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Preface

I am delighted to have the second edition of the Digital Logic Design Using Verilog
book. During the past five years, the first edition has more than 80K downloads and
then I thought to work on the second edition of the book.

This edition includes the Verilog RTL design and verification using the
Verilog-2005 style constructs. Throughout this book, I have used the constructs
from the stable release of Verilog, that is, IEEE 1364-2005. The keywords are
highlighted using bold blue color, and this book is useful to RTL design engineers
who wish to pursue their career in RTL design, FPGA design, and ASIC design.
Even the performance improvement of the design and overall design improvement
techniques are included in this edition!

For the synthesis of the RTL designs, I have used Xilinx Vivado and ISE 14.7.
The readers can go to www.xilinx.com to download the EDA tool, and even they
can purchase the Xilinx FPGA boards and tools to implement the products and
ideas.

The book has 25 chapters and is mainly useful to understand about the RTL
design concepts, synthesizable and non-synthesizable Verilog constructs, and
basics of testbenches to check for the functional correctness of the design.

The book even covers the advanced concepts used in the ASIC design synthesis,
with the low power and multiple clock domain design concepts.

Chapter 1 “Introduction” describes about the evolution of logic design, design
methodology, and the basics of Verilog. The chapter discusses basics of Verilog
Simulation and synthesis flow.

Chapter 2 “Concept of Concurrency and Verilog Operators”, for any language,
the operator plays an important role. The Verilog supports various operators, and
the chapter discusses the use of these operators in the RTL design.

Chapter 3 “Verilog Constructs and Combinational Design-I” discusses the
combinational logic design using the synthesizable Verilog constructs. Also, it
discusses the practical and real-life scenarios, useful while implementing combi-
national designs.

Chapter 4 “Verilog Constructs and Combinational Design-II” discusses RTL
design for few of the arithmetic resources and the code converters.
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Chapter 5 “Multiplexers as Universal Logic” discusses the efficient RTL coding
for multiplexers and parallel versus priority logic.

Chapter 6 “Decoders and Encoders” discusses the efficient RTL coding for
decoders and encoders. The RTL design strategies for these combinational design
elements are discussed using the synthesizable constructs.

Chapter 7 “Event Queue and Design Guidelines” discusses event queue and few
important design and coding guidelines for the combinational logic design.

Chapter 8 “Basics of Sequential Design Using Verilog” is useful to understand
about the RTL design for the latches and flip-flop. The concept of the synchronous
and asynchronous reset is also discussed.

Chapter 9 “Synchronous Counter Design Using Synthesizable Constructs”, the
RTL design of various synchronous counters using the synthesizable constructs is
discussed. The chapter discusses the RTL design, simulation, and synthesis
concepts.

Chapter 10 “RTL Design of Registers and Memories” is useful to understand the
RTL design techniques and strategies to code the RTL for registers, shift registers,
and memories.

Chapter 11 “Sequential Circuit Design Guidelines” discusses the sequential
design guidelines which need to be followed while coding an efficient RTL using
synthesizable Verilog constructs.

Chapter 12 “RTL Design Strategies for Complex Designs” discusses the use of
synthesizable Verilog constructs to implement the complex designs for the desired
functionality.

Chapter 13 “RTL Tweaks and Performance Improvement Techniques” discusses
the area, speed, and power improvement basics and is useful during the RTL design
and synthesis stage to improve the design performance.

Chapter 14 “Finite State Machines Using Verilog”, the RTL design for the
Moore and Mealy machine is discussed. The FSM encoding styles are binary, gray,
and one-hot encoding and are discussed in this chapter.

Chapter 15 “Non-synthesizable Verilog Constructs and Testbenches” discusses
the inter-, intra-delay assignments and other non-synthesizable constructs useful
during the testbenches. The chapter is useful to understand about the
non-synthesizable constructs and how to check for the functional correctness of the
design.

Chapter 16 “FPGA Architecture and Design Flow” discusses the FPGA archi-
tecture, design flow, and the simulation using the FPGA.

Chapter 17 “FPGA Design and Guidelines” discusses the design guidelines for
FPGA-based designs. How to use the design guidelines is explained with the RTL
designs coded using the synthesizable Verilog constructs.

Chapter 18 “ASIC Design” discusses the ASIC types and basics of ASIC design
flow.

Chapter 19 “ASIC Synthesis and SDC Commands” discusses the ASIC syn-
thesis and important SDC commands used during synthesis.

Chapter 20 “Static Timing Analysis” discusses the STA concepts useful during
the timing analysis and during the timing closure.
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Chapter 21 “Design Constraints And Optimization” discusses the design con-
straints and optimization using Synopsys DC.

Chapter 22 “Multiple Clock Domain Design” discusses the multiple clock
domain design techniques and the control and data path synchronizers and their
use!

Chapter 23 “Case Study: FIFO Design” is useful to understand the FIFO depth
calculations and discusses the FIFO design, simulation of FIFO, and synthesis.

Chapter 24 “Low Power Design” discusses the low power design techniques and
the need of Unified Power Format. This chapter is also useful to understand about
the UPF concept and its use.

Chapter 25 “System-On-Chip (SOC) Design”, the SOC consists of many
complex blocks like processors, arbiters, memories, and peripherals. These blocks
are discussed in this chapter. This chapter even focuses on the generalized SOC
architecture and the SOC design flow.

The book includes many practical examples to understand how to code an
efficient RTL using Verilog. The book is also useful to understand the synthesizable
designs and frequent issues in the RTL design and how to overcome them. The
book even covers the performance improvement using RTL tweaks and the ASIC
and FPGA synthesis for a better understanding.

This book is useful to the engineering students, VLSI beginners, and profes-
sionals who wish to implement synthesizable design using Verilog!

Pune, India Vaibbhav Taraate
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Chapter 1
Introduction

RTL Design engineer should have the strong logic design fundamentals. This chapter
describes about the evolution of logic design, design methodology and the basics of
Verilog. The chapter discusses about basics of Verilog Simulation and Synthesis flow.

The Verilog is one of the powerful hardware description languages and supports the
concurrent and sequential constructs. The language is popular in the industry as it
supports the use of synthesizable and non-synthesizable constructs. In the design
and verification context, it is essential to understand the basic design flow, and the
chapter discusses about the basics of hardware description language and the design
flow! We will use the stable release of Verilog, that is, IEEE 1364-2005, which is
Verilog-2005 coding style.

1.1 Evolution of Logic Design

The actual invention of the prototype transistor model during the year 1946–1947 at
Bell Labs by William Shockley, John Bardeen, and Walter Brattain had revolu-
tionized the use of semiconductor in switching theory and in the design of chip. The
working transistor used in the design was the biggest contribution by the
Tanenbaum during the year 1954-1956.

During the year 1958, Jack Kilby, young electrical engineer at Texas Instrument,
figured out how to place the circuit elements transistors, resistors, and capacitors on
small piece of Germanium! But prior to the year 1958, many more revolutionized
ideas were published and conceptualized!

The invention of CMOS logic during 1963 has made integration of logic cells
very easy, and it was predicted by Intel’s co-founder Gordon Moore that the
‘Number of transistors in a dense integrated circuit (IC) doubles about every two
years’ What we call as Moore’s law! The Moore’s law is just observation and is
used for the overall planning of the chip design by considering doubling rate of the
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transistors. The Moore’s law with the Rock’s law (second Moore’s law), that is,
‘The cost of semiconductor chip fabrication doubles for every four years,’ is used to
plan the overall design cycle and investments required during the chip design and
fabrication.

Both laws are used in the overall planning including the financials during the
chip design cycle. The industry has witnessed the doubling of transistors according
to Moore’s law till almost 2014. Below 10 nm, the doubling of transistor during
two-year time span has failed, and now, we can say that to double the transistors at
lower process nodes it needs almost 30 to 36 months of the time (Fig. 1.1).

But still how Moore’s prediction was right that experience engineers can get
with the complex VLSI-based ASIC chip designs. In the present decade, the chip
area has shrunk enough and process technology node on which foundries are
working is below 10 nm and chip has billions of transistors with small silicon die
size. With the evolutions in the algorithmic design and manufacturing processes,
most of the designs are implemented by using Very High Speed Integrated Circuit
Hardware Description Language (VHSICHDL) or using Verilog. During the last
decade, SystemVerilog has become popular for hardware description and hardware
verification.

In this manuscript, we are focusing on the Verilog as hardware description
language. The book is useful to understand Verilog constructs and their use during
RTL design and verification. Even the book is useful to understand the performance
improvement techniques and optimization of the RTL design using Verilog syn-
thesizable constructs.

Fig. 1.1 Moore's law
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1.2 System and Logic Design Abstractions

As shown in Fig. 1.2, most of the designs have various abstraction levels. The
design approach can be top-down or bottom-up. The implementation team takes
decision about the right approach depending on the design complexity and avail-
ability of design resources. Most of the complex chips are also designed by using
the top-down approach instead of bottom-up approach.

1.2.1 Architecture Design

The design is described as functional model initially, and the architecture and
micro-architecture of the design is described by understanding the functional
design specifications. Architecture design involves the estimation and role of the
functional blocks, memory, processor logic, and throughput with associative glue
logic with reference to the functional design requirements. Architecture design is
in the form of functional blocks and represents the functionality of design in the
block diagram form. In simple words, we can consider the architecture design as
block-level representation which has evolved from the functional design
specifications.

1.2.2 Micro-architecture Design

The micro-architecture is detail representation of every functional block which is
specified in the architecture document. It describes the block- and sub-block-level
details like interfaces and pin connections and hierarchical design details. The
information about synchronous or asynchronous designs and clock and reset trees
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A rc h it e c t u re   

M i c ro -a rc h i te c tu re  
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B o t to m -  
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A p p ro a c h  

Fig. 1.2 Design abstraction
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should be described in the micro-architecture document. Even the detail timing
information and the overall data flow can be included in the micro-architecture
document.

1.2.3 RTL Design and Synthesis

RTL stands for Register Transfer Level. RTL design uses micro-architecture as
reference design document, and the main strategy is to code the design using
synthesizable Verilog constructs to meet the required design functionality. The
efficient design and coding guidelines at this stage play important role, and efficient
RTL reduces the overall time requirement during the implementation phase.
The RTL design is used as one of the inputs by synthesis tool to get the gate-level
netlist. Gate-level netlist is representation of the functional design in the form of
combinational and sequential logic cells.

1.2.4 Switch Level Design

Finally, the switch-level design is the abstraction used at the layout to represent the
design in the form of standard cells and macros of ASIC. Or for the FPGA-based
design, the switch-level design can be representation of the design implementation
on FPGA fabric using the dedicated FPGA architecture resources.

1.3 Integrated Circuit Design and Methodologies

With the evolution of VLSI design algorithms and with the shrinking process node,
the designs are becoming more complex and SOC-based designs are feasible in
shorter time span. The demand of the customers to deliver product in the shorter
span of time is possible by using efficient design flow which is used during frontend
and backend design. The design needs to be evolved from specification stage to
final layout. The use of EDA tools with the suitable features has made it possible to
have the bug-free designs with proven functionality. The design flow is shown in
Fig. 1.3, and it consists of the three major steps to get the netlist.
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1.3.1 RTL Design

As discussed in previous section, the functional design is described in the form of
document using the architecture and micro-architecture. The RTL design using
Verilog uses the micro-architecture document as a reference to code the design. The
engineers need to spend more time to complete the RTL design at block and top
levels. RTL designer uses the recommended design and coding guidelines while
implementing the RTL design. An efficient RTL design always plays important role
during implementation cycle. During this, designer describes the block-level and
top-level functionality using the synthesizable Verilog constructs.

1.3.2 Functional Verification

After completion of an efficient RTL design using synthesizable Verilog constructs,
the design functionality needs to be verified by using simulator. The intentional is to
check for the functional correctness of design. Functional simulation is without
considering any delays, and during this stage, the main intent is to verify the
functionality of design. But common practice in the industry is to verify the
functionality by using the testbench. In simple words, the testbench uses a driver
which is used to drive the signals to the design under test and to monitor the output
from the design under test. In the present scenario, automation in the verification
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Physical Design

Functional 
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Design

NoYes
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Fig. 1.3 Simulation and synthesis flow
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flow and new verification methodologies has evolved and is used to verify the
complex design functionality during the shorter span of time using the dedicated
resources. The role of verification team is to test the functional mismatches between
the expected output and actual output. If functional mismatches are found during
simulation, then it need to be resolved before moving to the synthesis
step. Functional verification is iterative process unless and until design meets the
required functionality and various coverage goals.

1.3.3 Synthesis

When the functional requirements of the design are met, the next step is design
synthesis. Synthesis tool uses the RTL design, design constraints, and libraries as
inputs, and the goal is to get the gate-level netlist as an output. Synthesis is iterative
process until the design and optimization constraints are met. The primary opti-
mization constraints are area, speed, and power. If the design and optimization
constraints are not met, then the synthesis tool should be used to perform opti-
mization of the design after RTL or architecture tweaks. Again, after the opti-
mization, if the constraints are not met, then it becomes compulsory to tweak the
RTL or micro-architecture. The synthesis tool is also used to generate the area,
speed, and power reports with the gate-level netlist.

1.3.4 Physical Design

The physical design stage involves the floor planning of design, power planning,
clock tree synthesis, place and route, post-layout verification, static timing analysis,
and final outcome is GDSII for any kind of ASIC design. This step is out of scope
for the subsequent discussions!

1.4 Verilog as Hardware Description Language

Verilog is standardized as IEEE 1364 and is used to describe digital electronic
circuits. Verilog is used mainly as hardware description language and is even
popular during the verification. Verilog was created by Prabhu Goel, Phil Moorby,
Chi-Lai Huang, and Douglas Warmke during 1983–1984 at Gateway design
automations. The language supports synthesizable and non-synthesizable constructs
and is useful in the design and verification of digital designs. Verilog IEEE stan-
dards are Verilog-95 (IEEE 1364-1995), Verilog-2001 (IEEE 1364-2001), and
Verilog-2005 (IEEE 1364-2005).
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Few of the important points to understand about the Verilog are listed below

1. Verilog is case sensi ve language, and we will recommend to use the 
lowercase le ers while coding the RTL and testbenches. 

2. For single line comment we can use // 
a. For example:   // The Verilog RTL for processor 

3. For block comment we can use /* …… */ 
a. For example : /* The block comments  

                               assignment 1; 
    assignment 2; */ 

4. Verilog supports the declara on of input and output ports and key-
words are input, output, respec vely. 

5. Verilog supports the declara on of bidirec onal port and keyword to 
declare is inout. 

6. Verilog has main net data types as wire and reg. 

7. Verilog includes the concurrent constructs and sequen al constructs. 

8. Verilog includes the synthesizable and non-synthesizable constructs 
which are useful during design and verifica on, respec vely.  

9. Verilog Supports the various arithme c, logical, bit wise, shi , equality 
and condi onal operators which are useful to model the designs.  

10. Verilog supports the various me constructs, blocking, non-blocking as-
signments, edge sensi ve constructs and other various delay constructs 
( intra and Inter delay). 

11. Verilog includes the func on, task, loops, and other compiler direc ves.  

1.4 Verilog as Hardware Description Language 7



The stable release of Verilog standard is IEEE 1364-2005, and before we pro-
ceed further to discuss about the Verilog constructs, it is essential to have the basic
understanding of the Verilog code structure. Throughout this book, we will use the
coding style Verilog-2005 during RTL design and verification. Throughout this
book, all the keywords in the Verilog RTL Design and testbenches are documented
using the bold text have blue color.

As shown in the Verilog code structure template (Fig. 1.4).

// Verilog code starts with keyword module 
// Each assignment ends with semicolon (;)

module < name of module > ( input <port_name>, input <size> <port_name>,       
output <port_name>, output<size> <port_name>); 

// list all the temporary variables and net 
reg  <temporary_variable_name>; 
wire <temporary_variable_name>;    

// for example for multibit variable declaration  
reg <size> <variable_names>; 
wire  <size> <port_names>; 

// continuous assignments. Use wire as net type  
assign <Expression>;    
assign <expression>                                                         

always @ * 
begin 
 <group of blocking assignments> 
end  

always @(posedge clk) 
begin 
 <group of non-blocking assignments> 
end  

endmodule 

Declare the module with 
desired inputs and outputs 

and then the temporary 
nets in the RTL. 

  Combinational modeling using 
the continuous assignments and 
always@* procedural block. 

Sequential design modeling us-
ing the                                   
always@(posedge clk) or al-
ways @(negedgee clk) pro-
cedural block. 

Fig. 1.4 Verilog code structure template
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// indicates the comment line

< module_name > is the name of module . It is recommended to have

some meaningful name while declaring

< port_name > is the name of input or output or inout port.

<size> is the width of the input port, output port or net

wire and reg are net types, wire doesn’t hold any data and used in

continuous assignment. reg is used to hold data and used for the

procedural assignments.

<net_name> is the name of net declared

always and assign are keyword and used to describe the de-

sign functionality.

assign statements are continuous assignments and executes

concurrently .

always block is procedural block and all the statements inside

always block are executed sequentially if they are within the

begin …end. Multiple always procedural blocks executes concur-

rently.

endmodule is key word and indicates the end of the design module!

Every Verilog code starts with the ‘module’ keyword and ends

with ‘endmodule’. Module consists of the port declaration,

net declaration and the functionality of design.

1.4 Verilog as Hardware Description Language 9



1.5 Verilog Design Description

In the practical scenarios, the Verilog is categorized into three different kinds of
coding descriptions. The different styles of coding descriptions are structural,
behavioral, and RTL design. Consider the design structure of half adder which is
shown in Fig. 1.5, and let us get familiar with the different coding styles. Figure 1.5
is useful to understand about the truth table, schematic, and logic diagram of half
adder.

1.5.1 Structural Design

As name indicates, the structural design is used to describe the overall structure of
the design. The main intention is to describe the logic in the form of gate or
block-level design using the net connections. Structural design is mainly the
instantiation of different small complexity digital functional blocks. It is basically
design connection of small modules to realize moderate complex logic. Example 1
describes the structural code style to infer the ‘half_adder.’

Fig. 1.5 Logic structure of half adder
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As described in Example 1, the description of half_adder uses the instance of
other two modules, and those are xor_gate and and_gate. The schematic is shown in
Fig. 1.6.

module and_gate( input wire A, B, output wire C); 

// design func�onality  

assign C= A & B; 

endmodule 

///////////////////////////////////////////////////////////////// 

Example 1 Structural Style to infer half-adder

///////////////////////////////////////////////////////////////// 
module half_adder( input wire A, B, output wire S,C); 

// design func�onality  

xor_gate U1 ( .A, .B, .S); 
and_gate  U2 ( .A, .B, .C); 

endmodule 

module xor_gate( input wire A, B, output wire S); 

// design func�onality  

assign S= A ^ B; 

endmodule 

1.5 Verilog Design Description 11



1.5.2 Behavior Design

Name itself indicates the nature of coding style is to describe the behavior to
perform the addition. In the behavior style of Verilog code, the functionality is
coded using the relationship between the inputs and the outputs to get the intended
design functionality. It is assumed that the design is black box with the inputs and
outputs. The main intention of designer is to map the functionality at output
according to the required set of inputs. The description to implement the half adder
is shown in Example 2.

Fig. 1.6 Top-level schematic of Example 1
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As coded in Example 2 to implement half adder, the description of half_adder
uses the if-else constructs within the multiple always procedural blocks. It infers the
comparator AND gate due to concurrent execution of the multiple procedural
blocks. The schematic is shown in Fig. 1.6 (Fig. 1.7).

///////////////////////////////////////////////////////////////// 
module half_adder( input wire A, B, output reg S,C); 

// design func onality to generate sum (S) output 

always@* 
begin 

if ( A==B) 
 S= 0; 
else  
S=1; 
end 

// design func onality to generate carry(C) output 

always@* 
begin 

if ( A==1 && B==1) 
 C= 1; 
else  
C=0; 
end 
endmodule 
///////////////////////////////////////////////////////////////// 

Example 2 Behavior style to implement half-adder

1.5 Verilog Design Description 13



1.5.3 Synthesizable Design

In the practical environment to describe the functionality of design using Verilog,
we always use the synthesizable constructs. The RTL code style is higher-level
description of functionality using synthesizable Verilog constructs. Many times, the
RTL coding style may resemble as the structural or behavioral model. The main
intent of the designer is to infer the intended logic by using synthesizable Verilog
constructs. Any Verilog code which infers the gate-level structure during synthesis
we can treat as RTL design. Consider Example 3 (Fig. 1.8).

Fig. 1.7 Top-level schematic of Example 2
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Fig. 1.8 Top-level schematic of Example 3

///////////////////////////////////////////////////////////////// 
module half_adder( input wire A, B, output reg S,C); 

// design func onality  

always@* 
begin 

S= A ^ B; 
C= A & B; 
end 

endmodule 
/////////////////////////////////////////////////////////////////

Example 3 RTL Design to infer the half-adder

1.5 Verilog Design Description 15



1.6 Few Important Verilog Terminologies

Before the subsequent discussion on Verilog constructs, it is essential to understand
how Verilog works? Why it is popular hardware description language?

• Verilog is different from the software languages as it is used to describe the
hardware. Verilog supports time constructs and delays.

• Verilog supports concurrent (parallel) execution of statements and even
sequential execution of statements.

• Verilog supports blocking (=) assignments and non-blocking assignments (<=).
Blocking assignments are used to describe combinational logic, and
non-blocking assignments are used to describe sequential logic. These assign-
ments will be discussed in subsequent chapters.

• Verilog supports the declaration of input, output, and bidirectional (inout) ports.
• Verilog supports definition of constants and parameters. Verilog supports file

handling.
• Verilog supports four value logic logical ‘0’, logical ‘1’, high impedance ‘z’,

and unknown ‘X’.
• Verilog has procedural blocks ‘always’ and ‘initial.’ Procedural block with

keyword ‘always’ indicates free running process and executes always, and
procedural block with ‘initial’ keyword indicates the execution of block only
once. Both procedural blocks execute at simulator time ‘0’. These blocks will be
discussed in the subsequent chapters.

• Verilog supports synthesizable constructs as well as non-synthesizable
constructs.

• Synthesizable constructs are used during the RTL design.
• Non-synthesizable constructs are used during the RTL verification.
• Verilog supports use of tasks and functions for recursive use.
• Verilog supports Program Language Interface (PLI) to transfer control form

Verilog to functions written in ‘C’ language.

The template shown (Example 4) describes few of the important Verilog con-
structs which are useful to describe most of the combinational logic design
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Example 4 Basic Verilog definitions and descriptions
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1.7 Exercises

For better understanding of the subsequent chapters, complete the following
exercises on basics of digital design.

1. Using 2-input NAND as universal gate implement the 2-input XOR gate. Use
minimum number of logic gates.

2. Implement the half subtractor using the minimum number of logic gates.
3. Implement the full adder using minimum number of half adders and additional

minimum number of combinational gates.
4. Implement design of 4-bit binary to gray code converter.
5. Implement design of 4-bit gray to binary code converter.

1.8 Summary

As discussed earlier, Verilog is case-sensitive language and is used for design and
verification of logic circuits. The following are few of the important points to
summarize this chapter.

1. Verilog is efficient hardware description language and is used to describe the
design functionality.

2. Although there are different description styles, practically designer uses the
RTL coding style. Verilog supports concurrent and sequential design
constructs.
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3. Verilog is used as an efficient HDL and supports four value logic, logic ‘0’,
logic ‘1’, high impedance ‘z’, and unknown ‘x’.

4. Verilog uses concurrent and sequential constructs. Verilog HDL supports dif-
ferent operators to perform logical and arithmetic operations.

5. Verilog supports the synthesizable and non-synthesizable constructs.
6. Verilog supports the delay assignments and constructs to specify the positive

and negative edge.
7. Verilog supports the port definition as input, output, and inout.
8. Verilog is used for both design and verification of digital logic.
9. Verilog supports the declaration of input, output, and inout ports.

10. Verilog supports the time constructs and delays and other non-synthesizable
constructs which are useful during verification.

11. Verilog supports edge-sensitive design modeling using always procedural
block sensitive to posedge or negedge.

1.8 Summary 19



Chapter 2
Concept of Concurrency and Verilog
Operators

For any language, the operator plays important role. The Verilog supports various opera-
tors, and the chapter discusses about the use of these operators in the RTL design.

For the better understanding of the use and application of Verilog, we need to focus
on various operators supported by the language. As discussed in the previous
chapter, the Verilog supports various operators and is useful during the design.
What exactly we need is the arithmetic, logical, bitwise, shift, reduction, and
equality operators to infer the intended logic. The logic may be combinational or
sequential design; the powerful understanding of the operators can be useful during
the design and verification of the digital circuit; the chapter discusses various
operators used during the design. Even the chapter discusses the continuous
assignments and always procedural block used to model the combinational design.

2.1 Use of Continuous Assignment to Model Design

The continuous assignment is used to model the combinational logic. In combi-
national design, an output is function of the present input. The assign keyword is
used to model the combinational design with the logic expression on right-hand
side. The continuous assignment is neither blocking nor non-blocking and executes
when there is event on any one of the inputs or intermediate net. These assignments
are updated in the active event queue. For more details, refer Chap. 7.

In the RTL, if multiple continuous assignments are there, then all the assign-
ments are executed concurrently and mainly the assign construct is used to model
the glue logic.

The logic inferred for Example 1 is shown in Fig. 2.1.
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2.2 Use of always Procedural Block to Implement
Combinational Design

The real beauty of Verilog is the powerful synthesizable construct always. The
procedural block is used to model the combinational logic if specified as always @
(//sensitivity list).

For example, if we consider the always @ (a-in, b_in), then the procedural
always block invokes when there is event on any one of the inputs a_in, b_in. Event
indicates the transition from 0 to 1 or 1 to 0.

Now let us consider the design of half subtractor, where inputs are a_in, b_in and
outputs are diff_out, borrow_out (Table 2.1).

Fig. 2.1 RTL schematic of Example 1

//////////////////////////////////////////////////////////////////////////////

module half_adder( input a_in, b_in, output sum_out, carry_out);

//concurrent execuƟon of mulƟple assign constructs 

assign sum_out = a_in ^ b_in;

assign carry_out = a_in & b_in; 

endmodule

///////////////////////////////////////////////////////////////////////////// 

Example 1 Half adder using continuous assignment

Table 2.1 Truth table of half
subtractor

a_in b_in diff_out borrow_out

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0
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So, the RTL design should have the diff_out = a_in XOR b_in, borrow_out =
NOT(a_in) AND b_in functionality. The RTL is coded using the multiple always
procedural block. The first always procedural block is used to code the function-
ality of difference output and another procedural block for the functionality
of borrow output.

///////////////////////////////////////////////////////////////////////
module combo_design(input a_in, b_in, output reg diff_out, 
borrow_out);

// FuncƟonality of half subtractor diff_out is XOR of a_in , b_in

always @ ( a_in, b_in)

if ( a_in==b_in)

diff_out = 0;

else 

diff_out =1; 

// FuncƟonal descripƟon of the logic for borrow_out that is ~a_in & 
b_in

always @(a_in , b_in) 

if ( a_in ==0 && b_in==1)

borrow_out = 1;

else 

borrow_out = 0;

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 2 Half subtractor synthesizable design
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The multiple always procedural blocks execute concurrently and infer the logic
shown in Fig. 2.2.

2.3 Concept of Concurrency

The powerful feature of the Verilog is the concurrent execution, and the multiple
always procedural blocks and continuous assignments execute concurrently.
Consider Example 3; as described, the always procedural block and assign execute
concurrently and infer the parallel combinational logic.

Fig. 2.2 RTL schematic of half subtractor

/////////////////////////////////////////////////////////////////////////

module combo_design(input a_in, b_in, output reg diff_out, output
borrow_out);

// FuncƟonality of half subtractor diff_out is XOR of a_in , b_in

always @ ( a_in, b_in)

diff_out = a_in ^ b_in; 

// FuncƟonal descripƟon of the logic for borrow_out that is ~a_in & 
b_in

assign borrow_out = (~a_in) & b_in;

endmodule

/////////////////////////////////////////////////////////////////////////

Example 3 RTL to understand concept of concurrency
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The logic inferred is XOR gate due to the assignment diff_out = a_in ^ b_in;
within always procedural block and the AND gate with one of the inputs controlled
by NOT of a_in due to assignment assign borrow_out = (*a_in) & b_in;
(Fig. 2.3).

2.4 Verilog Arithmetic Operators

Verilog supports addition, subtraction, multiplication, and division and modulus
operators to perform arithmetic operations. Table 2.2 describes the arithmetic
operators.

The logic inferred is shown in Fig. 2.4, and as shown, it consists of the logic to
perform arithmetic operations.

Table 2.2 Verilog arithmetic operator

Operator Name Functionality

+ Binary addition To perform addition of two binary operands

− Binary minus To perform subtraction of two binary operands

* Multiplication To perform multiplication of two binary operands

/ Division To perform division of two binary operands

% Modulus To find modulus from division of two operands

Fig. 2.3 Logic inferred for Example 3
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////////////////////////////////////////////////////////////////////////

module arithmeƟc_operators ( 

input [3:0] a_in, b_in,                            
output reg [4:0] y1_out, 

output reg [7:0] y3_out,

output reg [3:0] y2_out, y4_out, y5_out

);                             

always@ (a_in, b_in)

begin

y1_out = a_in + b_in;

y2_out = a_in -b_in;

y3_out = a_in * b_in;

y4_out = a_in / b_in;

y5_out = a_in % b_in;

end

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 4 Use of Verilog operators in RTL design
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2.5 Verilog Logical Operators

Verilog supports logical AND, OR, and negation operators to perform desired
logical operation. Logical operators are used to return single-bit value at the end of
the operation. Table 2.3 describes the functional use of logical operators.

The logic inferred is shown in Fig. 2.5, and as shown, it consists of the logic to
perform logical operations.

Table 2.3 Verilog logical operators

Operator Name Functionality

&& Logical AND To perform logical AND on two binary operands

|| Logical OR To perform logical OR on two binary operands

! Logical negation To perform logical negation for the given binary number

Fig. 2.4 RTL schematic of Example 4
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2.6 Verilog Equality and Inequality Operators

Verilog equality operators are used to return true or false value after comparing two
operands. Table 2.4 describes the functionality of the operators.

The logic inferred is shown in Fig. 2.6, and as shown, it consists of the logic to
perform equality and inequality operations.

////////////////////////////////////////////////////////////////////////

module logical_operators( input [2:0] a_in, b_in,c_in,d_in,e_in,f_in, 

output reg y_out );                             

always@ (a_in, b_in, c_in,d_in,e_in,f_in)

begin

if ( (a_in < b_in) && ((c_in ==d_in) || (e_in  > f_in)))   

y_out = 1;      

else   

y_out =0;

end

endmodule

/////////////////////////////////////////////////////////////////////////

Example 5 Use of Verilog logical operators

Fig. 2.5 RTL schematic of Example 5
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//////////////////////////////////////////////////////////////////////////////

module Equality_operator(input [7:0] a_in, b_in, 

output reg y1_out, y2_out,

output reg [7:0] y3_out );

always@ (a_in, b_in )

begin

// use of equality operator 

y1_out = (a_in == b_in);

// use of inequality operator 

y2_out = (a_in != b_in);

// use of operator in if condiƟon  

if ( a_in ==b_in) 

y3_out =a_in;

else 

y3_out = b_in;

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 6 Verilog equality and inequality operators and use in RTL

Table 2.4 Verilog equality and inequality operators

Operator Name Functionality

¼= Case equality To compare the two operands

!= Case inequality Used to find out inequality for the two operands

! Logical negation To perform logical negation for the given binary number
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2.7 Verilog Sign Operators

Verilog supports the operator positive ‘+’ or ‘−’ to assign sign to the operand.
Table 2.5 describes the sign operands.

The logic inferred is shown in Fig. 2.7, and as shown, it consists of the logic to
have the minus using the sign operator.

Table 2.5 Verilog sign operators

Operator Name Functionality

+ Unary sign plus To assign positive sign to singular operand

− Unary sign minus To assign negative sign to singular operand

Fig. 2.6 RTL schematic of Example 6

Fig. 2.7 RTL schematic of Example 7
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2.8 Verilog Bitwise Operators

Verilog supports the bitwise operations. Logical bitwise operators use two single-
or multi-bit operands and return the multi-bit value. Verilog does not support
NAND, NOR. Table 2.6 describes the functionality and use of bitwise operators.

The logic inferred is shown in Fig. 2.8, and as shown, it consists of the logic to
perform bitwise operations such as NOT, AND, NAND, NOR, OR, XOR, and
XNOR.

//////////////////////////////////////////////////////////////////////////////

module sign_operators (input [1:0] a_in, b_in, 

output reg [3:0]  y1_out, y2_out

);

always@ (a_in, b_in )

begin

// use of sign operator 

y1_out = (-a_in) + b_in;

// use of sign operator 

y2_out = a_in * (-b_in);

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 7 Verilog sign operators and use in the RTL design

Table 2.6 Verilog bitwise operators

Operator Name Functionality

& Bitwise AND To perform bitwise AND on two binary operands

| Bitwise OR To perform bitwise OR on two binary operands

^ Bitwise XOR To perform bitwise XOR on two binary operands
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//////////////////////////////////////////////////////////////////////////////

module bit_wise_operators ( input [6:0] a_in, 

input [5:0] b_in, 

output reg [6:0] y_out );

always@ (a_in, b_in )

begin

// bit wise AND

y_out[0] = a_in[0] & b_in[0];

// bit wise NAND

y_out[1] = !( a_in[1] & b_in[1]);

// bit wise OR

y_out[2] = a_in[2] | b_in[2];

// bit wise NOR

y_out[3] = !( a_in[3] | b_in[3]);

// bit wise XOR

y_out[4] = a_in[4] ^ b_in[4];

// bit wise XNOR

y_out[5] = ( a_in[5] ~^ b_in[5]);

// bit wise NOT         

y_out[6] = ! a_in[6];          

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 8 Verilog bitwise operators and use in the RTL design
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2.9 Verilog Relational Operators

Verilog supports the relational operator to compare two binary numbers and returns
true (‘1’) or false (‘0’) value after comparison of two operands. Table 2.7 describes
the relational operators.

Fig. 2.8 RTL schematic of Example 8

Table 2.7 Verilog relational operators

Operator Name Functionality

> Greater than To compare two numbers

>= Greater than or equal to To compare two numbers

< Less than To compare two numbers

<= Less than or equal to To compare two numbers
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The logic inferred is shown in Fig. 2.9, and as shown, it consists of the logic to
perform less than, greater than, etc.

//////////////////////////////////////////////////////////////////////////////

module RelaƟonal_operators ( input [7:0] a_in, 

  ` input [7:0] b_in, 

output reg y1_out, y2_out, y3_out, y4_out);

always@ (a_in, b_in )

begin

// less than < operator 

y1_out = a_in < b_in;

// less than equal to  <= operator 

y2_out = a_in <= b_in;

// greater than > operator 

y3_out = a_in > b_in;

// greater than equal to >= operator 

if (a_in >= b_in)

y4_out = 1;

else 

y4_out =0;

end

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 9 Verilog relational operators and use in the RTL design
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2.10 Verilog Concatenation and Replication Operators

Verilog supports the concentration and replication for any binary string. Table 2.8
describes the functionality of concentration and replication operators.

Fig. 2.9 RTL schematic of Example 9

Table 2.8 Verilog concentration and replication operators

Operator Name Functionality

{ } Concatenation To concatenate two binary strings

{m, { }} Replication To replicate the string m times
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The logic inferred is shown in Fig. 2.10, and as shown, it consists of the logic to
perform string concatenation and replication.

//////////////////////////////////////////////////////////////////////////////

module concatenaƟon_operator ( input [2:0] a_in, 

input [2:0] b_in, 

output reg [15:0] y_out );

parameter c_in = 3'b010;

always@ (a_in, b_in )

begin

// use of concatenaƟon{ }  and replicaƟon n{} operator 

y_out = { a_in, b_in , {3{c_in}}, 3'b111};

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 10 Verilog concatenation and replication operators and use in the RTL design

Fig. 2.10 RTL schematic of Example 10
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//////////////////////////////////////////////////////////////////////////////

module reduc�on_operators ( input [3:0] a_in, 

output reg [5:0] y_out);                             

always@ (a_in)

begin

// reduc�on AND

y_out[0] = & a_in;

// reduc�on NAND

y_out[1] = ~& a_in; 

// reduc�on OR

y_out[2] = | a_in;

// Reduc�on NOR

y_out[3] = ~| a_in;    

// Reduc�on XOR

y_out[4] = ^ a_in;

// Reduc�on XNOR

y_out[5] = ~^ a_in;             

end

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 11 Verilog reduction operators and use in the RTL design
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2.11 Verilog Reduction Operators

Verilog supports the reduction operators and returns the single-bit value after bit-
wise reduction. Table 2.9 describes the reduction operators.

The logic inferred is shown in Fig. 2.11, and as shown, it consists of the logic to
get the reduction output as single-bit result.

Fig. 2.11 RTL schematic of Example 11

Table 2.9 Verilog reduction operators

Operator Name Functionality

& Reduction AND For performing the bitwise reduction

*& Reduction NAND For performing the bitwise reduction

| Reduction OR For performing the bitwise reduction

*| Reduction NOR For performing the bitwise reduction

^ Reduction XOR For performing the bitwise reduction

*^ or ^* Reduction XNOR For performing the bitwise reduction
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2.12 Verilog Shift Operators

Verilog uses the shift operators and requires two operands. These operators are used
to perform the shifting operation. Table 2.10 describes the functionality of shift
operators.

//////////////////////////////////////////////////////////////////////////////

module shiŌ_operators ( input [3:0] a_in, 

output reg [3:0] y1_out, y2_out);

parameter b_in = 2;                             

always@ (a_in)

begin

// use of leŌ shiŌ operator 

y1_out = a_in << b_in;   

// use of right shiŌ operator 

y2_out = a_in >>  b_in;

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 12 Verilog shift operators and use in the RTL design

Table 2.10 Verilog shift
operators

Operator Name Functionality

<< Shift left To perform logical shift left

>> Shift right To perform logical shift right
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The logic inferred is shown in Fig. 2.12, and as shown, it consists of the logic to
perform left and right shift operations.

2.13 Exercises

For better understanding of Verilog assign and always construct, complete the
following exercises.

Fig. 2.12 RTL schematic of Example 12

module comb_design( input a_in, b_in, output q_out);

always @ (a_in)

q_out = a_in ^^ b_in;

endmodule 
a. XOR gate
b. XNOR gate
c. NOR gate 
d. Syntax error in the code

1. The logic inferred by the following code is 
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2. The logic inferred by the following code is 

module comb_design_1 ( input a_in, b_in, output reg q1, q2);

always @ (*) 

begin 

q1=  a_in | b_in; 

q2= a_in & b_in; 

end 

endmodule 
a. XOR gate, AND gate 
b. OR gate, AND gate 
c. NOR gate, AND gate 
d. XNOR gate, AND gate

3. What is the logic inferred by the code?  

module comb_design_2 ( input a_in, b_in, c_in, output y_out);

wire tmp; 

always @ * 

tmp = a_in & b_in; 

assign y_out = tmp & c_in; 
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endmodule 
a. XOR gate
b. OR gate
c. NOR gate 
d. Syntax error 

5. The logic inferred by the following code is 

module comb_design_4 ( input a_in, b_in, c_in, output  y_out);

reg tmp; 

always @ *

begin

tmp = a_in ^  b_in; 

b. Two input AND gate
c. Two AND gates connected in cascade 
d. Syntax error in the RTL

4. The logic inferred by the following code is 

module comb_design_3 ( input a_in, b_in, output reg y_out);

always 

y_out = a_in ||  b_in; 

a. Three input AND gate
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2.14 Summary

The following are important points to conclude this chapter.

1. The continuous assignments are used to model the combinational logic.
2. The assign is a keyword used with the desired expression to code the combi-

national logic.
3. The continuous assignments are neither blocking nor non-blocking.
4. The always procedural block with sensitivity list is useful to code the combi-

national design.
5. The default net type of input and output is wire.
6. If assignments are used within the always procedural block, then the net type

should be reg.
7. Verilog supports various operators and is useful to perform the arithmetic and

logical operations.

y_out =  tmp ^ c_in; 

end

endmodule 
a. AddiƟon(a,b,c)
b. Syntax error in the code 
c. Two input XOR (a,c)
d. XNOR (a,b,c)
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Chapter 3
Verilog Constructs and Combinational
Design-I

An efficient RTL design always uses minimum number of logic gates. This chapter dis-
cusses about the combinational Logic design using the synthesizable Verilog constructs.
Also discusses about the practical and real-life scenarios, useful while implementing
combinational designs.

Combinational logic is implemented by the logic gates, and in the combinational
logic, output is function of present input. The goal of designer is to implement the
logic using minimum number of logic gates or logic cells. Minimization techniques
are K-map, Boolean algebra, Shannon’s expansion theorems, and hyperplanes. The
thought process of designer should be such that the design should have the better
performance with lesser logic density. The area minimization techniques play
important role in the design of combinational logic or Boolean functions. In the
present scenario, designs are extraordinarily complex; the design functionality is
described using the hardware description language Verilog. The subsequent section
focuses on the use of Verilog RTL to describe the combinational design.

3.1 The Role of Constructs

As discussed in the Chap. 2, to model the combinational logic, we will use the
assign and always @ (//sensitivity list) constructs. Within the always procedural
block, we will use the if …. else construct, and most of the time it infers the
multiplexer kind of logic.

The if-else is sequential construct, and the syntax is
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Note: Use the begin….end for the multiple assignments within the if or else
condition.

3.2 Logic Gates and Synthesizable RTL

This section discusses about the logic gates and the design using synthesizable
Verilog constructs.

3.2.1 NOT or Invert Logic

NOT logic complements the input. NOT logic is also called as invert logic.
Synthesizable design is shown in the Example 1. The truth table of NOT logic is
shown in Table 3.1.

if (condition) 

//blocking assignment executed if condition is true 

else 

// blocking assignment is executed if condition specified in if () is false 

//////////////////////////////////////////////////////////////////////////////
module not_gate( input a_in, output reg y_out); 

always@(a_in)  

begin 

y_out = ~a_in; 

end 

endmodule 

////////////////////////////////////////////////////////////////////////////// 

Example 1 NOT logic synthesizable design
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The logic inferred is shown in Fig. 3.1, and input port of not logic gate is a_in
and output as y_out.

3.2.2 OR Logic

OR logic generates output as logic 1 when one of the inputs is logic 1.
Synthesizable design is shown in the Example 3. The truth table of OR logic is
shown in Table 3.2.

Table 3.1 Truth table of NOT gate

a_in y_out

0 1

1 0

Fig. 3.1 RTL schematic of Example 2

Table 3.2 Truth table of two
input OR gates

a_in b_in y_out

0 0 0

0 1 1

1 0 1

1 1 1

////////////////////////////////////////////////////////////////////////////
module not_gate( input a_in, output y_out); 

  assign y_out = ~a_in; 

endmodule 

////////////////////////////////////////////////////////////////////////////// 

Example 2 NOT logic using continuous assignment
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RTL schematic of OR logic is shown in Fig. 3.2, input ports of OR logic gate are
a_in, b_in, and output port is y_out. As shown in the schematic, the inferred logic
uses 2:1 multiplexer and other operators to infer the logic. The synthesis result is
EDA tool specific, and for ASIC and FPGA design, the synthesis result may differ!

For multiple input OR gate, you can use the bit-wise operator ( | ). RTL is coded
as shown in the Example 4.

////////////////////////////////////////////////////////////////////////////// 

module or_gate(input a_in, b_in , output reg y_out); 

always@(a_in, b_in) 

begin 

if ( a_in==0 && b_in ==0) 

      y_out = 0; 

else 

      y_out = 1; 

end 

endmodule 

////////////////////////////////////////////////////////////////// 

Example 3 OR logic synthesizable design

Fig. 3.2 RTL schematic of Example 3
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The schematic of multiple input OR gate is shown in Fig. 3.3.

Note: While describing the design functionality, make sure that all the
input ports are listed in the sensitivity list. Missing required signal from
sensitivity list will create simulation and synthesis mismatch and will be
discussed in Chap. 7.

3.2.3 NOR Logic

NOR logic is complement of the OR logic. Synthesizable design is shown in the
Example 5. The truth table of NOR logic is shown in Table 3.3.

///////////////////////////////////////////////////////////////////////////// 

module or_gate(input [7:0]  a_in, b_in , output [7:0] y_out); 

assign y_out = a_in | b_in; 

endmodule 

/////////////////////////////////////////////////////////////////////////////

Example 4 Multi-input OR gate

Fig. 3.3 Schematic of multi-input OR gate

Table 3.3 Truth table of two
input NOR gates

a_in b_in y_out

0 0 1

0 1 0

1 0 0

1 1 0
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The logic inferred is shown in Fig. 3.4, input ports of NOR logic gates are a_in,
b_in, and output port is y_out. As shown, the inferred logic uses the equality
operator and AND gate to implement the NOR gate (Fig. 3.5).

////////////////////////////////////////////////////////////////////////////// 

module nor_gate(input a_in, b_in , output reg y_out); 

always@(a_in, b_in) 

begin 

if ( a_in==0 && b_in ==0) 

      y_out = 1; 

else 

      y_out = 0; 

end 

endmodule 

//////////////////////////////////////////////////////////////////////////////

Example 5 NOR logic synthesizable design

Fig. 3.4 RTL schematic of Example 5
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Note: According to De Morgan’s law, bubbled AND is equal to NOR.

For multiple input OR gate, you can use the bit-wise NOT (*) of bit-wise
operator OR ( | ). RTL is coded as shown in the Example 6.

The schematic of multiple input NOR gate is shown in Fig. 3.6.

Fig. 3.5 Bubbled AND as NOR

///////////////////////////////////////////////////////////////////////////// 

module nor_gate(input [7:0]  a_in, b_in , output [7:0] y_out); 

assign y_out = ~(a_in | b_in); 

endmodule 

///////////////////////////////////////////////////////////////////////////// 

Example 6 Multi-input NOR

Fig. 3.6 Synthesis result of Example 6
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3.2.4 AND Logic

AND logic generates an output as logic 1 when both the inputs a_in, b_in are logic
1. Synthesizable design is shown in the Example 7. The truth table of AND logic is
shown in Table 3.4.

Note: And gate is visualized as series of two switches and used in pro-
grammable logic devices (PLD). Programmable AND plane can be created
by using the AND gates having programmable inputs.

The logic inferred is shown in Fig. 3.7, and input port of AND logic gate is
named as a_in, b_in and output as y_out.

Table 3.4 Truth table of two
input AND gates

a_in b_in y_out

0 0 0

0 1 0

1 0 0

1 1 1

////////////////////////////////////////////////////////////////////////////// 

module and_gate(input a_in, b_in , output reg y_out); 

always@(a_in, b_in) 

begin 

if ( a_in==1 && b_in ==1) 

      y_out = 1; 

else 

      y_out = 0; 

end 

endmodule 

////////////////////////////////////////////////////////////////////////////// 

Example 7 AND logic synthesizable design
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The multiple input AND gate is coded using the assign construct and shown in
the Example 8.

The logic inferred is shown in Fig. 3.8.

3.2.5 NAND Logic

NAND is complement of the AND logic. Synthesizable design is shown in the
Example 9. The truth table of NAND logic is shown in Table 3.5.

Fig. 3.7 RTL schematic of Example 7

///////////////////////////////////////////////////////////////////////////// 
module and_gate(input [7:0]  a_in, b_in , output [7:0] y_out); 

assign y_out = (a_in & b_in); 

endmodule 

///////////////////////////////////////////////////////////////////////////// 

Example 8 Multiple input AND gate

Fig. 3.8 Multi-input AND synthesis result
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Note: NAND logic is a universal logic. By using NAND logic, all possible
logic functions can be realized. NAND logic is used to implement the
storage elements like latches or flip-flops and to realize combinational
functions.

RTL schematic of NAND logic is shown in Fig. 3.9, and input ports of NAND
logic gate are named as a_in, b_in and output as y_out. The logic inferred uses the
multiplexer to generate NOT of AND.

Table 3.5 Truth table of two input NAND logic

a_in b_in y_out

0 0 1

0 1 1

1 0 1

1 1 0

////////////////////////////////////////////////////////////////////////////// 

module nand_gate(input a_in, b_in , output reg y_out); 

always@(a_in, b_in) 

begin 

if ( a_in==1 && b_in ==1) 

      y_out = 0; 

else 

      y_out = 1; 

end 

endmodule 

////////////////////////////////////////////////////////////////////////////// 

Example 9 NAND logic synthesizable design
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The multiple input NAND gate is coded using the assign construct and by using
the expression which has bit-wise NOT (*) and bit-wise AND (&) operator and is
shown in the Example 10.

The logic inferred is shown in Fig. 3.10.

Note: According to De Morgan’s law, bubbled OR is equal to NAND.

Fig. 3.9 RTL schematic of Example 9

///////////////////////////////////////////////////////////////////////////// 

module nand_gate(input [7:0]  a_in, b_in , output [7:0] y_out); 

assign y_out = ~(a_in & b_in); 

endmodule 

///////////////////////////////////////////////////////////////////////////// 

Example 10 Multiple input NAND gate

Fig. 3.10 Schematic of multiple input NAND
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3.2.6 Two Input XOR Logic

Two input XOR is called as exclusive OR logic and generates output as logic 1
when both inputs are not equal. Synthesizable design is shown in Example 11. The
truth table of XOR logic is shown in Table 3.6.

Note: XOR gate can be implemented by using two input NAND gates. The
number of two input NAND gates required to implement two input XOR
gates is equal to 4. XOR gates are used to implement arithmetic operations
like addition and subtraction.

Table 3.6 Truth table of two
input XOR gates

a_in b_in y_out

0 0 0

0 1 1

1 0 1

1 1 0

////////////////////////////////////////////////////////////////////////////// 

module xor_gate(input a_in, b_in , output reg y_out); 

always@(a_in, b_in) 

begin 

if ( a_in != b_in ) 

      y_out = 1; 

else 

      y_out = 0; 

end 

endmodule 

////////////////////////////////////////////////////////////////////////////// 

Example 11 XOR logic synthesizable design
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RTL schematic of two input XOR logic is shown in Fig. 3.11; input ports of
XOR logic gate are named as a_in, b_in and output as y_out.

If XOR gate is not available in the library, then XOR logic can be realized using
AND-OR-invert or by using minimum number of NAND gates.

The RTL for multiple input XOR gate is coded using bit-wise operator and
shown in the Example 12.

The logic inferred is shown in Fig. 3.12.

Fig. 3.11 RTL schematic of Example 11

/////////////////////////////////////////////////////////////////////////////
module xor_gate ( input [7:0]  a_in, b_in , output [7:0] y_out );

assign  y_out = (a_in  ^  b_in); 

endmodule 

///////////////////////////////////////////////////////////////////////////// 

Example 12 Multiple input XOR gate

Fig. 3.12 Schematic of multiple input XOR gate
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3.2.7 Two Input XNOR Logic

Two input XNOR is called as exclusive NOR logic and generates output as logic 1
when two inputs are equal. XNOR is complement of XOR logic. Synthesizable
RTL for XNOR is shown in the Example 13. The truth table of XNOR logic is
shown in Table 3.7.

RTL schematic of XNOR logic is shown in Fig. 3.13, input ports of XNOR logic
gate are named as a_in, b_in, and output is named as y_out.

Table 3.7 Truth table of
XNOR gate

a_in b_in y_out

0 0 1

0 1 0

1 0 0

1 1 1

////////////////////////////////////////////////////////////////////////////// 

module xnor_gate(input a_in, b_in , output reg y_out); 

always@(a_in, b_in) 

begin 

if ( a_in == b_in ) 

      y_out = 1; 

else 

      y_out = 0; 

end 

endmodule 

//////////////////////////////////////////////////////////////////////////////

Example 13 XNOR logic synthesizable design
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If XNOR gate is not available in the library, then XNOR logic can be realized by
using AND-OR-invert or by using minimum number of NAND or NOR gates.

The RTL for the multiple input XNOR is shown in the Example 14.

The RTL schematic is shown in Fig. 3.14.

Fig. 3.13 RTL schematic of Example 13

///////////////////////////////////////////////////////////////////////////// 

module xnor_gate(input [7:0]  a_in, b_in , output [7:0] y_out); 

assign y_out = (a_in  ~^  b_in); 

endmodule 

///////////////////////////////////////////////////////////////////////////// 

Example 14 RTL of multiple input XNOR

Fig. 3.14 Schematic of Example 14
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3.3 Tristate Logic

Tristate has three logic states, namely logic 0, logic 1, and high impedance z.
Synthesizable design is shown in the Example 15. The truth table of tristate buffer
logic is shown in Table 3.8.

Note: Avoid use of tristate logic while developing the RTL. Tristate is
difficult to test. Instead of tristate logic, it is recommended to use multi-
plexers to develop the logic with enable.

Table 3.8 Truth table of
tristate logic

Enable data_in data_out

1 0000 0000

1 1111 1111

0 xxxx zzzz

///////////////////////////////////////////////////////////////////////////// 

module tri_state_logic  ( input [3:0]  data_in,  

input enable,  

output  reg [3:0] data_out );

always@(data_in, enable) 

begin 

if (enable)  

        data_out = data_in; 

else 

        data_out= 4'bZZZZ;     

end     

endmodule 

//////////////////////////////////////////////////////////////////////////// 

Example 15 Synthesizable Verilog code for tristate logic
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RTL schematic of tristate logic is shown in Fig. 3.15, input port of tristate not
logic is named as data_in, and enable input as enable and four-bit output port as
data_out.

3.4 Arithmetic Circuits

Arithmetic operations like addition and subtraction are used frequently in the design
of processor logic. Arithmetic and logical unit (ALU) of any processor is designed
to perform the addition, subtraction, increment, and decrement operations. The
arithmetic designs should be described by the synthesizable Verilog code to achieve
the desired performance. This section discusses about RTL designs to perform
arithmetic operations.

3.4.1 Adder

Adders are used to perform the binary addition of two binary numbers. Adders are
used for signed or unsigned addition operations.

3.4.1.1 Half Adder

Consider half adder which has two inputs a_in, b_in and generates single bit outputs
sum_out, carry_out. Where sum_out is adder result and carry_out is carry output.
Table 3.9, is the truth Table for half adder and RTL is shown in the Example 16.

Fig. 3.15 RTL schematic of Example 15

Table 3.9 Truth table of half
adder

a_in b_in sum_out carry_out

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1
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Note: Half adders are used as basic component to perform the addition.
Full adder logic circuits are designed using the instantiation of half adders
as components.

RTL schematic of half adder is shown in Fig. 3.16, and as shown, the input ports
of half adder are named as a_in, b_in and output as sum_out, carry_out.

3.4.1.2 Full Adder

Full adders are used to perform addition. Consider binary inputs as a_in, b_in, c_in
and single bit binary outputs as sum_out, carry_out. Table 3.10 is the truth table for
full adder, and RTL is described in the Example 17.

///////////////////////////////////////////////////////////////////////////// 

module  half_adder ( input a_in, b_in, 

output sum_out, carry_out );                   

assign  sum_out = a_in ^ b_in; 

assign  carry_out = a_in & b_in; 

endmodule

///////////////////////////////////////////////////////////////////////////// 

Example 16 Synthesizable code for half adder

Fig. 3.16 RTL schematic of Example 16
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Note: Full adder consumes more area, so it is highly recommended to
implement the adder logic using multiplexers.

RTL schematic of full adder is shown in Fig. 3.17, and input ports of full adder
are named as a_in, b_in, c_in and output as sum_out, carry_out.

Table 3.10 Truth table of full adder

c_in a_in b_in sum_out carry_out

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

///////////////////////////////////////////////////////////////////////////// 

module  full_adder ( input a_in, b_in, c_in, 

output sum_out, carry_out ); 

assign  { carry_out, sum_out } = a_in + b_in + c_in; 

endmodule

///////////////////////////////////////////////////////////////////////////// 

Example 17 Synthesizable Verilog code for full adder

Fig. 3.17 RTL schematic of Example 17
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3.4.2 Subtractor

Subtractors are used to perform the binary subtraction of two binary numbers. This
section describes about the half and full subtractors.

3.4.2.1 Half Subtractor

Consider the half subtractor which has inputs as a_in, b_in and generates single
outputs diff_out, borrow_out. Where diff_out is difference output, and borrow_out
is borrow output. Refer Table 3.11, and RTL is shown in the Example 18.

Note: Half subtractors are used as basic component to perform the binary
subtractions. Full subtractor logic circuits are designed using the instan-
tiation of half subtractors as components.

RTL schematic of half subtractor is shown in Fig. 3.18, and input ports of half
adder are named as a_in, b_in and output as diff_out, borrow_out.

Table 3.11 Truth table of half subtractor

a_in b_in diff_out borrow_out

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

///////////////////////////////////////////////////////////////////////////// 

module  half_subtractor ( input a_in, b_in, 

output diff_out, borrow_out );                  

assign diff_out = a_in ^ b_in; 

assign borrow_out = (~a_in) & b_in; 

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 18 Synthesizable Verilog code for half subtractor
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3.4.2.2 Full Subtractor

Full subtractors are used to perform subtraction. Consider single bit inputs which
are named as a_in, b_in, c_in and single bit binary outputs as diff_out, borrow_out.
Refer Table 3.12, and RTL coded is shown in the Example 19.

Fig. 3.18 RTL schematic of Example 18

Table 3.12 Truth table of full subtractor

c_in a_in b_in diff_out borrow_out

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0

1 1 1 1 1

///////////////////////////////////////////////////////////////////////////// 

module  full_subtractor ( input a_in, b_in, c_in, 

output diff_out, borrow_out ); 

assign  { borrow_out, diff_out } = a_in- b_in - c_in; 

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 19 Synthesizable Verilog code for full subtractor
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Note: It is recommended to use the full adder to perform the subtraction
operation. Subtraction is performed using 2’s complement addition.

RTL schematic of full subtractor is shown in Fig. 3.19, and input ports of full
subtractor are named as a_in, b_in, c_in and output as diff_out, borrow_out.

3.5 Exercises

The exercises are based on the understanding of assign and always procedural
block to model the combinational design. Complete the exercises for better
understanding and application of Verilog constructs.

Fig. 3.19 RTL schematic of Example 19

1. The logic inferred by the following code is  

module comb_design_logic ( input a, b, output y); 

assign y = a ~^ b; 

endmodule  
a. XOR gate 
b. XNOR gate 
c. NOR gate  
d. Syntax error in the code 

2. The logic inferred by the following code is  

module comb_design_logic_0 ( input a, b, output y); 

assign y = a ~^ b; 

assign y= a & b; 
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endmodule  
a. XOR gate 
b. XNOR gate 
c. NOR gate  
d. Syntax error in the code 

3. State true or false? The order of assign doesn’t affect on the syn-
thesis result. 

 module comb_design_logic_1 ( input a, b, c, output y1);

wire y1; 

assign y = a ~^ b; 

assign y1= a & y; 

endmodule  

a. True  
b. false 

4. The logic inferred by the following code is  

module comb_design_logic_2 ( input a, b, output reg y1, y2); 

assign y1=  a ^ b;
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always @ (a, b)  

y2= a && b; 

endmodule  
a. XOR gate, AND gate  
b. OR gate, AND gate  
c. NOR gate, AND gate  
d. XNOR gate, AND gate 

5. What is the logic inferred by the code?   

module design_logic2 ( input a, b, c, output reg y2); 

reg y1; 

always @ (a, b,c) 

y1 = a & b; 

y2 = y1 & c; 

endmodule  
a.  Three input AND gate 
b. Two input AND gate 
c.  Two AND gates connected in cascade  
d.  Syntax error in the RTL 
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3.6 Summary

As discussed already in this chapter, the following are important points need to be
considered while implementing combinational logic RTL.

1. Use minimum area by sharing the arithmetic resources.
2. Use all the required signals in the sensitivity to avoid simulation and synthesis

mismatch.
3. Avoid use of tristate logic and implement the logic required using multiplexers

with proper enable circuit.
4. Verilog supports four states, and they are logic 0, logic 1, don’t care x, and high

impedance z.
5. Use minimum number of adders in design. Adders can be implemented using

multiplexers.
6. NAND and NOR are universal logic gates and used to implement any combi-

national or sequential logic.
7. Bubbled AND is equal to NOR.
8. Bubbled OR is equal to NAND.
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Chapter 4
Verilog Constructs and Combinational
Design-II

An efficient RTL design always uses the synthesizable constructs, and the role of design
engineer is to get the better design performance as per as area, speed and power is concern.
The chapter discusses about RTL design for few of the arithmetic resources and the code
converters.

As discussed in the Chap. 3 in the combinational design, an output is function of the
present input only. If input changes, an output changes. Practically, the logic gates
or combinational design can have the propagation delay. We have already discussed
about the assign and always @ (// sensitivity list) constructs in the Chap. 3. This
chapter discusses about the always @* and assign to code for the combinational
designs such as multiple bit adders and subtractors and code converters.

4.1 Procedural Block always @*

Most of the time during combinational design we can have many number of inputs
on which the always procedural block is sensitive to. As discussed in the previous
chapter, the always procedural block with the sensitivity list is best suitable to
model the combinational design. Consider the always procedural block which is
sensitive to eight inputs. We can have

always @ (a_in, b_in, c_in, d_in, e_in, f_in, g_in, h_in)
If we miss one of input from the sensitivity list, then the issue is simulation, and

synthesis mismatches. To avoid the simulation and synthesis mismatch, better
strategy during the RTL design is to have always procedural block which can be
sensitive to all the required inputs. We can use

always @*
where the character * is information provided to simulator to include all the

inputs in the sensitivity list. This is efficient way of RTL coding.
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4.2 Multi-bit Adders and Subtractors

Multi-bit adders and subtractors are used in the design of arithmetic units for the
processors. The logic density depends upon the number of input bits of adder or
subtractor.

4.2.1 Four-Bit Full Adder

Many practical designs use multi-bit adders and subtractors. It is industrial practice
to use basic component as full adder to perform the addition operation. For
example, if designer wishes to implement the 4-bit adder, then four full adders are
required. As shown in the Example 1, addition is performed on two 4-bit binary
numbers a_in, b_in. The result is 4-bit addition and will be available at output port
sum_out. Carry input is c_in, and carry output is carry_out.

Note: Four-bit addition uses four full adders. Depending on signed or
unsigned addition requirements, the Verilog code can be modified

Synthesis result of RTL coded for the 4-bit adder is shown in Fig. 4.1, and input
ports of 4-bit adder are named as a_in, b_in, c_in and output port as sum_out,
carry_out.

////////////////////////////////////////////////////////////////////////////// 

module four_bit_adder  (  input [3:0]  a_in,  b_in,  

                                              input c_in, 

                                              output  [3:0]  sum_out, 

                                              output carry_out);                        

assign { carry_out, sum_out }  = a_in + b_in + c_in; 

endmodule 

////////////////////////////////////////////////////////////////////////////// 

Example 1 Synthesizable Verilog code for 4-bit adder
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4.2.2 4-Bit Full Subtractor

RTL is coded for the 4-bit subtractor and shown in the Example 2, and subtraction
is performed on two 4-bit binary numbers a_in, b_in. The result is 4-bit subtraction
and is available at output port diff_out. Borrow input is c_in, and borrow output is
borrow_out.

Fig. 4.1 RTL schematic of 4-bit adder

////////////////////////////////////////////////////////////////////////////// 

module four_bit_subtractor (  input [3:0]  a_in,  b_in,  

                                              input  c_in, 

            output [3:0] diff_out, 

                                 output borrow_out );                        

assign { borrow_out, diff_out } = a_in - b_in - c_in;

endmodule 

////////////////////////////////////////////////////////////////////////////// 

Example 2 Synthesizable Verilog code for 4-bit subtractor
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Synthesis result of RTL coded for the 4-bit subtractor is shown in Fig. 4.2, and
input ports of 4-bit subtractor are named as a_in, b_in, c_in and output port as
diff_out, borrow_out.

4.2.3 4-Bit Adder and Subtractor

Design of addition and subtraction operation can be performed by using the adders
only. Subtraction can be performed using 2’s complement addition. For example,
consider the scenario shown in Table 4.1.

The RTL is coded to implement the 4-bit adder and subtractor using synthe-
sizable constructs. If control_in = 1, it performs addition; otherwise for the con-
trol_in = 0, it performs the subtraction.

Note: Here, the resource used is binary full adder to perform both the
additions and subtractions. Subtraction operation is performed using
adders only. Resource sharing and resource utilization are to be discussed
in the Chap. 3.

Synthesized logic of 4-bit adder/subtractor is shown in Fig. 4.3, and input ports
of 4-bit adder/subtractor are named as a_in, b_in,c_in. The control port is named as
control_in, and output is named as result_out, carry_out.

4.3 Optimization of Resources

If we carefully observe the RTL design coded in the Example 3, then we can
conclude that it uses a greater number of resources to perform the addition and
subtraction. The logic performs both operations at a time, and at output selection,
logic is used to select from one of the operations depending on the multiplexer
select input (control_in). The design is inefficient and needs optimization. The
following section discusses about few of the RTL tweaks to optimize for the design.

Fig. 4.2 RTL schematic of 4-bit subtractor
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Table 4.1 Operational table for adder subtractor

Operation Description Expression

Addition Unsigned addition of A, B A + B + 0

Subtraction Unsigned subtraction of A, B A − B = A + *B + 1

////////////////////////////////////////////////////////////////////////////// 

module four_bit_adder_subtractor  (    input [3:0]  a_in, b_in,  

 input c_in, 

 input control_in, 

output  reg [3:0] result_out, 

output  reg carry_out    ); 

always @ * 

if ( control_in)  

 { carry_out, result_out } = a_in + b_in + c_in; 

else 

 { carry_out, result_out } = a_in - b_in - c_in;                     

endmodule 

////////////////////////////////////////////////////////////////////////////// 

Example 3 Synthesizable Verilog code for 4-bit adder and subtractor
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4.3.1 Optimization Using Only Adders

To optimize for the resources, let us try to implement the subtraction using 2’s
complement addition. The strategy is described in Table 4.2.

The RTL for the operations shown in Table 4.2 is coded using if..else construct
and shown in the Example 4.

The strategy used to code the RTL is useful to optimize the logic, and the design
uses only adders in the data path. But still there is issue as the chain of multiplexers
is used at the output to select the result of one of the operations (Fig. 4.4).

Fig. 4.3 Synthesis result of 4-bit adder/subtractor

Table 4.2 Operational table with optimization goal

Operation control_in Expression

Addition 0 A + B + 0

Subtraction 1 A − B = A + *B + 1
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4.3.2 Optimization by Tweaking the Logic to Have Better
Data and Control Path

For the better data path and control path optimization, use the common resource as
adder, and use the common expression to perform the addition and subtraction. The
strategy is explained in Table 4.3.

Fig. 4.4 RTL schematic after RTL tweak

///////////////////////////////////////////////////////////////////////////// 

module four_bit_adder_subtractor (    input [3:0]  a_in,  b_in,                             

input  control_in, 

output  reg [3:0]  result_out, 

output  reg carry_out   ); 

always @ * 

if ( ~control_in) 

{ carry_out, result_out } = a_in + b_in + control_in ;   

else

 { carry_out, result_out } = a_in +  (~b_in)  + control_in;                        

endmodule

///////////////////////////////////////////////////////////////////////////// 

Example 4 Synthesizable Verilog code for 4-bit adder and subtractor with optimization
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The RTL for the operations specified in Table 4.3 is coded using the synthe-
sizable constructs and is shown in the Example 5.

Fig. 4.5 RTL schematic after optimization

////////////////////////////////////////////////////////////////////////////// 
module  four_bit_adder_subtractor (  input [3:0] a_in, b_in,                             

input control_in, 

output [3:0]  result_out, 

output carry_out   ); 

reg [4:0]  temp_result; 

assign { carry_out, result_out }  =  a_in + temp_result ;              

always @ * 

if ( ~control_in)  

temp_result = b_in + control_in;      

 else 

temp_result = (~ b_in) + control_in;                          

endmodule 

////////////////////////////////////////////////////////////////////////////// 

Example 5 Synthesizable Verilog code for 4-bit adder and subtractor with use of least adders

Table 4.3 Use of the
common expression in the
RTL tweaks

Operation control_in Variable
input

Common
expression

Addition 0 b_in A + control_in

Subtraction 1 *b_in A + control_in
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The synthesis result of Example 5 is shown in Fig. 4.5, and as shown, the
inferred logic uses only two adders and multiplexer. At the output stage, it infers the
adder and has the optimized data and control path. Now, the logic performs only
one operation at a time.

4.4 Procedural Block initial

The procedural block initial is non-synthesizable construct and executes only once at
0 simulation time. It is mainly used for the initialization. The syntax is shown here.

The testbenches use initial procedural block, and the objective is to create the
stimulus which can drive to the design under test. If I have blocking inter-delay
assignments within the begin–end, then all these assignments will be executed
sequentially. For more information about the inter- and intra-delay, refer Chap. 15.

4.5 Simulation Concepts: Basic Testbench

In most of the practical scenarios, we use the testbenches to check for the functional
correctness of the design. The basic testbench we can visualize using the diagram
which has driver and DUT.

   Driver     DUT

Fig. 4.6 Testbench basic
architecture

//////////////////////////////////////////////////////////////////////

initial 

begin 

// assignments with delays 

end 
////////////////////////////////////////////////////////////////////// 
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////////////////////////////////////////////////////////////////////// 

module  test_add_sub; 

reg [3:0]  a_in, b_in; 

reg control_in;

wire [3:0]  result_out; 

wire carry_out;

four_bit_subtractor   UUT  ( .a_in(a_in),  

                                 .b_in(b_in),                             

.control_in(control_in), 

.result_out(result_out), 

.carry_out(carry_out) );                    

iniƟal  

begin 

a_in = 4'b0000; 

b_in = 4'b0000; 

control_in =0; 

#10;  

a_in = 4'b1000; 

b_in = 4'b0010; 

control_in =0; 

#10;  

Example 6 Testbench of 4-bit adder and subtractor
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a_in = 4'b1000; 

b_in = 4'b0110; 

#10;  

a_in = 4'b1000; 

b_in = 4'b0111; 

control_in =1; 

#50;  

a_in = 4'b1000; 

b_in = 4'b1111; 

control_in =1; 

#10; 

a_in = 4'b0111; 

b_in = 4'b0111; 

control_in =0; 

#10; 

a_in = 4'b0111; 

b_in = 4'b0111; 

control_in =1; 

end 

endmodule 

////////////////////////////////////////////////////////////////////// 

Example 6 (continued)
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As shown in Fig. 4.6, the testbench has driver and DUT. The driver generates
the stimulus of signals and is used to drive the DUT inputs. The goal is to check the
output signals to understand and confirm about the functional correctness of the
design.

The testbench for the Example 5 is coded using the non-synthesizable constructs
and shown in the Example 6. The objective is to drive the signals a_in, b_in,
control_in and to check for the output at result_out, carry_out.

As shown in the simulation waveform (Fig. 4.7) for time stamp t = 20 ns,
control_in = 0, it performs addition of 1000, 0110 to get result_out as 1110 and
carry_out = 0. At time stamp t = 30 ns, control_in = 1, and it performs the sub-
traction of 1000 and 0111 to get result_out = 0001, carry_out = 0. For other time
stamp, you can observe the result_out, carry_out.

4.6 Comparators and Parity Detectors

In most of the practical scenarios, comparators are used to compare the equality of
two binary numbers. Parity detectors are used to compute the even or odd parity for
the given binary number. It becomes very essential for the design engineer to have
the better understanding of this.

4.6.1 Binary Comparators

These are used to compare the two binary numbers. As discussed, earlier Verilog
supports four states, and they are logic 0, logic 1, don’t care x, and high impedance
z. Verilog supports logical equality operator (==) and inequality operator (!=), and
these are used to compare the two numbers. These operators are used in the syn-
thesizable RTL design.

Fig. 4.7 Simulation result of 4-bit adder and subtractor
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Table 4.4 Operational table for 1-bit comparator

a_in b_in a_greater_b a_equal_b a_less_b

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

/////////////////////////////////////////////////////////////////////////////

module binary_comparator ( input [3:0] a_in , b_in,

output reg a_greter_b, a_equal_b, a_less_

always @ *

begin

if (a_in ==b_in)

begin

a_greter_b = 0;

a_equal_b = 1;

a_less_b =0;

end

else if (a_in > b_in)

begin

a_greter_b = 1;

a_equal_b = 0;

a_less_b =0;

end

else

Example 7 Synthesizable Verilog code for 1-bit comparator
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For example, consider the operational Table 4.4. As shown in the table, for a_in
= b_in a_equal_b = 1, a_in > b_in a_greater_b = 1, a_in < b_in a_less_b. But it
should generate the parallel output to reflect the result.

Note: Logical equality and inequality operators are used in the synthesiz-
able RTL code and if any of the operands are ‘x’ or ‘z’ comparison is false.

Synthesized equivalent block representation is shown Fig. 4.8. Due to use of
nested if…else construct, it infers the priority logic with the tree of multiplexers at
the output and is inefficient design.

Fig. 4.8 Synthesis result of 1-bit comparator

begin

a_greter_b = 0;

a_equal_b = 0;

a_less_b =1;

end  

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 7 (continued)
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4.6.2 Parity Detector

Parity detectors are used to detect the even or odd parity for the binary number
string. Consider the design requirement to detect even or odd number of 1’s, for
even number of 1's the output is logic 0 and for odd number of 1’s the output is
logic 1. The RTL using Verilog can be coded as shown in the Example 8.

The operational table for the parity detector is shown below in Table 4.5. For
odd number of 1s, the output is Logic 1, and for even number of 1s, output is
assigned as logic 0.

Note: Parity detectors are used in many of DSP applications and an
integral module for encryption engines.

Synthesized equivalent block representation is shown in Fig. 4.9.

Fig. 4.9 Synthesized parity detector

////////////////////////////////////////////////////////////////////////////// 

module  even_parity_detector  ( input  [7:0]  data_in,  

output parity_out);                          

assign parity_out = ^ data_in; 

endmodule 

////////////////////////////////////////////////////////////////////////////// 

Example 8 Synthesizable Verilog code for parity detector

Table 4.5 Operational table for parity detector

Condition Description

Odd 1s Assign output as logical 1

Even 1s Assign output as logical zero
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4.7 Code Converters

This section deals with the commonly used code converters in the design. As name
itself indicates, the code converters are used to convert the code from one number
system representation to another number system. In the practical scenarios, binary
to gray and gray to binary converters are used.

4.7.1 Binary to Gray Code Converter

Base of binary number system is 2, for any multi-bit binary number, one or more
than one bit changes in two successive numbers. In gray code, only one bit changes
at a time in two successive gray codes.

Refer Table 4.6.
The RTL is coded using the synthesizable constructs that is continuous

assignments for 4-bit binary to gray code conversion described in Example 9.

Note: Gray codes are used in the multiple clock domain designs to transfer
the control information from one of the clock domains to another clock
domain.

The synthesis result is shown in Fig. 4.10.

Table 4.6 Binary and its equivalent gray code

4-bit binary 4-bit gray

0000 0000

0001 0001

0010 0011

0011 0010

0100 0110

0101 0111

0110 0101

0111 0100

1000 1100

1001 1101

1010 1111

1011 1110

1100 1010

1101 1011

1110 1001

1111 1000
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Fig. 4.10 RTL schematic of 4-bit binary to gray converter

////////////////////////////////////////////////////////////////////// 
module  binary_to_gray  (  input [3:0]  binary_in, 

                                               output [3:0]  gray_out ); 

assign  gray_out [3] = binary_in[3]; 

assign  gray_out [2] = binary_in[3] ^ binary_in[2]; 

assign gray_out [1] = binary_in[2] ^ binary_in[1]; 

assign  gray_out [0] = binary_in[1] ^ binary_in[0];                  

endmodule 

////////////////////////////////////////////////////////////////////////////// 

Example 9 Synthesizable Verilog code for 4-bit binary to gray code converter
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4.7.2 Gray to Binary Code Converter

The truth table of the 4-bit gray to binary code converter is shown in Table 4.7.

Table 4.7 Gray code and its binary equivalent

4-bit gray 4-bit binary

0000 0000

0001 0001

0011 0010

0010 0011

0110 0100

0111 0101

0101 0110

0100 0111

1100 1000

1101 1001

1111 1010

1110 1011

1010 1100

1011 1101

1001 1110

1000 1111

////////////////////////////////////////////////////////////////////////////// 

module  binary_to_gray (  input [3:0] gray_in, 

                                               output [3:0] binary_out );                        

assign binary_out[3] = gray_in[3]; 

assign  binary_out [2] = gray_in[3]  ^  gray_in[2]; 

assign binary_out [1] = ( gray_in[3] ^ gray_in[2] )  ^  gray_in[1] ; 

assign binary_out [0] = ( gray_in[3] ^ gray_in[2] ^ gray_in[1] ) ^  
gray_in[0];                    

endmodule 

////////////////////////////////////////////////////////////////////////////// 

Example 10 Synthesizable Verilog code for 4-bit gray to binary code converter
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The RTL description of 4-bit gray to binary code conversion is described in
Example 10.

Note: Gray codes are used in the gray counter implementation and in the
error correcting mechanism.

Synthesized representation of 4-bit gray to binary code converter is shown in
Fig. 4.11.

4.8 Let Us Think About the Design from Specifications

Let us design logic using the if…else construct for the functionality described in
Table 4.8.

The RTL description to get the y_out as XOR (a_in, b_in) and XNOR (a_in,
b_in) for a_in != b_in and a_in = b_in, respectively, is coded using the synthe-
sizable constructs and shown in the Example 11.

Fig. 4.11 Synthesis result of 4-bit gray to binary converter

Table 4.8 Operational table for combinational design

Condition Output Description

a_in = b_in y_out = a_in *^ b_in If both inputs are at same logic level, then output
should be XNOR (a_in, b_in)

a_in !
= b_in

y_out = a_in ^ b_in If both inputs are at different logic level, then output
should be XOR (a_in, b_in)
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The RTL schematic for Example 11 is shown in Fig. 4.12, and logic inferred has
the 2:1 multiplexer with control input and the XOR and XNOR gate in the data
path.

Fig. 4.12 RTL schematic of combinational design

////////////////////////////////////////////////////////////////////////////// 

module  combo_design ( input a_in,  b_in, 

output  reg y_out); 

always@*

begin 

if (a_in == b_in) 

y_out = a_in ~^ b_in; 

else 

y_out = a_in ^ b_in; 

end 

endmodule 

////////////////////////////////////////////////////////////////////////////// 

Example 11 Synthesizable Verilog code of combinational design
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4.9 Exercises

The exercises are based on the understanding of assign and always procedural
block to model the combinational design. Complete the exercises for better
understanding and application of Verilog constructs.

1. The logic inferred by the following code is  

module comb_design_logic ( input a, b, output reg y); 

assign y = a ~^ b; 

endmodule  
a. XOR gate 
b. XNOR gate 
c. NOR gate  
d. Syntax error in the code 

2. The logic inferred by the following code is  

module comb_design_logic_0 ( input a, b, output y); 

always@* 

begin 

assign y = a ~^ b; 

assign y= a & b; 

end 

endmodule  
a. XOR gate, AND gate 
b. XNOR gate, AND gate 
c. NOR gate , AND gate 
d. Syntax error in the code 
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3. State true or false? The order of always doesn’t affect on the syn-
thesis result. 

 module comb_design_logic_1 ( input a, b, c, output reg y1);

reg y1; 

always@*  

 y = a ~^ b; 

always@*  

 y1= a & y; 

endmodule  

a. True  
b. false 

4. The logic inferred by the following code is  

module comb_design_logic_2 ( input a, b, output reg y1, y2); 

always@ * 

y1=  a ^ b;
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always @ (a, b)  

y2= a && b; 

endmodule  
a. XOR gate, AND gate  
b. OR gate, AND gate  
c. NOR gate, AND gate  
d. XNOR gate, AND gate 

5. What is simulaƟon result for the code?   

module design_logic2 (); 

reg y1; 

iniƟal  

begin 

y1=1’b0;

#10 y1= 1’b1;

#20 y1=1’b0;

end 

endmodule 
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4.10 Summary

As discussed already in this chapter, the following are important points need to be
considered while implementing combinational logic RTL.

1. The if..else construct is used within the always procedural block.
2. The if..else construct infers the 2:1 multiplexer.
3. Use the adders to perform the subtraction.
4. Use the RTL tweaks for better data and control path optimization.
5. Multiple assign constructs execute concurrently.
6. The procedural block initial executes at 0 time and executes only once.
7. The testbench is used to check for the functional correctness of the design.
8. In two consecutive binary numbers, one or more than one bit changes.
9. In two consecutive gray numbers, only one bit changes.

a. Syntax error in the testbench 
b. At t=0 y1=0, t=10ns y1=1, t=20 y1=0; 
c. At t=0 y1=0, t=10ns y1=1, t=30 y1=0; 
d. At t=10 y1=0, t=20ns y1=1, t=30 y1=0; 
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Chapter 5
Multiplexers as Universal Logic

For an RTL design engineer, it is especially important to have better understanding of
multiplexers. In most of the applications these are used as a functional blocks. This chapter
discusses about the efficient RTL coding for multiplexers and parallel verses priority logic.

In most of the application, we experience the use of multiplexers. The multiplexer
or MUX is used to implement the Boolean functions or any of the logic gates, and it
is called as universal logic. The main application of multiplexer is to select from
one of the inputs and hence called as the switch. The next few subsequent sessions
are useful to understand about the RTL design for the multiplexers.

5.1 Multiplexers

Multiplexers are used to select one of the inputs from many. Multiplexers are also
called as universal logic, and terminology used in the practical world is MUX. By
using the suitable multiplexers, any of combinational logic function can be realized.
Multiplexers are used as selection logic in ASIC- and FPGA-based designs.
Multiplexer consumes lesser area as compared to adders, and most of the time
MUX are used to implement arithmetic components such as adders and subtractors.

The block diagram of n:1 MUX is shown in Fig. 5.1, and it consists of n input
lines, m select lines, and one output line. Input lines are denoted as i[0], i[1] … i
[n − 1]; select lines by s[0], s[1], … s[m − 1], and output line by ‘y’.

As shown in Fig. 5.1, multiplexer has n input lines, m select lines, and single
output line. Relation between the input lines and select lines is given by n = 2m. For
example, for 4:1 MUX input lines are four so m = log2n, that is, select lines equal
to two.
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5.2 Multiplexer as Universal logic

As discussed, earlier multiplexer is treated as universal logic as all combinational
logic functions can be realized using MUX.

5.2.1 2:1 MUX

A 2:1 MUX has two input lines: one select line and one output line. When sel_in
input is logic 0, output y_out is assigned as a_in and output is assigned as ‘b_in’ for
sel_in equal to logic 1. Table 5.1 describes the truth table of 2:1 MUX and gate
level design (Fig. 5.2).

Note Conditional assignments are used to select from many inputs so infers
the multiplexer.

The RTL schematic is shown in Fig. 5.3.

Fig. 5.1 Block diagram of n:1 MUX

Table 5.1 Truth table of 2:1 MUX

sel_in y_out

O a_in

1 b_in
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A 2:1 multiplexer symbolic representation is used to describe the imple-
mentation of higher density multiplexers. Multiplexer is treated as universal
logic. Using multiplexers, all possible combinational logic can be realized.

Fig. 5.2 Gate-level structure of 2:1 multiplexer

//////////////////////////////////////////////////////////////////////////////

module mux_2to1 (  input a_in,  b_in,  sel_in, 

output y_out );

assign y_out = (sel_in) ? b_in : a_in ;

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 1 Synthesizable design of 2:1 MUX

Fig. 5.3 RTL schematic of 2:1 multiplexer
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The reason for using MUX as universal logic is due to its easy to understand and
simple structure. Figure 5.4 is useful to understand how 2:1 MUX is used to
implement the two input XOR logic gates. Consider XOR logic gate has two inputs
a, b and an output y. The implementation of two input XOR logic gates using 2:1
MUX is shown in Fig. 5.4.

Note if-else generates priority logic, and case…endcase generates parallel
logic. It is recommended to use case…endcase construct to code the
MUX RTL. It is recommended to use if-else to code the RTL design to infer
the priority logic.

5.3 The if...else Versus case Construct

Let us discuss the other ways to code the 2:1 MUX. There are different ways in
which 2:1 MUX can be coded. It can be coded by using if-else or by using case…
endcase. Example 2 describes synthesizable design using ‘if-else’, and Example 3
describes synthesizable design using ‘case’ statement.

Fig. 5.4 Two-input XOR logic using 2:1 MUX
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/////////////////////////////////////////////////////////////////////////////

module mux_2to1( input a_in, b_in, sel_in, 

output reg y_out );

always@*

begin

if(sel_in)    

y_out = b_in;        

else    

y_out = a_in;        

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 2 Synthesizable Verilog code for 2:1 MUX using if-else

////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////

module mux_2to1 (  input  a_in,  b_in,  sel_in, 

output  reg y_out );

always@*

begin

case(sel_in)

1'b0 :   y_out = a_in;        

1'b1 :   y_out = b_in;     

endcase    

end

endmodule

Example 3 Synthesizable Verilog code of 2:1 MUX using case
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5.4 The 4:1 MUX Using if...else

Four is to one MUX has four input lines and single output lines. The 4:1 MUX has
two select lines and been used to select one of the inputs at a time. The truth table of
4:1 MUX is shown in Table 5.2, and Example 4 is synthesizable design of 4:1
MUX (Fig. 5.6 ).

//////////////////////////////////////////////////////////////////////////////

module mux_4to1 (  input  [3:0] d_in,

input  [1:0] sel_in,

output  reg y_out );                 

always @*

begin

if (sel_in ==2'b00)

y_out = d_in[0];

else if (sel_in ==2'b01)

y_out = d_in[1];

else if (sel_in ==2'b10)

y_out = d_in[2];       

else

y_out = d_in[3];

end   

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 4 Synthesizable Verilog design of 4:1 MUX

Table 5.2 Truth table of 4:1 MUX

sel_in[1] sel_in[0] y_out

0 0 d_in[0]

0 1 d_in[1]

1 0 d_in[2]

1 1 d_in[3]
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The logic inferred for the 4:1 MUX is shown in Fig. 5.6. As shown, input d_in
[0] has highest priority as compared to other inputs, and an input d_in[3] has least
priority.

Fig. 5.5 RTL schematic of 2:1 multiplexer

Fig. 5.6 Synthesis result of 4:1 MUX as priority logic
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5.5 The 4:1 MUX Using case Construct

The 4:1 MUX is described by using the case-endcase construct, and it is described
in Example 5. The logic inferred is shown in Fig. 5.7. As shown, the case-endcase
construct is used to infer the parallel logic.

//////////////////////////////////////////////////////////////////////////////

module mux_4to1 (  input  [3:0] d_in,

input  [1:0] sel_in,

output  reg y_out);                 

always @*

begin

case ( sel_in )

2'b00 :   y_out = d_in[0];   

2'b01 :   y_out = d_in[1];   

2'b10 :   y_out = d_in[2];   

2'b11 :   y_out = d_in[3];

endcase

end   

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 5 Synthesizable Verilog design of 4:1 MUX
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5.6 The 4:1 Mux Using 2:1 MUX

The 4:1 MUX can be implemented by using 2:1 MUX, and the equivalent repre-
sentation is shown in Fig. 5.8.

As shown in Fig. 5.8, 4:1 MUX is implemented by using three 2:1 multiplexers.
The Verilog design is coded using the case…endcase construct and shown in
Example 6 (Fig. 5.9).

Fig. 5.7 Synthesis result of 4:1 MUX RTL design coded using case
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Fig. 5.8 4:1 MUX
implementation using 2:1
MUX

Fig. 5.9 RTL schematic of Example 6
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begin

case ( sel_in[0] )

1'b0 :   begin 

tmp_1 = d_in[0];

tmp_2 = d_in[2];

end

1'b1 :   begin 

tmp_1 = d_in[1];

tmp_2 = d_in[3];

end

endcase

end   

assign y_out = (sel_in[1]) ?  tmp_2  :  tmp_1;

endmodule

//////////////////////////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////////////////////////

module mux_4to1 (  input [3:0]   d_in,

input [1:0]  sel_in,

output y_out );

reg tmp_1, tmp_2;                 

always @*

Example 6 Synthesizable Verilog design of 4:1 MUX
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5.7 Let Us Design Combinational Logic Using
Multiplexers

Now let us implement the single-bit adder and subtractor shown in Table 5.3 using
the synthesizable constructs.

Due to use of the if…else construct the logic inferred uses the chain of multi-
plexers at the output. In Chap. 4, we have discussed the similar kind of example
(Fig. 5.10).

output  reg result_out,  carry_out );                

always @ *

if (control_in) 

{ carry_out, result_out } = a_in + b_in;   

else   

{ carry_out, result_out } = a_in + (~b_in) + 1; 

endmodule

//////////////////////////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////////////////////////

module add_sub (  input a_in,  b_in,  control_in,

Example 7 Use of if ... else to implement the design

Table 5.3 Operational table for the combinational design

Control input Operation Description

0 a_in + b_in Perform addition of (a_in, b_in)

1 a_in − b_in Perform subtraction of (a_in, b_in)

Fig. 5.10 RTL schematic of Example 7
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5.8 Optimization Strategies Using RTL Tweaks

Using the RTL tweaks recommended in Chap. 4, the RTL design is coded by using
the synthesizable constructs and shown in Example 8.

The synthesis result for Example 8 is shown in Fig. 5.11, and the logic inferred
performs only one operation at a time and uses least resources as compared to
Example 7.

//////////////////////////////////////////////////////////////////////////////

module add_sub (  input a_in, b_in, control_in,

output  reg result_out, carry_out );

reg  tmp_1;

always @* 

{ carry_out, result_out } = a_in + tmp_1 + control_in ;                

always @ *

if (control_in) 

tmp_1 = ~b_in;   

else   

tmp_1 = b_in; 

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 8 RTL tweaks to improve the area for design

Fig. 5.11 RTL schematic of Example 8
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5.9 Exercises

The exercises are based on the understanding of assign and always procedural
block and use of if…else to model the combinational design. Complete the exer-
cises for better understanding and application of Verilog constructs.

1. The logic inferred by the following code is 

module comb_design_logic ( input a, b, sel, output y);

assign y = sel ? a : b ; 

endmodule 
a. Wire logic
b. AND gate
c. 2:1 mux
d. Syntax error in the code

2. The logic inferred by the following code is 

module comb_design_logic_0 ( input a, b,sel, output reg y);

always@*

begin

y = sel ? a : b;

end

endmodule 
a. 2:1 mux
b. AND gate
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c. NAND gate
d. Syntax error in the code

3. The logic inferred by the following code is 

module comb_design_logic ( input a, b, c,d, input [1:0] sel, 
output y);

wire y1,y2;

assign y1 = sel [0] ? a : b ; 

assign y2 = sel [0] ? a : b ; 

assign y = sel[1] ? y1 : y2;

endmodule 
a. 4:1 mux
b. Single 2:1 mux
c. Two, 2:1 mux
d. Syntax error in the code

4. The logic inferred by the following code is 

module comb_design_logic_2 ( input a, b, output reg y1, y2);

always@ *
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if (a==b)

y1=  a ^ b;

else

y2= a ~^ b;

endmodule 
a. XOR gate, XNOR gate
b. OR gate, NOR gate 
c. NOR gate, NAND gate 
d. Mul plexer having one input as XOR and another as 

XNOR

5. The logic inferred by the following code is 

module comb_design_logic ( input a, b, sel, output y);

always@*

assign y = sel ? a : b ; 

endmodule 
a. Wire logic
b. AND gate
c. 2:1 mux
d. Syntax error in the code
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5.10 Summary

As discussed in this chapter, the combinational logic RTL using Verilog can be
efficiently coded by using the Verilog constructs and the following are important
points to summarize.

1. assign with the conditional expression is used to infer the 2:1 MUX.
2. MUX is treated as universal logic.
3. if-else is used to infer the 2:1 MUX, and nested if…else is used to infer the

priority logic.
4. case-endcase is used to model the parallel logic and used within the procedural

block.
5. default condition in the case-endcase is used to include the non-covered

conditions.
6. Synthesis tool ignores the sensitivity list specified in the procedural block used

to model combinational logic.
7. Using nested if-else, the priority designs are inferred and not recommended to

code multiplexers.
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Chapter 6
Decoders and Encoders

For an RTL design engineer, it is especially important to have better understanding of
decoders, encoders. In most of the applications these are used as a functional blocks. This
chapter discusses about the efficient RTL coding for decoders and encoders. The RTL
design strategies for these combinational design elements are discussed using the synthe-
sizable constructs.

In most of the system designs, we experience the use of the decoders and encoders.
Most of the time in the system design, we use the decoder to select from one of the
memory or IO devices. Even we experience the use pf the priority encoders in the
design of level-sensitive interrupt controller. The chapter discusses the decoder and
encoder RTL design using synthesizable Verilog constructs.

6.1 Decoders

Decoder has n select lines or input lines and m output lines and used to generate
either active high or active low output. The relation between select lines and output
lines is given by m = 2n. Depending on the logic status on ‘n’ input lines at a time,
one of the output line goes high or low. Figure 6.1 represents 3:8 decoder; as shown
in the figure, X2, X1, X0 are select inputs and Y0 to Y7 are active high output lines.

The truth table of 3–8 decoder is shown in Table 6.1. For the active high output
decoder, at a time one of the output line is active high.

Note In the practical applications, decoders are used to select one of the
memory or input–output device at a time. To enable the expansion of
decoder, decoder can have either active high enable or active low enable
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Figure 6.2 is symbolical representation of 3:8 decoder having active high enable
input en. The truth table shown holds good for the decoder which has active high
enable en = 1. When en = 0, decoder is disabled and output Y = 8’b0000_0000.
The synthesizable design is shown in Example 1.

Fig. 6.1 Gate-level structure of 3:8 decoder

Table 6.1 Truth table of 3:8 decoder

X2 X1 X0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0
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Fig. 6.2 Block-level representation of 3:8 decoder

//Verilog RTL for 3 to 8 decoder

module  decoder_3to8  (X,en,Y) ;

input  [2:0] X;

input en;

output [7:0] Y;

reg [7:0] Y;

// Func onality of design                                 

always @ (X or en)

begin

if (en)

case(X)

3'b000 : Y= 8'b0000_0001;

3'b001 : Y= 8'b0000_0010;

3'b010 : Y= 8'b0000_0100;

3'b011 : Y= 8'b0000_1000;

3'b100 : Y= 8'b0001_0000;

3'b101 : Y= 8'b0010_0000;

3'b110 : Y= 8'b0100_0000;

3'b111 : Y= 8'b1000_0000;

endcase

else

Y=8'b0000_0000;

end

endmodule

The decoder is enable for ‘en=1’
and generates one of the output 
as ac ve high. The ‘case’
statement is used to describe 
the func onality of the decoder. 
Decoder generates parallel 
output.

In the RTL Verilog code ‘if-else’
is used to specify the select 
condi on depending on the 
status of ‘en’. 

Example 1 Verilog RTL of 3:8 decoder (coding style Verilog-95)
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6.1.1 1 Line to 2 Decoder Using case construct

The 1 line to 2 or (1:2) decoder has one select input Sel and two output lines
Out_Y0 and Out_Y1. The truth table and logic equivalent are shown in Table 6.2
and Fig. 6.3, respectively.

Consider the 1:2 decoder which has input sel_in, active high enable input
enable_in and output y_out[0], y_out[1]. The Verilog RTL is shown in Example 2,
and the equivalent synthesis results in Fig. 6.4.

Table 6.2 Truth table for 1:2
decoder

Sel Out_Y1 Out_Y0

0 0 1

1 1 0

Out_Y1

Out_Y0

1:2 Decoder

Sel

Fig. 6.3 1 line to 2-line decoder

Fig. 6.4 RTL schematic of 1:2 decoder
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6.1.2 1 Line to 2 Decoder Having Enable Using case

The 1 line to 2 or 1:2 decoder has one select input Sel, enable input En and two
output lines Out_Y0 and Out_Y1. The relationship between the inputs and outputs
is shown in Table 6.3.

The Verilog RTL is shown in the Example 3 and the equivalent synthesis result
in Fig. 6.5.

/////////////////////////////////////////////////////////////////////////////

module decoder_1to2 (  input sel_in,

input enable_in,

output  reg [1:0]  y_out );                 

always @*

begin

if(enable_in)

case ( sel_in )

1'b0  :  y_out = 2'b01; 

1'b1  :  y_out = 2'b10;

endcase

else 

y_out = 2'b00; 

end   

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 2 Verilog RTL of 1:2 Decoder
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Table 6.3 Truth table of 1:2 decoder having active high enable

En Sel Out_Y1 Out_Y0

1 0 0 1

1 1 1 0

0 X 0 0

//Verilog RTL for 1 Line to 2 Line decoder with ac ve high enable input

module one_two_decoder_with_enable ( Sel, En, Out_Y1, Out_Y0);

input Sel;

input En;

output Out_Y1;

output Out_Y0;

reg Out_Y1;

reg Out_Y0;

always @ (Sel or En)

begin

if (En)

case (Sel)

1'b0 : {Out_Y1, Out_Y0} = 2'b01;

1'b1 : {Out_Y1, Out_Y0} = 2'b10;

endcase

else

{Out_Y1, Out_Y0} = 2'b00;

end

endmodule

The decoder generates ac ve high 
output ‘Out_Y1, Out_Y0’ depending 
on the select input ‘sel’. For enable 
input ‘En=1’ 

Sel=1 generates output as ‘10’. 

Sel=0 generates output as ‘01’ 

For ‘en=0’ Output is ‘00’ 

Example 3 Verilog RTL of 1:2 decoder having enable input (Coding style Verilog-95)
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6.1.3 2 Line to 4 Decoder with Enable Using case

The 2 line to 4 or (2:4) decoder has two select inputs sel_in [1], sel_in [0], enable
input enable_in and four output lines y_out[3], y_out[2], y_out[1], and y_out[0].
Table 6.4 gives information about the relationship between the select inputs and
outputs.

The synthesizable Verilog design is coded and shown in Example 4, and the
equivalent logic inferred is shown in Fig. 6.6.

Fig. 6.5 Schematic of 1:2 decoder having active high enable

Table 6.4 Truth table of 2:4 decoder

enable_in Sel_in[1] sel_in[0] y_out[3] y_out[2] y_out[1] y_out[0]

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

0 X X 0 0 0 0
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//////////////////////////////////////////////////////////////////////////////

module decoder_2to4 (  input [1:0] sel_in,

input enable_in,

output  reg [3:0] y_out  );                 

always @*

begin

if(enable_in)

case ( sel_in )

2'b00  :  y_out = 4'b0001; 

2'b01  :  y_out = 4'b0010;

2'b10  :  y_out = 4'b0100; 

2'b11  :  y_out = 4'b1000;

endcase

else 

y_out = 2'b0000; 

end   

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 4 Synthesizable Verilog design of 2:4 decoder
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6.1.4 2 Line to 4 Decoder with Active Low Enable Using
case

The 2 line to 4 or (2:4) decoder has two select inputs Sel [1], Sel [0], active low
enable input En_bar, and four active low output lines Out_Y[3], Out_Y[2], Out_Y
[1], and Out_Y[0]. The truth table and equivalent representation is shown in
Table 6.5.

Fig. 6.6 Schematic of 2:4 decoder having active high enable input

Table 6.5 Truth table for 2:4 decoder having active low enable and active low output

En_bar Sel[1] Sel[0] Out_Y[3] Out_Y[2] Out_Y[1] Out_Y[0]

0 0 0 1 1 1 0

0 0 1 1 1 0 1

0 1 0 1 0 1 1

0 1 1 0 1 1 1

1 X X 1 1 1 1
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//Verilog RTL for 2 Line to 4 Line decoder with ac ve low enable input and ac ve low output lines

module Two_to_Four_decoder(Sel,En_bar, Out_Y);

input [1:0] Sel;

input En_bar;

output [3:0] Out_Y;

reg [3:0] Out_Y;

always @ (Sel or En_bar)

begin

if (~En_bar)

case (Sel)

2'b00 : Out_Y = 4'b1110;

2'b01 : Out_Y = 4'b1101;

2'b10 : Out_Y = 4'b1011;

2'b11 : Out_Y = 4'b0111;

endcase

else

Out_Y = 4'b1111;

end

endmodule

The decoder generates ac ve low
outputs ‘ Out_Y[3]:Out_Y[0] ’
depending on the select input 
‘sel[1:0]’. For enable input ‘En_bar=0’

For ‘En_bar=1’ Output is ‘1111’ 

//Verilog RTL for 2 Line to 4 Line decoder with ac ve low enable input and for ac ve low output lines

module Two_to_Four_decoder(Sel,En_bar, Out_Y);

input [1:0] Sel;

input En_bar;

output [3:0] Out_Y;

assign Out_Y[3] = (~En_bar) && (~Sel[1]) && (~Sel[0]);

assign Out_Y[2] = (~En_bar) && (~Sel[1]) && (Sel[0]);

assign Out_Y[1] = (~En_bar) && (Sel[1]) && (~Sel[0]);

assign Out_Y[0] = (~En_bar) && (Sel[1]) && (Sel[0]);

endmodule

The decoder generates ac ve low
outputs ‘ Out_Y[3]:Out_Y[0] ’
depending on the select input 
‘sel[1:0]’. For enable input ‘En_bar=0’

For ‘En_bar=1’ Output is ‘1111’ 

Example 5 Synthesizable design of 2:4 decoder (coding style Verilog-95)

122 6 Decoders and Encoders



The Synthesizable Verilog design using Verilog-95 coding style is shown in
Example 5, and the equivalent logic inferred is shown in Fig. 6.7.

Both the RTL Verilog codes shown in Example 5 infer the same logic and
shown in Fig. 6.7.

6.1.5 2 to 4 Decoder Using Continuous Assignments

Even the functionality of decoders can be described using the continuous assign-
ment construct. The reason being multiple assign constructs executes in parallel and
infers the parallel output logic. The 2:4 decoder description using continuous assign
construct is shown in Example 6.

The synthesis result of Example 6 is shown in Fig. 6.8, as shown the logic
inferred uses the 2 input AND gates to generate the four parallel output lines. At a
time, one of the outputs is high depending on the status of select lines.

Fig. 6.7 Schematic of 2:4 decoder
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Fig. 6.8 Gate-level schematic of 2:4 decoder

//////////////////////////////////////////////////////////////////////////////
module decoder_2to4 (  input [1:0] sel_in,

input enable_in,

output [3:0] y_out  );                 

assign y_out[0] = enable_in & (~sel_in[1])&(~sel_in[0]);

assign y_out[1] = enable_in & (~sel_in[1])&(sel_in[0]);

assign y_out[2] = enable_in & (sel_in[1])&(~sel_in[0]);

assign y_out[3] = enable_in & (sel_in[1])&(sel_in[0]);

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 6 Synthesizable design of 2:4 decoder using continuous assignments
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6.1.6 Decoder Using Shift Operator

The better technique to implement the RTL design for 2:4 decoder is use of the shift
operator. The RTL is coded to get one of the output as active high deepening on the
status of select inputs and shown in Example 7.

////////////////////////////////////////////////////////////////////////////

module decoder_2to4 (  input [1:0] sel_in,

input enable_in,

output reg [3:0] y_out  );                 

always @*

begin

if(~enable_in)

y_out = 4'b0000;

else

y_out = ( 4'b0001 << sel_in);

end   

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 7 Synthesizable design of 2:4 decoder using shift operators
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The synthesis of Example 7 infers the logic which has the operator-specific
hardware and the multiplexer chain at the output (Fig. 6.9).

6.1.7 Testbench of 2:4 Decoder

The testbench of decoder using the non-synthesizable constructs to generate the
stimulus at the sel_in, enable_in is shown in Example 8.

The simulation result for the 2:4 decoder is shown in Fig. 6.10.

Fig. 6.9 2:4 decoder schematic using shift operator

Fig. 6.10 Simulation waveform of 2:4 decoder
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//////////////////////////////////////////////////////////////////////////////

module test_decoder;

// Inputs

reg [1:0]  sel_in;

reg enable_in;

// Outputs

wire [3:0] y_out;

// Instan�ate the Unit Under Test (UUT)

decoder_2to4  uut  ( .sel_in(sel_in), 

.enable_in(enable_in), 

.y_out(y_out)

);

always #10 sel_in[0] = ~sel_in[0];

always #20 sel_in[1] = ~sel_in[1];

ini�al 

begin

// Ini�alize Inputs

sel_in = 0;

enable_in = 0;

// Wait 100 ns and then force enable_in =1 

#100;

enable_in =1 ;

Example 8 Testbench of 2:4 decoder using non-synthesizable constructs
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6.1.8 4 Line to 16 Decoder Using 2:4 Decoder

The 4 line to 16 or (4:16) decoder has four select inputs sel_in[3]: sel_in[0], active
low enable input enable_in and designed by using four, 2:4 decoders. Each 2:4
decoder has four active low output lines y_out[3], y_out[2], y_out[1], and y-out[0].
The equivalent representation is shown in Fig. 6.11.

// Wait 250 ns and then force enable_in =0 

#250 

enable_in =0;        

end      

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 8 (continued)

Fig. 6.11 4:16 decoder using 2:4 decoders
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The logic inferred is shown in Fig. 6.12 and has 16, 2:1 multiplexers at the
output. The FPGA synthesis uses most of the time more multiplexers, and ASIC
synthesis result differs as compared with FPGA synthesis.

//////////////////////////////////////////////////////////////////////////////

module decoder_4to16 (  input [3:0] sel_in,

input enable_in,

output  reg [15:0] y_out );

reg [3:0]  tmp_enable;

always@*

if (~enable_in)

tmp_enable = 4'b0000;

else

tmp_enable = ( 4'b0001 << sel_in[3:2]);

always@*

if (~tmp_enable[0])

y_out[3:0] = 4'b0000;

else

y_out [3:0] = ( 4'b0001 << sel_in[1:0]);

always@*

if (~tmp_enable[1])

y_out[7:4] = 4'b0000;

else

Example 9 Synthesizable design of 4:16 decoder using 2:4 decoders
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y_out [7:4] = ( 4'b0001 << sel_in[1:0]);

always@*

if (~tmp_enable[2])

y_out[11:8] = 4'b0000;

else

y_out [11:8] = ( 4'b0001 << sel_in[1:0]);

always@*

if (~tmp_enable[3])

y_out[15:12] = 4'b0000;

else

y_out [15:12] = ( 4'b0001 << sel_in[1:0]);

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 9 (continued)

Fig. 6.12 Schematic of 4:16 decoder using 2:4 decoders
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//////////////////////////////////////////////////////////////////////////////

module test_decoder_4to16;

// Inputs

reg [3:0]  sel_in;

reg enable_in;

// Outputs

wire [15:0]  y_out;

// Instantiate the Unit Under Test (UUT)

decoder_4to16  uut  (

.sel_in(sel_in), 

.enable_in(enable_in), 

.y_out(y_out)

);

always #5 sel_in[0] = ~sel_in[0];

always #10 sel_in[1] = ~sel_in[1];

always #20 sel_in[2] = ~sel_in[2];

always #40 sel_in[3] = ~sel_in[3];

initial 

begin

// Initialize Inputs

sel_in = 0;

enable_in = 0;

Example 10 Testbench of 4:16 decoder using non-synthesizable constructs
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6.2 Testbench for 4:16 Decoder

The testbench for the 4:16 decoder is described using the non-synthesizable con-
structs and shown in Example 10.

The simulation result is shown in the waveform Fig. 6.13.

Fig. 6.13 Simulation result of 4:16 decoder

enable_in =1 ;

// Wait 250 ns and then force enable_in =0 

#250 

enable_in =0;        

end      

endmodule

/////////////////////////////////////////////////////////////////////////////

// Wait 100 ns and then force enable_in =1 

#100;

Example 10 (continued)
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6.3 Encoders

Function of an encoder is exactly reverse of the decoder. Encoder has n input lines
and m output lines, and the relation between input lines and output lines is given by
n = 2m For example, consider 4:2 encoder. Number of input lines are n = 4, and
output lines m = 2. The block diagram of 4:2 encoder is shown in Fig. 6.14 with
the equivalent gate-level representation for 4:2 encoder, and the truth table is shown
in Table 6.6.

The Verilog RTL description for 4:2 encoder is shown in Example 11. The
Verilog RTL infers the similar logic as shown in Fig. 6.15.

Fig. 6.14 4:2 encoder

Table 6.6 Truth table of 4:2 encoder

In[3] In[2] In[1] In[0] Out_Y[1] Out_Y[0]

1 0 0 0 1 1

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 0
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Fig. 6.15 RTL schematic of 4:2 encoder

//////////////////////////////////////////////////////////////////////////////

module encoder_4to2 (  input [3:0] data_in,

output  reg invalid_data,

output  reg [1:0]  y_out);                 

always @*

begin

case ( data_in )

4'b0001  :  { invalid_data, y_out } = 3'b000; 

4'b0010  :  { invalid_data, y_out } = 3'b001; 

4'b0100  :  { invalid_data, y_out } = 3'b010; 

4'b1000  :  { invalid_data, y_out } = 3'b011; 

default :  { invalid_data, y_out } = 3'b100;

endcase    

end   

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 11 Synthesizable Verilog design of 4:2 encoder
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6.3.1 Priority Encoders

Priority encoders are used in the practical applications and have n input lines and m
output lines, and the relation between input lines and output lines is given by
n = 2m For example, consider 4:2 priority encoder. Number of input lines are n = 4,
and output lines m = 2. The block diagram of 4:2 priority encoder is shown in
Fig. 6.16 with the equivalent gate-level representation for 4:2 priority encoder. The
truth table is described in Table 6.7. The input In[3] has highest priority, and the
input in[0] has lowest priority, where ‘X’ indicates the don’t care.

Fig. 6.16 4:2 Priority encoder

Table 6.7 Truth table of 4:2 priority encoder

In[3] In[2] In[1] In[0] Out_Y[1] Out_Y[0]

1 X X X 1 1

0 1 X X 1 0

0 0 1 X 0 1

0 0 0 1 0 0
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The Verilog RTL description for 4:2 priority encoder is coded using nested if…
else construct and shown in Example 12. The Verilog RTL infers the logic as
shown in Fig. 6.17.

//////////////////////////////////////////////////////////////////////////////

module encoder_4to2 ( input [3:0] data_in,

output reg invalid_data,

output reg [1:0] y_out );                 

always @*

begin

if( data_in[3])

{ invalid_data, y_out } = 3'b000; 

else if (data_in[2])

{ invalid_data, y_out } = 3'b001; 

else if (data_in[1])

{ invalid_data, y_out } = 3'b010; 

else if (data_in[0])

{ invalid_data, y_out } = 3'b011;

else 

{ invalid_data, y_out } = 3'b100;         

end   

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 12 Synthesizable Verilog design of 4:2 priority encoder
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Note: In the practical applications, encoders are used to design the control
logic. As case..endcase generates the parallel logic and if-else generates the
priority logic; case..endcase is used to code the behavior of encoder. if-else
is used to code the behavior of priority encoder. Priority encoders are used
to sense the level-sensitive interrupts.

6.4 Testbench of 4:2 Priority encoder

The testbench using the non-synthesizable constructs is shown in Example 13, and
the simulation waveform is shown in Fig. 6.18.

Fig. 6.17 RTL schematic of 4:2 priority encoders
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/////////////////////////////////////////////////////////////////////////////

module test_encoder_4to2;

// Inputs

reg [3:0] data_in;

// Outputs

wire invalid_data;

wire [1:0] y_out;

// Instan�ate the Unit Under Test (UUT)

encoder_4to2 uut  (

.data_in(data_in), 

.invalid_data(invalid_data), 

.y_out(y_out)

);

always #5  data_in[0] = ~data_in[0];

always #10 data_in[1] = ~data_in[1];

always #20 data_in[2] = ~data_in[2];

always  #40 data_in[3] = ~data_in[3];

ini�al 

begin

// Ini�alize Inputs

data_in = 0;

Example 13 Testbench of 4:2 priority encoder
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Fig. 6.18 Simulation waveform of 4:2 priority encoder

// Wait 100 ns for global reset to finish

#100;  
end      

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 13 (continued)
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6.5 Exercises

Following are the exercises on the combinational design and verification. Complete
the exercises for better understanding and application of the constructs.

1. At t=200 ns the logic level at enable_in is equal to? 
ini al 

begin

// Ini alize Inputs

sel_in = 0;

enable_in = 0;

// Wait 100 ns and then force enable_in =1 

#100;

enable_in =1 ;

// Wait 250 ns and then force enable_in =0 

#250 

enable_in =0;        

end      

a. 0 
b. 1 
c. X 
d. Z 
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2. At t=350 ns the logic level at enable_in is equal to? 
ini al 

begin

// Ini alize Inputs

sel_in = 0;

enable_in = 0;

// Wait 100 ns and then force enable_in =1 

#100;

enable_in =1 ;

// Wait 250 ns and then force enable_in =0 

#250 

enable_in =0;        

end      

a. 0 
b. 1 
c. X 
d. Z 
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module decoder_2to4 (  input [1:0] sel_in,

input enable_in,

output  [3:0] y_out  );                 

assign y_out = (enable_in) ? ( 4'b0001 << sel_in) : 4’b0000;

endmodule

a. 4:2 encoder
b. 2:4 decoder
c. 4:2 priority encoder 
d. Syntax error in the code.

3. The logic inferred by following code is ?

6.6 Summary

Following are important points to conclude this chapter.

1. Multiple continuous assignments using assign can be used to infer the decoder
logic.

2. Decoders should be implemented using case construct as they have parallel
outputs.

3. if-else generates priority logic and not recommended to use to model the
decoders.

4. case-endcase is used to model the parallel logic that is decoders and encoders.
5. Decoders are used to select one of the memory or input–output device at a time.
6. Priority encoders are used in the design of interrupt control logic, and logic can

be described by using nested if-else.
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Chapter 7
Event Queue and Design Guidelines

It is essential to follow the coding and design guidelines while coding the RTL design. The
design and coding guidelines will improve the performance of design, readability, and
reusability. This chapter discusses about few important design and coding guidelines for the
combinational logic design.

The design and coding guidelines are generally used to improve the design per-
formance, readability, and the reusability. The combinational design where output
is function of the present inputs should be coded in such a way that the design
should have least propagation delay and the least area.

It is always recommended to follow certain coding guidelines while describing
the design using Verilog. This chapter is more focused on the important design and
coding guidelines used in the industries to code an efficient combinational logic.

7.1 Verilog Stratified Event Queue

Verilog supports the two kinds of the assignments in the procedural blocks. These
assignments are named as blocking (=) and non-blocking (<=) assignments. It is
always recommended to use the blocking assignments while describing the com-
binational logic design. The reason being quite simple to understand, but it is
essential to understand the fundamental behind this!

To understand the blocking assignments, let us understand the concept of
stratified event queue. According to IEEE 1364-2005 Verilog standard, the strati-
fied event queue is classified into four major regions. These regions are named as:
Active, Inactive, NBA, and Monitor.

But the major question is why to understand the stratified event queue? And
what exactly the application of it? As the name itself indicates that the stratified
event queue is used to hold the result after expression execution and useful to hold
the results. Figure 7.1 shows according to the Verilog IEEE 1364-2005 standard.
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As shown in Fig. 7.1, the Verilog stratified event queue has four main regions
and explained below.

i. Active Queue: Most of the Verilog events are scheduled in the active event
queue. These events can be scheduled in any order and evaluated or updated in
any order. The active queue is used to update the blocking assignments,
continuous assignments, evaluation of RHS of the non-blocking assignments
(LHS of NBA is not updated in the active queue), $display commands and to
update the primitives.

ii. Inactive Queue: The #0delay assignments are updated in the inactive queue.
Use of #0 delays in the Verilog is not good practice, and it unnecessarily
complicates the event scheduling and ordering. Most of the times the designer
uses the #0 delay assignments to fool the simulator to avoid the race around
conditions.

1. Update of blocking 
assignments

2. Evalua on of the RHS of 
the Non-blocking 
assignment

3. $display commands
4. Update of the output of 

primi ves
5. Evalua on of the inputs of 

primitives
6. Con nuous assignment 

Used to update the LHS of NBA

#0 delay 
assignments 
and update

Used to update 

1. $monitor 
command

2. $strobe  
command

From Previous 
me slot

Current me slot

Ac ve Queue

Inac ve Queue

NBA Queue

Monitor or 
postponed 

To  next me slot

Fig. 7.1 Verilog stratified event queue
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iii. NBA Queue: The LHS of the non-blocking assignments updates in this queue.
iv. Monitor Queue: It is used to evaluate and update the $monitor and $strobe

commands. The updates of all the variables are during the current simulation
time.

7.2 Verilog Blocking Assignments

As discussed above, the blocking assignments execute sequentially inside proce-
dural block. Blocking assignment blocks all the trailing statements in the procedural
block while executing the current assignment. The execution of the blocking
assignment is always considered as one-step process. In an active event queue, the
RHS of blocking assignment is evaluated, and during the same time stamp, the LHS
of blocking assignment is updated. Consider an Example 1 for the blocking
assignments.

//////////////////////////////////////////////////////////////////////////////

// Verilog RTL code using the blocking assignments

reg a_reg, b_reg;

// Functionality of design

always @ (a_reg or b_reg) 

begin

a_reg=b_reg;

b_reg=a_reg;

end
//////////////////////////////////////////////////////////////////////////////

In the Verilog RTL code if initial 
value at the current time slot 
for a_reg=9 and b_reg=8 
then at the end of execution 
of the always block the result 
is a_reg=8 and b_reg=8. 

Due to use of the blocking as-
signments the assignments 
within the always procedural 
block executes sequentially.  

Example 1 Use of blocking assignments within always procedural block
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Note: The major issue with the blocking assignments is while using the
same variable on the RHS side in one procedural block and on LHS side in
another procedural block. If both the procedural blocks are scheduled in
the same simulation time or on the same clock edge it generates the race
condition in the design. This will be discussed subsequently.

In the subsequent section, we will discuss the design and coding guidelines for
combinational logic, and we will continue to use the blocking assignments to code
for the combinational design.

7.3 Incomplete Sensitivity List

It is recommended to incorporate all the required signals and inputs in the sensi-
tivity list while using always procedural block. Consider Example 2 to describe the
functionality of two-input NAND logic.

In Example 2, the synthesis tool ignores the sensitivity list and infers the two
input NAND gate as synthesizable output, but the simulator ignores the changes in
the input b_in and generates the output waveform. This leads to simulation and
synthesis mismatch. The testbench using the non-synthesizable constructs is coded
to report the simulation and synthesis mismatch (Example 3). The simulation result
is shown in Fig. 7.3.

Note: To avoid the simulation and synthesis mismatch, it is recommended
to use the procedural block: always@(*). According to IEEE 1364-2001
standard, the ‘*’ in the sensitivity list will include all the inputs and
required signals.

Fig. 7.2 RTL schematic of Example 2
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output reg y_out) ;

// Func onality of design

always @ (a_in)

begin

if (a_in==1’b1 && b_in==1’b1)

y_out = 1’b0;

else

y_out =1’b1;

end

endmodule
//////////////////////////////////////////////////////////////////////////////

In the sensi vity list the a_in is 
specified but b_in input is 
missing and the simulator and 
synthesis Tool will flash the 
warning “Incomplete Sensi v-
ity list” 

This will cause the simula on and 
synthesis mismatch,.  

//////////////////////////////////////////////////////////////////////////////
// Verilog RTL code to understand the incomplete sensi vity list

module logic_design(

input a_in,

input b_in,

Example 2 RTL design with missing one of the input from sensitivity list (Fig. 7.2)
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//////////////////////////////////////////////////////////////////////////////

//testbench to find the simulation and synthesis mismatch 

module test_logic;

// Inputs

reg a_in;

reg b_in;

// Outputs

wire y_out;

// Instantiate the Unit Under Test (UUT)

logic_design uut (

.a_in(a_in), 

.b_in(b_in), 

.y_out(y_out)

);

always #25 a_in = ~a_in;

always #40 b_in = ~b_in;

initial 

begin
// Initialize Inputs

a_in = 0;

b_in = 0;

// Wait 100 ns 

#100;      

end      

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 3 Testbench to verify the functionality described in Example 2
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As shown in Fig. 7.3, as b_in is missing from the sensitivity list, the y_out is 1
when a_in = 1 and b_in = 1. But NAND gate output is 0 when a_in = 1 and
b_in = 1. Hence, simulation and synthesis mismatch.

7.4 Continuous Versus Procedural Assignments

Continuous assignments: Continuous assignments are used to assign the value to
the net. These are used to code the combinational logic functionality. These
assignments are updated in the active event queue, and the net values are updated
upon evaluation of the right-hand side expression. The port or output is declared as
wire while using the continuous assignment.

assign y_out = sel_in ? a_in: b_in;

Procedural assignments: Procedural assignments are used to assign value to the
reg. These are used to code both the combinational and sequential logic. The output
assigned to reg is hold until the next assignment is executed. These assignments are
used in the procedural blocks always, initial, and within the task and functions
according to the requirements.

In the procedural block, if the blocking (=) assignments are used, then they are
updated in the active event queue. All the non-blocking assignments (<=) are
evaluated in the active event queue but updated in the non-blocking event queue.

Fig. 7.3 Waveform to indicate the simulation and synthesis mismatch
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7.5 Combinational Loops in Design

The unintentional combinational loops in the design are extremely critical to debug
and fix during the implementation phase and generate an oscillatory behavior.
Example 5 is useful to understand what is exactly combinational loop?

Figure 7.4 describes the synthesizable output for the combinational loop.

Note: It is recommended that the design should not have any combinational
loop. To avoid the combinational loop, break the feedback by using the
sequential elements.

//////////////////////////////////////////////////////////////////////////////

always@(posedge clk) // Sequential design description

begin

q_out<= data_in;

end

always@ * // Combinational design description

begin

y_out = sel_in ? a_in : b_in;

end
//////////////////////////////////////////////////////////////////////////////

Example 4 Use of assignments in the RTL design
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module loop_combinational(

input a_in,

input b_in,

output reg y_out );

// Functionality of design

always @ (* )

begin

y_out = a_in  & b_in  & y_out;

end

endmodule
//////////////////////////////////////////////////////////////////////////////

The ‘y_out’ is declared as ‘reg’ and 
is an output for the combina-
tional logic. The use of ‘y_out’ 
on the RHS side of expression 
generates the feedback to the 
input of the ‘AND’ logic and 
creates the unintentional 
loop.   The combinational 
loop has the tendency to os-
cillate and generates an oscil-
latory output. 

//////////////////////////////////////////////////////////////////////////////
// Verilog RTL code for unintentional combinational loop

Example 5 RTL to understand the combinational loop in the design

Fig. 7.4 Combinational loop in design
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As discussed above, combinational loops in design are one of the dangerous and
critical design errors. Combinational loop in the design occurs if the same signals
are used or assigned in the multiple procedural blocks. If the same signal is present
on the right-hand side of expression or on the left-hand side of expression, then the
design has combinational loop.

Combinational loops exhibit the oscillatory behavior and during update phase,
they can have race conditions. Consider the design scenario shown in Example 6.

In the above example, both always blocks execute concurrently and due to that
while updating of the b, the b value is assigned to a. This is the race condition in the
design. This design generates the oscillatory behavior due to events on a, b.

The oscillatory behavior can be understood from Fig. 7.5.
Combinational loops are not synthesizable, and the synthesis tool generates an

error or warning for the combinational loop. Combinational looping can be po-
tential hazard in the design and hence need to be avoided.

//////////////////////////////////////////////////////////////////////////////

always@(a)

begin

b=a;

end

always@(b)

begin

a=b;

end
//////////////////////////////////////////////////////////////////////////////

Example 6 Verilog RTL design having combinational loop

152 7 Event Queue and Design Guidelines



As shown in the above diagram, the always block always@(a) is sensitive to the
event on a and generates an output b. Eventually, changes on b input are used to
trigger another always block always@(b) and generate the output a. So, this goes on
and exhibits the oscillatory behavior or the race around conditions in the design.

The solution to overcome this problem is to use of the register to avoid the
dependency of signals to trigger multiple always block. Register can be inserted in
the combinational loop to update the value.

To avoid combinational looping do the following. Use the non-blocking
assignments, and use the register logic to break the combinational loops. The RTL
tweak is shown in Example 7.

In Example 7, both always blocks are sensitive to positive edge of clock and
assigns the value to b, a respectively. Although both the procedural blocks are
executed concurrently, the non-blocking assignments are queued in the NBA queue
and hence generates the structure as shown in Fig. 7.6.

Fig. 7.5 Oscillatory behavior
due to combinational loop

Fig. 7.6 Schematic indicates the use of register logic to avoid oscillatory behavior
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7.6 Unintentional Latches in the Design

It is recommended that the design should not have unintentional latches as latch is
transparent during active level and transfers the data to its output. The unintentional
latches are not recommended in ASIC design as it causes the issues during the
design testing or during DFT. Even during STA, the timing algorithm will be not
able to understand whether to sample the data on positive edge of the clock or on
negative edge of the clock. So, most of the time main intention of the designer is not
reflected while using the latches, and STA for such paths is difficult. This will be
discussed in subsequent chapters.

Consider the example coded and shown in Example 8.
In the above code as during the execution of else condition, the information

about the assignment to b_in is not given so it infers the latch and holds the
previous value of b_in. The logic representation is shown in the Fig. 7.7. The if-else
construct infers multiplexer, and as assignment to b_in is missing within else, it
infers the positive level-sensitive latch which is controlled by enable input c_in.

As shown in Fig. 7.7, due to missing b_in assignment within the else clause, it
generates the latch and holds the previous value assigned. Latches are inferred due

//////////////////////////////////////////////////////////////////////////////

always@(posedge clk)

begin

b<=a;

end

always@(posedge clk)

begin

a<=b;

end

//////////////////////////////////////////////////////////////////////////////

Example 7 RTL tweak to avoid combinational loop
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to the incomplete assignment within if-else or due to incomplete conditions covered
while using the case construct. It is recommended that designer should take care of
this while coding the RTL!

Consider one more example for better clarity to implement the AND gate
(Example 9).

As shown in the RTL schematic (Fig. 7.8) as the else condition is missing, it
infers the AND gate with the unintentional D latch. The intention of the RTL design
engineer is to implement the AND gate, but due to missing else, it infers the
latch-based design.

//////////////////////////////////////////////////////////////////////////////

always@(c_in)

begin

if (c_in==1)

begin

a_in=1’b1;

b_in=1’b1;

end

else

begin

a_in=1’b0;

end

end
//////////////////////////////////////////////////////////////////////////////

Example 8 Verilog RTL design with missing else condition
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7.7 Use of Blocking Assignments

As discussed above, blocking assignments are denoted by (=) and used within the
procedural block to describe the functionality of combinational logic design.
Readers are requested not to get confused with the (=) assignment used while using

Fig. 7.7 Unintentional latches due to missing else condition

output reg y_out  );                     

// missing b_in from sensi vity list 

always@(*)

begin

if (a_in ==1 && b_in ==1)

y_out = 1;

end

endmodule

//////////////////////////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////////////////////////

module logic_design    (  input a_in, b_in,

Example 9 Verilog RTL design to understand the issue due to missing else
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continuous assignment assign as they are neither blocking nor non-blocking’.
Example 10 is shown below and uses the multiple assign constructs to describe the
functionality of design.

Fig. 7.8 Unintentional latches due to missing else

//////////////////////////////////////////////////////////////////////////////

module half_adder ( 

input a_in;

input b_in;

output sum_out;

output carry_out ) ;

In the Verilog RTL code mul ple 
con nuous assignments using 
assign executes concurrently. 
The con nuous assignments 
are neither blocking nor 
nonblocking.

assign sum_out = a_in ^ b_in;

assign carry_out = a_in & b_in;

endmodule
//////////////////////////////////////////////////////////////////////////////

Example 10 Concurrent execution due to multiple assign
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Note: It is recommended to use the full adder to perform the subtraction
operation. Subtrac-tion is performed using 2’s complement addition.
Multiple continuous assignments exe-cutes concurrently.

Consider the scenario of use of blocking assignment in the procedural block. If
the order of the inter-dependent blocking assignments is not correct, then there is
chance for the simulation and synthesis mismatch.

Example 11 is shown below, and in the example the issue in simulation and
synthesis mismatch due to order of the blocking statements. Blocking assignment
blocks the next immediate assignment execution unless and until current assign-
ment is executed. Readers are encouraged to use only blocking assignments while
modeling the combinational logic, but care should be taken while using these
assignments to have the real intended results.

//////////////////////////////////////////////////////////////////////////////

module blocking_assignment ( 

input a_in,

output reg y1_out,

output reg y2_out ) ;

always@(a_in)

begin

y2_out=y1_out;

y1_out=a_in;

end

endmodule

//////////////////////////////////////////////////////////////////////////////

In the Verilog RTL code blocking as-
signments are used to de-
scribe the combina onal be-
havior and the ‘y2_out’ is 
assigned first and the ‘a_in ‘  
is assigned to ‘y1_out’ last. 

This results into simula on and 
synthesis mismatch. As during 
simula on, it is essen al to 
hold the previous value of 
‘a_in’. 

Example 11 RTL having blocking assignments within always procedural block
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The synthesis result of Example 11 within always procedural block is shown in
Fig. 7.9, and it generates two wires. But while simulating, the ‘y2_out’ is updated
with the previous time stamp value ‘a_in’. So, results in simulation and synthesis
mismatch.

7.8 Use of if...else Versus case constructs

If all the case conditions covered while using the case-endcase construct, then it is
full-case construct. For combinational design within case construct, all the blocking
assignments should be included!

The synthesis result of Example 12 is shown in Fig. 7.10, and it infers parallel
logic.

Fig. 7.9 Synthesis result due to use of blocking assignment

input [1:0] s_in,

output reg y_out
) ;

always @ (*)
begin

case (s_in) 
2'b00 :  y_out = d_in[0];

2'b01 :  y_out = d_in[1];
2'b10 :  y_out = d_in[2];

default :  y_out = d_in[3];
endcase 

end
endmodule

//////////////////////////////////////////////////////////////////////////////

The always procedural block is 
used to describe the func on-
ality of design. Full case is 
used to describe the func on-
ality. Depending on ‘s_in’ sta-
tus one of the input d_in[3:0] 
is assigned to an output 
‘y_out’. Due to use of ‘case’ 
construct it generates parallel 
logic. 

//////////////////////////////////////////////////////////////////////////////

module mux_4to1( 
input [3:0] d_in,

Example 12 RTL design using full case construct
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7.9 Nested Multiplexer or Priority Logic

If the functionality is described by using if-else construct, then the synthesis out-
come results into priority logic. It is recommended to use if-else construct to
describe the priority logic. Example 13 is RTL description of the functionality of
4:1 mux using nested if-else construct.

Fig. 7.10 Parallel logic inferred for 4:1 MUX due to use of ‘case’

//////////////////////////////////////////////////////////////////////////////

module mux_4to1( 
input[3:0]d_in,

output reg y_out,
input [1:0] s_in ) ;

always @ (*)
begin
if( s_in == 2'b00)

y_out = d_in[0];
else if( s_in == 2'b01)

y_out = d_in[1];
else if( s_in == 2'b10)

y_out = d_in[2];
else 

y_out = d_in[3];
end

Nested if-else generates priority 
logic. The func�onality using 
if-else is described for 4:1 MUX 
and in this d_in[3] has last pri-
ority and d_in[0] has the high-
est priority. 

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 13 Verilog RTL design to infer the priority logic
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7.10 Parallel Logic or Decoding Logic

While describing the functionality of decoding logic, use the continuous assignment
or case construct. Both will generate the parallel logic. As discussed in Chap. 6,
decoder has parallel select inputs and should generate parallel outputs.

If the decoder is described using case-endcase construct. then it also infers the
parallel logic. The logic inferred for decoder implementation using assign and
case-endcase is shown in Fig. 7.11.

//////////////////////////////////////////////////////////////////////////////

module decoder_2to4 ( 

input [1:0] sel_in,
input enable_in,
output  wire [3:0] y_out); 

assign y_out = enable_in ? ( 1 << sel_in ) : 4'b0000;

endmodule

//////////////////////////////////////////////////////////////////////////////

The decoder functionality is de-
scribed by using assign con-
struct and it infers parallel 
logic. 

Example 14 Parallel logic using continuous assignments

Fig. 7.11 Decoding logic due to use of ‘case-endcase’ construct
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7.11 Priority Encoding Structure

To describe the priority encoder functionality, use the if-else construct as priority
definition can be included using nested if…else. The functionality of 4:2 priority
encoder is described by using nested if-else construct, and it infers the priority
logic. For Example 16, the synthesis result is shown in Fig. 7.12.

//////////////////////////////////////////////////////////////////////////////
//Decoder using ‘case-endcase’

module decoder_2to4 ( 

input [1:0] sel_in,
input enable_in, 
output  reg [3:0] y_out ) ;

always @ (*)
begin
if (enable_in)

case (sel_in)
2'b00 : y_out = 4'b0001;
2'b01 : y_out =4'b0010;
2'b10 : y_out =4'b0100;
default : y_out =4'b1000;
endcase

else
y_out = 4'b0000;

end

endmodule

//////////////////////////////////////////////////////////////////////////////

In this always procedural block is 
used with the case construct 
to describe the func onality 
of the decoder. 

For enable_in=1 the decoder gen-
erates the valid output de-
pending on the status of 
sel_in.

Example 15 Decoding logic using case-endcase construct
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//////////////////////////////////////////////////////////////////////////////

module encoder_4to2 ( 
input [3:0] data_in,
output  reg [1:0] y_out ) ;
always @ (*)
begin
if (data_in[3])

y_out = 2'b11;
else if (data_in[2])

y_out = 2'b10;
else if (data_in[1])

y_out = 2'b01; 
else

y_out = 2'b00;
end
endmodule

//////////////////////////////////////////////////////////////////////////////

The RTL is described using always
block. The data_in[3] has 
highest priority over all the 
reaming inputs. 

Input datain[0] has the least prior-
ity. 

Example 16 Priority encoder logic using ‘if-else’

Fig. 7.12 Synthesis result of priority encoder using if-else
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7.12 Missing default Condition in case construct

If all conditions are not covered while using the case-endcase expression, then it
infers the logic having unintentional latches in the design. If all case conditions are
not specified in the design functionality, then it is recommended to use default
clause. If default is missing and all conditions are not covered, then synthesis tool
flashes warning as missing case conditions and infers logic with unintentional
latches.

The synthesis result of Example 17 is shown in Fig. 7.13.

//////////////////////////////////////////////////////////////////////////////

module decoder_2to4 (
input [1:0] sel_in,
input enable_in,
output  reg [3:0] y_out );

always @ (*)

In this case expression, it is not full-
case as 2’b11 condi on is not 
specified. Even default clause 
is not used to describe the 
func onality for the missing 
case condi ons. 

This infers unintentional latches in 
the design

begin
if (enable_in)

case (sel_in)
2'b00 : y_out = 4'b0001;
2'b01 : y_out =4'b0010;
2'b10 : y_out =4'b0100;
endcase

else
y_out = 4'b0000;

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 17 RTL having missing default condition while using case construct
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7.13 Nested if...else with Missing else Condition

As shown, the 4:1 mux functionality is described by using nested if-else but due to
missing else condition it infers 4:1 mux with the unintentional latches. It is rec-
ommended to avoid the unintentional latches by incorporating the else condition in
the RTL design.

For Example 18, the logic is generated having unintentional latches and shown
in Fig. 7.14.

Fig. 7.13 Synthesis result of the decoder due to missing default condition in case construct

Fig. 7.14 Synthesis result of the 4:1 mux with missing else condition
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7.14 Logical Equality Versus Case Equality

Logical equality (==) and logical inequality (!=) operators are used in the synthe-
sizable designs, whereas case equality (===) and case inequality (!==) are not
recommended in the synthesizable design.

7.14.1 Logical Equality and Logical Inequality Operators

1. Recommended to be used in the synthesizable design
2. If any one of the operand has either x or z value, then the result is unknown (x),

and it results into logical comparison result as false.
3. The comparison outcome is non-deterministic if any one of the operand has x or

z value.
4. Consider example of comparing a_in with b_in. In this if either of the operand

has x or z value, then the else clause will be executed and infers the logic
specified in the else condition.

always @ (*)
begin
if( s_in == 2'b00)

y_out = d_in[0];
else if( s_in == 2'b01)

y_out = d_in[1];
else if( s_in == 2'b10)

y_out = d_in[2];
else if (s_in == 2'b11)

y_out = d_in[3];
end

endmodule

//////////////////////////////////////////////////////////////////////////////

As else is missing in the nested if-
else, the logic inferred gener-
ates combina onal mul plex-
ers with the latches.

The latches are inferred due to 
missing else while using the if-
else construct. 

//////////////////////////////////////////////////////////////////////////////

module mux_4to1_else_mising (output reg y_out,
input [3:0]  d_in,

input [1:0] s_in ); 

Example 18 Verilog RTL design with missing else condition
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7.14.2 Case Equality and Case Inequality Operators

1. Recommended to be used in the non-synthesizable design
2. If any one of the operand has either x or z value, then the result is known value,

and it results either true or false.
3. The comparison outcome is deterministic if any one of the operand has x or z

value.
4. Consider example of comparing a_in with b_in. In this if either of the operand

as x or z value, then if a_in is equal to b_in the if clause will be executed and
infers the logic specified in the if condition.

//////////////////////////////////////////////////////////////////////////////

always@(a_in, b_in)
begin
if (a_in==b_in)

y_out= a_in ^b_in;
else

y_out =a_in &b_in;
end

//For  either of a_in, b_in has ‘x’ or ‘z’ value then the result is y_out= 
a_in & b_in;

//////////////////////////////////////////////////////////////////////////////

Example 19 RTL design using logical equality operators

//////////////////////////////////////////////////////////////////////////////

always@(a_in, b_in)
begin
if (a_in===b_in)

y_out= a_in ^b_in;
else

y_out =a_in &b_in;
end

//For  either of a_in, b_in has ‘x’ or ‘z’ value then the result is y_out= 
a_in ^ b_in;

//////////////////////////////////////////////////////////////////////////////

Example 20 RTL code using case equality operators
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7.15 Multiple Driver Assignments

If same net (wire) is driven by multiple expressions while using the continuous
assignments, then the synthesis tool flashes an error ‘Multiple Driver Assignment’.
Similarly, if same ‘reg’ variable is driven by the different expressions within multiple
procedural block, then it is multiple driver error. Exception for this is tri-state.

Consider the Example 21. In this example, net y_tmp is driven by two different
continuous assignment expressions.

7.16 Exercises

The exercises are based on the understanding of assign and always procedural block
and use of if…else and case…endcase to model the combinational design. Complete
the exercises for better understanding and application of Verilog constructs.

1. The logic inferred by the following code is 

module comb_design_logic ( input a, b, sel, output reg y);

always@*

begin

if (sel)

//////////////////////////////////////////////////////////////////////////////

wire y_tmp;

assign y_tmp = a_in ^ b_in;

assign y_tmp = a_in & b_in;

//in this example y_tmp is assigned by using ‘xor’ and ‘and’ at a �me 
and hence mul�ple driver assignment error. 

//////////////////////////////////////////////////////////////////////////////

Example 21 Verilog RTL with multiple driver assignment
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y= a&b;

end

endmodule 
a. 2:1 MUX
b. AND gate
c. 2:1 mux and uninten onal latch
d. Syntax error in the code

2. The logic inferred by the following code is 

module comb_design_logic ( input a, b, sel, output reg y);

always@*

begin

case (sel)

0 : y= a;

1 : y=b;

endcase

end
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endmodule 
a. 2:1 MUX
b. AND gate
c. 2:1 mux and uninten onal latch
d. Syntax error in the code

3. The logic inferred by the following code is 

module comb_design_logic ( input a, b, c, d , input [1:0] sel, 
output y);

assign y = sel [0] ? a : b ;

assign y = sel [1] ? c : d ;

endmodule 
a. Mul ple driver error 
b. Single 2:1 mux
c. Two, 2:1 mux
d. Syntax error in the code

4. The logic inferred by the following code is 

module comb_design_logic_2 ( input a, b, output reg y1, y2);

always@ (a)

if (a==b)
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y1=  a ^ b;

else

y1= a ~^ b;

endmodule 
a. XOR gate, XNOR gate
b. OR gate, NOR gate 
c. NOR gate, NAND gate 
d. Mul plexer having one input as XOR and another as 

XNOR

5. The following RTL has 

module comb_design_logic_2 ( input a, b, output reg y1, y2);

always@ (a)

if (a==b)

y1=  a ^ b;

else

y1= a ~^ b;

endmodule 
a. Mul ple driver assignment error 
b. Simula on synthesis mismatch issue
c. No simula on and synthesis mismatch
d. None of the above
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7.17 Summary

As discussed in this chapter, following are important design guidelines.

1. Use blocking assignments for design of combinational logic.
2. All the blocking assignments are evaluated and updated in the active event

queue.
3. Use case-endcase to infer parallel logic and use if-else to infer priority logic.
4. Cover all the case conditions or include default while using the case-endcase to

avoid unintentional latches.
5. Use all the required inputs or signals in the sensitivity list while using always

block. This is recommended to avoid simulation and synthesis mismatch.
6. Avoid use of multiple assignments to same net while using assign. This is

recommended to avoid the multiple driver assignment error.
7. Avoid use of combinational looping as it exhibits the oscillatory behavior.
8. Cover all the case conditions and else conditions as missing case conditions or

else conditions infers the unintentional latches in the design.
9. For decoders and multiplexers, code the RTL using case–-endcase to infer

parallel logic.
10. For priority encoders, use the nested if-else while coding the RTL to infer the

priority logic.
11. To include all required inputs in the sensitivity list, use always@*.
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Chapter 8
Basics of Sequential Design
Using Verilog

The chapter is useful to understand about the RTL design for the latches and flip-flop. The
concept of the synchronous and asynchronous reset is also discussed.

As discussed in previous chapters, in the combinational logic an output is a function
of the present input. Examples of combinational design are multiplexers, decoders,
adders, subtractors, code converters, encoders, and other priority encoders. In the
sequential design, an output is a function of the present inputs and past outputs. The
chapter is useful to understand about the RTL design techniques and strategies for
the sequential circuit elements such as D latch and D flip-flop. The following few
sections also discuss the synchronous and asynchronous reset strategies used in the
sequential design.

8.1 Sequential Logic

Sequential logic is defined as the digital logic whose output is a function of present
input and past output. So, the sequential logic holds the binary data. Sequential
logic elements are latches and flip-flops and used to design the sequential logic for
the given design functionality. For the RTL design engineer, it is essential to
understand the efficient RTL design for clock-based logic circuits. The sequential
logic is used to hold the larger amount of data in the complex designs. The logic is
sensitive to the active edge of the clock. In the practical applications, it is always
essential to describe the logic circuit which can be sensitive to either positive edge
of clock or the negative edge of clock. It is always expected that the logic circuit
should generate the finite output during the specified clock period. Figure 8.1
describes the basic sequential logic sensitive to positive edge of clock. The output
from the logic is function of a present input and past output.
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8.1.1 Positive-Level Sensitive D Latch

Latches are sensitive to the level. In the D latch, D stands for the data input. The
latches are sensitive to either positive or negative level of clock or enable.
Positive-level sensitive latch is shown in Fig. 8.2, and the truth table is described in
Table 8.1. As shown in Table 8.1, for latch enable (E) is equal to positive-level
(logic 1) output Q is equal to data input D; else output remains in the previous state
(past output) and is indicated by Qn−1. The timing sequence is shown in Fig. 8.3.

From the timing sequence, the output Q is equal to data input D during the time
for which enable input E is equal to positive level. So, D latch acts as transparent

Fig. 8.1 Sequential design
schematic

Fig. 8.2 Positive-level sensitive D latch

Table 8.1 Truth table of positive-level sensitive D latch

E D Q *Q

1 0 0 1

1 1 1 0

0 X Qn-1 *Qn−1

Fig. 8.3 Timing sequence of positive-level sensitive D latch
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during this period. During negative level (logic 0) of enable E, D latch holds the
previous value.

Now, the important point in the mind of you is how to code the RTL for
positive-level sensitive D latch using Verilog? It is quite simple to visualize and to
describe the RTL of latch! Example 1 describes the Verilog RTL of the
positive-level sensitive D latch, and the synthesis outcome is shown in Fig. 8.4.

//////////////////////////////////////////////////////////////////////////////
posi ve level sensi ve D latch RTL design 

module d_flip_flop ( 

input D, 

input LE, 

output reg Q  );

always@(*) 

begin

if (LE)

Q <=  D; 

An always procedural block is sensi-
ve to event on LE and D.

As else condi on is missing within the 
always procedural block, it infers 
the posi ve level sensi ve inten-

onal latch.

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 1 Positive level sensitive D-Latch synthesizable design

8.1 Sequential Logic 175



8.1.2 Negative-Level Sensitive D Latch

The truth table of the negative-level sensitive D latch is shown in Table 8.2, and it
has active low or negative-level sensitive latch enable input (LE_n), data input D,
and output Q.

The equivalent logic gate-level representation is shown in Fig. 8.5. The latch acts
as transparent during negative level of LE_n and holds the previous output during
the positive level of LE_n. The timing sequence is shown in Fig. 8.6.

The Verilog RTL description is shown in Example 2, and the synthesis result is
shown in Fig. 8.7.

D-Latch

Fig. 8.4 Positive level sensitive D-Latch

Fig. 8.5 Negative level sensitive D-Latch

Table 8.2 Truth table of negative-level sensitive D latch

LE_n D Q *Q

0 0 0 1

0 1 1 0

1 X Qn-1 *Qn−1
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Fig. 8.6 Timing sequence of negative level sensitive latch

//////////////////////////////////////////////////////////////////////////////
Nega�ve level sensi�ve D latch RTL design 

module d_flip_flop ( 

input D, 

input LE_n, 

output reg Q );

An always procedural block is sensi-
�ve to event on LE and D.

As else condi�on is missing within the 
always procedural block, and it 
infers the nega�ve level sensi�ve 
inten�onal latch.

always@(*) 

begin

if (~LE_n)

Q <=  D; 

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 2 Negative level sensitive D-Latch synthesizable design
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8.2 Flip-Flop

Flip-flop is an edge-triggered sequential logic element. It can be triggered either on
positive edge of clock or on negative edge of clock. Flip-flop can be realized by
using positive- and negative-level sensitive latches connected in cascade. Flip-flop
is used as a memory storage element. Flip-flops are set–reset (SR), JK, D, and
toggle. In an ASIC design, the D flip-flop is used as a memory storage element,
where D stands for the data input. The subsequent section discusses the positive-
and negative-edge triggered flip-flop.

8.2.1 Positive Edge-Triggered D Flip-Flop

Positive edge-triggered D flip-flop is sensitive to positive edge of clock. Practically,
there is no any logic gate which can be sensitive to edge! Positive edge-sensitive
flip-flop is realized by using negative-level sensitive latch followed by
positive-level sensitive latch. The logic circuit of the positive edge-triggered D
flip-flop is shown in Fig. 8.8.

D-Latch

Fig. 8.7 Synthesis result of negative level sensitive latch

Fig. 8.8 Positive edge triggered D flip-flop
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8.2.2 Negative Edge-Triggered D Flip-Flop

Negative edge-triggered D flip-flop is sensitive to the negative edge on clock.
Negative edge-triggered flip-flop is realized by using positive-level sensitive latch
followed by negative-level sensitive latch. The logic circuit of positive
edge-triggered D flip-flop is shown in Fig. 8.9.

8.2.3 Synchronous and Asynchronous Reset

One of the important questions to address while coding the RTL for ASIC design is
when to use asynchronous reset or synchronous reset? This always leads to con-
fusion in the mind of design engineers. Synchronous reset signal is sampled on
active clock edge and has some logic in the data path! whereas asynchronous reset
signal is sampled irrespective of active clock edge, hence no reset-related logic in
the data path. This section discusses Verilog RTL of D flip-flop using asynchronous
and synchronous reset.

8.2.3.1 D Flip-Flop Having Asynchronous Reset

Asynchronous reset does not have reset-related logic in the data path and is used to
initialize flip-flop irrespective of active clock edge, and hence, reset technique is
named as asynchronous reset. This technique to initialize flip-flop is not recom-
mended for internal reset signal generation as it is prone to glitches. Care should be
taken by designer to synchronize this reset signal internally to avoid the glitches.
The internally synchronized reset signal is applied to the sequential logic. The reset
deassertion is the main problem in the asynchronous reset signals, and this problem
can be overcome by using two-stage level synchronizer. Level synchronizer avoids
the race around conditions during reset deassertion.

Verilog RTL is shown in Example 3 and uses active low asynchronous reset
signal reset_n.

Fig. 8.9 Negative edge
triggered D flip-flop
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The RTL schematic of D flip-flop having asynchronous reset reset_n is shown in
Fig. 8.10. As shown, the inferred logic does not have any combinational element in
the data path.

//////////////////////////////////////////////////////////////////////////////
module d_flip_flop ( 

input d_in,

input clk,

input reset_n,

output reg q_out );  

always@(posedge clk, negedge reset_n)

begin

if(~reset_n)

q_out <=  1'b0;

else

q_out <= d_in;

end

endmodule

//////////////////////////////////////////////////////////////////////////////

An always procedural block is sensi-
ve to posi ve edge of clock clk

or to nega ve edge of reset re-
set_n.

As nega ve edge of reset_n is includ-
ed in the sensi vity list; it gener-
ates D flip-flop with asynchro-
nous reset. 

For reset input, reset_n=0,an output 
q_out is assigned to logic 0

For reset_n=1 clock. output q_out is 
assigned to value d_in on posi-

ve edge of clock clk

Example 3 Synthesizable design of D flip-flop having asynchronous active low reset input
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8.2.4 D Flip-Flop Having Synchronous Reset

In synchronous reset technique, the reset-related logic is included in the data path
and reset is sampled on the active clock edge. The synchronous reset does not have
issues of glitches or hazards, so this approach is best suited during the design. This
mechanism does not require the additional synchronization circuit.

Verilog RTL is described in Example 4 and uses active low synchronous reset
signal reset_n.

The synthesis result of positive edge-triggered D flip-flop having synchronous
reset input is shown in Fig. 8.11.

Fig. 8.10 RTL schematic of D flip-flop having asynchronous active low reset input

d in

reset n

0
q_out

clk

Fig. 8.11 Synthesis result of
D flip-flop with synchronous
reset
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//////////////////////////////////////////////////////////////////////////////
module d_flip_flop ( 

input d_in,

input clk,

input reset_n,

output reg q_out );

always@(posedge clk) 

begin

if(~reset_n)

q_out <=  1'b0;

An always procedural block is sensi-
ve to posi ve edge of clock clk 

or to nega ve edge of reset re-
set_n.

As nega ve edge of reset_n is not in-
cluded in the sensi vity list; it 
generates D flip-flop with syn-
chronous reset. 

Reset input is sampled on posi ve 
edge of clock. For reset re-
set_n=0, output q_out is as-
signed as logic ‘0’

During reset_n=1 output q_out iis 
assigned to value d_in on posi-

ve edge of clock clk

else

q_out <= d_in;

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 4 Synthesizable design of D flip-flop having active low synchronous reset input
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8.2.5 Flip-Flop Having Synchronous Load Enable
and Asynchronous Reset

In most of the practical applications, multiple asynchronous or synchronous inputs
are required. Consider an application where it requires to load the input data when
enable input is active. And another requirement is to initialize register when reset
signal is active and valid. If both asynchronous inputs arrive at a time, then the
output is dependent on the priority assignment of these signals.

As shown in Example 5, two inputs are named as reset_n and load_en. The
reset_n has highest priority, and load_en has the lowest priority. The priority is
scheduled using nested if-else construct.

The synthesis result is shown in Fig. 8.12.
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//////////////////////////////////////////////////////////////////////////////
module d_flip_flop ( 

input d_in,

input load_en,

input clk, 

input reset_n,

output reg q_out ); 

always@(posedge clk , negedge reset_n)

An always procedural block is sensi�ve 
to posi�ve edge of clock clk or to 
nega�ve edge of reset reset_n. 

As nega�ve edge of reset_n is included 
in the sensi�vity list; it generates D 
flip-flop with asynchronous reset. 

For reset reset_n=0, output q_out is as-
signed as logic 0 and has high prior-
ity. 

Another input load_en acts as an enable 
input and used to set the output 
q_out of flip-flop to logic 1 and has 
second priority a�er reset.

During reset_n=1 output q_out is as-
signed to value d_in on posi�ve 
edge of clock clk.

begin

if(~reset_n)

q_out <= 1'b0;

else if (load_en)

q_out <= 1'b1;

else

q_out <= d_in;

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 5 Synthesizable design of D flip-flop having synchronous load and asynchronous reset
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8.2.6 Flip-Flop with Synchronous Load and Synchronous
Reset

If multiple signals or inputs are sampled on the active edge of clock, then they are
called as synchronous inputs. Consider the Verilog RTL shown in Example 6, and
inputs reset_n and load_en are synchronous inputs and sampled on the positive
edge of the clock. Synchronous input reset_n has highest priority, and load_en has
the lowest priority.

The synthesis result is shown in Fig. 8.13 and having reset_n and load_en as
synchronous inputs.

q_out
d_in

reset_n

clk

load_en

Fig. 8.12 Synthesized output of D flip-flop having asynchronous reset
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//////////////////////////////////////////////////////////////////////////////
module d_flip_flop ( 

input d_in,

input load_en,

input clk, 

input reset_n, 

output reg q_out );

always@(posedge clk) 

begin

if(~reset_n)

q_out <= 1'b0;

An always procedural block is sensi�ve 
to posi�ve edge of clock clk or to 
nega�ve edge of reset reset_n.

As nega�ve edge of reset_n is not in-
cluded in the sensi�vity list; it gen-
erates D flip-flop with synchronous 
reset. 

For reset reset_n=0, output q_out is as-
signed as logic 0 and has high pri-
ority. 

Another input load_en acts as an enable 
input and used to set the output 
q_out of flip-flop to logic 1 and has 
second priority a�er reset.

For reset_n=1, output q_out is assigned 
to value d_in on posi�ve edge of 
clock clk.

else if (load_en)

q_out <= 1'b1;

else

q_out <= d_in;

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 6 Synthesizable design of D flip-flop with synchronous load_en and synchronous
reset_n
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8.3 Exercises

The exercises are based on the understanding of procedural always block used to
model the latches and flip-flops. Complete the exercises for better understanding
and application of Verilog constructs.

1. The logic inferred by the following code is 

module design_logic ( input a, b, clk, output reg y);

wire tmp;

assign tmp = a & b;

always @ (*)

begin

if (~ clk)

y = y1;

end

Fig. 8.13 Synthesized logic with synchronous reset_n and synchronous load
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endmodule 
a. Posi ve edge triggered D flip-flop having input a&b
b. Posi ve level sensi ve D latch having input a&b
c. Nega ve edge triggered D flip-flop having input a&b
d. Nega ve  level sensi ve D latch having input a&b

2. The logic inferred by the following code is 

module design_logic ( input d, clk, reset_n, output reg y);

always @ (posedge clk, negedge reset_n)
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8.4 Summary

The following are key points to summarize the sequential logic design.

1. Latches are level sensitive and not recommended in the ASIC designs.
2. Flip-flops are edge triggered and are recommended in the ASIC designs.
3. Flip-flops are described by using procedural block always and sensitive to either

posedge clk or negedge clk.
4. The reset can be of asynchronous reset type or synchronous reset type.
5. Using the asynchronous reset, the reset is sampled irrespective of the active

clock edge and used to initialize the sequential logic.
6. Using the synchronous reset technique, the reset is sampled on the active edge

of the clock and used to initialize the sequential logic.
7. If the asynchronous reset is used in the ASIC or FPGA design, then they should

be synchronized using the level synchronizer.
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Chapter 9
Synchronous Counter Design Using
Synthesizable Constructs

The RTL design of various synchronous counters using the synthesizable constructs is
discussed in this chapter. The chapter discusses about the RTL design, simulation, and
synthesis concepts.

In the synchronous design, the clock of all the flip-flops is driven from common
clock source, and the maximum operating frequency of the design is dependent on
the register-to-register path which has more delay. The chapter discusses the var-
ious binary and gray counters and their RTL design, simulation, and synthesis using
efficient Verilog constructs.

9.1 Synchronous Counters

If all the sequential design elements (flip-flops) are driven by the same source clock
source, then the design is said to be synchronous. The advantage of synchronous
design is that they are faster as compared to asynchronous designs. STA is quite
easy for the synchronous logic, and even the performance improvement is possible
by using the pipelining. Most of the ASIC implementation uses the synchronous
logic. This section discusses the synchronous counter design.

Four-bit binary counter is used to count from 0000 to 1111, and the four-bit
BCD counter is used to count from the 0000 to 1001. Figure 9.1 is the represen-
tation of the counter where every register logic is divide by two counter.

As shown in Fig. 9.1, the counter has four output lines: QA, QB, QC, and QD,
where QA is LSB and QD is MSB. The output at QA toggles on every rising edge
of the clock and hence divided by two. Output at QB toggles for every two clock
cycles, and hence, it is divisible by four, and at QC output toggles for every four
clock cycles, and hence, the output is divided by eight. Similarly, the output at QD
toggles for every eight cycle, and hence, output at QD is divided by sixteen. In the
practical applications, counters are used as clock divider network. Even counters are
used in the frequency synthesizers to generate variable frequency outputs.
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9.1.1 Three-Bit Up Counter

Counters are used to generate the pre-defined and required count sequence on the
active edge of clock. Most of the time in ASIC design, it is essential to have an
efficient RTL code for the counter by using the synthesizable constructs. Three-bit
up counter is described by using Verilog synthesizable constructs. Counter counts
from 000 to 111 and works on the positive edge of the clock and wraps around to
000 on the next positive edge of the count. The counter described in Fig. 9.2 is
presettable counter, and it has the synchronous active high ‘load_en’ input to
sample the three-bit input as required. The data input is three bit and declared as
data_in.

Counter has active low asynchronous reset_n input, and when it is active low the
q_out is 000. During normal operation, reset_n is active high.

The synthesis result is shown in Fig. 9.2 and has three-bit data input lines
data_in, active high load_en, and active low reset input reset_n. Output is denoted
as q_out and postive edge-triggered clock by clk.

Fig. 9.1 Four-bit binary counter
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//////////////////////////////////////////////////////////////////////////////

module up_counter_3bit (

input [2:0] data_in,

input load_en,

input clk,

input reset_n,

output reg [2:0] q_out ) ;

always@(posedge clk , negedge reset_n)  

begin

if(~reset_n)

q_out <= 3'b000;

else if (load_en)

q_out <= data_in;

Procedural always block is sensi ve 
to posi ve edge of clock clk, or 
nega ve edge of reset reset_n.

For reset reset_n=0 it assigns 3-bit 
output q_out=000. Here reset is 
asynchronous input and has 
highest priority over any other 
input.  

For load signal load_en=1 the input 
data_in is assigned to output 
‘q_out’

For reset_n=1 and load_en=0 the 
else clause is executed and in-
crements the counter output 
q_out by one on every posi ve 
edge of clock. 

else

q_out <= q_out +1'b1;

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 1 Verilog RTL of three-bit up counter
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9.1.2 Three-Bit Down Counter

Three-bit down counter is coded by using synthesizable Verilog constructs. Counter
counts from 111 to 000 and sensitive to the positive edge of the clock and wraps
around to 111 on the next positive edge of the count after reaching to count value
000. The timing sequence of the three-bit down counter is shown in Fig. 9.3.

The counter shown in Example 2 is presettable counter, and it has the syn-
chronous active high load_en input to sample the three-bit desired presettable value.
The data input is three bit and declared as data_in.

Fig. 9.2 Synthesized three bit up counter top level diagram

Fig. 9.3 Timing sequence for three-bit binary down counter
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//////////////////////////////////////////////////////////////////////////////
module down_counter_3bit ( 

input [2:0] data_in,

input load_en,

input clk,

input reset_n,

output reg [2:0] q_out ) ;

always@(posedge clk , negedge reset_n)  

begin

if(~reset_n)

q_out <= 3'b000;

else if (load_en)

q_out <= data_in;

else

q_out <= q_out -1'b1;

end

endmodule

Procedural  always block is sensi ve 
to posi ve edge of clock clk , or 
nega ve edge of reset reset_n.

For reset reset_n=0 it assigns 3-bit 
output q_out=000. Here reset is 
asynchronous input and has 
highest priority over any other 
input.  

For load signal load_en=1 the input 
data_in is assigned to output 
q_out 

For reset_n=1 and load_en=0 the 
else clause is executed and dec-
rements the counter output 
q_out by one on every posi ve 
edge of clock. 

//////////////////////////////////////////////////////////////////////////////

Example 2 Verilog RTL of three-bit down counter
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Counter has active low asynchronous reset_n input, and when it is active low,
the output lines q_out is assigned to 000. During normal operation, reset_n is active
high.

The RTL schematic is shown in Fig. 9.4 and has three-bit data input lines
data_in, active high load_en, and active low reset input reset_n. Output is denoted
as q_out. The counter output decrements by one on every postive edge of the clock
by clk.

9.1.3 Three-Bit Up–Down Counter

Three-bit up–down counter is coded by using synthesizable Verilog constructs.
Down counter decrements from 111 to 000 and sensitive to the positive edge of the
clock and wraps to 111 on the next positive edge of the clock after reaching to
count value 000. Up counter increments from 000 to 111 and sensitive to the
positive edge of the clock and wraps to 000 on the next positive edge of the clock
after reaching to count value 111.

For up_down is equal to logic 1, the counter acts as up counter, and for up_down
is equal to logic 0, counter acts as down counter.

The counter is coded using the synthesizable constructs and shown in Example 3.
It is presettable counter, and it has the synchronous active high load_en input to
sample the three-bit desired presettable input. The data input is three bit and declared
as data_in. The up or down counting operation is selected by the input up_down, for
up_down = 1, counter acts as up counter, and for up_down = 0, counter acts as
down counter.

Fig. 9.4 Synthesized three bit down counter top level diagram
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//////////////////////////////////////////////////////////////////////////////

module up_down_counter_3bit ( 

input [2:0] data_in, 

input load_en, 

input up_down, 

input clk, 

input reset_n, 

output reg [2:0] q_out); 

always@(posedge clk , negedge reset_n) 

begin 

if(~reset_n) 

 q_out <= 3'b000; 

else if (load_en) 

q_out <= data_in; 

else 

Procedural always’ block is sensi�ve to 
posedge of clock clk or negedge of re-
set reset_n.

For reset reset_n=0 it assigns 3-bit output 
q_out=00’. Here reset is asynchronous 
input and has highest priority over any 
other input. 

For load signal load_en=1 the input data_in 
is assigned to output q_out

For reset_n=1 and load_en=0 the else con-
di�on is executed and increments or 
decrements the counter output q_out 
on every posi�ve edge of clock.

For up_down=1 counter increments by one 
and for up_down=0 counter decre-
ments by one. 

begin

if (up_down)  

 q_out <= q_out +1'b1; 

else 

q_out <= q_out - 1'b1;

Example 3 Verilog RTL for three bit up-down counter
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Counter has active low asynchronous reset_n input, and when it is active low,
the output q_out is 000. During normal operation, reset_n is active high.

The synthesis outcome is shown in Fig. 9.5 and has three-bit data input lines
data_in, active high load_en, and active low reset input reset_n. Three-bit output is
denoted as q_out, and counter has postive edge-triggered clock clk and select line
up_down to select for the up or down counting operation.

9.2 Gray Counters

Gray counters are used in the multiple clock domain designs as only one bit
changes in two successive gray codes. Gray codes are used in the synchronizers.
Gray counter is coded and shown in Example 4, and in this only one bit is changing
on the active clock edge with reference to the previous output of the counter. In this
active low, asynchronous reset input is reset_n. When reset_n = 0, the output of
counter gray_out is assigned to 00.

end 

end 

endmodule 

//////////////////////////////////////////////////////////////////////////////

Example 3 (continued)

Fig. 9.5 Synthesized three bit up-down counter top level module
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////////////////////////////////////////////////////////////////////////////////// 

module gray_counte_2_bit( 

input clk, reset_n, 

output [1:0] gray_out  

);

 reg [1:0] binary_out;                              

always @ (posedge clk, negedge reset_n) 

begin 

if ( ~reset_n)     

   binary_out <= 2'b00;     

 else            

        binary_out <= binary_out + 1;       

Two-bit gray counter func�onality is de-
scribed by using procedural always 
block which is sensi�ve to posi�ve 
edge of clock clk.  

The counter has asynchronous reset re-
set_n and when it is ac�ve low the 
counter output gray_out is as-
signed to logic 0.

end    

assign gray_out [1] = binary_out[1];  

assign gray_out[0] = ^ binary_out;        

endmodule 

//////////////////////////////////////////////////////////////////////////////

Example 4 Two-bit gray counter
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The counter described in Example 4 is presetscounter and has active low
asynchronous reset reset_n input, and when it is active low, the output line gray_out
is 00. During normal operation, reset_n is active high.

The synthesis result of Example 4 is shown in Fig. 9.6 and uses the binary
counter with the XOR gate to generate the gray output.

As shown in the simulation waveform (Fig. 9.7), the gray_out sequence is
00,01,11,10,00…. And only one bit changes in the two consecutive codes.

9.2.1 Gray and Binary Counter

In most of the practical applications, binary and gray counters need to be used. Gray
counter output can be generated from the binary counter output by using the
combinational logic. Refer Sect. 9.2 for the binary and gray output.

Parameterized binary and gray counter is coded and shown in Example 5, and
the Verilog RTL is described to generate four-bit binary and gray output. For
‘reset_n = 0’, binary and gray counter output is assigned to 0000. Four-bit gray
code output is denoted as gray_out.

Simulation result for the four-bit binary and gray counter is shown in the timing
sequence Fig. 9.9, and for every postive edge of clock, counter output increments
by one (Fig. 9.8).

Fig. 9.6 Two-bit gray counter

Fig. 9.7 Waveform of gray counter
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The testbench to check for the functional correctness of the design is shown in
Example 6.

The simulation result is shown in Fig. 9.9 and generates the gray_out. If you
compare the two successive codes, then only one-bit change you can notice!

////////////////////////////////////////////////////////////////////////////// 

module binary_gray_counter #(parameter data_size = 4) 

(input clk, reset_n, full, increment,  

output reg [data_size-1:0] gray_out); 

wire [data_size-1:0] gray_next, binary_next; 

reg [data_size-1:0] binary_data; 

assign gray_next = (binary_next >> 1) ^ binary_next;

always@(posedge clk , negedge reset_n) 

if (~reset_n)  

{binary_data, gray_out} <= 4'b0000; 

else  

{binary_data, gray_out} <= {binary_next, gray_next}; 

assign binary_next = !full ? binary_data + increment : binary_data; 

endmodule 

//////////////////////////////////////////////////////////////////////////////

Four-bit parameterized gray and 
binary counter is described 
and having asynchronous re-
set reset_n and triggered on 
posi�ve edge of clock clk. 

For reset reset_n=0 the counter 
output is assigned as zero. Binary 
counter output is binary_data and 
gray counter output is gray_out. 

The next value of binary counter 
and gray counter is evaluated by 
using con�nuous assignment con-
structs. 

Example 5 Verilog RTL of Parameterized Binary and Gray counter
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Fig. 9.8 Synthesis result of Example 5

Fig. 9.9 Timing sequence for four-bit gray counter
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//////////////////////////////////////////////////////////////////////////////
module test_binary_gray; 

 // Inputs 

reg clk; 

reg reset_n; 

reg full; 

reg increment; 

 // Outputs 

wire [3:0] gray_out; 

always #10 clk= ~clk; 

always #300 increment = ~increment; 

always #500 full =~full; 

 // Instan�ate the Unit Under Test (UUT) 

 binary_gray_counter uut ( 

  .clk(clk),  

  .reset_n(reset_n),  

Example 6 Testbench for Example 5
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  .full(full),  

  .increment(increment),  

  .gray_out(gray_out) 

);

ini�al begin

// Ini�alize Inputs 

   clk = 0; 

   reset_n = 0; 

   full = 0; 

   increment = 0; 

  // Wait 10 ns for global reset to finish 

   #10; 

   reset_n=1;        

end       

endmodule 
////////////////////////////////////////////////////////////////////////////// 

Example 6 (continued)

206 9 Synchronous Counter Design Using Synthesizable Constructs



9.2.2 Ring Counters

Ring counters are used in the practical applications to include the pre-defined delay.
These counters are synchronous in nature and used in the practical applications like
traffic light controllers and timers to introduce the certain amount of pre-defined
delay. The internal logic structure using the D flip-flops for four-bit ring counter is
shown in Fig. 9.10, as shown the output of LSB flip-flop is fed back to the MSB
flip-flop input, and the counter shifts the data on every active edge of clock signal.

The Verilog RTL for the four-bit ring counter is coded and shown in Example 7
Verilog RTL for four-bit ring counter, and the counter has set_n input to set the
initial output value of 1000 and works on the positive edge of clock signal.

The synthesis schematic is shown in Fig. 9.11.
The simulation result is shown in the waveform (Fig. 9.12), and as shown, the

count_out is 1000, 0100, 0010, 0001, 1000…. It is like a ring.

Fig. 9.10 Ring counter internal structure
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////////////////////////////////////////////////////////////////////////// 

module ring_counter_4_bit( 
                            input clk, set_n, 
                            output reg [3:0] count_out  

);

always @ (posedge clk, negedge set_n) 
begin 

if ( ~set_n) 

 count_out <= 4'b1000;                            

else 

 count_out <= { count_out[0], count_out[3:1]}; 

end  

endmodule 

/////////////////////////////////////////////////////////////////////

Ring counter is synchronous counter 
where the sequence is repeated 
a�er few clock cycles. 

An asynchronous input set_n is used to 
assign counter output count_out 
to four-bit binary number 1000

On posi�ve edge of every clock signal 
counter output count_out is shift-
ed by one bit.

The LSB of counter is fed back to input 
of MSB flip-flop.

Example 7 Verilog RTL for four-bit ring counter

Fig. 9.11 Synthesized Logic for four-bit ring counter

Fig. 9.12 Simulation result of 4-bit ring counter
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9.2.3 Johnson Counters

The Johnson counter is also called as twisted ring counter and designed by using the
shift register. The internal structure for three-bit Johnson counter is shown in
Fig. 9.13.

The Verilog RTL for four-bit Johnson counter is shown in Example 8.

Fig. 9.13 Three-bit Johnson counter

////////////////////////////////////////////////////////////////////////// 

module johnson_counter_4bit( 
input clk, reset_n, 

                             output reg [3:0] count_out  
);

always @ (posedge clk, negedge reset_n) 
begin 

if ( ~reset_n)                                                                 

 count_out <= 4'b0000; 

else  

       count_out <= { ~count_out[0], count_out[3:1]}; 

end         

endmodule 

////////////////////////////////////////////////////////////////////////// 

Johnson counter is synchronous 
counter where the sequence 
is repeated a�er few clock 
cycles.  

An asynchronous input reset_n is 
used to assign counter output 
q_out to four-bit binary 
number 0000 

On posi�ve edge of every clock 
signal counter output 
count_out is shi�ed by one 
bit. The complement of LSB
bit of counter is fed back to 
MSB flip-flop.

Example 8 Verilog RTL for four-bit Johnson counter
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The synthesis logic is shown in Fig. 9.14.
The simulation result for the 4-bit Johnson counter is shown in Fig. 9.15, and as

shown, the output sequence at count_out is 1000, 1100, 1110, 1111, 0111, 0011,
0001, 0000, 1000…. This type of counter is also called as twisted ring counter.

9.3 BCD Up–Down Counter

The BCD counter or MOD-10 counter counts from 0000 to 1001. If it is up counter,
then the sequence is from 0000 to 1001, and if it is down counter, then output
sequence is from 1001 to 0000. The RTL using synthesizable Verilog constructs for
the BCS up–down counter is coded, and it is shown in Example 9.

The synthesis result of Example 9 is shown in Fig. 9.16.
As shown in the simulation waveform, the counter counts from 0 to 9 in the up

counter mode, and in the down counter mode, it counts from 9 to 0 (Fig. 9.17).

Fig. 9.14 Synthesized logic for four-bit Johnson counter

Fig. 9.15 Simulation result of 4-bit Johnson counter
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/////////////////////////////////////////////////////////////////////////// 

module bcd_up_down_counter ( 

input clk, reset_n, 

                            input up_down , 

output reg [3:0] count  

                             );                              

always @ (posedge clk, negedge reset_n) 

begin 

if ( ~reset_n)     

  count <= 4'b0000;     

else      

if ( up_down)          

if ( count == 4'b1001)             

             count <= 4'b0000;             

            else              

            count <= count + 1; 

Example 9 RTL design of 4-bit BCD up-down counter
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Fig. 9.16 Synthesis result of Example 9

       else         

if ( count == 4'b0000)                    

                    count <= 4'b1001;                    

else  

                    count <= count - 1;                    

 end                              

endmodule 

/////////////////////////////////////////////////////////////////////////// 

Example 9 (continued)

Fig. 9.17 Simulation waveform of Example 9
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9.4 Exercises

The exercises are based on the understanding of procedural always block used to
design the counters. Complete the exercises for better understanding and applica-
tion of Verilog constructs.

module design_logic ( input  clk, reset_n, output reg [1:0] y); 

always @ (posedge clk) 

begin 

if (~ reset_n) 

y <= 2’b00;

else if (y ==00) 

y <= 2’b10;

else  

y<= y-1;

end 

endmodule  

a. MOD-4 binary up counter 
b. MOD-3 binary up counter 
c. MOD-2 binary up counter 
d. Mod-3 binary down counter 

2. The logic inferred by the following code is  
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1. The logic inferred by the following code is  

module design_logic ( input  clk, reset_n, output reg [1:0] y); 

always @ (posedge clk) 

begin 

if (~ reset_n) 

y <= 2’b00; 

else if (y ==10) 

y <= 2’b00;

else  

y<= y+1; 

end 

endmodule  

a. MOD-4 binary up counter 
b. MOD-3 binary up counter 
c. MOD-2 binary up counter 
d. Mod-3 binary down counter 
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reg tmp; 

always @ (posedge clk) 

begin 

y <= tmp; 

tmp <= d; 

end 

endmodule  
a. Posi�ve edge triggered D flip-flop.  
b. Two-bit shi� register  
c. posi�ve edge triggered D flip-flop having input logic 1. 
d. posi�ve edge triggered D flip-flop having input logic 0. 

3. The logic inferred by the following code is  

module design_logic7 ( input d, clk, output reg y); 

9.5 Summary

The following are key points to summarize the chapter:

1. Binary counters can be designed by using synchronous counter design concept
or asynchronous design techniques.

2. Gray counters can be designed by using the binary counters with the additional
combinational logic.

3. Synchronous counters are recommended in the ASIC design as timing analysis
will be easy, and they are not prone to the glitches.

4. Asynchronous counters are prone to glitches or spikes and hence not recom-
mended in the ASIC designs.
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5. Special counters like ring and Johnson can be designed by using the shift
registers.

6. Johnson counter is also called as twisted ring counter.
7. Binary counters are used to count from 0000 to 1111.
8. BCD counters are used to count from 0000 to 1001.
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Chapter 10
RTL Design of Registers and Memories

The chapter is useful to understand the RTL design techniques and strategies useful to code
the RTL for registers, shift-registers and memories.

As discussed in previous chapters, the sequential design important element is
flip-flop, and in the sequential design output is function of the present inputs and
past outputs. Most of the time in the ASIC or FPGA design, we need to include the
storage that is block of registers. In such scenario, the chapter is useful to under-
stand about the RTL design techniques and strategies while coding the RTL for the
registers and memories. The following few section discusses the RTL design of
registers and memories.

10.1 Parallel Input and Parallel Output (PIPO) Register

In most of the processor design applications, the data needs to be transferred in
parallel. Consider the four-bit data bus communicating with the external peripheral.
If both processor and peripheral operate on the parallel data, then it is essential to
transfer the data using parallel input parallel output logic.

In such scenarios, PIPO registers are used. The logic diagram of PIPO four-bit
register is shown in Fig. 10.1. Four parallel input lines are named as PA, PB, PC, and
PD, and four-bit parallel output lines are named as QA, QB, Qc, and QD. The PIPO
register is sensitive to the positive edge of clock.

The Verilog RTL is described in Example 1.
The synthesis result of the four-bit PIPO register is shown in Fig. 10.2.
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//////////////////////////////////////////////////////////////////////////////

module parallelin_parallelout(  

input clk, 

input reset_n, 

input [3:0] d_in, 

output  reg [3:0] q_out ); 

always @ ( posedge clk ,  negedge reset_n)    

begin 

if (~reset_n) 

 begin

    q_out <= 4'b0000; 

end 

  else 

q_out <= d_in; 

For reset_n=0 the output of PIPO 
register is ini alized to 0000.

During normal opera on PIPO 
register has reset_n=1. 

On posi ve edge of the clock input 
the data input d_in is as-
signed to an output q_out. 

As data input is four-bit wide the 
logic inferred is four bit PIPO 
register.  

end 

endmodule 

//////////////////////////////////////////////////////////////////////////////

Example 1 Verilog RTL for 4-bit PIPO register
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Fig. 10.1 Four-bit PIPO register

Fig. 10.2 Synthesized logic for four-bit PIPO register
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10.2 Shift Register

Shift registers are used in most of the practical applications to perform the shifting
or rotation operations on the active edge of clock. The right shift timing sequence
which is sensitive to positive edge of the clock is shown in Fig. 10.3. As shown in
the timing sequence for every positive edge of the clock, the data shifts by one bit,
and hence, for the four-bit shift register it requires four clock latency to get the valid
output data.

The Verilog RTL for the serial input serial output shift register is coded using the
synthesizable constructs and shown in Example 2. As described in the example, the
data d_in is shifted on every active clock edge to get the serial output q_out. During
normal operation reset, input reset_n is set to logic 1. To get the valid serial output,
the shift register needs four clock cycles, and hence, the design has four clock
latency to get the valid output.

The synthesis result of the serial input serial output shift register is shown in
Fig. 10.4.

Fig. 10.3 Timing sequence of shift register
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//////////////////////////////////////////////////////////////////////////////
module shi�_register(  

input clk, 

input reset_n,     

input d_in, 

output  reg q_out ) ; 

reg temp1_out, temp2_out, temp3_out; 

always @ ( posedge clk , negedge reset_n) 

For asynchronous ac�ve low reset 
reset_n=0 the output of all 
flip-flops is ini�alized to logic 
0.

Output from the MSB register 
q_out is ini�alized to zero. 

During normal shi� opera�ons an 
input reset_n  is set to be log-
ic 1 

begin 

if (~reset_n) 

 begin

   {q_out , temp3_out, temp2_out, temp1_out}<= 4’b0000; 

end 

 else 

Example 2 Serial input serial output shift register synthesizable design
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10.3 Right and Left Shift Operation

Most of the practical application demands the use of right or left shift of the data.
Consider the RTL while implementing the protocol, in few serial protocols the
requirement is to shift the data string to the right side or to the left side by one bit or
by multiple bits. In such scenario, the bidirectional (right/left) shift registers can be
used.

The Verilog RTL is shown in Example 2 for bidirectional shift register, and the
direction of data is controlled by right_left input. For right_left = 1, the data is
shifted toward right side, and for the right_left = 0, the data is shifted toward left
side.

  begin 

   temp1_out <= d_in; 

   temp2_out <= temp1_out;   

   temp3_out <= temp2_out; 

   q_out <= temp3_out; 

end 

end 

By using non-blocking assignment, 
the func�onality of serial in-
put serial output shi� regis-
ter is described. 

Four non-blocking assignments in 
the begin-end block infers 
four-bit shi� register.

The shi� register is sensi�ve to 
posi�ve edge of clock. 

endmodule
//////////////////////////////////////////////////////////////////////////////  

Example 2 (continued)

Fig. 10.4 Synthesized Logic for four-bit shift register
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//////////////////////////////////////////////////////////////////////////////

module right_le�_shi�_register(  

input right_le�, 

input clk, 

input reset_n, 

input d_in, 

output reg [3:0] q_out ); 

always @ ( posedge clk , negedge reset_n) 

begin 

if (~reset_n)    

 begin

    q_out <= 4'b0000; 

 end 

  else 

  begin 

if (right_le�)  

Example 3 Verilog RTL for the right/left shift register
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The synthesis result is shown in Fig. 10.5, and the direction of data transfer is
controlled by right_left input. The synthesized logic consists of four flip-flops with
additional combinational logic to control, and the data flows either toward right or
left side.

   q_out <= { d_in, q_out[3:1] };  

 else 

   q_out <= { q_out[2:0], d_in }; 

end 

end 

endmodule 

//////////////////////////////////////////////////////////////////////////////

For right_le�=1 the data is shi�ed 
towards the right side by 
one-bit.

For the right_le�=0 the data is 
shi�ed towards the le� side 
by one-bit.  

Example 3 (continued)

Fig. 10.5 Synthesized logic for bidirectional shift register
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10.4 Timing and Performance Evaluation

The timing is particularly an important parameter for ASIC or FPGA designs.
Meeting timing for the sequential circuits is very crucial for the complex designs.
The timing analysis and frequency calculations will be discussed in Chap. 20.

For the better design performance, it is recommended to use the register inputs
and register outputs. In the practical designs, the RTL using Verilog should be
coded using efficient Verilog constructs and should have the registered inputs and
registered outputs. The reason for the same is to have clean timing paths (reg to reg
paths) to get the better timing.

The Verilog RTL which has the registered output is shown in Example 4. It is
assumed that another module drives the input signals ‘a’, ‘b’, ‘c,’ and ‘select’. All
these inputs are registered inputs. This is useful to have clean register path and easy
timing analysis.

//////////////////////////////////////////////////////////////////////////////

module mux_registered_output ( 
input [7:0] a, b, c, d, 
input [1:0] select, 
 input clock, 
 output reg [7:0] y ) ; 

always @ (posedge clock) 
// Use of non-blocking assignments 

case (select) 
      0: y <= a;  
      1: y <= b; 
      2: y <= c;  
      3: y <= d; 
      default y <= 8'b0; 

endcase 

endmodule 

//////////////////////////////////////////////////////////////////////////////

The case construct is used within 
the procedural always block. 

The procedural always block is 
sensi�ve to the posi�ve edge 
of clock. 

Example 4 Verilog RTL of 4:1 mux having the registered output
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The synthesis result is shown in Fig. 10.6 and infers the 8-bit parallel input
parallel output register at the output of the 4:1 mux. Each input of 4:1 mux is 8-bit
wide. The logic is sensitive to the positive edge of clock.

10.5 Asynchronous Counter Design

In the asynchronous counters, the clock signal of all the flip-slops is not driven by
the common clock source. If the output of LSB flip-flop is used as a clock input to
the subsequent flip-flop, then the design is said to be asynchronous. The issue with
the asynchronous design is the addition of clock to q delay of flip-flop due to the
cascading of the number of flip-flop stages. Asynchronous counters are not rec-
ommended in the ASIC or FPGA design due to the issue of glitches or spikes, and
even the timing analysis for such kind of design is extraordinarily complex.

10.5.1 Ripple Counters

The ripple counter is an asynchronous counter and shown in Fig. 10.7. As shown in
the logic diagram, all the toggle flip-flops are positive edge triggered, and the LSB
flip-flop receives the clock from the master clock source. The output of LSB
flip-flop is used as clock input to the next subsequent stage flip-flop.

The Verilog RTL for the four-bit ripple up counter is shown in Example 5.
The synthesis result is shown in Fig. 10.8.
The simulation of the 4-bit ripple counter is shown in the waveform (Fig. 10.9).

As shown, when toggle_in and reset_n both are at logic level 1, the counter counts
from 0 to F. The output format is hexadecimal.

Fig. 10.6 Synthesized logic for the registered output logic
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Fig. 10.7 Logic diagram of three-bit ripple counter
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module ripple_counter ( 
input clock, toggle_in, reset_n, 
output reg [3:0] count_out ); 
wire c0, c1, c2; 
assign c0 = count_out[0]; 
assign  c1 = count_out[1];  
assign  c2 = count_out[2]; 

always @ (posedge clock , negedge reset_n ) 
if (reset_n == 1'b0)  

 count_out[0] <= 1'b0; 
else if (toggle_in == 1'b1) 
 count_out[0] <= ~count_out[0]; 

always @ (negedge c0, negedge reset_n ) 
if (reset_n == 1'b0)  

 count_out[1] <= 1'b0; 
else if (toggle_in == 1'b1)  

  count_out[1] <= ~count_out[1];  

always @ (negedge c1, negedge reset_n )       
if (reset_n == 1'b0)  

 count_out[2] <= 1'b0; 
else if (toggle_in == 1'b1)  

 count_out[2] <= ~count_out[2]; 

always @ (negedge c2, negedge reset_n ) 
if (reset_n == 1'b0)  

 count_out[3] <= 1'b0; 
else if (toggle_in == 1'b1)  

 count_out[3] <= ~count_out[3]; 
endmodule 

Every always procedural block in-
fers toggle flip-flop 

Four always blocks are used and 
the inferred logic has four 
flip-flops. The LSB flip-flop re-
ceives master clock and next 
subsequent stage flip-flop 
uses the previous stage flip-
flop output as a clock.  

//////////////////////////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////////////////////////

Example 5 Verilog RTL of four-bit ripple up counter
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Fig. 10.8 Synthesized logic of four bit ripple up counter
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10.6 RTL Design of Memories

In most of the ASIC and SOC0-based designs, memories are used to hold the binary
data. Memories can be of type ROM, RAM, single port, or dual port. The objective
of this section is to describe basic single port read–write memory. The timing
sequence is shown in Figs. 10.11 and 10.13.

As shown in the timing sequence, the read–write operation is controlled by
rd_wr, and data is sampled on the positive edge of the clock signal clk provided that
cs is high. The address input is denoted as address (Fig. 10.11).

The Verilog RTL of the single port read–write memory is shown in Example 6.
The synthesis result is shown in Fig. 10.12.
The simulation result is shown in Fig. 10.13. As shown, the memory location

(01) holds the data AA, and location (02) holds data BB.

Fig. 10.9 Simulation result of 4-bit ripple counter
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Fig. 10.10 Top-level signals of read–write memory

Fig. 10.11 Timing sequence for the memory
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//////////////////////////////////////////////////////////////////////////////

module memory_read_write ( 

input clk, 
input [7:0] data_in,
input [9:0] address,
input rd_wr, 
input cs, 
output reg [7:0] data_out ) ; 

reg [7:0] memory [0:1023]; 

always@ (posedge clk) 
if ( cs==1 && rd_wr==1) 
memory [address] <= data_in; 

always@ (posedge clk) 
if ( cs==1 && rd_wr==0) 
data_out <= memory [address]; 

endmodule 

//////////////////////////////////////////////////////////////////////////////

One always block is used to per-
form the write opera�on 
when rd_wr=1. 

Another always block is used to 
perform the read opera�on 
when rd_wr=0 

Example 6 Verilog RTL for the read write memory
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Fig. 10.12 Synthesis result of read–write memory

Fig. 10.13 Simulation waveform of memory
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10.7 Parameterized Read–Write Memory

The parameterized memory buffer used in the FIFO design and having 8 location
depth is coded using the synthesizable constructs and shown in Example 7. The
top-level pin-out of the memory is shown in Fig. 10.14.

//////////////////////////////////////////////////////////////////////////////  

module FIFO_memory #(parameter data_size = 8, parameter ad-
dress_size = 3) // let us define the data and address size to get 8 loca-
�on X 8 bit memory 

( 
input [data_size-1:0] write_data, 

input [address_size-1:0] write_address, read_address, 

input write_clk_en, write_full, write_clk, 

output [data_size-1:0] read_data); 

localparam FIFO_depth = 1<<address_size; 

reg [data_size-1:0] mem [0:FIFO_depth-1]; 

assign read_data = mem[read_address]; 

always @(posedge write_clk) 

if (write_clk_en && !write_full) mem[write_address] <= write_data; 

endmodule 

//////////////////////////////////////////////////////////////////////////////  

Example 7 RTL design of the memory used in the FIFO of depth 8
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The RTL uses parameter to input the size of the data and address.
The hashtag using character # is used to declare the parameters as parameter

data_size = 8 and parameter address_size = 3.
The synthesis result of the 8 location wide FIFO is shown in Fig. 10.15. As

shown during FPGA synthesis, it infers the BRAM. Refer Chaps. 16 and 17 for
more information about FPGA design flow and FPGA synthesis.

Fig. 10.14 FIFO memory buffer

10.7 Parameterized Read–Write Memory 235



Fig. 10.15 Synthesis result of the Example 7
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10.8 Exercises

The exercises are based on the understanding of procedural always block used to
design the counters. Complete the exercises for better understanding and applica-
tion of Verilog constructs.

1. The logic inferred by the following code is  

module design_logic ( input  clk, reset_n, input[1:0] d_in, out-
put reg [1:0] y); 

always @ (posedge clk) 

begin 

if (~ reset_n) 

y <= 2’b00;

else  

y<=d_in; 

end 

endmodule  

a. 2-bit right shi  register 
b. 2-bit le  shi  register 
c. 2-bit PIPO register 
d. 2-bit counter 
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reg tmp1, tmp2; 

always @ (posedge clk) 

begin 

if (~ reset_n) 

{y,tmp2,tmp1} <= 3’b00;

else  

begin 

 y <= tmp2; 

tmp2 <= tmp1; 

tmp1 <= d_in; 

end 

endmodule  

a. Two-bit shi  register  
b. Three-bit shi  register  
c. PIPO register 
d. Binary up-counter 

2. The logic inferred by the following code is  

module design_logic ( input  d_in, clk, reset_n, output reg y); 
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module design_logic ( input  d_in, clk, reset_n, output reg y); 

reg tmp1, tmp2; 

always @ (posedge clk) 

begin 

if (~ reset_n) 

{y,tmp2,tmp1} <= 3’b00;

else  

begin 

 y <= tmp2; 

tmp2 <= tmp1; 

tmp1 <= d_in; 

end 

endmodule  

a. Two-bit shi  register  
b. Three-bit shi  register  
c. PIPO register 
d. Binary up-counter 

3. The logic inferred by the following code is  
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10.9 Summary

The following are important points to conclude the chapter:

1. Shift registers are used in most of the practical applications to perform the
shifting or rotation operations on the active edge of clock.

2. For the better design performance, it is recommended to use the register inputs
and register outputs.

3. In the asynchronous counters, the clock signal of all the flip-flops is not driven
by the common clock source.

4. The issue with the asynchronous design is the addition of clock to q delay of
flip-flop due to the cascading of the number of flip-flop stages.

5. The memories can be described by using the synthesizable Verilog constructs to
perform the read and write operation.
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Chapter 11
Sequential Circuit Design Guidelines

The RTL design coded without use of sequential design guidelines can result into inefficient
performance. This chapter discusses about the sequential design guidelines which need to
be followed while coding an efficient RTL using synthesizable Verilog constructs. Use of
non-blocking assignments is recommended while coding the sequential design.

As discussed in previous chapters the sequential design such as counters, shift
registers are coded using the synthesizable Verilog constructs using non-blocking
assignments. For the complex RTL design, the design team needs to follow few
guidelines and the important guidelines are documented and discussed in this
chapter. The following few section discusses the blocking versus non-blocking
assignments, guidelines for reset, clock.

11.1 What Happens If Blocking Assignments Are Used
to Code Sequential Logic?

As discussed in Chap. 4, blocking assignments are recommended while coding the
combinational logic. But what happens if blocking assignments are used while
coding the sequential logic? This is one of the most important questions needs to be
addressed as it is an important for the subsequent discussions!

If blocking assignments are used for coding the behavior of sequential logic,
then it is observed that the synthesis does not result in the intended sequential logic.

This section discusses few design scenarios by using blocking assignments to
code the sequential designs.
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11.1.1 Blocking Assignments and Multiple always Blocks

The RTL using blocking assignments is coded in Example 1 blocking assignments
which are used in the multiple always block. Procedural block always is sensitive to
the positive edge of clock, and synthesis tool infers the sequential logic. As dis-
cussed already all the blocking assignments are evaluated and updated in active
queue. Readers are requested to refer Chap. 6 to understand more about the strat-
ified event queuing.

//////////////////////////////////////////////////////////////////////////////
module blocking_assignments(  

input  a_in, 

input clk, 

output reg y_out) ; 

reg b_in;  

Procedural ‘always’ block is trig-
gered on posi ve edge of ‘clk’ 

On every posi ve edge of ‘clk’ 
‘a_in’ input value is assigned 
to intermediate variable 
‘b_in’. This block infers posi-

ve edge trigged flip-flop 
with input ‘a_in’ and output 
‘b_in’ 

always @ ( posedge clk) 

begin 

      b_in = a_in; 

end  

always @ ( posedge clk)   

begin 

      y_out = b_in; 

end

endmodule 

//////////////////////////////////////////////////////////////////////////////

Procedural always block is sensi-
Ɵve to the posiƟve edge of clk. 

On every posiƟve edge of clk, b_in 
input value is assigned to out-
put y_out. This block infers 
posiƟve edge trigged flip-flop 
having input b_in and output 
y_out 

Example 1 Blocking assignments in multiple always blocks
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As described in Example 1, both always procedural blocks execute in parallel
and generate the output as two-bit serial-in serial-out shift register. First always
block generates an output b_in. The output generated from first always block is
used as an input by another always block. Hence, synthesis tool understands this as
cascading of the flip-flops and infers logic as two-bit serial-input serial-output shift
register.

Synthesis result of Example 1 is shown in Fig. 11.1 and has input a_in, clk, and
an output y_out.

11.1.2 Multiple Blocking Assignments Used in the Single
always Block

If blocking assignments are used to describe the sequential logic and multiple
assignments are used in the same always procedural block, then the desired
intended result may or may not match with the synthesis result. The reason being in
the blocking assignment all the trailing statements (next immediate) is blocked
unless and until the present assignment is executed. This results in truncation of the
logic and may infer the unintended synthesis result.

Consider the design scenario shown in Example 2, and intention is to create the
three-bit serial-input and serial-output shift register but after synthesis of Example 2
it infers the logic having single flip-flop.

Synthesis logic schematic is shown in Fig. 11.2 and has inputs a, clk, and an
output y. The intended functionality is serial-input serial-output shift register but the
above example infers the single flip-flop due to the use of blocking assignments. So
it is recommended to use the non-blocking assignments while coding the RTL for
the sequential logic.

Fig. 11.1 Synthesized logic for blocking assignments in multiple always block
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11.1.3 Example Blocking Assignment

Consider the design scenario shown in Example 3, and intention is to create the
three-bit serial-input and serial-output shift register and due to the reorder of the
blocking assignment used within the begin…end it infers the three-bit serial-input
serial-output shift register.

Synthesis result is shown in Fig. 11.3 and has inputs a, clk, and an output y. The
desired functionality is serial-input serial-output shift register, and it infers the
serial-input serial-output shift register. So the important point to remember is that
order of the blocking assignments within the procedural always block is an
important factor and decides the synthesis result.

Fig. 11.2 Synthesized logic for the blocking assignments in same always block

//////////////////////////////////////////////////////////////////////////////

module blocking_assignment( 

input a, 
input clk, 
output reg  y ); 
reg b,c; 

always@(posedge clk)  
begin 
  b=a; 
  c=b; 
  y=c; 
end 
endmodule 

//////////////////////////////////////////////////////////////////////////////

Procedural always block is triggered on posi-
Ɵve edge of clock clk.  

Within begin --- end,  mulƟple blocking as-
signment are included. 

The value of a input is assigned to intermedi-
ate variable b and so on.  

Finally, the value c is assigned to output y 
and infers single flip-flop.  

Example 2 Blocking assignments in same always block
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//////////////////////////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////////////////////////

module blocking_assignment( 

input a, 

input clk, 

output reg y ); 

reg b,c; 

always@(posedge clk) 

begin 

        y=c; 

 c=b; 

         b=a;  

end 

endmodule 

Procedural always block is triggered on posiƟve edge of 
clock clk.  

Within begin --- end,  mulƟple blocking assignment are in-
cluded. 

An intermediate variable value c  is assigned to output y 
and infers D flip-flop.  

The value of intermediate variable b is assigned to inter-
mediate variable c and infers D  flip-flop. 

The value of an input a is assigned to intermediate varia-
ble b and generates D flip-flop.   

Example 3 Blocking assignments in the same always block (ordering)

Fig. 11.3 Synthesizable logic after reordering of blocking assignments
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11.2 Non-blocking Assignments

As discussed in Chap. 7, non-blocking assignments are evaluated in the active
event queue and updated in the NBA queue. Non-blocking assignments are used to
describe the sequential logic. These assignments are used in the procedural block
always to get the desired synthesis results. All the non-blocking assignments
execute in parallel within the always procedural block.

As coded in Example 4, non-blocking assignments are used within the multiple
always procedural block. Procedural block always is sensitive to the positive edge
of clock, and synthesis tool infers the sequential logic.

////////////////////////////////////////////////////////////////////

module non_blocking_assignments (  

input a_in, 

input clk, 

output reg y_out ); 

reg b_in;  

always @ ( posedge clk)  

Procedural always block is sensi-
Ɵve to the  posiƟve edge of clk 

On every rising edge of the clk a_in 
input value is assigned to in-
termediate variable b_in. This 
infers posiƟve edge trigged 
flip-flop with input a_in and 
output b_in. 

Another procedural always  block 
is triggered on posiƟve edge 
of clk. 

On every posiƟve edge of clk, b_in 
input value is assigned to out-
put y_out. This block infers 
posiƟve edge trigged flip-flop 
with input b_in and output 
y_out 

begin 

      b_in <= a_in; 

end  

always @ ( posedge clk) 

begin 

      y_out <= b_in; 

end  

endmodule 

//////////////////////////////////////////////////////////////////////////////

Example 4 Non-blocking assignments in the different always blocks
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11.2.1 Example Non-blocking Assignments

The synthesis result is shown in Fig. 11.4.

11.2.2 Example Non-blocking Assignment

If non-blocking assignments are used to code the sequential logic and multiple
assignments are used within the always procedural block, then the desired intended
logic is always inferred by synthesis tool. The reason being in the non-blocking
assignment all the assignments within the begin-end is executed concurrently. This
results in the sequential logic.

Consider the design scenario shown in Example 5, and intention is to create the
three-bit serial-input and serial-output shift register by using non-blocking
assignments.

Synthesis result is shown in Fig. 11.5 and has inputs a, clk, and an output y. The
intended functionality is serial-input serial-output shift register, and it infers the
serial-input serial-output shift register.

11.2.3 Example Using Non-blocking Assignments

Consider the design scenario shown in Example 6, and intention is to create the
three-bit serial-input and serial-output shift register.

The order of non-blocking assignments used in Example 5 is reordered within
begin…end and shown in Example 6.

Synthesis result is shown in Fig. 11.5 and has inputs a, clk, and an output y. The
desired functionality is serial-input serial-output shift register, and it infers the
serial-input serial-output shift register. So the important point to remember is that
order of the non-blocking assignments within the procedural always block is not
affecting the synthesis result for these kinds of designs!

Fig. 11.4 Synthesized logic for non-blocking assignments in the different always blocks
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input a, 

input clk, 

output reg y ); 

reg b, c; 

always@(posedge clk) 

begin 

   y<=c; 

  c<=b;  

 b<=a;  

end 

endmodule 

//////////////////////////////////////////////////////////////////////////////

Procedural always block is triggered on pos-
iƟve edge of clock clk.  

Within begin --- end,  mulƟple non-blocking 
assignment are included. 

An intermediate variable value c  is assigned 
to output y and infers D flip-flop.  

The value of intermediate variable b is as-
signed to intermediate variable c and 
infers D  flip-flop. 

The value of an input a is assigned to inter-
mediate variable b and generates D 
flip-flop.   

 It infers serial input serial output shiŌ regis-
ter.  

//////////////////////////////////////////////////////////////////////////////

module non_blocking_assignment ( 

Example 5 Non-blocking assignment in the same always block

Fig. 11.5 Synthesized logic for non-blocking assignments in the same always block
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11.3 Latch Versus Flip-Flop

In the practical sequential designs, latches and flip-flops are used as important
elements to design the required intended design functionality. Latch is
level-sensitive, and flip-flop is edge-triggered. Most of the ASIC designs use
flip-flops as sequential element.

11.3.1 D Flip-Flop

As discussed, earlier flip-flop is edge-triggered and the area for the flip-flop is more
as compared to latch and even for flip-flop additional power control logic is

//////////////////////////////////////////////////////////////////////////////
module non_blocking_assignment( 

input a, 

input clk, 

output reg y ); 

reg b,c; 

always@(posedge clk)  

begin 

     b<=a; 

     c<=b;     

     y<=c; 

end 

endmodule 

//////////////////////////////////////////////////////////////////////////////

Procedural always block is triggered on posi-
Ɵve edge of clock clk.  

Within begin --- end,  mulƟple non-blocking as-
signment are included. 

The value of a input is assigned to intermediate 
variable b and so on.  

Finally, the value c is assigned to output y and 
infers single flip-flop.  

It infers serial input serial output shiŌ register. 

Example 6 Non-blocking assignment with order change in the same always block
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required as power consumption due to free-running clock is higher. Flip-flop does
not have the cycle stealing or time borrowing concept. The operation needs to be
completed in one clock cycle. For flip-flop-based design, the setup and hold time
should be met and overall operating frequency of design depends upon the critical
path in the design.

The D flip-flop RTL is coded and shown in Example 7 and uses the
non-blocking assignment. Input D is assigned to output Q on positive edge of the
clock.

The synthesized logic for the positive edge-triggered D flip-flop is shown in
Fig. 11.6.

//////////////////////////////////////////////////////////////////////////////   

//////////////////////////////////////////////////////////////////////////////   

module D_flip_flop( 

input D, 

input CLK, 

output reg Q ); 

always@(posedge CLK) 

begin 

    Q<=D;  

end 

endmodule 

On the posiƟve edge of clock signal 
CLK the input D  is assigned to 
output Q. 

It infers D flip-flop which is sensi-
Ɵve to the posiƟve edge of 
clock.  

Example 7 D flip-flop using non-blocking assignment
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11.3.2 Latch

As discussed, earlier latch is level-sensitive, and the area of the latch is less as
compare to the flip-flop and even for the latch additional power control logic is not
required as power consumption is lesser due to low switching at latch enable input.
Latch has the cycle stealing or time borrowing concept and useful in the pipelining.
It is not necessary that the operation needs not to be completed in one clock cycle.
For latch-based design, the overall operating frequency of design does not depend
upon the slowest path in the design. Timing analysis and time budgeting are more
difficult for latch-based designs.

The D Latch RTL is coded using the synthesizable constructs and shown in
Example 8, and RTL uses the non-blocking assignments. Input D is assigned to
output Q on positive level of latch enable input.

The synthesized logic for positive level-sensitive latch is shown in Fig. 11.7.

11.4 Use of Synchronous Versus Asynchronous Reset

Most of the time the design engineer gets confused while using reset input! When to
use an asynchronous reset and when to use synchronous reset is one of the
important challenge to the design team! So, for a ASIC design engineer it is
required to have good understanding of the reset and rest issues as well as reset
trees. This section discusses the synchronous and asynchronous reset description
using Verilog synthesizable constructs.

Fig. 11.6 Synthesized D flip-flop

Fig. 11.7 Synthesized D latch
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11.4.1 D Flip-Flop Having Asynchronous Reset

As discussed in Chap. 8, an asynchronous reset is an issue in ASIC design as
sampling of the reset is independent of active edge of the clock. The reset signal is
used to initialize the sequential logic at any instance of time irrespective of active
edge of the clock. Reset logic is not part of data path, and even internally generated
resets or asynchronous resets are not recommended in the ASIC design as they are
prone to glitches. Even reset recovery is an issue, and if asynchronous reset inputs

//////////////////////////////////////////////////////////////////////////////

module D_latch( 

input D, 

input LE, 

output reg Q ); 

always@ (*)  

begin 

if (LE)

     Q <=D; 

On the posiƟve level of latch ena-
ble signal LE an input D is as-
signed to output Q. 

It infers D latch which is sensiƟve to 
posiƟve level of latch enable 
input LE. 

end 

endmodule 

//////////////////////////////////////////////////////////////////////////////

Example 8 Positive level-sensitive D latch
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are used, then it is recommended that an asynchronous reset input can be syn-
chronized using two-stage level synchronizer.

As shown in Example 9 D flip-flop having an asynchronous reset is coded using
Verilog constructs.

The synthesized logic of the D flip-flop having asynchronous reset is shown in
Fig. 11.8.

input reset_n, 

output reg Q ); 

always@(posedge CLK , negedge reset_n) 

begin   

     if(!reset_n)  

    Q<=1'b0;  

else

          Q<=D; 

end 

endmodule 

//////////////////////////////////////////////////////////////////////////////

As described, in the sensiƟvity list 
of always block negedge of 
reset_n is included. 

The procedural always block is in-
voked for changes on the 
clock CLK or changes on re-
set_n as specified in the sensi-
Ɵvity list. 

Synthesized logic is D flip-flop hav-
ing acƟve low asynchronous 
reset.  

//////////////////////////////////////////////////////////////////////////////

module flip_flop_sync_reset( 

input D, 

input CLK, 

Example 9 Verilog RTL for D flip-flop with asynchronous reset

11.4 Use of Synchronous Versus Asynchronous Reset 253



11.4.2 Synchronous Reset D Flip-Flop

As discussed in Chap. 8, a synchronous reset is a better strategy in the ASIC design
as sampling of the reset is dependent on the active edge of the clock. The reset
signal is used to initialize the sequential logic on the rising edge of the clock. Reset
logic is part of data path and not prone to glitches. Even reset recovery is not an
issue and if synchronous reset inputs are used, then the design does not need the use
of level synchronizer!

As shown in Example 10 D flip-flop having a synchronous reset is coded by
using Verilog synthesizable constructs.

The synthesized logic is shown in Fig. 11.9 where reset logic is included in the
data path.

Fig. 11.8 Synthesized D flip-flop with asynchronous reset
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input CLK, 

input reset_n, 

output reg Q  ); 

always@(posedge CLK) 

begin 

    if(!reset_n)    

   Q<=1'b0;  

  else

         Q<=D; 

end 

endmodule 

//////////////////////////////////////////////////////////////////////////////

As described, in the sensiƟvity list 
of always block negedge of 
reset_n is not included. 

The procedural always block is in-
voked for changes on the 
clock CLK as specified in the 
sensiƟvity list. 

Synthesized logic is D flip-flop hav-
ing acƟve low synchronous re-
set.  

//////////////////////////////////////////////////////////////////////////////

module flip_flop_sync_reset( 

input D, 

Example 10 Verilog RTL for D flip-flop with synchronous reset
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11.5 Use of if...else Versus case constructs

While coding the RTL of sequential designs use the if-else construct to code the
priority logic functionality. To assign, the priority signals use the if-else construct.
Use the case construct to code the parallel logic. Please refer Chap. 7 for the detail
information about the use of if-else and case construct.

11.6 Internally Generated Clocks

Internally generated clock signals use system or master clock as an input and
generates an output as internally generated clock signal. But internally generated
clock signals need to be avoided as it causes the functional and timing issues in the
design. The functional and timing problems are due to the combinational logic, and
it introduces the propagation delays. The internal generated clock signals can
generate the glitch or spike in the output. This can trigger the sequential logic
multiple times or can generate undesired output. Even due to the violation of setup
or hold time, these types of designs have the timing violations.

It is always recommended to generate the internal clocks by using register at the
output. But still due to the propagation delay of the flip-flop the overall cumulative
delay or skew can generate the glitches or spikes in the design.

As shown in Example 11, Verilog RTL is coded to generate the internal clocks.
The internal clock signal is used by some other procedural block.

The synthesis schematic is shown in Fig. 11.10, and first flip-flop clock is driven
by clk and the second flip-flop clock is driven by internal generated clock signal
int_clk.

Fig. 11.9 Synthesized D flip-flop with synchronous reset
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//////////////////////////////////////////////////////////////////////////////

module internal_clock ( 

input in_1, in_2, clk, 

output reg out_1 ); 

reg  int_clk;  

always @ (posedge clk) 

begin 

int_clk<= in_1;                          

end 

always @ (posedge int_clk) 

begin 

out_1 <= in_2; 

end 

endmodule 

//////////////////////////////////////////////////////////////////////////////

The internal generated clock signal 
int_clk is assigned in the first 
procedural always block.  

Second procedural always block is 
sensiƟve on the posiƟve edge 
of int_clk and used to gener-
ates an output out_1. 

Example 11 Verilog RTL for internally generated clock
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11.7 Guidelines for Modeling Synchronous Designs

Following are important guidelines to be followed while coding the synchronous
designs

1. To describe the functionality of synchronous designs, use the non-blocking
assignments.

2. Do not use the latch-based designs as latches are transparent for half clock cycle.
3. Use the pipelined stages to improve the design performance and discussed in

Chap. 13.
4. Use the synchronous reset signals as they are not prone to glitches or spikes.
5. If asynchronous signals are used, then use the dual-stage synchronizers to

synchronize the internally generated resets.
6. Use clock gating cells for low-power design and discussed in Chap. 24.

11.8 Multiple Clocks in the Same module

Multiple clock sources are used in the multiple clock domain designs. These clock
signals can be generated by using different clock sources and can be used in the
ASIC design to invoke the multiple always procedural blocks. The data transfer
from one clock domain to another clock domain needs additional synchronizers in
the data path and control path, and these are discussed in Chap. 22.

Verilog RTL is coded using the synthesizable constructs and shown in Example
12. It uses two clock signals, clk1 and clk2. Two procedural blocks are used to
describe the functionality.

Synthesis schematic is shown in Fig. 11.11, and generates an output f1_out,
f2_out. The clock signal clk1 is used as clock source to the upper register. Upper
register is triggered on positive edge of clock clk1. The lower register is triggered
on negative edge of clk2.

Fig. 11.10 Synthesized internally generated clock logic
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//////////////////////////////////////////////////////////////////////////////

module mulƟ_clock_gen ( 
input clk1, 
input clk2, 
input  a_in, 
input  b_in, 
input  c_in, 
output reg f1_out, 
output reg f2_out ); 
always @ (posedge clk1) 

f1_out <= a_in & b_in; 
always @ (negedge clk2) 

f2_out <= b_in ^ c_in; 
endmodule 

//////////////////////////////////////////////////////////////////////////////

MulƟple clocks can be defined in 
the same module and used to 
trigger  two different proce-
dural always blocks.  

MulƟple clocks are used in mulƟple 
clock domain designs.  

Example 12 Verilog RTL for multiple clock definitions

Fig. 11.11 Synthesized logic for multiple clock
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11.9 Multi-phase Clocks in the Design

The signals used to trigger multiple procedural blocks and generated from the same
clock source but having the difference in the arrival time are called as multi-phase
clock signals. For example, if one of the procedural block is sensitive to the positive
edge of clock and another procedural block is sensitive to the negative edge of
clock, then there is phase difference of 180°; hence, these clocks are treated as
phase-shifted signals.

Verilog RTL is shown in Example 13, and one of the procedural block is sen-
sitive to the positive edge of clock and another is sensitive to the negative edge of
clock. It is also recommended not to have mix edge-triggering in the design!

//////////////////////////////////////////////////////////////////////////////

module mulƟ_phase_clk ( 

input a_in, 

input b_in, 

input clk, 

output reg f_out );  

reg  t_out; 

always @ (posedge clk) 

f_out <= t_out & b_in; 

MulƟphase clock signals can be used in few 
applicaƟons and to get  the different out-
puts on the posiƟve and negaƟve edge of 
clock.  

In the Verilog RTL one of the always block is 
triggered on posiƟve edge of clock and 
another always  block is sensiƟve to the 
negaƟve edge of clock.  

always @ (negedge clk) 

t_out <= a_in | b_in; 

endmodule
//////////////////////////////////////////////////////////////////////////////

Example 13 Verilog RTL with multi-phase clock
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The synthesis schematic is shown in Fig. 11.12 where two different flip-flops are
sensitive to the different edges of clocks.

11.10 Guidelines for Modeling Asynchronous Designs

Following are important guidelines that need to be followed while modeling the
asynchronous design

1. If asynchronous reset signals are used, then use the level synchronizer to syn-
chronize the internally generated reset signals.

2. Avoid the use of driving the flip-flop output to the asynchronous reset of the
subsequent flip-flop as this can have the race conditions.

3. Avoid the use of asynchronous pulse generator as it creates the issue in the
design during the timing closure and even during the place and route.

4. If power consumption is the goal, then only use the efficient ripple counter but
there is an issue due to the performance degrade while using the ripple counters.

Fig. 11.12 Synthesized logic for the multi-phase clock
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11.11 Exercises

The exercises are based on the understanding of procedural always block used to
design the counters. Complete the exercises for better understanding and applica-
tion of Verilog constructs.

  y <= 2’b00; 

else  

y<=d_in; 

end 

endmodule  

a. 2-bit shi  register having asynchronous reset 
b. 2-bit shi  register having  synchronous reset 
c. 2-bit PIPO register having asynchronous reset 
d. 2-bit counter having synchronous reset 

1. The logic inferred by the following code is  

module design_logic ( input  clk, reset_n, input[1:0] d_in, out-
put reg [1:0] y); 

always @ (posedge clk, negedge reset_n) 

begin 

if (~ reset_n) 
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2. The logic inferred by the following code is  

module design_logic ( input  d_in, clk, reset_n, output reg y); 

reg tmp1; 

always @ (posedge clk, negedge reset_n) 

begin 

if (~ reset_n) 

  {y,tmp1} <= 2’b00; 

else  

begin 

tmp1 <= d_in; 

y <= tmp1; 

end 

endmodule  

a. Two-bit shi  register having asynchronous reset 
b. Two-bit shi  register having synchronous reset 
c. Binary down counter 
d. Binary up-counter 
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3. The logic inferred by the following code is  

module design_logic ( input  d_in, clk, reset_n, output reg y); 

reg tmp1; 

always @ (posedge clk, negedge reset_n) 

begin 

if (~ reset_n) 

  {y,tmp1} = 2’b00; 

else  

begin 

tmp1 <= d_in; 

y <= tmp1; 

end 

endmodule  

a. Two-bit shi  register having asynchronous reset 
b. Two-bit shi  register having synchronous reset 
c. Binary counter 
d. Synatx error and RTL should be tweaked  

264 11 Sequential Circuit Design Guidelines



4. The logic inferred by the following code is  

module design_logic ( input  d_in, clk, reset_n, output reg y);

reg tmp1, tmp2; 

always @ (clk) 

begin 

if (~ reset_n) 

  {y,tmp2,tmp1} <= 3’b00; 

else  

begin 

 y <= tmp2; 

tmp2 <= tmp1; 

tmp1 <= d_in; 

end 

endmodule  

a. Two-bit shi  register  
b. Three-bit shi  register  
c. PIPO register 
d. Binary up-counter 
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5. The logic inferred by the following code is  

module design_logic ( input  d_in, clk, reset_n, output reg y);

reg tmp1; 

always @ (posedge clk) 

begin 

if (~ reset_n) 

  {y,tmp1} = 2’b00; 

else  

begin 

y = tmp1; 

tmp1 = d_in; 

end 

endmodule  

a. Two-bit shi  register having asynchronous reset 
b. Two-bit shi  register having synchronous reset 
c. Binary down counter 
d. Binary up-counter 

266 11 Sequential Circuit Design Guidelines



11.12 Summary

To summarize this chapter, the following are important highlights

1. Do not use blocking assignments while describing the sequential designs.
2. It is recommended to use the non-blocking assignments while coding the RTL

for sequential design.
3. Use the flip-flop-based logic instead of latch-based logic.
4. Do not mix the blocking and non-blocking assignments within the single

always procedural block.
5. Use the synchronous resets in the design and if asynchronous reset is used, then

use the reset synchronizers.
6. Avoid the use of asynchronous pulse generator as it creates the issue in the

design during the timing closure and even during the place and route.
7. If power consumption is the goal, then only use the efficient ripple counter but

there is an issue due to the performance degrade while using the ripple counters.
8. Do not use the latch-based designs as latches are transparent for half clock

cycle.
9. Use the pipelined stages to improve the design performance.

10. Use the synchronous reset signals as they are not prone to glitches or spikes.
11. If asynchronous signals are used, then use the dual-stage synchronizers to

synchronize the internally generated resets.
12. Use clock gating cells for low-power design.
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Chapter 12
RTL Design Strategies for Complex
Designs

The complex designs can be efficiently implemented by using the synthesizable Verilog
constructs. Now days design complexity has increased, and the design requirements are
lower power, high speed and minimum area. This chapter discusses the use of synthesizable
Verilog constructs to implement the complex designs for the desired functionality.

As discussed in the previous chapters, Verilog is efficient and useful to code the
functionality of the design. The concurrent and sequential constructs discussed in
the previous chapters can be used to infer the design with the desired performance.
In the ASIC designs, the design functionality is complex and needs to be coded by
using the synthesizable Verilog constructs to infer the intended design with better
design performance. Most of the ASIC and SOCs use the processors, buses, arbi-
ters, and protocols (predefined set of rules or transactions). An efficient Verilog
coding is especially important aspect while coding the functionality of above
blocks. In such scenario, RTL design team should use the synthesizable constructs
with combinational and sequential design guidelines during the design phase.

The subsequent section discusses the few of the complex designs and practical
scenario while coding the processor computational logic, and basics of synthesis for
the tasks and functions. The subsequent sections are also useful to understand about
the performance improvement and the registered input and registered output
concept.

12.1 ALU Design

Arithmetic logic unit (ALU) is used in most of the processors to perform the
arithmetic and logic operations. Processor performs one of the operation at a time
depending on the operational code (op-code). For 8-bit processors, the ALU is used
to perform the operations on two eight-bit operands. Operand is the data on which
operation needs to be performed. Similarly, for the 16-bit processors, the ALU is
used to perform the operations on two 16-bit numbers.
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As shown in Fig. 12.1, a ALU architecture is shown to perform the operation on
two four-bit numbers A (A3 is MSB and A0 is LSB), B (B3 is MSB and B0 is
LSB), and carry input C0. The ALU generates an output F (F3 is MSB, and F0 is
LSB) and an output carry COUT3. In the practical design scenario, one-bit ALU is
designed to perform operation on the single bit of data. The operation is performed
depending on the opcode specified by using the lines S1, S0. As shown in the
figure, ALU is designed to perform the four operations. Table 12.1 is useful to
understand various operations and the execution of the instruction depending on the
status of select lines S1, S0. In this example, opcode is 2-bit and is indicated by
input lines S1, S0.

12.1.1 Logic Unit Design

As stated in the previous section, in the practical design scenario, it is recommended
to code the functionality of design using an efficient Verilog constructs. So, at the
micro-architecture level, the design is partitioned into multiple functional blocks.
The partitioning of design gives the better design understanding and visibility to
design team. Consider a scenario to implement the design functionality of an 8-bit
ALU, the design is petitioned as separate logic unit and arithmetic unit. Separate
arithmetic and logical unit functionality can be coded by using synthesizable
Verilog constructs with goal to have the better readability and better synthesis
result.

Figure 12.2 is shown and used to implement the logic operations, and these logic
operations are documented in the functional table. The logic unit is performing
either AND, OR, XOR or complement operation. The requirement is that logic unit
should perform only one operation at a time. Table 12.2 shown describes the
different operations. The complement operation is performed by using adder having
one input A0 and another input logic 1.

The issue with this type of design is due to use of parallel inputs and multi-
plexing logic. The data path has the logic gates, and output of these gates is used by
the multiplexer to generate an output for one of the logic operations. The control
path is the control lines of multiplexers S1, S’. As shown in Fig. 12.2, the logic unit
performs all the operations at a time and result F0 which is the result for one of the
operations. But this technique is inefficient as it requires more area and power, and
it does not have the efficient data and control path. If S1, S0 are late arriving signals
and if this block is used in the register-to-register path then there may be possibility
of the timing violations. Another important aspect is the concept of resource sharing
which is not used in this design.

Another issue is all the operations are performed at a time. For example, if
S1 = 1 and S0 = 0, then the logic should perform the XOR operation. But as all the
logic gates are the part of data path, the design performs all the operations.
Unnecessary data waits at the multiplexer inputs, and result is dependent on control
inputs S1, S0.
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Fig. 12.1 Four-bit ALU architecture

Table 12.1 Four-bit ALU
operational table

S1 S0 Operation

0 0 Addition of A, B without carry

0 1 Subtraction of A, B without borrow

1 0 XOR of A, B

1 1 Complement of A
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So, it is recommended to code an efficient Verilog RTL for the logic unit using
the case construct but by sharing the common resources. The following section
describes the Verilog RTL for the logic unit to infer the parallel logic and the logic
having the registered inputs and outputs.

12.1.1.1 Logic Unit to Infer Parallel Logic

Example 1 shows RTL design to perform the operations on two 8-bit binary inputs
a_in, b_in. The RTL is coded to meet the functionality documented in Table 12.3.
The Verilog RTL infers the parallel logic with multiplexed encoding.

Fig. 12.2 Single-bit logic
unit

Table 12.2 Single-bit logic
unit operational table

S1 S0 Operation

0 0 A0 AND B0

0 1 A0 OR B0

1 0 XOR of A0, B0

1 1 Complement of A0
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//////////////////////////////////////////////////////////////////////////////

module logic_unit_8bit ( 

input [7:0] a_in,

input [7:0] b_in,

input [1:0] op_code,

output reg [7:0] result_out );

always@ ( *)

begin

case ( op_code)

2'b00 : result_out = a_in | b_in;

2'b01 : result_out = a_in ^ b_in;

2'b10 : result_out = a_in & b_in;

2'b11 : result_out = ~ a_in;

default : result_out = 8'b0000_0000;

endcase

The procedural block is level sensi ve to 
changes on a_in, b_in and op_code.

case construct is used to infer the parallel 
logic to perform the desired logic op-
era on. 

Please refer the func onal table for the 
logic opera ons. 

default condi on is specified and the result 
during default condi on is equal to 
0000_00000.

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 1 Verilog RTL for 8-bit logic unit

12.1 ALU Design 273



//////////////////////////////////////////////////////////////////////////////

module logic_unit ( 

input [7:0] a_in,

input [7:0] b_in,

input [1:0] op_code,

output reg [7:0] result_out );

always@ ( *) 

The procedural block is level sensi-
ve to changes on a_in, b_in

and op_code.

case construct is used to infer the 
parallel logic to perform the 
desired logic opera on. 

Please refer the func onal table 
for the logic opera ons. 

All case condi ons are covered and 
hence the case construct is 
full case. It infers the parallel 
logic without latches. 

begin

case ( op_code)

2'b00 : result_out = a_in | b_in;

2'b01 : result_out = a_in ^ b_in;

2'b10 : result_out = a_in & b_in;

2'b11 : result_out = ~a_in; 

endcase

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 2 Verilog RTL for 8-bit ALU using full-case construct
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As shown in Example 1, the functionality is coded by using a procedural always
block using the case construct. All the case conditions are covered, and during
default condition, the logic unit generates output result_out as 8’b0000_0000.

The functionality of the logic unit can be modeled using the full-case construct.
As shown in Example 2, the functionality is described by using a procedural ‘al-
ways’ block with the full ‘case’ construct. All the case conditions are described
using the full-case construct.

Synthesis result for the RTL which uses the full case construct is shown in
Fig. 12.3. As shown in the figure, it infers the logic gates with multiplexer logic at
the output. In the practical scenario, it is recommended to use the adders as common
resources to implement both the logic and arithmetic unit.

Table 12.3 Operational table
for 8-bit ALU

op_code[1] op_code[o] Logic operation

0 0 a_in OR b_in

0 1 a_in XOR b_in

1 0 a_in AND b_in

1 1 Complement of a_in

Fig. 12.3 Synthesis result of 8-bit logic unit
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/////////////////////////////////////////////////////////////////////////
module logic_unit_registered_io # (parameter data_size=8, 
parameter opcode_size=2) 
( 

input [data_size-1:0] a_in,
input [data_size-1:0] b_in,
input [opcode_size-1:0] op_code,
input clk,
input reset_n,
output reg [data_size-1:0] result_out ) ; 
reg [data_size-1:0] reg_a_in;
reg [data_size-1:0] reg_b_in;
reg [opcode_size-1:0]  reg_op_code;
reg [data_size-1:0] reg_result_out;

For the be er and clean ming 
analysis it is recommended to 
use the registered inputs and 
registered outputs. 

The procedural block is sensi ve to 
posi ve edge of the clock and 
used to sample the data in-
puts a_in, b_in, opcode. 

always @ ( posedge clk or negedge reset_n)
begin

if ( ~reset_n)
{ reg_a_in, reg_b_in, reg_op_code} <= 8'b0;
else
{ reg_a_in, reg_b_in, reg_op_code} <= { a_in, b_in, op_code};

end

always@ (reg_a_in, reg_b_in, reg_op_code)
begin

case ( reg_op_code)
2'b00 : reg_result_out = reg_a_in | reg_b_in;
2'b01 : reg_result_out = reg_a_in ^ reg_b_in;
2'b10 : reg_result_out = reg_a_in & reg_b_in; 
default : reg_result_out = ~reg_a_in; 
endcase

end

always @ (posedge clk , negedge reset_n)
begin

if (~reset_n)
result_out <= 8'b0000_0000;
else
result_out <= reg_result_out;

end
endmodule
//////////////////////////////////////////////////////////////////////////

The procedural block is level sensi ve to 
changes on registered inputs 
reg_a_in, reg_b_in and 
reg_op_code.

case construct is used to infer the paral-
lel logic to perform the desired op-
era on. 

Please refer the func onal table for the 
logic opera ons. 

2’b11 or default condi on results into 
output which is equal to comple-
ment of registered input reg_a_in. 

Example 3 Verilog RTL of 8-bit logic unit having registered inputs and outputs
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12.1.1.2 Logic Unit Having Registered Inputs and Outputs

For the better performance, it is recommended to use registered inputs and regis-
tered outputs. If all the inputs are registered that is sampled on the active edge of
clock and if all the outputs are registered on the active edge of clock, then design
can result into better performance. The registered inputs and registered outputs can
give the clean data path, and even the output is free from glitches or hazards. For
the performance improvement the pipelining can be used to improve the data arrival
time in the reg-to-reg path. Please refer Chap. 20 for the detailed information about
the timing analysis.

Fig. 12.4 Synthesis of logic unit having registered inputs and outputs

Fig. 12.5 Synthesis result of logic unit having registered IO
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Example 3 uses the registered inputs and register outputs. The inputs are sam-
pled on the positive edge of clock clk, and result is launched on the positive edge of
clk. During reset condition reset_n = 0, the output of logic unit is initialized to 0.

Example 3 infers the logicwith all the inputs and outputs registered on positive edge
of clock. Readers are requested to assume that every register (flip-flop) has an asyn-
chronous reset input reset_n. The synthesized logic is shown in Figs. 12.4 and 12.5.

12.1.2 Arithmetic Unit

Arithmetic unit is used to perform the arithmetic operations such as addition,
subtraction, increment and decrement. The operations are performed by using two
operands. The functional Table 12.4 gives information about the different opera-
tions need to be performed. Arithmetic unit should be coded in such a way that it
performs only one operation at time. Figure 12.6 shows the resources required with
input and output signals.

The top-level inputs and outputs of the arithmetic unit are shown in Fig. 12.7.
The parameterized 8-bit arithmetic unit is coded using synthesizable constructs

and shown in Example 4.
The synthesis result of 1-bit arithmetic unit is shown in Fig. 12.8. Logic uses the

full adder as component to perform the addition and subtraction. Subtraction is
performed using 2’s complement addition. The synthesized logic also consists of
the multiplexer 4:1 to pass the required operand at one of the inputs of full adder
depending on the status of the opcode.

The logic inferred for the 8-bit arithmetic unit is shown in Fig. 12.9 and consists
of arithmetic resources and multiplexers. The logic can be optimized using RTL
tweaks, and few techniques are discussed in Chap. 13.

Table 12.4 Operational table of the arithmetic unit

op_code_in
[2]

op_code_in
[1]

op_code_in
[o]

Operation

0 0 0 Transfer a_in

0 0 1 a_in ADD b_in

0 1 0 a_in ADD b_in with carry input cin_in

0 1 1 a_in SUB b_in

1 0 0 a_in SUB b_in with borrow input cin_in

1 0 1 Increment a_in

1 1 0 Decrement b_in

1 1 1 No operation performed
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Fig. 12.7 Top-level signal description of arithmetic unit

Fig. 12.6 Block diagram of arithmetic unit
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/////////////////////////////////////////////////////////////////////////
module arithme�c_unit # (parameter data_size=8, opcode_size=3) 
( 

input [data_size-1:0] a_in,
input [data_size-1:0] b_in,
input cin_in,
input [opcode_size-1:0] op_code_in,
output reg [data_size-1:0] result_out,

output reg co_out );

always @ ( *)
begin

case ( op_code_in)
3'b000 : {co_out,result_out} = {1'b0,a_in} ;
3'b001 : {co_out,result_out} = a_in + b_in ;
3'b010 : {co_out,result_out} = a_in + b_in + cin_in ;
3'b011 : {co_out,result_out} = a_in - b_in ; 
3'b100 : {co_out,result_out} = a_in - b_in - cin_in;
3'b101 : {co_out,result_out} = a_in + 1'b1 ;
3'b110 : {co_out,result_out} = a_in - 1'b1 ;
default : {co_out,result_out} = 9'b0_0000_0000 ;
endcase

end

endmodule
//////////////////////////////////////////////////////////////////////////

The procedural always block is 
used and is level sensi�ve to 
changes on a_in, b_in, 
cin_in and an op_code_in.

The func�onality is coded by us-
ing the case construct. 

case construct is used to infer the 
parallel logic and it infers
the logic without latches as 
all case condi�ons are in-
cluded.

Please refer the opera�onal ta-
ble of the arithme�c unit. 

Example 4 Verilog RTL of the 8-bit arithmetic unit

Fig. 12.8 Synthesis result of one-bit arithmetic unit

280 12 RTL Design Strategies for Complex Designs



Fig. 12.9 Synthesis of 8-bit arithmetic unit
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12.1.3 Arithmetic and Logic Unit

Figure 12.10 shows the ALU with the associated logic circuit to perform the
operation on two 8-bit numbers a_in, b_in. For logic operations, the carry input
(cin_in) is ignored, and the output result_out is generated depending on the oper-
ational code of the instruction. Depending on the operational code, ALU is used to
perform either arithmetic or logic operation. During arithmetic operations, if result
is greater than 8-bit, then carry output co_out is set to logic 1 that indicates carry
propagation outside to MSB.

Table 12.6 indicates the number of bits required at inputs and outputs for the
ALU to perform execution of the 11 instructions. It performs only one operation at
a time depending on the status of the operational code. The table has the seven
arithmetic instructions and four logic instructions. The pin or signal description is
shown in Table 12.5.

Fig. 12.10 ALU top-level diagram

Table 12.5 Signal or pin description of 8-bit ALU

Signal or pin name Size (bits) Description

a_in 8 An 8-bit operand

b_in 8 An 8-bit operand

cin_in 1 Carry input to a ALU

op_code_in 4 4-bit opcode of instruction

result_out 8 An 8-bit output from ALU

co_out 1 One-bit output carry from ALU
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An efficient Verilog RTL using the synthesizable case constructs to infer the
parallel logic is shown in Example 5. For the op_code_in[3] = 0, it performs the
arithmetic operation, and when op_code_in[3] = 1, it performs the logic operation
(Fig. 12.11).

Table 12.6 Operational table for 8-bit ALU

Operational code Instruction Description

0000 Transfer a_in Generate an output a_in + 0 + 0

0001 Addition without carry a_in + b_in + 0

0010 Addition with carry a_in + b_in + 1

0011 Subtract without borrow a_in − b_in

0100 Subtract with borrow a_in − b_in − 1

0101 Increment a_in by 1 a_in + 1

0110 Decrement a_in by 1 a_in − 1

1000 a_in OR with b_in a_in OR b_in

1001 a_in XOR with b_in a_in XOR b_in

1010 a_in AND with b_in a_in AND b_in

1011 Complement a_in Not a_in

Fig. 12.11 Expected synthesis result of -bit ALU
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//////////////////////////////////////////////////////////////////////////
module arithme c_logic_unit # (parameter data_size=8, 
parameter opcode_size=4) 
( 

input [data_size-1:0] a_in,
input [data_size-1:0] b_in,
input cin_in,
input [opcode_size-1:0] op_code_in,
output reg [data_size-1:0] result_out,
output reg co_out );

always @ ( *)
begin

if (~op_code_in[3])
begin

case (op_code_in[2:0])

The procedural always block is 
used and is level sensi ve to 
changes on a_in, b_in, cin_in
and an op_code_in.

The func onality is coded by us-
ing the case construct. 

case construct is used to infer the 
parallel logic and infers the 
logic without latches due to
use default condi on.

Please refer the opera onal table 
for the arithme c logic unit. 3'b000 : {co_out,result_out} = {1'b0,a_in} ;

3'b001 : {co_out,result_out} = a_in + b_in;
3'b010 : {co_out,result_out} = a_in + b_in + cin_in ;
3'b011 : {co_out,result_out} = a_in - b_in ;
3'b100 : {co_out,result_out} = a_in - b_in - cin_in;
3'b101 : {co_out,result_out} = a_in + 1'b1;
3'b110 : {co_out,result_out} = a_in - 1'b1;
default : {co_out,result_out} = 9'b0_0000_0000 ;
endcase

end 
else

begin 
case ( op_code_in [2:0])

3'b000 : {co_out,result_out} = {1'b0, (a_in | b_in) };
3'b001 : {co_out,result_out} = {1'b0, (a_in ^ b_in) };
3'b010 : {co_out,result_out} = { 1'b0, (a_in & b_in) };
3'b011 : {co_out,result_out} = { 1'b0, ~a_in };
default :  {co_out,result_out} = 9'b0_0000_0000 ;

endcase
end 

end
endmodule

//////////////////////////////////////////////////////////////////////////

The procedural block is level 
sensi ve to changes on 
a_in, b_in and 
op_code_in.

case construct is used to infer 
the parallel logic for the desired 
func onality. 

Please refer the func onal table 
of the logical opera ons. 

All case condi ons are covered 
and hence the case con-
struct is full case. It infers 
the parallel logic without 
latches. 

Example 5 Verilog RTL for 8-bit ALU
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Fig. 12.12 Actual synthesis result of ALU

Fig. 12.13 ALU simulation result
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The synthesis result of the 8-bit ALU is shown in Fig. 12.12. As shown in the
figure, it consists of the parallel logic and used to perform the arithmetic operations
and logic operations. Using the multiplexer tree at the output, either arithmetic or
logic operation result is generated. The logic does not use the concept of resource
sharing and hence has maximum area and power. Readers are requested to refer
Chap. 13 for efficient RTL designs and to understand about the recommended
tweaks. Refer the simulation result (Fig. 12.13).

12.2 Functions and Tasks

Task and functions are used in the Verilog to describe the commonly used func-
tionality. Instead of coding the same RTL at the different places, it is good and
common practice to use the functions or tasks depending on the requirement. For
easy maintenance of the code, it is better to use the functions or tasks like the
subroutine.

12.2.1 Counting Number of 1’s from the Given String

Example 6 shows the task used to count 1’s from the given string. The following
are important points need to remember while using the task.

1. Task can consist of the time control statements and even delay operators.
2. Task can have input, output declarations.
3. Task can consist of function calls, but function cannot consist of the task.
4. Task can have output argument and not used to return the value when called.
5. Task can be used to call other tasks.
6. It is not recommended to use the task while coding the synthesizable

Verilog RTL.
7. Tasks are used while coding the behavioral or simulation model.

Example 6 is the description to count number of 1’s from the given string. In this
example, task is used with arguments data_in, out. The name of task is count_1-
s_in_byte. In most of the protocol descriptions, it is required to perform some
operations on the input string. In this example, the string is 8-bit input data_in, and
output result is 4-bit out. It is not recommended to use the task to generate syn-
thesized logic.

The simulation result is shown in Fig. 12.14, and as shown for the 8-bit binary
input data_in = 0000_0000, it generates result that is out = 0 as number of 1’s is
equal to 0. For data_in = 11101110, it generates out = 6 as six 1’s are in the input
string.
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/////////////////////////////////////////////////////////////////////////

module count_one (

input [7:0] data_in,

output reg [3:0] out);

always @(data_in)

count_1s_in_byte(data_in, out);

// task declara on from here

task count_1s_in_byte(input [7:0] data_in, output reg [3:0] count);

integer i;

begin // task func onal descrip on

count = 0;

for (i = 0; i <= 7; i = i + 1) 

if (data_in[i] == 1) 

count= count + 1;

end 

endtask

endmodule

//////////////////////////////////////////////////////////////////////////

A task is declared by name 
count_1s_in_byte and the 
keyword task is used to de-
clare the task.

Task ends with keyword endtask.

A for loop is used to count the 
string data_in inputs. When 
the input data_in[i]  is 1 then 
the count is incremented by 1.

Example 6 Verilog RTL using the task
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12.2.2 RTL Design Using function to Count Number of 1’S

Example 7 uses the function to count 1’s from the given string. The following are
important points need to remember while using the function.

Fig. 12.14 Simulation result for Example 6

//////////////////////////////////////////////////////////////////////////
module count_one_function (
input [7:0] data_in,
output reg [3:0] out);
always @(data_in)
out = count_1s_in_byte(data_in);
always @(data_in) 
out = count_1s_in_byte(data_in);
// function declaration from here.
function [3:0] count_1s_in_byte(input [7:0] data_in);
integer i;
begin
count_1s_in_byte = 0;

A function is declared by 
name 
count_1s_in_byte and 
the keyword function 
is used to define the 
function.

A function ends with key-
word endfunction.

A for loop is used to count 
the string data_in’in-
puts. When the input 
data_in[i]  is 1 then the 
count_1s_in_byte is 
incremented by 1.

for (i = 0; i <= 7; i = i + 1)
if (data_in[i] == 1) count_1s_in_byte = count_1s_in_byte + 1;
end
endfunc on
endmodule
//////////////////////////////////////////////////////////////////////////

Example 7 Verilog RTL with function calls
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1. Function cannot consist of the time control statements and even delay operators.
2. Function can have at least one input argument declarations.
3. Function can consist of function calls, but function cannot consist of the task.
4. Function executes in zero simulation time and returns single value when called.
5. It is not recommended to use the function while coding the synthesizable

Verilog RTL.
6. Functions are used for coding the behavioral or simulatable model.
7. Functions should not have non-blocking assignments.

Example 7 is the description to count number of 1’s from the given string. In this
example, function is used with arguments ‘data_in’. The name of function is
‘count_1s_in_byte’. In most of the protocol descriptions, it is required to perform
some operations on the input string. In this example, the string is 8-bit input
‘data_in’, and output result is 4-bit ‘out’. It is not recommended to use the function
to generate synthesized logic.

The simulation result is shown in Fig. 12.15, and as shown for the 8-bit binary
input data_in = 0000_0000, it generates result that is out = 0 as number of 1’s is
equal to 0. For data_in = 10101011, it generates out = 5 as 5, 1’s are in the input
string.

Fig. 12.15 Simulation result of Example 7

12.2 Functions and Tasks 289



12.3 Synthesis Result of RTL Using function

Most of the time depending on the design requirements, we can think about using
function to infer the combinational logic. The RTL is coded (Example 8) to infer
the XOR gate having registered output. In this example, the function xor_logic is
used to implement the XOR gate.

As shown in the synthesis result (Fig. 12.16), the inferred logic has XOR gate
and D flip-flop.

/////////////////////////////////////////////////////////////////////////////

module func on_verilog( input clk, a_in, b_in , output reg y_out);

func on xor_logic;

input a_in, b_in;

xor_logic = a_in ^ b_in;

endfunc on

always @ (posedge clk)

begin

y_out <= xor_logic(a_in,b_in);

end

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 8 RTL design using function call
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12.4 Synthesis Result of RTL Using task

The RTL is coded (Example 9) to infer the XOR gate having registered output. In
this example, the task xor_logic is used to implement the XOR gate.

As shown in the synthesis result (Fig. 12.17), the inferred logic has XOR gate
and D flip-flop.

Fig. 12.16 Synthesis result of Example 8
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//////////////////////////////////////////////////////////////////////////////

module task_verilog( input clk,a_in, b_in , output reg y_out);

task xor_logic;

input a, b;

output y;

y = a ^ b;

endtask

always @ (posedge clk) 

begin

xor_logic ( a_in, b_in, y_out);

end 

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 9 RTL design using task

Fig. 12.17 Synthesis result of Example 9
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12.5 Exercises

The exercises are based on the understanding of synthesizable Verilog constructs.
Complete the exercises for better understanding and application of Verilog con-
structs.

module design_logic ( input  a_in, b_in, c_in, output reg result-
out, carry_out);

always @ (*)

begin

if (~c_in)

{carry_out, result_out} = a_in+b_in+c_in;

else 

{carry_out, result_out} = a_in+(~b_in)+c_in;

end

endmodule 

a. Adder and subtractor
b. Adder, subtractor and 2:1 mux
c. Only adder
d. Syntax error and RTL should be tweaked 

3. Tweak the RTL shown in the exercise ques on 2 to infer 
only minimum number of adders. 

4. Tweak the RTL shown in the Example-5 to have registered 
inputs and registered output. 

1. Code the RTL using synthesizable constructs to implement 
8-bit barrel shi er. 

2. The logic inferred by the following code is 
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12.6 Summary

The following are important points to conclude this chapter

1. The design partitioning can give the good and clear visibility of the data and
control paths during the RTL design.

2. The Verilog RTL for the complex design should have the separate modules for
the data paths and control paths.

3. Use the resource sharing concepts while coding for the logic unit. All the logical
operations can be performed by using full adder with additional combinational
logic.

4. Do not use the function and task while coding the RTL design.
5. Function does not consist of delays or timing control constructs.
6. Task can consist of timing control and delay constructs.
7. Use the pipelining for better performance of the design.
8. Code the RTL design using minimum resources.
9. Use the synthesizable constructs to implement the complex designs and have the

better design partitioning at functional level.
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Chapter 13
RTL Tweaks and Performance
Improvement Techniques

The concept of the RTL tweaks to improve the performance of the design is discussed in
this chapter. The chapter discusses about the area, speed and power improvement basics
and useful during the RTL design and synthesis stage to improve the design performance.

As discussed in Chap. 12 for any design, the goal is to achieve the area, speed, and
power. In such scenario, the optimization techniques play important role, and the
following few section discusses the performance improvement of the design using
RTL tweaks. The powerful techniques such as resource sharing, pipelining, and
clock gating are discussed and are useful during the RTL design phase.

13.1 Arithmetic Resource Sharing

Most of the time we experience the need of the resource sharing. During the RTL
design of the arithmetic and logic unit, we can improve the performance of the
design by sharing the common resources such as adders to have the better data and
control path optimization!

Example 1 shows the implementation of addition without resource sharing. The
intended design functionality is to design the combinational logic and shown in
Table 13.1.

As shown in the synthesized logic in Fig. 13.1, it uses three full adders and two
multiplexers. The synthesized logic is inefficient as all the addition operations are
performed simultaneously and multiplexer output is control signal dependent. So,
there is wastage of more power, and the RTL coded is inefficient as per as area
utilization is concern.

Even the data and control path optimization is not used while coding the RTL.
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input s2_in, 
output reg y_out, 
output reg z_out ); 
always @ ( a_in, b_in, c_in, d_in, s1_in)
begin

if ( s1_in ) 
y_out = a_in + b_in;
else
y_out = c_in + d_in;

end

always @ ( a_in, b_in, e_in, f_in, s2_in)
begin

if ( s2_in ) 
z_out = e_in + f_in;
else
z_out = a_in + b_in;

end

endmodule
/////////////////////////////////////////////////////////////////////////

The combina onal design is coded 
by using mul ple always 
blocks. 

The addi on opera on is per-
formed by using operator +. 
Due to if-else construct it in-
fers the 2:1 MUX.

/////////////////////////////////////////////////////////////////////////

module logic_without_resource_sharing( 

input a_in, 
input  b_in, 
input c_in, 
input d_in, 
input e_in, 
input f_in, 
input s1_in;, 

Example 1 Verilog RTL without using the concept of resource sharing

Table 13.1 Functional table description

s1_in y_out

1 a_in + b_in

0 c_in + d_in

s2_in z_out

0 a_in + b_in

1 e_in + f_in
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13.1.1 RTL Design Using Resource Sharing to Have Area
Optimization

Resource sharing is one of the efficient techniques used during the RTL design to
share the common resources. As coded in Example 2, the multiple adders at the
output are generating the results simultaneously and wait for data from the multi-
plexer tree which is sensitive to the control signals either s1_in or s2_in.

As shown in Fig. 13.2, the inferred logic is optimized and has the adders at the
output and chain of multiplexer to pass the desired input depending on the status of
select inputs. The resource sharing has minimized the single adder for 1-bit addi-
tion. For the 8-bit addition, this technique is useful to improve the area by elimi-
nating eight adders.

13.2 Gated Clocks and Dynamic Power Reduction

Gated clock signals are used to turn on or turn off the switching at the clock net for
the multiple clock domain designs and uses the clock enable inputs. When enable
input is high, the clock switching is on, and when enable input is low, the clock
switching is off. The clock gating logic is used to control the clock turn on or turn
off. Clock gating is an efficient technique used in the ASIC design to reduce the
switching power at the clock input of register or flip-flop. By using the clock gating
cell, the clock switching can be controlled as and when required according to the
design functional requirements. The clock gating is useful to reduce the dynamic
power for the design.

Fig. 13.1 Synthesized logic without resource sharing
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But the issue with the clock gating is that it cannot be used in the synchronous
designs, and the reason being it introduces significant amount of clock skew and
even this technique introduces glitches. To avoid the glitches, special care needs to
be taken by ASIC design engineer hence there is need of dedicated clock gating
cells.

end
end

always @ ( a_in, b_in, e_in, f_in, s2_in)
begin

/////////////////////////////////////////////////////////////////////////

module logic_with_resource_sharing ( 

input a_in, 
input b_in, 
input c_in, 
input d_in, 
input e_in, 
input f_in, 
input s1_in, 
input s2_in, 
output reg y_out, 
output reg z_out );
reg temp1,temp2,temp3,temp4;

always @ ( a_in, b_in, c_in, d_in, s1_in)
begin

if ( s1_in ) 
begin

temp1 = a_in;
temp2 = b_in;

end
else
begin

temp1 = c_in;
temp2 = d_in;

The combina onal design is cod-
ed by using mul ple always 
procedural blocks. 

In this the func onality is de-
scribed using mul ple num-
ber of mul plexers at the in-
put side to sample the 
desired inputs. 

if ( s2_in ) 

Example 2 Verilog RTL with resource sharing technique
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Fig. 13.2 Synthesized logic by using common resources

begin
temp3 = e_in;
temp4 = f_in;

end
else
begin

temp3 = a_in;
temp4 = b_in;

end
end

always @  ( temp1, temp2, temp3, temp4 )
begin

y_out = temp1 + temp2;
z_out = temp3 + temp4;

end

endmodule
/////////////////////////////////////////////////////////////////////////

Adders are used as common re-
sources to perform addi�on 
depending on the inputs sam-
pled by using mul�ple mul�-
plexers. 

Example 2 (continued)
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Verilog RTL is coded and shown in Example 3 and uses enable input to control
the clock switching activity. For ‘enable = 1’, the clock input ‘clk’ toggles, and for
‘enable = 0’, clock input is permanently active low so no switching at clock input.

The synthesized logic is shown in Fig. 13.3 where clock is gated by using AND
logic. The logic is prone to glitches, and it is recommended to use the dedicated clock
gating cell. Refer Chap. 24 to have more understanding about the low power design.

module clk_ga�ng

 ( 

input in_1, clk, enable,

output reg out_1

);

wire clk_gated; 

assign clk_gated = clk && enable;

always @ (posedge clk_gated)

begin

out_1 <= in_1;

end

endmodule

//////////////////////////////////////////////////////////////////////////////

The source clock signal is declared
as clk and gated clock signal is 
declared as clk_gated.

The clk_gated signal is generated 
by using con�nuous assign-
ment construct assign and it is 
logical AND of clk and enabl’ 
input.

The clk_gated signal is used to in-
voke the always procedural 
block and hence it infers the D 
flip-flop having the clock ga�ng 
logic at the clock input of flip-

//////////////////////////////////////////////////////////////////////////////

flop. 

Example 3 Verilog RTL using clock gating
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13.3 Use of Pipelining in Design

Pipelining is one of the powerful techniques used to improve the performance of the
design at the cost of latency. This technique is used in many processor designs and
many ASIC design applications to perform multiple tasks at a time. This section
discusses the design without pipelining and design with pipelining.

13.3.1 Design Without Pipelining

During the initial stage of the design, most of the designs are coded by using
synthesizable Verilog constructs without the use of the pipelined logic. If the
desired speed, that is, design performance is not met, then ASIC designer can tweak
the RTL design. One of the best approaches is pipelining by inserting the register
according to the clock latency and data rate requirements.

Example 4 describes the design functionality using Verilog synthesizable con-
structs without the use of any pipelined logic.

The synthesized logic is shown in Fig. 13.4 and consists of two flip-flops sen-
sitive to the common clock source clk.

Fig. 13.3 Synthesized clock gating logic

Fig. 13.4 Synthesized logic without pipelined stage
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//////////////////////////////////////////////////////////////////////////////

module design_without_pipeline ( 

input a_in,

input b_in,

input clk,

input reset_n,

output reg q_out ) ;

reg q1_out;

always @ (posedge clk , negedge reset_n)

The always procedural block is 
sensi�ve to changes on the 
rising edge of clock clk and 
ac�ve low reset reset_n.

This block is used to infer the se-
quen�al logic sensi�ve to
posi�ve edge of clock clk. The 
reset is an asynchronous ac-
�ve low reset reset_n.

begin

if (~reset_n)

begin

Example 4 Verilog RTL without pipelined stage
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13.3.2 Speed Improvement Using Register Balancing
or Pipelining

To improve the design performance, the combinational logic AND output can be
given to the additional pipelined register, and the output of the pipelined register
can drive one of the input of OR logic.

This technique will improve the overall performance of the design at the cost of
one clock latency. The improvement in the design performance is due to the
reduction in the combinational delay in the register-to-register path. This improves
the data arrival time for the reg-to-reg path!

Verilog RTL is shown in Example 5, and by using additional register as the
pipelined logic, the register balancing is achieved.

The synthesized logic is shown in Fig. 13.5 and consists of three flip-flops
sensitive to the common clock source clk.

{ q_out, q1_out} <= 2'b00;

end

else

begin 

q1_out <= a_in;

q_out <= ( (q1_out & a_in ) | b_in);

end

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Then func onality is coded by us-
ing Verilog RTL to infer two 
flip-flops with the combina-

onal logic. 

The RTL coded is without any pipe-
lined logic. 

Example 4 (continued)
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//////////////////////////////////////////////////////////////////////////////

module design_with_pipeline ( 

input a_in,

input b_in,

input clk,

input reset_n,

output reg q_out ); 

reg q1_out, q2_out;

always @ (posedge clk , negedge reset_n)

begin

if (~reset_n)

The always procedural block is 
sensi�ve to changes on the 
rising edge of clock clk and 
ac�ve low reset reset_n.

This block is used to infer the se-
quen�al logic sensi�ve to
posi�ve edge of clock clk. The 
reset is an asynchronous ac-
�ve low reset reset_n.

The func�onality is coded by using 
Verilog RTL to infer three flip-
flops with the combina�onal 
logic. To improve the speed 
of the design the combina-
�onal logic is spi�ed using 
addi�onal register.

The structure described is RTL 
with single stage pipelined 
logic. 

begin

{ q_out, q2_out, q1_out} <= 3'b000;

Example 5 Verilog RTL with pipelined stage
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end

else

begin

q1_out <= a_in;

q2_out <=  (q1_out & a_in ) 

q_out <= (q2_out| b_in);

end

end

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 5 (continued)

Fig. 13.5 Synthesized logic with pipelined stage
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13.4 Counter Design and Duty Cycle Control

As discussed in Chaps. 9 and 10, we need to have the efficient counters, shift
registers, and memories in the ASIC design. The MOD-3 counter which has three
states 00,01,10 is coded using the Verilog synthesizable construct and is shown in
Example 6. Due to three states the on duty cycle is 33.33%, where duty cycle is
(Ton/(Ton + Toff)), where Ton is on time and Toff is off time.

The synthesis result of the MOD-3 counter is shown in Fig. 13.6 and has the two
flip-flops and next state logic as the adder and multiplexer. It generates the sequence
as 00,01,10,00,01,10….

The simulation result of MOD-3 synchronous up counter is shown in Fig. 13.7
and generates an output sequence as 00,01,10,00,01,10…. During reset_n = 0, an
output is equal to 00. The counter is sensitive to rising edge of the clock.

Fig. 13.6 Synthesis result of MOD-3 up counter

Fig. 13.7 MOD-3 up counter waveform without having 50% duty cycle
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//////////////////////////////////////////////////////////////////////////////

module modulo_3_up_counter(

input clk, reset_n,

output reg [1:0] count_out 

);                             

always @ (posedge clk, negedge reset_n)

begin

if ( ~reset_n)    

count_out <= 2'b00;    

else     

if ( count_out == 2'b10)            

count_out <= 2'b00;            

else             

count_out <= count_out + 1;                  

end                             

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 6 MOD-3 up counter RTL design
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13.5 MOD-3 Counter RTL Design to Have 50%
Duty Cycle

The MOD-3 counter which has three states 00,01,10 is coded using the Verilog
synthesizable construct and is shown in Example 7. The on duty cycle is 50.00%,
where duty cycle is (Ton/(Ton + Toff)), where Ton is on time and Toff is off time. Both
time durations are same. That is for three half cycles, counter MSB output is high,
and for three half cycles, the MSB of counter output is low.

The strategy used is using the positive edge-sensitive flip-flops and negative
edge-sensitive flip-flops in the parallel path to have the output with 50% duty cycle.

The synthesis result of the MOD-3 counter having 50% duty cycle is shown in
Fig. 13.8 and has the two positive edge-sensitive flip-flops, single negative
level-sensitive flip-flop, and next state logic as the adder, OR gate, and multiplexer.
It generates the sequence with 50% duty cycle and counter output as
00,01,10,00,01,10….

The simulation result of MOD-3 synchronous up counter is shown in Fig. 13.9
and generates an output sequence as 00,01,10,00,01,10…. During reset_n = 0, an
output is equal to 00. The counter is sensitive to rising edge of the clock. Check
during the period highlighted using two vertical yellow markers the output of
MOD-3 counter is having 50% duty cycle. That is on time is equal to off time.

Fig. 13.8 Synthesis result of MOD-3 counter having 50% duty cycle

Fig. 13.9 Waveform of MOD-3 counter having 50% duty cycle output
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module MOD_3_duty_cycle_control( 

input clk, reset_n,

output q_out

);

reg [1:0] count_out;

reg q1_out;                      

always @ (posedge clk, negedge reset_n)

begin

if ( ~reset_n)    

count_out <= 2'b00;

else     

if ( count_out == 2'b10)            

count_out <= 2'b00;            

else        

count_out <= count_out + 1;                  

end  

////////////////////////////////////////////////////////////////////////////// 

Example 7 RTL tweak to get the 50% duty cycle at the MOD-3 counter output
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13.6 Exercise

The exercises are based on the understanding of synthesizable Verilog constructs.
Complete the exercises for better understanding and application of Verilog
constructs.

always @ (negedge clk, posedge reset_n) 

if (~reset_n) 

q1_out <= 1'b0; 

else  

q1_out <= count_out[1]; 

assign q_out = q1_out | count_out[1];                            

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 7 (continued)

1. Code the RTL for MOD-5 up-counter. Consider the counter 
is sensi�ve to the falling edge of the clock and has the 
asynchronous ac�ve low reset. 

2. Tweak the RTL in Exercise-1 to get the MOD-5 counter 
having 50% duty cycle output.

3. Code the RTL using resource sharing for the following 

s1_in y_out

1 a_in * b_in

0 c_in * d_in

s2_in z_out

1 a_in * b_in

0 e_in * f_in
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13.7 Summary

The following are important points to conclude this chapter:

1. The resource sharing technique is useful to improve the design performance.
2. Using the resource sharing, common arithmetic resources can be shared.
3. Use the pipelining concept to improve the speed of the design.
4. The pipelined stages increase the latency but reduce the reg-to-reg path data

arrival time.
5. The dynamic power can be optimized using the clock gating technique.
6. Use the dedicated clock gating cells to optimize for the power.
7. Use the duty cycle control strategies to have the Ton equal to Toff at the output of

sequential design.
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Chapter 14
Finite State Machines Using Verilog

The RTL design should have better performance and should have the better data and
control path optimization. Finite-state machines are used to design the control and timing
logic and even to detect the sequence. Finite-state machines can be coded by using different
encoding styles. These encoding styles are binary, gray, and one-hot encoding and are
discussed in this chapter.

The finite-state machine (FSM) is especially important design block for any of the
ASIC design. Most of the ASIC designs and controllers need the efficient and
synthesizable state machines. The FSMs can be designed and coded very efficiently
by using the Verilog synthesizable constructs. During the design phase, the RTL
design team should use the synthesizable Verilog constructs to implement the state
machines to have the better performance!

Basically, FSMs are useful to detect the desired sequences or the preordered or
defined events and are source synchronous designs. FSMs can be coded efficiently
for the better synthesis outcome using the multiple or single procedural block. In
the practical scenario, it is recommended to use the multiple procedural blocks to
code the state machines. One of the procedural blocks can describe the combina-
tional logic and level sensitive to the inputs or the states. Whereas the other pro-
cedural block can be edge sensitive to positive edge of clock or to the negative edge
of clock.

The multiple procedural block FSM is better for the readability and can generate
efficient synthesis results. The main objective of this chapter is to code the efficient
FSM for better performance using synthesizable Verilog constructs.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Logic Design Using Verilog,
https://doi.org/10.1007/978-981-16-3199-3_14

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3199-3_14&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3199-3_14&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3199-3_14&amp;domain=pdf
https://doi.org/10.1007/978-981-16-3199-3_14


14.1 Moore Versus Mealy Machines

FSMs are classified as Moore and Mealy machines. In the Moore machines, the
output is function of the present state or current state, and in the Mealy machine, the
output of FSM is function of the present or current state as well as present input.

In the Moore machine, an output is stable for one clock cycle, and hence, output
is glitch or hazard free. In the Mealy machines, an output may or may not be stable
for one clock cycle as it is function of current state or change in the input.

The timing analysis for the Moore machine is quite simple due to clean register
to register path, but for the Mealy machine, there might be chances of glitches or
hazards as the output is function of the input changes and current state.

But the disadvantage of Moore machine is that it needs a greater number of
states as compared to Mealy machine. Practical scenario is that Mealy machine has
one state less as compared to Moore machine.

Fig. 14.1 describes the internal structure for the machine, and it consists of
combinational block as next state logic whose output is dependent upon the changes
in the Current_state and an input, state register block which is dependent on the
Next_state, and an output logic block which is purely combinational in nature and
depends upon the changes in the Current_state. As discussed, earlier in the Moore
machine, output is function of Current_state and hence stable for one clock cycle.

Fig. 14.2 describes the internal structure for the machine, and it consists of
combinational block as next state logic whose output is dependent upon the changes
in the Current_state and an input, state register logic which is dependent on the
Next_state, and an output logic block which is purely combinational in nature and
depends upon the Current_state as well changes in the input. As discussed earlier,
Mealy machine output is function of Current_state as well as changes in the inputs
and hence may or may not be stable for one clock cycle. Due to this, the Mealy
machines are prone to glitches!

Next State 
Logic

State Register
Output Logic

clk

Output

Next_state Current_state

Input

Fig. 14.1 Block diagram of Moore machine
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How to code an efficient FSM is one of the important points to discuss about! As
a RTL design engineer, the overall performance of the design is dependent upon the
efficient RTL coding. Most of the inexperienced RTL engineers use single proce-
dural always block for coding the behavior of the FSM. But single always block
FSM always results into inefficient coding and has issue while synthesizing the
design and even during timing analysis.

In the practical scenarios, two or three always procedural block FSMs should be
used. In this chapter, I have recommended to use the three procedural block FSMs.
Multiple procedural block FSM increases the number of lines of code but most
efficient during synthesis and timing analysis. Even this improves the overall
readability and reusability during the reviews and design cycle. This also improves
the overall design performance!

Next State 
Logic

State Register
Output Logic

clk

Output

Next_state Current_state

Input

Fig. 14.2 Block diagram of Mealy machine

Table 14.1 Differences between Moore and Mealy machines

Moore machine Mealy machine

Outputs are function of current state
only

Outputs are function of the current state and inputs
also.

As output is function of current state, it
is stable for one clock cycle

Output is function of current state and inputs so may
change if input changes and hence may or may not
be stable for one clock cycle.

Output is stable for one clock cycle
and not prone to glitches or spikes

Output may change multiple times depending on
changes in the input and hence prone to glitches or
hazards.

It requires a greater number of states as
compared to Mealy machine

Mealy machine needs at least one state less as
compared to Moore machine.

STA is easy as combinational paths
between the registers are shorter

STA is complex as combinational paths are
relatively larger area as compared to Moore
machine.

Higher operating frequency as
compared to Mealy machine

Lower operating frequency as compared to Moore
machine
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1. One of the procedural always blocks is used to describe the functionality for the
next state logic, and it is level sensitive to changes on the inputs and
Current_state.

2. Another procedural always block is used to describe the state register logic and
sensitive to positive or negative edge of clock and hence used to infer the state
register sequential logic.

3. Third procedural always block is sensitive to the changes on Current_state and
used to infer the combinational logic. This is true for the Moore machine.

4. For the Mealy machine, third procedural always block is sensitive to the changes
on Current_state as well as input and used to infer the combinational logic.

Table 14.1 illustrates the important differences between Moore and Mealy
machines.

The template shown in Fig. 14.3 is useful and gives information about the steps
and declaration for the FSM coding.

The practical FSM for the toggle flip-flop is designed using the three procedural
block always blocks. The Example 1 describes the efficient Verilog RTL for state
transition Table 14.2. The state table is used to describe the state transition on the
active clock edge.

Table 14.2 State transition
table for the toggle flip-flop

current_state next_state

0 1

1 0
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2. Declare the state variables using parameter, for
FSM  has two states then declare 
parameter s0;
parameter s1;

3. Declare the intermediate variable net data type reg for the next 
state and current state. For Example, for one bit data type declare: 

reg current_state;
reg next_state;

//Use non-blocking assignment to code the sequential state register 
logic

4. Code the state register logic sensitive to the edge, for example:
always@ (posedge clk , negedge reset_n)
begin

//Functionality of state register logic

end

//Use the blocking assignments to code the next state combina-
tional logic

5. Code the next state logic, which is sensitive to level, for example
always @ (*) 
begin
case (current_state)

1. Declare module having the FSM name and list the inputs and 
outputs.
module FSM_NAME(  // input output list);

Fig. 14.3 Steps for efficient FSM Verilog RTL coding
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//Functionality of the next state logic
endcase
end
//Use the blocking assignment to code the combinational output 
logic

6. Code the output logic which is sensitive to level, for example
always @ (current_state)// For Moore machine
always@(current_state, input) // For Mealy machine
begin
case (current_state)
//Functionality of the output logic
endcase
end

Fig. 14.3 (continued)
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//////////////////////////////////////////////////////////////////////////////

//FSM of the toggle flip-flop  
module toggle_flip_flop_fsm ( 
input clk, 
input reset_n, 
output  reg y_out ); 

The input and outputs are declared for the 
toggle flip-flop. 

Inputs are named as clk, reset_n and an out-
put is named as y_out. 

State parameters are declared as s0, s1. By 
using the net data type reg the ‘cur-
rent_state and next_state are declared.

parameter s0=0; 
parameter s1=1; 
reg current_state; 
reg next_state; 

//State register logic 
always@ (posedge clk , negedge reset_n) 
begin 
if (~reset_n) 
    current_state <= s0;  
else 
    current_state <= next_state;  
 end   

//Next state combina onal logic 
always @ (current_state) 
begin 
 case (current_state)  
 s0 : next_state = s1;  
 s1 : next_state =s0; 
 default : next_state =s0; 
 endcase 
 end 

The state register sequen al block is sensi ve to 
posi ve edge of clock. 

During reset condi on current_state is assigned 
to ‘s0’ and during normal opera on the 
next_state is assigned to current_state 

The next state logic combina onal block is sensi ve 
to the current_state for the toggle flip-flop. 

The func onality is described by using the case con-
struct. Please refer the state transi on table

Example 1 Verilog RTL for toggle flip-flop
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The synthesized logic for the toggle flip-flop is shown in Fig. 14.4, and it infers
the state register triggered on the positive edge of clock and having active low
asynchronous reset ‘reset_n’. Due to use of the case construct, the decoding logic is
inferred, and the decoding logic is a NOT gate. The output is available at y_out, and
the output toggles on every positive edge of clock clk.

//Output combina onal logic 
 always@ (current_state) 
 case ( current_state) 
 s0 : y_out = 1'b0; 
 s1 : y_out =1’b1; 
default : y_out=1'b0; 
 endcase 
endmodule

The output combina onal logic is func on of the cur-
rent_state and the func onality is described using 
the case construct. During state s0 the output y_out’ 
is assigned to logic 0 and during state s1 the output 
y_out is assigned to logic 1. So, it infers the toggle 
flip-flop. 

//////////////////////////////////////////////////////////////////////////////

Example 1 (continued)

Fig. 14.4 Synthesized toggle flip-flop
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14.1.1 Level to Pulse Converter

The level-to-pulse converter partial state transition diagram is shown in Fig. 14.5;
Partial State transition diagram for mealy level to pulse converter gives information
about the state transition. As shown in the figure in the state s0, the data input
data_in is logic 0, and in the state s1, the data input data_in is logic 1. The state
transition table for the Mealy level-to-pulse converter is shown in Table 14.3.

The synthesizable Verilog RTL using three procedural always blocks is coded
and shown in the Example 2.

State s1: Input ‘data_in’ is high

State s0: input ‘data_in’ is low

Remain in State s0 for data_in =’0’ or 
y_out=’0’.

Transition to state s1 for data_in=’1’or 
y_out=’1’.

Remain in State s1 for data_in =’1’ or 
y_out=’0’.

Transition to state s0 for data_in=’0’or 
y_out=’0’.

Fig. 14.5 Partial state transition diagram for Mealy level-to-pulse converter

Table 14.3 State transition
table for the Mealy
level-to-pulse converter

data_in current_state next_state y_out

0 s0 s0 0

1 s0 s1 1

0 s1 s0 0

1 s1 s1 0
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//////////////////////////////////////////////////////////////////////////////
//Synthesizable RTL for Mealy level to pulse converter 

module level_pulse_converter ( 
input clk,
input reset_n, 
input data_in, 
output  reg y_out); 

parameter s0=0; 
parameter s1=1; 

reg current_state; 
reg next_state; 

//State register logic 
always@ (posedge clk , negedge reset_n)  
begin 
if (~reset_n) 
    current_state <= s0; 
 else  
    current_state <= next_state; 
end 

//Next state logic combina onal block 
always @ (*) 
begin 
 case (current_state) 

 s0 : if (data_in) next_state = s1; 
           else next_state=s0   ;  

The input and outputs are declared for the level 
to pulse converter. 

Inputs are declared as clk, reset_n and data_in.  
The output is declared  as y_out. 

State parameters are declared as s0, s1. By using 
the net data type reg the current_state and 
next_state are declared.

The state register sequen al block is sensi ve to 
posi ve edge of clock. 

During reset condi on current_state’is assigned 
to s0 and during normal opera on the 
next_state is assigned to current_state 

The next state logic combina onal block is sensi ve 
to the current_state for the level to pulse con-
verter. 

The func onality is coded by using the cas’ construct. 
Please refer the state transi on table 

Example 2 Verilog RTL for level-to-pulse converter
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As shown in the Verilog RTL, the output of level-to-pulse converter is function
of changes in an input data_in and current_state. The Verilog RTL infers the logic
structure as shown in Fig. 14.6.

The synthesized logic for the Mealy level-to-pulse converter is shown in
Fig. 14.7, and it infers the register logic with the combinational structure at output.
Thus, the output of Mealy level-to-pulse converter is function of the current_state
and an input data_in.

data_in

clk

D

~Q

y_out

Fig. 14.6 Level-to-pulse converter logic diagram

 s1 : if (data_in) next_state = s1;  
           else next_state=s0 ; 
default : next_state =s0; 

endcase 
 end 

//Output logic combinational block 
 always@ (*) 
 case ( current_state) 
 s0 : y_out = 1'b0;  
 s1 : if ( data_in) y_out =1; 
      else y_out = 1'b0; 
 default : y_out=1'b0; 
 endcase 
endmodule 

//////////////////////////////////////////////////////////////////////////////

The output combinational logic is function of the cur-
rent_state as well as on data_in and the func-
tionality is coded by using the case construct. 
For data_in=1 and state s1 as current_state an 
output y_out is assigned as logic 1. In the default 
state an output y_out is logic 0 and the default 
state is reset state or initialization state for the 
FSM.

Example 2 (continued)
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14.2 FSM Encoding Styles

FSM can be coded by using many styles, and practically, there are three popular
encoding styles used to code the FSMs. These styles are named as follows:

a. Binary Encoding: FSM can be described by using binary encoding styles, and
by using this style, the number of flip-flops or 1-bit registers used is equal to
log2N. Where N are number of states. Consider an FSM has four states then the
number of flip-flops equal to log24 which is equal to 2.

b. Gray Encoding: FSM can be efficiently described by using gray encoding
technique, and in this style, the gray codes are used to represent the states. The
number of flip-flops or 1-bit registers used is equal to log2N. Where N are
number of states. Consider an FSM has four states then the number of 1-bit
registers equal to log24 which is equal to 2.

c. One-hot encoding: FSMs can be efficiently coded by using one-hot encoding
style. One hot indicates that only one bit is active at a time or hot at a time. The
number of flip-flops or 1-bit registers used is equal to N. Where N are number of
states. Consider an FSM has four states then the number of flip-flops required
are equal to 4. This style requires more area, but advantage is that it has clean
register to register path, and it makes STA quite simple. If FSM has 16 states,
then one-hot encoding needs 16 flip-flops.

The comparison of different FSM encoding styles for state machine having 16
states is shown in the following Table 14.4

The encoding styles for four state FSMs is shown in Table 14.5.

Fig. 14.7 Synthesized logic for level-to-pulse converter

Table 14.4 FSM encoding style comparison

FSM Encoding Binary Gray One hot

Representation Binary number Gray number 16 bit one-hot
number

No. of 1-bit registers
(flip-flops)

4 4 16

Area Same as gray
encoding

Same as binary
encoding

More

324 14 Finite State Machines Using Verilog



14.2.1 Binary Encoding

As discussed earlier, the binary encoding style can be used if the area optimization
is the goal. In this encoding style, state parameters for the binary encoding are
represented in the binary format.

14.2.1.1 Two-Bit Binary Counter FSM

Two-bit binary counter FSM is coded and shown in the Example 3. As described in
the example, the number of states is equal to 4, and it needs four state variables s0,
s1, s2, and s3. The number of flip-flops used to represent the functionality of
counter is equal to 2.

The state transition table is shown below in Table 14.6. The state transition
diagram is shown in Fig. 14.8. The transition from one state to another state occurs
on the positive edge of clock. Default state is s0, and it is reset state.

Table 14.5 FSM state
representation

FSM states Binary Gray One hot

S0 00 00 0001

S1 01 01 0010

S2 10 11 0100

S3 11 10 1000

Table 14.6 State transition
table for binary encoding

current_state next_state

s0 = 00 s1 = 01

s1 = 01 s2 = 10

s2 = 10 s3 = 11

s3 = 11 s0 = 00

Fig. 14.8 State transition diagram for two-bit binary counter
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//////////////////////////////////////////////////////////////////////////////

//FSM of 2-bit binary up-counter 
module binary_2_bit_counter ( 
input clk,
input reset_n, 
output  reg [1:0] y_out ); 
parameter s0=2'b00; 
parameter s1=2'b01; 
parameter s2 =2'b10; 
parameter s3 = 2'b11; 

The state parameters are declared 
as so, s1, s2, s3. 

The binary encoding style is used 
and the reg data type is used 
to declare the current_state 
and next_state.  

reg [1:0] current_state; 
reg [1:0] next_state; 

//State register logic 

always@ (posedge clk , negedge reset_n) 
begin 
 if (~reset_n)  
    current_state <= s0; 
 else  
    current_state <= next_state; 
 end 

//Next state combina onal logic 
always @ (current_state) 
begin 
 case (current_state) 
 s0 : next_state = s1; 
 s1 : next_state =s2; 
 s2 : next_state =s3; 
 s3 : next_state =s0;  
 default : next_state =s0; 
 endcase 
 end 

The state register sequen al block is sensi ve to 
posi ve edge of clock. 

During reset condi on current_state is assigned 
to s0 and during normal opera on the 
next_state is assigned as  current_state 

The next state logic combina onal block is sensi ve 
to the current_state for the two-bit binary coun-
ter 

The func onality is coded by using the case con-
struct. Please refer the state transi on table. 
Default state is s0. 

Example 3 Verilog RTL for two-bit binary counter
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The synthesized logic for the two-bit binary counter is shown in Fig. 14.9. As
shown in the figure, the state register is triggered on the positive edge of the clock
and has active low asynchronous reset reset_n. The output combinational logic is
decoding structure due to the use of case construct’.

The state machine coded works on the positive edge of the clock and generates
an output sequence as 00, 01, 10, 11, 00…. Fig. 14.10 shows the output sequence
advanced on the rising edge of the clock during reset_n = 1 duration.

Fig. 14.9 Synthesized logic for two-bit counter

 //Output combina onal logic 
 always@ (current_state) 
 case ( current_state) 
 s0 : y_out = 2'b00; 
 s1 : y_out = 2'b01; 
 s2 : y_out = 2'b10; 
 s3 : y_out = 2'b11; 
 default : y_out=2'b00; 

The output combina onal logic is func on of the cur-
rent_state and the func onality is described using 
the case construct. For example, state s1 as cur-
rent_state an output y_out is assigned as binary 
01. In the default state an output y_out is binary 00 
and the default state is reset state or ini aliza on 
state for the FSM.  endcase 

endmodule 

//////////////////////////////////////////////////////////////////////////////

Example 3 (continued)
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14.2.2 Gray Encoding

As discussed earlier, the gray encoding style can be used if the area requirement is a
constraint on the design. In this encoding style, state parameters are represented in
the gray format.

14.2.2.1 Two-Bit Gray Counter FSM

Two-bit gray counter FSM is coded using synthesizable Verilog constructs and
shown in the Example 4. As shown in the example, the number of states is equal to
4 and has four state variables s0, s1, s2, and s3. The number of flip-flops used to
design the functionality of counter is equal to 2.

The state transition table is shown below in Table 14.7. The state transition
diagram is shown in Fig. 14.11. The transition from one state to another state
occurs on the positive edge of clock. Default state is s0, and it is reset state.

Fig. 14.10 Simulation result of FSM of two-bit binary counter

Table 14.7 State transition
table for gray encoding

current_state next_state

s0 = 00 s1 = 01

s1 = 01 s3 = 11

s3 = 11 s2 = 10

s2 = 10 s0 = 00

328 14 Finite State Machines Using Verilog



The synthesized logic for the two-bit gray counter is shown in Fig. 14.12. As
shown in the figure, the state register is sensitive to the positive edge of the clock
and has active low asynchronous reset reset_n. The output combinational logic is
decoding structure and inferred due to the use of the case construct’.

The state machine coded works on the positive edge of the clock and generates
an output sequence as 00, 01, 11, 10, 00…. Fig. 14.13 shows the output sequence
advanced on the rising edge of the clock to get the next gray number during
reset_n = 1 duration.

Fig. 14.11 State transition diagram for gray encoding

Fig. 14.12 Synthesized logic for the gray encoding style
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//////////////////////////////////////////////////////////////////////////////

//FSM for 2-bit gray counter 
module gray_counter (  
input clk,
input reset_n, 
output  reg [1:0] y_out );  
parameter s0=2'b00; 
parameter s1=2'b01; 
parameter s2 =2'b10; 
parameter s3 = 2'b11; 
reg [1:0] current_state; 
reg [1:0] next_state; 

//State register logic 
always@ (posedge clk , negedge reset_n)  
begin 
 if (~reset_n) 
    current_state <= s0; 
 else  
    current_state <= next_state; 
 end   

//Next state combina onal logic 

The state parameters are declared as so, s1, 
s2, s3. 

The gray encoding style is used and the reg 
data type is used to declare the cur-
rent_state and next_state.  

The state register sequen al block is sensi ve to 
posi ve edge of clock. 

During reset condi on current_state is assigned 
to s0 and during normal opera on the 
next_state  is assigned to current_state 

always @ (current_state)  
begin 
 case (current_state) 
 s0 : next_state = s1;  
 s1 : next_state =s3; 
 s3 : next_state =s2;  
 s2 : next_state =s0; 
default : next_state =s0; 
endcase 
 end 
 //Output combina onal logic 
 always@ (current_state) 
 case ( current_state) 
 s0 : y_out = 2'b00; 
 s1 : y_out = 2'b01; 
 s3 : y_out = 2'b11; 
 s2 : y_out = 2'b10; 
 default : y_out=2'b00; 
 endcase 
endmodule 

//////////////////////////////////////////////////////////////////////////////

The output combina onal logic is func on of the cur-
rent_state and the func onality is coded by using 
the case construct. For example, state s3 as cur-
rent_state an output y_out is assigned to binary 11. 
In the default state an output y_out is binary 00
and the default state is reset state or ini aliza on 
state for the FSM. 

The next state logic combina onal block is sensi ve 
to the current_state  for the two-bit gray coun-
ter 

The func onality is coded by using the case con-
struct. Please refer the state transi on table. 
Default state is s0. 

Example 4 Verilog RTL with gray encoding style
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14.3 One-Hot Encoding

Two-bit counter FSM using one-hot encoding is coded and shown in the Example
5. As shown in the example, the number of states is equal to 4, and it needs four
state variables, namely s0, s1, s2, and s3. The number of flip-flops used to design
the functionality of counter is equal to 4 as one-hot encoding style is used.

The state transition is shown in Table 14.8. The transition from one state to
another state occurs on the positive edge of clock. Default state is s0, and it is reset
state.

The synthesized logic for the two-bit binary counter using one-hot encoding is
shown in Fig. 14.14. As shown in the figure, the state register is sensitive to the
positive edge of the clock and has active low asynchronous reset reset_n. This
encoding method uses the four flip-flops to infer the design. The output combi-
national logic is decoding structure to generate 2-bit output using the case
construct’.

The state machine coded works on the positive edge of the clock and generates
an output sequence as 00, 01, 10, 11, 00…. Fig. 14.15 shows the output sequence
advanced on the rising edge of the clock during reset_n = 1 duration. The encoding
style used is one-hot encoding.

Fig. 14.13 Simulation result of FSM of two-bit gray counter
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//////////////////////////////////////////////////////////////////////////////

//FSM for one-hot encoding 
module one_hot_encoding (  
input clk,
input reset_n, 
output  reg [1:0] y_out); 
parameter [3:0]  s0=4'b0001;  
parameter [3:0] s1=4'b0010; 
parameter [3:0] s2 =4'b0100; 
parameter [3:0] s3 = 4'b1000; 
reg [3:0] current_state; 
reg [3:0] next_state; 

//State register logic 
always@ (posedge clk , negedge reset_n) 
begin 
if (~reset_n) 

The state parameters are declared 
as so, s1, s2, s3. 

The one-hot encoding style is used 
and the reg data type is used 
to declare the current_state 
and next_state. The reg is 4 
bit wide. 

The state register sequen al block is sensi ve to 
posi ve edge of clock. 

During reset condi on current_state is assigned 
to s0 and during normal opera on the 
next_state is assigned to current_state 

    current_state <= s0;  
 else  
    current_state <= next_state; 
 end   

//next state logic 
always @ (current_state) 
begin  
 case (current_state) 
 s0 : next_state =s1; 
 s1 : next_state =s2; 
 s2 : next_state =s3; 
 s3 : next_state =s0; 
 default : next_state =s0; 
 endcase 
 end 

//Output combina onal logic 
 always@ (current_state) 
 case ( current_state) 
 s0 : y_out = 2'b00; 
 s1 : y_out = 2'b01; 
 s2 : y_out = 2'b10; 
 s3 : y_out = 2'b11; 
default : y_out=2'b00; 
 endcase 
endmodule 

//////////////////////////////////////////////////////////////////////////////

The output combina onal logic is func on of the cur-
rent_state and the func onality is coded by using 
the case construct. For example, state s3 as cur-
rent_state an output y_out is assigned to binary 11. 
In the default state an output y_out is binary 00 
and the default state is reset state or ini aliza on 
state for the FSM. 

The next state logic combina onal block is sensi ve 
to the current_state for the two-bit binary 
counter 

The func onality is coded by using the case con-
struct. Please refer the state transi on table. 
Default state is s0. 

Example 5 Verilog RTL for one-hot encoding
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Table 14.8 State transition table for one-hot encoding

current_state next_state

s0 = 0001 s1 = 0010

s1 = 0010 s2 = 0100

s2 = 0100 S3 = 1000

s3 = 1000 s0 = 0001

Fig. 14.14 Synthesized logic for one-hot encoding

Fig. 14.15 Simulation result of FSM of two-bit binary counter using one-hot encoding
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14.4 Sequence Detectors Using FSMs

FSMs are used to code the functionality of sequence detectors. The efficient RTL
coding using Verilog is used in the practical scenario to get the correct output for
the desired sequence. Depending on the requirements, either Moore or Mealy
machines can be used to detect the correct sequence.

14.4.1 Mealy Sequence Detector Using Two always
Procedural Blocks

The state transition table for the sequence detector is shown below with the desired
output (Table 14.9).

The synthesizable Verilog RTL is shown in the Example 6 to detect the sequence
1010.

The state machine coded works on the positive edge of the clock and has active
low asynchronous reset and used to detect the sequence 1010. Fig. 14.16 shows the
output sequence to detect the sequence 1010 during reset_n = 1 duration. The
encoding style used is binary encoding.

The synthesizable Mealy machine sequence detector infers the state register
sequential logic having two flip-flops and combinational decoding logic. In the
design of Mealy sequence detector an output is function of the state, and input
changes. The synthesized logic is shown in Fig. 14.17.

Table 14.9 State transition
table for sequence detector

Current_state Input Next_state output

S0 = 00 1 S1 = 01 2’b00

S1 = 01 0 S2 = 10 2’b01

S2 = 10 1 S3 = 11 2’b10

S3 = 11 0 S0 = 00 2’b11
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//////////////////////////////////////////////////////////////////////////////

//sequence detector to detect 1010 
module sequence_detector_1010 ( 
input clk, data_ in, reset_n, 
output reg [1:0] y_ out ); 
reg [1:0] state; // Declare state register 
parameter S0 = 0, S1 = 1, S2 = 2, S3 = 3; // Declare states 

always @ (posedge clk , negedge reset_n) 
begin 
if (~reset_n) 
state <= S0; 
else 
case (state) 
S0: if (data_in)  
begin 
state <= S1; 
end 
else begin 
state <= S0; 
end 
S1: if (~data_in)  
begin  
state <= S2; 
end 
else  
begin 
state <= S1; 
end 
S2: if (data_in)                             
 begin 
state <= S3; 
end 
else  
begin 
state <= S2; 
end 
S3: if (~data_in)  
begin 
state <= S0; 
end 
else  
begin 
state <= S3; 

The state register sequen al block is sen-
si ve to posi ve edge of clock. 

During reset condi on state is assigned 
to S0 and during normal opera on 
the state is assigned to desired 
state. Please refer the state transi-

on table 

Example 6 Verilog RTL for the sequence detector
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end 
endcase 
end 

always @ (state , data_in) 
begin 
case (state) 
S0: y_out = 0;                                         
S1: y_out = 0; 
S2: y_out =0; 
S3: if (~data_in)  
y_out = 1; 
else 
y_out = 0; 
endcase 
end 
endmodule 

//////////////////////////////////////////////////////////////////////////////

The output combina onal logic is func-
on of the state as well as data input 

data_in and the func onality is de-
scribed using the case construct. For 
example, state s3 as current_state 
an output y_out is assigned to binary  
11 if data input data_in=0, if 
data_in=1 then output is assigned to 
00. In the default state an output 
y_out is binary 00 and the default 
state is reset state or ini aliza on 
state for the FSM. 

Example 6 (continued)

Fig. 14.16 Simulation result of FSM to detect sequence 1010
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14.4.2 Mealy Machine: Sequence Detector to Detect 101
Overlapping Sequence

Another Mealy machine sequence detector to detect the overlapping sequence 101
is shown in the state diagram Fig. 14.18. For the overlapping sequence of 101 also,
this works and generates an output y_out = 1 after detecting the sequence 101. The
state transition table is shown in Table 14.10.

As shown in Table 14.10, the Mealy machine output y_out is active high when
input sequence 101 is detected. Output is function of the current state and changes
in the input.

The Verilog RTL for the Mealy sequence detector is shown in the Example 7.
The inferred logic uses the two flip-flops and LUTs for the combinational logic

and shown in Fig. 14.19.

Fig. 14.17 Synthesized logic for sequence detector
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The state machine coded works on the positive edge of the clock and has active
low asynchronous reset and used to detect the overlapping sequence 101.
Fig. 14.20 shows the output to detect the sequence 101 during reset_n = 1 duration.
The encoding style used is binary encoding.

Fig. 14.18 Mealy machine
state diagram for 101
sequence

Table 14.10 State transition
table for sequence detector
101

Input Current _state Next_state output

1 S0 S1 0

0 S1 S2 0

1 S2 S1 1
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////////////////////////////////////////////////////////////////////////////// 

//Mealy FSM to detect 101 overlapping sequence 

module sequence_detector_101 ( 

input clk,
input reset_n, 
input data_in, 
output reg y_out); 
parameter s0=2'b00; 
parameter s1=2'b01; 
parameter s2 =2'b10; 
reg [1:0] current_state; 
reg [1:0] next_state; 

//State register logic 

always@ (posedge clk , negedge reset_n) 
begin 
 if (~reset_n)  
    current_state <= s0; 

The state register sequential block is sensitive to 
positive edge of clock. 

During reset condition current_state is assigned 
to ‘s0’ and during normal operation the 
next_state  is assigned to current_state 

 else  
    current_state <= next_state; 
 end   

//Next state combinational logic 
always @ (current_state, data_in) 
begin 
 case (current_state) 
 s0 : if (data_in) next_state = s1; 

else next_state=s0; 
 s1 : if (~data_in) next_state =s2; 

else next_state=s1; 
 s2 : if (data_in) next_state =s1; 

else next_state=s0; 
 default : next_state =s0; 
endcase 
 end 

 //Output combinational logic 
always@ (current_state, data_in) 
 case ( current_state)
 s0 : y_out = 0; 
 s1 : y_out = 0; 
 s2 : if (data_in) y_out=1; 

The next state logic combinational block is sensitive 
to the current_state as well as data_in for the 
sequence detector. 

The functionality is coded by using the case construct. 
Please refer the state transition table. Default 
state is s0.

The output combinational logic is function of the cur-
rent_state and the functionality is coded by using 
the case construct. For example, state s2 as cur-
rent_state then if data_in is logic 1 then output 
y_out is assigned as logic 1.  The default state is re-
set state or initialization state for the FSM. 

Example 7 Sequence detector example to detect overlapping 101 sequence
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14.5 Improving the Design Performance for FSMs

The objective or goal during the FSM coding is efficient synthesis and better design
timing. The reusability and use of the state encoding is another important point RTL
designer needs to focus. Even the coding style should be compact as well as
readable.

The following are important guidelines used to improve the FSM performance.

a. Do not use the single always block FSM. As the issue is in readability and it
doesn’t yield in the efficient synthesis results.

b. Use multiple procedural block FSMs. In practical ASIC designs, two or three
always block FSMs are used as it improves the readability and reusability, and
even it yields into the efficient synthesis results.

else y_out=0; 
 default : y_out=2'b0; 
endcase 
endmodule 

//////////////////////////////////////////////////////////////////////////////

Example 7 (continued)

Fig. 14.19 Synthesis result of sequence detector 101 for mealy FSM
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c. Declare the state parameters according to the required state encoding, and then,
declare the next_state and current_state.

d. Use non-blocking assignments for coding the state register logic.
e. Use blocking assignments for coding the next state combinational logic.
f. Use blocking assignments for coding the output combinational logic.
g. Include the default condition in the case construct to avoid the unintentional

latches.
h. While using the if-else construct, the number of transitions in the state diagram

should be same as number of if-else conditions.
i. Register the FSM outputs as it ensures that an output is glitch free.
j. For better and efficient synthesis outcome, use the one-hot encoding method.

14.6 Exercises

The exercises are based on the understanding of synthesizable Verilog constructs.
Complete the exercises for better understanding and application of Verilog
constructs.

1. Design the Moore FSM to detect the sequence 101. Use three always block
FSMs.

2. Perform the simulation to check for the functional correctness of the design.
3. Perform the synthesis to find out the resources used.

Fig. 14.20 Simulation result of FSM to detect sequence 101
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14.7 Summary

As discussed in this chapter, the following are important points to conclude the
chapter.

1. FSMs are coded very efficiently by using Verilog RTL for better synthesis
outcome.

2. FSMs are of two types: Moore and Mealy.
3. In the Moore type FSMs, the output is function of current state only.
4. In the Mealy FSMs, the output is function of current state as well as inputs.
5. FSM encoding styles are binary, gray, and one hot.
6. One-hot encoding style is used for glitch-free outputs and yields the better and

clean synthesis.
7. In ASIC designs, two or three always block FSMs are used to generate efficient

synthesis.
8. Register the FSM outputs as it ensures that an output is glitch free.
9. For better and efficient synthesis outcome, use the one-hot encoding method.

10. Use non-blocking assignments for coding the state register logic.
11. Use blocking assignments for coding the next state combinational logic.
12. Use blocking assignments for coding the output combinational logic.
13. Include the default condition in the case construct to avoid the unintentional

latches.
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Chapter 15
Non-synthesizable Verilog Constructs
and Testbenches

The chapter discusses about the inter-delay, intra-delay assignments and other non-
synthesizable constructs useful during the testbenches. The chapter is useful to understand
about the non-synthesizable constructs and how to check for the functional correctness of
the design.

As discussed in the previous chapters, we have used the synthesizable Verilog
constructs during the RTL design. During the RTL verification phase, the objective
is to check for the functional correctness of the design using non-synthesizable
constructs. The following few sections are useful to understand the use of
non-synthesizable constructs during design verification.

15.1 Intra-delay and Inter-delay Assignments

The RTL design using Verilog should be verified to check for the functional
correctness of the design. To verify the RTL design functionality, the testbench
needs to be coded using the non-synthesizable Verilog constructs. Please refer
Appendix III for the non-synthesizable Verilog constructs.

15.1.1 Simulation for Blocking Assignments

Consider the Verilog code having the blocking assignments without the delay and
shown in Example 1.
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In Example 1, the procedural always block executes every time on the event on
the clock clk. The initial block executes only once and used to update the values of
a, b, c, and d. The simulation result is shown in the following Waveform 1.

//////////////////////////////////////////////////////////////////////////////// 

module test_design; 

reg clk; 

reg [7:0] a,b,c,d; 

always #10 clk = ~clk; 

always@(posedge clk)

begin 

      a=b+c; 

      b=a+d; 

      c=a+b; 

end 

ini al  

begin 

     clk=0; 

     a=8'h2; 

     b=8'h3; 

     c=8'h4; 

     d=8'h5; 

end 

endmodule 

//////////////////////////////////////////////////////////////////////////////// 

Example 1 Simulation of Verilog blocking assignment
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15.1.2 Simulation of Non-blocking Assignments

Consider theVerilog code having the non-blocking assignments shown in Example 2.

Waveform 1 Simulation result for Verilog blocking assignment

//////////////////////////////////////////////////////////////////////////////// 

module test_design; 

reg clk; 

reg [7:0] a,b,c,d; 

always #10 clk = ~clk; 

always@(posedge clk)

begin 

      a <=b+c; 

      b <=a+d; 

      c <=a+b; 

end 

ini al  

begin 

     clk=0; 

     a=8'h2; 

     b=8'h3; 

     c=8'h4; 

     d=8'h5; 

end 

endmodule

//////////////////////////////////////////////////////////////////////////////// 

Example 2 : Simulation for Verilog non-blocking assignment
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The simulation result for Example 2 is shown in the following Waveform 2.

15.2 The always and initial Procedural Block

We have discussed about the use of the always procedural block to code the RTL
design. The initial procedural block is used in the testbenches to generate stimulus
at various time stamp.

The difference in the initial and always block is documented in Table 1.

15.2.1 Blocking Assignments with Inter-assignment Delays

In the inter-assignment delays with the blocking assignment, it delays both the
evaluation of the assignment and update of the assignment.

Consider the Verilog code shown in Example 3.

Waveform 2 Simulation result for Verilog non-blocking assignment

Table 1 Difference between initial and always block

Initial Always

In this block assignment executes in the
0-simulation time and continues for the next
specified sequence

In this block assignments continues to
execute in simulation time 0 and repeats
forever depending on the sensitivity list
event

This block is executed only once, and the
simulation stops at the end of this block

The simulation in this block continues
forever. If wait construct is there, then it will
be held during simulation session

It is non-synthesizable construct It is synthesizable construct
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The following Waveform 3 is useful to understand the simulation results for the
blocking assignment having the inter-assignment delays.

///////////////////////////////////////////////////////////////////////

module test_design; 

reg clk; 

reg [7:0] a,b,c,d; 

always #10 clk = ~clk; 

always@(posedge clk)

begin 

b=a+a; 

#3 c=b+a; 

#1 d=c+a; 

end 

ini al 

begin 

      clk =0; 

      a=4; 

      b=3; 

      c=2; 

     d=5; 

end 

endmodule  

/////////////////////////////////////////////////////////////////////// 

Example 3 Verilog blocking assignment with inter-assignment delay
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15.2.2 Blocking Assignments with Intra-assignment Delays

In the intra-assignment delays with the blocking assignment, it delays the evalua-
tion of the assignment but not the update of the assignment.

Consider the Verilog code shown in Example 4.
The Waveform 4 gives the simulation results for the blocking assignment with

the intra-assignment delays.

Waveform 3 Simulation result for the Verilog blocking assignment with inter-assignment delay
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Waveform 4 Simulation result for the Verilog blocking assignment with intra-assignment delay

///////////////////////////////////////////////////////////////////////

module test_design; 

reg clk; 

reg [7:0] a,b,c,d; 

always #10 clk = ~clk; 

always@(posedge clk)

begin 

b=a+a; 

 c= #3  b+a; 

d= #1 c+a; 

end 

ini al 

begin 

      clk =0; 

      a=4; 

      b=3; 

      c=2; 

     d=5; 

end 

endmodule  

////////////////////////////////////////////////////////////////////////////// 

Example 4 Verilog blocking assignment with intra-assignment delay
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15.2.3 Non-blocking Assignments with Inter-assignment
Delays

Using the intra-assignment delays with the non-blocking assignment, it delays both
the evaluation of the assignment and the update of the assignment.

Consider the Verilog code shown in Example 5.

/////////////////////////////////////////////////////////////////////// 

module test_design; 

reg clk; 

reg [7:0] a,b,c,d; 

always #10 clk = ~clk; 

always@(posedge clk)

begin 

b  <=a+a; 

#3  c   <=   b+a; 

#1 d  <=  c+a;

end 

ini al 

begin 

      clk =0; 

      a=4; 

      b=3; 

      c=2; 

     d=5; 

#25 

      a=4; 

      b=3; 

      c=2; 

     d=5; 

end 

endmodule  

/////////////////////////////////////////////////////////////////////// 

Example 5 Verilog non-blocking assignment with inter-assignment delay
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The Waveform 5 gives the simulation results for the non-blocking assignment
with the inter-assignment delays.

15.2.4 Non-blocking Assignments with Intra-assignment
Delays

In the intra-assignment delays with the blocking assignment, it delays the update of
the assignment but not the evaluation of the assignment.

Consider the Verilog code shown in Example 6.
The Waveform 6 gives the simulation results for the non-blocking assignment

with the intra-assignment delays.

Waveform 5 Simulation result for the Verilog non-blocking assignment with inter-assignment
delay
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///////////////////////////////////////////////////////////////////////

module test_design; 

reg clk; 

reg [7:0] a,b,c,d; 

always #10 clk = ~clk; 

always@(posedge clk)

begin 

b  <=a+a; 

 c   <= #3  b+a; 

d  <= #1 c+a; 

end 

ini al 

begin

      clk =0; 

      a=4; 

      b=3; 

      c=2; 

     d=5; 

#25 

      a=4; 

      b=3; 

      c=2; 

     d=5; 

end 

endmodule  

/////////////////////////////////////////////////////////////////////// 

Example 6 Verilog non-blocking assignment with intra-assignment delay
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15.3 Role of Testbenches

In Chaps. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14, we have discussed about the
RTL design synthesis and logic inferred. Verilog HDL is powerful for the simu-
lation of the design. By using non-synthesizable constructs, the Verilog Design
Under Verification (DUV) can be verified to find out functional correctness of the
design. Consider Verilog Design of BCD up–down counter having inputs as clk and
reset_n. The counter has four-bit output q_out [3:0]. The RTL description of BCD
counter is shown in Example 7.

The testbench to test the functional correctness of the BCD up–down counter
should generate the stimulus at the clk, reset_n, and at up_down. The objective is to
monitor the count at the output. The testbench using the non-synthesizable con-
structs is shown in Example 8 and uses to pass the stimulus to the UUT, where
UUT is Unit Under Test.

The testbench generates the results shown in the followingWaveform 7. As shown
the counter counts from 0 to 9 for up_down = 1 and from 9 to 0 for up_down = 0.

As discussed above, the basic simulation can be carried out by coding the
testbench which can force the stimulus to the design under test. For the moderate
complex FPGA designs this approach can work. But for large density SOC designs
it is essential to use the sophisticated self-checking testbenches. It is essential for the
verification engineer to understand about the creation of the test cases, test plans,
and test vectors. Even the best industry practice is use of the verification archi-
tectures which has components like drivers, monitors, and checkers. This discussion
is out of scope and reader can refer the RTL verification books and other literature.

Waveform 6 Simulation result for the Verilog non-blocking assignment with intra-assignment
delay
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//////////////////////////////////////////////////////////////////////////////

module bcd_up_down_counter ( 

                           input clk, reset_n, 

                           input up_down , 

                           output reg [3:0] count  

                             );                             

always @ (posedge clk, negedge reset_n) 

begin 

    if ( ~reset_n)     

    count <= 4'b0000;     

    else      

if ( up_down)          

if ( count == 4'b1001)             

            count <= 4'b0000;             

            else              

            count <= count + 1; 

       else         

if ( count == 4'b0000)                    

                   count <= 4'b1001;                    

                   else                     

                   count <= count - 1;                    

 end                              

endmodule 

//////////////////////////////////////////////////////////////////////////////

Example 7 Four-bit BCD up–down counter Verilog RTL
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//////////////////////////////////////////////////////////////////////////////

//Verilog testbench to pass the data to up_down,  reset_n and clk to BCD 
counter 

` mescale 1ns/1ps 

module test_BCD_counter; 

reg clk; 

reg reset_n; 

reg up_down; 

wire [3:0] count; 

bcd_up_down_counter UUT ( 

                            .clk (clk),  

                            .reset_n(reset_n), 

                            .up_down(up_down) , 

                            .count(count) 

);

 always #10 clk= ~clk;  

 always #200 up_down = ~up_down;  

ini al 

 begin 

clk=0; 

reset_n=0; 

up_down = 0;   

#25;   

reset_n = 1;   

#400; 

reset_n = 0;   

 end        
endmodule 

//////////////////////////////////////////////////////////////////////////////

Example 8 Testbench to check for the functional correctness of the BCD up–down counter

15.3 Role of Testbenches 355



15.4 Multiple Assignments Within the begin–end

If multiple assignments need to be included within the procedural block, then we
need to have the begin..end. All the blocking assignments within begin..end are
executed sequentially.

Consider the testbench (Example 9) which has the multiple assignments within
the initial and always procedural block.

As shown in Example 9 a = 1 at 30 ns and b = 1 at 20 ns, these blocking
assignments are executed sequentially as they are included within begin..end. The
simulation waveform is shown in Fig. 15.1, as first rising edge of clock is at 10 ns,
the a = 1 at 40 ns and b = 1 at 40 + 20 = 60 ns.

Waveform 7 Simulation result of BCD up–down counter
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//////////////////////////////////////////////////////////////////////////////  

module mul ple_assignments_begin_end; 

reg clk; 

reg a;

 reg b ;     

always #10 clk=~clk; 

ini al 

    begin 

       clk=0; 

        a = 0; 

        b = 0;  

    end 

    always @(posedge clk)

begin 

        #30 a = 1; 

        #20 b = 1; 

end            

endmodule 

////////////////////////////////////////////////////////////////////////////// 

Example 9 Verilog testbench which uses begin–end within always procedural blocks

Fig. 15.1 Simulation result for Example 9
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15.5 Multiple Assignments Within the fork–join

If multiple assignments need to be included within the procedural block then if we
have the fork..join. All the blocking assignments within fork..join are executed
concurrently.

Consider the testbench (Example 10) which has the multiple assignments within
the initial and always procedural block.

//////////////////////////////////////////////////////////////////////////////  

module fork_join; 

reg clk; 

reg a;

reg b ;     

always #10 clk=~clk; 

    ini al 

    begin 

        clk=0; 

        a = 0; 

        b = 0;  

end 

    always @(posedge clk)

fork 

        #30 a = 1; 

        #20 b = 1; 

join             

endmodule 

/////////////////////////////////////////////////////////////////////////////

Example 10 Verilog testbench which uses fork–join within always procedural blocks
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As shown in Fig. 15.2, a = 1 at 30 ns and b = 1 at 20 ns so these blocking
assignments are executed concurrently as they are included within fork..join. The
simulation waveform is shown in Fig. 15.2, as first rising edge of clock is at 10 ns,
the b = 1 at 30 ns and a = 1 at 40 ns.

15.6 Display Tasks

If the RTL design has hundreds of the inputs and outputs, then using the waveforms
it becomes difficult and time consuming to check for the functional correctness of
the design. In such scenarios, we need to use the display tasks such as $monitor,
$display, and $strobe to print the result. The testbench which uses these display
tasks is shown in Example 11.

Fig. 15.2 Simulation result of Example 10
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    a <= 0; 

    b <= 0; 

    c <= 0; 

    y <= 0; 

    // at the end of the 10ns let us update the a=1 and c=1 

    #10  a <= 1; 

     c <= 1; 

// $display the display task prints the value of the a,b,c,y in the order they 
appear   

$display (" me=%0t a=%0b b=%0b c=%0b y=%0b", $time, a, b, c, y); 

// to print the values at the end of the current me stamp 

$strobe (" me=%0t a=%0b b=%0b c=%0b y=%0b", $time, a, b, c, y); 

// wait for the 10ns and a er that assign    

#10  y <=  a & b ^ c; 

// To display the values automa cally when variable or the expression 
value changes 

$monitor (" me=%0t a=%0b b=%0b c=%0b y=%0b", $time, a, b, c, y); 

end   

endmodule 

//////////////////////////////////////////////////////////////////////////////  

//////////////////////////////////////////////////////////////////////////////  

module tb_design; 

reg a, b, c, y; 

initial  

begin     

    // let us ini alize all signals to zero at me unit 0ns 

Example 11 Use of display tasks to print the values at various time stamp
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The $display is used to print the value immediately.
The $strobe is used to print the value at the current time stamp.
The $monitor to display the changes in the values at the end of every time stamp.

The result of example is shown below, and the simulation waveform is shown in
Fig. 15.3.

me=10000 a=0 b=0 c=0 y=0
me=10000 a=1 b=0 c=1 y=0
me=20000 a=1 b=0 c=1 y=1

Fig. 15.3 Simulation result of Example 11
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15.7 Exercises

The exercises are based on the understanding of non-synthesizable Verilog con-
structs. Complete the exercises for better understanding and application and use of
Verilog constructs.

always@(posedge clk)

begin 

b  <=a+a; 

 c   <= #5 b+a; 

d  <= #2 c+a; 

end 

initial 

begin

      clk =0; 

a=3; 

b=4; 

      c=2; 

///////////////////////////////////////////////////////////////////////

module test_design; 

reg clk; 

reg [7:0] a,b,c,d; 

always #10 clk = ~clk; 

1. Find the output values a,b,c,d at various time stamp  
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//////////////////////////////////////////////////////////////////////////////  

module mul ple_assignments_begin_end; 

reg clk; 

reg a;

 reg b ;     

always #10 clk=~clk; 

ini al 

    begin 

       clk=0; 

        a = 0; 

        b = 0;  

    end 

    always @(posedge clk)

2. Find a,b at various me stamp 

     d=5; 

#25 

      a=4; 

      b=3; 

      c=2; 

     d=5; 

end 

endmodule  

/////////////////////////////////////////////////////////////////////// 
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//////////////////////////////////////////////////////////////////////////////  

module mul ple_assignments_begin_end; 

reg clk; 

reg a;

 reg b ;     

always #10 clk=~clk; 

ini al 

    begin 

       clk=0; 

        a = 0; 

        b = 0;  

    end 

    always @(posedge clk)

fork 

        #20 a = 1; 

        #40 b = 1; 

join 

endmodule 

////////////////////////////////////////////////////////////////////////////// 

3. Find a,b at various me stamp 

begin 

        #20 a = 1; 

        #40 b = 1; 

end            

endmodule 

////////////////////////////////////////////////////////////////////////////// 
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15.8 Summary

Following are few of the important points to conclude the chapter.

1. To verify the RTL design functionality, the testbench need to be coded using the
non-synthesizable Verilog constructs.

2. Testbench is driver to drive the stimulus to design under test.
3. During the simulation, we can use inter- or intra-delay assignments.
4. The initial block is executed only once, and the simulation stops at the end of

this block.
5. The simulation in the always block continues forever. If wait construct is there,

then it will be held during simulation session.
6. The display tasks such as $monitor, $display, and $strobe and used to print the

result
7. Blocking assignments included within begin..end executes sequentially.
8. Blocking assignments within the fork..join executes concurrently.
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Chapter 16
FPGA Architecture and Design Flow

Programmable logic devices are used to realize the complex logic. Due to programmable
features, the modern high-density FPGAs are used to prototype the complex ASICs and
SOCs. This chapter discusses about the FPGA architecture, design flow, and the simulation
using the FPGA.

Most of the time we use the FPGA as a programmable logic to realize the complex
ASICs and SOCs. The chapter is useful to understand about the FPGA design flow.
The chapter is useful to understand about the PLD classification and programmable
features and their use during the prototype phase.

16.1 Introduction to PLD

During the past decade, the programmable logic devices (PLD) market has grown,
and the demand of the PLDs has increased as they are useful to realize high-density
logic and to prototype the new ideas. The chip which has programmable features
and can be programmed is treated as PLD. The PLD is also named as filed pro-
grammable device (FPD). FPDs are used to implement the complex digital logic,
where the functionality of the integrated circuit can be configured by the user to
realize the designs. The programming functionality of such integrated circuit is
accomplished by using the vendor-specific or EDA tools.

The first programmable chip introduced in the market was programmable
read-only memory (PROM). PROM has number of address lines and data lines.
Address lines are used as logic circuit inputs, and data lines are used as logic circuit
output. The PROM has inefficient architecture and cannot be used to realize the
complex digital logic.

The first programmable device introduced later to PROM during 1970s is PLA
which has two levels of logic and used to realize the small density logic. After
evolution of PLA, the real evolution of programmable logic device took place.
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After PLA, the SPLD, CPLD, and FPGA architectures are evolved during early
1980s. Early programmable logic device is shown in Fig. 16.1.

The PLD classification is shown in Table 16.1.
Following are the key terminology used to understand the field programmable

devices.

PAL: A relatively small density field programmable device (FPD) which has
programmable AND plane followed by fixed OR plane is called as programmable
array logic (PAL).

PLA: A relatively small density field programmable device (FPD) which has
programmable AND plane followed by programmable OR plane is called as pro-
grammable logic array (PLA). The PLA structure has two levels of logic and can be
available as the full-custom chip.

SPLD: Any structure which is like PAL or PLA is called as simple programmable
logic device (SPLD). SPLDs are used to realize small gate count state machines due
to the better and clean timing performance.

CPLD: The structure which consists of multiple SPLD like blocks on the same chip
with interconnection logic is called as complex programmable logic device
(CPLD). CPLD is also called as mega PAL, super PLA, or enhanced PLD (EPLD).
In the practical scenario, CPLDs are used to realize gate count state machines due to
improved timing performance as compared to the SPLDs. The CPLD structure is
shown in Fig. 16.2.

Fig. 16.1 Early programmable logic device
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FPGA: It is the programmable logic which consists of the greater number of
resources like flip-flops and configurable or programmable logic blocks to realize
the high-density logic! As they have programmable features and can be pro-
grammed using the vendor-specific EDA tools at field, they are called as field
programmable gate array (FPGA). FPGA is also called as programmable ASIC and
consists of the configurable logic blocks (CLB), IO blocks (IOB), clocking
resources, and programmable interconnects. Modern FPGAs even consist of the
multipliers, block RAMs, DSP blocks, high-speed interfaces, and processor cores.
The FPGA having the important functional blocks, logic blocks, IO blocks, and
programmable interconnect is shown in the following Fig. 16.3.

Interconnect: The routing resource in the field programmable device is called as a
interconnect.

Programmable Switch: It is the switch used to route the connections between
various functional blocks.

Configurable Logic Block (CLB): The logic block which can be configured for the
desired combinational and sequential logic functionality is called as CLB. While
implementing the logic on the FPGA, the logic is decomposed into small density
logic blocks and mapped on the multiple CLBs.

Table 16.1 PLD classification

PLD SPLD CPLD FPGA

Logic Cell PAL or PLA SPLD CLB

Density Few hundred logic
gates

Few thousand logic gates Few lakh logic
gates

Type Gate rich logic Gate rich logic Flip-flop-rich logic

Application Small density FSM Moderate gate count
FSMs

Complex FSMs

Fig. 16.2 Block diagram of
CPLD
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Logic Density: The amount of logic in the FPGA per unit area is called as logic
density.

Logic Capacity: The amount of logic that is mapped into the single filed pro-
grammable device is called as logic capacity. The logic capacity is given in the form
of the number of logic gates in the gate array. The logic capacity can be thought in
the form of number of two input NAND gates or universal gates.

Performance: The maximum operating frequency of the field programmable
device is measure of the performance for the sequential logic. For the combinational
logic, the longest path in the design decides the performance.

The comparison of the structured ASIC and FPGA design is listed in the fol-
lowing Table 16.2.

Fig. 16.3 Basic FPGA architecture (Source: XILINX)

Table 16.2 Comparison of structured ASIC with FPGA (Source: XILINX)

Selection Criteria Structured ASICs* EasyPath
FPGAs

Time to Prototype Samples 4–8 weeks 0 weeks

Total Time to Volume Production 12–15 weeks 8 weeks

Vendor NRE/Mask Costs $100–$200 K $75 K

Design Costs for Conversion $250–$300 K $0

Additional Cost of Tools for Conversion $100–$200 K $0

Unit Costs Low Low

Risk High Low

Flexibility to Make Changes In System Inflexible Flexible

Design Conversion from Prototype to
Production

Additional
Engineering

Conversion Free
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16.2 FPGA as Programmable ASIC

Modern FPGAs are named as programmable ASICs and used in various applica-
tions which include the prototyping of the ASIC and SOC designs. The FPGA
classification using various techniques is discussed in this section.

16.2.1 SRAM Based FPGA

Most of the FPGAs in the market are based on the SRAM technology. They store
the configuration bit file in the SRAM cells designed using latches. As the SRAM is
volatile, they need to be configured at the start. There are two modes for pro-
gramming, and they are master and slave. The SRAM memory cell is shown in
Fig. 16.4.

In the master mode, FPGA reads configuration data from the external source,
and that source can be flash.

In the slave mode, FPGA is configured by using the external master device such
as processor. The external configuration interface can be JTAG and useful during
the boundary scan.

Fig. 16.4 SRAM cell
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16.2.2 Flash Based FPGA

In these types of FPGAs, the flash memory is used to store the configuration data.
So, the primary resource for this FPGA is the flash memory. So, these kinds of
FPGAs have the lower power consumption, and they are less tolerant for the
radiation effects. In the SRAM-based FPGAs, the internal flash is only used during
power-up to load the configuration file. The floating gate transistor used in the flash
memory is shown in Fig. 16.5.

16.2.3 Antifuse FPGAS

These types of FPGAs are used to programme only once, and they are different as
compared to previous two types of FPGAs. Antifuse is opposite to fuse, and ini-
tially at the start, they does not conduct current but can be burned to conduct
current. Once they are programmed, there is no any way to reprogramme as burned
antifuse cannot be forced to the initial state (Fig. 16.6).

16.2.4 Important FPGA Blocks

The following are important blocks in the FPGA architecture and discussed in this
section. The FPGA architecture is shown in Fig. 16.7.

Fig. 16.5 Floating gate
transistor in flash memory
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Fig. 16.6 Antifuse structure

Fig. 16.7 FPGA architecture (Source: XILINX)
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1. Configurable Logic Block (CLB): CLB consists of the lookup tables (LUTs),
multiplexers, and flip-flops. RAM-based LUTs are used to implement the digital
logic. CLBs can be programmed to realize wide variety of logic functions. Even
CLBs are used to store the data. The CLB structure is vendor-specific. Most of
the time we experience the LUTS having 4,6,9 inputs for various FPGA
families.

2. Output Block (IOB): This block is useful to control the data flow between the
internal logic and IO pins of the device. Each IO supports the bidirectional data
flow and has the tristate control. There are almost 24 different IO standards
which includes seven differential special IO high perforamnce standards. The
double data rate registers are also provided with the digitally controlled impe-
dence feature.

3. Block RAM (BRAM): They are used to store the larger amount of the data and
available in the form of dual port RAM, for example, 18 Kbit dual port block
RAM. FPGA can consist of such multiple BRAM blocks depending on the
device architecture.

4. Digital Clock Managers (DCMs): They are used for clock management and
provides fully calibrated digital clock solution. They are used to distribute the
clock with uniform clock skew. Even they are useful to delay the clock signals,
multiply or divide the clock signals with uniform clock skew.

5. Multipliers: Dedicated multiplier block is used to perform the multiplication of
two n bit digital numbers. Depending on the FPGA device family, the n can
vary. If n = 18, then the dedicated block is used to perform the multiplication of
two 18-bit numbers.

6. DSP Blocks: They are embedded DSP blocks used to realize the DSP functions
such as filtering anddata processing. These blocks are used to improve the
overall performance of the FPGA while processing the larger amount of data
during the DSP applications.

16.3 FPGA Design Flow

FPGA design flow includes the following important steps and shown in Fig. 16.8.

1. Design specification understanding and requirement capture
2. Design Simulation and Synthesis
3. Design Implementation
4. Device Programming.
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Fig. 16.8 FPGA design flow

The design steps are elaborated in the following section.

16.3.1 Design Entry

Before the design entry, the design planning needs to be completed by under-
standing the design requirements and the design specifications. The design speci-
fications need to be documented in the form of block and sub-block level design
and called as architecture and micro-architecture document. The design architecture
and micro-architecture should include the overall design partitioning into smaller
modules to get clarity about the intended design functionality and data flow.

During the architecture design phase, the requirement of memory, area, speed,
and power needs to be estimated. Depending on the requirement, the FPGA device
needs to be selected for the implementation.
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RTL design can be coded by using either Verilog (.v) or VHDL (.vhd) or by
using SystemVerilog (.sv). After the design entry, the design needs to be simulated
to check for the functional correctness of the design. This is called as functional
simulation.

16.3.2 Design Simulation and Synthesis

During functional simulation, the set of inputs are applied to the design with
intention to check for the functional correctness of the design. Although the timing
or area, power issues can crop up during the later design cycle but design team is at
least confident about the functional correctness of the design.

The major goal of the FPGA design engineer is to infer the intended design logic
using FPGA! The synthesis is the process of getting the lower level of the design
abstraction from the higher level. During the logical synthesis, the RTL is used as
one of the inputs to get the lower level of abstraction as the gate-level netlist. The
netlist is device independent and can be in the standard format like electronic design
interchangeable format (EDIF).

16.3.3 Design Implementation

The design passes through the various steps during implementation. These steps are
translate, map, and place and route. During the design implementation, the EDA
tool translates the design into the desired format and maps it on the FPGA fabric by
considering the overall area requirements. The mapping is performed by the EDA
tool and functionality uses the logic cells or macrocells. During the mapping pro-
cess, the EDA tool uses the macrocells, programmable interconnects, and the IO
blocks. The special dedicated blocks like multipliers, DSP, and BRAMs are also
mapped using vendor tools. The blocks are placed on the predefined geometry
inside the FPGA and routed by using the programmable interconnects to get the
intended functionality. The step is called as place and route.

To check for the design timing performance and whether the constraints are met
or not, the timing analysis is performed, and it is called as post-layout STA. During
the STA, the timing paths are checked with the delays associated with the pro-
grammable interconnects. The intention is to find out how many timing paths have
set up or hold violations? Extracting the RC delays and using them by timing
analyzer is called as back-annotation.
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16.3.4 Device Programming

The FPGA is programmed by using the vendor-specific or proprietary bit-stream
file. Bit-stream is binary data file needs to be loaded into the FPGA to program the
device.

Depending on the use of the various PFGA resources for the design, the EDA
tool generates device utilization summary. Please refer Appendix III for the
XILINX Spartan and Virtex series devices.

16.4 Logic Realization Using FPGA

The architecture of FPGA consists of the array of CLBs, block RAMs, multipliers,
DSPs, IOBs, and digital clock managers. Delay Locked Loop (DLL) are used to
generate the clock. The floor plan for the XILINX Spartan series FPGA is shown in
Fig. 16.9.

16.4.1 Configurable Logic Block

As shown in the following, basic CLB consists of the LUTs, flip-flop, and multi-
plexer logic. The configuration data is held in the latch. The CLB architecture is
vendor-specific and can consist of multiple LUTs, flip-flops, multiplexers, and

Fig. 16.9 Xilinx Spartan series device
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latches. The following Verilog code is realized by using the single four input LUT
without flip-flop, and the output is called as combinatorial output.

always@(*)
begin

y_out= a_in && b_in;
end

The following Verilog RTL uses single LUT with single flip-flop to realize the
logic. The logic is sequential logic as output is function of the present input and past
output.

always@(posedge clk)
begin

y_out= a_in && b_in;
end

The CLB shown in Fig. 16.10 can be also useful to implement 16-bit shift
register. The LUTs can be cascaded to infer the longer size shift register, or it can be
used to introduce the pipelining to improve the design performance.

Fig. 16.10 Xilinx basic CLB structure
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16.4.2 Input Output Block (IOB)

An input–output block is used to establish the communication of the logic residing
on the FPGA fabric with outside world and consists of the number of flip-flops and
buffers with the tristate control mechanism. The IO block can be used to have a
registered input and registered output. The IOB structure of modern FPGA is
complex and can consist of many IO control features which may include DDR,
special-purpose high-speed interfaces. The basic IO block structure is shown in
Fig. 16.11.

16.4.3 Block RAM

XILINX Spartan-3 family supports 200 MHz block RAM organized in the four
columns to get the synchronous configurable 18 Kb blocks. Each block RAM
contains 18,432 bits, among them, 16 Kb are allocated for the data storage, and
remaining 2 Kb are allocated for the parity. Block RAM can be used as single port
memory or dual port memory and has independent port access. Each port is syn-
chronous and has independent clock, clock enable, and write enable. Read

Fig. 16.11 Xilinx basic IO block
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operations are also synchronous in nature and may require the clock enable. The
applications of Block RAM is to store the data, BRAMs are used during the FIFO
designs, or as a memory buffers, or to implement stacks and they are even useful to
hold larger amount of data in the design of complex state machines. Single port
RAM is shown in Fig. 16.12.

16.4.4 Digital Clock Manager (DCM) Block

The Xilinx device family uses the delay-locked loop (DLL), and Altera uses the
phase-locked loop (PLL) as clock manager. The role of DCM is to provide com-
plete control over the phase shift, clock skew, and clock frequency. The DCM
supports the following functions.

• Phase shifting
• Clock skew elimination or balancing
• Frequency synthesis.

The DCM consists of the variable delay line, and the basic clock distribution
network is shown in Fig. 16.13.

16.4.5 Multiplier Block

All Spartan3 FPGA has multiplier having 18-bit inputs, and it generates 36-bit
output. The multiplier is embedded block, and each device has 4–104 dedicated
embedded multiplier blocks. The main advantage of embedded multiplier is that it
requires the lesser power as compared to the CLB-based multipliers. They are used
to implement the fast arithmetic functions with minimum use of the general-purpose
resources. Cascading of multiplier using the routing resources is possible, and
Fig. 16.14 shows the multiplier configured as 22-bit input multiplied by 16-bit
input to infer the multiplier having the 38-bit output. The multiplier can be used

Fig. 16.12 Xilinx single port
BRAM
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during the signed or unsigned number multiplication. The multipliers are exten-
sively used in the DSP applications. The basic block is shown in Fig. 16.14.

In this section, only few basic blocks are documented and discussed. As stated
earlier in the above few sections, the modern FPGA architecture has other dedicated
blocks such as DSP blocks, processor cores, and high-speed interfaces. Readers can
go through the data sheets of the desired FPGA family and can understand the
architectures to implement the high-density designs.

16.5 Exercises

Complete the following exercises to understand the interpretation of the RTL
design at FPGA fabric level.

1. Consider the FPGA has the CLB architecture shown in the following figure.

Fig. 16.13 Xilinx basic DLL block

Fig. 16.14 Xilinx basic multiplier block
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Implement the 3:8 decoder having active high enable, and find out number of
such CLBs required.

2. Consider the CLB architecture shown in the exercise-1, and find out the number
of CLBs required to implement the 2-bit binary up counter which has asyn-
chronous active low reset and rising edge clock.

16.6 Summary

Following are few important points to summarize this chapter.

1. PLDs are classified into three main categories and are SPLD, CPLD, and
FPGAs.

2. PAL, PLA are also called as SPLDs and used to realize small gate count
designs.

3. CPLDs are moderate density FPDs and are used to design small gate count
FSMs due to good timing performance.

4. FPGAs are used to design the complex gate count FSMs and are called as
flip-flop-rich logic.

5. The design specifications need to be documented in the form of block and
sub-block level design and called as architecture and micro-architecture
document.

6. During functional simulation, the set of inputs are applied to the design with
intention to check for the functional correctness of the design.

7. The synthesis is the process of getting the lower level of the design abstraction
from the higher level.

8. The design passes through the various steps during implementation. These steps
are translate, map, and place and route.
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9. The FPGA is programmed by using the vendor-specific or proprietary
bit-stream file.

10. The architecture of FPGA consists of the array of CLBs, block RAMs, mul-
tipliers, DSPs, IOBs, and digital clock managers. Delay Locked Loop (DLL).

11. Modern FPGA consists of the dedicated multipliers, DSP blocks, and
high-speed interfaces with the processor cores.

12. FPGA designer needs to use the design guidelines while using the FPGAs.
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Chapter 17
FPGA Design and Guidelines

As discussed in the previous few chapters, the design guidelines play important role during
the FPGA design implementation. In such scenario, the chapter discusses about the design
guidelines for FPGA-based designs. How to use the design guidelines is explained with the
RTL designs coded using the synthesizable Verilog constructs.

The design and RTL coding guidelines are useful to improve the design perfor-
mance. The area, speed, and power requirements of the design should be met, and
the efficient RTL should yield into the better performance of the design. The
following few section discusses about the design and coding guidelines useful
during the FPGA design.

17.1 Design Guidelines for FPGA Based Designs

The RTL design concepts discussed in Chaps. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15 and 16 can be used to design the logic for desired FPGA family. The coding
guidelines during the RTL design phase and the design guidelines for the FPGA are
always useful to achieve the better performance of the design. Following are the
few coding and design guidelines need to be followed during logic design and
implementation using FPGA.

17.1.1 Verilog Coding Guidelines

Guidelines while using Verilog to have efficient RTL design are listed in this
section, and it is always recommended to use these guidelines during RTL design
phase! Among these, few guidelines are based on the concepts explained using
stratified event queue in the Chap. 7.
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17.1.1.1 Blocking Versus Non-blocking Assignments: (Please Refer
Chaps. 7 and 11)

I. It is recommended to use blocking assignments while modeling the com-
binational design.

II. It is recommended to use non-blocking assignments while modeling se-
quential design.

III. It is recommended to use the non-blocking assignments while modeling the
latches. While implementing RTL design, it is essential to overcome the
potential unintentional latches. Unintentional latches are inferred due to
missing else or due to incomplete case conditions.

IV. It is recommended, not to mix the blocking and non-blocking assignments
in the same always block.

The sequential design logic uses non-blocking assignments and is shown in the
Example 1, and it results into the desired intended synthesis result (Fig. 17.1. So, it
is recommended to use the non-blocking assignments in the sequential designs!

/////////////////////////////////////////////////////////////////////////////

module sequential_design_using_NBA(input d_in, clk, reset_n, output 
reg y);

reg tmp1;

always @ (posedge clk, negedge reset_n)

begin

if (~ reset_n)

{y,tmp1} <= 2'b00;

else 

begin

tmp1 <= d_in;

y <= tmp1;

end

end

endmodule 

/////////////////////////////////////////////////////////////////////////////

Example 1 Sequential design using non-blocking assignments
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The sequential design logic uses blocking assignments and is shown in the
Example 2, and it results into the wrong synthesis result (Fig. 17.2). So, it is not
recommended to use the blocking assignments in the sequential designs!

Fig. 17.1 Synthesis result of sequential design using non-blocking assignments

Fig. 17.2 Synthesis result of sequential design using blocking assignments
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17.1.1.2 Priority Versus Parallel Logic

I. It is recommended to use if-else construct to design the priority logic. Priority
encoder or priority interrupt control logic can be modeled by using the nested
if-else statements. It is recommended to use case construct to infer the parallel
logic. Priority logic infers the design having the longer combinational path due
to nested if-else constructs. It is always recommended to use case construct to
infer the parallel logic.

The parallel logic using if-else construct to infer the 4:1 mux is shown in the
Example 3 and infers the gate-level structure as shown in Fig. 17.3.

/////////////////////////////////////////////////////////////////////////////

module sequen al_design_using_BA(input d_in, clk, reset_n, output reg
y);

reg tmp1;

always @ (posedge clk, negedge reset_n)

begin

if (~ reset_n)

{y,tmp1} = 2'b00;

else 

begin

tmp1 = d_in;

y = tmp1;

end

end

endmodule 

/////////////////////////////////////////////////////////////////////////////

Example 2 Sequential design using blocking assignments
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/////////////////////////////////////////////////////////////////////////////

module priority_logic( input x,y,z,w, input [1:0] sel, output reg q );

always@*

begin

if (sel==2'b00)

q= x;

else if (sel==2'b01)

q= y;

else if (sel==2'b10)

q= z;

else

q= w;

end

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 3 RTL design of 4:1 mux using nested if-else
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The parallel logic using case construct to infer the 4:1 mux is shown in the
Example 4 and infers the gate-level structure as shown in Fig. 17.4.

Fig. 17.3 Gate-level schematic of 4:1 mux

/////////////////////////////////////////////////////////////////////////////

module parallel_logic( input x,y,z,w, input [1:0] sel, output reg q );

always@*

begin

case(sel)

2'b00 : q =x;

2'b01 : q= y;

2'b10 : q= z;

default : q=w;

endcase

end

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 4 RTL design of 4:1 mux using case
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17.1.2 FSM Guidelines

I. Binary encoding techniques are efficient for a design having 16 or fewer
states. As number of states increases, the next state combinational logic
performs slower operation.

II. One-hot encoding technique is efficient and reliable as compared to the
binary encoding due to glitch-free behavior. One-hot encoding requires low

Fig. 17.4 Parallel logic of 4:1 mux using case
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density next state logic and is useful in design of larger FSM blocks. But the
main drawback of one-hot encoding is that it uses a greater number of
flip-flops!

III. While designing FSM, designer needs to take care of the following important
points.

a. Do not leave any unused states. Initialize the unused states to reset value
or use the default assignment.

b. Do not implement the FSM with combination of flip-flops and latches.
Avoid the unintentional latches in the FSM design to improve the
reliability.

c. Model the FSM blocks by using case constructs as it infers the parallel
logic.

d. Have the separate always procedural block to code the next state com-
binational logic, output combinational logic, and state register logic. This
improves the speed of FSM.

e. Register FSM output as it preserves the hierarchy.
f. Use the look ahead Mealy machines for better design performance.

17.2 Combinational Design and Combinational Loops

I. It is recommended to use continuous assignment construct to design the
combinational logic.

II. While designing the combinational logic, it is essential to avoid the combi-
national loops. Combinational loop causes instability in digital designs as it
violates the synchronous design concepts due to infinite looping. The com-
binational loop generates the oscillatory output, and the period of the oscil-
latory output signal is mainly dependent on the delay introduced by the
combinational elements in the feedback path.

17.3 Grouping the Terms

I. Use the signal grouping to improve the performance of FPGA-based design.
For example, if the expression q = (x + y + z + w) is to be implemented using
FPGA, then cascade structure is inferred as shown. But using grouping of the
few terms and by modifying the expression as q = (x + y) + (z + w), the logic
infers the parallel structure. Even due to grouping, the timing performance of
design is improved.

The Example 5 shown does not use the grouping of terms and infers the cascade
or priority logic as shown in Fig. 17.5. The cascade logic has the 3*tpd delay.
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The Example 6 shown uses the grouping of terms and infers the parallel logic as
shown in Fig. 17.6. The parallel logic has the 2*tpd delay.

/////////////////////////////////////////////////////////////////////////////

module without_grouping_terms( input x,y,z,w, output q );

assign q = x & y & z & w;

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 5 Expressions without grouping

/////////////////////////////////////////////////////////////////////////////

module grouping_terms( input x,y,z,w, output q );

assign q = ((x & y) & (z & w));

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 6 Expressions with grouping the terms

Fig. 17.5 Cascade logic
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17.3.1 Assignments

I. It is recommended not to have the assignments to same variable or output
port within multiple always block. It gives error as multiple drivers drive to
the same net or reg.

II. It is recommended not to have assignments using #0 delay.

17.4 Simulation and Synthesis Mismatch

Most of the synthesis tools ignore the sensitivity list of always procedural block used
for combinational, but during simulation, the procedural block invokes, only when
there is an event on one of the signals included in the sensitivity list. Due to incomplete
sensitivity list, it creates the logic which has simulation synthesis mismatch.

17.4.1 Post-synthesis Verification

It is highly recommended to perform the post-synthesis verification for the
FPGA-based design. Post-synthesis verification with the SDF assures the correct
intended behavior of the gate-level netlist. There should not be mismatch between
the functional verification of the design and the post-synthesis verification!

17.5 Guidelines for Area Optimization

FPGAs have finite number of resources, so it is recommended to follow the design
guidelines to optimize the area. The area optimization techniques are resource
sharing, logic duplication. [Note: Many times, it has been observed that logic

Fig. 17.6 Two-stage parallel input logic
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duplication can even increase area and the use of logic duplication technique is
dependent on the design scenarios!].

17.5.1 Resource Sharing

Always it is observed that adders consume more area as compared to multiplexers.
The resource sharing is powerful technique to share the common resources to
minimize the area. It is essential for the FPGA design team to consider resource
sharing while using arithmetic operators. The resource sharing is one of the pow-
erful area optimization techniques. But it is recommended that not to share
resources from different modules or from different hierarchy. Resources can be
shared from the same module or from the same hierarchies. The resource sharing
improves the overall data and control path for the design!

17.5.2 Logic Duplication

It is the powerful technique to reduce the net delay by allowing the placement tool
to place the replicated logic in various areas of die [2]. The major drawback of this
technique is that it increases the area of the design while replicating the flip-flop or
sequential logic.

As per the FPGA area optimization is concerned, logic duplication can act as
very efficient technique but depends on the design specific scenarios!

FPGA-specific design scenario
Consider example of implementing 8:256 decoder using single case construct.
If FPGA architecture has CLB which has two, 4 input LUTs and a single two-input
LUT at the output (Fig. 17.7) then to realize the single bit output the tool uses 3
LUTs. So, for 256-bit output, 768 LUTs are utilized.

By using multiple case construct, let us implement two 4:16 decoders, and
duplicate the AND array at the output. This technique we can call as logic dupli-
cation ! By using logic duplication, if two 4:16 decoders are used with 256 AND
gate array, then the overall device utilization is just 288 LUTs to implement the
8:256 decoder, and it reduces the device utilization by around 480 LUTs. That is
huge reduction in the overall area.

For the 8:256 decoder, the logic duplication uses the four input LUTs and two
input LUTs to get the single output; the structure of CLB used to get single output
is shown in the (Fig. 17.7). We need to have such type of 256 CLBs.
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17.6 Guidelines for Clock

The performance and reliability of an FPGA-based design are based upon the
clocking schemes. For the FPGA-based design and implementation, it is recom-
mended that

a. Use single global clock.
b. Avoid use of gated clocks.
c. Avoid mixed use of positive and negative edge-triggered flip-flops.
d. Avoid use of internally generated clock signals.
e. Avoid ripple counters and asynchronous clock division.

It is recommended by most of the FPGA vendors that do not use the internal
generated clocks as it causes the functional and timing issues in the design. If
internal generated clocks are required in the design, then use DLL or PLL to
generate the clocks. The internal generated clocks by using combinational logic are
prone to glitches, and it creates the functionality issues in the design. Due to the
combinational delays, it creates the timing issues in the FPGA designs. The major
problem for using the internal generated clocks is the issue during synthesis and
timing analysis. Xilinx provides the library component global clock buffers
BUFGCTL and BUFGMUX to generate internal clocks.

To avoid glitches, it is recommended to register the output of the internal
generated clocks. It is recommended to use the clock generation logic. For low
power designs, it is essential to use the clock gating, but it is prone to glitches. So, it
is recommended to use the clock gating cells for low-power FPGA-based design.

It is recommended not to use the asynchronous pulse generator circuit. As shown
in Figure 17.8 a, it is asynchronous way of pulse generation. This technique should
be avoided as it is prone to glitches and difficult to synthesize and place and route.

Fig. 17.7 Xilinx basic LUT structure
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Depending on the pulse width requirement, replace the inverter shown in figure by
chain of odd number of inverters.

Figure 17.9 is the recommended pulse generator where the pulse width is
dependent on the clock period. It is recommended to use two-level synchronizer at
the input of pulse generator to avoid the metastability issues.

17.7 Synchronous Versus Asynchronous Designs

In synchronous design, the data input is sampled on every active edge of clock, and
clock signal controls the data transfer from input to output. Figure 17.10 is register
to register path in which the combinational logic (CL) drives the data to the input of
flip-flop. For the desired operation of the design, it is essential that the data input
should be stable during the setup time and hold time window for the flip-flop. The
propagation delay of combinational logic limits the maximum operating frequency
of the design.

To meet the timing requirement, use the pipelining feature to improve the per-
formance of synchronous design. As FPGA is flip-flop-rich logic, pipelining can be
used for improvement of the speed of the design at the cost of clock latency.

Fig. 17.8 Asynchronous pulse generator

Fig. 17.9 Synchronous pulse generator
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On the other hand, an asynchronous design does not have common clock (e.g.,
ripple counters) and is prone to glitches or spikes. It is difficult to specify the timing
of asynchronous design by using timing constraints. Many times, an asynchronous
design infers the logic which has the glitches or short time duration pulses shorter
than the clock period. If the glitches are passed through the combinational logic,
then the output leads to an incorrect value. Figure 17.11 describes an asynchronous
logic prone to glitches.

Many times, it has been observed that an asynchronous logic reduces the device
resources but prone to hazards. So, it is recommended to use the synchronous logic
while implementing the sequential design. Synchronous logic always makes STA
easy [4]!

17.8 Guidelines for Use of Reset

Resets are classified as synchronous and asynchronous resets. Asynchronous resets
are easy to implement as they do not depend on the clock. But STA becomes
difficult and complex while using asynchronous resets. At the same time, automatic
insertion of the test structure is difficult.

Fig. 17.10 Synchronous Logic

Fig. 17.11 Asynchronous logic
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On the other hand, synchronous resets are difficult to implement as it requires
more resources, and they are dependent on the clock. Synchronous resets slowdown
the design performance. It is recommended that FPGA designer should avoid
internally generated conditional resets.

It has been observed during FPGA-based designs that, reset deassertion circuit
may be required while using asynchronous reset. If reset signal is deasserted and if
does not pass the setup and hold timing check then flip-flop goes into metastable
state and it can lead to potential functional issues in the design.

It is recommended to use the synchronized asynchronous resets. That is asyn-
chronously asserted and synchronously deasserted. Figure 17.12 is the recom-
mended scheme to pass asynchronous active low reset (reset_n) through the
two-level synchronizer.

For large density or complex FPGA-based designs with multiple hierarchies, it is
essential to use the Linting tool which can provide desired information about the
reset and clock trees.

17.9 Guidelines for CDC

It is impossible to verify the clock domain crossing (CDC) during the functional
verification, and even it is impossible to verify CDC by using timing analysis tool
due to asynchronous nature of clock path. The major problem encountered in CDC
is functionality failure due to metastability. To avoid metastability, it is recom-
mended to use the multi-flop level synchronizer while passing signals from one
clock domain to another.

Linting tools are used to ensure the use of synchronizer chain in the clock
domain crossing paths. Use two- or three-flop-level synchronizer as shown in
Fig. 17.13 to transfer the signals from one clock domain to another. This will avoid
metastability in the design.

Fig. 17.12 Reset generation logic
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17.10 Guidelines for Low Power Design

Reducing the power for many applications is critical, and due to complexity of
designs, only use of power-efficient FPGA devices or architecture is not sufficient!
It is essential for designer to understand the features supported by the EDA tools to
optimize the dynamic power. The recommendation by many FPGA vendors is to
reduce the switching activity in the sequential logic and clock routing.

For the low power design, it is recommended to use the gated clocks or the
low-power clock gating cells. Dynamic power of a cell is dependent on voltage,
load capacitance, and on clock frequency. Due to switching at the clock input, it has
been observed that the dynamic power increases. So, to reduce dynamic power, it is
recommended to use clock gating cells. Figure 17.14 shows the clock gating cell.

Fig. 17.13 Two-flop-level synchronizer

Fig. 17.14 Low-power clock
gating cell
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17.11 Guidelines for Use of Vendor-Specific IP Blocks

It is always recommended by the FPGA vendor to have the brief and detailed
understanding of the FPGA device family and the architecture of FPGA device. It is
recommended to use the vendor-specific design and coding guidelines to improve
the performance of design. It is highly recommended to encrypt the IP by using
standard security standards.

During synthesis phase it is recommended to infer the micro-functions such as
multipliers, shift registers, memories, and DSP blocks to ensure the optimized
results.

For the better performance, it is recommended to use the desired timing con-
straints and analyze the timing constraints by using the timing analyzer. It is even
recommended to use the place and route effort level while implementing the design.
The place and route effort level allows the EDA tool to use the algorithm to improve
the design performance, and even it improves the design placement. It is also
recommended to use the IOB resources and speed grade during design imple-
mentation stage. While using the synchronous interface, it is recommended to use
the single clock synchronous RAM (read and write in the same clock domain), and
while using asynchronous interfaces, use the dual port RAM.

17.12 Summary

Following are important points to summarize this chapter.

1. It is recommended to use blocking assignments while modeling the combi-
national design.

2. It is recommended to use non-blocking assignments while modeling sequen-
tial design.

3. It is recommended not to mix the blocking and non-blocking assignments in
the same always block.

4. It is recommended to use if-else construct to design the priority logic.
5. It is recommended to use case construct to infer the parallel logic.
6. Priority logic infers the design having the longer combinational path due to

nested if-else constructs.
7. Have the separate always procedural block to code the next state combinational

logic, output combinational logic, and state register logic. This improves the
speed of FSM.

8. Use the signal grouping to improve the performance of FPGA-based design.
9. To avoid metastability, it is recommended to use the dual or three-flop-level

synchronizer while passing signals from one clock domain to another.
10. For the low power design, it is recommended to use the gated clocks or the

low-power clock gating cells.
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Chapter 18
ASIC Design

ASIC is an Application Specific Integrated Circuit and designed for the specific applica-
tions. For ASIC design engineer it is required to have good understanding of the ASIC
synthesis and optimization. The chapter discusses about the ASIC types, basics of ASIC
design flow.

In the previous few chapters, we have discussed the RTL design using Verilog and
FPGA-based designs. The chapter focuses on various types of ASICs and ASIC
flow and important terms which can be useful during the ASIC design.

18.1 What Is ASIC?

ASIC is an application-specific integrated circuit. Integrated circuits are made up of
silicon wafer, and each silicon wafer consists of thousands of cells. If any integrated
circuit is designed for specific application, then it is called as an ASIC. The
examples are chip designed for the car controller, chip designed for satellite
communication, and interfacing chips to establish communication between the CPU
and memory. The microprocessors and memories are general-purpose integrated
circuits which are not treated as an ASIC. The following are main types of ASIC,
and classification is shown in Fig. 18.1.

18.1.1 Full Custom ASIC

In such type of ASIC, the design starts from the scratch. The ASIC design team
creates the ASIC logic cells and layout required for the logic. The analog and digital
design can be implemented by using full-custom ASICs. In such type of ASICs,
predefined standard cells or gates are not used to describe the functionality of the
design.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Taraate, Digital Logic Design Using Verilog,
https://doi.org/10.1007/978-981-16-3199-3_18

403

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3199-3_18&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3199-3_18&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3199-3_18&amp;domain=pdf
https://doi.org/10.1007/978-981-16-3199-3_18


18.1.2 Standard Cell ASIC

In such type of ASIC, the design team uses the predefined logic cells which are also
called as standard cells. Few of the standard cells are logic gates, mux, flip-flops, or
latches. These standard cells are predefined and pretested, so it saves a lot of time of
design team and money and there is less risk while using these standard cells. These
types of ASIC designs are flexible like full-custom ASIC designs but reduce overall
risk. The standard cell libraries are designed by using full-custom design flow.

18.1.3 Gate Array ASIC

In such type of ASICs, the array consists of number of transistors which are
predefined or prefabricated on the silicon wafer. The array is also called as base or
basic array, and the transistor cell is called as basic cell or base cell. The inter-
connects between the cell and within the inside structure of the cell are customized
and hence improve the programmability. The types of these types of ASICs are

a. Channeled gate array
b. Channel-less gate array
c. Structured gate array.

While designing the ASIC, the following are important objectives.

1. Speed of an ASIC: Whether the ASIC is working at the desired speed or not?
2. Area of an ASIC: What is the maximum area of an ASIC?
3. Power of an ASIC: What is the leakage and dynamic power dissipation in the

best-case and worst-case scenarios?
4. Time to Market for an ASIC: What is the time to market for an ASIC?

ASIC

Full Custom ASIC Standard Cell ASIC Gate Array ASIC

1. Channeled Gate Array
2. Channelless Gate Array
3. Structured Gate Array

Fig. 18.1 Type of ASICs
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18.2 ASIC Design Flow

To design an ASIC, the design team needs to have in-depth understanding of the
important steps from specification to the layout. These important steps are used
during the design phases. Figure 18.2 shows the ASIC design flow with the
information about the important steps used during the design cycle.

As shown in Fig. 18.2, an ASIC design flow consists of the important design
steps and can be considered as design milestones. Every ASIC design starts with the
basic idea, and the idea to develop chip functionality is outcome of the in-depth
market research! After the idea is finalized for the desired design functionality, the
actual ASIC design implementation cycle starts with the specification extraction.
The following section discusses the important steps during the ASIC design cycle.

Market research 
and Idea

Design 
Specifica ons

RTL Design and 
Verifica on

Synthesis and DFT

Physical design 
and 

Implementa on

GDSII

Chip Fabrica on

Fig. 18.2 Basic ASIC design
flow
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18.2.1 Design Specification

The input used to extract and finalize the design specification is the data collected
during the market research for the feasible ideas or products. The following are the
important points needed to be documented in the specification document.

a. Functionality of the design. That is what the chip exactly does?
b. Design goals and constraints for the design
c. Performance constraints like the speed, power, and area for the design
d. Technology constraints like the physical dimensions, area, and size of the cell
e. Fabrication techniques for the ASIC design
f. Vendor-dependent constraints and third-party IPs
g. Memories and macros used for the design
h. The data rate and the interface definitions for the design
i. Packaging information and the testing or verification planning for the design
j. Risk and dependability and time to market for the design.

The above specifications are described in the form of block diagrams, and this
phase is called as architecture-level design. Most of we know that, the architecture
is the block level representation of an ASIC design. For example, if 16-bit pro-
cessor needs to be designed, then the architecture can consist of ALU, control logic,
instruction decoder and encoder, interrupt logic, serial IO controller, bus arbitration
logic, counters, and pointer logic. All these functional blocks are interconnected
together to get the desired architecture required to perform the specific application.
The chip architect designs the multiple architectures, and the best suitable archi-
tecture for an ASIC is finalized depending on the requirement of speed, power, and
design resources. This architecture document is used in the ASIC design cycle to
document the functionality of each and every functional block, and it is block-level
representation of the design.

After the architecture for an ASIC is finalized, the architecture blocks are divided
into the form of the sub-blocks which has the interfaces and logic details, and this is
called as micro-architecture design. The micro-architecture for every functional
block is useful to understand about the intended design functionality. The chip
architect with good amount of experience can design the viable and feasible
micro-architecture by understanding the functional, timing, and power requirements
for the chip. Most of the ASIC micro-architecture uses the low power design
techniques, DFT-friendly design details, information about the area requirements,
partition for the multiple clock domain designs, and the timing details of the
interfaces. In the micro-architecture, the software and hardware design partitioning
should be included with the technology-dependent component details.
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18.2.2 RTL Design and Verification

The important milestone is to design the functionality of an ASIC using synthe-
sizable constructs by using Verilog, SystemVerilog, or VHDL and is treated as the
RTL design milestone. RTL stands for the Register Transfer Level and can be
efficiently described by using HDL. RTL design team uses the micro-architecture
document as an input to design the functionality. The objective of the RTL design
team is to describe the design functionality to realize the intended logic. The
functionalities can be processor implementations, pipelined features, state machine
coding, data transfer modules, memories, etc.

The RTL design is used as an input by the verification team, and the verification
team uses this for early detection of the functional bugs. The verification is useful to
check for the functional correctness of the design. The RTL verification for any
ASIC is important milestones, and objective is to check for the functional cor-
rectness and to improve the overall coverage for the design. Most of the ASIC
design flow uses the verification methodologies and languages like Verilog or
SystemVerilog during the verification of the ASIC design.

18.2.3 ASIC Synthesis

Once the RTL verification is completed and the coverage goals are met, the next
important milestone is logic synthesis and objective is to get the gate-level netlist.
The process of getting the gate-level netlist is called as logic synthesis. The ASIC
synthesis tool uses the RTL design coded using Verilog, SystemVerilog, or VHDL,
design constraints, and the ASIC library as an input and generates the gate-level
netlist as an output. Figure 18.3 shows the inputs used by the synthesis tool and
output as a gate-level netlist.

The popular synthesis tools used in the industry are Synopsys Design Compiler
(DC), Cadence RTL Compiler, etc. The synthesis tool considers the time, power,

ASIC Synthesizer

RTL design

ASIC library

Design constraints

Gate Level Netlist

Fig. 18.3 ASIC synthesis input and output
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and testability as the major important factors to generate the gate-level netlist.
Synthesis tool tries to meet the constraints by calculating the cost of various
implementations. The gate-level netlist is the structural description having only
standard cells. The gate-level netlist is verified for the functional correctness of the
design, and this phase is called as gate-level verification.

After successful gate-level verification of the RTL design, the objective is to
check for the timing violations. This phase is called as pre layout STA. During this
milestone, the objective of STA team is to find out the timing violations for the
design. During this phase, STA is performed without considering the parasitic (RC)
effect. The objective is to fix the setup time violations in the design and to improve
the overall performance of the design. In most of the ASICs, the hold time viola-
tions for various timing paths are fixed after CTS and routing that is during the
physical design flow.

Before physical implementation of an ASIC design, the design for testability
(DFT) should be checked to understand about the DRC violations. Even the
objective is to find out the various design faults. As discussed above, the RTL
should be DFT-friendly for the efficient scan chain insertions and to find out the
overall fault coverage for the design. The DFT techniques and processes are out of
scope as per as this book is concerned.

18.2.4 Physical Design and Implementation:

The next milestone in the ASIC design flow is physical design and implementation.
In this phase, the gate-level netlist is processed and passes through various phases
to have geometric representations. The geometric representation can be treated as
the layout of the design. The discussion on the physical design flow is out of scope,

Floorplanning & 
Powerplanning

Placement and 
CTS

Rou ng

Postlayout STA

Fig. 4 Physical design flow
important steps
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and readers are requested to refer the physical design and synthesis books. Few of
the important steps during physical design flow are shown in Fig. 4.

The gate-level netlist is used by the physical design tool to get the layout. The
important steps in the physical design flow are floor planning, power planning,
placement of standard cells and macros, clock tree synthesis, routing, and
post-layout STA to get the final layout. The design is basically converted from the
gate-level abstraction to the switch-level abstraction by using standard cells and
macros. The netlist after place and route phase is given as an input to the STA tool
to fix the timing violations, and this process is called as post-layout STA. The
post-layout STA is by considering the routing delays.

The physical design and implementation tool uses the design rule library to get
the GDSII file. The design rule library consists of the guidelines based on the
fabrication processes. GDSII file is used by the foundry to fabricate the integrated
circuit. The industry leading tool for the physical design and implementation is IC
Compiler from Synopsys or Encounter from Cadence.

The physical verification needs to be performed to verify the intended design
functionality and to make sure that the layout is designed according to the rules!
After the physical verification and timing analysis, the layout is ready for the
fabrication. In this phase, the layout data is converted into the photolithography
masks. After the fabrication process, the wafer is diced into various individual chips
and packaged as well as tested.

18.3 ASIC Design and Synthesis Strategies

Consider the 8-bit processor logic which has the functional blocks as shown in
Fig. 18.5. The RTL design team should use the strategy to code the block-level
design and to check for the functional correctness of the design.

During synthesis, we need to have the block-level synthesis using the
block-level constraints and top-level synthesis using the constraints. The main
optimization constraints are area and speed, and during logic synthesis, the
objective is to achieve the design performance for the block-level and top-level
design.

The block-level constraints met do not mean that top-level constraints will also
meet. It depends upon the complexity of the design and on the overall timing
associated for the design. More about the ASIC synthesis strategies and STA, refer
Chaps. 19–21.

If the constraints are not met, then the design team should use the RTL tweaks or
architecture and micro-architecture tweaks and are discussed in Chap. 21.
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18.4 Summary

The following are the important points to conclude this chapter.

1. ASIC is an application-specific integrated circuit and used to design the chips
for the specific applications.

2. In the full-custom ASIC designs, the design does not use the predefined library
cells. The design is done from the scratch.

3. In the semi-custom ASIC design, the design uses the predefined and pretested
standard cell library components.

4. RTL synthesis is process of getting the lower level of design abstraction from
higher-level design.

5. The logic synthesis tool uses the Verilog RTL, libraries, and constraints as an
input.

6. The physical design flow has the steps like floor planning, power planning,
CTS, placement and routing, post-layout STA, back-annotation, and layout.

7. The optimization can be achieved by tweaking the RTL design or by using the
tool-based synthesis optimization algorithms.
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Fig. 5 Top-level processor design
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Chapter 19
ASIC Synthesis and SDC Commands

During the ASIC synthesis the objective is to get the gate level netlist. The synthesis tool
uses the optimization constraints, and these constraints are specified by using the SDC
commands. The chapter discusses about the ASIC synthesis and important SDC commands
used during synthesis.

As discussed in Chap. 18, the ASIC synthesis tool uses the Verilog RTL, con-
straints, and ASIC library and performs the synthesis and optimization to generate
the gate-level netlist. The chapter discusses the ASIC synthesis flow and the SDC
commands.

19.1 ASIC Synthesis Using Design Compiler

This section only focuses on the logic synthesis using the Design Compiler to get
the gate-level netlist. As discussed previously, the logic synthesis tool uses the RTL
design either Verilog (.v) or VHDL (.vhd) files, the design constraints (.sdc), and
library(.lib) as an input and generates the optimized gate-level netlist using standard
cells available in the library. The gate-level netlist is technology dependent and can
change if process node varies. Depending on the functionality, the gate-level netlist
for the 40 nm can be different as compared to gate-level netlist generated for the
lower process nodes like 20 nm or 14 nm process node. ASIC synthesis tool per-
forms few steps to generate the gate-level netlist. The important steps during the
ASIC synthesis are translate, map, and optimize. The important steps during the
FPGA synthesis are translate, optimize, and map. Figure 19.1 gives the brief
information about the ASIC synthesis steps to generate the gate-level netlist.

1. Read Library: During the logic synthesis, the synthesis tool reads the
DesignWare libraries, technology libraries, and symbol libraries. The
DesignWare library consists of the complex cells like adders, comparators,
multipliers, etc. The technology library consists of the logic gates and flip-flops,
latches, etc. While synthesizing the synthesis, optimization algorithms
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automatically determine when to use the technology library cells and when to
use the DesignWare library components. These library cells are used efficiently
to generate the gate-level netlist.

2. The next step is to read the RTL description described by using either Verilog or
VHDL.

3. The synthesis tool after reading the libraries and the RTL performs many
required steps like optimization, conversion to unoptimized Boolean logic, and
technology-independent optimization and finally maps the logic using the
technology library. The above process is called as linking the logic to the desired
target library.

4. The synthesis tool uses the design constraints like area, speed, and power while
optimizing the design using the standard cells according to the target library. So
basically, link library can be IO library, cell library, or macrolibrary and used to
link the design and target library is used while optimizing the design.

Read 
Libraries(.lib)

Read Netlist

Map to Link Library 
for Gate level

Apply Design 
Constraints (.sdc)

Map to Target 
Library and Op mize

Write Op mized 
Netlist

Fig. 19.1 ASIC synthesis
important steps
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5. For efficient RTL coding, it is required that RTL design engineer should have
good understanding of the target standard cell library. After the design is
optimized, then the design is ready for the design for testability (DFT) that is to
detect early faults in the design. During RTL design stage only, the
DFT-friendly RTL needs to be described to enable quick scan insertions and
testing for various faults in the design.

6. The optimized netlist can be in the Verilog (.v) format or in the database (.ddc)
format and used by the placement and routing tool. Based on the routing, the
back-annotation can be performed with actual routing delays for accurate timing
analysis. If timing goals are not met, then the design can be resynthesized to
meet the timing goals.

19.2 ASIC Synthesis Guidelines

The Synopsys Design Compiler reads the startup file from the current working
directory. The startup file is synopsys_dc.setup. There should be two startup files:
One should be in the current working directory, and another should be in the root
directory where the Design Compiler is installed. To use the tool, the following
important parameters need to be set up.

1. search_path: This parameter is used to search for the synthesis technology
library for reference during synthesis.

2. target_library: This parameter is used by the DC while mapping the logic cells
during synthesis. The target library consists of the logic cells.

3. symbol_library: All the logic cells have symbolical representation. This
parameter is used to point the library that contains the visual information for the
logic cells present in the technology synthesis library.

4. link library: The tool uses the cells from the target_library for mapping the
desired functionality, and this parameter is used to point to the reference of the
logic gates in the synthesis technology library.

The above four parameters for.synopsys_dc.setup are described by using the
following.

set search_path “ ./synopsys/libraries/syn/cell_library/syn”

set target_library “tcbn65lpwc.db, tcbn65lpbc.db”

set link_library “ $target_library $symbol_library”

set symbol_library “ standard.sldb dw_foundation.sldb”

Once the above variable or parameters are set up for the desired process node
library, then the synthesis tool can be invoked at the command prompt.
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The design objects are documented in Table 19.1 and used during synthesis.
Every design is the description of the logic circuit to perform some of the logical
operations. The design can be single system description or can consist of the
multiple sub-systems. The design objects are described in Table 19.1.

19.3 Constraining Design Using Synopsys DC

The design is described using VHDL, Verilog languages using the synthesizable
constructs. This design needs to be used as an input by Design Compiler.
Table 19.2 describes the important commands used by DC.

19.3.1 Reading the Design

It is essential for the ASIC design team to understand about the difference between
the read command and analyze, elaborate command? The following are important
highlights:

1. The analyze and elaborate commands are used to pass required parameters while
elaborating the design.

2. The read command is used while entering for the pre-compiled designs or
netlists in DC.

3. Using analyze and elaborate commands, the different architectures can be
specified during elaboration for the same analyzed design.

4. The read command does not allow the use of the different architectures.

Table 19.1 Design objects used by Synopsys DC

Design
object

Description

Cell Cell is also called as instance. The instantiated name of the sub-design is called
as cell

Reference It is original design to which cell or instance refers. For example, instantiated
sub-design must refer to the design which consists of the functional description
of the sub-design

Ports The primary inputs and outputs or IOs of the design are called as ports

Pins The primary inputs, outputs, and IOs of cells in the design are called as pins

Net Wires used for the connection between ports of the pins of the different designs
are called as net

Clock The input port or pin used as clock source is called as clock

Library The technology-specific cells used for targeting for synthesis, linking, or
reference are called as library
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19.3.2 Checking of the Design

After the design has been read using the Synopsys DC, the check_design is used.
Table 19.3 describes the command used to check the errors in the design.

19.3.3 Clock Definitions

The clock needs to be created using the command create_clock, and this is used as
reference by timing analysis tool. Table 19.4 describes the clock definition
commands.

Table 19.2 Commands used to read the design

Command Description

read –format <format_type> <filename> Used to read the design. For
example, to read the Verilog
module processor.v the command
can be
read-format verilog processor.v

analyze –format <format_type> <list of file names> Used to analyze the design to find
the syntax errors and to perform the
translation before building the
generic logic. The generic logic is
part of the Synopsys generic
technology-independent library.
The components are named as
GTECH. This logic is unmapped
representation of the Boolean
functions. The command can be
used as
analyze –format verilog
processor.v

elaborate –format <list of module names> Used to elaborate the design and
can be used to specify the different
architectures during design
elaboration for the same analyzed
design. The command can be
elaborate –library work
processor

Table 19.3 Command used to check the design

Command Description

check_design Used to check the design problems like shorts, opens, multiple connections,
and instantiations with the no connections
check_design
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If the design requirement is to have the clock for variable duty cycle with rising
edge at 1 ns and clock period of 5 ns, then the same command can be modified as

create_clock –name clock - period 5 –waveform {1,5} –name master_clock

If the design does not have the clock pin, then the virtual clock can be created
using the following commands.

This command generates virtual clock of frequency 200 MHz with 50% duty
cycle.

create_clock –name clock -period 5

This command generates virtual clock of frequency 200 MHz with variable duty
cycle with rising edge at 1 ns and falling edge at 5 ns.

create_clock –name clock -period 5 –waveform {1,5}

19.3.4 Skew Definition

As we know that the skew is difference between arrivals of the clock signal at
various pins of the flip-flop, it is essential to design the clock network to have
balanced skew. If clock at the source flip-flop is delayed with reference to the
destination flip-flop, then the skew is called as negative clock skew and useful for
the hold. If clock at the destination flip-flop is delayed with reference to the source
flip-flop, then the skew is called as positive clock skew and useful for the setup. The
reason for positive clock skew is the clock at the destination flip-flop is delayed and
hence the data can arrive late.

Table 4 Commands for clock definition

Command Description

create_clock –name <clock_name> -
period <clock_period>
<clock_pin_name>

Used to create the clock for the design
and used as reference during timing
analysis. The clock is always associated
with the clock pin of the design. If
design does not have clock, then it will
be treated as virtual clock. The command
can be used to generate 200 MHz clock
with 50% duty cycle and is
create_clock –name clock -period 5
master_clock
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The Synopsys DC will not be able to synthesize the clock tree; so to overcome
the problem, the clock skew can be used to model the propagation delay that exists
in the clock tree.

Table 19.5 describes the commands used by Synopsys DC while defining clock
skew for the design.

19.3.5 Specifying the Input and Output Delay

The input and output delays can be specified by using set_input_delay and
set_output_delay, respectively. Table 19.6 describes the command used with the
required parameter definition.

19.3.6 Specify the Minimum (min) and Maximum
(Max) Delay

The input and output delays can be specified as min or max depending on the
requirements. Table 19.7 describes the min and max delay definitions.

Table 19.5 Commands used for the skew definitions

Command Description

set_clock_skew –rise_delay <rising_clock_skew> -
fall_delay <falling_clock_skew> <clock_name>

This command is used to define the
clock skew for the design. This can be
described as
set_clock_skew –rise_delay
2 –fall_delay 1 master_clock

Table 19.6 Commands used for the Input, output delay definitions

Command Description

set_input_delay –clock <clock_name>
<input_delay> <input_port>

Used to specify the input port delay with
reference to the clock. To specify 1 ns delay with
reference to clock, the command can be used as
set_input_delay –clock master_clock 1 data_in

set_output_delay –clock <clock_name>
<output_delay> <output_port>

Used to specify the output port delay with
reference to the clock. To specify 1 ns delay with
reference to clock, the command can be used as
set_output_delay –clock master_clock 1
data_out
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19.3.7 Design Synthesis

Using the command compile, the design can be synthesized; prior to synthesis, the
design constraints need to be given to the design. The design can be synthesized
using the different effort levels like low, medium, and high.

Table 19.8 describes the compile command.

19.3.8 Command to Save the Design

The design can be saved by using write command in various formats using Design
Compiler. The format can be Verilog or database format (ddc).

Table 19.9 describes the command used to save the design.

Table 19.7 Commands used for min and max IO delay definitions

Command Description

set_input_delay –clock <clock_name>
-max <delay> <input_port>

Used to specify the max input port delay
with reference to the clock. To specify
2 ns delay with reference to clock, the
command can be used as
set_input_delay –clock master_clock –

max 1 data_in
set_input_delay –clock <clock_name>

-min <delay> <input_port>
Used to specify the min input port delay
with reference to the clock. To specify
the 1 ns delay with reference to clock,
the command can be used as
set_input_delay –clock master_clock –

min 1 data_in
set_output_delay –clock <clock_name>
-max <delay> <output_port>

Used to specify the max output port
delay with reference to the clock. To
specify 2 ns delay with reference to
clock, the command can be used as
set_output_delay –clock master_clock
–max 2 data_out

set_output_delay –clock <clock_name>
-min <delay> <output_port>

Used to specify the min output port
delay with reference to the clock. To
specify 1 ns delay with reference to
clock, the command can be used as
set_output_delay –clock master_clock
–min 1 data_out

Table 19.8 Command used for compiling the design

Command Description

compile –map_effort <map_effort_level> This command is used to synthesize the
design with different effort levels like low,
medium, and high. The command for the
medium effort level can be
compile –map_effort medium
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19.4 Synthesis and Optimization Techniques

Before discussion on the synthesis reports and timing reports, let us understand the
different synthesis techniques used during the optimization. The optimization can
be performed at the RTL, architecture level, or during synthesis. The fully opti-
mized design is that which has met the area and timing requirements. The opti-
mization at the RTL level can be achieved by few tweaks to meet the intended
functionality. In such type of optimizations, care needs to be taken that the opti-
mized code should have the same simulation results before synthesis and after
synthesis. There are few standard techniques used in the real practical scenarios to
have better synthesis optimizations and results. Few of such techniques are dis-
cussed in this section.

19.4.1 Resource Allocation

This is used for the better synthesis results, and this optimization technique uses the
sharing of common resources.

Consider the Verilog procedural block shown below

always@(*)

begin

if(a_in==1)

y_out= b_in+c_in;

else

y_out = b-in+d_in;

end

Table 19.9 Command used to save the gate-level netlist

Command Description

write –format < format_type >
-output < file_name >

This command is used to save the output
generated by synthesis tool in various formats.
For the Verilog format, the command can be
write –format verilog -output
processor_netlist.v
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The above functionality infers the two adders: one to perform addition of a_in
and b_in and another to perform addition of b_in and d_in. It also infers the 2:1
mux to select the output of one of the adders. The synthesis result is shown in
Fig. 19.2.

In the synthesis result shown without use of the resource allocation, the common
input b_in is not shared. If the RTL shown above is tweaked to have only one
adder, then the synthesis optimization is better due to minimum area. Figure 19.3
shows the logic having minimum resources.

The modified optimized RTL description is shown in the following example

always@(*)

begin

if(a_in==1)

y_tmp= c_in;

else

y_tmp= d_in;

end

assign y_out = b_in + y_tmp;

So, prior to the sharing of the resources the area was more but by using the
resource sharing technique the area has improved.

Adder

Adder

2:1 
Mux

y_out

b_in
b_in

c_in
d_in

a_in

Fig. 19.2 Synthesis result
without resource allocation

2:1 
Mux

c_in

d_in

a_in

Adder

b_in

y_out

Fig. 19.3 Synthesis result
with resource allocation
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19.4.2 Common Factors and Sub-expression Use During
Optimization

In most of the RTL designs, it is essential to use the expressions or sub-expression.
Most of the time, the sub-expressions are not reused. If the sub-expression com-
puted values are reused, then the synthesis tool will be able to perform the better
optimization.

Consider the example shown below. In the example, b_in + c_in is used during
the multiple assignments.

assign y_tmp = b_in + c_in;

assign z_out = d_in – ( b_in + c_in);

The following tweak while using the continuous assignment can give the better
logic using minimum resources.

assign z_out = d_in – y_tmp;
Consider another RTL code, the common factor can be reused while coding an

efficient Verilog RTL.

always@(*)

begin

if (a_in)

y_out = b_in & ( c_in + d_in);

else

z_out = e_in ^ (c_in + d_in);

end

In the above example, the common factor is (c_in + d_in) and can be reused.
The above code can be modified as

always@(*)

tmp_add = c_in + d_in;

begin

if (a_in)

y_out = b_in & (tmp_add);

else

z_out = e_in ^ (tmp_add);

end

These minor modifications in the Verilog RTL can be useful to have more
optimized logic.
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19.4.3 Moving the Piece of Code

In most of the RTL designs, the expressions are used while using the for or while
loops. These expression values may or may not change during every iteration.
Those statements used within for or while loops whose value will not change can be
handled by using the tweaks in the code. The synthesis tool during optimization
phase handles such scenario, but there are chances of redundant logic generation.
This can be avoided by moving the expression outside of the loop. Consider the
following Verilog RTL.

//The value of y_tmp in the range of 0 to 9.

assign y_tmp = a_in + b_in;

for ( y_tmp = 0; y_ymp < 9; y_tmp = y_tmp + 1)

z_out = y_tmp − 9;

In the above example, it is assumed that y_out is not assigned with the new value
within the loop and the above expression remains constant for every iteration within
the loop. The synthesis tool infers the logic having the subtractors during synthesis,
and this occupies more area. The above Verilog RTL functionality can be modified
to avoid the unnecessary logic.

//The value of y_tmp in the range of 0 to 9

assign y_tmp = a_in + b_in;

assign tmp = y_tmp-6

for ( y_tmp = 0; y_ymp < 9; y_tmp = y_tmp + 1)

z_out = tmp;

19.4.4 Constant Folding

Consider the use of constants in the RTL design. Instead of declaring the constants,
use the direct computed or required value for the y_out. The piece of RTL code is
shown in the following example.

integer c_in = 3;

assign y_out = c_in *3;

Instead of using the above Verilog RTL, the better way is use the value 9 and
assign the value to y_out and this technique is called as constant folding.
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19.4.5 Dead Zone Elimination

The section of the code which is never executed is called as dead zone code. The
dead zone code elimination technique can be used for the better synthesis results.

The piece of Verilog RTL is shown below

integer c_in = 3;

integer b_in = 2;

always@(*)

if (b_in > c_in)

y_out = 1;

else

y_out = 0;

end

In the above RTL code the condition is always false and hence if con-
struct always executes the false condition assignment. The synthesis tool during
synthesis will perform such kind of optimizations. But if the code is modified, then
it will reduce the compilation time during synthesis.

19.4.6 Use of Parentheses

In most of the RTL designs if parentheses are used efficiently, then the synthesis
results can be optimized.

For example, if the assign construct is used in the RTL without any parentheses
then it infers the logic which has more propagation delay (Fig. 19.4).

assign y_out = a_in + b_in – c_in –d_in;

If the above RTL is modified as shown below, then it gives the clear timing and
data path (Fig. 19.5).

assign y_out= (a_in+b_in) – (c_in+d_in);

Adder
Sub

a_in
b_in

c_in
Sub

d_in Y_out

Fig. 19.4 Synthesis result without use of parentheses
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19.4.7 Partitioning and Structuring the Design

The design needs to be structured and partitioned for the better synthesis outcome.
It is the practical reality that the design which is better partitioned generates better
synthesis results and even it reduces the synthesis runtime. The following are
important guidelines recommended for the better and efficient design partitioning

1. Partition the design for the design reuse.
2. To describe the functionality, use the different modules.
3. Use the combinational logic in the same block.
4. Use the separate block or structure logic for the random logic.
5. Partition the design at the top level.
6. Do not use the glue logic at the top level.
7. Use the separate module for state machines that is isolating the state machines

form the other logic.
8. Limit the logic size to maximum 10 K gates for every block.
9. Avoid use of the multiple clocks in the same block.

10. Isolate the synchronizers for the multiple clock domain designs.

19.5 Summary

The following are the few important points to conclude this chapter.

1. RTL design engineer should have good understanding of the target standard cell
library.

2. The optimization can be performed at the code level or during synthesis.
3. The fully optimized design is that which has met the area and timing

requirements.
4. If the sub-expression computed values are reused, then the synthesis tool will be

able to perform the better optimization.
5. The resource allocation or sharing of common resources is the better technique

to improve the area of the design.

Adder

Adder

y_out

a_in
b_in

c_in
d_in

Sub

Fig. 19.5 Synthesis result with use of parentheses
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6. Use the constant folding and dead zone elimination to improve the area
optimization.

7. The design which is better partitioned generates better synthesis results, and
even it reduces the synthesis runtime.

19.5 Summary 425



Chapter 20
Static Timing Analysis

STA is non-vectored approach used in the timing closure. STA is used to find whether all
the timing paths are met or not. For RTL design engineer it is essential to have good
understanding of different timing paths. This chapter discusses about the STA concepts and
their use in the timing closure.

In the previous chapters, we have discussed the important RTL concepts and
synthesis in detail. But we have not discussed the timing parameters for the ASIC
design. The timing analysis is especially an important phase for any ASIC design,
and it can be performed during various design phases. Timing analysis can be
performed before design layout stage and after design layout stage. So, it is
essential and important to understand important timing parameters and considera-
tions for an ASIC design.

Before layout, the timing analysis is performed on gate-level netlist of the design
with goal to fix the setup time. Timing analysis tool uses the design constraints and
the timing libraries to perform the timing analysis for the design. Timing analysis is
of types of static and dynamic. Static timing analysis (STA) is performed without
using any set of vectors, and dynamic timing analysis is performed by using set of
vectors for the design. The goal is to fix the setup and hold time violations for the
design.

For any sequential element, two important timing parameters are setup and hold
time.

If setup time or hold time is violated, then the design goes into metastable state.
So, it is essential to find out timing issues and fix the timing violations for the
design and this process is performed by the timing analysis tool. Popular timing
analysis tool is Synopsys Prime Time (Synopsys PT). This chapter focuses on the
important timing considerations and their importance and use during timing closure.
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20.1 Setup Time

The amount of time for which the input signal D of the flip-flop should maintain
stable value either logic 0 or logic 1 before arrival of an active edge of the clock is
called as setup time.

The setup time considerations are especially important for the design when the
design is overconstrained. There can be many setup violations. The designer can
perceive that the violations in the design are due to the tight constraints in the
design.

To meet the setup time, it is required that the data should arrive at the input of D
flip-flop before certain amount of time before arrival of the active clock edge. For
example, if we consider design operated with 200 MHz clock frequency (clock
cycle time = 5 ns) and have set up time requirement of 1 ns, then it is required that
data should arrive at least at 4 ns so that the required setup time of 1 ns can be met.

Consider Fig. 20.1 consisting of combinational logic at the input of the register.
If setup time is tsu, then the data should arrive at the D input to meet the setup time.

So, the required time to travel data at D input is Tclk − tsu. The data arrival time
is tcomb that is delay of combinational logic.

Figure 20.2 shows the valid setup time region with the necessary condition to
meet the desired setup time. Let us consider the positive edge of the clock, the data
arrives at the D input of flip-flop prior to setup time window. So, there is no any
setup violation in the design.

Data arrival time is the amount of time required to arrive the data at the data
input of the D flip-flop. It is given by

Data arrival time = Propagation delay of flip-flop + combinational delay
Data required time = time duration of clock cycle − setup time

The difference in between data arrival time and data required time is called as
setup slack, and to meet setup time, the slack should be positive.

Fig. 20.1 Input–to-register path
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20.2 Hold Time

The amount of time for which the input signal D of flip-flop should maintain the
stable value either logic 0 or logic 1 after arrival of an active edge of the clock is
called as hold time.

Hold time is an important timing parameter consideration in the design. For most
of the design constrained at high frequency, it is critical to meet the hold time.
During the STA at ASIC layout stages, most of the hold violations are reported and
fixed. The hold violations in the design are due to the fact that data is arriving
slowly as compared to the required time.

For example, consider the scenario in Fig. 20.3. The design is constrained at
200 MHz operating frequency; that is, clock cycle time is 5 ns. If hold time
requirement is 1 ns and data arrived at D input of flip-flop changes during the 1 ns
window after arrival of active clock edge, then there is hold violation in the design.

As shown in Fig. 20.3, the valid data is present at the D input of the flip-flop.
Both setup and hold times are met for the design; hence, there is no any timing
violation in the design.

Data arrival time = Propagation delay of flip-flop + combinational delay should
be greater than hold time of flip-flop.

If propagation delay of flip-flop is 3 ns and combinational delay is 1 ns for the
design, then data will never change during the 1 ns window so there is no any
chance of hold violation in the design.

But consider the design scenario, for the design the flip-flop propagation delay
is 0.8 ns, hold time is 1 ns and there is no any combinational logic in the data path,
in such scenario the hold violation occurs in the design.

So, it is important to note that the data should be stable at the D input of flip-flop
during setup and hold time window.

Fig. 20.2 Valid setup time region timing sequence

Fig. 20.3 Valid hold time region timing sequence
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20.3 Clock to Q Delay

The amount of time required for the flip-flop to generate valid output either logic 0
or logic 1 after arrival of an active clock edge is called as propagation delay of
flip-flop. Propagation delay of flip-flop is also called as clock to q delay.

The amount of time required for the flip-flop to generate valid output either logic
1 or logic 0 after arrival of the active clock edge is called as propagation delay of
flip-flop. The propagation delay of flip-flop is also called as clock to output delay or
clock to q delay of flip-flop.

Consider tsu is setup time of flip-flop, th is hold time of flip-flop, and tpff is
propagation delay of flip-flop. Figure 20.4 shows the various timing parameters for
the register.

20.3.1 Frequency Calculations

As shown in Fig. 20.4, the timing parameters of flip-flop(reg1) are given as tpff1, tsu1
and the timing parameters for the register 2 are given as tpff2, tsu2. The combina-
tional logic design delay in the data path is given as tcomb.

These timing parameters are used to find the maximum operating frequency for
the design.

Fig. 20.4 Register-to-register path
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To find the maximum operating frequency of the design, find out the data
required time and data arrival time. The data required time is the addition of all the
delays in the register-to-register path.

Therefore, the data required time is given by: tpff1 + tcomb.
The data arrival time is given by: Tclk− tsu2 where Tclk is the clock cycle time

and tsu2 is the setup time of second flip-flop.
So, the maximum frequency is calculated by equating the data required time and

data arrival time.

tpff1 + tcomb = Tclk − tsu2

Tclk = tpff1 + tcomb + tsu2
Fmax = 1/(tpff1 + tcomb + tsu2)

Consider bothflip-flopshave same timingparameter values, that is, tpff1 = tpff2 = 2 ns,
tsu1 = tsu2 = 1 ns, and tcomb = 2 ns. Then, the maximum operating frequency is

Fmax = 1/(2 + 2 + 1)ns = 200 MHz

20.4 Skew in Design

Consider the example shown in Fig. 20.5. In this example, the flip-flop1(Reg1) is
triggered early and flip-flop2(Reg2) is triggered late. Flip-flop1 is called as launch
flip-flop, and flip-flop2 is called as capture flip-flop. As the launch flip-flop is
triggered first and capture flip-flop is triggered last, there is skew in the clock pulse
and it is called as positive clock skew.

Combo 
Logic

d q_out

Clk

d1 q1 d2 q2

Buffer Clk1

Reg1 Reg2

tpff1
tpff2

Fig. 20.5 Positive clock skew in the design
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In the above example, clock and data travel in the same direction, and due to
buffer delay, the clk1 is delayed by buffer delay as compared to clk input.

To find the maximum operating frequency for the above design, find out the data
required time and data arrival time. The data required time is the addition of the
delays in the register-to-register path.

Therefore, the data arrival time is given by: tpff1 + tcomb.
The data required time is given by: Tclk − tsu2 + tbuf where Tclk is the clock cycle

time and tsu2 is the setup time of second flip-flop where tbuf is the buffer delay of the
buffer in the clock path.

So, the maximum frequency is calculated by equating the data required time and
data arrival time.

tpff1 + tcomb = Tclk − tsu2 + tbuf
Tclk = tpff1 + tcomb + tsu2 − tbuf
Fmax = 1/(tpff1 + tcomb + tsu2 − tbuf)

Consider both flip-flops have same timing parameters, that is, tpff1 = tpff2 = 2 ns,
tsu1 = tsu2 = 1 ns, tbuf = 1 ns, and tcomb = 2 ns. Then, the maximum operating
frequency is

Fmax = 1/(2 + 2 + 1 − 1)ns = 250 MHz

So, from the above discussion, positive clock skew is good to improve the
performance of design. In the above example due to the buffer delay of 1 ns, the
clock at flip-flop2 is delayed by 1 ns time as compared to the clk at flip-flop1. So,
the time of 1 ns delayed clock can be compensated by setup time and hence
increases frequency by 50 MHz.

Let us consider another example shown in Fig. 20.6. In this example, source
flip-flop is triggered last and destination flip-flop is triggered first. In the other way,
one can perceive that the clock and data are traveling in the opposite direction.

To find the maximum operating frequency for the above design, find out the data
required time and data arrival time. The data required time is the addition of the
delays in the register-to-register path.

Therefore, the data arrival time is given by: tpff1 + tcomb + tbuf.
The data required time is given by Tclk − tsu2 where Tclk is the clock cycle time

and tsu2 is the setup time of second flip-flop where tbuf is the buffer delay of the
buffer in the clock path.

So, the maximum frequency is calculated by equating the data required time and
data arrival time.

tpff1 + tcomb + tbuf = Tclk − tsu2
Tclk = tpff1 + tcomb + tsu2 + tbuf
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Fmax = 1/(tpff1 + tcomb + tsu2 + tbuf)

Consider both flip-flops have same timing parameters, that is, tpff1 = tpff2 = 2 ns,
tsu1 = tsu2 = 1 ns, tbuf = 1 ns, and tcomb = 2 ns. Then, the maximum operating
frequency is

Fmax = 1/(2 + 2 + 1 + 1)ns = 166.66 MHz

So, from the above discussion negative clock skew degrades the performance of
design. In the above example due to the buffer delay of 1 ns, the clock at flip-flop1
is delayed by 1 ns time as compared to the clk at flip-flop2. So the time of 1 ns
buffer delay is added in the data path with the flip-flop delay and hence reduces the
clock frequency for the design.

20.5 Timing Paths in Design

As discussed in the above section, the STA is a non-vectored approach to check the
timing violation and the performance of the ASIC design! The STA tool uses the
algorithm to check for the violations in all possible timing paths.

Timing paths in design start at start point. The clock port of the flip-flop or input
port of the design is treated as start point. Timing path terminates or ends at the end
point. The data input of flip-flop or an output port is treated as end point.

For any RTL design, there can be four timing paths and they are named as

• Input-to-register path (input to reg path)
• Output-to-register path (output to reg path)
• Register-to-register path (reg to reg path)
• Input-to-output path (combinational path).
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Fig. 20.6 Negative clock skew in the design
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So, timing analyzer checks for the worst possible delays through the timing
paths but ignores the logical operations. As timing analyzer ignores the logic
operations, it is a non-vectored approach and faster as compared to the simulator.
But reader needs to understand that the timing analysis is used to check for the
timing correctness of the design but not used to check for the logical functional
correctness of the design.

This following section discusses the different timing paths in the design.

20.5.1 Input-to-Register Path

Input-to-register path has start point input port q1 and end point data input d2 of the
flip-flop. This path is also called as input–register path group. Figure 20.7 shows
the input port q1 and combinational logic (combo logic), and the path from q1 to d2
through combo logic is treated as input-to-register path.

20.5.2 Register-to-Output Path

Register-to-output path has start point clock input port clk and end point data output
q_out of the register element. This path is also called as output–register path
group. Figure 20.8 shows the start point port clk, and data d travels through the
register through combinational logic, hence named as register-to-output path.
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Fig. 20.7 Input-to-register path
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20.5.3 Register-to-Register Path

Register-to-register path has start point clock input port clk, and first flip-flop acts as
a launch register, end point data input d2 of the second flip-flop. This path is also
called as clock path group. Figure 20.9 shows the clock port clk, and launched data
by flip-flop1 passes through the combinational logic (combo logic) and arrives at
the data input d2 of the second flip-flop. This path decides the maximum operating
frequency of the design.

20.5.4 Input-to-Output Path

Input-to-output path has start point input port d and end point data output q1_out.
This path is also called as combinational path group. Figure 20.10 shows the input
port d, and the data passes through the combinational logic (combo logic) to
generate an output q1_out.
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20.6 Timing Goals for the Design

In the practical scenarios, the design timing goals are described using the clock
definitions for the design and by specifying the IO timing with respect to the clock.
The reason for all this definition for the synchronous designs is because data arrives
from the clocked device and the data goes to the clocked device.

The template shown in Fig. 20.11 describes the definitions to specify the timing
goals for the design.

Use the SDC commands to define the clock, input delays, output delays, and
clock skew.

The SDC commands to specify the timing goals are listed in Fig. 20.12.

20.7 Min–Max Analysis for ASIC Design

So, from the above discussion the setup time is good due to faster clock arrival and
slow data arrival. To overcome the setup violations, the data should arrive fast,
launch clock should arrive fast, and capture clock should arrive slowly.

Hold time violation is because data arrival is fast, capture is slow, and data
arrival is fast. The hold time can be fixed using the strategy to have the data arrival
slow, launch is slow, and capture is fast.

In the practical scenarios, the min–max corner analysis can be performed by
using minimum value of timing parameters and by using maximum value of timing
parameters. During setup time analysis, consider the maximum data path delays and
minimum delays in the clock path. During hold analysis, consider minimum delays
in the data path and maximum delays in the clock path.

Fig. 20.10 Input-to-output combinational path
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The example shown in Fig. 20.13 is used to describe the minimum and maxi-
mum analysis for the design.

In this example, the minimum delays are considered in the clock path and
maximum delays are considered in the data path. Consider the timing parameters of
flip-flop1 and flip-flop2.

Consider the first flip-flop delay is (1.35, 1.5) ns, the second flip-flop delay is
(1.65, 1.75) ns, and the combinational path delay is 2 ns. NOT gate propagation
delay is (0.75, 0.8), and setup time of both the flip-flops is (0.6, 0.65).

Skew in the design is due to the NOT gates in the clock path. This skew is
calculated as follows. By using minimum delay analysis, the skew in the design is
1.2 − 0.6 = 0.6 ns. This skew is due to additional delay of NOT gate for the
capture flop.

Data Arrival time = Tpff1 + Tcombo = 1.5 + 2 = 3.5 ns.

Data required time is equal tclk + tskew − tsu = tclk + 0.6 − 0.6. Then, the max-
imum operating frequency is as follows.

Therefore, the minimum time period of design is

Tpff1 + Tcombo = tclk + tskew – tsu

tclk = Tpff1 + Tcombo – tskew + tsu = 1.5 + 2 – 0.6 + 0.6 = 3.5 ns

Fmax = 1/(3.5 ns) = 285.71 MHz
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Fig. 20.11 Timing goals for synchronous design
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• Define the clock for 200MHz operaƟng frequency and having 50% 
duty cycle by using

create_clock –period 5.00 –name clk [ get_ports {clk} ]

The above SDC command generates the clock of 200MHz with the 
50% duty cycle that is on Ɵme is equal to off Ɵme. 

• Specify the clock latency. For example, if the clock latency is of 
1ns then use the command ‘set_clock_latency’

set_clock_latency –source 1.00 [ get_clocks clk]

• Timing analyzer uses the longest or shortest path during Ɵming 
analysis. The longest delay path is specified by –late and shortest 
delay path is specified by the –early path. 

• During the setup analysis the Ɵming analyzer uses the late clock 
latency for the data arrival path and early clock  latency for the 
clock arrival path. The clock latency for setup is defined with ref-
erence to rising (-rise) or falling (-fall) clock transiƟons.

• During the hold analysis the Ɵming analyzer uses the early clock 
latency for the data arrival Ɵme and late clock latency for the 
clock arrival Ɵme.

• The definiƟons for the clock latency can be specified by the follow-
ing SDC
set_clock_latency –source –early –rise -0.5 [ get_clocks clk]

set_clock_latency –source –early –fall -0.45 [ get_clocks clk]

• Specify the separate clock uncertainty for the setup (-setup) and 
for the hold (-hold)

set_clock_uncertainty –setup 1.0 [ get_clocks clk]

set_clock_uncertainty –hold 0.5 [ get_clocks clk]

• Specify the minimum and maximum input delays for the design 
using set_input_delay

set_input_delay –clock clk –max 2.0 find  (port d1)

set_input_delay –clock clk –min 1.4 find  (port d1)

• Specify the minimum and maximum output delays for the de-
sign using set_output_delay

set_output_delay –clock clk –max 1.8 find  (port q_out)

set_output_delay –clock clk –min 1.2 find  (port q_out)

Fig. 20.12 SDC commands
to specify timing goals
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20.8 Fixing Design Violations

The following are few important techniques used to fix the design violations.

20.8.1 Tweaks at the Architecture Level

To fix the design violations, the last option is to make the required and necessary
changes at the architecture level of design. But the architecture-level changes are
not recommended for the design as it can have significant impact on the design and
implementation cycle. But after incorporating changes at the micro-architecture of
the design or during optimization if the timing constraints are not met, then
sometimes it is essential to incorporate the changes at the architecture level. The
designer needs to suggest the chief architect about the required changes in the
architecture. The chief architect needs to take care of the design functionality as the
changes in the architecture can affect the design functionality. It is essential to make
the desirable changes by keeping the same design functionality.

20.8.2 Tweaks at Micro-architecture Level

If the design optimization fails to meet the required timing, then it is essential to
make the necessary and required changes at the micro-architecture level. The
micro-architecture document is the golden reference document for the RTL design,
and due to that, the designer has insight about it. The greater detailed understanding
of the micro-architecture always plays a crucial and significant role during the RTL
design stage.
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Fig. 20.13 Min–max delay analysis
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20.8.3 Optimization During Synthesis

Synthesis tool used during logic synthesis is more efficient due to the inbuilt
synthesis and optimization algorithms. They are driven by the coding and design
styles adopted at the synthesis level. If design does not meet the timing, then
optimization and performance strategies need to be used. To meet the desired
timing goals, the designer can use the optimization concepts like pipelining, register
duplications, register balancing, etc. Consider the scenario, if the design needs to be
optimized to eliminate the 100 timing violations, and among them 20 to 30 timing
violations are not possible to fix by using synthesis optimizations, then the better
approach can make the necessary and required changes in the RTL code and fix
these violations. Here, performance improvement techniques are useful.

The reader needs to ask themselves that why it is challenging to fix the timing
violations in the design? As the design complexity increases from block level to chip
level due to multiple hierarchies in the design, and hence the propagation delay
between registers increases due to inefficient design partitioning. This has significant
impact on register-to-register path timing. It may be possible that the multiple timing
paths can be violated due to non-meeting of the setup and hold time parameters.

It is general observation that, at the block level if design meets the timing goals
then the design does not have any timing violations at the block level. But at the
top-level design due to integration of multiple blocks, there exist possibilities of
several timing violations. At the top level, these violations can be fixed by mini-
mizing the logic density between the registers. If data required time is greater than
the data arrival time, then it is treated as clean register-to-register path due to
positive slack. This indicates that there is no any setup violation in the design at top
level.

20.9 Fixing Setup Violations in the Design

The following are few techniques used to fix the setup time violations:

1. Logic duplication
2. Encoding methods
3. Late arrival signal fixes
4. Register balancing.

20.9.1 Logic Duplication

This technique increases the effective area but generates two independent paths
during synthesis. This technique is effective to fix setup time violation. For
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example, consider Fig. 20.14. Consider inputs in_1, in_2, in_3, and in_4 are reg-
istered inputs, and the combinational logic is in the register-to-register path. If every
adder has propagation delay of 3 ns, then overall combinational path delay is 6 ns.
But due to logic duplication, the two independent paths can be optimized to
improve the timing.

As shown in Fig. 20.15, the two independent paths have been created using
logic duplication technique and hence the optimization for these two independent
paths is possible by retaining same functionality. Logic duplication technique
increases the area.

20.9.2 Encoding Methods

The popular used encoding techniques are priority encoding and multiplexed
encoding. Consider the continuous assignments used to code the combinational logic.

assign y_out = a_in && b_in && c_in && d_in && e_in && f_in && g_in && h_in;

The above assignment infers the priority logic, where a_in has highest priority
over any other input signal. The inferred logic is shown in Fig. 20.16.

In the priority encoding method, the overall delay is of 7 * tpd; if tpd is equal to
1 ns, then the overall propagation delay is of 7 ns.

To improve the design performance, it is essential to reduce the propagation
delay of combinational logic and hence multiplexed encoding technique can be
efficient as compared to the priority encoding technique. Figure 20.17 shows the
multiplex encoding by using the continuous assignment.
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Fig. 20.14 ASIC logic without duplication
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Fig. 20.16 Priority encoding logic
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assign y_out= ((a_in && b_in) && (c_in && d_in)) && ((e_in && f_in) &&

(g_in && h_in).

As shown in Fig. 20.17, the number of levels has been reduced from seven to
three and hence the overall propagation delay for the multiplexed encoding is only
3 * tpd. If the tpd is 1 ns, then overall propagation delay for the multiplexed
encoding is only three-stage delay, that is, 3 ns. So, this technique has improved
performance as compared to the priority encoding technique.

20.9.3 Late Arrival Signals

For any design if control signals are late arriving, then it has significant impact on
the design timing. Due to late arrival of the control signal, setup time is violated.

In the example shown in Fig. 20.18, in_1 and in_2 are multiplexer inputs and
arrive quickly but sel_in is select line of multiplexer and arrives late. The select
input sel_in is late arrival signal. This signal has significant impact on the setup
time of design.

To improve the timing and to avoid the setup time violation, the combinational
logic can be pushed ahead toward output side, and the multiplexer logic can be
pushed toward input side. The combinational logic can be duplicated at the input of
multiplexers. This technique increases area but improves the overall design per-
formance by compensating the time required for the combinational logic and late
arrival signal. Another important point to understand is this technique allows the
logic partitioning efficiently into two groups and is useful for further improvement
in the timing.
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20.9.4 Register Balancing

To fix the setup time and to improve the design performance, register balancing is
one of the powerful techniques. Consider the operating frequency of the design as
200 MHz; that is, clock period is on 5 ns. The register-to-register path has high
combinational delay due to which the data arrival time is greater than the data
required time. In such scenario, the slack is negative, and it violates the setup time
for the design.

Consider the example shown in Fig. 20.19; register1-to-register2 path has
combinational logic and has delay of 3 ns. If we consider the setup time of register
as 1 ns, propagation delay of flip-flop as 2 ns, and hold time as 0.5 ns, then the data
arrival time for register1-to-register2 path is 5 ns and data required time is
Tclk − 1 ns. So, the clock time period is Tclk = 6 ns. This violates the setup time of
design for the given design constraints of 5 ns.

For register2-to-register3 path, the combinational delay specified is 2 ns, and if
we consider same timing parameters of the register, then the data required time is
Tclk-1 ns and data arrival time is 3 ns. This meets the timing constraints for the
design. For register2-to-register3 path, the data is arrived at the D input of register3
at 3 ns and waiting for the clock which is arriving after 2 ns. So, there is additional
time margin of 1 ns, this can be used to improve the design performance, and this
technique is called as balancing the timing between two registers.

This can be achieved by splitting the combinational logic between the register1
and register2 into two paths and pushing the combinational logic having delay of
1 ns to the register2-to-register3 path.

This will give the clean timing for all register-to-register paths as the data arrival
time for both the paths will be 4 ns. This meets the design constraints, and the
operating frequency for the design meets the target of 200 MHz.
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Fig. 20.19 Register balancing example
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20.10 Hold Violation Fix

Hold time violation occurs in the design if the data at the D input of register
changes fast. For example, consider the design shown in Fig. 20.7; if combinational
logic delay is less and due to that if data at D input of register changes fast, then
there exists hold violation for the design. During the hold time window, if the data
changes, then there is hold violation.

To fix the hold violation for the design, it is recommended to insert the buffers in
the data path, but care needs to be taken that this should not violate the setup time
requirements for the design. Inserting buffers in the data path increases the time
required to change data at the D input of register and is useful to fix the hold
violation. The logic after inserting the buffers in the data path is shown in Fig. 20.20.

20.11 Timing Exceptions in the Design

There are two main timing exceptions, and they are named as false paths and
multi-cycle paths. These timing exceptions need to be reported to timing analyzer
using SDC commands.

20.11.1 Asynchronous and False Paths

If the changes on any one of the signals or ports do not affect the output of design,
then the path needs to be reported as false path. False path is basically timing
exception and needs to be notified to the synthesis tool. For example, consider the
following expression.

Combo 
Logic

q_out

clk

q1 d2 q2

Fig. 20.20 Hold violation fix
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assign y_out = (a_in + b_in) + (c_in + d_in)

In this example, if the d_in is set to zero due to some reason then the logical
output depends on only a_in, b_in, c_in inputs and the path from d_in to y_out will
be considered as false path.

Asynchronous path: Asynchronous path needs to be notified to the synthesis tool,
and these path violations need to be treated as false violations and need to be
ignored.

Figure 20.21 describes the false path, and this needs to be reported to the timing
analyzer. The SDC command discussed in Chap. 10 can be used to specify the false
path.

set_false_path –from [ get_ports {a b} ] –to [ get_ports c_d ]

The above SDC command indicates the changes on input ports a, b will not

affect the output c,_d and need to be treated as false path

set_false_path –from [ get_ports {c d} ] –to [ get_ports a_b ]

The above SDC command indicates the changes on input ports c, c will not

affect the output a_b and need to be treated as false path

20.11.2 Multi-cycle Paths

If any path in the design has delay of more than one clock cycle, then the path is
treated as multi-cycle path. Consider the following design scenario where register
(FF4) to register (FF5) delay is of 40 ns and clock period is of 5 ns. To update the d
input of register with new value, the number of clock pulses required is equal to 8.

Fig. 20.21 False path example [Synopsys timing constraints and optimization user guide, version
D-2010.03]
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This needs to be informed to the tool so that setup and hold check can be pushed
according to the requirement. The multi-cycle path is a timing exception.

The SDC command discussed in Chap. 19 can be used to specify the multi-cycle
path (Fig. 20.22).

set_multicycle_path –setup 2 –from [ get_cells FF4 ] \

–to [ get_cells FF5 ]

The above SDC command indicates that the path specified is multi-cycle

path and the setup is pushed by 2 clock cycles

set_multicycle_path –hold 1 –from [ get_cells FF4 ] \

–to [ get_cells FF5 ]

The above SDC command indicates that the path specified is multi-cycle

path and the setup is pushed by 1 clock cycles

20.12 Pipelining and Performance Improvement

The design performance for the design can be improved by adding the multiple
stage pipelining in the ASIC design. The overall latency to get an output data is
dependent upon the number of pipelined stages. Pipelining will increase the area as
register utilization for multiple bits increases.

Due to use of pipelining, the overall performance of the design also improves.
Readers are requested to refer Chap. 11 for better understanding of the pipelining.

Fig. 20.22 Multi-cycle path example [Synopsys timing constraints and optimization user guide,
version D-2010.03]
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20.13 Summary

The following are important points to conclude the chapter.

1. STA is a non-vectored approach and faster as compared to simulator.
2. Flip-flop timing parameters are setup, hold, and clock to q delay.
3. If setup or hold time is violated, then design goes into the metastable state.
4. There are four timing paths in the design, and register-to-register path decides

the maximum operating frequency for the design.
5. For the setup analysis, the timing analyzer uses the late clock latency for the data

arrival path and early clock latency for the clock arrival path. The clock latency
for setup is defined with reference to rising (-rise) or falling (-fall) clock
transitions.

6. For the hold analysis, the timing analyzer uses the early clock latency for the
data arrival time and late clock latency for the clock arrival time.

7. The multi-cycle paths and false paths are the timing exceptions.
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Chapter 21
Design Constraints And Optimization

Synopsys Design Compiler is industry leading logic synthesis tool and popular as
Synopsys DC. Most of the leading ASIC design companies uses the Synopsys DC during
the logic synthesis and Synopsys PT for the timing analysis and timing closure. The chapter
focuses on the design constraints and optimization using Synopsys DC.

The optimization using the Synopsys DC for mainly the area, speed using various
SDC commands, is discussed in this chapter. The chapter discusses the use of the
design constraints, ASIC synthesis, and optimization strategies useful during the
ASIC designs. The following sections are useful to understand the design con-
straints and optimization using the Synopsys DC.

21.1 Introduction to Design Constraints

Modern ASIC SOCs are extraordinarily complex in the nature and consist of more
than millions of logic gates. Design complexity has grown exponentially in the past
decade due to the demand of the sophisticated and intelligent devices. In such
scenario, there is additional overhead and cost during the design synthesis and
timing closure. As discussed in Chaps. 18 and 19, the ASIC design passes through
various phases which include architecture design micro-architecture design, design
entry using HDL, simulation, and synthesis. The Synopsys DC is the leading EDA
tool used to perform the logic synthesis and optimization, and Synopsys PT is used
for the timing closure.

As a ASIC design engineer, it is essential to have exposure about the design
synthesis and timing analysis. These concepts are covered in Chaps. 18–20. The
understanding of the design constraints and the commands used to constrain the
design for the area, speed, and power is very much useful during chip design
various phases. This chapter discusses how to specify the design constraints using
Synopsys DC and how to optimize the design.
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The design constraints are classified as design rule constraints and optimization
constraints. The classification is shown in Fig. 21.1.

Synthesis flow is discussed in Chap. 19 with the important SDC commands. For
better understanding, the synthesis flow is shown in Fig. 21.2. The flow includes
various steps useful during the synthesis of any kind of logic. The compilation
strategy can be chosen as top-down or bottom-up. The commands used during each
phase are discussed in the subsequent sessions.

1. Read Design Object: Design object is Verilog RTL code which is simulated to
check for the functional correctness. The commands used are

analyze, elaborate, read

2. Specify Technology Requirements: In these steps, the design rules and
libraries required need to be specified. The commands used are

/* read the design object */ 
read -format verilog full_adder.v 
/* specify the technology requirements */ 
target_library = my_library.db 
symbol_library = my_library.sdb 
link_library = "*" + target_library 
/* define the design environment */ 
set_load 2.0 sum_out 
set_load 1.2 carry_out 
set_driving_cell -cell FD1 all_inputs() 
set_drive 0 clk_name 
/* set the design constraints */ 
set_input_delay 1.25 -clock clk {a_in, b_in} 
set_input_delay 3.0 -clock clk c_in 
set_max_area 0 
/* synthesize the design */ 
compile 
/* generates reports */ 
report_constraint 
report_area 
/* save the design database */ 
write -format db -hierarchy -output full_adder.db 

Example 1 Important steps during synthesis and compilation
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Library Objects

link_library

target_library

symbol_library

Design Rules

set_max_transition

set_min_transition

set_max_fanout

set_min_fanout

set_max_capacitance

set_min_capacitance

3. Design Environment Definitions: The design environment includes the pro-
cess, temperature, voltage conditions, drive strength, and effect of load driving
the design. The commands used are

set_operating_conditions

set_wire_load

set_drive

Fig. 21.1 Constraint classification
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set_driving_cell

set_load

set_fanout_load

4. Select Compilation Strategy: The strategies used for optimizing hierarchical
design includes top-down, bottom-up, and compile-characterize. The advantages
and disadvantages of each strategy are discussed in the subsequent section

5. Setting Design Constraints: The constraints need to be set for the design
optimization and for the timing analysis. The commands used are

create_clock

set_clock_skew

set_input_delay

set_output_delay

set_max_area

6. Optimize Design: Synthesize the design to generate technology-specific
gate-level netlist. The command used is
compile.

7. Analyze and debug the: This step is important to understand the potential
problems in the design by generating various reports. The commands used are

check_design

report_area

report_constraint

report_timing

8. Generate Script file: The design database is stored in the form of script file.

Consider the top-level design as full adder having inputs a_in, b_in, c_in, and
outputs sum_out, carry_out. The top-down compilation strategy is used, and the
script is shown below and can be used in the practical scenario. Refer Chap. 19 for
the SDC commands. To synthesize the design and to compile, use the script shown
in Example 1.

21.2 Compilation Strategy

The strategy used during the compilation of any design can be top-down or
bottom-up compilation. Each compilation strategy has its own advantages and
disadvantages.
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21.2.1 Top-Down Compilation

The top-down compilation uses the top-level design constraints and is easier as
compared to the bottom-up compilation approach. Following are the advantages
and disadvantages of the top-down compilation

Advantages

1. Optimization engines work on full design, complete paths
2. Usually get best optimization result
3. No iteration required
4. Simpler constraints
5. Simpler data management.

Disadvantages

1. Longer runtime
2. More memory requirements.

The commands used for the top-down compilation are

dc_shell> current_design TOP

dc_shell> compile –timing_high_effort_script

21.2.2 Bottom-Up Compilation

The bottom-up compilation uses the sub-module-level compilation first, and then it
moves towards top level. The care must be taken by the synthesis team to set
‘set_dont_touch’ attribute on the sub-modules to avoid recompilation of the
sub-modules. The synthesis team needs to know the timing information of the
inputs and outputs for each of the sub-module. The advantages and disadvantages
are documented below

Advantages

1. Faster as compared to top-down compilation
2. Less compilation time required per run
3. Less memory requirement.

Disadvantages

1. Optimization works on the sub-module or sub-design
2. More iterations are required
3. More hierarchies to be maintained.
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Consider the design has two sub-modules. The commands used for the
bottom-up compilation are

dc_shell> current_design submodule1

dc_shell> compile –timing_high_effort_script

dc_shell> set_dont_touch submodule1

dc_shell> current_design submodule2

dc_shell> compile –timing_high_effort_script

dc_shell> set_dont_touch submodule2

dc_shell> current_design TOP

dc_shell> compile –timing_high_effort_script

21.3 Area Optimization Techniques

There are several techniques used to optimize the overall area of the design. The
highest priority of the synthesis team is to optimize for the timing followed by area.
There are several efficient area optimization techniques at the RTL level. In the
previous few chapters, we have discussed the resource sharing. Following are the
important guidelines used to optimize for the area

1. Avoid the use of the combinational logic as individual block or module
2. Do not use the glue logic between two modules
3. Use set_max_area attribute while synthesizing the design.

21.3.1 Avoid Use of Combinational Logic as Individual
Block

It is recommended that, do not use the combinational logic as individual block. If
the individual combinational module is used, then DC will not be able to optimize
the individual block. This is not a good design partitioning technique. The hierarchy
of the module is fixed, and Design Compiler will not be able to modify the hier-
archy of the design. Consider the design scenario shown in Fig. 21.3. It has module
I and module II, and module II is individual combinational block so the Design
Compiler will not be able to optimize module II, as Design Compiler does not
optimize the port interfaces.

If the design is partitioned efficiently, then the overall optimization will boost the
design performance. A better partitioned ASIC design should have combined
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functionality of module I and module II. The functionality of A + B in the using
module is shown in Fig. 21.4 and results in faster optimization during the synthesis.

21.3.2 Avoid Use of Glue Logic Between Two Modules

If the module II in Fig. 21.3 is replaced by glue logic that is instance of logic gate,
then it glues between the different modules as shown in Fig. 21.5. Such type of
design partitioning is not good, the reason being the logic gate cannot be optimized
by the Design Compiler as design is not partitioned properly. To avoid this type of
scenario, it is recommended to use the group command. Either group the glue logic
with the module I or module II. Following command used to group the glue logic
with module I.

D flip-flop

Combo 
Logic1: A

Combo 
Logic2 : B

Module I Module II

d_in

clk

Fig. 21.3 Combinational logic as individual module

D flip-flop

Combo 
Logic: A 

+B

Module I

d_in

clk

Fig. 21.4 Eliminating individual combinational module
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dc_shell> group {m1, m3} –design_name moduleIII cell_name or_gate

Following command used to group the glue logic with module II.

dc_shell> group {m2, m2} –design_name moduleIII

cell_name or_gate

D flip-flop

Combo 
Logic1: A

Module I: 
Instance m1 Module III: 

GLUE LOGIC
d_in1

clk

D flip-flop

Combo 
Logic1: A

d_in2

clk

q1

q2

Module II: 
Instance m2

or_gate: 
Instance m3

Fig. 21.5 Glue logic between two blocks

21.3.3 Use of Set_max_area Attribute

To obtain the least possible area, it is recommended to use the attribute set_-
max_area. This attribute is effective during the optimization of the design. Design
Compiler gives the highest priority to the timing optimization. If timing is met, then
only the area optimization phase can start. The priorities for the design optimization
are listed below

1. Design rule constraints (DRC)
2. Timing
3. Power
4. Area.
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21.3.4 Area Report

The area report is generated by the Design Compiler using report_area command.
The sample area report is shown Example 2. The area report for any design consists
of the number of ports, nets, references. It also gives information about the com-
binational, sequential, and total cell area.

21.4 Timing Optimization and Performance Improvement

During optimization, the timing has the highest priority as compared to the power
and area. During the first phase of optimization, the DC checks for the design rule
constraints (DRC) violations, then the timing violations and the power constraints,
and finally the area constraints. This section discusses the few timing optimization
commands supported by the Design Compiler.

Number of ports:      3 

Number of nets:      8 

Number of cells:      7 

Number of references:      2 

Combina�onal area:      100.349998 

Non combina�onal area:     125.440002 

Net Interconnect area: undefined (Wire load has zero net area) 

Total cell area:       225.790009 

Total area:       undefined 

Example 2 Area report
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21.4.1 Design Compilation Using Map_effort High

Most of the time synthesis teams use the option as map_effort medium while
performing the synthesis. It is advisable that during synthesis of the first phase
synthesis team can use the option as map_effort medium as it reduces the compi-
lation time. If the design constraints are not met, then the designer can go for the
incremental compilation with the option as map_effort high. This can improve the
design performance by at least 5–10%.

The sdc command is shown below.

dc_shell> compile –map_effort_high –incremental_mapping

21.4.2 Logical Flattening

The design hierarchy can be broken by using logical flattening. The option allows
all the logic gates of the design at the same level of hierarchy. This allows the
compiler to have better performance and better area utilization for the design. If the
hierarchical design is complex, then this option may not work. If number of hier-
archies in the design increases, then compiler will take the larger amount of time
during the design optimization.

Use the following command to achieve the logical flattening for the design

dc_shell> ungroup –all -flatten

dc_shell> compile –map_effort high –incremental mapping

dc_shell> report_timing –path full –delay max –max_path 1 –nworst 1

21.4.3 Use of Group_path Command

The design performance can boost upto 10% by using the map_effort high option.
But if timing is not met with the incremental compilation, then it is essential to
group the critical timing paths and use the weight factor to improve the design
performance. This command is useful to improve the timing performance. The
command is shown below

dc_shell> group_path –name critical1 –from <input_name> –to <out-

put_name> –weight <weight factor>
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Consider the design scenario where the setup violation of 0.38ns. The setup
violation is the difference between the data required time and data arrival time. So,
the slack is negative and setup time is violated.

dc_shell> read –format Verilog combinational_design.v

dc_shell> create_clock –name clk –period 15

dc_shell> set_input_delay 3 –clock clk in_a

dc_shell> set_input_delay 3 –clock clk in_b

dc_shell> set_input_delay 3 –clock clk c_in

dc_shell> set_output_delay 3 –clock c_out

dc_shell> current_design = combinational_design

dc_shell> compile –map_effort medium

dc_shell> report_timing –path full –delay max –max_path 1 –nworst 1

After the design synthesis, it is successful use the report_timing command while
performing the timing analysis. The timing report for the synthesized design can be
obtained using the multiple options as listed in the above script and is shown in
Example 3

To fix the setup time violation and to improve the design performance use the
group_path with the weight factor. More the weight factor, more is the compilation
time!

dc_shell> group_path –name critical1 –from c_in –to c_out –weight 8

dc_shell> compile –map_effort high –incremental mapping

dc_shell> report_timing –path full –delay max –max_path 1 –nworst 1

The above-listed commands are useful to generate the timing report with positive
slack and remove setup violation and is shown in Example 4.

As shown in the timing report (Example 4) during the max analysis with the
compile_map high option and weight factor of 5 the setup slack is met.
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Startpoint: c_in (input port) 
Endpoint: c_out (output port) 
Path Group: clk 
Path Type: max 
Point      Incr    Path 
------------------------------------------------------------------------------------------------ 
input external delay    0.00    0.00 f 
c_in (in)     0.00    0.00 f 
U19/Z (AN2)     0.87    0.87 f 
U18/Z (EO)     1.13    2.00 f 
add_8/U1_1/CO (FA1A)   2.27    4.27 f 
add_8/U1_2/CO (FA1A)   1.17    5.45 f 
add_8/U1_3/CO (FA1A)   1.17    6.62 f 
add_8/U1_4/CO (FA1A)   1.17    7.80 f 
add_8/U1_5/CO (FA1A)   1.17    8.97 f 
add_8/U1_6/CO (FA1A)   1.17    10.14 f 
add_8/U1_7/CO (FA1A)   1.17    11.32 f 
U2/Z (EO)     1.06    12.38 f 
C_out (out)     0.00    12.38 f 
data arrival �me       12.38 f 

clock clk (rising edge)                                15.00                            15.00 
clock network delay (ideal)        0.00   15.00 
output external delay   -3.00   12.00 
data required �me       12.00 
------------------------------------------------------------------------------------------------- 
Data required time       12.00 
Data arrival time       -12.38 

Slack (violated)       -0.38 

Example 3 Timing report with negative slack
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21.5 Sub-module Characterizing

In the practical ASIC designs, the design can have multiple hierarchies. Consider
that the top-level design consists of sub-modules X, Y, Z. If individually these
sub-modules are synthesized and optimized, they may meet the timing requirements
individually! When these sub-modules are instantiated in the higher level of hier-
archy top, then there may be possibility that they may or may not meet the timing.
The reason for this may be the glue logic used in between the sub-modules X, Y, Z
or the tight constraints at the top-level hierarchy.

Under such circumstances to meet the design constraints it is advisable to use the
characterize command. This command allows the capturing of the boundary
conditions for the sub-module which is based on the top-level hierarchy environ-
ment. Each sub-module can be compiled and characterized independently.

Startpoint: c_in (input port) 
Endpoint: c_out (output port) 
Path Group: max 
Path Type: max 
Point      Incr    Path 
------------------------------------------------------------------------------------------------ 
input external delay    0.00    0.00 f 
c_in (in)     0.00    0.00 f 
U19/Z (AN2)     0.87    0.87 f 
U18/Z (EO)     1.13    2.00 r 
add_8/U1_1/CO (FA1A)   2.27    4.27 f 
add_8/U1_2/CO (FA1A)   1.17    5.45 f 
add_8/U1_3/CO (FA1A)   1.17    6.62 r 
add_8/U1_4/CO (FA1A)   1.17    7.80 f 
add_8/U1_5/CO (FA1A)   1.19    8.99 r 
add_8/U1_6/CO (FA1A)   1.15   10.14 f 
add_8/U1_7/CO (FA1A)   0.79    10.93 f 
U2/Z (EO)     1.06    11.99 f 
C_out (out)     0.00    11.99 f 
data arrival �me       11.99 f 

clock clk (rising edge)                                15.00                            15.00 
clock network delay (ideal)        0.00   15.00 
output external delay   -3.00   12.00 
data required �me       12.00 
------------------------------------------------------------------------------------------------- 
Data required time       12.00 

Data arrival time       -11.99 

Slack (met)       0.01 

Example 4 Timing report with the positive slack
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Following is the script which can enable the characterize of the individual
sub-modules. Consider the sub-module X, Y, Z instance names as I1, I2, and I3.

dc_shell> current_design=TOP

dc_shell> characterize I1

dc_shell> compile –map_effort high –incremental mapping

dc_shell> current_design=TOP

dc_shell> characterize I2

dc_shell> compile –map_effort high –incremental mapping

dc_shell> current_design=TOP

dc_shell> characterize I3

dc_shell> compile –map_effort high –incremental mapping

dc_shell> current_design=TOP

21.6 Register Balancing

Register balancing is efficient and powerful command to split the combinational
logic from one pipelined stage to another pipelined stage. This technique improves
the design performance by moving the logic and hence reduces the
register-to-register delay. Consider the pipelined design shown in Fig. 21.6 and
consists of the three flip-flops and combinational logic. In the first pipelined stage,
the combinational logic is 4-variable function, and the second pipelined stage has
combinational logic as 8-variable function and has more propagation delay as
compared to the 4-variable combinational logic. Due to the different propagation
delays in two different pipelined stages, the design performance is based on the
register-to-register timing path which has more delay.

D flip-flop

Combo 
Logic: 

A

d_in

clk
D flip-flop

Combo 
Logic: 

B D flip-flop

Fig. 21.6 Pipelined stages
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Under such circumstances, the register balancing can be used to split the com-
binational logic from one of the pipelined stage to another pipelined stage without
affecting the functionality of the design. This is achieved by compiler by using the
following set of commands.

dc_shell> balance_registers

dc_shell> report_timing –path full –delay max –max_path 1 –nworst 1

21.7 FSM Optimization

For the optimization of the finite-state machines, the FSM Compiler is used. The
use of FSM compiler is to achieve the area optimization and to improve the design
performance. In the practical ASIC designs, the state machines are coded as an
independent block. The design which has state machines, and the other logic cannot
be considered as good design partitioning. The reason being, if the other logic is
isolated from the state machine logic, then the designer can choose for the
best-suited encoding style while coding for the state machines. So always use the
separate sub-module for the logic and for the state machines to achieve better
design performance.

The script shown in Example 5 can be used for the FSM extraction and
optimization.
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21.8 Fixing Hold Violations

Fixing of the hold violations is quite easy as compared to the setup violations
provided that the design is not complex. For complex designs, it may be
time-consuming and challenging phase to fix these violations. To fix the setup
violations, it is essential to modify the architecture of the design, and in turn, it has a
greater impact on the RTL coding of the design. The setup violations are fixed
during the pre-layout STA and hold violations can be fixed during pre-layout or
post layout STA phase. Design Compiler is efficient to fix the hold violations
automatically. Use the following command to fix the hold violation.

dc_shell> set_fix_hold clk1

dc_shell> compile –map_effort_high- incremental_mapping

/* read the design object */ 
dc_shell> read -format verilog state_machines.v 
/* Map the design */ 
dc_shell> compile –map_effort medium 
/* if the design is not par��oned then group the logic */ 
dc_shell> set_fsm_state_vector { <flip_flop_name>, <flip_flop_name>,…} 
dc_shell> group –fsm –design_name <fsm_design_name> 
/* extract the state machine from netlist in the state machine table for-
mat */ 
dc_shell> set_fsm_state_vector { <flip_flop_name>, <flip_flop_name>,…} 
dc_shell> set_fsm_encoding { “state0=0”, “state1=1”, …….} 
dc_shell>extract 
/* write the design in the FSM format */ 
dc_shell>write –format  st –output state_machine.st 
/* if the design is already in the state machine format then read the de-
sign */ 
dc_shell>read –format  st  state_machine.st 
/* define the order of the state */ 
dc_shell>set_fsm_order {state0,state1,….} 
/* define the encoding style */ 
dc_shell> set_fsm_encoding_style <encoding_style> 
/* compile the design */ 
dc_shell> compile –map_effort high 

Example 5 FSM extraction script
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21.9 Report Command

Following are few commands used to generate reports.

Timing Path Group ‘clk1' 

-------------------------------------------------------------------------------------------------- 

Levels of Logic:     6.00 

Cri�cal Path Length:    3.64 

Cri�cal Path Slack:    -2.64 

Cri�cal Path Clk Period:   11.32 

Total Nega�ve Slack:    -55.45 

No. of Viola�ng Paths:    59.00 

No. of Hold Viola�ons:     1.00 

------------------------------------------------------------------------------------------------ 

Timing Path Group ‘clk2' 

------------------------------------------------------------------------------------------------- 

Levels of Logic:     10.00 

Cri�cal Path Length:    3.59 

Cri�cal Path Slack:    -0.29 

Cri�cal Path Clk Period:   22.65 

Total Nega�ve Slack:    -2.90 

No. of Viola�ng Paths:    11.00 

No. of Hold Viola�ons:    0.00 

------------------------------------------------------------------------------------------------- 

Cell Count 

------------------------------------------------------------------------------------------------- 

------------------------------------------------------------------------------------------------- 

Hierarchical Cell Count:    1736 

Hierarchical Port Count:    114870 

Leaf Cell Count:    323324 

Example 6 : qor report
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21.9.1 Report_qor

This is used to generate report which consists of timing summary of all the path groups.
This gives overall information about the timing for the design. Example 6 shows the
sample report with multiple timing path groups using report_qor command.

21.9.2 Report _constraints

This command is useful to generate the reports which have the information about
the user constraints and the actual design values. Example 7 is generated using the
report_constraints command.

Weighted 

Group (max_delay/setup)  Cost   Weight   Cost 

------------------------------------------------------------------------------------------------- 

CLK     0.00   1.00   0.00 

default     0.00   1.00   0.00 

------------------------------------------------------------------------------------------------ 

max_delay/setup   0.00 

Constraint    Cost 

------------------------------------------------------------------------------------------------ 

max_transi�on    0.00 (MET) 

max_fanout    0.00 (MET) 

max_delay/setup   0.00 (MET) 

cri�cal_range    0.00 (MET) 

min_delay/hold    0.40 (VIOLATED) 

max_leakage_power   6.00 (VIOLATED) 

max_dynamic_power   14.03 (VIOLATED) 

max_area    48.00 (VIOLATED) 

-------------------------------------------------------------------------------------------------

Example 7 Report constraints
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21.9.2.1 Report_contraints_all

This command is used to show all the timing and DRC violations. Example 8 is
report generated using the report_constraints_all command.

max_delay/setup (‘clk1' group) 

 Required  Actual 

Endpoint  Path Delay  Path Delay  Slack 

------------------------------------------------------------------------------------------------- 

data[15]  1.00   3.64 f   -2.64 (VIOLATED) 

data[13]  1.00   3.64 f  -2.64 (VIOLATED) 

data[11]  1.00   3.63 f   -2.63 (VIOLATED) 

data[12]  1.00   3.63 f   -2.63 (VIOLATED) 

-------------------------------------------------------------------------------------------------

Example 8 All constraint report
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21.10 Constraint Validation

Following are the important commands used to validate the design (Table 21.1).

21.11 Commands Used for the DRC, Power,
and Optimization

Following are the important commands used to specify the design rules, power, and
optimization constraints (Table 21.2).

Table 21.1 Constraint validation

Command Description

check_design Used to check for the design consistency and reports the unconnected nets,
ports, etc.

check_timing Used to verify the timing setup is complete

Table 21.2 DRC, power, and optimization definition

Command Type Description

set_max_transition DRC Used to define the largest transition time

set_max_fanout DRC Used to set the largest fanout for the design

set_max_capacitance DRC Used to set the maximum capacitance
allowed for the design

set_min_capacitance DRC Used to set the minimum capacitance
allowed for the design

set_operating_conditions Optimization
constraints

Used to set the PVT conditions as it affects
on timing

set_load Optimization
Constraints

Used to model load on output port

set_clock_uncertainty Optimization
Constraints

Used to define the estimated network skew

set_clock_latency Optimization
Constraints

Used to define the estimated source and
network delays

set_clock_transition Optimization
Constraints

Used to define the estimated input skew

set_max_dynamic_
power

Power constraints Used to set the maximum dynamic power

set_max_leakage_
power

Power constraints Used to set the maximum leakage power

set_max_total_ power Power constraints Used to set the maximum total power

set_dont_touch Optimization
Constraints

It is used to prevent the optimization of
mapped gates
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Example 9 is the sample script and can be used to constrain the design at
operating frequency of 500 MHz.

21.12 Summary

Following are the important points to conclude this chapter.

1. Constraints are classified as optimization, design rule, and environmental
2. Avoid the use of the combinational logic as individual block or module
3. Do not use the glue logic between two modules
4. Use set_max_area attribute while synthesizing the design
5. The top-down compilation uses the top-level design constraints and is easier to

execute as compared to the bottom-up compilation approach.

/* set the clock */ 
set clock clk 
/* set clock period */ 
set clock_period 2 
/* set the latency */ 
set latency 0.05 
/* set clock skew */ 
set early_clock_skew [expr $ clock_period/10.0] 
set late_clock_skew [expr $ clock_period/20.0] 
/* set clock transi�on */ 
set clock_transi�on [expr $ clock_period/100.0] 
/* set the external delay */ 
Set external_delay [expr $ clock_period*0.4] 
/* define the clock uncertainty*/ 
set_clock_uncertainty –setup $ early_clock_skew 
set_clock_uncertainty –hold$ late_clock_skew 

Name the above script as clock.src, and Source the above script 

/* report clock and �ming*/ 
dc_shell> report_�ming 
dc_shell> report_clock 
dc_shell> report_�ming 
dc_shell> report_constraints –all_viola�ons 

Example 9 Sample script for constraining design at 500 MHz
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6. The design hierarchy of the design can be broken by using logical flattening of
the design.

7. Register balancing is very efficient and powerful command to move the com-
binational logic from one pipelined stage to another pipelined stage.

8. For the optimization of the finite-state machines the FSM compiler is used. The
use of FSM compiler is to achieve the small area optimization and to improve
the design performance.

9. The setup violations are fixed during the pre-layout STA and hold violations
can be fixed during pre-layout or post-layout STA phase.

10. The use of FSM compiler is to achieve the area optimization and to improve the
design performance.
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Chapter 22
Multiple Clock Domain Design

Multiple clock domain design understanding is essential for ASIC design engineer. In most
of the practical design scenarios the multiple clock domain designs are used and it is
essential to understand need of the synchronizers for passing control signals from one of the
clock domain to another clock domain. This chapter discusses about the multiple clock
domain design techniques and the control and data path synchronizers and their use!

Most of the ASIC designs has the multiple clock domains and the RTL design
engineers should be familiar with the concepts of the multiple clock domain and the
issues or challenges in the multiple clock domain designs! The chapter is useful to
understand the issues in the clock domain crossing and the data and control path
synchronizers. Following few sections discusses the synchronizers used in the
multiple clock domain designs and the strategies during the RTL design!

22.1 What Is Multiple Clock Domain?

It is quite simple to design single clock domain design logic. If all the flip-flops in
the design are clocked by single clock source, then the design is said to be syn-
chronous. If the flip-flops are triggered by the different clock sources, then the
design is said to be asynchronous design. In the modern ASIC or SOCs, the design
can have multiple clock sources of different frequencies. For example, consider
Fig. 22.1, as shown the flip-flop regA is triggered by CLK1 and flip-flop regB is
triggered by the CLK2.
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In Fig. 22.1, the data is sampled by in the clock domain using the clock source
CLK1, and output from the clock domain 1 is data_out_1. The flip-flop is named as
regA in clock domain 1 and named as regB in the clock domain 2. The regB has
clock input as CLK2 and samples the data output from clock domain 1 on the rising
edge of CLK2. The output from clock domain 2 is data_out. The difference between
the single clock domain and multiple clock domain design is phase difference
between arrivals of the clock signals. The clock sources CLK1 and CLK2 are
derived from different clock source or may have the same or different frequency.
The design is considered as multiple clock domain design. The data is launched
from one clock domain and captured in another clock domain.

22.2 What Is Clock Domain Crossing (CDC)

The data transfer can be from slower clock domain to faster clock domain or from
faster clock domain to slower clock domain. The data or control signal crosses from
one of the clock domain to another clock domain, and it is treated as clock domain
crossing.

If we consider the single clock domain design coded using the synthesizable
Verilog constructs (Example 1), then there is no any issue in the data integrity due
to valid output from both the flip-flops.

regA
regB

CLK1 CLK2

data_in data_out_1 data_out

Fig. 22.1 Multiple clock domain logic
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The synthesis result of Example 1 is shown in Fig. 22.2 and as shown it infers
two cascade flip-flops!

Fig. 22.2 Two-stage level synchronizer

/////////////////////////////////////////////////////////////////////////////

// The  Verilog RTL of level synchronizer 

module level_synchronizer (  

input data_in, 

input clk, 

output reg data_out); 

reg data_out_1; 

always@( posedge clk) 

begin 

data_out_1<= data_in; 

data_out <= data_out_1; 

end 

endmodule 

/////////////////////////////////////////////////////////////////////////////

Example 1 Verilog RTL for single clock domain design
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The timing sequence of Example 1 is shown in Fig. 22.3.
If we consider the multiple clock domain designs shown in Example 2, then

there is a data integrity issue due to invalid output or metastable output.
The synthesis outcome of the Verilog RTL code (Example 2) is shown in

Fig. 22.4.
The timing sequence of Example 2 is shown in Fig. 22.5.
As shown in Fig. 22.5, the output from regB that is data_out is in the metastable

state for one clock cycle. Metastability is the scenario in the design due to occur-
rences of multiple events close to each other, and the design has setup and hold time
violations. The scenario results into the synchronization failure between multiple
clock domain designs. It is due to different clock frequencies and different phases of
the clock in the design. It is essential for the designer to think about why design
goes into metastable state? The reasons are every flip-flop has setup and hold time,
and if the data changes during the setup time and hold time window, then the design
has timing violations and results into the invalid output. Metastable state of the
design is not a stable state of the design so if the data output data_out is fed to the
other design module, then the output from that module is unpredictable state or
invalid logic state. So, to avoid the metastability issues in the design, it is essential
to have synchronizers in the data path and control path of the design.

The issue of metastability can be resolved by deploying the level synchronizers
while passing the control signals from one of the clock domain to another clock
domain. Figure 22.6 shows the multiple clock domain design with the two-stage
level synchronizer logic.

clk

data_in

data_out_1

data_out

Fig. 22.3 Timing sequence for two-stage level synchronizer
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/////////////////////////////////////////////////////////////////////////////

//The RTL design having mul�ple clock sources 

module mul�ple_clock_domain_design ( 

input clk1, clk2, 

input data_in, 

output reg data_out); 

reg data_out_1; 

// the procedural block sensi�ve to rising edge of clk1 

always@( posedge clk1) 

begin 

 data_out_1<= data_in; 

end 

// the procedural block sensi�ve to rising edge of clk2 

always@(posedge clk2) 

begin 

 data_out<=  data_out_1; 

end 

endmodule 

/////////////////////////////////////////////////////////////////////////////

Example 2 Verilog RTL for multiple clock domain design
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Fig. 22.4 Synthesis result for the multiple clock domain design logic

Fig. 22.5 Timing sequence for the metastable output
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Fig. 22.6 Two-stage level synchronizer in the control path

/////////////////////////////////////////////////////////////////////////////

module RTL_Design_using_Level_synchronizers 

( 

input clk1, clk2, 

input data_in, 

output reg data_out); 

reg data_out_1, data_out_2; 

// the clock domain 1 output logic 

always@( posedge clk1) 

begin 

data_out_1<= data_in; 

end 

//Use of the two-flip-flop level synchronizer in second clock domain 

always@(posedge clk2) 

begin 

data_out_2<=data_out_1; 

data_out<=  data_out_2; 

end 

endmodule 

///////////////////////////////////////////////////////////////////////////// 

Example 3 Verilog RTL for use of two-stage level synchronizer in the control path
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As shown in Fig. 22.6, the level synchronizer is used in the second clock
domain. The level synchronizer is designed by using regC, regB and used to sample
the data data_out_1 from the clock domain 1. The first flip-flop in the second clock
domain has metastable output, but the output register in the second clock domain
generates the stable legal output data_out on the next clock edge. The Verilog RTL
is shown in Example 3.

The timing sequence for Example 3 is shown in Fig. 22.7.
As shown in Fig. 22.7, during second rising edge of clk1, the output data_out_1

is sampled and the output of flip-flop in the first clock domain is logic 1. On the
third clock edge of clk2, the output of flip-flop data_out_2 goes to the metastable
state due to violation of either setup or hold time. But the flip-flop having an output
data_out meets the timing and samples the valid data value of logic 1 on the fourth
clock edge of clk2. Hence, the output data_out is valid or legal value state value,
and it is logic 1. In most of the scenarios, it is true that the output data_out_2 is in
the metastable state due to violation of the setup and hold time. So, during the
timing analysis, it is essential to set the false path from output of regA to the output
of regC. The SDC command for setting the false path is

set_false_path –from regA/q –to regC/q

Fig. 22.7 Timing sequence with use of the two-stage synchronizer
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22.3 Level synchronizers

The level synchronizers are used to pass the control signal information from one of
the clock domain to another clock domain. In the practical scenario, either
two-stage or three-stage synchronizers are used. In the two-stage level synchro-
nizer, the number of registers (flip-flops) used is two, and three-stage level syn-
chronizers are designed by using three registers (flip-flops). The latency of control
information transfer is dependent on the number of flip-flops. The two-stage level
synchronizer is shown in Fig. 22.8.

As discussed in the previous section, the functionality of the two-stage level
synchronizer is coded using the synthesizable Verilog constructs and shown in
Example 4.

/////////////////////////////////////////////////////////////////////////////

always@(posedge clk) 

begin 

data_out_1<=data_in; 

data_out<=data_out_1; 

end 

/////////////////////////////////////////////////////////////////////////////

Example 4 Verilog functional description for two-stage synchronizer

regA
regB

data_in data_out_1 data_out

clk

Fig. 22.8 Level synchronizer logic diagram
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The three-stage level synchronizer is coded by using Verilog and shown in
Example 5.

The synthesis outcome of the three-stage level synchronizer is shown in
Fig. 22.9.

In the multiple clock domain designs, the data can be passed from slower clock
domain to faster clock domain or from faster clock domain to slow clock domain
depending on the design architecture and requirement. In both the cases, the syn-
chronizers need to be incorporated in the design. The synchronizers need to be
incorporated in the data and control path for the design.

Passing of the control signal from the slower clock domain to the faster clock
domain is not a problem as the signal launched by the slower clock domain can be
sampled multiple times by the faster clock domain.

As discussed above, consider clk1 is of 100 MHz and clk2 is of 200 MHz. As
second clock domain is faster as compared to the first clock domain, there is no any
issue while sampling the control signals passed to the second clock domain. But in
the practical design scenario, problem occurs when the control information need to

///////////////////////////////////////////////////////////////////

// the  Verilog RTL of three stage level synchronizers 

module level_synchronizer (  

input data_in, 

input clk, 

output reg data_out); 

reg data_out_1; 

reg data_out_2; 

// three flip-flop cascade stages 

always@( posedge clk) 

begin 

data_out_1<= data_in; 

data_out_2 <= data_out_1; 

data_out <= data_out_2; 

end 

endmodule 

/////////////////////////////////////////////////////////////////////////////

Example 5 Verilog functional description for three-stage level synchronizer
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be passed from faster clock domain to the slower clock domain. The issue is due to
non-converging of the legal states of the control signals passed from clock domain 1
to clock domain 2.

As shown in Fig. 22.10, due to slower clock clk2 in the clock domain 2, the data
output data_out_1 is sampled on the active edge of clock clk2 but unable to produce
the desired output. Due to that, both the registers in the second clock domain
generate output as logic 0 and which is unintended output. Both data_out_2 and
data_out outputs from are at logic 0 and shown in the timing sequence. The issue of
sampling the data from faster clock domain to the slower clock domain can be

Fig. 22.9 Synthesis result for the three-stage level synchronizer

clk1

data_in

data_out_1

clk2

data_out_2

data_out

Fig. 22.10 Timing sequence for capturing the data in the slower clock domain
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resolved by using pulse stretcher. The level to pulse generator on the positive clock
edge is shown in Fig. 22.11.

Another mechanism to achieve the legal converging of the data is by using a
handshaking mechanism by using the handshaking signals.

As shown in Fig. 22.12, the sampled signal in the clock domain 2 is reported as
a handshaking signal to clock domain 1. This handshake mechanism is like
acknowledgement or notification to the faster clock domain 1 that the control signal
passed by the faster clock domain is successfully sampled by the slower clock
domain. In most of the practical scenarios, this kind of mechanism is used and even
the faster clock domain can send another control signal after receiving the valid
notification or acknowledgement signal from the slower clock domain.

Register A Register B 

clk

data_in

data_out_1

data_out

Fig. 22.11 Level-to-pulse conversion logic
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clk1

data_in

data_out_1

Two stage level 
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Two stage level 
Synchronizer 

clk2

Clock domain1
Clock domain2

Fig. 22.12 Handshake control signal mechanism
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22.4 Pulse Synchronizers

This type of synchronizer uses the two-stage level synchronizer with the additional
register to sample the output of two-stage level synchronizer. The output syn-
chronized data is generated by XOR of the output from the two-stage level syn-
chronizer and the sampled output from the two-stage synchronizer. This kind of
synchronizer is also named as toggle synchronizer and used to synchronize the
pulse generated in the sending clock domain into the destination clock domain.
While passing the data from faster clock domain to the slower clock domain, the
pulse can be skipped if two-stage level synchronizer is used. In such scenarios, the
pulse synchronizers are very efficient and useful. The pulse synchronizer diagram is
shown in Fig. 22.13.

22.5 MUX Synchronizer

Use the pair of the data and control signals while sending the information from
clock domain1 to clock domain2. Use the multiple bit data and use the single-bit
control signal. At the receiving end depending on the ratio of the sending clock and
receiving clock, use the level or pulse synchronizer to generate the control signal for
the multiplexer. This technique is like the MCP and effective if the data is stable for
multiple clock cycles across the clock boundaries. The diagram is shown in
Fig. 22.14.

Register A Register B Register C 

XOR 
Logic 
Gate data_in

clk

Sync_data

Fig. 22.13 Pulse synchronizer
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22.6 Challenges in the Design of Synchronizers

Passing multiple control signals from one of the clock domain to another clock
domain is one of the important challenges for an ASIC or SOC design engineer.
When multiple signals are passed from one of the clock domain to another clock
domain, then the arrival time of the entire control signals is especially important. If
all the control signals are arrived at a time, then the skew is zero. Then there is no
any issue while capturing these signals in another clock domain. But in the practical
scenarios, there may be possibility that there may be skew between the multiple
control signals due to different arrival time from clock domain 1 to clock domain 2.
And this can be the cause of the synchronization failure. Consider the design
scenario shown in Fig. 22.15, where enable, load_en, and ready need to be passed
from one of the clock domain to another clock domain. In such scenario, if
multiple-level synchronizers are used as shown then there might be synchronization
failure at the receiving end due to skew (Fig. 22.15).

Consider the case where ready and load_en_c2 are arrived and sampled at a time
but due to late arrival of enable input in the receiving clock domain2. The data
output from the first register of synchronizer does not change, and it does not
sample the new value; then again there will be synchronization failure. The sam-
pling of multiple control signals is shown by using Example 6.

Clock 
domain1 

clk1

Two stage level 
synchronizer

Register C
Register C

data_in

control_in

clk2

sync_data

Clock Domain 1 Clock Domain 2

Fig. 22.14 Mux synchronization
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///////////////////////////////////////////////////////////////////////////// 

// the sampling of mul�ple control signals 

module sampling_mul�ple_control_signals 

( input clk2, 

input data_in, 

input enable, ready, load_en, 

output reg data_out );

reg load_en_c2, load_en_c2_tmp; 

reg enable_c2, enable_c2_tmp; 

reg ready_c2, ready_c2_tmp; 

// level synhronizers to sample the load_en 

always@(posedge clk2) 

begin 

load_en_c2_tmp<= load_en; 

load_en_c2 <= load_en_c2_tmp; 

end 

// level synchronizer to sample the enable 

always@(posedge clk2) 

begin 

enable_c2_tmp<=enable; 

enable_c2<=enable_c2_tmp; 

end 

// level synchronizer to sample the ready 

Example 6 Verilog functionality to sample the multiple control signals
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always@(posedge clk2) 

begin 

ready_c2_tmp<= ready; 

ready_c2 <= ready_c2_tmp; 

end 

// Sequen�al design logic 

always @ (posedge clk2) 

begin 

if ( load_en_c2 & enable_c2 & ready_c2)  

 data_out <= data_in; 

end 

endmodule 

/////////////////////////////////////////////////////////////////////////////

Example 6 (continued)

Two stage level 
Synchronizer 

Two stage level 
Synchronizer 

Two stage level 
Synchronizer 

clk2

SequenƟal logic 

clk2

data_in

data_out

ready

load_en

enable

Fig. 22.15 Sampling multiple signals in the receiver clock domain
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The synthesis result of Example 6 is shown in Fig. 22.16, and as shown the
design uses the multiple level synchronizers in the control path.

The practical and feasible design solution to resolve the problem of data arrival
at one of the input and to avoid the synchronization failure is discussed here! Tweak
the RTL design in the clock domain 1 to generate the single control signal for
enable, load_en, and ready. Pass this control signal from clock domain 1 to clock
domain 2. The architecture is tweaked and is shown in Fig. 22.17.

The Verilog RTL is coded using multiple procedural blocks and shown in
Example 7.

Register A 

clk1

cons_sig
Combo 

logic 

enable

load_en

ready

Two stage level 
Synchronizer 

clk2

SequenƟal

Logic 

cons_sig

data_in

data_out

Fig. 22.17 Consolidated control signal passing in the multiple clock domain

Fig. 22.16 Synthesis of Example 6
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/////////////////////////////////////////////////////////////////////////////

// sampling mul�ple control signals 

module sampling_mul�ple_control_signals 

( input clk1, clk2, 

input data_in, 

input enable, ready, load_en, 

output reg data_out); 

reg [2:0] control_out; 

reg [2:0] control_out_c2, control_out_c1; 

// clock domain1 registered output  

always@(posedge clk1) 

begin 

control_out_c1<= {load_en, enable, ready }; 

end 

// replicate the two-stage  level synhronizers to sample mul�ple signals 

always@(posedge clk2) 

begin 

control_out_c2<= control_out_c1; 

control_out <= control_out_c2; 

end 

// sequen�al design 

always @ (posedge clk2) 

begin 

if ( &control_out )  

 data_out <= data_in; 

end 

endmodule 

/////////////////////////////////////////////////////////////////////////////

Example 7 Verilog RTL for consolidated control signal receiving
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The synthesis result of Example 7 is shown in Fig. 22.18, and as shown the
multiple synchronizers are deployed at the output of clock domain 1 register.

Design scenario I

Consider the design scenario while passing the multiple signals from clock domain 1
to clock domain 2. If clock domain 1 has two output signals enable_1, enable_2 and
the receiving clock domain 2 uses these two signals as shown in Example 8, then there
may be chance of synchronization failure. The synthesis logic is shown in Fig. 22.19.

Fig. 22.18 Synthesis result of Example 7

Two stage level 
Synchronizer 

Two stage level 
Synchronizer 

enable_1
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clk2
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Fig. 22.19 Passing of multiple signals for the pipelined operation
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/////////////////////////////////////////////////////////////////////////////

module mul�ple_signals_sampling_pipelined 

( 

input enable_1,enable_2, 

input data_in, 

input clk2, 

output reg data_out); 

reg data_out_2; 

reg enable_1to2,  enable_1to2_1, enable_1to2_tmp, enable_1to2_tmp1, 
enable_1to2_tmp2; 

// two stage level synchronizer to sample enable_1 

always@(posedge clk2) 

begin 

 enable_1to2_tmp <= enable_1; 
 enable_1to2 <= enable_1to2_tmp; 

end 

// two stage level synchronizer to sample enable_2 

always@(posedge clk2) 

begin 

 enable_1to2_tmp1 <= enable_2; 

 enable_1to2_1 <= enable_1to2_tmp1; 

end 

// Pipelined design func�onality  

always@(posedge clk2) 

begin 

 data_out_2 <= data_in && enable_1to2; 

 data_out  <= data_out_2 && enable_1to2_1; 
end 
endmodule 

/////////////////////////////////////////////////////////////////////////////

Example 8 Verilog RTL for using the multiple signals for pipelined operation
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More precisely, the FPGA-based synthesis tool infers the result as shown in
Fig. 22.20.

The issue for the Verilog RTL coded and shown in Example 8 is sampling of
enable_1, enable_2 in the receiving clock domain2. Although the two-level syn-
chronizers are used to sample enable_1 and enable_2, the small skew between
arrivals of enable_1, enable_2 can cause the issue of synchronization failure. The
pipelined stage shown in Fig. 22.19 can miss the data due to this issue and can
result into the invalid output.

Figure 22.21 shows that the data_out is permanently zero and not loaded due to
the small skew between the enable1_1 and enable2_1. If these two signals have
skew, then there is gap of clock cycle while sampling these signals in the receiving
clock domain.

Solution: The practical solution is to use the consolidated enable signal and sample
enable_cons in the second clock domain to get the valid enable2_2 signal from the
output of two-stage level synchronizer. Figure 22.22 shows the architecture tweak
to generate the consolidated control signal.

Design Scenario II
Consider the design scenario of passing the multiple bit encoder output from one of
the clock domain to another clock domain. Consider that an encoder output
encoder_1, encoder_2 is to be passed from the clock domain1 to clock domain2.
The output generated by the clock domain1 is sampled by the clock domain2 using
the two-stage level synchronizer. The output of level synchronizer is used as an
input to 2:4 decoder. There may be chance that the decoder output is error prone if
there is some skew between the inputs of encoder_1 and encoder_2.

Fig. 22.20 Synthesis of Example 8
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Fig. 22.21 Timing sequence for the use of multiple control signals for pipelined control logic
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Fig. 22.22 Modified architecture to register the consolidated control signal for pipelined logic
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The Verilog RTL is shown in Example 10.
Consider the practical scenario with reference to the coding shown in Example

10; the issue in the output is due to skew between encoder_1, encoder_2. Due to the
skew, the decoder output decoder_out[1] is permanently zero and never be asserted.
This problem can be fixed by using the enable control signal while sampling
the encoder_1 and encoder_2 signals from the clock doain1 by clock domain2.
The enable control signal can be of one clock duration wide and can act as device
ready or use the control signal to pass the control information when enable = 1. The
enable signal can be asserted while asserting the encoder output or enable signal can
be asserted after one clock cycle after assertion of the encoder output. Assertion and
de-assertion logic can be designed separately for enable input.

Another important practical and viable approach is to generate the decoder
output in the clock domain1 itself by repartition of the design and sample the
decoder output in the clock domain2 by using the consolidated enable input and
two-level synchronizers.

The Verilog RTL (Example 11) describes the sampling of the decoder output in
the clock domain2.

/////////////////////////////////////////////////////////////////////////////

always@(posedge clk2) 

begin 

{enable_2, enable_2_tmp} <= { enable_2_tmp, enable_cons}; 

enable_2_2 <= enable_2; 

end 

always@(posedge clk2) 

begin 

data_out_2 <= data_in && enable_2; 

data_out  <= data_out_2 && enable_2_2; 

end 

/////////////////////////////////////////////////////////////////////////////

Example 9 Partial Verilog RTL for the use of the consolidated control signals for pipelined logic
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/////////////////////////////////////////////////////////////////////////////

always@(posedge clk2) 

begin 

{encoder1_2,encoder1_2_tmp} <= { encoder_1_tmp, encoder_1}; 

{encoder2_2,encoder2_2_tmp} <= { encoder_2_tmp, encoder_2}; 

end 

always@(*) 

begin 

case { encoder1_2,encoder2_2} 

2’b00 : decoder_out =4’b1110;

2’b01 : decoder_out = 4’b1101;

2’b10 : decoder_out = 4’b1011;

2’b11 : decoder_out =4’b0111;

endcase 

end 

/////////////////////////////////////////////////////////////////////////////

Example 10 Partial Verilog RTL for sampling of the encoder output
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22.7 Data Path Synchronizers

As discussed in the above section, to pass the multi-bit signals from one of the clock
domain to another clock domain is difficult and error prone task. Although the
multi-stage level synchronizers can be used but due to skew between the multiple
clock signals, the synchronization cannot be achieved. So, for the multi-bit data, the
other techniques are used to pass the data from one of the clock domain to another
clock domain. There are two main techniques to pass multi-bit data, and these are
used in the practical ASIC designs. These techniques are

(a) Handshaking mechanism
(b) FIFO memory buffers

/////////////////////////////////////////////////////////////////////////////

always@(posedge clk1) 

begin 

case { encoder_1,encoder_2} 

2’b00 : decoder_out =4’b1110;

2’b01 : decoder_out = 4’b1101;

2’b10 : decoder_out = 4’b1011;

2’b11 : decoder_out =4’b0111;

endcase 

end 

always@(posedge clk2) 

begin 

{decoder_out_2, decoder_out_tmp} <= ( decoder_out_tmp, decoder_out}; 

end 

/////////////////////////////////////////////////////////////////////////////

Example 11 Partial Verilog RTL for the pushing decoder in the single clock domain
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22.7.1 Handshaking Mechanism

As discussed in the previous section, one or more than one handshake signals are
required while passing the data from one of the clock domain to another clock
domain. Consider the design scenario shown in Fig. 22.23, as shown the multi-bit
data need to be passed from the transmitter to receiver. The transmitter is clocked in
the clock domain1, and receiver is clocked by another clock in the second clock
domain. So, the multi-bit data exchange by using only level synchronizer is not
effective while passing data from transmitter to receiver. ASIC designer can think of
the architecture by incorporating the handshake signals datavalid and deviceready.
In most of the practical scenario where latency is not a bottleneck, this mechanism
is effective to pass multi-bit data.

As shown in Figure 22.23, when transmitter passes multi-bit data from clock
domain1, then the receiver receives the data in another clock domain at the edge of
receive clock and generates active high datavalid signal to indicate the valid data
has been received in the second clock domain. So, the transmitter uses the signal
datavalid as handshaking signal. So, until datavalid signal is active high the
transmitter cannot place the new data on the data lines. As two- or three-stage level
synchronizers can be used to sample the data in the second clock domain, it is
recommended that the datavalid signal should be active for at least two or three
clock cycles. The overall latency while transferring the data is dependent upon the
number of synchronizer stages and number of handshaking signals used. The poor
latency is one of the biggest disadvantages of the handshake mechanism.

As required in most of the cases, another handshaking signal deviceready can be
generated with the datavalid signal. The receiving clock domain can notify to the
transmitter clock domain about the receiver status by asserting the deviceready
signal. But while designing handshake mechanism, care needs to be taken for the
generation of deviceready and datavalid signals. The deviceready handshake signal
should go to logic 1 after de-assertion of datavalid signal.

FSM control uses the architecture shown in the Fig. 22.24.
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clk2clk1
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Fig. 22.23 Block diagram for handshake mechanism
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22.7.2 FIFO Synchronizer

In the ASIC designs, the FIFO memory buffers are used as data path synchronizer
to pass the data between multiple clock domains. The sender clock domain or
transmitter clock domain can write the data into the FIFO memory buffer using
write_clk, and receiver clock domain can read the data by using the read_clk.

So basically, FIFO consists of the memory buffer, write domain logic, read
domain logic, and the empty and full flag generation logic. The FIFO having
various functional blocks is shown in Fig. 22.25. The FIFO depth calculation and
FIFO design are discussed in Chap. 23.
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Fig. 22.24 FSM handshaking mechanism
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Fig. 22.25 Block diagram of FIFO
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22.7.3 Gray Encoding

While passing the multiple bit of the data or control signals, it is essential to use the
gray encoding technique as it is guaranteed to sample the single-bit change in the
receiving clock domain. For example, if 4-bit binary data needs to be passed using
the binary counter from sending clock domain to receiver clock domain, then use the
binary-to-gray conversion logic in the sender clock domain. This guarantees only one
bit change across the clocking boundary. After sampling of the gray counter value in
the receiving clock domain, use gray-to-binary conversion logic to perform the
operations on the binary numbers. The technique is shown in Fig. 22.26.

22.7.3.1 Gray to Binary Converter

Please refer Chap. 4 for the Verilog RTL of gray-to-binary converter. The gray-to-binary
code conversion of 4-bit number is coded and shown in Example 12 (Fig. 22.27).

Register A Register B Register C 

clk1

Binary to

gray 
Gray to 
Binary

clk2

Fig. 22.26 Gray encoding technique

/////////////////////////////////////////////////////////////////////////////

module gray_to_binary_converter #(parameter data_size =4) 

( 

input [data_size-1 :0] gray, 

output reg [data_size-1:0] binary); 

integer m;

always@(*) 

begin 

for (m=0; m <data_size; m=m+1) 

binary[m] = ^ (gray >> m); 

end 

endmodule 

/////////////////////////////////////////////////////////////////////////////

Example 12 Verilog RTL for the gray-to-binary converter
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Fig. 22.27 4-bit gray-to-binary code converter
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22.7.3.2 Binary to Gray Converter

Please refer Chap. 4 for the Verilog RTL of binary-to-gray converter. The
binary-to-gray code conversion for 4-bit number is shown in Example 13
(Fig. 28.28).

/////////////////////////////////////////////////////////////////////////////

module gray_to_binary_converter #(parameter data_size =4) 

( 

input [data_size-1 :0] gray, 

output reg [data_size-1:0] binary); 

integer m;

always@(*) 

begin 

for (m=0; m <data_size; m=m+1) 

binary[m] = ^ (gray >> m); 

end 

endmodule 

/////////////////////////////////////////////////////////////////////////////

Example 13 Verilog RTL for binary-to-gray converter
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22.7.4 Gray Counter

In the multiple clock domain designs, it is recommended to use the gray codes as in
the two successive gray numbers only one-bit changes. The Verilog RTL of the
gray counter is coded and shown in Example 14. The synthesis result of gray
counter is shown in the (Fig. 22.29).

Fig. 22.28 4-bit binary to gray code logic (LUT structure)
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The gray counter FPGA synthesis result is shown in Fig. 22.30 and has the
binary counters and gray counters.

/////////////////////////////////////////////////////////////////////////////

module gray_counter #(parameter data_size =4) 

( 

input clk, 

input reset_n, 

input increment, 

output reg [data_size-1:0] gray, 

output reg [data_size-1:0] gray_next, binary_next, binary); 

integer m;

always@(posedge clk or negedge reset_n) 

if (!reset_n) 

gray <= 4'b0000; 

else 

gray <= gray_next; 

always@(*) 

begin 

for (m=0; m< data_size; m=m+1) 

binary[m] =^ (gray >>m); 

binary_next = binary +increment; 

gray_next = (binary_next >>1) ^ binary_next; 

end 

endmodule 

/////////////////////////////////////////////////////////////////////////////

Example 14 Verilog RTL for the gray code counter
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Fig. 22.30 Gray counter logic
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Fig. 22.29 Synthesis diagram for gray counter
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22.8 Design Guidelines for the Multiple Clock Domain
Designs

CDC design errors can cause the serious design failures. These design failures are
expensive during the chip design cycle. These design failures can be avoided by
using the following few guidelines during the design and verification phase.

1. Metastability: While passing the control signal information or data information,
use the registered output logic in the sending clock domain. The reason being, if
combinational logic is used at output to pass the data from the sending clock
domain to the receiver clock domain, then there might be chances of glitches or
hazards due to the multiple transitions in the single clock cycle. The multiple
transitions during single clock cycle can be avoided by using the registered logic
while passing the data. Metastability blocking logic is shown in Fig. 22.31.

2. Use of MCP: Multi-cycle path formulation is highly recommended to avoid the
metastability issue while passing the data and control signal information across
the clock domains. In the MCP, the strategy is to create the control and data
pairs to pass the multi-bit data and single-bit control signal from sending clock
domain to receiving clock domain. The control information can be sampled in
the receiving clock domain by using the pulse synchronizer, and data can be
passed to the receiving clock domain from sending clock domain with or
without synchronizers. This technique is highly effective as the data can
maintain the stable value for multiple cycles and can be sampled in the receiving
clock domain by using the synchronized signal generated by using pulse syn-
chronizer. Across the clock domain crossing boundaries, following are impor-
tant points need to be considered:

a. Control signals must be synchronized using the multi-stage synchronizers.
b. Control signals should be free of hazards and glitches.
c. There should be single transition across clock boundaries.
d. Control signal should be stable for at least single clock cycle.

Register C

0    
1

sync_data

Set 
reset 

clk

data_in

reset

Fig. 22.31 Metastability blocking logic

506 22 Multiple Clock Domain Design



The MCP formulation is shown in Fig. 22.32.

3. Use FIFO: The common and effective technique to pass the multi-bit control or
data information is use of asynchronous FIFO. In this technique, the sending
clock domain writes the data into FIFO memory buffer and receiving clock
domain reads the data from the FIFO buffer.

4. Use gray code counters: In most of the ASIC designs having CDC boundaries,
it is essential to pass the counter values across the clock domains. If binary
counters are used across the clock domain boundaries, then due to one or many
bit change at a time, the sampling at the receiver clock domain is difficult and
error prone due to the multiple transitions. In such scenarios, it is recommended
to use the gray code counters to pass the data across the clock boundaries.

5. Design partitioning: While designing the logic for the multiple clock domain
designs, partition the design by considering the single clock for every clock
domain. This is highly recommended as the STA will be easier due to clean
reg-to-reg paths. Even the design verification will be easier due to the design
partitioning and by using the single clock.

Clock 
domain1 

clk1

Two stage level 
synchronizer

Register C
Register C

data_in

control_in

clk2

sync_data

Clock Domain 1 Clock Domain 2

Fig. 22.32 MCP formulation
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6. Clock naming conventions: It is recommended to use the clock naming con-
ventions to identify the clock domains and the clock sources. The naming
conventions for the clock should be supported by the meaningful prefix. For
example, for sending clock domain use clk_s, and for the receiving clock
domain use clk_r.

7. Reset synchronization: For the ASIC and SOC designs, it is highly recom-
mended to use the reset synchronizers while asserting the reset and even it is
essential to incorporate the reset synchronizer to avoid the metastability during
reset de-assertion. Every SOC has single reset, and either it is positive-level
sensitive or negative-level sensitive. So, if synchronizers are not used, then there
are chances of metastable states of flip-flops.

8. Avoid hold time violations: To avoid the hold time violations it is recom-
mended to pass the stable from the sending clock domain to the receiving clock
domain. If data is passed from the faster clock domain to the slower clock
domain, then the data should be stable for multiple clock cycles to avoid the
hold time violations.

9. Avoid loss of correlation: Across the clock domain boundary, there are several
ways due to which loss of correlation can occur. Few of them are

a. Multiple bits on the bus
b. Multiple handshake signals
c. Unrelated signals.

To avoid this, use the clock intent verification technique; this technique will
ensure the passing of multi-bit signal across the clock boundaries.

22.9 Summary

Following are important points to conclude this chapter:

1. Clock domain crossing (CDC) is critical to fix in the ASIC design, and these
errors can cause the design failure.

2. For single-bit control signal transfer across the multiple clock boundaries,
register the signal at the sending clock domain and avoid the glitches and
hazard effect of the combinational logic.

3. Use multi-cycle path (MCP) formulation while passing the single-bit control
signals across the clock boundaries.

4. Use the multi-stage synchronizers in the receiving clock domain while sam-
pling the single-bit control signals at the receiver clock domain.

5. While passing the multiple control or data signals from one of the clock domain
to another clock domain, use the consolidated control signal that is one-bit
representation of the multiple signals in the sending clock domain.
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6. Use the multi-stage synchronizer in the receiver clock domain while sampling
the consolidated control signals.

7. To pass multiple control signals across the clock domains, use the MCP
formulation.

8. Use the gray code counters instead of binary counters while passing the data
across multiple clock domains.

9. Use FIFO in the data or control path while passing the multiple data bits or
control bits.

10. Partition the design using the single clock at the receiving and transmitting
(sending) ends.
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Chapter 23
Case Study: FIFO Design

The First in First out (FIFO) is used in the data path to pass the data between multiple clock
domains. The chapter is useful to understand the FIFO depth calculations and discusses
about the FIFO design, simulation of FIFO, and synthesis.

As discussed in the previous few chapters, the FIFO is used in the data path as a
data synchronizer. The understanding of the design techniques used in the multiple
clock domain plays an important role. The chapter discusses about the FIFO depth
calculations and the FIFO design case study.

23.1 FIFO Depth Calculations

FIFO is the storage buffers used to pass data in the multiple clock domain designs.
The FIFO depth calculation is discussed in this section.

23.1.1 Asynchronous FIFO Depth Calculations

Scenario I: Clock domain I is faster as compared to clock domain 2 that is f1 is
greater than f2 without any idle cycle between write and read.

Consider the design where f1 = 100 MHz and f2 = 50 MHz, and the burst of
data transfer from clock domain one to clock domain 2 is 100 without idle
cycles that is consecutive write and read cycles.
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The depth of FIFO can be calculated as:

1. Find time required to write one data:

Twrite ¼ 1=100MHz ¼ 10 ns

2. Find out time required to write burst of data:

Tburst write ¼ Twrite � Burst length ¼ 10 ns � 100 ¼ 1 ls

3. Find time required to read one data:

Tread ¼ 1=50MHz ¼ 20 ns

4. Find out number of data read in duration of Tburst_write:

No of reads ¼ 1000 ns=20 ns ¼ 50

5. The depth of FIFO:

Depth ¼ Burst length� No of reads ¼ 100� 50 ¼ 50

Scenario II: Clock domain I is faster as compared to clock domain 2 that is f1 is
greater than f2 with idle cycles between writes and reads.

Consider the design where f1 = 100 MHz and f2 = 50 MHz, and the burst of
data transfer from clock domain one to clock domain 2 is 100 with idle
cycles. Number of idle cycles between two successive writes = 1 and number
of idle cycle between two successive reads = 3.

The depth of FIFO can be calculated as:

1. Find time required to write one data:
As between two successive writes the idle cycle is one therefore for every
two cycles one data is written

Twrite ¼ 2 � ð1=100MHzÞ ¼ 20 ns

2. Find out time required to write burst of data:

Tburst write ¼ Twrite � Burst length ¼ 20 ns � 100 ¼ 2 ls
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3. Find time required to read one data:
As between two successive reads the idle cycle is three therefore for every
four cycles one data is read

Tread ¼ 4 � ð1=50MHzÞ ¼ 80 ns

4. Find out number of data read in duration of Tburst_write:

No of reads ¼ 2000 ns=80 ns ¼ 25

5. The depth of FIFO:

Depth ¼ Burst length� No of reads ¼ 100� 25 ¼ 75

Scenario III: Clock domain I is slower as compared to clock domain 2 that is f1 is
less than f2 with idle cycles between two successive writes and two successive
reads.

Consider the design where f1 = 50 MHz and f2 = 80 MHz and the burst of
data transfer from clock domain one to clock domain 2 is 100 with idle
cycles. Number of idle cycles between two successive writes = 1 and number
of idle cycle between two successive reads = 3.

The depth of FIFO can be calculated as:

1. Find time required to write one data:
As between two successive writes the idle cycle is one therefore for every
two cycles one data is written

Twrite ¼ 2 � ð1=50MHzÞ ¼ 40 ns

2. Find out time required to write burst of data:

Tburst write ¼ Twrite � Burst length ¼ 40 ns � 100 ¼ 4 ls

3. Find time required to read one data:
As between two successive reads the idle cycle is three therefore for every
four cycles one data is read

Tread ¼ 4 � ð1=80MHzÞ ¼ 50 ns
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4. Find out number of data read in duration of Tburst_write:

No of reads ¼ 4000 ns=50 ns ¼ 80

5. The depth of FIFO:

Depth ¼ Burst length� No of reads ¼ 100� 80 ¼ 20

Scenario IV: Clock domain 1’s frequency is equal to clock domain 2’s that is f1 is
equal to f2 and idle cycles between two successive reads and writes.

Consider the design where f1 = 100 MHz and f2 = 100 MHz and the burst
of data transfer from clock domain 1 to clock domain 2 is 100 with idle
cycles. Number of idle cycles between two successive writes = 1 and number
of idle cycle between two successive reads = 3.

The depth of FIFO can be calculated as:

1. Find time required to write one data:
As between two successive writes the idle cycle is one therefore for every
two cycles one data is written

Twrite ¼ 2 � ð1=100MHzÞ ¼ 20 ns

2. Find out time required to write burst of data:

Tburst write ¼ Twrite � Burst length ¼ 20 ns � 100 ¼ 2 ls

3. Find time required to read one data:
As between two successive reads the idle cycle is three therefore for every
four cycles one data is read

Tread ¼ 4 � ð1=100MHzÞ ¼ 40 ns

4. Find out number of data read in duration of Tburst_write:

No of reads ¼ 2000 ns=40 ns ¼ 50

5. The depth of FIFO:

Depth ¼ Burst length� No of reads ¼ 100� 50 ¼ 50
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23.2 FIFO Design Case Study

The FIFO design and case study are described by using the following Verilog RTL,
and the important steps are documented in the following template

// FIFO Verilog RTL template
// Module instantiation and port definition
// define the intermediate signals using wire or reg
// Instantiation of FIFO memory buffer
// Instantiation of synchronizers for the write to read clock domain
//Instantiation of synchronizers for the read to write clock domain
// Instantiation of logic for the read empty flag generation
//Instantiation of logic for the write full flag generation

FIFO memory buffer top-level pin diagram is shown in Fig. 23.1 and has two
different clock domains. Input clock domain or sender clock domain works on the

Fig. 23.1 Pin diagram for FIFO top-level module
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write_clk, and another clock domain or receiver clock domain works on the
read_clk.

Top-level signal description of the module FIFO is shown in Table 23.1.
FIFO Memory: FIFO memory buffer Verilog RTL is shown in Example 1.

Table 23.1 FIFO top-level inputs and outputs

Signal name Direction Width Description

write_clk Input 1-bit The fast clock source for write clock
domain

read_clk Input 1-bit The slow clock source for read clock
domain

write_reset_n Input 1-bit The asynchronous active low reset for
write clock domain

read_reset_n Input 1-bit The asynchronous active low reset for
read clock domain

write_increment Input 1-bit The increment control input in the write
clock domain

read_increment Input 1-bit The increment control input in the read
clock domain

write_data Input [data_size-1:0] The input data bus to carry the data to be
written in the buffer

read_data Output [data_size-1:0] The output data bus to get the data to be
read from the buffer

write_full Output 1-bit The FIFO full flag as an output to indicate
that do not write data now

read_empty Output 1-bit The FIFO empty output flag to indicate
that do not read from FIFO buffer
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//////////////////////////////////////////////////////////////////////////////

module FIFO_memory #(parameter data_size = 8, parameter ad-
dress_size = 3)

// let us define the data and address size to get 8 locaƟon X 8 bit memory

(

input [data_size-1:0] write_data,

input [address_size-1:0] write_address, read_address,

input write_clk_en, write_full, write_clk,

output [data_size-1:0] read_data);

localparam FIFO_depth = 1<<address_size;

reg [data_size-1:0] mem [0:FIFO_depth-1];

// read the data at the output of memory 

assign read_data = mem[read_address];

//Write a data on rising edge of write clock at specific address loca on 

always @(posedge write_clk)

if (write_clk_en && !write_full) 

mem[write_address] <= write_data;

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 1 Verilog RTL for the FIFO memory buffer
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The top-level signal description is shown in Table 23.2, and the synthesis result
is shown in Fig. 23.2.
Read synchronization logic: Table 23.3 is useful to understand about the inputs
and outputs of this module. The logic is used to synchronize the pointers to avoid
the metastability.

The RTL description is shown in Example 2.

Fig. 23.2 FIFO memory buffer

Table 23.2 Pin description of FIFO memory buffer

Signal name Direction Width Description

write_clk Input 1-bit The fast clock source for write clock
domain

write_clk_en Input 1-bit Enable write when FIFO is not full

write_address Input [address_size-1:0] The binary address of the memory to
write the data

read_address Input [address_size-1:0] The binary address of the memory to
read the data

write_data Input [data_size-1:0] The input data bus to carry the data to be
written in the buffer

read_data Output [data_size-1:0] The output data bus to get the data to be
read from the buffer

write_full Output 1-bit The FIFO full flag as an output to
indicate that do not write data now
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Table 23.3 Pin description of the read synchronizer logic

Signal name Direction Width Description

read_clk Input 1-bit The slow clock source for read
clock domain

read_reset_n Input 1-bit The asynchronous active low reset
for read clock domain

write_pointer Input [address_size:0] The input as gray pointer which
can be used during pointer
comparison

read_to_write_pointer Output [address_size:0] The pointer passing from read to
write clock domain

 

module sync_write_to_read #(parameter address_size = 3) 

( 

input [address_size:0] write_pointer, 

input read_reset_n,read_clk,  

output reg [address_size:0] read_to_write_pointer); 

reg [address_size:0] tmp1_write_pointer; 

//MulƟ-flop synchronizer logic for passing the control signals and pointers 

 

always @(posedge read_clk , negedge read_reset_n) 

if (~read_reset_n)  

{read_to_write_pointer,tmp1_write_pointer} <= 0; 

else  

{read_to_write_pointer,tmp1_write_pointer} <= tmp1_write_pointer,write_pointer}; 

endmodule 

/////////////////////////////////////////////////////////////////////////////

/////////////////////////////////////////////////////////////////////////////

Example 2 Verilog RTL for the write to read synchronizer logic
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As shown in the synthesis result, the write_pointer is synchronized in the read
clock domain (Fig. 23.3).
Write synchronization logic: Table 23.4 is useful to understand about the inputs
and outputs of this module. The logic is used to synchronize the pointers to avoid
the metastability.

The RTL description is shown in Example 3.
As shown in the synthesis result the read_pointer is synchronized in the write

clock domain (Fig. 23.4).

Fig. 23.3 RTL schematic of synchronizer for write to read clock domain

Table 23.4 Pin description of write synchronizer logic

Signal name Direction Width Description

write_clk Input 1-bit The fast clock source for write
clock domain

write_reset_n Input 1-bit The asynchronous active low reset
for write clock domain

read_pointer Input [address_size:0] The input as gray pointer which
can be used during pointer
comparison

write_to_read_pointer Output [address_size:0] The pointer passing from write to
read clock domain
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///////////////////////////////////////////////////////////////////////////// 

module sync_read_to_write #(parameter address_size = 3) 

( 

input write_reset_n,write_clk,  

input [address_size:0] read_pointer, 

output reg [address_size:0] write_to_read_pointer); 

 

reg [address_size:0] tmp1_read_pointer; 

//MulƟ-flop synchronizer logic for passing the control signals and pointers 

 

always @(posedge write_clk , negedge write_reset_n) 

if (~write_reset_n)  

{write_to_read_pointer,tmp1_read_pointer} <= 0; 

else  

{write_to_read_pointer,tmp1_read_pointer} <= {tmp1_read_pointer,read_pointer}; 

endmodule 

///////////////////////////////////////////////////////////////////////////// 

Example 3 Verilog RTL for the read to write synchronizer logic
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Read clock domain and empty flag generation: Table 23.5 is useful to understand
about the inputs and outputs of this module. The logic is used to generate the empty
flag after the pointer comparison that is read_address is equal to write_address the
FIFO is empty. The assignment used to generate the empty flag is, read_empty
<= (read_gray_next == read_to_write_pointer);

Example 4 is coded using the synthesizable Verilog constructs and used to
generate the read_empty flag.

The synthesis result is shown in Fig. 23.5.

Fig. 23.4 RTL schematic of synchronizer for read to write clock domain

Table 23.5 Pin description of the read empty flag generation logic

Signal name Direction Width Description

read_clk Input 1-bit The slow clock source for read
clock domain

read_reset_n Input 1-bit The asynchronous active low
reset for read clock domain

read_increment Input 1-bit The increment control input in
the read clock domain

read_to_write_pointer Input [address_size:0] The pointer passing from read to
write clock domain

read_pointer Output [address_size:0] The output as gray pointer which
can be used during pointer
comparison

read_address Output [address_size-1:0] The binary address to memory
buffer which is output from this
module

read_empty Output 1-bit The FIFO empty flag as an
output to indicate that do not
read data now
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////////////////////////////////////////////////////////////////////////////// 

module read_pointer_empty #(parameter address_size = 3) 

( 

input  read_reset_n,read_increment,read_clk,  

input [address_size :0] read_to_write_pointer, 

output reg [address_size-1:0] read_address, 

output reg [address_size :0] read_pointer, 

output reg read_empty 

); 

// the temporary variable for binary data 

reg [address_size:0] read_binary; 

// let us declare the reg for the assign expression to get the gray and bi-
nary values 

reg [address_size:0] read_gray_next, read_binary_next; 

 

// Binary address pointer to memory  

always@* 

begin 

 read_address = read_binary[address_size-1:0]; 

 read_binary_next = read_binary + (read_increment & ~read_empty); 

 read_gray_next = (read_binary_next>>1) ^ read_binary_next; 

  end 

// let us incorporate gray pointers 

read_empty <= (read_gray_next == read_to_write_pointer);

Example 4 Verilog RTL for empty flag logic
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Write clock domain and FIFO full flag generation: Table 23.6 is useful to
understand about the inputs and outputs of this module. The logic is used to
generate the FIFO full flag after the pointer comparison that is (Fig. 23.6).

write_full <= (write_gray_next=={~write_to_read_pointer[ad-
dress_size:address_size-1], write_to_read_pointer[address_size-2:0]}); 

always @(posedge read_clk , negedge read_reset_n)

if (~read_reset_n) 

{read_binary, read_pointer} <= 0;

else 

{read_binary, read_pointer} <= {read_binary_next, read_gray_next};

// FIFO empty logic

always @(posedge read_clk , negedge read_reset_n)

if (~read_reset_n) 

read_empty <= 1'b1;

else 

read_empty <= (read_gray_next == read_to_write_pointer);

endmodule

//////////////////////////////////////////////////////////////////////////////

Example 4 (continued)
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Table 23.6 Pin description of the write full flag generation logic

Signal name Direction Width Description

write_clk Input 1-bit The fast clock source for write
clock domain

write_reset_n Input 1-bit The asynchronous active low
reset for write clock domain

write_increment Input 1-bit The increment control input in
the write clock domain

write_to_read_pointer Input [address_size:0] The pointer passing from write
to read clock domain

write_pointer Output [address_size:0] The output as gray pointer which
can be used during pointer
comparison

write_address Output [address_size-1:0] The binary address to memory
buffer which is output from this
module

write_full Output 1-bit The FIFO full flag as an output
to indicate that don’t write data
now

Fig. 23.5 FIFO empty logic interface signals
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output reg [address_size-1:0] write_address,

output reg [address_size :0] write_pointer,

output reg write_full);

reg [address_size:0] write_gray_next, write_binary_next;

reg [address_size:0] write_binary;

// Binary pointers to the memory buffer

always@*

begin

write_address = write_binary[address_size-1:0];

write_binary_next = write_binary + (write_increment & ~write_full);

write_gray_next = (write_binary_next>>1) ^ write_binary_next;

end

// let us use the gray pointers 

always @(posedge write_clk , negedge write_reset_n)

if (~write_reset_n) 

{write_binary, write_pointer} <= 0;

/////////////////////////////////////////////////////////////////////////////

module write_pointer_full #(parameter address_size = 4)

(

input write_reset_n, write_clk, write_increment, 

input [address_size :0] write_to_read_pointer,

Example 5 Verilog RTL for full flag logic
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else 

{write_binary, write_pointer} <= {write_binary_next, write_gray_next};

//Let us create FIFO_Full logic using the pointer comparison

always @(posedge write_clk , negedge write_reset_n)

if (!write_reset_n) write_full <= 1'b0;

else

write_full <= (write_gray_next=={~write_to_read_pointer[ad-
dress_size:address_size-1], write_to_read_pointer[address_size-2:0]});

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 5 (continued)

Fig. 23.6 Write full logic interface signals
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Top-level instantiation: The FIFO top-level instantiation of FIFO memory,
read_empty, write_full, synchronization from write to read and synchronization
from write to read is shown in Example 6.

The top-level interfaces and the overall design functionality is shown in
Fig. 23.7.

.write_clk_en(write_increment),

.write_data(write_data),

.write_address(write_address), 

.read_data(read_data), 

.read_address(read_address),

.write_full(write_full)

);

//////////////////////////////////////////////////////////////////////////////

module FIFO_top #(parameter data_size = 8,parameter address_size = 3)

(

input [data_size-1:0] write_data,

input write_increment, write_clk, write_reset_n,

input read_increment, read_clk, read_reset_n,

output [data_size-1:0] read_data,

output write_full,

output read_empty

);

wire [address_size-1:0] write_address, read_address;

wire [address_size:0] write_pointer, read_pointer, write_to_read_pointer, 
read_to_write_pointer;

FIFO_memory #(data_size, address_size) fifomem

(

.write_clk(write_clk),

Example 6 FIFIO TOP level module and instantiation
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read_pointer_empty #(address_size) read_pointer_empty

(

.read_clk(read_clk),

.read_reset_n(read_reset_n),

.read_increment(read_increment) ,

.read_address(read_address),

.read_pointer(read_pointer), 

.read_empty(read_empty),

.read_to_write_pointer(read_to_write_pointer)

);

write_pointer_full #(address_size) write_pointer_full 

(

.write_clk(write_clk),

.write_reset_n(write_reset_n),

.write_increment(write_increment),

.write_address(write_address),

.write_pointer(write_pointer), 

.write_full(write_full)

.write_to_read_pointer(write_to_read_pointer)

);

sync_read_to_write sync_read_to_write

(

.write_clk(write_clk), 

Example 6 (continued)
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.write_reset_n(write_reset_n),

.read_pointer(read_pointer),

.write_to_read_pointer(write_to_read_pointer)

);

sync_write_to_read sync_write_to_read 

(

.read_clk(read_clk),

.read_reset_n(read_reset_n),

.write_pointer(write_pointer),

.read_to_write_pointer(read_to_write_pointer)

);

endmodule 

/////////////////////////////////////////////////////////////////////////////

Example 6 (continued)

Fig. 23.7 FIFO Top-module having instantiation of the functional blocks
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23.3 Testbench for FIFO

Using the non-synthesizable Verilog constructs, the testbench is coded for FIFO to
check for the write and read transactions and shown in Example 7.

module Test_FIFO_top;

// Inputs

reg [7:0] write_data;

reg write_increment;

reg write_clk;

reg write_reset_n;

reg read_increment;

reg read_clk;

reg read_reset_n;

// Outputs

wire [7:0] read_data;

wire write_full;

wire read_empty;

// Instan�ate the Unit Under Test (UUT)

FIFO_top uut (

.write_data(write_data), 

.write_increment(write_increment), 

.write_clk(write_clk), 

.write_reset_n(write_reset_n), 

////////////////////////////////////////////////////////////////////////////

Example 7 Testbench of FIFO design
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.read_increment(read_increment), 

.read_clk(read_clk), 

.read_reset_n(read_reset_n), 

.read_data(read_data), 

.write_full(write_full), 

.read_empty(read_empty)

);

always #5 write_clk= ~write_clk;

always #10 read_clk= ~read_clk;

always #80 write_increment= ~write_increment;

always #80 read_increment = ~ read_increment;

always #200 write_reset_n = ~write_reset_n;

always #200 read_reset_n = ~ read_reset_n;

ini�al begin

// Ini�alize Inputs

write_data = 0;

write_increment = 0;

write_clk = 0;

write_reset_n = 0;

read_increment = 0;

read_clk = 0;

read_reset_n = 0;

#100

Example 7 (continued)
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The simulation result is shown in Fig. 23.8 and as shown during FIFO full the
write is not allowed and during FIFO empty read is not allowed.

// Wait 100 ns for global reset to finish

#10 write_data = 1;

#10 write_data = 2;

#10 write_data = 3;

#10 write_data = 4;

#10 write_data = 5;

#10 write_data = 6;

#10 write_data = 7;

#10 write_data = 8;       

end

endmodule

/////////////////////////////////////////////////////////////////////////////

Example 7 (continued)
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23.4 Summary

Following are important points to conclude this chapter

1. Use the level synchronizers during sampling the data from different clock
domain.

2. Use the gray code counters instead of binary counters while passing the data
across multiple clock domains.

3. Use FIFO in the data or control path while passing the multiple data bits or
control bits.

4. Partition the design using the single clock at the receiving and transmitting
(sending) end.

5. Use the parameterized design while coding the RTL for the FIFO.
6. Include the reset logic and full, empty logic.

Fig. 23.8 Read and write operations for FIFO
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Chapter 24
Low Power Design

Low power design is one of the important requirements for ASIC designs. The power can
be minimized using the different techniques and using the consistent power format. This
chapter discusses about the low power design techniques and the need of Unified Power
Format. This chapter also discusses about the important UPF commands.

In the modern low process node ASIC designs, the power is considered as the major
factor. The low power design chips are required in many applications like mobile,
computing, processing, and video and audio controller designs. Most of the SOC
design needs the low power design architectures. This chapter discusses about the
low power design techniques at the RTL level and the use of the consistent format
UPF during the logical design. This chapter is useful for the RTL design engineers
to understand the UPF terminology and the important commands to use the level
shifter, retention, and isolation cells. Even this chapter describes about the multiple
power domain designs using the UPF commands.

24.1 Introduction to Low Power Design

In the modern ASIC and SOC designs, the power optimization is very crucial. The
power requirements for the ASIC or SOC designs play an important role in the
overall design planning. The overall power estimation for the chip and the design of
low power architecture and micro-architecture are decisive factors in the ASIC
design flow. The goal of the chip architect is to design the architecture and
micro-architecture for low power-aware designs. As process node has shrunk from
90 to 10 nm in the past decade, the voltage levels are dropped substantially.

As power is one of the crucial factors in the design of SOC, it has become the
main problem in every category of the design. The power density is measured as
watt per square millimeter and it rises with the alarming rate in the SOC designs.
So, in the SOC design perspective, the power or energy management needs to be
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used in the design from the architecture stage itself. The low power design tech-
niques are essential to be used during the RTL to GDSII.

Power management is required for all the designs below the process node of
90 nm. As size of the chip has shrunk below 90 nm at the smaller geometry, it
requires the aggressive management of the leakage current. The primary source of
power dissipation in CMOS is leakage current. The leakage current is summation of
all the cell leakage current and is state-dependent.

The dynamic power is defined as addition or the summation of the internal cell
dynamic power and summation of power dissipated due to wires. The following are
the few equations which describes the leakage and dynamic power.

Pleakage ¼
X

Cell Leakage

where cell leakage can be computed by using the library cell leakage and it is
state-dependent.

Pdynamic ¼
X

Cell dynamic powerþ
X 1

2
� Cl � V � V � Tr

where the Cl is the capacitive load at pin or net, V is voltage level, and Tr is toggle
rate.

During the past decade, the main interest of design team was to improve the
design performance that is throughput, latency and frequency and even to improve
the silicon area. But below 90 nm the power management has become the important
for the SOC designs. In the present scenario, due to the exponential growth in the
field of the wireless and mobile communications and other home electronics
intelligent applications, the demand is for the complex functionalities and
high-speed computations. Even the low power management and the long battery
life are key for such kind of applications in the competitive market. It is expected
that such kind of devices should be of lightweight, small, cool, and even they
should have the long battery life.

24.2 Power Dissipation in CMOS NOT Gate

Consider the ASIC standard cell as NOT gate and shown in Fig. 24.1. As shown in
the figure, the NOT gate is designed by using PMOS and NMOS. PMOS passes
strong 1 and NMOS passes strong 0. At a time either PMOS is ON or NMOS is
ON. But practically the NOT gate cell is represented as On resistance of one of the
ON transistors and the equivalent parasitic capacitance seen at the output port
y_out. Energy stored in the capacitor is dependent on the capacitor value in nano or
pico farad and the voltage applied to the NOT gate.
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The power dissipation for the CMOS NOT gate is computed by using the
formula p = (1/2) * Cs * V2 * f. So the power dissipation for any standard cell is
directly proportional to the stray capacitance (Cs), applied voltage (V), and the
frequency. To reduce the overall power for the chip, it is essential to minimize the
applied voltage and essential to choose the process technology which can give
minimum load capacitance at the output and input ports. Due to the high-speed
design requirements, it is not possible to minimize the speed of the design by
reducing the frequency, so there is always trade-off between the power require-
ments and speed of the design.

Sources of power consumption in CMOS are shown in Fig. 24.2.

Fig. 24.1 CMOS NOT gate

Fig. 24.2 Power consumption sources
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So the power dissipation for any CMOS cell is function of the switching activity,
capacitance, voltage, and the structure of transistor. So power is described as

Power ¼ Pswitchingþ Pshort� circuitþ Pleakage

The total power for any CMOS cell is summation of the dynamic and leakage
power.

Dynamic power is summation of the switching power and short-circuit power.
The power dissipation is due to the charging and discharging of net capacitances.

The short-circuit power dissipation is due to the gate switching, and it is due to the
short circuit between the supply voltage and ground. The following equation
describes the switching and short-circuit power

Pswitching ¼ a � f � Ceff � Vdd � Vdd

where a is switching activity, f is switching frequency, Ceff is effective capacitance,
and Vdd is supply voltage.

Pshort� circuit ¼ Isc � Vdd � f

where Isc is short-circuit current during switching, f is switching frequency, and Vdd

is supply voltage.
Dynamic power can be reduced by reducing the switching activity, clock fre-

quency (it reduces the design performance), also by using the capacitance and the
supply voltage. If faster slew cells are used, then it consumes the less dynamic
power and hence cell selection is important in reduction of the dynamic power.

Leakage power is given by the following equation, and it is function of the
supply voltage Vdd, the switching threshold voltage Vth, and size of transistor.

Pleakage ¼ f Vdd;Vth;
W
L

� �

In the above equation, the W is width of transistor and L is length of transistor.
Powers saving opportunities at the different design stages are listed in

Table 24.1.

Table 24.1 Percentage
power saving

Design abstraction stage %power saving (%)

System design and architecture 70–80

Behavioral design 40–70

RTL design 25–40

Logic design 15–25

Physical design 10–15
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24.3 Switching and Leakage Power Reduction Techniques

There are several techniques used to reduce the power, and few of the commonly
used power management techniques are listed in Table 24.2.

Other few important techniques used in the power management at the various
abstraction levels are listed in Table 24.3.

24.3.1 Clock Gating and Clock Tree Optimizations

This technique is very efficient and used to improve the dynamic power. In most of
the application, the power is wasted due to unnecessary toggling of the clock signal.
If the register input is changing or not, the clock signal toggles on every clock
cycle. This is the major reason for the more dynamic power. Even the clock trees
are the major sources for the larger dynamic power as they have the larger
capacitive load and the switching requires the maximum rate. So if the data is not
loaded in the register frequently, then significant amount of power is wasted and
this can be saved by using clock gating technique. The clock gating is at the register
level or leaf level, and if it is done at the block level, then the entire functional block
can be disabled by disabling the clock tree. This reduces the switching and hence
reduces the dynamic power.

Table 24.2 Power management techniques

Power management
technique

Description

Clock gating and clock tree
optimizations

In this technique, the portions of the clock tree which are not
used at the instance of time are disabled

Logic restructuring Use the cone structure to minimize the power. Move the low
switching operations back in the logic cone and high switching
operations up in the logic cone. This technique is used to reduce
the dynamic power at gate-level optimizations

Operand isolations This technique is effective in reducing the power dissipation in
the data path of any blocks by using the enable signals

Logic and transistor
resizing

Use the downsizing to reduce the leakage current and use
upsizing to reduce the dynamic current by improving the slew

Pin swapping Use the swapping gate pins to reduce the power. If the
capacitance is lower, then the switching can be fast at the gate
or pin
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24.3.2 Operand Isolations

This technique is effective in reducing the dynamic power dissipation in the data
path of any blocks by using the enable signals. Most of the times in the data path
signals are sampled periodically, and hence, this sampling can be controlled by
using the enable inputs. During inactive state of enable signal, the data path inputs
can be forced to the constant value, and hence, it reduces the dynamic power due to
lesser switching.

24.3.3 Multiple Vth

This technique is very effective while optimizing for area, power, and speed by
using the different threshold voltage. Most of the libraries have the different
switching threshold voltages. The efficient EDA tool used during synthesis can be
able to use the different library cells of different switching threshold voltages to
meet the area and speed constraints with the lowest power dissipation.

Table 24.3 Efficient power management techniques

Power management technique Description

Multi-Vth Use the multi-threshold libraries for the power reduction.
Use the high switching threshold for lesser leakage power
but it reduces the design performance. Use the low switching
thresholds for the higher performance but it has higher
leakage

Multiple supply voltage (MSV
islands)

Use the multiple supply voltages for the different design
blocks

Dynamic voltage scaling
(DSV)

In this technique, the selected blocks can run at different
supply voltages according to the design requirements

Dynamic voltage and
frequency scaling (DVFS)

This is used to reduce the dynamic power. In this method,
the selected blocks of design use the different supply
voltages and frequencies on fly

Adaptive voltage and
frequency scaling (AVFS)

This can be accomplished by using analog circuits, and in
this technique based on the control loop feedback, the wide
range of voltages is set dynamically

Power gating or power shut
off (PSO)

If the functional blocks are not used, then the selected
functional blocks are powered off

Splitting memories If the memories are controlled by software or the data, then
the portions of memories can be spitted into more number of
portions. This is effectively used to save the power by
shutting off the portion of memories which are not used
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24.3.4 Multiple Supply Voltages (MSV)

In this technique, the different functional blocks operate at the different voltage
levels. As the voltage level reduces, the active power is reduced as it is function of
the square of the supply voltage. But it can degrade the design performance. While
using this technique, it is required to use the level shifter to transfer the signals from
one voltage domain to another voltage domain. If level shifters are not used, then
the sampling of the signal is an issue!

24.3.5 Dynamic Voltage and Frequency Scaling (DVSF)

Dynamic voltage and frequency scaling is very efficient technique to reduce the
active power consumption. As discussed in the earlier sections, the power dissi-
pation is proportional to the voltage square so lowering the voltage has squared
effect on the power consumption. In this type of technique, depending on the
performance and power requirements, the frequency and voltage can be scaled
down on the fly and hence it can reduce the power dissipation. This technique is
very effective to optimize the static and dynamic power due to optimization of the
frequency and voltage levels.

24.3.6 Power Gating (Power Shut Off)

Power gating or power shut off (PSO) is one of the effective techniques, and in this
technique, the design modules which are not used are switched off using switches.
This is one of the powerful techniques used to reduce the leakage power. In most of
the industrial applications, the leakage power can be reduced by, more than 90% by
using the power gating switches. To design this technique, it needs the clear
understanding of the power-down sequence and isolation cells. It is essential to use
the isolation logic with the state retention elements and even level shifters to
implement the power gating.

24.3.7 Isolation Logic

This is used at the output of powered down block to prevent unpowered signals and
floating signals from power-down block. In the simulation, these signals can be
denoted by X. Isolation cells are used between the two power domains and con-
nected between the power-off and the power-on domain. The reason for isolation
cell in the two power domain is to isolate the output of blocks before the power
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switch off state and need to remain isolated until the power is switched on. In few
design scenarios, isolation cells can be used to block level to prevent the connection
to power down logic. Consider the block logic as driving power domain and it is in
the off state then isolation cell can be located in the driving domain to isolate the
signals from the driving power domain to the receiving on power domain.

24.3.8 State Retention

During the power-off mode, most of the time it is essential to retain the state of
registers. The state of the registers is useful during the power recovery. In most of
the low power designs, the state retention power gating flip-flops are used and these
flip-flops are called as SRPG. Most of the EDA tool cell libraries are having the
SRPG cell.

24.4 Low Power Design Techniques at the RTL Level

In the present scenario, there are many low power design techniques at the RTL and
gate level. It is essential for the design team to understand about the low power
design goals to use these techniques uniformly by ensuring the consistency and
predictability in the overall design cycle. Most of the SOC design uses the low
power design techniques using power analysis and optimization issues. This section
focuses on the low power design technique.

1. Modeling and power estimation: For the low power design and the management
of power for any SOC, it is essential to prepare the library models with the
required power data. It is required to develop the transistor-level models for the
custom blocks. The common practice in the SOC design at the RTL level is use
of power compiler to understand the power consumption based on the switching
activity information from the RTL simulation data. This technique is useful for
estimation of the power consumption at early stage of the design. Another
important point to be considered at the gate level is to develop the glitch-free
low power designs. As gate-level analysis is more accurate as compared to the
RTL-level analysis, it is essential to use the time-based analysis based on the
peak power and hot spots.

2. Clock gating: Use the clock gating technique using the clock gating cells to
minimize the power during the RTL design. Clock gating can be implemented
by identifying the synchronous load enable register banks. Clock gating can be
implemented by using the gating of clock with the enables instead of recircu-
lating of the data when enable is inactive. If power compiler is used at the RTL
level, then it automatically optimizes the static, dynamic power dissipation with
the delay and area to meet the design constraints.
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3. Clock gating stops the clock and forces the original circuit in the zone of no
transition. In the practical scenario, if we consider the functional block as

always@(posedge clk)
begin
if(enable)

data_out<=data_in;
end

The above block can generate the synthesis result shown in Fig. 24.3.
The above logic is without clock gating and has the higher power dissipation. To

reduce the power consumption, the clock gating logic needs to be used and can be
designed by eliminating the multiplexers at the input thus it is useful to avoid the
recirculation of data. This results in the area and power savings and reduces the
power consumption in the clock network. The synthesized logic using clock gating
is shown in Fig. 24.4. The timing sequence is shown in Fig. 24.5.

The use of clock gating has drawback that the logic used to implement the clock
gating technique is redundant, and hence, there can be issues in the testing and
verification. Another important point needed to keep in mind is that, it is essential to
stop the glitches and hazards on enable signal, and this is achieved by using the
transparent latch between the enable and the AND logic gate.

Clock gating can be efficiently implemented by using the power compiler from
Synopsys. Use the command set_clock_gating_signals. Figure 24.6 shows the
inputs and outputs used by the power compiler.

The outcome of the power compiler is the elaborated unmapped design. Power
compiler uses the inputs as source RTL code and library to optimize for the low
power.

The following are few of the important points need to be considered while
implementing the clock gating using the power compiler.

1. General clock gating can be included or excluded from the design having the
hierarchical modules. The command use is set_clock_gating_signals. The care
need to be taken by the design team while using the power compiler for the

Fig. 24.3 Logic without clock gating
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same. Each design should have the single command line for both the inclusion
and exclusion of the clock gating.

2. If the design has multiple registers and few of the registers need to be excluded
from the clock gating strategy, then they should have the separate enable signal.
If same enable signal is used, then it generates the same clock gating for the
entire register bank. For example, if the data bus is declared as data_in[7:0] with
the registered inputs and if the lower nibble data_in[3:0] needed to be excluded
from clock gating, then it should use the different enable and data_in[7:4] should
use different enable.

3. Clock gating signals as single bit or multiple bits have added advantage as it
avoids the recirculation of the data by removing the multiplexers. But it can
consume more area and additional power due to the clock gating logic.

4. Do not use clock gating for the master–slave flip-flops. Generally, it is normal
practice that clock gating logic is used at the slave flip-flop if the clock gating
conditions are met. Such design may not perform the desired operation. Use the
command set_clock_gating_exclude to exclude the master–slave flip-flops.

Fig. 24.4 Logic with clock gating

Fig. 24.5 Timing sequence for the clock gating
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5. While using the clock gating, it is common practice to use the minimum bus
width. The minimum bus width can be of 5 or more. Use the command
set_clock_gating_style_minimum_bitwidth.

6. In most of the design practices at the RTL level, if the procedural always blocks
are used and if it consists of case with the default condition or conditional
expressions like if-else, then tweak the RTL by including the default condition
in every if-else statement. Example 1 describes the modification of the proce-
dural block using default.

7. If same enable is shared by the multiple register banks, then the power compiler
feature can be used to share the clock and enable signal to multiple register
banks. This is used to save the overall area. Consider Example 2 shown below
and it has two different procedural blocks, then the same clock gating logic can
be used for both procedural blocks.

8. Use the simple clocking strategies for the automatic clock gating insertion. If the
number of clock domains is minimum, then it gives simplifies timing analysis
and clock tree synthesis. The lower down modules can have enable signals
instead of dividing the clock. Use the set-don’t_touch_network command to
avoid the compilation changes on the clock network. During the multiple step
compilation process, this avoids the changes on the clock gating logic.

Source code (RTL) 

Power Compiler 
elabora on Library 

Elaborated Unmapped 
design 

Fig. 24.6 Power compiler
inputs and outputs
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9. Use the simple set and reset strategies. Complex set and reset strategies may
result in the design logic which is prone to issues at the gate level and during
functional debugging. The care need to be taken by the designer to have the
better logic partition for synthesis while using the internal set and reset signals.

10. Clock balancing and the clock buffer signal insertion need to be used efficiently
to have efficient clock tree synthesis (CTS). CTS tools work by adding or
moving the buffers, resizing of cells along the clock tree network to manage the
required skew and the insertion delay.

2’b01: if (b2_in) c_in =d2_in;

default : c_in = e1_in;

endcase

//The above Verilog RTL can be modified as 

case(a_in)

2’b00: begin 

if (b1_in) c_in =d1_in;

else c_in=e1_in;

end

2’b01: begin 

if (b2_in) c_in =d2_in;

else c_in =e1_in;

endcase

case(a_in)

2’b00: if (b1_in) c_in =d1_in;

Example 1 RTL tweaks for
the power saving
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24.5 Low Power Design Architecture and UPF: Case
Study [7, 8]

Unified Power Format (UPF) is the standard used to design electronic systems by
considering the power as the feature. The standard is used for low power ASIC
designs. The reasons for using UPF are

1. There is no any method which can support accurate management and distri-
bution of low power at the RTL-level abstraction.

2. Vendor-specific power formats are inconsistent and are prone to bugs due to
inconsistent specifications.

always @ ( posedge clk , negedge reset_n)

begin

if (~reset_n)

data_out <= 1’b0;

else if (enable)

data_out<=data_in;

end

always @ ( posedge clk , negedge reset_n)

begin 

if (~reset_n)

data_out _1<= 1’b0;

else if (enable)

data_out_1<=data_in_1;

end

Example 2 Common clock
enable for multiple procedural
blocks
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3. UPF provides the following and can be used consistently in low power ASIC
designs

a. Power distribution architecture

i. Define the power domains
ii. Define power switches
iii. Define power rails

b. Power strategy

i. Creation of power state tables

c. Set and map

i. Isolation
ii. Retention
iii. Level shifter
iv. Switches

UPF is IEEE 1801 standard and can be used throughout the design flow for
power-aware design intent. Example 3 shows the use of UPF at various stages.

Example 3 UPF at various
design stages
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24.5.1 Isolation cells

As discussed already, the isolation cells are used at the output of power-down
block. The isolation cell can be set by using the UPF command. Figure 24.7
describes the design using isolation cell.

Set Isolation cell

set_isola on iso3 
–domain PDgreen 

–isola on_power_net Vbu 
–clamp_value 0 

–applies_to outputs 

Set isolation control

set_isola on_control
iso3

–domain PDgreen
–isola on_signal CPU_iso

–loca on self

24.5.2 Retention Cells

As discussed already in the above section, the retention cells are used to retain the
state of registers during power-off state. Figure 24.8 defines the setting of the
retention cell in the design.

Fig. 24.7 Setting of isolation cell in logic design
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Set retention cell

set_reten�on ret3

–domain PDgreen

–reten�on_power_net Vbu

–elements { u37 }

Set Retention control

set_reten�on_control

ret3

–domain PDgreen

–save_signal s

–restore_signal r

24.5.3 Level Shifters

Level shifters are used to translate from one voltage level to another voltage level.
The translation can be from low to high voltage level or high to low voltage level.
Set and map level shifter can be achieved by using the following UPF commands.
Figure 24.9 shows the use of command to set and map the level shifter.

Fig. 24.8 Setting of retention cell in logic design
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The important points to consider for the same are

1. Pick the correct power domain
2. Select input or output ports or both
3. Use upshift or downshift rule
4. Define the location.

Set level shifter

set_level_shi�er my_ls

–domain PDgreen

–rule low_to_high

–loca�on self

–applies_to outputs

Map level shifter

map_level_shi�er_cell

ls_L2H

–domain PDgreen

–lib_cells { /lib/ls_123 }

Fig. 24.9 Setting and mapping of level shifter in design
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24.5.4 Power Sequencing and Scheduling

Specific sequence should be followed for the power down. The sequence includes
isolation, state retention, and the power shut off. For the power-up cycle, the
opposite sequence need to be followed. During power-up cycle, it is recommended
to have the specific reset sequence. Following timing sequence gives information
about the power-up/down sequence.

Isola on Signal Enabled

SPRG Reten on State

POWER OFF state

Remove clocks on SRPG flops

For the multiple clock domains with the different power sequence and the
multiple clock gating with few common power control signals, it requires the higher
verification efforts to ensure the correct sequencing during the power on and power
off.

The UPF can be used from the RTL to GDSII and the basic UPF use at various
stages is shown in Fig. 24.10. During the verification using the UPF, the functional
and power intent should be analyzed and need the robust verification using the
advanced verification techniques.

24.5.4.1 Creation of Power Domains

The power domains can be created by using the UPF command.

create_power_domain domain_name
[-elements list]

[-include_scope]
[-scope instance_name]

For example, creating the power domain having name pdA, the UPF command
used is given below and the outcome is shown in Fig. 24.11.

create_power_domain pdA -include_scope A
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24.5.4.2 Create Supply Port

The supply port can be created by using the UPF command.

create_supply_port port_name
-domain domain_name
[-direc�on <in | out>]

Fig. 24.10 UPF use at various stages from RTL design to GDSII

Fig. 24.11 Creation of power domain
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For example, creating the supply port with the name spAOn, the command used
is given below and the outcome is shown in Fig. 24.12.

create_supply_port spAOn - domain pdA

24.5.4.3 Create Supply Net

The supply net can be created by using the UPF command.

create_supply_net net_name 
-domain domain_name 

[-reuse] 
[-resolve < unresolved 

| one_hot 
| parallel >] 

For example, creating supply net named as RET, the UPF command used is
given below and the outcome is Fig. 24.13.

Fig. 24.12 Creation of supply port

Fig. 24.13 Creation of supply net RET
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create_supply_net RET -domain pdA 

For example, creating supply net named as PR, the UPF command is given blow
and the outcome is shown in Fig. 24.14.

create_supply_net PR -domain pdA

24.5.4.4 Create Power Switch

The power switch can be created by using the UPF command.

Fig. 24.14 Creation of supply net PR
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create_power_switch switch_name
-domain domain_name

-output_supply_port { port_name supply_net_name }
{-input_supply_port { port_name supply_net_name }}*

{-control_port { port_name net_name }}*
{-on_state {state_name input_supply_port

{boolean_func on}}}*
[-on_parƟal_state { state_name input_supply_port {

boolean_func on }}]*
[-ack_port { port_name net_name [{boolean_func on}] }]*

[-ack_delay { port_name delay}]*
[-off_state { state_name {boolean_func on} }]*

[-error_state { state_name {boolean_func on} }]*

For example, creating the power switch SW1, the UPF command used is given
below with the net outcome in Fig. 24.15.

create_power_switch SW1 -domain pdA
-input_supply_port {inp RET}

-output_supply_port {outp PR}

Fig. 24.15 Power switch creation
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24.5.4.5 Connect Supply Net

The connection for supply net can be created by using the UPF command.

connect_supply_net net_name 
[-ports list] 
[-pins list] 

[< -cells list | 
-domain domain_name >] 

[< -rail_connec�on rail_type | 
-pg_type pg_type >]* 

[-vct vct_name] 

For example, connecting the power supply net, the command used is given
below and the net outcome is shown in Fig. 24.16.

connect_supply_net RET -ports {spAOn}

set_domain_supply_net pdA
-primary_power_net PR

-primary_ground_net VSS

Fig. 24.16 Connecting the supply net
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24.6 Summary

Following are the important points to conclude this chapter

1. The dynamic power is defined as addition of the summation of the internal cell
dynamic power and summation of power dissipated due to wires.

2. Dynamic power can be reduced by reducing the switching activity, clock fre-
quency (it reduces the design performance), also by using the capacitance and
the supply voltage.

3. Operand isolation is effective in reducing the dynamic power dissipation in the
data path of any blocks by using the enable signals.

4. Dynamic voltage and frequency scaling is very efficient technique to reduce the
active power consumption.

5. The retention cells are used to retain the state of key registers during power-off
state.

6. Level shifters are used to translate from one voltage level to another voltage
level. The translation can be from low-to-high voltage level or high to low
voltage level.

7. Unified Power Format (UPF) is the standard used to design electronic systems
by considering the power as the feature. The standard is used for low power
ASIC designs.

8. This is used at the output of powered down block to prevent unpowered signals
and floating signals from power-down block.

9. Power gating or power shut off (PSO) is one of the effective techniques, and in
this technique, the design modules which are not used are switched off using
switches. This is one of the powerful techniques used to reduce the leakage
power.

558 24 Low Power Design



Chapter 25
System-On-Chip (SOC) Design

The System on Chip can be realized and prototyped by using FPGAs. The SOC consists of
many complex blocks like processors, arbiters, memories, peripherals. This chapter focuses
on the generalized SOC architecture and discusses about the SOC design flow.

SOCs are complex density ASICs and need to be prototyped using the FPGAs. In
the present scenario, there is more demand for the FPGA prototyping. Single or
multiple FPGA can be used to prototype the desired SOC functionality. This
chapter focuses on the discussion on the SOC components, challenges, and the SOC
design flow. Even few of the important SOC design blocks RTL design strategies
are discussed in this chapter.

25.1 What Is System on Chip (SOC)?

System on chip (SOC) is designed by using ASIC design flow, and for proof of
concepts, FPGAs are used. In the present scenario, the designs are complex in
nature and consist of multiple functional blocks to perform the desired operations
and the requirement is higher design performance. The main important SOC design
challenge is to have lower power, high performance, and lesser area.

As SOC complexity has increased during the past decade, it has become
extremely important to detect the defects in the SOCs during early stage of design
cycle. The best and affordable way is to use the modern FPGAs to prototype the
design or to check the feasibility of the idea. In the present scenario, most of the
complex designs are prototyped by using modern FPGAs having the high-speed
capability and the complex architectures.

It is essential to understand about, why the FPGA prototyping has become
popular during this decade? The main reason is the less non-recurring investment
and the availability of the high-performance computing and reprogrammable fea-
tures in the FPGA devices. SOCs consist of processor, IO interfaces such as
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Ethernet, USB, UART, SPI, I2C, high-performance DSP computational capabili-
ties, video and audio codecs and high-speed memory controllers like DDR II or
DDR III. Modern FPGAs are used for SOC prototyping as they have most of the
capabilities listed above to achieve the high performance.

25.2 SOC Architecture

In the present decade, IP and SOC complexity has increased so much. There is
demand for SOC design, and FPGAs with the high-density functional blocks are
used for validation of SOC functionality. This is also called as ASIC or SOC
prototyping. If we consider typical SOC, it has processor core, various memories,
and clock source as PLL, multiple power domain functional blocks, peripherals,
communication interfaces and analog-to-digital and digital-to-analog converters.
The important point during the design of SOC is to have better partition of the
hardware and software resources. In the present scenario, the FPGAs are used
during SOC prototyping due to reconfigurable capabilities and to accelerate the
performance of design due to the use of soft and hard IPs in it.

The different blocks of SOC are shown in Fig. 25.1. If we consider any complex
SOC, then it consists of the different communication interface such asUSBs, Bluetooth,
and most of the SOCs support the standard bus protocols. For any SOC design, it is
essential to have the better area, high speed, and low power. Achieving the required
design functionalitywith the constraints is one of the challenges due to the availability of
lesser time to design and market the product due to high demand of new features and
functional requirements. SOC design always needs the realistic plan, resources, and
availability of necessary validation testing and prototyping setup.

Memory

SPI

I2C

LCD

USB

SATA

PCI

Ethernet

Processor

Memory 
ControllerAudio Codec Audio Codec

DSP

Fig. 25.1 SOC design blocks
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25.3 SOC Design Flow

The SOC design flow is shown in Fig. 25.2. As shown in the figure, it has multiple
steps which include the design feasibility and implementation, FPGA prototyping
and testing and ASIC porting. The important steps are discussed in the subsequent
section.

25.3.1 IP Design and Reuse

Most of the SOC uses intellectual properties (IPs). But as a design team, it is
important to validate the IPs in SOCs for the available features, timing require-
ments, and functionality. The important parameters in IP design are the overall
functionality of the design. The IPs are sold in the semiconductor market due to its
features, timing performance, and low-power requirements. If we consider simple
tablet, then the tablet selling point in the market is the availability of features,
interfaces, and the compatibility with the software and other communication
devices. The IPs are not sold in the market due to only interfaces but need to have
the overall all above-mentioned features.

Most of the time the SOC design team uses the third party functionally and
timing has proven IPs. Instead of spending the time on design of IPs, most of the
time SOC design team uses multiple IPs required according to the desired or
functional requirements. All the required IPs can be integrated together according to
the speed and power requirements. Although there is challenge in overall integra-
tion of IPs that challenge can be overcome by understanding the architecture details
of IPs, timing and power details of IPs used. The IP can be soft IP or hard IP. The IP
vendor companies can provide the synthesizable and process independent RTL, or
netlist with the necessary timing information and having the high-performance
user-friendly interfaces.

The IPs should exhibit the required functionality and should be delivered with
the synthesizable RTL, synthesis scripts, design constraints, and interface details.
Then it becomes easy during the IP integration and validation to realize the SOC in
less time. The reason for growing complexity of SOCs is due to the following few
factors.

1. Requirement of number of features with limitation on area that is size of SOC
2. Less time to market
3. High-speed requirements
4. The multiple power domain designs and requirements.
5. Multiple clock domain and clock tree structure

The complex SOC designs have challenges during the routing and during the
power optimization. Even timing analysis and meeting the timing requirement is
one of the important challenge!
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25.3.2 SOC Design Considerations

Capturing the design requirements and analysis of the design is the first important
step during the SOC design. The input for this phase is the design or product
specifications provided by the client or end user. The analysis involves the feasi-
bility study of all the features provided. The feasibility study is an important phase
as during this phase it can be easy to understand about the risk in the implemen-
tations as well as dependability during implementation. The feasibility study is
needed and should be done for all the features by keeping in mind the time to
market. This study gives roadmap and challenges involved during SOC design
implementation cycle and is useful during various phases. The design specifications
are analyzed and understood during this phase.

25.3.3 Hardware–Software Co-design

This is also called as design partitioning; the design must be partitioned into
hardware and software. The important point of consideration is while partitioning
the design; how parallel execution needs to be incorporated in the design? In the
present scenario, as SOCs are complex the functionality can be implemented using
the parallelism in the design which in turn can improve the design performance.
The complex computational task or algorithms need to be partitioned during the
design partitioning phase. Most of the complex computational blocks need to be
implemented using hardware. Design partitioning is important and decisive phase to
define what needs to be implemented using software? And what needs to be
implemented using hardware?

For example, consider the design of video decoders which needs multiple frame
support. The video decoder can be efficiently implemented using hardware, and
even the parallelism can be incorporated for the few decoder features. The high
computational DSP functional blocks which need filters like FFT, FIR, and IIR or
high-speed multipliers can be effectively and efficiently implemented using
hardware.

Let us consider the scenario of protocol implementation, most of the protocol
like Ethernet, USB, and AHB can be efficiently implemented using hardware–
software co-design. These algorithms should be functional and timing-proven. This
can have advantage to overcome and to reduce latency in the design.

The major challenge in the hardware–software design portioning is the analysis
of throughput and power requirements. For example, consider the scenario in SOC
design where fixed length packets need to be transferred during the fixed time
interval. If the design is implemented by using hardware, then care needs to be
taken such that there should be minimum interaction between the hardware and
software. To minimize the interaction between hardware and software, the strategy
can be used by using FIFO buffers and timers.
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25.3.4 Interface Timings

FIFO is First-in First-out Memory buffer and can be used to hold the packet
information depending on the depth of FIFO. At the start of data transfer FIFO can
interact with procedural calls defined in the software. To track the time duration, the
timers can be implemented using hardware which can have communication inter-
face with FIFO to indicate the end of timing intervals. Such type of handshaking
mechanism can be implemented easily using hardware.

The design architecture for both the hardware and software activities can be
created by considering power-aware design and throughput requirements.

25.3.4.1 Interface Details and Timing Requirements

For every SOC, it is essential to have the functional and timing-proven bus inter-
faces. In most of the applications, advanced high-speed bus protocols are used.
These protocols need to be validated for the functional and timing correctness of the
design. IO interfaces need to be targeted for the high-speed data transfer. There are
many kinds of IO interfaces used in SOC designs. These IOs can be general
purpose, differential IOs, multiplexed IOs, and high-speed IOs.

25.3.4.2 Reset Clock Requirements

Clock distribution network is used to provide the uniform clock skew to all the
registers in the SOCs. The clocking policy plays the crucial role in overall design
performance. The uniform clock skew can be achieved by using the suitable clock
tree by using clock tree synthesis. Use of single clock structure or multiple clock
domain structure needs to be decided at the architecture level. Also, the use of
synchronous or asynchronous logic needs to be defined at the architecture level.
Reset can be asynchronous or synchronous and needs to be defined at the archi-
tecture phase of SOC.

25.3.5 EDA Tool and License Requirements

Choose the desired and suitable EDA tools and licenses for FPGA prototyping of a
SOC and during the ASIC porting. The most industry standard tools are.

Simulator: VCS.
Synthesis: Synplify pro and Synopsys DC.
STA: prime time (Synopsys PT).
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25.3.6 Prototyping Development

For SOC validation, use the necessary prototyping and development platform.
Prototyping platform can consist of the use of multiple FPGA boards to realize and
validate SOCs, IP required, DSP functionality required, memories, and
general-purpose processors required. The availability of desired prototyping boards
with the necessary interfaces to realize SOC and use of debug or testing setup.

Most of the SOCs are tested by using the test setup consisting of available EDA
tools and logic analyzers. At the start of the SOC design cycle, architect analyzes
the design and functional requirements and according to the requirement of speed
and estimation of gate count the prototyping platform can be built. Here the
important factors are time to market, budget allocation, and design time require-
ments. If DSP capabilities are available in FPGA, then it is wise to implement the
DSP functionality using FPGA dedicated resources.

25.3.7 Test Plan

For complex gate count SOCs, the necessary test cases need to be developed with
the required test vectors. The features can be extracted using top-level functional
specifications, and the required test cases can be documented in the test plan
document. The test vectors developed can have significant impact on the quality of
the verification to achieve the coverage goals. The test cases can be documented as
basic, corner, and the random test cases. The constrained random verification with
the required coverage goals should be targeted by using the required necessary test
cases.

25.3.8 Verification Environment

Use the verification languages like Verilog and high-level verification languages
like SystemVerilog or SystemC; for early detection of bugs and to achieve the
coverage goals. The verification planning to improve the overall design quality by
capturing the bugs during early design cycle is always crucial in the large gate count
SOC designs. The overall objective is to achieve the required and designed func-
tionality in less time. The verification environment needs to be built to achieve the
coverage goals. The verification architecture can have the necessary bus functional
models and the drivers, monitors, and scoreboards for robust checking of the design
specifications. The overall verification planning and creation of environment with
goal to achieve the automation and to minimize the time requirement to complete
the functional checks in the lesser amount of time duration should be the main
objective!
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25.3.9 Prototyping Using FPGAs

At the architecture and micro-architecture level, the gate count estimation is done
for the SOCs. As discussed already, the prototyping development can have multiple
FPGAs with the desired high-speed interfaces. Depending on the complexity of
design, FPGAs can be chosen. The main criteria are the use of FPGA to have the
lesser power and more speed. The following are important points needs to be
considered while prototyping using FPGAs.

1. Use of FPGA functional blocks to meet the desired area requirements. Choose
the suitable FPGA platform and try to use the 70% of FPGA resources.

2. The area, speed, and power constraints need to be extracted at the chip level and
at the block level.

3. Use the block-level constraints while synthesizing the blocks and use the
chip-level constraints at the top level.

4. If high-performance DSP algorithms need to be coded, then use the DSP
functional macroblocks to realize the high computational DSP filtering and the
processing algorithms.

5. Try to choose the FPGA platform which has high-speed interfaces such as USB,
Ethernet, PCI, and memory controllers.

6. Choose the mechanism to interact between software and hardware.
7. Choose the desired tool options for auto place and route of design to meet the

design constraints.
8. FPGAs should have the capability to achieve the functionality at higher speed.

Most of the FPGA demands low power in the today’s market scenario. SOCs can
be designed to meet the desired power. Use the low-power design techniques to
achieve the desired low-power requirements.

25.3.9.1 ASIC Porting

After performing the logic realization and validation of SOC using FPGA, the
design needs to be migrated to an ASIC. For quick realization of ASIC, designer
needs to do the following.

1. Replace the clock gating logic with the equivalent component from the ASIC
library.

2. Insert DFT and check for the stuck at fault coverage.
3. Use the low-power intent design using UPF.
4. Use the block-level and chip-level constraints while migrating from FPGA to

ASIC flow.
5. Synthesize the design for the required constraints.
6. Implement the physical design using the design flow for the required area,

speed, and power.
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25.4 SOC Design Challenges

While designing SOC, there might be many design challenges and few of them are
listed below.

1. Use of the modeling abstraction levels In the practical scenario, different
modeling levels are used from the design specifications to fabrication of chip. It
is good decision to use the different levels of abstractions while design of SOC.

a. .Functional modeling To describe the functionality and to get the valid and
accurate output by using the simulators

b. Cycle accurate modeling To understand the required number of cycles
consumed while performing the operation.

c. Event-level modeling To understand the number of events within a clock
cycles are accurate or not?

d. Memory accurate modeling To understand the memory contents and layout
is accurate or not?

e. Transaction-level modeling To understand for the number of transactions is
accurate or not?

2. RTL design Efficient RTL design description and synthesizable design is one of
the important challenges and RTL design team needs to take care of the
following.

a. Order of continuous assignments and loop-free design. The outcome is
latch-free synthesis results.

b. Defining hierarchy of design and having efficient design partition.
c. Registering inputs and outputs for the module.
d. Uses of register assignment in single clock domain.
e. DFT friendly RTL design and low-power-aware RTL.
f. Efficient use blocking and non-blocking assignments.

3. RTL Verification The goal is to detect the functional bugs during early design
cycle and to achieve the coverage. So, the main challenge is to understand the
usage of event-driven or cycle accurate simulators and use of their features.
While creating the testbench architecture care need to be taken to have the
self-checking testbench and to have the test automation for the higher coverage.
Use of the transport and inertial delays during the verification and using zero
delay models is another important challenge for the robust verification.

4. Synthesis The goal should be to meet the desired power, speed, and area
requirements. For low-power designs use the isolation cells, retention cells, level
shifters and clock gating logic. For speed improvement use the techniques like
register balancing, pipelining, register retiming. For area optimization use the
techniques like multiplex decoding, grouping, and constant data propagation.

5. Hazard-free designs For any efficient ASIC or SOC design, it is recommended
not have the hazards. There are potential issues in the design due to hazards, for
example, write after write hazard can create the potential issues in the design if
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second write does not happen properly after first write of the data. Following are
the few important points that need to be considered for the hazard-free design.

a. Data Hazard Can be potential problem if the data or address is not computed
or arrived at the required time stamp.

b. Structural Hazard Can be potential problem due to the limited number of
resources to perform the multiple activities at a time. To overcome these
hazards, use the registers and sequence the operations using the pipelined
structure. Following are few examples for the structural hazards.

i. Memories with the limited number of ports and less latency.
ii. Non-pipelined designs and limited number of processing units.
iii. Implementation of multiplier algorithms without the pipelining or

Booth multiplication.

c. Control Hazards Can be potential problem due to the late arrival of control
signal or it is not clear when to perform the operation?

d. Read and Write Hazard Can be potential problem if the read and write
operations are performed during the same time stamp.

e. Timing estimation and analysis The challenge is to meet the desired timing
for the SOC and challenges are following

i. Use of the pipelined design with the required pipelined stages.
ii. Use of the grouping technique and logic duplications for the clean

register to register paths.
iii. se of the techniques to reduce the critical path timing delays.

6. Interface and protocol implementations Most of the SOC design uses the pro-
tocol and as discussed earlier meeting of the timing performance at the interface
level is also important aspect for the efficient SOC. Following can be few points
need to be considered while modeling the protocols and interfaces.

a. Use of the handshaking mechanism for the transaction notification.
b. Use of the general-purpose IOs and the special IOs for the interfaces.
c. Understanding the timing details at the pin and signal level.
d. Use of serializer, deserializer, and parallelism while modeling the protocols.

7. SOC components Selecting the required SOC components or describing the
SOC RTL design is one of the important challenges. The main SOC components
can be microprocessors or microcontrollers, IOs, arbiters, memories,
general-purpose controllers, interrupt, and DMA controller. Describing the RTL
for each individual component is one of the challenge as goal is to achieve the
required area, speed, and power.

8. Design Implementation and Testing After completion of the hardware and
software component design, the integration of hardware and software is the major
challenge due to the interface synchronization requirements. The testing of the
SOC needs the efficient verification and testing plan to test the features covered.
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The SOC design case study for the moderate complex design is discussed in the
following section. As discussed above, SOC consists of the microprocessor or
microcontroller to perform the processing operation on the multiple operands, the
memory banks RAM and ROM, general-purpose IO and control mechanism,
counters, and timers and UART. For easy understanding of SOC, the complex
modules like DSP controllers, DMA controllers, video controllers, and complex
arbiters are not discussed in the case study. Readers are encouraged to use the logic
design concepts to document the architectures and to code the RTL for the above
complex modules.

25.5 SOC Design Blocks

The important SOC design blocks and the Verilog RTL for few of the blocks are
discussed in this section. The important SOC design blocks which we use in most
of the SOCs are.

1. Microprocessor or microcontroller
2. Counters and timers
3. General-purpose IO
4. UART
5. Bus arbitration logic

The memories are discussed in Chap. 10, and readers are requested to refer the
memory section. The objective of this section is to discuss on the RTL design
strategies for these blocks. Finally, these individual blocks can act as an IP and can
be integrated together to achieve the desired functionality of the SOC.

The SOC with moderate gate complexity is shown in Fig. 25.3, and it consists of
most of the blocks mentioned above.

25.5.1 Microprocessors or Microcontrollers

The generalized architecture for processor is shown in Fig. 25.4: Generalized
Microprocessor block diagram below. As shown in the figure, it consists of ALU,
instruction register and decoder logic, control and timing unit, program, and stack
pointer. It also consists of bus arbitration logic. While designing the processor, it is
essential to take care of the design partitioning and to have the RTL design of
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individual modules using synthesizable constructs. Data path and control path logic
need to be partitioned for better visibility and better timing and performance.

25.5.2 Counters and Timers

In most of the designs, the requirement is to count the predefined number of pulses
depending on the external event by using active edge of the clock. An efficient RTL
design having functional correctness of the design to achieve the desired perfor-
mance is the major goal. Consider the block-level representation for the timer or
counter block shown in Fig. 25.5. The RTL description for the block is shown in
Example 1.

Timer and counter block 

Address_in

Write_data

Read_data

Write_enable

Read_enable

Event_2

Event_1

interrupt

Fig. 25.5 Top-level signal diagram for the timer and counter block
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// define the module name  
module counter_timer 
 (  
input clk, 
input [3:0] Address_in, 
input [7:0] Write_data, 
input Event_1, Event_2, 
input Write_enable, 
input Read_enable, 
output reg [7:0] Read_data, 
output interrupt 
) ;  
reg interrupt_pending, overflow, interrupt_enable;  
reg [15:0] reload_counter; 
reg [15:0] presale_count, presclae_count1;  
reg [15:0] temp_count; 
wire operation; 
// Write operation functionality 

always@(posedge clk) 
begin 
if (Write_enable  && Address_in==0)  

interrupt_enable <= Write_data[0];  
if (Write_enable  && Address_in==4)  

prescale_count <= Write_data;  
if (Write_enable  && Address_in==8)  

temp_count <= Write_data;  
end 
// generation of operation signal high 
operation = (Write_enable && Read_enable ==12); 

//Read operation  
always@ ( *) 
begin 
if ( Address_in ==0)  

Read_data =  { interrupt_enable, interrupt_pending}; 
else if ( Address_in==4) 

Read_data = prescale_count; 

Consider Event_1=1 and 
Event_2=0, the write operation 

functionality initiated by proces-
sor is described with always block. 

To clear the interrupt write to the 
Address 12 of the counter_timer 

Example 1 Verilog RTL for timer-counter block
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25.5.3 General-Purpose IO Block

In most of the ASIC or SOC design, the general-purpose bidirectional IOs are used.
Multiple IOs are required depending on the required interface inputs and outputs.
IOs are used to communicate with the outside world. The generalized structure for
bidirectional IO is shown in Figs. 25.6.

The partial Verilog RTL is described in Example 2.

else if ( Address_in=8) 
Read_data = temp_count; 

else 
Read_data = 0;

end 

//Interrupt genera on logic 
assign interrupt = interrupt_enable && interrupt_pending;  

// mer func onality 
always@(posedge clk) 
begin 

overflow <= (prescale_count ==prescale_count1); 
prescale_count <= (overflow) ? (0): (presclae_count+1); 

end 

always@(posedge clk) 
begin 
if (overflow) 

temp_count<= temp_count-1; 
if (temp_count==0) 
begin 

interrupt_pending<=1’b0; 
temp_count<= reload_counter; 

end 

if (opera on)  
interrupt_pending<=0; 

endmodule 

The Timer func onality is de-
scribed by using the procedural 
block and sensi ve to the ac ve 

edge of clock.  

Depending on the status of  over-
flow flag the temp_count and in-

terupt_pending is assigned.  

The read opera on func onality 
ini ated by processor is described 
with always procedural block by 

using blocking assignment. 

Depending on the channel address 
Address_in the respec ve required 

intermediate value is outpu ed 
on output line Read_data. 

Interrupt genera on logic is com-
bina onal logic and controlled by 

interrupt_enable and inter-
rupt_pending flags.  

Example 1 (continued)
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25.5.4 Universal Asynchronous Receiver and Transmitter
(UART)

These kinds of blocks can be used in the serial data transfer. The basic protocol is to
use the active low start bit and then 8 bit of serial data and finally active high start
bit. The data rate can be adjusted by generating the baud clock by using baud rate
generator (Fig. 25.7).

The UART consists of transmitter to transmit the serial data using serial_output
pin and receiver to receive the serial data using serial_input pin. The data rate is
controlled by the baud rate control block. The control logic block can be designed
using the multiple data buffers and FIFOs.

The block-level architecture for the UART is shown in Fig. 25.8.

reg[15:0] ddr_out; 
reg[15:0] data_out; 
always@(posedge clk) 
begin 
if (Write_enable && Address_in=0)

ddr_out<=Write_data; 
if (Write_enable && Address_in=4) 

data_out<=Write_data; 
end 

//tri-state instantiation 

tri_buf U1 ( d_datain[0], data_out[0], ddr_out[0]); 
//for the 16 bit IOs there can be 16 more instantiation of the same 

tri_buf U16 ( d_datain[15], data_out[15], ddr_out[15]); 

//data read 

always@(posedge clk) 
begin 

read_data <= d_datain; 

end

Double data rate IO structure and 
the read and write data opera-
tions are described in this code.  

The Verilog RTL is not complete 
but can be used as a reference to 

describe the IO functionality.   

Example 2 Verilog RTL for general purpose IO
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25.5.5 Bus Arbitration Logic

The bus arbiters are used to share the same resource by the multiple masters. In the
practical scenario, typical shared resources are memories, multipliers, and buses.
The arbiter decides to which master the service needs to be given, and the property
can be static or round-robin. The arbiter is shown in Fig. 25.9, and the partial RTL
is coded and is shown in Example 3.
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Interrupt

Write_enable

Read_enable

CLK

Serial_input

Fig. 25.8 Architecture diagram for UART

Bus arbitra on logic 

Grant_0 

Grant_1 

Grant_2 

request_0 

Request_1 

Request_2 

clk 

Fig. 25.9 Top-level diagram for bus arbitration logic
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In this manuscript, I have documented most of the important design scenarios
and RTL design concepts. The Verilog constructs and their use during the RTL
design and verifications. Readers can refer to the SOC prototyping books and other
ASIC design books to understand the design concepts.

25.6 Summary

The following are important points to conclude this chapter.

1. A SOC is system on chip and consists of multiple processors, IPs, arbitration
logic, peripheral interfaces, and protocols.

2. SOC can be prototyped by using single or multiple FPGA.
3. Third-party validated and functional accurate IPs can reduce the overall design

cycle time during the SOC design.
4. Hardware and software co-design decides the overall turnaround time for the

complex SOC design. The important challenge is the use of the handshake
mechanism.

5. Interface timing is one of the critical challenges during the SOC design.
6. An efficient test plan and verification plan can boost the overall coverage during

the SOC design.
7. For complex SOC prototyping multiple FPGA boards can be used to validate

the design functionality.
8. ASIC migration and porting require the standard cell ASIC libraries with other

power-aware RTL design support.

always@(posedge clk) 
begin 

 if (reset) 
{ Grant_0, Grant_1,Grant_2}  <=3’b000; 
else 
begin 
Grant_0 <= Request_0; 
Grant_1 <= (Request_1 && (! Resuest_0); 
Grant_2 <= (Request_2 && (! (Resuest_0 || Request_1)); 
end 

The static bus arbitration logic is 
shown in example and has three 

requests. The Request_0 has high-
est priority and Request_2 has the 

lowest priority.  

Example 3 Verilog RTL for static arbitration scheme
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Appendix I: Important Verilog Keywords

The important Verilog keywords used in this book are listed below.

module assign reg wire

input output parameter endmodule

begin end fork join

always posedge negedge bit

function endfunction case endcase

if else casex casez

for while initial

`define localpar `timescale

inout task endtask
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Appendix II: Frequently Used Verilog
Constructs

Verilog is case sensitive, and few of the important Verilog-2005 constructs are
listed below.
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For the syntax of other constructs, please refer Verilog-2005 language reference
manual!
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Appendix III: Xilinx Spartan Devices

The comparison of the Spartan 3 FPGA devices and the architecture is documented
in this document.

• Xilinx Spartan 3 Devices
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• Spartan 3 Family Architecture
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• Xilinx Spartan 3 package information for Part no XC3S400-4PQ208C

For more information please use the following link.
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf.

• Xilinx FPGA Spartan 3E Devices
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• XILINX Spartan 3E Architecture

• XILINX Spartan 3E package information
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For more information please use the following link.
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf.
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Index

A
Acknowledgement or notification, 484
Active, 143
Active event queue, 144, 246
Active power, 541
Active queue, 242
Adder, 61
Adders and subtractors, 72
Addition, 278
AHB, 563
Algorithms, 563
Altera, 380
ALU, 569
ALU architecture, 270
Always, 71, 258, 346, 545
Always procedural block, 22
Analyze, 414
AND, 50, 52, 53, 270
Antifuse, 372
Application Specific Integrated Circuit (ASIC),

403
Arbiters, 269, 568
Architecture, 375, 406, 439
Architecture design, 3
Architecture document, 406
Architecture level design, 406
Area, 545
Area constraints, 458
Area optimization, 394
Area optimization techniques, 455
Arithmetic Logic Unit (ALU), 269
Arithmetic operators, 25
ASIC design, 154, 249
ASIC library, 566

ASIC porting, 561
ASIC synthesis and optimization strategies,

449
assign, 21, 45
always, 45
Asynchronous, 473
Asynchronous counters, 226
Asynchronous design, 398
Asynchronous or synchronous inputs, 183
Asynchronous path, 446
Asynchronous pulse generator, 261, 396
Asynchronous reset, 179, 251, 252, 398
Asynchronous reset ‘reset_n’, 320
Attribute, 457

B
Back annotation, 376
Basic cell or base cell, 404
Baud rate control block, 575
BCD counter, 193, 210, 353
BCD up-down counter, 353
Begin–end, 356
Behavior, 12
Behavior style, 12
Better design timing, 340
Bidirectional IO, 573
Binary and gray counter, 202
Binary counter, 193
Binary encoding, 324, 391
Binary to gray, 86, 502
Bit-stream, 377
Bitwise operations, 31
Bitwise operators, 31
Blocking, 341, 342
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Blocking assignments, 144, 156, 158,
241–243, 386, 401

Block level, 566
Block-level representation, 3
Block RAM (BRAM), 374, 379
Bluetooth, 560
Bottom-Up compilation, 454
Buses, 576

C
Cadence RTL Compiler, 407
Capacitive load, 539
Capture flip-flop, 431
Case, 256, 545
Case…endcase, 98, 103
Case-endcase construct, 102
Cell library, 412
Characterize, 462
Check_design, 415, 469
Check_timing, 469
Chip architect, 535
Chip level, 566
Clock balancing, 546
Clock buffer, 546
Clock definitions, 436
Clock Domain Crossing (CDC), 399, 473, 474,

506
Clock gating, 258, 297, 298, 400, 539, 542,

543, 567
Clock gating cell, 300
Clock gating logic, 297
Clocking boundary, 500
Clock latency, 301
Clock path group, 435
Clock skew, 380, 433, 564
Clock to output delay, 430
Clock to q delay, 430
Clock tree, 539, 564
Clock Tree Synthesis (CTS), 409, 546, 564
CMOS, 536
Combinational logic, 96, 241
Combinational loop, 152, 392
Combinational path, 433
Combinational path group, 435
Common resources, 297
Comparators, 82
Compilation time, 460
Compile, 418
Compile-characterize, 453
Compiler, 464
Complement, 270
Complex Programmable Logic Device

(CPLD), 368
Computational blocks, 563

Concentration and replication, 35
Concurrency, 24
Configurable Logic Block (CLB), 369, 374,

377
Configuration data, 377
Consolidated control signal, 493
Constant folding, 422
Constrained random verification, 565
Constraints, 408, 449
Continuous assignment, 21, 144, 149
Continuous assignment construct, 123
Control and timing unit, 569
Control path, 258, 476, 482, 571
Control signal, 476, 482
Coverage goals, 565
CPLD, 368
CPU, 403
Create_clock, 415
Current_state, 314
Cycles, 567

D
Data and control path optimization, 295
Data and control path synchronizers, 473
Data arrival time, 303, 428, 431
Database, 413
Data buffers, 575
Data integrity, 476
Data path, 254, 258, 430, 476, 511, 540, 571
Data path and control path optimization, 77
Data path synchronizer, 499
Data propagation, 567
Data rate, 406
Data required time, 431
Data storage, 379
Data synchronizer, 511
DCM, 380
DDR, 379
DDR II, 560
DDR III, 560
Dead zone code, 423
Debug, 453
Debug or testing setup, 565
Decrement, 278
Default, 341, 342, 545
Defining hierarchy, 567
Delay Locked Loop (DLL), 377, 380, 383
Delay operators, 286
Delays, 16
Depth, 512
Deserializer, 568
Design compiler, 411, 413
Design constraints, 449, 450
Design environment, 451
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Design implementation, 401
Design object, 414, 450
Design partitioning, 424, 455, 507, 563
Design performance, 225, 444, 455, 541, 563
Design Rule Constraints (DRC), 450, 458
Design rule library, 409
Design rules, 450
Design specification, 406
Design synthesis and timing closure, 449
Design Under Verification (DUV), 353
DesignWare, 411
Device utilization summary, 377
D flip-flop, 178, 250
DFT, 154, 406, 566
DFT friendly RTL, 567
Differential IOs, 564
Different phases, 476
Digital Clock Managers (DCMs), 374
D Latch, 251
DMA controller, 568
Down counter, 196
DRC violations, 468
Driver, 82
Drivers, monitors, and checkers, 353
Drive strength, 451
DSP, 560
DSP algorithms, 566
DSP blocks, 374
DSP filtering, 566
Dual port memory, 379
DUT, 82
Duty cycle control, 306
Dynamic, 427
Dynamic and leakage power, 538
Dynamic power, 400, 536, 538, 539
Dynamic Voltage and Frequency Scaling, 541

E
EDA, 376, 564
EDA tool, 4, 449, 540, 565
Edge triggered, 249
Efficient synthesis, 340
Effort level, 401, 418
Elaborate, 414
Electronic Design Interchangeable Format

(EDIF), 376
Embedded multiplier blocks, 380
Empty and full flag, 499
Empty flag, 522
Encoder, 133
Encoding methods, 440
Encounter from Cadence, 409
End-point, 433
Equality operators, 28

Ethernet, 560
Even or odd parity, 85
Events, 567

F
Fabrication techniques, 406
False path, 445, 480
Faults, 413
Feasibility study, 563
FFT, 563
Field Programmable Gate Array (FPGA), 369
FIFO design, 234, 515
FIFO design case study, 511
FIFO full flag, 524
FIFO memory buffer, 497, 507, 516
FIFO top level instantiation, 528
50% duty cycle, 308, 416
Filed Programmable Device (FPD), 367
Finite State Machine (FSM), 313
FIR, 563
First In First Out (FIFO), 511, 516, 563, 573
Flash memory, 372
Flip-flops, 173, 178, 249
Floor planning, 409
Fork –join, 358
40 nanometer, 411
4:1 mux, 100
4:2 encoder, 133
4:16 decoder, 132
14 nanometer, 411
Four value logic, 16
FPGA, 368, 559
FPGA designs, 353
FPGA prototyping, 559
Frequency synthesis, 380
FSM, 392, 464
FSM coding, 316
FSM control, 498
Full adder, 62, 278
Full-case, 159, 275
Full-custom, 404
Full-custom ASICs, 403
Full-subtractor, 65
Functional and timing issues, 256
Functional and timing proven, 563
Functional correctness, 79, 203
Functionality, 406
Functional simulation, 5, 376
Functional verification, 6
Functions, 269, 286

G
Gated clocks, 396, 400, 401
Gate level netlist, 4, 408, 427, 453
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Gate level structure, 14
Gate level verification, 408
GDSII, 409, 536
GDSII file, 409
General purpose, 564
Geometric, 408
Glitches, 179, 252, 254, 314
Glitches or hazards, 506, 543
Glitch free, 341, 342, 391
Glitch free low power designs, 542
Global clock buffers, 396
Glue logic, 424, 455
Gray codes, 503
Gray counter, 200, 329, 503
Gray counter FSM, 328
Gray encoding, 324, 500
Gray to binary, 86, 88, 500
Group, 456
Group_path, 460
Guidelines, 241

H
Half-adder, 61
Half-subtractor, 64
Handshake mechanism, 498
Handshaking, 497
Handshaking mechanism, 568
Handshaking signals, 484
Hazards, 152, 181, 567
Hierarchical design, 453, 459
Hierarchies, 440
High speed interfaces, 379
High speed IOs, 564
Hold, 256
Hold time, 408, 427, 429
Hold time violations, 508
Hold violations, 429, 465

I
I2C, 560
IC Compiler from Synopsys, 409
Idle cycles, 514
IEEE 1364, 6
IEEE 1364-2005, 6, 8, 143
IEEE 1801, 548
if…else, 106
if-else, 45, 98, 256, 545
IIR, 563
Inactive, 143
Inactive queue, 144
Increment, 278
Incremental compilation, 459
Initial, 79, 344, 346
Input and output delay, 417

Input argument, 289
Input Output Block (IOB), 374, 379
Input register path group, 434
Input string, 289
Input to reg path, 433
Instance, 11
Instruction register and decoder logic, 569
Inter assignment delays, 346
Interconnect, 369
Inter delay assignments, 79
Interface, 406
Internal generated clock, 256
Internally generated clock signals, 396
Intra assignment delays, 348
IO blocks, 376
IO high perforamnce standards, 374
IO interfaces, 564
IPs, 406, 560
Isolation, 548
Isolation cells, 541, 542, 549, 567
Isolation control, 549
Isolation logic, 541

J
Jack Kilby, 1
Johnson counter, 209
JTAG, 371

L
Latch-based designs, 251
Latches, 173, 249, 251, 341, 342
Late arrival, 486
Late arrival signal, 443
Late arrival signal fixes, 440
Latency, 397, 447, 481, 498, 536
Launch flip-flop, 431
Layout, 405
Leakage current, 536
Leakage power, 538, 541
Legal converging, 484
Level sensitive, 249, 251
Level shifter, 541, 548, 550, 567
Level synchronizer, 253, 476
Level to pulse, 484
Libraries, 450
Library models, 542
Link library, 412
Linting tool, 399
Load, 451
Logical flattening, 459
Logical operators, 27
Logic analyzers, 565
Logic capacity, 370
Logic cells, 376
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Logic density, 370
Logic duplication, 395, 440
Logic partitioning, 443
Longer runtime, 454
Loss of correlation, 508
Low power, 535
Low power architecture, 535
Low power ASIC designs, 547
Low power aware design, 535
Low power design, 535
Low power management, 536
LUTs, 377

M
Macrocells, 376
Macros, 406
Map, 411
Map_effort, 459
Master mode, 371
Master slave flip-flops, 544
Maximum area, 404
Maximum operating frequency, 430
MCP, The, 485
Mealy, 314
Mealy level to pulse, 323
Mealy machines, 334
Mealy machine sequence detector, 337
Memories, 230
Metastability, 397, 399, 401, 476, 520
Micro-architecture, 4, 270, 406, 439, 449, 566
Micro-architecture design, 406
Microprocessors, 403
Minimum bus width, 545
Min, max corner analysis, The, 436
Min or max, 417
Mix edge triggering, 260
MOD-3 counter, 306
Modeling levels, 567
Monitor, 143, 145
Moore, 314, 334
Moore’s law, 1
Multi-bit signals, 497
Multicycle path, 445, 446, 506
Multi phase clock signals, 260
Multiple clock domains, 473
Multiple clocks, 424
Multiple clock sources, 258
Multiple control signals, 486
Multiple driver assignment, 168
Multiple drivers, 168, 394
Multiple FPGA, 565
Multiple power domain, 535, 560
Multiple Vth, 540
Multiplex decoding, 567

Multiplexed encoding, 272
Multiplexed encoding technique, 441
Multiplex encoding, 272, 441
Multiplexers, 95, 543
Multiplier, 374, 563
MUX synchronizer, 485

N
NAND, 53
NBA, 143
NBA queue, 246
Negative clock skew, 416
Negative edge triggered D flip-flop, 179
Nested if-else, 388
Netlist, 376
Nets, 458
Next_state, 314
Next State Logic, 316
Non-blocking, 341, 342, 386
Non-blocking assignments, 145, 243, 246
Non-converging, 483
Non-synthesizable, 167, 343, 365, 531
Non-synthesizable constructs, 16, 132
NOR, 49
NOT, 46

O
Of timing summary, 467
ON duty cycle, 306
One-hot encoding, 324, 331, 391
1:2 decoder, 116
Op-code, 269
Operand, 278
Operand Isolations, 540
Optimization, 77, 449
Optimization algorithms, 440
Optimization constraints, 450
Optimize, 411
Optimized netlist, 413
OR, 47, 270
Order of non-blocking assignments, 247
Oscillatory behavior, 152
Output register path, 434
Output to reg path, 433

P
Packaging, 406
Packets, 563
Parallel execution, 563
Parallel input parallel output, 217
Parallel inputs and multiplexing logic, 270
Parallelism, 568
Parallel logic, 102, 161
Parameter, 235
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Parameterized memory buffer, 234
Parasitic capacitance, 536
Parasitic (RC), 408
Parentheses, 423
Parity, 379
Parity detectors, 85
Partitioning of design, 270
Path groups, 467
Performance, 370
Performance constraints, 406
Performance improvement, 277
Phase Locked Loop (PLL), 380
Phase shifted signals, 260
Phase shifting, 380
Photo lithography, 409
Physical verification, 409
Pipelined design, 568
Pipelined logic, 301
Pipelined register, 303
Pipelined stage, 258, 463
Pipelining, 277, 440, 567
PIPO registers, 217
PLA, 368
Place and route, 401, 566
PLL, 560
Port interfaces, 455
Ports, 458
Positive clock skew, 416, 431
Positive edge triggered D flip-flop, 178
Positive slack, 440
Post synthesis verification, The, 394
Power, 286, 407
Power analysis, 542
Power compiler, 542, 543
Power constraints, 458
Power consumption, 261
Power density, 535
Power domains, 548
Power estimation, 535
Power gating, 541
Power management, 536, 539
Power planning, 409
Power rails, 548
Power Shut-Off (PSO), 541
Power state tables, 548
Power switches, 548
Pre layout STA, 408
Prime time, 427
Priorities, 457
Priority encoders, 135
Priority encoding, The, 441
Priority logic, 160
Procedural blocks always, 149

Processing algorithms, 566
Process node, 535
Processor, 569
Process, temperature, voltage, 451
Program and stack pointer, 569
Programmable ASIC, 369
Programmable interconnects, 376
Programmable Logic Devices (PLD), 367
Programmable Read Only Memory (PROM),

367
Programmable switch, 369
Propagation delay, 430, 441, 463
Propagation delay of flip-flop, 430
Protocol, 269, 568
Prototype, 367, 559
Pulse stretcher, 484
Pulse synchronizers, 485

R
Race around conditions, 144
Race conditions, 152
Random test, 565
Read, 414
Readability, 313
Read_pointer, 520
Reduction operators, 38
References, 458
Register balancing, 303, 440, 444, 463, 567
Register duplications, 440
Registered inputs, 225
Registered inputs and outputs, 272
Registered outputs, 225
Register retiming, 567
Register-to-register path, 270, 303
Register-to-register timing path, 463
Register Transfer Level (RTL), 4, 407
Reg-to-reg path, 225, 303, 433
Relational operator, 33
Reorder of the blocking assignment, 244
Report_constraints, 467
Report_constraints_all, 468
Report_timing, 460
Reset deassertion, 179, 508
Reset synchronizer, 508
Reset trees, 251
Resource allocation, 419
Resource sharing, 270, 295, 395
Retention, 548
Retention cell, 550, 567
Retention control, 550
Right or left shift, 222
Ring counter, 207
Ripple counter, 226, 261
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Ripple counters, 396
Robust verification, 552, 567
Rock’s law, 2
Round robin, 576
RTL, 455, 547
RTL design, 241, 433
RTL design and verification, 8
RTL or architecture tweaks, 6
RTL to GDSII, 552
RTL tweaks, 74

S
Scan insertions, 413
SDC, 436, 445, 480
SDC commands, 450
SDF, 394
Search_path, 413
Second Moore’s law, 2
Selection logic, 95
Semiconductor, 561
Sensitivity list, 71, 394
Sequence detector, 334
Serial data, 575
Serial input serial output shift register, 243
Serializer, 568
Set and reset, 546
Set_clock_latency, 438
Set_clock_uncertainty, 438
Set_dont_touch, 454
Set-don’t_touch_network, 545
Set_input_delay, 438
Set_output_delay, 438
Setup, 256
Set-up time, 427, 443
Setup time violation, 443
Setup violation, 460
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