
Vaibbhav Taraate

Digital
Design
Techniques
and Exercises
A Practice Book for Digital Logic Design

Digital Design Techniques and Exercises

Vaibbhav Taraate

Digital Design Techniques
and Exercises
A Practice Book for Digital Logic Design

Vaibbhav Taraate
VLSI Design
1 Rupee S T (Semiconductor
Training @ Rs.1)
Pune, Maharashtra, India

ISBN 978-981-16-5954-6 ISBN 978-981-16-5955-3 (eBook)
https://doi.org/10.1007/978-981-16-5955-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-16-5955-3

Dedicated to my Inspiration Respected
Bharat Ratna J. R. D. Tata
and
Ratan Tata

Preface

The understanding of the digital design elements and their role in the design of the
digital system is especially important to the logic designers, system design engineers,
RTL design engineers and even to the ASIC/FPGA design engineers.

There are many evolutions in the digital design during the past century, and the
main objective of this book is to have a discussion on the important design techniques
useful in the digital design.

The book has 12 chapters and is mainly useful to understand about the digital
design techniques, FSM-based designs, design optimization, data and control
path designs, timing of the design, area and speed requirements and optimiza-
tion during logic design phase. Few of the logic diagrams and timing sequences
are captured using xilinx ISE and Vivado tools. For more information about the
FPGA EDA tools please visit www.xilinx.com !

The book even covers the advanced concepts like architecture design, multiple
clock domain designs, multiple power domains, system design and interfacing
techniques.

The book has exercises at the end of each chapter and is useful to apply the design
concepts.

Chapter 1 “Basics of Digital Design” discusses about the basics of the digital
design elements, Boolean function implementation techniques and main important
goals during the design.

Chapter 2 “Design Using Universal Logic” the universal logic elements and their
use in the design aer discussed. The chapter discusses about the cascade and parallel
logic and the design techniques to improve the speed of the design and to optimize
for the area.

Chapter 3 “Combinational Design Resources” discusses about the various code
converters, combinational design resources and the arithmetic resources. The design
techniques discussed are useful to design the combinational or glue logic. The chapter
even focuses on the various performance improvement techniques and their use to
design the combinational logic.

Chapter 4 “Case Study:ALUDesign” discusses about the use of the combinational
resources and arithmetic elements to design the digital circuits. The objective is to

vii

http://www.xilinx.com

viii Preface

optimize the design to have the least area andmaximum speed. The chapter discusses
about the basics of the instruction processing and the optimization for the area and
speed.

Chapter 5 “Practical Scenarios and the Design Techniques” discusses about the
parallel versus cascade, priority logic and their use in the design. The design of the
combinational logic using the decoders and encoders is also discussed in this chapter.

Chapter 6 “Basics of the Sequential Design,” the sequential design elements
are latches and flip-flops and they are extensively used in the design. The latch-
based designs and flip-flop-based designs and their applications are discussed in this
chapter.

Chapter 7 “Sequential Design Techniques” discusses about the various techniques
useful to implement the sequential designs. The goal is to have the sequential design
which has lesser area, maximum speed and low power. The chapter is useful to
understand the sequential design techniques to design the counters, registers with
the goal of area and speed optimization.

Chapter 8 “Important Design Scenarios” discusses the important design scenarios
and techniques useful to design the sequential logic. The chapter is useful to under-
stand about the duty cycle and how to design the sequential circuits with the goal to
have duty cycle control.

Chapter 9 “FSMDesign Techniques” discusses about the FSM design techniques
and their applications in the digital design. The chapter is useful to understand the
Moore and Mealy machine designs, encoding methods and their use in the design.

Chapter 10 “Advanced Design Techniques-1” discusses about the data and control
path designs and the timing of the synchronous sequential circuits. Even this chapter
focuses on the various advanced design techniques which are useful to optimize
for the area, speed and power. These techniques we can use in the design of the
architecture and also in the high-speed digital designs.

Chapter 11 “Advanced Design Techniques-2” focuses on the architecture design
for the given functional specifications. The chapter is even useful to understand about
the design specific scenarios like multiple clock domains, multiple power domains,
synchronizers, design specific scenarios and the performance improvement for the
design.

Chapter 12 “System Design and Considerations” discusses about the use of the
digital design techniques in the system design, IO and memory interfacing and other
important goals

The book includes many practical design scenarios and techniques. The book
is useful to understand the design techniques and important design and optimiza-
tion scenarios. The book even covers the performance improvement strategies and
techniques at the logic and architecture level.

This book is useful to the engineering students, digital design engineers, VLSI
beginners and professionals those who wish to design the digital systems!

Pune, India Vaibbhav Taraate

Acknowledgements

Most of the engineers requested me to write a book on Digital Design Techniques
and Exercises during the corporate programs. Over the period of time whatever
experience which I have gained I thought to document in this manuscript.

This book is possible due to the help of many people. I am thankful to all
the participants to whom I taught the subject “Digital Design in VLSI perspec-
tive” in various multinational corporations. I am thankful to all those entrepreneurs,
design/verification engineers and managers with whom I worked in the past almost
around 20 years.

I am thankful to my dearest friends for their constant support. Especially, I am
thankful to my students, friends, well-wishers and my family members. Special
thanks to Neeraj, Deepesh, Jyoti, Suman and Annu for their best wishes and valuable
help during the manuscript work.

Special thanks to Somi, Siddhesh and Kajal for their faith and belief on me and
for their better support during manuscript work. Especially thankful to Ravi, Divya,
Swati, Rahul for their best wishes !

Finally, I am thankful to Springer Nature staff, especially Swati Meherishi,
Muskan Jaiswal, AshokKumar, Silky Sinha for their great support during the various
phases of the manuscript.

Special thanks in advance to all the readers and engineers for buying, reading and
enjoying this book!

ix

Contents

1 Basics of Digital Design . 1
1.1 Digital Logic and the Evolution . 1
1.2 The Important Considerations . 2

1.2.1 Area of the Design . 3
1.2.2 Speed of the Design . 3
1.2.3 Power . 4

1.3 Logic Gates . 5
1.4 De Morgan’s Theorems . 10

1.4.1 NAND is Equal to Bubbled OR . 10
1.4.2 NOR is Equal to Bubbled AND . 10

1.5 Multiplexer as Universal Logic . 11
1.6 Optimization Goals and Applications in VLSI Context 12
1.7 Exercises . 13

1.7.1 Exercise 1: Use of the Logical Expressions
to Get the Logic Equivalent . 13

1.7.2 Exercise 2: Cascade Logic and How to Get Logic
Expression? . 13

1.7.3 Exercise 3: Complement Logic . 14
1.7.4 Exercise 4: Logic Expression for the Cascade

Logic . 15
1.7.5 Exercise 5: Output Expression for the Cascade

Logic . 15
1.7.6 Exercise 6: Propagation Delay for the Cascade

Logic . 16
1.7.7 Exercise 7: Logic Gate Output Expression 17
1.7.8 Exercise 8: Propagation Delay for the Cascade

Logic . 17
1.7.9 Exercise 9: The Equivalent Logic Expression 18
1.7.10 Exercise 10: The Equivalent Logic Gate 19

1.8 Important Takeaways . 19

xi

xii Contents

2 Design Using Universal Logic . 21
2.1 What Is Universal Logic? . 21
2.2 Universal Gates . 21

2.2.1 NAND . 22
2.2.2 NOR . 23
2.2.3 Other Application-Specific Universal Gates 24

2.3 Multiplexers . 26
2.3.1 Design Using 2:1 Mux . 26
2.3.2 4:1 MUX Using 2:1 Mux . 31
2.3.3 Design Using Multiplexers . 31

2.4 Exercises . 33
2.4.1 Exercise 1: Design Using Universal Gates 33
2.4.2 Exercise 2: Design Using the MUX 34
2.4.3 Exercise 3: Design Using MUX . 35
2.4.4 Exercise 4: Design Using Custom Gates 36
2.4.5 Exercise 5: Optimization Exercise 37
2.4.6 Exercise 7: Design Using the MUX 38
2.4.7 Exercise 8: Design Using MUX . 39
2.4.8 Exercise 9: Design Using Custom Gates 40

2.5 Applications and Use in VLSI Context . 41
2.6 Important Takeaways . 41

3 Combinational Design Resources . 43
3.1 Code Converters . 43

3.1.1 Three-Bit Binary-to-Gray Code Converter 43
3.1.2 3-Bit Gray-to-Binary Code Converter 45

3.2 Arithmetic Resources . 48
3.2.1 Half-Adder . 48
3.2.2 Half-Subtractor . 49
3.2.3 Full-Adder . 51

3.3 Use of Arithmetic Resources in the Design 52
3.4 Design Using Arithmetic Resources and Control Elements 53
3.5 Optimization Goals . 54
3.6 Processor Logic and Need of Arithmetic Resources 54
3.7 Exercises . 55

3.7.1 Exercise 1: Cascade Versus Parallel Logic 55
3.7.2 Exercise 2: Delay of the Design . 56
3.7.3 Exercise 3: Speed . 57
3.7.4 Exercise 4: Design to perform the Addition

and Subtraction . 57
3.7.5 Exercise 4: Design with the Goal to Use

Resource Sharing . 58
3.8 Important Takeaways . 59

Contents xiii

4 Case Study: ALU Design . 61
4.1 Design Specifications and Their Role . 61
4.2 What Is ALU? . 62
4.3 Arithmetic Unit Design . 63

4.3.1 Resources Required . 63
4.3.2 How to Start Design of ALU? . 64
4.3.3 How to Design the Logic . 65
4.3.4 Exercise 1: Optimization of the Arithmetic Unit 65
4.3.5 Logic Unit Design . 66
4.3.6 Resources Required . 67
4.3.7 How to Design the Logic Unit to have Better

Area? . 67
4.4 ALU Design . 68

4.4.1 Resource Requirement and How to Design
Efficient ALU? . 69

4.4.2 ALU Design to have Better Area 69
4.4.3 Exercise 2: Optimization of ALU 71

4.5 Few Important Design Guidelines . 71
4.6 Important Takeaways . 72

5 Practical Scenarios and the Design Techniques 73
5.1 Parallel Logic . 73

5.1.1 Decoder 2 to 4 . 73
5.2 Encoder . 75
5.3 Encoder with Invalid Output Detection Logic 77
5.4 Exercises . 79

5.4.1 Exercise 1: Design of Decoder Having
Active-Low Output . 79

5.4.2 Exercise 2: Design the Function Using Decoder 80
5.4.3 Exercise 3: Design Using Decoders 81
5.4.4 Exercise 4: Design Using Decoder and NAND

Gates . 82
5.4.5 Exercise 5: Design Using Decoders 83
5.4.6 Exercise 6: Priority Encoder Design 83

5.5 Important Takeaways . 87

6 Basics of the Sequential Design . 89
6.1 What Is Sequential Logic Design? . 89
6.2 Sequential Design Elements . 89
6.3 Level Versus Edge-Triggered Logic . 90
6.4 Latches and Their Use in the Design . 90

6.4.1 Positive-Level-Sensitive D Latch 90
6.4.2 Negative-Level-Sensitive D Latch 91

6.5 Edge-Sensitive Elements and Their Role . 92
6.5.1 Positive Edge-Sensitive D Flip-Flop 92
6.5.2 Negative Edge-Sensitive D Flip-Flop 93

6.6 Applications . 95

xiv Contents

6.6.1 Applications of the Latches . 95
6.6.2 Applications of the Flip-Flop . 96

6.7 Exercises . 96
6.7.1 Exercise 1: Design Positive-Level-Sensitive

Latch Using Multiplexers . 96
6.7.2 Exercise 2: Design Negative-Level-Sensitive

Latch Using Multiplexers . 97
6.7.3 Exercise 3: What Is the Functionality

of the Following Design? . 98
6.7.4 Exercise 4: Design the Positive Edge-Sensitive

Flip-Flop Using Latches . 99
6.7.5 Exercise 5: Design the Negative Edge-Sensitive

Flip-Flop Using Latches . 100
6.7.6 Exercise 6: What Is the Operating Frequency

of the Following Circuit? . 101
6.7.7 Exercise 7: The Asynchronous Clear 101
6.7.8 Exercise 8: The Synchronous Clear 102

6.8 Important Takeaways . 104

7 Sequential Design Techniques . 105
7.1 Synchronous Design . 105
7.2 Asynchronous Design . 105
7.3 Why to Use Synchronous Design? . 106

7.3.1 Which Elements We Should Use During Design? 107
7.4 D Flip-Flop and Use in the Design . 108
7.5 Design for the given specifications . 110
7.6 Design of the Synchronous Counters . 111
7.7 Exercise 1: Design of the Synchronous Down-Counters 113
7.8 Exercise 2: Design of the Synchronous Gray Counter 115
7.9 Few Important Guidelines . 118
7.10 Important Takeaways . 119

8 Important Design Scenarios . 121
8.1 MOD-3 Counter . 121
8.2 The Design of MOD-3 Counter with 50% Duty Cycle 124
8.3 Applications and Use of Counters . 125

8.3.1 Ring Counter . 126
8.3.2 Johnson Counter . 128

8.4 Exercises . 130
8.4.1 Exercise 1: The Counter Output . 131
8.4.2 Exercise 2: Find the Output Sequence 131
8.4.3 Exercise 3: Operating Frequency of Design 133
8.4.4 Exercise 4: Output on 1024th Clock Cycle 133
8.4.5 Exercise 5: Output on the 4th Clock Cycle 133
8.4.6 Exercise 6: Output at 10th Clock Pulse 134

Contents xv

8.4.7 Exercise 7: Design the Serial Input Serial Output
Shift Register . 136

8.5 Important Takeaways . 136

9 FSM Design Techniques . 137
9.1 What Is FSM? . 137

9.1.1 Moore FSM . 138
9.1.2 Mealy FSM . 138
9.1.3 Moore Versus Mealy FSM . 139

9.2 State Encoding Methods . 139
9.3 Moore FSM Design . 141
9.4 Mealy FSM Design . 144
9.5 Applications and Design Strategies . 146
9.6 Exercises . 147

9.6.1 Exercise 1: Moore Machine State Diagram 147
9.6.2 Exercise 2: Mealy Machine . 148
9.6.3 Exercise 3: One-Hot Encoding . 149
9.6.4 Exercise 4: FSM Area and Power Optimization 150

9.7 Important Takeaways . 151

10 Advanced Design Techniques-1 . 153
10.1 Various Paths in the Design . 153
10.2 Data and Control Paths . 154
10.3 Mealy Sequence Detector Design . 155
10.4 Data and Control Path Design Techniques 159
10.5 Flip-Flop Timing Parameters . 160
10.6 Example on Performance Improvement of the Design 161
10.7 Exercises . 163

10.7.1 Exercise 1: Maximum Operating Frequency 163
10.7.2 Exercise 2: Timing Paths . 164
10.7.3 Exercise 3: Maximum Operating Frequency 165
10.7.4 Exercise 4: Positive Clock Skew and Maximum

Operating Frequency for the Design 165
10.7.5 Exercise 5: Negative Clock Skew and Maximum

Operating Frequency for the Design 166
10.8 Important Takeaways . 167

11 Advanced Design Techniques-2 . 169
11.1 Multiple Clock Domain Designs . 169
11.2 Metastability . 170
11.3 Control Path Synchronizer . 171
11.4 Data Path Synchronizer . 172
11.5 Multiple Power Domain Designs . 172
11.6 Architecture-Level Designs . 173
11.7 How We Can Improve the Design Performance 174
11.8 The Digital Systems and Design . 176

xvi Contents

11.9 Exercises . 176
11.9.1 Exercise 1: FIFO Depth Calculation 177
11.9.2 Exercise 2: FIFO Depth Calculation 177
11.9.3 Exercise 3: FIFO Depth Calculation 178
11.9.4 Exercise 4: FIFO Depth Calculation 179
11.9.5 Exercise 5: FIFO Depth Calculation 179

11.10 Important Takeaways . 180

12 System Design and Considerations . 181
12.1 System Design . 181
12.2 What We Need to Think About? . 182
12.3 Important Considerations . 182
12.4 Let Us Understand the Microprocessor Capabilities 185
12.5 Control Signal Generation Logic . 185
12.6 IO Devices and Communication with the Processor 186
12.7 Memory Devices and Communication with the Processor 187
12.8 Design Scenarios and Optimization . 190
12.9 Concluding Comments . 190

Index . 193

About the Author

Vaibbhav Taraate is Entrepreneur and Mentor at “1 Rupee S T”. He holds a
BE (Electronics) degree from Shivaji University, Kolhapur in 1995 and secured a
gold medal for standing first in all engineering branches. He has completed his
M.Tech. (Aerospace Control and Guidance) in 1999 from Indian Institute of Tech-
nology (IIT) Bombay. He has over 18 years of experience in semi-custom ASIC
and FPGA design, primarily using HDL languages such as Verilog and VHDL.
He has worked with few multinational corporations as consultant, senior design
engineer, and technical manager. His areas of expertise include RTL design using
VHDL, RTL design using Verilog, complex FPGA-based design, low power design,
synthesis/optimization, static timing analysis, system design using microprocessors,
high speed VLSI designs, and architecture design of complex SOCs.

xvii

Chapter 1
Basics of Digital Design

The basics of digital logic design and the various efficient
techniques are useful during the optimization of the
combinational logic.

Most of the time, we experience the need of the digital design techniques to design
the digital systems. If we consider any digital system, then the understanding of
the digital design techniques, and their use is helpful to the engineers to design
and implement the systems. The main considerations are the area, speed and power
requirements for these systems and their efficient understanding while implementing
the digital systems. In this context, the chapter discusses the basics of the digital
design techniques with their main important goals.

1.1 Digital Logic and the Evolution

The digital logic has evolved during last century and has various efficient techniques.
Most of the time, we have used the techniques for the Boolean equation simplifica-
tions and for the optimization. The main important techniques are very basic, and
they are

1. Boolean theorems
2. Sum of Product (SOP) and Product of Sum (POS) simplifications
3. Karnaugh map (K-map)
4. De Morgan’s theorems
5. Design optimization techniques
6. Delay optimization techniques
7. Power optimization techniques
8. Speed optimization techniques.

Most of us are familiar with these techniques, and we use these during the various
design stages such as architecture and micro-architecture of the design.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Design Techniques and Exercises,
https://doi.org/10.1007/978-981-16-5955-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5955-3_1&domain=pdf
https://doi.org/10.1007/978-981-16-5955-3_1

2 1 Basics of Digital Design

If we consider the decade of 80s, then we have witnessed migration of EDA tool
flow from the schematic entry to the hardware description language (HDL) during
1984–1985. Most of the EDA tool companies evolved the algorithms using the
Verilog and VHDL languages to carry out the design and implementation.

Even we have witnessed few PLD-based designs and use of FPGA tools during
that decade. In such scenarios, the book is useful to understand various design
techniques from basics to complex designs. How to sketch the design architecture
and micro-architecture for the design and how to use the advanced digital design
techniques is also discussed in this book.

The next few sessions are useful to understand about the basic digital design
elements and their role in the design.

1.2 The Important Considerations

As most of us are familiar that, the digital design operates on the binary data, we will
consider the bit as binary digit, and it has logic 0 and logic 1 values. Logic 0 stands
for the VSS (GND) and logic 1 for VDD or VCC. The digital design has classified
into the category as follows:

1. Combinational logic: In the combinational logic an output is the function of
the present input. If input changes, then an output will change after the propaga-
tion delay of the combinational logic, hence avoiding the cascading of stages!
Following are examples of the combinational logic:

a. Logic gates
b. Arithmetic resources
c. Multiplexers
d. Decoders
e. Demultiplexers
f. Encoders

2. Sequential logic: In the sequential design an output is the function of the present
input and past output. Examples are latches and flip-flop used to design the
sequential logic. The examples of the sequential logic are

a. Latches
b. Flip-flops
c. Counters
d. Shift registers
e. Memory elements

While designing the digital logic, the main important considerations are area,
speed and power. Even we need to incorporate the concurrency, parallelism and
the pipelining depending on the design goals.

1.2 The Important Considerations 3

Most of the chapters discuss the use and application of these elements and the
design techniques useful to improve the speed, power and area while using these
elements!

1.2.1 Area of the Design

Area of any design is the number of logic gates or number of logic elements used in
the design. The density of logic is how many logic gates in the unit-square area. For
example, the processor area is 100,000 logic gates. The design engineers need to use
the various design techniques to improve the area of design. Few of the important
design techniques are discussed in this book. These techniques are mainly

1. Resource sharing
2. Logic duplications for FPGA-based designs
3. Splitting the larger combinational designs
4. Mux-based logic versus gate-based designs
5. Resource optimization at the architecture level.

1.2.2 Speed of the Design

The speed of the design is one of the important parameters, and the speed is limited
due to the inertial gate delay or due to cascading of the number of logic stages. As
shown in Fig. 1.1 if we consider the CMOS NOT gate then at the output there is
formation of the stray capacitance and the inertial delay of the NOT gate is due to
the time required for charging and discharging of the capacitor. The inertial delay is

Fig. 1.1 CMOS NOT gate

4 1 Basics of Digital Design

the propagation delay and defined as the amount of time required for the output to
get the valid logic level after change in the input.

For the sequential design, the speed mainly depends upon the timing parameters
of the sequential design elements such as setup time, hold time and clock to q delay
(propagation delay of the flip-flop). Refer Chap. 10 for more details about the timing
parameters.

There are various speed improvement techniques used during the design stages,
and few important techniques which are discussed in this book are

1. Balancing the register timing
2. Pipelining
3. Register balancing
4. Optimizing for the timing paths in the design
5. Use of the parallelism if area is not important consideration.

1.2.3 Power

The power is an important design considerations. Most of we have come across the
terms such as switching power, static and dynamic power. The power dissipation
should be minimum, and the book also focuses on the low power architecture design
techniques and their role at various stages of the design. Consider Fig. 1.1, as shown
as the stray capacitance is formed at the output, the power is specified as

Power = αCV 2 f

where α = switching factor
C = load or stray capacitance
V = supply voltage and f = frequency
To have theminimum power the load capacitance should beminimum, the voltage

should be minimum, but as we cannot compromise on the speed of the design, we
need to balance between the desired power and speed of the design.

There is always the trade-off between the speed and power, and the main goal
of the logic design team is to have the balance act to achieve the desired speed and
power for the design.

There are various power optimization techniques, and few of them are

1. Use of low power cells in the design
2. Low power aware architecture design
3. Clock gating for the sequential logic.

These techniques are discussed in the subsequent chapters.
Now as we have understood the goals and objectives during the logic design and

to use the desired techniques, let us start from the basic logic elements. As stated
earlier, the basic logic elements are logic gates, and the following section discusses
them.

1.3 Logic Gates 5

1.3 Logic Gates

The logic gates are important logic design elements. The focus of this book is more
on the use of the logic elements to design the area, power and speed-efficient logic.
As name indicates that the logic gates are used to perform the desired logic function.
The logic gates have inputs and outputs, and they are used to build the combinational
and sequential logic.

Although most of the engineers are familiar with the logic gates, let us discuss
them in the context of the logic design and optimization of the logic!

1. NOT Gate

NOT is complement of the input and also called as logic inverter. It has single input
and single output. It just complements the binary input.

The truth table of the NOT gate is shown in Table 1.1. It has input a_in and an
output y_out. The relationship between the input and output is given by

y_out = a_in

The symbolic representation is shown in Fig. 1.2, and the output is complement
of an input. The logic 1 complement is logic 0 and vice versa.

2. OR Gate

OR is the logical OR of the inputs and in simple words indicates that this or this!
The two input OR gate performs logical OR on the two binary inputs to generate a
single bit binary output.

The truth table of the OR gate is shown in Table 1.2. It has inputs a_in, b-in and
an output y_out. The relationship between the inputs and output is given by

y_out = a_in + b_in

Figure 1.3 is symbolical representation of OR gate, and it indicates that either
a_in or b_in should be logic 1 to get an output as logic 1. Hence, the logic is OR
logic.

Table 1.1 Truth table of
NOT gate

a_in y_out

0 1

1 0

Fig. 1.2 NOT gate

6 1 Basics of Digital Design

Table 1.2 Truth table of OR
gate

a_in b_in y_out

0 0 0

0 1 1

1 0 1

1 1 1

Fig. 1.3 OR gate

3. NOR Gate

The NOR is NOT of OR, and the output of NOR gate is logic 1 when all the inputs
are logic 0. If one of the input is logic 1, then an output of NOR gate is logic 0. The
NOR gate is universal gate because by using the minimum number of NOR gates,
any Boolean function can be implemented.

The truth-table of NOR gate is shown in Table 1.3 and has inputs as a_in, b_in
and output as y_out. The relationship between the inputs and an output is given by

y_out = a_in + b_in

The NOT of OR is shown in Fig. 1.4 which is the cascade of OR and NOT. The
issue is the larger propagation delay due to cascading of the OR and NOT. So, during
design, avoid the cascade logic. If we consider the delay of each logic gate is 0.5 ns,
then the propagation delay of the NOR logic is 1 ns.

Table 1.3 Truth-table of
NOR gate

a_in b_in y_out

0 0 1

0 1 0

1 0 0

1 1 0

Fig. 1.4 NOT of OR

1.3 Logic Gates 7

Fig. 1.5 NOR gate

The symbol of the NOR gate is shown in Fig. 1.5, and the minimum number of
NORgates shouldbeused to implement theBoolean function.Byusing theminimum
number of NOR gates, any Boolean function can be realized, and hence, the NOR
gate is called as universal gate.

4. AND Gate

The AND logic gate output is logic 1 when both the inputs a_in and b_in are at logic
1. Hence, the logic is represented by using a_in AND b_in. The logic expression of
2-input AND gate is given by

y_out = a_in · b_in

The · (pronounced as dot) indicates the AND operation. The truth-table is shown
in Table 1.4. As described in the truth-table when both the inputs a_in and b_in are
logic 1, an output of the AND gate is logic 1. When one of the input is logic 0, the
output of AND gate remains at logic 0.

The symbol of the 2-input AND is shown in Fig. 1.6, and as shown, the AND gate
has two inputs a_in, b_in and an output as y_out.

5. NAND Gate

NAND is NOT of AND, and the output of NAND is logic 0 when both the inputs are
at logic 1. If one of the input of NAND gate is at logic 0, then an output of NAND

Table 1.4 Truth table of
AND gate

a_in b_in y_out

0 0 0

0 1 0

1 0 0

1 1 1

Fig. 1.6 AND gate

8 1 Basics of Digital Design

Table 1.5 Truth table of
NAND gate

a_in b_in y_out

0 0 1

0 1 1

1 0 1

1 1 0

Fig. 1.7 NOT of AND

gate is logic 1. The truth-table of 2-input NAND gate is described in Table 1.5. The
logic expression is given by

y_out = a_in · b_in

The cascade of the AND, NOT is shown in Fig. 1.7. As discussed earlier, the
design engineers should avoid the cascading of the stages.

The NAND gate symbolical representation is shown in Fig. 1.8, and as shown, it
has two inputs a_in, b_in and an output as y_out.

6. XOR Gate

The XOR gate is also called as exclusive OR. The truth-table of the XOR gate is
shown in Table 1.6. As shown, the output of the 2-input XOR gate is logic 1 when
both the inputs are not equal. The logic expression of XOR gate is

y_out = a_in ⊕ b_in

Fig. 1.8 NAND gate

Table 1.6 Truth table of
XOR gate

a_in b_in y_out

0 0 0

0 1 1

1 0 1

1 1 0

1.3 Logic Gates 9

Fig. 1.9 XOR gate

The symbol of the XOR gate is shown in Fig. 1.9, and as shown, the 2-input XOR
gate has inputs a_in, b_in and an output as y_out.

7. XNOR Gate

TheXNOR isNOTofXOR. The symbol of theXNOR is� (pronounced as EXNOR).
The logic expression is given by

y_out = a_in � b_in

The EXNOR or exclusive NOR or XNOR these are few names which we use
while implementing the design. The XNOR is cascade of the XOR and NOT and
hence called as NOT of XOR. The XNOR using XOR is shown in Fig. 1.10.

The truth-table of the XNOR gate is described in Table 1.7. As described, the
output of 2-input XNOR gate is logic 1 when both the inputs are equal.

As discussed earlier, avoid the cascading of the stages as it increases the
propagation delay.

The symbol of the XNOR gate is shown in Fig. 1.11, and as shown, the logic has
a_in, b_in inputs and output as y_out.

Fig. 1.10 NOT of XOR

Table 1.7 Truth table of
XNOR gate

a_in b_in y_out

0 0 1

0 1 0

1 0 0

1 1 1

Fig. 1.11 XNOR gate

10 1 Basics of Digital Design

Table 1.8 Truth table of bubbled OR is equal to NAND

a_in a_in b_in b_in y_out

0 1 0 1 1

0 1 1 0 1

1 0 0 1 1

1 0 1 0 0

Fig. 1.12 Bubbled OR is equal to NAND

1.4 De Morgan’s Theorems

As we have good understanding of the logic gates now, let us try to understand the
important theorems as De Morgan’s theorems. For the Boolean simplification, the
two important theorems are

1.4.1 NAND is Equal to Bubbled OR

a_in · b_in = a_in + b_in

The truth-table is shown in Table 1.8. The output if bubbled OR matches with the
output of 2-input NAND, and hence in simple words, we can consider bubbled OR
is equal to NAND or vice versa.

For Boolean simplifications, we can use the De Morgan’s theorems. We can use
the bubbled OR as a NAND during Boolean simplifications (Fig. 1.12).

1.4.2 NOR is Equal to Bubbled AND

a_in + b_in = a_in · b_in

1.4 De Morgan’s Theorems 11

Table 1.9 Truth table of bubbled AND is equal to NOR

a_in a_in b_in b_in y_out

0 1 0 1 1

0 1 1 0 0

1 0 0 1 0

1 0 1 0 0

Fig. 1.13 Bubbled AND is equal to NOR

The truth-table is shown in Table 1.9. The output if bubbled AND matches with
the output of 2-input NOR, and hence in simple words, we can consider bubbled
AND is equal to NOR or vice versa.

For Boolean simplifications, we can use the De Morgan’s theorems. We can use
the bubbled AND as a NOR during Boolean simplifications (Fig. 1.13).

1.5 Multiplexer as Universal Logic

The multiplexer is many to one switch, and they are used in the multiplexing of the
buses, clock multiplexing and other various applications. The multiplexer has many
inputs and single output. The logic level on the select inputs decides which input is
selected, and according to that, the multiplexer output is generated. The multiplexer
is also called as mux, and throughout this book, we will call multiplexer as mux. The
truth-table of 2:1 mux is shown in Table 1.10. The 2:1 mux has two inputs a_in, b_in
and single select input sel_in.

As described, the output of mux is b_in for sel_in = 0, for the sel_in = 1 output
is a_in.

The symbol of the 2:1 mux is shown in Fig. 1.14, and as shown depending on the
sel_in status, it passes one of the input either a_in, b_in to an output y_out.

Now, let us implement the 2:1 mux using the logic gates. From the truth table, we
can get the product term, and we can use the Sum of Product (SOP) expression to
implement the 2:1 mux (Fig. 1.15).

Table 1.10 Truth table of 2:1
MUX

sel_in y_out

0 b_in

1 a_in

12 1 Basics of Digital Design

Fig. 1.14 Symbolical representation of 2:1 MUX

Fig. 1.15 Gate-level structure of 2:1 MUX

sel_in y_out Product term

0 b_in y0 = sel_in · b_in
1 a_in y1 = sel_in · a_in

Using the product term, the SOP expression for the 2:1 mux is given by

y_out = y0 + y1

y_out = sel_in · b_in + sel_in · a_in

1.6 Optimization Goals and Applications in VLSI Context

While using the digital elements to design the digital logic, following are few of the
optimization goals.

1. Do not use the cascading of the logic as it adds significant delays.
2. Use the minimum number of universal logic gates to implement the Boolean

function.
3. Use the multiplexers to implement the Boolean functions.
4. Use the low power design cells or gates to improve the power.
5. Use the logic cells which has least propagation delay

1.6 Optimization Goals and Applications in VLSI Context 13

In the VLSI design context, the following are goals of the designers:

1. Understand the compatibility and logic levels of gates.
2. Use the minimum number of gates to implement the Boolean function.
3. Use the parallel logic if area is not an important parameter.
4. Use the low power and high-speed cells during the design.

1.7 Exercises

Now let us use the basic fundamentals of the logic gates and let us complete following
few exercises.

1.7.1 Exercise 1: Use of the Logical Expressions to Get
the Logic Equivalent

For the given expression, what is the equivalent logic gate expression at output y?

Solution: Given y = A + A · B

y = (A + A) · (A + B)

y = (A + B)

1.7.2 Exercise 2: Cascade Logic and How to Get Logic
Expression?

For the given cascade logic , what is the equivalent logic gate expression at output
y? (Fig. 1.16).

Solution: Output of first XOR gate

y1 = X ⊕ X = 0

Output of second XOR gate

y2 = X ⊕ 0 = X

14 1 Basics of Digital Design

Fig. 1.16 Cascade XOR gates

Output of third XOR gate

y = X ⊕ X = 0

1.7.3 Exercise 3: Complement Logic

For the given logic gate, what is the equivalent logic expression at output y?
(Fig. 1.17).

Solution:

y = A ⊕ 0

y = A · 0 + A · 0

y = A + 0

y = A

Fig. 1.17 XNOR gate

1.7 Exercises 15

Fig. 1.18 Logic realization
using NAND

1.7.4 Exercise 4: Logic Expression for the Cascade Logic

For the given cascade logic , what is the equivalent logic expression at output y?
(Fig. 1.18).

Solution: Let us find the Boolean equation for y1, y2, y3

y1 = AB

y2 = A · AB = A · (
A + B

) = A · B

y3 = B · AB = B · (
A + B

) = B · A

y = y2 · y3 = (A · B) · (B · A)

Using De Morgan’s theorem that is NAND is equal to bubbled OR, we will get

y = (A · B) · (B · A)

y = (A · B) + (B · A)

y = A · B + A · B

1.7.5 Exercise 5: Output Expression for the Cascade Logic

Find the output expression for the cascade logic shown in Fig. 1.19. Consider even
number of XOR gates cascaded as shown.

Solution: Output of first XOR gate = X
Output of second XOR gate = X ⊕ X

16 1 Basics of Digital Design

Fig. 1.19 Even number of cascade XOR gates

= X · X ⊕ X · X = 1

As an even number of XOR gates are connected in cascade, the output of second
XOR gate and the last XOR gate are same which is logic 1.

1.7.6 Exercise 6: Propagation Delay for the Cascade Logic

Consider the propagation delay of each XOR gate is 0.5 ns and the ten XOR gates
are connected in cascade. The propagation delay at the output y of the logic is of how
many ns? (Fig. 1.20).

Solution: The number of cascade stages are n = 10;each stage has the propagation
delay (tpd) of 0.5 ns.

So, the cascade logic has propagation delay of n * tpd = 10 * 0.5 ns = 5 ns.

Fig. 1.20 Even gates in cascade

1.7 Exercises 17

Fig. 1.21 XOR gate

1.7.7 Exercise 7: Logic Gate Output Expression

For the logic gates shown, what is the equivalent logic expression at output y?
(Fig. 1.21).

Solution:

y = A ⊕ 0

y = A · 0 + A · 0

y = 0 + A

y = A

1.7.8 Exercise 8: Propagation Delay for the Cascade Logic

For the following logic, if each gate has propagation delay of 1 ns themaximumprop-
agation delay to get output y is equal to? (Fig. 1.22).

Solution: Let us divide the logic shown into three regions as shown in Fig. 1.23.

Fig. 1.22 Logic schematic

18 1 Basics of Digital Design

Fig. 1.23 Logic regions and delays

As the NAND and OR gate are in parallel the delay is tpd, the delay of AND gate
is tpd and XOR gate is tpd, as the gate delay of each gate is 1 ns.

The overall propagation delay to get output y is 3 * tpd = 3 * 1 ns = 3 ns.Y

1.7.9 Exercise 9: The Equivalent Logic Expression

For Fig. 1.24, the equivalent logic gate expression at output y_out is?

Solution: Use the De Morgan’s theorem and find the y_out.
As we know that bubbled OR is NAND

a_in · b_in = a_in + b_in

NOT of NAND is AND

y_out = a_in · b_in

y_out = a_in · b_in

So, the above figure logic gate expression is AND logic gate.

Fig. 1.24 Logic gate-1

1.7 Exercises 19

Fig. 1.25 Logic gate-2

1.7.10 Exercise 10: The Equivalent Logic Gate

For Fig. 1.25, the equivalent logic expression at output y_out is?

Solution: Use the De Morgan’s theorem and find the y_out.
As we know that bubbled AND is NOR

a_in + b_in = a_in · b_in

NOT of NOR is OR

y_out = a_in + b_in

y_out = a_in + b_in

So, the above figure logic gate is OR gate.

1.8 Important Takeaways

Following are few of the important points to conclude this chapter.

1. TheNANDandNORare universal logic gates and the goal is to use theminimum
number of logic gates to implement the Boolean functions

2. NAND logic is equivalent to bubbled OR logic.
3. NOR logic is equivalent to the bubbled AND logic.
4. Multiplexers are treated as universal logic and used to implement any kind of

Boolean function.
5. The goal of the system design engineer is to implement the digital system with

lesser area, lesser power and more speed.
6. Do not use the cascading stages in the design.

Chapter 2
Design Using Universal Logic

The design using universal gates and use of multiplexers as
universal logic is useful during the combinational design.

The universal logic gates such as NAND, NOR, MUX and other application-specific
or custom gates can be used in the design with the goal of the area optimization.
The chapter is useful to understand about the role of these universal logic gates and
design by using them! The chapter discusses the cascade and parallel logic and the
design techniques to improve the speed of the design and to optimize for the area.

2.1 What Is Universal Logic?

Most of us are familiar with the universal logic gates. Mainly, these gates are NAND
and NOR. As discussed in the previous chapter, the NAND is bubbled OR and NOR
is bubbled AND. The goal of the logic design engineer is to use theminimum number
of these gates and to implement the combinational logic which has minimum area.
You may feel that it is difficult to directly arrive to the minimum number of the
universal gates. But we can use the digital design techniques to get the minimum
number!

Apart from the NAND and NOR gates, the other universal logic elements are 2:1
mux and the application-specific or custom gates. Figure 2.1 gives information about
these gates, and they can be used to implement any combinational logic.

2.2 Universal Gates

Most of us are familiar with the universal logic gates as NAND and NOR. These
gates are used to design the Boolean functions. The objective of the designer is to use
the minimum number of logic gates. The realized logic should have the minimum

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Design Techniques and Exercises,
https://doi.org/10.1007/978-981-16-5955-3_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5955-3_2&domain=pdf
https://doi.org/10.1007/978-981-16-5955-3_2

22 2 Design Using Universal Logic

Fig. 2.1 Universal gates and mux as a universal logic

area, maximum speed and less power. The section discusses these universal logic
gates and design using them.

2.2.1 NAND

As discussed in the previous chapter, NAND is NOT of AND. NAND is universal
logic gate, and we can use minimum number of NAND gates to implement the
Boolean function. Consider the 2-input XOR gate we can use only four NAND gates
and can implement the 2-input XOR gate. The relationship between the inputs a_in,
b_in of NAND gates and an output y_out is shown in Table 2.1.

Let us understand the switch-level design of the 2-input NAND gate. As we know
that in the CMOS switch-level design we can use PMOS and NMOS. The PMOS
passes strong 1 and used in the Vdd section. The NMOS passes the strong 0 and used
in the Vss section.

As NAND is NOT of AND, in the lower section we can use the series NMOS
switches and as the complement of the NMOS is PMOS, complement of the series

Table 2.1 Truth-table of
2-input NAND gate

a_in b_in y_out = a_in · b_in
0 0 1

0 1 1

1 0 1

1 1 0

2.2 Universal Gates 23

Fig. 2.2 CMOS 2-input
NAND

is parallel, in the upper section we can use the parallel connection of the PMOS
switches. The upper parallel section uses the supply as Vdd, and the lower series
section uses the Vss. Vdd and Vss are complement of each other. The CMOS 2-input
NAND gate is shown in Fig. 2.2.

2.2.2 NOR

As discussed in the previous chapter, NOR is NOT of OR. NOR is universal logic
gate, and we can use minimum number of NOR gates to implement the Boolean
function. Consider the 2-input XNOR gate we can use four NOR gates and can
implement the 2-input XNOR gate. The relationship between the inputs a_in, b_in
and an output y_out is shown in Table 2.2.

Let us understand the switch-level design of the 2-input NOR gate. As NOR is
NOT of OR, in the lower section we can use the parallel NMOS switches and as the
complement of the NMOS is PMOS, complement of the parallel is series, we can

Table 2.2 Truth-table of
2-input NOR gate

a_in b_in y_out = a_in+ b_in

0 0 1

0 1 0

1 0 0

1 1 0

24 2 Design Using Universal Logic

Fig. 2.3 CMOS 2-input
NOR gate

use the series connection of the PMOS switches in upper section. The upper series
section uses the supply as Vdd, and the lower parallel section uses the Vss. Vdd
and Vss are complement of each other. The CMOS 2-input NOR gate is shown in
Fig. 2.3.

2.2.3 Other Application-Specific Universal Gates

Most of us are familiar with the NAND and NOR as universal gates. We have come
across these gates and have habit of using the minimum number of NAND or NOR
gates to realize theBoolean function.As discussed in the previous chapter, we can use
theminimum number of 2:1mux to implement the boolean function. Themultiplexer
is also treated as universal logic.

Apart from the NAND, NOR and 2:1 mux, we can have the other application-
specific gates as shown in Figs. 2.4 and 2.6 as the universal logic gates. Thease gates
are also used to design the logic function.

Considering the logic gate shown in Fig. 2.4 if we wish to implement the OR gate
using only the minimum number of these types of gates, then we can use following
strategy (Fig. 2.5).

Fig. 2.4
Application-specific
universal gate-1

2.2 Universal Gates 25

Fig. 2.5 2-input OR using the application-specific gates

Fig. 2.6
Application-specific
universal gate-2

We can use two application-specific gates in cascade. Let us get the y_out
expression for Fig.2.5

y1 = 0+ a_in

y1 = a_in

y_out = a_in+ b_in

y_out = a_in+ b_in

Consider the logic gate shown in Fig. 2.6 if we wish to implement the AND gate
using only the minimum number of these types of gates, then we can use following
strategy.

We can use two application-specific gates in cascade (Fig. 2.7).

y1 = 1 · b_in

y1 = b_in

y_out = b_in · a_in

Fig. 2.7 2-input AND using
the application-specific gates

26 2 Design Using Universal Logic

y_out = a_in · b_in

2.3 Multiplexers

As discussed in the previous chapter, the multiplexers are treated as universal logic.
By using the minimum number of multiplexers, any Boolean function can be imple-
mented. The objective of the designer is to have least propagation delay and use of
the minimum number of multiplexers. This section is useful to understand the design
using minimum number of multiplexers.

2.3.1 Design Using 2:1 Mux

The design using the minimum number of 2:1 mux is discussed in this section.
The 2:1 mux is the lowest input multiplexer in the hierarchy. As discussed in the
previous chapter, the 2:1 mux has 2-inputs, single select line and single output line.
The relationship between the input lines (m) and select lines (n) is given by m = 2n.

2.3.1.1 NOT Gate Using 2:1 Mux

Now let us design the NOT gate using 2:1 mux. As shown in the table, the NOT gate
has single input and single output.

Now let us compare the truth-table of NOT gate with 2:1 mux.
From comparison of Tables 2.3 and 2.4, it is clear that sel_in= a_in, the I0 input

should be connected to Vdd (logic 1) and I1 input should be connected to Vss
(logic 0). The NOT gate using the single 2:1 mux is shown in Fig. 2.8.

Table 2.3 Truth-table of
NOT gate

a_in y_out = a_in

0 1

1 0

Table 2.4 Truth-table of 2:1
mux

sel_in y_out

0 I0

1 I1

2.3 Multiplexers 27

Fig. 2.8 NOT gate using 2:1 MUX

2.3.1.2 OR Gate Using 2:1 Mux

Let us design the OR gate using minimum number of 2:1 mux. Let us think, how
many 2:1 mux needed to implement the OR gate? The answer is not very straight
forward, and we can arrive to the implementation of OR using 2:1 mux by just
observing and rearranging the truth-table of OR. So let us try to do that! (Table 2.5).

Now the better strategy is to divide the table into group of two entries as a_in is
logic 0 for first two entries and logic 1 for next two entries. Now compare the b_in
entries with the y_out output of OR gate. Using this strategy, let us document the
entries so that we can get the equivalent truth table (Table 2.6).

The 2-input OR implementation using the single 2:1 mux is shown in Fig. 2.9. As
shown when a_in which is select line of 2:1 mux is logic 1, an output of 2:1 mux is
logic 1. For select line a_in = 0, an output is b_in.

Table 2.5 OR gate truth-table

28 2 Design Using Universal Logic

Table 2.6 2-input OR using
the single 2:1 mux

sel_in = a_in y_out

0 b_in

1 1

Fig. 2.9 OR gate using 2:1 MUX

2.3.1.3 NAND Using Mux

Now let us use the strategy explained in the above section to implement the 2-input
NAND using minimum number of 2:1 multiplexers. Table 2.7 has four entries, and

Table 2.7 Truth-table of 2-input NAND gate

2.3 Multiplexers 29

these are divided into two groups. For first two entries that is a_in= 0 if we compare
b_in with y_out, then we are getting an output y_out= 1. For the next two entries if
we compare b_in with y_out of NAND, then we get y_out = b_in.

Nowmost of the time, the beginners conclude that to implement the 2-inputNAND
gate, we need to have single 2:1 mux (Fig. 2.10) but that is not correct as the logic
is not efficient. As shown in Table 2.8 for the select input a_in = 1, an output y_out
= b_in. So, to implement the NOT of b_in, we need to have one more multiplexer.

The implementation of 2-input NAND using minimum number of 2:1 mux is
shown in Fig. 2.11.

Fig. 2.10 NAND using MUX and NOT

Table 2.8 2-input NAND
using multiplexer truth-table

sel_in = a_in y_out

0 1

1 b_in

Fig. 2.11 NAND using only multiplexers

30 2 Design Using Universal Logic

Table 2.9 Truth-table of 2-input NOR gate

2.3.1.4 NOR Using 2:1 Mux

Now let us use the strategy explained in the above section to implement the 2-input
NOR using minimum number of 2:1 multiplexers. Table 2.9 has four entries, and
these entries are divided into two groups. For first two entries that is a_in = 0 if we
compare b_in with y_out, then we are getting an output y_out = b_in. For the next
two entries if we compare b_in with y_out of NAND, then we get y_out = 0.

To implement the 2-input NOR gate, we need to have single 2:1 mux and NOT
gate (Fig. 2.12) but that is not correct approach as our objective is to implement the
2-input NOR using only minimum number of 2:1 mux. As shown in Table 2.9 for
the select input a_in= 0, an output y-out= b_in. So, to implement the NOT of b_in,
we need to have one more 2:1 multiplexer (Table 2.10).

The implementation of 2-input NOR using only minimum number of 2:1 mux is
shown in Fig. 2.13.

Fig. 2.12 NOR using NOT and 2:1 MUX

2.3 Multiplexers 31

Table 2.10 2-input NOR
table entries

sel_in = a_in y_out

0 b_in

1 0

Fig. 2.13 NOR using multiplexers

Table 2.11 Truth-table of
4:1 mux

sel_in[1] sel_in[0] y_out

0 0 a_in

0 1 b_in

1 0 c_in

1 1 d_in

2.3.2 4:1 MUX Using 2:1 Mux

The 4:1 mux (Table 2.11) has two select inputs sel_in[1], sel_in[0], and depending
on the status of the select inputs, one of the output a_in, b_in, c_in, d_in is connected
to an output y_out. Let us use the minimum number of 2:1 mux to implement the
4:1 mux.

To realize the 4:1 mux using minimum number of 2:1 mux, let us partition the
4:1 mux table into multiple sections as shown in Table 2.12. From the partition, it is
clear that we need to have three 2:1 mux to implement the 4:1 mux.

Let us now document the entries (Table 2.13) as shown below to get the output of
4:1 multiplexer (Fig. 2.14).

2.3.3 Design Using Multiplexers

So as discussed in the previous few sections, we can use the minimum number of
2:1 mux during the design and realization of the Boolean function. In the practical
scenarios, we can use the minimum number of multiplexers to implement the

32 2 Design Using Universal Logic

Table 2.12 Truth-table to implement the 4:1 mux using 2:1 multiplexers

Table 2.13 Output mux
entries

sel_in[1] y_out

0 y1

1 y2

Fig. 2.14 4:1 MUX using only 2:1 multiplexers

• Boolean function that is SOP functions
• Clock muxing
• Address data bus multiplexing
• Implementation of the code converters like gray to binary and binary to gray
• Pin multiplexing

2.3 Multiplexers 33

The objective of the logic designer is to use the minimum number of 2:1 mux.
Even the cascade multiplexer stages reduce the speed due to increase in propagation
delay.

For the better understanding and better design practice, let us discuss few exercises
on the universal logic and multiplexer-based designs.

2.4 Exercises

Now let us use the understanding on the universal logic gates and the De Morgan’s
theorem, and let us complete the exercises with the goal of the area optimization.

2.4.1 Exercise 1: Design Using Universal Gates

Using the following custom gate, design the 2-input NAND gate (Fig. 2.15).

Solution: Let us use the understanding on the universal logic gates, and by using the
minimum number of these gates, let us design the 2-input NAND gate.

As NOT of AND is NAND. Let us implement the AND and then NOT of AND
(Fig. 2.16).

y1 = 1 · b_in

y1 = b_in

y2 = b_in · a_in

Fig. 2.15 Custom-gate

Fig. 2.16 2-input NAND using custom gate

34 2 Design Using Universal Logic

y2 = a_in · b_in

y_out = 1 · y2

y_out = a_in · b_in

Now as by using the above custom gate, we can implement the NAND which is
universal gate, and we can treat this custom logic gate as universal gate.

2.4.2 Exercise 2: Design Using the MUX

Using the minimum number of 2:1 multiplexers, design the XOR gate.

Solution: Now the better strategy is to use the truth table of XOR gate (Table 2.14).
As shown, the number of entries is 4, and as a_in = 0 for first two entries and a_in
= 1 for next two entries to realize XOR using the minimum number of 2:1 mux, let
us compare b_in with y_out of XOR gate.

As shown (Table 2.15), for a_in = 0, y_out = b_in and for a_in = 1, y_out =
b_in.

The XOR logic using two 2:1 multiplexers is shown in Fig. 2.17.

Table 2.14 XOR gate truth-table

2.4 Exercises 35

Table 2.15 Truth-table for
realization of the XOR gate

a_in y_out

0 b_in

1 b_in

Fig. 2.17 XOR gate using 2:1 MUX

2.4.3 Exercise 3: Design Using MUX

Using the minimum number of 2:1 multiplexers, design the XNOR gate.

Solution: Now the better strategy is to use the truth table of XNOR gate (Table 2.16).
As shown, the number of entries is 4 and as a_in = 0 for first two entries, and a_in
= 1 for next two entries to realize XNOR using the minimum number of 2:1 mux,
let us compare b_in with y_out of XNOR gate.

Table 2.16 2-input XNOR gate

36 2 Design Using Universal Logic

Table 2.17 XNOR entries to
realize logic using
multiplexers

a_in y_out

0 b_in

1 b_in

Fig. 2.18 XNOR gate using 2:1 multiplexers

As shown (Table 2.17), for a_in = 0, y_out = b_in and for a_in = 1, y_out =
b_in.

The XNOR logic using two 2:1 multiplexers is shown in Fig. 2.18.

2.4.4 Exercise 4: Design Using Custom Gates

Using the following custom gate, design the 2-input NOR gate (Fig. 2.19).

Solution: Let us use the understanding on the universal logic gates, and by using the
minimum number of these gates, let us design the 2-input NOR gate.

As NOT of OR is NOR. Let us implement the OR and then NOT of OR (Fig. 2.20).

y1 = 0+ a_in

y1 = a_in

y2 = a_in+ b_in

Fig. 2.19 Custom gate

2.4 Exercises 37

Fig. 2.20 2-input OR using the application-specific gates

y2 = a_in+ b_in

y_out = a_in+ b_in

Now as by using the above custom gate, we can implement the NOR which is
universal gate, we can treat this custom logic as universal gate.

2.4.5 Exercise 5: Optimization Exercise

Using the minimum number of 2:1 multiplexers, design the NOR gate.

Solution: Now the better strategy is to use the truth table of NOR gate (Table 2.18).
As shown, the number of entries is 4, and as a_in = 0 for first two entries and a_in
= 1 for next two entries to realize NOR using the minimum number of 2:1 mux, let
us compare b_in with y_out of NOR gate.

As shown (Table 2.19), for a_in = 0, y_out = b_in and for a_in = 1, y_out =
0.

Table 2.18 Truth-table of NOR gate

38 2 Design Using Universal Logic

Table 2.19 NOR to realize
using 2:1 mux

a_in y_out

0 b_in

1 0

Fig. 2.21 2-input NOR using only 2:1 multiplexers

Fig. 2.22 NOR using NOT and 2:1 MUX

The NOR logic using two 2:1 multiplexers is shown in Fig. 2.21.
The input multiplexer to get complement of the b_in can be optimized using the

NOT gate. Hence to implement the 2-input NOR (Fig. 2.22), we need to have single
2:1 mux and NOT gate.

2.4.6 Exercise 7: Design Using the MUX

Using the minimum number of 2:1 multiplexers, design the clock muxing. Consider
for the clk_select = 1 output should be clk_1 and for clk_select = 0 output should
be clk_2.

Solution: Now as only two clock inputs, let us tabulate the specification (Table 2.20).
As shown, the number of entries is 2 and as clk_select = 0 the y_out = clk_2. For
clk_select = 1, the y_out = clk_1.

Now use the select line s= clk_select and inputs as I1= clk_1, I0= clk_2 to get
clk_out from single 2:1 mux. The design is shown in Fig. 2.23.

2.4 Exercises 39

Table 2.20 Clock muxing clk_select y_out

0 clk_2

1 clk_1

Fig. 2.23 Clock muxing

2.4.7 Exercise 8: Design Using MUX

Using the minimum number of suitable multiplexer, design the following SOP
function.

f (sel_in[1], sel_in[0]) =
∑

m(1, 2)

Solution: As given, the Boolean function is Sum of Product (SOP) (Table 2.21). As
shown, the number of entries is 4, and output f is equal to logic 1 for min terms that
is 1, 2. For other combinations, that is for decimal input 0 and 3 output is logic 0.

This can be implemented using pull up (Vdd) or pull down (Vss) at inputs of single
4:1 mux (Fig. 2.24). The select lines of the multiplexer are sel_in[1], sel_in[0], and
output is y_out. The inputs I0 = 0, I1 = 1, I2 = 1 and I3 = 0.

Use the strategy in the Exercise 2 to implement using minimum number of 2:1
multiplexers.

Table 2.21 Truth-table for
the given function

sel_in[1] sel_in[0] f = y_out

0 0 0

0 1 1

1 0 1

1 1 0

40 2 Design Using Universal Logic

Fig. 2.24 XOR using 4:1 MUX

2.4.8 Exercise 9: Design Using Custom Gates

Using the minimum number of suitable multiplexer, design the following SOP
function.

f (sel_in[1], sel_in[0]) =
∑

m(0, 3)

Solution: As given, the Boolean function is Sum of Product (SOP) (Table 2.22). As
shown, the number of entries is 4, and output f is equal to logic 1 for min terms that
is 0, 3. For other combinations, that is 1 and 2 output is logic 0.

This can be implemented using pull up (Vdd) or pull down (Vss) at inputs of single
4:1 mux (Fig. 2.25). The select lines of the multiplexer are sel_in[1], sel_in[0], and
output is y_out. The inputs should be I0 = 1, I1 = 0, I2 = 0 and I3 = 1.

Use the strategy in the Exercise 2 to implement the design usingminimumnumber
of 2:1 multiplexers.

Table 2.22 Truth-table for
the given function

sel_in[1]=a_in sel_in[0]=b_in f = y_out

0 0 1

0 1 0

1 0 0

1 1 1

2.5 Applications and Use in VLSI Context 41

Fig. 2.25 XNOR using 2:1 MUX

2.5 Applications and Use in VLSI Context

Following are the applications of the mux-based logic and universal logic gates in
the VLSI context.

In the VLSI design context, the following are goals of the designers:

1. Understand the Boolean function to be realized and have strategy in
place to use the minimum logic gates.

2. Use the minimum number of universal logic gates to implement the
combinational logic.

3. Use the minimum number of multiplexers and try to avoid the cascade
stages.

4. While implementing the design using multiplexers, avoid the use of
the priority logic. Use the mux based logic for pin multiplexing and
combinational logic realization.

2.6 Important Takeaways

Following are few of the important points to conclude this chapter:

1. NAND and NOR are universal logic gates.
2. Using 2-input four NAND gates, 2-input XOR gate is realized and uses only 4

NAND gates.

42 2 Design Using Universal Logic

3. The minimum number of 2-input NOR gates required to realize the 2-input
XNOR gate is 4.

4. Multiplexers are used to realize the Boolean functions.
5. The minimum number of 2:1 mux required to realize the XOR, XNOR, NOR

and NAND gates is equal to 2.
6. Only single 2:1 MUX is required to realize the NOT, OR, AND gate.
7. Multiplexers are used in the pin muxing and clock muxing.

Chapter 3
Combinational Design Resources

Various combinational resources and the design techniques are
useful to design the arithmetic and other processing logic.

The chapter discusses the various code converters, combinational design resources
and the arithmetic resources. The design techniques discussed in this chapter
are useful to design the combinational or glue logic. The chapter even focuses
on the various performance improvement techniques and their use to design the
combinational logic.

3.1 Code Converters

Most of us are familiar with the various code converters those are useful in the design.
Most of the time, we use the binary-to-gray and gray-to-binary code converters. As in
the two successive gray codes, only one bit changes; these codes are used to improve
the overall power for the design. The main application is use of these code converters
in the multiple clock domain and in the FSM designs. Due to lower toggling rate,
they are useful to improve the overall power for the design.

3.1.1 Three-Bit Binary-to-Gray Code Converter

The 3-bit binary-to-gray code truth-table (Table 3.1) gives relationship between the
binary number and gray number.

The design of the 3-bit binary-to-gray code converter is discussed here. As eight
entries of the binary and gray codes, let us use the three-variable K-map to deduce
the equations for g2_out, g1_out, g0_out.

As a combinational logic, g2_out, g1_out and g0_out is function of the b2_in,
b1_in and b0_in.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Design Techniques and Exercises,
https://doi.org/10.1007/978-981-16-5955-3_3

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5955-3_3&domain=pdf
https://doi.org/10.1007/978-981-16-5955-3_3

44 3 Combinational Design Resources

Table 3.1 3-bit binary and
gray code

3-bit binary code 3-bit gray code

000 000

001 001

010 011

011 010

100 110

101 111

110 101

111 100

1. Due to group of four 1’s, the logic expression using the K-map for g2_out
(Fig. 3.1) is

g2_out = b2_in

2. Let us group the terms as shown in the K-map (Fig. 3.2). The logic expression
is

g1_out = b2_in. b1_in + b1_in.b2_in

g1_out = b2_in ⊕ b1_in

3. Let us group the terms as shown in the K-map (Fig. 3.3). The logic expression
is

Fig. 3.1 K-map for g2_out

Fig. 3.2 K-map for g1_out

3.1 Code Converters 45

Fig. 3.3 K-map for g0_out

Fig. 3.4 3-bit binary-to-gray code converter

g0_out = b1_in.b0_in + b0_in.b1_in

g0_out = b1_in ⊕ b0_in

So to implement the 3-bit binary-to-gray code converter we need to have the
2-XOR gates. The design of the 3-bit binary-to-gray code converter is shown in
Fig. 3.4.

3.1.2 3-Bit Gray-to-Binary Code Converter

The 3-bit gray-to-binary code converter truth-table (Table 3.2) describes the relation-
ship between the 3-bit gray code (g2_in, g1_in and g0_in) and binary code (b2_out,
b1_out, b0_out).

The design of the 3-bit gray-to-binary code converter is discussed here. As eight
entries of the gray and binary code, let us use the three-variable K-map to deduce
the equations for b2_out, b1_out, b0_out.

As a combinational logic g2_out, g1_out and g0_out is function of the b2_in,
b1_in and b0_in.

1. Due to group of four 1’s, the logic expression using the K-map for b2_out
(Fig. 3.5) is

46 3 Combinational Design Resources

Table 3.2 3-bit gray and
binary codes

3-bit gray code 3-bit binary code

000 000

001 001

011 010

010 011

110 100

111 101

101 110

100 111

Fig. 3.5 K-map for the
b2_out

b2_out = g2_in

2. Let us group the terms as shown in the K-map (Fig. 3.6). The logic expression
is

b1_out = g2_in.g1_in + g1_in.g2_in

b1_out = g2_in ⊕ g1_in

3. Let us group the terms as shown in the K-map (Fig. 3.7). The logic expression
is

b0_out = g2_in.g1_in.g0_in + g2_in.g0_in.g1_in

+ g2_in.g1_in.g0_in + g2_in.g1_in.g0_in

Fig. 3.6 K-map for the
b1_out

3.1 Code Converters 47

Fig. 3.7 K-map for the
b0_out

Fig. 3.8 3-bit gray-to-binary code converter

b0_out = g2_in.
(
g1_in.g0_in + g0_in.g1_in

)

+ g2_in.
(
g1_in.g0_in + g1_in.g0_in

)

b0_out = g2_in ⊕ g1_in ⊕ g0_in

So, to implement the 3-bit gray-to-binary code converter, we need to have the
2-XOR gates. The design of the 3-bit binary-to-gray code converter is shown in
Fig. 3.8.

In the VLSI design context, the following are use of the code converters

1. The binary-to-gray code converters are used in multiple clock domain
designs.

2. The gray pointers and gray counters are used in the multiple clock domain
designs as in the two successive gray codes, only one bit changes.

3. If gray values are passed from one of the clock domain to another clock
domain, then to get the equivalent binary value, the gray-to-binary code
converters are useful.

48 3 Combinational Design Resources

3.2 Arithmetic Resources

We use the arithmetic resources such as adders and subtractors to perform the arith-
metic operations. Multiplication can be successive addition, and division is shift and
subtract. To design the arithmetic and logic unit, we can think of using the adders and
subtractors with other combinational elements such as logic gates and multiplexers.

This section discusses the arithmetic resources and their role in the digital design.

3.2.1 Half-Adder

As most of us are familiar with the basic resource to perform the addition, the
resource is half-adder. It performs the addition of the a_in, b_in to generate the result
as sum_out, carry_out. The truth table of the half-adder is shown in Table 3.3.

Now let us use the truth table to get the Boolean function for the sum_out and
carry_out.

sum_out(a_in, b_in) =
∑

m(1, 2)

TheK-map of the sum_out denotes the entries for the Boolean function and shown
in Fig. 3.9.

The Boolean equation is derived from the number of 1’s which are circled in the
K-map.

Table 3.3 Half-adder
truth-table

a_in b_in sum_out carry_out

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Fig. 3.9 K-map for the
sum_out

3.2 Arithmetic Resources 49

Fig. 3.10 K-map for the
carry_out

Fig. 3.11 Half-adder using logic gates

sum_out = a_in . b_in + b_in . a_in

sum_out = a_in ⊕ b_in

The K-map of the carry_out denotes the entries for the Boolean function and
shown in Fig. 3.10.

The Boolean equation is derived from the number of 1’s which are circled in the
K-map.

carry_out (a_in, b_in) =
∑

m (3)

carry_out = a_in . b_in

The design of the half-adder is shown in Fig. 3.11.

3.2.2 Half-Subtractor

As name indicates, the half-subtractor is used to perform the subtraction of a_in,
b_in, and it generates the output as diff_out, borrow_out. The truth table of the
half-subtractor is shown in Table 3.4.

50 3 Combinational Design Resources

Table 3.4 Half-subtractor
truth-table

a_in b_in diff_out borrow_out

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

Now let us use the truth table to get the Boolean function for the diff_out and
borrow_out.

diff_out(a_in, b_in) =
∑

m (1, 2)

The K-map of the diff_out denotes the entries for the Boolean function and shown
in Fig. 3.12.

The Boolean equation is derived from the number of 1’s which are circled in the
K-map.

diff_out = a_in . b_in + b_in . a_in

diff_out = a_in ⊕ b_in

The K-map of the borrow_out denotes the entries for the Boolean function and
shown in Fig. 3.13.

The Boolean equation is derived from the number of 1’s which are circled in the
K-map.

borrow_out (a_in, b_in) =
∑

m (1)

borrow_out = a_in . b_in

The design of the half-subtractor is shown in Fig. 3.14.

Fig. 3.12 K-map for the
diff_out

3.2 Arithmetic Resources 51

Fig. 3.13 K-map for the
borrow_out

Fig. 3.14 Half-subtractor using logic gates

In the VLSI design context, the following are few of the important points while
using adders.

1. The adders are used to perform the additions, and designers should avoid
the use of the cascade adders.

2. The subtraction is 2’ complement addition, and to perform the addition
and subtraction, try to use the common resources.

3. Adders consume more area as compared to multiplexers; so use less
number of adders and more number of multiplexers.

3.2.3 Full-Adder

The full-adder uses the inputs a_in, b_in and carry input c_in and performs the
addition and generates the result as sum_out, carry_out (Table 3.5).

The resources needed to implement the full-adder.

1. Half-adder
2. OR gate.

52 3 Combinational Design Resources

Table 3.5 Truth-table of full-adder

a_in b_in c_in sum_out carry_out

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Fig. 3.15 Full-adder using half-adders and OR gate

The full-adder can be designed using the half-adders connected in cascade. To
generate the carry output, use the OR gate. The design of the full-adder using the
two half-adders and OR gate is shown in Fig. 3.15.

3.3 Use of Arithmetic Resources in the Design

The design scenarios while using the arithmetic resources are discussed in this
section. Consider the design requirement to perform the addition of a_in, b_in, c_in,
d_in.

y_out = a_in + b_in + c_in + d_in

We can think of the group of two inputs, and then, we can perform the addition

y_out = (a_in + b_in) + (c_in + d_in)

This strategy will use the three adders. The design is shown in Fig. 3.16. As shown
if each adder has 1 ns delay, then the overall delay to get the result is 2 ns.

3.4 Design Using Arithmetic Resources and Control Elements 53

Fig. 3.16 Design using adders

3.4 Design Using Arithmetic Resources and Control
Elements

The design scenarios while using the arithmetic resources and multiplexers are
discussed in this. Consider the design scenario that for the control input logic 1,
the operation to be performed is ADD (a_in, b_in) and for control input logic 0 the
design should perform the operation ADD (c_in, d_in).

Now what should be our strategy to design the arithmetic operation circuit?
We can use the adder as resource and multiplexer to select the operation a_in +

b_in, c_in + d_in depending on the status of the control input. The operations are
documented in Table 3.6.

The design for the arithmetic operation is shown in Fig. 3.17. As shown at the
input side, the two-adders are used and they perform the operation on (a_in, b_in),

Table 3.6 Design for
arithmetic operation

Control_in Operation Description

0 ADD (c_in, d_in) Perform the addition of c_in,
d_in

1 ADD (a_in, b_in) Perform the addition of a_in,
b_in

Fig. 3.17 Design using adders and multiplexers

54 3 Combinational Design Resources

Table 3.7 Entries with the goal of resource sharing

Control_in Operation Description

0 ADD (c_in, d_in) IO of each 2:1 mux is c_in, d_in respectively

1 ADD (a_in, b_in) I1 of each 2:1 mux is a_in, b_in respectively

(c_in, d_in), respectively. To select the result_out and carry_out from one of the
operations, the multiplexers are used at the output side.

The design has more area as it needs the two-adders and two-multiplexers. Refer
the optimization goals and strategy section to optimize the arithmetic resources using
the resource sharing concept.

The arithmetic resources for the processor-based designs and the design optimiza-
tion strategies are discussed in the following section.

3.5 Optimization Goals

For the design of the arithmetic or logic circuits, the main optimization goals are:

1. Optimization for the area
2. Optimization for the speed.

Consider the design which is discussed in Sect. 3.4, and we need to optimize the
design. We can use the common resource as adder at output and the tree of mux at
the input side. The modified operations to have resource sharing are shown in Table
3.7.

As shown if we use the IO input of each input multiplexer as c_in, d_in
respectively, then for the control_in = 0 the adder performs the operation c_in +
d_in.

For the I1 input of each input multiplexer as a_in, b_in respectively, then for the
control_in = 1, the adder performs the operation a_in + b_in.

The design is shown in Fig. 3.18. As shown the common resource single adder
is used, and this technique improves the speed and the area for the design. Refer
Chap. 4 for the ALU design and optimization of the data and control paths.

3.6 Processor Logic and Need of Arithmetic Resources

As we know that in the system design, we need to have the processor, memories and
IO devices. As the digital designer, we should have the strong understanding of the
processor functional blocks. If we consider the 16-bit processor, then we can use the
arithmetic resources to perform the operations.

1. 16-bit addition

3.6 Processor Logic and Need of Arithmetic Resources 55

Fig. 3.18 Use of the common resources at output

2. 16-bit subtraction
3. 16-bit multiplication
4. Combinational shifting.

To design these operations, our goal is to use the minimum number of the arith-
metic resources to have the minimum area and to have less propagation delay. For
more details about the architecture design and other advanced design concepts, refer
Chaps. 10–12.

3.7 Exercises

The exercises on the use of the arithmetic resources and optimization are discussed
in this section. Even the exercises are useful to understand the speed and area for the
design.

3.7.1 Exercise 1: Cascade Versus Parallel Logic

For the following design (Fig. 3.19), find the propagation delay. Consider propagation
delay of each gate is 1 ns. Design the parallel logic to improve the delay of the design.

Fig. 3.19 Cascade logic

56 3 Combinational Design Resources

Fig. 3.20 Parallel logic

Solution: Each AND gate has delay of 1 ns. So, for the Boolean equation y_out =
(a_in. b_in. c_in. d_in) the propagation delay is 3 ns. We can use the parallel logic
by grouping the terms. The strategy is shown below

y_out = (a_in . b_in) . (c_in . d_in)

The design shown in Fig. 3.20 uses three-AND gates, but as at input side the AND
gates are used in parallel; the propagation delay is 2 * tpff = 2 * 1 ns = 2 ns.

3.7.2 Exercise 2: Delay of the Design

For the following design (Fig. 3.21), find the propagation delay. Consider propagation
delay of each adder is 1 ns.

Solution: Each adder has delay of 1 ns. So, for the Boolean equation y_out= (a_in+
b_in+ c_in+ d_in) the resources used are three adders. Each adder has propagation
delay of 1 ns, so the overall propagation delay is 3 * 1 ns = 3 ns.

Fig. 3.21 Adder in the cascade stages

3.7 Exercises 57

Fig. 3.22 Odd number of NOT gates in cascade

3.7.3 Exercise 3: Speed

For the following design (Fig. 3.22), find the propagation delay. Consider propagation
delay of each gate is 1 ns.

Solution: Each gate has delay of 1 ns. So, for the logic shown in the figure, NOT
gate delay is 1 ns and buffer (Even NOT in cascade) delay is also 1 ns. So the overall
propagation delay is 2 * 1 ns = 2 ns.

3.7.4 Exercise 4: Design to perform the Addition
and Subtraction

Design the logic using the minimum resources to perform the following operation
shown in (Table 3.8).

Solution: As described in the table the control_in = 0 the operation is addition of
a_in, b_in and for control_in = 1 the operation is subtraction of a_in, b_in. We can
use resources as

1. Adder
2. Subtractor
3. Multiplexers for result_out and carry or borrow out.

The design is shown in Fig. 3.23.

Table 3.8 Adder–subtractor Control_in Operation Description

0 ADD (a_in, b_in) Perform the subtraction of
a_in, b_in

1 SUB (a_in, b_in) Perform the addition of
a_in, b_in

58 3 Combinational Design Resources

Fig. 3.23 Addition and subtraction without resource optimization

3.7.5 Exercise 4: Design with the Goal to Use Resource
Sharing

Design the logic using the resource optimization to perform the following operation
shown in (Table 3.9).

Solution: As the goal is to use the common resources, we can think of the use of
the resource sharing. That is perform the subtraction using 2’s complement addition.
The operations are documented in Table 3.10.

We can use the single adder, and we can control the input of adder depending on
the control input. The entries are shown in Table 3.11.

Table 3.9 Addition and
subtraction table

Control_in Operation Description

1 SUB (a_in, b_in) Perform the subtraction of
a_in, b_in

0 ADD (a_in, b_in) Perform the addition of
a_in, b_in

Table 3.10 Resource sharing
strategy

Control_in Operation Description

1 SUB (a_in, b_in) a_in-b_in = a_in + b_in+1

0 ADD (a_in, b_in) a_in + b_in = a_in + b_in + 0

Table 3.11 Adder inputs
depending on the control
input status

Control_in x y

1 a_in b_in

0 a_in b_in

3.7 Exercises 59

Fig. 3.24 Addition and subtraction using minimum resources

The design which uses the adder as common resource and the combinational logic
using 2:1 mux is shown in Fig. 3.24. The design has better area and better speed,
power as only one operation is performed at a time.

3.8 Important Takeaways

Following are few of the important points to conclude this chapter.

1. In the two successive gray codes, only one bit changes, and they are used to
improve the overall power for the design.

2. Binary-to-gray and gray-to-binary codes are designed using the XOR gates.
3. The adders are used to perform the addition and subtraction. For the subtraction,

we can use the 2’s complement addition.
4. Cascade logic increases the propagation delay.
5. Parallel logic is useful to reduce the overall propagation delay for the design.
6. The resource sharing is useful to improve the design performance.

Chapter 4
Case Study: ALU Design

The design for ALU should use the less arithmetic resources and
should have better data and control path design.

In this chapter, let us try to use the combinational resources and arithmetic elements
to design the digital circuit. The objective is to optimize the design to have the least
area and maximum speed. The chapter discusses about the basics of the instruction
processing and the optimization for the area and speed.

4.1 Design Specifications and Their Role

Consider the design of the arithmetic operations that is, addition and subtraction.
The processing unit performs these two operations depending on the control input
status. When control_in is logic 0, it performs the addition operation, and when the
control_in input is logic 1, it performs the subtraction operation.

What should be out thought process?

We should think with reference to the given functional specifications. The few
important points are documented below

1. How many number of inputs and outputs?
2. What is the size of the data inputs and outputs?
3. What are the different operations and what elements we can use?
4. Can we share the common resources?

By considering all the above points, we can design the logic. For better area, these
two operations are documented in Table 4.1.

Now, the resource required for the addition is full-adder and for the subtraction is
full-subtractor. To optimize for the logic, we can perform the subtraction using 2’s
complement addition.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Design Techniques and Exercises,
https://doi.org/10.1007/978-981-16-5955-3_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5955-3_4&domain=pdf
https://doi.org/10.1007/978-981-16-5955-3_4

62 4 Case Study: ALU Design

Table 4.1
Addition–subtraction
operations

Control input Operation Description

0 ADD(a_in, b_in) Addition of the a_in, b_in

1 SUB(a_in, b_in) Subtraction of a_in, b_in

Fig. 4.1 Addition and subtraction

ADD(a_in, b_in) = a_in + b_in + 0;
SUB (a_in, b_in) = a_in−b_in = a_in+ ∼ b_in + 1;
Where (∼) is pronounced as NOT.

Now to select from one of the operations, we can think of using the multiplexer
logic. The selection input of multiplexer is controlled by control_in. For control_in
= 0, it performs the operation addition, and for control_in = 1, it performs operation
subtraction.

The design is shown in Fig. 4.1 and has resources as adders, multiplexers. Here,
the issue is the logic is not efficient as both the addition and subtraction are performed
at a time, and using the tree of mux at the output, one of the operation outputs is
selected. So, the issue is more area, more power and less speed due to cascade stages.

Even the design does not have the better data and control path optimization. So,
let us think about logic optimization to have better area, speed and power.

4.2 What Is ALU?

The ALU is an arithmetic logic unit and is used to perform the various arithmetic
and logic operations. The design of ALU should be using minimum logic gates, and
the goal should be execution of only one operation at a time. The better use of the
arithmetic and logic resources can yield into the better ALU design. The following
section focuses on the ALU design to have better area and speed (Fig. 4.2).

Strategies for design of the ALU

1. Understand the functional specifications of arithmetic and logic unit.
2. Depending on the number of instructions or operations, find out the opcode

required, that is, control input of ALU.

4.2 What Is ALU? 63

Fig. 4.2 ALU block
diagram

3. Design the separate logic for the arithmetic unit.
4. Design the separate logic for the logic unit.
5. Optimize for the area and design the arithmetic and logic unit.
6. Design the ALU to have the least area.

The following section discusses about the design of the arithmetic, logic unit,
ALU and their are optimization

4.3 Arithmetic Unit Design

Let us consider the following four operations for which we need to design the
arithmetic unit.

• Transfer a_in
• ADD (a_in, b_in)
• SUB (a_in, b_in, 1)
• DECREMENT (a_in).

What we will do is that, we will try to understand about the number of inputs
and outputs. For 1-bit arithmetic unit, we need to have 1-bit a_in, b_in, and as four
operations are to be performed, we should have 2-bit opcode that is, 2-bit control
input. The number of outputs are 2-bit, 1-bit for the result and 1-bit for carry output.

Similarly, for 8-bit arithmetic unit, we need to have 8-bit a_in and b_in, and as four
operations are to be performed, we should have 2-bit opcode, that is, 2-bit control
input. The number of outputs are 9-bit, 8-bit for the result and 1-bit for carry output.

4.3.1 Resources Required

Let us discuss about the design strategy and resources required. To perform the
arithmetic operations, we can use the adders and subtractors as resources in the data

64 4 Case Study: ALU Design

Fig. 4.3 Strategy to design the arithmetic unit

path. To select the result of one of the operations depending on the status of the
opcode/control_input, we can use the 4:1 MUX. The strategy is shown in Fig. 4.3.

The main resources are

• Adders
• Subtractors
• Multiplexers.

4.3.2 How to Start Design of ALU?

Now let us document these four operationswith their respective opcode that is control
input and start analyzing the suitable arithmetic resources. Table 4.2 describes these
four operations with the suitable resource.

Table 4.2 Arithmetic instruction description

Control input Operation Description Resource in data path

00 Transfer a_in Transfer the a_in to output None

01 ADD (a_in, b_in) Addition of the a_in, b_in Adder

10 SUB (a_in, b_in, 1) Subtraction of a_in, b_in
with borrow 1

Full-subtractor or cascade
subtractor

11 Decrement (a_in, 1) Decrement the a_in by 1 Subtractor

4.3 Arithmetic Unit Design 65

Fig. 4.4 Arithmetic design without resource optimization

4.3.3 How to Design the Logic

FromTable 4.2, it is clear that we need to have the arithmetic resources at the inputs of
multiplexer. So, now use the 4:1 mux at output and design the logic, use the suitable
resource with desired inputs at respective inputs of 4:1 mux and use the control_in[1]
and control_in[0] as select inputs of 4:1 mux. The design of arithmetic unit is shown
in Fig. 4.4.

The following are the issues in the design of the arithmetic unit:

1. All the operations are executed concurrently, but the mux at the
output decides to select the result of only one operation depending on
the status of control inputs.

2. Use of the many arithmetic resources without the resource optimization.
3. No proper data and control path optimization.

4.3.4 Exercise 1: Optimization of the Arithmetic Unit

Optimize the design shown in Fig. 4.4: to get the lesser area using minimum
number of resources?

Solution: In the previous section, we have designed the arithmetic unit and under-
stood about the issues in the design. Now, let us try to optimize the arithmetic unit to
have less resources and better data and control path optimization. What we can do
is that, we can understand the role of each operation and the resource required and
let us finalize the strategy to share the common resources.

The four operations are described in Table 4.3.
As described in Table 4.3, if we use common arithmetic resource as full-adder

then for all the operations, one of the input of adder is a_in and another input varies
depending on the nature of the instruction. Table 4.4 describes these inputs and
outputs depending on the arithmetic operations.

66 4 Case Study: ALU Design

Table 4.3 Arithmetic unit operation entries

Control input Operation Description

00 Transfer a_in a_in + 0 + 0

01 ADD(a_in, b_in) a_in + b_in + 0

10 SUB(a_in, b_in, 1) a_in − b_in − 1 = a_in + ~ b_in + 1–1 = a_in + ~ b_in

11 Decrement (a_in, 1) a_in − 1 = a_in + all 1’s

Table 4.4 Inputs and outputs
of adder

Control input X y

00 a_in 0

01 a_in b_in

10 a_in ~ b_in

11 a_in 1

Fig. 4.5 Arithmetic design with resource optimization

So, to improve the area of design, let us use the common resource full-adder at
output and let us push the resource 4:1 mux at the input side with the desired input
depending on the status of control_in. The arithmetic unit optimized design is shown
in Fig. 4.5.

4.3.5 Logic Unit Design

In the previous section, we have discussed about the arithmetic unit design. Even we
have discussed about the design optimization using the resource sharing technique.
Now let us design the logic unit to perform the OR, NOT, XOR, AND operations.
What we need to keep in our mind is that, we should use the minimum resources for
optimized logic unit.

Let us consider the following four operations for which we need to design the
logic logic.

• OR (a_in, b_in)
• XOR (a_in, b_in)

4.3 Arithmetic Unit Design 67

Fig. 4.6 Strategy to design logic unit

• AND (a_in, b_in)
• NOT (a_in).

What we will do is that, we will try to understand about the number of inputs and
outputs. For n-bit logic unit, we need to have n-bit a_in, b_in and as four operations
are to be performed we should have 2-bit opcode, that is, 2-bit control input. The
number of outputs is n-bit.

That is for 1-bit logic unit, we need to have 1-bit a_in and b_in, and as four
operations are to be performed, we should have 2-bit opcode, that is, 2-bit control
input. The number of outputs is 1-bit.

4.3.6 Resources Required

Let us discuss about the design strategy and resources required. To perform the logic
operations, we can use the logic gates as resources in the data path. To select the
result of one of the operations depending on the status of the opcode/control_input,
we can use the 4:1 MUX. The strategy is shown in Fig. 4.6.

The main resources are

• Logic gates: OR, XOR, AND, NOT
• Multiplexer: 4:1 mux.

4.3.7 How to Design the Logic Unit to have Better Area?

FromTable 4.5, it is clear that we need to have the logic gate resources at the inputs of
multiplexer. So, now use the 4: 1 mux at output and design the logic, use the suitable

68 4 Case Study: ALU Design

Table 4.5 Logic instructions Control input Operation Description

00 OR (a_in, b_in) Bit-wise OR of a_in, b_in

01 XOR (a_in, b_in) Bit-wise XOR of a_in, b_in

10 AND (a_in, b_in) Bit-wise AND of a_in, b_in

11 NOT (a_in) Bit-wise NOT of a_in

Fig. 4.7 Logic unit design

resource with desired inputs at respective inputs of 4:1 mux and use the control_in[1]
and control_in[0] as select inputs of 4:1 mux. The logic unit is shown in the Fig. 4.7.

4.4 ALU Design

Now, let us design the ALU to perform the following eight operations. We can use
the arithmetic elements as adders, subtractors and logic gates as the resources.

• Transfer a_in
• ADD (a_in, b_in)
• SUB (a_in, b_in, 1)
• DECREMENT (a_in)
• OR (a_in, b_in)
• XOR (a_in, b_in)
• AND (a_in, b_in)
• NOT (a_in).

4.4 ALU Design 69

Fig. 4.8 Strategy to design ALU

4.4.1 Resource Requirement and How to Design Efficient
ALU?

To perform the arithmetic operations we need to have the adders, subtractors, 2:1
mux and 4:1 multiplexers as resources. To perform the logical operations we can use
the OR, AND, XOR, NOT gate and 4:1 mux as resources.

Let us have the separate data path for arithmetic operations and separate control
path for the logical operations. As 8 operations need to be performed, let us
have control_in as 3-bit opcode. MSB of opcode indicates the operation. That is,
control_in[2] = 0 indicates the arithmetic operation and control_in[2] = 1 indicates
the logic operation. The strategy is described in Fig. 4.8.

4.4.2 ALU Design to have Better Area

Now to design the efficientALU,whatwe can do is thatwe can tabulate the operations
as shown in Table 4.6.

First four operations are arithmetic operations, andnext four are logical operations.
As discussed in the previous sections, we can use the mux at output and select

either logic or arithmetic operation depending on the MSB of the control_input. The
design of ALU which is arithmetic plus logic unit is shown in Fig. 4.9.

70 4 Case Study: ALU Design

Table 4.6 ALU operations Control input Operation Description

000 Transfer a_in Transfer the a_in to
output

001 ADD (a_in, b_in) Addition of the a_in,
b_in

010 SUB (a_in, b_in, 1) Subtraction of a_in,
b_in with borrow 1

011 Decrement (a_in, 1) Decrement the a_in
by 1

100 OR (a_in, b_in) Bit-wise OR of a_in,
b_in

101 XOR (a_in, b_in) Bit-wise XOR of
a_in, b_in

110 AND (a_in, b_in) Bit-wise AND of
a_in, b_in

111 NOT (a_in) Bit-wise NOT of a_in

Fig. 4.9 Arithmetic and logic unit design

The following are the issues in the design of the ALU:

1. All the arithmetic and logical operations are executed concurrently, but
the mux decides to select the output of only one operation depending on
the status of control inputs.

2. Use of the many arithmetic resources without the resource optimization
and the multiplexer chain at the output side.

3. No proper data and control path optimization.

4.4 ALU Design 71

Table 4.7 ALU operations
with the goal of optimization

Control input Operation X Y

000 Transfer a_in a_in 0

001 ADD (a_in, b_in) a_in b_in

010 SUB (a_in, b_in, 1) a_in ~ b_in

011 Decrement (a_in, 1) a_in 1

100 OR (a_in, b_in) a_in OR b_in 0

101 XOR (a_in, b_in) a_in XOR b_in 0

110 AND (a_in, b_in) a_in AND b_in 0

111 NOT (a_in) NOT of a_in 0

4.4.3 Exercise 2: Optimization of ALU

Optimize the design shown in Fig. 4.9: to get the lesser area using minimum
number of resources?

Solution: Now as discussed in the arithmetic unit optimization, let us optimize the
arithmetic unit using common resource as adder and multiplexer at input side. To
avoid the tree of multiplexers at the output side, let us tabulate the operations shown
in Table 4.7.

We are using the adder for the arithmetic and logical operations. That means for
transfer a_in, the adder will receive a_in from one of the 8:1 mux and logic 0 from
other mux. To perform the XOR, the upper mux gives XOR gate output to adder,
and another input (logic 0) of adder is from the lower mux. For the logical operation,
result_out is single bit, and for arithmetic operation, the result_out is 2-bit. MSB
of result_out indicates carry for arithmetic operation. The ALU design is shown in
Fig. 4.10.

4.5 Few Important Design Guidelines

If we consider the VLSI design and use of the arithmetic resources to implement
the ALU having more than eight instructions, then the following guidelines we can
think about!

1. Larger combinational elements in the data path and hence maximum delay. If
we have registered inputs and registered output boundaries, then we need to
improve the data path by minimizing the combinational area. The techniques
like resource sharing are useful in the design.

2. For the fixed and floating point operations, we can think about use of the parallel
processing engine to improve the speed and area of the design.

3. To design the logic unit, we can think of use of the arithmetic resources like
adders.

72 4 Case Study: ALU Design

Fig. 4.10 Optimization for the ALU

4. We can design the multipliers and dividers which has low power and lesser area.
5. Instead of the cascade logic, we can think about the parallel logic and we can

include the parallelism wherever is required.
6. Have the better strategies to design the data and control path logic.

4.6 Important Takeaways

The following are few of the important points to conclude this chapter.

1. The cascade adders consumes more area, and they have maximum propagation
delays.

2. Use the adder as resource to perform both the addition and subtraction.
3. Use the resource sharing technique while designing ALU.
4. Use the common resources at output and try to push the multiplexers at input

side.
5. Have the efficient design by using the data and control path optimization.

Chapter 5
Practical Scenarios and the Design
Techniques

The understanding of the design scenarios and design
techniques used to design the parallel and priority logic are
useful during architecture design.

In the previous few chapters, we have discussed about the various combinational
logic elements and their use in the design. We have even discussed about the various
performance improvement techniques for the design and the exercises to implement
the combinational logic. In this chapter, let us discuss about the parallel versus
cascade, priority logic and their use in the design.

5.1 Parallel Logic

As the name indicates, the parallel logic has parallel inputs and parallel outputs.
But do not get confused with the understanding of the parallel logic. The design
techniques used to design the parallel logic should create the design without any
hierarchy. We can think about the decoders, demultiplexers and encoders or code
converters as parallel logic. The objective of the designer is to have the logic using
minimum number of logic gates to have less propagation delay and less area. The
following section discusses about the combinational elements such as decoderswhich
are useful to select one of the memories or IO devices in the system design.

5.1.1 Decoder 2 to 4

In most of the interfacing applications, we use the decoders to select one of the
memories or IO devices. The goal is to enable the desired chip or logic depending
on the address range and to perform the operation of the data transfer.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Design Techniques and Exercises,
https://doi.org/10.1007/978-981-16-5955-3_5

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5955-3_5&domain=pdf
https://doi.org/10.1007/978-981-16-5955-3_5

74 5 Practical Scenarios and the Design Techniques

Table 5.1 Truth-table of 2:4 decoder

Enable
(en)

s1 s0 y3 y2 y1 y0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

0 X X 0 0 0 0

The 2:4 decoder which has active high enable input(en) and active high
outputs(only one line is active high at a time during enable condition) is described in
Table 5.1. It has select inputs s1 and s0, where s1 is MSB and s0 is LSB. Depending
on the status of the select inputs during en= 1, one of the output lines among the y3
to y0 is active high. When en = 0, all output lines y3, y2, y1, y0 are pulled down to
logic 0.

How to design the decoding logic?

To design the decoder, let us deduce the product term for every combination of the
inputs and outputs as shown in Table 5.1.

For en = 1, s1 = 0, s0 = 0, the product term is en . s1 . s0

For en = 1, s1 = 0, s0 = 1, the product term is en . s1 . s0

For en = 1, s1 = 1, s0 = 0, the product term is en . s1 . s0

For en = 1, s1 = 1, s0 = 1, the product term is en . s1 . s0

For en = 0, all the outputs are logic 0 as decoder is disabled. So, the design of 2:4
decoder has Boolean expressions for outputs as shown below.

y0 = en . s1 . s0

y1 = en . s1 . s0

y2 = en . s1 . s0

y3 = en . s1 . s0

The decoder design using minimum number of AND and NOT gates is shown in
Fig. 5.1.

The timing waveform for the various combinations of en, s1, s0 is shown in
Fig. 5.2. As shown, one of the output of decoder is high during en = 1 condition.
For en = 0, all decoder outputs are logic 0.

5.2 Encoder 75

Fig. 5.1 2:4 decoder

Fig. 5.2 2:4 decoder waveform

5.2 Encoder

As discussed in the previous section, the decoders are used to generate one of the
outputs as active at a time during enable condition. The encoders are reverse of the
decoder and used to encode the data inputs. For example, for i0 = 1, we need y1 =
0, y0 = 0, and for i3 = 1, we need y1 = 1 and y0 = 1; then, we can think of using
4:2 encoder.

The relationship between the inputs and outputs of encoder is given by n= log2m
where m = the number of inputs and n is the number of outputs. For m = 4, the
output lines are n= log24= 2, that is, y1 and y0. Table 5.2 describes the relationship
between inputs i3, i2, i1, i0 and outputs y1, y0.

Table 5.2 Truth-table of 4:2 encoder

i3 i2 i1 i0 y1 y0

1 0 0 0 1 1

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 0

76 5 Practical Scenarios and the Design Techniques

How to design the 4:2 encoder?

To design the encoder let us use the strategy to input the 16 entries. As having four
inputs, and one of the inputs is active high at a time which is our assumption due to
that we can consider output for other 12 conditions as x(pronounced as don’t care).
Now why? As we know that the number of input combinations for the 4 inputs are
24 = 16. But in the truth table of 4:2 encoder, only the outputs are specified for the
inputs 1000, 0100, 0010, 0001, so we need to specify outputs as x for remaining
input combinations.

So, to deduce the expression for y1 and y0, let us use the 4-varibale K-map
(Figs. 5.3 and 5.4).

From the k-map entries, we can get two terms as we have group of eight 1’s y1 = i3
+ i2, that is, OR of (i3, i2).

Fig. 5.3 K-map for y1

Fig. 5.4 K-map for y0

5.2 Encoder 77

Fig. 5.5 Encoder and the
issue of dangling input

From the k-map entries, we can get two terms as we have group of eight 1’s y0 = i3
+ i1, that is, OR of (i3, i1).

The data input i0 is not connected, and hence, the design has the issues. The logic
realized for the 4:2 encoder is shown in Fig. 5.5.

Practical issues in the 4:2 encoder design are listed below:

a. It is assumed that one of the inputs is logic 1, but practically more than
one input can be logic 1 at a time.

b. For all the inputs as logic 0, it is not specified what should be output.
Output should be invalid.

5.3 Encoder with Invalid Output Detection Logic

As discussed in the above section, we have not made any provision to report the
invalid outputs during the design of the encoder if all inputs are logic 0. The encoder
should generate invalid output flag as logic 1 when all inputs are logic 0. Table 5.3
describes the 4:2 encoder which can be used in the practical system design.

So, for the invalid output logic, we can have the NOR gate, that is,

invalid_output = i3 . i2 . i1 . i0

invalid_output = i3+ i2+ i1+ i0

When all the inputs are logic 0, an invalid_output flag is active high (Figs. 5.6 and
5.7).

Thus, y1 = i3 + i2, that is, OR of (i3, i2).

Thus, y0 = i3 + i1, that is, OR of (i3, i1).

78 5 Practical Scenarios and the Design Techniques

Table 5.3 Truth-table of 4:2 practical encoder

Fig. 5.6 K-map for y1 of
encoder

Fig. 5.7 K-map for y0 of
encoder

5.3 Encoder with Invalid Output Detection Logic 79

Fig. 5.8 Encoder with the invalid output detection

The logic design of 4:2 encoder having inputs i3, i2, i1, i0 and outputs as y1, y0
and the invalid_output flag are shown in Fig. 5.8.

Still the encoder design shown in Fig. 5.8 has issues, as we have assumed that only
one input is 1 at a time, and hence, we need to design the priority encoder design.
During the exercises, let us use the understanding of the decoders and encoders and let
us try to implement the designs which can be used in few system design applications.

5.4 Exercises

Using the understanding of the decoders, encoders and basic concepts of priority
encoder, let us complete the exercises.

5.4.1 Exercise 1: Design of Decoder Having Active-Low
Output

Design the 2:4 decoder which has active-low outputs and active-high enable input.

Solution: To design the decoder, let us deduce the product term for every combination
of the inputs and outputs shown in Table 5.4.

Table 5.4 Truth-table of 2:4 decoder having active-low output

Enable s1 s0 y3 y2 y1 y0

1 0 0 1 1 1 0

1 0 1 1 1 0 1

1 1 0 1 0 1 1

1 1 1 0 1 1 1

0 X X 1 1 1 1

80 5 Practical Scenarios and the Design Techniques

Fig. 5.9 2:4 decoder having active-low outputs

For en = 1, s1 = 0, s0 = 0, the product term is en . s1 . s0

For en = 1, s1 = 0, s0 = 1, the product term is en . s1 . s0

For en = 1, s1 = 1, s0 = 0, the product term is en . s1 . s0

For en = 1, s1 = 1, s0 = 1, the product term is en . s1 . s0
For en= 0, all the outputs are logic 1 as decoder is disabled. So, the design of 2:4

decoder has Boolean expressions for outputs

y0 = en.s1 . s0

y1 = en.s1 . s0

y2 = en.s1 . s0

y3 = en.s1 .s0

The decoder design using minimum number of NAND and other logic gates is
shown in Fig. 5.9.

5.4.2 Exercise 2: Design the Function Using Decoder

Implement the Boolean function

1. f 1(s1, s0) = ∑
m(1, 2)

2. f 1(s1, s0) = ∑
m(0, 3)

using the decoder having active-high outputs and active-high enable input. Use
minimum logic gates.

5.4 Exercises 81

Fig. 5.10 Logic function realization using decoder and logic gates

Solution: Let us use the understanding of the decoder. During en = 1, the decoder
has only one output as active high. When en = 0, the decoder all outputs are logic 0
and decoder is disabled.

Now, to realize the function f 1(s1, s0)= ∑
m(1, 2), use the OR gate at output as

function is SOP. The inputs of OR gate are y1 and y2. If one of the outputs y1 or y2
is logic 1, then f 1 is logic 1.

To realize the function f 2(s1, s0) = ∑
m(0, 3), use the OR gate at output as

function is SOP. The inputs of OR gate are y0 and y3. If one of the outputs y0 or y3
is logic 1, then f 2 is logic 1.

The logic realized using the decoder and the OR gates is shown in Fig. 5.10.

5.4.3 Exercise 3: Design Using Decoders

Implement the 2-input XOR and 2-input XNORusing the decoder having active-high
outputs and active-high enable input and use minimum logic gates.

Solution: Let us use the understanding of the decoder. During en = 1, the decoder
has only one output as active high. When en = 0, the decoder all outputs are logic 0
and decoder is disabled.

Now to realize the logic gate 2-input XOR, let us have the Boolean function f 1(s1,
s0)= ∑

m(1, 2) use the OR gate at output as function is SOP. The inputs of OR gate
are y1 and y2. If one of the outputs y1 or y2 is logic 1, then f 1 is logic 1.

To realize the logic gate 2-input XNOR, let us have the Boolean function f 2(s1,
s0) = ∑

m(0, 3) and use the OR gate at output as function is SOP. The inputs of OR
gate are y0 and y3. If one of the outputs y0 or y3 is logic 1, then f 2 is logic 1.

82 5 Practical Scenarios and the Design Techniques

Fig. 5.11 XOR and XNOR logic function realization using decoder and logic gates

Table 5.5 2-input XOR, XNOR logic using decoder

Enable s1 s0 f1 f2

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1

0 X X 0 0

The logic realized using the decoder and the OR gates is shown in Fig. 5.11 (Table
5.5).

5.4.4 Exercise 4: Design Using Decoder and NAND Gates

Implement the 2-input XOR and 2-input XNOR using the decoder having active-low
outputs and active-high enable input and use minimum logic gates.

Solution: Let us use the understanding of the decoder. During en = 1, the decoder
has only one output as active low. When en = 0, the decoder all outputs are logic 1
and decoder is disabled.

Now to realize the logic gate 2-input XOR, let us have the Boolean function f 1(s1,
s0) = ∑

m(1, 2) and use the NAND gate at output as function is SOP. The inputs of
NAND gate are y1 and y2. If one of the outputs y1 or y2 is logic 0, then f 1 is logic 1.

To realize the logic gate 2-input XNOR, let us have the Boolean function f 2(s1,
s0) = ∑

m(0, 3) and use the NAND gate at output as function is SOP. The inputs of
NAND gate are y0 and y3. If one of the outputs y0 or y3 is logic 0, then f 2 is logic 1.

The logic realized using the decoder and the NAND gates (Bubbled OR) is shown
in Fig. 5.12 (Table 5.6.)

5.4 Exercises 83

Fig. 5.12 Logic function realization using decoder and bubbled OR gates

Table 5.6 Logic function realization using decoder having active-low outputs

Enable s1 s0 f1 f2

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1

0 X X 0 0

5.4.5 Exercise 5: Design Using Decoders

Design the 4:16 decoder using the minimum number of 2:4 decoder. Consider the
decoder has active-high outputs and active-high enable input.

Solution: As 2:4 decoder needs to be used, let us have the truth table (Table 5.7) of
the 4:16 decoder having active-high output during en = 1. For en = 0, the decoder
all outputs are active low.

Now to get the 16 outputs y0 to y15, let us use the four 2:4 decoders. To select
one of the decoders, let us use the 2:4 decoder at input. Table 5.8 gives information
about the selection strategy for one of the output decoders.

The 4:16 decoder design using the minimum number of 2:4 decoders is shown in
Fig. 5.13. As shown, 4:16 decoder is implemented by using five 2:4 decoders.

5.4.6 Exercise 6: Priority Encoder Design

Design the 4:2 priority encoder using minimum number of logic gates. Consider i3
has highest priority and i0 has lowest priority.

Solution: As it is specified that i3 has highest priority and i0 has lowest priority, let
us create the table (Table 5.9) to indicate the relation between the inputs and outputs.

84 5 Practical Scenarios and the Design Techniques

Table 5.7 Truth-table of
4:16 decoder

Enable (en) s3s2s1s0 Decoder outputs (y15–y0)

1 0000 0000_0000_0000_0001

1 0001 0000_0000_0000_0010

1 0010 0000_0000_0000_0100

1 0011 0000_0000_0000_1000

1 0100 0000_0000_0001_0000

1 0101 0000_0000_0010_0000

1 0110 0000_0000_0100_0000

1 0111 0000_0000_1000_0000

1 1000 0000_0001_0000_0000

1 1001 0000_0010_0000_0000

1 1010 0000_0100_0000_0000

1 1011 0000_1000_0000_0000

1 1100 0001_0000_0000_0000

1 1101 0010_0000_0000_0000

1 1110 0100_0000_0000_0000

1 1111 1000_0000_0000_0000

0 XXXX 0000_0000_0000_0000

Table 5.8 Decoder selection
strategy

Enable (en) s3 s2 Decoder selected

1 0 0 Decoder #1

1 0 1 Decoder #2

1 1 0 Decoder #3

1 1 1 Decoder #4

0 X X All outputs are zero

Let us use the invalid_output to indicate the output invalid status when all the inputs
i3 to i0 are logic 0.

Now by using the entries specified, let us deduce the expression for the y1 and y0
using 4-varibale K-map.

From the K-map (Fig. 5.14) y1 = i3 + i2, that is, OR of (i3, i2).

Thus, for the K-map entries shown in Fig. 5.15: y0 = i3 +i2 i1.
For the invalid output logic, we can have the NOR gate, that is,

invalid_output = i3 . i2 . i1 . i0

invalid_output = i3+ i2+ i1+ i0

When all inputs are logic 0, an invalid_output is active high (Fig. 5.16).

5.4 Exercises 85

Fig. 5.13 4:16 decoder using 2:4 decoders

Table 5.9 4:2 priority encoder truth-table

i3 i2 i1 i0 y1 y0 Invalid_Output

1 X X X 1 1 0

0 1 X X 1 0 0

0 0 1 X 0 1 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

86 5 Practical Scenarios and the Design Techniques

Fig. 5.14 K-map for the y1
of priority encoder

Fig. 5.15 K-map for the y0
of the priority encoder

Fig. 5.16 4:2 priority encoder

5.5 Important Takeaways 87

5.5 Important Takeaways

The following are few of the important points to conclude this chapter.

1. The decoders are used for the selection of one of the memories or one of the IO.
2. For the decoders, one of the outputs is active at a time during enable condition.
3. The relationship between the inputs and outputs of encoder is given by n =

log2m where m = number of inputs and n is the number of outputs.
4. The decoders are useful to implement the SOP Boolean functions.
5. The encoders are used to encode the data inputs.
6. The relationship between the inputs and outputs of decoder is given by m =

log2n where m = number of inputs and n is number of outputs.
7. The priority encoders are useful in the design of the level-sensitive interrupt

controller to identify the highest priority.

Chapter 6
Basics of the Sequential Design

The sequential design uses the present inputs and past outputs to
generate an output.

Sequential designs uses the present input and past output to generate an output on the
active edge of the clock. The sequential design elements are latches and flip-flops, and
they are extensively used in the design. The latch-based designs and flip-flop-based
designs and their applications are discussed in this chapter.

6.1 What Is Sequential Logic Design?

In the previous few chapters, we have discussed about the combinational logic in
which an output is function of the present input. In the sequential design an output
is function of the present input and past output. The sequential design elements are

• Latches
• Flip-flops.

Latches are level-sensitive; flip-flops are edge-triggered. The following section
discusses about the roles of these elements in the design.

6.2 Sequential Design Elements

As we know that the latch is level-sensitive, and flip-flop is edge-triggered, these
elements and their role are important during the system design and digital design, let
us discuss the operation of these elements and timing associated with these elements.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Design Techniques and Exercises,
https://doi.org/10.1007/978-981-16-5955-3_6

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5955-3_6&domain=pdf
https://doi.org/10.1007/978-981-16-5955-3_6

90 6 Basics of the Sequential Design

6.3 Level Versus Edge-Triggered Logic

As discussed in the previous few chapters the logic gates, combinational logic
elements are sensitive to changes in the input. If input changes, anoutput also changes.
In the sequential design, level-sensitive indicates that the output of sequential element
changes on the active-level of D latch.

The latches are level-sensitive elements and useful to latch the desired data in
some applications. They are used in most of the latch-based design. Consider the
design scenario, where the multiplexed buses are used and for demultiplexing we
can think of using the multi-bit latch.

The flip-flops, counter or shift registers operate on the active edge of the clock,
and they are used in many sequential designs. The active edge can be low to high
transition (rising edge or posedge) or high to low transition (falling edge or negedge).

In this section, we will discuss the positive edge-sensitive and negative edge-
sensitive flip-flops and their use in the design. For better physical interpretation, it
is essential to understand the logic design for the level-sensitive and edge-sensitive
elements.

6.4 Latches and Their Use in the Design

As discussed in the previous section, the latches are level-sensitive. Latches are
transparent during active level of enable or clock. For example, the output of the
positive-level-sensitive D latch is equal to input during the active level that is positive
level.

Similarly, the negative-level-sensitive D latch output is equal to the input during
negative level.

6.4.1 Positive-Level-Sensitive D Latch

The positive-level-sensitive D latch is transparent during active-high level of enable
(EN). The relationship between the inputs of latch and output is shown in Table 6.1.

Table 6.1 Positive-level-sensitive D latch

Enable (sel_in = EN) Data input (a_in) Output (y_out)

1 0 0

1 1 1

0 X Hold the previous output

6.4 Latches and Their Use in the Design 91

Fig. 6.1
Positive-level-sensitive D
latch

Fig. 6.2 Waveform of the positive-level-sensitive latch

As described in the table for the active high level of the enable that is EN= sel_in
output y_out = a_in. For the sel_in = 0, an output y_out is same as the previous
output. The D latch holds previous output during inactive level.

The D latch schematic is shown in Fig. 6.1, as shown in the schematic the data
input D = a_in, latch enable input EN = sel_in and an output of latch Q = y_out.

The timing sequence of the positive-level-sensitive D latch is shown in Fig. 6.2.
As shown, the latch output y_out = a_in for sel_in = 1. The latch holds previous
output either 1 or 0 for the sel_in = 0.

6.4.2 Negative-Level-Sensitive D Latch

The negative-level-sensitive D latch is transparent during active-low level of enable
(EN). The relationship between the inputs of latch and output is shown in Table 6.2.

As described in the table for the active low level of the enable that is EN = sel_in
= 0 output y_out = a_in. For the sel_in = 1, an output y_out is same as the previous
output. The D latch holds the previous output during inactive level.

The D latch schematic is shown in Fig. 6.3, as shown in the schematic the data
input D = a_in, latch enable input EN = sel_in and output of latch Q = y_out.

The timing sequence of the negative level-sensitive D latch is shown in Fig. 6.4.
As shown the latch output y_out = a_in for sel_in = 0. The latch holds the previous
output either 1 or 0 for the sel_in = 1.

Table 6.2 Negative-level-sensitive D latch

Enable (sel_in = EN) Data input (a_in) Output (y_out)

0 0 0

0 1 1

1 X Hold the previous output

92 6 Basics of the Sequential Design

Fig. 6.3
Negative-level-sensitive D
latch

Fig. 6.4 Waveform of the negative-level-sensitive latch

6.5 Edge-Sensitive Elements and Their Role

As we know that most of the time we use the flip-flops as they are sensitive to the
active edge of the clock. That means during one clock cycle data is sampled on either
positive edge of the clock or on the negative edge of the clock. The main advantage
of the flip-flop is that the data is stable for one clock cycle.

We use the D flip-flops either positive or negative edge-sensitive during the design
of the counters and shift registers. The logic circuit of the D flip-flops is discussed
in this section.

6.5.1 Positive Edge-Sensitive D Flip-Flop

The positive edge means the low to high transition, and it is also called as rising edge.
The positive edge-sensitive flip-flop is designed by using two latches in cascade. The
data input a_in is given as input to the negative-level-sensitive D latch, and an output
of the negative-level-sensitive D latch acts as an input to the positive-level sensitive
D latch.

The output of the positive-level-sensitive D latch acts as a flip-flop output. The
positive edge-sensitive D flip-flop is shown in Fig. 6.5.

The schematic of the positive edge-sensitive D flip-flop is shown in Fig. 6.6.
The timing sequence of the positive edge-sensitive flip-flop having data input

D = a_in, clk = sel_in and an output Q = y_out is shown in Fig. 6.7. As shown the
flip-flop samples the data on the active edge of the sel_in that is positive edge of the
clock.

6.5 Edge-Sensitive Elements and Their Role 93

Fig. 6.5 Positive edge-triggered D flip-flop

Fig. 6.6 Positive edge-sensitive D flip-flop symbol

Fig. 6.7 Timing sequence of the positive edge-sensitive D flip-flop

6.5.2 Negative Edge-Sensitive D Flip-Flop

The negative edge means the high to low transition, and it is also called as falling
edge. The negative edge-sensitive D flip-flop is designed by using two latches in
cascade. The data input a_in is given as input to the positive-level-sensitive D latch,
and an output of the positive-level-sensitive D latch acts as input to the negative-
level-sensitive D latch.

94 6 Basics of the Sequential Design

Fig. 6.8 Negative edge-triggered D flip-flop

Fig. 6.9 Negative edge-sensitive D flip-flop symbol

The output of the negative-level-sensitive D latch acts as a flip-flop output. The
negative edge-sensitive D flip-flop is shown in Fig. 6.8.

The schematic of the negative edge-sensitive D flip-flop is shown in Fig. 6.9.
The timing sequence of the negative edge-sensitive flip-flop having data input

D = a_in, clk = sel_in and an output Q = y_out is shown in Fig. 6.10. As shown
the flip-flop samples the data on the active edge of the sel_in that is negative edge
of the clock.

Fig. 6.10 Timing sequence of the negative edge-sensitive D flip-flop

6.6 Applications 95

6.6 Applications

Following are few of the applications of latches and flip-flop in the system design.

1. Latches are used in latch-based designs. For example, to demultiplex the buses,
we have the latch which acts as transparent during active level and holds the
data output during inactive level.

2. The flip-flops either positive edge or negative edge-triggered are used in the
design of

a. Counters
b. Shift registers
c. Finite state machine (FSM)
d. As a registered input element
e. As a registered output element
f. Storage registers for the read and write transactions.

The subsequent chapter discusses about the design of these applications with the
objective to achieve the desired speed, power and area.

6.6.1 Applications of the Latches

Consider the systemdesign scenariowhichhas the processor having8-bitmultiplexed
bus. For enable (en) = 1, the bus acts as address bus, and for en = 0, it acts as data
bus. To demultiplex the address and data bus we can use the 8-bit latch.

Fig. 6.11 Latch used to demultiplex the bus

96 6 Basics of the Sequential Design

Fig. 6.12 PIPO registers

As shown in Fig. 6.11, the latch is transparent during active-high level of en. So,
the address available on the bus is transferred to the output of latch. For en = 0, the
latch is disabled and holds the address, and as there is no any connection between the
inputs and outputs of latch, the bus acts as a data bus and used to transfer or accept
the data.

6.6.2 Applications of the Flip-Flop

The flip-flops are edge-sensitive, and they are used to sample the data input on the
active edge of the clock. Consider the registered input for the ALU. To fetch the
operands and opcode, the registers are used. Group of flip-flops is register.

As shown in Fig. 6.12, the group of flip-flops (register) are used to sample the
operand A, B and op_code of the instruction on the rising edge of the clock. This
kind of technique is useful to have the registered input for the ALU or any kind of
design.

Let us now discuss about the few exercises on the use of the latches and flip-flops.

6.7 Exercises

Let us complete the exercises by using the latches and flip-flops.

6.7.1 Exercise 1: Design Positive-Level-Sensitive Latch Using
Multiplexers

Design the positive-level-sensitive D latch using the minimum number of 2:1
multiplexers only.

Solution: Let us document the positive-level-sensitive D latch (Table 6.3).

6.7 Exercises 97

Table 6.3 Positive-level-sensitive D latch

Enable (sel_in) Data input (a_in) Output (y_out)

1 0 0

1 1 1

0 X Hold the previous output

Fig. 6.13 Positive-level-sensitive D latch using 2:1 mux

Now, if we use sel_in as the select input of 2:1 mux, then during positive level of
sel_in that is sel_in = 1, the output y_out = a_in.

Now, to get the positive-level-sensitive D latch let us feedback the output y_out
to I0 input of the 2:1 mux. During the negative level of the sel_in, the y_out of 2:1
mux is same as the previous output.

The positive-level-sensitive D latch is designed using single 2:1 mux (Fig. 6.13).

6.7.2 Exercise 2: Design Negative-Level-Sensitive Latch
Using Multiplexers

Design the negative-level-sensitive D latch using the minimum number of 2:1
multiplexers only.

Solution: Let us document the negative-level-sensitive D latch (Table 6.4).

Table 6.4 Negative-level-sensitive D latch

Enable (sel_in) Data input (a_in) Output (y_out)

0 0 0

0 1 1

1 X Hold the previous output

98 6 Basics of the Sequential Design

Fig. 6.14 Negative-level-sensitive D latch using 2:1 mux

Now, if we use sel_in as the select input of 2:1 mux, then during negative level of
sel_in that is sel_in = 0, the output y_out = a_in.

Now, to get the negative-level-sensitive D latch, let us feedback the output y_out
to I1 input of the 2:1 mux. During the positive level of the sel_in, the y_out of 2:1
mux is same as that of the previous output.

The negative-level-sensitive D latch is designed using single 2:1 mux (Fig. 6.14).

6.7.3 Exercise 3: What Is the Functionality of the Following
Design?

Can you find what is the functionality of the following logic circuit?

Solution: If you observe Fig. 6.15, then the enable of D latch is controlled by the
output of multiplexer. The enable input of latch is NOT of sel_in.

The design samples the a_in during the negative level and holds the previous
output during the positive level, and the design is negative-level-sensitive D latch.

Fig. 6.15 Sequential logic

6.7 Exercises 99

6.7.4 Exercise 4: Design the Positive Edge-Sensitive
Flip-Flop Using Latches

Design the positive edge-sensitive D flip-flop using the minimum number of 2:1
multiplexers only.

Solution: Let us document the positive edge-sensitive D flip-flop (Table 6.5).
For every low to high transition, an output y_out = a_in. So, let us use two level-

sensitive latches in cascade. Sample the data input a_in on the negative level of
sel_in. The output of the negative-level-sensitive D latch is given as an input to the
positive-level-sensitive D latch.

Design the positive and negative-level-sensitive latch using the 2:1 mux as
discussed in the exercise 1 and 2. The positive edge-sensitive D flip-flop using the
two, 2:1 mux is shown in Fig. 6.16.

Table 6.5 Positive edge-sensitive D flip-flop

clk (sel_in) Data input (a_in) Output (y_out)

0 0

1 1

X Hold the previous output

Fig. 6.16 Positive edge-sensitive D flip-flop using 2:1 mux

100 6 Basics of the Sequential Design

6.7.5 Exercise 5: Design the Negative Edge-Sensitive
Flip-Flop Using Latches

Design the negative edge-sensitive D flip-flop using the minimum number of 2:1
multiplexers only.

Solution: Let us document the negative edge-sensitive D flip-flop (Table 6.6).
For every high to low transition, an output y_out = a_in. So, let us use two

level-sensitive latches in cascade. Sample the data input a_in on the positive level
of sel_in. The output of the positive-level-sensitive latch is given as an input to the
negative-level-sensitive D latch.

Design the positive and negative-level-sensitive latch using the 2:1 mux as
discussed in the exercise 1 and 2. The negative edge-sensitive D flip-flop using
the two 2:1 mux is shown in Fig. 6.17.

Table 6.6 Negative edge-sensitive D flip-flop

clk (sel_in) Data input (a_in) Output (y_out)

0 0

1 1

X Hold the previous output

Fig. 6.17 Negative edge-sensitive D flip-flop using 2:1 mux

6.7 Exercises 101

Fig. 6.18 Ring oscillator

6.7.6 Exercise 6: What Is the Operating Frequency
of the Following Circuit?

Consider the delay of eachNOT gate is 0.5 nanosecond. Find the operating frequency
at y_out for the ring oscillator (Fig. 6.18)?

Solution: As three NOT gates are connected in cascade, the output y_out will toggle
for delay of the 3 * tpd = 3 * 0.5 nanosecond.

The clock frequency at y_out of the ring oscillator is

fmax = 1

T

= 1

2 ∗ 3 ∗ 0.5 nano-second

= 1

3 nano-second
= 333.33MHz

6.7.7 Exercise 7: The Asynchronous Clear

Sketch the D flip-flop which has asynchronous active-low reset. Document the truth-
table for the flip-flop.

Solution: Asynchronous reset or asynchronous clear is used to initialize the flip-flop,
and the output is forced to logic 0 when reset_n = 0 irrespective of the active edge
of the clock.

Table 6.7 gives information about the inputs and outputs of the flip-flop.

102 6 Basics of the Sequential Design

Table 6.7 Flip-flop having asynchronous reset

reset_n Data input (d_in) Output (y_out)

1 0 0

1 1 1

0 X 0

Fig. 6.19 Timing sequence for the asynchronous input

The timing sequence is shown in Fig. 6.19. As shown, the output y_out is forced
to logic 0 irrespective of the rising edge of the clock (sel_in) when reset_n = 0.

6.7.8 Exercise 8: The Synchronous Clear

Sketch the D flip-flop which has synchronous active-low reset. Document the truth-
table for the flip-flop, and sketch the timing sequence.

6.7 Exercises 103

Table 6.8 Flip-flop having synchronous reset

reset_n clk Data input (d_in) Output (y_out)

1 0 0

1 1 1

0 X 0

Solution: Synchronous reset or synchronous clear is used to initialize the flip-flop,
and the output is forced to logic 0 when reset_n = 0 on the active edge of the clock.

Table 6.8 gives information about the inputs and outputs of the flip-flop (Fig. 6.20).
The timing sequence is shown in Fig. 6.21. As shown, the output y_out is forced

to logic 0 on the rising edge of the clock (sel_in) when reset_n = 0. If reset_n = 0

Fig. 6.20 D flip-flop having synchronous reset

Fig. 6.21 Timing sequence for the synchronous input

104 6 Basics of the Sequential Design

prior to the active edge of the clock, then the output is not forced to logic 0 as the
type of the reset is synchronous reset.

6.8 Important Takeaways

Following are few of the important points to conclude this chapter.

1. The sequential design elements are latches and flip-flops.
2. In the sequential design, an output is function of the present inputs and past

outputs.
3. The D latch is level-sensitive.
4. The D flip-flop is edge-sensitive.
5. The latches are transparent during active level of the enable input.
6. The flip-flop samples data input on the active edge of the clock.
7. To design the counters and shift registers, we will use the flip-flops as they are

edge-sensitive.

Chapter 7
Sequential Design Techniques

The design techniques to implement the sequential logic are
useful in various system design applications.

In the previous few chapters, we have discussed about the combinational and sequen-
tial elements. Let us use the logic gates and flip-flops to design the sequential logic.
The chapter discusses about the various techniques useful to implement the sequen-
tial designs. The goal is to have the sequential designwhich has lesser area,maximum
speed and low power.

We have two types of sequential designs as follows:

• Synchronous design
• Asynchronous design.

7.1 Synchronous Design

In the synchronous design the clock is common to all the flip-flops. That is clock is
derived from the common clock source PLL. PLL is phase-locked loop and used to
generate the clock. Examples are counters, shift registers where all the elements are
using the common clock. The synchronous design having common clock source is
shown in Fig. 7.1.

7.2 Asynchronous Design

In the asynchronous design the clock of the various sequential elements is driven by
the different clock source. As shown in Fig. 7.2, the LSB flip-flop receives the clock
from the PLL, and the MSB flip-flop receives the clock as one of the outputs of the
LSB flip-flop.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Design Techniques and Exercises,
https://doi.org/10.1007/978-981-16-5955-3_7

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5955-3_7&domain=pdf
https://doi.org/10.1007/978-981-16-5955-3_7

106 7 Sequential Design Techniques

Fig. 7.1 Synchronous
design

Fig. 7.2 Asynchronous
design

7.3 Why to Use Synchronous Design?

As discussed earlier in the asynchronous design, the clock of the MSB flip-flop is
derived from the output of the previous stage. Depending on the operation require-
ment, the clock of the flip-flop is derived, and the LSB flip-flop receives the clock as
PLL output.

Now, let us try to understand what is the issue in the asynchronous design? In the
asynchronous design, the overall delay to generate the output is due to propagation
of the clock. For the n stages, the delay to get the output from the MSB flip-flop is
n * tpff where tpff is flip-flop propagation delay or clock to q delay. The delays and
advanced concepts like timing parameters of flip-flop are discussed in the next few
chapters.

For the asynchronous design shown in Fig. 7.3, the number of stages is n = 4,
and hence, the maximum propagation delay of the design is 4 * tpff. If tpff is 1 ns
(pronounced as 1 ns), then the delay to get the output from MSB of flip-flop is 4 ns.

As discussed earlier, the asynchronous designs have the more delay, and they are
slower as compared to the synchronous design. So, in most of the applications and
in the system design, we need to have the high speed, and hence, the asynchronous
design use is ruled out. Even asynchronous clocking has the issues and hence treated
as poor clocking scheme.

Fig. 7.3 Asynchronous design having D flip-flop stages

7.3 Why to Use Synchronous Design? 107

Fig. 7.4 Synchronous
design (reg-to-reg path)

Figure 7.4 shows the synchronous design where clock of both the flip-flops is
derived from the common clock source. In between the flip-flops, the combinational
logic is used, and most of the time we call this as reg-to-reg path. Here, the maximum
frequency of the design is dependent on the timing parameters of the flip-flops that is
setup time (tsu), hold time (th), clock to q delay (tctoq or tpff) and the combinational
logic delay.

The maximum frequency calculation and the timing parameters of the flip-flops
are discussed in the subsequent chapter. The following section discusses about the
design techniques to implement the sequential design.

7.3.1 Which Elements We Should Use During Design?

We can use the sequential element as either positive edge-triggered or negative edge-
triggered flip-flops. The flip-flop samples the data on the active edge of the clock and
used in the sequential design. To implement the counters, shift registers or finite state
machines, we can use the other suitable elements such as logic gates or combinational
elements depending on the design requirement.

For example, consider the divide by two counter that is toggle flip-flop designed
by using D flip-flop and additional combinational elements (Fig. 7.5). The flip-flop
is rising edge-triggered and has the asynchronous active-low reset.

Reset path: The NOT gate is used in the reset path and the flip-flop has asynchronous
active-low reset. Asynchronous reset or clear means the flip-flop output is initialized
to logic 0 when reset input is active low (logic 0) irrespective of the active edge of
the clock.

DATA path: The NOT gate is used in the reset data path as the requirement is to get
the toggle output on the rising edge of the clock. The NOT gate complements the
output of flip-flop and can be optimized using the complement of Q output of the
flip-flop.

Clock path: The design has clock, which is generated from the PLL, and it is named
as clk. For the lowpower designs, the clock path has the additional logic and discussed
in Chap. 11. The clock gating cells are useful to minimize the power dissipation.

108 7 Sequential Design Techniques

Fig. 7.5 Toggle D flip-flop

Maximum frequency for the design: Each sequential design operates on the specific
frequencies, and the maximum frequency of the design is restricted due to the tsu, th,
tctoq and the combinational delay. For the divide by 2 counter that is toggle flip-flop,
the maximum frequency is equal to

fmax = 1

tpff + tcombo + tsu

where tpff = flip-flop propagation delay which is also called as clock to q delay
tcombo = tinv = That is combinational delay which is NOT gate delay
tsu = setup time of flip-flop. That is minimum amount of time for which data

should be stable at D input of flip-flop prior to rising edge of the clock.
The maximum frequency calculations and the details of the timing paths and

parameters are discussed in the next subsequent chapters.

7.4 D Flip-Flop and Use in the Design

AsDflip-flop has the single input, theDflip-flops are popular to design the sequential
logic. It is easy to control the singleD input as compared to the JK or SRflip-flops two
inputs. Due to the less logic in the data path, the area requirement for the sequential
design using the D flip-flops is lesser as compared to SR or JK flip-flop.

7.4 D Flip-Flop and Use in the Design 109

Table 7.1 State table of D
flip-flop

Present state (Q) Next state (Q+)

0 0

0 1

1 0

1 1

Table 7.2 Excitation input of
the D flip-flop

Present state (Q) Next state (Q+) Excitation input (D)

0 0 0

0 1 1

1 0 0

1 1 1

What we need to understand about the D flip-flop?

For the sequential design using the D flip-flop, we need to have the good
understanding about the excitation inputs and excitation table. So, let us try to discuss!

Consider the present state of the D flip-flop is Q and the next state of the D flip-flop
is Q+ (Table 7.1). The excitation table gives information about what should be the
data input of the D flip-flop to get the next state output on the active edge of the
clock. The excitation table of the D flip-flop is documented (Table 7.2).

As shown in Table 7.2, the D input of the flip-flop is equal to the next state Q+.
That means, if the present state Q = 0 and the next state Q+ = 1, then to get the
next state as output of the flip-flop, the data input of flip-flop D = 1. That is D =
Q+. During the sequential circuit designs and the FSM designs, we use the excitation
table to deduce the combinational logic required at the data input of D flip-flop.

Now let us consider the design scenario.

Consider the design requirement to get the toggle output using the single D flip-flop.
What we need to do is that let us document the entries in the excitation table and let
us deduce the logic.

As shown in Table 7.3, the excitation input D = Q+ which is the complement
of the present state Q. So, D = Q . So, the toggle flip-flop is designed by using the
single D flip-flop and NOT gate. If the flip-flop uses the asynchronous active-low
reset, then in the reset path the clear input of the flip-flop is controlled by NOT gate.

The design is shown in Fig. 7.5.

110 7 Sequential Design Techniques

Table 7.3 Excitation table of the D flip-flop

7.5 Design for the given specifications

Now, let us use the design specifications to implement the sequential design.

1. The design should use the positive edge-sensitive flip-flops.
2. The output of design should toggle on the rising edge of the clock.
3. The design should have active-low asynchronous clear input.
4. The design uses the asynchronous active-high enable that is for data_in = 1 the

flip-flop toggles.

Now, let us use the design specifications and try to design the sequential logic.
The design requirement is to have the toggle output on every rising edge of the

clock.We have two states that is flip-flop output logic 1 is state s1 and flip-flop output
logic 0 is state s0. So, as 2-states, we should have the single flip-flop. The relationship
between the number of states and flip-flop is that number of states is equal to 2 to
the power of number of flip-flops.

Hence, to get the toggle output, we need to have single D flip-flop. So, we will use
the single positive edge-sensitive flip-flop. The design specifications are tabulated in
the truth table.

As shown in Table 7.4, the excitation input D = Q+ which is the complement
of the present state Q for enable input data_in = 1 so, D = Q . So, the toggle flip-
flop is designed by using the single D flip-flop and NOT gate. The enable input
is incorporated in the design which holds the previous state of the flip-flop during
data_in = 0 condition. If the flip-flop has the asynchronous active-low reset, then in
the reset path, the clear input of the flip-flop is controlled by NOT gate.

The design is shown in Fig. 7.6.

Table 7.4 Excitation table
with the enable input

Enable
(data_in)

Present state (Q) Next state
(Q+)

Excitation
input (D)

1 0 1 1

1 1 0 0

0 0 0 0

0 1 1 1

7.6 Design of the Synchronous Counters 111

Fig. 7.6 Toggle flip-flop with enable as input

7.6 Design of the Synchronous Counters

Now, let us try to use the design foundation discussed in the previous sections to
design the synchronous modulo-4 or MOD-4 binary up-counter. As name itself
indicates, the counter has the four states. The four states are so, s1, s2, s3 and for the
binary up-counter design use the following steps.

1. Find the number of states to get the counter

Number of states = 4.

2. Find number of flip-flops

Number of flip-flops = n = log2 4 = 2. We will use the positive edge-sensitive D
flip-flops.

3. Reset strategy

Let us use active-low asynchronous reset input reset_n. For reset_n = 0, the counter
holds the previous output. For the reset_n = 1, the counter output increments on the
rising edge of the clock.

4. Let us document the entries in the state table

The state table of the MOD-4 synchronous binary up-counter is shown in Table 7.5.

5. Let us document the entries in the excitation table

The excitation table consists of the information about the present state, next state
and excitation input (Table 7.6).

112 7 Sequential Design Techniques

Table 7.5 State table of the
MOD-4 binary up-counter

Present state (q1 q0) Next state (q1+ q0+)

00 01

01 10

10 11

11 00

Table 7.6 Excitation table of
the MOD-4 counter

Present state (q1 q0) Next state (q1+

q0+)
Excitation input
(D1 D0)

00 01 01

01 10 10

10 11 11

11 00 00

6. Let us deduce the logic at the input of the D1, D0

Let us use the present state q1, q0 as the inputs to get the logic at the D1, D0. Let us
use the 2-variable K-map (Figs. 7.7 and 7.8).

D1 = q1 · q0 + q0 · q1

D1 = q1 ⊕ q0

D0 = q0

Fig. 7.7 K-map to get the
logic at D1

7.6 Design of the Synchronous Counters 113

Fig. 7.8 K-map to get the
logic at D0

Fig. 7.9 2-bit synchronous binary up-counter

7. Let us sketch the logic

As discussed in the previous steps, we need to have two flip-flops and XOR gate to
implement the MOD-4 synchronous binary up-counter (Fig. 7.9).

7.7 Exercise 1: Design of the Synchronous Down-Counters

Design the synchronous binary down-counter having active-low asynchronous reset
(reset_n), rising edge-sensitive D flip-flops and the minimum logic gates.

Solution: Now, let us try to use the design foundation discussed in the previous
sections to design the synchronous modulo-4 or MOD-4 binary down-counter. As
name itself indicates, the counter has the four states. The four states of counter are so,
s1, s2, s3 and for the binary down-counter design use the following steps.

114 7 Sequential Design Techniques

1. Find the number of states to get the counter

Number of states = 4.

2. Find number of flip-flops

Number of flip-flops = n = log2 4 = 2. We will use the positive edge-sensitive D
flip-flops.

3. Reset strategy

Let us use active-low asynchronous reset input reset_n. For reset_n = 0, the counter
holds the previous output. For the reset_n = 1, the counter output decrements on the
rising edge of the clock.

4. Let us document the entries in the state table

The state table of theMOD-4 synchronous binary down-counter is shown inTable 7.7.

5. Let us document the entries in the excitation table

The excitation table consists of the information about the present state, next state
and excitation input (Table 7.8).

6. Let us deduce the logic at the input of the D1, D0

Let us use the present state q1, q0 as the inputs to get the logic at the D1, D0. Let us
use the 2-variable K-map (Figs. 7.10 and 7.11).

D1 = q1 · q0 + q1 · q0

D1 = q1 ⊕ q0

D0 = q0

Table 7.7 State table of the
MOD-4 binary down-counter

Present state (q1 q0) Next state (q1+ q0+)

11 10

10 01

01 00

00 11

Table 7.8 Excitation table of
the MOD-4 down-counter

Present state (q1 q0) Next state (q1+

q0+)
Excitation input
(D1 D0)

11 10 10

10 01 01

01 00 00

00 11 11

7.7 Exercise 1: Design of the Synchronous Down-Counters 115

Fig. 7.10 K-map to get the
logic at D1

Fig. 7.11 K-map to get the
logic at D0

7. Let us sketch the logic

As discussed in the previous steps, we need to have two flip-flops and XNOR gate
to implement the MOD-4 synchronous binary down-counter (Fig. 7.12).

7.8 Exercise 2: Design of the Synchronous Gray Counter

Design the synchronous gray counter having active-lowasynchronous reset (reset_n),
rising edge-sensitive D flip-flops and the minimum logic gates.

Solution: Now, let us try to use the design foundation discussed in the previous
sections to design the synchronous gray counter. As name itself indicates, the counter
has the four states. so, s1, s2, s3 and for the gray counter design use the following
steps.

116 7 Sequential Design Techniques

Fig. 7.12 2-bit synchronous binary down-counter

1. Find the number of states to get the counter

Number of states = 4.

2. Find number of flip-flops

Number of flip-flops = n = log2 4 = 2. We will use the positive edge-sensitive D
flip-flops.

3. Reset strategy

Let us use active-low asynchronous reset input reset_n. For reset_n = 0, the counter
holds the previous output. For the reset_n = 1, the counter output decrements on the
rising edge of the clock.

4. Let us document the entries in the state table

The state table of the synchronous gray counter is shown in Table 7.9.

5. Let us document the entries in the excitation table

The excitation table consists of the information about the present state, next state
and excitation input (Table 7.10).

Table 7.9 State table of the
2-bit gray counter

Present state (q1 q0) Next state (q1+ q0+)

00 01

01 11

11 10

10 00

7.8 Exercise 2: Design of the Synchronous Gray Counter 117

Table 7.10 Excitation table
of the 2-bit gray counter

Present state (q1 q0) Next state (q1+

q0+)
Excitation input
(D1 D0)

00 01 01

01 11 11

11 10 10

10 00 00

6. Let us deduce the logic at the input of the D1, D0

Let us use the present state q1, q0 as the inputs to get the logic at the D1, D0. Let us
use the 2-variable K-map (Figs. 7.13 and 7.14).

D1 = q0

D0 = q1

Fig. 7.13 K-map to get the
logic at D1

Fig. 7.14 K-map to get the
logic at D0

118 7 Sequential Design Techniques

Fig. 7.15 2-bit gray counter

7. Let us sketch the logic

As discussed in the previous steps, we need to have two flip-flops to implement the
synchronous gray counter (Fig. 7.15).

7.9 Few Important Guidelines

In the VLSI design context if you are FPGA engineer or the system design engineer,
then use the following guidelines.

1. Use the synchronous design as they are faster as compared to the asynchronous
designs.

2. Do not use the derived clocks as they have the clock skews.
3. Asynchronous clocking is prone to glitches so avoid use of the asynchronous

counters and even asynchronous clocking.
4. Use the single PLL in the system for the single clock domain designs to derive

the clock.
5. If you are using the asynchronous reset, then use the synchronizers to

synchronize the asynchronous reset with the master reset.
6. Use the gray counter if the area and power requirement are minimum.

7.10 Important Takeaways 119

7.10 Important Takeaways

Following are few of the important points to conclude this chapter.

1. The synchronous counter uses the common clock for all the flip-flops.
2. In the asynchronous counters, the LSB flip-flop uses the main clock, and the

clock of the MSB flip-flops is derived from the previous flip-flops stage.
3. Synchronous circuits are faster as compared to the asynchronous circuits.
4. For the reg-to-reg path, the maximum frequency is calculated by using the

fmax = 1
tpff+tcombo+tsu .

5. MOD-4 counter indicates the four states and two flip-flops to implement the
design.

6. In the 2-bit gray counters, the combinational logic is not required and hence
used to minimize the power and area.

Chapter 8
Important Design Scenarios

The sequential design techniques are useful during the system
design to improve the design performance.

As discussed in Chap. 7, we can use the sequential design elements with the goal to
have the maximum speed and lesser area. The chapter discusses the important design
scenarios and techniques useful to design the sequential logic. The chapter is useful
to understand about the duty cycle and how to design the sequential circuits with the
goal to have duty cycle control.

8.1 MOD-3 Counter

Now, let us try to use the design techniques discussed in the previous chapters to
design the synchronous modulo-3 or MOD-3 binary up-counter. As the name itself
indicates, the counter has the three states so, s1 and s2, and for the binary up-counter
design, use the following steps.

1. Find the number of states to get the counter

The number of states = 3.

2. Find the number of flip-flops

The number of flip-flops = n = log2 3. So we will use two positive edge sensitive D
flip-flops.

3. Reset strategy

Let us use active-low asynchronous reset input reset_n. For reset_n=0, the
counter outputs are initialized to zero. For the reset_n=1, the counter output
increments on the rising edge of the clock.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Design Techniques and Exercises,
https://doi.org/10.1007/978-981-16-5955-3_8

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5955-3_8&domain=pdf
https://doi.org/10.1007/978-981-16-5955-3_8

122 8 Important Design Scenarios

4. Let us document the entries in the state table

The state table of the MOD-3 synchronous binary up-counter is shown in Table 8.1.

5. Let us document the entries in the excitation table

The excitation table consists of the information about the present state, next state
and excitation input (Table 8.2).

6. Let us deduce the logic at the input of the D1 and D0

Let us use the present state q1 and q0 as the inputs to get the logic at the D1 and D0.
Let us use the 2-varibale K-map (Figs. 8.1 and 8.2).

D1 = q0

D0 = q0 · q1

D0 = q1 + q0

7. Let us sketch the logic

As discussed in the previous steps, we need to have two flip-flops and NOR gate to
implement the MOD-3 synchronous binary up-counter (Fig. 8.3).

The timing waveform of the MOD-3 synchronous binary up-counter is shown in
Fig. 8.4. As shown, the counter has three states s0, s1 and s2 and the output of the
counter is 00, 01 and 10. If we use q1 to generate an output, then an output is 0 for
two clock cycles and logic 1 for one clock cycle. The design output from MSB is
single clock for three clock cycles; hence, divide by 3 or MOD-3 counter.

Duty cycle: The duty cycle is ratio of the on-time (Ton) and the T = Ton + Toff,
where T is the clock period at output and Toff is off-time.

Table 8.1 State table of the
MOD-3 binary up-counter

Present state (q1 q0) Next state (q1+ q0+)

00 01

01 10

10 00

Table 8.2 Excitation table of
the MOD-3 counter

Present state (q1 q0) Next state (q1+

q0+)
Excitation input
(D1 D0)

00 01 01

01 10 10

10 00 00

8.1 MOD-3 Counter 123

Fig. 8.1 K-map to get the
logic at D1

Fig. 8.2 K-map to get the
logic at D0

Fig. 8.3 Divide by three synchronous binary up-counter

124 8 Important Design Scenarios

Fig. 8.4 Waveform of the divide by three synchronous binary up-counter

The duty cycle for the MSB output is given by

Duty cycle = Ton

Ton + Toff

= 1

1 + 2

= 1

3
= 0.3333

= 33.33%

where Ton = On cycle time period
Toff = Off cycle time period
T = Ton + Toff = Output clock period.

8.2 The Design of MOD-3 Counter with 50% Duty Cycle

As discussed in the previous section, for the MOD-3 counter the output has the
33.33% duty cycle. Now, as the output has logic 1 for one clock cycle and logic 0 for
two clock cycles, the use of the clock is not recommended in the design. For most
of the synchronous designs, it is recommended to use the clock which has 50% duty
cycle that is, Ton = Toff.

So, the design discussed in Sect. 8.1 should be tweaked by using the additional
logic. For the divide by three counter for three half-cycle, the output should have
logic 0, and for the remaining three half-clock cycles, the output should have logic
1. So, to get the 50% duty cycle, use the following strategy.

1. Design theMOD-3 counter as discussed in Sect. 8.1 using positive edge sensitive
D flip-flops.

2. Get the output q1 which has 33.33% duty cycle.
3. Sample the q1 on the negative edge of the clock using negative edge sensitive

D flip-flop.
4. UseOR gate to get the 50%duty cycle output q_out. The q_out=OR(q1, q1_n).

8.2 The Design of MOD-3 Counter with 50% Duty Cycle 125

Fig. 8.5 Divide by three synchronous binary up-counter with 50% duty cycle

5. Sketch the schematic and observe the timing waveform.

The timing waveform of the MOD-3 synchronous binary up-counter is shown in
Fig. 8.5. As shown, the counter has three states s0, s1 and s2 and the output of the
counter is 00, 01 and 10. If we use q1 to generate an output, then an output is 0 for
the one and half clock cycles and logic 1 for one and half clock cycle. The design
output fromMSB is single clock for three clock cycles hence divide by 3 or MOD-3
counter having 50% duty cycle.

Duty cycle: The duty cycle is ratio of the on-time (Ton) and the T = Ton + Toff,
where T is the clock period at output and Toff is off-time.

The duty cycle for the MSB output is given by

Duty cycle = Ton

Ton + Toff

= 1.5

1.5 + 1.5

= 1

2
= 0.5000

= 50.00%

where Ton = On cycle time period = Three half-cycles on
Toff = Off cycle time period = Three half-cycle off
T = Ton + Toff = Output clock period.
Here, duty cycle is 50% (Fig. 8.6).

8.3 Applications and Use of Counters

Most of the time, we use the synchronous counters in the system design to get the
desired frequency output. The counters are frequency divider network and are used

126 8 Important Design Scenarios

Fig. 8.6 Waveform of the divide by three synchronous binary up-counter with 50% duty cycle

to generate an output which is divided by n value. For example, MOD-16 counter
has the 16 states s0 to s15 and is used to get the output as divided by 16. If input
clock is 160 MHz, then the output of the MOD-16 counter is 10 MHz.

Wecandesign theMOD-n synchronous up- or down-counters using the techniques
discussed in Chap. 7. In the practical scenarios, we need to have few counters which
can generate an output as 8, 4, 2, 1 or 0, 8, 12, 14, 15, 7, 3, 1, 0….

They are special counters and can be designed by observing the output pattern.
This section discusses about the design of these counters.

8.3.1 Ring Counter

As name indicates, the ring counter generates an output sequence as 8, 4, 2, 1, 8,
4,..... . The counter can be designed very quickly using the state table. So, let us
discuss the steps to design the ring counter.

1. Find the maximum count

For the counter to have output as 8, 4, 2, 1, the maximum count value is 8.

2. Use the maximum count to find the number of flip-flops required

In the binary, 8 is represented as 1000. Hence, the number of flip-flops required is
equal to 4.

3. Document the state table entries

The counter has four states, and the entries are documented in Table 8.3.

4. Document the excitation input of the flip-flops

Let us document the excitation input to get the next state count value (Table 8.4).

5. Observe the present state andnext state to get the desired value as excitation
to data input of flip-flops.

8.3 Applications and Use of Counters 127

Table 8.3 Four-bit ring
counter state table

Present state (q3 q2 q1 q0) Next state (q3+ q2+ q1+ q0+)

1000 0100

0100 0010

0010 0001

0001 1000

Table 8.4 Four-bit ring
counter excitation table

Present state (q3 q2
q1 q0)

Next state (q3+ q2+

q1+ q0+)
Excitation input
(D3 D2 D1 D0)

1000 0100 0100

0100 0010 0010

0010 0001 0001

0001 1000 1000

As shown in Table 8.5, the relationship between the present state and next state is
on the rising edge of the clock, and the output of the ring counter shifts by 1-bit. So,
using this let us get the Boolean equations to have D3, D2, D1, D0 inputs.

6. Boolean equations

Let us get the Boolean equations

D3 = Q0

Table 8.5 Excitation table to deduce the expressions

128 8 Important Design Scenarios

Fig. 8.7 Four-bit ring
counter design

D2 = Q3

D1 = Q2

D0 = Q1

7. Let us sketch the logic

The design of the 4-bit ring counter is shown in Fig. 8.7.

8.3.2 Johnson Counter

Johnson counter is twisted ring counter and is used to generate an output sequence
as 0, 8, 12, 14, 15, 7, 3, 1, 0, etc. The counter can be designed very quickly using the
state table. So, let us discuss the steps to design the ring counter.

1. Find the maximum count

For the counter to have output as 0, 8, 12, 14, 15, 7, 3, 1, 0, etc., the maximum count
value is 15.

2. Use the maximum count to find the number of flip-flops required

In the binary, 15 is represented as 1111. Hence, the number of flip-flops required is
equal to 4.

3. Document the state table entries

The counter has four states, and the entries are documented in Table 8.6.

4. Document the excitation input of the flip-flops

Let us document the excitation input to get the next state count value (Table 8.7).

8.3 Applications and Use of Counters 129

Table 8.6 Four-bit twisted
ring counter state table

Present state (q3 q2 q1 q0) Next state (q3+ q2+ q1+ q0+)

0000 1000

1000 1100

1100 1110

1110 1111

1111 0111

0111 0011

0011 0001

0001 0000

Table 8.7 Excitation table of
twisted ring counter

Present state (q3 q2
q1 q0)

Next state (q3+ q2+

q1+ q0+)
Next state (D3 D2
D1 D0)

0000 1000 1000

1000 1100 1100

1100 1110 1110

1110 1111 1111

1111 0111 0111

0111 0011 0011

0011 0001 0001

0001 0000 0000

5. Observe the present state andnext state to get the desired value as excitation
to data input of flip-flops.

As shown in Table 8.8 the relationship between the present state and next state is on
the rising edge of the clock, and the output of the twisted ring counter shifts by 1-bit,
and the MSB of the counter is complement of the LSB output. So, using this, let us
get the Boolean equations to have D3, D2, D1, D0 inputs.

6. Boolean equations

Let us get the Boolean equations

D3 = Q0

D2 = Q3

D1 = Q2

D0 = Q1

130 8 Important Design Scenarios

Table 8.8 Excitation table to deduce the expressions

7. Let us sketch the logic

The design uses the four flip-flops, and the counter is called as twisted ring counter
(Fig. 8.8).

8.4 Exercises

Let us complete the exercises on the sequential design using the basic fundamentals
and design techniques discussed.

8.4 Exercises 131

Fig. 8.8 Four-bit Johnson
counter design

Fig. 8.9 Sequential design-1

8.4.1 Exercise 1: The Counter Output

For Fig. 8.9, find the output sequence.

Solution: During the reset_n = 0, the counter output Q1Q0 = 00. Consider the Q1+,
Q0+ as next state.

So, let us document the next state in the table to get the output sequence.
As documented in Table 8.9, the sequence at Q1Q0 is 00, 01, 10, 11, 00, etc., and

the design is synchronous MOD-4 binary up-counter.

8.4.2 Exercise 2: Find the Output Sequence

Find the output sequence for the design shown in Fig. 8.10.

132 8 Important Design Scenarios

Table 8.9 Sequence table for sequential design-1

CLK Q1 Q0 D1 = Q1 ⊕ Q0 D0 = Q0 Q1+ Q0+

1 0 0 0 1 0 1

2 0 1 1 0 1 0

3 1 0 1 1 1 1

4 1 1 0 0 0 0

Fig. 8.10 Sequential design-2

Solution: During the reset_n = 0, the counter output Q1Q0 = 00. Consider the Q1+,
Q0+ as next state.

So, let us document the next state in the table to get the output sequence.
As documented in Table 8.10, the sequence at Q1Q0 is 11, 10, 01, 00, 11, etc.,

and the design is synchronous MOD-4 binary down counter.

Table 8.10 Sequence table for sequential design-2

CLK Q1 Q0 D3 = Q1 ⊕ Q0 D0 = Q0 Q1+ Q0+

1 0 0 1 1 1 1

2 1 1 1 0 1 0

3 1 0 0 1 0 1

4 0 1 0 0 0 0

8.4 Exercises 133

Fig. 8.11 Sequential design-3

8.4.3 Exercise 3: Operating Frequency of Design

Consider the CLK frequency as 100 MHz. What is frequency at outputs Q3 Q2 Q1
Q0?

Solution: As shown in Fig. 8.11, the design is asynchronous and LSB toggle flip-flop
receives the clock (CLK). The toggle flip-flop toggles when T = 1 and generates an
output as divide by 2 of CLK.

As the output of the LSB stage is used as the clock input to the MSB stage, each
flip-flop output is divided by two sequential circuit.

The frequency at the output of each flip-flop is calculated as

1. Q0f = fCLK
2 = 100MHz

2 = 50 MHz
2. Q1f = fCLK

4 = 100MHz
4 = 25 MHz

3. Q2f = fCLK
8 = 100MHz

8 = 12.50 MHz
4. Q3f = fCLK

16 = 100MHz
16 = 6.25 MHz.

8.4.4 Exercise 4: Output on 1024th Clock Cycle

Consider the design shown in the figure. During the reset condition, the output
Q3Q2Q1Q0 = 1000. What is output at 1024th clock?

Solution: As shown in Fig. 8.12, the design is synchronous 4-bit ring counter. The
design uses the shifter, and the output Q0 is feedback to the D3. So, let us create
the state table to get the output at 1024th clock pulse. Consider the present state as
Q3Q2Q1Q0 and next state as Q3+Q2+Q1+Q0+.

As documented in Table 8.11, the design has output 1000 at 4th clock, so at 1024th
clock, the design has output Q3Q2Q1Q0 = 1000.

8.4.5 Exercise 5: Output on the 4th Clock Cycle

Consider the design shown in Fig. 8.13. During the reset condition the output Q1Q0
= 00. What is output on the 4th clock?

134 8 Important Design Scenarios

Fig. 8.12 Sequential
design-4

Table 8.11 Truth-table of 4-bit ring counter

CLK Q3 Q2 Q1 Q0 Q3+ Q2+ Q1+ Q0+

0 1 0 0 0 0 1 0 0

1 0 1 0 0 0 0 1 0

2 0 0 1 0 0 0 0 1

3 0 0 0 1 1 0 0 0

Fig. 8.13 Sequential
design-5

Solution: As shown in Fig. 8.13, the design is synchronous. So, let us create the state
table to get the output on 4th clock pulse. Consider the present state as Q1Q0 and
next state as Q1+Q0+.

As documented in Table 8.12, the design is synchronous 2-bit gray counter and
has output 00 on 4th clock.

8.4.6 Exercise 6: Output at 10th Clock Pulse

Consider the design shown in Fig. 8.14. During the reset condition, the output
Q3Q2Q1Q0 = 0000. What is output at 10th clock?

8.4 Exercises 135

Table 8.12 Sequence table for sequential design-5

CLK Q1 Q0 D1 = Q0 D0 = Q1 Q1+ Q0+

0 0 0 0 1 0 1

1 0 1 1 1 1 1

2 1 1 1 0 1 0

3 1 0 0 0 0 0

Fig. 8.14 Sequential
design-6

Solution: As shown in Fig. 8.12, the design is synchronous 4-bit twisted ring counter.
The design uses the shifter, and the output Q0 is feedback to the D3. So, let us create
the state table to get the output at 10th clock pulse. Consider the present state as
Q3Q2Q1Q0 and next state as Q3+Q2+Q1+Q0+.

As documented in Table 8.13, the design has output 0000 at 8th clock so at 10th
clock the design has output Q3Q2Q1Q0 = 1100.

Table 8.13 Truth-table of 4-bit twisted ring counter

CLK Q3 Q2 Q1 Q0 Q3+ Q2+ Q1+ Q0+

0 0 0 0 0 1 0 0 0

1 1 0 0 0 1 1 0 0

2 1 1 0 0 1 1 1 0

3 1 1 1 0 1 1 1 1

4 1 1 1 1 0 1 1 1

5 0 1 1 1 0 0 1 1

6 0 0 1 1 0 0 0 1

7 0 0 0 1 0 0 0 0

136 8 Important Design Scenarios

Table 8.14 Truth-table of right shifter

CLK Q3 Q2 Q1 Q0 Q3+ Q2+ Q1+ Q0+

1 0 0 0 0 d_in 0 0 0

2 d_in 0 0 0 0 d_in 0 0

3 0 d_in 0 0 0 0 d_in 0

4 0 0 d_in 0 0 0 0 d_in

Fig. 8.15 Serial input serial output shift register

8.4.7 Exercise 7: Design the Serial Input Serial Output Shift
Register

Using the D flip-flops, design the serial input serial output right shift operation.
Consider the maximum latency as 4 clocks to get the output?

Solution: Let us create the state table to design the right shift operation. Consider
the present state as Q3Q2Q1Q0 and next state as Q3+Q2+Q1+Q0+.

As documented in Table 8.14 to get the right shift operation, let us use the inputs
of the flip-flops as D3 = d_in, D2 = Q3, D1 = Q2, D0 = Q1, and get the output
d_out from Q0. The design is shown in Fig. 8.15.

8.5 Important Takeaways

The following are few of the important points to conclude this chapter.

1. The duty cycle is given by duty cycle = Ton
Ton+Toff .

2. It is recommended to have the design output with 50% duty cycle.
3. Ring counters and Johnson counter are special counters and used to repeat the

sequence.
4. Johnson counter is also called as twisted ring counter.
5. The design should not have the mix of the positive edge and negative edge

triggered flip-flops in the same path.
6. Avoid use of the asynchronous counters and have the glitch-free designs.
7. Using the shifters, we can design the ring and twisted ring counters.

Chapter 9
FSM Design Techniques

The understanding of the FSM designs and techniques is useful
to develop the FSM-based designs and controllers.

The FSM is finite statemachine and used to design the FSMcontrollers. For example,
to detect the sequence of 1010 from the input, we can think of FSM designs. The
arbitrary counters, sequence detectors and controllers can be designed using effi-
cient FSM design techniques. In the previous chapters, we have discussed about the
combinational and sequential design techniques. In this chapter, let us discuss about
the FSM design techniques and their applications in the digital design.

9.1 What Is FSM?

FSM is finite statemachine and used to design the controllers and sequence detectors.
In most of the sequential designs, we need to design the control and timing unit. So,
FSMdesign techniques are useful to design the efficient timing and control algorithms
and designs.

The FSMs are classified mainly into two categories as follows.

1. Moore FSM
2. Mealy FSM

So now, let us discuss about the Moore and Mealy machines and their use in the
design.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Design Techniques and Exercises,
https://doi.org/10.1007/978-981-16-5955-3_9

137

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5955-3_9&domain=pdf
https://doi.org/10.1007/978-981-16-5955-3_9

138 9 FSM Design Techniques

Fig. 9.1 Block diagram of Moore machine

9.1.1 Moore FSM

In the Moore FSM, an output is function of the present state only. As output is
function of the present state, it is stable for one clock cycle. The state transition
happens on the active edge of the clock.

The Moore FSM has three functional blocks as follows.

1. State register
2. Next state logic
3. Output logic.

The state register is sequential logic. The next state and output logic is
combinational logic.

The block diagram of the Moore FSM is shown in Fig. 9.1.
As shown in Fig. 9.1, the Moore machine has three blocks, and our goal is to

design the digital logic of these blocks.

9.1.2 Mealy FSM

In theMealy FSM, an output is function of the present state and the inputs. As output
is function of the present state and inputs, hence it may or may not be stable for
one clock cycle. The state transition happens on the active edge of the clock. As
compared to the Moore FSM, the Mealy FSM is prone to glitches.

The Mealy FSM has three functional blocks as follows.

1. State register
2. Next state logic
3. Output logic.

The state register is sequential logic. The next state and output logic is
combinational logic.

The block diagram of the Mealy FSM is shown in Fig. 9.2.

9.1 What Is FSM? 139

Fig. 9.2 Block diagram of Mealy machine

As shown in Fig. 9.2, the Mealy machine has three blocks, and our goal is to
design the digital logic of these blocks.

9.1.3 Moore Versus Mealy FSM

The difference between the Moore and Mealy FSM is documented in Table 9.1.

9.2 State Encoding Methods

For the FSM designs, we should understand the state encoding. There are three types
of the state encoding for FSM-based designs, and they are.

Table 9.1 Differences between Moore and Mealy machines

Moore machine Mealy machine

Outputs are function of present state only Outputs are function of the present state and
inputs also

Output is stable for one clock cycle, and Moore
FSM is not prone to glitches or spikes

Output may change multiple times depending
on changes in the input and may or may not be
stable for one clock cycle, and hence, Mealy
FSM is prone to glitches or hazards

It requires more number of states as compared
to Mealy machine

Mealy machine needs lesser states as
compared to Moore machine

Moore FSM has the higher operating frequency
as compared to Mealy machine

Mealy FSM has the lower operating frequency
as compared to Moore machine

140 9 FSM Design Techniques

1. Binary encoding

In the binary encoding if the number of states is m, then the number of flip-flops
required is computed using n = log2m.

Where n = number of flip-flops, and m are number of states.
Consider the number of states as m = 4, and then, number of flip-flops needed to

design FSM is n = log24 = 2.
The four states are represented as

S0 = 00

S1 = 01

S2 = 10

S3 = 11

2. Gray encoding

In the gray encoding if the number of states are m, then the number of flip-flops
required is computed using n = log2m.

Where n = number of flip-flops, and m are number of states.
Consider the number of states as m = 4, and then, number of flip-flops needed to

design FSM is n = log24= 2.
The four states are represented as

S0 = 00

S1 = 01

S2 = 11

S3 = 10

The gray encodingis useful in the FSM design to save the poweras in two
successive gray numbers only one-bit changes.

3. One-hot encoding

In the one-hot encoding if the number of states is m, then the number of flip-flops
required is computed using n = m. In this encoding, only one bit is active high or
hot at a time.

Where n = number of flip-flops, and m are number of states.
Consider the number of states as m = 4, and then, number of flip-flops needed to

design FSM is n = m = 4.
The four states using one-hot encoding are represented as

S0 = 0001

S1 = 0010

S2 = 0100

S3 = 1000

9.2 State Encoding Methods 141

The one-hot encoding is useful in the FSM design to have better timing if
area is not the constraint.

9.3 Moore FSM Design

Now, let us design the FSM for the given specifications. What we need to do is that
we need to design the digital logic for the

1. State register
2. Next state logic
3. Output logic

Let us consider the design of the sequential circuit to get the output data_outwhich
is input clock frequency divided by 2 when data_in = 1. We can use the following
design steps to design the Moore FSM.

1. Find the number of states to get the divide by 2 output

Number of states = 2. The states are s0 and s1.

2. State diagram

The state transition happens when data_in = 1 only (Fig. 9.3).

3. Find number of flip-flops

We will use the binary encoding and the number of flip-flops = n = log22 = 1. We
will use the positive edge-sensitive D flip-flops.

4. Reset strategy

Let us use active-low asynchronous reset input reset_n. For reset_n= 0, the counter
output is logic 0. For the reset_n = 1, the output increments or toggles on the rising
edge of the clock.

Fig. 9.3 Moore FSM of
toggle flip-flop

142 9 FSM Design Techniques

Table 9.2 State table of the
MOD-2 binary up-counter

Enable (data_in) Present state (q0) Next state (q0+)

1 s0 s1

1 s1 s0

0 s0 s0

0 s1 s1

Table 9.3 Excitation table of
the MOD-2 counter

Enable
(data_in)

Present state
(q0)

Next state
(q0+)

Excitation
input (D0)

1 s0 = 0 s1 = 1 1

1 s1 = 1 s0 = 0 0

0 s0 = 0 s0 = 0 0

0 s1 = 1 s1 = 1 0

5. Let us document the entries in the state table to get state register logic

The state table of the MOD-2 synchronous counter is shown in Table 9.2.
So, we need to have single D flip-flop having asynchronous active-low reset input

reset_n and active-high enable data_in.

6. Use of the excitation table to design the next state logic

The excitation table consists of the information about the present state, next state
and excitation input (Table 9.3).

Now, let us use the K-map to deduce the Boolean equation for the next state
(Fig. 9.4).

q0+ = data_in.q0

Fig. 9.4 K-map for the next
state logic

9.3 Moore FSM Design 143

Table 9.4 Truth-table of the
output logic

Enable (data_in) Present state (q0) Output (data_out)

1 s0 = 0 s0 = 0

1 s1 = 1 s1 = 1

0 s0 = 0 s0 = 0

0 s1 = 1 s1 = 1

7. Output logic

In the Moore FSM output is function of the present state only. For this design, there
is no any need of the output logicTable 9.4.

8. Let us sketch the FSM design

As discussed in the previous steps, we need to have flip-flop and logic gates to
implement the MOD-2 counter which is divide by 2. Only care should be taken that
the flip-flop should have active-high enable. As shown in Fig. 9.5, the state register
uses data_in = 1 as active-high enable. During the data_in = 0, the output of the
register is same as the present state.

Fig. 9.5 MOD-2 counter having active-high enable

144 9 FSM Design Techniques

9.4 Mealy FSM Design

Let us consider the design of the sequential circuit to get the output data_out which
is input clock frequency divided by 2 when data_in = 1. We can use the following
design steps to design the Mealy FSM.

1. Find the number of states to get the divide by 2 output

Number of states = 2. The states are s0 and s1.

2. State diagram

The state transition happens when data_in = 1 only (Fig. 9.6).

3. Find number of flip-flops

We will use the binary encoding and the number of flip-flops = n= log22 = 1. We
will use the positive edge-sensitive D flip-flops.

4. Reset strategy

Let us use active-low asynchronous reset input reset_n. For reset_n= 0, the counter
output is logic 0. For the reset_n= 1, the output increments on the rising edge of the
clock.

5. Let us document the entries in the state table to get state register logic

The state table of the MOD-2 synchronous counter is shown in Table 9.5.
So, we need to have single D flip-flop having asynchronous active-low reset input

reset_n and active-high enable data_in.

Fig. 9.6 Mealy Design of
toggle flip-flop

9.4 Mealy FSM Design 145

Table 9.5 State table of the
MOD-2 binary up-counter

Enable (data_in) Present state (q0) Next state (q0+)

1 s0 s1

1 s1 s0

0 s0 s0

0 s1 s1

6. Use of the excitation table to design the next state logic

The excitation table consists of the information about the present state, next state
and excitation input (Table 9.6).

Now, let us use the K-map to deduce the Boolean equation for the next state logic
(Fig. 9.7).

q0+ = data_in.q0
7. Output logic

In theMealy FSMoutput is function of the present state and changes in inputs. (Table
9.7).

Now, let us use the K-map to deduce the Boolean equation for the output logic
(Fig. 9.8).

data_out = data_in.q0

So, we need to have AND gate as an output logic.

Table 9.6 Excitation table of
the MOD-2 counter

Enable
(data_in)

Present state
(q0)

Next state
(q0+)

Excitation
input (D0)

1 s0 = 0 s1 = 1 1

1 s1 = 1 s0 = 0 0

0 s0 = 0 s0 = 0 0

0 s1 = 1 s1 = 1 0

Fig. 9.7 K-map for the next
state logic

146 9 FSM Design Techniques

Table 9.7 Truth-table of the
output logic

Enable (data_in) Present state (q0) Output (data_out)

1 s0 = 0 0

1 s1 = 1 1

0 s0 = 0 0

0 s1 = 1 0

Fig. 9.8 K-map for the
output logic

8. Let us sketch the FSM Design

As discussed in the previous steps, we need to have flip-flop and logic gates to
implement the MOD-2 counter which is divide by 2. Only care should be taken that
the flip-flop should have active-high enable. As shown in Fig. 9.9, the state register
uses data_in = 1 as active-high enable. During the data_in = 0, the output of the
register is same as the present state (Fig. 9.9).

9.5 Applications and Design Strategies

The FSM designs are useful to design the sequential logic with the objective to have
better data and control path optimization. Following are few of the applications and
the strategies while designing the FSM-based designs.

1. FSM-based design approach is used to design the arbitrary counters or random
counter.

2. FSMs are extensively useful to design the large density counting circuit to have
better partitioning and better area, timing.

3. FSMs are used to detect the sequence from the input stream.
4. The objective of the logic designer is to design the glitch-free FSMs.
5. The FSM-based controllers should have separate data and control path for better

area and speed.

9.5 Applications and Design Strategies 147

Fig. 9.9 MOD-2 counter having active-high enable

6. While designing the FSM to optimize for the area, try to have the strategy to
eliminate unwanted or unused states.

7. Use the gray encoding for the power optimization.
8. If the area is not a constraints, then for the better timing, use the one-hot

encoding.

9.6 Exercises

By using the techniques discussed in the previous sections, let us complete exercises.

9.6.1 Exercise 1: Moore Machine State Diagram

Sketch the Moore state diagram to detect the 101-overlapping sequence.

Solution: To detect the sequence 101, use the understanding of the Moore machine.
Output is function of the present state only, and output is 1 when the sequence 101
is detected.

Consider the default state is S0 and output is 0. So, the state transition should be
as follows.

148 9 FSM Design Techniques

Fig. 9.10 Moore state
diagram of sequence 101

1. If input is 1, then S0–S1. Be there in state S0 for input is equal to 0.
2. If next input bit is 0, then S1–S2. Be there in state S1 when input is 1.
3. If next input bit is 1, then S2–S3, and output is 1. If input is 0, then S2–S0.
4. To detect the overlapping sequence 101, if again next input is 0, then S3–S2. If

input is 1, then state transition from S3–S1.

The state diagram is shown in Fig. 9.10.

9.6.2 Exercise 2: Mealy Machine

Sketch the Mealy state diagram to detect the 101-overlapping sequence.

Solution: To detect the sequence 101, use the understanding of the Mealy machine.
Output is function of the present state and input also, and output is 1 when the
sequence 101 is detected.

Consider the default state is S0 and output is 0. So, the state transition should be
as follows.

1. If input is 1, then S0–S1. Be there in state S0 for input is equal to 0.
2. If next input bit is 0, then S1–S2. Be there in state S1 when input is 1.
3. To detect the overlapping sequence 101, if next input bit is 1, then S2–S1, and

output is 1. If input is 0, then S2–S0.

The state diagram is shown in Fig. 9.11.

9.6 Exercises 149

Fig. 9.11 Mealy state
diagram of sequence 101

9.6.3 Exercise 3: One-Hot Encoding

For the following state diagram to detect the 101-overlapping sequence, document
the states using one-hot encoding. How many flip-flops are needed to implement the
one-hot encoding state machine? (Fig. 9.12).

Solution: For the state machine design using one-hot encoding, the number of flip-
flops is equal to number of states. For the givenMoore sequence detector, the number
of flip-flops = 4.

Fig. 9.12 Moore state
diagram of sequence 101

150 9 FSM Design Techniques

Fig. 9.13 Mealy state
diagram of sequence 101

We can represent the states using one-hot encoding as

S0 = 0001
S1 = 0010
S2 = 0100

S3 = 1000

9.6.4 Exercise 4: FSM Area and Power Optimization

For the following state diagram to detect the 101-overlapping sequence, how we can
think about the area and power optimization? (Fig. 9.13).

Solution: For the given Mealy sequence detector, the number of flip-flops= 2 if we
use the binary or gray encoding. As there is single bit change in the two consecutive
gray codes, use the gray encoding to optimize for the power.

We can represent the states using gray encoding as

S0 = 00

S1 = 01

S2 = 11

As compared to the one-hot encoding, the gray encoding optimizes the area as
number of flip-flops for gray encoding are log2States.

If states are four, then the number of flip-flops is 2. For three states, we need two
flip-flops.

9.7 Important Takeaways 151

9.7 Important Takeaways

Following are few of the important points to conclude this chapter.

1. In the Moore FSM, an output is function of the present state only.
2. In the Mealy FSM, an output is function of the present state and inputs.
3. Mealy FSM needs lesser number of states as compared to Moore FSM.
4. The FSM-based design approach is useful to design the sequence detectors and

random counters.
5. The FSM can use one of the state encoding method, binary, gray or one-hot.
6. Using the gray encoding, the power can be optimized.
7. Using the one-hot encodingmethod, the timing can be improved, but it increases

the area.

Chapter 10
Advanced Design Techniques-1

The advanced digital design techniques are useful to improve
the speed of design and even to optimize for the area and power.

Already in previous nine chapters, we have discussed the various design techniques.
The chapter discusses the data and control path designs and the timing of the
synchronous sequential circuits. Even this chapter focuses on the various advanced
design techniques which are useful to improve design speed and to optimize for the
area, and power. You can use these techniques in the design of the architecture and
also in the high-speed digital designs.

10.1 Various Paths in the Design

In most of the designs, we have the sequential and combinational elements. If we
consider the processor logic then we have the

1. ALU
2. Internal memory
3. Serio IO control
4. Interrupt control
5. Register array
6. Bus interface units
7. Control and timing unit
8. Clock and reset logic.

If the processor has the single clock domain, then the single clock is used as clock
input for the various units.

Practically, the design has the

1. Clock paths
2. Reset paths
3. Data paths and control paths

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Design Techniques and Exercises,
https://doi.org/10.1007/978-981-16-5955-3_10

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5955-3_10&domain=pdf
https://doi.org/10.1007/978-981-16-5955-3_10

154 10 Advanced Design Techniques-1

Few of the recommendations during the design are

• The design should have the better clock and reset management schemes. For
example, if the asynchronous reset is used then there should be the reset
synchronizers to synchronize the internal asynchronous reset with the master
reset.

• The clock distribution schemes should be such that there is uniform skew across
the clock path.

• Don’t generate the clocks using multiple sources as there is issue due to multiple
clock domain and data convergence.

• If multiple clocks is requirement for the design, then use the synchronizers in the
data and control paths.

• Use the level synchronizers to pass the control signals from one of the clock
domain to another clock domain.

• Use the FIFO synchronizers to pass the data between the clock domains.
• Have the better data and control path management.

For the complex design, the data path and control path are discussed in the
following sections.

10.2 Data and Control Paths

It is recommended to have the better data and control path logic. The data path logic
allows the use of the input data and processing of the data depending on the control
inputs. The main intention of the designer is to isolate the larger density data paths or
to include the parallelism in the design to process the data depending on the control
inputs.

So, the better strategy to design the data path logic is

1. Try to understand the data processing requirements. For example, consider
the DSP processor performs the multiplication operation on 16-bit data, and
it generates the 32-bit result (Fig. 10.1).

2. The main strategy is to use the design which can perform the multiplication
operation using the data path logic.

3. Here the data path logic uses the 16-bit inputs as op_1, op_2 to generate an
output as 32-bit result.

The role of the control path logic

The control path logic is used to generate the control and timing information to
the data path logic. Even the control unit polls the handshaking signal status. The
handshaking signal is used to convey the information to the control logic that the
multiplication operation is performed, and now for the next control signal the data
path logic can perform another multiplication operation.

10.2 Data and Control Paths 155

Fig. 10.1 Data and control
path logic

Following are few important objectives to have the separate control path logic.

1. The control path logic can communicate the control and timing information to
the data path logic.

2. Depending on the control signal information, the data path logic can perform
the operation and generates the status signal as handshaking signal.

3. Even the control path logic is used to generate the control and timing information
for the design to process the data.

Most of the time, we need to have better control and data paths for efficient area
and timing of the design. Now let us discuss the sequence detector and its use as
control logic in the control path.

10.3 Mealy Sequence Detector Design

Let us consider the design of the sequence detector to detect the sequence 101 from
the input. If input is 1010100100101…then expected output is 0010100000001. We
can use the design steps discussed in Chap. 9 to design the Mealy sequence detector

1. State diagram

The state transition happens when the input 1,0,1 at data_in (Fig. 10.2).

2. Find the number of states to detect the sequence

Number of states = 3. The states are s0 and s1 and s2.

156 10 Advanced Design Techniques-1

Fig. 10.2 Mealy FSM
sequence detector

3. Find number of flip-flops

We will use the binary encoding (s0 = 00, s1 = 01, s2 = 10) and the number of
flip-flops = n = log2 3.We will use two positive edge-sensitive D flip-flops.

4. Reset strategy

Let us use active low asynchronous reset input reset_n. For reset_n= 0, the sequence
detector output is logic 0 and it holds default state S0. For the reset_n = 1, the
sequence detector state transition happens on the rising edge of the clock.

5. Let us document the entries in the state table to get state register logic

The state table of the 101-sequence detector is shown Table 10.1.
So, we need to have two D flip-flops having asynchronous active low reset input

reset_n.

6. Use of the excitation table to design the next state logic

The excitation table consists of the information about the present state, next state
and excitation input (Table 10.2).

Table 10.1 State table of the
101 Mealy sequence detector

Input (data_in) Present state (q1 q0) Next state (q1+q0+)

0 s0 s0

1 s0 s1

0 s1 s2

1 s1 s1

1 s2 s1

0 s2 s0

10.3 Mealy Sequence Detector Design 157

Table 10.2 Excitation table
of the 101-sequence detector

Input
(data_in)

Present state
(q1 q0)

Next state
(q1+q0+)

Excitation input
(D1D0)

0 s0 = 00 s0 = 00 s0 = 00

1 s0 = 00 s1 = 01 s1 = 01

0 s1 = 01 s2 = 10 s2 = 10

1 s1 = 01 s1 = 01 s1 = 01

1 s2 = 10 s1 = 01 s1 = 01

0 s2 = 10 s0 = 00 s0 = 00

Now let us use the K-map to deduce the Boolean equation for the next state logic
(Figs. 10.3 and 10.4).

= data_in.q0

q0+ = D0 = data_in

Fig. 10.3 K-map for the
next state logic D1

Fig. 10.4 K-map for the
next state logic D0

158 10 Advanced Design Techniques-1

Table 10.3 Truth-table of the
output logic

Input
(data_in)

Present state (q1
q0)

Next state
(q1+q0+)

Output
data_out

0 s0 = 00 s0 = 00 0

1 s0 = 00 s1 = 01 0

0 s1 = 01 s2 = 10 0

1 s1 = 01 s1 = 01 0

1 s2 = 10 s1 = 01 1

0 s2 = 10 s0 = 00 0

Fig. 10.5 K-map for the
output logic

7. Output logic

In theMealy FSM sequence detector output is function of the present state and inputs
(Table 10.3).

Now let us use the K-map to deduce the Boolean equation for the output logic
(Fig. 10.5).

data_out = data_in.q1

So, we need to have AND gate as an output logic.

8. Let us sketch the FSM Design

As discussed in the previous steps, we need to have two flip-flops and logic gates
to implement the 101-sequence detector. In Fig. 10.6, the combo logic indicates the
logic for the D1 and D0. The designer can use two flip-flops and combo logic to
complete the design of FSM controller.

Now let us use the 101 Mealy sequence detector as control path logic and try to
understand the data and control path design in much more detail.

10.4 Data and Control Path Design Techniques 159

Fig. 10.6 Mealy sequence detector top-level logic to detect 101 overlapping sequence

10.4 Data and Control Path Design Techniques

Now let us use the FSM designed in the previous section to optimize the data and
control paths.Most of the timewedon’t pay attention to have separate data and control
paths, and this significantly affects on the area, speed and power of the design. As
discussed in the previous section, ifwe have the better strategies to design the separate
logic for the data and control path, then we can have significant improvement in the
timing and even in the area.

Consider now the design scenario, the design requirement is to enable the data
path logic after detecting the sequence 101 to transfer the 16-bit of the data from
register A to output. In such scenario, we can use the following strategy.

1. Design the control path logic: Design the sequence detector to detect the
sequence 101. The control logic uses the input as a clk, reset_n and data_in
and generates a pulse at data_out if 101 sequence is detected.

2. Design the data path logic: In the data path let us have the register A which
can hold the 16-bit data and when it is enabled it transfers the contents of A to
output Y_out.

The design is shown in Fig. 10.7.
Now let us discuss the speed of the design and what are the different parameters

used to find the maximum frequency for the design.

160 10 Advanced Design Techniques-1

Fig. 10.7 Data and control path design strategy and use

10.5 Flip-Flop Timing Parameters

Important timing parameters of flip-flop are shown in Fig. 10.8, and they are:

1. Setup time (tsu)
2. Hold time (th)
3. Propagation delay of flip-flop (tpff)

• Setup Time (tsu): The minimum amount of time for which the data input of the
flip-flop should maintain the stable value prior to arrival of the active edge of the
clock is called as setup time.

During the setup time window if the data input changes, then the flip-flop
output will be metastable which indicates the setup violation.

• Hold time (th): The minimum amount of time for which the data input of the
flip-flop should maintain the stable value after the arrival of the active edge of the
clock is called as hold time.

Fig. 10.8 Timing
parameters for D flip-flop

10.5 Flip-Flop Timing Parameters 161

During the hold time window if the data input changes, then the flip-flop output
will be metastable which indicates the hold violation.

• Propagation Delay (tpdff = tcq): The amount of time required for the flip-flop to
generate the valid output after the arrival of the active edge of the clock is called
as propagation delay of flip-flop.

The propagation delay is also called as the clock to q delay, and it is also referred
as tcq.

10.6 Example on Performance Improvement of the Design

Now let us discuss how we can use the timing parameters of the flip-flops and how
we can get the maximum operating frequency for the design.

Consider the design (Fig. 10.9) of toggle flip-flop discussed in Chap. 7, consider
tpff = 1 ns, tcombo = tnot = propagation delay of NOT gate = 1 ns and tsu = setup
time= 1 ns and th= hold time= 0.5 ns. Let us find themaximumoperating frequency
for the design.

Fig. 10.9 Toggle flip-flop using D

162 10 Advanced Design Techniques-1

To find themaximum operating frequency for the design, use the reg-to-reg timing
path. In the design, the start point is clk and endpoint is D of the flip-flop.

1. Let us find out the data arrival time (AT). AT = tpdff1 + tcombo

2. The data required time is RT. RT= T clk − tsu because the data at D input should
be stable by tsu margin prior to arrival of rising edge of the clock.

3. Now find setup slack. Slack = RT-AT and should be greater than or equal to 0.
4. Slack = RT-AT

= (Tclk − tsu)− (tpdff1 + tcombo).

5. If we equate the slack to zero, then we get

0 = (Tclk − tsu)− (tpdff1 + tcombo)

Tclk = tpdff1 + tcombo + tsu

6. The maximum operating frequency of the design is f max

fmax = 1

Tclk
= 1

tpdff1 + tcombo + tsu

= 1

1 ns+ 1 ns+ 1 ns

= 1

3 ns
= 333.33MHz

Now let us improve the design performance!

The logic in the design (Fig. 10.9) can be tweaked by removing NOT gate
from the data path. Directly the complement of Q is given as data input to D
flip-flop (Fig. 10.10).

This improves the area and speed for the design, and the maximum operating
frequency we can get as

fmax = 1

Tclk
= 1

tpdff1 + tsu

= 1

1 ns + 1 ns

= 1

2 ns
= 500.00MHz

We can use these techniques for the high-density designs also. For high-density
designs, we can use the resource sharing and pipelining to improve the area and
speed, respectively.

10.7 Exercises 163

Fig. 10.10 Toggle D flip-flop

10.7 Exercises

Let us complete the exercises to find the maximum frequency for the design.

10.7.1 Exercise 1: Maximum Operating Frequency

Find the maximum operating frequency for the design shown in Fig. 10.11.
Solution: To find the maximum operating frequency for the design, use the reg-

to-reg timing path. In the design, the start point is c1 and endpoint is D of second
flip-flop.

Fig. 10.11 Reg-to-reg path

164 10 Advanced Design Techniques-1

7. Let us find out the data arrival time (AT). AT = tpdff1 + tcombo

8. The data required time is RT. RT = T clk − tsu because the data at D input
should be stable by tsu margin prior to arrival of rising edge of the clock.

9. Now find setup slack. Slack= RT-AT and should be greater than or equal to 0.
10. Slack = RT-AT

= (Tclk − tsu)− (tpdff1 + tcombo)

11. If we equate the slack to zero, then we get

0 = (Tclk − tsu)− (tpdff1 + tcombo)

Tclk = tpdff1 + tcombo + tsu

12. The maximum operating frequency of the design is f max

fmax = 1

Tclk
= 1

tpdff1 + tcombo + tsu
.

10.7.2 Exercise 2: Timing Paths

Find the number of timing paths in the design shown in Fig. 10.12.
Solution: To find the number of timing paths for the design. Consider the start

point as clock pin of the flip-flop, input port data_in and endpoint as data input of
sequential element and data_out, data_out_1 that is output port.

1. Input-to-reg path: From data_in to D input of the first flip-flop.
2. Reg-to-output path: From the clock c2 to data_out
3. Reg-to-reg path: From clock c1 to D of the second flip-flop
4. Input-to-output path: From data_in to data_out_1. This is also called as

combinational path.

So, the design has four timing paths.

Fig. 10.12 Sequential design

10.7 Exercises 165

Fig. 10.13 Ring counter

10.7.3 Exercise 3: Maximum Operating Frequency

Find the maximum operating frequency for the design shown in Fig. 10.13.
Solution: To find the maximum operating frequency for the design, use any of

the reg-to-reg timing path. In the design, the start point is clk and endpoint is D of
second flip-flop.

1. Let us find out the data arrival time (AT). AT = tpdff1
2. The data required time is RT. RT= T clk − tsu because the data at D input should

be stable by tsu margin prior to arrival of rising edge of the clock.
3. Now find setup slack. Slack = RT-AT and should be greater than or equal to 0.
4. Slack = RT-AT

= (Tclk − tsu)− (tpdff1)

5. If we equate the slack to zero, then we get

0 = (Tclk − tsu)− (tpdff1)

Tclk = tpdff1 + tsu

6. The maximum operating frequency of the design is f max

fmax = 1

Tclk
= 1

tpdff1 + tsu

10.7.4 Exercise 4: Positive Clock Skew and Maximum
Operating Frequency for the Design

Find the maximum operating frequency for the design shown in Fig. 10.14.
Solution: To find the maximum operating frequency for the design use the reg-

to-reg timing path. In the design, the start point is c1 and endpoint is D of second
flip-flop.

1. Let us find out the data arrival time (AT). AT = tpdff1 + tcombo

166 10 Advanced Design Techniques-1

Fig. 10.14 Positive clock skew

2. The data required time is RT. RT = T clk − tsu + tbuf because the data at D input
should be stable by tsu margin prior to arrival of rising edge of the clock and
clock is delayed by the buffer delay.

3. Now find setup slack. Slack = RT-AT and should be greater than or equal to 0.
4. Slack = RT-AT

= (Tclk − tsu + tbuf)− (tpdff1 + tcombo)

5. If we equate the slack to zero, then we get

0 = (Tclk − tsu + tbuf)− (tpdff1)− (tcombo)

Tclk = tpdff1 + (tcombo)+ tsu − tbuf

6. The maximum operating frequency of the design is f max

fmax = 1

Tclk
= 1

tpdff1 + tcombo + tsu − tbuf

10.7.5 Exercise 5: Negative Clock Skew and Maximum
Operating Frequency for the Design

Find the maximum operating frequency for the design shown in Fig. 10.15.
Solution: To find the maximum operating frequency for the design, use the reg-

to-reg timing path. In the design, the start point is c1 and endpoint is D of second
flip-flop.

Fig. 10.15 Negative clock skew

10.7 Exercises 167

1. Let us find out the data arrival time (AT). AT = tpdff1 + tcombo

2. The data required time is RT. RT= T clk − tsu − tbuf because the data at D input
should be stable by tsu margin prior to arrival of rising edge of the clock and
clock is delayed by the buffer at flip-flop 1.

3. Now find setup slack. Slack = RT-AT and should be greater than or equal to 0.
4. Slack = RT-AT

= (Tclk − tsu − tbuf)− (tpdff1 + tcombo)

5. If we equate the slack to zero, then we get

0 = (Tclk − tsu − tbuf)− (tpdff1 + tcombo)

Tclk = tpdff1 + tcombo + tsu + tbuf

6. The maximum operating frequency of the design is f max

fmax = 1

Tclk
= 1

tpdff1 + tcombo + tsu + tbuf

10.8 Important Takeaways

Following are few of the important points to conclude this chapter.

1. The FSM should have better data and control path design.
2. The goal is to improve the design speed by minimizing the combinational delay

in the reg-to-reg path.
3. The flip-flop setup time is minimum amount of time during which data should

be stable prior to arrival of the active edge of the clock.
4. The flip-flop hold time is minimum amount of time during which data should

be stable after the arrival of the active edge of the clock.
5. The flip-flop propagation delay is the amount of time required to get output data

after arrival of the active edge of the clock.
6. The start point is clk port and input ports.
7. The endpoint is output ports, data input of the D flip-flop.
8. The maximum operating frequency is dependent on the timing parameters of

the flip-flop and the combinational delay.

Chapter 11
Advanced Design Techniques-2

The various efficient design techniques are useful during the
architecture and micro-architecture design..

In the previous chapter, we have discussed the advanced digital design techniques.
In this chapter, we will focus on the architecture design for the given functional
specifications. The chapter is even useful to understand the design-specific scenarios
like multiple clock domains, multiple power domains, synchronizers, design specific
scenarios and the performance improvement for the design.

11.1 Multiple Clock Domain Designs

Most of the time, we have the multiple clock domain designs. Consider the design
which has the general-purpose processor, video encoder/decoder and memory
controllers. The general-purpose processor operates on clk1 = 500 MHz, the video
encoder/decoder operates on the clk2 = 250 MHz, and the memory controller oper-
ates at the frequency of clk3 = 333.33 MHz. So, we need to have three different
clock sources, and such type of the design is called as the multiple clock domain
design (Fig. 11.1).

What are issues in such designs?

In themultiple clock domain designs, themajor issue is exchange of the data between
the clock domains. There is issue of the data convergence and can be overcome by
using the control and data path synchronizers.

Wecan thinkof using the level synchronizers in the control path andFIFOsynchro-
nizers in the data path. The following section discusses the issues in themultiple clock
domain designs!

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Design Techniques and Exercises,
https://doi.org/10.1007/978-981-16-5955-3_11

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5955-3_11&domain=pdf
https://doi.org/10.1007/978-981-16-5955-3_11

170 11 Advanced Design Techniques-2

Fig. 11.1 Multiple clock domain design

11.2 Metastability

Consider the design shown in Fig. 11.2. The data_in is input of the design and
sampled on the rising edge of the clock. If the other design which works at different
clock frequency drives the data_in, then the design has multiple clock boundaries. In
such scenario due to phase difference between the multiple clocks, the first flip-flop
(Fig. 11.2) goes into themetastable state. Themeta_data indicates the flip-flop output
is metastable, and hence there is timing violation for the first flip-flop.

Themetastability indicates the data output is not valid, and to get the valid data
output, the design needs to use the multi-flop-level synchronizers.

The timing sequence is shown in Fig. 11.3. As shown the output of the first flip-
flop is in the metastable state, and the data_out output from the output flip-flop is
having the valid legal state.

Fig. 11.2 Level
synchronization concept

11.3 Control Path Synchronizer 171

Fig. 11.3 Timing sequence
for Fig. 11.2

11.3 Control Path Synchronizer

As discussed in the previous section, we can think of using the level synchronizers
in the control path. For the level synchronizer, the first flip-flop output is metastable
and should be ignored by setting the false path in the timing analysis. The control
path synchronizer which uses two flip-flops in cascade is shown in Fig. 11.4.

There are various other synchronization techniques to pass the signal between the
multiple clock domains. Few of them are mux synchronizers, pulse synchronizers.

Consider the use of the level synchronizer in the control path. Consider the clock
domain 1 operates at 100 MHz and clock domain 2 at 50 MHz. To pass the control
signals from one of the clock domain to another clock domain, we can think of use
of the level synchronizers (Fig. 11.5).

Fig. 11.4 Two-flop-level synchronizer

Clock domain
I

Clock domain
II Synchronizer

Fig. 11.5 Passing the control signal between the clock domain

172 11 Advanced Design Techniques-2

Fig. 11.6 FIFO in the data path

11.4 Data Path Synchronizer

We can use the asynchronous FIFO to pass the burst of data between the clock
domains.

The FIFO has input and output data. The write clock and read clock domain. The
basic architecture of the FIFO is shown in Fig. 11.6.

The FIFO is used in the data path to transfer the burst of the data. The write clock
domain and read clock domain frequencies are different, and during the design, we
need to understand about the depth of FIFO required. The FIFO depth calculation is
discussed in the exercises.

Depending on the write clock frequency the burst of the data is written into the
FIFO memory when FIFO is not full.

When FIFO is not empty, then depending on the read clock frequency the data
can be read.

During the design of the data path synchronizer, the objective of the designer is
to design the FIFO logic to achieve the data convergence.

11.5 Multiple Power Domain Designs

The way in which we have the multiple clocks in the design we can have the multiple
power domains. That is the different design units operates on the various voltage
levels. For example, processor operates at 1.8 V, the video controller operates at
3.3 V, and the memory controller operates at 2.5 V (Fig. 11.7).

11.5 Multiple Power Domain Designs 173

Fig. 11.7 Multiple clock
and power domain design

As shown in Fig. 11.7, we have three power domains in the design. For such
kind of designs, we need to have better power domain management! We can use the
following strategies while designing the multiple power domain designs.

1. Have the power-up sequence using the state machine
2. Use the level shifters and isolation cells while communicating between multiple

power domains.
3. Use the retention cells to retain the state of the block during power shut-down.
4. Have the low-power design architecture using the low-power cells.

Most of the design architectures demands the use of the high-speed techniques and
low-power concepts. So let us discuss use of these concepts to design the architecture
for the given specifications.

11.6 Architecture-Level Designs

Consider the design of the high-speed data transfer logic between the processor and
the IO. So let us discuss how we can design the architecture and micro-architecture
for such kind of designs.

1. Understand about the speed that is operating frequency of the processor.
2. Understand about the operating frequency of the IO device.
3. The goal is to design the IO controller where the processor communicates.
4. So, try to find out the speed and data rate of the channel to transfer or to accept

the burst of data.

174 11 Advanced Design Techniques-2

Fig. 11.8 Architecture of the IO processor

5. Try to sketch the architecture.

At the top-level we can think about the IO processor which can be interfaced
between the main processor and IO devices to transfer the data.

From the design specifications we can design the architecture as shown in the
figure. As shown in Fig. 11.8, the main functional blocks to transfer the data between
the main processor and IO are

1. Input buffer
2. Output buffer
3. Data transfer module
4. IO configuration module
5. Control and timing unit.

For each module, we need to identify the interface and control signals. We should
create the micro-architecture for each block if the goal is to use this for RTL design.
For the systemdesign, we should have different thought process andwill be discussed
in the next chapter.

11.7 How We Can Improve the Design Performance

To improve the design performance at the architecture level, we need to understand
about the top-level design constraints such as area, speed and power.

Following are few of the strategies we can adopt to improve the design
performance.

1. Use the better partitioning strategies by using separate functional blocks.
2. Have the parallelism in the design to perform multiple operations at a time. For

example, fetch of the data from various devices at a time. This may increase the
area but improves the speed of the design (Fig. 11.9).

11.7 How We Can Improve the Design Performance 175

Fig. 11.9 Parallel paths in the design

3. Have the clock distribution to achieve the better timing.
4. Use the reset logic to initialize the functional blocks at power-on.
5. Avoid the cascade of the functional blocks to improve the timing.
6. Use the pipelining and resource sharing while developing the processing logic.

For example, fetch, decode, execute and store can be performed by having the
4-stage pipelined architecture.

7. Isolate the power domains and clock domains using the design strategies.
8. Have the design policies for the memory buffers and the internal storage.
9. Use the high-speed interfaces to minimize the latency.
10. Use the glitch suppressing circuits and mechanisms in the design.
11. Use the clock gating cells to reduce the dynamic power dissipation (Fig. 11.10).

data_out
data_in

G_clk
enable Register

Latchclk

Fig. 11.10 Low-power clock gating cell

176 11 Advanced Design Techniques-2

Processor

Memory

Memory

IO Device

IO Device

Fig. 11.11 Basic components in the system design

11.8 The Digital Systems and Design

Consider the design of the digital system. As most of us are familiar with the fact
that the digital system consists of the

1. Processor
2. Input–output devices
3. Memories

Processor controls the data transfer between the IO and memory devices
depending on the IO or memory instructions. The processor has address, data and
control buses. The address bus is used to transfer the address of IO ormemory device.
The control bus generates the read and write control signals, and the data bus is used
to transfer or accept the data.

The memory devices can be ROM or RAM and can be interfaced with the
processor using the desired decoding schemes.

The IO devices like keyboard, display, ADC and DAC are used to communicate
with the processor using the desired decoding schemes (Fig. 11.11).

With the above components the system has the power supply, clock generation
logic, reset generation logic and other high speed data transfer mechanisms.

11.9 Exercises

Let us complete few exercises on the design techniques discussed in this chapter.

11.9 Exercises 177

11.9.1 Exercise 1: FIFO Depth Calculation

Consider the design having write clk frequency f 1 = 100 MHz and read clock
frequency f 2 = 50 MHz, and the burst length is 40 byte; find the depth of FIFO?

Solution: To find the depth of the FIFO, use the following steps.

1. Time required to write single data byte (Tw)

Tw = 1/100MHz = 10 ns

2. Time required to write burst of the data that is 40 bytes (Tb_w)

Tb_w = Tw ∗ Burst length = 10 ns ∗ 40 = 400 ns

3. Time required to read one data (Tr)

Tr = 1/50MHz = 20 ns

4. The number of data reads in duration of Tb_w

No of reads = 400 ns/20 ns = 20

5. The depth of FIFO

Depth of FIFO = Burst length − No of reads = 40 − 20 = 20.

11.9.2 Exercise 2: FIFO Depth Calculation

Consider the design having write clk frequency f 1 = 100 MHz and read clock
frequency f 2 = 50 MHz, and the burst length is 40 bytes. The number of idle cycles
between two writes is 1, and number of idle cycle between two reads is 3. Find the
depth of FIFO?

Solution: To find the depth of the FIFO, use the following steps.

1. Time required to write single data byte (Tw)

One idle cycle between two writes so for two cycles one data is written.

Tw = 2 ∗ (1/100MHz) = 20 ns

2. Time required to write burst of the data that is 40 bytes (Tb_w)

Tb_w = Tw ∗ Burst length = 20 ns ∗ 40 = 800 ns

178 11 Advanced Design Techniques-2

3. Time required to read one data (Tr)
For two successive reads three cycles (2 idle + 1 = 3 cycles)

Tr = 4 ∗ (1/50MHz) = 80 ns

4. The number of data reads in duration of Tb_w

No of reads = 800 ns/80 ns = 10

5. The depth of FIFO

Depth of FIFO = Burst length − No of reads = 40 − 10 = 30.

11.9.3 Exercise 3: FIFO Depth Calculation

Consider the design having write clk frequency f 1 = 50 MHz and read clock
frequency f 2 = 100 MHz, and the burst length is 100 bytes. The number of idle
cycles between two writes is 1, and number of idle cycle between two reads is 3.
Find the depth of FIFO?

Solution: To find the depth of the FIFO, use the following steps.

1. Time required to write single data byte (Tw)

One idle cycle between two writes so for two cycles one data is written.

Tw = 2 ∗ (1/50MHz) = 40 ns

2. Time required to write burst of the data that is 100 bytes (Tb_w)

Tb_w = Tw ∗ Burst length = 40 ns ∗ 100 = 4000 ns

3. Time required to read one data (Tr)

For two successive reads three cycles (2 idle + 1 = 3 cycles)

Tr = 4 ∗ (1/100MHz) = 40 ns

4. The number of data reads in duration of Tb_w

No of reads = 4000 ns/40 ns = 100

5. The depth of FIFO

Depth of FIFO = Burst length − No of reads = 100 − 100 = 0NO FIFO required.

11.9 Exercises 179

11.9.4 Exercise 4: FIFO Depth Calculation

Consider the design having write clk frequency f 1 = 25 MHz and read clock
frequency f 2 = 40 MHz, and the burst length is 100 bytes. The number of idle
cycles between two writes is 1, and number of idle cycle between two reads is 3.
Find the depth of FIFO?

Solution: To find the depth of the FIFO, use the following steps.

1. Time required to write single data byte (Tw)

One idle cycle between two writes so for two cycles one data is written.

Tw = 2 ∗ (1/25MHz) = 80 ns

2. Time required to write burst of the data that is 100 bytes (Tb_w)

Tb_w = Tw ∗ Burst length = 80 ns ∗ 100 = 8000 ns

3. Time required to read one data (Tr)

For two successive reads three cycles (2 idle + 1 = 3 cycles)

Tr = 4 ∗ (1/40MHz) = 100 ns

4. The number of data reads in duration of Tb_w

No of reads = 8000 ns/100 ns = 80

5. The depth of FIFO

Depth of FIFO = Burst length − No of reads = 100 − 80 = 20.

11.9.5 Exercise 5: FIFO Depth Calculation

Consider the design having write clk frequency f 1 = 50 MHz and read clock
frequency f 2 = 50 MHz, and the burst length is 80 bytes. The number of idle cycles
between two writes is 1, and number of idle cycle between two reads is 3. Find the
depth of FIFO?

Solution: To find the depth of the FIFO, use the following steps.

1. Time required to write single data byte (Tw)
One idle cycle between two writes so for two cycles one data is written.

Tw = 2 ∗ (1/50MHz) = 40 ns

180 11 Advanced Design Techniques-2

2. Time required to write burst of the data that is 80 bytes (Tb_w)

Tb_w = Tw ∗ Burst length = 40 ns ∗ 80 = 3200 ns

3. Time required to read one data (Tr)
For two successive reads three cycles (2 idle + 1 = 3 cycles)

Tr = 4 ∗ (1/50MHz) = 80 ns

4. The number of data reads in duration of Tb_w

No of reads = 3200 ns/80 ns = 40

5. The depth of FIFO

Depth of FIFO = Burst length − No of reads = 80 − 40 = 40.

11.10 Important Takeaways

Following are few of the important points to conclude this chapter.

1. For themultiple clock domain designs, use the level synchronizers in the control
path

2. Use the FIFO synchronizers to pass the data between the clock domain.
3. For multiple power domain designs, use the level shifters, isolation cells and

retention cells.
4. Use the FIFO depth calculations to find the depth of the FIFO in the multiple

clock domain designs.
5. Have the provision of the parallelism in the architecture and micro-architecture

designs.
6. Have the decoding strategies for the IO and memory decoders in the system

design.

Chapter 12
System Design and Considerations

For the digital system design, we should have high speed
processor, IO devices and Memory devices as basic components.

In previous chapters, we have discussed various digital design techniques and exer-
cises. Most of the time, we experience the need of the digital design techniques to
design the digital systems. If we consider any digital system, then the understanding
of the digital design techniques and their use is helpful to the engineers to design
and implement the systems. The main considerations are the area, speed and power
requirements for these systems and their efficient understanding while implementing
the digital systems. In this context, the chapter discusses the use of the digital design
techniques in the system design and other important goals.

12.1 System Design

If we consider any system design, then as discussed in the previous chapter we should
have the

1. Processor
2. Input output devices
3. Memories.

Figure 12.1 is the top-level component understanding of the digital system. Apart
from the components shown, we need to have the clock, power supply and reset logic.
Even the system can have additional high-speed interfaces and other test and debug
module on board. The objective of the chapter is to understand the digital system
and how these components are interfaced to establish the communication.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Design Techniques and Exercises,
https://doi.org/10.1007/978-981-16-5955-3_12

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5955-3_12&domain=pdf
https://doi.org/10.1007/978-981-16-5955-3_12

182 12 System Design and Considerations

Processor

Memory

Memory

IO Device

IO Device

Fig. 12.1 System design components

12.2 What We Need to Think About?

While developing the system, we need to think about the following important points.

1. The application and use of the system
2. Identify the components
3. IO devices: Type of IO devices
4. Memory devices: Types of memory needed in the system
5. How to identify the devices?
6. What should be decoding logic?
7. What is the speed
8. Compatibility considerations
9. What are the area, speed and power requirements?
10. Supply voltages and power supply design
11. Clock and reset management
12. Board design and the interface issue.

By considering all the above points, we can design the digital system. We can use
the microprocessor, microcontroller or FPGA as processing unit.

12.3 Important Considerations

To design the digital system, with the least propagation delay and the lower power
dissipation is the goal of the system designer! Even we need to consider about the

12.3 Important Considerations 183

1. Compatibility of the devices used
2. Fanout
3. Noise Margin.

Let us discuss then with some design example.

1. Compatibility: Two devices are compatible it indicates that their logic levels
are same. They can be directly interfaced with each other. As shown the output
of AND drives the NOT gate directly that means they are compatible with each
other (Fig. 12.2).

2. Fanout: The maximum load that can be driven by the driver is called as fanout.
While designing any digital system, we need to understand the fanout of the
design (Fig. 12.3).

3. NoiseMargin: Themaximumacceptable noise in the digital system is important
parameter and treated as noise margin.

Fig. 12.2 Compatible devices

Fig. 12.3 Fanout of the design

184 12 System Design and Considerations

Fig. 12.4 Voltage profiles and noise margin

Consider the voltage profiles shown in Fig. 12.4.
The noise margin is Vn and it is defined as

Vn = VILmax − VOLmax

where

V ILmax Maximum low-level input voltage
VOLmax Maximum low-level output voltage

The noise margin is Vn is also defined as

Vn = VOHmin − VIHmin

where

V IHmin Minimum high-level input voltage
VOHmin Minimum high-level output voltage

All the above parameters are useful during selection of the various system
components.

12.4 Let Us Understand the Microprocessor Capabilities 185

Fig. 12.5 System bus

12.4 Let Us Understand the Microprocessor Capabilities

The microprocessor should perform the data transfer, arithmetic, logical and
branching operations. The microprocessor should have the dedicated system bus
to carry address, data and control signal.

Now for better understanding, consider the 4-bit microprocessor which has the
4-bit address bus, 8-bit data bus and control signal as RD, WR, IO_M to control the
data transfer between the memory/IO and processor.

Address Bus: The bus is used to carry the address of memory or IO device.
Consider A0 to A3 as unidirectional address lines from the processor.

Data Bus: The bidirectional bus to carry the data. The data can be exchanged
between the processor and IO/memory devices. Consider DO-D7 as bidirectional
data bus.

Control Bus: Used to control the read and write for the IO or memory.
Figure 12.5 gives information about the various buses used in the system design.

12.5 Control Signal Generation Logic

Let us use the understanding of the decoders and combinational logic to generate the
control signals for the memory and IO devices.

As discussed about the main control signals are RD, WR, IO_M and used to
perform the read and write to/from IO/memory devices (Table 12.1).

To design the control logic, let us use the entries documented in Table 12.1. We
can use the 3:8 decoder, and we can generate the control signal for the memory/IO
read/write.

As documented when RD = 1, then it performs the memory read if IO_M = 0
and IO read when IO_M = 1.

186 12 System Design and Considerations

Table 12.1 Control signals RD WR IO_M Operation

1 0 0 Memory read

0 1 0 Memory write

1 0 1 IO read

0 1 1 IO write

0 0 X No operation

Fig. 12.6 Memory/IO
control signal logic

As documented when WR = 1, then it performs the memory write if IO_M = 0
and IO write when IO_M = 1.

When both the RD and WR are logic 0, then the processor will not perform any
operation (Fig. 12.6).

The control signals are generated by using the 3:8 decoder. To get memory read
I0_M = 0, WR = 0, RD = 1 hence as shown the y1 = 1.

To get memory write I0_M = 0, WR = 1, RD = 0 hence as shown the y2 = 1.
To get IO read I0_M = 1, WR = 0, RD = 1 hence as shown the y5 = 1.
To get IO write I0_M = 1, WR = 1, RD = 0 hence as shown the y6 = 1.
At a time, only one output of decoder is active high.

12.6 IO Devices and Communication with the Processor

Let us consider the read and write transactions for the IO devices. How we can
establish the communication with the IO devices that is particularly important point
to discuss!

Consider that, the system requirement is of 4, IO devices and each IO device has
four ports.

So, what should be our strategy?

To identify one of the port let us use two address line. Why? Because 4 ports = 22.
Power of 2 indicates the number of address lines needed. Table 12.2 gives information
about the identification of one of the port depending on the status of A1, A0.

12.6 IO Devices and Communication with the Processor 187

Table 12.2 IO ports and
identification

en = IO_M A1 A0 Description

1 0 0 IO device port 0 (y0) selected

1 0 1 IO device port 1 (y1) selected

1 1 0 IO device port 2(y2) selected

1 1 1 IO device port 3 (y3) selected

0 X X None of the IO device selected

Table 12.3 IO device
selection

en = IO_M A3 A2 Description

1 0 0 IO device #1 selected

1 0 1 IO device #2 selected

1 1 0 IO device #3 selected

1 1 1 IO device #4 selected

0 X X None of the IO device selected

Now each IO device has specific address. The IO #1 has address 0000-0011, the
IO #2 has address 0100-0111, the IO #3 has address 1000-1011, and the IO #4 has
address 1100-1111. So let us use the address lines A3, A2 and select one of the IO
device (Table 12.3).

Now let us interface the four IO devices with the microprocessor. As shown in
Fig. 12.7, to enable the IO decoder the en = IO_M (when 1 IO decoder is enabled)
is used.

The address lines A1, A0 are used directly to identify the IO port.
The address lines A3, A2 are used to select one of the IO device at a time using

the 2:4 decoder.

12.7 Memory Devices and Communication
with the Processor

Let us consider the read and write transactions for the memory devices. How we
can establish the communication with the memory devices that is discussed in this
section!

Consider that the system requirement is of fourmemory devices, and eachmemory
device has four, 8-bit registers.

So, what should be our strategy?

To identify one of thememory device, let us use two address line.Why? Because four
memory locations/registers = 22. Power of 2 indicates the number of address lines
needed. Table 12.4 gives information about the identification of one of the memory
location depending on the status of A1, A0.

188 12 System Design and Considerations

Fig. 12.7 IO interfacing

Table 12.4 Memory devices and identification

en = IO_M A1 A0 Description

0 0 0 Memory device location 0 selected

0 0 1 Memory device location 1 selected

0 1 0 Memory device location 2 selected

0 1 1 Memory device location 3 selected

1 X X None of the memory device selected

Now eachmemory device has specific address. The memory #1 has address 0000-
0011, thememory #2 has address 0100-0111, thememory #3 has address 1000-1011,
the memory #4 has address 1100-1111. So let us use the address lines A3, A2 and
select one of the memory device (Table 12.3).

Now let us interface the four memory devices with the microprocessor. As shown
in Fig. 12.8, to enable the memory decoder the en= IO_M (when 0 memory decoder
is enabled) is used (Table 12.5).

12.7 Memory Devices and Communication with the Processor 189

Fig. 12.8 Memory
interfacing

Table 12.5 Memory device selection

en = IO_M A3 A2 Description

0 0 0 Memory device #1 selected

0 0 1 Memory device #2 selected

0 1 0 Memory device #3 selected

0 1 1 Memory device #4 selected

1 X X None of the memory device selected

The address lines A1, A0 are used directly to identify the memory register or
memory location.

The address lines A3, A2 are used to select one of the memory device at a time
using the 2:4 decoder.

190 12 System Design and Considerations

Table 12.6 IO and memory selection table

en = IO_M A3 A2 Description Decoder output

0 0 0 Memory device #1 selected y0

0 0 1 Memory device #2 selected y1

0 1 0 Memory device #3 selected y2

0 1 1 Memory device #4 selected y3

1 0 0 IO device #1 selected y4

1 0 1 IO device #2 selected y5

1 1 0 IO device #3 selected y6

1 1 1 IO device #4 selected y7

12.8 Design Scenarios and Optimization

As discussed in the above section, we can design the separate IO and memory
decoding logic. But using the above discussed strategy, we need to have separate
IO and memory decoder. Hence, the system will become bulky and even costlier.

Now let us consider the same scenario to design the system which has four IO
devices and four memory devices.

Let us perform the optimization and let us try to implement the single decoding
logic to select for one of the IO or memory device. Let us document the IO and
memory selection depending on the status of IO_M, RD, WR.

As shown in the table, the IO_M, A3, A2 are used to identify the selection of the
IO or memory device. So let us use the 3:8 decoder and generate the 8 outputs to
identify the memory and IO devices.

1. Select lines of 3:8 decoder s2 = IO_M, s1 = A3, s0 = A2
2. Output lines y0–y7 only one line is active high at a time and according to

entries in Table 12.6, used as chip selection lines for the respective memory and
IO devices (Fig. 12.9).

Using the above discussion, you can interface the memory and IO devices with
the desired processor.

12.9 Concluding Comments

In this manuscript, I have covered the various design elements and their use, design
techniques and exercises. We have discussed the

1. Logic gates
2. Boolean functions
3. Combinational elements
4. Design using mux

12.9 Concluding Comments 191

Fig. 12.9 Memory and IO
decoder

5. Design using decoders and encoders
6. Flip-flop, latches and applications
7. Counter design
8. Shifter
9. Special counters
10. Sequential design
11. FSM design techniques
12. Area optimization
13. Speed improvement
14. Low-power cells and design
15. Architecture-level design
16. System design
17. Design techniques and optimization concepts.

You can use the foundation and design techniques discussed to learn the advanced
design techniques and their role in the VLSI design.

Even you can use the discussed techniques during the

1. Logic design
2. Architecture design
3. RTL design
4. FPGA designs.

Index

A
Active low asynchronous reset, 144, 156
Active low outputs, 79
Address Bus, 176, 185
AND, 7
AND gate, 7
Application specific gates, 24
Arbitrary counters, 146
Architecture, 173
Architecture design, 169
Area, 3
Area and speed, 162
Arithmetic Logic Unit (ALU), 62, 68
Arithmetic operations, 61, 69
Arithmetic resources, 52, 55, 64, 65
Arithmetic unit, 63
Asynchronous clear, 101
Asynchronous clear input, 110
Asynchronous design, 105
Asynchronous FIFO, 172
Asynchronous reset, 101, 154

B
Binary encoding, 140
Binary to gray, 43
Boolean equations, 1, 127, 129
Boolean functions, 12, 21, 80
Boolean theorems, 1
Bubbled AND, 11
Bubbled OR, 10
Bus multiplexing, 33

C
Cascade multiplexer, 33

Clock distribution schemes, 154
Clock frequency, 101
Clock gating cells, 107, 175
Clock muxing, 32, 38
Clock paths, 153
Clock skew, 165, 166
Clock source, 107
Clock to q delay (tctoq or tpff), 107
CMOS NOT gate, 3
CMOS switch level design, 22
Code converters, 43
Combinational logic, 2, 21
Combinational logic delay, 107
Common resources, 65
Control and data path synchronizers, 169
Control and timing, 154
Control bus, 176, 185
Control input, 64
Control path, 69
Control path logic, 154, 155, 159
Control signals, 185
Counters, 105

D
Data and control path management., 154
Data and control paths, 154
Data arrival time, 162
Data bus, 176, 185
Data path, 64, 69, 107
Data path logic, 154, 159
Data paths and control paths, 153
Data required time, 162
Decoders, 73
De Morgan’s theorems, 1, 10
Demultiplex the address and data bus, 95

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Design Techniques and Exercises,
https://doi.org/10.1007/978-981-16-5955-3

193

https://doi.org/10.1007/978-981-16-5955-3

194 Index

Density of logic, 3
Derived clocks, 118
Design performance, 162
Design specifications, 110, 174
Digital design techniques, 181
Digital systems, 181
Divide by two counter, 107
D-latch, 90
Dynamic power, 175

E
EDA tool, 2
Edge triggered, 89
8-bit latch, 95
Encoders, 73, 75
End point, 164
Excitation input, 109, 114, 126, 128
Excitation table, 109, 111, 114, 116, 122,

142, 145, 156

F
FIFO, 172
FIFO depth calculation, 172
FIFO synchronizers, 154, 169
50% duty cycle, 124
Finite State Machine (FSM), 137
Flip-flop propagation delay, 106
Flip-flops, 89
4-bit microprocessor, 185
4-bit ring counter, 128
4-bit twisted ring counter, 135
4:1 mux, 31
4:16 decoder, 83
4:2 encoder, 76, 77
4:2 priority encoder, 83
FPGA, 2
Frequency, 133
FSM based controllers, 146
FSM designs, 43, 143
FSM design techniques, 137
Full-adder, 51, 65
Functional specifications, 61

G
Glitch, 175
Glitches, 138
Glitch free FSMs, 146
Gray-counter, 115
Gray encoding, 140, 147
Gray to binary, 43

H
Half adder, 48
Half-subtractor, 49
High-speed interfaces, 175
Hold time (th), 107, 160

I
Input Output devices, 176
Instructions, 62
Interface, 187
Invalid output, 77
IO devices, 176, 182, 186, 187
IO processor, 174
Isolation cells, 173

J
Johnson counter, 128

K
Karnaugh Map (K-Map), 1
K-map, 44, 76
K-map, 44, 76, 145, 157

L
Latch-based designs, 95
Latches, 89
Latency, 136
Level sensitive, 89
Level shifters, 173
Level synchronizers, 154, 169, 171
Logical operations, 69
Logic duplications, 3
Logic gates, 5
Logic optimization, 62
Logic unit, 66
Low power design architecture, 173

M
Maximum frequency, 108
Maximum frequency calculation, 107
Maximum operating frequency, 162, 163,

165
Mealy, 155
Mealy FSM, 137, 138, 144, 145, 158
Mealy sequence detector, 150
Mealy state diagram, 148
Memories, 176
Memory devices, 176, 182, 187
Memory or IO devices, 73
Metastability, 170

Index 195

Metastable state, 170
Micro-architecture, 173, 174
Microprocessor, 185
Minimum area, 55
Minimum number of 2:1 mux, 30
MOD-2, 143, 146
MOD-2 synchronous counter, 144
MOD-3 binary up-counter, 121
MOD-3 counter, 124
MOD-3 synchronous binary up-counter,

122, 125
MOD-4 binary up-counter, 111
MOD-4 synchronous binary up-counter,

113
MOD-4 synchronous binary down-counter,

115
MOD-16 counter, 126
Moore FSM, 137, 138, 143
Moore state diagram, 147
Multiple clock boundaries, 170
Multiple clock domain, 43, 154, 169
Multiple power domains, 172
Multiplexed bus, 95
Multiplexer, 11, 24, 98
Multiplexer-based designs, 33
Multiplexer logic, 62
Mux, 11
Mux-based logic, 41

N
NAND, 7, 21, 22
NAND gate, 8
Negative edge sensitive D flip-flop, 93, 100
Negative level sensitive D latch, 91, 97
Next state logic, 141
NMOS, 22
NOR, 6, 21, 23
NOR gate, 6
NOT, 5
NOT gate, 5, 26
NOT of AND, 22
NOT of OR, 23

O
One-hot encoding, 140, 147, 149
101-sequence detector, 158
Opcode, 63
Operating frequency, 101
Optimization, 55
Optimization goals, 54
OR, 5
OR gate, 5, 26

Output logic, 141, 143

P
Parallelism, 174
Parallel logic, 73
Partitioning strategies, 174
Performance improvement, 161
Pin multiplexing, 33
Pipelining, 175
PLD, 2
PLL, 107
PMOS, 22
Positive edge sensitive D flip-flop, 92, 99
Positive level sensitive D latch, 90, 97
Power, 4, 140
Power domains, 173
Power optimization, 147
Priority encoder, 79
Processing unit, 61
Processor, 176
Processor logic, 153
Product of Sum (POS), 1
Product term, 74
Propagation delay, 2, 13, 16, 26, 33, 55
Propagation delay of flip-flop(tpff), 160

R
Random counter, 146
Register, 96
Registered input for the ALU, 96
Reset paths, 107, 109, 153
Reset synchronizers, 154
Resource optimization, 3
Resources, 63
Resource sharing, 3, 54, 175
Retention cells, 173
Right shift, 136
Ring counter, 126
Ring oscillator, 101
Rising edge, 92

S
Sequential design, 2, 89, 109
Setup time (tsu), 107, 160
Shift registers, 105
Single decoding logic, 190
SOP function, 32, 39, 40
Speed, 3
Start point, 164
State encoding, 139
State register, 141

196 Index

State table, 111, 114, 116, 122, 126, 128,
142, 144, 156

State transition, 138
Sum Of Product (SOP), 1, 39, 40, 81
Synchronous 2-bit gray counter, 134
Synchronous 4-bit ring counter, 133
Synchronous binary down-counter, 113
Synchronous clear, 103
Synchronous design, 105
Synchronous gray counter, 116, 118
Synchronous MOD-4 binary up-counter,

131
Synchronous MOD-4 binary down-counter,

132
Synchronous modulo-3, 121
Synchronous modulo-4, 111
Synchronous reset, 103
System design, 181

T
Three-bit binary to gray code, 43
3-bit binary to gray code converter, 45
Three-bit gray to binary code converter, 45
33.33% duty cycle, 124
Timing paths, 164
Timing sequence, 91, 92, 94, 170
Timing violation, 170
Timing waveform, 74, 125
Toggle flip-flop, 107

Top-level design constraints, 174
Twisted ring counter, 130
2:1 multiplexers, 96
2:4 decoder, 73, 79, 83
2-input NAND, 28
2-input NAND gate, 33
2-input NOR, 30
2-input NOR gate, 36
2-input XNOR, 81
2-input XOR, 81
2:1 mux, 26, 98
2-varibale K-map, 112, 114, 117, 122
2-XOR gates, 45

U
Universal gates, 24
Universal logic, 19, 21, 24, 26
Universal logic gates, 19, 21

V
Voltage levels, 172

X
XNOR, 9
XNOR gate, 9, 23, 35
XOR, 8
XOR gate, 9, 22, 34

	Preface
	Acknowledgements
	Contents
	About the Author
	1 Basics of Digital Design
	1.1 Digital Logic and the Evolution
	1.2 The Important Considerations
	1.2.1 Area of the Design
	1.2.2 Speed of the Design
	1.2.3 Power

	1.3 Logic Gates
	1.4 De Morgan’s Theorems
	1.4.1 NAND is Equal to Bubbled OR
	1.4.2 NOR is Equal to Bubbled AND

	1.5 Multiplexer as Universal Logic
	1.6 Optimization Goals and Applications in VLSI Context
	1.7 Exercises
	1.7.1 Exercise 1: Use of the Logical Expressions to Get the Logic Equivalent
	1.7.2 Exercise 2: Cascade Logic and How to Get Logic Expression?
	1.7.3 Exercise 3: Complement Logic
	1.7.4 Exercise 4: Logic Expression for the Cascade Logic
	1.7.5 Exercise 5: Output Expression for the Cascade Logic
	1.7.6 Exercise 6: Propagation Delay for the Cascade Logic
	1.7.7 Exercise 7: Logic Gate Output Expression
	1.7.8 Exercise 8: Propagation Delay for the Cascade Logic
	1.7.9 Exercise 9: The Equivalent Logic Expression
	1.7.10 Exercise 10: The Equivalent Logic Gate

	1.8 Important Takeaways

	2 Design Using Universal Logic
	2.1 What Is Universal Logic?
	2.2 Universal Gates
	2.2.1 NAND
	2.2.2 NOR
	2.2.3 Other Application-Specific Universal Gates

	2.3 Multiplexers
	2.3.1 Design Using 2:1 Mux
	2.3.2 4:1 MUX Using 2:1 Mux
	2.3.3 Design Using Multiplexers

	2.4 Exercises
	2.4.1 Exercise 1: Design Using Universal Gates
	2.4.2 Exercise 2: Design Using the MUX
	2.4.3 Exercise 3: Design Using MUX
	2.4.4 Exercise 4: Design Using Custom Gates
	2.4.5 Exercise 5: Optimization Exercise
	2.4.6 Exercise 7: Design Using the MUX
	2.4.7 Exercise 8: Design Using MUX
	2.4.8 Exercise 9: Design Using Custom Gates

	2.5 Applications and Use in VLSI Context
	2.6 Important Takeaways

	3 Combinational Design Resources
	3.1 Code Converters
	3.1.1 Three-Bit Binary-to-Gray Code Converter
	3.1.2 3-Bit Gray-to-Binary Code Converter

	3.2 Arithmetic Resources
	3.2.1 Half-Adder
	3.2.2 Half-Subtractor
	3.2.3 Full-Adder

	3.3 Use of Arithmetic Resources in the Design
	3.4 Design Using Arithmetic Resources and Control Elements
	3.5 Optimization Goals
	3.6 Processor Logic and Need of Arithmetic Resources
	3.7 Exercises
	3.7.1 Exercise 1: Cascade Versus Parallel Logic
	3.7.2 Exercise 2: Delay of the Design
	3.7.3 Exercise 3: Speed
	3.7.4 Exercise 4: Design to perform the Addition and Subtraction
	3.7.5 Exercise 4: Design with the Goal to Use Resource Sharing

	3.8 Important Takeaways

	4 Case Study: ALU Design
	4.1 Design Specifications and Their Role
	4.2 What Is ALU?
	4.3 Arithmetic Unit Design
	4.3.1 Resources Required
	4.3.2 How to Start Design of ALU?
	4.3.3 How to Design the Logic
	4.3.4 Exercise 1: Optimization of the Arithmetic Unit
	4.3.5 Logic Unit Design
	4.3.6 Resources Required
	4.3.7 How to Design the Logic Unit to have Better Area?

	4.4 ALU Design
	4.4.1 Resource Requirement and How to Design Efficient ALU?
	4.4.2 ALU Design to have Better Area
	4.4.3 Exercise 2: Optimization of ALU

	4.5 Few Important Design Guidelines
	4.6 Important Takeaways

	5 Practical Scenarios and the Design Techniques
	5.1 Parallel Logic
	5.1.1 Decoder 2 to 4

	5.2 Encoder
	5.3 Encoder with Invalid Output Detection Logic
	5.4 Exercises
	5.4.1 Exercise 1: Design of Decoder Having Active-Low Output
	5.4.2 Exercise 2: Design the Function Using Decoder
	5.4.3 Exercise 3: Design Using Decoders
	5.4.4 Exercise 4: Design Using Decoder and NAND Gates
	5.4.5 Exercise 5: Design Using Decoders
	5.4.6 Exercise 6: Priority Encoder Design

	5.5 Important Takeaways

	6 Basics of the Sequential Design
	6.1 What Is Sequential Logic Design?
	6.2 Sequential Design Elements
	6.3 Level Versus Edge-Triggered Logic
	6.4 Latches and Their Use in the Design
	6.4.1 Positive-Level-Sensitive D Latch
	6.4.2 Negative-Level-Sensitive D Latch

	6.5 Edge-Sensitive Elements and Their Role
	6.5.1 Positive Edge-Sensitive D Flip-Flop
	6.5.2 Negative Edge-Sensitive D Flip-Flop

	6.6 Applications
	6.6.1 Applications of the Latches
	6.6.2 Applications of the Flip-Flop

	6.7 Exercises
	6.7.1 Exercise 1: Design Positive-Level-Sensitive Latch Using Multiplexers
	6.7.2 Exercise 2: Design Negative-Level-Sensitive Latch Using Multiplexers
	6.7.3 Exercise 3: What Is the Functionality of the Following Design?
	6.7.4 Exercise 4: Design the Positive Edge-Sensitive Flip-Flop Using Latches
	6.7.5 Exercise 5: Design the Negative Edge-Sensitive Flip-Flop Using Latches
	6.7.6 Exercise 6: What Is the Operating Frequency of the Following Circuit?
	6.7.7 Exercise 7: The Asynchronous Clear
	6.7.8 Exercise 8: The Synchronous Clear

	6.8 Important Takeaways

	7 Sequential Design Techniques
	7.1 Synchronous Design
	7.2 Asynchronous Design
	7.3 Why to Use Synchronous Design?
	7.3.1 Which Elements We Should Use During Design?

	7.4 D Flip-Flop and Use in the Design
	7.5 Design for the given specifications
	7.6 Design of the Synchronous Counters
	7.7 Exercise 1: Design of the Synchronous Down-Counters
	7.8 Exercise 2: Design of the Synchronous Gray Counter
	7.9 Few Important Guidelines
	7.10 Important Takeaways

	8 Important Design Scenarios
	8.1 MOD-3 Counter
	8.2 The Design of MOD-3 Counter with 50% Duty Cycle
	8.3 Applications and Use of Counters
	8.3.1 Ring Counter
	8.3.2 Johnson Counter

	8.4 Exercises
	8.4.1 Exercise 1: The Counter Output
	8.4.2 Exercise 2: Find the Output Sequence
	8.4.3 Exercise 3: Operating Frequency of Design
	8.4.4 Exercise 4: Output on 1024th Clock Cycle
	8.4.5 Exercise 5: Output on the 4th Clock Cycle
	8.4.6 Exercise 6: Output at 10th Clock Pulse
	8.4.7 Exercise 7: Design the Serial Input Serial Output Shift Register

	8.5 Important Takeaways

	9 FSM Design Techniques
	9.1 What Is FSM?
	9.1.1 Moore FSM
	9.1.2 Mealy FSM
	9.1.3 Moore Versus Mealy FSM

	9.2 State Encoding Methods
	9.3 Moore FSM Design
	9.4 Mealy FSM Design
	9.5 Applications and Design Strategies
	9.6 Exercises
	9.6.1 Exercise 1: Moore Machine State Diagram
	9.6.2 Exercise 2: Mealy Machine
	9.6.3 Exercise 3: One-Hot Encoding
	9.6.4 Exercise 4: FSM Area and Power Optimization

	9.7 Important Takeaways

	10 Advanced Design Techniques-1
	10.1 Various Paths in the Design
	10.2 Data and Control Paths
	10.3 Mealy Sequence Detector Design
	10.4 Data and Control Path Design Techniques
	10.5 Flip-Flop Timing Parameters
	10.6 Example on Performance Improvement of the Design
	10.7 Exercises
	10.7.1 Exercise 1: Maximum Operating Frequency
	10.7.2 Exercise 2: Timing Paths
	10.7.3 Exercise 3: Maximum Operating Frequency
	10.7.4 Exercise 4: Positive Clock Skew and Maximum Operating Frequency for the Design
	10.7.5 Exercise 5: Negative Clock Skew and Maximum Operating Frequency for the Design

	10.8 Important Takeaways

	11 Advanced Design Techniques-2
	11.1 Multiple Clock Domain Designs
	11.2 Metastability
	11.3 Control Path Synchronizer
	11.4 Data Path Synchronizer
	11.5 Multiple Power Domain Designs
	11.6 Architecture-Level Designs
	11.7 How We Can Improve the Design Performance
	11.8 The Digital Systems and Design
	11.9 Exercises
	11.9.1 Exercise 1: FIFO Depth Calculation
	11.9.2 Exercise 2: FIFO Depth Calculation
	11.9.3 Exercise 3: FIFO Depth Calculation
	11.9.4 Exercise 4: FIFO Depth Calculation
	11.9.5 Exercise 5: FIFO Depth Calculation

	11.10 Important Takeaways

	12 System Design and Considerations
	12.1 System Design
	12.2 What We Need to Think About?
	12.3 Important Considerations
	12.4 Let Us Understand the Microprocessor Capabilities
	12.5 Control Signal Generation Logic
	12.6 IO Devices and Communication with the Processor
	12.7 Memory Devices and Communication with the Processor
	12.8 Design Scenarios and Optimization
	12.9 Concluding Comments

	Index

