the
personal context. Information then is the foundation for personal actions and de-
cisions. So knowledge is first of all a rational capacity and not a transferable item.
POLYANI distinguishes between tacit and explicit knowledge, whereas explicit
knowledge is stored in textbooks, software products and documents, while tacit
knowledge is in the mind of people as memory, skills, experience and creativity
[10]. When tacit knowledge is externalised and transformed into explicit knowl-
edge (properly speaking it is data now), we call this implicit knowledge. Implicit
knowledge is of very high value for organisations such as software projects, as it
gives hints how to solve specific problems in the future.

Regardless of the ambiguous definitions of knowledge and the claims for
necessity and importance for knowledge management, software engineering is
a dynamic process, which is reliant on latest knowledge in the subject domain.
This knowledge is dynamic and evolves with technology, organisational culture
and changing needs of the organisation [9]. Knowledge management in software
engineering can be improved by recognising the need for informal communica-
tion and exchange of data in order to support the exchange of implicit knowledge
amongst developers. Learning and working environments thus should support
awareness of developers, sharing of implicit knowledge and foster informal, ad
hoc exchange of short messages [6,11] as well as facilitating inter-project social
networks in form of communities of interest.

Informal learning is characterized as a process that does not follow a speci-
fied curriculum but rather happens by accident, sporadically and naturally during
daily interactions and shared relationships. Experience shows that the majority

© 2011 by Apple Academic Press, Inc.

12 Data Structure and Software Engineering: Challenges and Improvements

of real learning is informal [4]. Informal learning is what happens when tacit
knowledge of a person is communicated to another person, which internalizes
and interprets the data and thus expands his own knowledge. Examples of such
informal learning situations within software engineering projects are spontane-
ous meetings, short messages, phone calls but also asynchronous communication
like entries in bulletin boards, comments in source code or comments in blogs.
As hardly any formal training for developers takes place, in software engineer-
ing informal learning is the only way to stay up to date. Previous approaches for
supporting ad hoc communication focus on intra-project improvements and do
not include experts from outside the project. Connecting with others and using
artifacts from outside the own project seem to be a crucial factor in supporting
learning within a project.

Social Software engineering

The term social software engineering denotes both the engineering process of so
called social software and the software engineering within social relationship in
collaborative teams. For this paper the latter denotation is the focus of interest.

Studies show, that the main part of modern software engineering is carried out
in teams, requiring strong interactions between the people involved in a project
[1,13,14]. Social activity thus represents a substantial part of the daily work of
a developer. Social network structures in social network sites (SNSs) emerge by
adding explicit friendship connections between users. By contrast, social networks
in the software engineering mainly result from object-centred sociality [15]. De-
velopers do not just communicate with each other—they connect through shared
artifacts. These social connections normally exist only within a project even
though many of the artifacts used come from outside of the project. The con-
sulted domain specific experts often do not reside within the own organisation,
but in other communities.

collaborative Development environments

BOOCH and BROWN [2] define a CDE as “a virtual space wherein all stakehold-
ers of a project—even if distributed by time or distance—may negotiate, brain-
storm, discuss, share knowledge, and generally labor together to carry out some
task, most often to create an executable deliverable and its supporting artifacts.”
So CDEs are a virtual working environment whose key functions can be clustered
in the following categories: a) coordination of developers’ work, b) cooperation
of developers, and c) formation of a community. CDEs shall create a working
environment that tries to keep frictional losses at a minimum. Frictions are costs

© 2011 by Apple Academic Press, Inc.

An Architecture to Support Learning, Awareness, and Transparency 13

for setup and launch of the working environment, inefficient cooperation while
artifact creation and dead time caused by mutual dependencies of tasks.

BOOCH and BROWN define five several stages of maturity of CDEs [2];
besides simple artifact storage (stage 1) and basic mechanisms for collaboration
(stage 2), advanced artifact management (stage 3), advanced mechanisms for col-
laboration (stage 4) the main feature of CDEs on stage 5 is to “encourage a vi-
brant community of practice” [2].

As the current median is somewhere around stage 1 and 2 [2], it is the goal of
our efforts to enhance existing CDEs for single projects with a community com-
ponent that allows project-spanning collaboration. This community-embedded
CDE (CCDE) shall provide the classical functions of a CDE stated above but also
allow the seamlessly exchange of artifacts [12], data and expertise amongst proj-
ects and developers from multiple projects. The remainder of this paper describes
specific requirements for a CCDE and presents an initial architectural design.

Solution Design
The following section introduces the requirements for a CCDE to support aware-
ness and transparency in multi-project environments. We define functional and
nonfunctional requirements for the CCDE and introduce possible data sources
needed in social software engineering projects (SSEP). Finally this section pro-
vides a first architectural design of the CCDE eCopSoft.

organisational requirements on a ccDe

As stated in section 2.B, social software engineering is a collaborative develop-
ment process performed by a team of people that often are separated by time
and space [18]. A CCDE aims at closing the gap between the members of a team
by providing project awareness and transparency as well as providing options to
connect with other developers and teams. From an organisational point of view
a CCDE splits into two parts: I) the developers community and II) the single
projects hosted at the CCDE. The requirements for the first part of a CCDE
requires methods, services and tools for networking, presentation of contents and
exchange of opinions to foster data exchange and the emergence of a community
feeling. Thus, a CCDE should be equipped with the typical community features
of SNSs like groups, wikis, bulletin boards, user profiles and friend lists. On top
of this basic services and tools the community component of a CCDE should
offer domain specific areas like a job market for developers, an event review and
a news corner for trending development topics. All services and tools of the

© 2011 by Apple Academic Press, Inc.

14 Data Structure and Software Engineering: Challenges and Improvements

developer community are to ensure the shared identity of developers, the sharing
of news and opinions as well as the start of new projects.

The second important parts of a CCDE are the project spaces. A project space
is basically the home of a hosted project on the CCDE. A project space has to sup-
port the members of the project in collaborative and coordinative tasks. With our
CCDE we claim to foster transparency and awareness of collaborative projects,
for what reason a project space must provide fundamental tools such as wikis,
e-mails, repository, bug tracker, and roadmap planning. Further data sources for
the deployment in software projects are discussed in section 3.B. Any user of the
CCDE must be able to start a new project and easily select the required services
and tools for his project. The instantiation of the single tools has to take place au-
tomatically and without human intervention. Adding new developers to a project
must be possible in various ways: either the members of the project are selected
a priori by the creator of the project or added to the project afterwards. For the
latter one it is important to discern between public and private projects. It must
be possible to allow anyone to contribute to a project (public) or to approve new
developers for the project. The creator must be able to broadcast his search for
new developers to the community (e.g. by sending a microblogging message or
adding an entry in a bulletin board) and also to browse the existing developers in
order to directly ask them to join the project.

Data Sources in Software engineering Projects

The potential data sources relevant for software engineering project are manifold.
This section tries to identify the most important resources to support collabora-
tive software engineering in the project spaces of the CCDE.

The selection of data sources that are applicable in a CCDE is essentially de-
pendent on the available interfaces of the respective backend systems. It is crucial
that the applicable data sources provide interfaces (e.g. open APIs) that allow the
installation, configuration and query of data without sweeping adaptations of the
data sources. To integrate a new data source in the project spaces the implementa-
tion and upload to the server of a new connector module is sufficient.

Basically we need to distinct between data sources or systems that incorporate
coordination activities and those that incorporate communication activities of the
development team. The latter is to be distinguished between informal and formal
communication [18]. Informal communication is considered as explicit com-
munication via diverse communication channels such as telephone, video, audio
conference, voice mail, e-mail or other verbal conversations. Formal conversation
refers to explicit communication such as written specification documents, reports,
protocols, status meetings or source code [6]. Thus essential systems and tools to

© 2011 by Apple Academic Press, Inc.

An Architecture to Support Learning, Awareness, and Transparency 15

support communication in software engineering projects include e-mail, wiki,
version control systems, blogs, instant messaging or microblogs as well as shared
bookmarks and shared RSS feeds. Also modern communication channels like
VoIP or video chat could be part of the communicative toolbox of a project space.
Coordination activities address system-level requirements, objectives, plans and
issues. Working with the customer and end users carries them out. To support
coordinative activities the following data sources and systems ought to be inte-
grated in a project space: road map planning, issue and bug tracker, collaborative
calendars, and collaborative to-do lists.

For many of the data sources mentioned well-known software systems ex-
ist that offer open APIs. Along with MediaWiki and StatusNet, several version
control systems and mail servers exist that can be a possible data source for the
integration in a project space. For other data sources (e.g. shared bookmarks or
VoIP) these software systems applicable in a CCDE are still to be found. Besides
the open APIs it is also a necessary feature of the data sources that they store their
data persistently, so that another person or tool can reuse the respective artifact in
another context later.

requirements on a Sophisticated integration Layer

The main duty of an integration layer is to process the data of all connected
backend systems in a way that a central and comprehensive access to all data is
possible. By integrating the different data sources into a common layer it will
becomes feasible to gain additional information that could not be provided from
a single backend system beforehand.

Therefore the integration layer has to be informed about changes in the differ-
ent backend systems and start an analysis of the changed artifacts consequently.
Changes on an artifact in a backend system have to trigger a uniform change
event that can be processed and stored by the integration layer. A change event
will typically deploy the analysis of the specific artifact, which requires the auto-
matic processing of various artifact types like e-mail, wiki articles, source code
and many more. Further on different analyses techniques have to be integrated
pursuing different targets. These techniques ought to range from simple stuff like
language detection and keyword analyses to sophisticated semantically analyses of
textual artifacts and precise source code analyses. The analysis framework has to
be highly extensible allowing the later addition of new techniques. All data gained
throughout the analysis have to be stored in a central data structure. An efficient
design of the data structure aims at fast and precise querying of the data and easy
integration.

© 2011 by Apple Academic Press, Inc.

16 Data Structure and Software Engineering: Challenges and Improvements

The integration layer is obliged to enhance a manually entered developer pro-
file with automatically generated data in order to keep it up-to-date. To be able
to do this and to be able to retrace the chronological sequence in the modifica-
tions of an artifact, each user interaction with one of the backend systems has
to be stored as an entry in the event log of the integration layer. Additional data
extracted from an event (e.g. path to a source code file, categories of a wiki entry
etc.) must be stored in a global data model where artifacts are being connected
system—and project spanning. With this connection it shall become possible to
gain additional information about artifacts and developers and to answer specific
queries like:

•	 Who is the main developer of a package, class or method?

•	 Which artifacts from other systems are highly related to the current one?

•	 Who is an expert in a specific development domain or technique?

•	 Which developers from the community could be invited to work on a new
project?

•	 What is the expertise of a developer?

architectural Design

The requirements stated above demand for a system that allows the connection of
various data sources and that provides multiple interfaces to access the integrated
data in various ways. For that reason our prototypical implementation eCopSoft
(event-based cooperative software engineering platform) consists of several com-
ponents on different layers (cf. fig. 1) that make use of the typical mashup design
pattern: easy and fast integration of multiple data sources, done by accessing APIs
to produce results that were not the original reason for producing the raw source
data [16].

There is a central server component (eCopSoft core) that is responsible for
harvesting and processing data from all connected data sources on the system lay-
er. The system layer mainly consists of the data sources described in section 3.C.
From a technical point of view these systems run autonomous on a server and
are connected to the eCopSoft server via their respective APIs. The eCopSoftcore
processes the data from all data sources, extracts event data and other metadata
and stores it in an internal database. Those involved in a project can access the
data stored in the backend systems and the additionally generated and aggregated
metadata with various clients on the presentation layer. These tools connect to
server via the eCopSoft API.

© 2011 by Apple Academic Press, Inc.

An Architecture to Support Learning, Awareness, and Transparency 17

The eCopSoft application is a modular and flexible system that holds adminis-
trative and operating data, assures the connection to the backend systems and pro-
vides interfaces for accessing the operating data with various clients. Furthermore
eCopSoft provides a central management for users and projects. The integration
layer is the most important component in the eCopSoft architecture—all events
of the backend systems are processed here. Normally an event represents a user
interaction with one of the backend systems. The connector modules of the data
sources act as event provider, whereas the event consumers in the integration layer
process these events. Each event holds information about the user that initiated
the event, the changed artifact, which kind of operation the user was carrying out
(e.g. create, update, link…) as well as other event-specific information if required.
On arrival of an event at the event consumers, the event and all containing infor-
mation are stored in the event database. The event data is processed by the eCopS-
oft core and used to update the user profiles in the user profile database. Based on
these comprehensive additional data about the usage of and work with artifacts in
a development team the cooperative work can be explored in new ways. A visual
project dashboard, artifact networks, artifact usage patterns or expert lists show-
ing individual expertise are enhancing the individual and organizational learning
process with artifact and user awareness and transparency.

To connect the several data sources with eCopSoft a connector module will
be implemented for each data source. A connector module assures the creation of
the project-related instances and forwards the operating data from the backend
system to the integration layer. The connector modules encapsulate the specific
interfaces of the backend systems represent them homogenous at server side. The
creation of events can either be actively triggered by a backend system (e.g. by
a SVN hook) or passively by periodically querying the data source for new data
(e.g. polling a RSS feed). The automatically instantiation of the backend systems
is handled via scripts as part of the eCopSoft application. We will script the in-
stantiation of the backend systems because most systems do not provide an API
for doing that out of the box. Furthermore a scripted instantiation allows various
adaptations to meet the specific requirements of the eCopSoft architecture.

The clients on the presentation layer can connect to eCopSoft via a web ser-
vices API. Mediated through the API queries for projects, developers, or artifacts
are realisable. These queries can be qualified with additional criteria or weighted.
Therewith it is possible to query the system for experts to a specific artifact or all
artifacts that a specific developer contributed to. In the first instance we plan three
main clients:

1. A web-based project home (cf. fig. 2, 3),
2. An Eclipse expert view plug-in and
3. An admin interface to administer the whole system.

© 2011 by Apple Academic Press, Inc.

18 Data Structure and Software Engineering: Challenges and Improvements

Figure 1. Schematical architecture of eCopSoft

Figure 2. Screenshot of the eCopSoft web frontend showing a Trac environment for a project

Large parts of the eCopSoft system base on the Java platform, which ensures
reliability, portability and scalability. Furthermore, when it comes to problem
solving, there are numerous existing Java libraries that provide finished, tested
and proven solutions to specific problems. This reuse of existing frameworks ac-
celerates the whole development process a lot. To ensure future extensibility and

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-3&iName=master.img-000.jpg&w=343&h=194
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-3&iName=master.img-001.jpg&w=274&h=198

An Architecture to Support Learning, Awareness, and Transparency 19

the integration of further connector modules, eCop-Soft will be developed on an
OSGi platform.

Figure 3. Screenshot of the eCopSoft web frontend showing the integrated webmail client for the project e-mail
address

conclusion and outlook
This paper introduced the concept of a community-embedded collaborative de-
velopment environment (CCDE) whose main functions are to combine classical
approaches from collaborative development environments with the strengths of
communities of interest. We provided requirements on functions of a community
of developers as well as functional requirements for a technical integration layer
to enhance awareness and transparency in social software engineering. With the
help of a sophisticated integration layer the transparency of the development pro-
cess can be increased as common events connect the hitherto separated backend
systems. Thereby connections between artifacts (e.g. wiki articles and Java classes)
manifests that have been hidden before. On the other hand an integration layer
increases the personal awareness by connecting artifacts of a project directly with
its contributors and thus allowing direct communication. With the help of the
automatically extended developer profile the expertise and working fields of a
developer become clearer. The artifact awareness will be increased by providing
related artifacts, additional metadata (semantic information, classifications, used
patterns…) and a lucid overview of recent changes of artifacts. Furthermore the
integration layer will allow anonymously connecting to developers from other
project in order to get help from them.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-3&iName=master.img-002.jpg&w=247&h=177

20 Data Structure and Software Engineering: Challenges and Improvements

Although not being a classical mashup, the presented CCDE approach con-
nects data from various sources in away that developers and users of the commu-
nity could gain an advantage. In our opinion this advantage turns out to be in the
assistance of individual work and the steady learning process by a more transpar-
ent process and enhanced awareness on various levels. Furthermore the possibil-
ity for a project spanning exchange of domain knowledge and artifacts enhances
the data exchange and the collaboration within an organisation and thus fosters
learning and interrelation. The easier data exchange, the higher awareness of the
development process and contextualised data and experts creates an increased sat-
isfaction with the whole development process and thus motivates developers.

The presented prototype eCopSoft is currently underdevelopment at the
University of Paderborn and will be evaluated in software development courses.
Furthermore we plan to run the CCDE as a campus-wide platform for software
engineering projects, allowing the exchange of experience and data among mul-
tiple projects. The eCop-Soft platform furthermore shall reduce the administra-
tive overhead of providing CDEs to numerous software projects by providing a
one-click-deployment for new projects. The first evaluation results of eCopSoft
will be part of another publication.

references
1. N. Ahmadi, M. Jazayeri, F. Lelli, and S. Nescic, “A survey of social software

engineering,” in 23rd IEEE/ACM International Conference on Automated
Software Engineering - Workshops, pp. 1–12, 2008.

2. G. Booch, and A. W. Brown, “Collaborative development environments,” in
Advances in Computers, vol. 59, pp. 2–29, 2003.

3. K. Beck, Extreme Programming Explained. Embrace Change. Addison-Wesley,
1999.

4. J. Cross, Informal Learning–Rediscovering the Pathways that inspire innova-
tion and performance. Pfeiffer, 2006.

5. P. N. Robillard, “The role of knowledge management in software develop-
ment,” in Communications of the ACM, vol. 42, no. 1, pp. 87–94, 1999.

6. W. Reinhardt, “Communication is the key–Support Durable Knowledge Shar-
ing in Software Engineering by Microblogging,” in Proceedings of Conference
on Software Engineering 2009, Workshop Software Engineering within Social
software Environments, 2009

7. I. Nonaka et al., “Emergence of “Ba,”” in Knowledge Emergence, 2001.

© 2011 by Apple Academic Press, Inc.

An Architecture to Support Learning, Awareness, and Transparency 21

8. P. Schütt, “Kleine feine Unterschiede: Daten, Information und Wissen,” in
Wissensmanagement 02/2009, pp. 10–12, 2009.

9. A. Aurum, F. Daneshgar, J. Ward, “Investigating Knowledge Management
practices in software development organisations–An Australian experience,” in
Information and Software Technology, vol. 50, pp. 511–533, 2008.

10. M. Polyani, The Tacit Dimension. Routledge & Kegan Paul, London, 1966.

11. P. N. Robillard, and M. P. Robillard, Types of collaborative work in software
engineering. J. Syst. Softw., vol. 53, no. 3, pp. 219– 224, 2000. (doi:10.1016/
S0164-1212(00)00013-3)

12. A. Sarma, “A survey of collaborative tools in software development,” Technical
Report at University of Irvine, Institute for Software Research, 2005.

13. T. DeMarco, and T. Lister, Peopleware: productive projects and teams. Dorset
House Publishing, New York, 1987.

14. C. Jones, Programming productivity. McGraw-Hill, New York, 1986.

15. K. Knorr-Cetina, “Sociality with Objects: Social Relations in Postsocial Knowl-
edge Societies,” in Theory, Culture & Society, vol. 14, no. 4, pp. 1–30, 1997
(doi:10.1177/026327697014004001)

16. Wikipedia. Mashup (web application hybrid). (Revision as of 10:23,
27.05.2009). Available at http://en.wikipedia.org/w/index.php?title=Mashup_
(web_application_hybrid)&oldid=292635186

17. J. Münch, and P. Liggesmyer (Eds.), Proceedings of the Software Engineering
2009 conference, Workshops. Social Aspects in Software Engineering, 2009.

18. J. Herbsleb, and A. Mockus, “An empirical study of speed and communication
in globally distributed software development,” in IEEE Transactions on Soft-
ware Engineering, vol. 29, no. 6, pp. 481–494, June 2003.

© 2011 by Apple Academic Press, Inc.

http://en.wikipedia.org/w/index.php?title=Mashup_%28web_application_hybrid%29&oldid=292635186

comprehending Software
Architecture Using a Unified

Single-View Visualization

Thomas Panas, Thomas Epperly, Daniel Quinlan,
Andreas Sæbjørnsen and Richard Vuduc

abStract
Software is among the most complex human artifacts, and visualization is
widely acknowledged as important to understanding software. In this pa-
per, we consider the problem of understanding a software system’s architecture
through visualization. Whereas traditional visualizations use multiple stake-
holder-specific views to present different kinds of task-specific information, we
propose an additional visualization technique that unifies the presentation
of various kinds of architecture-level information, thereby allowing a variety
of stakeholders to quickly see and communicate current development, qual-
ity, and costs of a software system. For future empirical evaluation of multi-
aspect, single-view architectural visualizations, we have implemented our
idea in an existing visualization tool, Vizz3D. Our implementation includes

© 2011 by Apple Academic Press, Inc.

Comprehending Software Architecture 23

techniques, such as the use of a city metaphor, that reduce visual complexity in
order to support single-view visualizations of large-scale programs.

introduction
Visualization techniques are widely considered to be important for understanding
large-scale software systems [15]; yet knowing what to visualize and how to pres-
ent information are themselves daunting issues. The challenges are many. First,
there are several stakeholders in a software project—architects, developers, main-
tainers, managers—each asking different questions about the software. Answer-
ing a diverse set of questions will involve different abstraction levels, such as the
architecture, the middle level structure [15], or the source code itself. Each ques-
tion may require a distinct analysis; multiple analyses can generate huge volumes
of data, which may be difficult to store, to manipulate, and to present. Having to
manage multiple analyses, possibly through multiple visualizations (views), places
a significant cognitive burden on any individual stakeholder. Multiple views also
tend to make it difficult for separate stakeholders to communicate on subtle issues
about a software architecture. These challenges make it hard for multiple stake-
holders to reach a common understanding or consensus about the project.

Different stakeholders often interact around questions about the software sys-
tem’s architecture. For example, developers and project managers need to know
where to make improvements, e.g., “which components do we have to modify in
order to improve the performance or security of our system?” Project managers
need to know how to allocate team members to each part of the system and an-
swer questions such as, “can we meet the next deadline?” Additionally, both man-
agers and vendors are interested in development hot spots (frequently modified
components), which may indicate areas of high system maintenance cost. Design-
ers and maintainers are more interested in the overall structure of the system; this
knowledge helps them to identify reusable components, for instance.

We are investigating a visualization technique designed to help all stakeholders
collectively understand and better communicate the architecture of a large-scale
software system. Our particular technique represents the structure of the system
using a graph-based model, following common convention [15], and we augment
this model with a number of static and dynamic analyses. Our specific choices of
model and analyses help stakeholders answer a wide range of questions about the
overall design, quality, and costs in development and maintenance (Section 2).

The central design goal of our approach is to visualize multiple task- (or stake-
holder-) specific aspects of a software architecture using just a single view (Sec-
tion 3), cf. Figure 1, to communicate problems, decisions and solutions between

© 2011 by Apple Academic Press, Inc.

24 Data Structure and Software Engineering: Challenges and Improvements

stakeholders. In contrast, existing approaches (Section 6) primarily rely on mul-
tiple views when visualizing multiple aspects of a system [1, 17, 30, 31]. Although
multi-view approaches can be very effective, users may also have considerable
difficulty managing and navigating through different views [27, 28, 32]. In our
current research, we are particularly interested in whether these difficulties can be
overcome by judicious rendering within a single view.

Figure 1. Architectural Program Visualization of a C++ Program.

To help answer this question, we have implemented a single-view visualiza-
tion tool (Section 4). We use a metaphor based on cities that provides users with
an intuitive physical interpretation of the system. In addition, we use a layout
algorithm that permits the system to be rendered consistently each time the vi-
sualization is performed. That is, the layout is designed to be insensitive to small
structural changes, thereby helping users remember and navigate in the visualiza-
tion. Our specific implementation supports C and C++ programs, extending our
earlier work for Java programs [20, 34].

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-4&iName=master.img-000.jpg&w=341&h=292

Comprehending Software Architecture 25

Our overall approach allows multiple stakeholders to see and communicate
about the same view, which facilitates the collective understanding and discussion
of the system’s architecture (Section 5).

Visualizing architectures
There are roughly three levels of program visualization, based on the level of ab-
straction [15, 26]: source code level, middle level, and architecture level. This sec-
tion explains what we mean by architecture level, and describes our specific model
of the program and analyses in detail.

On the source code level, typical visualization tools include program and as-
pect editors. Advanced tools may integrate program editors with online debuggers
and profilers. Source-level visualizations are very “low-level,” as they relate directly
to the underlying software artifact, and are primarily of interest to developers and
maintainers.

On the middle level, visualizations are problem-specific. Developers and code
maintainers have specific problems to solve, and they usually apply tailored algo-
rithms and visualizations to the program to better understand both the problem
and the program. Typical middle level visualizations include sequence diagrams,
abstract syntax tree (AST) representations, dominance tree visualizations, concept
lattices, control and data flow graphs.

The aim of architecture-level visualization is to rapidly summarize and com-
municate the architecture and design decisions of the overall software system.
Architectural visualization is naturally more abstract than source-or middle-level
visualizations, and therefore better suited to visualizations in the large. Abstract
visualizations of software architectures combined with metrics can help different
stakeholders to answer many questions about a software system.

For instance, project managers might use the visualizations to understand the
aspects of a project that are most expensive, code designers can communicate cur-
rent implementation deviations from original design plans, and code maintainers
may use the visualizations to better understand unknown software systems [7].

Common examples of architectural visualizations are function call graphs, hi-
erarchy graphs, and directory structures. There are many ways to present these
graphs, such as UML diagrams, graph browsers, and component/connector graph
drawings. Many tools support these visualizations [12, 26, 31]. However, to the
best of our knowledge, no tool exists that supports the visualization and com-
munication of software architecture between different software development and
maintenance stakeholders.

© 2011 by Apple Academic Press, Inc.

26 Data Structure and Software Engineering: Challenges and Improvements

a graph-based Program Model

To support communication among various stakeholders through a single-view
architecture visualization, a program model combining different aspects of a pro-
gram (important to different stakeholders) is needed. We have merged several
tools (Section 4) to retrieve the following architectural program models of C/C++
applications:

•	 A Function Call graph represents the call relationship between different (C/
C++) functions.

•	 A Class Call graph shows the interaction structure between (C++) classes.

•	 A Class Contains graph holds information about classes and their functions.

•	 A Class Inheritance graph represents the inheritance structure of an (C++) ap-
plication.

•	 A File Call graph shows the call structure between source files.

•	 A File Contains graph shows functions in relation to their files. In C/C++, re-
lated functions may be implemented in (multiple) source as well as header files.
The C++ specification does not enforce a standard implementation style. As a
result, File Contains and Class Contains graphs are most likely to be viewed
together.

•	 A Directory Contains graph represents the relationship between files and their
corresponding directories. Our graph-based program model is a union of the
graphs implemented and described above. Table 1 shows examples of how vari-
ous stake holders might communicate software architecture through a particular
set of graph types.

Table 1. Correlation Graphs-Stakeholders

Table 1 only suggests what information might be of interest to each stake-
holder. Of course, we might modify the table to reflect the interest, expertise, or
task at hand. The key point in Table1 is that a unified architectural visualization
more flexibly supports and encourages interaction among stakeholders, compared

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-4&iName=master.img-001.jpg&w=241&h=89

Comprehending Software Architecture 27

to visualizing and communicating multiple stakeholder-specific representations
in various notations.

augmenting the Model with analyses

There is more information of interest to various stakeholders than plain struc-
tural graphs can represent. For instance, when investigating a Directory Contains
graph, a project manager would also like to understand the complexity of the files
being viewed with respect to other metrics, such as size. The additional program
information can either be shown in tables and be related to the views, or more
preferably be integrated directly into the views themselves.

For our prototype, we have implemented a number of analyses, the results of
which can be attached to our program model. We list examples below; though not
all-inclusive, this list can be extended easily:

Run-Time Analyses

We collect run-time information about C/C++ applications using the gprof pro-
filing tool.

•	 Execution Time Analysis profiles the time spent in functions, identifying perfor-
mance “hot spots,” or functions that execute for an exceptionally long time.

•	 Execution Frequency Analysis profiles the call frequency of functions to deter-
mine exceptionally frequently called functions.

Metric Analyses

We collect program information about single entities such as functions.
•	 Lines of Code (LOC) is measured for each function.

•	 Unsafe Function Calls. Certain aspects of C++ (e.g., unchecked array access,
raw pointers), can lead to low level buffer overflows, page faults, and segmenta-
tion faults. In this analysis, we detect calls to “unsafe” functions, such as sprintf,
scanf, strcpy.

•	 Global Variables. We traverse the program’s abstract syntax tree (AST) to check
for public declared variables (within the scope of classes) and global variables
(outside the scope of classes). It is considered a good programming style to avoid
global variables.

•	 New-Delete Analysis. In C++, when deleting scalar entities, the scalar C++ de-
lete statement should be used to ensure correct program behavior. Similarly,

© 2011 by Apple Academic Press, Inc.

28 Data Structure and Software Engineering: Challenges and Improvements

dynamically allocated arrays must be deleted with the delete [] statement. Our
analysis is based on data-flow and control-flow information.

•	 Cyclomatic Complexity (CC) indicates how much effort is required to main-
tain a function. Our implementation of McCabe’s Cyclomatic Complexity [19]
counts the possible execution branches in a function for the following branching
statements: if, for, while, do-while, and (switch-) case.

•	 Arithmetic Complexity. For each function, this analysis counts the number of
arithmetic operations on float, int, float pointer, and int pointer types. Thus,
functions and classes with large arithmetic operation counts can be detected.
This is particularly important in scientific computing codes, since such func-
tions should be the most robust and reliable pieces of the software.

Advanced Static Analyses

This helps to recover various hidden aspects of software. In general, these analyses
can not be interpreted alone; results indicate relations between entities.

•	 Pattern Matching is used to locate functional and non-functional properties of
a software system, e.g., MPI [22] calls in high performance computing. This
approach is similar to visualizing aspects from aspect-oriented programming
(AOP) [13].

•	 Class Membership. This analysis annotates each member function with its asso-
ciated class and source file it is implemented in. It discovers fragmented member
functions, i.e., member functions declared in the same class but defined in dif-
ferent files. This analysis may uncover “bad” coding styles or refactoring efforts
that were applied to split large source files.

•	 Strongly Connected Components (SCC). We detect cyclic dependencies be-
tween functions, classes or files. In general, nodes in a cyclic dependency may
be merged to reduce call dependencies, and hence to reduce the structural com-
plexity of the system.

Repository Analyses

This retrieves information from a source-code repository such as CVS or SVN
and attach it to the current program model. In our current implementation of C/
C++ visualization, we have not attached this information yet. We base the need
for such information on our previous studies visualizing Java repository informa-
tion [20, 24] using VizzAnalyzer [35] and Kenyon [3].

•	 Work Distribution is an analysis that determines the specific developers that are
working on a specific part of a software system. This information gives an idea

© 2011 by Apple Academic Press, Inc.

Comprehending Software Architecture 29

about the progress of the maintenance or development team and can also assist
to estimate time to completion.

•	 Frequent Change. Entities changed frequently result in higher maintenance ef-
forts and costs. Thus, it is essential to determine frequently changed compo-
nents.

•	 Defect Dependencies show how certain defects and their bug-fixes relate [4, 6].
Defect analyses may help to predict software project/maintenance costs.

Table 2 lists stakeholders and these analyses in which they might be particu-
larly interested.

Table 2. Correlation Analyses-Stakeholders

Table 2 only suggests what is possible. For our prototype, we have imple-
mented all of the analyses above (except pattern matching and the repository
analyses). The analysis results are attached to our model graph. With the model
graph at hand, the user can now view, interactively select (reduce) and communi-
cate information of interest.

Practical Single-View Visualization
We believe that single-view visualizations are better than multi-view visualizations
when communicating about software architecture. First, single-view illustrations
avoid the difficulties when managing and navigating through different views [27,
28, 32]; secondly, they rapidly summarize a system because all information is
available within that view; and thirdly, having one view helps different stakehold-
ers to easily communicate different concerns within the same familiar picture.
Single-view visualizations do not replace detailed stakeholder-specific visualizations.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-4&iName=master.img-002.jpg&w=241&h=146

30 Data Structure and Software Engineering: Challenges and Improvements

Rather, they unify different stakeholder-specific architectural visualizations to a
common image that can easily be communicated, as is done in the engineering
industry where task-specific blueprints are unified to be understood by architects,
electricians, civil engineers, and others. As an example, Kruchten introduced
(software) architectural blueprints in which a logical view describes classes and
associations for end users and a development view describes modules and compi-
lation dependencies for developers and managers [16]. Both views are essential.
Nevertheless, we believe that a single unified view combining both the logical and
development view could support the communication between end users, develop-
ers and managers. We plan to evaluate this hypothesis in future work.

To study the effects of single-view visualizations, we have developed a tool
prototype, cf. Section4. For our prototype to work effectively(i.e., by reducing the
cognitive overload for a viewer [28, 32]), we need to handle the inherent com-
plexity of multiple architectural aspects within one view. Below, we describe com-
plexity reduction techniques we have selected and implemented from literature:

•	 Abstraction. To cope with a flood of information, we need mechanisms for fil-
tering, aggregating, or merging low-level details into higher-level properties [25,
36]. Abstraction techniques are partofVizz3D [20].

•	 Association with Source Code. The architectural visualization should be easy
to relate to the underlying software artifact [36]. Therefore, we have extended
Vizz3D with the capability to interactively view the source code in association
with any node of the architectural view. This feature associates architecture and
source levels, cf. Section 2.

•	 Metaphors. Many graphic designs lack an intuitive interpretation, requiring that
a user be trained to understand them. We can alleviate this problem by selecting
metaphors that are familiar to the user, such as those found in the real world.
Tangible metaphors improve understanding and social interaction [8]. We have
chosen and implemented the city metaphor [14, 24], cf. Section 4.1, to increase
program understandability.

•	 Predictability. Two different runs of a layout algorithm, involving the same
graphs, should not lead to radically different visual representations. This prop-
erty is also referred to as “preserving the mental map” of the user [23]. While
force-directed layouts are usually not predictable, hierarchical algorithms im-
prove the situation, but they do not scale particularly well. For improved pre-
dictability and scalability, we have implemented a combination of force-directed
and hierachical layout within our tool, cf. Section 4.2.

The items above do not constitute an all-inclusive list of complexity reduction
techniques or features a tool should support. There are several other techniques
discussed in the literature [31, 36]. Some techniques were not chosen because of

© 2011 by Apple Academic Press, Inc.

Comprehending Software Architecture 31

their minor impact. For instance, focus and context [9], in which a user focuses
on a visual detail without losing the visual context, also aids program compre-
hension. However, as Storey, et al., report in their user study, although focus and
context (particularly fish-eye) views are thought to be useful, in practice they tend
not to be used [32]. Moreover, it is not our primary goal to define a complete list,
but rather to implement a reasonable number of techniques to support our goal
to show that our single-view visualization can present all manners of architectural
information.

implementation: Vizz3D
Our prototype is based onVizz3D [20, 34], a3D information visualization system
primarily developed for program visualization. Vizz3D is highly flexible and al-
lows users to define and reassign layout algorithms and metaphors at runtime.
Hence, visualizations can be configured on-line [20].

To reduce a user’s cognitive load, Vizz3D has a variety of operations, such as
the aggregation and filtering of nodes. In addition, users may at run-time filter all
nodes and edges of certain types, thereby allowing the visualization of arbitrary
combinations of the graphs defined in Section 2.1. For instance, a user may in-
teractively select several types of edges to display; the resulting same image might
then represent a Function Call graph, a Class Call graph, a File Contains graph,
or all graphs simultaneously.

We have enhanced Vizz3D with the ability to view the corresponding source
code when interactively selecting visual entities. In addition, to achieve predict-
able and consistent layouts and to provide an intuitive representation of our pro-
gram model, we have configured our own layout and metaphor for Vizz3D. (Sec-
tions 4.1–4.2, below).

Our prototype works on real C and C++ applications [33]. To build our im-
plementation, we have used, combined, and enhanced the following reverse en-
gineering tools: ROSE [29], a C/C++ source-to-source code transformation tool
used for program retrieval; ROSEVA, a program analyzer developed to create and
merge the various graphs described above; VizzAnalyzer [35], a framework for
reverse engineering tool integration, allowing us the rapid integration of various
program analysis and visualization tools; and for language interoperability be-
tween C/C++ (ROSE and ROSEVA) and Java (VizzAnalyzer), we use Babel [2].

an intuitive city Metaphor

Metaphors help users to better understand complex situations. For our archi-
tectural program visualization, we have chosen a city metaphor [14, 24]. Our

© 2011 by Apple Academic Press, Inc.

32 Data Structure and Software Engineering: Challenges and Improvements

metaphor comprises the following elements, cf. Figure12. Buildings represent
functions. Building textures represent source code metrics; for instance, the (tall)
blue colored buildings in Figure 1 indicate a LOC> 200. Similarly, other tex-
tures in this image indicate other thresholds. Cities (blue plates) indicate source
files. Pillars (C++ only), shown perpendicular to cities in Figure 2, represent class
definitions. The pillars are the foundation for water towers (spheres), representing
header files. In this way, a header file can have multiple class definitions. Finally,
(green) landscapes, which carry cities and water towers, represent directories. The
water and sky in Figure 1 and 2 are optional aesthetic decorations. Note that the
above is an example of one visual configuration; to determine the most effective
configuration, cognitive studies must be conducted. Vizz3D merely allows differ-
ent user defined mappings (from program model entities to visual entities). For
more information see [20].

Figure 2. Architectural Visualization.

computing consistent Layouts

Our layout algorithm extends the force-directed algorithm of Huang and Eades
[11] by combining it with a hierarchical algorithm. Because force-directed layout
algorithms can in general be rather slow, we calculate the forces for coarse-grained
nodes first, i.e., for header files, source files, and directories. Figure 3a) shows
the layout of 36 files. The edges represent Directory Contains relationships. Files
belonging to the same directory, representing components by design, are laid out

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-4&iName=master.img-003.jpg&w=238&h=207

Comprehending Software Architecture 33

close together. The size of a source file reflects the number of functions defined
within it. Buildings are laid out compactly next to each other, i.e., they are not
part of the force-directed layout. The second step is to apply the landscapes (direc-
tory structure) for the cities (files), cf. Figure3b).

The height of the landscape (y-axis) represents the depth of the directory path.
Therefore, cities or files in a deeper directory structure are represented on a higher
hierarchical level. As a result of the force-directed layout, directories containing
subdirectories are laid out more closely. As subdirectories are on a higher hierar-
chical level, subdirectories produce “visual mountains,” similar to 3D tree-maps
[5], where directory structures are represented to the user in a hierarchical way.

Our layout provides predictable visualizations (see Section 3) in that different
runs of the system produce fairly similar landscapes. Together with our 3D city
metaphor, familiar entities can quickly be rediscovered. The current layout pre-
dictability can even be improved if the initial random seed of our layout is kept
constant across multiple runs.

representing analysis results

Our single-view restriction means that all analysis results are displayed in one
view, raising immediate concerns about information overload. To overcome this
problem, we display metrics either with 2D icons [27] within our 3D scene (i.e.,
2D icons are shown on top of each building and above each city to convey in-
formation), or we use visual properties such as height, width, depth, and texture,
among others. Analysis results may also be represented by color; this means, how-
ever, that only one analysis at a time can be represented. For instance, all strongly
connected components are colored red (the top roof of a building).

application examples
We envision a variety of scenarios in which our single-view architectural visu-
alization would be particularly useful. We outline several such scenarios in this
section, emphasizing the ways in which our approach can facilitate collaboration
and discussion among stakeholders.

Quality assessment

Project managers and developers can easily assess various aspects of a software
system’s quality in our one-view visualization. For instance, consider Figure 1,
which combines a File Call-, Class Inheritance-, Class Contains-, File Contains-and

© 2011 by Apple Academic Press, Inc.

34 Data Structure and Software Engineering: Challenges and Improvements

Directory Contains graph. In addition, this figure shows software complexity in-
formation (fire texture), global variables (globe icon), oversized functions (blue
buildings), unsafe functions (lock icon), and run-time information (the width
and depth represents run-time information).

Figure 3. (a) layout algorithm between files (b) adding the directory structure

By interactively examining Figure 1, developers can communicate concerns,
such as global variables, new-delete deviations, or unsafe functions, to managers,
and help the managers understand where and why additional time must be spent
to improve those components. Similarly, complex areas of the system, as indicated
by cyclomatic or arithmetic complexity, can be easily illustrated via the common
metaphor. Developers of all skill levels can use this kind of visualization to detect
and communicate concerns, and they may do so over a variety of communication
media, such as teleconferencing or virtual reality displays.

We anticipate that single-view collaboration will help stakeholders detect code
quality problems earlier, make meetings more effective, and reduce project costs
in general.

componentization

Once a software system becomes large, it is essential to decomponentize it, i.e.,
to split it into smaller reusable components that eventually can be maintained or
sold separately. A single-view architectural visualization may again help to com-
municate componentization issues and costs among management, developers,
and re-engineers, using analyses such as pattern matching, class membership, and
SCC.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-4&iName=master.img-004.jpg&w=341&h=140

Comprehending Software Architecture 35

For example, consider the analysis of class membership violations. As described
in Section 2.2, a class membership analysis determines fragmented member func-
tions, i.e., member functions declared in the same C++ class (usually header file)
but defined indifferent source files. Suppose a file represents a component. From
a reusability perspective, a “good” coding style might prefer that all member func-
tions of one class be implemented in the same source file. A re-engineer might
write a simple analysis to check this condition and print the results as text to the
screen.

Though this screen dump provides useful information, this information might
be of limited use if the original developers are not present to guide changes. An
architectural visualization, on the other hand, might supply some of the develop-
ers’ expertise through additional metrics visualized at the same time. For instance,
consider Figure 4, where the class membership relationship is indicated by assign-
ing the same color to each member function of a class. In Figure 4, the directory
“/wpp3D/” contains four source files and one header file. The header file contains
one class (pillar) that contains eight member functions, indicated by their red
coloration.

We see that one member function is defined in a different source file, i.e.,
a fragmentation is present. However, due to the additional LOC information,
even a non-expert could conclude that the exceptional member function has been
refactored due to its size.

Our single-view architectural visualization helps us to understand the specific
analysis problem at hand. Moreover, it shows the entire context of all additional
entities and relationships involved. For example, one can determine whether the
exceptional method described above occurs in the same directory as the other
methods in its class or not. Furthermore, call edges may be activated turning
the Class Contains graph into a merge of the Class Contains and Function Call
graphs. The additional information may help to investigate the purpose of certain
functions in the context of the whole program.

Another example is the detection of strongly connected components. Again, if
only printed to the screen as a list, the context might be lost. For instance, Figure
5 shows an architectural visualization of a file call graph. The files themselves are
color coded; a green color indicates a cycle. Seeing the analysis result in the con-
text of the directory structure, one could assume that all files in the cycle belong
to the lower right directory. There are however two exceptions. It is now up to
the developer or re-engineer to determine whether the exceptional files should be
moved.

© 2011 by Apple Academic Press, Inc.

36 Data Structure and Software Engineering: Challenges and Improvements

Figure 4. Class Membership Visualization.

comparison to related work
There is a large literature on existing architectural visualization tools. We can clas-
sify these approaches accordingto the number of aspects theyvisualize using how
many views.

•	 Single-aspect, single-view. Illustrate only one aspect of a software architecture,
e.g., CrocoCosmos [18], sv3D [21].

•	 Multi-aspect, single-view. Our work is an example of this class. Another ex-
ample is SHriMP [31], allowing the interactive, single-view navigation between
architecture and source code. SHriMP is a great tool for architectural browsing
and understanding of source code. However, SHriMP was not developed with
stakeholder communication in mind; it does not support a natural metaphor or
the ability to add multiple analysis and metric results within the view.

•	 Multi-aspect, multi-view. Illustrate multiple views of the architecture level, e.g.,
CodeCrawler [17], BLOOM [30]3. Other approaches, such as ArgoUML [1],
exist. However, these applications visualize not just architectural level informa-
tion, but rather a combination of architecture and middle level. Further recom-
mendations and cognitive studies on (architectural) multi-views can be found
in [10, 16, 32].

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-4&iName=master.img-005.jpg&w=341&h=225

Comprehending Software Architecture 37

We believe that multiple views are important for detecting and answering
many problems, especially when depicting low-level analysis results in middle-
level visualizations. In such cases, it is impossible to view all the possible aspects of
software in one image. However, when illustrating the architecture of a software
system to various stakeholders, we believe that showing the different architectural
aspects in the same view with the same metaphor and layout is desirable. In this
paper, we have suggested how it is possible to merge and filter the essential infor-
mation for different stakeholders. This helps stakeholders get precise answers to
their questions and, moreover, enables them to communicate the answers among
themselves and others.

Figure 5. Strongly Connected Components Visualization.

conclusion and future work
Our tool is a proof-of-concept design for a multi-aspect, architecture-level, single-
view visualizer. This paper reviews our philosophy and implementation, with par-
ticular emphasis on how different stakeholders can use such visualizations as an aid
in collaborative understanding, development, maintenance, and re-engineering of
a large-scale software system. The key features of our approach are the use of an
intuitive city metaphor for representing the structure of the system architecture,

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-4&iName=master.img-006.jpg&w=341&h=227

38 Data Structure and Software Engineering: Challenges and Improvements

a single view for visualizing multiple aspects and analysis results, and powerful
filtering and focusing techniques built into the tool implementation.

We have integrated and extended a variety of analysis and visualization tools,
allowing us in future work to evaluate the trade-offs of using a unified single-view
for architecture-level program visualization and communication. In preparation
for such future experiments, we have classified and implemented program analy-
ses, identified and implemented complexity reduction techniques for large scale
visualizations, and implemented a layout algorithm and metaphor in our visual-
ization tool, Vizz3D.

acknowledgements
This work was performed under the auspices of the U.S. Department of En-
ergy by University of California, Lawrence Livermore National Laboratory under
Contract W-7405Eng-48, UCRL-CONF-227293.

We thank Jeremiah Willcock and Christian Iwainsky for numerous helpful
discussions.

references
1. ArgoUML. Available at: http://argouml.tigris. org/, 2004.

2. Babel. Available at: http://www.llnl.gov/CASC/ components/, July 2006.

3. J.Bevan,S. Kim, and L. Zou. Kenyon: A common software stratigraphy system.
Available at: http://www.soe. ucsc.edu/research/labs/grase/kenyon/, 2005.

4. D. Beyer. Co-change visualization. In Proceedings of the 21st IEEE Interna-
tional Conference on Software Maintenance (ICSM 2005, Budapest, Septem-
ber 25-30), Industrial and Tool volume, pages 89–92, Budapest, 2005.

5. T. Bladh, D. Carr, and J. Scholl. Extending tree-maps to three dimensions:
a comparative study. In M. Masoodian, S. Jones, and B. Rogers, editors, 6th
Asia-Pacific Conference on Computer-Human Interaction (APCHI 2004),
New Zealand, June 2004.

6. M. Burch, S. Diehl, and P. Weissgerber. Visual data mining in software ar-
chives. In SoftVis ‘05: Proceedings of the 2005ACM symposium on Software
visualization, pages 37– 46, New York, NY, USA, 2005, ACM Press.

7. S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengineering
Patterns. Morgan Kaufmann Publishers, 2003.

© 2011 by Apple Academic Press, Inc.

http://argouml.tigris.org/
https://computation.llnl.gov/casc/
http://www.soe.ucsc.edu/

Comprehending Software Architecture 39

8. C. R. dos Santos, P. Gros, P. Abel, D. Loisel, N. Trichaud, and J. Paris. Meta-
phor-aware 3d navigation. In IEEE Symposium on Information Visualization,
pages 155–65. Los Alamitos, CA, USA, IEEE Comput. Soc., 2000.

9. G.W. Furnas. The FISHEYE view: A new look at structured files. Technical
Report 81-11221-9, Murray Hill, New Jersey 07974, U.S.A., 12 1981.

10. J.C. Grundy, R. Mugridge, and J. Hosking. Visual specification of multi-view
visual environments. In IEEE Symposium on Visual Languages, Halifax, Nova
Scotia, Canada. IEEE CS Press, September 1998.

11. M.L. Huang and P. Eades. A fully animated interactive system for clustering
and navigating huge graphs. In 6th Int. Symposium on Graph Drawing, pages
374–383. Springer LNCS 1547, 1998.

12. M. Junger and P. Mutzel, editors. Graph Drawing Software. Springer, 2004.

13. G. Kiczales, K. Lieberherr, H. Ossher, M. Aksit, and T. Elrad. Discussing As-
pects of AOP. Communications of the ACM, 44(10), October 2001.

14. C. Knight and M.C. Munro. Virtual but visible software. In IV00, pages 198–
205, 2000.

15. R. Koschke. Software Visualization in Software Maintenance, Reverse Engi-
neering, and Reengineering: A Research Survey. Journal on Software Mainte-
nance and Evolution, 15(2):87–109, March 2003.

16. P. Kruchten. The ”4+1” view model of architecture. IEEE Software, 12(6):42–
50, November 1995.

17. M. Lanza. Codecrawler a lightweight software visualization tool. In VisSoft
2003 (2nd International Workshop on Visualizing Software for Understanding
and Analysis). IEEE Computer Society Press, 2003.

18. C. Lewerentz and F. Simon. Metrics-based3DVisualization of Large Object-
Oriented Programs. In 1st International Workshop on Visualizing Software for
Understanding and Analysis, June 2002.

19. W. Li and S. Henry. Maintenance Metrics for the Object Oriented Paradigm.
In IEEE Proceedings of the 1st International Software Metrics Symposium,
May 1993.

20. W. Lowe and T. Panas. Rapid Construction of Software Comprehension Tools.
International Journal of Software Engineering and Knowledge Engineering,
December 2005.

21. A. Marcus, L. Feng, and J. I. Maletic. 3D Representations for Software Visual-
ization. In Proceedings of ACM Symposium on Software Visualization, 2003.

© 2011 by Apple Academic Press, Inc.

40 Data Structure and Software Engineering: Challenges and Improvements

22. Message Passing Interface Forum (MPIF). MPI: A Message-Passing Interface
Standard. Technical Report, University of Tennessee, Knoxville, June 1995.
http://www.mpi-forum.org/.

23. K. Misue, P. Eades, W. Lai, and K. Sugiyama. Tree visualisation and navigation
clues for information visualisation. J. of Visual Languages and Computing,
6:183–210, 1995.

24. T. Panas, R. Berrigan, and J.C. Grundy.A3d metaphor for software production
visualization. In IV03, London, UK, June 2003. IEEE.

25. T. Panas, W. Lowe, and U. Aßmann. Towards the unified recovery architecture
for reverse engineering. In International Conf. on Software Engineering Re-
search and Practice, Las Vegas, USA, June 2003.

26. T. Panas, J. Lundberg, and W. Lowe Reuse in reverse engineering. In Interna-
tional Workshop on Program Comprehension, Bari, Italy, June 2004.

27. G. Parker, G. Franck, and C. Ware. Visualization of large nested graphs in
3d: Navigation and interaction. Journal of Visual Languages and Computing,
9(3):299–317, 1998.

28. M. Petre, A. Blackwell, and T. Green. Cognitive questions in software visualiza-
tion. Software Visualization: Programming as a Multimedia Experience, pages
453–480, January 1998.

29. D. Quinlan, S. Ur, and R. Vuduc. An extensible open-source compiler in-
frastructure for testing. In Proc. IBM Haifa Verification Conference, volume
LNCS 3875, pages 116–133, Haifa, Israel, November 2005.

30. S.P. Reiss and M. Renieris. The BLOOM Software Visualization System. In
Software Visualization –From Theory to Practice, MIT Press, 2003.

31. M.-A.D. Storey, F.D. Fracchia, and H.A. Mueller. Cognitive design elements
to support the construction of a mental model during software visualization.
In Proc. of the 5th Int. Workshop on Program Comprehension (WPC ‘97),
Washington, DC, USA, 1997. IEEE Computer Society.

32. M.-A. D. Storey, K. Wong, and H. A. Muller How do program understand-
ing tools affect how programmers understand programs? Science of Computer
Programming, 36(2–3):183–207, 2000.

33. T. Panas. Quality Analysis of SMG2000.Technical report, CASC, Lawrence
Livermore National Laboratory, November 2006.

34. Vizz3D. Available at: http://vizz3d. sourceforge.net, July 2006.

35. Vizz Analyzer. Available at: http://www.arisa.se/, 2006.

© 2011 by Apple Academic Press, Inc.

http://www.mpi-forum.org/
http://vizz3d.sourceforge.net/
http://www.arisa.se/

Comprehending Software Architecture 41

36. P. Young and M. Munro. Visualising software in virtual reality. In Proc.
IEEE6th Int. Workshop on Program Comprehension, June 24-26, pp19-26.
Ischia, Italy, IEEE Computer Society Press., 1998.

© 2011 by Apple Academic Press, Inc.

Determination of neural fiber
connections based on Data

Structure algorithm

Dilek Göksel Duru and Mehmed Özkan

abStract
The brain activity during perception or cognition is mostly examined by func-
tional magnetic resonance imaging (fMRI). However, the cause of the detect-
ed activity relies on the anatomy. Diffusion tensor magnetic resonance im-
aging (DTMRI) as a noninvasive modality providing in vivo anatomical
information allows determining neural fiber connections which leads to brain
mapping. Still a complete map of fiber paths representing the human brain is
missing in literature. One of the main drawbacks of reliable fiber mapping is
the correct detection of the orientation of multiple fibers within a single im-
aging voxel. In this study a method based on linear data structures is proposed
to define the fiber paths regarding their diffusivity. Another advantage of the

© 2011 by Apple Academic Press, Inc.

Determination of Neural Fiber Connections 43

proposed method is that the analysis is applied on entire brain diffusion ten-
sor data. The implementation results are promising, so that the method will
be developed as a rapid fiber tractography algorithm for the clinical use as fu-
ture study.

introduction
Functional magnetic resonance imaging (fMRI) serves to determine the brain
activity during perception or cognition. BOLD contrast for fMRI is remarkable
in cognitive neuroscience, surgical treatment planning, and preclinical studies in
examining the main parameters such as the blood flow, blood volume, resting
state connectivity, and anatomical connectivity within the brain [1]. To define
the cause of the detected activity, the anatomy of the underlying tissue must
be analyzed. The functional properties of the region of interests (ROIs) in the
brain can be investigated by combination of different modalities such as diffu-
sion tensor magnetic resonance imaging (DTMRI or DTI), ADC fMRI, and
BOLD fMRI [2]. As a noninvasive imaging modality DTMRI helps identifica-
tion and visualization of the fiber connections in the anatomy [3–5]. DTMRI
is unique in its ability providing in-vivo anatomical information noninvasively.
The potential of DTI is to make the determination of anatomical connectivity in
the investigated brain regions by mapping the axonal pathways in white matter
noninvasively [6].

The lack of a complete neural fiber map in literature makes the post processing
of the data very important. Methods and updates are to be researched to define
the fiber trajectories in the uncertainty regions where multiple fiber orientations
cross within a single imaging voxel [7, 8]. Our proposed technique aims to track
the white matter fibers according to data structure algorithm noniteratively and
depending on the structural information of the underlying tissue. The proposed
algorithm is based on two major processes. One is decision making and the other
one is storing process. Decision making process is basically an operation based
on comparison between the orientations of diffusivities of adjacent voxel pairs.
In other words, it is the determination of the path to be traced for computing
the neural pathways. The decision making involves setting a similarity measure
having a constant scalar value for a subject. The voxels which succeeded to pass
the threshold is stored in a data structure. This process is performed for all the
adjacent voxel pairs in the examined brain MR images. So the study applies the
method to the entire human brain DT images to construct maps of neural fibers
in uncertainty regions.

© 2011 by Apple Academic Press, Inc.

44 Data Structure and Software Engineering: Challenges and Improvements

Material and Methods
Principles of Diffusion tensor analysis

The Stejskal-Tanner imaging sequence is used to measure diffusion weighted im-
ages [3, 4, 9]. The diffusion tensor D is calculated from this raw data source at
each point in the tissue formulated by the Stejskal-Tanner equation as [10, 11]

 ˆ ˆ
0 ,

T
i ibg Dg

iS S e-= (1)

where Si is the signal received with diffusion gradient pulses, S0 is the RF signal
received for a measurement without diffusion gradient pulses, b is the diffusion
weighting factor, and |g| is the strength of the diffusion gradient pulses.

The diffusion tensor D is a real, symmetric second-order tensor, represented in
matrix form as a real, symmetric 3 × 3 matrix [3, 4]. The six unique elements of
the diffusion tensor D are calculated according to the three-dimensional Gaussian
Stejskal-Tanner model as (2) by acquiring at least six diffusion-weighted mea-
surements in noncollinear measurement directions g along with a nondiffusion-
weighted measurement S0 [3, 4, 7, 12, 13]. On regular DTMR scans more than
six diffusion-weighted measurements are taken which creates an over constrained
system of equations solved using least square methods [9, 12, 14, 15]:

1

2 2 2 0
1 1 1 1 1 1 1 1 1

22 2 2
2 2 2 1 1 2 2 2 2

0

2 2 2

0

1 ln
2 2 2

1 ln2 2 2
.

2 2 2 1 ln

xx

yy

zz

xy

xzn n n n n n n n n
n

yz

SD
b Sx y z x y y z x z D

S
Dx y z x y y z x z

b S
D
Dx y z x y y z x z S
D b S

é ùé ù -ê úê ú ê úé ù ê ú ê úê ú ê ú ê úê ú ê ú -ê úê ú ê ú ê ú=ê ú ê ú ê úê ú ê ú ê úê ú ê ú ê úê ú ê ú ê úë û ê ú ê ú-ê ú ê úë û ë û

 (2)

Equation (2) equals a vector containing natural logarithmic scaled RF sig-
nal loss resulting from the Brownian motion of spins, and xi, yi, zi denote the n
gradient measurement directions. An orthogonal basis is the eigensystem of the
symmetric matrix D by finding its eigenvalues and eigenvectors are calculated
[16]. Principal component analysis (PCA) is used to perform the diffusion ten-
sor analysis and compression. The diagonalization of the diffusion tensor as (3)
results in a set of three eigenvalues λ 1 > λ 2 > λ 3 representing the principal dif-
fusion orientation in an investigated pixel [5, 8]. The eigensystem is defined by

© 2011 by Apple Academic Press, Inc.

Determination of Neural Fiber Connections 45

the eigenvectors ei and the corresponding eigenvalues λ i (4). The eigenvectors ei
represent the principal diffusion directions:

(1, 2, 3),x i i iD e e il= =

 (3)

 0.xD Il- = (4)

Examining the raw data for every pixel, the eigensystem of D is calculated in
each pixel. The eigensystem calculation for analyzed image data provides infor-
mation about the diffusion distribution throughout the investigated image data.
The first principal component λ 1 shows the dominant diffusivity direction. The
second and third principal components λ 2 and λ 3 provide information of the
intermediate and the smallest principal diffusivity, respectively [17].

List Data Structure implementation

The linear data structure used here helps to create a list of investigated region of
interest eigenvectors where data item insertions and retrievals/deletions are made
at one end, namely, the top of the list. A data item insertion is called pushing and
removing is called popping the list. The created list can be called a linked list in
which all insertions and deletions are performed at the list head (top) [18]. For
each data item push, the previous top data item and all lower data items move
farther down. When the time arrives to pop a data item from the list, the top data
item is retrieved and deleted from the list. To clarify the implementation routine,
application steps are explained on the synthetic data as in Figure 1.

Figure 1. Sample synthetic eigenvector pattern. (a) (1,1) is the starting node, where green checks represent the
neighbors within the similarity measure.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-5&iName=master.img-000.jpg&w=337&h=148

46 Data Structure and Software Engineering: Challenges and Improvements

The starting point is selected as x=1 and y=1 as shown in Figure 1(a). This
selected coordinate having the eigenvector [1,0] is the bottom of the linked list.
The predefined similarity measure is a set of angular thresholds π/j (j= 4, 6, 12,
18, 20). Pixel (1, 2) is not within the limits of similarity measure π/4 (see Fig-
ure 1(a)). Pixel (2, 1) is stored in the stack on the top again in compliance with
similarity. Top is now assigned to the new node. Next, pixel (2, 2) fulfilling the
selected similarity measure is stored on the top of the list. The eigenvector [0.7
.07] with its neighboring pixels’ eigenvectors is being compared for similarity. As
a result, neighbors with coordinates (1, 3) and (3, 3) with both having the eigen-
vector [-0.7 -0.7] are eliminated (see Figure 1(b)). The implementation follows by
pushing the coordinates (2, 3) and (3, 2) to the list. Pixel (3, 2) is popped. Then
its neighbors are examined as in Figure 2(a). The routine follows by determining
pixels matching with the predefined similarity rule π/4. The synthetic fiber path
(represented in blue) is defined as a result as in Figure 2(b).

Figure 2. Listed data structure analysis results shown on sample pattern with its principal eigenvectors. Two
possible resulting fiber paths are represented.

Selecting the similarity measure as π/4 allows the pixel (2, 2) to be on the
list as described above. But examining the pattern by a different try for a vary-
ing angular threshold such as π/6 or π/12, this pixel is not being assigned for the
neighboring pixel list. As a result the track represented in red on Figure 2(b) is the
outcome of the computational routine. The decision making here about to select
a track follows regarding to the underlying tissue’s structural information.

The proposed approach relies on the assumption of the unique path descrip-
tion of an axon. Each element in the implementation represents a voxel in the
ROI, and each voxel is related with its neighboring voxels. Regarding the neigh-
boring voxel knowledge, the computation sorts the elements in the list for track-
ing, where the elements which do not fulfill the criteria are kept in a secondary

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-5&iName=master.img-001.jpg&w=341&h=146

Determination of Neural Fiber Connections 47

matrix. While examining the investigated pattern pixelwise, the elements in the
secondary matrix come up as potential neighboring pixels in question. The re-
peated check for if they are within the similarity criteria and if they belong to
the fiber track gives the chance of a double check in the system. By that way, the
neighboring is updated and a more secure resulting track is being defined and fol-
lowed. The routine updates itself so that for the one selected starting node the first
and second neighboring pixels are investigated and the computational routine is
stretched to a wide range via this increased neighborhood.

results
The proposed method is implemented on simulated fiber eigensystem to deter-
mine the predefined synthetic trajectories in Section 2.2. The output of the al-
gorithm is in agreement with the visual inspection results as shown in Figure
2. Variation of the similarity measure causes major differences in the calculated
neural path as seen in Figure 2(b). Small values of the similarity measure decreases
the number of voxels in the solution which are defined by the decision making
as neighboring voxels while increased similarity measure selections generate more
well-defined and close results to the underlying tissue structure.

Following the promising results of the synthetic data implementations, the
method is applied on real DT brain images. As explained in detail in Section 2.1
((3) and (4)), the eigensystem of D is determined by PCA [19] and interpreted
graphically as seen in Figure 3.

Figure 3. Calculated principal eigenvectors of the entire slice superimposed on axial brain MR image.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-5&iName=master.img-002.jpg&w=181&h=189

48 Data Structure and Software Engineering: Challenges and Improvements

It is obvious that visual detection of any fiber path on the 2D axial MR image
representing the eigenvectors is pretty hard unlike the simulated case. Therefore
the developed linear list data structure algorithm is applied to the entire brain for
neural fiber mapping. The search process of the pattern in the selected limits is
completed in examining the eigenvectors of each pixel based on the predefined
similarity measure. This examined data set sample might be a whole image data or
a single ROI as in Figure 4.

Figure 4. Fiber tracking results traced on axial slice with a similarity measure of π/20. (a) Starting point at
[44,70]. (b) Calculated neighboring pixels with related diffusivity mapped on entire eigenvector map. (c)
Zoomed region of interest.

The selection of the investigated brain region’s size is directly related with the
elapsed time of the computation. To be able to visualize the results of the algo-
rithm, not the whole brain volume but only a selected and easily recognized re-
gion is computed. The results of such an example are represented in Figures 5 and
6 from different view angles in 3D.

Figure 5. Tracking results of the implementation are represented on 2 consecutive slices.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-5&iName=master.img-003.jpg&w=341&h=126
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-5&iName=master.img-004.jpg&w=291&h=147

Determination of Neural Fiber Connections 49

Figure 6. Fiber tracking results of the ROI close to inferior frontal lobe registered with the anatomic MR
images.

Discussion
Some modalities such as PET and fMRI makes it possible to map the brain func-
tions noninvasively. A parallel fMRI experiment with DTI is promising for un-
derstanding the brain function in both neuroimaging and neuroanatomical tech-
niques’ sense [2]. The knowledge derived from the DTI make it possible to map
the in vivo information of the human neural fiber pathways noninvasively. This is
an important motivation in diffusion tensor analysis research. The postprocessing
of DTI analyzing tools plays great role in determination of the anatomical struc-
tural maps of fiber tracts. To follow a fiber tract and to build a neural map, each
voxel’s trajectory is approximated by a set of computed lines in each voxel regard-
ing their major diffusivity. Each resulting tract defines a curvature representing a
small bundle of axons in the pathway.

In the existence of fiber crossings and branches in an investigated ROI, the
accuracy of the computed neural paths by DTI analyzing tools is unclear. One of
the main limitations of diffusion tensor analysis relies on providing a solution for
identification of the orientations of the brain fibers in uncertainty regions which
is of great importance [3, 4, 8]. Therefore this problem arising in these so-called
uncertainty regions is tried to be eliminated by different research groups [12,
20–23].

The aim of this study is to propose a rapid and reliable tracking algorithm
which may eliminate the uncertainty region problem in DTI analysis. As
seen in results, the synthetic fiber tracking implementation succeeded for pre-
defined neural pathways. This motivated us to implement the algorithm on real

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-5&iName=master.img-005.jpg&w=284&h=165

50 Data Structure and Software Engineering: Challenges and Improvements

diffusion tensor brain images. The computed tracts are found in agreement with
the spatial visual inspection. Detailed anatomic information can be gathered via
the computed tractography based on the Talairach atlas to become a gold stan-
dard, which is still missing.

Future work relies on eliminating the tracking problems in the uncertainty
areas by upgrading the proposed method so that the calculation will be imple-
mented on neural system basis and physiological background. The results will
provide the base to reliable brain mapping.

conclusion
This work aims to develop a promising approach which may eliminate the un-
certainties in DT-MRI fiber tractography reconstructions and enhance a neural
mapping. The degree of uncertainty in fiber orientation is subject to change by
the selection made for similarity measure to detect neighboring voxel pairs. The
fiber tracking tools are limited to trajectory-based representations. Therefore the
detection of the anatomical connectivity and reliable computation of the neural
map should be applied carefully being aware of any mistaken result.

It has been shown that linear list data structure gives promising analysis re-
sults in diffusion tensor fiber tract estimation. The identifying similarity measure
varies in a range which is accepted in the means of anatomical fiber structure
knowledge. Comparing the resulting tracts in synthetic eigenvector pattern with
the known predefined pathways, the algorithm gives promising results and works
well for the tracking purposes. The computed neural pathways varying with the
change of the similarity measure cause to decrease or increase the number of the
neighboring voxels for a selected starting voxel. The differing resulting pathways
can be thought as an error of the method where it might be also in some cases the
possible orientation of a fiber bundle in a wide range, which may be determined
by an anatomical brain atlas, that is, Talairach atlas.

Besides the existing algorithms the proposed technique provides the possi-
bility to compute the whole eigensystem of the investigated brain volume. The
neighboring voxel pair calculation compares the investigated node in every step
of the algorithm within the entire image volume. Each voxel is checked for more
than one trial in the total analysis. In that way the decision making of the algo-
rithm becomes more precise.

acknowledgement
This work was supported in part by Bogazici University Scientific Research Proj-
ect 07HX104D.

© 2011 by Apple Academic Press, Inc.

Determination of Neural Fiber Connections 51

Academic Editor
Fabio Babiloni

references
1. D. G. Norris, “Principles of magnetic resonance assessment of brain function,”

Journal of Magnetic Resonance Imaging, vol. 23, no. 6, pp. 794–807, 2006.

2. S. A. Huettel, A. W. Song, and G. McCarthy, Functional Magnetic Resonance
Imaging, Sinauer Associates, Sunderland, Mass, USA, 2004.

3. P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy
and imaging,” Biophysical Journal, vol. 66, no. 1, pp. 259–267, 1994.

4. P. J. Basser, J. Mattiello, and D. LeBihan, “Estimation of the effective self-
diffusion tensor from the NMR spin echo,” Journal of Magnetic Resonance,
vol. 103, no. 3, pp. 247–254, 1994.

5. P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, “In vivo fiber
tractography using DT-MRI data,” Magnetic Resonance in Medicine, vol. 44,
no. 4, pp. 625–632, 2000.

6. S. Mori, B. J. Crain, V. P. Chacko, and P. C. M. Van Zijl, “Three-dimensional
tracking of axonal projections in the brain by magnetic resonance imaging,”
Annals of Neurology, vol. 45, no. 2, pp. 265–269, 1999.

7. P. J. Basser and D. K. Jones, “Diffusion-tensor MRI: theory, experimental de-
sign and data analysis—a technical review,” NMR in Biomedicine, vol. 15, no.
7-8, pp. 456–467, 2002.

8. D. Le Bihan, C. Poupon, A. Amadon, and F. Lethimonnier, “Artifacts and pit-
falls in diffusion MRI,” Journal of Magnetic Resonance Imaging, vol. 24, no.
3, pp. 478–488, 2006.

9. P. J. Basser, “Inferring microstructural features and the physiological state of
tissues from diffusion-weighted images,” NMR in Biomedicine, vol. 8, no. 7-8,
pp. 333–344, 1995.

10. E. O. Stejskal, “Use of spin echoes in a pulsed magnetic-field gradient to study
anisotropic, restricted diffusion and flow,” The Journal of Chemical Physics,
vol. 43, no. 10, pp. 3597–3603, 1965.

11. E. O. Stejskal and J. E. Tanner, “Spin diffusion measurements: spin echoes
in the presence of a time-dependent field gradient,” The Journal of Chemical
Physics, vol. 42, no. 1, pp. 288–292, 1965.

© 2011 by Apple Academic Press, Inc.

52 Data Structure and Software Engineering: Challenges and Improvements

12. C. F. Westin, S. E. Maier, H. Mamata, A. Nabavi, F. A. Jolesz, and R. Kikinis,
“Processing and visualization for diffusion tensor MRI,” Medical Image Analy-
sis, vol. 6, no. 2, pp. 93–108, 2002.

13. P. B. Kingsley, “Introduction to diffusion tensor imaging mathematics—part
I. Tensors, rotations, and eigenvectors,” Concepts in Magnetic Resonance, vol.
28, no. 2, pp. 101–122, 2006.

14. S. Pajevic and C. Pierpaoli, “Color schemes to represent the orientation of
anisotropic tissues from diffusion tensor data: application to white matter fiber
tract mapping in the human brain,” Magnetic Resonance in Medicine, vol. 42,
no. 3, pp. 526–540, 1999.

15. C. H. Sotak, “The role of diffusion tensor imaging in the evaluation of ischemic
brain injury—a review,” NMR in Biomedicine, vol. 15, no. 7-8, pp. 561–569,
2002.

16. A. I. Borisenko and I. E. Tarapov, Vector and Tensor Analysis with Applica-
tions, Dover, New York, NY, USA, 1979.

17. C. Pierpaoli, A. Barnett, S. Pajevic, et al., “Water diffusion changes in wallerian
degeneration and their dependence on white matter architecture,” NeuroIm-
age, vol. 13, no. 6, pp. 1174–1185, 2001.

18. N. Wirth, Algorithms and Data Structures, Prentice-Hall, Englewood Cliffs,
NJ, USA, 1986.

19. D. Goksel and M. Ozkan, “Towards rapid analysis of diffusion tensor MR
imaging,” ESR Supplements, vol. 16, no. 1, p. 286, 2006.

20. S. Pajevic and P. J. Basser, “Parametric and non-parametric statistical analysis
of DT-MRI data,” Journal of Magnetic Resonance, vol. 161, no. 1, pp. 1–14,
2003.

21. D. K. Jones, “Determining and visualizing uncertainty in estimates of fiber
orientation from diffusion tensor MRI,” Magnetic Resonance in Medicine, vol.
49, no. 1, pp. 7–12, 2003.

22. D. K. Jones and C. Pierpaoli, “Towards a marriage of deterministic and prob-
abilistic tractography methods: bootstrap analysis of fiber trajectories in the
human brain,” in Proceedings of the 12th International Society for Magnetic
Resonance in Medicine (ISMRM ‘04), p. 1276, Kyoto, Japan, May 2004.

23. D. K. Jones, A. R. Travis, G. Eden, C. Pierpaoli, and P. J. Basser, “PASTA:
pointwise assessment of streamline tractography attributes,” Magnetic Reso-
nance in Medicine, vol. 53, no. 6, pp. 1462–1467, 2005.

© 2011 by Apple Academic Press, Inc.

a Preliminary analysis
of Software engineering

Metrics-based criteria for the
evaluation of Learning objects

reusability

J. Sanz Rodríguez, J. M. Dodero and S. Sanchez-Alonso

abStract
Reusability of learning objects is evaluated on the basis of a priori software re-
usability analysis, which are related to cohesion and coupling aspects. A num-
ber of reusability metrics extracted from metadata records are defined and an-
alyzed to provide an aggregate reusability evaluation for learning objects in a
repository. The evaluation is validated and compared with an expert-based a
posteriori evaluation method.

Keywords: Learning objects, metadata, reusability.

© 2011 by Apple Academic Press, Inc.

54 Data Structure and Software Engineering: Challenges and Improvements

introduction
Reusability is a key issue on e-learning contents and systems. Providing reusable
learning objects can facilitate its further development and adaptation, augment
learning object development productivity, reduce development costs and improve
quality. Although reusability is an intrinsic characteristic of the learning object
that can provide a priori a measure of its quality, reusing learning objects is an em-
piric and observable fact that can be compared with such measures by means of a
posteriori data compiled from their actual use. Nevertheless, studies on reusability
indicators and design criteria that guarantee reusability are scarce [1].

The objective of this work is to identify concrete metrics that can be used to
qualify learning objects with aspects related to the capability of being reusable.
Such measures can be useful to learning object producers, who can have quantita-
tive data on the reusability of the designed objects, as well as to learning object
consumers, who can search in repositories for objects that can be more easily
adapted to their specific needs.

Learning object evaluation
Several initiatives have approached the evaluation of learning objects to provide
an estimation of the guaranteed quality. MERLOT (http://www.merlot.org) clas-
sify objects in seven discipline categories (i.e. Arts, Economy, Education, Hu-
manities, Mathematics, Science and Technology) and compile experts and users’
evaluations on three dimensions (i.e. content quality, usability and effectiveness as
a learning tool) on a 1-5 numeric scale [2].

ELera (http://www.elera.net) extends this evaluation scheme by the LORI
(Learning Object Review Instrument) tool [3], which evaluates aspects such as
content quality, objective fulfillment, feedback and adaptation capability, motiva-
tion, presentation, usability, accessibility, reusability and standards compliance.
Each aspect is assessed on a 1-5 scale, based on a Delphi-style collaborative evalu-
ation scheme with the participation of groups of experts, in which objects are first
evaluated on an asynchronous, individual basis; afterwards individual evaluations
are discussed to agree on eventual assessments.

Usual learning object evaluation methods are based upon compiling opinions
from users and experts about different aspects of a learning object. In contrast to
these, the learning object reusability evaluation model proposed here is aprioristic
and is based upon the learning object structure and common metadata that de-
scribe it. However, harnessing learning object metadata for that aim depicts some
issues, particularly related to information fragmentation and the potential lack

© 2011 by Apple Academic Press, Inc.

http://www.merlot.org/merlot/index.htm
http://209.87.56.111/drupal/

A Preliminary Analysis of Software Engineering 55

of integrity on the harvested metadata. Therefore, we need to augment metadata
with extended information that enacts reusability.

evaluation Methodology
We have based on an evaluation methodology used to measure reusability of ob-
ject-oriented software [4], based on the following steps:

1. Study and identify the learning object aspects and factors having influence
on the capability of reusing

2. Define metrics to measure reusability factors that have been identified,
based upon analysis of IEEE Learning Object Metadata (LOM) standards
[5] and the learning object structure

3. Formulate an aprioristic evaluation model formed by the aggregation of
the metrics according to their significance for evaluating reusability

4. Evaluate the model though application and comparison with the reusabil-
ity data obtained by LORI for a significant set of learning objects of the
eLera repository.

reusability factors
The factors that determine the ability of a learning object to be reused [6][7][8]
can be classified as structural or contextual issues. From a structural viewpoint,
reusable learning objects must be:

•	 Self-contained: a learning object should have sense by itself; references to other
resources will decrease reusability; the more pre-requisites it needs, the more dif-
ficult will be adapting it to other contexts.

•	 Modular: a learning object must be combinable with other objects to form com-
posite structures as lessons and courses.

•	 Properly grained: proper size and a proper learning objective for a learning ob-
ject will facilitate reusing it.

•	 Traceable: a learning object should be easily identifiable and traceable through
the correct metadata.

•	 Modifiable: a learning object should be modifiable to reformulate it under a
given context different to the originally designed.

•	 Usable: a reusable learning object must be easy to use and interactive interface
elements it contains should be intuitive.

© 2011 by Apple Academic Press, Inc.

56 Data Structure and Software Engineering: Challenges and Improvements

•	 Standardized: a reusable learning object must be compliant to a shared specifica-
tion or standard.

From a contextual viewpoint, the more context-dependent and context-spe-
cific a learning object is, the more limited its reusability will be. We can deal with
contextual factors in the following dimensions: technological, educational and
social.

•	 The technological dimension of context includes platform dependencies and
software needed to run the learning object, as well as representation issues (reus-
able learning objects should separate contents and format issues).

•	 The social and educational contexts require the following features: learning ob-
jects must be generic, i.e. independent from a given subject or discipline; they
have to be prepared for using on different education and assessment levels; they
must be pedagogically neutral, i.e. do not involve a specific pedagogical method;
they must lack institutional, legal, social and cultural dependencies; they are
independent of time and location in which they are run.

We have to mention that some factors described above cannot be actually con-
sidered up to its extreme in order to achieve the greatest reusability; for instance, a
generic, discipline-independent learning object is more reusable than a discipline-
specific one, but clearly it is not useable, since it has to commit the learning ob-
jectives for which it is intended, and such objectives are always subject-specific.
A different thing is that, for instance, a learning object dealing with Statistics is
more reusable if it does not involves examples that deal with a given discipline
(e.g. mechanical engineering) that hinders to include it in another object (e.g. a
biology course). Similar issues can be discussed about the pedagogical neutrality
or time-independence features, to say only some of them.

Designers tend to produce objects with multiple dependences to enrich the
learning process, in contrast to independent and self-contained objects that con-
tribute with not much significant knowledge. This situation is a challenge to de-
sign cohesive, uncoupled objects containing both structural and contextual as-
pects that do not jeopardize reusability [9].

Learning object reusability Metrics
We have analyzed common software metrics in order to provide reusability
metrics for learning objects, based upon the reusability factors discussed above.
Traditionally, software engineering based upon an old design principle to strive
for strong cohesion and loose coupling [9]. These two principles head for build-
ing maintainable software that easily adapt to new requirements. Since learning

© 2011 by Apple Academic Press, Inc.

A Preliminary Analysis of Software Engineering 57

objects are designed for reuse, we analyzed how these principles apply to deter-
mine learning object reusability. Although reusability metrics are mainly related
to cohesion and coupling, we have also analyzed metadata elements to evaluate
other reusability factors, such as portability, size and complexity and difficulty of
comprehension. Clearly, these are not completely independent factors, but they
depict clear intersections up to some extent. We will describe further on how this
issue can be managed.

In order to evaluate and compare our aprioristic model with a posteriori val-
ues, we have normalized metrics values in the [1,5] interval, which is the same
scale of readily available evaluation models such as MERLOT and LORI.

cohesion

Cohesion analyzes the kind of relationships among different modules. A module
must realize a single task to be maximally cohesive [11]. Greater cohesion implies
greater reusability [12]. Cohesion is a software quality indicator that, applied to
learning objects, is fulfilled by the following elements:

•	 A learning object involves a number of concepts (LOM 9 Classification cat-
egory). The lesser number of concepts, the greater cohesion it will depict [13].

•	 A learning object must have an only and clear learning objective [1]. The more
learning objectives it has, the lesser cohesive it will be.

•	 The semantic density of a learning object (LOM 5.4 Educational category) indi-
cates how concise it is. The more conciseness, the more cohesion for the learning
object.

•	 A learning object must be self-contained to be highly cohesive [13]. LOM 7
Relation category is used to define as many instances as relationships the learn-
ing object has (notably is-version-of, has-version, is-format-of, has-format, refer-
ences, is referenced-by, is-based-on, is-basis-for, requires, is required-by, is-part-
of and has-part). The more relationship instances a learning object has, the less
self-contained and, therefore, less cohesive. Moreover, LOM 1.8 Aggregation
level element summarizes the level of aggregation of a learning object as ranging
from 1 for single resources to 4 for a set of related courses. The lower level of
aggregation, the more cohesion.

We can conclude that learning object cohesion is directly proportional to se-
mantic density and inversely proportional to the number of relationships, aggre-
gation level, number of concepts dealt with, and number of learning objectives
covered. These metadata elements can be source for a valid estimation of the
reusability of a learning object. This way, we can classify learning objects cohesion
values as depicted on Table I.

© 2011 by Apple Academic Press, Inc.

58 Data Structure and Software Engineering: Challenges and Improvements

Table 1. Cohesion values to measure learning object reusability.

coupling

Coupling measures interdependencies among software modules and must be min-
imized [12]. A module must communicate with the minimum number of mod-
ules and must exchange as minimal information as possible, in order to minimize
the impact provoked from changes on other modules. Learning object coupling
describes interrelationships among distinguishable objects, so the lesser coupling,
the greater reusability [13].

LOM 9 Relation category indicates the number of objects related to a given
learning object, so we conclude that coupling is directly proportional to the num-
ber of relationships present in that category.

Size and complexity

Software size and complexity can be measured through several methods, e.g. lines
of code, McCabe’s software complexity, Halstead’s difficulty, etc. In general terms,
granularity provides clear information on learning object reusability, since fine-
grained objects are more easily reusable. Learning object granularity is directly
proportional to the following LOM elements:

•	 Size: the number of bytes of a learning object. These data should be weighted
depending on the learning object format, since there are different interpreta-
tions of size for texts, images and videos, for instance.

•	 Duration: the estimated time to run the learning object. This is specifically use-
ful for videos or animations.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-6&iName=master.img-000.jpg&w=277&h=157

A Preliminary Analysis of Software Engineering 59

•	 Typical Learning Time: the estimated time required to complete the learning
object. This is a reliable source of information to estimate the size and complex-
ity of a learning object

Learning object size and complexity can be classified according to values of
Table II.

Portability

Portability metrics measures the ability to transfer software from one system to
another and is based on analyzing modularity and hardware/software context in-
dependence [14]. Learning objects portability can be measured as the context de-
pendence at technological and socio-educational levels. The few dependendencies
found, the more portable the learning object.

Technical Portability

The following LOM values can be analyzed when considering portability at a
technical level:

•	 Format: determines the learning object components’ delivery format, such
as video/mpeg, application/xtoolbook, text/html, etc. Some formats are
more readily portable (e.g. text/html is more widespread than application/x-
toolbook.

•	 Requirements: involves the hardware and software required to run the object. As
the number of requirements increase and these are more complex, less portable
is the object.

Learning objects’ technical portability can be qualified by means of the values
shown in Table III [15].

Table 2. Values to measure learning object size

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-6&iName=master.img-001.jpg&w=271&h=90

60 Data Structure and Software Engineering: Challenges and Improvements

Table 3. Values to measure learning object technical portability.

Educational Portability

When moving at the educational level, we can deal with vertical or horizontal
portability [15]. Vertical portability means the possibility for a learning object to
be used and reused on different educational levels; in contrast, horizontal porta-
bility determines the inter-disciplinarity of the object. We have considered the
following LOM values:

•	 Context: potential educational contexts in which an object can be used (i.e.
school, high school, higher education, professional training, etc.) Educational
portability is greater for learning objects that can be used and reused on more
different educational contexts.

•	 Typical age range: potential age ranges in which an object can be used. Educa-
tional portability increases as the number of ranges grows.

•	 Language: the human languages supported by the object. An object is more
reusable if it is available on more languages.

•	 Classification: information used to classify a learning object within the disci-
pline it belongs or is related to. The more specific the classification scheme, the
lesser reusable the learning object can be.

Difficulty of Comprehension

Software difficulty measures the cognitive effort to understand a software compo-
nent. It is based on analyzing the component complexity, how self-descriptive and
well documented it is [14].

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-6&iName=master.img-002.jpg&w=242&h=177

A Preliminary Analysis of Software Engineering 61

Table 4. Values to measure learning object educational portability

We can state that the difficulty to comprehend a learning object directly in-
fluences the capability of a designer to reformulate and reuse it on another ag-
gregated object. We can consider here the LOM 5.8 Difficulty category, although
other LOM elements can be clearly correlated (e.g. LOM 5.4 Semantic density
or LOM 5.9 Typical learning time). Even LOM 7 Relation category or LOM
1.8 Aggregation level elements can be heavily correlated to the difficulty. For this
reason, and since these correlated elements have been considered for inclusion in
other reusability factors above, we do not consider this factor separately.

reusability evaluation Model
Learning object reusability depends on cohesion, coupling, portability and dif-
ficulty category elements. Several LOM values can be aggregated to build an a
priori evaluation model. We discard the difficulty of comprehension factor due to
the great number of dependencies it shows with elements from all other catego-
ries. Moreover, we assume that coherent metadata values are available for all con-
sidered LOM elements on analyzed objects. Let be the set of evaluation criteria
as extracted from LOM records. To estimate the reusability of a learning object
we require an aggregation process. For that aim we used first an ordered weighted
averaging operator:

1

()
i

w i i
n

M x w x
=

=å

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-6&iName=master.img-003.jpg&w=239&h=183

62 Data Structure and Software Engineering: Challenges and Improvements

where a learning object x is characterized as the vector (x1,...,xn) with xi ∈{1, 2, 3,
4, 5}, 1

i iw =å and 0iw i C³ " Î .
Weight values wi are provided by the evaluation as parameters that can be

estimated and agreed to enhance or soften the contribution of a given fac-
tor to the aggregated reusability evaluation. For instance, Table V provides
an estimated, primitive set of values that depend on the number of avail-
able evidences extracted from LOM. This must be calibrated and validated if
needed.

Table 5. Weights for reusability model validation

reusability Model Validation
Validation of our model has been carried out by a detailed analysis of eight
learning objects from the eLera repository. After that, we compared the aggre-
gated reusability metric with LORI reusability evaluations as done by experts.
The learning objects have been selected because they received the highest
number of expert evaluations in the repository, so it guarantees the reliability
of such evaluations. However, we found that a lot of metadata information
was missing to compute our aprioristic reusability value, so we had to com-
plete that information.

Table VI shows reusability values obtained and compared with LORI evalua-
tions. They are graphically depicted on Figure 1.

If we consider a 0.5 permissible difference, we have that the aprioristic reus-
ability evaluation model fits 62.5%of cases with experts’ opinions. If we consider
a permissible difference of 1.0, the model fits 87.5% of cases with experts’ evalu-
ations. There exists a significant 95%-confidence correlation between size and
educational portability, and a 90%confidence correlation between cohesion and
size and between cohesion and educational portability. Therefore, we can assume
that there is a degree of interdependence between the selected metrics of cohesion,
size and educational portability.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-6&iName=master.img-004.jpg&w=193&h=86

A Preliminary Analysis of Software Engineering 63

Table 6. Aprioristic reusability values compared with a posteriori LORI reusability values

Figure 1. Aprioristic reusability values compared with a posteriori LORI reusability values

conclusions
We can conclude that the aprioristic reusability estimations provided by the
model approximate to those provided a posteriori by expert evaluation. Although
some aspects of the model must be improved, it provides an approach to develop
a formal, aprioristic reusability model. Therefore we can conclude that reusability
metrics adapted from traditional software engineering reusability factors can pro-
vide a clear measurement of learning objects reusability. Including such computed
reusability values as metadata records allows to enhance indexing and searching
capabilities [16] as well as developing new reusable learning objects, so improving
productivity and quality in learning object-based systems.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-6&iName=master.img-005.jpg&w=242&h=193
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-6&iName=master.img-006.jpg&w=278&h=127

64 Data Structure and Software Engineering: Challenges and Improvements

Aspects to be improved include the ordered weights estimation, and the treat-
ment of interdependencies among analyzed reusability factors. The latter can be
managed by utilizing more powerful aggregation operators, such as the Choquet
integral, which takes into account existing interdependencies and reduces their
influence on the aggregate evaluation value [17]. The former can be managed
through studying the correlation on a learning object-basis among LORI reus-
ability value and concrete metadata on a significant amount of repository objects.
However, metadata records must be filled-in and readily available for that aim.

references
1. Sánchez-Alonso, S, Sicilia, M.A. Normative specifications of learning objects

and processes. International Journal of Instructional Technology and Distance
Learning, 2(3), 3–12. 2005.

2. Vargo, J., Nesbit J.C., Belfer, K., Archambault A.: Learning Object Evaluation:
Computer-Mediated Collaboration and Interrated Reliability. International
Journal of Computers and Applications, Vol. 25, No. 3, 2003.

3. Nesbit J., Belfer K., Leacock T.: Learning Object Review Instrument (LORI)
User Manual. Available at www.elera.net.

4. Etzkorn, L. H., Hughes, W. E., Davis C. G.: Automated reusability quality
analysis. In Information and Software Technology, 43 (2001), pp 295–308.
(doi:10.1016/S0950-5849(00)00169-5)

5. IEEE Learning Technology Standards Committee (LTSC): “Learning Object
Metadata (LOM),” Final Draft Standard, IEEE 1484.12.1–2002.

6. Daniel, B, Mohan, P.: A Model for evaluating learning objects. In Proceed-
ing of the IEEE International Conference on Advanced Learning Technologies
(ICALT 2004). 30 Aug-1 Sep 2004. pp 50–60.

7. Huddlestone J, Pike, J.: Learning object reuse–A four tier model. People and
systems - who are we designing for. Nov. 2005.

8. Palmer K., Richardson, P. Learning Object Reusability–Motivation, Produc-
tion and Use. In 11th International Conference of the Association for Learning
Technology (ALT). University of Exeter, Devon, England, 14–16 september
2004.

9. Boyle, T: Design principles for authoring dynamic, reusable learning objects.
Australian Journal of Educational Technology, 2003, pp. 46–58.

10. Selby, R.W., Basili, V.R. Analyzing error-prone system structure,
IEEE Transactions on Software Engineering, 17 (2) (1991) 141–152.
(doi:10.1109/32.67595)

© 2011 by Apple Academic Press, Inc.

http://209.87.56.111/drupal/
http://www.sciencedirect.com/science/article/pii/S0950584900001695
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=67595

A Preliminary Analysis of Software Engineering 65

11. Sommerville, I.. Software engineering, 6th Ed. Addison-Wesley. 2000.

12. Vinoski, S.: Old Measures for New Services. IEEE Internet Computing.
November-December 2005, pp. 72–74. (doi:10.1109/MIC.2005.131)

13. Yang, D, Yang, Q: Customizable Distance Learning: Criteria for Developing
Learning Objects and Learning Model Templates. In Proceedings of the 7th
international conference on Electronic commerce (ICEC’05), ACM Inter-
national Conference Proceeding Series, August, Xi’an, (China). ACM. (New
York), 2005, pp. 765–770.

14. Poulin, J.: Measuring Software Reusability. In Third International Conference
on Software Reuse, Rio de Janeiro, Brasil, 1-4 November 1994, pp. 126–138.

15. Currier, S, Campbell, L: Evaluating learning resources for reusability: the
“dner & learning objects” study. Proceeding of The Australasian Society for
Computers in Learning in Tertiary Education (ASCILITE 2002) Auckland,
New Zealand. 2002.

16. Williams, D. Evaluation of learning objects and instruction using learning ob-
jects. Available at reusability.org.

17. Dodero, J. M., Sicilia, M. A., Fernández, C. On the use of the Choquet integral
for the collaborative creation of learning objects, Computing and Informatics,
23(2), 2004, pp. 101–113.

© 2011 by Apple Academic Press, Inc.

http://reusability.org/read/

extending conceptual
Schemas with business

Process information

Marco Brambilla, Jordi Cabot and Sara Comai

abStract
The specification of business processes is becoming a more and more critical
aspect for organizations. Such processes are specified as workflow models ex-
pressing the logical precedence among the different business activities (i.e., the
units of work). Typically, workflow models are managed through specific sub-
systems, called workflow management systems, to ensure a consistent behavior
of the applications with respect to the organization business process. However,
for small organizations and/or simple business processes, the complexity and
capabilities of these dedicated workflow engines may be overwhelming. In this
paper, we therefore, advocate for a different and lightweight approach, con-
sisting in the integration of the business process specification within the system
conceptual schema. We show how a workflow-extended conceptual schema
can be automatically obtained, which serves both to enforce the organization

© 2011 by Apple Academic Press, Inc.

Extending Conceptual Schemas with Business Process Information 67

business process and to manage all its relevant domain data in a unified way.
This extended model can be directly processed with current CASE tools, for
instance, to generate an implementation of the system (including its business
process) in any technological platform.

introduction
All software systems must include a formal representation of the knowledge of
the domain. In conceptual modeling, this representation is known as the concep-
tual schema of the software system [1]. However, software development processes
for complex business applications usually require the additional definition of a
workflow model to express logical precedence and process constraints among the
different business activities (i.e., the units of work).

Workflow models are usually specified through dedicated languages (e.g.,
Business Process Management Notation–BPMN [2]) and implemented with the
help of specialized workflow management systems (WFMSs), for example, see
[3, 4], which are heavy-weight applications focused on the control aspects of the
business process enactment. This is clearly the best option to manage large work-
flow models. However, in some cases organizations may prefer a more lightweight
approach that does not require acquiring a specific workflow subsystem.

This paper tackles the problem of defining a light-weight approach to the
implementation of business processes within software applications, without the
use of specialized WFMSs, which represents a relevant issue in several application
scenarios. Indeed. alternative solutions to complete WFMSs can be preferred in
case of simple business requirements, small organizations, or when the business
process needs are going to be drowned into a larger system that is being imple-
mented ad hoc for the organization. In these cases, designing and implementing
the workflow using the same methods, notations and tools used to develop the
rest of the system can be convenient and cost effective for the organization.

Along these development lines, some approaches have focused on the im-
plementation of workflow models in specific technology platforms, as relational
databases (generally in the form of triggers [5]), Web applications (by means of
hypertextual links and buttons properly placed in Web pages, thus restricting
the user navigation [6]), or Web services (through transformation into Business
Process Execution Language for Web Services–BPEL4WS [7] specifications). This
way, the workflow definition becomes part of the system implementation and no
specific workflow engine is required. However, these approaches can be hardly
generalized to technologies different from the ones for which they have been con-
ceived (e.g., to new technology platforms), make difficult a wider adoption of

© 2011 by Apple Academic Press, Inc.

68 Data Structure and Software Engineering: Challenges and Improvements

business processes within the organizations, and present some limitations regard-
ing the supported expressivity for the initial workflow model and/or its integra-
tion with the conceptual schema.

As an alternative, in this paper we propose a formalized model-driven devel-
opment (MDD) approach for developing workflow-based applications and advo-
cate for the automatic integration of the workflow model within the (platform-
independent) conceptual schema. The resulting workflow-extended conceptual
schema includes in a single schema both the business process specifications and
the domain knowledge, providing a unified view of the system and allowing treat-
ing both dimensions in a homogeneous way when implementing, verifying, and
evolving the system. The integration is done at the model level. Therefore, current
modeling tools can be used to manage our workflow extended schema, no matter
the target technology platform or the purpose of the tool (e.g., verification, code-
generation, etc.).

The rest of the paper is structured as follows: Section 2 summarizes and moti-
vates our approach and its advantages. In Sections 3 and 4 the conceptual schema,
the workflow concepts, and our case study are illustrated. Section 5 introduces
the normalization phase. In Sections 6 and 7 we provide the definition of the
workflow-extended conceptual schema and of the (Object Constraint Language
OCL [8]) process constraints, respectively. Section 8 sketches possible implemen-
tation strategies for this extended model. Section 9 portrays our prototype tool
implementation. Then, Section 10 compares our approach with related work and
in Section 11 we draw our conclusions and discuss future work.

overview of the Proposed approach and of its
benefits
Our MDD approach for developing workflow-based applications is sketched in
Figure 1: the designer specifies the conceptual schema (e.g., in UML) and the
workflow model of the application (e.g., in BPMN), using the appropriate design
tools. At this stage some links between the workflow model and the conceptual
schema can be already identified. Typically, they represent the usage relationship
that associates objects of the application domain to activities in the workflow
model.

The workflow model may need a normalization transformation for homog-
enizing the notation and making it fit for the next (automatic) steps.

The conceptual schema and the workflow model undergo to the integration
transformation phase that produces the workflow-extended conceptual schema.
More specifically, given a conceptual schema c and a workflow model w, it is

© 2011 by Apple Academic Press, Inc.

Extending Conceptual Schemas with Business Process Information 69

possible to automatically derive a full fledged conceptual schema c/ enriched with
the types needed to record the required workflow information in w (mainly its
activities and the enactment of these activities in the different workflow execu-
tions) and with a set of process constraints over such types to control the correct
workflow execution. Several workflow models can be integrated with the same
conceptual schema since the process constraints of each workflow model do not
interfere. This is guaranteed by the construction process of the workflow-extended
model. This extended schema can then be managed using any commercial UML
CASE tool.

Figure 1. MDD process for workflow-based applications.

The whole approach has been implemented in a prototype tool that automati-
cally translates the workflow specifications into a set of types and constraints on
the conceptual schema, according to a set of translation patterns described in the
paper.

The focus of the paper will be on the platform-independent transformations of
the conceptual models; however, some ideas on how to implement the workflow-
extended conceptual schema into target platforms will be provided. As reference
models, throughout the paper we will use UML class diagrams for the representa-
tion of conceptual schemas and OCL constraints to represent the process con-
straints. For the workflow, we will adopt a particular business process notation,
namely BPMN [2], for sake of readability and concreteness. Indeed, business
analysts are well aware of business process modeling techniques but are not so
familiar with software engineering notations and practices. Recently, BPMN and
other domain-specific notation have been increasingly accepted in the field, thus
we based our examples on a notation that business roles in the enterprises are
familiar with.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-000.jpg&w=342&h=128

70 Data Structure and Software Engineering: Challenges and Improvements

Our model transformations are based on the concepts and definitions speci-
fied by (Business Process Definition Metamodel BPDM [9]), a platform- and
notation-independent metamodel for defining business processes. Since BPDM is
a common metamodel for all business process notations (e.g., it includes all con-
cepts of BPMN and UML activity diagrams), our approach can be used exactly in
the same way when using activity diagrams or any other BPDM-compliant nota-
tion to model the workflows. The proposed approach is therefore general-purpose
and is valid regardless of the adopted business process notation.

Motivation and Discussion

The main advantage of the proposed approach is that the workflow-extended con-
ceptual schema includes in a single conceptual schema both the business process
specifications and the domain knowledge. Since the workflow-extended model is
automatically generated from the workflow model and the conceptual schema,
a unified view of the system is hence available without any additional effort by
the designer. This allows treating both dimensions in the resulting model in a
homogeneous and consistent way when implementing, verifying, and evolving
the system. Thanks to this unified view, our workflow-extended schemas enable
the definition of more expressive business constraints, generally not allowed by
common business process definition languages such as timing conditions [10] or
conditions involving both business process and domain information.

Moreover, since the integration of the workflow and conceptual schemas is
done at the model level, the resulting workflow-extended conceptual schema is a
platform-independent model. Thanks to the current state of the art of model-to-
model and model-to-text transformation tools, integrating different notations in
the same approach (e.g., UML class diagrams, OCL, and BPMN) does not make
a difference. Indeed, the extraction and integration process will simply consider
models conforming to different metamodels (e.g., UML and BPDM). Anyway,
the model transformations involved are straightforward and compliant with the
MDD approach.

Once the final workflow-extended schema is produced, it can benefit from any
method or tool designed for managing a generic conceptual schema, no matter
the target technology platform or the purpose of the tool, spawning from direct
application execution, to verification/validation analysis, to metrics measurement,
and to automatic code-generation in any final technology platform. Those meth-
ods do not need to be extended to cope with the workflow information in our
workflow-extended schema, since it is a completely standard UML model [11].
In this sense, with our approach we do not need to develop specific techniques for
workflow models nor to use specific tools for managing them.

© 2011 by Apple Academic Press, Inc.

Extending Conceptual Schemas with Business Process Information 71

Finally, once (automatically) implemented (with the help of any of the current
UML/OCL CASE tools offering code-generation capabilities), the workflow-ex-
tended conceptual schema ensures a consistent behavior of all enterprise applica-
tions with respect to the business process specification. As long as the applications
properly update the workflow information in the extended model, the generated
process constraints enforce that the different tasks are executed according to the
initial business process specification.

original contributions of the Paper

To our knowledge, ours is the first approach that automatically derives a platform-
independent conceptual schema integrating both domain and business process
information in a unified view. A first version of this proposal has been published
in [12]; however, this paper extends [12] in several directions. In particular, the
main original contributions of this paper include the following.

(i) The introduction of a normalization phase to simplify the initial work-
flow models and extend the set of workflow patterns we can directly cover
with our method.

(ii) A complete description of the process that allows obtaining the workflow-
extended conceptual schema starting from the domain model and the
workflow model.

(iii) An extended and refined version of the translation of process constraints,
including also the management of the start, end, and intermediate events
in the business process specification. Such events can represent different
event types (message, exception, rule, timer, etc.).

(iv) The specification of different integration scenarios that can be used in
the transformation process and a discussion on their trade-offs in terms
of the complexity of the resulting extended schema and of the process
constraints.

(v) The description of different implementation alternatives for the workflow
extended schema towards target platforms.

(vi) The description of our tool implementation, supporting all the (auto-
matic) model transformations.

conceptual Schemas
A conceptual schema (also known as domain model) defines the knowledge
about the domain that an information system must have to perform its business

© 2011 by Apple Academic Press, Inc.

72 Data Structure and Software Engineering: Challenges and Improvements

functions. Without loss of generality, we will represent conceptual schemas using
UML [11].

The most basic constructors in conceptual schemas are entity types (i.e., class-
es in the UML terminology), relationship types (i.e., associations) and generaliza-
tions.

An entity type E describes the common characteristics of a set of entities (i.e.,
objects) of the domain. Each entity type E may contain a set of attributes.

A binary relationship type R has a name and two participants. A participant is
an entity type that plays a certain role in the relationship type. Each relationship
(i.e., link) between the two participants represents a semantic connection between
the entities. A participant in R may have a minimum and maximum cardinality.
The minimum cardinality min between participants p1 and p2 in R indicates that
all entities of E1 (type of the participant p1) must be related at least with min
entities of E2 (type of the participant p2). A maximum cardinality max between
p1 and p2 in R defines that entities of E1 cannot be related with more than max
entities of E2.

A generalization is a taxonomic relationship between a more general entity
type E (supertype) and a set of more specific entity types E1,…,En (subtypes).

As an example, Figure 2 shows a conceptual schema, represented in UML,
meant to (partially) model a simple e-commerce application. It consists of the
entity types Product, Quotation, QuotationLine (to record the details of the
products included in the quotation), and Order (an order is generated by each
quotation accepted by the customer, and then, its quotation lines are referred to
as order lines). According to the cardinality constraints in the relationship types,
all quotation must include at least one product and orders must be of a single
quotation.

Figure 2. A partial conceptual schema for an e-commerce application.

business Processes concepts
Several visual notations and languages have been proposed to specify workflow
models, with different expressive power, syntax, and semantics. Without loss of

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-001.jpg&w=267&h=65

Extending Conceptual Schemas with Business Process Information 73

generality, in our work we have adopted the Workflow Management Coalition
terminology, the Business Process Definition Metamodel [9] (BPDM), and the
Business Process Management Notation [2] (BPMN).

BPDM is a standard proposed by OMG for representing and modeling busi-
ness processes independent of any notation or methodology. This is done by
proposing a unified metamodel that captures the common meaning behind the
different notations and technologies. The metamodel is a MOF-compliant [13]
metamodel. As such, BPDM also defines a XML syntax for storing and transfer-
ring business process models between tools and infrastructures. BPDM has been
evaluated in [14] as the best business process interchange format in terms of ex-
pressivity.

BPMN perfectly fits with the BPDM metamodel and provides a graphical
notation to express BPDM business processes. However, the specification of
the business process can be provided with any other notation or language, in-
cluding UML Activity Diagrams [11]. Several works evaluated and compared
the different notations for specifying business processes (e.g., see [14–17]),
highlighting strengths and weaknesses of every proposal. The results of our
approach using one of these alternative notations would be quite similar. In-
deed, our approach can be directly applied to any specification compliant
with BPDM.

In our work, we focus on the core part of the BPDM metamodel. The
workflow model is hence based on the concepts of Process (the description of
the business process), Case (a process instance, that is, a particular workflow
execution), Activity (the elementary unit of work composing a process), Ac-
tivity instance (an instantiation of an activity within a case), Actor (a user role
intervening in the process), Event (some punctual situation that happens in a
case), and Constraint (logical precedence among activities and rules enabling
activities execution). Processes can be internally structured using a variety of
constructs: sequences of activities; gateways implementing AND, OR, XOR
splits, respectively, realizing splits into independent, alternative and exclusive
threads; gateways implementing joins, that is, convergence point of two or
more activity flows; conditional flows between two activities; loops among
activities or repetitions of single activities. Each construct may involve several
constraints over the activities.

In the sequel, we will exemplify the proposed approach on a case study con-
sisting of a simplified purchase process, illustrated using the BPMN notation in
Figure 3.

© 2011 by Apple Academic Press, Inc.

74 Data Structure and Software Engineering: Challenges and Improvements

Figure 3. Example of a workflow model.

According to the BPDM semantics, the depicted diagram specifies a process
involving two actors (represented by the two swimlanes): a customer and a seller.
The customer starts the process by asking for a quotation about a set of products
(Ask quotation activity). The seller provides the quotation (Provide quotation
activity) and the customer may decide (exclusive choice) to modify the request
(Change quotation activity, followed by the repetition of the Provide quotation
activity) or to accept it (then the order is submitted). For simplicity, it is not mod-
eled what happens if they never reach an agreement. Depending on the complex-
ity of the order, the process can follow two alternative paths: the first consists only
of a Standard Shipment activity, while the second requires the customer to specify
the kind of shipment he prefers (Choose shipment). After the choice, the Seller
takes the order in charge and performs two parallel activities: the arrangement
of the transport plan and the processing of each order line. The latter is repre-
sented by the multi-instance activity called Process order line: a different instance
is started for each order line included in the order. Once all order lines have been
processed and the shipment has been defined (i.e., after the AND merge synchro-
nization), the path reaches the join point with the alternative path of the standard
shipment. Independently on the kind of shipment, the Ship order activity is per-
formed, and then two uncontrolled branches take place: the customer receives
the goods and the seller issues and sends the invoice. When both activities have
completed (synchronization AND gateway), the user pays for the goods, and thus
closes the process.

normalization Phase
Before addressing the actual integration of the workflow model and the concep-
tual schema, the business process specification usually needs to be normalized.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-002.jpg&w=342&h=146

Extending Conceptual Schemas with Business Process Information 75

This step simplifies the processing of the workflow model later on without losing
generality in the coverage of the business process specification admitted in our
method.

Workflow languages allow different equivalent representations of the same
business semantics (see [2] for details) and define several complex constructs that
can be derived from more basic ones. The normalization phase tackles these prob-
lems by applying a set of model to model transformations that ensure a coher-
ent representation and render all the complex concepts in terms of simple ones.
Notice that this phase does not aim at the reconciliation of different business
processes. Instead, it aims at unifoming the notation of different design styles that
could be adopted even within the same notation. The main issues addressed in
this phase are the following:

(i) Nested Structures. If the business process is specified by means of nested
subprocesses, they are flattened into a single-level business process that
includes all tasks that were included in the subprocesses. If the subprocess
contained only one lane, all the activities are moved inside the current
lane of the main process; if more lanes were contained in the subprocess,
they are transferred to the current pool of the main process, together with
their respective activities, thus introducing new lanes in the flattened pro-
cess.

(ii) Different Notation Styles. All different notations with the same BPDM
semantics are homogenized in a single BPMN notation style (some ex-
amples are shown next). Thanks to this step, the business process will use
only a single representation for each modeled behavior.

(iii) Concatenation of Gateways. If two or more gateways are directly connected
by a control flow, the transformation adds a fake intermediate activity in
the middle of every gateway pair. This simplifies the integration job, since
it permits to work in a modular fashion when generating the constraints
and the rules imposed by the gateways. Fake activities can be treated as
activities that can be immediately enacted as soon as their process con-
straints are satisfied, and then automatically completed without neither
user interaction nor business action execution.

Figure 4 shows the result of applying the normalization phase on the workflow
model specified in Figure 3. The elements added because of the normalization are
highlighted in color and bold line face. Only the last two transformations apply
to this example. To avoid the alternative notation for XOR-merge (consisting in
directly connecting two incoming arrows to an activity), the XOR-merge after
the Ask quotation activity is made explicit and added to the model; analogously,
to avoid two outgoing arrows from the Ship order activity, an AND-spit gateway

© 2011 by Apple Academic Press, Inc.

76 Data Structure and Software Engineering: Challenges and Improvements

is added. To remove the configurations of two connected gateways, a fake activity
is added.

Figure 4. Example of a normalized workflow schema.

extending conceptual Schemas with business
Process information
Given an initial conceptual schema c, the workflow-extended conceptual schema
c¢ of the workflow-based application w is obtained by extending c with some ad-
ditional elements derived from the business process specification w. We will focus
on the case of a single business process; however, our extensions to the conceptual
schema suffice when considering different business processes on the same domain.
Indeed, in our approach several workflow models can be integrated with the same
conceptual schema since the process constraints of each workflow model do not
interfere due to the construction process of the workflow-extended model.

Generation of the Workflow-Extended Conceptual Schema

The workflow-extended conceptual schema must include: (i) the original concep-
tual schema, (ii) user-related information, (iii) workflow-related information, (iv)
a set of possible relationships between the conceptual schema, the workflow infor-
mation and the user information, and (v) a set of process constraints guaranteeing
a consistent state of the whole model with respect to the workflow definition (see
Section 7). To illustrate the generation of these different parts of the workflow-
extended conceptual schema we will use the workflow model of Figure 4 and we
will assume that the initial conceptual schema is the one shown in Figure 2.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-003.jpg&w=343&h=146

Extending Conceptual Schemas with Business Process Information 77

More formally, we define a workflow-extended conceptual schema as follows.
Given an initial conceptual schema with entity types (i.e., classes) E={e1,…,en},
representing the knowledge about the domain, and a workflow model w with
activities A={a1,…,am}, the workflow-extended conceptual schema is obtained in
the following way.

Domain Subschema

All entity types in E and their relationships (i.e., associations) and generalizations
remain unchanged in the workflow-extended model (bottom part of Figure 5).

User Subschema

User-related information is added to the extended model by means of two entity
types (see the top-left part of Figure 5): entity type User represents individual
workflow actors; entity type Role represents groups of users, having access to the
same set of tasks. A user may belong to different roles.

Workflow Subschema

Workflow-related information (top-right part of Figure 5) includes several fixed
types (i.e., independent of the particular workflow model):

Entity type Process represents the supported workflows. As an example, an
instance of the Process type would be our Purchase workflow. Other instances
would represent additional workflows over the same domain subschema.

Entity type Case denotes an instance of a process, which has a name, a start
time, an end time, and a status, which can be: ready, active, cancelled, aborted, or
completed [2]. Every execution of a process results in a new instance of this type.
This new instance is related with the appropriate process instance.

Entity type ActivityType represents the different activities that compose a
process. Activity types are assigned to roles, which are responsible for executing
them. In our case study, AskQuotation, ProvideQuotation, and so forth, would
be instances of ActivityType.

Entity type Activity denotes the occurrence of a particular activity within a
Case, described by the start time, the end time, and the current status, which can
be: ready, active, cancelled, aborted, or completed. Only one user can execute a
particular activity instance, and this is recorded by the relationship type Performs.
The Precedes relationship keeps track of the execution order between occurred
activities.

© 2011 by Apple Academic Press, Inc.

78 Data Structure and Software Engineering: Challenges and Improvements

Entity type EventType represents the events that may affect the sequence or
timing of activities of a process (e.g., temporal events, messages etc.). There are
three different kinds of events (eventKind attribute): start, intermediate, and end.
For start and intermediate events we may define the triggering mechanism (event-
Trigger). For end events, we may define how they affect the case execution (even-
tResult).

Entity type Event denotes the occurrence of a particular type of event in the
system, and a set of workflow-dependent subtypes.

For each activity aŒA, a new subtype sa is added to the entity type Activity
(ActivityType is a powertype [11] for this set of generalizations). The name of the
subtype is the name of a (e.g., in Figure 5 we introduced ProcessOrderLine, Ask-
Quotation, ShipOrder, and so on). These subtypes record the information about
the specific activities executed during a workflow case. For instance, the action
of asking a quotation for the purchase X in a case C of a workflow W would be
recorded in the system as an instance in the AskQuotation subtype related with
the corresponding instance “C” in the Case type (in its turn related with the “W”
instance in the Process type).

Relationships between Workflow, Subschema, and Domain
Subschema

Each subtype sa is related with a (possibly empty) set of entity types EaÕE. These
new relationship types are useful to record the objects modified/managed during
the execution of a certain activity. Also, they are required to evaluate conditions
appearing in some process constraints. In the case study (see Figure 5), a set of
relationship types are established: Quotations are associated with the activities
Ask Quotation and Provide Quotation; QuotationLines are associated with the
ProcessOrderLine activity; and Orders are associated with the activities Submit
Order, Process OrderLine, Ship Order, Pay for goods and so forth. When neces-
sary, these associations between the domain and the workflow subschemata may
be automatically generated if the workflow specification includes auxiliary primi-
tives for describing the data flow between activities and/or when the designer de-
fines some pattern-matching among the names of the activities and of the entity
types. Otherwise, they must be manually specified.

Complexity of the Workflow-Extended Conceptual Schema

Clearly, the workflow-extended schema is more complex than the original con-
ceptual schema. However, we believe that this increased complexity is compen-
sated by the fact that it may be automatically generated (with our method) and

© 2011 by Apple Academic Press, Inc.

Extending Conceptual Schemas with Business Process Information 79

processed (for instance, with code-generation tools) and thus, the designer does
not need to directly manipulate it. Moreover, the size of the extension is (1) con-
stant regardless the size of the initial conceptual schema and (2) linear with respect
to the number of activities in the workflow. Therefore, in most cases, the exten-
sion will be small when compared with the size of the initial conceptual schema.

Figure 5. Workflow-extended conceptual schema.

We would like to remark that when proposing our workflow-extended
schema we opted for balancing the size of the workflow subschema with the
complexity of the process constraints. Richer schemas with further relation-
ship types and/or attributes could be defined, according to the requirements
of the specific workflow application (for example, we could have used a more
complex pattern for the specification of the role-user relationship [18]). Simi-
larly, simpler extensions could be used instead but then, as a trade-off, the
process constraints would become much more complex. To better illustrate
this discussion, two other alternative workflow-extended models are provided
in the Appendix A. All three alternatives share the same philosophy and pro-
vide the same kind of benefits, and thus, designer may choose any of them
when applying our method.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-004.jpg&w=343&h=249

80 Data Structure and Software Engineering: Challenges and Improvements

translation of Process constraints
The structure of a workflow model implies a set of constraints regarding the ex-
ecution order of the different activities, the number of possible instances of each
activity in a given case, the conditions that must be satisfied in order to start a
new activity, and so forth. These constraints are usually referred to as process
constraints. The behavior of all enterprise applications must always satisfy these
constraints. Thus, the generation of the workflow-extended model must consider
all process constraints.

Process constraints are translated into constraints over the population of
the sa1,…,sam subtypes of Activity (see previous section). The generated con-
straints guarantee that any update event over the population of one of these
subtypes (for instance, the creation of a new activity instance or the modifica-
tion of its status) will be consistent with the process constraints defined in the
workflow model.

We specify process constraints by means of invariants written in the OCL
language [8]. Invariants in OCL are defined in the context of a specific type, the
context type. The actual OCL expression stating the constraint condition is called
the body of the constraint. The body is always a boolean expression and must be
satisfied by all instances of the context type, that is, the evaluation of the body
expression over every instance of the context type must return a true value. For
instance, a constraint like: contextAinv: condition implies that all instances of the
type A must verify condition.

Constraints are defined to restrict only the execution of the workflow they
are created for (the context type of the constraints is always a specific activity and
not an entity type of the domain subschema). Therefore, no interferences among
different workflows occur, even if they are defined over an overlapping subset of
the conceptual schema.

Even though some of the constraints may seem quite complex, we would like
to remark that all of them are automatically generated from the workflow model,
and thus, they do not need to be manipulated (nor even necessarily understood)
by the designer but for other tools. However, to simplify its presentation in the
extended model, we could easily define a stereotype for each constraint type, as
done in [19].

Next subsections define a set of patterns for the generation of the pro-
cess constraints corresponding to the different typical constructs appearing
in workflow models (sequences, split gateways, merge gateways, conditions,
loops, etc.). The patterns can be combined to produce the full translation of
the workflow model.

© 2011 by Apple Academic Press, Inc.

Extending Conceptual Schemas with Business Process Information 81

Sequences of activities

A sequence flow between two activities (Figure 6) indicates that the first activity
(A) must be completed before starting the second one (B). Moreover, if A is com-
pleted within a given case, B must be eventually started before ending the case (we
do not require B to be completed since, for instances, it could be interrupted by
the trigger of an intermediate exception event). This behavior can be enforced by
means of the definition of three OCL constraints.

Figure 6. Sequence flow.

The first constraint (seq1 constraint) is defined over the entity type corre-
sponding to the destination activity (B in the example) stating that for all activity
instances of type B the preceding activity instance must be of type A and that it
must have been already completed. Its specification in OCL is the following: con-
text B inv seq1: previous->size()=1 and previous->exists(a a.oclIsTypeOf(A)
and a.status=‘completed’).

This OCL definition enforces that B instances (since B is the context type
of the constraint) have a previous activity (because of the size operator over the
value of the navigation through the role previous) and that such activity is of type
A (enforced by the exists operator). B and A are Activity subtypes as defined in
Section 6.

The other two required constraints are the following:
(i) A constraint seq2 over the second activity to prevent the creation of two

different B instances related with the same A activity instance context B
inv seq2: B.allInstances()-> isUnique(previous)

(ii) A constraint seq3 over the Case entity type verifying that when the case is
completed there exists a B activity instance for each completed A activity
instance. This B instance must be the only instance immediately follow-
ing the A activity instance context Case inv seq3: status=‘completed’ implies
self.activity-> select(a a.oclIsTypeOf(A) and a.status=‘completed’)->forAll(a
a.next->exists(b b.oclIsTypeOf(B)) and a.next->size()=1)

Split gateways

A split gateway is a location within a workflow where the sequence flow can take
two or more alternative paths. The different split gateways differ on the number of

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-005.jpg&w=184&h=29

82 Data Structure and Software Engineering: Challenges and Improvements

possible paths that can be taken during the execution of the workflow. For XOR-
split gateways only a single path can be selected. In OR-splits several of the outgo-
ing flows may be chosen. For AND-splits all outgoing flows must be followed.

For each kind of split gateway, Table 1 shows the process constraints required
to enforce the corresponding behavior.

Table 1. Constraints for split gateways.

Besides the process constraints appearing in the table, we must also add to
all the activities B1

… Bn the previous constraints seq1 and seq2 to verify that the
preceding activity A has been completed and that no two activity instances of the
same activity Bi are related with the same preceding activity A. We also require
that the activity instance/s following A is of type B1 or … or Bn.

Merge gateways

Merge gateways are useful to join or synchronize alternative sequence flows. De-
pending on the kind of merge gateway, the outgoing activity may start every time
a single incoming flow is completed (XOR-Merge) or must wait until all incom-
ing flows have finished in order to synchronize them (AND-Merge gateways).
The semantics of the OR-Merge gateways is not so clear. If there is a matching
OR-split, the OR-Merge should wait for the completion of all flows activated
by the split. If no matching split exists, several interpretations are possible, being
the simplest one to wait just till the first incoming flow. This is the interpretation
adopted in this paper. For a complete treatment of this construct see [20].

Table 2 presents the different translation patterns required for each kind of
merge gateway. Besides the constraints included in the table, a constraint over A
should be added to all the gateways to verify that two A instances are not created

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-006.jpg&w=342&h=127

Extending Conceptual Schemas with Business Process Information 83

for the same incoming set of activities (i.e., the intersection between the previous
instance/s of all A instances must be empty).

Table 2. Constraints for merge gateways.

condition constraints

The sequence flow and the OR-split and XOR-split gateways may contain condi-
tion expressions to control the flow execution at run-time. As an example, Figure
7 shows a conditional sequence flow. In the example, the activity B cannot start
until A is completed and the condition cond is satisfied. The condition expression
may require accessing the entity types of the domain subschema related to B in
the workflow-extended model. Through the Precedes relationship type, we can
also define conditions involving the previous A activity instance and/or its related
domain information.

Figure 7. A conditional sequence flow.

To handle these condition expressions we must add, for each condition de-
fined in a sequence flow or in an outgoing link of OR and XOR gateways, a new
constraint over the destination activity. The constraint ensures that the preceding
activity satisfies the specified condition, according to the following pattern: ?con-
text B inv: previous->forAll(a | a.cond)

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-007.jpg&w=342&h=151
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-008.jpg&w=233&h=43

84 Data Structure and Software Engineering: Challenges and Improvements

Note that these additional constraints only need to hold when the destination
activity is created, and thus, they must be defined as creation-time constraints
[21].

Loops

A workflow may contain loops among a group of different activities or within a
single activity. In this latter case we distinguish between standard loops (where the
activity is executed as long as the loop condition holds) and multi-instance loops
(where the activity is executed a predefined number of times). Every time a loop
is iterated a new instance of the activity is created. Figure 8 shows an example of
each loop type.

Figure 8. Loop examples.

Management of external loops does not require new constraints but the addi-
tion of a temporal condition in all constraints stating a condition like “an instance
of type B must be eventually created if an instance of type A is completed.” The
new temporal condition on those constraints ensures that the B instance is created
after the A instance is completed (earlier B instances may exist due to previous
loop iterations).

Standard loops may be regarded as an alternative representation for con-
ditional sequence flows having the same activity as a source and destination.
Therefore, the constraints needed to handle standard loop activities are similar
to those required for conditional sequence flows. We need a constraint check-
ing that the previous loop instance has finished and another one stating that
the loop condition is still true when starting the new iteration (again, this is a
creation-time constraint). The loop condition is taken from the properties of the
activity as defined in the workflow model. Moreover, we need also to check that
the activity/ies at the end of the outcoming flows of the loop activity are not
started until the loop condition becomes false. To prevent this wrong behavior
we should treat all outgoing flows from the loop activity as conditional flows
with the condition “not loopCondition.” Then, constraints generated to control
the conditional flow will prevent next activity/ies to start until the condition “not
loopCondition” becomes true.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-009.jpg&w=264&h=44

Extending Conceptual Schemas with Business Process Information 85

Multi-instance loop activities are repeated a fixed number of times, as defined
by the loop condition, which now is evaluated only once during the execution
of the case and returns a natural value instead of a boolean value. At the end of
the case, the number of instances of the multi-instance activity must be an exact
multiple of this value. Assuming that the multi-instance activity is called A, the
OCL formalization of this constraint would be: context Case inv: (activity->select(a
| a.oclIsTypeOf(A)) ->size() mod loopCondition)=0.

For multi-instance loops the different instances may be created sequentially
or in parallel. Besides, we can define when the workflow shall continue. It can
be either after each single activity instance is executed (as in a normal sequence
flow), after all iterations have been completed (similar to the AND-merge gate-
ways), or as soon as a single iteration is completed (similar to the basic OR-merge
gateway).

event Management

An event is something that “happens” during the course of the workflow execu-
tion. There are three main types of events: Start, Intermediate and End (see Figure 9).
A workflow schema may contain several start, intermediate, and end events.

Figure 9. Examples of events.

Start events initiate a new flow, while end events indicate the termination of a
flow. Intermediate events are instead used to change the normal flow (for instance,
to handle exceptions or to start additional activities). Intermediate events can be
attached to an activity (the triggering of the event aborts the activity execution)
or can be placed in the middle of a sequence flow between two activities (the flow
does not continue until the event is issued).

When a start event is issued, an instance of each activity connected to
the event has to start afterwards. Conversely, no activity instance is created
in a case before the occurrence of at least a start event. In particular, activ-
ity instances for activities connected only to flows coming from one or more
start events (as activity A in the previous figure) cannot be created until one
of those start events is issued. The formalization of these constraints is the
following:

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-010.jpg&w=262&h=46

86 Data Structure and Software Engineering: Challenges and Improvements

(i) context Event inv: eventType.name=‘StartEvent1’ and case.
status=‘completed’ implies case.activity-> select (a | a.oclIsTypeOf(A) and
a.event=self)->size()=1

(ii) context Case inv: activity->notEmpty() implies event->exists(e
|e.eventType.eventKind=‘StartEvent’)

(iii) context A inv: self.event->exists(ev | ev.eventType.name =‘StartEvent1’).

No activity instances can be created in the case after the event has been is-
sued. Assuming that EndEvent1 (Figure 9) is defined as a terminate event, the
following constraint must be added to the workflow-extended model: context
Event inv: eventType.name=‘EndEvent1’ implies case.activity->forAll (a | a.start<
eventTime)

For intermediate events, the target activity of the event must be executed after
the triggering of the event (and it cannot be executed otherwise). Depending on
the kind of intermediate event, the interrupted activity will change its status to
cancelled or aborted (which, for instance, may prevent the next activity in the
normal sequence flow to be started).

The following process constraints are generated for the IntermediateEvent1
example in Figure 9:

(i) context Event inv: eventType.name= ‘IntermediateEvent1’ and case.
status=‘completed’ implies case.activity-> exists(a | a.oclIsTypeOf(B))

(ii) context Case inv: activity-> exists(a | a.oclIsTypeOf(B)) implies event->exists(e
| e.eventType.name=“IntermediateEvent1”)

Obviously, this last constraint is true as long as B has no other incoming
flows. Otherwise, all incoming flows form an implicit XOR-Merge over B and
we should generate the constraints according to the pattern for the XOR-Merge
gateway.

applying the translation Patterns

As an example, Table 3 summarizes the process constraints resulting from
applying the translation patterns over the workflow running example (Figures 4
and 5).

For the sake of brevity, in this section constraints are described in an informal
and compact way. The complete set of constraints and their OCL specification is
exemplified in Table 4 only for the Provide Quotation activity. The translation of
all the other constraints is provided in the Appendix B.

© 2011 by Apple Academic Press, Inc.

Extending Conceptual Schemas with Business Process Information 87

Table 3. Process constraints for the workflow running example.

Table 4. Constraint definitions for the Provide Quotation activity.

The Provide Quotation activity involves a set of constraints due to the incom-
ing XOR-merge from Ask Quotation and Change Quotation activities and a set

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-011.jpg&w=341&h=288
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-012.jpg&w=342&h=152

88 Data Structure and Software Engineering: Challenges and Improvements

of constraints due to the subsequent XOR split with Submit Order and Change
Quotation.

implementation of the workflow-extended
conceptual Schema
Once the workflow-extended schema is available, we may automatically generate
an implementation of the system that ensures a consistent behavior of all enter-
prise applications with respect to the business process specification.

Since a workflow-extended conceptual schema is a completely standard UML
model (i.e., no new modeling primitives have been created to express the exten-
sion of the original model with the required workflow information) any method
or tool able to provide an automatic model-to-code generation from UML mod-
els to a final technology platform P can also cope with the automatic generation
of our workflow-extended schema in the same platform P, using general-purpose
MDD techniques and frameworks.

For instance, a tool able to generate a database schema from an UML/OCL
model can follow exactly the same procedure to generate a database implemen-
tation for our extended schema that guarantees the satisfaction of all workflow
constraints. As usual, classes (including also the classes in the workflow subsche-
ma) will be transformed into tables, while OCL constraints (either domain or
workflow constraints) will be expressed as triggers (this is not the only option, see
[22] for a discussion of the different mechanisms to implement OCL constraints
in databases). Similarly, a tool able to generate Java schemas from UML/OCL
models could be directly used to generate a Java-based implementation of the
workflow-extended schema. In this case, classes will be expressed as Java classes
while constraints could be implemented as method preconditions that prevent the
execution of the method if the system is not in the right workflow state.

As an example, Figure 10 shows a possible (i) database implementation and
(ii) Java-based implementation for two sequential activities A and B (Figure 6),
performed by the same user. In the former, the constraint is implemented as a
trigger over the table AtoB representing the Precedes relationship type (see Figure
5) between both activities (AtoB table has only two columns, a_id and b_id and
records the information about which A activities precede each B activity; this is
the typical database implementation for many-to-many associations in concep-
tual schemas). In the latter, the constraint is verified as part of the method Assign-
PreviousActivity redefined in the B class (corresponding to the B activity in the
workflow-extended model). In both situations, when the user tries to create a new
B activity and the previous A activity is not completed, an exception is raised since

© 2011 by Apple Academic Press, Inc.

Extending Conceptual Schemas with Business Process Information 89

the B activity cannot start yet. The tables, triggers and/or Java classes and method
bodies to implement the workflow-extended model translation (including the
OCL constraints) can be automatically generated using current code-generation
tools such as [23–25] among others.

Figure 10. Examples of a sequence constraint implemented in particular technologies.

Note that the previous strategies to implement the sequence constraint be-
tween A and B activities are efficient ones since the constraint is only checked
when linking a B activity instance with an A activity instance, regardless how
many activities are part of the workflow (and the checking just compares that
exact pair of instances, instead of checking all existing A and B instances). We
can benefit from the fact that in our workflow-extended conceptual schema the
process constraints are expressed in OCL and rely on existing methods for analyz-
ing OCL expressions (as in [26]) to automatically compute the information about
when and how checking the constraints in order to get an efficient implementa-
tion for all process constraints.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-013.jpg&w=226&h=298

90 Data Structure and Software Engineering: Challenges and Improvements

For Web applications, an interesting alternative is to fully exploit MDD ap-
proaches, such as [23, 27]: an initial hypertext model can be derived from the
workflow-extended conceptual schema so that the hypertext structure enforces
some of the process constraints among activities assigned to the same user by
means of driving the user navigation through the Web site. Process constraints
involving activities belonging to different users must be enforced using one of the
previous techniques, they cannot be controlled at the hypertext level (or group of
users). This can be done by designing in the proper way the set of pages and links
that can be browsed. For instance, Figure 11 shows a hypertext model that from
the home page forces the user to go through the Web pages implementing A before
starting B.The hypertext model is defined in WebML [23], a conceptual language
for the specification of Web applications, already extended with workflow-specific
primitives [28]. The operation units StartActivity and EndActivity are in charge
of recording the information about the activities’ progress in the corresponding
entity types of the conceptual schema. More complicated constraints appearing in
the workflow-extended model can be enforced by means of appropriate branching
and task assignment primitives.

Figure 11. Example of a sequence constraint implemented within the hypertext model of a Web application.

Usually, designers will be able to choose among different strategies/platforms
when implementing the workflow-extended conceptual schema. For instance, as-
suming a typical three tier (or n-tier) architecture, designers can decide whether
to check the process constraints in the presentation layer (for example, as shown
in Figure 11), in the business layer (as in Figure 10(b)) or in the persistence layer
(as in Figure 10(a)). Each alternative may imply a slightly different behavior of
the system at run-time in terms of its consistency, user experience, flexibility, reli-
ability, and so forth. For instance, a database-based implementation represents
a safer alternative in terms of the data consistency (regardless how users interact
with the system to update the data, the data will be always consistent). Instead,
enforcing the constraints at the hypertext level provides a better user experience
since it reduces the probability that the user actions end up in an error due to a
wrong activity selection.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-014.jpg&w=343&h=75

Extending Conceptual Schemas with Business Process Information 91

tool Support
To show the viability of the approach, we describe the tool framework we used for
realizing the whole development process presented in Figure 1. Our framework
tries to reuse as many existing tools as possible. We directly developed only the
pieces that were missing for covering all the design phases. Once the designer pro-
vides the initial models, the rest of the process is performed automatically. Figure
12 shows the tools we used for each step of the design.

Figure 12. Tools used for the MDD generation of Workflow-extended conceptual schemas.

The design of the conceptual schema has been done using MagicDraw [29]
that exports it as an XMI file [30].

For workflow design and transformation, we have developed a visual editor
prototype [31] that supports the design of BPMN diagrams and their automatic
model transformations. This BPMN editor has been implemented as an Eclipse
plugin and it is flexible and extensible. It covers the whole BPMN notation (in-
cluding subprocesses) and can manage user-defined properties of objects and new
transformations of the workflow models. The workflow schema is stored as an
XML document according to an internal format, but proper transformations
are available for importing and exporting in standard notations (e.g., to BPDM,
XPDL, BPEL, etc.). The tool includes the normalization transformation, imple-
mented as an XSLT transformation over the workflow XML representation.

Given the XML representation of the normalized workflow model and the
XMI representation of the initial conceptual schema, our main transformation
generates a new XMI file containing the workflow-extended model and the pro-
cess constraints, according to the guidelines presented in this paper. This XMI file
can be imported back and used within the MagicDraw tool.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-015.jpg&w=344&h=133

92 Data Structure and Software Engineering: Challenges and Improvements

related work
With respect to traditional approaches to workflow management, implemented
in a plethora of commercial WFMSs, our work takes a radically different point of
view, by focusing on the business process modeling and on its transformation to
a software engineering specification that integrates the domain information and
that can be refined and exploited by automatic code generation tools.

This approach allows for more control and personalization of the system
implementation and presents a number of additional benefits as commented in
Section 2. As a downside, some aspects such as integration with legacy systems,
monitoring and supervision, fault management and so forth, if needed, must be
provided by the application that embeds the business specification itself, instead
of relying on a WFMS for providing them.

In the software engineering field, research on business process has mainly ad-
dressed the correctness of the design of the workflow model (see [32] as a repre-
sentative example). Other works address the direct implementation of business
process models in specific final technology platforms: for instance, [5] proposes
an implementation of process constraints over relational database structures, by
exploiting event-condition-action rules; [6] implements workflow models using
Web technologies by mapping the workflow specification to a DSL for Web de-
sign called WebML; and [7] exploits BPEL4WS for implementing them. All these
approaches are hardly reusable when trying to implement our workflow schema in
different technologies or when we want to migrate our current implementation to
an alternative platform. Instead, since our method works at a platform-indepen-
dent level, we are able to generate an implementation of the workflow-extended
method in any final technology platform using current model-driven develop-
ment (MDD) approaches, as seen in Section 8. Integrating the workflow and the
domain information in a single schema also allows us to treat both dimensions
in a homogeneous and consistent way (for instance, this enables the possibility
of defining more complex business rules mixing domain and workflow informa-
tion). This is not contemplated in the previous approaches.

Up to now, integration of workflows and MDD approaches has only been
explored from a general framework perspective. For instance, [33] proposes to
transform the workflow model to a DSL specification. However, it only provides
some general guidelines for the transformation and a comprehensive framework
specifying the different components that lead from the design-time specification
to the runtime execution of the workflow model. However, no details are pro-
vided on the transformation rules that map a workflow model to a specific DSL.
The work in [34] proposes an approach for configuring generic process models
depending on the domain information provided by the stakeholders by mean of

© 2011 by Apple Academic Press, Inc.

Extending Conceptual Schemas with Business Process Information 93

filling questionnaires developed ad-hoc for that specific process. Questionnaires
are created from the information in the initial domain model defined by the de-
signers. Their goal is to generate, as a result, an adapted and individualized busi-
ness process but not to integrate in a single conceptual schema both the process
and domain information.

Some proposals (as in [35, 36], or [37]) tried to extend and adapt the UML
notation for workflow modeling purposes but they did not address the unification
of the business process and the conceptual schema’s views of the system. As far
as we know, ours is the first proposal where both workflow information and pro-
cess constraints are automatically derived from a workflow model and integrated
within the platform-independent conceptual schema.

Moreover, ours is also the first translation of a workflow model into a set of
equivalent OCL declarative constraints. An explicit definition of all the work-
flow constraints induced by the different workflow constructs is necessary regard-
less how these constraints are to be enforced and managed in the final workflow
implementation. Very few examples of translations from process constraints to
other declarative languages exist (e.g., see [38] for a translation to LTL temporal
logics). In literature, OCL has only been used in relation with workflow models
as an auxiliary tool for a better specification of the business process. For instance,
in [39] OCL is used to manually specify workflow access control constraints and
derive authorization rules, in [40] to express constraints with respect to the distri-
bution of work to teams, in ArgoUWE [41] to check for well-formedness in the
design of process models, in [42] to manually specify business models with UML,
and in [7] to specify the contracts for the transformation of activity diagrams into
BPEL4WS.

conclusions
In this paper, we presented an automatic approach to integrate the semantics of
business process specifications within conceptual schemas. The main advantage
of using conceptual schemas to handle the workflow information is that we can
develop workflow-based applications without requiring the use of a specific work-
flow management subsystem.

Once the designer has specified both the workflow and the conceptual sche-
mas, we build an integrated workflow-extended conceptual schema by adding to
the conceptual schema (i) the definition of a set of new entity and relationship
types for workflow status tracking and (ii) the rules for generating the integrity
constraints on such types, needed for enforcing the business process specification.
The integration of both the domain and the workflow aspects in a single extended

© 2011 by Apple Academic Press, Inc.

94 Data Structure and Software Engineering: Challenges and Improvements

conceptual schema permits a homogeneous treatment of both dimensions of the
workflow-based application.

The workflow-extended conceptual schema is a completely standard UML
model. This provides additional benefits. For instance, we can apply the usual
model-driven development methods over our extended model to generate its au-
tomatic implementation in any technology platform. As long as these methods
are able to deal with UML/OCL models, they will be able to directly manage our
workflow-extended schema. In the same way, we could reuse verification and vali-
dation tools for UML models and apply them to check our extended schema.

As a further work, we would like to explore the possibility of using our ex-
tended schema as a bridge to facilitate reverse-engineering of existing applications
into their original workflow models and to ease keeping them aligned. We also
plan to develop a method that, from the generated process constraints, is able to
compute the list of activities that can be enacted by a user in a given case (i.e.,
those activities that can be created without violating any of the workflow process
constraints according to the case state at that specific time) to provide a better
user-experience when executing the workflow-based applications. Instead of let-
ting the user choose the desired activity and then check whether the activity can
be started, we would directly provide the list of secure activities avoiding possible
errors in the activity selection. Along this line, we also plan to investigate the dif-
ferent application layers (data layer, business logic layer, presentation layer) where
the process constraints can be implemented, and define some recommendation
framework for the developers (and the automatically generated code) for the best
implementation strategy of constraints depending on the kind of experience the
application is supposed to provide to the users.

Future investigations will also address the empirical evaluation of our ap-
proach. In particular, we would like to compare the quality of manually developed
applications with respect to the ones produced with our approach. For instance,
we would like to compare the percentage of workflow constraints detected and in-
cluded by programmers when manually developing the applications with the cov-
erage of workflow constraints obtained when using our approach. We are confi-
dent that a manual application development will miss many workflow constraints
since a manual detection of all relevant constraints and possible inconsistencies is
an error-prone activity. We also plan to evaluate the effort required to develop this
kind of applications with and without our approach.

appendix a
As we have seen in Section 6, our workflow-extended schema is the result
of a trade-off between the size of the model and the complexity of the OCL

© 2011 by Apple Academic Press, Inc.

Extending Conceptual Schemas with Business Process Information 95

expression needed to represent the process constraints. However, that is not the
only feasible alternative. In this Appendix we present two different alternatives:
the first one aims at minimizing the size of the workflow-extended schema, while
the second one tries to reduce the complexity of the required OCL expressions.
The designer may choose among the three alternatives (these two plus the one
presented in the main part of the paper) when following our approach for the
integration of business processes and conceptual schemas.

A Minimal Workflow-Extended Conceptual Schema

In a “minimal” workflow extended schema (Figure 13), to reduce the size of the
model, no workflow-dependent subtypes (i.e., the Activity subtypes recording
the information about specific activities executed during the workflow case) are
created. This implies that the Activity entity type must be extended with an ad-
ditional attribute type to distinguish and classify the enacted activities (before we
could directly determine that by examining the specific subclass of each activity
instance). In our running example, the possible values for this type attribute are:
AskQuotation, ProvideQuotation, SubmitOrder, and so forth.

Moreover, with this model, all relationships between the workflow subschema
and the domain subschema must be done now at the Activity type level, instead
of linking the domain classes with their specific related activities. As a result,
there must exist a different relationship type between the Activity type and each
domain class in the model (except for domain classes not related with any activ-
ity). An additional set of integrity constraints must be defined to ensure a correct
instantiation of these new relationship types. For instance, in our example, an
AskQuotation activity is only related to a Quotation instance. In our original
workflow extended schema this was already enforced by the model itself (Ask-
Quotation was only linked to the Quotation type) but in this minimal model, we
need to add the following constraint:

contextActivityinv:
self.type=“AskQuotation”implies
self.product->isEmpty()andself.order->isEmpty()and
self.quotationLine->isEmpty()
To ensure that activity instances of type AskQuotation are only associated

with quotation instances. A similar constraint must be added for each workflow
activity related to business data objects.

The definition of process constraints also becomes more complex. Now the
activity type must act as context type for all the process constraints. Therefore,

© 2011 by Apple Academic Press, Inc.

96 Data Structure and Software Engineering: Challenges and Improvements

the first part of all constraints must be devoted to select from all activities those
affected by the constraint. For instance, the first sequence constraint presented in
Section 7.1:
context B inv seq1: previous->size()=1 and previous ->exists(a|a.oclIsTypeOf(A) and
a.status=‘completed’)
is now expressed as:

context Activity inv seq1: Activity::allInstances()-> select(type=“B”)-
>forAll(b |b.previous->size()=1 and previous->exists(a|a.type=“A” and
a.status=‘completed’))
Note that the constraints we obtain are more complex, and also the model

becomes much less readable since now it is not trivial to detect all constraints af-
fecting a particular activity type; indeed all constraints are attached to the Activity
concept and are therefore mixed.

A Maximal Workflow-Extended Conceptual Schema

As an opposite approach, we could prefer to sacrifice the size of model in order to
get a simpler translation of the process constraints.

In this maximal workflow-extended conceptual schema (Figure 14), the set of
workflow-dependent subtypes includes the definition of an entity type for each
activity and, additionally, a different entity type for each gateway. Each gateway
type is related to the activity types corresponding to the activities linked by the
gateway in the workflow model. All gateway types are defined as subtypes of the
Gateway supertype, which includes a type attribute with information on the gate-
way kind: AND-merge, AND-split, OR-merge, and so forth.

On the one hand, this gateway subtypes increase the size of the workflow-
extended schema and complicate its management since now the system must take
care of creating at run-time the appropriate instances of the gateway types when-
ever one of their incoming activities are completed (split gateways are automati-
cally created as completed gateways; merge gateways are declared completed when
all required incoming activities have finished).

On the other hand, process constraints can be now defined in terms of the
gateways, which results in a more clear and readable definition of the constraints.
That is, if an activity is affected by several gateways (for instance, an activity may
be the outgoing activity of an AND-merge and the initial activity for an AND-
split), the set of constraints of each gateway is attached to the corresponding
gateway type instead of being mixed altogether in the activity type.

© 2011 by Apple Academic Press, Inc.

Extending Conceptual Schemas with Business Process Information 97

Additionally, some of the OCL constraints can be avoided because they are
already enforced by the model definition itself. For instance, one of the common
constraints for all split gateways among an activity A and a set of B1 ···Bn activi-
ties states that the previous activity for a Bi activity must be unique, of type A,
and completed. The first two conditions are ensured in this maximal model due
to the associations (and multiplicities) between the B1 ···Bn activities and the
split gateway type and between the gateway and the A type. The condition that
the A activity must be completed still needs to be defined as an OCL constraint,
which could be expressed as simply as follows (Split1 is assumed to be the type
corresponding to the split gateway):

contextSplit1 inv: self.previous.completed
This situation is illustrated in the example of Figure 14 showing the AND-

Split between ShipOrder, ReceiveGoods and SendInvoice. Note that Received-
Goods and SendInvoice instances must be related with an instance of the gateway,
which, in turn, must be related with an instance of ShipOrder. This guarantees
that ReceiveGoodsand SendInvoice instances cannot be executed without creat-
ing first a ShipOrder instance.

Figure 13. A minimal workflow-extended conceptual schema.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-016.jpg&w=342&h=247

98 Data Structure and Software Engineering: Challenges and Improvements

appendix b
The application of the translation patterns over the workflow schema of Figure 4
produces the workflow-extended conceptual schema of Figure 5 plus the follow-
ing set of process constraints expressed in OCL.

To simplify its presentation, constraints are grouped according to the main
activity they affect. For each constraint we also indicate the workflow con-
struct generating the constraint. Apart from the constraints specific for each
activity, all activity instances must not start before the occurrence of a start
event or after the occurrence of a terminate end event, as already seen in Sec-
tion 7.6.

ask Quotation activity

(i) Constraints due to the start event
(a) A single AskQuotation activity instance must eventually exist for each is-

sued Start event:

context Event inv: eventType.name =‘Start’ and case.status=‘completed’ im-
plies case.activity->select(a | a.oclIsTypeOf(AskQuotation) and a.event= self)
->size()=1

Provide Quotation activity

(i) Constraints due to the XOR-Merge

(a) The preceding activity must be of type AskQuotation or Change Quota-
tion and must be completed:

>exists(a|(a.oclIsTypeOf(AskQuotation) or a.oclIsTypeOf(ChangeQuotation))
and a.status= ‘completed’)
(b) No two instances may be related with the same Ask Quotation or Change

Quotation instance. Note that when we iterate over the loop between Change
Quotation and Provide Quotation activities, new activity instances are generated
in each iteration:

context ProvideQuotation inv: ProvideQuotation.all-Instances()->
isUnique(previous)
(c) A Provide Quotationinstance follows each completed AskQuotation or

Change Quotation activity:

© 2011 by Apple Academic Press, Inc.

Extending Conceptual Schemas with Business Process Information 99

context Case inv: status=‘completed’ implies activity ->select(b |
b.oclIsTypeOf(AskQuotation) or ... or b.oclIsTypeOf(ChangeQuotation))->
forAll (b |b.next ->exists(a |a.oclIsTypeOf(ProvideQuotation)))

Figure 14. A partial representation of the maximal workflow-extended conceptual schema for the workflow
model of Figure 3, showing the new entity type for one of the workflow gateways.

(ii) Constraints due to the XOR-split
(a) The next activity must be either another Change Quotation instance or a

Submit Order instance, but not both

contextProvideQuotationinv: next->select(a |a.oclIsTypeOf(ChangeQuotation)
or a.oclIsTypeOf(Submit-Order))-> size ()<=1

(b) If the Provide Quotation instance is completed, a Change Quotation or a
SubmitOrder must necessarily be created before ending the case

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-7&iName=master.img-017.jpg&w=343&h=302

100 Data Structure and Software Engineering: Challenges and Improvements

context Case inv: status=‘completed’ implies activity->select(a | a.status=‘completed’
and a.oclIsTypeOf(ProvideQuotation))-> forAll (a | a.next -> exists (b |
(b.oclIsTypeOf(ChangeQuotation) or b .oclIsTypeOf(SubmitOrder)) andb.start
≥a.end))
(c) Only Change Quotation activity instances or Submit Order instances may

follow a Provide Quotation instance
context ProvideQuotation inv: next->forAll(b | b .oclIsTypeOf(ChangeQuotation)
orb.oclIsTypeOf(SubmitOrder))

change Quotation activity

(i) Constraints due to outgoing flow from the ProvideQuo-tationXOR-split
(a) The previous activity must be of type ProvideQuotation and must be com-

pleted
context ChangeQuotation inv: previous->size()=1 and previous->exists(a |
a.status= ‘completed’ and a.oclIsTypeOf(ProvideQuotation))
(b) No two instances of Change Quotation may be related with the same

Provide Quotation instance
context ChangeQuotation inv: ChangeQuotation.all-Instances()-> is
Unique(previous)

(ii) Constraints due to the subsequent XOR-merge
(a) The next activity must be of type ProvideQuotation

contextChangeQuotationinv:next-> forAll(a |a.oclIsTypeOf(ProvideQuotation))

Submit order activity

(i) Constraints due to outgoing flow from the Provide QuotationXOR-split
(a) The previous activity must be of type Provide Quotation and must be

completed
context SubmitOrder inv: previous->size()=1 and previous->exists(a |
a.status=‘completed’ and a.oclIsTypeOf(ProvideQuotation))
(b) No two instances of SubmitOrder may be related with the same Provide

Quotationinstance
context SubmitOrder inv: SubmitOrder.allInstances() -> isUnique (previous)

(ii) Constraints due to the XOR-split between ChooseShipment and Standard-
Shipment

© 2011 by Apple Academic Press, Inc.

Extending Conceptual Schemas with Business Process Information 101

(a) The next activity must be either of type Choose-Shipment or
StandardShipment,but notboth

context SubmitOrder inv: next->select(a | a.oclIsTypeOf(ChooseShipment)or
a.oclIsType Of(Standard-Shipment))-> size ()<=1
(b) If the Submit Order instance is completed, a Choose Shipment or a Stan-

dard Shipment activity must be created before ending the case
contextCaseinv: status=‘completed’implies activity-> select(a |a.status=‘completed’
and a.oclIsTypeOf(SubmitOrder))-> forAll (a |a.next-> exists(b |(b.oclIs-
TypeOf(Choose Shipment) or b.oclIs-TypeOf(StandardShipment)) andb.
start>=a.end))
(c) Only ChooseShipment or StandardShipment activity instances may follow

a SubmitOrderinstance
context SubmitOrder inv: next->forAll(b | b.oclIsTypeOf(ChooseShipment) or
b.oclIsTypeOf(Standard-Shipment))

Standard Shipment activity

(i) Constraints due to outgoing flow from the SubmitOrder XOR-split
(a) The previous activity must be of type Submit Order and must be com-

pleted
context StandardShipment inv: previous->size()= 1 and previous->exists(a |
a.status=‘completed’ and a.oclIsTypeOf(SubmitOrder))
(b) No two instances of Standard Shipment may be related with the same

SubmitOrder instance
contextStandardShipmentinv:StandardShipment.all-Instances()->
isUnique(previous)

(ii) Constraints due to the subsequent XOR-merge
(a) The next activity must be of type ShipOrder

context StandardShipment inv: next-> forAll(a | a .oclIsTypeOf(ShipOrder))

choose Shipment activity

(i) Constraints due to outgoing flow from the SubmitOrder XOR-split
(a) The previous activity must be of type Submit Order and must be com-

pleted

© 2011 by Apple Academic Press, Inc.

102 Data Structure and Software Engineering: Challenges and Improvements

context ChooseShipment inv: previous->size()=1 and previous->exists(a |
a.status=‘completed’ and a.oclIsTypeOf(SubmitOrder))
(b) No two instances of Standard Shipment may be related with the same

SubmitOrder instance
context ChooseShipment inv: Choose Shipment.all-Instances()->
isUnique(previous)

(ii) Constraints due to the AND-split between Arrange Transport and Process
OrderLine

(a) For each Choose Shipment activity, the Arrange Transport and the Process
OrderLineactivities must be executed

context Case inv: status=‘completed’ implies activity ->select(a |
a.status=‘completed’ and a.oclIsTypeOf(ChooseShipment))-> forAll(a | a.next->
exists(b |b.oclIsTypeOf(ArrangeTransport)) and a.next-> exists(b |b.oclIsTypeO
f(ProcessOrderLine)))
(b) Only Arrange Transport activity instances or Process OrderLine instances

may follow a Choose Shipment instance
context ChooseShipment inv: next->forAll(b | b.oclIsTypeOf(ArrangeTransport)
or b.oclIsTypeOf(Process-OrderLine))

arrange transport activity

(i) Constraints due to the outgoing flow of the Choose Shipment AND-split
(a) The previous activity must be of type Choose Shipment and must be com-

pleted
context ArrangeTransport inv: previous->size()= 1 and previous->exists(a |
a.oclIsTypeOf(ChooseShipment) and a.status=‘completed’)
(b) No two instances of ArrangeTransport may be related with the same

ChooseShipment
context Arrange Transport inv: ArrangeTransport.all-Instances()->
isUnique(previous)

(ii) Constraints due to the subsequent AND-merge
(a) The next activity must be of type EmptyActivity1

context ArrangeTransport inv: next-> forAll(a | a
.oclIsTypeOf(EmptyActivity1))

© 2011 by Apple Academic Press, Inc.

Extending Conceptual Schemas with Business Process Information 103

Process order Line activity

(i) Constraints due to the outgoing flow of the ChooseShipment AND-split
(a) The previous activity must be of type Choose Shipment and must be com-

pleted
contextProcessOrderLine inv:previous->size()=1 and previous->exists(a |
a.oclIsTypeOf(ChooseShipment) and a.status=‘completed’)
(b) No two instances of Process OrderLinemay be related with the same

ChooseShipment instance
context ProcessOrderline invProcessOrderline.allInstances()->isUnique
(previous)

(ii) Constraints due to the multi-instance loop
(a) There must exist a Process OrderLineinstance for each OrderLine of the

order related with the activity
context Case inv: (activity->select(a |a.oclIsTypeOf(ProcessOrderLine))-> size())
mod (ProcessOrderLine.allInstances()-> any(p |p.case=self).order.quota-tion.
quotationLine ->size()) =0

empty activity 1 activity

(i) Constraints due to the AND-Merge
(a) We cannot start (and complete) an Empty Activity1 instance until the Ar-

range Transport activity and all required Process OrderLine instances have been
executed

context EmptyActivity1 inv: previous->exists(b |b.oclIsTypeOf(Arra
ngeTransport) (and b.status = ‘completed’) and previous->select(b |
b.oclIsTypeOf(ProcessOrderLine) and b.status=‘completed’)-> size()= self.order.
quotation.orderLines->size()
(b) An Empty Activity1 instance must eventually exist if the ArrangeTrans-

portand Process OrderLineactivities have been issued
contextCaseinv:status=‘completed’implies not(activity->exists (b |
b.oclIsTypeOf(ArrangeTransport) and b.status=‘completed’and notb.
next->exists(a|a.oclIsTypeOf(EmptyActivity1))) and activity-> exists(b |
b .oclIsTypeOf(ProcessOrderLine) and b.status=‘completed’and notb.next-
>exists(a |a.oclIsType-Of(EmptyActivity1))))
(c) The previous instances of two different Empty Activity1 instances must

have an empty intersection

© 2011 by Apple Academic Press, Inc.

104 Data Structure and Software Engineering: Challenges and Improvements

contextEmptyActivity1inv:EmptyActivity1.allInstances()->forAll(s1,s2 | s1 <>
s2 implies s1.previous ->intersection(s2.previous)->isEmpty())

(ii) Constraints due to the subsequent XOR-merge
(a) The next activity must be of type ShipOrder

context EmptyActivity1 inv: next-> forAll(a | a.oclIsTypeOf(ShipOrder))

Ship order activity

(i) Constraints due to the XOR-Merge
(a) The preceding activity must be of type Standard Shipment or EmptyActiv-

ity1and must be completed
context ShipOrder inv: previous->size()=1 and previous->exists(a | (a.o
clIsTypeOf(StandardShipment) or a.oclIsTypeOf(EmptyActivity1)) and
a.status=‘completed’)
(b) No two instances may be related with the same previous StandardShip-

ment or EmptyActivity1 instances
context ShipOrder inv: ShipOrder.allInstances()-> isUnique(previous)
(c) A Ship Order instance follows completed Standard Shipment orEmpty-

Quotation1activities
context Case inv: status=‘completed’ implies activity>select(b |
b.oclIsTypeOf(StandardShipment) or...or b.oclIsTypeOf(EmptyActivity1)) ->
forAll(b | b.next>exists (a |a.oclIsTypeOf(ShipOrder)))

(ii) Constraints due to following AND-split
(a) For each ShipOrder activity, the Send invoice and the ReceiveGoodsactivi-

ties must be executed
contextCaseinv: status=‘completed’implies activity-> select(a
|a.status=‘completed’and a.oclIsTypeOf(Ship-Order))-> forAll(a
|a.next ->exists (b | b.oclIsTypeOf(SendInvoice)) and a.next->exists(b |
b.oclIsTypeOf(ReceiveGoods)))
(b) Only SendInvoice activity instances or ReceiveGoods instances

may follow a ShipOrder instance context ShipOrder inv: next->forAll(b |
b.oclIsTypeOf(SendInvoice) orb.oclIsTypeOf(ReceiveGoods))

Send invoice activity

(i) Constraints due to the outgoing flow of the Ship Order AND-split

© 2011 by Apple Academic Press, Inc.

Extending Conceptual Schemas with Business Process Information 105

(a) The previous activity must be of type ShipOrder and must be completed

context SendInvoice inv: previous->size()=1 and previous->exists(a
|a.oclIsTypeOf(ShipOrder) and a.status=‘completed’)

(b) No two instances of SendInvoice may be related with the same
ShipOrder

context SendInvoice inv:SendInvoice.allInstances()-> isUnique(previous)

(ii) Constraints due to the subsequent AND-merge
(a) The next activity must be of type PayGoods

contextSendInvoice inv: next-> forAll(a |a.oclIsTypeOf(PayGoods))

receive goods activity

(i) Constraints due to the outgoing flow of the Ship Order AND-split
(a) The previous activity must be of type ShipOrder and must be completed

contextReceiveGoodsinv:previous->size()=1 and previous->exists(a
|a.oclIsTypeOf(ShipOrder) and a.status=‘completed’)

(b) No two instances of ReceiveGoods may be related with the same Ship
Order

context ReceiveGoods inv:ReceiveGoods.allInstances() ->isUnique(previous)

(ii) Constraints due to the subsequent AND-merge
(a) The next activity must be of type PayGoods

contextReceiveGoodsinv:next->forAll(a |a.oclIsTypeOf(PayGoods))

Pay goods activity

(i) Constraints due to the AND-Merge
(a) We cannot start a PayGoods instance until the Send Invoice and the Re-

ceiveGoods activities have been executed

context PayGoods inv: previous->exists(b | b.oclIsTypeOf(SendInvoice) and
b.status=‘completed’) and previous->exists(b | b.oclIsTypeOf(ReceiveGoods) and
(b.status=‘completed’)

(b) APay Goods instance must eventually exist if the Send Invoice and the
Receive Goods activities have been issued

© 2011 by Apple Academic Press, Inc.

106 Data Structure and Software Engineering: Challenges and Improvements

context Case inv: status=‘completed’ implies not (activity->exists(b |
b.oclIsTypeOf(SendInvoice) and b.status=‘completed’ and not b.next->exists(a |
a .oclIsTypeOf(PayGoods))) and activity->exists(b |
b.oclIsTypeOf(ReceiveGoods) andb.status=‘completed’ and notb.next->exists(a
|a.oclIsTypeOf(PayGoods))))

(c) The previous instances of two different Pay Good activities must have an
empty intersection.

context PayGoods inv: PayGoods.allInstances()-> forAll(s1,s2 |s1 <> s2 implies
s1.previous-> intersection(s2.previous)->isEmpty())

acknowledgements
This work has been partially supported by the Italian grant FAR N. 4412/ICT, the
Spanish-Italian integrated action HI2006-0208, and the Spanish Research Project
TIN2008-00444.

references
1. ISO/TC97/SC5/WG3, “Concepts and Terminology for the Conceptual Sche-

ma and Information Base,” ISO, 1982.

2. OMG/BPMI, “Business Process Management Notation v.1,” OMG Adopted
Specification, 2006.

3. Oracle, “Workflow,” www.oracle.com/technology/products/ias/workflow/in-
dex.html.

4. IBM, “WebSphere MQ Workflow,” http://www-01.ibm.com/software/inte-
gration/wmqwf/.

5. J. Bae, H. Bae, S.-H. Kang, and Y. Kim, “Automatic control of workflow pro-
cesses using ECA rules,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 16, no. 8, pp. 1010–1023, 2004.

6. M. Brambilla, S. Ceri, P. Fraternali, and I. Manolescu, “Process modeling in
web applications,” ACM Transactions on Software Engineering and Methodol-
ogy, vol. 15, no. 4, pp. 360–409, 2006.

7. J. Koehler, R. Hauser, S. Sendall, and M. Wahler, “Declarative techniques for
model-driven business process integration,” IBM Systems Journal, vol. 44,
no. 1, pp. 47–65, 2005.

© 2011 by Apple Academic Press, Inc.

http://www.oracle.com/technetwork/middleware/ias/overview/index.html
http://www-01.ibm.com/software/integration/wmqwf/

Extending Conceptual Schemas with Business Process Information 107

8. OMG, “UML 2.0 OCL Specification,” OMG Adopted Specification (ptc/03-
10-14), 2003.

9. OMG, “Business Process Definition Metamodel (BPDM),” OMG Standard,
dtc/2007-07-01, 2007.

10. C. Combi and G. Pozzi, “Temporal conceptual modelling of workflows,” in
Proceedings of the 22nd International Conference on Conceptual Modeling
(ER ‘03), vol. 2813 of Lecture Notes in Computer Science, pp. 59–76, 2003.

11. OMG, “UML 2.0 Superstructure Specification,” OMG Adopted Specification
(ptc/03-08-02), 2003.

12. M. Brambilla, J. Cabot, and S. Comai, “Automatic generation of workflow-
extended domain models,” in Proceedings of the 10th International Confer-
ence on Model Driven Engineering Languages and Systems (MoDELS ‘07),
vol. 4735 of Lecture Notes in Computer Science, pp. 375–389, 2007.

13. OMG, “MOF Core Specification,” OMG Available Specification (formal/06-
01-01), 2006.

14. J. Mendling, G. Neumann, and M. Nüttgens, “A comparison of XML in-
terchange formats for business process modelling,” in Workflow Handbook,
Workflow Management Coalition, 2005.

15. B. List and B. Korherr, “An evaluation of conceptual business process model-
ling languages,” in Proceedings of the ACM Symposium on Applied Comput-
ing, vol. 2, pp. 1532–1539, 2006.

16. S. A. White, Process Modeling Notations and Workflow Patterns, BPTrends,
2004.

17. W. M. P. van der Aalst, M. Weske, and G. Wirtz, “Advanced topics in workflow
management: issues, requirements and solutions,” Journal of Integrated Design
and Process Science, vol. 7, pp. 49–77, 2003.

18. J. Cabot and R. Raventós, “Conceptual modelling patterns for roles,” Journal
on Data Semantics V, pp. 158–184, 2006.

19. D. Costal, C. Gómez, A. Queralt, R. Raventós, and E. Teniente, “Facili-
tating the definition of general constraints in UML,” in Proceedings of the
9th International Conference on Model Driven Engineering Languages and
Systems (MoDELS ‘06), vol. 4199 of Lecture Notes in Computer Science,
pp. 260–274, 2006.

20. M. T. Wynn, D. Edmond, W. M. P. van der Aalst, and A. H. M. ter Hofstede,
“Achieving a general, formal and decidable approach to the OR-join in work-
flow using Reset nets,” in Proceedings of the 26th International Conference

© 2011 by Apple Academic Press, Inc.

108 Data Structure and Software Engineering: Challenges and Improvements

on Application and Theory of Petri Nets (ICATPN ‘06), vol. 3536 of Lecture
Notes in Computer Science, pp. 423–443, 2006.

21. A. Olivé, “A method for the definition of integrity constraints in object-orient-
ed conceptual modeling languages,” Data and Knowledge Engineering, vol. 59,
no. 3, pp. 559–575, 2006.

22. M. Brambilla and J. Cabot, “Constraint tuning and management for web ap-
plications,” in Proceedings of the Tool Presentation at 6th International Con-
ference on Web Engineering (ICWE ‘06), pp. 345–352, 2006.

23. S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera,
Designing Data-Intensive Web Applications, Morgan Kaufmann, 2002.

24. B. Demuth, H. Hussmann, and S. Loecher, “OCL as a specification language
for business rules in database applications,” in Proceedings of the 4th Interna-
tional Conference on the Unified Modeling Language (UML ‘01), vol. 2185 of
Lecture Notes in Computer Science, pp. 104–117, 2001.

25. KlasseObjecten, “Octopus: OCL Tool for Precise Uml Specifications,” http://
www.klasse.nl/octopus/index.html.

26. J. Cabot and E. Teniente, “Incremental evaluation of OCL constraints,” in
Proceedings of the 18th International Conference on Advanced Information
Systems Engineering (CAiSE ‘06), vol. 4001 of Lecture Notes in Computer
Science, pp. 81–95, 2006.

27. O. Pastor, J. Fons, V. Pelechano, and S. Abrahão, “Conceptual modelling of
web applications: the OOWS approach,” in Web Engineering, pp. 277–302,
Springer, New York, NY, USA, 2006.

28. M. Brambilla, “Extending hypertext conceptual models with process-oriented
primitives,” in Proceedings of the 22nd International Conference on Concep-
tual Modeling (ER ‘03), vol. 2813 of Lecture Notes in Computer Science,
pp. 246–262, 2003.

29. NoMagicInc., “MagicDraw UML v. 10.5,” http://www.magicdraw.com/.

30. OMG, “XML Metadata Interchange (XMI) Specification v.2.0,” OMG Ad-
opted Specification (formal/03-05-02), 2003.

31. M. Brambilla, “Generation of WebML web application models from business
process specification,” in Proceedings of the Tool Presentation at 6th Interna-
tional Conference on Web Engineering (ICWE ‘06), pp. 85–86, 2006.

32. R. Eshuis and R. Wieringa, “Verification support for workflow design with
UML activity graphs,” in Proceedings of the 22nd International Conference on
Software Engineering (ICSE ‘02), pp. 166–176, 2002.

© 2011 by Apple Academic Press, Inc.

http://swik.net/Eclipse/del.icio.us%2Ftag%2Feclipse/Klasse+Objecten+-+Octopus%3A+OCL+Tool+for+Precise+Uml+Specifications/bx1gq
http://www.nomagic.com/

Extending Conceptual Schemas with Business Process Information 109

33. W. Hur, J.-Y. Jung, H. Kim, and S.-H. Kang, “Model-driven approach to
workflow execution,” in Proceedings of the 2nd International Conference on
Business Process Management (BPM ‘04), vol. 3080 of Lecture Notes in Com-
puter Science, pp. 261–273, 2004.

34. M. La Rosa, F. Gottschalk, M. Dumas, and W. M. P. van der Aalst, “Linking
domain models and process models for reference model configuration,” in Pro-
ceedings of the Business Process Management Workshop, vol. 4928 of Lecture
Notes in Computer Science, pp. 417–430, 2008.

35. G. Wirtz, M. Weske, and H. Giese, “Extending UML with workflow modeling
capabilities,” in Proceedings of the 7th International Conference on Coopera-
tive Information Systems (CoopIS ‘00), vol. 1901 of Lecture Notes in Com-
puter Science, pp. 30–41, 2000.

36. M. Dumas and A. H. Hofstede, “UML activity diagrams as a workflow speci-
fication language,” in Proceedings of the 4th International Conference on the
Unified Modeling Language (UML ‘01), vol. 2185 of Lecture Notes in Com-
puter Science, pp. 76–90, 2001.

37. P. Hruby, “Specification of workflow management systems with UML,” in
Proceedings of the Workshop on Implementation and Application of Object-
Oriented Workflow Management Systems (OOPSLA ‘98), 1998.

38. M. Brambilla, A. Deutsch, L. Sui, and V. Vianu, “The role of visual tools in a
web application design and verification framework: a visual notation for LTL
formulae,” in Proceedings of the Tool Presentation at 5th International Confer-
ence on Web Engineering (ICWE ‘05), vol. 3579 of Lecture Notes in Com-
puter Science, pp. 557–568, 2005.

39. D. Domingos, A. Rito-Silva, and P. Veiga, “Workflow access control from a
business perspective,” in Proceedings of the 6th International Conference on
Enterprise Information Systems (ICEIS ‘04), vol. 3, pp. 18–25, 2004.

40. W. M. P. van der Aalst and A. Kumar, “A reference model for team-enabled
workflow management systems,” Data and Knowledge Engineering, vol. 38,
no. 3, pp. 335–363, 2001.

41. A. Knapp, N. Koch, G. Zhang, and H.-M. Hassler, “Modeling business pro-
cesses in web applications with argoUWE,” in Proceedings of the 7th Interna-
tional Conference on the Unified Modeling Language (UML ‘04), vol. 3273 of
Lecture Notes in Computer Science, pp. 69–83, 2004.

42. T. Takemura and T. Tamai, “Rigorous business process modeling with OCL,”
in Proceedings of the OCL Workshop in Model Driven Engineering Languages
and Systems (MoDELS ‘06), 2006.

© 2011 by Apple Academic Press, Inc.

Software test automation
in Practice: empirical

observations

Jussi Kasurinen, Ossi Taipale and Kari Smolander

abStract
The objective of this industry study is to shed light on the current situation
and improvement needs in software test automation. To this end, 55 indus-
try specialists from 31 organizational units were interviewed. In parallel with
the survey, a qualitative study was conducted in 12 selected software develop-
ment organizations. The results indicated that the software testing processes
usually follow systematic methods to a large degree, and have only little im-
mediate or critical requirements for resources. Based on the results, the testing
processes have approximately three fourths of the resources they need, and have
access to a limited, but usually sufficient, group of testing tools. As for the test
automation, the situation is not as straightforward: based on our study, the
applicability of test automation is still limited and its adaptation to testing

© 2011 by Apple Academic Press, Inc.

Software Test Automation in Practice: Empirical Observations 111

contains practical difficulties in usability. In this study, we analyze and dis-
cuss these limitations and difficulties.

introduction
Testing is perhaps the most expensive task of a software project. In one estimate,
the testing phase took over 50% of the project resources [1]. Besides causing im-
mediate costs, testing is also importantly related to costs related to poor quality, as
malfunctioning programs and errors cause large additional expenses to software
producers [1, 2]. In one estimate [2], software producers in United States lose
annually 21.2 billion dollars because of inadequate testing and errors found by
their customers. By adding the expenses caused by errors to software users, the
estimate rises to 59.5 billion dollars, of which 22.2 billion could be saved by mak-
ing investments on testing infrastructure [2]. Therefore improving the quality of
software and effectiveness of the testing process can be seen as an effective way to
reduce software costs in the long run, both for software developers and users.

One solution for improving the effectiveness of software testing has been ap-
plying automation to parts of the testing work. In this approach, testers can focus
on critical software features or more complex cases, leaving repetitive tasks to the
test automation system. This way it may be possible to use human resources more
efficiently, which consequently may contribute to more comprehensive testing
or savings in the testing process and overall development budget [3]. As person-
nel costs and time limitations are significant restraints of the testing processes
[4, 5], it also seems like a sound investment to develop test automation to get
larger coverage with same or even smaller number of testing personnel. Based on
market estimates, software companies worldwide invested 931 million dollars in
automated software testing tools in 1999, with an estimate of at least 2.6 billion
dollars in 2004 [6]. Based on these figures, it seems that the application of test
automation is perceived as an important factor of the test process development by
the software industry.

The testing work can be divided into manual testing and automated testing.
Automation is usually applied to running repetitive tasks such as unit testing or
regression testing, where test cases are executed every time changes are made [7].
Typical tasks of test automation systems include development and execution of
test scripts and verification of test results. In contrast to manual testing, auto-
mated testing is not suitable for tasks in which there is little repetition [8], such
as explorative testing or late development verification tests. For these activities
manual testing is more suitable, as building automation is an extensive task and
feasible only if the case is repeated several times [7, 8]. However, the division

© 2011 by Apple Academic Press, Inc.

112 Data Structure and Software Engineering: Challenges and Improvements

between automated and manual testing is not as straightforward in practice as it
seems; a large concern is also the testability of the software [9], because every piece
of code can be made poorly enough to be impossible to test it reliably, therefore
making it ineligible for automation.

Software engineering research has two key objectives: the reduction of costs
and the improvement of the quality of products [10]. As software testing repre-
sents a significant part of quality costs, the successful introduction of test automa-
tion infrastructure has a possibility to combine these two objectives, and to overall
improve the software testing processes. In a similar prospect, the improvements of
the software testing processes are also at the focus point of the new software test-
ing standard ISO 29119 [11]. The objective of the standard is to offer a company-
level model for the test processes, offering control, enhancement and follow-up
methods for testing organizations to develop and streamline the overall process.

In our prior research project [4, 5, 12–14], experts from industry and research
institutes prioritized issues of software testing using the Delphi method [15]. The
experts concluded that process improvement, test automation with testing tools,
and the standardization of testing are the most prominent issues in concurrent
cost reduction and quality improvement. Furthermore, the focused study on test
automation [4] revealed several test automation enablers and disablers which are
further elaborated in this study. Our objective is to observe software test automa-
tion in practice, and further discuss the applicability, usability and maintainability
issues found in our prior research. The general software testing concepts are also
observed from the viewpoint of the ISO 29119 model, analysing the test process
factors that create the testing strategy in organizations. The approach to achieve
these objectives is twofold. First, we wish to explore the software testing practices
the organizations are applying and clarify the current status of test automation in
the software industry. Secondly, our objective is to identify improvement needs
and suggest improvements for the development of software testing and test auto-
mation in practice. By understanding these needs, we wish to give both research-
ers and industry practitioners an insight into tackling the most hindering issues
while providing solutions and proposals for software testing and automation im-
provements.

The study is purely empirical and based on observations from practitioner
interviews. The interviewees of this study were selected from companies produc-
ing software products and applications at an advanced technical level. The study
included three rounds of interviews and a questionnaire, which was filled dur-
ing the second interview round. We personally visited 31 companies and car-
ried out 55 structured or semistructured interviews which were tape-recorded for
further analysis. The sample selection aimed to represent different polar points
of the software industry; the selection criteria were based on concepts such as

© 2011 by Apple Academic Press, Inc.

Software Test Automation in Practice: Empirical Observations 113

operating environments, product and application characteristics (e.g., criticality
of the products and applications, real time operation), operating domain and
customer base.

The paper is structured as follows. First, in Section 2 we introduce comparable
surveys and related research. Secondly, the research process and the qualitative
and quantitative research methods are described in Section 3. Then the survey
results are presented in Section 4 and the interview results are presented in Section
5. Finally, the results and observations and their validity are discussed in Section
6 and closing conclusions are discussed in Section 7.

related research
Besides our prior industry-wide research in testing [4, 5, 12–14], software testing
practices and test process improvement have also been studied by others, like Ng
et al. [16] in Australia. Their study applied the survey method to establish knowl-
edge on such topics as testing methodologies, tools, metrics, standards, training
and education. The study indicated that the most common barrier to develop-
ing testing was the lack of expertise in adopting new testing methods and the
costs associated with testing tools. In their study, only 11 organizations reported
that they met testing budget estimates, while 27 organizations spent 1.5 times
the estimated cost in testing, and 10 organizations even reported a ratio of 2 or
above. In a similar vein, Torkar and Mankefors [17] surveyed different types of
communities and organizations. They found that 60% of the developers claimed
that verification and validation were the first to be neglected in cases of resource
shortages during a project, meaning that even if the testing is important part of
the project, it usually is also the first part of the project where cutbacks and down-
scaling are applied.

As for the industry studies, a similar study approach has previously been used
in other areas of software engineering. For example, Ferreira and Cohen [18]
completed a technically similar study in South Africa, although their study fo-
cused on the application of agile development and stakeholder satisfaction. Simi-
larly, Li et al. [19] conducted research on the COTS-based software development
process in Norway, and Chen et al. [20] studied the application of open source
components in software development in China. Overall, case studies covering
entire industry sectors are not particularly uncommon [21, 22]. In the context of
test automation, there are several studies and reports in test automation practices
(such as [23–26]). However, there seems to be a lack of studies that investigate
and compare the practice of software testing automation in different kinds of
software development organizations.

© 2011 by Apple Academic Press, Inc.

114 Data Structure and Software Engineering: Challenges and Improvements

In the process of testing software for errors, testing work can be roughly divid-
ed into manual and automated testing, which both have individual strengths and
weaknesses. For example, Ramler and Wolfmaier [3] summarize the difference
between manual and automated testing by suggesting that automation should be
used to prevent further errors in working modules, while manual testing is better
suited for finding new and unexpected errors. However, how and where the test
automation should be used is not so straightforward issue, as the application of
test automation seems to be a strongly diversified area of interest. The application
of test automation has been studied for example in test case generation [27, 28],
GUI testing [29, 30] and workflow simulators [31, 32] to name a few areas. Also
according to Bertolino [33], test automation is a significant area of interest in cur-
rent testing research, with a focus on improving the degree of automation by de-
veloping advanced techniques for generating the test inputs, or by finding support
procedures such as error report generation to ease the supplemental workload. Ac-
cording to the same study, one of the dreams involving software testing is 100%
automated testing. However, for example Bach’s [23] study observes that this can-
not be achieved, as all automation ultimately requires human intervention, if for
nothing else, then at least to diagnose results and maintain automation cases.

The pressure to create resource savings are in many case the main argument for
test automation. A simple and straightforward solution for building automation
is to apply test automation just on the test cases and tasks that were previously
done manually [8]. However, this approach is usually unfeasible. As Persson and
Yilmaztürk [26] note, the establishment of automated testing is a costly, high risk
project with several real possibilities for failure, commonly called as “pitfalls.”
One of the most common reasons why creating test automation fails, is that the
software is not designed and implemented for testability and reusability, which
leads to architecture and tools with low reusability and high maintenance costs.
In reality, test automation sets several requisites on a project and has clear enablers
and disablers for its suitability [4, 24]. In some reported cases [27, 34, 35], it
was observed that the application of test automation with an ill-suited process
model may be even harmful to the overall process in terms of productivity or
cost-effectiveness.

Models for estimating testing automation costs, for example by Ramler and
Wolfmaier [3], support decision-making in the tradeoff between automated and
manual testing. Berner et al. [8] also estimate that most of the test cases in one
project are run at least five times, and one fourth over 20 times. Therefore the test
cases, which are done constantly like smoke tests, component tests and integra-
tion tests, seem like ideal place to build test automation. In any case, there seems
to be a consensus that test automation is a plausible tool for enhancing quality,

© 2011 by Apple Academic Press, Inc.

Software Test Automation in Practice: Empirical Observations 115

and consequently, reducing the software development costs in the long run if used
correctly.

Our earlier research on the software test automation [4] has established that
test automation is not as straightforward to implement as it may seem. There are
several characteristics which enable or disable the applicability of test automation.
In this study, our decision was to study a larger group of industry organizations
and widen the perspective for further analysis. The objective is to observe, how the
companies have implemented test automation and how they have responded to
the issues and obstacles that affect its suitability in practice. Another objective is to
analyze whether we can identify new kind of hindrances to the application of test
automation and based on these findings, offer guidelines on what aspects should
be taken into account when implementing test automation in practice.

research Process
research Population and Selection of the Sample

The population of the study consisted of organization units (OUs). The standard
ISO/IEC 15504-1 [36] specifies an organizational unit (OU) as a part of an or-
ganization that is the subject of an assessment. An organizational unit deploys
one or more processes that have a coherent process context and operates within a
coherent set of business goals. An organizational unit is typically part of a larger
organization, although in a small organization, the organizational unit may be the
whole organization.

The reason to use an OU as the unit for observation was that we wanted to
normalize the effect of the company size to get comparable data. The initial popu-
lation and population criteria were decided based on the prior research on the
subject. The sample for the first interview round consisted of 12 OUs, which were
technically high level units, professionally producing software as their main pro-
cess. This sample also formed the focus group of our study. Other selection criteria
for the sample were based on the polar type selection [37] to cover different types
of organizations, for example different businesses, different sizes of the company,
and different kinds of operation. Our objective of using this approach was to gain
a deep understanding of the cases and to identify, as broadly as possible, the fac-
tors and features that have an effect on software testing automation in practice.

For the second round and the survey, the sample was expanded by adding
OUs to the study. Selecting the sample was demanding because comparability is
not determined by the company or the organization but by comparable processes
in the OUs. With the help of national and local authorities (the network of the

© 2011 by Apple Academic Press, Inc.

116 Data Structure and Software Engineering: Challenges and Improvements

Finnish Funding Agency for Technology and Innovation) we collected a popula-
tion of 85 companies. Only one OU from each company was accepted to avoid
the bias of over-weighting large companies. Each OU surveyed was selected from
a company according to the population criteria. For this round, the sample size
was expanded to 31 OUs, which also included the OUs from the first round. The
selection for expansion was based on probability sampling; the additional OUs
were randomly entered into our database, and every other one was selected for the
survey. In the third round, the same sample as in the first round was interviewed.
Table 1 introduces the business domains, company sizes and operating areas of
our focus OUs. The company size classification is taken from [38].

Table 1. Description of the interviewed focus OUs.

interview rounds

The data collection consisted of three interview rounds. During the first interview
round, the designers responsible for the overall software structure and/or module
interfaces were interviewed. If the OU did not have separate designers, then the
interviewed person was selected from the programmers based on their role in the
process to match as closely as possible to the desired responsibilities. The inter-
viewees were also selected so that they came from the same project, or from posi-
tions where the interviewees were working on the same product. The interviewees
were not specifically told not to discuss the interview questions together, but this
behavior was not encouraged either. In a case where an interviewee asked for the
questions or interview themes beforehand, the person was allowed access to them
in order to prepare for the meeting. The interviews in all three rounds lasted about
an hour and had approximately 20 questions related to the test processes or test
organizations. In two interviews, there was also more than one person present.

The decision to interview designers in the first round was based on the deci-
sion to gain a better understanding on the test automation practice and to see

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-8&iName=master.img-000.jpg&w=342&h=125

Software Test Automation in Practice: Empirical Observations 117

whether our hypothesis based on our prior studies [4, 5, 12–14] and supple-
menting literature review were still valid. During the first interview round, we
interviewed 12 focus OUs, which were selected to represent different polar types
in the software industry. The interviews contained semi-structured questions and
were tape-recorded for qualitative analysis. The initial analysis of the first round
also provided ingredients for the further elaboration of important concepts for the
latter rounds. The interview rounds and the roles of the interviewees in the case
OUs are described in Table 2.

Table 2. Interviewee roles and interview rounds.

The purpose of the second combined interview and survey round was to col-
lect multiple choice survey data and answers to open questions which were based
on the first round interviews. These interviews were also tape-recorded for the
qualitative analysis of the focus OUs, although the main data collection method
for this round was a structured survey. In this round, project or testing managers
from 31 OUs, including the focus OUs, were interviewed. The objective was to
collect quantitative data on the software testing process, and further collect mate-
rial on different testing topics, such as software testing and development. The col-
lected survey data could also be later used to investigate observations made from
the interviews and vice versa, as suggested in [38]. Managers were selected for this
round, as they tend to have more experience on software projects, and have a bet-
ter understanding of organizational and corporation level concepts and the overall
software process beyond project-level activities.

The interviewees of the third round were testers or, if the OU did not have
separate testers, programmers who were responsible for the higher-level testing
tasks. The interviews in these rounds were also semi-structured and concerned the
work of the interviewees, problems in testing (e.g., increasing complexity of the
systems), the use of software components, the influence of the business orienta-
tion, testing resources, tools, test automation, outsourcing, and customer influ-
ence for the test processes.

The themes in the interview rounds remained similar, but the questions
evolved from general concepts to more detailed ones. Before proceeding to the

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-8&iName=master.img-001.jpg&w=342&h=70

118 Data Structure and Software Engineering: Challenges and Improvements

next interview round, all interviews with the focus OUs were transcribed and
analyzed because new understanding and ideas emerged during the data analysis.
This new understanding was reflected in the next interview rounds. The themes
and questions for each of the interview rounds can be found on the project web-
site http://www2.it.lut.fi/project/MASTO/.

grounded analysis Method

The grounded analysis was used to provide further insight into the software
organizations, their software process and testing policies. By interviewing
people of different positions from the production organization, the analysis
could gain additional information on testing- and test automation-related
concepts like different testing phases, test strategies, testing tools and case
selection methods. Later this information could be compared between orga-
nizations, allowing hypotheses on test automation applicability and the test
processes themselves.

The grounded theory method contains three data analysis steps: open cod-
ing, axial coding and selective coding. The objective for open coding is to
extract the categories from the data, whereas axial coding identifies the con-
nections between the categories. In the third phase, selective coding, the core
category is identified and described [39]. In practice, these steps overlap and
merge because the theory development process proceeds iteratively. Addition-
ally, Strauss and Corbin [40] state that sometimes the core category is one of
the existing categories, and at other times no single category is broad enough
to cover the central phenomenon.

The objective of open coding is to classify the data into categories and identify
leads in the data, as shown in Table 3. The interview data is classified to categories
based on the main issue, with observation or phenomenon related to it being the
codified part. In general, the process of grouping concepts that seem to pertain to
the same phenomena is called categorizing, and it is done to reduce the number
of units to work with [40]. In our study, this was done using ATLAS.ti soft-
ware [41]. The open coding process started with “seed categories” [42] that were
formed from the research question and objectives, based on the literature study
on software testing and our prior observations [4, 5, 12–14] on software and
testing processes. Some seed categories, like “knowledge management,” “service-
orientation” or “approach for software development” were derived from our ear-
lier studies, while categories like “strategy for testing,” “outsourcing,” “customer
impact” or “software testing tools” were taken from known issues or literature
review observations.

© 2011 by Apple Academic Press, Inc.

http://www2.it.lut.fi/project/MASTO/

Software Test Automation in Practice: Empirical Observations 119

Table 3. Open coding of the interview data.

The study followed the approach introduced by Seaman [43], which notes
that the initial set of codes (seed categories) comes from the goals of the study,
the research questions, and predefined variables of interest. In the open coding,
we added new categories and merged existing categories to others if they seemed
unfeasible or if we found a better generalization. Especially at the beginning of
the analysis, the number of categories and codes quickly accumulated and the
total number of codes after open coding amounted to 164 codes in 12 different
categories. Besides the test process, software development in general and test au-
tomation, these categories also contained codified observations on such aspects as
the business orientation, outsourcing, and product quality.

After collecting the individual observations to categories and codes, the cat-
egorized codes were linked together based on the relationships observed in the
interviews. For example, the codes “Software process: Acquiring 3rd party mod-
ules,” “Testing strategy: Testing 3rd party modules,” and “Problem: Knowledge
management with 3rd party modules” were clearly related and therefore we con-
nected them together in axial coding. The objective of axial coding is to further
develop categories, their properties and dimensions, and find causal, or any kinds
of, connections between the categories and codes.

For some categories, the axial coding also makes it possible to define dimension
for the phenomenon, for example “Personification-Codification” for “Knowledge
management strategy,” where every property could be defined as a point along the
continuum defined by the two polar opposites. For the categories that are given
dimension, the dimension represented the locations of the property or the attri-
bute of a category [40]. Obviously for some categories, which were used to sum-
marize different observations like enhancement proposals or process problems,
defining dimensions was unfeasible. We considered using dimensions for some
categories like “criticality of test automation in testing process” or “tool sophisti-
cation level for automation tools” in this study, but discarded them later as they
yielded only little value to the study. This decision was based on the observation
that values of both dimensions were outcomes of the applied test automation
strategy, having no effect on the actual suitability or applicability of test automa-
tion to the organization’s test process.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-8&iName=master.img-002.jpg&w=342&h=64

120 Data Structure and Software Engineering: Challenges and Improvements

Our approach for analysis of the categories included Within-Case Analysis and
Cross-Case-Analysis, as specified by Eisenhardt [37]. We used the tactic of select-
ing dimensions and properties with within-group similarities coupled with inter-
group differences [37]. In this strategy, our team isolated one phenomenon that
clearly divided the organizations to different groups, and searched for explaining
differences and similarities from within these groups. Some of the applied features
were, for example, the application of agile development methods, the application
of test automation, the size [38] difference of originating companies and service
orientation. As for one central result, the appropriateness of OU as a comparison
unit was confirmed based on our size difference-related observations on the data;
the within-group- and inter-group comparisons did yield results in which the
company size or company policies did not have strong influence, whereas the lo-
cal, within-unit policies did. In addition, the internal activities observed in OUs
were similar regardless of the originating company size, meaning that in our study
the OU comparison was indeed feasible approach.

We established and confirmed each chain of evidence in this interpretation
method by discovering sufficient citations or finding conceptually similar OU
activities from the case transcriptions. Finally, in the last phase of the analysis,
in selective coding, our objective was to identify the core category [40]?a central
phenomenon?and systematically relate it to other categories and generate the hy-
pothesis and the theory. In this study, we consider test automation in practice as
the core category, to which all other categories were related as explaining features
of applicability or feasibility.

The general rule in grounded theory is to sample until theoretical saturation
is reached. This means (1) no new or relevant data seem to emerge regarding a
category, (2) the category development is dense, insofar as all of the paradigm
elements are accounted for, along with variation and process, and (3) the relation-
ships between categories are well established and validated [40]. In our study, the
saturation was reached during the third round, where no new categories were
created, merged, or removed from the coding. Similarly, the attribute values were
also stable, that is, the already discovered phenomena began to repeat themselves
in the collected data. As an additional way to ensure the validity of our study and
avoid validity threats [44], four researchers took part in the data analysis. The
bias caused by researchers was reduced by combining the different views of the
researchers (observer triangulation) and a comparison with the phenomena ob-
served in the quantitative data (methodological triangulation) [44, 45].

the Survey instrument Development and Data collection
The survey method described by Fink and Kosecoff [46] was used as the research
method in the second round. An objective for a survey is to collect information

© 2011 by Apple Academic Press, Inc.

Software Test Automation in Practice: Empirical Observations 121

from people about their feelings and beliefs. Surveys are most appropriate when
information should come directly from the people [46]. Kitchenham et al. [47]
divide comparable survey studies into exploratory studies from which only weak
conclusions can be drawn, and confirmatory studies from which strong conclu-
sions can be drawn. We consider this study as an exploratory, observational, and
cross-sectional study that explores the phenomenon of software testing automa-
tion in practice and provides more understanding to both researchers and prac-
titioners.

To obtain reliable measurements in the survey, a validated instrument was
needed, but such an instrument was not available in the literature. However,
Dybå [48] has developed an instrument for measuring the key factors of success
in software process improvement. Our study was constructed based on the key
factors of this instrument, and supplemented with components introduced in the
standards ISO/IEC 29119 [11] and 25010 [49]. We had the possibility to use the
current versions of the new standards because one of the authors is a member of
the JTC1/SC7/WG26, which is developing the new software testing standard.
Based on these experiences a measurement instrument derived from the ISO/IEC
29119 and 25010 standards was used.

The survey consisted of a questionnaire (available at http://www2.it.lut.fi/
project/MASTO/) and a face-to-face interview. Selected open-ended questions
were located at the end of the questionnaire to cover some aspects related to our
qualitative study. The classification of the qualitative answers was planned in ad-
vance.

The questionnaire was planned to be answered during the interview to avoid
missing answers because they make the data analysis complicated. All the inter-
views were tape-recorded, and for the focus organizations, further qualitatively
analyzed with regard to the additional comments made during the interviews.
Baruch [50] also states that the average response rate for self-assisted question-
naires is 55.6%, and when the survey involves top management or organizational
representatives the response rate is 36.1%. In this case, a self-assisted, mailed
questionnaire would have led to a small sample. For these reasons, it was rejected,
and personal interviews were selected instead. The questionnaire was piloted with
three OUs and four private persons.

If an OU had more than one respondent in the interview, they all filled the
same questionnaire. Arranging the interviews, traveling and interviewing took
two months of calendar time. Overall, we were able to accomplish 0.7 survey
interviews per working day on an average. One researcher conducted 80% of the
interviews, but because of the overlapping schedules also two other researchers
participated in the interviews. Out of the contacted 42 OUs, 11 were rejected
because they did not fit the population criteria in spite of the source information,

© 2011 by Apple Academic Press, Inc.

http://www2.it.lut.fi/project/MASTO/

122 Data Structure and Software Engineering: Challenges and Improvements

or it was impossible to fit the interview into the interviewee’s schedule. In a few
individual cases, the reason for rejection was that the organization refused to give
an interview. All in all, the response rate was, therefore, 74%.

testing and test automation in Surveyed
organizations
general information of the organizational units

The interviewed OUs were parts of large companies (55%) and small and medium-
sized enterprises (45%). The OUs belonged to companies developing information
systems (11 OUs), IT services (5 OUs), telecommunication (4 OUs), finance
(4 OUs), automation systems (3 OUs), the metal industry (2 OUs), the public
sector (1?OU), and logistics (1?OU). The application domains of the companies
are presented in Figure 1. Software products represented 63% of the turnover, and
services (e.g., consulting, subcontracting, and integration) 37%.

Figure 1. Application domains of the companies.

The maximum number of personnel in the companies to which the OUs be-
longed was 350, 000, the minimum was four, and the median was 315. The
median of the software developers and testers in the OUs was 30 persons. OUs
applied automated testing less than expected, the median of the automation in
testing being 10%. Also, the interviewed OUs utilized agile methods less than
expected: the median of the percentage of agile (reactive, iterative) versus plan
driven methods in projects was 30%. The situation with human resources was
better than what was expected, as the interviewees estimated that the amount

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-8&iName=master.img-003.jpg&w=314&h=157

Software Test Automation in Practice: Empirical Observations 123

of human resources in testing was 75%. When asking what percent of the de-
velopment effort was spent on testing, the median of the answers was 25%. The
cross-sectional situation of development and testing in the interviewed OUs is
illustrated in Table 4.

Table 4. Interviewed OUs.

The amount of testing resources was measured by three figures; first the in-
terviewee was asked to evaluate the percentage from total project effort allocated
solely to testing. The survey average was 27%, the maximum being 70% and the
minimum 0%, meaning that the organization relied solely on testing efforts car-
ried out in parallel with development. The second figure was the amount of test
resources compared to the organizational optimum. In this figure, if the company
had two testers and required three, it would have translated as 66% of resources.
Here the average was 70%; six organizations (19%) reported 100% resource avail-
ability. The third figure was the number of automated test cases compared to all of
the test cases in all of the test phases the software goes through before its release.
The average was 26%, varying between different types of organizations and proj-
ect types. The results are presented in Figure 2, in which the qualitative study case
OUs are also presented for comparison. The detailed descriptions for each case
organization are available in the appendix.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-8&iName=master.img-004.jpg&w=248&h=232

124 Data Structure and Software Engineering: Challenges and Improvements

Figure 2. Amount of test resources and test automation in the focus organizations of the study and the survey
average.

general testing items

The survey interviewed 31 organization managers from different types of software
industry. The contributions of the interviewees were measured using a five-point
Likert scale where 1 denoted “I fully disagree” and 5 denoted “I fully agree.” The
interviewees emphasized that quality is built in development (4.3) rather than in
testing (2.9). Then the interviewees were asked to estimate their organizational
testing practices according to the new testing standard ISO/IEC 29119 [11],
which identifies four main levels for testing processes: the test policy, test strategy,
test management and testing. The test policy is the company level guideline which
defines the management, framework and general guidelines, the test strategy is an
adaptive model for the preferred test process, test management is the control level
for testing in a software project, and finally, testing is the process of conducting
test cases. The results did not make a real difference between the lower levels of
testing (test management level and test levels) and higher levels of testing (orga-
nizational test policy and organizational test strategy). All in all, the interviewees
were rather satisfied with the current organization of testing. The resulted average
levels from quantitative survey are presented in Figure 3.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-8&iName=master.img-005.jpg&w=232&h=261

Software Test Automation in Practice: Empirical Observations 125

Figure 3. Levels of testing according to the ISO/IEC 29119 standard.

Besides the organization, the test processes and test phases were also surveyed.
The five-point Likert scale with the same one to five–one being fully disagree and
five fully agree–grading method was used to determine the correctness of different
testing phases. Overall, the latter test phases—system, functional testing—were
considered excellent or very good, whereas the low-level test phases such as unit
testing and integration received several low-end scores. The organizations were
satisfied or indifferent towards all test phases, meaning that there were no strong
focus areas for test organization development. However, based on these results
it seems plausible that one effective way to enhance testing would be to support
low-level testing in unit and integration test phases. The results are depicted in
Figure 4.

Figure 4. Testing phases in the software process.

Finally, the organizations surveyed were asked to rate their testing outcomes
and objectives (Figure 5). The first three items discussed the test processes of a
typical software project. There seems to be a strong variance in testing schedules

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-8&iName=master.img-006.jpg&w=261&h=114
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-8&iName=master.img-007.jpg&w=323&h=150

126 Data Structure and Software Engineering: Challenges and Improvements

and time allocation in the organizations. The outcomes 3.2 for schedule and 3.0
for time allocation do not give any information by themselves, and overall, the
direction of answers varied greatly between “Fully disagree” and “Fully agree.”
However, the situation with test processes was somewhat better; the result 3.5
may also not be a strong indicator by itself, but the answers had only little vari-
ance, 20-OUs answering “somewhat agree” or “neutral.” This indicates that even
if the time is limited and the project schedule restricts testing, the testing generally
goes through the normal, defined, procedures.

Figure 5. Testing process outcomes.

The fourth and fifth items were related to quality aspects, and gave insights
into the clarity of testing objectives. The results of 3.7 for the identification of
quality attributes indicate that organizations tend to have objectives for the test
processes and apply quality criteria in development. However, the prioritization
of their quality attributes is not as strong (3.3) as identification.

testing environment

The quality aspects were also reflected in the employment of systematic methods
for the testing work. The majority (61%) of the OUs followed a systematic meth-
od or process in the software testing, 13% followed one partially, and 26% of the
OUs did not apply any systematic method or process in testing. Process practices
were derived from, for example, TPI (Test Process Improvement) [51] or the Ra-
tional Unified Process (RUP) [52]. Few Agile development process methods such
as Scrum [53] or XP (eXtreme Programming) [54] were also mentioned.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-8&iName=master.img-008.jpg&w=272&h=176

Software Test Automation in Practice: Empirical Observations 127

A systematic method is used to steer the software project, but from the view-
point of testing, the process also needs an infrastructure on which to operate.
Therefore, the OUs were asked to report which kind of testing tools they apply to
their typical software processes. The test management tools, tools which are used
to control and manage test cases and allocate testing resources to cases, turned out
to be the most popular category of tools; 15 OUs out of 31 reported the use of this
type of tool. The second in popularity were manual unit testing tools (12 OUs),
which were used to execute test cases and collect test results. Following them were
tools to implement test automation, which were in use in 9 OUs, performance
testing tools used in 8 OUs, bug reporting tools in 7 OUs and test design tools in
7 OUs. Test design tools were used to create and design new test cases. The group
of other tools consisted of, for example, electronic measurement devices, test re-
port generators, code analyzers, and project management tools. The popularity of
the testing tools in different survey organizations is illustrated in Figure 6.

Figure 6. Popularity of the testing tools according to the survey.

The respondents were also asked to name and explain the three most efficient
application areas of test automation tools. Both the format of the open-ended
questions and the classification of the answers were based on the like best (LB)
technique adopted from Fink and Kosecoff [46]. According to the LB technique,
respondents were asked to list points they considered the most efficient. The pri-
mary selection was the area in which the test automation would be the most
beneficial to the test organization, the secondary one is the second best area of
application, and the third one is the third best area. The interviewees were also
allowed to name only one or two areas if they were unable to decide on three
application areas. The results revealed the relative importance of software testing
tools and methods.

The results are presented in Figure 7. The answers were distributed rather even-
ly between different categories of tools or methods. The most popular category

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-8&iName=master.img-009.jpg&w=281&h=129

128 Data Structure and Software Engineering: Challenges and Improvements

was unit testing tools or methods (10 interviewees). Next in line were regression
testing (9), tools to support testability (9), test environment tools and methods
(8), and functional testing (7). The group “others” (11) consisted of conformance
testing tools, TTCN-3 (Testing and Test Control Notation version 3) tools, gen-
eral test management tools such as document generators and methods of unit and
integration testing. The most popular category, unit testing tools or methods, also
received the most primary application area nominations. The most common sec-
ondary area of application was regression testing. Several categories ranked third,
but concepts such as regression testing, and test environment-related aspects such
as document generators were mentioned more than once. Also testability-related
concepts—module interface, conformance testing—or functional testing—veri-
fication, validation tests—were considered feasible implementation areas for test
automation.

Figure 7. The three most efficient application areas of test automation tools according to the interviewees.

Summary of the Survey findings

The survey suggests that interviewees were rather satisfied with their test policy,
test strategy, test management, and testing, and did not have any immediate re-
quirements for revising certain test phases, although low-level testing was slightly
favoured in the development needs. All in all, 61% of the software companies fol-
lowed some form of a systematic process or method in testing, with an additional
13% using some established procedures or measurements to follow the process
efficiency. The systematic process was also reflected in the general approach to
testing; even if the time was limited, the test process followed a certain path, ap-
plying the test phases regardless of the project limitations.

The main source of the software quality was considered to be in the develop-
ment process. In the survey, the test organizations used test automation on an

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-8&iName=master.img-010.jpg&w=253&h=140

Software Test Automation in Practice: Empirical Observations 129

average on 26% of their test cases, which was considerably less than could be
expected based on the literature. However, test automation tools were the third
most common category of test-related tools, commonly intended to implement
unit and regression testing. As for the test automation itself, the interviewees
ranked unit testing tools as the most efficient tools of test automation, regression
testing being the most common secondary area of application.

test automation interviews and Qualitative Study
Besides the survey, the test automation concepts and applications were analyzed
based on the interviews with the focus organizations. The grounded theory ap-
proach was applied to establish an understanding of the test automation concepts
and areas of application for test automation in industrial software engineering.
The qualitative approach was applied in three rounds, in which a developer, test
manager and tester from 12 different case OUs were interviewed. Descriptions of
the case OUs can be found in the appendix.

In theory-creating inductive research [55], the central idea is that researchers
constantly compare theory and data iterating with a theory which closely fits the
data. Based on the grounded theory codification, the categories identified were
selected in the analysis based on their ability to differentiate the case organiza-
tions and their potential to explain the differences regarding the application of
test automation in different contexts. We selected the categories so as to explore
the types of automation applications and the compatibility of test automation
services with the OUs testing organization. We conceptualized the most com-
mon test automation concepts based on the coding and further elaborated them
to categories to either cater the essential features such as their role in the overall
software process or their relation to test automation. We also concentrated on the
OU differences in essential concepts such as automation tools, implementation
issues or development strategies. This conceptualization resulted to the categories
listed in Table 5.

Table 5. Test automation categories.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-8&iName=master.img-011.jpg&w=341&h=96

130 Data Structure and Software Engineering: Challenges and Improvements

The category “Automation application” describes the areas of software devel-
opment, where test automation was applied successfully. This category describes
the testing activities or phases which apply test automation processes. In the case
where the test organization did not apply automation, or had so far only tested
it for future applications, this category was left empty. The application areas were
generally geared towards regression and stress testing, with few applications of
functionality and smoke tests in use.

The category “Role in software process” is related to the objective for which test
automation was applied in software development. The role in the software process
describes the objective for the existence of the test automation infrastructure; it
could, for example, be in quality control, where automation is used to secure
module interfaces, or in quality assurance, where the operation of product func-
tionalities is verified. The usual role for the test automation tools was in quality
control and assurance, the level of application varying from third party-produced
modules to primary quality assurance operations. On two occasions, the role of
test automation was considered harmful to the overall testing outcomes, and on
one occasion, the test automation was considered trivial, with no real return on
investments compared to traditional manual testing.

The category “Test automation strategy” is the approach to how automated
testing is applied in the typical software processes, that is, the way the automa-
tion was used as a part of the testing work, and how the test cases and overall test
automation strategy were applied in the organization. The level of commitment
to applying automation was the main dimension of this category, the lowest level
being individual users with sporadic application in the software projects, and the
highest being the application of automation to the normal, everyday testing infra-
structure, where test automation was used seamlessly with other testing methods
and had specifically assigned test cases and organizational support.

The category of “Automation development” is the general category for OU
test automation development. This category summarizes the ongoing or recent
efforts and resource allocations to the automation infrastructure. The type of new
development, introduction strategies and current development towards test au-
tomation are summarized in this category. The most frequently chosen code was
“general increase of application,” where the organization had committed itself to
test automation, but had no clear idea of how to develop the automation infra-
structure. However, one OU had a development plan for creating a GUI testing
environment, while two organizations had just recently scaled down the amount
of automation as a result of a pilot project. Two organizations had only recently
introduced test automation to their testing infrastructure.

The category of “Automation tools” describes the types of test automation
tools that are in everyday use in the OU. These tools are divided based on their

© 2011 by Apple Academic Press, Inc.

Software Test Automation in Practice: Empirical Observations 131

technological finesse, varying from self-created drivers and stubs to individual
proof-of-concept tools with one specified task to test suites where several integrat-
ed components are used together for an effective test automation environment. If
the organization had created the tools by themselves, or customized the acquired
tools to the point of having new features and functionalities, the category was
supplemented with a notification regarding in-house-development.

Finally, the category of “Automation issues” includes the main hindrances
which are faced in test automation within the organization. Usually, the given
issue was related to either the costs of test automation or the complexity of intro-
ducing automation to the software projects which have been initially developed
without regards to support for automation. Some organizations also considered
the efficiency of test automation to be the main issue, mostly contributing to the
fact that two of them had just recently scaled down their automation infrastruc-
ture. A complete list of test automation categories and case organizations is given
in Table 6.

Table 6. Test automation categories affecting the software process in case OUs.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-8&iName=master.img-012.jpg&w=306&h=306

132 Data Structure and Software Engineering: Challenges and Improvements

We elaborated further these properties we observed from the case organiza-
tions to create hypotheses for the test automation applicability and availability.
These resulting hypotheses were shaped according to advice given by Eisenhardt
[37] for qualitative case studies. For example, we perceived the quality aspect as
really important for the role of automation in software process. Similarly, the
resource needs, especially costs, were much emphasized in the automation issues
category. The purpose of the hypotheses below is to summarize and explain the
features of test automation that resulted from the comparison of differences and
similarities between the organizations.

Hypothesis 1 (Test Automation should be Considered more as a
Quality Control Tool rather than a Frontline Testing Method)

The most common area of application observed was functionality verification,
that is, regression testing and GUI event testing. As automation is time-con-
suming and expensive to create, these were the obvious ways to create test cases
which had the minimal number of changes per development cycle. By apply-
ing this strategy, organizations could set test automation to confirm function-
al properties with suitable test cases, and acquire such benefits as support for
change management and avoid unforeseen compatibility issues with module
interfaces.

“Yes, regression testing, especially automated. It is not manually “hammered
in” every time, but used so that the test sets are run, and if there is anything ab-
normal, it is then investigated.” –Manager, Case G

“… had we not used it [automation tests], it would have been suicidal.” –De-
signer, Case D

“It’s [automated stress tests] good for showing bad code, how efficient it is and
how well designed … stress it enough and we can see if it slows down or even
breaks completely.” –Tester, Case E

However, there seemed to be some contradicting considerations regarding the
applicability of test automation. Cases F, J, and K had recently either scaled down
their test automation architecture or considered it too expensive or inefficient
when compared to manual testing. In some cases, automation was also consid-
ered too bothersome to configure for a short-term project, as the system would
have required constant upkeep, which was an unnecessary addition to the project
workload.

“We really have not been able to identify any major advancements from it [test
automation].” –Tester, Case J

“It [test automation] just kept interfering.” –Designer, Case K

© 2011 by Apple Academic Press, Inc.

Software Test Automation in Practice: Empirical Observations 133

Both these viewpoints indicated that test automation should not be consid-
ered a “frontline” test environment for finding errors, but rather a quality control
tool to maintain functionalities. For unique cases or small projects, test automa-
tion is too expensive to develop and maintain, and it generally does not support
single test cases or explorative testing. However, it seems to be practical in larger
projects, where verifying module compatibility or offering legacy support is a
major issue.

Hypothesis 2 (Maintenance and Development Costs are Common
Test Automation Hindrances that Universally affect all test
Organizations Regardless of their Business Domain or Company
Size)

Even though the case organizations were selected to represent different types of
organizations, the common theme was that the main obstacles in automation
adoption were development expenses and upkeep costs. It seemed to make no
difference whether the organization unit belonged to a small or large company,
as in the OU levels they shared common obstacles. Even despite the maintenance
and development hindrances, automation was considered a feasible tool in many
organizations. For example, Cases I and L pursued the development of some kind
of automation to enhance the testing process. Similarly, Cases E and H, which
already had a significant number of test automation cases, were actively pursuing
a larger role for automated testing.

“Well, it [automation] creates a sense of security and controllability, and one
thing that is easily underestimated is its effect on performance and optimization.
It requires regression tests to confirm that if something is changed, the whole
thing does not break down afterwards.” –Designer, Case H

In many cases, the major obstacle for adopting test automation was, in fact,
the high requirements for process development resources.

“Shortage of time, resources … we have the technical ability to use test auto-
mation, but we don’t.” –Tester, Case J

“Creating and adopting it, all that it takes to make usable automation … I
believe that we don’t put any effort into it because it will end up being really ex-
pensive.” –Designer, Case J

In Case J particularly, the OU saw no incentive in developing test automation
as it was considered to offer only little value over manual testing, even if they oth-
erwise had no immediate obstacles other than implementation costs. Also cases
F and K reported similar opinions, as they both had scaled down the amount of
automation after the initial pilot projects.

© 2011 by Apple Academic Press, Inc.

134 Data Structure and Software Engineering: Challenges and Improvements

“It was a huge effort to manually confirm why the results were different, so we
took it [automation] down.” –Tester, Case F

“Well, we had gotten automation tools from our partner, but they were so
slow we decided to go on with manual testing.” –Tester, Case K

Hypothesis 3 (Test Automation is Applicable to most of the Software
Processes, but Requires Considerable Effort from the Organization
Unit)

The case organizations were selected to represent the polar types of software pro-
duction operating in different business domains. Out of the focus OUs, there
were four software development OUs, five IT service OUs, two OUs from the
finance sector and one logistics OU. Of these OUs, only two did not have any
test automation, and two others had decided to strategically abandon their test
automation infrastructure. Still, the business domains for the remaining organiza-
tions which applied test automation were heterogeneously divided, meaning that
the business domain is not a strong indicator of whether or not test automation
should be applied.

It seems that test automation is applicable as a test tool in any software pro-
cess, but the amount of resources required for useful automation compared to
the overall development resources is what determines whether or not automa-
tion should be used. As automation is oriented towards quality control aspects,
it may be unfeasible to implement in small development projects where quality
control is manageable with manual confirmation. This is plausible, as the amount
of required resources does not seem to vary based on aspects beyond the OU
characteristics, such as available company resources or testing policies applied.
The feasibility of test automation seems to be rather connected to the actual soft-
ware process objectives, and fundamentally to the decision whether the quality
control aspects gained from test automation supersede the manual effort required
for similar results.

“… before anything is automated, we should calculate the maintenance ef-
fort and estimate whether we will really save time, instead of just automating for
automation’s sake.” –Tester, Case G

“It always takes a huge amount of resources to implement.” –Designer,
Case A

“Yes, developing that kind of test automation system is almost as huge an ef-
fort as building the actual project.” –Designer, Case I

© 2011 by Apple Academic Press, Inc.

Software Test Automation in Practice: Empirical Observations 135

Hypothesis 4 (The Available Repertoire of Testing Automation Tools
is Limited, Forcing OUs to Develop the Tools themselves, which
Subsequently Contributes to the Application and Maintenance Costs)

There were only a few case OUs that mentioned any commercial or publicly avail-
able test automation programs or suites. The most common approach to test au-
tomation tools was to first acquire some sort of tool for proof-of-concept piloting,
then develop similar tools as in-house-production or extend the functionalities
beyond the original tool with the OU’s own resources. These resources for in-
house-development and upkeep for self-made products are one of the compo-
nents that contribute to the costs of applying and maintaining test automation.

“Yes, yes. That sort of [automation] tools have been used, and then there’s a
lot of work that we do ourselves. For example, this stress test tool …” –Designer,
Case E

“We have this 3rd party library for the automation. Well, actually, we have
created our own architecture on top of it …” –Designer, Case H

“Well, in [company name], we’ve-, we developed our own framework to, to
try and get around some of these, picking which tests, which group of tests should
be automated.” –Designer, Case C

However, it should be noted that even if the automation tools were well-suited
for the automation tasks, the maintenance still required significant resources if the
software product to which it was connected was developing rapidly.

“Well, there is the problem [with automation tool] that sometimes the upkeep
takes an incredibly large amount of time.” –Tester, Case G

“Our system keeps constantly evolving, so you’d have to be constantly record-
ing [maintaining tools] …” –Tester, Case K

Discussion
An exploratory survey combined with interviews was used as the research method.
The objective of this study was to shed light on the status of test automation
and to identify improvement needs in and the practice of test automation. The
survey revealed that the total effort spent on testing (median 25%) was less than
expected. The median percentage (25%) of testing is smaller than the 50%–60%
that is often mentioned in the literature [38, 39]. The comparable low percentage
may indicate that that the resources needed for software testing are still under-
estimated even though testing efficiency has grown. The survey also indicated
that companies used fewer resources on test automation than expected: on an
average 26% of all of the test cases apply automation. However, there seems to

© 2011 by Apple Academic Press, Inc.

136 Data Structure and Software Engineering: Challenges and Improvements

be ambiguity as to which activities organizations consider test automation, and
how automation should be applied in the test organizations. In the survey, several
organizations reported that they have an extensive test automation infrastructure,
but this did not reflect on the practical level, as in the interviews with testers
particularly, the figures were considerably different. This indicates that the test
automation does not have strong strategy in the organization, and has yet to reach
maturity in several test organizations. Such concepts as quality assurance testing
and stress testing seem to be particularly unambiguous application areas, as Cases
E and L demonstrated. In Case E, the management did not consider stress test-
ing an automation application, whereas testers did. Moreover, in Case L the large
automation infrastructure did not reflect on the individual project level, meaning
that the automation strategy may strongly vary between different projects and
products even within one organization unit.

The qualitative study which was based on interviews indicated that some or-
ganizations, in fact, actively avoid using test automation, as it is considered to be
expensive and to offer only little value for the investment. However, test automa-
tion seems to be generally applicable to the software process, but for small projects
the investment is obviously oversized. One additional aspect that increases the
investment are tools, which unlike in other areas of software testing, tend to be
developed in-house or are heavily modified to suit specific automation needs.
This development went beyond the localization process which every new software
tool requires, extending even to the development of new features and operat-
ing frameworks. In this context it also seems plausible that test automation can
be created for several different test activities. Regression testing, GUI testing or
unit testing, activities which in some form exist in most development projects,
all make it possible to create successful automation by creating suitable tools for
the task, as in each phase can be found elements that have sufficient stability or
unchangeability. Therefore it seems that the decision on applying automation is
not only connected to the enablers and disablers of test automation [4], but rather
on tradeoff of required effort and acquired benefits; In small projects or with low
amount of reuse the effort becomes too much for such investment as applying
automation to be feasible.

The investment size and requirements of the effort can also be observed on
two other occasions. First, test automation should not be considered as an active
testing tool for finding errors, but as a tool to guarantee the functionality of al-
ready existing systems. This observation is in line with those of Ramler and Wolf-
maier [3], who discuss the necessity of a large number of repetitive tasks for the
automation to supersede manual testing in cost-effectiveness, and of Berner et al.
[8], who notify that the automation requires a sound application plan and well-
documented, simulatable and testable objects. For both of these requirements,

© 2011 by Apple Academic Press, Inc.

Software Test Automation in Practice: Empirical Observations 137

quality control at module interfaces and quality assurance on system operability
are ideal, and as it seems, they are the most commonly used application areas for
test automation. In fact, Kaner [56] states that 60%–80% of the errors found
with test automation are found in the development phase for the test cases, fur-
ther supporting the quality control aspect over error discovery.

Other phenomena that increase the investment are the limited availability and
applicability of automation tools. On several occasions, the development of the
automation tools was an additional task for the automation-building organization
that required the organization to allocate their limited resources to the test auto-
mation tool implementation. From this viewpoint it is easy to understand why
some case organizations thought that manual testing is sufficient and even more
efficient when measured in resource allocation per test case. Another approach
which could explain the observed resistance to applying or using test automation
was also discussed in detail by Berner et al. [8], who stated that organizations tend
to have inappropriate strategies and overly ambitious objectives for test automa-
tion development, leading to results that do not live up to their expectations,
causing the introduction of automation to fail. Based on the observations regard-
ing the development plans beyond piloting, it can also be argued that the lack of
objectives and strategy also affect the successful introduction processes. Similar
observations of “automation pitfalls” were also discussed by Persson and Yilmaz-
türk [26] and Mosley and Posey [57].

Overall, it seems that the main disadvantages of testing automation are the
costs, which include implementation costs, maintenance costs, and training costs.
Implementation costs included direct investment costs, time, and human resourc-
es. The correlation between these test automation costs and the effectiveness of
the infrastructure are discussed by Fewster [24]. If the maintenance of testing
automation is ignored, updating an entire automated test suite can cost as much,
or even more than the cost of performing all the tests manually, making automa-
tion a bad investment for the organization. We observed this phenomenon in two
case organizations. There is also a connection between implementation costs and
maintenance costs [24]. If the testing automation system is designed with the
minimization of maintenance costs in mind, the implementation costs increase,
and vice versa. We noticed the phenomenon of costs preventing test automation
development in six cases. The implementation of test automation seems to be
possible to accomplish with two different approaches: by promoting either main-
tainability or easy implementation. If the selected focus is on maintainability, test
automation is expensive, but if the approach promotes easy implementation, the
process of adopting testing automation has a larger possibility for failure. This
may well be due to the higher expectations and assumption that the automation
could yield results faster when promoting implementation over maintainability,

© 2011 by Apple Academic Press, Inc.

138 Data Structure and Software Engineering: Challenges and Improvements

often leading to one of the automation pitfalls [26] or at least a low percentage of
reusable automation components with high maintenance costs.

conclusions
The objective of this study was to observe and identify factors that affect the state
of testing, with automation as the central aspect, in different types of organiza-
tions. Our study included a survey in 31 organizations and a qualitative study in
12 focus organizations. We interviewed employees from different organizational
positions in each of the cases.

This study included follow-up research on prior observations [4, 5, 12–14]
on testing process difficulties and enhancement proposals, and on our observa-
tions on industrial test automation [4]. In this study we further elaborated on
the test automation phenomena with a larger sample of polar type OUs, and
more focused approach on acquiring knowledge on test process-related subjects.
The survey revealed that test organizations use test automation only in 26% of
their test cases, which was considerably less than could be expected based on the
literature. However, test automation tools were the third most common category
of test-related tools, commonly intended to implement unit and regression test-
ing. The results indicate that adopting test automation in software organization
is a demanding effort. The lack of existing software repertoire, unclear objectives
for overall development and demands for resource allocation both for design and
upkeep create a large threshold to overcome.

Test automation was most commonly used for quality control and quality
assurance. In fact, test automation was observed to be best suited to such tasks,
where the purpose was to secure working features, such as check module inter-
faces for backwards compatibility. However, the high implementation and main-
tenance requirements were considered the most important issues hindering test
automation development, limiting the application of test automation in most
OUs. Furthermore, the limited availability of test automation tools and the level
of commitment required to develop a suitable automation infrastructure caused
additional expenses. Due to the high maintenance requirements and low return on
investments in small-scale application, some organizations had actually discarded
their automation systems or decided not to implement test automation. The lack
of a common strategy for applying automation was also evident in many inter-
viewed OUs. Automation applications varied even within the organization, as was
observable in the differences when comparing results from different stakeholders.
In addition, the development strategies were vague and lacked actual objectives.
These observations can also indicate communication gaps [58] between stake-
holders of the overall testing strategy, especially between developers and testers.

© 2011 by Apple Academic Press, Inc.

Software Test Automation in Practice: Empirical Observations 139

The data also suggested that the OUs that had successfully implemented test
automation infrastructure to cover the entire organization seemed to have diffi-
culties in creating a continuance plan for their test automation development. Af-
ter the adoption phases were over, there was an ambiguity about how to continue,
even if the organization had decided to further develop their test automation
infrastructure. The overall objectives were usually clear and obvious—cost savings
and better test coverage—but in practice there were only few actual development
ideas and novel concepts. In the case organizations this was observed in the vague-
ness of the development plans: only one of the five OUs which used automation
as a part of their normal test processes had development plans beyond the general
will to increase the application.

The survey established that 61% of the software companies followed some
form of a systematic process or method in testing, with an additional 13% using
some established procedures or measurements to follow the process efficiency.
The main source of software quality was considered to reside in the develop-
ment process, with testing having much smaller impact in the product outcome.
In retrospect of the test levels introduced in the ISO/IEC29119 standard, there
seems to be no one particular level of the testing which should be the research and
development interest for best result enhancements. However, the results from the
self-assessment of the test phases indicate that low-level testing could have more
potential for testing process development.

Based on these notions, the research and development should focus on uniform
test process enhancements, such as applying a new testing approach and creating
an organization-wide strategy for test automation. Another focus area should be
the development of better tools to support test organizations and test processes
in the low-level test phases such as unit or integration testing. As for automation,
one tool project could be the development of a customizable test environment
with a common core and with an objective to introduce less resource-intensive,
transferable and customizable test cases for regression and module testing.

appendix
case Descriptions

Case A (Manufacturing Execution System (MES) Producer and
Electronics Manufacturer)

Case A produces software as a service (SaaS) for their product. The company is a
small-sized, nationally operating company that has mainly industrial customers.
Their software process is a plan-driven cyclic process, where the testing is embedded

© 2011 by Apple Academic Press, Inc.

140 Data Structure and Software Engineering: Challenges and Improvements

to the development itself, having only little amount of dedicated resources. This
organization unit applied test automation as a user interface and regression testing
tool, using it for product quality control. Test automation was seen as a part of
the normal test strategy, universally used in all software projects. The development
plan for automation was to generally increase the application, although the com-
plexity of the software and module architecture was considered major obstacle on
the automation process.

Case B (Internet Service Developer and Consultant)

Case B organization offers two types of services; development of Internet service
portals for the customers like communities and public sector, and consultation
in the Internet service business domain. The origination company is small and
operates on a national level. Their main resource on the test automation is in the
performance testing as a quality control tool, although addition of GUI test au-
tomation has also been proposed. The automated tests are part of the normal test
process, and the overall development plan was to increase the automation levels
especially to the GUI test cases. However, this development has been hindered by
the cost of designing and developing test automation architecture.

Case C (Logistics Software Developer)

Case C organization focuses on creating software and services for their origin
company and its customers. This organization unit is a part of a large-sized, na-
tionally operating company with large, highly distributed network and several
clients. The test automation is widely used in several testing phases like func-
tionality testing, regression testing and document generation automation. These
investments are used for quality control to ensure the software usability and cor-
rectness. Although the OU is still aiming for larger test automation infrastructure,
the large amount of related systems and constant changes within the inter-module
communications is causing difficulties in development and maintenance of the
new automation cases.

Case D (ICT Consultant)

Case D organization is a small, regional software consultant company, whose
customers mainly compose of small business companies and the public sector.
Their organization does some software development projects, in which the com-
pany develops services and ICT products for their customers. The test automa-
tion comes mainly trough this channel, as the test automation is mainly used as a
conformation test tool for the third party modules. This also restricts the amount
of test automation to the projects, in which these modules are used. The company

© 2011 by Apple Academic Press, Inc.

Software Test Automation in Practice: Empirical Observations 141

currently does not have development plans for the test automation as it is consid-
ered unfeasible investment for the OU this size, but they do invest on the upkeep
of the existing tools as they have usage as a quality control tool for the acquired
outsider modules.

Case E (Safety and Logistics System Developer)

Case E organization is a software system developer for safety and logistics systems.
Their products have high amount of safety critical features and have several in-
terfaces on which to communicate with. The test automation is used as a major
quality assurance component, as the service stress tests are automated to a large
degree. Therefore the test automation is also a central part of the testing strategy,
and each project has defined set of automation cases. The organization is aiming
to increase the amount of test automation and simultaneously develop new test
cases and automation applications for the testing process. The main obstacle for
this development has so far been the costs of creating new automation tools and
extending the existing automation application areas.

Case F (Naval Software System Developer)

The Case F organization unit is responsible for developing and testing naval ser-
vice software systems. Their product is based on a common core, and has consid-
erable requirements for compatibility with the legacy systems. This OU has tried
test automation on several cases with application areas such as unit- and module
testing, but has recently scaled down test automation for only support aspects
such as the documentation automation. This decision was based on the resource
requirements for developing and especially maintaining the automation system,
and because the manual testing was in this context considered much more effi-
cient as there were too much ambiguity in the automation-based test results.

Case G (Financial Software Developer)

Case G is a part of a large financial organization, which operates nationally but
has several internationally connected services due to their business domain. Their
software projects are always aimed as a service portal for their own products, and
have to pass considerable verification and validation tests before being introduced
to the public. Because of this, the case organization has sizable test department
when compared to other case companies in this study, and follows rigorous test
process plan in all of their projects. The test automation is used in the regression
tests as a quality assurance tool for user interfaces and interface events, and there-
fore embedded to the testing strategy as a normal testing environment. The devel-
opment plans for the test automation is aimed to generally increase the amount

© 2011 by Apple Academic Press, Inc.

142 Data Structure and Software Engineering: Challenges and Improvements

of test cases, but even the existing test automation infrastructure is considered
expensive to upkeep and maintain.

Case H (Manufacturing Execution System (MES) Producer and
Logistics Service System Provider)

Case H organization is a medium-sized company, whose software development is
a component for the company product. Case organization products are used in
logistics service systems, usually working as a part of automated processes. The
case organization applies automated testing as a module interface testing tool,
applying it as a quality control tool in the test strategy. The test automation infra-
structure relies on the in-house-developed testing suite, which enables organiza-
tion to use the test automation to run daily tests to validate module conformance.
Their approach on the test automation has been seen as a positive enabler, and the
general trend is towards increasing automation cases. The main test automation
disability is considered to be that the quality control aspect is not visible when
working correctly and therefore the effect of test automation may be underesti-
mated in the wider organization.

Case I (Small and Medium-Sized Enterprise (SME) Business and
Agriculture ICT-Service Provider)

The Case I organization is a small, nationally operating software company which
operates on multiple business domain. Their customer base is heterogeneous,
varying from finances to the agriculture and government services. The company
is currently not utilizing test automation in their test process, but they have de-
velopment plans for designing quality control automation. For this development
they have had some individual proof-of-concept tools, but currently the overall
testing resources limit the application process.

Case J (Modeling Software Developer)

Case J organization develops software products for civil engineering and architec-
tural design. Their software process is largely plan-driven with rigorous verification
and validation processes in the latter parts of an individual project. Even though
the case organization itself has not implemented test automation, on the corpo-
rate level there are some pilot projects where regression tests have been automated.
These proof-of-concept-tools have been introduced to the case OU and there are
intentions to apply them in the future, but there has so far been no incentive for
adoption of the automation tools, delaying the application process.

© 2011 by Apple Academic Press, Inc.

Software Test Automation in Practice: Empirical Observations 143

Case K (ICT Developer and Consultant)

Case K organization is a large, international software company which offers soft-
ware products for several business domains and government services. Case or-
ganization has previously piloted test automation, but decided against adopting
the system as it was considered too expensive and resource-intensive to maintain
when compared to the manual testing. However, some of these tools still exist,
used by individual developers along with test drivers and interface studs in unit
and regression testing.

Case L (Financial Software Developer)

Case L organization is a large software provider for their corporate customer which
operates on the finance sector. Their current approach on software process is plan-
driven, although some automation features has been tested on a few secondary
processes. The case organization does not apply test automation as is, although
some module stress test cases have been automated as pilot tests. The development
plan for test automation is to generally implement test automation as a part of
their testing strategy, although amount of variability and interaction in the mod-
ule interfaces is considered difficult to implement in test automation cases.

acknowledgement
This study is a part of the ESPA project (http://www.soberit.hut.fi/espa/), funded
by the Finnish Funding Agency for Technology and Innovation (project number
40125/08) and by the participating companies listed on the project web site.

references
1. E. Kit, Software Testing in the Real World: Improving the Process, Addison-

Wesley, Reading, Mass, USA, 1995.

2. G. Tassey, “The economic impacts of inadequate infrastructure for software
testing,” RTI Project 7007.011, U.S. National Institute of Standards and Tech-
nology, Gaithersburg, Md, USA, 2002.

3. R. Ramler and K. Wolfmaier, “Observations and lessons learned from auto-
mated testing,” in Proceedings of the International Workshop on Automation
of Software Testing (AST ‘06), pp. 85–91, Shanghai, China, May 2006.

4. K. Karhu, T. Repo, O. Taipale, and K. Smolander, “Empirical observations on
software testing automation,” in Proceedings of the 2nd International Conference

© 2011 by Apple Academic Press, Inc.

http://www.soberit.hut.fi/espa/

144 Data Structure and Software Engineering: Challenges and Improvements

on Software Testing, Verification, and Validation (ICST ‘09), pp. 201–209,
Denver, Colo, USA, April 2009.

5. O. Taipale and K. Smolander, “Improving software testing by observing causes,
effects, and associations from practice,” in Proceedings of the International
Symposium on Empirical Software Engineering (ISESE ‘06), Rio de Janeiro,
Brazil, September 2006.

6. B. Shea, “Sofware testing gets new respect,” InformationWeek, July 2000.

7. E. Dustin, J. Rashka, and J. Paul, Automated Software Testing: Introduction,
Management, and Performance, Addison-Wesley, Boston, Mass, USA, 1999.

8. S. Berner, R. Weber, and R. K. Keller, “Observations and lessons learned from
automated testing,” in Proceedings of the 27th International Conference on
Software Engineering (ICSE ‘05), pp. 571–579, St. Louis, Mo, USA, May
2005.

9. J. A. Whittaker, “What is software testing? And why is it so hard?” IEEE Soft-
ware, vol. 17, no. 1, pp. 70–79, 2000.

10. L. J. Osterweil, “Software processes are software too, revisited: an invited talk
on the most influential paper of ICSE 9,” in Proceedings of the 19th IEEE In-
ternational Conference on Software Engineering, pp. 540–548, Boston, Mass,
USA, May 1997.

11. ISO/IEC and ISO/IEC 29119-2, “Software Testing Standard?Activity Descrip-
tions for Test Process Diagram,” 2008.

12. O. Taipale, K. Smolander, and H. Kälviäinen, “Cost reduction and quality
improvement in software testing,” in Proceedings of the 14th International
Software Quality Management Conference (SQM ‘06), Southampton, UK,
April 2006.

13. O. Taipale, K. Smolander, and H. Kälviäinen, “Factors affecting software test-
ing time schedule,” in Proceedings of the Australian Software Engineering
Conference (ASWEC ‘06), pp. 283–291, Sydney, Australia, April 2006.

14. O. Taipale, K. Smolander, and H. Kälviäinen, “A survey on software testing,”
in Proceedings of the 6th International SPICE Conference on Software Process
Improvement and Capability dEtermination (SPICE ‘06), Luxembourg, May
2006.

15. N. C. Dalkey, The Delphi Method: An Experimental Study of Group Opinion,
RAND, Santa Monica, Calif, USA, 1969.

16. S. P. Ng, T. Murnane, K. Reed, D. Grant, and T. Y. Chen, “A preliminary sur-
vey on software testing practices in Australia,” in Proceedings of the Australian

© 2011 by Apple Academic Press, Inc.

Software Test Automation in Practice: Empirical Observations 145

Software Engineering Conference (ASWEC ‘04), pp. 116–125, Melbourne,
Australia, April 2004.

17. R. Torkar and S. Mankefors, “A survey on testing and reuse,” in Proceedings of
IEEE International Conference on Software—Science, Technology and Engi-
neering (SwSTE ‘03), Herzlia, Israel, November 2003.

18. C. Ferreira and J. Cohen, “Agile systems development and stakeholder satisfac-
tion: a South African empirical study,” in Proceedings of the Annual Research
Conference of the South African Institute of Computer Scientists and Infor-
mation Technologists (SAICSIT ‘08), pp. 48–55, Wilderness, South Africa,
October 2008.

19. J. Li, F. O. Bjørnson, R. Conradi, and V. B. Kampenes, “An empirical study of
variations in COTS-based software development processes in the Norwegian
IT industry,” Empirical Software Engineering, vol. 11, no. 3, pp. 433–461,
2006.

20. W. Chen, J. Li, J. Ma, R. Conradi, J. Ji, and C. Liu, “An empirical study on
software development with open source components in the Chinese software
industry,” Software Process Improvement and Practice, vol. 13, no. 1, pp. 89–
100, 2008.

21. R. Dossani and N. Denny, “The Internet’s role in offshored services: a case study
of India,” ACM Transactions on Internet Technology, vol. 7, no. 3, 2007.

22. K. Y. Wong, “An exploratory study on knowledge management adoption in the
Malaysian industry,” International Journal of Business Information Systems,
vol. 3, no. 3, pp. 272–283, 2008.

23. J. Bach, “Test automation snake oil,” in Proceedings of the 14th International
Conference and Exposition on Testing Computer Software (TCS ‘99), Wash-
ington, DC, USA, June 1999.

24. M. Fewster, Common Mistakes in Test Automation, Grove Consultants,
2001.

25. A. Hartman, M. Katara, and A. Paradkar, “Domain specific approaches to soft-
ware test automation,” in Proceedings of the 6th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE ‘07), pp. 621–622,
Dubrovnik, Croatia, September 2007.

26. C. Persson and N. Yilmaztürk, “Establishment of automated regression test-
ing at ABB: industrial experience report on ‘avoiding the pitfalls’,” in Proceed-
ings of the 19th International Conference on Automated Software Engineering
(ASE ‘04), pp. 112–121, Linz, Austria, September 2004.

© 2011 by Apple Academic Press, Inc.

146 Data Structure and Software Engineering: Challenges and Improvements

27. M. Auguston, J. B. Michael, and M.-T. Shing, “Test automation and safety
assessment in rapid systems prototyping,” in Proceedings of the 16th IEEE In-
ternational Workshop on Rapid System Prototyping (RSP ‘05), pp. 188–194,
Montreal, Canada, June 2005.

28. A. Cavarra, J. Davies, T. Jeron, L. Mournier, A. Hartman, and S. Olvovsky,
“Using UML for automatic test generation,” in Proceedings of the Interna-
tional Symposium on Software Testing and Analysis (ISSTA ‘02), Roma, Italy,
July 2002.

29. M. Vieira, J. Leduc, R. Subramanyan, and J. Kazmeier, “Automation of GUI
testing using a model-driven approach,” in Proceedings of the International
Workshop on Automation of Software Testing, pp. 9–14, Shanghai, China,
May 2006.

30. Z. Xiaochun, Z. Bo, L. Juefeng, and G. Qiu, “A test automation solution on
gui functional test,” in Proceedings of the 6th IEEE International Conference
on Industrial Informatics (INDIN ‘08), pp. 1413–1418, Daejeon, Korea, July
2008.

31. D. Kreuer, “Applying test automation to type acceptance testing of telecom
networks: a case study with customer participation,” in Proceedings of the 14th
IEEE International Conference on Automated Software Engineering, pp. 216–
223, Cocoa Beach, Fla, USA, October 1999.

32. W. D. Yu and G. Patil, “A workflow-based test automation framework for web
based systems,” in Proceedings of the 12th IEEE Symposium on Computers
and Communications (ISCC ‘07), pp. 333–339, Aveiro, Portugal, July 2007.

33. A. Bertolino, “Software testing research: achievements, challenges, dreams,” in
Proceedings of the Future of Software Engineering (FoSE ‘07), pp. 85–103,
Minneapolis, Minn, USA, May 2007.

34. M. Blackburn, R. Busser, and A. Nauman, “Why model-based test automation
is different and what you should know to get started,” in Proceedings of the
International Conference on Practical Software Quality, Braunschweig, Ger-
many, September 2004.

35. P. Santos-Neto, R. Resende, and C. Pádua, “Requirements for information sys-
tems model-based testing,” in Proceedings of the ACM Symposium on Applied
Computing, pp. 1409–1415, Seoul, Korea, March 2007.

36. ISO/IEC and ISO/IEC 15504-1, “Information Technology?Process
Assessment?Part 1: Concepts and Vocabulary,” 2002.

37. K. M. Eisenhardt, “Building theories from case study research,” The Academy
of Management Review, vol. 14, no. 4, pp. 532–550, 1989.

© 2011 by Apple Academic Press, Inc.

Software Test Automation in Practice: Empirical Observations 147

38. EU and European Commission, “The new SME definition: user guide and
model declaration,” 2003.

39. G. Paré and J. J. Elam, “Using case study research to build theories of IT imple-
mentation,” in Proceedings of the IFIP TC8 WG 8.2 International Conference
on Information Systems and Qualitative Research, pp. 542–568, Chapman &
Hall, Philadelphia, Pa, USA, May-June 1997.

40. A. Strauss and J. Corbin, Basics of Qualitative Research: Grounded Theory
Procedures and Techniques, SAGE, Newbury Park, Calif, USA, 1990.

41. ATLAS.ti, The Knowledge Workbench, Scientific Software Development,
2005.

42. M. B. Miles and A. M. Huberman, Qualitative Data Analysis, SAGE, Thou-
sand Oaks, Calif, USA, 1994.

43. C. B. Seaman, “Qualitative methods in empirical studies of software engineer-
ing,” IEEE Transactions on Software Engineering, vol. 25, no. 4, pp. 557–572,
1999.

44. C. Robson, Real World Research, Blackwell, Oxford, UK, 2nd edition, 2002.

45. N. K. Denzin, The Research Act: A Theoretical Introduction to Sociological
Methods, McGraw-Hill, New York, NY, USA, 1978.

46. A. Fink and J. Kosecoff, How to Conduct Surveys: A Step-by-Step Guide,
SAGE, Beverly Hills, Calif, USA, 1985.

47. B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, et al., “Preliminary guidelines
for empirical research in software engineering,” IEEE Transactions on Software
Engineering, vol. 28, no. 8, pp. 721–734, 2002.

48. T. Dybå, “An instrument for measuring the key factors of success in software
process improvement,” Empirical Software Engineering, vol. 5, no. 4, pp. 357–
390, 2000.

49. ISO/IEC and ISO/IEC 25010-2, “Software Engineering?Software product
Quality Requirements and Evaluation (SQuaRE) Quality Model,” 2008.

50. Y. Baruch, “Response rate in academic studies—a comparative analysis,” Hu-
man Relations, vol. 52, no. 4, pp. 421–438, 1999.

51. T. Koomen and M. Pol, Test Process Improvement: A Practical Step-by-Step
Guide to Structured Testing, Addison-Wesley, Reading, Mass, USA, 1999.

52. P. Kruchten, The Rational Unified Process: An Introduction, Addison-Wesley,
Reading, Mass, USA, 2nd edition, 1998.

53. K. Schwaber and M. Beedle, Agile Software Development with Scrum, Pren-
tice-Hall, Upper Saddle River, NJ, USA, 2001.

© 2011 by Apple Academic Press, Inc.

148 Data Structure and Software Engineering: Challenges and Improvements

54. K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley,
Reading, Mass, USA, 2000.

55. B. Glaser and A. L. Strauss, The Discovery of Grounded Theory: Strategies for
Qualitative Research, Aldine, Chicago, Ill, USA, 1967.

56. C. Kaner, “Improving the maintainability of automated test suites,” Software
QA, vol. 4, no. 4, 1997.

57. D. J. Mosley and B. A. Posey, Just Enough Software Test Automation, Prentice-
Hall, Upper Saddle River, NJ, USA, 2002.

58. D. Foray, Economics of Knowledge, MIT Press, Cambridge, Mass, USA,
2004.

© 2011 by Apple Academic Press, Inc.

a Strategy for automatic
Quality Signing and

Verification Processes for
Hardware and Software

testing

Mohammed I. Younis and Kamal Z. Zamli

abStract
We propose a novel strategy to optimize the test suite required for testing both
hardware and software in a production line. Here, the strategy is based on
two processes: Quality Signing Process and Quality Verification Process, re-
spectively. Unlike earlier work, the proposed strategy is based on integration of
black box and white box techniques in order to derive an optimum test suite
during the Quality Signing Process. In this case, the generated optimal test
suite significantly improves the Quality Verification Process. Considering both

© 2011 by Apple Academic Press, Inc.

150 Data Structure and Software Engineering: Challenges and Improvements

processes, the novelty of the proposed strategy is the fact that the optimization
and reduction of test suite is performed by selecting only mutant killing test
cases from cumulating t-way test cases. As such, the proposed strategy can po-
tentially enhance the quality of product with minimal cost in terms of over-
all resource usage and time execution. As a case study, this paper describes the
step-by-step application of the strategy for testing a 4-bit Magnitude Compar-
ator Integrated Circuits in a production line. Comparatively, our result dem-
onstrates that the proposed strategy outperforms the traditional block parti-
tioning strategy with the mutant score of 100% to 90%, respectively, with the
same number of test cases.

introduction
In order to ensure acceptable quality and reliability of any embedded engineering
products, many inputs parameters as well as software/hardware configurations
need to be tested against for conformance. If the input combinations are large,
exhaustive testing is next to impossible due to combinatorial explosion problem.

As illustration, consider the following small-scale product, a 4-bit Magnitude
Comparator IC. Here, the Magnitude Comparator IC consists of 8 bits for inputs
and 3 bits for outputs. It is clear that each IC requires 256 test cases for exhaustive
testing. Assuming that each test case takes one second to run and be observed, the
testing time for each IC is 256 seconds. If there is a need to test one million chips,
the testing process will take more than 8 years using a single line of test.

Now, let us assume that we received an order of delivery for one million quali-
fied (i.e., tested) chips within two weeks. As an option, we can do parallel testing.
However, parallel testing can be expensive due to the need for 212 testing lines.
Now, what if there are simultaneous multiple orders? Here, as the product de-
mand grows in numbers, parallel testing can also become impossible. Systematic
random testing could also be another option. In random testing, test cases are
chosen randomly from some input distribution (such as a uniform distribution)
without exploiting information from the specification or previously chosen test
cases. More recent results have favored partition testing over random testing in
many practical cases. In all cases, random testing is found to be less effective than
the investigated partition testing methods [1].

A systematic solution to this problem is based on Combinatorial Interaction
Testing (CIT) strategy. The CIT approach can systematically reduce the number
of test cases by selecting a subset from exhaustive testing combination based on
the strength of parameter interaction coverage (t) [2]. To illustrate the CIT ap-
proach, consider the web-based system example (see Table 1) [3].

© 2011 by Apple Academic Press, Inc.

A Strategy for Automatic Quality Signing and Verification Processes 151

Table 1. Web-based system example.

Considering full strength interaction t = 4 (i.e., interaction of all parameters)
for testing yields exhaustive combinations of 34 = 81 possibilities. Relaxing the
interaction strength to t = 3 yields 27 test cases, a saving of nearly 67 percent.
Here, all the 3-way interaction elements are all covered by at least one test. If the
interaction is relaxed further to t = 2, then the number of combination possibili-
ties is reduced even further to merely 9 test cases, a saving of over 90 percent.

In the last decade, CIT strategies were focused on 2-way (pairwise) testing.
More recently, several strategies (e.g., Jenny [4], TVG [5], IPOG [6], IPOD [7],
IPOF [8], DDA [9], and GMIPOG [10]) that can generate test suite for high
degree interaction (2≤t≤6).

Being predominantly black box, CIT strategy is often criticized for not being
efficiently effective for highly interacting parameter coverage. Here, the selected
test cases sometimes give poor coverage due to the wrong selection of parameter
strength. In order to address this issue, we propose to integrate the CIT strategy
with that of fault injection strategy. With such integration, we hope to effectively
measure the effectiveness of the test suite with the selection of any particular
parameter strength. Here, the optimal test case can be selected as the candidate
of the test suite only if it can help detect the occurrence of the injected fault. In
this manner, the desired test suite is the most optimum for evaluating the System
Under Test (SUT).

The rest of this paper is organized as follows. Section 2 presents related work
on the state of the art of the applications of t-way testing and fault injection tools.
Section 3 presents the proposed minimization strategy. Section 4 gives a step-by-
step example as prove of concept involving the 4-bit Magnitude Comparator.
Section 5 demonstrates the comparison with our proposed strategy and the tradi-
tional block partitioning strategy. Finally, Section 6 describes our conclusion and
suggestion for future work.

related work
Mandl was the first researcher who used pairwise coverage in the software in-
dustry. In his work, Mandl adopts orthogonal Latin square for testing an Ada

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-9&iName=master.img-000.jpg&w=249&h=59

152 Data Structure and Software Engineering: Challenges and Improvements

compiler [11]. Berling and Runeson use interaction testing to identify real and
false targets in target identification system [12]. Lazic and Velasevic employed in-
teraction testing on modeling and simulation for automated target-tracking radar
system [13]. White has also applied the technique to test graphical user interfaces
(GUIs) [14]. Other applications of interaction testing include regression testing
through the graphical user interface [15] and fault localization [16, 17]. While
earlier work has indicated that pairwise testing (i.e., based on 2-way interaction
of variables) can be effective to detect most faults in a typical software system, a
counter argument suggests such conclusion infeasible to generalize to all software
system faults. For example, a test set that covers all possible pairs of variable values
can typically detect 50% to 75% of the faults in a program [18–20]. In other
works it is found that 100% of faults are detectable by a relatively low degree of
interaction, typically 4-way combinations [21–23].

More recently, a study by The National Institute of Standards and Technology
(NIST) for error-detection rates in four application domains included medical
devices, a Web browser, an HTTP server, and a NASA-distributed database re-
ported that 95% of the actual faults on the test software involve 4-way interaction
[24, 25]. In fact, according to the recommendation from NIST, almost all of the
faults detected with 6-way interaction. Thus, as this example illustrates, system
faults caused by variable interactions may also span more than two parameters, up
to 6-way interaction for moderate systems.

All the aforementioned related work in CIT applications highlighted the po-
tential of adopting the CIT strategies for both software/hardware testing. While
the CIT strategies can significantly partition the exhaustive test space into man-
ageable manner, additional reduction can still be possible particularly by system-
atically examining the effectiveness of each test case in the test suite, that is, by
exploiting fault injection techniques.

The use of fault injection techniques for software and hardware testing is not
new. Tang and Chen [26], Boroday [27], and Chandra et al. [28] study circuit
testing in hardware environment, proposing test coverage that includes each 2t
of the input settings for each subset of t inputs. Seroussi and Bshouty [29] give
a comprehensive treatment for circuit testing. Dumer [30] examines the relat-
ed question of isolating memory faults and uses binary covering arrays. Finally,
Ghosh and Kelly give a survey to include a number of studies and tools that have
been reported in the area of failure mode identification [31]. These studies help
in the long-term improvement of the software development process as the recur-
rence of the same failures can be prevented. Failure modes can be specific to a
system or be applicable to systems in general. They can be used in testing for fault
tolerance, as realistic faults are needed to perform effective fault injection testing.
Additionally, Ghosh and Kelly also describe a technique that injects faults in Java

© 2011 by Apple Academic Press, Inc.

A Strategy for Automatic Quality Signing and Verification Processes 153

software by manipulating the bytecode level for third party software components
used by the developers.

Proposed Strategy
The proposed strategy consists for two processes, namely, Test Quality Signing
(TQS) process and Test Verification process (TV). Briefly, the TQS process deals
with optimizing the selection of test suite for fault injection as well as performs
the actual injection whilst the TV process analyzes for conformance (see Figure 1).

Figure 1. The quality signing and verification processes.

As implied earlier, the TQS process aims to derive an effective and optimum
test suite and works as follows:

1. Start with an empty Optimized Test Suite (OTS), and empty Signing Vec-
tor (SV).

2. Select the desired software class (for software testing). Alternatively, build
an equivalent software class for the Circuit Under Test (CUT) (for hard-
ware testing).

3. Store these faults in fault list (FL).
4. Inject the class with all possible faults.
5. Let N be maximum number of parameters.
6. Initialize CIT strategy with strength of coverage (t) equal one (i.e., t = 1).

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-9&iName=master.img-001.jpg&w=244&h=182

154 Data Structure and Software Engineering: Challenges and Improvements

7. Let CIT strategy partition the exhaustive test space. The portioning in-
volves generating one test case at a time for t coverage. If t coverage criteria
are satisfied, then t = t + 1.

8. CIT strategy generates one Test Case (TC).
9. Execute TC.

10. If TC detects any fault in FL, remove the detected fault(s) from FL, and
add TC and its specification output(s) to OTS and SV, respectively.

11. If FL is not empty or t<=N, go to 7.
12. The desired optimized test suite and its corresponding output(s) are stored

in OTS and SV, respectively.
The TV process involves the verification of fault free for each unit. TV process

for a single unit works as follows:
(1) for i=1..Size(OTS) each TC in OTS do:
 (a) Subject the SUT to TC[i], store the output in Verification Vector

VV[i].
 (b) If VV[i] = SV [i], continue. Else, go to 3.
(2) Report that the cut has been passing in the test. Go to 4.
(3) Report that the cut has failed the test.
(4) The verification process ends.
As noted in the second step of the TQS process, the rationale for taking equiva-

lent software class for the CUT is to ensure that the cost and control of the fault in-
jection be more practical and manageable as opposed to performing it directly to a
real hardware circuit. Furthermore, the derivation of OTS is faster in software than
in hardware. Despite using equivalent class for the CUT, this verification process
should work for both software and hardware systems. In fact, it should be noted
that the proposed strategy could also be applicable in the context of N-version
programming (e.g., the assessment of student programs for the same assignment)
and not just hardware production lines. The concept of N-version programming
was introduced by Chen and Avizienis with the central conjecture that the “inde-
pendence of programming efforts will greatly reduce the probability of identical
software faults occurring in two or more versions of the program” [32, 33].

case Study
As proof of concept, we have adopted GMIPOG [10] as our CIT strategy imple-
mentation, and MuJava version 3 (described in [34, 35]) as our fault injection
strategy implementation.

© 2011 by Apple Academic Press, Inc.

A Strategy for Automatic Quality Signing and Verification Processes 155

Briefly, GMIPOG is a combinatorial test generator based on specified in-
puts and parameter interaction. Running on a Grid environment, GMIPOG
adopts both the horizontal and vertical extension mechanism (i.e., similar to that
of IPOG [6]) in order to derive the required test suite for a given interaction
strength. While there are many useful combinatorial test generators in the lit-
erature (e.g., Jenny [3], TConfig [4], TVG [5], IPOG [6], IPOD [7], IPOF [8],
DDA [9]), the rationale for choosing GMIPOG is the fact that it supports high
degree of interaction and can be run in cumulative mode (i.e., support one-test-
at-a-time approach with the capability to vary t automatically until the exhaustive
testing is reached).

Complementary to GMIPOG, MuJava is a fault injection tool that permits
mutated Java code (i.e., based on some defined operators) to be injected into
the running Java program. Here, the reason for choosing MuJava stemmed from
the fact that it is a public domain Java tool freely accessible for download in the
internet [35].

Using both tools (i.e., GMIPOG and MuJava), a case study problem involv-
ing a 4-bit Magnitude Comparator IC will be discussed here in order to evaluate
the proposed strategy. A 4-bit Magnitude Comparator consists of 8 inputs (two
four bits inputs, namely, a0…a3, and b0…b3. where a0 and b0 are the most sig-
nificant bits), 4 xnor gates (or equivalent to 4xor with 4 not gates), five not gates,
five and gates, three or gates, and three outputs. The actual circuit realization of
the Magnitude Comparator is given in Figure 2. Here, it should be noted that this
version of the circuit is a variant realization (implementation) of the Magnitude
Comparator found in [36]. The equivalent class of the Magnitude Comparator is
given in Figure 3 (using the Java-programming language).

Figure 2. Schematic diagram for the 4-bit magnitude comparator.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-9&iName=master.img-002.jpg&w=303&h=162

156 Data Structure and Software Engineering: Challenges and Improvements

Figure 3. Equivalent class Java program for the 4-bit magnitude comparator.

Here, it is important to ensure that the software implementation obeys the
hardware implementation strictly. By doing so, we can undertake the fault injec-
tion and produce the OTS in the software domain without affecting the logical of
relation and parameter interactions of the hardware implementation.

Now, we apply the TQS process; as illustrated in Section 3. Here, there are
80 faults injected in the system. To assist our work, we use GMIPOG [10] to
produce the TC in a cumulative mode. Following the steps in TQS process, Table
2 demonstrates the derivation of OTS. Here, it should be noted that the first 36
test cases can remove all the faults. Furthermore, only the first 12 test cases when
t = 4 are needed to catch that last two live mutants. The efficiency of integration
GMIPOG with MuJava can be observed (by taken only the effective TC) in the
last column in Table 2.

Table 2. Derivation of OTS for the 4-bit Magnitude Comparator.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-9&iName=master.img-003.jpg&w=332&h=256

A Strategy for Automatic Quality Signing and Verification Processes 157

Table 3 gives the desired OTS and SV, where T and F represent true and false,
respectively. In this case, TQS process reduces the test size to nine test cases only,
which significantly improves the TV process.

Table 3. OTS and SV for the 4-bit Magnitude Comparator.

To illustrate how the verification process is done (see Figure 2), assume that
the second output (i.e., A=B) is out-of-order (i.e., malfunction). Suppose that
A=B output is always on (i.e., short circuit to “VCC”). This fault cannot be de-
tected as either TC1 or TC2 (according to Table 2). Nevertheless, when TC3, the
output vector (“VV”) of faulty IC, is FTT, and the SV is FFT, the TV process can
straightforwardly detects that the IC is malfunctioning (i.e., cut fails).

To consider the effectiveness of the proposed strategy in the production line,
we return to our illustrative example given in Section 1. Here, the reduction of
exhaustive test from 256 test cases to merely nine test cases is significantly impor-
tant. In this case, the TV process requires only 9 seconds instead of 256 seconds
for considering all tests. Now, using one testing line and adopting our strategy
for two weeks can test (14X24X60X60/9 = 134400) chips. Hence, to deliver one
millions tested ICs’ during these two weeks, our strategy requires eight parallel
testing lines instead of 212 testing lines (if the test depends on exhaustive testing
strategy). Now, if we consider the saving efforts factor as the size of exhaustive
test suite minus optimized test suite to the size of exhaustive test suite, we would
obtain the saving efforts factor of 256-9/256=96.48%.

comparison
In this section, we demonstrate the possible test reduction using block partition-
ing approach [1, 37] for comparison purposes. Here, the partitions could be two
4-bit numbers, with block values =0, 0<x<15, =15 and 9 test cases would give all
combination coverage. In this case, we have chosen x=7 as a representative value.
Additionally, we have also run a series of 9 tests where x is chosen at random

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-9&iName=master.img-005.jpg&w=342&h=98

158 Data Structure and Software Engineering: Challenges and Improvements

between 0 and 15. The results of the generated test cases and their corresponding
cumulative faults detected are tabulated in Tables 4 and 5, respectively.

Table 4. Cumulative faults detected when x = 7.

Table 5. Cumulative faults detected when x is randomly selective.

Referring to Tables 4 and 5, we observe that block partitioning techniques
have achieved the mutant score of 90%. For comparative purposes, it should be
noted that our proposed strategy achieved a mutant score of 100% with the same
number of test cases.

conclusion
In this paper, we present a novel strategy for automatic quality signing and verifi-
cation technique for both hardware and software testing. Our case study in hard-
ware production line demonstrated that the proposed strategy could improve the
saving efforts factor significantly. In fact, we also demonstrate that our proposed

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-9&iName=master.img-006.jpg&w=249&h=134
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-9&iName=master.img-007.jpg&w=250&h=134

A Strategy for Automatic Quality Signing and Verification Processes 159

strategy outperforms the traditional block partitioning strategy in terms of achiev-
ing better mutant score with the same number of test cases. As such, we can also
potentially predict benefits in terms of the time and cost saving if the strategy is
applied as part of software testing endeavor.

Despite giving a good result (i.e., as demonstrated in earlier sections), we fore-
see a number of difficulties as far as adopting mutation testing is concerned. In
general, mutation testing does not scale well. Applying mutation testing in large
programs can result in very large numbers of mutations making it difficult to find
a good test suite to kill all the mutants. We are addressing this issue as part of our
future work by dealing with variable strength interaction testing.

Finally, we also plan to investigate the application of our proposed strategy for
computer-aided software application and hardware design tool.

acknowledgements
The authors acknowledge the help of Jeff Offutt, Jeff Lei, Raghu Kacker, Rick
Kuhn, Myra B. Cohen, and Sudipto Ghosh for providing them with useful com-
ments and the background materials. This research is partially funded by the USM:
Post Graduate Research Grant—T-Way Test Data Generation Strategy Utilizing
Multicore System, USM GRID—The Development and Integration of Grid Ser-
vices & Applications, and the fundamental research grants—“Investigating Heu-
ristic Algorithm to Address Combinatorial Explosion Problem” from the Ministry
of Higher Education (MOHE). The first author, Mohammed I. Younis, is the
USM fellowship recipient.

references
1. M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies: a sur-

vey,” Tech. Rep. ISETR-04-05, GMU, July 2004.

2. M. I. Younis, K. Z. Zamli, and N. A. M. Isa, “Algebraic strategy to generate
pairwise test set for prime number parameters and variables,” in Proceedings of
the International Symposium on Information Technology (ITSim ‘08), vol. 4,
pp. 1662–1666, IEEE Press, Kuala Lumpur, Malaysia, August 2008.

3. M. I. Younis, K. Z. Zamli, and N. A. M. Isa, “IRPS: an efficient test data
generation strategy for pairwise testing,” in Proceedings of the 12th Interna-
tional Conference on Knowledge-Based and Intelligent Information & Engi-
neering Systems (KES ‘08), vol. 5177 of Lecture Notes in Computer Science,
pp. 493–500, 2008.

© 2011 by Apple Academic Press, Inc.

160 Data Structure and Software Engineering: Challenges and Improvements

4. Jenny tool, June 2009, http://www.burtleburtle.net/bob/math/.

5. TVG tool, June 2009, http://sourceforge.net/projects/tvg/.

6. Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG: a gen-
eral strategy for T-way software testing,” in Proceedings of the Internation-
al Symposium and Workshop on Engineering of Computer Based Systems,
pp. 549–556, Tucson, Ariz, USA, March 2007.

7. Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG-IPOG-D:
efficient test generation for multi-way combinatorial testing,” Software Testing
Verification and Reliability, vol. 18, no. 3, pp. 125–148, 2008.

8. M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Refining the
in-parameter-order strategy for constructing covering arrays,” Journal of Re-
search of the National Institute of Standards and Technology, vol. 113, no. 5,
pp. 287–297, 2008.

9. R. C. Bryce and C. J. Colbourn, “A density-based greedy algorithm for higher
strength covering arrays,” Software Testing Verification and Reliability, vol. 19,
no. 1, pp. 37–53, 2009.

10. M. I. Younis, K. Z. Zamli, and N. A. M. Isa, “A strategy for grid based T-Way
test data generation,” in Proceedings the 1st IEEE International Conference
on Distributed Frameworks and Application (DFmA ‘08), pp. 73–78, Penang,
Malaysia, October 2008.

11. R. Mandl, “Orthogonal latin squares: an application of experiment design to
compiler testing,” Communications of the ACM, vol. 28, no. 10, pp. 1054–
1058, 1985.

12. T. Berling and P. Runeson, “Efficient evaluation of multifactor dependent sys-
tem performance using fractional factorial design,” IEEE Transactions on Soft-
ware Engineering, vol. 29, no. 9, pp. 769–781, 2003.

13. L. Lazic and D. Velasevic, “Applying simulation and design of experiments to
the embedded software testing process,” Software Testing Verification and Reli-
ability, vol. 14, no. 4, pp. 257–282, 2004.

14. L. White and H. Almezen, “Generating test cases for GUI responsibilities us-
ing complete interaction sequences,” in Proceedings of the International Sym-
posium on Software Reliability Engineering (ISSRE ‘00), pp. 110–121, IEEE
Computer Society, San Jose, Calif, USA, 2000.

15. A. M. Memon and M. L. Soffa, “Regression testing of GUIs,” in Proceedings of
the 9th Joint European Software Engineering Conference (ESEC) and the 11th
SIGSOFT Symposium on the Foundations of Software Engineering (FSE-11),
pp. 118–127, ACM, September 2003.

© 2011 by Apple Academic Press, Inc.

http://www.burtleburtle.net/bob/math/
http://sourceforge.net/projects/tvg/

A Strategy for Automatic Quality Signing and Verification Processes 161

16. C. Yilmaz, M. B. Cohen, and A. A. Porter, “Covering arrays for efficient fault
characterization in complex configuration spaces,” IEEE Transactions on Soft-
ware Engineering, vol. 32, no. 1, pp. 20–34, 2006.

17. M. S. Reorda, Z. Peng, and M. Violanate, Eds., System-Level Test and Valida-
tion of Hardware/Software Systems, Advanced Microelectronics Series, Spring-
er, London, UK, 2005.

18. R. Brownlie, J. Prowse, and M. S. Phadke, “Robust testing of AT&T PMX/
StarMail using OATS,” AT&T Technical Journal, vol. 71, no. 3, pp. 41–47,
1992.

19. S. R. Dalal, A. Jain, N. Karunanithi, et al., “Model-based testing in practice,”
in Proceedings of the International Conference on Software Engineering,
pp. 285–294, 1999.

20. K.-C. Tai and Y. Lei, “A test generation strategy for pairwise testing,” IEEE
Transactions on Software Engineering, vol. 28, no. 1, pp. 109–111, 2002.

21. D. R. Wallace and D. R. Kuhn, “Failure modes in medical device software: an
analysis of 15 years of recall data,” International Journal of Reliability, Quality,
and Safety Engineering, vol. 8, no. 4, pp. 351–371, 2001.

22. D. R. Kuhn and M. J. Reilly, “An investigation of the applicability of design of
experiments to software testing,” in Proceedings of the 27th NASA/IEEE Soft-
ware Engineering Workshop, pp. 91–95, IEEE Computer Society, December
2002.

23. D. R. Kuhn, D. R. Wallace, and A. M. Gallo Jr., “Software fault interactions
and implications for software testing,” IEEE Transactions on Software Engi-
neering, vol. 30, no. 6, pp. 418–421, 2004.

24. D. R. Kuhn and V. Okun, “Pseudo-exhaustive testing for software,” in Pro-
ceedings of the 30th Annual IEEE/NASA Software Engineering Workshop
(SEW ‘06), pp. 153–158, April 2006.

25. R. Kuhn, Y. Lei, and R. Kacker, “Practical combinatorial testing: beyond pair-
wise,” IT Professional, vol. 10, no. 3, pp. 19–23, 2008.

26. D. T. Tang and C. L. Chen, “Iterative exhaustive pattern generation for logic
testing,” IBM Journal of Research and Development, vol. 28, no. 2, pp. 212–
219, 1984.

27. S. Y. Boroday, “Determining essential arguments of Boolean functions,” in Pro-
ceedings of the International Conference on Industrial Mathematics (ICIM
‘98), pp. 59–61, Taganrog, Russia, 1998.

© 2011 by Apple Academic Press, Inc.

162 Data Structure and Software Engineering: Challenges and Improvements

28. A. K. Chandra, L. T. Kou, G. Markowsky, and S. Zaks, “On sets of Boolean
n-vectors with all k-projections surjective,” Acta Informatica, vol. 20, no. 1,
pp. 103–111, 1983.

29. G. Seroussi and N. H. Bshouty, “Vector sets for exhaustive testing of logic cir-
cuits,” IEEE Transactions on Information Theory, vol. 34, no. 3, pp. 513–522,
1988.

30. I. I. Dumer, “Asymptotically optimal codes correcting memory defects of fixed
multiplicity,” Problemy Peredachi Informatskii, vol. 25, pp. 3–20, 1989.

31. S. Ghosh and J. L. Kelly, “Bytecode fault injection for Java software,” Journal
of Systems and Software, vol. 81, no. 11, pp. 2034–2043, 2008.

32. A. A. Avizienis, The Methodology of N-Version Programming, Software Fault
Tolerance, John Wiley & Sons, New York, NY, USA, 1995.

33. L. Chen and A. Avizienis, “N-version programming: a fault-tolerance approach
to reliability of software operation,” in Proceedings of the 18th IEEE Interna-
tional Symposium on Fault-Tolerant Computing, pp. 3–9, 1995.

34. Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: an automated class mutation
system,” Software Testing Verification and Reliability, vol. 15, no. 2, pp. 97–
133, 2005.

35. MuJava Version 3, June 2009, http://cs.gmu.edu/~offutt/mujava/.

36. M. M. Mano, Digital Design, Prentice Hall, Upper Saddle River, NJ, USA, 3rd
edition, 2002.

37. L. Copeland, A Practitioner’s Guide to Software Test Design, STQE Publish-
ing, Norwood, Mass, USA, 2004.

© 2011 by Apple Academic Press, Inc.

http://cs.gmu.edu/~offutt/mujava/

a tester-assisted
Methodology for test

redundancy Detection

Negar Koochakzadeh and Vahid Garousi

abStract
Test redundancy detection reduces test maintenance costs and also ensures the
integrity of test suites. One of the most widely used approaches for this pur-
pose is based on coverage information. In a recent work, we have shown that
although this information can be useful in detecting redundant tests, it may
suffer from large number of false-positive errors, that is, a test case being iden-
tified as redundant while it is really not. In this paper, we propose a semiauto-
mated methodology to derive a reduced test suite from a given test suite, while
keeping the fault detection effectiveness unchanged. To evaluate the methodol-
ogy, we apply the mutation analysis technique to measure the fault detection
effectiveness of the reduced test suite of a real Java project. The results confirm
that the proposed manual interactive inspection process leads to a reduced test
suite with the same fault detection ability as the original test suite.

© 2011 by Apple Academic Press, Inc.

164 Data Structure and Software Engineering: Challenges and Improvements

introduction
In today’s large-scale software systems, test (suite) maintenance is an inseparable
part of software maintenance. As a software system evolves, its test suites need to
be updated (maintained) to verify new or modified functionality of the software.
That may cause test code to erode [1, 2]; it may become complex and unmanage-
able [3] and increase the cost of test maintenance. Decayed parts of test suite that
cause test maintenance problems are referred to as test smells [4].

Redundancy (among test cases) is a discussed but a seldom-studied test smell.
A redundant test case is one, which if removed, will not affect the fault detection
effectiveness of the test suite. Another type of test redundancy discussed in the
literature (e.g., [5, 6]) is test code duplication. This type of redundancy is similar
to conventional source code duplication and is of syntactic nature. We refer to the
above two types of redundancy as semantic and syntactic test redundancy smells,
respectively. In this work, we focus on the semantic redundancy smell which is
known to be more challenging to detect in general than the syntactic one [5].

Redundant test cases can have serious consequences on test maintenance. By
modifying a software unit in the maintenance phase, testers need to investigate
the test suite to find all relevant test cases which test that feature and update
them correctly with the unit. Finding all of the related test cases increases the
cost of maintenance. From the other hand, if test maintenance (updating) is not
conducted carefully, the integrity of the entire test suite will be under question.
For example, we can end up in a situation in which two test cases test the same
features of a unit, if one of them is updated correctly with the unit and not the
other one, one test may fail while the other may pass, making the test results am-
biguous and conflicting.

The motivation for test redundancy detection is straightforward. By detecting
and dealing with redundant test case (e.g., carefully removing them), we reduce
test maintenance cost and the risk of loosing integrity in our test suite, while fault
detection capability of our test suite remains constant.

One of the most widely used approaches in the literature (e.g., [6–11]) for test
redundancy detection, also referred to as test minimization, is based on coverage
information. The rationale followed is that, if several test cases in a test suite ex-
ecute the same program elements, the test suite can then be reduced to a smaller
suite that guarantees equivalent test coverage ratio [6].

However, test redundancy detection based on coverage information does not
guarantee to keep fault detection capability of a given test suite. Evaluation results
from our previous work [12] showed that although coverage information can be
very useful in test redundancy detection, detecting redundancy only based on this

© 2011 by Apple Academic Press, Inc.

A Tester-Assisted Methodology for Test Redundancy Detection 165

information may lead to a test suite which is weaker in detecting faults than the
original one.

Considering fault detection capability of a test case for the purpose of redun-
dancy detection is thus very important. To achieve this purpose, we propose a col-
laborative process between testers and a proposed redundancy detection engine to
guide the tester to use valuable coverage information in a proper and useful way.

The output of the process is a reduced test suite. We claim that if testers play
their role carefully in this process, fault detection effectiveness of this reduced test
set would be equal to the original set.

High amount of human effort should be spent on inspecting a test suite man-
ually. However, the proposed process in this paper tries to use the coverage infor-
mation in a constructive fashion to reduce the required tester efforts. More auto-
mation can be added to this process later to save more cost and thus the proposed
process should be considered as the first step to reduce required human effort for
test redundancy detection.

To evaluate our methodology, we apply the mutation technique in a case study
in which common types of faults are injected. Then original and reduced test set
are then executed to detect faulty versions of the systems. The results show similar
capability of fault detection for those two test sets.

The remainder of this paper is structured as follows. We review the related
works in Section 2. Our recent previous work [12] which evaluated the precision
of test redundancy detection based on coverage information is summarized in
Section 3. The need for knowledge collaboration between human testers and the
proposed redundancy detection engine is discussed in Section 4. To leverage and
share knowledge between the automated engine and human tester, we propose
a collaborative process for redundancy detection in Section 5. In Section 6, we
show the results of our case study and evaluate the results using the mutation
technique. Efficiency, precision, and a summary of the proposed process are dis-
cussed in Section 7. Finally, we conclude the paper in Section 8 and discuss the
future works.

related works
We first review the related works on test minimization and test redundancy de-
tection. We then provide a brief overview of the literature on semiautomated
processes that collaborate with software engineers to complete tasks in software
engineering and specifically in software testing.

© 2011 by Apple Academic Press, Inc.

166 Data Structure and Software Engineering: Challenges and Improvements

There are numerous techniques that address test suite minimization by consid-
ering different types of test coverage criteria (e.g., [6–11]). In all of those works,
to achieve the maximum possible test reduction, the smallest test set which covers
the same part of the system was created [7]. The problem of finding the smallest
test set has been shown to be NP-complete [13]. Therefore, in order to find an
approximation to the minimum cardinality test set, heuristics are usually used in
the literature (e.g., [7, 9]).

A few works have applied data flow coverage criteria (e.g., [7, 10]) while a few
others have applied control flow criteria (e.g., [6, 9, 11]).

In [7], in addition to the experiment which was performed for all-definition-
use coverage criterion on a relatively simple program (LOC is unknown), the au-
thors mentioned that all the possible coverage criteria should be considered in or-
der to detect redundant test cases more precisely. The authors were able to reduce
40% of the size of the test suite under study based on coverage information.

Coverage criteria used in [10] were predicate-use, computation-use, defini-
tion-use, and all-uses. The authors applied their approach on 10 Unix programs
(with average LOC of 354) and 91% of the original test suites were reduced in
total.

The control flow coverage criteria used in [6, 9, 11] are Branch [6], statement
[9], and MC/DC [11]. In [9], mutation analysis was used to assess and evaluate
the fault detection effectiveness of the reduced test suites. The ratios of reduction
reported in these works were 50%, 34%, and 10%, respectively. The Systems Un-
der Tests (SUTs) used in [6, 9] were small scale (avg. LOC of 29 and 231, resp.),
while [11] used a medium size space program as its SUT with 9,564 LOC.

The need to evaluate test redundancy detection by assessing fault detection
effectiveness was mentioned in [6, 11]. In those works, faults were manually in-
jected into the SUTs to generate mutants. Then the mutation scores of original
and reduced test sets were compared. Reference [6] concludes that test minimiza-
tion based on coverage information can reduce the ability of fault detection, while
[11] showed opposite conclusions.

In [6], faults were seeded to the SUTs manually by modifying mostly a single
line of code (first order mutation), while in a few other cases, the authors modi-
fied between two and five lines of code (k-order mutation). As mentioned in [6],
ten people (mostly without knowledge of each other’s work) had tried to intro-
duce faults that were as realistic as possible, based on their experience with real
programs.

In [11], the manually injected faults (18 of them) were obtained from the
error-log maintained during its testing and integration phase. Eight faults were
in the “logic omitted or incorrect” category, seven faults belong to the type of

© 2011 by Apple Academic Press, Inc.

A Tester-Assisted Methodology for Test Redundancy Detection 167

“computational problems,” and the remaining three faults had “data handling
problems” [11].

In our previous work [12], an experiment was performed with 4 real Java pro-
grams to evaluate coverage-based test redundancy detection. The objects of study
were JMeter, FitNesse, Lurgee and Allelogram with LOC of 69,424, 22,673,
7,050, and 3,296, respectively. Valuable lessons learned from our previous experi-
ment revealed that coverage information cannot be the only source of knowledge
to precisely detect test redundancy. Lessons are summarized in Section 3 of this
paper.

To the best of the authors’ knowledge, there has been no existing work to im-
prove the shortcomings (imprecision) of coverage-based redundancy detection. In
this paper, we are proposing a semiautomated process for this purpose.

Semiautomated decision supports systems leverage human-computer interac-
tion which put together the knowledge of human users and intelligent systems
to support decision-making tasks. Hybrid knowledge is very effective in such
situations where the computational intelligence provides a set of qualified and
diversified solutions and human experts are involved interactively in the decision-
making process for final decision [14].

A logical theory of human-computer interaction has been suggested by Milner
[15]. Besides, the ways in which open systems’ behavior can be expressed by the
composition of collaborative components is explained by Arbab [16]. There are
various semiautomated systems designed for software engineering such as user-
centered software design [17].

There have also been semiautomated systems used specifically in software test-
ing. For instance, test case generation tools require tester’s assistance in provid-
ing test oracles [18]. Another example of collaborative tool for testing is manual
testing frameworks [19]. In these tools, testers perform test cases manually while
system records them for later uses. The process proposed in this paper is a semi-
automated framework with the purpose of finding test redundancy in software
maintenance phase.

coverage-based redundancy Detection can be
imprecise
In our previous work [12], we performed an experiment to evaluate test redun-
dancy detection based only on coverage information. We formulated two experi-
mental metrics for coverage-based measurement of test redundancy in the context
of JUnit test suites. We then evaluated the approach by measuring the redundancy

© 2011 by Apple Academic Press, Inc.

168 Data Structure and Software Engineering: Challenges and Improvements

of four real Java projects (FitNesse, Lurgee, Allelogram, and JMeter). The auto-
mated test redundancy measures were compared with manual redundancy deci-
sions derived from inspection performed by a human software tester.

In this paper, we use the term test artifact for different granularity levels sup-
ported in JUnit (Figure 1). Three levels of package, class, and methods are group-
ing mechanism for test cases that have been introduced in JUnit.

Figure 1. Test granularity in JUnit.

The results from that study [12] showed that measuring test redundancy based
only on coverage information is vulnerable to imprecision given the current im-
plementation of JUnit unit test framework and also coverage tools. The following
discussion explains the root causes.

Figure 2. False-Positive Error in Test Redundancy Detection based on Coverage Information.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-10&iName=master.img-000.jpg&w=202&h=150
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-10&iName=master.img-001.jpg&w=208&h=162

A Tester-Assisted Methodology for Test Redundancy Detection 169

In the SUTs we analyzed in [12], about 50% of test artifacts, manually rec-
ognized as nonredundant, had been detected as redundant tests by our cover-
age-based redundancy metrics. In a Venn diagram notation, Figure 2 compares
a hypothetical original test set with two reduced sets showing high number of
false-positive errors. Three main reasons discovered in [12] to justify the errors are
discussed next.

(1) Test redundancy detection based on coverage information in all previous
works have been done by only considering limited number of coverage
criteria. This fact that two test cases may cover the same part of SUT
according to one coverage criterion but not the other one causes impre-
ciseness in test redundancy detection only by considering one coverage
criterion.

(2) In JUnit, each test case contains four phases: setup, exercise, verify, and
teardown [4]. In the setup phase the required state of the SUT for the
purpose of a particular test case is setup. In the exercise phase, the SUT is
exercised. In the teardown phase the SUT state is rolled back into the state
before running the test. In these three phases SUT is covered while in the
verification phase only a comparison between expected and actual outputs
is performed and SUT is not covered. Therefore, there might be some test
cases with the same covered part of SUT with various verifications. In this
case, coverage information may lead to detecting a nonredundant test as
redundant.

(3) Coverage information is calculated only based on the SUT instrumented
for coverage measurement. External resources (e.g., libraries) are not usu-
ally instrumented. There are cases in which two test methods cover differ-
ent libraries. In such cases, the coverage information of the SUT alone is
not enough to measure redundancies.

Another reason of impreciseness in redundancy detection based on coverage
information mentioned in [12] was some limitations in coverage tools implemen-
tation. For example, the coverage tool that we used in [12] was CodeCover [20].
The early version of this tool (version 1.0.0.0) was unable to instrument return
and throw statements due to a technical limitation. Hence, the earlier version of
the tool excluded covering of such statements from coverage information. This
type of missing values can lead to detecting a nonredundant test as redundant.
However, this limitation has now been resolved in the newest version of Code-
Cover (version 1.0.0.1 released on April 2009) and we have updated our redun-
dancy detection framework by using the latest version of this tool. Since in [12]
this problem was a root cause of false positive error, here we just report this as a
possible reason of impreciseness in redundancy detection, while in this paper we
do not have this issue.

© 2011 by Apple Academic Press, Inc.

170 Data Structure and Software Engineering: Challenges and Improvements

Algorithm 1 shows the source code of two test methods from Allelogram test
suite as an example of incorrect redundancy detection by only applying coverage
information. In this example, test method testAlleleOrderDoesntMatter covers a
subset of covered items by the test method testOffset both in setup and exercise
phases. The setup phase includes calling Genotype (new double) constructor. The
exercise phase contains calling getAdjestedAlleleValues(int) method by passing
the created Genotype object, which both are called in the second test method as
well. However, the assertion goal in the first test is completely different from the
assertion goal in the second one. In the first test method, the goal is comparing
the output value of getAdjestedAlleleValues method for two Genotype objects,
while in second one, one of the goals is checking the size of output list from the
getAdjestedAlleleValues method. Therefore, although according to coverage in-
formation the first test method is redundant, in reality it is nonredundant.

Algorithm 1: Source code of two test methods in the Allelogram test suite.

the need for Knowledge collaboration with
testers
Reduced test set based on coverage information contains those test artifacts that
cover at least one coverable item not covered by any other test artifact. Therefore
these test artifacts contribute to achieving more coverage and according to the

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-10&iName=master.img-002.jpg&w=279&h=227

A Tester-Assisted Methodology for Test Redundancy Detection 171

concept of test coverage, they may increase the fault detection capability of the
test suites.

Based on the above discussion, it is worthwhile to use coverage information
for test redundancy detection to reduce the number of test artifacts that might be
redundant.

On the other side, high ratio of false-positive errors shows that the coverage-
based results alone are not reliable and we may inaccurately detect many nonre-
dundant test artifacts as redundant ones.

The above advantages and disadvantages of coverage-based redundancy detec-
tion have motivated us to improve the test redundancy detection process by lever-
aging knowledge from human testers. The three main root causes of imprecision
discussed in Section 3 should be considered in such a tester-assisted approach.

First, the more coverage criteria are applied, the more precise test redundancy
will be detected. However, all of the existing test coverage tools support a limited
number of coverage criteria. White-box criteria are more usually supported, while
there are only a few tools supporting black-box criteria (e.g., JFeature [21]). In
addition, usually there are no precise formal specifications for some units in some
systems. Thus, automated measurement of black-box coverage is impossible in
those cases. Also, there is a lack of coverage tools which automatically measure
both white-box and black-box coverage criteria at the same time. Combing the
coverage results from various coverage tools might be a solution. However, lack of
formal specification for many real projects makes it very challenging for us testers
to consider automated measurement of black-box coverage for the purpose of
redundancy detection in this work. For projects with full formal specifications,
if test minimization is performed precisely with respect to all available coverage
criteria, loss of fault detection ability can be minimized or eliminated altogether.
However, since formal specifications are not available for many real projects, we
propose to involve human testers in the process of test redundancy detection.

For this purpose, testers can use their knowledge to write formal specification
for the SUT and use them in black-box coverage tools, or apply black-box cover-
age manually. For instance, if test t1 covers a subset of covered items by t2, and
the main goal of t1 is to check whether there is an exception thrown by the SUT
while t2 has a different goal, t1 is not redundant. In other words, the inputs of
two above tests are from different equivalence classes (i.e., a black-box coverage
criterion should be applied).

Second, the verification phase of JUnit test methods should be analyzed sepa-
rately. As explained in Section 3, this phase is independent of coverage informa-
tion, and is thus a precision threat to redundancy detection. Assertion statements
in JUnit tests should be compared to find if they cause redundancy or not. In

© 2011 by Apple Academic Press, Inc.

172 Data Structure and Software Engineering: Challenges and Improvements

some cases, the actual and expected values in assert statements have complicated
data flow. In such cases, comparing assertions in verification phase would require
sophisticated source code analysis (e.g., data flow analysis). For example, the ac-
tual outcomes of the two assertEquals statements (located in two test methods)
in Figure 3 are the same: adjusted.get(). However, determining whether their ex-
pected outcomes (a and 1.5) have the same value or not would require data flow
analysis in this example. Automating such an analysis is possible, but is challeng-
ing while in this step we use human tester for this purpose by leaving its automa-
tion as a future work.

Figure 3. The challenge of comparing assertions: excerpts from the test suite of Allelogram.

Third, in addition to the SUT, all the external libraries used should be consid-
ered. However, as the source code of those libraries is not probably available, we
need to instrument the class files in Java systems or to monitor coverage through
the JVM. As per our investigations, automating this instrumentation and calcu-
lating coverage information for the external libraries and combining them with
coverage information of the source code of the SUT is challenging and is thus
considered as a future work. At this step, we propose the human tester to analyze
the test code to find out how an external library affects test results and consider
that in comparing test artifacts.

As explained previously, although it is possible to increase the degree of auto-
mation to cover the shortcoming of redundancy detection only based on limited
number of coverage criteria, there is one main reason that does not allow full
automation for this process, which is the lack of precise and formal specification
for real world project. In other words, in the process of test redundancy detec-
tion the existence of human testers is necessary to confirm the real redundancy
of those test artifacts detected as redundant by the system. The human tester has
to conduct a manual inspection with guidelines proposed in this work and has to
consider the three root causes to prevent false positive errors.

Using the three above guidelines helps testers to collaborate more effectively in
the proposed redundancy detection process by analyzing test codes. Testers who
have developed test artifacts are the best source of knowledge to decide about test

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-10&iName=master.img-003.jpg&w=191&h=86

A Tester-Assisted Methodology for Test Redundancy Detection 173

redundancy by considering the above three lessons. However, other test experts
can also use our methodology to find the redundancy of a test suite through
manual inspection. For instance, in the experiment of this work, the input test
suite was created by the developers of an open source project while the first author
has performed the process of test redundancy detection.

a collaborative Process for redundancy
Detection
To systematically achieve test redundancy detection with lower false-positive error,
we propose a collaborative process between an automated redundancy detection
system and human testers. The system will help the tester to inspect test artifacts
with the least required amount of effort to find the actually redundant tests by
using the benefits from coverage information while the fault detection capability
of the reduced test suite is not reduced.

Figure 4. Proposed collaborative process for test redundancy detection.

Figure 4 illustrates the activity diagram of the proposed interactive redundan-
cy detection process. The input of this process is the original test suite of a SUT.
Since human knowledge is involved, the precision of the inspection conducted
by the human tester is paramount. If the tester follows the process and the three
above guidelines carefully, the output would be a reduced test with the same fault
detection effectiveness as the original one.

As the first step in this process, redundancy detection system uses a coverage
tool to calculate coverage information, which is used later to calculate two redun-
dancy metrics (discussed next).

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-10&iName=master.img-004.jpg&w=342&h=144

174 Data Structure and Software Engineering: Challenges and Improvements

Two redundancy metrics were proposed in [12]: Pair Redundancy and Suite
Redundancy. The Pair Redundancy is defined between two test artifacts and is the
ratio of covered items in SUT by the first test artifact with respect to the second
one. In Suite Redundancy, this ratio is considered for one test artifact with respect
to all other tests in the test suite.

Equations (1) and (2) define the Pair and Suite Redundancy metrics, respec-
tively. In both of these equations, CoveredItemsi(tj) is the set of code items (e.g.,
statement and branch) covered by test artifact tj, according to a given coverage cri-
terion i (e.g., statement coverage). CoverageCriteria in these two equations is the
set of available coverage criteria used during the redundancy detection process.

Based on the design rationale of the above metrics, their values are always
a real number in the range of [0…1]. This enables us to measure redundancy in
a quantitative domain (i.e., partial redundancy is supported too).

However, the results from [12] show that this type of partial redundancy is
not precise and may mislead the tester in detecting the redundancy of the test. For
instance, suppose that two JUnit test methods have similar setups with different
exercises. If for example 90% of the test coverage is in the common setup the pair
redundancy metrics would indicate that they are 90% redundant with respect to
each other. However different exercises in these tests separate their goals and thus
they should not be considered as redundant with respect to each other while 90%
redundancy can mislead the tester about their redundancy.

Equation (1) shows Redundancy of test artifact (tj) with respect to another
one (tk):

()

()

())
()()

,

/

,

j k

i j
i CoverageCriteria

i k

i CoverageCriteria i j

PR t t

CoveredIterns t

CoveredIterns t

CoveredIterns t

Î

Î

æç=çççè

Ç

å

å

 (1)

equation (2) shows Redundancy of one test artifact (tj) with respect to all others:

()

()

())
()()

/

.

j

i j
i CoverageCriteria

i j

i CoverageCriteria i j

SR t

CoveredIterns t

CoveredIterns TS t

CoveredIterns t

Î

Î

æç=çççè

Ç -

å

å

 (2)

© 2011 by Apple Academic Press, Inc.

A Tester-Assisted Methodology for Test Redundancy Detection 175

However, partial redundancy concept can be useful in some cases to warn tes-
ters to refactor test code. To find these cases, in [12], we have offered to separate
phases in a test case. As this approach is considered as a future work, in this work
we do not consider partial redundancy concept. A test artifact can be redundant
or nonredundant. The suite redundancy metric is used as a binary measure to
separate test artifacts into these two groups: redundant, and nonredundant. If
SR value of a test artifact = 1, that test is considered as redundant otherwise it is
nonredundant.

In some cases, a test artifact does not cover any type of items (according to the
considered coverage criteria). In [12], we have found that these cases may occur
for various reasons, for example, (1) a test case may only cover items outside the
SUT (e.g., an external library), (2) a test case may verify (assert) a condition with-
out exercising anything from the SUT, or (3) a test method may be completely
empty (developed by mistake). In these cases, the nominator and the denomina-
tor of both above metrics (PR and SR) will be zero (thus causing the 0-divide-
by-0 problem). We assign the value of NaN (Not a Number) to the SR metric for
these cases leaving them to be manually inspected to determine the reason.

After calculating coverage and redundancy metrics, the system prepares a list
of test artifacts in no particular order. All the information about coverage ratios,
number of covered items and redundancy metrics (both SR for each test and PR
for each test pair) is available for exploration by the tester.

Step 2 in the process is the tester’s turn. He/she should inspect the tests which
are identified as a redundant test by the SR value (=1) to find out whether they are
really redundant or not. This manual redundancy analysis should be performed
for each test artifact separately. Therefore tester needs to choose a test from a set
of candidate redundant tests.

The sequence in which test artifacts are inspected may affect the final precision
of the process. Test sequencing often becomes important for an application that
has internal state. Dependency between test artifacts may cause the erratic test
smell in which one or more tests behave erratically (the test result depends on the
result of other tests) [4]. However, in this work we do not consider this smell (our
case study does not have this problem and thus we did not have any constraints
for sequencing the test artifacts).

Our experience with manual redundancy detection in our case study (dis-
cussed in next section) helps us to find that the locality principle of test artifacts is
an important factor that should be considered in test sequencing. In other words,
for instance, test methods inside one test class have more likelihood of redun-
dancy with respect to each other and should be inspected simultaneously.

There can be different strategies for ordering test artifacts and picking one to
inspect at a time. One strategy can be defined according to number of covered

© 2011 by Apple Academic Press, Inc.

176 Data Structure and Software Engineering: Challenges and Improvements

items by each test artifact. As discussed next ascending and descending orders of
number of coverage items each may have their own benefits.

A test expert may prefer to first choose a test artifact with higher redundancy
probability. In this case, we hypothesize that the ascending order based on num-
ber of covered items is more suitable. The rationale behind this hypothesis is that
the likelihood of covering fewer code items (e.g., statement, branch) by more
than one test artifact is more than covering more items by the same test artifacts.
Relationship between numbers of covered items by a test artifact with probability
of redundancy of that test needs to be analyzed in an experiment. However, this is
not the main goal of this paper and we leave it as a future work.

Descending order can have its own benefits. A test expert may believe that
having test cases with more covered items would lead to the eager test smell (i.e.,
a test with too many assertions [22]). In this case, he/she would prefer to first
analyze a test that covers more items in the SUT.

Finding a customized order of two above extreme cases by considering their
benefits and costs is not discussed in this paper. Also other factors more than re-
dundancy and coverage information may be useful in finding a proper test order.

Another strategy for sorting the existing test cases would be according to their
execution time. If one of the objectives of reducing test suite is reducing the
execution time, by this strategy test cases which need more time to be executed
have more priority of redundancy candidates. However, we believe that in unit
testing level execution time of test cases is not as important as other smells like
being eager.

After picking appropriate test artifact, tester can use PR values of that test with
respect to other tests. This information guides tester to inspect source code of that
test case and compare it with source code of those tests with higher PR values.
Without this information, manual inspection would take much more time from
testers since he/she may not have any idea how to find another test to compare
the source code together.

As discussed in Section 4, the main reason of need for human knowledge is
to cover shortcomings of coverage-based redundancy detection. Therefore testers
should be thoroughly familiar with these shortcomings and attempt at covering
them.

After redundancy analysis, the test is identified as redundant or not. If it was
detected as redundant by tester (Step 3), system removes it from original test
set (Step 4). In this step, the whole collaborative process between system and
tester should be repeated. Removing one test from test suite changes the value of
CoveredItemsi(TS-tj) in (2). Therefore system should recalculate Suite Redun-
dancy metric for all of the available tests (Step 5). In Section 6 we show how

© 2011 by Apple Academic Press, Inc.

A Tester-Assisted Methodology for Test Redundancy Detection 177

removing a redundant test detected by tester and recalculating the redundancy
information can help the tester not to be misled by initial redundancy informa-
tion and reduce the required effort of the tester.

Stopping condition of this process depends on tester’s discretion. To find this
stopping point, tester needs to compare the cost of process with savings in test
maintenance costs resulting from test redundancy detection. Process cost at any
point of the process can be measured by the time and effort that testers have spent
in the process.

Test maintenance tasks have two types of costs which should be estimated: (1)
costs incurred by updating (synchronizing) test code and SUT code, and (2) costs
due to fixing integrity problems in test suite (e.g., one of two test cases testing the
same SUT feature fails, while the other passes). Having redundant tests can lead
testers to updating more than a test for each modification. Secondly, as a result of
having redundant tests, the test suites would suffer from integrity issues, since the
tester might have missed to update all the relevant tests.

To estimate the above two cost factors, one might perform change impact
analysis on the SUT, and subsequently effort-prediction analysis (using tech-
niques such as [23]) on SUT versus test code changes.

To decide about stopping point of the process, a tester would need to measure
the process costs spent so far and to also estimate the maintenance costs contain-
ing both the above-discussed cost factors. By comparing them, he/she may decide
to either stop or to continue the proposed process.

In the outset of this work, we have not systematically analyzed the above cost
factors. As discussed before, we suggest testers to inspect all the tests with the val-
ue SR=1 as many as possible. However, according to high number of false-positive
errors, other tests in this category (with SR=1) which were not inspected, should
be considered as nonredundant. If the SR metric of a test artifact is less than 1, it
means that there are some items in the SUT which are covered only by this test
artifact. Thus, they should also be considered as nonredundant.

To automate the proposed process for test redundancy detection, we have
modified the CodeCover coverage tool [20] to be able to measure our redun-
dancy metrics. We refer to our extended tool as TeReDetect (Test Redundancy
Detection tool). The tool shows a list of test artifacts containing coverage and
redundancy information of each of them, it lets the tester to sort test artifacts ac-
cording to his/her strategy (as explained before) and to introduce a real detected
redundant test to the system for further metrics recalculation. After detecting a
redundant test method, system automatically recalculates the redundancy metrics
and updates the tester with new redundancy information for the next inspection
iteration. A snapshot of the TeReDetect tool, during the process being applied

© 2011 by Apple Academic Press, Inc.

178 Data Structure and Software Engineering: Challenges and Improvements

to Allelogram, is shown in Figure 5.TeReDetect is an open source project (it has
been extended to the SVN repository of CodeCover http://codecover.svn.source-
forge.net/svnroot/codecover). TeReDetect is not a standalone plug-in, rather it
has been embedded inside the CodeCover plug-in. For instance, ManualRedun-
dancyView.java is one of the extended classes for our tool which is available from
http://codecover.svn.sourceforge.net/svnroot/codecover/trunk/code/eclipse/src/
org/codecover/eclipse/views/.

Figure 5. Snapshot of the TeReDetect tool.

case Study
Performing the Proposed Process
We used Allelogram [24], an open-source SUT developed in Java, as the object
of our case study. Allelogram is a program for processing genomes and is used by
biological scientists [24]. Table 1 shows the size measures of this system.

Table 1. The size measures of Allelogram code.

© 2011 by Apple Academic Press, Inc.

https://codecover.svn.sourceforge.net/svnroot/codecover/
http://codecover.svn.sourceforge.net/svnroot/codecover/trunk/code/eclipse/src/org/codecover/eclipse/views/
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-10&iName=master.img-005.jpg&w=325&h=157
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-10&iName=master.img-006.jpg&w=248&h=114

A Tester-Assisted Methodology for Test Redundancy Detection 179

The unit test suite of Allelogram is also available through its project website
[24] and is developed in JUnit. Table 2 lists the size metrics of its test suite. As the
lowest implemented test level in JUnit is test method, we applied our redundancy
detection process on the test method level in this SUT.

Table 2. The size measures of Allelogram test suite.

As the first step of proposed redundancy detection process, coverage metrics
are measured. For this purpose, we used the CodeCover tool [20] in our experi-
ment. This tool is an open-source coverage tool written in Java supporting the fol-
lowing four coverage criteria: statement, branch, condition (MC/DC), and loop.
The loop coverage criterion, as supported by CodeCover, requires that each loop
is executed 0 times, once, and more than once.

Table 3 shows the coverage metrics for our SUT. The first row in this table is
the coverage ratios of the whole Allelogram system which are relatively low. We
also looked at the code coverage of different packages in this system. Our analysis
showed that the Graphical User Interface (GUI) package of this SUT is not tested
(covered) at all by its test suite. This is most probably since JUnit is supposed to
be used for unit testing and not GUI or functional testing. By excluding the GUI
package from coverage measurement, we recalculated the coverage values shown
in the second row of Table 3. These values show that the non-GUI parts of the
system were tested quite thoroughly.

Table 3. Coverage information (%).

The next step in the process is the calculation of suite-level redundancy for
each test method and pairwise redundancy for each pair of test methods in the
test suite of our SUT.

To automate the measurement of redundancy of each test method using the
two metrics defined in Section 5 ((1) and (2)), we have modified CodeCover

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-10&iName=master.img-007.jpg&w=245&h=47
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-10&iName=master.img-008.jpg&w=256&h=55

180 Data Structure and Software Engineering: Challenges and Improvements

to calculate the metrics and export them into a text file, once it executes a test
suite.

Table 4 reports the percentage of fully redundant test methods (those with SR
= 1) according to each coverage criterion and also by considering all of the criteria
together.

Table 4. The percentage of fully redundant test methods.

As we expected, according to Table 4, ratio of full redundancy detected by
considering each coverage criteria separately is higher than the case when all of
them are considered. This confirms the fact that the more coverage criteria used
in redundancy detection, the less false positive error can be achieved. In other
words, All coverage criterion detects those tests as nonredundant that improve
the coverage ratio values of at least one of the coverage criteria. As All criterion is
more precise than the others, in the rest of our case study we consider the suite
redundancy based on All criterion.

According to the suite redundancy result by considering all four coverage cri-
teria (Table 4), 31% (100-69) of the tests in test suites of Allelogram are nonre-
dundant. To confirm the nonredundancy of those methods, we randomly sam-
pled a set of test methods in this group and inspected them. We found few cases
that seem as redundant tests which are in fact true-negative errors as reported in
[12]. However, according to our inspection and code analysis, such test methods
cover at least one coverable item not covered by any other test method. For in-
stance, a test method named testOneBin in Allelogram covers a loop only once
while some other test methods cover that loop more than one time. Therefore,
loop redundancy of this method is slightly less than 1 (0.91) and thus detected as
nonredundant by our redundancy metrics. For the same test method, the other
types of redundancy considering only statement, branch, and condition coverage
are 1. In fact, the above test cases contribute to loop coverage and we thus mark it
as nonredundant since it covers a loop in a way (only once) not covered by other
test methods.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-10&iName=master.img-009.jpg&w=298&h=96

A Tester-Assisted Methodology for Test Redundancy Detection 181

Having a candidate set of redundant test methods (redundant tests based on
All criterion: 69%), tester needs to decide about their order to inspect their source
code. In this study, the first author (a graduate student of software testing) manu-
ally inspected the test methods. Recall the heuristics discussed in Section 5 about
the sorting strategy of test method in the proposed process: test methods with
fewer numbers of covered items have higher likelihood of being redundant. We
thus decided to order the tests in the ascending order of the number of covered
items (e.g., statement). In this case, we hoped to find redundant test methods
sooner which may lead to a reduction in the search space (discussed next).

As the next step, manual inspection of a test was performed by comparing
the source code of the test with other tests having high pair redundancy with
the current one. The main focus of this step should be detecting redundancy by
covering the shortcomings of coverage-based redundancy detection discussed in
Section 5.

Redundancy of one test affects the redundancy of others. For instance, if test
method A is redundant because it covers the same functionality covered by test
method B (while there are no other tests to cover this functionality), test method
B cannot be redundant at the same time. Therefore, while both of them are can-
didates for being redundant tests according to coverage information, but only one
of them should be considered redundant finally. We refer to such effects as inter-
test-method-redundancy effects

By only using redundancy information from the beginning step of the process,
tester would need to keep track of all the tests previously detected as redundant
during the process and apply the inter-test-method-redundancy effects by him/
her self. However, recalculating the coverage information, after each redundancy
detection, can reduce the search space (as explained next). Therefore, detecting
redundant tests one by one and subsequently recalculating redundancy metrics
increase precision and efficiency of the tester.

In this case study, we manually inspected the whole test suite of Allelogram.
Figure 6 illustrates the whole process results by showing the size of five different
test sets manipulated during the process. Those five test sets are discussed next.

We divide test methods into two categories: redundancy known and redun-
dancy unknown. The test artifacts in the redundancy-unknown set are pending
inspection to determine whether they are redundant or not (Set 1). Redundancy-
known set contains redundant (Set 2) and nonredundant test sets whose decisions
have been finalized. Furthermore, the set of nonredundant tests inside redundan-
cy-known category contains three different sets: those identified through inspec-
tion (Set 3), those identified without inspection (Set 4), and the ones that were

© 2011 by Apple Academic Press, Inc.

182 Data Structure and Software Engineering: Challenges and Improvements

identified by system as nonredundant after nonredundancy has been detected
through inspection (Set 5).

Figure 6. Labeling the test cases through the redundancy detection process.

At the beginning of the process, by calculating redundancy metrics based on
coverage information, test methods are divided into two sets of Nonredundant
Tests without Inspection and Remaining Tests Pending Inspection sets. As the
figure shows, 28 test methods were recognized as nonredundant, while 54 (82-28)
test methods needed to be inspected.

After each test method inspection, redundancy of that test is identified. This
test method then leaves the Remaining Tests Pending Inspection set and Nonre-
dundant test joins Nonredundant Tests with Inspection set while each redundant
test joins Redundant Tests set. In the second case, redundancy metrics are recal-
culated.

In this case study, as shown in Figure 5, 11 test methods are recognized as
redundant (test methods numbered in the x-axis as 7, 12, 19, 21, 24, 27, 36, 38,
40, 41, and 44). In these cases, new iterations of the process were performed by
recalculating the redundancy metrics. In 5 cases (test methods numbered 12, 21,
24, 27, and 44), the recalculating led to search space reduction (5 test methods
left the Remaining Tests Pending Inspection set and joined the Nonredundant
Tests without Inspection set). In 2 of them (test methods 21 and 44), recalculat-
ing caused 2 test methods to leave Nonredundant Tests with Inspection set and
join Nonredundant Tests with Unnecessary Inspection set.

At the beginning of the process, the size of the Remaining Tests Pending
Inspection set was 54 (our initial search space). However, through the process,

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-10&iName=master.img-010.jpg&w=257&h=164

A Tester-Assisted Methodology for Test Redundancy Detection 183

recalculating reduced the number of test methods that needed to be inspected to
49. In this case study, we ordered test methods in the ascending order of number
of their covered items.

The final result of the process is a reduced test set containing 71 test methods
instead of 82 (the original test suite of Allelogram). Stopping point of this process
is considered by inspecting all the redundant candidate test methods (with SR=1)
and no cost estimation is applied for this purpose.

evaluating the Proposed Process

To evaluate the preciseness of the proposed process, we considered the main pur-
pose of test redundancy detection as discussed by many researchers. Test minimi-
zation should be performed in a way that the fault detection effectiveness of the
test suite is preserved. Therefore, the process is successful if it does not reduce the
fault detection capability.

One way to evaluate the above success factor of our test minimization ap-
proach is to inject probable faults in the SUT. Mutation is a technique that is
widely used for this purpose ([25, 26]). The researches in [27, 28] show that the
use of mutation operators is yielding trustworthy results and generated mutants
can be used to predict the detection effectiveness of real faults.

In this work, we used the mutation analysis technique for the evaluation of the
fault detection effectiveness of the reduced test suites generated by our technique.
However, after completing this research project, we found out that, as another
approach, we could also use the mutation analysis technique to detect test re-
dundancy in a different alternative approach as follows. If the mutation scores of
a given test suite with and without a particular test case are the same, then that
test case is considered redundant. In other words, that test case does not kill (dis-
tinguish) any additional mutant. We plan to compare the above test redundancy
detection approach with the one we conducted in this paper in a future work.

To inject simple faults into our case study, we used the MuClipse [29] tool
which is a reincarnation of the MuJava [30] tool in the form of an Eclipse plug-in.
Two main types of mutation operators are supported by MuClipse: method level
(traditional) and class level (object oriented) [30].

To inject faults according to the traditional mutation operators, MuClipse re-
places, inserts or deletes the primitive operators in the program. 15 different types
of traditional mutation operators are available in MuClipse [29]. One example of
this operators is the Arithmetic Operator Replacement (AOR) [31].

The strategy in object-oriented mutation operators is to handle all the possible
syntactic changes for OO features by deleting, inserting, or changing the target

© 2011 by Apple Academic Press, Inc.

184 Data Structure and Software Engineering: Challenges and Improvements

syntactic element. 28 different types of OO mutation operators are available in
MuClipse [29]. One example is Hiding variable deletion (IHD) which deletes a
variable in a subclass that has the same name and type as a variable in the parent
class [32].

All the available above mutation operators were used in this experiment. Dur-
ing this step, we found that MuClipse generates some mutants which failed to
compile. These types of mutants are referred to as stillborn mutants which are
syntactically incorrect and are killed by the compiler [29]. The total number of
mutants for Allelogram that were not stillborn was 229.

To evaluate the fault detection effectiveness of the reduced test set by our pro-
posed process compared to original test set, we calculated their mutation scores.
We used MuClipse to execute all the created mutants with the two test sets (origi-
nal and reduced). Table 5 shows the mutation score of three test sets: original
test set, reduced test set only based on coverage information, and reduced test set
through collaboration process with a tester.

Table 5. Mutation score of three test suites for Allelogram.

The result shows that every mutant that is killed by original test set is killed by
the reduced set (derived by the collaborative process) as well. In other words, the
effectiveness of these two test sets is equal while the reduced set (solely based on
coverage information) has 11 (82-71) less tests than the first one. That test suite
thus has lower fault detection effectiveness.

Mutation score decreasing from 51% in original test set to 20% in the reduced
set only based on coverage information confirms our discussion in Section 3 about
impreciseness of test redundancy detection based only on coverage information.

Discussion
effectiveness and Precision

Let us recall the main purpose of reducing the number of test cases in a test suite
(Section 1): decreasing the cost of software maintenance. Thus, if the proposed

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-10&iName=master.img-011.jpg&w=249&h=67

A Tester-Assisted Methodology for Test Redundancy Detection 185

methodology turns to be very time consuming, then it will not be worthwhile to
be applied.

Although the best way to increase the efficiency of the process is to automate
all required tasks, at this step we suppose that it is not practical to automate all
of them. Thus, as we discuss next, human knowledge is currently needed in this
process.

To perform manual inspection on test suite with the purpose of finding re-
dundancy, testers need to spend time and effort on each test source code and
compare them together. To decrease the amount of required effort, we have de-
vised the proposed approach in a way to reduce the number of tests needed to be
inspected (by using the suite redundancy metric). Our process also suggests useful
information such as pair redundancy metric to help testers find other proper tests
to compare with the test under inspection.

We believe that by using the above information, the efficiency of test redun-
dancy detection has been improved. This improvement was seen on our case study
while we first spent on average more than 15 minutes for each test method of Al-
lelogram test suite before having our process. But inspecting them using the pro-
posed process took on average less than 5 minutes per test method (the reason of
time reduction is that in the later we knew other proper test methods to compare
them with the current test). Since only one human subject (tester) performed the
above two approaches, different parts of the Allelogram test suite were analyzed
in each approach to avoid bias (due to learning and gaining familiarity) on time
measurement.

However the above results are based on our preliminary experiment and it is
thus inadequate to provide a general picture about the efficiency of the process.
For a more systematic analysis in that direction, both time and effort should be
measured more precisely with more than one subject on more than one object.
Such an experiment is considered as a future work.

In addition to the efficiency of the process, precision of redundancy detection
was also evaluated in our work. As explained in Section 6.2, this evaluation has
been done in our case study by applying mutation technique. The result of analy-
sis on one SUT confirmed the high precision of the process.

However, human’s error is inevitable in collaborative processes which can af-
fect the precision of the whole process. To decrease this type of error, the tester
needs to be familiar with the written tests. Therefore, we suggest having the origi-
nal test suite developers involved in the redundancy detection process if possible
or that they be at least available for the possible questions during the process. In
other words, a precise teamwork communication is required to detect correct test
redundancy.

© 2011 by Apple Academic Press, Inc.

186 Data Structure and Software Engineering: Challenges and Improvements

Cost/Benefit Analysis

According to above discussions, our redundancy detection technique has the fol-
lowing benefits:

(i) Reducing the size of test suite by keeping the fault detection effectiveness
of that.

(ii) Preventing possible future integrity issues in the test suite.
(iii) Reducing test maintenance costs.

Different types of required costs in this process are summarized as follows:

(i) TeReDetect installation costs.
(ii) System execution time during the process (steps 1, 4, and 5 in Figure 4).
(iii) Redundancy analysis by human testers (steps 2 and 3 in Figure 4).

The first and second cost items are not considerable while the main part of the
cost is about the third one which contains human efforts.

Table 6 shows an informal comparison of above costs and benefits in three
approaches of full automation, full manual, and semiautomated process proposed
in this paper. In the second and third approaches that human has a role, it is in-
evitable that the preciseness of human affects the benefits of the results.

Table 6. Cost/benefit comparison.

Scalability

In large-scale systems with many LOC and test cases, it is not usually feasible to
look at and analyze the test cases for the entire system. However, as mentioned
before, in TeReDetect it is possible to select a subset of test suite and also a subset
of SUT. This functionality of TeReDetect increases the scalability of this tool to a
great extent by making it possible to divide the process of redundancy detection
into separate parts and assign each part to a tester. However a precise teamwork
communication is required to make the whole process successful.

Flexible stopping point of the proposed process is another reason for its scal-
ability. According to the tester’s discretion, the process of redundancy detection

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-10&iName=master.img-012.jpg&w=259&h=59

A Tester-Assisted Methodology for Test Redundancy Detection 187

may stop after analyzing the subset of test cases or continue for all existing tests.
For instance, in huge systems, by considering the cost of redundancy detection,
project manager may decide to analyze only the critical part of the system.

threats to Validity

External Validity

Two issues limit the generalization of our results. The first one is the subject rep-
resentativeness of our case study. In this paper the process has been done by the
first author (a graduate student). More than one subject should be experimented
in this process to be able to compare their results to each other. Also, this subject
knew the exact objective of the study which is a threat to the result. The second
issue is the object program representativeness. We have performed the process
and evaluate the result on one SUT (Allelogram). More objects should be used in
experiments to improve the result. Also our SUT is a random project chosen from
the open source community. Other industrial programs with different characteris-
tics may have different test redundancy behavior.

Internal Validity

The result about efficiency and precision of the proposed process might be from
some other factors which we had no control or had not measured. For instance,
the bias and knowledge of the tester while trying to find redundancy can be such
a factor.

conclusion and future works
Measuring and removing test redundancy can prevent the integrity issues of
test suites and decrease the cost of test maintenance. Previous works on test set
minimization believed that coverage information is useful resource to detect
redundancy.

To evaluate the above idea we performed an experiment in [12]. The result
shows that coverage information is not enough knowledge for detecting redun-
dancy according to fault detection effectiveness. However, this information is a
very useful starting point for further manual inspection by human testers.

Root-cause analysis of above observation in [12] has helped us to improve the
precision of redundancy detection by covering the shortcomings in the process
proposed in this paper.

© 2011 by Apple Academic Press, Inc.

188 Data Structure and Software Engineering: Challenges and Improvements

We proposed a collaborative process between human testers and redundancy
system based on coverage information. We also performed an experiment with
that process on a real java project. This in turn led us to find out that the sharing
the knowledge between the human user and the system can be useful for the pur-
pose of test redundancy detection. We conclude that test redundancy detection
can be performed more effectively when it is done in an interactive process.

The result of the case study performed in this paper shows that fault detection
effectiveness of the reduced set is the same as the original test set while the cost of
test maintenance for reduced one is less than the other (since the size of the first
set is less than the second one).

The efficiency of this process in terms of time and effort is improved compar-
ing to the case of manual inspection for finding test redundancy without this
proposed process.

In this paper, the efficiency factor was discussed qualitatively. Therefore mea-
suring precise time and efforts spent in this process is considered as a future ex-
periment.

Finding the stopping point of the process needs maintenance and effort cost
estimation which is not studied thoroughly in this work and is also considered as
a future work.

As explained in Section 5, the order of the tests inspected in the proposed
process can play an important role in the test reduction result. In this work we
suggested a few strategies with their benefits to order the test while this needs to
be studied more precisely. Also, test sequential constraints such as the case of de-
pendent test cases are not discussed in this work.

Visualization of coverage and redundancy information can also improve the
efficiency of this process extensively. We are now in the process of developing such
a visualization technique to further help human testers in test redundancy detect
processes.

In addition to above, some tasks which are now done manually in this pro-
posed process could be automated in future works. One example is the automated
detection of redundancy in the verification phase of JUnit test methods which
will most probably require the development of sophisticated code analysis tools to
compare the verification phase of two test methods.

acknowledgements
The authors were supported by the Discovery Grant no. 341511-07 from the
Natural Sciences and Engineering Research Council of Canada (NSERC).

© 2011 by Apple Academic Press, Inc.

A Tester-Assisted Methodology for Test Redundancy Detection 189

V. Garousi was further supported by the Alberta Ingenuity New Faculty Award
no. 200600673.

references
1. S. G. Eick, T. L. Graves, A. F. Karr, U. S. Marron, and A. Mockus, “Does code

decay? Assessing the evidence from change management data,” IEEE Transac-
tions on Software Engineering, vol. 27, no. 1, pp. 1–12, 2001.

2. D. L. Parnas, “Software aging,” in Proceedings of the International Confer-
ence on Software Engineering (ICSE ‘94), pp. 279–287, Sorrento, Italy, May
1994.

3. B. V. Rompaey, B. D. Bois, and S. Demeyer, “Improving test code reviews with
metrics: a pilot study,” Tech. Rep., Lab on Reverse Engineering, University of
Antwerp, Antwerp, Belgium, 2006.

4. G. Meszaros, xUnit Test Patterns, Refactoring Test Code, Addison-Wesley,
Reading, Mass, USA, 2007.

5. A. Deursen, L. Moonen, A. Bergh, and G. Kok, “Refactoring test code,” in
Proceedings of the 2nd International Conference on Extreme Programming
and Flexible Processes in Software Engineering (XP ‘01), Sardinia, Italy, May
2001.

6. G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An empirical study of
the effects of minimization on the fault detection capabilities of test suites,”
in Proceedings of the Conference on Software Maintenance (ICSM ‘98),
pp. 34–43, Bethesda, Md, USA, November 1998.

7. M. J. Harrold, R. Gupta, and M. L. Soffa, “Methodology for controlling the
size of a test suite,” ACM Transactions on Software Engineering and Methodol-
ogy, vol. 2, no. 3, pp. 270–285, 1993.

8. J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization for mod-
ified condition/decision coverage,” IEEE Transactions on Software Engineer-
ing, vol. 29, no. 3, pp. 195–209, 2003.

9. A. J. Offutt, J. Pan, and J. M. Voas, “Procedures for reducing the size of cov-
erage-based test sets,” in Proceedings of the 11th International Conference on
Testing Computer Software (ICTCS ‘95), pp. 111–123, Washington, DC,
USA, June 1995.

10. W. E. Wong, J. R. Morgan, S. London, and A. P. Mathur, “Effect of test set
minimization on fault detection effectiveness,” Software—Practice & Experi-
ence, vol. 28, no. 4, pp. 347–369, 1998.

© 2011 by Apple Academic Press, Inc.

190 Data Structure and Software Engineering: Challenges and Improvements

11. W. E. Wong, J. R. Horgan, A. P. Mathur, and Pasquini, “Test set size minimi-
zation and fault detection effectiveness: a case study in a space application,” in
Proceedings of the IEEE Computer Society’s International Computer Software
and Applications Conference (COMPSAC ‘97), pp. 522–528, Washington,
DC, USA, August 1997.

12. N. Koochakzadeh, V. Garousi, and F. Maurer, “Test redundancy measurement
based on coverage information: evaluations and lessons learned,” in Proceed-
ings of the 2nd International Conference on Software Testing, Verification, and
Validation (ICST ‘09), pp. 220–229, Denver, Colo, USA, April 2009.

13. M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to
the Theory of NP-Completeness, W. H. Freeman, San Francisco, Calif, USA,
1990.

14. A. Ngo-The and G. Ruhe, “A systematic approach for solving the wicked prob-
lem of software release planning,” Soft Computing, vol. 12, no. 1, pp. 95–108,
2008.

15. R. Milner, “Turing, computing, and communication,” in Interactive Compu-
tation: The New Paradigm, pp. 1–8, Springer, Berlin, Germany, 2006.

16. F. Arbab, “Computing and Interaction,” in Interactive Computation: The New
Paradigm, pp. 9–24, Springer, Berlin, Germany, 2006.

17. M. Takaai, H. Takeda, and T. Nishida, “A designer support environment for
cooperative design,” Systems and Computers in Japan, vol. 30, no. 8, pp. 32–
39, 1999.

18. Parasoft Corporation, “Parasoft Jtest,” October 2009, http://www.parasoft.
com/jsp/products/home.jsp?product=Jtest.

19. IBM Rational Corporation, “Rational manual tester,” January 2009, http://
www-01.ibm.com/software/awdtools/tester/manual/.

20. T. Scheller, “CodeCover,” 2007, http://codecover.org/.

21. Nitinpatil, “JFeature,” June 2009, https://jfeature.dev.java.net/.

22. B. V. Rompaey, B. D. Bois, S. Demeyer, and M. Rieger, “On the detection of
test smells: a metrics-based approach for general fixture and eager test,” IEEE
Transactions on Software Engineering, vol. 33, no. 12, pp. 800–816, 2007.

23. L. C. Briand and J. Wüst, “Modeling development effort in object-oriented
systems using design properties,” IEEE Transactions on Software Engineering,
vol. 27, no. 11, pp. 963–986, 2001.

24. C. Manaster, “Allelogram,” August 2008, http://code.google.com/p/allelo-
gram/.

© 2011 by Apple Academic Press, Inc.

http://codecover.org/
http://java.net/projects/jfeature
http://www.parasoft.com/jsp/products/jtest.jsp;jsessionid=baa-uBEHKDs_FK?itemId=14
http://www-01.ibm.com/software/awdtools/tester/manual/
http://code.google.com/p/allelogram/

A Tester-Assisted Methodology for Test Redundancy Detection 191

25. R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selec-
tion: help for the practicing programmer,” IEEE Computer, vol. 11, no. 4,
pp. 34–41, 1978.

26. R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE Transac-
tions on Software Engineering, vol. 3, no. 4, pp. 279–290, 1977.

27. J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using mutation
analysis for assessing and comparing testing coverage criteria,” IEEE Transac-
tions on Software Engineering, vol. 32, no. 8, pp. 608–624, 2006.

28. J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate tool
for testing experiments?” in Proceedings of the 27th International Conference
on Software Engineering (ICSE ‘05), pp. 402–411, 2005.

29. B. Smith and L. Williams, “MuClipse,” December 2008, http://muclipse.
sourceforge.net/.

30. J. Offutt, Y. S. Ma, and Y. R. Kwon, “MuJava,” December 2008, http://cs.gmu.
edu/~offutt/mujava/.

31. Y. S. Ma and J. Offutt, “Description of method-level mutation operators for
java,” December 2005, http://cs.gmu.edu/~offutt/mujava/mutopsMethod.
pdf.

32. Y. S. Ma and J. Offutt, “Description of class mutation mutation operators for
java,” December 2005, http://cs.gmu.edu/~offutt/mujava/mutopsClass.pdf.

© 2011 by Apple Academic Press, Inc.

http://cs.gmu.edu/~offutt/mujava/mutopsClass.pdf
http://muclipse.sourceforge.net/
http://cs.gmu.edu/~offutt/mujava/
http://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf

automatic generation of web
applications from Visual

High-Level functional web
components

Quan Liang Chen and Takao Shimomura

abStract
This paper presents high-level functional Web components such as frames,
framesets, and pivot tables, which conventional development environments
for Web applications have not yet supported. Frameset Web components pro-
vide several editing facilities such as adding, deleting, changing, and nesting
of framesets to make it easier to develop Web applications that use frame fa-
cilities. Pivot table Web components sum up various kinds of data in two di-
mensions. They reduce the amount of code to be written by developers greatly.
The paper also describes the system that implements these high-level func-
tional components as visual Web components. This system assists designers in
the development of Web applications based on the page-transition framework

© 2011 by Apple Academic Press, Inc.

Automatic Generation of Web Applications 193

that models a Web application as a set of Web page transitions, and by using
visual Web components, makes it easier to write processes to be executed when
a Web page transfers to another.

Introduction
To develop a Web application, we need to write a lot of codes to perform processes
such as display of Web pages, receipt of requests, execution of actions, session op-
erations, database accesses, and business logic. On the other hand, before we de-
velop a Web application, we have some images of the application (i.e., what it will
be like or what it will look like) in our mind. The objective of our research is to
make it possible to develop Web applications with less code by making full use of
such image. Conventional development environments for Web applications only
provide fundamental Web components such as text fields, buttons, checkboxes,
anchors, and tables. They have not yet supported high-level functional Web com-
ponents. This paper presents the automatic generation of Web applications that
makes use of customizable visual high-level functional Web components such as
frames, framesets, and pivot tables, which are close to our image and make it pos-
sible to develop Web applications with less code.

Web applications that need to show a lot of information on one Web page at a
time often use inline frames, exchange displayed elements using their tabs, or en-
able users to see a hidden part of the page using the scroll bars of a Web browser.
On the other hand, if Web applications use an HTML frame facility, they can
display a lot of information on one Web page at a time and show it to users [1].
The users can easily grasp the outline of the provided information, and at the same
time, they can see the contents of the frame of interest in detail by extending the
frame to the whole page if they need to. Therefore, some Web applications that
need to display a lot of information at a time such as computer-assisted instruc-
tion systems, Web-based chat systems, and the Help windows of various kinds of
Web applications often use the HTML frame facility [2, 3].

The pivot tables sum up various kinds of data in two dimensions. They
reduce the amount of code to be written by developers greatly. The paper
describes how to implement high-level functional components as visual Web
components and it also presents the system, which is an example of their
implementation. This system assists designers in the development of Web ap-
plications based on the page-transition framework. This framework models
a Web application as a set of Web page transitions, and by using visual Web
components, makes it easier to write processes to be executed when a Web pag
etransfers to another Web page.

© 2011 by Apple Academic Press, Inc.

194 Data Structure and Software Engineering: Challenges and Improvements

image-oriented Design
Design example of a web application

In the system, we design a Web application by copying our image of each Web
page into a Web page window. Like home page building tools [4], we choose
Web components such as hyperlinks, HTML tables, text fields, text areas, submit
buttons, framesets, and pivot tables from menus (or buttons), and paste them
into a Web page window that corresponds to each Web page. In this section, we
consider a simple Web application favoriteCake that obtains the information of
favorite cakes by means of questionnaires. This application consists of three Web
pages, entryCake, chooseCake, and loveCake.

(1) Customers first enter their names in the entryCake page.
(2) They choose their favorite cake from a menu in the chooseCake page.
(3) The loveCake page shows the cumulative result and the history of their

answers.

Figure 1(b) illustrates the design of this application, which consists of entry-
Cake page, chooseCake page, loveCake page, cake DB table, and favoriteCake
DB table. Figure 1(a) shows an example of its execution.

Figure 1. Questionnaire program favoriteCake.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-000.jpg&w=344&h=227

Automatic Generation of Web Applications 195

We store the names and the images of a variety of cakes in a database table
(hereafter, described as a DB table) cake, which is shown in the top right corner of
Figure 1(b). The DB table favoriteCake, which is shown in the bottom right cor-
ner of Figure 1(b), stores the history of customers’ answers. It stores the customer’s
name in the name field, and the customer’s favorite cake in the cake field. For each
kind of cake, the loveCake page displays the number of the customers who like it
by using a pivot table (described in detail in Section 4).

We drag and drop each field of these DB tables into the Web pages. By this,
the system inserts field references such as cake.name, cake.image, favorite-
Cake.name, and favoriteCake.cake at the dropped positions. At the execution
of the application, these field references display the values of the correspond-
ing fields in various forms such as text, images, buttons, and checkboxes. In
addition to DB tables that are stored persistently, the system introduces the
Program tables that are only used during the execution of the program. De-
velopers can use these Program tables as visual components [5]. By dragging
some fields of a Program table into a Web page, their values can be displayed
when the application is executed. The Program table can be joined to other
Program tables and DB tables. For example, a Program table can be used to
store the contents of a shopping cart in online shopping applications, which
is only used in a session of the application.

MVc architecture

In the system, we develop Web applications based on the Model-View-Controller
(MVC) architecture [6] as shown in Figure 2. The MVC architecture isolates
business logic from user interface, resulting in an application where it is easier to
modify either the visual appearance of the application or the underlying business
rules without affecting the other. The model represents the data of the applica-
tion and the business rules used to manipulate the data; the view corresponds to
elements of the user interface; and the controller manages details involving the
communication of user actions to the model.

We first design DB tables and Program tables. If database tables have already
been created by some DBMS tools, we have only to recall them in the DB table
windows of the design workspace. Next, we drag some of the fields of these tables
into Web pages to display. Finally, we write business processes in the Web source
windows. The system automatically generates methods necessary for accessing
the Program table data. In summary, we design the data access layer (model) of
the application using DB tables and Program tables, design its presentation layer
(view) using Web page windows, and write its business-logic layer (controller)
using Web source windows.

© 2011 by Apple Academic Press, Inc.

196 Data Structure and Software Engineering: Challenges and Improvements

Figure 2. MVC architecture.

In any phase of the development, developers can verify their applications by
displaying Web page previews, Web page transitions, Web frame references, and
various kinds of field references. As shown in Figure 1(b), the system displays
references between components as arrows whose colors indicate the types of the
references.

frame and frameset components
requirements for frames and framesets

Web pages can contain framesets, and framesets contain frames. Moreover, the
Web page that is displayed in a frame can also contain framesets. Because this
relationship ranges among multiple pages, it is difficult to grasp with the conven-
tional development environments. To make it easier to develop Web applications
that use frame facilities, we take into account the following requirements.

1. We can nest frames in a frameset more than once, and we can create a
frame pointing to another Web page that contains framesets.

2. We can easily understand the relationship between the frames and the Web
pages that are displayed in the corresponding frames.

3. We can easily change the hierarchical structure of framesets (i.e., which
frameset should contain which frames and framesets), easily add and de-
lete frames, and easily change the Web pages that will be displayed inside
frames by using the mouse dragging (see Figure 3(c)).

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-001.jpg&w=249&h=173

Automatic Generation of Web Applications 197

Figure 3. Frameset page design windows created by the BioPro system.

introduction of frameset Page Design windows

We introduce Frameset page design windows as root Web pages that represent
framesets, and link each frame included in those windows to an ordinary Web
page design window. For example, in Figure 3(a), Frameset page design window
Y has two frames, and its upper frame is linked to Web page design window C,
and its lower frame is linked to Web page design window D. We make it possible
to link each frame included in a Frameset page design window to not only an or-
dinary Web page design window, but also another Frameset page design window.
This enables frames to be nested in a frameset more than once.

Figure 3(b) shows two Frameset page design windows and four Web page de-
sign windows created by a programmer using the BioPro system, as illustrated in
Figure 3(a). Each frame of the Frameset page design window is linked with a line
to the Web page design window that is displayed in it.

As shown in Figure 3(a), the Frameset page design window X has two frames,
where its upper frame is divided into two other frames, left and right frames, each
of which is linked to Web page design windows A and B, respectively. Its lower
frame is linked to another Frameset page design window Y. When we execute the
Web application that contains these pages, the Frameset page design window X
is displayed as a root Web page that includes four Web pages A, B, C, and D as
shown in Figure 3(a). In a Frameset page design window, we can easily divide,
delete, and exchange frames by clicking or drag-and-dropping the mouse. Figure
3(c) shows an example of nested frames in Frameset page design windows.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-002.jpg&w=341&h=178

198 Data Structure and Software Engineering: Challenges and Improvements

Visual Programming for frames and framesets

As an example of a Web application that uses frames, let us consider a simple
Web-based chat system. As shown in Figure 4(b), this Web page consists of two
frames. The upper frame has a text field to enter a name, and buttons to enter
and exit a chat room. Below them, it has an area to display the contents of chat-
ting and its status. The lower frame has a text field to enter a chat message, and
a button to send the message. To update the contents of chatting that vary any
minute, the upper frame keeps being refreshed at a certain period of time. Because
this Web page is divided into these two frames, the lower frame is not affected by
refreshing the upper frame even when a user is entering a message.

Figure 4. Visual programming using frameset pages.

Figure 4(a) shows an example of visual programming of this Web-based chat
system. The window (A) in the top left corner of Figure 4(a) is a Frameset page,
which corresponds to the Frameset page Y in Figure 3(a). The upper frame is
linked to chatFrame Web page to display chatFrame Web page. The lower frame
is linked to utterFrame Web page to display utterFrame Web page. Windows
(B) and (C) of Figure 4(a) show the Web pages of chatFrame and utterFrame,
respectively.

Pivot table components
Visual Programming for Pivot tables

This section introduces a pivot table that sums up various kinds of data in two
dimensions and describes how we use this table as a visual Web component. The

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-003.jpg&w=306&h=156

Automatic Generation of Web Applications 199

pivot table consists of three cells, row, column, and data. Into each cell of the
pivot table, a field of either a DB table or a Program table is dragged. At the ex-
ecution time of the application, the row and column cells of the pivot table are
dynamically expanded to display the values of the corresponding field of the DB
table or the Program table. The data cells of the expanded pivot table display the
corresponding field values for each row and each column in a specified form.

Figure 5 illustrates how the pivot table is expanded at the execution time of the
application. The way of expanding the pivot table changes depending on whether
or not a field of a DB table (or a Program table) is assigned to each cell of the pivot
table. Let {dij} be a set of field values in the data cell that corresponds to each row
and column. The value of the set {dij} is displayed in the data cell in a variety of
forms such as Standard (the sum of the element values), Counter (the number of
the elements, that is, #{dij}), and Image (the image the first element’s value refers
to). In addition, developers can customize a way of displaying the data cell by
creating a class and its methods that define how the data cell should be displayed.
For example, as shown in Figure 6(a), we can display the name and the picture
of the person whose name is the value of dij. If we further customize it to specify
the data cell’s format, background color, and component to be displayed as shown
in Figure 6(b), checkboxes used in the meeting room reservation system will be
changed to buttons as shown in Figure 6(c). Customization of visual functional
Web components will be described in more detail in Section 5.

Figure 5. Pivot table expansion.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-004.jpg&w=198&h=226

200 Data Structure and Software Engineering: Challenges and Improvements

Figure 6. Execution of meeting room reservation system.

a reservation System for Meeting rooms

Figure 7 shows an example of design for the meeting room reservation system that
uses a pivot table, and Figure 6 shows an example of execution of this application.
This meeting room reservation system works as follows:

1. Customers enter a date for making a reservation, and their names and
passwords.

2. The system displays reservations for that date using the pictures of the
people who have reservations.

3. The customers check a vacant room off to make a reservation or check
their own pictures to cancel the reservation.

We record reservations for meeting rooms in a database. The DB table meet-
ing (in the top right corner of Figure 7) records meeting rooms (room), periods of
time (hour), and people who have reservations (name). This DB table meeting is
a virtual table only used for designing the Web page, and the real database table is
dynamically determined at the execution time of the application. The pivot table
is arranged in the bottom left corner of Figure 7. We drag and drop the room field
of the DB table meeting into the column cell of the pivot table to insert a field
reference meeting.room. Similarly, we insert a field reference meeting.hour to the
row cell of the pivot table, and a field reference meeting.name to the data cell.
As shown in Figure 6(a), when this Web application is executed, this pivot table
will be dynamically expanded so that each row will display a period of time; each
column will display the name of a meeting room; and each data cell will display

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-005.jpg&w=343&h=179

Automatic Generation of Web Applications 201

the name and the picture of the person who has a reservation for the correspond-
ing row and column.

Figure 7. Design of meeting room reservation system.

In this example, we have displayed the data cells as checkboxes. Instead, we
can also display them in a variety of forms such as text and buttons. If we display
the data cells as submit buttons, we will not need the Reserve/Cancel button, and
customers can make a reservation immediately by clicking on a vacant button,
and can cancel the reservation immediately by clicking on their own pictures.

customization of Visual functional web
components
Definition of Web Components

In the proposed system, we can create a new Web component and add it to
the system. When we design a Web application, we can use these created Web

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-006.jpg&w=281&h=274

202 Data Structure and Software Engineering: Challenges and Improvements

components as visual components in the same way as we use other compo-
nents such as pivot tables, DB tables, and Program tables. To create a new
component, we define a class that extends WebComp class. We have only to
define several methods to override those defined in the super WebComp class.
Table 1 shows some methods the super WebComp class provides. We define
a component name, write code to create a visual component (a JComponent
object in Java), and specify how to change the component’s properties. For
the verification of relationships between components, we write the code that
obtains the relationships of the new component with other components. For
code generation, we define HTML/JSP code to display this component in a
Web page, and so on.

Table 1. Definition of customizable visual Web components.

For example, we here create a new Web component “Autograph.” When we
choose this component, a dialog will open to enter an autograph. Then, this com-
ponent will be inserted into a Web page design window. When this Web applica-
tion is executed, the entered autograph will be shown in italic. Figure 8 shows an
Autograph class for this component. This class extends a WebCompAdapter class,
which extends the WebComp class a part of whose methods have been shown
in Table 1. The Autograph class defines getMenuName() method to specify its
component name “Autograph,” which will be displayed as the name of a menu
item that corresponds to this component. CreateWebComp() method creates a
JLabel object to display this visual component in a Web page design window.
ChangeProperties() method invokes specifyProperties() method, which displays
a dialog to enter this component’s properties. AddJSP() method defines how to
display this component in a Web page when this Web application is executed.
This addJSP() method defines a <h2 style=“font-style:italic”> tag to display the
specified autograph in italic.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-007.jpg&w=342&h=113

Automatic Generation of Web Applications 203

Figure 8. Definition of Web component “Autograph.”

customization of Pivot tables

A pivot table is one of visual functional Web components. High-level functional
Web components are easy to use, and they can easily produce even complicated
display of Web pages. However, the higher level they are on, the less flexible they
will be. Therefore, it is important to provide a mechanism to customize those
components. To customize the display of data cells in a pivot table, we can specify
the name of a method for customization as shown in Figure 6(b). Figure 9 illus-
trates an example of such a method, pivot(). This method makes it possible to
display a person’s name and picture in the data cells of the pivot table as shown in
Figures 6(a) and 6(c). Pivot() method has a parameter dataList of type ArrayList,
which contains a list of data corresponding to this data cell. In this meeting room
reservation system, it contains only one value, which is the name of the person
who reserves a meeting room that corresponds to this data cell. This pivot() meth-
od retrieves the person’s picture from DB table “person,” and returns HTML code
that consists of an tag, a <hr> tag, and the person’s name.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-008.jpg&w=183&h=294

204 Data Structure and Software Engineering: Challenges and Improvements

Figure 9. Definition of a method pivot() to customize the data cell display of a pivot table

implementation of Visual functional web
components
implementation of frameset Hierarchy

To develop Frameset page design windows, we define FrameSet class and Frame
class. As shown in Figure 10, both of FrameSet class and Frame class extend ab-
stract class FrameOrSet. In FrameOrSet class, variable parent refers to its parent
frameset or frame. GetComponent() method returns JComponent that displays
its frameset or frame. A frameset is displayed as JPanel that contains a JSplitPane,
and a frame is displayed as a button in a Frameset page design window. GetH-
tml() method returns the HTML code that represents its frameset or frame. In
FrameSet class, frameset array points to its child frameset or frame. In Frame class,
variable srcPage points to a Web page or a Frameset page. Drop() method enables
a user to drag and drop a frame to another frame to exchange them.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-009.jpg&w=236&h=292

Automatic Generation of Web Applications 205

Figure 10. FrameSet and Frame that extend abstract FrameOrSet.

Figure 11 illustrates the frameset hierarchy of the two Frameset pages shown
in Figure 3(b), where Frame and FrameSet instances also have a pointer that refers
to their parent frame or frameset because they extend the abstract FrameOrSet
class shown in Figure 10.

Figure 11. Frameset hierarchy.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-010.jpg&w=185&h=148
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-011.jpg&w=334&h=275

206 Data Structure and Software Engineering: Challenges and Improvements

Page-transition framework

Each Web page is designed using visual Web components. The reference relation-
ships of Web components inside the same Web pages or between Web pages are
created by the drag and drop operations of the components, and represented by
the arrows whose colors show the types of the references. When a request is sub-
mitted from a Web page S, as a result, if a Web page T is displayed, we call page S
a source page, and page T a target page. When a source page transfers to a target
page, some of the Web components in the source page automatically submit some
data with the request. The target page automatically analyzes those submitted
data, generates some variables, and stores the analyzed results in the generated
variables. In this target page, by using those generated variables, developers can
easily write actions to be executed when the target page comes from each one of
its source pages.

As indicated in the Struts framework [7], the Web application controlled by
JavaServlet containers is composed of a sequence of display of a JSP page, receipt
of a request, execution of an action, and forwarding the request to the next JSP
page. The system provides the page-transition framework for Web applications,
where form data can be automatically submitted and analyzed, and actions to be
executed in a target page can be written for each one of the source pages of the
target page. Figure 12 illustrates how form data are automatically submitted and
analyzed. In the system, Web pages are composed f a variety of Web components
such as text fields, field references from program and DB tables, submit buttons,
HTML tables, and pivot tables. When a request is submitted from a source page
A to a target page B, some of Web components included in source page A auto-
matically submit their data. Target page B automatically receives these submitted
data, analyzes the contents of the data, transforms them into appropriate values,
and generates some variables to store those values. For example, a text field Web
component whose name is “name” submits the text that is input in this field, and
the target page receives this submitted text, generates a variable whose name is
“name,” and stores the text in this variable.

For example, in the Web-based chat system shown in Figure 4, a text field
Web component whose name is “user” submits the text that is input in this field,
and the target page receives this submitted text, generates a variable whose name
is “user,” and stores the text in this variable. In the Web source window of chat-
Frame Web page, we can refer to variables user, enter, exit, and textarea as pre-
defined variables, which are generated from the visual design of the Web pages
by the system. For example, variable user has the value of the name text field. We
do not need to care about the inconsistency between the parameter names of a
sender and a receiver. Using these predefined variables, we write necessary actions
for the processes of entering and exiting the room. In the Web source window of

© 2011 by Apple Academic Press, Inc.

Automatic Generation of Web Applications 207

utterFrame Web page, we write the process for adding the submitted message by
referring to the contents of the message as a predefined variable.

Figure 12. Automatic generation of variables.

The pivot table Web component that sums up data in two dimensions (shown
in Figure 7) submits the data that identify which data cells are selected or clicked.
The target page automatically receives these submitted data and analyzes the con-
tents of the data. When the data cells of the pivot table are displayed as buttons,
as shown in Figure 13, the pivot table Web component assigns the row value
(hour) that corresponds to the selected cell to parameter meetingHour, and the
column value (room) that corresponds to the selected cell to parameter meeting-
Room, and sends these parameters. The target page receives these parameters and
automatically generates variables “int meetingHour” and “String meetingRoom”
to store them. When the data cells of the pivot table are displayed as checkboxes,
the pivot table Web component assigns the selected cell number (col + columns.
length * row) to parameter meetingName, and sends this parameter. The target
page receives a sequence of the selected cell numbers, obtains the number of the
selected cells, and automatically generates two variables “int[] meetingHour” and
“String[] meetingRoom.” Then, from the selected cell numbers, it obtains the row
numbers and the column numbers of the selected cells, and stores their row and
column field values in meetingHour[i] and meetingRoom[i], respectively. When
no fields are assigned to the row and column cells of the pivot table, the pivot-
table Web component generates variable “boolean meetingName” that indicates
whether or not the data cell is selected. This mechanism enables the target page to
know the cells of the pivot table selected in its source page.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-012.jpg&w=249&h=186

208 Data Structure and Software Engineering: Challenges and Improvements

Figure 13. Automatic interpretation of submitted data for pivot tables.

The automatically generated variables consist of not only the variables that are
generated by analyzing received requests. In addition to these variables, the target
page automatically generates the variables that refer to Program tables and DB
tables when the target page refers to some fields of those tables. When the target
page refers to a field of a Program table Cart, it generates the variable cart that
refers to the Cart object taken out of the session. When the target page refers to a
field of a DB table meeting, it generates the variable meeting whose initial value is
also “meeting.” When the database table to be dealt with is dynamically changed
at the execution time of the application (see Figure 6(a)), we have only to assign
the real database table’s name to this variable meeting. The field references of the
DB table display their field values according to the database table variable meet-
ing points to.

Actions Defined in the Web-Based Chat System

In the Web source window that corresponds to chatFrame Web page, we can here
define actions to be executed when control transfers to this page. The “Predefined
vars:” column of the Web source window shows some variables that contain sub-
mitted data and these are automatically generated by the system. Figure 14 shows
the Web source window that corresponds to utterFrame Web page. Although a
typical page transition (a default transition) is specified as an arc from one Web
page to another Web page, the other transitions (as when a failure occurs) can be
specified in this Web source window as an action. The actions defined here will be
synthesized with designed Web components to generate the program code of the
Web application (see Figure 17).

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-013.jpg&w=228&h=165

Automatic Generation of Web Applications 209

Figure 14. Web source window for utterFrame page.

Figure 15 illustrates how predefined variables are generated for chatFrame and
utterFrame Web source windows. When we click on “enter” or “exit” button in
chatFrame Web page, a request is submitted to chatFrame Web page itself. There-
fore, variables enter, exit, textarea, user are generated as predefined variables in
chatFrame Web source window. When we click on “utter” button in utterFrame
Web page, a request is submitted to utterFrame Web page itself. Therefore, vari-
able utter for the text field, whose name attribute is “utter,” is generated as a pre-
defined variable in utterFrame Web source window as shown in “Predefined vars:”
column of Figure 14. Although utterFrame Web page contains “utter” button, no
variable for that button is generated because this button’s name attribute has not
been specified in this Web application.

Figure 15. Predefined variables for chatFrame and utterFrame Web source windows.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-014.jpg&w=260&h=183
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-015.jpg&w=275&h=142

210 Data Structure and Software Engineering: Challenges and Improvements

Actions Defined in the Reservation System

As shown in Figure 7, the reservation system for meeting rooms consists of three
Web pages, the reserveCheckbox page that displays the reservation, the input-
Name page that prompts customers to enter their names, and the doubleBook-
ing page that refuses their requests. Figure 16 illustrates an example of action
code written in the Web source window that corresponds to the reserveCheckbox
page. The reserveCheckbox page is accessed directly and it also comes from the
reserveCheckbox page itself.

(1) When this page is accessed directly, we do nothing, that is, no action needs
to be written. In this case, the text fields for entering the date and the cus-
tomer’s name and password are displayed.

(2) When the reserveCheckbox page comes from itself, we have the following
two cases:

 (2.1) the customer enters the date and his or her name and then clicks on
the Apply button;

 (2.2) the customer selects some of the checkboxes displayed and then
clicks on the Reserve/Cancel button.

Figure 16. Actions for the reserveCheckbox page.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-016.jpg&w=310&h=247

Automatic Generation of Web Applications 211

Figure 17. Automatic generation of Web application program code.

In the case of (2-1), the date and the customer’s name are sent, and variables
year, month, day, and name are automatically generated. Variable meeting that
points to the DB table, which is used in the pivot table, is also generated. We
construct a real DB table name from variables year, month, and day, and assign
the real DB table name to variable meeting. To display the reservation for that
date, the system dynamically expands the pivot table by retrieving the DB table
this variable meeting points to.

In the case of (2-2), parameter meetingName that indicates which checkboxes
are selected is sent, and variables meetingHour and meetingRoom are automati-
cally generated that store the field values corresponding to the selected cells. In
this case, the condition that meeting Hour.length is greater than zero becomes
true. We write some code to update the database. First, when the customer’s name

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-017.jpg&w=261&h=342

212 Data Structure and Software Engineering: Challenges and Improvements

has not yet been entered, we display the inputName page as shown in Figure
7. Next, we retrieve the database using the values of variables meetingHour[i]
and meetingRoom[i]. When the customer tries to cancel others’ reservations, we
display the doubleBooking page. Finally, we execute delete SQL statements for
cancellations and insert SQL statements for reservations to update the database.

From a Web page, code for displaying the corresponding Web page will be
automatically generated. If it refers to some fields of a DB table, code for retriev-
ing records from the corresponding DB table will be automatically generated.
Submitted data can be automatically received and analyzed, and then the variables
that contain received data will be automatically generated. The other logic such as
updating a DB table needs to be written manually as an action in a Web source
window.

System Configuration

The system exists on a client machine, and a Web server/Servlet container and a
database server exist on server machines. The system generates JSP pages and Java
class files from designed Web pages, Program tables, DB tables, and Web page
source files. It then uploads them to the Web server. To run a Web application,
the system invokes a Web browser so that it will display the first JSP page, which
is either automatically determined or chosen by a user. To display the preview of
a Web page, it generates a JSP page for preview, and uploads the JSP page to the
Web server. Then, the system itself accesses the JSP page, and shows its output
result in a Web preview window.

The BioPro system is not based on any of the existing frameworks. It proposes
a visual programming framework, where a generated application only uses Serv-
lets and JSPs. To connect to a PostgreSQL database server, the generated applica-
tion uses JDBC. The system generates Web application program code from the
visual design of a Web application. As shown in Figure 2, we first visually design
the contents of each of Web pages in their Web page design windows. When
we use database tables, we first visually design those database tables in DB table
design windows. Instead, we may specify the names of existing database tables
to display them in DB table design windows. We drag and drop the fields of a
database table from a DB table design window to a Web page design window so
that these fields will be displayed in the corresponding Web page. When we use
a table in the program that exists only during the execution of the program, we
visually design the contents of this table in a Program table design window. For
example, we design a table of an online shop cart in this Program table design
window. The system automatically generates JavaBeans code from these Program
tables. We next write the actions that are executed when control transfers to a Web

© 2011 by Apple Academic Press, Inc.

Automatic Generation of Web Applications 213

page in the Web source window that corresponds to the Web page. Control may
transfer to one Web page from multiple Web pages. In the Web source window
of a Web page, for each Web page control transfers from, we can write a necessary
action, which is executed when control transfers from the Web page to this Web
page. From these resources, the BioPro system automatically generates Servlets,
JSP pages [8], and Java classes that compose a Web application in a client side,
and uploads them to the Web server together with other resources such as image
files, and customized Java classes. To start the Web application, the system then
runs a Web browser to make it send a request to the entry Web page of the Web
application.

The system generates code for connecting a database server, retrieving records,
receiving submitted data, and displaying Web components designed in a Web
page. These processes will be run as threads. After these threads complete, it will
start a Web browser to access the entry Web page of the Web application. The
entry Web page is automatically determined as a Web page that does not have its
preceding page.

Figure 17 shows a method to automatically generate the program code of
the Web-based chat system from the visual design created in Section 3.3 “Visual
programming for frames and framesets.” The part of the program code printed in
italics in Figure 17 represents the code that was automatically generated by the
BioPro system. We first designed a Frameset page chat in the Frameset page design
window, and designed two Web pages that are displayed inside its frames in the
Web page design windows. In the Web source windows of the corresponding Web
pages, we then wrote the necessary actions that would be executed when control
transfers to each of the Web pages by referring to predefined variables (e.g., “utter”
as shown in Figure 14) that were automatically generated by the BioPro system.

The BioPro system generates the program code that composes the Web appli-
cation from these pieces of design information. It generates a JSP page “chat.jsp”
from the Frameset page chat, and as shown in Figure 17, it generates a JSP page
“utterFrame.jsp” by synthesizing the utterFrame Web page and its Web source.

observations on the Proposed System
applications of functional web components

As shown in Figure 4, the structure of the Web application is displayed visually,
and this makes it easier to understand the program and efficient to modify and
debug the program. When we design framesets and the frames that the frame-
sets contain, we can easily create them, and divide, delete, and exchange frames
by clicking or drag-and-dropping the mouse. In addition, we can create another

© 2011 by Apple Academic Press, Inc.

214 Data Structure and Software Engineering: Challenges and Improvements

frameset in a different Frameset page design window, and make the parent frame
refer to the created child frameset. This simplifies the design of framesets and
the frames that the framesets contain. We can also easily see the hierarchy of the
frames in the Frameset page design windows, and see the contents of the frames in
the Web page design windows that are pointed at from the corresponding frames
in the Frameset page design windows.

The pivot tables can sum up a various kinds of data in two dimensions. Devel-
opers can customize the form for displaying the summed up data that correspond
to each row and column. The information of selected cells in the pivot table is
automatically sent to a target page, and in the target page, developers can easily
obtain this information through automatically generated variables. We think that
the pivot tables can be applied to various Web applications. The application favor-
iteCake that has been shown in Figure 1 is also one example of the applications
that use pivot tables. Using a pivot table, the loveCake page displays the number
of the customers who like each kind of cake. This application only uses two of the
three cells in the pivot table. The column cell is expanded to display the images of
the cakes that are stored in the DB table cake. The data cell is expanded to display
the number of the customers who like each kind of cake using the display form
Counter (see Section 4.1 “Visual programming for pivot tables”). To do this, we
click on the Join button of the pivot table and enter a condition “cake.name =
favoriteCake.cake” to join two DB tables cake and favoriteCake. The system auto-
matically executes the following SQL statement to expand the pivot table:

select cake.image, favoriteCake.cake from cake, favoriteCake where cake.name
= favorite- Cake.cake.
For each kind of cake (cake.image), the number of the values the field favorite-

Cake.cake has is equivalent to the number of the customers who like that cake.
Web source windows show some automatically generated variables in their

predefined variable column. These automatically generated variables that have the
values of the query data submitted to the server enable developers to easily write
actions in thefields/methods columns and the page transfers columns of the Web
source windows. This avoids a mismatch problem between variable names that are
written in the form tags of JSP pages and in the methods of Servlets.

Comparison of Facilities with other Tools

Web application development tools are broadly classified into two groups, text-
oriented and visual-oriented. BioPro is a kind of visual-oriented tool with high-
level functional Web components. For eample, NetBeans [9] is a text-orient-
ed tool, and Sun Java Studio Creator [10] is a visual-oriented tool. When we
choose a Web component from a palette, NetBeans will generate and display its

© 2011 by Apple Academic Press, Inc.

Automatic Generation of Web Applications 215

corresponding HTML code in a source window while Sun Java Studio Creator
will paste its corresponding visual component in a form window. Table 2 shows
the comparison of the BioPro system with a conventional text-oriented IDE, Net-
Beans [9] and a conventional visual-oriented IDE, Sun Java Studio Creator [10]
concerning the facilities that assist in the development of Web applications. IDEs
are integrated development environments that include editors, compilers, debug-
gers, project management, various kinds of source code templates, refactoring
facilities, and application servers. On the other hand, unlike commercial software
tools, the proposed system BioPro is not a comprehensive Web development tool.
It has been developed to evaluate visual programming for high-level functional
Web components. These high-level functional Web components can reduce the
amount of codes required to display the components in Web pages, and perform
actions. We think that it will be much easier to develop Web applications if such
customizable high-level functional Web components are available even in any
type of software development environment.

Table 2. Comparison with other tools.

Code Generation Efficiency of Functional Web Components

To evaluate the efficiency and the ease of the development with the system, we de-
veloped several typical Web applications using the system, and compared it with
the development using an existing integrated development environment IDE
[11] and Struts [7]. Each of four programmers developed several sample programs
with IDE, BioPro, and Struts in this order. Those sample programs include Web
applications (1) selectFruit (selection of fruits), (2) onlineShop (online shopping
using a Program table), (3) reserveRoom (reservation for meeting rooms using
one pivot and two DB tables), (4) favoriteCake (a questionnaire program about
favorite cakes using a pivot table), and (5) webChat (Web-based chatting using
a frameset). Figure 18 shows the time and the lines of code required to develop
these applications on average. The time indicates how many hours it took to make
an application, test it, and make sure of its execution result. The lines of code

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-018.jpg&w=341&h=99

216 Data Structure and Software Engineering: Challenges and Improvements

indicate the total lines of JSP and Java code required to develop each application.
Because of the learning bias, the time required might have been advantageous to
the subsequent tools, BioPro and Struts. However, by using visual programming
of functional Web components, we were able to greatly reduce the code that was
required to develop Web applications.

Figure 18. Time and lines of code required.

The application “webChat” is a Web-based chatting program that uses a frame
set. In the Web-based chat system which is a typical example of conventional de-
velopment, it required 212 lines of code (10 for chat.jsp, 118 for chatFrame.jsp,
and 84 for utterFrame.jsp). This method reduced it to 63 lines of code, which is
about one-third. Talking about the efficiency, it only took about fifteen minutes
to design the chat Frameset, chatFrame Web page, and utterFrame Web page,
which are shown in Figure 4(a).

The application “reserveRoom” is a meeting-room reservation system that
makes use of a pivot table, where the data cells are displayed as either of check-
boxes and buttons. The application “favoriteCake” shown in Figure 1 is a ques-
tionnaire program of favorite cakes that also uses a pivot table.

The applications that used pivot tables reduced the amount of code greatly.
Pivot table components automatically retrieve the database to expand the pivot
tables, and submit the information of selected cells. Target pages can automatical-
ly receive and interpret this information and generate some variables to store it.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-11&iName=master.img-019.jpg&w=252&h=203

Automatic Generation of Web Applications 217

related work
This section gives the outlines and brief discussions of text-oriented IDEs, Web
application development frameworks, visual development environments for cli-
ent programs, visual-oriented IDEs, and model-based approaches.

text-oriented ides

As for world-widely used systems that assist in the development of Web applica-
tions, there are several IDEs such as Sun One Studio [11], IntelliJ IDEA [12],
CodeWarrior [13], Eclipse [14], NetBeans [9]. IDE is an integrated development
environment that includes editors, compilers, debuggers, project managements,
various source code templates, and application servers. It assists in the develop-
ment of software using object-oriented programming languages like Java. Besides
these systems, Zope [15] is an application server with which users can easily de-
velop Web applications using a Web browser that is connected to a Zope server.
FAR [16] is an end-user visual language to assist in the development of the Web
applications that use spreadsheets. DENIM [17] is a sketch-based visual language
to assist in the early stages of Web site design using the graph representation that
consists of Web pages as nodes and the dependencies between the Web pages
as arcs. JWIG [18] provides a session model and a flexible mechanism for dy-
namic construction of XHTML documents. With JWIG, a Web application can
be written as a single thread using an extension of Java. PageGen [19] provides a
scheme for dynamic generation of Web pages.

These text-oriented IDEs have a variety of functions. However, they only
provide fundamental Web components such as textfields, buttons, checkboxes,
anchors, and tables, and Web applications are developed using text-based lan-
guages such as XHTML, JSP, JSP tag libraries, and Java. On the other hand, the
proposed system provides visual high-level functional Web components, and this
paper has also presented how to implement and customize these components in
a flexible manner.

web application Development frameworks

Several frameworks for efficiently developing Web applications have been pro-
posed. Struts [7] provides a framework for building Web applications that consists
of such components as views, controllers, and actions. Separately from business
processes, users can easily write code for verifying form data and can specify target
actions to which requests are forwarded. Tiles is a framework for creating Web
pages that separates Web page layouts and their contents. It is used together with

© 2011 by Apple Academic Press, Inc.

218 Data Structure and Software Engineering: Challenges and Improvements

the Struts framework to create JSP pages to which requests are forwarded. Tiles
makes it easier to change the look and feel of a Web site. JavaServer Faces [20]
simplifies building user interfaces for Webapplications. It wires client-generated
events to server-side event handlers. Tapestry [21] is a framework for creating
Web applications in Java, where a Web application is composed of a combination
of a specification file in XML, an XHTML template and a Java class. The template
defines the XHTML document that includes dynamic contents, and the page
components written in Java define the representation of the dynamic contents.

These Web application development frameworks make it easier to develop
Web applications because they standardize various processes such as the receipt
of requests, the validation of form data, and Web page transfers, and these pro-
cesses become independent from the others. The BioPro system does not use these
frameworks. However, it is based on the MVC architecture, where data access
layer (model), presentation layer (view), and business-logic layer (controller) can
be independent from the other.

Visual Development environments for client Programs

In the development of client programs, a variety of graphical components have
been used to create their graphical user interfaces. This has made the software de-
velopment easier [11]. There are several researches on software development that
makes use of graphics, which include rapid development of visual applications
[22], the visualization of software requirements using multimedia [23–25], as-
sistance for object-oriented programming using UML [26, 27], the development
of language processors using the graphical representation of their behaviors [28,
29], automatic form generationby the combination of graphical components [30,
31], and visual software development environments [32, 33]. To assist in database
accesses using graphics, visual retrieval of structured Web information [34], and
the visualization of the contents of a database [35] have been researched.

In the BioPro system, we can design database tables in the same way as visual
programming tools, and the fields of the tables can be pasted in appropriate places
of Web pages by mouse dragging.

Visual-oriented ide’s

As for the development of server-side programs using graphics, there are some
Web design tools such as IronSpeed [36], Sun Java Studio Creator [10], Visual
Studio.NET [37], Web Sphere Studio [38], and Dreamweaver [39]. With these
tools, users can design the contents of Web pages using a variety of graphical
components. By connecting the pages to databases, they can create the dynamic

© 2011 by Apple Academic Press, Inc.

Automatic Generation of Web Applications 219

contents of the pages as well. These tools make it easy to design Web pages, and
program code is generated from those designed Web pages.

However, to develop a complete Web application, users need to write code to
define business processes and add it to the generated code. On the other hand, the
system this paper presents provides some high-level functional Web components
such as frames and framesets [40], pivot tables [41], and customizable visual Web
components. The pivot tables sum up various kinds of data in two dimensions as
in Microsoft Excel. The differences between Microsoft Excel and this system is as
follows:

(1) this system generates some Web components such as radio buttons and
checkboxes in the data cells of a pivot table to send a request to the
server;

(2) this system generates some variables that record the values indicating
which radio button or checkboxes are checked to automatically receive
those values on the sever side.

Model-Based Approaches

The Object-Oriented Hypermedia Design Method (OOHDM) [42–46] is a
model-based approach for building hypermedia applications. It comprises four
different activities: conceptual design, navigational design, abstract interface de-
sign, and implementation. It models a Web application so that the navigation
model can be separated from the conceptual model. UWAT+ [47, 48] makes it
possible to design Web application transactions according to the user’s perspective
and to integrate the Web transaction design with the information and navigation
design of the Web application. Web Modeling Language (WebML) [49] is a vi-
sual notation for specifying complex Web sites at the conceptual level. WebML
enables the high-level description of a Web site under distinct orthogonal dimen-
sions: its data content (structural model), the pages that compose it (composition
model), the topology of links between pages (navigation model), the layout and
graphic requirements for page rendering (presentation model), and the customi-
zation features for one-to-one content delivery (personalization model). Compre-
hension of Web applications is a complex task, since several concerns coexist in
their implementation, among which the business logic, the navigation structure
(as supported by hyperlinks and form submission), and persistent data storage.
Conallen’s stereotypes [50] are a set of UML stereotypes designed with Web ap-
plications in mind. They add information on such things as navigation structure,
page generation, and form submission that UML diagrams do not normally con-
tain explicitly. OPM/Web [51] introduces hierarchical state expressing and sup-
pressing to model both structure and dynamics of Web applications. WAST [52]

© 2011 by Apple Academic Press, Inc.

220 Data Structure and Software Engineering: Challenges and Improvements

specifies a navigational structure of Web applications and detects the inconsisten-
cy of parameter names between JSP pages and actions during the test execution.

Model-based approaches mainly support the conceptual design of Web ap-
plications. The BioPro system can assist in their implementation based on the
conceptual design. In addition, the inconsistency problem of parameter names
as described above will hardly occur. When users need to write code, the BioPro
system shows these parameter names as automatically generated variables in Web
source windows. Even if they use a wrong parameter name, this error can be de-
tected during the compilation time because that wrong variable is not declared.

conclusion
This paper has presented a method that makes it possible to visually design and
program Web applications that use frame facilities and pivot tables. Image-ori-
ented design using such graphical Web components and action writing for each
source page of a target page, which is based on automatic interpretation of sub-
mitted data, have important roles to develop Web applications. They have made
the development of Web applications easy, especially in the design of the presenta-
tion layer and action writing of the business-logic layer.

Existing tools such as Homepage Builder [4], and Dreamweaver & Fireworks
[39] provide a variety of GUI components and have sufficient facilities for editing
Web pages. On the other hand, the proposed system has facilitated the develop-
ment of Web applications by providing Web components such as Frameset pages,
Web pages, pivot tables, DB tables, Program tables, and Web source windows,
where each Web component can easily refer to the definitions of the other com-
ponents. As the next step, we are going to investigate how to visually incorporate
rich components such as Flex, Flash, JavaScript, and Applets in the design phase.
In the future, we intend to develop an end-user programming environment based
on the BioPro system, where typical business patterns will be shown by using a
sequence of functional components, and users will be guided and taught what to
do next to develop a Web application they have in mind.

references
1. S. Pemberton, D. Austin, J. Axelsson, et al., “XHTMLTM 1.0 the extensible

hypertext markup language (Second Edition),” 2002, http://www.w3.org/TR/
xhtml1.

2. P. van Schaik and J. Ling, “The effects of frame layout and differential back-
ground contrast on visual search performance in Web pages,” Interacting with
Computers, vol. 13, no. 5, pp. 513–525, 2001.

© 2011 by Apple Academic Press, Inc.

http://www.w3.org/TR/xhtml1/

Automatic Generation of Web Applications 221

3. T. Comber and J. Maltby, “Layout complexity: does it measure usability?,” in
Proceedings of the International Conference on Human-Computer Interaction
(INTERACT ‘97), pp. 623–626, Sydney, Australia, July 1997.

4. IBM, “WebSphere Studio Homepage Builder,” 2007, http://www-306.ibm.
com/software/awdtools/hpbuilder.

5. T. Shimomura, “Visual design and programming for Web applications,” Jour-
nal of Visual Languages & Computing, vol. 16, no. 3, pp. 213–230, 2005.

6. A. Leff and J. Rayfield, “Web-application development using the model/view/
controller design pattern,” in Proceedings of the 5th IEEE International Con-
ference on Enterprise Distributed Object Computing (EDOC ‘01), pp. 118–
127, Seattle, Wash, USA, September 2001.

7. J. Goodwill, Mastering Jakarta Struts, John Wiley & Sons, New York, NY,
USA, 2002.

8. Sun Microsystems, Inc., JavaServer Pages Technology, 2006, http://java.sun.
com/products/jsp.

9. NetBeans, 2008, http://www.netbeans.org.

10. Sun Microsystems, Inc., Sun Java Studio Creator, 2004, http://wwws.sun.com/
software/products/jscreator.

11. R. Mogha and R. Bhargava, Sun One Studio Programming, John Wiley &
Sons, New York, NY, USA, 2002.

12. JetBrains: IntelliJ IDEA, 2007, http://www.jetbrains.com/idea.

13. “CodeWarrior Development Tools,” 2008, http://www.freescale.com/codewar-
rior.

14. S. Shavor, J. D’Anjou, S. Fairbrother, D. Kehn, J. Kellerman, and P. McCarthy,
The JavaTM Developer’s Guide to Eclipse, Addison-Wesley, Reading, Mass,
USA, 2003.

15. A. Latteier and M. Pelletier, The Zope Book, Macmillan Computer, New York,
NY, USA, 2001.

16. M. Burnett, S. K. Chekka, and R. Pandey, “FAR: an end-user language to
support cottage e-services,” in Proceedings of the IEEE Symposia on Human-
Centric Computing Languages and Environments, pp. 195–202, Stresa, Italy,
September 2001.

17. J. Lin, M. Thomsen, and J. A. Landay, “A visual language for sketching large
and complex interactive designs,” CHI Letters, vol. 4, no. 1, pp. 307–314,
2002.

© 2011 by Apple Academic Press, Inc.

http://www-01.ibm.com/software/websphere/
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/us/sun/index.htm
http://www.jetbrains.com/idea/
http://www.freescale.com/webapp/sps/site/homepage.jsp?code=CW_HOME&tid=vanCODEWARRIOR
http://netbeans.org/

222 Data Structure and Software Engineering: Challenges and Improvements

18. A. S. Christensen, A. Møller, and M. I. Schwartzbach, “Extending Java for
high-level Web service construction,” ACM Transactions on Programming
Languages and Systems, vol. 25, no. 6, pp. 814–875, 2003.

19. N. Al-Darwish, “PageGen: an effective scheme for dynamic generation of Web
pages,” Information and Software Technology, vol. 45, no. 10, pp. 651–662,
2003.

20. Sun Microsystems, Inc., JavaServer Faces, 2003, http://java.sun.com/j2ee/
javaserverfaces.

21. Apache Software Foundation: Tapestry, 2003, http://jakarta.apache.org/tapes-
try.

22. G. D. Penna, B. Intrigila, and S. Orefice, “An environment for the design and
implementation of visual applications,” Journal of Visual Languages & Com-
puting, vol. 15, no. 6, pp. 439–461, 2004.

23. D. C. Kung, “An executable visual formalism for object-oriented conceptual
modeling,” Journal of Systems and Software, vol. 31, no. 1, pp. 33–43, 1995.

24. D.-J. Chen, W.-C. Chen, and K. M. Kavi, “Visual requirement representa-
tion,” Journal of Systems and Software, vol. 61, no. 2, pp. 129–143, 2002.

25. R. Castelló, R. Mili, and I. G. Tollis, “ViSta: a tool suite for the visualization
of behavioral requirements,” Journal of Systems and Software, vol. 62, no. 3,
pp. 141–159, 2002.

26. S. J. Mellor and M. J. Balcer, Executable UML: A Foundation for Model-
Driven Architecture, Addison-Wesley, Reading, Mass, USA, 2002.

27. C. Nentwich, W. Emmerich, A. Finkelstein, and A. Zisman, “BOX: brows-
ing objects in XML,” Software: Practice and Experience, vol. 30, no. 15,
pp. 1661–1676, 2000.

28. K. Zhang, D.-Q. Zhang, and J. Cao, “Design, construction, and application
of a generic visual language generation environment,” IEEE Transactions on
Software Engineering, vol. 27, no. 4, pp. 289–307, 2001.

29. S. Glass, D. Ince, and E. Fergus, “Llun—a high-level debugger for generated
parsers,” Software: Practice and Experience, vol. 31, no. 10, pp. 983–1001,
2001.

30. S. Stoecklin and C. Allen, “Creating a reusable GUI component,” Software:
Practice and Experience, vol. 32, no. 5, pp. 403–416, 2002.

31. S. A. Mamrak and S. Pole, “Automatic form generation,” Software: Practice
and Experience, vol. 32, no. 11, pp. 1051–1063, 2002.

© 2011 by Apple Academic Press, Inc.

http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://tapestry.apache.org/

Automatic Generation of Web Applications 223

32. K. L. Mills and H. Gomaa, “A knowledge-based method for inferring semantic
concepts from visual models of system behavior,” ACM Transactions on Soft-
ware Engineering and Methodology, vol. 9, no. 3, pp. 306–337, 2000.

33. A. F. Blackwell, “See what you need: helping end-users to build abstractions,”
Journal of Visual Languages & Computing, vol. 12, no. 5, pp. 475–499,
2001.

34. W.-S. Li, J. Shim, and K. S. Candan, “WebDB: a system for querying semi-
structured data on the Web,” Journal of Visual Languages & Computing, vol.
13, no. 1, pp. 3–33, 2002.

35. I. F. Cruz and P. S. Leveille, “As you like it: personalized database visualization
using a visual language,” Journal of Visual Languages & Computing, vol. 12,
no. 5, pp. 525–549, 2001.

36. Iron Speed, Inc., “Iron Speed Designer,” 2004, http://www.ironspeed.com.

37. D. D. Loveh, D. Maharry, B. Sempf, and D. Xie, Effective Visual Studio .Net,
Springer, New York, NY, USA, 2002.

38. I. Redbooks, Ejb 2.0 Development with Websphere Studio Application Devel-
oper, Vervante, Rolling Hls Ests, Calif, USA, 2003.

39. Adobe Systems Incorporated, “Adobe Dreamweaver and Fireworks,” 2007,
http://www.adobe.com/products/dreamweaver.

40. T. Shimomura, K. Ikeda, Q. L. Chen, N. S. Lang, and M. Takahashi, “Vi-
sual programming of hierarchical frames for Web applications,” in Proceedings
of the International Conference on Computer Engineering and Applications
(CEA ‘07), pp. 384–389, Gold Coast, Australia, January 2007.

41. T. Shimomura, K. Ikeda, Q. L. Chen, N. S. Lang, and M. Takahashi, “Visual
pivot-table components for Web application development,” in Proceedings of
the 3rd IASTED International Conference on Advances in Computer Science
and Technology (ACST ‘07), pp. 90–95, Phuket, Thailand, April 2007.

42. G. Rossi and D. Schwabe, “Object-oriented design structures in Web applica-
tion models,” Annals of Software Engineering, vol. 13, no. 1–4, pp. 97–110,
2002.

43. D. Schwabe, L. Esmeraldo, G. Rossi, and F. Lyardet, “Engineering Web ap-
plications for reuse,” IEEE Multimedia, vol. 8, no. 1, pp. 20–31, 2001.

44. D. Schwabe and G. Rossi, “From domain models to hypermedia applications:
an object-oriented approach,” in Proceedings of the International Workshop
on Methodologies for Designing and Developing Hypermedia Applications,
Edinburgh, UK, September 1994.

© 2011 by Apple Academic Press, Inc.

http://www.ironspeed.com/
http://www.adobe.com/products/dreamweaver.html

224 Data Structure and Software Engineering: Challenges and Improvements

45. D. Schwabe and G. Rossi, “Building hypermedia applications as navigational
views of information models,” in Proceedings of the 28th Hawaii International
Conference on System Sciences (HICSS ‘95), p. 231, Maui, Hawaii, USA,
January 1995.

46. D. Schwabe and G. Rossi, “The object oriented hypermedia design model,”
Communications of the ACM, vol. 38, no. 8, pp. 45–46, 1995.

47. D. Distante, G. Rossi, G. Canfora, and S. Tilley, “A comprehensive design
model for integrating business processes in Web applications,” International
Journal of Web Engineering and Technology, vol. 3, no. 1, pp. 43–72, 2007.

48. D. Distante, G. Canfora, S. Tilley, and S. Huang, “Redesigning legacy appli-
cations for the Web with UWAT+: a case study,” in Proceedings of the 28th
International Conference on Software Engineering (ICSE ‘06), pp. 482–491,
Shanghai, China, May 2006.

49. S. Ceri, P. Fraternali, and A. Bongio, “Web modeling language (WebML): a
modeling language for designing Web sites,” Computer Networks, vol. 33, no.
1–6, pp. 137–157, 2000.

50. F. Ricca, M. D. Penta, M. Torchiano, P. Tonella, and M. Ceccato, “An em-
pirical study on the usefulness of Conallen’s stereotypes in Web application
comprehension,” in Proceedings of the 8th IEEE International Symposium on
Web Site Evolution (WSE ‘06), pp. 58–68, Philadelphia, Pa, USA, September
2006.

51. I. Reinhartz-Berger, D. Dori, and S. Katz, “OPM/Web—object-process meth-
odology for developing Web applications,” Annals of Software Engineering,
vol. 13, no. 1–4, pp. 141–161, 2002.

52. H. Tai, T. Nerome, M. Abe, and M. Hori, “A model-driven development sup-
port environment for Web applications,” Transactions of Information Process-
ing Society of Japan, vol. 44, no. 6, pp. 1498–1508, 2003.

© 2011 by Apple Academic Press, Inc.

challenges and improvements
in Distributed Software

Development: a Systematic
review

Miguel Jiménez, Mario Piattini and Aurora Vizcaíno

abStract
Distributed Software Development (DSD) has recently evolved, resulting in
an increase in the available literature. Organizations now have a tendency to
make greater development efforts in more attractive zones. The main advan-
tage of this lies in a greater availability of human resources in decentralized
zones at less cost. There are, however, some disadvantages which are caused by
the distance that separates the development teams. Coordination and commu-
nication become more difficult as the software components are sourced from
different places, thus affecting project organization, project control, and prod-
uct quality. New processes and tools are consequently necessary. This work
presents the findings of a systematic review of the literature related to the

© 2011 by Apple Academic Press, Inc.

226 Data Structure and Software Engineering: Challenges and Improvements

challenges concerning Distributed Software Development, whose purpose is to
identify the solutions and improvements proposed up to the present day.

introduction
Recent years have seen the geographic distribution of software development.
The software industry now tends to relocate its production units in decentralized
zones in which a skilled workforce is more readily available, thus taking advantage
of political and economic factors [1]. The main objective of this is to optimize
resources in order to develop higher quality products at a lower cost than that of
colocated developments. Software Factories [2] are therefore organizational struc-
tures which automate parts of software development by imitating those industrial
processes that were originally linked to more traditional sectors such as those of
the automobile and aviation industries, decentralize production units, and pro-
mote the reusability of architectures, knowledge and components.

Distributed Software Development (DSD) allows team members to be lo-
cated in various remote sites during the software lifecycle, thus making up a net-
work of distant sub-teams. In some cases, these teams may be members of the
same organization; in other cases, collaboration or outsourcing involving different
organizations may exist. Traditional face-to-face meetings are, therefore, no longer
common, and interaction between members requires the use of technology to
facilitate communication and coordination. Although this phenomenon began in
the 90s, only during the last ten years has its strategic importance been recognized
[3], and related studies are very recent [4].

The distance between the different teams can vary from a few meters (when
the teams work in adjacent buildings) to different continents [5]. The situation
in which the teams are distributed beyond the limits of a nation is called Global
Software Development (GSD) [6]. This kind of scenario is interesting for several
reasons, mainly because it enables organizations to abstract themselves from geo-
graphical distance, whilst having qualified human resources and minimizing cost
[7], thus increasing the market area by producing software for remote clients and
obtaining a longer workday by taking advantage of time differences [8]. However,
a number of problems [9], caused mainly by distance, time, and cultural differ-
ences [10], must be confronted, and these depend largely on the specific charac-
teristics of each organization.

In this context, “offshoring’’ refers to the transfer of an organizational function
to another country, usually one in which human resources are cheaper. We refer
to “nearshoring’’ when jobs are transferred to geographically closer countries, thus
avoiding cultural and time differences between members and saving travel and

© 2011 by Apple Academic Press, Inc.

Challenges and Improvements in Distributed Software Development 227

communication costs. Outsourcing is a mean to contract an external organiza-
tion, independently of its location, rather than developing in-house [11].

The aforementioned development practices have as a common factor both the
problems arising from distance that directly affect the processes of communica-
tion and coordination, and control activities [12]. In these environments, com-
munication is less fluid than in colocalized development groups, and problems
related to coordination, collaboration, or group awareness therefore appear which
negatively affect productivity and, consequently, software quality. These factors
all influence the way in which software is defined, built, tested, and delivered to
customers, thus affecting the corresponding stages of the software life cycle.

In order to mitigate these effects, and with the aim of achieving higher levels
of productivity, organizations require new technologies, processes, and methods
[13] through improvements related to the software life cycle, project planning,
estimations, risks management, quality assurance, infrastructures, team skills, and
the division of responsibilities with the aim of supporting collaboration, coor-
dination, and communication among developers [14]. Iterative approaches are
commonly used in contrast to traditional waterfall or sequential methods but
these become more difficult to use consistently when teams are geographically
distributed [15].

The Model Driven Development (MDD) approach is currently emerging in
this field, providing reusability, maintainability, interoperability, and adaptabil-
ity through different languages and platforms, and improving software quality
and developers’ productivity. Model Driven Architecture (MDA) [16] is the most
frequently adopted MDD standard and provides concepts of separation in indi-
vidual models and transformation techniques.

Reference [17] discusses the main ideas with regard to how MDA can be used
within a collaborative environment to assist interenterprise business processes by
using tools that are able to take several input models and produce different kinds
of outputs. One representative example of the application of this approach is
presented in [18] with a proposal for modeling enterprise organization and de-
veloping groupware applications under a concrete MDA-based development pro-
cess, thus improving communication, collaboration, and coordination between
distributed actors. Tools such as InterDOC [19] also exists, which serve as an
example of the power of the approach to enable the authoring process when in-
teroperability among different collaborative applications is necessary.

This work presents a systematic review of the literature dealing with efforts
related to DSD and GSD with the purpose of discovering the aspects upon which
researchers have focused until this moment, thus allowing us to analyze the issues
and the solutions which have been contributed up to the present through infor-
mation of a highly scientific and practical value.

© 2011 by Apple Academic Press, Inc.

228 Data Structure and Software Engineering: Challenges and Improvements

The paper is organized as follows. Section 2 describes the systematic review
procedure applied and the results obtained. Section 3 presents an analysis of the
results presented in the previous section. The issues and solutions found relating
to DSD and GSD are explained in Section 4. The main success factors necessary
to carry out a distributed development are listed in Section 5. Finally, Section 6
provides some concluding remarks.

Systematic review Procedure
A systematic review of literature [20] permits the identification, evaluation, and
interpretation of all the available relevant studies related to a particular research
question, topic area or phenomenon, thus providing results of a high scientific
value by classifying studies into primary studies and secondary or relevant studies,
by means of synthesizing existing work according to a predefined strategy.

This systematic review has been carried out within the context of the FAB-
RUM project, whose main objective is the development of a process with which
to manage the relationships between a planning and design center and a software
production factory, this work serves as a starting point upon which to focus future
research.

We have followed the systematic search procedure provided by Kitchenham
[20], and the selection of primary studies method followed in [21].

Question formularization

The research question that guided this systematic review was: What are the initia-
tives carried out in relation to the improvement of DSD processes?

The keywords that guided the search to answer the research question were:
distributed, software, development, global, enterprise, organization, company,
team, offshore, offshoring, outsource, outsourcing, nearshore, nearshoring, mod-
el, strategy, and technique.

The ultimate goal of this systematic review consists of identifying the best
procedures, models, and strategies employed, and to determine the most impor-
tant improvement factors for the main problems found. The population will be
composed of publications found in the selected sources which apply procedures
or strategies related to DSD.

Sources Selection

The search strings (shown in Table 1) were established by combining the keyword
list from the previous section through the logical connectors “AND’’ and “OR.’’

© 2011 by Apple Academic Press, Inc.

Challenges and Improvements in Distributed Software Development 229

Table 1. Basic search strings.

The studies were obtained from the following search sources: Science@Direct
(http://www.sciencedirect.com/), Wiley Interscience (http://www.interscience.
wiley.com/), IEEE Digital Library (http://www.computer.org/), and ACM Digi-
tal Library (http://portal.acm.org/dl.cfm). The quality of these sources guarantees
the quality of the studies. The basic search chains had to be adapted to the search
engines of each source.

Studies Selection

The inclusion criteria for determining whether a study should be considered
relevant (a potential candidate to become a primary study) were based on
analyzing the title, abstract, and keywords from the studies retrieved by the
search to determine whether they dealt with DSD as regards being orientated
towards process improvement, quality, coordination, collaboration, commu-
nication, and related issues that carry out any improvement concerning the
subject in question. In some cases it was necessary to read the entire docu-
ment to determine its relevance.

After analyzing the results of the first iteration of the systematic review, we
applied exclusion criteria to obtain the primary studies, excluding those studies
which, despite addressing the issue of DSD, did not contribute to any significant
improvement method. We also dismissed those studies which focused solely upon
social issues, cultural or time differences or focused solely upon free software,
although other papers that address these topics in a secondary manner have been
taken into consideration.

The search procedure produced 768 initial studies, of which 497 were not
repeated. 170 of these were selected as being relevant, and 78 were selected as pri-
mary studies (the complete list of primary studies is shown in the appendix. Table
2 shows the distribution of studies found according to the sources used.

© 2011 by Apple Academic Press, Inc.

http://www.sciencedirect.com/
http://onlinelibrary.wiley.com/
http://dl.acm.org/dl.cfm
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-12&iName=master.img-000.jpg&w=249&h=110

230 Data Structure and Software Engineering: Challenges and Improvements

Table 2. Distribution of studies found.

information extraction

The process of extracting information from the primary studies followed an in-
clusion criterion based on obtaining information concerning the key success fac-
tors, improvement strategies employed, processes improved and the most impor-
tant ideas in each study, thus establishing a categorization between objective and
subjective results. All articles were categorized by paying close attention to the
methodological study followed according to the models presented in [22]; these
categorizations are as follows:

(i) case studies,
(ii) literature reviews,
(iii) experiments,
(iv) simulations,
(v) surveys.
The nonexperimental model for studies (which makes a proposal without test-

ing it or performing experiments) was also applied.
Information corresponding to a specific template (including the type of study,

methodology employed, affected processes, and a description of the approach)
was extracted from each paper selected for analysis, with particular attention be-
ing paid to the problems dealt with and the solutions contributed.

trends in Distributed Software Development
research
This section analyzes and discusses the content of the primary studies found in
order to extract relevant information.

Figure 1(a) shows that the majority of the primary studies analyzed are case
studies and experimental papers. Nonexperimental studies and surveys in which
members involved in the development take part in outlining their difficulties have
a significant representation.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-12&iName=master.img-001.jpg&w=342&h=67

Challenges and Improvements in Distributed Software Development 231

Figure 1. Type of articles analyzed (a), and environments of study development (b).

However, as Figure 1(b) shows, the majority of primary studies are focused
upon the business field but studies in the university environment also appear in
which groups of students carried out developments in different locations. 38%
of the studies did not indicate their field of work or their classification was not
applicable owing to the nature of the study, while 6% were from organizations
which did not specify their corporate or university environment.

Publications tendency

After concentrating on the number of relevant studies found through the system-
atic search carried out, it can be concluded that the subject of DSD is evidently an
area which was not widely studied until a few years ago, and that it is only recently
that a greater number of publications have appeared; thus, as Figure 2 shows,
2006 is the year in which by far the greatest number of studies was published,
bearing in mind that the data shown for 2008 only reflects the studies found
before September of that year.

Figure 2. Trends in publications concerning DSD.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-12&iName=master.img-002.jpg&w=343&h=142
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-12&iName=master.img-003.jpg&w=272&h=114

232 Data Structure and Software Engineering: Challenges and Improvements

Standards employed

Figure 3 presents the standards addressed by the articles analyzed. Based on the
available data, it may be inferred that few studies indicate the use of specific stan-
dards. In part, this is attributable to the fact that the vast majority of studies
deal with issues such as communication difficulties in which the standard used is
not of importance. The standards supported by most primary studies are CMM,
CMMI, and ISO 9001; it is common to jointly apply both. The majority of the
studies which applied CMM and CMMI employed a maturity level of 2.

Figure 3. Standards employed in the studies.

improved or analyzed Processes

Taking the primary studies analyzed as a reference, we carried out a classification
in terms of processes in the software life cycle to which improvements were pro-
posed or success factors or areas to be improved related to DSD were discussed.
Primary studies were classified according to the improved or studied processes, in
each case based on the ISO/IEC 12207 standard [23], with the aim of obtaining
a vision of the process life cycle that requires special attention when working in
a distributed environment, and discovering the improvement efforts carried out
until that moment.

The ISO 12207 standard establishes the activities that may be carried out
during the software life cycle, which are grouped into main processes, support
processes, and general processes. The results are presented graphically in Figure 4,
which indicates frequency in function of the number of studies that address each
process.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-12&iName=master.img-004.jpg&w=309&h=168

Challenges and Improvements in Distributed Software Development 233

Figure 4. Processes improved or analyzed by the primary studies adjusted to ISO 12207.

The results obtained indicate that greater efforts are focused on human re-
sources, organizational management, infrastructure, organizational alignment,
and project management. From these data we can infer that communication be-
tween team members is a critical factor. Most of the studies are centered on the
organizational processes, and we thus believe that there is a need for more studies
focused on the level of projects and technical aspects.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-12&iName=master.img-005.jpg&w=342&h=411

234 Data Structure and Software Engineering: Challenges and Improvements

contents of the Studies

Table 3 provides a schematic representation of the lines towards which the prima-
ry studies have focused. Most of the works study tools or models designed specifi-
cally for DSD which attempt to improve certain aspects related to development
and coordination. Another large part of the studies are related to communication
processes and the integration of collaborative tools, combining tools such as e-
mail or instant messaging, and studying their application by means of different
strategies. Most of the studies address the subject of communication difficulties
in at least a secondary manner, presenting this aspect as being one of the most
important in relation to the problematic nature of DSD.

Table 3. Thematic areas dealt with in the primary studies.

challenges and improvements
In this section, we synthesize the challenges and proposed improvements identi-
fied through the systematic review, discussing the main subjects.

communication

The software life cycle requires a great deal of communication between those
members involved in the development who exchange a large amount of informa-
tion through different tools and different formats without following communica-
tion standards, and who thus face misunderstandings and high response times.
These drawbacks, combined with the complex infrastructure and the great size of
personal networks which change over time, are summarized in a decrease in com-
munication frequency and quality, which directly affects productivity. In order
to decrease these effects, both methodologies and processes must be supported
by collaborative tools, which are a means of avoiding ambiguity and face-to-face

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-12&iName=master.img-006.jpg&w=252&h=126

Challenges and Improvements in Distributed Software Development 235

meetings without comprising the quality of the results, as is proposed by M. A.
Babar et al. [PS56]. K. Mohan and B. Ramesh [PS40] discuss the need for user-
friendly tools, and integrate collaborative tools and agents to improve knowledge
integration. M. R. Thissen et al. [PS70] examine communication tools and de-
scribe collaboration processes, dealing with techniques such as conference calls
and e-mail.

Cultural differences imply different terminologies which may cause mistakes
in messages and translation errors. Different levels of understanding of the prob-
lem domain also exist, as do different levels of knowledge, skills, and training
between teams. The use of translation processes and codification guidelines is
therefore useful [PS6].

Requirements should also be clearly defined and modeled in order to make
them easily understood, and dependencies among modules should be identified
in the architecture. G. N. Aranda et al. [PS34] propose a technique with which
to reduce communication problems in the process of requirements elicitation by
selecting a suite of groupware tools and techniques from the field of cognitive
psychology.

The security of communications must also be taken into account. All the
members involved must be able to work with several tools, and the human factor
takes on more importance; the team members’ communication skills are a critical
factor.

group awareness

Members of a virtual team tend to be less productive due to feelings of isolation
and indifference. Literature deals with the poor socialization and sociocultural
differences which cause a lack of trust [PS39]. Developers need to have as much
information as possible at their disposal, and to know the full status of the project
and its past history, which will in turn allow them to create realistic assumptions
about the project. Frequent changes in processes, lack of continuity in commu-
nications, and lack of collaborative tool integration cause remote groups to be
unaware of what is important because they do not know what other people are
working on. As a consequence, they cannot find the right person and/or timely
information which will enable them to work together efficiently, resulting in mis-
alignment, replanning, redesign, and rework.

M. A. D. Storey et al. [PS65] propose a framework for the comparison and
understanding of visualization tools that provides awareness of software develop-
ment activities, giving a solid grounding to the existing theoretical foundation
of the field. Augur [PS14] similarly describes a visualization tool which supports

© 2011 by Apple Academic Press, Inc.

236 Data Structure and Software Engineering: Challenges and Improvements

DSD processes by creating visual representations of both software artifacts and
software development activities, thus allowing developers to explore the relation-
ships between them.

J. D. Herbsleb et al. [PS26] present a tool which provides a visualization of the
changing management system, thus making it easy to discover who has experience
in working on which parts of the code, and to obtain contact information for that
person. In the same line, R. Holmes and R. J. Walker [PS25] present the YooHoo
awareness system to help developers to keep apprised of code changes, providing
notifications in a flexible manner.

Apart from using these tools, the development process must also be adapted
to provide the team members with a better awareness of the project status. It must
therefore be automated to provide notifications of actions and decisions to the
roles involved.

Software Configuration Management

Distributed environments present problems derived from conflicts related to
source code control. Coordination and synchronization become more complex
as the degree of distribution of the team grows, and traceability is a critical factor.
Source control systems must support access through Internet, thus confronting its
unreliable and insecure nature and the higher response times.

To reduce these drawbacks, S. E. Dossick and G. E. Kaiser [PS11] propose
CHIME, an Internet- and Intranet-based application which allows users to be
placed in a 3D virtual world representing the software system. Users interact with
project artifacts by “walking around’’ the virtual world, in which they collaborate
with other users through a feasible architecture. B. Al-Ani et al. [PS12] present a
similar tool which visualizes the developers and artifacts in a project using a 3D
metaphor and give managers an overview of ongoing activities in the project.
With the same purpose in mind, J. T. Biehl et al. [PS2] present FASTDash, a
user-friendly tool that uses a spatial representation of the shared code base which
highlights team members’ current activities, allowing a developer to rapidly de-
termine which team members have source files checked out, which files are being
viewed, and what methods and classes are currently being changed, providing
immediate awareness of potential conflict situations, such as two programmers
editing the same source file.

B. Bruegge et al. [PS5] present ADAMS, an artifact-based process support sys-
tem, supporting permissions definition, quality management and storing trace-
ability links between artifacts.

© 2011 by Apple Academic Press, Inc.

Challenges and Improvements in Distributed Software Development 237

Knowledge Management

The team members’ experiences, methods, decisions, and skills must be accu-
mulated during the development process through effective information-sharing
mechanisms, so that each team member can use the experience of his/her prede-
cessor and the experience of the team accumulated during development, thus sav-
ing costs and time by avoiding redundant work. Distributed environments must
facilitate knowledge sharing by maintaining a product/process repository focused
on well-understood functionality by linking content from sources such as e-mail
and online discussions, and sharing metadata information among several tools.

To solve the drawbacks caused by distribution, M. A. Babar [PS23] proposes
the application of an electronic workspace paradigm to capture and share knowl-
edge to support the software architecture processes.

H. Zhuge [PS76] presents an approach that works with a knowledge reposi-
tory in which information related to each project is saved by using internet-based
communication tools, thus enabling a new team member to become quickly ex-
perienced by learning the knowledge stored.

K. Mohan and B. Ramesh [PS40] present an approach based on a traceability
framework that identifies the key knowledge elements which are to be integrat-
ed, and a prototype system that supports the acquisition, integration, and use of
knowledge elements, allowing the knowledge fragments stored in diverse environ-
ments to be integrated and used by various stakeholders in order to facilitate a
common understanding.

Change cannot be limited solely to tools, but must also take place in the
organization and role distribution. Documentation must always be updated and
structured to prevent assumptions and ambiguity, therefore facilitating the main-
tainability of the software developed.

coordination
Coordination in multisite developments becomes more difficult in terms of artic-
ulation work, as problems derived from communication, lack of group awareness,
and the complexity of the organization appear which influence the way in which
the work must be structured and managed [PS3]. J. D. Herbsleb et al. [PS22]
suggest that multisite communication and coordination require more people to
participate which causes delays. Large changes involve multiple sites and greater
implementation times. Changes in multiple distributed sites involve a large num-
ber of people. More progress reports, project reviews, conference calls, and regular
meetings to take corrective action are therefore needed, thus minimizing task

© 2011 by Apple Academic Press, Inc.

238 Data Structure and Software Engineering: Challenges and Improvements

dependencies with other locations. Collaborative tools must support analysis, de-
sign and development to permit monitoring activities and managing dependen-
cies, notifications, and implementation of corrective measures. P. Ovaska et al.
[PS47] study the coordination of interdependencies between activities, including
the figure of a chief architect to coordinate the work and maintain the conceptual
integrity of the system.

S. Setamanit et al. [PS59] describe a simulation model to study different ways
in which to configure global software development processes. Such models, based
on empirical data, allow research into and calculation of the impact of coordina-
tion efficiency and its effects on productivity.

C. R. de Souza et al. [PS63] present the Ariadne tool which analyzes software
projects for dependencies and helps to find coordination problems through a vi-
sual environment.

collaboration

Software development is a collaborative activity in which business analysts, cus-
tomers, system engineers, architects, and developers interact. The concurrent
edition of models and processes requires synchronous collaboration between
architects and developers who cannot be physically present at a common loca-
tion. Software modeling requires concurrency control in real time, thus enabling
geographically dispersed developers to edit and discuss the same diagrams, and
improving productivity by providing a means through which to easily capture and
model difficult concepts through virtual workspaces and the collaborative edition
of artifacts by means of tools which permit synchronized interactions. S. Liu et al.
[PS35] present an interesting approach which can support real-time collaborative
UML-based modeling.

B. Bruegge et al. [PS4] describe SYSIPHUS, a distributed environment which
provides a uniform framework for system models, collaboration artifacts, and or-
ganizational models, with services for exploring, searching, filtering, and analyz-
ing the models.

A further approach is presented by J. Suzuki and Y. Yamamoto [PS16], [PS67]
with the SoftDock framework which solves the issues related to software compo-
nent modeling and their relationships, describing and sharing component models
information, and ensuring the integrity of these models. Developers can therefore
work by analyzing, designing, and developing software from component models
and transfer them by using an exchange format, thus permitting communication
between team members. S. Sarkar et al. [PS57] describe CollabDev, a human as-
sisted collaborative knowledge tool with which to analyze applications in multiple

© 2011 by Apple Academic Press, Inc.

Challenges and Improvements in Distributed Software Development 239

languages and render various structural, architectural, and functional insights to
the members involved in maintenance.

J. T. Biehl et al. [PS78] present IMPROMPTU, a framework for collaboration
in multiple display environments, which allows users to share task information
through displays via off-the-shelf applications.

In another direction, X. WenPeng et al. [PS75] study Galaxy Wiki, an online
collaborative tool based on the wiki concept which permits the existence of a col-
laborative authoring system for documentation and coordination purposes, thus
allowing developers to compile, execute, and debug programs in wiki pages.

The most valuable characteristics of these kinds of tools for an organization are
their simplicity, usability, accessibility, adaptability, and broadband requirements.
We therefore believe that proposals based on the wiki concept and Intranet web-
based environments are more generic and easier to apply.

Project and Process Management

High organizational complexity, scheduling, task assignment, and cost estima-
tion become more problematic in distributed environments as a result of volatile
requirements, changing specifications, cultural diversity, and the lack of informal
communication [PS7]. Managers must control the overall development process,
improving it during the enactment and minimizing any factors that may decrease
productivity, taking into account the possible impact of diverse cultures, identify-
ing interrelated tasks, and minimizing dependencies among distributed groups.

The maturity of the process becomes a key success factor. M. Passivaara and
C. Lassenius [PS48] propose incremental integration and frequent deliveries by
following informing and monitoring practices.

H. Spanjers et al. [PS64] present SoftFab, an infrastructure which enables
projects to automate the building and test process, and which manages all the
tasks remotely though a control center.

G. Gousios et al. [PS17] propose a model for evaluating developers’ contribu-
tions by combining traditional metrics with data mined from software repositories
to extract contribution indicators. In the same line, N. Nagappan et al. [PS43]
present a metric scheme to quantify organizational complexity.

R. J. Madachy [PS38] deals with economic issues, presenting a set of cost
models to estimate distributed teams’ work, and taking into account different
environmental characteristics of the teams, localized labor categories, calendars,
compensation rates, and currencies for costing.

© 2011 by Apple Academic Press, Inc.

240 Data Structure and Software Engineering: Challenges and Improvements

The automation of the process through an adaptable tool is consequently nec-
essary in order to manage tasks and metrics through customizable reports man-
aged by a central server and ensuring the application of the development processes
in compliance with a predefined standard.

Process Support

Processes should reflect the direct responsibilities and dependencies between tasks,
notifying the people involved of the changes that concern them, thus avoiding the
information overload of team members. Process modeling and enactment should
support the intersite coordination and cooperation of the working teams, offering
automated support to distributed project management. Problems derived from
process evolution, mobility, and tool integration appear within this context. Pro-
cess engines have to support changes during enactment. Furthermore, distributed
environments usually involve a large network of heterogeneous, autonomous and
distributed models, and process engines, which requires the provision of a frame-
work for process system interoperability.

In relation to these problems, A. Fernández et al. [PS13] present the SPEAR-
MINT process modeling environment, which supports extensive capabilities for
multiview modeling and analysis, and XCHIPS for Web-based process support
which permits enactment and simulation functionalities.

S. Setamanit et al. [PS59] describe a hybrid computer simulation model of
software development processes to study alternative ways in which to configure
GSD projects in order to confront communication problems, control and coordi-
nation problems, process management, and time and cultural differences.

Quality and Measurement

The quality of products is highly influenced by the quality of the processes that
support them. In DSD projects the impact of issues can be magnified when a
problem is discovered, and it is more difficult to recover from this than in collo-
cated projects. Organizations should introduce new quality assurance models and
measures to obtain information which can be adapted to the distributed scenarios,
thus ensuring that the requirements reflect the customer’s needs. One of the most
frequently recommended practices is that of automated code inspections [PS4]
and the application of coding standards. With this aim, K. V. Siakas and B. Bal-
strup [PS27] propose the capability model eSCM-SP, which has many similarities
with other capability-assessment models such as CMMI, Bootstrap or SPICE,

© 2011 by Apple Academic Press, Inc.

Challenges and Improvements in Distributed Software Development 241

and the SQM-CODE model, and considers the factors that influence software
quality management systems from a cultural and organizational perspective.

J. D. Herbsleb et al. [PS21] work with several interesting measures, such as the
interdependence measure which allows the degree of dispersion of work among
sites to be determined by looking up the locations of all the individuals. F. Lanu-
bile et al. [PS30] similarly propose metrics associated with products and processes
oriented towards software defects such as: discovery effort, reported defects, de-
fects density, fixed defects or unfixed defects.

Furthermore, software architecture evaluation usually involves a large number
of stakeholders who need face-to-face evaluation meetings, and adequate collab-
orative tools are therefore needed, such as that proposed by M. A. Babar et al.
[PS56].

We observed a lack of empirical studies that allow us to enumerate reliable
measures, and more articles related to tests in distributed environments, which are
directly related to software quality, are also necessary.

risk Management

Risk management is a critical project management activity. In addition to all the
known traditional issues connected with collocated environments [PS7], DSD
development includes issues related to coordination, problem resolution, evolving
requirements, knowledge, sharing and risk identification [14]. Software defects
become more frequent due to the added complexity, and in most cases, this is re-
lated to communication problems and a lack of group awareness. Defects control
must be adapted by making a greater effort in risk management activities. The use
of adequate measures and the requirements definition is important key factors.

In an attempt to minimize these problems, F. Lanubile et al. [PS30] define
a process, specifying roles, guidelines, forms and templates, and describe a web-
based tool that adopts a re-engineered inspection process in order to minimize
synchronous activities and coordination problems and thus support geographi-
cally dispersed teams.

R. Kuni and Navneet Bhushan [PS29] propose the WOOM methodology
to provide measures and facilitate decision making, taking into account both the
risks during various lifecycle phases and mitigation plans.

Rules and guidelines with which to organize the teams and their interactions
become necessary. Teams must be continuously controlled in order to detect
problems and take corrective actions.

© 2011 by Apple Academic Press, Inc.

242 Data Structure and Software Engineering: Challenges and Improvements

Success factors
From the experimental studies analyzed, we have extracted the following success
factors of DSD. The primary studies referenced are listed in the appendix.

i. Intervention of human resources by participating in surveys [PS56],
[PS21].

ii. Carrying out improvements based on the needs of the company, taking
into account the technologies and methodologies used [PS1]. The tools
employed at the present must be adapted and integrated [PS58].

iii. Training of human resources in the tools and processes introduced
[PS22].

iv. Registration of activities with information on pending issues, errors and
people in charge [PS2], and the provision of awareness of software devel-
opment activities [PS65].

v. Establishment of an efficient communication mechanism between the
members of the organization, allowing a developer to discover the status
and changes made within each project [PS67], [PS2].

vi. Using a version control tool in order to control conflictive situations
[PS49].

vii. There must be a manner in which to permit the planning and scheduling
of distributed tasks, taking into account costs and dependencies between
projects, and the application of corrective measures and notifications
[PS14], [PS38].

viii. Application of maturity models and agile methodologies [PS32] based on
incremental integration and frequent deliveries.

ix. Application of MDD approaches to automate development tasks [PS64],
[PS72].

x. Systematic use of metrics tailored to the organization [PS22].

conclusions
In this work we have applied a systematic review method in order to analyze the
literature related to the topic of DSD within the FABRUM project context whose
main objective is to create a new DSD model with which to manage the relation-
ships between a planning and design center and a software production factory.
This work serves as a starting point from which to establish the issues upon which
subsequent research will be focused.

© 2011 by Apple Academic Press, Inc.

Challenges and Improvements in Distributed Software Development 243

The results obtained from this systematic review have allowed us to obtain
a global vision of a relatively new topic which should be investigated in detail.
However, every organization has concrete needs which basically depend on its dis-
tribution characteristics, its activity and the tools it employs. These factors there-
fore cause this subject to be extremely wide-ranging, and lead to the necessity
of adapting both the technical and organizational procedures, according to each
organization’s specific needs.

The proposals found in the analyzed studies were, in general, mainly con-
cerned with improvements related to the use of collaborative tools, the in-
tegration of existing tools, source code control, or the use of collaborative
agents. Moreover, it should be stressed that the evaluation of the results ob-
tained from the proposed improvements are often based on studies in a single
organization, and sometimes only takes into account the developers’ subjec-
tive perception.

On the other hand, it should be noted that maturity models such as CMM,
CMMI, or ISO, which would be of particular relevance to the present investi-
gation, represent only 17% of all analyzed works. The fact that almost all the
experimental studies that employed CMMI and CMM applied a maturity level
of 2 suggests that the cost of implementing higher maturity levels in distributed
environments might be too high. However, there is a need for more studies related
to the application of maturity models and metrics to quantify issues related to
the process areas. The application of agile methodologies based on incremental
integration and frequent deliveries, and frequent reviews of problems to adjust
the process become important success factors. We also found an increasing inter-
est in modeling in software development, and MDA approaches as a means to
improve productivity, quality and understanding among members involved in the
development process.

Finally, we must emphasize that the search was reduced to a limited number of
search engines and excluded studies which addressed the subject of DSD but did
not contribute any significant method or improvement in this research context.
However, since this is such a wide area, some of these works present interesting
parallel subjects for the development of this investigation, and their study would,
therefore, be important in a future work. We also have found studies related to the
business perspective or focused on the customer which may be useful for related
works. Furthermore, many studies mainly related to tools which are not included
in the context of DSD but are useful in fields related to communications or source
control also exist.

© 2011 by Apple Academic Press, Inc.

244 Data Structure and Software Engineering: Challenges and Improvements

appendix
a. Primary Studies Selected

The selected primary studies in the systematic review are presented in Table 4.

Table 4. Primary studies selected in the systematic review.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-12&iName=master.img-007.jpg&w=342&h=443

Challenges and Improvements in Distributed Software Development 245

Table 4. (Continued)

acknowledgements
The authors acknowledge the assistance of MELISA Project (PAC08-0142-3315),
financed by the “Junta de Comunidades de Castilla-La Mancha” of Spain. This
work is part of FABRUM Project (PPT-430000-2008-63), financed by “Min-
isterio de Ciencia e Innovación” of Spain and by Alhambra-Eidos (http://www.
alhambra-eidos.es/).

references
1. W. Aspray, F. Mayadas, and M. Y. Vardi, “Globalization and offshoring of soft-

ware,” Report of the ACM Job Migration Task Force, Association for Comput-
ing Machinery, New York, NY, USA, 2006.

2. J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools, John
Wiley & Sons, New York, NY, USA, 2004.

© 2011 by Apple Academic Press, Inc.

http://www.alhambra-eidos.com/ES/
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-12&iName=master.img-008.jpg&w=342&h=257

246 Data Structure and Software Engineering: Challenges and Improvements

3. R. Davison, “Offshoring information technology: sourcing and outsourcing to
a global workforce,” Information Technology for Development, vol. 13, no. 1,
pp. 101–102, 2007.

4. R. Prikladnicki, D. Damian, and J. L. N. Audy, “Patterns of evolution in the
practice of distributed software development: quantitative results from a sys-
tematic review,” in Proceedings of the 12th Conference on Evaluation and As-
sessment in Software Engineering (EASE ‘08), Bari, Italy, June 2008.

5. R. Prikladnicki, J. L. N. Audy, and J. R. Evaristo, “Distributed software devel-
opment: toward an understanding of the relationship between project team,
users and customers,” in Proceedings of the 5th International Conference on
Enterprise Information Systems (ICEIS ‘03), pp. 417–423, Angers, France,
April 2003.

6. J. D. Herbsleb and D. Moitra, “Global software development,” IEEE Software,
vol. 18, no. 2, pp. 16–20, 2001.

7. W. Kobitzsch, D. Rombach, and R. L. Feldmann, “Outsourcing in India,”
IEEE Software, vol. 18, no. 2, pp. 78–86, 2001.

8. C. Ebert and P. De Neve, “Surviving global software development,” IEEE Soft-
ware, vol. 18, no. 2, pp. 62–69, 2001.

9. L. Layman, L. Williams, D. Damian, and H. Bures, “Essential communication
practices for extreme programming in a global software development team,”
Information and Software Technology, vol. 48, no. 9, pp. 781–794, 2006.

10. S. Krishna, S. Sahay, and G. Walsham, “Managing cross-cultural issues in
global software outsourcing,” Communications of the ACM, vol. 47, no. 4,
pp. 62–66, 2004.

11. S. McConnell, Rapid Development: Taming Wild Software Schedules, Micro-
soft Press, Redmond, Wash, USA, 1996.

12. D. Damian, F. Lanubile, and H. L. Oppenheimer, “Addressing the challenges
of software industry globalization: the workshop on global software develop-
ment,” in Proceedings of the 25th International Conference on Software Engi-
neering, pp. 793–794, Portland, Ore, USA, May 2003.

13. D. Damian and F. Lanubile, “The 3rd international workshop on global soft-
ware development,” in Proceedings of the 26th International Conference on
Software Engineering (ICSE ‘04), pp. 756–757, Edinburgh, UK, May 2004.

14. R. Sangwan, M. Bass, N. Mullick, D. J. Paulish, and J. Kazmeier, Global Soft-
ware Development Handbook, Auerbach Series on Applied Software Engineer-
ing Series, Auerbach, Boston, Mass, USA, 2006.

© 2011 by Apple Academic Press, Inc.

Challenges and Improvements in Distributed Software Development 247

15. M. A. Cusumano, “Managing software development in globally distributed
teams,” Communications of the ACM, vol. 51, no. 2, pp. 15–17, 2008.

16. OMG, “MDA guide version 1.0.1,” Object Management Group, Needham,
Mass, USA, June 2003.

17. L. Kutvonen, “Relating MDA and inter-enterprise collaboration management,”
in Proceedings of the 2nd European Workshop on Model Driven Architecture
(MDA) with an Emphasis on Methodologies and Transformations (EWMDA
‘04), pp. 84–88, University of Kent, Canterbury, UK, September 2004.

18. J. L. Garrido, M. Noguera, M. González, M. V. Hurtado, and M. L. Rodríguez,
“Definition and use of computation independent models in an MDA-based
groupware development process,” Science of Computer Programming, vol. 66,
no. 1, pp. 25–43, 2007.

19. R. S. P. Maciel, C. G. Ferraz, and N. S. Rosa, “An MDA domain specific ar-
chitecture to provide interoperability among collaborative environments,” in
Proceedings of the 19th Brazilian Symposium on Software Engineering (SBES
‘05), pp. 1–16, Uberlandia, Brazil, October 2005.

20. B. Kitchenham and S. Charters, “Guidelines for performing systematic litera-
ture reviews in software engineering,” Keele University & Durham University
Joint Report, Staffordshire, UK, 2007.

21. F. J. Pino, F. García, and M. Piattini, “Software process improvement in small
and medium software enterprises: a systematic review,” Software Quality Jour-
nal, vol. 16, no. 2, pp. 237–261, 2008.

22. M. V. Zelkowitz and D. R. Wallace, “Experimental models for validating tech-
nology,” Computer, vol. 31, no. 5, pp. 23–31, 1998.

23. ISO/IEC 12207:2002, “AMENDMENT 1: Information technology—Soft-
ware life cycle processes,” International Organization for Standardization,
2002.

24. M. Akmanligil and P. C. Palvia, “Strategies for global information systems de-
velopment,” Information & Management, vol. 42, no. 1, pp. 45–59, 2004.

25. J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson, “FASTDash: a
visual dashboard for fostering awareness in software teams,” in Proceedings
of the 25th SIGCHI Conference on Human Factors in Computing Systems
(CHI ‘07), pp. 1313–1322, San Jose, Calif, USA, April 2007.

26. B. Brian, “Impact of organizational structure on distributed requirements
engineering processes: lessons learned,” in Proceedings of the International
Workshop on Global Software Development for the Practitioner (GSD ‘06),
Shanghai, China, May 2006.

© 2011 by Apple Academic Press, Inc.

248 Data Structure and Software Engineering: Challenges and Improvements

27. B. Bruegge, A. H. Dutoit, and T. Wolf, “Sysiphus: enabling informal collabora-
tion in global software development,” in Proceedings of the IEEE International
Conference on Global Software Engineering (ICGSE ‘06), pp. 139–148, Flo-
rianopolis, Brazil, October 2006.

28. B. Bruegge, A. De Lucia, F. Fasano, and G. Tortora, “Supporting distributed
software development with fine-grained artifact management,” in Proceedings
of the IEEE International Conference on Global Software Engineering (ICGSE
‘06), pp. 213–222, Florianopolis, Brazil, October 2006.

29. J. M. Carey, “Creating global software: a conspectus and review,” Interacting
with Computers, vol. 9, no. 4, pp. 449–465, 1998.

30. V. Casey and I. Richardson, “Project management within virtual software
teams,” in Proceedings of the IEEE International Conference on Global Soft-
ware Engineering (ICGSE ‘06), pp. 33–42, Florianopolis, Brazil, October
2006.

31. V. Clerc, “Towards architectural knowledge management practices for global
software development,” in Proceedings of the 3rd International Workshop
on Sharing and Reusing Architectural Knowledge (SHARK ‘08), Leipzig,
Germany, May 2008.

32. K. Crowston, Q. Li, K. Wei, U. Y. Eseryel, and J. Howison, “Self-organization
of teams for free/libre open source software development,” Information and
Software Technology, vol. 49, no. 6, pp. 564–575, 2007.

33. A. De Lucia, F. Fasano, G. Scanniello, and G. Tortora, “Enhancing collab-
orative synchronous UML modelling with fine-grained versioning of soft-
ware artifacts,” Journal of Visual Languages and Computing, vol. 18, no. 5,
pp. 492–503, 2007.

34. S. E. Dossick and G. E. Kaiser, “CHIME: a metadata-based distributed soft-
ware development environment,” in Proceedings of the 7th European Software
Engineering Conference, held jointly with the 7th ACM SIGSOFT Interna-
tional Symposium on the Foundations of Software Engineering, Toulouse,
France, September 1999.

35. B. Al-Ani, E. Trainer, R. Ripley, A. Sarma, A. van der Hoek, and D. Redmiles,
“Continuous coordination within the context of cooperative and human as-
pects of software engineering,” in Proceedings of the International Workshop
on Cooperative and Human Aspects of Software Engineering (CHASE ‘08),
Leipzig, Germany, May 2008.

36. A. Fernández, B. Garzaldeen, I. Grützner, and J. Münch, “Guided support for
collaborative modeling, enactment and simulation of software development

© 2011 by Apple Academic Press, Inc.

Challenges and Improvements in Distributed Software Development 249

processes,” Software Process: Improvement and Practice, vol. 9, no. 2, pp. 95–
106, 2004.

37. J. Froehlich and P. Dourish, “Unifying artifacts and activities in a visual tool for
distributed software development teams,” in Proceedings of the 26th Interna-
tional Conference on Software Engineering (ICSE ‘04), vol. 26, pp. 387–396,
Edinburgh, UK, May 2004.

38. P. J. Gomes and N. R. Joglekar, “Linking modularity with problem solving and
coordination efforts,” Managerial and Decision Economics, vol. 29, no. 5, pp.
443–457, 2008.

39. I. Gorton and S. Motwani, “Issues in co-operative software engineering using
globally distributed teams,” Information and Software Technology, vol. 38, no.
10, pp. 647–655, 1996.

40. G. Gousios, E. Kalliamvakou, and D. Spinellis, “Measuring developer con-
tribution from software repository data,” in Proceedings of the International
Working Conference on Mining Software Repositories, pp. 129–132, Leipzig,
Germany, 2008.

41. C. A. Halverson, J. B. Ellis, C. Danis, and W. A. Kellogg, “Designing task
visualizations to support the coordination of work in software development,”
in Proceedings of the 20th Anniversary ACM Conference on Computer Sup-
ported Cooperative Work (CSCW ‘06), pp. 39–48, Banff, Canada, November
2006.

42. B. Hanks, “Empirical evaluation of distributed pair programming,” Inter-
national Journal of Human Computer Studies, vol. 66, no. 7, pp. 530–544,
2008.

43. T. Heistracher, T. Kurz, G. Marcon, and C. Masuch, “Collaborative software
engineering with a digital ecosystem,” in Proceedings of the IEEE International
Conference on Global Software Engineering (ICGSE ‘06), pp. 119–123, Flori-
anopolis, Brazil, October 2006.

44. J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, “Distance, de-
pendencies, and delay in a global collaboration,” in Proceedings of the ACM
Conference on Computer Supported Cooperative Work, pp. 319–328, Phila-
delphia, Pa, USA, December 2000.

45. J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, “An empirical
study of global software development: distance and speed,” in Proceedings
of the 23rd International Conference on Software Engineering, pp. 81–90,
Toronto, Canada, May 2001.

46. M. Ali-Babar, “The application of knowledge-sharing workspace paradigm
for software architecture processes,” in Proceedings of the 3rd International

© 2011 by Apple Academic Press, Inc.

250 Data Structure and Software Engineering: Challenges and Improvements

Workshop on Sharing and Reusing Architectural Knowledge (SHARK ‘08),
Leipzig, Germany, May 2008.

47. J. D. Herbsleb, D. J. Paulish, and M. Bass, “Global software development
at Siemens: experience from nine project,” in Proceedings of the 27th Inter-
national Conference on Software Engineering (ICSE ‘05), pp. 524–533, St.
Louis, Mo, USA, May 2005.

48. R. Holmes and R. J. Walker, “Promoting developer-specific awareness,” in Pro-
ceedings of the International Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE ‘08), Leipzig, Germany, May 2008.

49. H. Holmstrom, E. Ó. Conchúir, P. J. Ågerfalk, and B. Fitzgerald, “Global
software development challenges: a case study on temporal, geographical and
socio-cultural distance,” in Proceedings of the IEEE International Conference
on Global Software Engineering (ICGSE ‘06), pp. 3–11, Florianopolis, Brazil,
October 2006.

50. K. V. Siakas and B. Balstrup, “Software outsourcing quality achieved by global
virtual collaboration,” Software Process: Improvement and Practice, vol. 11,
no. 3, pp. 319–328, 2006.

51. J. Kotlarsky, P. C. van Fenema, and L. P. Willcocks, “Developing a knowledge-
based perspective on coordination: the case of global software projects,” Infor-
mation and Management, vol. 45, no. 2, pp. 96–108, 2008.

52. R. Kuni and N. Bhushan, “IT application assessment model for global software
development,” in Proceedings of the IEEE International Conference on Global
Software Engineering (ICGSE ‘06), pp. 92–100, Florianopolis, Brazil, Octo-
ber 2006.

53. F. Lanubile, T. Mallardo, and F. Calefato, “Tool support for geographically
dispersed inspection teams,” Software Process: Improvement and Practice,
vol. 8, no. 4, pp. 217–231, 2003.

54. L. Layman, L. Williams, D. Damian, and H. Bures, “Essential communication
practices for Extreme Programming in a global software development team,”
Information and Software Technology, vol. 48, no. 9, pp. 781–794, 2006.

55. G. Lee, W. DeLone, and J. A. Espinosa, “Ambidextrous coping strategies in
globally distributed software development projects,” Communications of the
ACM, vol. 49, no. 10, pp. 35–40, 2006.

56. E. Lindqvist, B. Lundell, and B. Lings, “Distributed development in an intra-
national, intra-organisational context: an experience report,” in Proceedings of
the International Workshop on Global Software Development for the Practi-
tioner, Shanghai, China, May 2006.

© 2011 by Apple Academic Press, Inc.

Challenges and Improvements in Distributed Software Development 251

57. G. N. Aranda, A. Vizcaíno, A. Cechich, M. Piattini, and J. J. Castro-Sáchez,
“Cognitive-based rules as a means to select suitable groupware tools,” in Pro-
ceedings of the 5th IEEE International Conference on Cognitive Informatics,
vol. 1, pp. 418–423, Beijing, China, July 2006.

58. S. Liu, Y. Zheng, H. Shen, S. Xia, and C. Sun, “Real-time collaborative soft-
ware modeling using UML with rational software architect,” in Proceedings
of the International Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom ‘06), Atlanta, Ga, USA,
November 2006.

59. W. J. Lloyd, M. B. Rosson, and J. D. Arthur, “Effectiveness of elicitation tech-
niques in distributed requirements engineering,” in Proceedings of the 10th
Anniversary Joint IEEE International Requirements Engineering Conference
(RE ‘02), Essen, Germany, September 2002.

60. J. Ma, J. Li, W. Chen, R. Conradi, J. Ji, and C. Liu, “A state-of-the-practice
study on communication and coordination between Chinese software suppli-
ers and their global outsourcers,” Software Process: Improvement and Practice,
vol. 13, no. 3, pp. 233–247, 2008.

61. R. J. Madachy, “Cost modeling of distributed team processes for global devel-
opment and software-intensive systems of systems,” Software Process: Improve-
ment and Practice, vol. 13, no. 1, pp. 51–61, 2008.

62. N. B. Moe and D. Šmite, “Understanding a lack of trust in global software
teams: a multiple-case study,” Software Process: Improvement and Practice,
vol. 13, no. 3, pp. 217–231, 2008.

63. K. Mohan and B. Ramesh, “Traceability-based knowledge integration in group
decision and negotiation activities,” Decision Support Systems, vol. 43, no. 3,
pp. 968–989, 2007.

64. J. Van Moll, J. Jacobs, R. Kusters, and J. Trienekens, “Defect detection oriented
lifecycle modeling in complex product development,” Information and Soft-
ware Technology, vol. 46, no. 10, pp. 665–675, 2004.

65. B. E. Munkvold and I. Zigurs, “Process and technology challenges in swift-
starting virtual teams,” Information and Management, vol. 44, no. 3, pp. 287–
299, 2007.

66. N. Nagappan, B. Murphy, and V. R. Basili, “The influence of organizational
structure on software quality: an empirical case study,” in Proceedings of the
30th International Conference on Software Engineering (ICSE ‘08), pp. 521–
530, Leipzig, Germany, May 2008.

© 2011 by Apple Academic Press, Inc.

252 Data Structure and Software Engineering: Challenges and Improvements

67. K. Narayanaswamy and N. M. Goldman, “A flexible framework for coopera-
tive distributed software development,” The Journal of Systems and Software,
vol. 16, no. 2, pp. 97–105, 1991.

68. R. M. De Araujo and M. R. S. Borges, “The role of collaborative support to
promote participation and commitment in software development teams,” Soft-
ware Process: Improvement and Practice, vol. 12, no. 3, pp. 229–246, 2007.

69. R. J. Ocker and J. Fjermestad, “Communication differences in virtual design
teams: findings from a multi-method analysis of high and low performing ex-
perimental teams,” ACM SIGMIS Database, vol. 39, no. 1, pp. 51–67, 2008.

70. P. Ovaska, M. Rossi, and P. Marttiin, “Architecture as a coordination tool in
multi-site software development,” Software Process: Improvement and Prac-
tice, vol. 8, no. 4, pp. 233–247, 2003.

71. M. Paasivaara and C. Lassenius, “Collaboration practices in global inter-orga-
nizational software development projects,” Software Process: Improvement and
Practice, vol. 8, no. 4, pp. 183–199, 2003.

72. L. Pilatti, J. L. N. Audy, and R. Prikladnicki, “Software configuration manage-
ment over a global software development environment: lessons learned from a
case study,” in Proceedings of the International Workshop on Global Software
Development for the Practitioner (GSD ‘06), Shanghai, China, May 2006.

73. A. Powell, G. Piccoli, and B. Ives, “Virtual teams: a review of current literature
and directions for future research,” ACM SIGMIS Database, vol. 35, no. 1,
pp. 6–23, 2004.

74. R. Prikladnicki, J. L. N. Audy, and R. Evaristo, “Global software develop-
ment in practice lessons learned,” Software Process: Improvement and Practice,
vol. 8, no. 4, pp. 267–281, 2003.

75. R. Prikladnicki, J. L. N. Audy, and R. Evaristo, “A reference model for glob-
al software development: findings from a case study,” in Proceedings of the
IEEE International Conference on Global Software Engineering (ICGSE ‘06),
pp. 18–28, Florianopolis, Brazil, October 2006.

76. N. Ramasubbu and R. K. Balan, “Globally distributed software development
project performance: an empirical analysis,” in Proceedings of the 6th Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/
FSE ‘07), pp. 125–134, Dubrovnik, Yugoslavia, September 2007.

77. S. Sakthivel, “Virtual workgroups in offshore systems development,” Informa-
tion and Software Technology, vol. 47, no. 5, pp. 305–318, 2005.

78. R. S. Sangwan and J. Ros, “Architecture leadership and management in glob-
ally distributed software development,” in Proceedings of the 1st International

© 2011 by Apple Academic Press, Inc.

Challenges and Improvements in Distributed Software Development 253

Workshop on Leadership and Management in Software Architecture, pp. 17–
21, Leipzig, Germany, May 2008.

79. M. A. Babar, B. Kitchenham, L. Zhu, I. Gorton, and R. Jeffery, “An empirical
study of groupware support for distributed software architecture evaluation
process,” Journal of Systems and Software, vol. 79, no. 7, pp. 912–925, 2006.

80. S. Sarkar, R. Sindhgatta, and K. Pooloth, “A collaborative platform for applica-
tion knowledge management in software maintenance projects,” in Proceedings
of the 1st Bangalore Annual Compute Conference, Bangalore, India, January
2008.

81. A. Sarma, Z. Noroozi, and A. Van der Hoek, “Palantír: raising awareness
among configuration management workspaces,” in Proceedings of the 25th
International Conference on Software Engineering, pp. 444–454, Portland,
Ore, USA, May 2003.

82. S.-O. Setamanit, W. Wakeland, and D. Raffo, “Using simulation to evaluate
global software development task allocation strategies,” Software Process: Im-
provement and Practice, vol. 12, no. 5, pp. 491–503, 2007.

83. N. S. Shami, N. Bos, Z. Wright, et al., “An experimental simulation of multi-
site software development,” in Proceedings of the Conference of the Centre
for Advanced Studies on Collaborative Research, Markham, Canada, October
2004.

84. B. Sengupta, S. Chandra, and V. Sinha, “A research agenda for distributed soft-
ware development,” in Proceedings of the 28th International Conference on
Software Engineering (ICSE ‘06), pp. 731–740, Shanghai, China, May 2006.

85. D. Šmite, “Global software development projects in one of the biggest com-
panies in Latvia: is geographical distribution a problem?,” Software Process:
Improvement and Practice, vol. 11, no. 1, pp. 61–76, 2006.

86. C. R. de Souza, S. Quirk, E. Trainer, and D. F. Redmiles, “Supporting col-
laborative software development through the visualization of socio-technical
dependencies,” in Proceedings of the International ACM Conference on Sup-
porting Group Work, pp. 147–156, Sanibel Island, Fla, USA, 2007.

87. H. Spanjers, M. ter Huurne, B. Graaf, M. Lormans, D. Bendas, and R. van
Solingen, “Tool support for distributed software engineering,” in Proceedings
of the IEEE International Conference on Global Software Engineering (ICGSE
‘06), pp. 187–198, Florianopolis, Brazil, October 2006.

88. M.-A. D. Storey, D. Čubranić, and D. M. German, “On the use of visual-
ization to support awareness of human activities in software development: a
survey and a framework,” in Proceedings of the ACM Symposium on Software
Visualization (SoftVis ‘05), pp. 193–202, St. Louis, Mo, USA, May 2005.

© 2011 by Apple Academic Press, Inc.

254 Data Structure and Software Engineering: Challenges and Improvements

89. J. Suzuki and Y. Yamamoto, “SoftDock: a distributed collaborative platform
for model-based software development,” in Proceedings of the 10th Interna-
tional Workshop on Database and Expert Systems Applications (DEXA ‘99),
Florence, Italy, September 1999.

90. M. Baentsch, G. Molter, and P. Sturm, “WebMake: integrating distributed
software development in a structure-enhanced Web,” Computer Networks and
ISDN Systems, vol. 27, no. 6, pp. 789–800, 1995.

91. Y. Tamura, S. Yamada, and M. Kimura, “A reliability assessment tool for dis-
tributed software development environment based on Java and J/Link,” Euro-
pean Journal of Operational Research, vol. 175, no. 1, pp. 435–445, 2006.

92. L. Taxén, “An integration centric approach for the coordination of distrib-
uted software development projects,” Information and Software Technology,
vol. 48, no. 9, pp. 767–780, 2006.

93. M. R. Thissen, J. M. Page, M. C. Bharathi, and T. L. Austin, “Communication
tools for distributed software development teams,” in Proceedings of the ACM
SIGMIS CPR Conference: The Global Information Technology Workforce,
pp. 28–35, Saint Louis, Mo, USA, April 2007.

94. P. F. Tiako, “Collaborative approach for modeling and performing mobile soft-
ware process components,” in Proceedings of the International Symposium on
Collaborative Technologies and Systems, pp. 40–47, Saint Louis, Mo, USA,
May 2005.

95. S. Vale and S. Hammoudi, “Towards context independence in distributed
context-aware applications by the model driven approach,” in Proceedings of
the 3rd International Workshop on Services Integration in Pervasive Environ-
ments, Sorrento, Italy, July 2008.

96. P. Wongthongtham, E. Chang, and T. S. Dillon, “Ontology-based multi-agent
system to multi-site software development,” in Proceedings of the Workshop
on Quantitative Techniques for Software Agile Process, Newport Beach, Calif,
USA, November 2004.

97. P. Wongthongtham, E. Chang, T. S. Dillon, and I. Sommerville, “Ontology-
based multi-site software development methodology and tools,” Journal of Sys-
tems Architecture, vol. 52, no. 11, pp. 640–653, 2006.

98. W. Xiao, C. Chi, and M. Yang, “On-line collaborative software development
via wiki,” in Proceedings of the International Symposium on Wikis, pp. 177–
183, Montreal, Canada, October 2007.

99. H. Zhuge, “Knowledge flow management for distributed team software devel-
opment,” Knowledge-Based Systems, vol. 15, no. 8, pp. 465–471, 2002.

© 2011 by Apple Academic Press, Inc.

Challenges and Improvements in Distributed Software Development 255

100. B. Ramesh, L. Cao, K. Mohan, and P. Xu, “Can distributed software develop-
ment be agile?,” Communications of the ACM, vol. 49, no. 10, pp. 41–46,
2006.

101. J. T. Biehl, W. T. Baker, B. P. Bailey, D. S. Tan, K. M. Inkpen, and M. Czer-
winski, “IMPROMPTU: a new interaction framework for supporting collabo-
ration in multiple display environments and its field evaluation for co-located
software development,” in Proceedings of the 26th Annual SIGCHI Confer-
ence on Human Factors in Computing Systems, pp. 939–948, Florence, Italy,
April 2008.

© 2011 by Apple Academic Press, Inc.

Vertical Mining of frequent
Patterns from uncertain Data

Laila A. Abd-Elmegid, Mohamed E. El-Sharkawi,
Laila M. El-Fangary and Yehia K. Helmy

abStract
Efficient algorithms have been developed for mining frequent patterns in tra-
ditional data where the content of each transaction is definitely known. There
are many applications that deal with real data sets where the contents of
the transactions are uncertain. Limited research work has been dedicated for
mining frequent patterns from uncertain data. This is done by extending the
state of art horizontal algorithms proposed for mining precise data to be suit-
able with the uncertainty environment. Vertical mining is a promising ap-
proach that is experimentally proved to be more efficient than the horizontal
mining. In this paper we extend the state-of-art vertical mining algorithm
Eclat for mining frequent patterns from uncertain data producing the pro-
posed UEclat algorithm. In addition, we compared the proposed UEclat al-
gorithm with the UF-growth algorithm. Our experimental results show that

© 2011 by Apple Academic Press, Inc.

Vertical Mining of Frequent Patterns from Uncertain Data 257

the proposed algorithm outperforms the UF-growth algorithm by at least one
order of magnitude.

Keywords: Frequent patterns, Uncertain data, Vertical mining, Tidset, Diffset,
Association rules, Data mining

introduction
Frequent pattern mining has been a focused theme in data mining research for
over a decade. It is a core technique used in many mining tasks like sequential
pattern mining, structured pattern mining, correlation mining, associative clas-
sification, and frequent pattern-based clustering (C. Zhu, X. Zhang, J. Sun, and
B. Huang, 2009), as well as their broad applications (H. Kriegel, P. Kroger and
A. Zimek, 2009) (Y. Koh, N. Rountree, R. O’Keefe, 2008) (A.Ceglar and J. Rod-
dick, 2006). So, a great effort has been dedicated to this research and tremendous
progress has been made to develop efficient and scalable algorithms for frequent
pattern mining (A. Ceglar and J. Roddick, 2006) (Z. Zheng, R. Kohavi, and L.
Mason, 2001) (J. Han, H. Cheng, D. Xin, and X. Yan, 2007). All these algo-
rithms deal with precise data sets (J. Han, J. Pei, Y. Yin and R. Mao, 2004) (M.
Zaki, 2000) (P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa and D.
Shah, 2000) (M. Zaki and K. Gouda, 2003)(W. Consue, and W. Kurutach, 2003)
(B. Goethals, 2004)(M. Song, S. Rajasekaran, 2006). Such data is characterized
by known and definite existence of the items or events in the transactions. How-
ever, there are datasets where the exact existence of items in the transactions can-
not be gained. These datasets are called uncertain data. The existence of an item
in a transaction is best captured by a likelihood measure or a probability (Chui,
C.-K., Kao, B., Hung, E.). As an example, a medical dataset may contain a table
of patients’ records, each of which contains a set of diseases that a patient suffers.
In such case the physician may highly suspect (but cannot guarantee) that a pa-
tient suffers from a specific disease. So he expresses his suspection by a probability
of the existence of such disease (H., Li, H., Yang, Q. 2007). Another example
of uncertain dataset is pattern recognition applications. Given a satellite picture,
image processing techniques can be applied to extract features that indicate the
presence or absence of certain target objects (such as bunkers). Due to noises and
limited resolution, the presence of a feature in a spatial area is often uncertain
and expressed as a probability (Dai, X., Yiu, M.L., et al. 2005). Figure 1 shows an
example of precise and uncertain data sets. Few algorithms have been dedicated
for mining frequent patterns from uncertain data. All these algorithms follow the
horizontal data representation.

© 2011 by Apple Academic Press, Inc.

258 Data Structure and Software Engineering: Challenges and Improvements

Figure 1. Example of precise and uncertain data sets

Although vertical data representation is a promising approach no published
research work has been studied this issue. In this paper we study the problem
of mining frequent patterns from uncertain data using the vertical data repre-
sentation Tidset. We extend the state-of-art vertical mining algorithm Eclat to
be suitable with the uncertain environment. During such extension we propose
the Utidset structure for vertical representation of uncertain data. A comparative
study between the proposed UEclat algorithm and the well known UF-growth
algorithm is conducted and showed that the proposed algorithm outperforms the
UF-growth by at least one order of magnitude.

The rest of the paper is organized as follows: In Section two we introduce the
preliminaries of mining frequent itemsets. Whereas, in Section three we list and
discuss the related work. Section four explains in details the proposed UElcat
algorithm. A performance study is given in Section five. Finally, a conclusion is
given in Section six.

background
The problem of mining frequent itemsets can be formulated as follows. Let I be a
set of items and T a database of transactions, where each transaction has a unique
transaction identifier (Tid) and contains a set of items. A set X ⊆ I is called an
itemset, and a set Y ⊆ T is called a tidset. An itemset that contains k items is
called a k-itemset. The support of an itemset X, denoted σ(X), is the number
of transactions in which X occurs. An itemset is frequent if its support is greater
than or equal to a user-specified minimum support (min_ sup) value (M. Zaki

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-13&iName=master.img-000.jpg&w=343&h=163

Vertical Mining of Frequent Patterns from Uncertain Data 259

and K. Gouda, 2003). Figure 2 shows the frequent itemsets for different values of
min_sup on a given transactional database.

Figure 2. Illustrative example for mining vfrequent itemsets

A key difference between precise and uncertain data is that each transaction of
the latter contains items and their existential probabilities. The existential prob-
ability P(x, ti) of an item x in a transaction ti indicates the likelihood of x being
present in ti. Using the “possible world” interpretation of uncertain data (Leung,
C.K.-S., Carmichael, C.L., Hao, B. 2007)(C. Aggarwal, 2009), there are two pos-
sible worlds for an item x and a transaction ti: (i) W1 where x ∈ ti and (ii) W2
where x ∉ti. Although it is uncertain which of these two worlds be the true world,
the probability of W1 be the true world is P(x, ti) and that of W2 is 1 − P(x, ti).
Figure 3 shows all possible worlds for a data set contains only two transactions and
two items. To a further extent, there are many items in each of many transactions
in a transaction database TDB. Hence, the expected support of a pattern (or a set
of items) X in TDB can be computed by summing the support of X in possible
world Wj (while taking in account the probability of Wj to be the true world)
over all possible worlds (Leung, C.K.-S., Carmichael, C.L., Hao, B. 2007).

The following formula in rule 1 is used to calculate the expected support of
any itemset X. a summarized form of rule 1 exists in rule 2. With this setting, a
pattern X is considered frequent if its expected support equals or exceeds the user-
specified support threshold min_sup.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-13&iName=master.img-001.jpg&w=281&h=201

260 Data Structure and Software Engineering: Challenges and Improvements

 exp Sup(X) = sup(x) in Wj × P(x,ti) × 1− P y,ti()()
y∉ti in Wj

∏
I ∈ti in Wj

∏

i=1

TDB

∏

j

∑ (1)

()

1

, .
TDB

i
x Xi

P x t
Î=

æ ö÷ç= ÷ç ÷ç ÷è øå Õ
 (2)

There are two types of data representation; the horizontal and vertical repre-
sentation as in Figure 4. In the horizontal representation approach, the data is
organized as a set of rows. Each row has a key identifier that is the transaction
identifier (TID) and a set of IIDs (Item Identifier). While in the vertical repre-
sentation approach, the data is organized as a set of columns; each column has a
key identifier, which is the item identifier (IID) and a set of TIDs (M. Zaki and
K. Gouda, 2003). There are many variations of vertical and horizontal representa-
tions presented in (P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa and
D. Shah, 2000).

Most of the previous work on mining frequent patterns is based on the hori-
zontal representation. However, recently a number of vertical mining algorithms
have been proposed for mining frequent itemsets. Mining algorithms using the
vertical representation have shown to be effective and usually outperform hori-
zontal approaches (M. Song, S. Rajasekaran, 2006). This advantage stems from
the fact that frequent patterns can be counted via tidset intersections, instead of
using complex internal data structures like the hash/search trees that the horizon-
tal algorithms require (M. Zaki and K. Gouda, 2003).

Also in the vertical mining, the candidate generation and counting phases are
done in a single step. This is done because vertical mining offers natural pruning
of irrelevant transactions as a result of an intersection. Another feature of verti-
cal mining is the utilization of the independence of classes, where each frequent
item is a class that contains a set of frequent k-itemsets (where k > 1) (M. Zaki,
2000).

related work
Limited research work has been dedicated for mining frequent patterns from un-
certain data. Several studies show that broad classes of algorithms can be extended
to the uncertain data setting. To the best of our knowledge no research work has
been done to study the feasibility of extending vertical mining algorithms for
mining uncertain data. The following paragraphs describe the horizontal algo-
rithms proposed for mining frequent patterns from uncertain data.

© 2011 by Apple Academic Press, Inc.

Vertical Mining of Frequent Patterns from Uncertain Data 261

Chui et al. proposed the U-Apriori algorithm, which is a modification of the
Apriori algorithm. Specifically, instead of incrementing the support counts of can-
didate patterns by their actual support, U-Apriori increments the support counts
of candidate patterns by their expected support (using Equation (2)). However,
U-Apriori suffers from the following problems: (i) Inherited from the Apriori
algorithm, U-Apriori does not scale well when handling large amounts because it
also follows a level-wise generate-and-test framework. (ii) If the existential prob-
abilities of most items within a pattern X are small, increments for each transac-
tion can be insignificantly small. Consequently, many candidates would not be
recognized as infrequent until most (if not all) transactions were processed.

Leung et al. proposed a UF-tree which is a variant of the FP-tree. Each
node in the UF-tree stores (i) an item, (ii) its expected support, and (iii) the
number of occurrence of such expected support for such an item. The pro-
posed UF-growth algorithm constructs the UF-tree as follows. It scans the
database once and accumulates the expected support of each item. Hence,
it finds all frequent items (i.e. items having expected support ≥ minsup). It
sorts these frequent items in descending order of accumulated expected sup-
port. The algorithm then scans the database the second time and inserts each
transaction into the UF-tree in a similar fashion as in the construction of an
FP-tree except that the new transaction is merged with a child (or descendant)
node of the root of the UF-tree (at the highest support level) only if the same
item and the same expected support exist in both the transaction and the
child (or descendant) nodes.

Recently, Aggarwal (C. Aggarwal, 2009) extended several existing classical
frequent item set mining algorithms for deterministic datasets, and compared
their relative performance in terms of efficiency and memory usage. The study
focused on candidate generate-and-test algorithms, hyper-structure algorithms
and pattern growth based algorithms. According to the experiments in the study,
the hyper-structure and the candidate generate-and-test algorithms are proved to
perform much better than tree-based algorithms.

Vertical Mining of frequent Patterns from
uncertain Data
In this section we propose the UEclat algorithm for vertical mining of frequent
patterns from uncertain data. First we introduce the proposed Utidset structure
that is used in the mining process. Second, we explain in details the UEclat algo-
rithm provided by an illustrative example.

© 2011 by Apple Academic Press, Inc.

262 Data Structure and Software Engineering: Challenges and Improvements

construction of the utidset Mining Structure

According to the special nature of uncertain data, a key challenge in its mining
is how to represent and store this data. In tidset vertical representation of precise
data, each item is associated with a set of transactions identifiers (Tids) where this
item appears. The case is different in uncertain data as the item’s appearance in
the transaction is represented by an existential probability ranging from a posi-
tive value close to 0 (indicating that the item has insignificantly low chance to
be present in the transaction) to value of 1 (indicating that the item is definitely
present).

To effectively represent uncertain data in vertical representation, we propose
the Utidset structure which is a variant of the tidset. In the Utidset structure, each
node stores (i) an item, (ii) its existential probability in every transaction. It scans
the database once and accumulates the expected support of each item. Hence, it
finds all frequent items. The following example illustrates the construction pro-
cess of the Utidset structure.

Table 1. Uncertain transactional data

Example 1

Consider the following uncertain transactional data set in Table 1 and construct
the Utidset for all items respecting to minimum support equals 1.

Here, each transaction contains items and their corresponding existential
probability. For example the existential probability of item A is 0.9 in all transac-
tions (T1, T2, and T5). However, the case is different for item E, for example,
where there are different existential probabilities in different transactions.

The Utidset can be constructed as follows. First, the UEclat algorithm scans the
data only once and accumulates the expected support of each item. The expected
support is calculating by summing the probabilities of the current processed item

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-13&iName=master.img-002.jpg&w=266&h=112

Vertical Mining of Frequent Patterns from Uncertain Data 263

in all its transactions. Table 2 shows all the items with their corresponding Utid-
set and expected support. A pruning step is done for removing all items with
expected support less than the minimum expected support. At such step, both
items E and F are removed. Table 3 shows the Utidset vertical representation of
frequent items.

calculating the Support of k-itemsets where (k > 1)

After representing all the frequent items using the Utidset structure, we need to
move for mining other frequent k-itemsets where k>1. The main issue here is how
to calculate the support of k-itemsets. In the main Eclat algorithm that is used
for mining precise data, the support of any given k-itemset is calculated simply
by counting the number of transactions result from intersecting the subsets of the
k-itemset. So, for any two subsets Y, Z ⊆ X, such that Y∪ Z=X the support of X
is calculated by intersecting both tidsets of Y and Z. However, the case is different
in uncertain data because the item Y may have high existential probability in a
specific transaction and at the same transaction item Z may have low existential
probability which will affect the real probability of item X. So, in vertical mining
of uncertain data it is not enough to count the common transactions between any
two subsets to calculate the support of their superset, we also need to consider the
existential probabilities of both subsets in each common transaction. According
to rule 2 described in Section two, the expected support of any k-itemset is the
multiplication of the existential probabilities of its subsets in all transactions. For
simplification we can conclude that: For any k-itemset X with subset itemsets Y
and Z

i=n
Exp_sup(X) = ∑ ((p(Y, ti) * p(Z, ti))

For example the expected support of itemset BC is calculated by ((0.6*o.8)
+ (0.9*0.7)). The first bracket (0.6*o.8) is the support of BC in transaction T1.
Whereas the second bracket (0.9*0.7) is the support of BC in transaction T3.
Only transactions T1 and T3 are considered because they are the common trans-
actions between the two subsets B and C. The total expected support of itemset
BC is calculated by summing all the transactional supports that will result in value
of 1.11.

Mining frequent k-itemsets

Once the Utidsets of all frequent items are constructed, the proposed UEclat
algorithm recursively mines frequent itemsets from this Utidset structure. At the

© 2011 by Apple Academic Press, Inc.

264 Data Structure and Software Engineering: Challenges and Improvements

first step each frequent item is added to the output set. After that, for every such
frequent itemset i, the i-projected database Di is created. This is done by first find-
ing every item j that frequently occurs together with i. the support of this set {i, j}
is computed using the previous rule. If {i, j} is frequent, then j is inserted into Di.
The algorithm is called recursively to find all frequent itemsets in the new data-
base Di. Figure 4 shows the pseudo code of the UEclat algorithm.

Figure 3. Possible worlds from dataset with two transactions and two items

Figure 4. Horizontal and vertical representation of data

The following example illustrates how the UEclat algorithm mines all frequent
k-itemsets from the Utidset structure.

Example 2

Once the Utidset structure is constructed as in Table 2, the proposed UEclat
algorithm recursively mines frequent itemsets from the structure with minimum
expected support equals to 1 as follows. At the beginning, the UEclat algorithm
starts to mine 2-itemsets. For each 2-itemset the expected support is calculated
according to the proposed rule. A pruning process is done for all itemsets with ex-
pected support less than 1. In this example, the itemsets AB and BD are removed.
Table 4 shows result of this step. For clarification purpose, we associate with each
transaction the values of its two existential probabilities. Note that the columns of
the infrequent itemsets AB and BD are highlighted by a grey color.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-13&iName=master.img-003.jpg&w=295&h=106
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-13&iName=master.img-004.jpg&w=280&h=90

Vertical Mining of Frequent Patterns from Uncertain Data 265

Based on the frequent 2-itemsets in Table 4, the same recursive process is done
for mining frequent 3-itemsets. Table 5 shows the Utidset of frequent 3-itemsets.
Here there is only frequent 3-itemset which is ACD with expected support 1.13
and as a result there is no further processing.

Table 2. Utidset vertical representation of the all items

Table 3. Tidset vertical representation of frequent items

Table 4. Utidset vertical representation of 2-itemsets

Table 5. Tidset vertical representation of frequent 3-itemsets

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-13&iName=master.img-005.jpg&w=343&h=87
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-13&iName=master.img-006.jpg&w=344&h=101
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-13&iName=master.img-007.jpg&w=270&h=78
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-13&iName=master.img-008.jpg&w=343&h=91

266 Data Structure and Software Engineering: Challenges and Improvements

Performance Study
In this section we measure the performance of the proposed UEclat algorithm
and also compare its performance of with the most recent algorithm UF-growth.
Datasets used in the experiments are downloaded from http://kdd09.crowdvine.
com/talks/show/4894. Two data sets are used in the experiments, T40I10D100K
and T25I15D320k, are generated using the IBM synthetic data set generator.
These data sets contain 100k records with an average transaction length of 10
items and a domain of 1,000 items. These data sets are used in the performance
study of the UF-growth algorithm. All programs are implemented and compiled
with Microsoft Visual C# Net 2005. All experiments are performed on an Intel
processor 2GHz Core 2 Due with 2G of memory, running Windows Vista. The
accumulated time is measured from the beginning of reading the data set and
converting it to its structure to the end of the frequent pattern mining process. In
Figure 6 and Figure 7, a comparison between the UEclat algorithm and the UF-
growth algorithm is conducted for the T40I10D100K data set for varying mini-
mal support thresholds. Whereas the performance regarding the T25I15D320k
data set is shown in Figure 8 and Figure 9. All expermiental results confirmed that,
when minsup increased, fewer patterns had expected support ≥ min_sup, and
thus shorter runtimes were required. One can see that the execution time of UE-
clat algorithm is better than UF-growth in general. However, when the minimum
support is lower, the performance of our method gets better than UF-growth. The
utilization of the simple data representation used in the UTidset structure and fast
counting mechanism accelerate the process of mining large number of frequent
patterns and thus result in less processing time rather than the one required by the
UF-growth algorithm. These experiments show that vertical mining of uncertain
data is a promising approach that can achieve efficient performance regarding its
features as been proved in traditional precise data.

Figure 5. UEclat algoirthm

© 2011 by Apple Academic Press, Inc.

http://kdd09.crowdvine.com/talks/4894
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-13&iName=master.img-009.jpg&w=256&h=136

Vertical Mining of Frequent Patterns from Uncertain Data 267

Figure 6. Run time for T40I10D100K Data set for support from 70% to 95%

Figure 7. Run time for T40I10D100K Data set for support from 45% to 70%

Figure 8. Run time for T25I15D320k Data set for support from 80% to 95%

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-13&iName=master.img-010.jpg&w=315&h=152
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-13&iName=master.img-011.jpg&w=311&h=151
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-13&iName=master.img-012.jpg&w=295&h=143

268 Data Structure and Software Engineering: Challenges and Improvements

Figure 9. Run time for T25I15D320k Data set for support from 65% to 80%

conclusion
Most existing algorithms mine frequent patterns from traditional transaction
databases that contain precise data. In these databases, users definitely know
whether an item (or an event) is present in, or is absent from, a transaction in
the databases. However, there are many real-life situations in which one needs to
deal with uncertain data. In such data users are uncertain about the presence or
absence of some items or events. For example, a physician may highly suspect (but
cannot guarantee) that a patient suffers from a specific disease. The uncertainty
of such suspicion can be expressed in terms of existential probability. Since there
are many real-life situations in which data are uncertain, efficient algorithms for
mining uncertain data are in demand. Two algorithms have been proposed for
mining frequent patterns from uncertain data. The previous two algorithms fol-
low the horizontal data representation. In this paper we studied the problem of
mining frequent itemsets from existential uncertain data using the Tidset vertical
data representation. We introduced the U-Eclat algorithm, which is a modified
version of the Eclat algorithm, to work on such datasets. A performance study is
conducted to highlight the efficiency of the proposed algorithm also a compara-
tive study between the proposed algorithm and the well known algorithm UF-
growth is conducted and showed that the proposed algorithm outperforms the
UF-growth.

references
1. A.Ceglar and J. Roddick. (2006). “Association Mining,” In ACM Computing

Surveys, Vol.38, No.2, Article no. 5, July 2006.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-13&iName=master.img-013.jpg&w=297&h=144

Vertical Mining of Frequent Patterns from Uncertain Data 269

2. B. Goethals. (2004). “Memory Issues in Frequent Itemset Mining,” In Proceed-
ings of the ACM Symposium on Applied Computing (SAC), pp.530 –534,
March 2004.

3. C. Aggarwal. (2009). “Managing and Mining Uncertain Data,” Springer,
2009.

3. C. Zhu, X. Zhang, J. Sun, and B. Huang. (2009). ”Algorithm for Mining
Sequential Pattern in Time Series Data,” International Conference on Com-
munications and Mobile Computing, pp. 258–262, January 2009.

4. Chui, C.-K., Kao, B., Hung, E. Mining frequent itemsets from uncertain data.
In: Zhou, Z.- Dai, X., Yiu, M.L., et al. (2005). Probabilistic spatial queries on
existentially uncertain data. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino,
E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 400–417. Springer, Heidelberg
(2005)

5. H. Kriegel, P. Kroger and A. Zimek, (2009). ”Clustering high-dimensional
data: A survey on subspace clustering, pattern-based clustering, and correlation
clustering,” ACM Transactions on Knowledge Discovery from Data (TKDD),
Vol.3, No.1, march 2009.

6. H., Li, H., Yang, Q. (2007). (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426,
pp. 47–58. Springer, Heidelberg (2007) http://kdd09.crowdvine.com/talks/
show/4894

7. J. Han, H. Cheng, D. Xin, and X. Yan. (2007). “Frequent Pattern Mining:
Current Status and Future Directions,” Data Mining and Knowledge Discov-
ery, Vol.15, No.1, pp. 55–86, 2007.

8. J. Han, J. Pei, Y. Yin and R. Mao. (2004). “Mining Frequent Patterns without
Candidate Generation: A Frequent-Pattern Tree Approach,” Data Mining and
Knowledge Discovery, Vol.8, No.1, pp. 53–87, 2004.

9. Leung, C.K.-S., Carmichael, C.L., Hao, B. (2007). Efficient mining of fre-
quent patterns from uncertain data. In: Proc. IEEE ICDM Workshops,
pp. 489–494 (2007)

10. M. Song, S. Rajasekaran. (2006). “A Transaction Mapping Algorithm for Fre-
quent Itemsets Mining” , IEEE Transactions on Knowledge and Data Engi-
neering , Vol.18, No.4, pp. 472–481, April 2006.

11. M. Zaki and K. Gouda. (2003). “Fast Vertical Mining Using Diffsets,” In
Knowledge Discovery and Data Mining (KDD), pp. 326–335, 2003.

12. M. Zaki. (2000). “Scalable Algorithms for Association Mining,” IEEE Trans-
actions on Knowledge and Data Engineering , Vol.12, No.3, pp. 372–390,
May-June 2000.

© 2011 by Apple Academic Press, Inc.

http://kdd09.crowdvine.com/talks/

270 Data Structure and Software Engineering: Challenges and Improvements

13. P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa and D. Shah. (2000).
“Turbo-Charging Vertical Mining of Large Databases,” In ACM Special Inter-
est Group on Management of Data (SIGMOD), Vol.29, No.2, June 2000.

14. W. Consue, and W. Kurutach. (2003). “Novel Vertical Mining on Diffsets
Structure,” In Proceedings of the IEEE/WIC International Conference on In-
telligent Agent Technology (IAT), pp. 343–349, October 2003.

15. Y. Koh, N. Rountree, R. (2008). O’Keefe, “Mining Interesting Imperfectly
Sporadic Rules,” Knowledge and Information Systems ,Vol. 14 , No. 2,
pp: 179–196, January 2008.

16. Z. Zheng, R. Kohavi, and L. Mason. (2001). “Real world performance of as-
sociation rule algorithms,” In ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pp: 401–406, 2001.

© 2011 by Apple Academic Press, Inc.

an open-Source
representation for 2-De-

centric Proteomics and
Support infrastructure for
Data Storage and analysis

Romesh Stanislaus, John M. Arthur, Balaji Rajagopalan,
Rick Moerschell, Brian McGlothlen and Jonas S. Almeida

abStract
Background

In spite of two-dimensional gel electrophoresis (2-DE) being an effective and
widely used method to screen the proteome, its data standardization has still
not matured to the level of microarray genomics data or mass spectrometry ap-
proaches. The trend toward identifying encompassing data standards has been
expanding from genomics to transcriptomics, and more recently to proteomics.

© 2011 by Apple Academic Press, Inc.

272 Data Structure and Software Engineering: Challenges and Improvements

The relative success of genomic and transcriptomic data standardization has
enabled the development of central repositories such as GenBank and Gene
Expression Omnibus. An equivalent 2-DE-centric data structure would sim-
ilarly have to include a balance among raw data, basic feature detection re-
sults, sufficiency in the description of the experimental context and methods,
and an overall structure that facilitates a diversity of usages, from central re-
position to local data representation in LIMs systems.

Results & Conclusion

Achieving such a balance can only be accomplished through several itera-
tions involving bioinformaticians, bench molecular biologists, and the man-
ufacturers of the equipment and commercial software from which the data is
primarily generated. Such an encompassing data structure is described here,
developed as the mature successor to the well established and broadly used ear-
lier version. A public repository, AGML Central, is configured with a suite of
tools for the conversion from a variety of popular formats, web-based visual-
ization, and interoperation with other tools and repositories, and is particu-
larly mass-spectrometry oriented with I/O for annotation and data analysis.

background
The post genomic era has seen an increasing effort put into systematic surveys
of various proteomes. Consequently, proteomics is rapidly evolving into a high
throughput experimental approach that enables the identification, for example, of
differentially expressed proteins as biomarkers for disease and pathogenesis. Simi-
larly, there is a critical need for central repositories and common data formats to
make the most of the copious amounts of data generated by the different screen-
ing initiatives. The higher methodological complexity of proteomics makes data
integration a challenge, greatly complicated by the fact that there are no compre-
hensive data structures in many proteomic fields. In spite of the fact that separa-
tion by 2-dimensional gel electrophoresis (2-DE) followed by spot identification
by mass spectrometry has been a major workhorse and a versatile tool in discovery
proteomics [1,2], it remains under-supported by stable data formats and reposito-
ries. High resolution 2-DE provides a powerful tool for the reproducible separa-
tion, visualization, and quantification of thousands of proteins in a single gel. The
increasing variety and amount of proteins being separated and the number of re-
searchers using the 2-DE method has generated an immense diversity of datasets
produced by different laboratories and using different instruments.

The lack of common formats has had an even more pernicious effect at the
level of centralized data reposition, as well as in the development of incipient

© 2011 by Apple Academic Press, Inc.

An Open-Source Representation for 2-DE-Centric Proteomics 273

publicly available open source software that would enable the experimental
biologist to analyze 2-DE data. The field relies on a fragmented collection of
proprietary tools associated with specific instruments. A consequence of the
lack of stable open formats and the piecemeal processing by instrument spe-
cific data analysis tools is that the experimental context for the generation of
specific datasets is rarely stored with the raw data. Interestingly, the availabili-
ty of tools for MS-based proteomics screening is far better, with two standards
having emerged under the patronage of different organizations, mzXML [3]
and mzData [4]. The emergence of a stable data standard, or format, coupled
with a public repository, catalyzes the subsequent establishment of additional
specialized or more abstract formats, as well as analysis and visualization tools
(e.g., for mzXML [5] and mzData [6]). The key ingredient for this process is
a consistent data format, which gives the tool creator a stable platform from
which to work.

However, this is being changed by the work recently undertaken by HUPO-
PSI-GEL. Specifically, the Gel Markup Language (gelML; currently in its 2nd
milestone; [7]) and GelInfoML (currently in its 1st milestone; [8]) are hoping to
fill the lack of gel standards. gelML captures a gel electrophoresis experiment from
experimental procedures up to sample processing. It makes use of the Functional
Genomics Experimental Object Model [9,10], which defines common compo-
nents found in many biological experiments and extensions thereof according
to the authors. Along with gelML, HUPO-PSI is working on guidelines for the
documentation of proteomics experiments known as the minimum information
about proteomics experiment, or MIAPE [11]. GelML, along with GelInfoML,
which is based on MIAPE guidelines, hopes to be a comprehensive data standard
for 2-D gel electrophoresis.

There is a clear need for stable open data structures, data analysis tools,
and data repositories in 2-DE-centric proteomics that enable the compre-
hensive representation of the data from raw image pixel values to the experi-
mental methodology used to generate it. Several groups, including ours, have
recently made incremental advances toward that goal [12-14]. This report
describes resources built around the annotated gel markup language (AGML)
format [13], which has been improved along with converters and analysis and
management tools. The public repository, known as AGML Central [15], and
its conversion utilities that allow data upload in a variety of formats were cor-
respondingly upgraded. The emphasis on interoperation and cross-reference
with other open formats was also reflected by the extended support for spot
identification by Mass Spectrometry, which is addressed by a number of sta-
ble, open formats.

© 2011 by Apple Academic Press, Inc.

274 Data Structure and Software Engineering: Challenges and Improvements

results
XML representation of 2-Dimensional gel electrophoresis
experiments

Concept

The creation of a comprehensive representation for 2-D gel electrophoresis was
based on two criteria: independence of data, and an adequate minimum amount
of data. Fulfillment of these criteria allows another scientist in the same field to
replicate a given experiment. Thus, AGML 2.0 includes a substructure describing
the protocol used in running the 2-DE experiment. This was achieved by incor-
porating other open data formats developed to describe gel-centric experimental
protocols into AGML 1.0 [13] (see below).

Figure 1. Top level view of the AGML XML data structure. AGML represented as a UML class diagram can be
found at the project website [25]. The element ‘detection_parameters’ (a child of ‘gel_image’) enables AGML 2.0
to handle DIGE gel images. Also, the fact that AGML stores the raw gel image enables their reanalysis by other
means. Please note that, for clarity, not all elements are shown in the figure.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-14&iName=master.img-000.jpg&w=241&h=308

An Open-Source Representation for 2-DE-Centric Proteomics 275

Similarly, AGML 2.0 also includes a dedicated MS data substructure that pro-
vides the option of using already established MS data structures [3,12] or provides
the link to a proteomics identification database such as the proteomics identifica-
tions (PRIDE) database [16].

AGML 2.0 Data Structure

An AGML document can be broadly divided into a) an identification section, b)
a protocol section, and c) a gel section (Figure 1).

(a) The identification section consists of information that identifies the experi-
ment and the instruments used in the analysis of data. Two identifiers deserve par-
ticular notice. The experiment_desc element can be used to describe the experi-
ment with keywords or a descriptive sentence. The agml_id element is a unique
identifier generated automatically for data submitted to AGML Central.

(b) The protocol section, also known as the minimum information about 2-D
gel electrophoresis (MI2DG) [17], is intended to put the obtained data in con-
text with the methodological and biological information. We have abstracted this
from the spot information for several reasons. The main reason is that the sample
processing method is not directly relevant to the image analysis; however, it is im-
portant in the final analysis of data. Furthermore, separating the protocol section
and the spot information into different subsections allows for their independent
description. Additionally, the protocol section includes a number of elements de-
scribing the experimental protocol, and provides important covariates for data
analysis and semantic searching of the AGML data structure. It contains several
elements that identify the sample, protocol type, and conditions used for the
electrophoresis run.

In the AGML Central infrastructure, the MI2DG information has a dedicat-
ed management web portal so that protocols can be created and modified based
on an existing protocol. This eliminates the need for the researcher to repeatedly
key in all of the information, and allows researchers to easily modify a protocol
based on previously published protocols. An additional advantage of the autono-
mous protocol database [17] is that researchers have archived catalogs of all of the
protocols used in their labs. MI2DG entries have their own unique identifiers
(mi2dg_id) and can be independently referenced.

(c) The gel information section consists of spot information divided into two
sections: catalog and reals. The catalog section describes the aligned spots in all of
the real gels. The subelement protname describes the most likely protein ID out of
the possible candidates described in the hit_list. The reals element describes an in-
dividual gel (real) that comprises one or many spots. Each spot element describes
an individual spot in a gel by defining many subelements that, taken together,

© 2011 by Apple Academic Press, Inc.

276 Data Structure and Software Engineering: Challenges and Improvements

uniquely identify the spot. The matched_ref element identifies a catalogued gel
and is therefore present in both the catalog and real sections. On the other hand,
spot_ref describes an ID given by the acquisition system (e.g., PDQUEST identi-
fies spots with ssp string). This enables linkage of the data stored in the acquiring
machine to AGML for auditing purposes.

The gel_image element contains all of the details of the image file uploaded by
the user. The image subelement contains the whole image file as base64-encoded
binary data. This element can store the raw image as well as the processed image.
Additionally, the file and image_info elements contain image specific informa-
tion that is useful in further analysis of the image. The detection_parameters ele-
ment and its subelements in the gel_image section enable the inclusion of im-
ages scanned at different wavelengths, such as Differential In-Gel Electrophoresis
(DIGE) gel images, into AGML. This additional tag gives AGML the ability to
store any 2-DE gel, regardless of the number of different wavelengths used in the
analysis. Inclusion of the gel images results in the document being very large;
however, having the image in the document provides the user with immediate
access to the original data.

AGML version 1.0 [13] provided elements to include mass-to-charge and in-
tensity pairs to describe the mass spectrometry results obtained for individual
2-DE spots. Version 2.0 extends this by giving different options to store the mass-
spectrometry data, which underscores the fact that 2-DE experiments are tightly
coupled to the mass spectrometric identification (Figure 2). This element acts
only as a place holder for connecting established mass spectrometry-centric XML
data structures such as mzXML [3] and mzData [12], and for describing mass
spectrometric information for the respective spot. Extension to accommodate
other mass spectrometric schemas could easily be achieved by referencing those
using standard XML namespace rules [18]. Additionally, using the ‘link’ element,
one can identify whether the proteomic data has also been submitted or identified
and placed in a repository such as PRIDE [16]. The support for 2-DE and MS
experimental designs is also extended to the manipulation of the gels, a specific
requirement to accommodate AGML-centric laboratory management systems.
Additional elements under mass_spec can also identify the location (location) on
the plate used for mass spectrometry analysis where the sample was applied. The
element pooledwith can identify whether the sample spotted on the plate came
from a pooled sample of spots from many gels.

AGML Central: Data Repository and Analysis Framework

AGML Central [15], a web-based analysis pipeline created around the AGML
format, was expanded into a 2-DE data warehouse (Figure 3). The first set of pro-
grams developed were converters that would translate native data files into AGML

© 2011 by Apple Academic Press, Inc.

An Open-Source Representation for 2-DE-Centric Proteomics 277

data files. Currently, there are converters for PDQUEST (Bio-Rad, CA, USA),
Phoretix2D (Non-linear Dynamics), Melanie (GenBio SA), and DeCyder DIGE
(GE Healthcare). The software programs described below were developed based
on the AGML structure. Thus, there is no need to re-write these applications to
work with individual files generated by different analytical instruments as long as
they are in AGML format.

Figure 2. View of the sub element <mass_spec> structure. The non-compulsory ‘mass_spec’ provides the option
to a) store the mass spec data in a native format provided by AGML, b) store it in another format such as
mzXML or mzData, or c) add a link to a location where the data is stored, such as PRIDE. Additionally, the
elements ‘location’ and ‘pooledwith’ (children of ‘mass_spec’) can capture the location of the plate well where the
spot was deposited or pooled respectively.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-14&iName=master.img-001.jpg&w=274&h=387

278 Data Structure and Software Engineering: Challenges and Improvements

Figure 3. AGML Central web infrastructure. AGML XML format describing a 2-DE experiment is central to
the AGML Central architecture. The web infrastructure is written in PHP programming language, a widely-used
general-purpose scripting language, and the storage of the XML instance documents is provided by PostgreSQL,
an open source object-relational database management system. The AGML document is stored as a logical unit
within the database. This eliminates the need to store the document as blobs and also provides for fast retrieval of
the data. Analysis software is written in MATLAB® (The MathWorks, Inc.), a technical computing environment
ideal for handling high dimensional data.

AGML Central includes AGML Visualizer, an instrument-neutral Java ap-
plet that visualizes 2-DE gels. Built-in capabilities such as searching, displaying
the experimental protocol, and displaying individual spot information makes
the analysis of 2-DE data easy. This feature also greatly enhances the dissemina-
tion of the 2-DE data by allowing the data generated from one instrument to be
viewed, even in the absence of the corresponding acquisition instrument. AGML

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-14&iName=master.img-002.jpg&w=343&h=370

An Open-Source Representation for 2-DE-Centric Proteomics 279

Visualizer can be launched in two different ways: as an applet, or through the
Java Web Start infrastructure. Using the Java Web Start infrastructure, an AGML
document can be opened on a local hard drive. However, the applet makes use of
the AGML file that has been deposited into the AGML Central database.

Another advantage of using the AGML Central framework is the ability to
make use of the tools developed for the analysis of AGML files. A number of
AGML-centric data analysis tools were also developed, not just to add to the func-
tionality of AGML Central, but also to illustrate how researchers can test novel
algorithms directly on database entries. This not only illustrates the use of AGML
Central as a data service, but also underscores the importance of such a service
to 2-DE-centric research. For example, the tool illustrated in Figure 4 provides
the sort of double clustered heat map functionality that is often used to explore
microarray data.

Figure 4. AGML Central web site displaying the AGML Document Main page. This page gives access to all of
the information relating to a 2-DE experiment. The owner of the page can also give permissions to others to view
the experiment, check progress, and delete the submitted files (1). Collaborators of the project can also submit
files to the project (2) or view the experiment using AGML Visualizer (3). They can also view the 2-DE protocol
used for the experiment by clicking on the view protocol link (4). Raw images can be viewed or downloaded by
going to the images link (5). All of the project files are described on this page under analysis result information
(6) and can be viewed or downloaded. Additionally, the AGML XML file and MATLAB® mat files are available
for download from this page for the experiment (7). Thus the MATLAB® code written for this project can be
used to analyze the 2-DE data directly without further manipulation.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-14&iName=master.img-003.jpg&w=315&h=254

280 Data Structure and Software Engineering: Challenges and Improvements

The prototypic statistical analysis applications that use AGML Central as a
data service were written in MATLAB® (The MathWorks, Inc., Natick, MA, USA)
and are available at the AGML Central website [19]. The statistical tools currently
available are for cluster analysis, principal component analysis, and normalization
of 2-DE results [19].

Discussion
AGML was developed through close interaction with bioinformaticians and
experimentalists to create a common data format that is open, accessible, and
encompassing of all aspects of 2-DE experiments [13]. The AGML format ac-
commodates a description that spans from the start of the experiment to the final
identification step, and as a consequence, all of the data is placed within the ex-
perimental context. The resulting definition, AGML 2.0, allows users to establish
both the provenance and relevance of a 2-DE experiment, thereby enabling the
development of effective search and analysis tools.

Specialized databases exist throughout the world that focus on 2-DE data [20-
22], with SWISS-2DPAGE being a major database [23]. Other research efforts
have been directed toward comprehensive representation of proteomics experi-
ments, such as PEDRo [14] and HUP-ML [24]. AGML was developed as a prag-
matic representation of the 2-DE-centric subdomain and can be used to interop-
erate with those much larger and more encompassing representations.

In spite of being the workhorse in proteomic study, a gel-centric approach
has had weak bioinformatics support due to the lack of stable gel-centric data
standards and formats. In order to assist with tool development and data dissemi-
nation, a public database of AGML formatted entries, AGML Central [25], was
developed. This web interface comes with a visualization plug-in and a portal for
retrieval and submission by external applications. For example, MATLAB® (The
MathWorks, Inc., Natick, MA, USA) GUI functions are available in the tools
page for direct access to data to and from AGML Central. The ability to map
AGML XML format to a MATLAB® ‘struct’ (agml) enables statisticians and bio-
informaticians to create algorithms based on it. This MATLAB® struct can hold
information extracted from an AGML XML document; hence, users of this for-
mat can, by extension, use any algorithm developed for the struct ‘agml’. This fea-
ture allows the development of AGML Central-based pipelines and analysis tools.
Additionally, the results of the analysis using other methods can also be submitted
to AGML Central, to be appended to the corresponding entry. Although AGML
Central is a public repository, all data submitted is private by default. The owner
of the data can decide to make it public by providing selective access. There are
currently 26 entries, of which only 2 have been made public. However, 14 of the

© 2011 by Apple Academic Press, Inc.

An Open-Source Representation for 2-DE-Centric Proteomics 281

entries have been designated for collaboration. It is our hope that as collaboration
is completed all data will be made public.

The AGML concept and its implementation facilitate the management of pro-
teomic data coming from diverse labs using different instruments and protocols,
and enable the creation of much needed public 2-DE databases [26]. For this
reason, the AGML format provides a wider community of developers (through
the accompanying open source project) and a larger audience of users (such as
bioinformaticians and statisticians) with a way to access information generated by
2-DE experiments, thus enabling them to develop comprehensive data mining al-
gorithms that allow for exploratory and confirmatory data analysis. For example,
Oates et al [27] used the AGML Central infrastructure to manage, integrate, and
analyze 2-DE data to identify biomarkers that differentiate the two most com-
mon causes of acute renal failure. They used AGML Central to disseminate both
their protocol and proteomic data in the AGML format to their bioinformatics
collaborators. They then used the AGML data structure in the MATLAB® native
format, which is provided by AGML Central, to do exploratory analysis on their
proteomic data. Using AGML Central allowed the collaborators access to all of
the information at any time, thus streamlining their collaborative effort to get re-
sults faster. Additionally, a nascent controlled vocabulary exists for AGML; please
see Minimum Ontology for 2DE Gel Electrophoresis [28] for more information
on this effort. Completion of this work will give the AGML format true agility
and the ability to work with semantic web technologies.

The standards being created by HUPO-PSI-GEL for 2-D gel electrophoresis
data markup, gelML and GelInfoML [7] and two analogous MIAPE modules
(GE and GI; [29]), hope to encompass more details and be a comprehensive data
standard for 2-D gel electrophoresis as a whole. gelML and GelInfoML are both
based on the Functional Genomics Experiment [9] modeling framework. While
these efforts will ultimately result in community-based data standards, AGML
was created to answer this need more pragmatically. Since its inception in 2004
[13], AGML has been more interested in getting the data to tool makers. In the
process AGML has acquired many of the features that are being proposed. Briefly,
the <mi2dg> elements can be analogous to GelInfoML, and the <reals> can be
analogous to gelML. Once stable gelML and GelInfoML standards are published,
AGML documents will be made available to be translated to these standards,
thereby making the data available for any tools developed for HUPO-PSI-GEL
standards.

Overcoming barriers in data flow is a central theme in the route toward Sys-
tems Biology and this is especially true for rapidly expanding methodologies such
as those developed for proteomics research. Rapid growth of the field has seen the
emergence of high throughput instruments from different vendors that use many

© 2011 by Apple Academic Press, Inc.

282 Data Structure and Software Engineering: Challenges and Improvements

different proprietary data standards that, due to the lack of data interoperability,
limit data integration. This fact is underscored by the formation of the Interoper-
able Informatics Infrastructure Consortium, whose major goal is to eliminate bar-
riers to application interoperability, data integration, and eventually knowledge
sharing [30]. Additionally, work undertaken by HUPO-PSI to advance the field
of proteomics data standards also points to the need that exists in the area of data
interoperability in proteomics [31].

conclusion
The gel-centric AGML data structure is a comprehensive format for the represen-
tation of 2-DE proteomic data. It seeks to address the glaring need for a pragmatic
format in which both experimental results and their experimental context can
be represented. The future of 2-D electrophoresis tool development may depend
on stable standards and formats being devised and used. The stability that comes
with such endeavors is critical to enabling the development of open source data
analysis tools that are long overdue for gel-centric proteomics.

Methods
Python, Matlab, PHP and bash Programming languages were used in the devel-
opment of this project. UML diagrams were used to visualize the data structure
and XML was used in creating the AGML data structure.

authors’ contributions
RS and JSA conceived and wrote the manuscript. RS designed and implemented
the object model. JAM, BR, RM and BM provided experimental expertise. All
authors read and approved the final manuscript.

acknowledgements
This work was supported by the NHLBI Proteomics initiative through contract
N01-HV-28181. The authors thank Rebecca Partida for her expert assistance in
preparation of the manuscript.

references
1. Fu Q, Garnham CP, Elliott ST, Bovenkamp DE, Van Eyk JE: A robust,

streamlined, and reproducible method for proteomic analysis of serum by

© 2011 by Apple Academic Press, Inc.

An Open-Source Representation for 2-DE-Centric Proteomics 283

delipidation, albumin and IgG depletion, and two-dimensional gel electropho-
resis. Proteomics 2005, 5(10):2656–2664.

2. Gorg A, Weiss W, Dunn MJ: Current two-dimensional electrophoresis tech-
nology for proteomics. Proteomics 2004, 4(12):3665–3685.

3. Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt
B, Nilsson E, Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob
H, Huang S, Julian RK, Kapp E, McComb ME, Oliver SG, Omenn G, Paton
NW, Simpson R, Smith R, Taylor CF, Zhu W, Aebersold R: A common open
representation of mass spectrometry data and its application to proteomics re-
search. Nat Biotechnol 2004, 22(11):1459–1466.

4. mzData [http://www.psidev.info/]

5. mzXML [http://sashimi.sourceforge.net/]

6. mzData Tools [http://www.psidev.info/index.php?q=node/95]

7. Gel Markup Language [http://www.psidev.info/index.php?q=node/83]

8. GelInfoML [http://www.psidev.info/index.php?/q=node/83#miape]

9. Functional Genomics Experimental Object Model [http://fuge.sourceforge.
net]

10. Jones AR, Pizarro A, Spellman P, Miller M: FuGE: Functional Genomics Ex-
periment Object Model. Omics 2006, 10(2):179–184.

11. Taylor CF, Paton NW, Lilley KS, Binz PA, Julian RK Jr., Jones AR, Zhu W, Ap-
weiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJ, Leitner A, Macht M,
Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda
P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR,
Xenarios I, Yates JR 3rd, Hermjakob H: The minimum information about a
proteomics experiment (MIAPE). Nat Biotechnol 2007, 25(8):887–893.

12. Orchard S, Hermjakob H, Taylor CF, Potthast F, Jones P, Zhu W, Julian RK
Jr., Apweiler R: Further steps in standardisation. Report of the second annual
Proteomics Standards Initiative Spring Workshop (Siena, Italy 17–20th April
2005). Proteomics 2005, 5(14):3552–3555.

13. Stanislaus R, Jiang LH, Swartz M, Arthur J, Almeida JS: An XML standard
for the dissemination of annotated 2D gel electrophoresis data complemented
with mass spectrometry results. BMC Bioinformatics 2004, 5:9.

14. Taylor CF, Paton NW, Garwood KL, Kirby PD, Stead DA, Yin Z, Deutsch
EW, Selway L, Walker J, Riba-Garcia I, Mohammed S, Deery MJ, Howard
JA, Dunkley T, Aebersold R, Kell DB, Lilley KS, Roepstorff P, Yates JR 3rd,
Brass A, Brown AJ, Cash P, Gaskell SJ, Hubbard SJ, Oliver SG: A systematic

© 2011 by Apple Academic Press, Inc.

http://www.psidev.info/
http://www.psidev.info/index.php?q=node/95
http://www.psidev.info/index.php?q=node/83
http://www.psidev.info/index.php?/q=node/83#miape
http://fuge.sourceforge.net/
http://sashimi.sourceforge.net/software_glossolalia.html#mzXMLSchema

284 Data Structure and Software Engineering: Challenges and Improvements

approach to modeling, capturing, and disseminating proteomics experimental
data. Nat Biotechnol 2003, 21(3):247–254.

15. Stanislaus R, Chen C, Franklin J, Arthur J, Almeida JS: AGML Central: web
based gel proteomic infrastructure. Bioinformatics 2005, 21(9):1754–1757.

16. Jones P, Cote RG, Martens L, Quinn AF, Taylor CF, Derache W, Hermjakob
H, Apweiler R: PRIDE: a public repository of protein and peptide identifica-
tions for the proteomics community. Nucleic Acids Res 2006, 34(Database
issue):D659–63.

17. Minimum information about 2-D gel electrophoresis [http://www.agml.org/
mi2dg]

18. XML namespace rules [http://www.w3.org/TR/REC-xml-names/]

19. Almeida JS, Stanislaus R, Krug E, Arthur JM: Normalization and analysis of
residual variation in two-dimensional gel electrophoresis for quantitative dif-
ferential proteomics. Proteomics 2005, 5(5):1242–1249.

20. Ericsson C, Petho Z, Mehlin H: An on-line two-dimensional polyacrylamide
gel electrophoresis protein database of adult Drosophila melanogaster. Electro-
phoresis 1997, 18(3-4):484–490.

21. Li F, Li M, Xiao Z, Zhang P, Li J, Chen Z: Construction of a nasopharyn-
geal carcinoma 2D/MS repository with Open Source XML database--Xindice.
BMC Bioinformatics 2006, 7:13.

22. Yoshida Y, Miyazaki K, Kamiie J, Sato M, Okuizumi S, Kenmochi A, Kamijo
K, Nabetani T, Tsugita A, Xu B, Zhang Y, Yaoita E, Osawa T, Yamamoto T:
Two-dimensional electrophoretic profiling of normal human kidney glomeru-
lus proteome and construction of an extensible markup language (XML)-based
database. Proteomics 2005, 5(4):1083–1096.

23. Hoogland C, Mostaguir K, Sanchez JC, Hochstrasser DF, Appel RD: SWISS-
2DPAGE, ten years later. Proteomics 2004, 4(8):2352–2356.

24. Japan Human Proteome Organization [http://www.jhupo.org]

25. AGML Central [http://www.agml.org]

26. Prince JT, Carlson MW, Wang R, Lu P, Marcotte EM: The need for a public
proteomics repository. Nat Biotechnol 2004, 22(4):471–472.

27. Oates JC, Varghese S, Bland AM, Taylor TP, Self SE, Stanislaus R, Almeida JS,
Arthur JM: Prediction of urinary protein markers in lupus nephritis. Kidney
Int 2005, 68(6):2588–2592.

28. Minimum Ontology for 2DE Gel Electrophoresis [http://charlestoncore.musc.
edu/ont/mo2dg.html]

© 2011 by Apple Academic Press, Inc.

http://en.wikipedia.org/wiki/Two-dimensional_gel_electrophoresis
http://www.w3.org/TR/REC-xml-names/
http://www.jhupo.org/
http://en.wikipedia.org/wiki/AGML

An Open-Source Representation for 2-DE-Centric Proteomics 285

29. MIAPE: The Minimum Information About a Proteomics Experiment [http://
www.psidev.info/miape/]

30. I3C Announces new life science protocols to simplify data exchange,
knowledge sharing. [http://www.sun.com/smi/Press/sunflash/2002-06/
sunflash.20020610.3.xml]

31. Orchard S, Taylor CF, Hermjakob H, Weimin Z, Julian RK Jr., Apweiler R:
Advances in the development of common interchange standards for proteomic
data. Proteomics 2004, 4(8):2363–2365.

© 2011 by Apple Academic Press, Inc.

http://www.psidev.info/miape
http://www.oracle.com/us/sun/index.htm

Pegasys: Software for
executing and integrating

analyses of biological
Sequences

Sohrab P. Shah, David Y. M. He, Jessica N. Sawkins,
Jeffrey C. Druce, Gerald Quon, Drew Lett, Grace X. Y. Zheng,

Tao Xu and B. F. Francis Ouellette

abStract
Background

We present Pegasys—a flexible, modular and customizable software system
that facilitates the execution and data integration from heterogeneous biolog-
ical sequence analysis tools.

Results

The Pegasys system includes numerous tools for pair-wise and multiple se-
quence alignment, ab initio gene prediction, RNA gene detection, masking

© 2011 by Apple Academic Press, Inc.

Pegasys: Software for Executing and Integrating Analyses 287

repetitive sequences in genomic DNA as well as filters for database format-
ting and processing raw output from various analysis tools. We introduce a
novel data structure for creating workflows of sequence analyses and a unified
data model to store its results. The software allows users to dynamically cre-
ate analysis workflows at run-time by manipulating a graphical user inter-
face. All non-serial dependent analyses are executed in parallel on a compute
cluster for efficiency of data generation. The uniform data model and back-
end relational database management system of Pegasys allow for results of het-
erogeneous programs included in the workflow to be integrated and exported
into General Feature Format for further analyses in GFF-dependent tools, or
GAME XML for import into the Apollo genome editor. The modularity of the
design allows for new tools to be added to the system with little programmer
overhead. The database application programming interface allows program-
matic access to the data stored in the backend through SQL queries.

Conclusions

The Pegasys system enables biologists and bioinformaticians to create and
manage sequence analysis workflows. The software is released under the Open
Source GNU General Public License. All source code and documentation is
available for download at http://bioinformatics.ubc.ca/pegasys/ .

background
Pipelines for biological Sequence analysis

Large scale sequence analysis is a complex task that involves the integration of
results from numerous computational tools. For high-throughput data analysis,
these tools must be tied together in a coordinated system that can automate the
execution of a set of analyses in sequence or in parallel. To this end, a diverse array
of software systems for biological sequence analysis have emerged in recent years.
For example, the Ensembl pipeline [1] automates the annotation of several eu-
karyotic genomes, Mungall et al [2] have created a robust pipeline for annotation
and analysis of the Drosophila genome, GenDB [3] is used as an annotation sys-
tem for several prokaryotic genomes and Yuan et al [4] have published resources
for annotating the rice and other plant genomes. These pipelines are extensive in
their scope, are well-designed and meet their objectives. In surveying these and
other systems, we have identified three critical areas that are essential for building
on the design of existing biological sequence analysis pipelines:

•	 There is a need for flexible architecture so that one software system can be used
to analyse different data sets that may require different analysis tools.

© 2011 by Apple Academic Press, Inc.

http://bioinformatics.ca/links_directory/tool/9794/pegasys-workflow-management-bioinformatics

288 Data Structure and Software Engineering: Challenges and Improvements

•	 A system needs to allow for the inclusion of new tools in a modular fashion
so the software architecture does not have to change with the addition of new
tools.

•	 A system should provide the framework to facilitate data integration of analysis
results from different tools that were computed on the same input.

The Need for Flexible Architecture

The systems outlined above differ substantially from each other in their design
and application, but share common attributes. The diversity is naturally reflective
of the varied computational tasks that biologists working on different projects
need to perform in order to analyse their data. A researcher working on bacteria
will need different tools for her analyses than someone working on mouse. The
specificity driven by the needs of a research project makes it impossible to use a
pipeline designed for a particular data set for analysis of another data set that has
inherent differences such as the organism from which it was generated. As a result,
numerous software pipelines have been created, many of which perform similar
analyses (such as genome annotation) but on different data. For example, the
concept of constructing a pipeline or ‘workflows’ of data processing are common
to nearly all high-throughput sequence analysis projects. This shared concept pro-
vides an opportunity to harness the commonality in software so that a new system
need not be designed for every new project.

Incorporating New Tools into Existing Frameworks

The bioinformatics community is faced with a challenging and dynamic environ-
ment where new computational tools and data sets for sequence analysis are con-
stantly being generated. Capitalizing on algorithmic and computational advances
is critical to discovering more about the data being analysed. For a system that
has a rigid pipeline that is ‘hard coded’, it may require a significant programming
investment to incorporate a new tool. This may discourage biologists from inte-
grating a new tool on the basis of logistics, rather than on the basis of scientific
applicability. Therefore, a system should provide a framework that is designed for
flexibility and extensibility.

Facilitating Data Integration

Genome annotation requires data integration. For example ab initio prediction of
gene structures on genomic sequence can be greatly enhanced by using support-
ing sequence similarity searches [5-7]. Concordance between different methodol-
ogies lends stronger support and gives more compelling evidence to an algorithm

© 2011 by Apple Academic Press, Inc.

Pegasys: Software for Executing and Integrating Analyses 289

or a person trying to infer true biological features from computationally derived
features [8]. It follows that any analysis pipeline or system should provide a design
that facilitates integration of heterogeneous sources of data.

The Pegasys Biological Sequence Analysis System

To meet the challenges outlined above we have designed and implemented Pe-
gasys: a flexible, modular and customizable framework for biological sequence
analysis. The software is implemented in the Java programming language and is
Open Source, released under the GNU General Public License. The features of
Pegasys allow it to be used on a wide variety of tasks and data. Analysis modules
for pair-wise and multiple sequence alignment, ab initio gene prediction, mask-
ing of repetitive elements, prediction of RNA sequences and eukaryotic splice
site predictors have been developed. A new set of analyses is performed by first
creating a new ‘workflow’. We define a workflow as a set of analyses a biologist
wishes to perform on a single sequence or set of sequences. Each workflow has the
following qualities: a) the analyses can be linked together such that output from
one analysis can be used as input to a subsequent analysis, b) analyses can accept
outputs from more than one analysis as input, and c) analyses that are not serially
dependent can be executed in parallel.

Analysis tools in the Pegasys system are wrapped in modules that can easily
be plugged into the system. The backend database system provides a data model
that abstracts the concept of a computational feature and captures data from all
the different analysis tools in the same framework. We have implemented data
adaptors that can export computational results in General Feature Format [9] and
Genome Annotation Markup Elements (GAME) XML [10] for import into the
Apollo genome editor [11]. For simple workflows where data integration is not
applicable, for example one analysis on an input sequence, raw, untransformed
output from the analysis can also be retrieved.

The system is fronted by a graphical user interface that allows users to create
workflows at run-time and have them executed on the Pegasys server. The GUI
also allows users to save their workflows for repeat execution on different input,
or using different reagents.

To demonstrate the utility of Pegasys in widely different bioinformatics tasks,
we present three use cases of the system: a single application workflow, a workflow
designed for formatting a database for BLAST [12,13] and searching the newly
formatted database, and finally a workflow designed for genome annotation of
eukaryotic genomic sequence.

We are releasing this work with the intention that a wide variety of sequence
analyses in the bioinformatics research community will be enabled. Full details

© 2011 by Apple Academic Press, Inc.

290 Data Structure and Software Engineering: Challenges and Improvements

of the availability, support and documentation of Pegasys can be found at http://
bioinformatics.ubc.ca/pegasys/ .

implementation
The design of the Pegasys system is guided by three main principles: modularity,
flexibility and data integration. With these principles in mind, we designed Pega-
sys with the following architecture.

architecture and Data flow

The architecture of the system has a layered topology that uses a client/server
model. The client has a graphical user interface (see Figure 4) for the creation of
workflows. Once a workflow is created, it is sent to the server where it is executed.
The server is made up of separate layers for job scheduling, execution, database in-
teraction, and adaptors. The connectivity between layers is shown in Figure 1. The
application layer converts the work flow rendered in XML into a directed acyclic
graph (DAG) of analyses in memory. While traversing the DAG, the application
schedules all of the analyses on a distributed compute cluster and facilitates the
flow of data so that a particular node’s program is only executed once all of its
inputs are ready (i.e. all of the ‘parent’ analyses are complete). As each analysis
completes, the results are inserted into the backend database layer. Complete re-
ports and computational features of a sequence are inserted into relational tables.
Sophisticated queries on the data, in which results from selected programs can be
integrated together over a portion or all of the input sequence, can then be run
to compile data for output. The data is exported from the system via the adaptor
layer in various formats (currently GFF, GAME XML and raw output from each
analysis tool are supported) for human interpretation or for import into other ap-
plications such as viewing tools (DAS [14]), editing tools (Apollo [11]) or statisti-
cal analysis tools such as R [15].

the Pegasys Data Structure

The core data structure of the Pegasys system is a DAG G(V, E), consisting of
a set of nodes V and a set of edges connecting the nodes E (see Figure 2). The
DAG data structure models a workflow created by a user of the Pegasys system.
A node can take one of three forms: a) an input sequence or b) an individual run
of a program in the system or c) an output node. An edge (v1, v2) where v1 and
v2 are nodes in V links data flow between v1 and v2. An edge represents a serial

© 2011 by Apple Academic Press, Inc.

http://bioinformatics.ca/links_directory/tool/9794/pegasys-workflow-management-bioinformatics

Pegasys: Software for Executing and Integrating Analyses 291

dependency, indicating that the input of v2 is tied to the output of v1. We refer
to this relationship as a parent-child relationship: node v2 is a child of node v1
and node v1 is the parent of node v2. The edge ensures that the output format
from v1 is consistent with the input format of v2. A node in the DAG can have
more than one parent and therefore can have heterogeneous input from multiple
sources. The edges in the graph are directional and can only connect two nodes
that are executed one after another. The graph therefore has a chronological axis:
the child nodes are executed after their parent nodes have completed.

Figure 1. Diagram showing the client/server model and layering of the Pegasys architecture. Arrows between
the layers indicate a transfer of data. The workflow created by manipulating the GUI in the client is sent as a
Pegasys DAG XML file to the server. The application layer then processes the XML file, and sends jobs to the
job scheduling layer. The analyses are then executed and the results are stored in the database. The adaptor layer
takes results stored in the PegasysResultSet data structure in memory in the application layer and can create
output in GFF or GAME XML format. This file is then returned to the GUI where it can be digested by the
user or input into a visualization tool.

The DAG is created dynamically at run time as the user manipulates the GUI
(see The Graphical User Interface section). The user can create workflows using
any combination of the available programs in Pegasys by dragging/dropping and
linking graphical icons that represent sequence analysis tools on a canvas together
with edges in much the same way that one would use drawing tool software to
create a flow diagram. Each program icon can be clicked to open a dialogue box
that can take inputs for parameters that are supported by that particular program.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-15&iName=master.img-000.jpg&w=341&h=242

292 Data Structure and Software Engineering: Challenges and Improvements

Once all of the parameters for all the nodes have been filled in, the information
for each node and their relationships to each other are compiled into a struc-
tured XML file. This file is then used as input to the Pegasys server that executes
the analyses in parallel (described in the Architecture and Data Flow section) or
can be saved for later editing or distribution. During the execution of the DAG,
the data structure can adjust itself to accommodate outputs generated from the
nodes. Consider the edge (v3, v5) depicted in Figure 2 that connects an ab initio
gene prediction program v3 with a sequence alignment program v5. In v5, the
user wishes to search the coding regions from the output of v3 against a protein
database. v5 cannot know how many genes will be predicted from v3 before v3
has terminated. Once v3 has terminated however, v5 will replicate itself for each
‘output unit’ generated from v3 (see Figure 2B). In this case, v5 replicates itself
for each of the coding regions and the DAG executes each ‘copy’ of v5 in parallel.
This built-in elasticity confers maximum parallel execution of analyses and there-
fore more efficient execution of the computations in the DAG.

Figure 2. Diagram showing an abstract representation of a Pegasys DAG. A): Consider v1: this could be an input
sequence that is used by two sequence analysis programs v2 and v3. v4 is dependent on the output of both v2
and v3 and therefore cannot execute until v2 and v3 have completed. In this diagram, v2 and v3 will be executed
in parallel as will v4 and v5. B): DAG in the case where v3 produces two instances of the expected output to v5.
The sub-DAG rooted at v5 replicates itself (v5a and v5b) for each instance of its input. All of the new sub-DAGs
are executed in parallel.

the Program Module

The Program module is the fundamental unit of the nodes of the aforementioned
DAG in the application layer of the server and is a real instance of a node v ∈ V.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-15&iName=master.img-001.jpg&w=336&h=190

Pegasys: Software for Executing and Integrating Analyses 293

‘Program’ is an object oriented class that abstracts the concept of a Unix program
that is natively compiled. Unix programs generally have a set of input command
line parameters and output that is sent to the standard output, standard error or
an output file. The Program class has a data structure to store a program’s com-
mand line arguments and parameters. It contains methods for setting the path
to the program’s location on the system, executing the program and capturing its
output from a file, standard error and standard output streams. To abstract a se-
quence analysis program, we created a PegasysProgram class that extends Program
by adding an input sequence attribute and a PegasysResultSet to store the results
of the analysis. The ProgramResultSet is a hierarchical, recursive data structure
that allows storage of nested analysis results. For example a BLAST output has a
list of similar sequences that each in turn has a list of high scoring pairs. Similarly
Genscan produces output that contains a list of predicted genes, each of which
could have a promoter, a list of exons and a poly-A signal. PegasysResultSet cap-
tures the hierarchical nature of these results.

For each sequence specific analysis tool in Pegasys, we created a class that ex-
tends PegasysProgram. Each of these classes implement their own methods that
load the particular output of the program and parse it into their PegasysResultSet.
For example, the locations of computational evidences such as predicted exons
from a gene finding tool, or a high scoring pair from an alignment algorithm
are parsed along with a statistic and/or score when available. This architecture
generalises a computational feature so that programmatically, results from differ-
ent analysis programs can be treated equally. As mentioned earlier, this allows the
user to output results from different programs in a unified format such as GFF, or
GAME XML. In addition, it facilitates querying for all computational evidence
computed on a segment of sequence that may be of interest to the biologist.

Creating a new PegasysProgram derivative involves writing a parser for the
particular application that can extract data that is amenable to being loaded into
a PegasysResultSet. The system, at the time of this writing has PegasysPrograms
for RepeatMasker [16], BLAST (blastn, blastp, blastx, tblastn, tblastx) [12,13],
WU BLAST [17], the EMBOSS [18] implementation of Smith-Waterman [19],
Genscan [20], HMMgene [21], Mlagan [22], Sim4 [23], TrnaScan-SE [24] and
GeneSplicer [25].

the Database

The backend database of the Pegasys system was created with the goal of maximiz-
ing information capture during execution of a workflow. The database tracks all
parameters used for the invocations of analysis programs, all input sequences, and
all output generated by computation.

© 2011 by Apple Academic Press, Inc.

294 Data Structure and Software Engineering: Challenges and Improvements

The Pegasys Schema

The Pegasys schema has three main tables: ‘sequence’ which stores the input se-
quences, ‘program_run’ which stores the information about an individual pro-
gram’s process on the system and ‘pegasys_result’ which stores the locations of
computational features on the input sequence. Peripheral to the three core tables
are seventeen meta tables that store information about the data in the core tables.
The full schema is presented in Figure 3.

Figure 3. Diagram showing the relations of the Pegasys database model. There are three core tables to the
database: sequence (shown in blue), program_run (shown in orange) and pegasys_result (shown in yellow). The
meta tables for each of the three core tables are colour coded to match the corresponding core table. Foreign keys
are indicated with ‘FK’ and indexed fields are marked with T.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-15&iName=master.img-002.jpg&w=342&h=373

Pegasys: Software for Executing and Integrating Analyses 295

The ‘program_run’ table is designed to store all information on an invocation
of an analysis tool in order to facilitate reprocessing of results without having to
recompute an analysis and can also aid in diagnosing problems that are bound to
occur in the system. ‘program_run’ stores the class that invoked the process, the
raw unprocessed output of the program, the start and end time of the process
and the exit status of the process. In addition, all command line arguments used
to invoke the program are stored in support tables to ‘program_run’ in the struc-
tured tables ‘argument’, ‘parameter’, and ‘flag’. Entries into ‘program_run’ can be
grouped into batches for selective retrieval of analysis results.

Figure 4. Screenshot of the Pegasys GUI showing the three pane design. The visible pane is the canvas
pane which allows the user to create a workflow by clicking and dragging icons corresponding to the programs
available to the system. The icons can be connected to each other through edges. The parameters used for the
execution of each program can be set by double clicking the icon and filling in the dialogue box that appears
(see Figure 5). Expected inputs and outputs for the edge can be set by double clicking the edge and filling in the
dialogue (see Figure 6). This workflow will run RepeatMasker on the sequence specified in the File node and
write the results to a text file whose path is specified in the text output node. The RepeatMasker analysis itself is
run on the compute server and the results are communicated back to the client.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-15&iName=master.img-003.jpg&w=280&h=322

296 Data Structure and Software Engineering: Challenges and Improvements

The ‘sequence’ table stores the raw sequence string itself, a unique hash code
for the sequence string generated by the java.lang.String.hashCode() function, an
identifier for the sequence (by default the GenBank accession.version number)
and a description of the sequence (by default the NCBI definition line of the FAS-
TA file). This table does not store meta data about the sequence, rather it is meant
to store unique sequences used for computation. The system assumes additional
information on the sequence is stored elsewhere. The uniqueness is enforced by
ensuring all sequences have distinct hash codes, description and identifiers. Sup-
port tables for sequence have been created to enable the analysis of sub-sequences
of a larger input sequence. The subsequence relationship to the sequence is stored
in the ‘subseq’ and ‘seq_has_subseq’ relations. These tables are useful for ‘sliding
window’ analyses or when focusing in on small regions of interest of a larger input
sequence.

The ‘pegasys_result’ table stores the results of the computations. It has attri-
butes for a computational evidence type, a database reagent (if the result is from
similarity searches or uses a particular model in ab initio predictions), the strand,
start and end positions of the computational feature, a score and a statistic for
the computational feature and a free-text description of the feature. If available,
the strand, start and end position on the target sequence of an alignment are also
recorded. To support hierarchical computational evidences, the table has a ‘par-
ent_id’ that is a self-referential foreign key. This enables relating a particular row
entry in the table to another row in the table. Theoretically, the table supports
infinite nesting of hierarchical data types, although in practice results are no more
than 2 levels deep.

The support tables for ‘pegasys_result’ allow cross-referencing of ids. For ex-
ample, the system models the concept of linking out an identifier from the result
of a database search so that the full sequence and meta data of that sequence
can be easily retrieved. This cross-referencing of a ‘pegasys_result’ to an identi-
fier is stored in the ‘result_has_xref ’ relation. The type of identifier is labeled
by a controlled vocabulary so that one can query on a particular type of cross-
reference (such as accession number) as well as add a new type of cross-reference
to the system. Additional support tables to ‘pegasys_result’ are: ‘database-format’,
‘database_reagent’ and ‘evidence-type’. Each of these tables stores controlled no-
menclature that is referenced by ‘pegasys_result’. The ‘database-format’ contains
values such as blast, fasta, and genscan for BLAST formatted, FASTA formatted
and Genscan training model respectively. The ‘database_reagent’ table stores the
names and descriptions of sequence databases and statistical models that are used
in the analysis, so that a user can query the Pegasys database for results from a
particular database reagent. This structure also allows adding new database re-
agents into the system seamlessly. The ‘evidence-type’ table stores an ontology of

© 2011 by Apple Academic Press, Inc.

Pegasys: Software for Executing and Integrating Analyses 297

computational evidence types, for example ‘blastn_hit’ or ‘genscan_exon’. For
each program that is part of the Pegasys system, the computational evidence(s)
that it outputs must be recorded in the ‘evidence-type’ table prior to its use.

Database API

To communicate programmatically with the database, we have created a modular
application programming interface (API). The PegasysDB class contains public
methods for insertion and retrieval of sequences, analysis results and sets of results
(from different programs) on a particular sequence. Application developers that
wish to access data from a Pegasys database can use these high-level methods to
rapidly store and access data in a straightforward manner without having to study
the underlying schema of the database. The database API uses the PostgreSQL
JDBC driver and so is backend relational database management system (RD-
BMS) independent.

adaptors

We have implemented several adaptors for exporting data from a PegasysProgram
or set of PegasysPrograms that contain analysis results. The derived PegasysAdap-
tor classes all implement a print method to output data in a specific format. We
currently have derived PegasysAdaptor classes for GAME XML for import into
Apollo [11] and GFF [9] which can be imported into numerous tools and servers
such as the Distributed Annotation System [14] (DAS) and Gbrowse [26]. The
adaptor architecture is extensible and easily allows the development and inclusion
of new adaptors for additional formats. The PegasysAdaptor classes serve as an
important bridge from the Pegasys data structure to other well-used standards and
permits interoperability between data computed using Pegasys and many other
bioinformatics tools and databases.

Parallelism

Our local installation of Pegasys runs on a 28 CPU distributed memory compute
cluster that runs the OpenPBS parallel batch server [27]. We have implemented
‘serial’ parallelism into the system meaning that each application is a serial pro-
cess, but many serial processes can be run in parallel. It is important to note that
this is distinct from parallelism where a single application is itself implemented
using a message passing library that can use many distributed processors in a com-
pute cluster environment. To enable serial parallelism, we implemented a Run-
nable thread class in the Pegasys application layer that can navigate a command

© 2011 by Apple Academic Press, Inc.

298 Data Structure and Software Engineering: Challenges and Improvements

line argument of a PegasysProgram, and create a script at runtime that is used to
submit a job to a PBS job queue. To monitor job progress, we implemented a Java
server called QstatServer, that registers each job sent to the PBS job queue. The
QstatServer maintains a hash table of jobs in the queue and informs the Pegasys
application layer when a particular job has terminated. This architecture enables
the Pegasys application server to execute jobs in sequence or in parallel according
to the structure of the DAG that was sent by the client.

Pegasys and Java

The Pegasys system is implemented in the Java programming language. Java offers
robust data typing that facilitates object-oriented programming in its truest form.
The principles and advantages of object-oriented design are well documented in
the software engineering literature (see [28]). Java is becoming widely adopted
in the bioinformatics software domain. For example, the Ensembl database has a
Java API to programmatically access genome annotations [29]. The Biojava tool-
kit [30] is an extensive set of packages written in Java for sequence manipulation,
analysis and processing. The Apollo genome editor [11], that we use with Pegasys,
allows biologists and bioinformaticians to edit and create annotations in a sophis-
ticated GUI and is written in Java. We have integrated the Biojava toolkit into
Pegasys for manipulation of sequence files as well as parsing of BLAST output.
Using Java also allows us to make use of the JDBC library for database connec-
tivity that facilitates standard database interactions independent of the RDBMS
engine. To enable parallelism, we made use of the robust Thread and Runnable
classes that allow development of multi-threaded programs.

We have designed Pegasys in a layered architecture that consists of indepen-
dent Java packages that can easily be imported into any external Java application
that wishes to make use of them. These packages are well described in the Pegasys
user manual, available at: http://bioinformatics.ubc.ca/pegasys/ . Implementing
Pegasys in Java has brought the system strength and robustness that would not
have been attainable with using a scripting language. Pegasys provides a Java al-
ternative to existing Perl-based sequence analysis systems such as GenDB [3] and
BioPipe [31].

the graphical user interface

The Pegasys graphical user interface (GUI) is designed for ease of use while maxi-
mizing functionality. When the client is started, the user sees a simple three pane
design (see Figure 4). On left of the screen is a list of programs (the ‘Tool Box’)
available to the user. The list is retrieved from the server as an XML configuration

© 2011 by Apple Academic Press, Inc.

http://bioinformatics.ca/links_directory/tool/9794/pegasys-workflow-management-bioinformatics

Pegasys: Software for Executing and Integrating Analyses 299

file when the client starts, ensuring all the programs that are available to the user
from the client are available on the server. The canvas for drawing the workflow
is on the upper right side of the screen, and on the bottom of the screen there is a
console to view feedback from the client program.

The structure of the workflow the user creates on the canvas mirrors the struc-
ture of the DAG (see The Pegasys data structure section). The nodes of this DAG
can either be input files, output files, or a program, while the edges that connect
the nodes manage the flow of input and output information. For example, the
Genscan program node can produce many types of outputs, a list of nucleotide
FASTAs of predicted transcripts, or a list of amino acid FASTAs of the protein
products. If a user connects a BLASTP node to this Genscan node, then the edge
between these two nodes can be used to get the list of amino acid FASTAs from
the Genscan node as input for the BLASTP node.

During the creation of the workflow, the user can modify the parameters of
the analysis programs by double-clicking a node. This opens a Node Properties di-
alogue. An example for BLAST is pictured in Figure 5. The input/output types for
each edge must be set during the creation of the workflow. This is done through
the Edge Properties dialogue (see Figure 6).

When the user has finished creating the workflow, it can be saved as an XML
file representing the DAG. This XML file stores all the parameters for the nodes
and edges that have been set by the user during the creation of the DAG. This
file can be kept on the local hard drive and retrieved for later modification or
distribution, or sent to the server to be executed on the compute cluster. The
saved DAG can also be sent to the server using the command-line Java client for
high-throughput, or automated processing. When the processing is complete, the
results are sent back to the GUI client to be saved as text files.

To ensure that the user’s workflow is syntactically correct, the Pegasys client
validates the workflow in real time. As the user draw nodes and edges, they are
validated for correctness based on their requirements. For example, if a Program
Node has a required parameter that is not filled in, the Pegasys client will display
that node with a red ‘X’ beside it. Once this required parameter is filled in, the
red ‘X’ will turn into a green tick mark, indicating the correctness of this node.
Invalid edges are displayed in red, while correct ones are displayed in black. Typi-
cally, edges will be invalid if the ‘output’ and ‘input’ values of the edges are not set
or do not match. If the workflow has a red edge or a node marked with a red ‘X’,
the Pegasys client will not allow the user to send the workflow to the server and
will output a warning to the ‘Console’ area.

The GUI component of the Pegasys system is implemented in C++, using QT
graphical libraries [32]. The QT libraries offer a “write once compile anywhere”

© 2011 by Apple Academic Press, Inc.

300 Data Structure and Software Engineering: Challenges and Improvements

approach. Because the QT components are natively compiled for its target op-
erating system, GUI components written in C++/QT have a more native look
and feel and give fast response times to the user. In addition, C++/QT can be
compiled on all the major operating systems, giving it nearly the same level of
portability as Java and facilitating the distribution of the Pegasys GUI client for
most platforms.

Figure 5. Screenshot of the Node Properties dialogue window where users can input parameters for the analysis
programs. There are three columns—the name of the parameter, its current value and a check box to indicate if
this parameter is enabled. Disabled parameters will be excluded from the DAG XML, and consequently from
the actual command that is executed on the server. All default values are set in the ProgramList.xml file that the
server reads on startup.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-15&iName=master.img-004.jpg&w=238&h=384

Pegasys: Software for Executing and Integrating Analyses 301

Figure 6. Screenshot of the Edge Properties dialogue window where users set the inputs and outputs of an edge.
The input/output values are selected with drop-down select bars so users can only select input/output types that
are available to the two nodes. Incompatible input/output types for an edge are not allowed by the GUI and
the user is alerted to the error. The input/output lists for each node are set in the ProgramList.xml file that the
server reads on startup.

XML Configuration Files

Communication between the client and server is mediated through XML
files. There are three key XML files in the Pegasys client. The first XML file,
the Pegasys configuration file (PegasysConfig.xml), keeps track of the system
settings for default output directories on the server, queuing time for the

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-15&iName=master.img-005.jpg&w=249&h=382

302 Data Structure and Software Engineering: Challenges and Improvements

scheduler, location of Pegasys Java jar files, and database information. This file
also contains the path to the second XML file–the program list file which list
all of the programs and their associated parameters that are currently avail-
able on the Pegasys server (ProgramList.xml). This file needs to be updated
whenever a new module is added to the server, or the parameters of an existing
module are changed. It is kept on the server and is transmitted to the client
every time it starts up to inform the users of the available programs on the
server and their associated parameters.

The third XML file is the textual representation of the workflow. This file is
generated by saving the workflow using the client. It can be sent to the server
where it is parsed and then executed, or it can be re-opened at a later time for
further modification. For each node on the canvas, its parameters, flags, and co-
ordinates on the canvas are recorded in the DAG XML file. Edges have their start
and end nodes recorded.

Communication via XML is one of the standard ways of disseminating
information on the Internet. Both Java for the backend and QT for the cli-
ent have ready-made parsers for XML. This allowed us to rapidly build the
software components that exchange information between the client and the
server.

results and Discussion
To illustrate the flexibility of Pegasys for diverse analyses, we chose three work-
flows to demonstrate as use cases for the system. The simplest workflow takes an
input sequence, runs a single analysis on this sequence and saves the unprocessed
results.

Figure 4 shows an example of detecting repeats in a genomic sequence using
RepeatMasker. In this example, the unprocessed results are written to a text file.
This example is almost as if RepeatMasker were run locally on the command line,
except that all information about the parameters used, the input sequence and the
results are logged to the Pegasys database.

Figure 7 shows a workflow that has two inputs. The first is a FASTA-formatted
nucleotide sequence file. This file is used as input to ‘formatdb’—an application
that transforms FASTA-formatted databases into a format that can be used by
BLAST. The second input is a query sequence that will be used to search the
newly formatted database using BLAST. The results of the search are outputted in
a GFF-formatted text file.

© 2011 by Apple Academic Press, Inc.

Pegasys: Software for Executing and Integrating Analyses 303

Figure 7. Workflow showing a BLAST pipeline. A FASTA formatted database is to be formatted for BLAST
using ‘formatdb’. A query sequence is then searched against this new database using BLAST. The results are
written to a text file in GFF format.

Figure 8 shows a workflow that would be suitable for annotation of eukaryotic
genomic sequence. The output of this workflow would serve as the input for an
annotation tool like Apollo. The DAG branches after the input sequence File
node into a sub-DAG of analyses that work on the input as is and a sub-DAG
that analyzes the input sequence that is masked for repeats with RepeatMasker.
The unmasked sequence is analysed for tRNAs using tRNAscan-SE, and for pro-
tein coding genes using ab initio gene predictors Genscan and HmmGene. The
masked sequence is searched against a database of curated proteins using BLASTX
and against a database compiled from ESTs, full-length cDNAs and mRNA

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-15&iName=master.img-006.jpg&w=342&h=369

304 Data Structure and Software Engineering: Challenges and Improvements

sequences (dbTranscript). The results from the latter search are further processed
by an application (bt2fasta) that filters all hits based on taxonomy (in this case
the user-inputted NCBI taxonid of the source organism of the input sequence)
and retrieves their full sequences. This results in an organism-specific database
of FASTA formatted sequences consisting of the BLASTN against dbTranscript
hits. The unmasked input sequence is then used as input to Sim4, which in turn
aligns the input sequence to the entries in the organism specific database. Results
for all analyses are then integrated into a GAME XML file for further interpreta-
tion using Apollo. The Pegasys XML DAG file that includes the parameters for all
programs is available for download at http://bioinformatics.ubc.ca/pegasys/ .

Figure 8. Workflow for genome annotation. This workflow executes ab initio gene prediction, tRNA detection,
repeat detection, sequence similarity searching against protein and transcript databases and alignments of
transcripts to genomic sequence. Results for all of these analyses are integrated into a single GAME XML output
file that can be inputted into Apollo, where a user can create annotations on the original input sequence.

These use cases provide good examples of how Pegasys can be used in se-
quence-based bioinformatics analyses. The system itself is by no means limited to
these examples. In theory any Unix program or script can be incorporated into
the system and Pegasys could be used for workflows for systems administration,
or other high-level scripting.

© 2011 by Apple Academic Press, Inc.

http://bioinformatics.ca/links_directory/tool/9794/pegasys-workflow-management-bioinformatics
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-15&iName=master.img-007.jpg&w=331&h=256

Pegasys: Software for Executing and Integrating Analyses 305

comparison with other Systems

As mentioned above, there are other systems that are similar to Pegasys in phi-
losophy and approach. The DiscoveryNet platform [33] is a system that inte-
grates bioinformatics tools based on Grid computing technologies. This system is
a ‘middleware’ system that can be used to create workflows of annotation tools.
Pegasys differs from the DiscoveryNet approach in two major ways. First, Pegasys
provides a rigorously defined data model for storing computational features that is
mapped by a relational backend database. The use case for DiscoveryNet describes
output in the form of text-based flat files. Storing the data in a database allows it
to be mined using SQL for selective sub-sets of computational evidence and gives
the user more control over what they are interpreting. Second, the Pegasys system
is designed to create workflows on the fly using the GUI and XML. The Discov-
eryNet genome annotation workflow was programmed and any new workflow
would also require programming investment. DiscoveryNet uses the concept of
web-services and distributed computing. The architecture of Pegasys is extensible
to web service based analyses. We plan on adding the capability of making remote
calls to application servers and being able to integrate their analysis results into
the Pegasys framework. This would give Pegasys the utmost flexibility and exten-
sibility by combining the power of locally installed applications with remote web
services.

The Biopipe framework [31] describes a framework for protocol-based bioin-
formatics. The protocols are developed with the goal of creating reproducibility
of results from computational analyses. This idea complements Pegasys quite well
and we envisage using Pegasys to encode protocols by creating workflow stan-
dards generated from the Pegasys GUI for specific types of analyses (e.g. genome
annotation or mass spectrometry peptide fragment identification) that we can
distribute to the Pegasys user community. This will facilitate cross-comparison of
results from similar bioinformatics experiments performed on data sources in dif-
ferent research labs, or by colleagues working in the same lab. In addition, Pegasys
can be used to compare results of different protocols designed to address similar
scientific problems.

future Directions

The work described in this paper has led us to consider many new challenges for
future work on Pegasys. While the specifications, the data model and the software
are mature enough to be used in a research setting, there remain many features
and enhancements to the system that we are implementing in on-going work. We
are adding new modules to Pegasys for distribution to the community. We are
implementing Pegasys modules for the Infernal package that is driving the Rfam

© 2011 by Apple Academic Press, Inc.

306 Data Structure and Software Engineering: Challenges and Improvements

repository of families of functional RNAs [34]. Our genome annotation work to
date has focused largely on eukaryotic systems, and we have therefore devoted
most of our development time to applications tuned for eukaryotic animal analy-
sis. We are adding modules for prokaryotic analysis (e.g. Glimmer [35,36]) and
plants (Eugene [37]) to complement the current tools in Pegasys.

From a software perspective, we hope to make Pegasys inter-operable and
compliant with additional existing Open Source bioinformatics standards and
specifications, namely BioSQL and Chado to allow data computed with Pegasys
to be used in other systems that employ and interact with these specifications.

conclusions
We have created a robust, modular, flexible software system for the execution
and integration of heterogeneous biological sequence analyses. Pegasys can
execute and integrate results from ab initio gene prediction, pair-wise and
multiple sequence alignments, RNA gene detection and masking of repetitive
sequences to greatly enhance and automate several levels of the biological se-
quence analysis process. The GUI allows users to create workflows of analyses
by dragging and dropping icons on a canvas and joining processes together by
connecting them with graphical ‘edges’. Each analysis is highly configurable
and users are presented with the option to change all parameters that are sup-
ported by the underlying program. Data integration is facilitated through the
creation of a data model to represent computational evidence which is in turn
implemented in a robust backend relational database management system.
The database API provides programmatic access to the results through high-
level methods that implement SQL queries on the data. The Pegasys system
is currently driving numerous diverse sequence analysis projects and can be
easily configured for others.

Implemented in Java, the backend of Pegasys is inter-operable with a grow-
ing number of bioinformatics tools developed in Java. Pegasys can output
text files in standard formats that can then be imported into other tools for
subsequent analysis or viewing. We are continually adding to Pegasys through
the development of additional modules and methods of data integration. The
flexibility, customization, modularity and data integration capabilities of Pe-
gasys make it an attractive system to use in any high throughput sequence
analysis endeavour. We are releasing the source code of Pegasys under the
GNU General Public License with the hope that the bioinformatics commu-
nity worldwide will make use of our efforts and in turn contribute improve-
ments in the spirit of Open Source.

© 2011 by Apple Academic Press, Inc.

Pegasys: Software for Executing and Integrating Analyses 307

availability and requirements
Pegasys is available at http://bioinformatics.ubc.ca/pegasys/ and is distributed un-
der the GNU General Public License. Pegasys is designed to run on Unix based
systems. Please consult the user manual (available with the distribution) for de-
tailed installation and configuration instructions. The Pegasys server is written in
Java and has the following dependencies: Java 1.3.1 or higher, PostgreSQL 7.3.*,
JDBC driver for PostgreSQL 7.3.* and BioJava 1.2*. We have tested Pegasys on
a distributed memory cluster (recommended) running OpenPBS 2.3.16 to ad-
minister the job scheduling. In theory an SMP system running OpenPBS should
work, but this has not been tested. The system’s analysis programs include the
following: NCBI BLAST 2.2.3, WU BLAST 2.0, EMBOSS 2.7.1 (for Smith-
Waterman implementation only), tRNAscan-SE 1.23, the LAGAN toolkit 1.2,
Sim4, Genscan 1.0, HMMgene 1.1, MaskerAid (2001-11-08) and GeneSplicer.
All of the analysis tools are freely available to academics. For details please consult
the Pegasys manual available with the distribution. The server has successfully
been deployed and tested on a 28 CPU Linux cluster running RedHat 7.3.

The client is written in C++ and requires the QT libraries version 3.11, and
gcc version 3.2.2. The client has been tested on Linux Mandrake9.x, Solaris 8,
Mac OSX, Windows98/NT/ME/XP.

authors’ contributions
SS was the lead architect of the system and contributed to the design and imple-
mentation and wrote most of this manuscript. DH was the principal developer
and contributed to the design and implementation of the server and the GUI. JS
contributed to the design of the project and provided requirements to the devel-
opers who were designing the system. GQ, GZ, JD, DL and TX all participated
in the implementation of various components of the system. BFFO conceived of
the project, guided its development, and edited this manuscript.

acknowledgements
BFFO would like to acknowledge GenomeBC for funding this project. DL is
supported by the CIHR/MSFHR Strategic Training Program in Bioinformatics
http://bioinformatics.bcgsc.ca. TX is supported by CIHR grant #MOP-53259.
We wish to thank Stefanie Butland, Joanne Fox and Yong Huang for critical re-
views of this manuscript. We also thank Miroslav Hatas and Graeme Campbell
for systems and software installation and maintenance for the Pegasys server.

© 2011 by Apple Academic Press, Inc.

http://bioinformatics.ca/links_directory/tool/9794/pegasys-workflow-management-bioinformatics
http://bioinformatics.bcgsc.ca/

308 Data Structure and Software Engineering: Challenges and Improvements

references
1. Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J,

Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki
L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E, Pettett R,
Pocock M, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J, Spooner
W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A, Vastrik I, Clamp M: The
Ensembl genome database project. Nucleic Acids Res 2002, 30:38–41.

2. Mungall CJ, Misra S, Berman BP, Carlson J, Frise E, Harris N, Marshall B,
Shu S, Kaminker JS, Prochnik SE, Smith CD, Smith E, Tupy JL, Wiel C,
Rubin GM, Lewis SE: An integrated computational pipeline and database to
support whole-genome sequence annotation. Genome Biol 2002., 3(12): RE-
SEARCH0081. Epub 2002 Dec 23.

3. Meyer F, Goesmann A, McHardy A, Bartels D, Bekel T, Clausen J, Kalinows-
ki J, Linke B, Rupp O, Giegerich R, Pühler A: GenDB-an open source ge-
nome annotation system for prokaryote genomes. Nucleic Acids Res 2003,
31(8):2187–2195.

4. Yuan Q, Ouyang S, Liu J, Suh B, Cheung F, Sultana R, Lee D, Quackenbush
J, Buell C: The TIGR rice genome annotation resource: annotating the rice
genome and creating resources for plant biologists. Nucleic Acids Res 2003,
31:229–233.

5. Korf I, Flicek P, Duan D, Brent MR: Integrating genomic homology into gene
structure prediction. Bioinformatics 2001, 17:S140–S148.

6. Mathé C, Déhais P, Pavy N, Rombauts S, Van Montagu M, Rouzé P: Gene
prediction and gene classes in Arabidopsis thaliana. J Biotechnol 2000,
78(3):293–299.

7. Yeh R, Lim L, Burge C: Computational inference of homologous gene struc-
tures in the human genome. Genome Res 2001, 11(5):803–816.

8. Rogic S, Ouellette B, Mackworth A: Improving gene recognition accuracy by
combining predictions from two gene-finding programs. Bioinformatics 2002,
18(8):1034–1045.

9. General Feature Format [http://www.sanger.ac.uk/Software/formats/GFF/in-
dex.shtml]

10. GAME XML DTD [http://flybase.bio.indiana.edu/annot/gamexml.dtd.txt]

11. Lewis SE, Searle SM, Harris N, Gibson M, Lyer V, Richter J, Wiel C, Bayrak-
taroglir L, Birney E, Crosby MA, Kaminker JS, Matthews BB, Prochnik SE,
Smithy CD, Tupy JL, Rubin GM, Misra S, Mungall CJ, Clamp ME: Apollo:

© 2011 by Apple Academic Press, Inc.

http://www.sanger.ac.uk/resources/software/
http://flybase.org/

Pegasys: Software for Executing and Integrating Analyses 309

a sequence annotation editor. Genome Biol 2002., 3(12): RESEARCH0082.
Epub 2002 Dec 23. Review.

12. Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local alignment search
tool. J Mol Biol 1990, 215(3):403–410.

13. Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D:
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res 1997, 25(17):3389–3402.

14. Dowell R, Jokerst R, Day A, Eddy S, Stein L: The distributed annotation sys-
tem. BMC Bioinformatics 2001, 2:7–7.

15. R Development Core Team: R: A language and environment for statistical
computing. [http://www.R-project.org] R Foundation for Statistical Comput-
ing, Vienna, Austria 2003. [ISBN 3-900051-00-3]

16. Bedell J, Korf I, Gish W: Masker Aid: a performance enhancement to Repeat-
Masker. Bioinformatics 2000, 16(11):1040–1041.

17. Gish W: WU BLAST 2.0. [http://blast.wustl.edu/blast/README.html]

18. Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology
Open Software Suite. Trends Genet 2000, 16(6):276–277.

19. Smith T, Waterman M: Identification of common molecular subsequences. J
Mol Biol 1981, 147:195–197.

20. Burge C, Karlin S: Prediction of complete gene structures in human genomic
DNA. J Mol Biol 1997, 268:78–94.

21. Krogh A: Two methods for improving performance of an HMM and their
application for gene finding. Proc Int Conf Intell Syst Mol Biol 1997, 5:179–
186.

22. Brudno M, Do C, Cooper G, Kim M, Davydov E, Green E, Sidow A, Bat-
zoglou S: LAGAN and Multi-LAGAN: efficient tools for large-scale multiple
alignment of genomic DNA. Genome Res 2003, 13(4):721–731.

23. Florea L, Hartzell G, Zhang Z, Rubin G, Miller W: A computer program for
aligning a cDNA sequence with a genomic DNA sequence. Genome Res 1998,
8(9):967–974.

24. Lowe T, Eddy S: tRNAscan-SE: a program for improved detection of transfer
RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):955–964.

25. Pertea M, Lin X, Salzberg S: GeneSplicer: a new computational method for
splice site prediction. Nucleic Acids Res 2001, 29(5):1185–1190.

26. Stein L, Mungall C, Shu S, Gaudy M, Mangone M, Day A, Nickerson E,
Stajich J, Harris T, Arva A, Lewis S: The generic genome browser: a building

© 2011 by Apple Academic Press, Inc.

http://www.r-project.org/
http://hg.wustl.edu/info/README.html

310 Data Structure and Software Engineering: Challenges and Improvements

block for a model organism system database. Genome Res 2002, 12(10):1599–
1610.

27. OpenPBS [http://www.openpbs.org]

28. Booch G: Object-oriented Analysis and Design with Applications The Benja-
min/Cummings Publishing Company 1994.

29. Ensj [http://www.ensembl.org/java/]

30. BioJava.org [http://www.biojava.org]

31. Hoon S, Ratnapu K, Chia J, Kumarasamy B, Juguang X, Clamp M, Stabenau
A, Potter S, Clarke L, Stupka E: Biopipe: a flexible framework for protocol-
based bioinformatics analysis. Genome Res 2003, 13(8):1904–1915.

32. Trolltech–Qt Overview [http://www.trolltech.com/products/qt/index.html]

33. Rowe A, Kalaitzopoulos D, Osmond M, Ghanem M, Guo Y: The discovery net
system for high throughput bioinformatics. Bioinformatics 2003, 19(Suppl 1):
225–225.

34. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy S: Rfam: an RNA
family database. Nucleic Acids Res 2003, 31:439–441.

35. Delcher A, Harmon D, Kasif S, White O, Salzberg S: Improved microbial gene
identification with GLIMMER. Nucleic Acids Res 1999, 27(23):4636–4641.

36. Salzberg S, Delcher A, Kasif S, White O: Microbial gene identification using
interpolated Markov models. Nucleic Acids Res 1998, 26(2):544–548.

37. Schiex T, A M, P R: EUGENE: An Eukaryotic Gene Finder That Combines
Several Sources of Evidence. In JOBIM 2000, 111–125.

© 2011 by Apple Academic Press, Inc.

http://www.pbsworks.com/?AspxAutoDetectCookieSupport=1
http://useast.ensembl.org/index.html
http://biojava.org/wiki/Main_Page
http://qt.nokia.com/

an application of a game
Development framework in

Higher education

Alf Inge Wang and Bian Wu

abStract
This paper describes how a game development framework was used as a learn-
ing aid in a software engineering. Games can be used within higher educa-
tion in various ways to promote student participation, enable variation in
how lectures are taught, and improve student interest. In this paper, we de-
scribe a case study at the Norwegian University of Science and Technology
(NTNU) where a game development framework was applied to make stu-
dents learn software architecture by developing a computer game. We pro-
vide a model for how game development frameworks can be integrated with
a software engineering or computer science course. We describe important
requirements to consider when choosing a game development framework
for a course and an evaluation of four frameworks based on these require-
ments. Further, we describe some extensions we made to the existing game

© 2011 by Apple Academic Press, Inc.

312 Data Structure and Software Engineering: Challenges and Improvements

development framework to let the students focus more on software architectur-
al issues than the technical implementation issues. Finally, we describe a case
study of how a game development framework was integrated in a software ar-
chitecture course and the experiences from doing so.

introduction
Games have been used in schools for many years to help children learn skills
in math, language, geography, science, and other domains in an interesting and
motivating way. Research shows that integrating games within a classroom with
children can be beneficial for academic achievement, motivation, and classroom
dynamics [1]. There is also evidence that the teaching methods based on edu-
cational games are not only attractive to schoolchildren, but also to university
students [2]. There have been conducted researches on games concept and game
development used in higher education before, for example, [3–5], but we believe
there is an untapped potential that needs to be explored. Games can provide
teachers in higher education with teaching aids that can promote more active
students, provide alternative teaching methods to improve variation, and enable
social learning through multiplayer learning games.

Games can be integrated in higher education in three ways. First, games can be
used instead of traditional exercises motivating students to put extra effort in do-
ing the exercises and giving the teacher and/or teaching assistants an opportunity
to monitor how the students work with the exercises in real time [6, 7]. Second,
games can be used within lectures to improve the participation and motivation
of students [8, 9]. In this approach, the students and the teacher participate in
knowledge-based games. Third, the students are required to develop a game as a
part of a course using a game development framework (GDF) to learn skills within
computer science or software engineering [10]. This paper focuses on the latter,
where game development and a GDF are used in student projects to learn software
engineering skills, extending the use of games as a teaching aid in higher education.
The motivation of making students develop games to learn software engineering
is to bring the students’ enthusiasm from playing games to learn courses through
game development. In addition, we wanted to investigate if the specific features of
a GDF are suitable for teaching software engineering and how game development
can be integrated with the education process. More specifically, we wanted to ex-
plore how the use of game development and the GDF would affect the learning of
software architecture with focus on the technical aspects of the GDF.

This paper focuses on how the technical aspects of a GDF affect the learning
of software architecture, the selection of appropriate GDF for a software architecture

© 2011 by Apple Academic Press, Inc.

An Application of a Game Development Framework in Higher Education 313

course, and how a GDF can be applied in a software engineering course. The
main contribution of this paper is a presentation of a novel GDF concept that can
be used in courses that includes software development, experiences from actual
usage of the GDF, and some course design considerations.

The rest of the paper is organized as follows. Section 2 describes and moti-
vates for how a GDF can be used in higher education and what criteria should
be considered when choosing one. Section 3 describes a case study of applying a
GDF in a software architecture course. Section 4 describes experiences fromusing
a GDF in a software course. Section 5 describes similar approaches, and Section
6 concludes the paper.

game Development frameworks in Higher
education
This section presents the motivation for applying GDFs in higher education, a
model for how GDFs can be integrated with a course, and requirements for how
to choose the appropriate GDF for educational purposes.

gDf and education

The main motivation for introducing GDF in software engineering (SE) or com-
puter science (CS) courses is to motivate students to put more effort into software
development project in order to improve software development skills. Game de-
velopment offers an interesting way of learning and applying the course theory.
By introducing a game development project in a course, the students have to
establish and describe most of the functional requirements themselves (what the
game should be like). This can be a motivating factor especially for group-based
projects, as each group will develop a unique application (the game); it will en-
courage creativity, and it will require different skills from the group members (art,
programming, story, audio/music). The result will be that the students will have
a stronger feeling of ownership to the project. Furthermore, students also could
learn about game development technology. The main disadvantages by introduc-
ing a game development project and a GDF into a SE or CS course is that the
student might spend too much time on game-specific issues and that the project
results might be difficult to compare. It is critical that the students get motivated
applying a GDF in a course and that they get increased motivation for learning
and applying course theory through a game development project.

Tom Malone has listed three main characteristics that make things fun to
learn: they should provide the appropriate level of challenge, they should use

© 2011 by Apple Academic Press, Inc.

314 Data Structure and Software Engineering: Challenges and Improvements

fantasy and abstractions to make it more interesting, and they should trigger the
player’s curiosity [11]. These characteristics can directly be applied when develop-
ing a game for learning purposes. However, we can also consider these character-
istics when introducing a GDF in a SE or CS course. By allowing the students to
develop their own games using a GDF, such projects are likely to trigger students’
curiosity as well as provide a challenge for students to design fun games with their
knowledge, skills, imagination, and creativity. The level of the challenge can be
adjusted according to the project requirements given in courses by the teacher.
Thus, the challenge level can not only be adjusted to the right level for most par-
ticipants, but also tailored for individual differences. As the students will work in
groups, group members helping other group members can compensate for the
individual differences. An open platform and agile courses requirements should
be provided for students to design their own games, combined with their ability,
fantasy, and comprehension of lecture content. The main benefit of using a GDF
as a teaching aid is that it can be a motivating initiative in courses to learn about
various topics such as software requirements, software design, software architec-
ture, programming, 2D and 3D graphic representation, graphic programming,
artificial intelligence, physics, animation, user interfaces, and many other areas
within computer science and software engineering. It is most useful for learning
new skills and methods within a specific domain but also useful for testing and
rehearsing theory by applying know skills and knowledge in a project using a
GDF.

Circulatory Model of Applying a GDF in a Course

There are several good reasons for introducing a GDF and game development
projects in CS and SE courses as described in previous section, but in order to
make it a success it is important that the GDF is well integrated with the course.
Based on our experiences, we have developed a circular model for how to apply a
GDF in a CS or SE course through six steps (see Figure 1). The model is intended
for courses where a software development project is a major part of the course.

To choose one appropriate development platform according to the course
content, it is important to consider the process of the course related to the de-
velopment project. This process starts with choosing an appropriate GDF (step
A) for the course related to some requirements (described in the next section).
Next, the design of exercises and projects (step B) must reflect the limitations and
constraints of the chosen GDF. In the initial phase of the student project, it is
important that the students get the required technical guidance and appropriate
requirements (step C) related to the GDF. It is important that the students get
to know the GDF early, for example, by introducing an exercise to implement

© 2011 by Apple Academic Press, Inc.

An Application of a Game Development Framework in Higher Education 315

a simple game in the GDF. It is critical that there is sufficient course staff that
knows the GDF well enough to give the required feedback. The next step is for
the students to start designing and implementing (stepD) their own game accord-
ing to the constraints within the course and the GDF. After the students have
delivered their final version of their project implementation and documentation,
the students should get the chance to evaluate and analyze (step E) their own
projects to learn from their successes and mistakes. This information should then
be used to provide feedback in order to improve the course (step F). The feedback
from the students might indicate that another GDF should be used or that the
course constraints on the projects should be altered. The core of this model is that
the teacher should encourage the students to explore the course theory through a
game development project using a GDF and give the opportunity to improve the
game development project through feedback from the students.

Figure 1. Circulatory model of GDF’s application in courses.

criteria for choosing the right gDf

How to choose an appropriate GDF that easily can be integrated with course
content should be based on the educational goals of the course, the technical level
and skills of students, and the time available for projects and/or exercises. Based
on experiences from using GDFs and from student projects in CS and SE courses,
we have come up with the following requirements for choosing a GDF for a CS
or SE course.

(1) It must be easy to learn and allow rapid development. According to Ma-
lone’s recommendation of how to make things fun to learn, it is crucial
that we provide the appropriate level of challenge. If the GDF is too much
of a challenge and requires too much to learn before becoming produc-
tive, the whole idea of game development will be wasted, as the student
will lose motivation. An important aspect of this is that the GDF offers
high-level APIs that makes it possible for the students to develop impressive

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-16&iName=master.img-000.jpg&w=294&h=108

316 Data Structure and Software Engineering: Challenges and Improvements

results without writing too many lines of code. This is especially critical in
the first phase of the project.

(2) It must provide an open development environment to attract students’
curiosity. Malone claims that fantasy and curiosity are other important
factors that make things fun to learn. By providing a relatively open GDF
without too many restrictions on what you can produce, the students
get a chance to realize the game of their dreams. This means that the
GDF itself should not restrict what kind of game the students can make.
This requirement would typically rule out GDFs that are tailored for pro-
ducing only one game genre such as adventure games, platform games,
or board games. In addition, ideally an open development environment
should offer public and practical interfaces for developers to extend their
own functions. In this respect, open source game development platforms
are preferred.

(3) It must support programming languages that are familiar to the students.
The students should not be burdened to have to learn a new program-
ming language from scratch in addition to the course content. This would
take away the focus of the educational goals of the course.We suggest to
choose GDFs that support popular programming languages that the stu-
dents know like C++, C#, or Java. It is also important that the program-
ming languages supported by the GDF have high-level constructs and
libraries that enable the programmers to be more productive as less code is
required to produce fully functional systems. From an educational point
of view, programming languages like Java and C# are better suited than
C and C++, as they have more constraints that force the programmers to
write cleaner code, and there is less concern related to issues like pointers
and memory leakage. From a game development perspective, program-
ming languages like C and C++ are more attractive as they generally pro-
duce faster executables and thus faster games.

(4) It must not conflict with the educational goals of the course. When choos-
ing a GDF it is important that the inherent patterns, procedures, design,
and architecture of the GDF are not in conflict with the theory taught
in the course. One example of such a conflict could be that the way the
GDF enforces event handling in an application is given as an example of
bad design in the textbook.

(5) It must have a stable implementation. When a GDF is used in a course,
it is essential that the GDF has few bugs so the students do not have to
fight a lot of technical issues instead of focusing on the course topics. This
requirement indicates that it is important that the GDF is supported by
a company or a development community that has enough resources to

© 2011 by Apple Academic Press, Inc.

An Application of a Game Development Framework in Higher Education 317

eliminate serious technical insufficiencies. It is also important that the
development of the GDF is not a dead project, as this will lead to com-
patibility issues for future releases of operating systems, software compo-
nents, and hardware drivers.

(6) It must have sufficient documentation. This requirement is important for
both the course staff and the students. The documentation should both
give a good overview of the GDF as well as document all the features
provided. Further, it is important that the GDF provides tutorials and
examples to demonstrate 4 International Journal of Computer Games
Technology how to use the GDF and its features. The frameworks should
provide documentation and tutorials of high quality enabling self-study.

(7) It should be inexpensive (low costs) to use and acquire. Ideally, the GDFs
should be free or have very low associated cost to avoid extra costs run-
ning the course. This requirement also involves investigating additional
costs related to the GDF such as requirements for extra or more powerful
hardware and/or requirements for additional software.

The goal of the requirements above is to save the time and effort the students
have to spend on coding and understanding the framework, making them con-
centrate on the course content and software design. Thus, an appropriate GDF
could provide the students with exciting experiences and offer a new way of learn-
ing through a new domain (games). The requirements above are also important
for the course staff, as they will help to find a GDF that would cause less ef-
fort spent on technical issues, and incompatibility between GDF and the course
contents.

From the requirements above, we acknowledge that there is a conflict between
requirements one and two. The level of the freedom the developer is given to
make whatever game he likes could be in conflict with providing a development
environment that allows rapid development and is easy to learn. A more open
GDF usually means that the developer must learn more APIs as well as the APIs
themselves are usually of lower level, and thus harder to use. However, it is pos-
sible to get a bit of both worlds by offering high-level APIs that are relatively
easy to use but still allow the developer to access underlying APIs that give the
developer the freedom in what kind of games can be made. This means that the
GDF can allow inexperienced developers to just modify simple APIs or example
code to make variants of existing games, or to allow more experienced developers
to make unique games by using more of the provided underlying APIs. How hard
the GDF is to use will then really depend on the ambition of the game developer
and not on the GDF itself. This can also be a motivating factor to learn more
about the GDF’s APIs.

© 2011 by Apple Academic Press, Inc.

318 Data Structure and Software Engineering: Challenges and Improvements

case Study: applying a gDf in a Software
architercture course
This section describes a case study of a software architecture course at the Nor-
wegian University of Science and Technology (NTNU) where a GDF was intro-
duced.

the Software architecture course

The software architecture course is a postgraduate course offered to CS and SE
students at NTNU. The course is taught every spring, its workload is 25% of one
semester, and about 70 postgraduate students attend the course every semester.
The students in the course are mostly of Norwegian students (about 80%), but
there are about 20% foreign students mostly from EU-countries. The textbook
used in this course is the “Software Architecture in Practice, Second Edition”, by
Bass, Clements et al. [12]. Additional papers are used to cover topics that are not
sufficiently covered by the book such as design patterns, software architecture
documentation standards, view models, and postmortem analysis [13–16]. The
education goal of the course is:

“The students should be able to define and explain central concepts in soft-
ware architecture literature and be able to use and describe design/architectural
patterns, methods to design software architectures, methods/techniques to achieve
software qualities, methods to document software architecture, and methods to
evaluate software architecture.”

The course is taught in four main ways:
(1) ordinary lectures given in English;
(2) invited guest lectures from the software industry;
(3) exercise in design patterns;
(4) a software development project with emphasis on software architecture.
30% of the grade is based on an evaluation of a software architecture project

that all students have to do, while 70% is given from the results of a written ex-
amination. The goal of the project is for the students to apply the methods and
theory in the course to design a software architecture and to implement a system
according to the architecture. The project consists of the following phases.

(1) COTS (Commercial Off-The-Shelf) exercise: learn the development plat-
form to be used in the project by developing some simple test applica-
tions.

© 2011 by Apple Academic Press, Inc.

An Application of a Game Development Framework in Higher Education 319

(2) Design pattern: learn how to utilize design pattern by making changes in
an existing system designed with and without design patterns.

(3) Requirements and architecture: describe the functional and the quality
requirements, and design the software architecture for the application in
the project.

(4) Architecture evaluation: use the Architecture Tradeoff Analysis Method
(ATAM) [12, 17] to evaluate the software architecture in regards to the
quality requirements. Here one student group will evaluate another stu-
dent group’s project.

(5) Implementation: do a detailed design and implement the application
based on the created architecture and based on the results from a previous
phase.

(6) Project evaluation: evaluate the project after it has been completed using
a Post-Mortem Analysis (PMA) method.

In the two first phases of the project, the students work on their own or in
pairs. For the phases 4–6, the students work in self-composed groups of four
students. The students spend most time on the implementation phase (6 weeks),
and they are also encouraged to start the implementation in earlier phases to test
their architectural choices (incremental development). In previous years, the goal
of the project has been to develop a robot controller for a robot simulator in Java
with emphasis on an assigned quality attribute such as availability, performance,
modifiability, or testability.

choosing a gDf for the Software architecture course

In Fall 2007, we started to look for appropriate GDFs to be used in the software
architecture course in spring 2008.We looked for both GDFs where the program-
mer had to write the source code as well as visual drag-and-drop programming
environments. The selection of candidates was based on GDFs we were familiar
with and GDFs that had developer support. Further, we wanted to compare both
commercial and open source GDFs. From an initial long list candidate GDFs, we
chose to evaluate the following GDFs more in detail.

(i) XNA: XNA is a GDF from Microsoft that enables development of home-
brew cross-platform games for Windows and the XBOX 360 using the
C# programming language. The initial version of Microsoft XNA Game
Studio was released in 2006 [18], and in 2008 Microsoft XNA Game
studio 3.0 was released that includes support for making games for XBOX
Live. XNA features a set of high-level API enabling the development of

© 2011 by Apple Academic Press, Inc.

320 Data Structure and Software Engineering: Challenges and Improvements

advanced games in 2D or 3D with advanced graphical effects with little
effort. The XNA platform is free and allows developers to create games for
Windows, Xbox 360, and Zune using the same GDF [19]. XNA consists
of an integrated development environment (IDE) along with several tools
for managing audio and graphics.

(ii) JGame: JGame is a high-level framework for developing 2D games in Java
[20]. JGame is an open source project and enables developers to develop
games fast using few lines of code as JGame will take care of typical game
functionality such as sprite handling, collision detection, and tile han-
dling. JGame games can be run as stand-alone Java games, Java applets
games running in a web browser or on mobile devices (Java ME). JGame
does not provide a separate IDE but is integrated with Eclipse.

(iii) Flash: Flash is a high-level framework for interactive applications in-
cluding games developed by Adobe [21]. Most programming in Flash is
carried out in Action script (a textual programming language), but the
Flash environment also provides a powerful graphical editor for manag-
ing graphical objects and animation. Flash applications can run as stand-
alone applications or in a web browser. Flash applications can run on
many different operating systems like Windows, Mac OS X, and Linux
as well as on mobile devices and game consoles (Nintendo Wii and Sony
Playstation 3). Programming in Flash is partly visual by manipulating
graphical objects, but most code is written textually. Flash supports de-
velopment of both 2D and 3D applications.

(iv) Scratch: is a visual programming environment developed by MIT Media
Lab in collaboration with UCLA that makes it easy to create interactive
stories, animations, games, music, and art and to share the creations on
the web [22]. Scratch works similar to Alice [23] allowing you to pro-
gram by placing sprites or objects on a screen and manipulate them by
drag-and-drop programming. The main difference between Scratch and
Alice is that Scratch is in 2D while Alice is in 3D. Scratch provides its
own graphical IDE that includes a set of programming primitives and
functionality to import various multimedia objects.

An evaluation of the four GDF candidates is shown in Table 1. From the four
candidates, we found Scratch to be the least appropriate candidate. The main dis-
advantage with Scratch was that it would be very difficult to teach software archi-
tecture using this GDF, as the framework did not allow exploring various software
architectures. Further, Scratch was also very limited in what kind of games that
could be produced, limiting the options for the students. The main advantage us-
ing Scratch is that it is very easy to learn and use. JGame suffered also from some

© 2011 by Apple Academic Press, Inc.

An Application of a Game Development Framework in Higher Education 321

of the same limitations as Scratch, as it put some restrictions on what software
architecture could be used, and it had little flexibility in producing a variety of
types of games. The main advantage using JGame was that it was an open source
project with access to the source code and that all the programming was done in
Java. All CS and SE students at NTNU learn Java in the two first introductory
programming courses. An attractive alternative would be to use Flash as a GDF.
Many developers use Flash to create games for kids as well as games for the Web.
Flash puts little restrictions on what kind of games you can develop (both 2D and
3D), but there are some restrictions on what kind of software architecture you
can use in your applications. The programming language used in Flash, Action
Script, is not very different from Java so it should be rather easy for the students
to learn. The main disadvantage using Flash in the software architecture course
was the license costs. As the computer and information science department does
not have a site license for the Flash development kit, it would be too expensive
to use. XNA was found an attractive alternative for the students, as it made it
possible for them to create their own XBOX 360 games. XNA puts little restric-
tions on what kinds of software architectures you apply in your software, and it
enables the developers to create almost any game. XNA has strong support from
its developer (Microsoft) and has a strong community of developers along with a
lot of resources (graphics, examples, etc.). The main disadvantages using XNA as
a GDF in the course were that the students had to learn C# and that the software
could only run on Windows machines. Compared to JGame and other Java-based
GDFs, XNA has a richer set of high-level APIs and a more mature architecture.

Based on the evaluation described above, we chose XNA as a GDF for our
course. From previous experience we knew that it does not require much effort
and time to learn C# for students that already know Java.

XQueSt—an extension of the chosen gDf

After we had decided to use XNA as a GDF in the software architecture course,
we launched a project to extend XNA to make XNA even easier to use in the stu-
dent project. This project implemented XQUEST (XNA QUick & Easy Starter
Template) [24], which is a small and lightweight 2D game library/game template
developed at NTNU that contains convenient game components, helper classes,
and other classes that can be used in the XNA game projects (see Figure 2). The
goal of XQUEST was to identify and abstract common game programming tasks
and create a set of components that could be used by students of the course to
make their life easier. We choose to focus only on 2D. There are a few reasons for
this. First, the focus of the student projects is software architecture, not making a
game with fancy 3D graphics. Second, students unfamiliar with game programming

© 2011 by Apple Academic Press, Inc.

322 Data Structure and Software Engineering: Challenges and Improvements

and 3D programming may find it daunting to have to learn the concepts needed
for doing full-blown 3D in XNA, such as shader programming and 3D modeling,
in addition to software architectures. To keep the projects in 2D may reduce the
effect of students focus only on the game development and not on the software
architecture issues.

Table 1. Evaluation of four GDF candidates.

teaching Software architecture using Xna

XNA was introduced in the software architecture course to motivate students to
put extra effort in the student project with the goal to learn the course content
such as attribute driven design, design and architectural patterns, ATAM, design
of software architecture, view points, and implementation of software architec-
ture. This section will go through the different phases of this project and describe
how XNA affected these phases.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-16&iName=master.img-001.jpg&w=341&h=314

An Application of a Game Development Framework in Higher Education 323

Introduction of XNA Exercises

In the start of the semester the course staff gave an introduction to course where
the software architecture project was presented. Before the students started with
their project, they had to do an exercise individually or in pairs where they got
to choose their own partner. The goal of the first exercise was to get familiar with
the XNA framework and environment, and the students were asked to complete
four tasks.

(1) Draw a helicopter sprite on the screen and make it move around on its
own.

(2) Move around the helicopter sprite from previous task using the keyboard,
change the size of the sprite when a key was pressed, rotate the sprite
when another key was pressed, and write the position of the sprite on the
screen.

(3) Animate the helicopter sprite using several frames and do sprite collision
with other sprites.

(4) Create the classical Pong game in XNA.

Before the students started on their XNA introduction exercise, they got a
two-hour technical introduction to XNA. During the semester, two technical as-
sistants were assigned to help students with issues related to XNA. These assistants
had scheduled two hours per week to help students with problems, in addition to
answering emails about XNA issues.

Figure 2. The XQUEST library shown in the XNA development environment.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-16&iName=master.img-002.jpg&w=342&h=201

324 Data Structure and Software Engineering: Challenges and Improvements

Requirement and Architecture for the Game Project

After the introduction exercise was delivered, the students formed groups of four
students. Students that did not know anyone were assigned to groups. The course
staff then issued the project task where the goal was to make a functioning game
using XNA based on students’ own defined game concept. However, the game
had to be designed and implemented according to their specified and designed
software architecture. Further, the students had to develop a software architec-
ture that focused on one particular quality attribute assigned by the course staff.
We used the following definitions for the quality attributes in the game proj-
ects: Modifiability, the game architecture and implementation should be easy to
change in order to add or modify functionality; Testability, the game architecture
and implementation should be easy to test in order to detect possible faults and
failures. These two quality attributes were related to the course content and the
textbook. A perfect implementation was not the ultimate quest of this XNA game
project, but it was critical that the implementation reflected the architectural de-
scription. It was also important that the final delivery was well-structured, easy to
read, and made according to the template provided by the course staff.

The first phase of the project was the requirement and architecture phase
where the students should deliver requirements and the software architecture of
the game along with a skeleton code reflecting the architecture. The requirements
document focused on a complete functional requirement description of the game
and several quality requirements for the game described as scenario focusing on
one particular quality attribute. The architectural description was the most im-
portant part of the final delivery of the game project, and the students had to
document their architecture according to IEEE 1471-2000 [25]. The architecture
documentation could be altered several times before its final delivery. Table 2 lists
main attributes required in the architectural description in the game projects.

We also required that the students wrote the code skeleton for the architecture
they had designed. This was done to emphasize the importance of starting the
implementation early and to ensure that students designed an architecture that
was possible to implement.

Evaluation of the Game Project

After the requirements, the architecture and the code skeleton were delivered; the
student groups were assigned to evaluate each other’s architecture using ATAM.
The whole idea was for one project group to evaluate the architecture of the other
group’s game to give feedback on the architecture related to the quality focus of
the software architecture [27]. It included attribute utility tree, analysis of archi-
tectural approach, sensitivity points, trade-off points, risks and non-risks, and risk
themes.

© 2011 by Apple Academic Press, Inc.

An Application of a Game Development Framework in Higher Education 325

Table 2. List of architecture description for the game project.

Detailed Design and Implementation

The focus of implementation phase was to design, implement, and test the game
application. The documentation delivered in this phase focused on the test results
from running the game related to the specified requirements and the discussion
of the relationship between the implemented game and the architectural docu-
mentation [14, 15]. Table 3 lists what should be delivered in the implementation
phase. For the test report part in the Table 3, the functional requirements and
quality requirements had the attributes like shown in Table 4 and Table 5. The test
reports should also include a discussion about the observation of the test unless
there was nothing to discuss about the test results.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-16&iName=master.img-003.jpg&w=240&h=369

326 Data Structure and Software Engineering: Challenges and Improvements

At the end of this phase, the students had to submit their final delivery of
their projects that included all documents, code, and other material from all proj-
ect phases. The course staff evaluated all the groups’ deliveries and gave grades
by judging document and implementation quality, document and implementa-
tion completeness, architecture design, and readability and structure of code and
report.

Table 3. Design & implementation phase description.

Table 4. Attributes of functional requirements.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-16&iName=master.img-004.jpg&w=288&h=304
http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-16&iName=master.img-005.jpg&w=257&h=76

An Application of a Game Development Framework in Higher Education 327

Table 5. Attributes of quality requirements.

The Game Project Workshop

In this workshop, selected groups had to give short presentations about the project
goal, quality attribute focus, proposed architectural solution with some diagrams
or explanations, and an evaluation of how well did the solution worked related to
functional requirements and quality focus. Further, the selected groups ran demos
of their games, and it was opened for questions from the audience.

The workshop provided an open mind environment to let students give each
other feedback, brainstorm about improvements and ideas, and to discuss their
ideas to give a better understanding of the course content and game architecture
design.

Post-Mortem Analysis

In the final task in the project, every group had to perform a post-mortem analysis
of their project. The focus of the PMA was to analyze successes and problems of
the project. The PMA was documented in a short report that included a positive
(successes) and a negative (problems) KJ diagram (structured brainstorm map),
a positive and a negative causal map (a diagram that shows cause-effect relation-
ships), and experiences from using PMA [13]. The PMA made the students reflect
on their performance in the project and gave them useful feedback to improve in
the future projects and inputs for the course staff to improve the course. The main
topics analyzed in the PMA were issues related to group dynamics, time man-
agement, technical issues, software architecture issues, project constraints, and
personal conflicts.

experiences of using gDf in Software
architecture
The experiences described in this section are based on the final course evaluation,
feedback from the students during the project, and the project reports.

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-16&iName=master.img-006.jpg&w=231&h=97

328 Data Structure and Software Engineering: Challenges and Improvements

The final course evaluation made all students (mandatory) taking the course
answer three questions. The results reported below are a summary of the students’
responses related to the project and the GDF.
(1) What have been good about software architecture course?

(a) About the project itself: “Cool project”, “Really interesting project”, “We
had a lot of fun during the project”, “It is cool to make a game”, “Fun to
implement something practical such a game”, “Videogame as an exercise
is quite interesting”, “I really liked the project”, and “The game was mo-
tivating and fun”.

(b) Project and learning: “Good architectural discussion in the project group
I was in”, “Learned a lot about software architecture during the project”,
“The project helped to understand better the arguments explained in the
lectures, having fun at the meantime”, “Fun project where we learned a
lot”, “I think that the creation of a project from the beginning, with the
documentation until the code implementation, was very helpful to better
understand in practice the focus of the course”, “The game project was
tightly connected to the syllabus and lectures and gave valuable experi-
ence. The main thing I learned was probably how much simpler every-
thing gets if you have a good architecture as a basis for your system”, and
“The interplay of game and architectural approaches”.

(c) The project being practical work: “I think it was pretty good that you guys
made us do a lot of practical work”, and “To choose C# as a platformis a
good idea as it is used a lot in the software industry; at the same time it is
very similar to Java so it is rather easy to learn the language.”

(d) Interplay between groups: “It was also good to see the results of the others’
projects in the final presentation”.

(2) What have been not so good about the course software architecture?
(a) XNA support: “The way the student assistants were organized; during the

implementation periods at least they should be available in a computer
lab and not just in the classroom”, “Maybe the use of XNA Framework
XQUEST was very difficult because I never use it. Maybe some extra lec-
ture focus on the use of XQUEST Framework was better”, and “We did
not have lectures on XNA; could have got some more basic info…Hmm…”

(b) XNA versus software architecture: “Took a lot of time getting to know
C#, I liked it, but I did not have the time to study architecture” and “The
use of game as a project may have removed some of the focus away from
the architecture. XNA and games in general limit the range of useful ar-
chitectures.”

© 2011 by Apple Academic Press, Inc.

An Application of a Game Development Framework in Higher Education 329

(3) What would you have changed for next year’s course?
(a) Project workload: “Maybe just little more time to develop the game” and

“I would change the importance of the project. I think that the workload
of the project was very big and it can matter the 50% of the total exam.”

(b) XNA support: “Perhaps have some C# intro?” and “It would be helpful
to have some lab hours”.

(c) Project constraints: “Maybe more restrictions on game type, to ensure that
the groups choose games suited for architectural experimentation.”

The responses from the students were overall very positive. In the previous
years, the students in the software architecture course had to design the architec-
ture and implement a robot controller for a robot simulator in Java. The feedback
from the XNA project was much more positive than the feedback from the robot
controller project. Other positive feedback we got from the students was that
they felt they learned a lot from the game project, that they liked the practical
approach of the project and having to learn C#, and the interaction between the
groups (both ATAM and the project workshop).

The negative feedback from the course evaluation was focusing on the lack of
XNA support and technical support during the project and that some student felt
that there was too much focus on C#, XNA, and games and too little on software
architecture.

Figure 3. Game based on XNA framework (Top left: Racing; Top right: Codename Gordon; Bottom: RPG).

© 2011 by Apple Academic Press, Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13126-16&iName=master.img-007.jpg&w=278&h=227

330 Data Structure and Software Engineering: Challenges and Improvements

The suggestions to improve the course were mainly according to the negative
feedback, namely, to improve XNA support and to adjust the workload of the
project. One student also suggested limiting the types of games to be implement-
ed in project to ensure more focus on software architectural experimentation.

Snapshots from Some Student Projects

Figure 3 shows screenshots from four student game projects. The game at the up-
per left corner is a racing game, the game at the upper right corner is a platform
game, and the two games below are role-playing games (RPGs). Some of the XNA
games developed were original and interesting. Most games were entertaining but
were lacking contents and more than one level due to time constraints.

related work
This paper describes experiences from utilizing the special features of a GDF in a
software architecture course. The main benefits from applying a GDF in a CS or
SE course is that the students get more motivated during the software develop-
ment project. As far as we know, there are few papers that describe the usage of
a professional GDF concept applied in universities courses that is not directly a
target for learning game development, especially no papers about usage of XNA
in higher education. However, there are some related approaches in education
described in this section.

El-Nasr and Smith describes how the use of modifying or modding existing
games can be used to learn computer science, mathematics, physics, and ascetic
principles [10]. The paper describes how they used modding of the WarCraft III
engine to teach high school students a class on game design and programming.
Further, they describe experiences from teaching university students a more ad-
vanced class on game design and programming using the Unreal Tournament
2003 engine. Finally, they present observations from student projects that involve
modding of game engines. Although the paper claims to teach students other
things than pure game design and programming, the GDFs were used in the
context of game development courses.

The framework Minueto [28] is implemented in Java, and it is used by stu-
dents in their second year of undergraduate studies at McGill University in Mon-
treal, Canada. The framework encapsulates graphics, audio, and keyboard/mouse
inputs to simplify Java game development. It allows development of 2D games,
such as card games and strategy games, but it lacks in support for visual program-
ming and suffers from limited documentation.

© 2011 by Apple Academic Press, Inc.

An Application of a Game Development Framework in Higher Education 331

The Labyrinth [29] is implemented in Java, and it is a flexible and easy-to-use
computer game framework. The framework enables instructors to expose students
to very specific aspects of computer science courses. The framework is a finished
game in the Pac-Man genre, highly modular, and it lets the students change dif-
ferent aspects of the game. However, it cannot be used to develop different genres
of game, and there is little room for changing the software architecture of the
framework.

The JIG (Java Instructional Gaming) Project [30] is a collaborative effort be-
tween Scott Wallace (Washington State University Vancouver) and Andrew Nier-
man (University of Puget Sound) in conjunction with a small group of dedicated
students. It has three aims: (1) to build a Java Instructional Game Engine suitable
for a wide variety of students at all levels in the curriculum; (2) to create a set of
educational resources to support the use of the game engine at small, resource-
limited, schools; (3) to develop a community of educators that use and help im-
prove these resources. The JIG Project was proposed in 2006, after a survey of
existing game engines revealed a very limited supply of existing 2D Java game
engines. JIG is still in development.

GarageGames [31] offers two game engines written in C++. The Torque Game
Engine targets 3D games, while the Game Builder provides a 2D API and encour-
ages programmers to develop using a proprietary language (C++ can also be used).
Both engines are aimed at a wide audience, including students and professionals.
The engines are available under separate licenses ($50 per license per year for each
engine) that allow full access to the source code. Documentation and tutorials
cover topics appropriate for beginners and advanced users.

The University of Michigan’s DXFramework [32] game engine is written in
C++. The current version is targeted specifically for 2D games, although previ-
ous versions have included a 3D API as well. This engine is designed for game
programming education and is in its third major iteration. The DXFramework is
an open source project. Compared to XNA, DXFramework has no competitive
advantage as it has limited support for visual programming, and it is not easier
than XNA to learn.

The University of North Texas’s SAGE [33] game engine is written in C++,
and targets 3D games, not 2D. Like the DXFramework, SAGE is targeted specifi-
cally for game programming educational usage. The source code can be down-
loaded and is currently available without license. Marist College’s GEDI [34]
game engine provides a second alternative for 2D game design in C++, and is also
designed with game programming educational use in mind. Source code can be
downloaded and is currently available without license, but GEDI is still in the
early phases of development. Only one example game is distributed with the code,
and little documentation is available.

© 2011 by Apple Academic Press, Inc.

332 Data Structure and Software Engineering: Challenges and Improvements

For business teaching, Arena3D [35] is a game visualization framework with
its animated 3D representations of the work environments; it simulates patients
queuing at the front desk and interacts with the staff. IBM has also produced a
business game called INNOV8 [36] which is “an interactive, 3-D business simu-
lator designed to teach the fundamentals of business process management and
bridge the gap in understanding between business leaders and IT teams in an
organization”.

conclusion and future work
In this paper we have presented a case study of how a GDF was evaluated, chosen,
and integrated with a software architecture course. The main goal of introducing
a GDF and a game development project in this course was to motivate students
to learn more about software architecture during the game development project.
The positive feedback from the students indicates that this was a good choice as
the students really enjoyed the project and learned software architecture from car-
rying out the project.

We will continue to explore the area of using games, games concept, and game
development in CS and SE education and evaluate how this affects the students’
motivation and performance. The choice of XNA as a GDF proved to be a good
choice for our software architecture course. The main disadvantage using XNA is
the lack of support for non-Windows operating systems like Linux and Mac OS
X. Mono. XNA is a cross platform implementation of the XNA game framework
that allows XNA to run on Windows, Mac OS X, and Linux using OpenGL [37].
The project is still in an early phase. An alternative to solve this problem is to let
the students choose between different GDFs, for example, XNA and a Java-based
GDF. The main challenge for this approach is that the course staff needs to know
all the GDFs offered to the students to give proper technical assistance. Based on
the feedback from the students; the technical support is very important and must
be considered before providing choices of more GDFs.

acknowledgements
The authors would like to thank Jan-Erik Strøm and Trond Blomholm Kvamme
for implementing XQUEST and for their inputs to this paper. They would also
like to thank Richard Taylor and Institute for Software Research (ISR) at Univer-
sity of California, Irvine (UCI), for providing a stimulating research environment
and for hosting a visiting researcher.

© 2011 by Apple Academic Press, Inc.

An Application of a Game Development Framework in Higher Education 333

references
1. R. Rosas,M. Nussbaum, P. Cumsille, et al., “Beyond Nintendo: design and

assessment of educational video games for first and second grade students,”
Computers & Education, vol. 40, no. 1, pp. 71–94, 2003.

2. M. Sharples, “The design of personal mobile technologies for lifelong learn-
ing,” Computers & Education, vol. 34, no. 3-4, pp. 177–193, 2000.

3. A. Baker, E. O. Navarro, and A. van der Hoek, “Problems and programmers:
an educational software engineering card game,” in Proceedings of the 25th
International Conference on Software Engineering (ICSE ’03), pp. 614–619,
Portland, Ore, USA, May 2003.

4. L. Natvig, S. Line, and A. Djupdal, ““Age of computers”; an innovative com-
bination of history and computer game elements for teaching computer funda-
mentals,” in Proceedings of the 34th Annual Frontiers in Education (FIE ’04),
vol. 3, pp. 1–6, Savannah, Ga, USA, October 2004.

5. E. O. Navarro and A. van der Hoek, “SimSE: an educational simulation game
for teaching the software engineering process,” in Proceedings of the 9th An-
nual SIGCSE Conference on Innovation and Technology in Computer Science
Education (ITiCSE ’04), p. 233, Leeds, UK, June 2004.

6. G. Sindre, L. Natvig, and M. Jahre, “Experimental validation of the learning
effect for a pedagogical game on computer fundamentals,” IEEE Transactions
on Education, vol. 52, no. 1, pp. 10–18, 2009. 12 International Journal of
Computer Games Technology

7. B. A. Foss and T. I. Eikaas, “Game play in engineering education: concept and
experimental results,” International Journal of Engineering Education, vol. 22,
no. 5, pp. 1043–1052, 2006.

8. A. I. Wang, O. K. Mørch-Storstein, and T. Øfsdahl, “Lecture quiz—a mobile
game concept for lectures,” in Proceedings of the 11th IASTED International
Conference on Software Engineering and Application (SEA ’07), pp. 305–310,
Cambridge, Mass, USA, November 2007.

9. A. I. Wang, T. Øfsdahl, and O. K. Mørch-Storstein, “An evaluation of a mobile
game concept for lectures,” in Proceedings of the 21st Conference on Software
Engineering Education and Training (CSEET ’08), pp. 197–204, Charleston,
SC, USA, April 2008.

10. M. S. El-Nasr and B. K. Smith, “Learning through game modding,” Comput-
ers in Entertainment, vol. 4, no. 1, pp. 45–64, 2006.

11. T. W. Malone, “What makes things fun to learn? Heuristics for designing in-
structional computer games,” in Proceedings of the 3rd ACM SIGSMALL

© 2011 by Apple Academic Press, Inc.

334 Data Structure and Software Engineering: Challenges and Improvements

Symposium and the First SIGPC Symposium on Small Systems (SIGSMALL
’80), pp. 162–169, ACM Press, Palo Alto, Calif, USA, September 1980.

12. P. Clements, L. Bass, and R. Kazman, Software Architecture in Practice, Addi-
son-Wesley, Reading, Mass, USA, 2nd edition, 2003.

13. A. I. Wang and T. Stalhane, “Using post mortem analysis to evaluate software
architecture student projects,” in Proceedings of the 18th Conference on Soft-
ware Engineering Education and Training (CSEET ’05), pp. 43–50, Ottawa,
Canada, April 2005.

14. J. O. Coplien, “Software design patterns: common questions and answers,”
in The PatternsHandbook: Techniques, Strategies, and Applications, pp. 311–
320, Cambridge University Press, New York, NY, USA, 1998.

15. A. Rollings and D. Morris, Game Architecture and Design: A New Edition,
New Riders Games, Indianapolis, Ind, USA, 2003.

16. D. P. Perry and A. L. Wolf, “Foundations for the study of software architec-
ture,” ACM Sigsoft Software Engineering Notes, vol. 17, no. 4, pp. 40–52,
1992.

17. R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere,
“The architecture tradeoff analysis method,” in Proceedings of the 4th IEEE In-
ternational Conference on Engineering Complex Computer Systems (ICECCS
’98), pp. 68–78, Monterey, Calif, USA, August 1998.

18. Microsoft Corporation, “XNA Developer Center,” June 2008, http://msdn.
microsoft.com/en-us/xna/aa937794.aspx.

19. B. Nitschke, Professional XNA Game Programming: For Xbox 360 and Win-
dows, John Wiley & Sons, New York, NY, USA, 2007.

20. JGame project, “JGame: a Java game engine for 2D games,” November 2008,
http://www.13thmonkey.org/∼boris/jgame/index.html.

21. Adobe, “Animation software, multimedia software—Adobe Flash CS4 Profes-
sional,” November 2008, http://www.adobe.com/products/flash.

22. Lifelong Kindergarten Group, MIT Media Lab, “Scratch: Imagine, Program,
Share,” June 2008, http://scratch.mit.edu.

23. Carnegie Mellon University, “Alice.org,” June 2008, http://www.alice.org.

24. T. Blomholm Kvamme and J.-E. Strøm, Evaluation and extension of an XNA
game library used in software architecture projects, M.S. thesis, Department
of Computer and Information Science, Norwegian University of Science and
Technology (NTNU), Trondheim, Norway, June 2008.

© 2011 by Apple Academic Press, Inc.

http://msdn.microsoft.com/en-us/aa937791.aspx
http://www.13thmonkey.org/
http://www.adobe.com/products/flash.html
http://scratch.mit.edu/
http://www.alice.org/

An Application of a Game Development Framework in Higher Education 335

25. IEEE Std 1471-2000, “IEEE Recommended Practice for Architectural De-
scription of Software-Intensive Systems,” Software Engineering Standards
Committee of the IEEE Computer Society, 2000.

26. P. Kruchten, “The 4 + 1 view model of architecture,” IEEE Software, vol. 12,
no. 6, pp. 42–50, 1995.

27. A. BinSubaih and S. C. Maddock, “Using ATAM to evaluate a game-based
architecture,” in Proceedings of the 2nd International ECOOP Workshop on
Architecture-Centric Evolution (ECOOP ’06), Nantes, France, July 2006.

28. A. D. Minueto, An undergraduate teaching development framework, M.S.
thesis, School of Computer Science, McGill University, Montreal, Canada,
2005.

29. J. Distasio and T. Way, “Inclusive computer science education using a ready-
made computer game framework,” in Proceedings of the 12th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’07), pp. 116–120, Dundee, Scotland, June 2007.

30. Washington State University Vancouver and University of Puget Sound, “The
Java Instructional Gaming Project,” June 2000, http://ai.vancouver.wsu.edu/
jig.

31. GarageGames, “GarageGames,” June 2008, http://www.garagegames.com.

32. C. Johnson and J. Voigt, “DXFramework,” June 2008, http://www.dxframe-
work.org.

33. I. Parberry, “SAGE: a simple academic game engine,” June 2008, http://larc.
csci.unt.edu/sage.

34. R. Coleman, S. Roebke, and L. Grayson, “GEDI: a game engine for teaching
videogame design and programming,” Journal of Computing Science in Col-
leges, vol. 21, no. 2, pp. 72–82, 2005.

35. Rockwell Automation Inc, “Arena Simulation Software,” June 2008, http://
www.arenasimulation.com.

36. IBM, “INNOV8—a BPM Simulator,” June 2008, http://www.ibm.com/soft-
ware/solutions/soa/innov8.html.

37. Monoxna, “Monoxna—Google Code,” November 2008, http://code.google.
com/p/monoxna.

© 2011 by Apple Academic Press, Inc.

http://ai.vancouver.wsu.edu/
http://www.garagegames.com/
http://web.eecs.umich.edu/~sugih/courses/eecs494/fall06/lectures/lecture4-dxframework.pdf
http://larc.unt.edu/sage/
http://www.arenasimulation.com/Arena_Home.aspx
http://www-01.ibm.com/software/solutions/soa/innov8/index.html
http://code.google.com/p/monoxna/

336 Data Structure and Software Engineering: Challenges and Improvements

copyrights
1. This is an open access article distributed under the Creative Commons Attribu-

tion License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

2. Public Domain

3. © 2010 Dilek Göksel Duru and Mehmed Özkan. This is an open access article
distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

4. This is an open access article distributed under the Creative Commons Attribu-
tion License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

5. © 2010 Marco Brambilla et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is
properly cited.

6. © 2010 Jussi Kasurinen et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is
properly cited.

7. © 2010 Mohammed I. Younis and Kamal Z. Zamli. This is an open access
article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original work is properly cited.

8. © 2010 Negar Koochakzadeh and Vahid Garousi. This is an open access article
distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

9. © 2009 Quan Liang Chen and Takao Shimomura. This is an open access article
distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

10. © 2009 Miguel Jiménez et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is
properly cited.

© 2011 by Apple Academic Press, Inc.

An Application of a Game Development Framework in Higher Education 337

11. This is an open access article distributed under the Creative Commons Attribu-
tion License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

12. © 2008 Stanislaus et al.; licensee BioMed Central Ltd. This is an Open Access
article distributed under the terms of the Creative Commons Attribution Li-
cense (http://creativecommons.org/licenses/by/2.0), which permits unrestrict-
ed use, distribution, and reproduction in any medium, provided the original
work is properly cited.

13. © 2004 Shah et al.; licensee BioMed Central Ltd. This is an Open Access
article: verbatim copying and redistribution of this article are permitted in all
media for any purpose, provided this notice is preserved along with the article’s
original URL.

14. © 2009 A.I. Wang and B. Wu. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is
properly cited.

© 2011 by Apple Academic Press, Inc.

http://creativecommons.org/licenses/by/2.0/

A
abstract FrameOrSet

frameset and frame, 205
frameset hierarchy, 205

abstract syntax tree (AST), 25, 27
Action Script, 320, 321
Ada compiler, 151–52
AddJSP() method, 202
AGML. See annotated gel markup lan-

guage (AGML)
AGML-centric laboratory management

systems, 276
agriculture ICT-service provider, 142
Allelogram

code, size measures of, 178
mutation score of, 184
test suite of, 170, 172, 185

size measures of, 179
unit test suite of, 179

AND gateways, 73, 74
AND-Merge gateways, 82
AND-spit gateway, 75

index

angular thresholds, 46
annotated gel markup language (AGML),

273
AGML version 1.0, 274, 276
AGML version 2.0, 274
central framework, 279
central infrastructure, 275
central web infrastructure, 278
document main page, 279
format, 277, 281
visualizer, 278
XML data structure, level view of, 274
XML document, 280

AOR. See arithmetic operator replacement
(AOR)

API. See application programming inter-
face (API)

application domains, 122
application programming interface (API),

15
eCopSoft server, 16
PegasysDB, 297

architectural visualizations, 25, 27, 32, 35

© 2011 by Apple Academic Press, Inc.

Index 339

aim of, 25
common examples of, 25
single-view, 26

Arena3D, 332
ArgoUWE, 93
arithmetic complexity, 28, 34
arithmetic operator replacement (AOR),

183
ArrayList, 203
articles analyzed, type of, 231
artifact-based process, 236
AskQuotation, 95
ask quotation activity, 74, 75, 98
AST. See abstract syntax tree (AST)
autograph, 202

definition of, 203
automated redundancy detection system,

173
automation

application, 130
category of, 131
development, 130

automation tools
category of, 130
development of, 137
tool sophistication level for, 119

axial brain MR image, 47
axial slice, fiber tracking results, 48

B
bacteria, 288
biological information, 275
biological sequence analysis, 287
Biopipe framework, 305
BioPro system, 213, 215, 218, 220

frameset page design windows, 197
visual-oriented tool, 214

4-bit magnitude comparator
equivalent class Java program, 156
OTS and SV for, 157
schematic diagram for, 155

black-box, 151
coverage criteria, 171

BLAST pipeline, workflow, 303

BLASTP node, 299
blog, 10
Bootstrap, 240
BPDM. See business process definition

metamodel (BPDM)
bug tracker, 14
business process definition metamodel

(BPDM), 70, 73
Business Process Execution Language for

Web Services (BPEL4WS), 67
Business Process Management Notation

(BPMN), 67
notation, workflow model, 74

C
CC. See cyclomatic complexity (CC)
C/C++ applications, 27

architectural program models of, 26
CCDE. See community-embedded col-

laborative development environment
(CCDE)

C/C++ visualization, 28
CDE. See collaborative development envi-

ronments (CDE)
central server component, 16
change quotation activity, 74
circuit under test (CUT), 153
CIT. See combinatorial interaction testing

(CIT)
class contains graph, 35
class membership, 28

SCC, 34
visualization, 36

CodeCover
coverage tool, 177
plug-in, 178

code designers, 25
code-generation, 68

automatic, 70
Cohesion analysis, 57–58
cohesion portability, 62
collaborative development environments

(CDE), 10, 12–13
virtual space, 12

© 2011 by Apple Academic Press, Inc.

340 Data Structure and Software Engineering: Challenges and Improvements

collaborative tools, 238
combinatorial interaction testing (CIT),

150
applications, 152
strategy, 151

communications, security of, 235
community-embedded collaborative devel-

opment environment (CCDE), 10, 13,
19
eCopSoft, 13
goal of, 11
knowledge sharing and developer
awareness, 10
organisational requirements on, 13–14
project spaces, 14

complexity reduction techniques
abstraction, 30
metaphors, 30
predictability, 30
source code, 30

computational problems, 167
computer-aided software application, 159
conceptual models, 69

platform-independent transformations
of, 69

conceptual schema, 68, 71–72
constraints

definition, 80, 87
for merge gateways, 83
OCL, 88
sequence, hypertext model, 90
sequence, technologies implementa-
tion, 89
for split gateways, 82
for workflow, 87

control systems, 15
correlation analyses-stakeholders, 29
cost/benefit analysis, 186
cost/benefit comparison, 186
COTS-based software development pro-

cess, 113
coupling measures, software modules, 58
coverage-based redundancy detection,

advantages and disadvantages of, 171

coverage information, 168
C++ program, architectural program visu-

alization of, 24
CreateWebComp() method, 202
cross-case-analysis, 120
cultural differences, 226, 235, 240
cumulative faults detection, 158
cyclomatic complexity (CC), 27

D
DAG. See directed acyclic graph (DAG)
DAS. See distributed annotation system

(DAS)
data analysis, 15, 118
database, 17
data extraction, 16
data flow coverage criteria, 166
data generation, automatically, 16
data integration, interfaces, 16
data mining, 257, 281
data representation, types of, 260
data sources, 14, 16
data structure algorithm, 43
DB table, 195, 212

meeting, 200, 208
dbTranscript, 304
decision making process, 43
DeCyder DIGE, 277
defects control, 241
2DE gel electrophoresis, 281
Delphi method, 112
Delphi-style collaborative evaluation

scheme, 54
detection_parameters element, 276
diffusion gradient, 44
diffusion tensor, 44

fiber tract estimation, 50
principles of, 44–45

diffusion tensor magnetic resonance imag-
ing (DTMRI), 43

DIGE gel images, 274
2-dimensional gel electrophoresis (2-DE),

272
high resolution, 272

© 2011 by Apple Academic Press, Inc.

Index 341

directed acyclic graph (DAG), 290
Pegasys, abstract representation of, 292

directory path, 33
DiscoveryNet platform, 305
distributed annotation system (DAS), 297
distributed software development (DSD),

226
nature of, 234
projects, 240
publications concerning, 231
success factors of, 242

distributed software development research,
trends, 230
challenges and improvements

collaboration, 238–39
communication, 234–35
coordination, 237–38
group awareness, 235–36
knowledge management, 237
process support, 240
project and process management,
239–40
quality and measurement, 240–41
risk management, 241
software configuration manage-
ment, 236
success factors, 242

improved/analyzed processes, 232–33
ISO 12207 standard, 232
primary studies

selected systematic review, 244–45
thematic areas, 234

publications tendency, 231
standards employed, 232
studies, 230

contents of, 234
documentation, 237
domain, knowledge of, 67, 68
domain information, 92
domain model, 71
Drosophila genome, 287
DSD. See distributed software develop-

ment (DSD)
DT brain images, 47

DTI analysis, 49
DTI analyzing tools, 49
DTMRI. See diffusion tensor magnetic

resonance imaging (DTMRI)
DT-MRI fiber tractography reconstruc-

tions, 50
DTMR scans, 44
DXFramework, 331

E
Eclipse plug-in, 183
e-commerce application, partial concep-

tual schema for, 72
eCopSoft, 19

application, 17
architecture, 17
core, 16
Java platform system, 18
schematical architecture of, 18
server, 16
web frontend, screenshot of, 18, 19

edge properties dialogue window, screen-
shot, 301

educational contexts, features, 56
educational portability, 62
eigenvector pattern

implementation routine, 45
sample synthetic, 45

eLera, 54
repository, 62

e-mails, 14, 15
entryCake page, 194
event-Result, 78
event-Trigger, 78
exclusive choice, 74
external validity, 187
extracting information, process of, 230
eXtreme Programming (XP), 10, 126

F
face-to-face interview, 121
face-to-face meetings, 226
false-positive error, 168

© 2011 by Apple Academic Press, Inc.

342 Data Structure and Software Engineering: Challenges and Improvements

FASTA-formatted nucleotide sequence
file, 302

fault detection, 164, 166
capability, 173

fault injection techniques, use of, 152
fault injection tools, 151
fault list (FL), 153
fiber eigensystem, 47
fiber tracking results

on axial slice, 48
of region of interests (ROIs), 49

files, layout algorithm, 34
financial software developer, 141–42, 143
FL. See fault list (FL)
Flash, 321
fMRI serves. See functional magnetic

resonance imaging (fMRI) serves
FrameOrSet class, 204
frameset page design windows

BioPro system, 197
visual programming for, 198

frequent pattern mining, 257
in data mining research, 257
illustrative example for, 259

frequent patterns, 258, 260
mining process, 266
vertical mining of, 261

functional magnetic resonance imaging
(fMRI) serves, 43

functional web components
applications of, 213–15
code generation efficiency of, 215–16
visual programming, 216

function call graph, 35

G
GAME. See Genome Annotation Markup

Elements (GAME) XML
game development framework (GDF),

312, 328
APIs, 317
application, circulatory model of, 315
in higher education, 313–14

circulatory model of, 314–15

criteria for choosing the right,
315–17

in software architecture course, 318–21
experiences of using, 327–30
using XNA, 322–27
XQUEST, 321–22

technical aspects of, 312
game project

evaluation of, 324
list of architecture description, 325
requirement and architecture for, 324
XNA, 321, 329

GarageGames, 331
Gaussian Stejskal–Tanner model, 44
GDF. See game development framework

(GDF)
gel_image element, 276
GelInfoML, 273, 281
GenDB, 287
genome annotation, 288

workflow, 304
Genome Annotation Markup Elements

(GAME) XML, 289, 291, 293, 297,
304

Genotype, 170
Genscan node, 299
getAdjestedAlleleValues method, 170
GFF-formatted text file, 302
Global Software Development (GSD),

226
global variables, 27
graph browsers, 25
graphical user interface (GUI), 151, 179,

298–302
event testing, 132
testing, 114, 136

environment, 130
graphs-stakeholders, correlation, 26
grid environment, 154
grounded theory method, 118
GUI. See graphical user interface (GUI)

H
Halstead’s difficulty, 58

© 2011 by Apple Academic Press, Inc.

Index 343

hardware testing, 152
Hiding variable deletion (IHD), 184
high-throughput sequence analysis proj-

ects, 288
HTML code, 204
HTML frame facility, 193
HTML/JSP code, 202
human brain DT images, 43
human-computer interaction, 167
human knowledge, 185
human’s error, 185
HUPO-PSI, 273
HUPO-PSI-GEL standards, 281
hybrid knowledge, 167

I
IBM synthetic data, 266
ICT consultant, 140–41
ICT developer, 143
ICT products, 140
IDE. See integrated development environ-

ments (IDE)
IEEE 1471-2000, 324
IHD. See Hiding variable deletion (IHD)
informal communication, 14
informal learning

characteristics, 11
knowledge of, 12

integrated development environments
(IDE), 10, 320

integration layer, 16
eCopSoft architecture, 17
requirements on, 15

internal validity, 187
Internet service

business domain, 140
developer, 140

inter-test-method-redundancy, 181
interview data, open coding of, 119

J
Java

libraries, 18

programming language, 289
programs, 24
projects, 168
repository information, 28
systems, 172

JavaBeans code, 212
Java Web Start infrastructure, 279
JGame, 321
JIG Project, 331
JSP page, 206
JUnit

test granularity in, 168
test methods, 171, 174
unit test, 168

K
knowledge management, 11–12, 118

strategy, 119

L
learning environments, 10
learning object granularity, 58
learning object metadata (LOM), 55

values, 60
learning object review instrument (LORI)

tool, 54, 57
reusability evaluations, 62

learning objects, 54
educational portability, measuring
values for, 61
evaluation of, 54–55
reusability, 54, 58

cohesion values to measure, 58
semantic density of, 57
size, measuring values for, 59
technical portability, 59

measuring values, 60
learning system, individual and organiza-

tional, 17
like best (LB) technique, 127
linear data structure, 45
lines of code (LOC), 27
logistics service system provider, 142

© 2011 by Apple Academic Press, Inc.

344 Data Structure and Software Engineering: Challenges and Improvements

logistics software developer, 140
LOM. See learning object metadata

(LOM)
LOM 5.8 difficulty category, 61
LORI. See learning object review instru-

ment (LORI) tool

M
MagicDraw tool, 91
magnitude comparator, 151, 155
mail servers, 15
manufacturing execution system (MES),

139–40, 142
mass spectrometry, 273
MATLAB®, 280
McCabe

cyclomatic complexity, 28
software complexity, 58

MDA. See model driven architecture
(MDA)

MDD. See model driven development
(MDD)

MediaWiki, 15
meeting Hour.length, 211
meeting room reservation system, 200–1

design of, 201
reserve/cancel button, 201
WebComp class, 202

MERLOT, 54, 57
MES. See manufacturing execution system

(MES)
metadata, 16, 19, 54
metaphors, 31
method pivot(), definition of, 204
MIAPE guidelines, 273
MI2DG information, 275
minimum information about 2-D gel

electrophoresis (MI2DG), 275
mining algorithms, 260
model-based approaches, 220
model driven architecture (MDA), 227
model driven development (MDD), 68,

92
approach, 227

modeling software developer, 142
model-to-code generation, automatic, 88
model-view-controller (MVC) architec-

ture, 195, 196
MOF-compliant, 73
MuClipse generation, 184
MuJava version 3, 154
multi-instance loop activities, 85
multiple class, definitions, 32
mutation score, 184
MVC architecture. See model-view-con-

troller (MVC) architecture
mzData, 273, 276
mzXML, 273, 276

N
NASA-distributed database, 152
National Institute of Standards and Tech-

nology (NIST), 151
naval software system developer, 141
nearshoring, 226
neural fiber map, 43

lack of, 43
neural fibers, 43
neural pathways, 43
New-Delete analysis, 27
node properties dialogue window screen-

shot, 300
normalization phase, 74

concatenation of gateways, 75
different notation styles, 75
nested structures, 75

normalized workflow schema, 76
Norwegian University of Science and

Technology (NTNU), 318
N-version programming, 154

O
object constraint language (OCL), 68, 93

constraints, 97
definition, 81

object-oriented hypermedia design
method (OOHDM), 219

© 2011 by Apple Academic Press, Inc.

Index 345

object-oriented mutation operators, 183
object-oriented software, 55
OCL. See object constraint language

(OCL)
offshoring, 226
optimized test suite (OTS), 153
organizational unit (OU), 115

agile methods, 122
automation applications, for testing
process, 141
characteristics, 134
interviewed, 123
interviewee roles, 117
interview rounds, 117–18
ISO/IEC 29119 standard, 125
questionnaire, 121
software process, test automation
categories, 131
test automation, 141

programs, 135
test resources and, 124

organization’s test process, 119
OR gateways, 73
OR-Merge gateways, 82
OSGi platform, 19
OTS. See optimized test suite (OTS)
OU. See organizational unit (OU)
outsourcing, 227
oversized functions, 34

P
Pair and Suite Redundancy metrics, 174
PCA. See principal component analysis

(PCA)
PegasysAdaptor classes, 297
Pegasys database, 296

model diagram, 294
PegasysProgram class, 293
Pegasys system, 298

architecture client/server model, 291
biological sequence analysis, 287,
289–90

facilitating data integration, 288–89
for flexible architecture, 288

new tools into existing frameworks,
288

client, XML configuration files, 301
console area, 299
data structure, 290
graphical user interface, 295, 298
GUI component, 299
implementation

adaptors, 297
architecture and data flow, 290
core data structure, 290–92
database, 293–97
DiscoveryNet platform, 305
future directions, 305–6
GUI (see graphical user interface
(GUI))
and Java, 298
parallelism, 297–98
Program module, 292–93
results and discussion, 302–4

Java jar files, 302
modules, 305
Unix programs, 293
user community, 305
utility of, 289
XML DAG file, 304

personification-codification, 119
pivot table components

meeting rooms, reservation system
for, 200–1
visual programming for, 198–200

pivot table Web component, 207
automatic interpretation of, 208

pixels’ eigenvectors, 46
platform-independent transformations, 69
PMA method. See post-mortem analysis

(PMA) method
portability metrics

educational portability, 60
software transfer, 59
technical portability, 59–60

posteriori LORI vs. aprioristic reusability
values, 63

PostgreSQL database server, 212

© 2011 by Apple Academic Press, Inc.

346 Data Structure and Software Engineering: Challenges and Improvements

post-mortem analysis (PMA) method, 319
precise data sets, 258
primary studies selected, systematic review,

244–5
principal component analysis (PCA), 44
principal diffusivity, 45
principal eigenvectors, data structure

analysis, 46
process constraints, translation of

activities, sequences of, 81
condition constraints, 83–84
event management, 85–86
loops, 84–85
merge gateways, 82–83
split gateway, 81–82
subsections, 80
subtypes of activity, 80
translation patterns, applying, 86–88

process modeling, 240
program model

advanced static analyses, 28
metric analyses, 27–28
repository analyses, 28–29
run-time analyses, 27

program_run table, 295
program tables, 195

cart, 208
prokaryotic analysis, 306
proteomics identifications (PRIDE) data-

base, 275
ProvideQuotation, 95

activity, 74

Q
QstatServer, 298
quality control, 130
quality signing, 153
questionnaire, 121
Questionnaire program favoriteCake, 194
QuotationLine, 72

R
rational unified process (RUP), 126

ReceiveGoods, 97
redundancy, 164

coverage-based, detection of, 176
detection process, test cases labeling,
182
of test artifact, 174

redundant tests
methods, 181

candidate set of, 181, 183
percentage of, 180

motivation for, 164
set, 182

region of interests (ROIs), 43
fiber tracking results, 49

RepeatMasker, 302
repository, 14
reservation system, actions, 210–12
reserveCheckbox page, 210

actions for, 210
reusability, 54

evaluation model, 61–62
metrics, for learning objects, 56
model validation, 62–63

weights for, 62
reusable learning objects

modifiable, 55
modular, 55
properly grained, 55
self-contained, 55
standardized, 55
traceable, 55
usable, 55

RNA sequences, 289
robot simulator, in Java, 329
role-playing games (RPGs), 330
run-time information, 34
RUP. See rational unified process (RUP)

S
safety and logistics system developer, 141
scalability, 186–87
SE. See software engineering (SE)
SendInvoice, 97
ShipOrder, 97

© 2011 by Apple Academic Press, Inc.

Index 347

single-view visualizations, effects of, 30
small and medium-sized enterprise (SME),

142
smoke tests, 114
social contexts, features, 56
social network sites (SNSs), 12
social software engineering projects

(SSEP), 10–13
SoftDock framework, 238
SoftFab, 239
software

architectural experimentation, 330
automation

discussion, 135–38
general testing items, 124–26
interviews and qualitative study,
129–35
organizational units, general infor-
mation of, 122–24
survey, summary of, 128–29
testing environment, 126–28

defects, 241
difficulty, of comprehension, 60–61
ISO 29119 model, 112
life cycle, 232
maintenance, 184
process, role in, 130
quality indicator, 57
research process, 113–15

data collection, 120–22
grounded analysis method, 118–20
interview rounds, 116–18
population of, 115–16
survey instrument development,
120–22

size, 58–59
testing, 111, 152, 165

automation, 115
phases, 125
popularity of, 127
process, 126
tools, 118

software architectures, 23, 25
abstract visualizations of, 25

evaluation, 241
stakeholders, 23

software as a service (SaaS), 139
software complexity, 58–59

information, 34
software development

collaborative activity, 238
geographic distribution of, 226
methods, 10
processes, 67, 152

software engineering (SE), 10
GDF, 313
knowledge management and learning,
11–12
projects, 15

data sources, 14
research, 112

software systems, 25, 67
non-functional properties of, 28

source code, 15
source file, 33
specific artifact, analysis of, 15
SQL statements, 212, 214
Standard Shipment activity, 74
StatusNet, 15
Stejskal–Tanner equation, 44
Stejskal–Tanner imaging sequence, 44
String[] meetingRoom variable, 207
strongly connected components (SCC),

28
SubmitOrder, 95
Sun Java Studio Creator, 215
SWISS-2DPAGE, 280
systematic review procedure, software

development
FAB-RUM project, 228
information extraction, 230
logical connectors, 228
question formularization, 228
search strings, 229
sources selection, 228–29
studies selection, 229–30

system configuration, 212–13

© 2011 by Apple Academic Press, Inc.

348 Data Structure and Software Engineering: Challenges and Improvements

Systems Under Tests (SUTs), 151, 166,
177

T
Talairach atlas, 50
technological dimension, 56
TeReDetect tool, 177, 178, 186

snapshot of, 178
test artifact, SR metric of, 177
test automation, 140, 141

categories, 129
strategy, 130
system, 137
tools, 128

test quality signing (TQS) process, 153,
156

test redundancy detection tool, 168, 173,
177

test verification process (TV), 153
theory-creating inductive research, 129
Tidset, 258, 262
tool support, 91
transactions identifiers (Tids), 258, 262
tRNAscan-SE, 303
TV. See test verification process (TV)
TV process, 157

for conformance, 153
t-way testing, applications of, 151

U
UEclat algorithm, 258, 261, 264, 266

scans, 262
UF-growth algorithm, 266
UF-tree, 261
UML activity diagrams, 73
UML CASE tool, 69
UML class diagrams, 69
UML diagrams, 219
UML/OCL CASE tools, 71
UML terminology, 72
uncertain data, 257

frequent patterns, vertical mining of
k-itemsets, 263–65

run time for T25I15D320k data set,
267, 268
run time for T40I10D100K data
set, 267
UEclat algorithm, 261, 266
utidset mining structure, construc-
tion of, 262–63

mining frequent patterns, 260
uncertain data sets, 258
Unix programs, 166, 304
unsafe functions, 27, 34
user-friendly tool, 236
UTidset structure, 262, 266
Utidset vertical representation, 263, 265
utterFrame Web page, predefined vari-

ables, 209

V
validity, threats, 187
variables, automatic generation of, 207
Venn diagram notation, 169
verification processes, 68, 153, 154
verification/validation analysis, 70
vertical mining, 260
video chat, 15
visual configuration, 32
visual development environments, for cli-

ent programs, 218
visual inspection, 47
visualizations

application examples
componentization, 34–36
quality assessment, 33–34

strongly connected components, 37
techniques, to help stakeholders, 23
Vizz3D, implementation

computing consistent layouts,
32–33
intuitive city metaphor, 31–32
representing analysis results, 33

visualization tool
program and aspect editors, 25
single-view, 24

vs. multi-view, 29

© 2011 by Apple Academic Press, Inc.

Index 349

source code level, 25
visualizer, annotated gel markup language

(AGML), 279
visual mountains, 33
visual-oriented IDE

development of, 218
model-based approaches, 219–20
Web application, 219

visual-oriented tool, 214
visual programming environment, 320
visual Web components

definition of, 202
Web page, 206

VizzAnalyzer, 31
Vizz3D, visualizations, 31
VoIP, 15

W
Web applications, 67, 90, 193, 217, 218

development frameworks, 218
HTML frame facility, 193
image-oriented design, 194
program code, automatic generation
of, 211
transactions, 219

Web-based chat system, 206
actions, 208–9

Web-based chatting, 215
program, 216

web-based system, 151
Web browser, 212, 217
WebCompAdapter class, 202
Web components, visual high-level func-

tional, 193
Web development tool, 215
Web frame references, 196
WebML, hypertext model, 90
Web Modeling Language (WebML), 219
Web page, 67, 193, 195, 196, 213, 217

design windows, 214
layouts, 217
transfers, 218
transitions, 196

Web server/Servlet container, 212

Web services, 67
Web site, 90
Web source windows, 195, 214

for utterFrame page, 209
Web technologies, 92
Windows Vista, 266
within-case analysis, 120
WOOM methodology, 241
workflow-based applications, 94

MDD process for, 69
workflow-extended conceptual schema,

70, 77, 89, 98
arrange transport activity, 102
AskQuotation activity, 98
change quotation activity, 100
choose shipment activity, 101–2
complexity of, 78–79
domain subschema, 77
empty activity 1 activity, 103–4
generation of, 76
implementation of, 88–90
Java-based, 88
maximal, 96–97, 99
MDD generation, tools, 91
minimal, 95–96, 97
pay goods activity, 105–6
process order line activity, 103
provide quotation activity, 99–100
receive goods activity, 105
send invoice activity, 104–5
ship order activity, 104
standard shipment activity, 101
submit order activity, 100–1
subschema vs. domain subschema, 78
user subschema, 77
workflow subschema, 77–78

workflow-extended model, 70, 76, 80, 86
translation, 89
XMI file, 91

workflow-extended schema, 94–95
workflow languages, 75
workflow management systems (WFMSs),

67, 92
workflow models, 67, 68, 69, 76, 92

© 2011 by Apple Academic Press, Inc.

350 Data Structure and Software Engineering: Challenges and Improvements

automatic integration of, 68
definition of, 67
loops, 84
structure of, 80

X
XBOX 360 games, 321
XHTML, 217
XMI file, workflow-extended model, 91
XML

configuration, 298
file, 299
representation, 91

XNA, 321
teaching software architecture using

ATAM, 322

design and implementation, 325–7
exercises, introduction of, 323
game project, evaluation of, 324–5
game project, requirement and
architecture, 324
game project workshop, 327
post-mortem analysis, 327

XOR gateways, 73
XOR-merge, 75
XOR-Merge gateways, 82
XOR-split gateways, 83
XP. See eXtreme Programming (XP)
XQUEST library, 323
XSLT transformation, 91

© 2011 by Apple Academic Press, Inc.

	Cit p_5:1:
	Cit p_2:1:
	Cit p_9:1:
	Cit p_11:1:
	Cit p_18:1:
	Cit p_18:2:
	Cit p_15:1:
	1:
	Cit p_15:1:

	Cit p_15:2:
	Cit p_12:1:
	Cit p_16:1:
	Cit p_23:1:
	Cit p_27:1:
	Cit p_32:1:
	Cit p_32:2:
	2:
	Cit p_9:1:
	Cit p_11:1:
	Cit p_5:1:

	Cit p_6:1:
	Cit p_3:1:
	Cit p_11:2:
	Cit p_7:1:
	Cit p_4:1:
	Cit p_1:1:
	Cit p_8:1:
	Cit p_10:1:
	Cit p_17:1:
	Cit p_17:2:
	Cit p_14:1:
	Cit p_23:2:
	Cit p_20:1:
	Cit p_12:2:
	Cit p_21:1:
	3:
	Cit p_4:1:
	Cit p_10:1:

	4:
	Cit p_5:1:
	Cit p_6:1:
	Cit p_7:1:

	Cit p_5:2:
	Cit p_6:2:
	Cit p_40:1:
	5:
	Cit p_9:1:

	Cit p_9:2:
	Cit p_19:1:
	Cit p_22:1:
	Cit p_37:1:
	Cit p_37:2:
	Cit p_43:1:
	Cit p_47:1:
	Cit p_47:2:
	Cit p_48:1:
	6:
	Cit p_7:1:
	Cit p_11:1:
	Cit p_9:1:
	Cit p_8:1:
	Cit p_12:1:
	Cit p_12:2:

	Cit p_7:2:
	Cit p_13:1:
	Cit p_13:2:
	Cit p_8:2:
	Cit p_21:2:
	Cit p_25:1:
	Cit p_20:2:
	Cit p_26:1:
	Cit p_16:2:
	Cit p_31:2:
	Cit p_28:1:
	Cit p_29:1:
	Cit p_34:1:
	Cit p_31:1:
	7:
	Cit p_7:1:
	Cit p_7:2:
	Cit p_10:1:
	Cit p_1:1:
	Cit p_8:1:
	Cit p_8:2:

	Cit p_10:2:
	Cit p_1:2:
	Cit p_22:2:
	Cit p_27:2:
	Cit p_26:2:
	8:
	Cit p_2:1:

	Cit p_2:2:
	Cit p_30:1:
	Cit p_30:2:
	Cit p_24:1:
	Cit p_28:2:
	Cit p_42:1:
	Cit p_35:1:
	Cit p_33:1:
	Cit p_49:1:
	Cit p_46:1:
	Cit p_51:1:
	9:
	Cit p_14:1:
	Cit p_6:1:
	Cit p_7:1:
	Cit p_8:1:
	Cit p_8:2:
	Cit p_10:1:
	Cit p_9:1:
	Cit p_3:1:

	Cit p_14:2:
	Cit p_29:2:
	Cit p_38:1:
	Cit p_39:1:
	Cit p_42:2:
	Cit p_36:1:
	Cit p_53:1:
	Cit p_54:1:
	Cit p_55:1:
	Cit p_55:2:
	Cit p_50:1:
	Cit p_51:2:
	Cit p_61:1:
	Cit p_61:2:
	Cit p_62:1:
	Cit p_63:1:
	Cit p_64:1:
	Cit p_64:2:
	Cit p_65:1:
	Cit p_60:1:
	Cit p_68:1:
	Cit p_68:2:
	Cit p_77:1:
	Cit p_69:1:
	Cit p_77:2:
	Cit p_70:1:
	Cit p_70:2:
	Cit p_71:1:
	Cit p_71:2:
	Cit p_73:1:
	Cit p_74:1:
	Cit p_67:1:
	Cit p_85:1:
	Cit p_85:2:
	Cit p_79:1:
	Cit p_82:1:
	Cit p_82:2:
	Cit p_92:1:
	Cit p_97:1:
	Cit p_97:2:
	Cit p_90:1:
	Cit p_90:2:
	Cit p_91:1:
	Cit p_91:2:
	Cit p_99:1:
	Cit p_100:1:
	10:
	Cit p_9:1:
	Cit p_9:2:
	Cit p_3:1:
	Cit p_11:1:
	Cit p_11:2:
	Cit p_8:1:
	Cit p_8:2:
	Cit p_13:1:
	Cit p_13:2:

	11:
	Cit p_11:1:
	Cit p_2:1:
	Cit p_13:1:
	Cit p_1:1:
	Cit p_12:1:
	Cit p_3:1:

	12:
	Cit p_7:1:
	Cit p_4:1:
	Cit p_6:1:
	Cit p_1:1:
	Cit p_8:1:
	Cit p_3:1:
	Cit p_5:1:

	Cit p_19:2:
	13:
	Cit p_2:1:
	Cit p_6:1:
	Cit p_10:1:
	Cit p_6:2:
	Cit p_10:2:
	Cit p_1:1:

