

About the Author
Nikrouz Faroughi has a BS in computer engineering, MS in
computer science, MS in electrical engineering, and PhD in electrical
engineering with a specialization in computer engineering from
Michigan State University. He has worked as a systems analyst and
currently is a professor and graduate coordinator in the Computer
Science Department and a faculty member in the Computer
Engineering Program at California State University, Sacramento. As
a consultant, he has worked and also served as a technical manager
at Intel Corporation.

Copyright © 2015 by McGraw-Hill Education. All rights reserved.
Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher.

ISBN: 978-0-07-183808-5

MHID: 0-07-183808-2

The material in this eBook also appears in the print version of this
title: ISBN: 978-0-07-183690-6, MHID: 0-07-183690-X.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather
than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to
the benefit of the trademark owner, with no intention of infringement
of the trademark. Where such designations appear in this book, they
have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity
discounts to use as premiums and sales promotions or for use in
corporate training programs. To contact a representative, please visit
the Contact Us page at www.mhprofessional.com.

Information contained in this work has been obtained by McGraw-Hill
Education from sources believed to be reliable. However, neither
McGraw-Hill Education nor its authors guarantee the accuracy or
completeness of any information published herein, and neither
McGraw-Hill Education nor its authors shall be responsible for any
errors, omissions, or damages arising out of use of this information.
This work is published with the understanding that McGraw-Hill
Education and its authors are supplying information but are not
attempting to render engineering or other professional services. If

http://www.mhprofessional.com/

such services are required, the assistance of an appropriate
professional should be sought.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its
licensors reserve all rights in and to the work. Use of this work is
subject to these terms. Except as permitted under the Copyright Act
of 1976 and the right to store and retrieve one copy of the work, you
may not decompile, disassemble, reverse engineer, reproduce,
modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it
without McGraw-Hill Education’s prior consent. You may use the
work for your own noncommercial and personal use; any other use
of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” MCGRAW-HILL EDUCATION
AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN
BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its
licensors do not warrant or guarantee that the functions contained in
the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill Education nor its
licensors shall be liable to you or anyone else for any inaccuracy,
error or omission, regardless of cause, in the work or for any
damages resulting therefrom. McGraw-Hill Education has no
responsibility for the content of any information accessed through the
work. Under no circumstances shall McGraw-Hill Education and/or
its licensors be liable for any indirect, incidental, special, punitive,
consequential or similar damages that result from the use of or

inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to
any claim or cause whatsoever whether such claim or cause arises
in contract, tort or otherwise.

Contents

Preface
Acknowledgment

1 Introduction
1.1 Introduction

1.1.1 Data Representation
1.1.2 Data Path
1.1.3 Computer Systems
1.1.4 Embedded Systems

1.2 Logic Design
1.2.1 Circuit Minimization
1.2.2 Implementation
1.2.3 Types of Circuits
1.2.4 Computer-Aided Design Tools

1.3 Computer Organization
1.4 Computer Architecture

1.4.1 Pipelining
1.4.2 Parallelism

1.5 Computer Security
References
Exercises

2 Combinational Circuits: Small Designs

2.1 Introduction
2.1.1 Signal Naming Standards

2.2 Logic Expressions
2.2.1 Sum of Product Expression
2.2.2 Product of Sum Expression

2.3 Canonical Expression
2.3.1 Min-Terms
2.3.2 Max-Terms

2.4 Logic Minimization
2.4.1 Karnaugh Map
2.4.2 K-Map Minimization

2.5 Logic Minimization Algorithm
2.5.1 Minimization Software

2.6 Circuit Timing Diagram
2.6.1 Signal Propagation Delay
2.6.2 Fan-In and Fan-Out

2.7 Other Gates
2.7.1 Buffer
2.7.2 Open Collector Buffer
2.7.3 Tri-State Buffer

2.8 Design Examples
2.8.1 Full Adder
2.8.2 Multiplexer
2.8.3 Decoder
2.8.4 Encoder

2.9 Implementation
2.9.1 Programmable Logic Devices
2.9.2 Design Flow

2.10 Hardware Description Languages
2.10.1 Structural Model
2.10.2 Propagation Delay Simulation
2.10.3 Behavioral Modeling

2.10.4 Synthesis and Simulation
References
Exercises

3 Combinational Circuits: Large Designs
3.1 Introduction

3.1.1 Top-Down Design Methodology
3.2 Arithmetic Functions
3.3 Adder

3.3.1 Carry Propagate Adder
3.3.2 Carry Look-Ahead Adder

3.4 Subtractor
3.5 2’s Complement Adder/Subtractor
3.6 Arithmetic Logic Unit

3.6.1 Design Partitioning: Bit-Parallel
3.6.2 Design Partitioning: Bit-Serial

3.7 Design Examples
3.7.1 Multiplier
3.7.2 Divider

3.8 Real Number Arithmetic
3.8.1 Floating-Point Standards
3.8.2 Floating-Point Data Space
3.8.3 Floating-Point Arithmetic
3.8.4 Floating-Point Unit

References
Exercises

4 Sequential Circuits: Core Modules
4.1 Introduction
4.2 SR Latch

4.2.1 Clocked SR Latch
4.3 D-Latch
4.4 Disadvantage of Latches

4.5 D Flip-Flop
4.5.1 Alternative Circuit
4.5.2 Operating Conventions
4.5.3 Setup and Hold Times

4.6 Clock Frequency Estimation without Clock Skew
4.7 Flip-Flop with Enable
4.8 Other Flip-Flops
4.9 Hardware Description Language Models
References
Exercises

5 Sequential Circuits: Small Designs
5.1 Introduction
5.2 Introduction to FSM: Register Design

5.2.1 Register Model
5.2.2 Multifunction Registers

5.3 Finite State Machine Design
5.3.1 Binary Encoded States
5.3.2 One-Hot Encoded States

5.4 Counters
5.5 Fault-Tolerant Finite State Machine

5.5.1 Hamming Coding Scheme
5.6 Sequential Circuit Timing

5.6.1 Clock Frequency Estimation with Clock Skew
5.6.2 Asynchronous Interface

5.7 Hardware Description Language Models
5.7.1 Synthesis and Simulation

References
Exercises

6 Sequential Circuits: Large Designs
6.1 Introduction

6.1.1 Register Transfer Notation

6.2 Data Path Design
6.2.1 Single-Cycle
6.2.2 Multicycle
6.2.3 Pipelined

6.3 Control Unit Design Techniques
6.3.1 Hardwired Control: FSD
6.3.2 Microprogrammed Control
6.3.3 Hardwire Control: Pipeline

6.4 Energy and Power Consumption
6.5 Design Examples

6.5.1 Unsigned Sequential Multiplier
6.5.2 Signed Sequential Multiplier
6.5.3 Computer Graphics: Rotation

References
Exercises

7 Memory
7.1 Introduction
7.2 Memory Technologies

7.2.1 Read-Only Memories
7.2.2 Random Access Memories
7.2.3 Applications

7.3 Memory Cell Array
7.3.1 Word Access
7.3.2 Burst Access

7.4 Memory Organization
7.4.1 Modern DRAMs
7.4.2 SRAM Cell Model
7.4.3 Internal Organization: SRAM Chip
7.4.4 Memory Unit Design

7.5 Memory Timing
7.5.1 SRAM

7.5.2 DRAM
7.5.3 SDRAM
7.5.4 DDR SDRAM

7.6 Memory Architecture
7.6.1 High-Order Interleaving
7.6.2 Low-Order Interleaving
7.6.3 Multichannel

7.7 Design Example: Multiprocessor Memory Architecture
7.7.1 UMA versus NUMA
7.7.2 A NUMA Application

7.8 HDL Models
References
Exercises

8 Instruction Set Architecture
8.1 Introduction

8.1.1 Type of Instructions
8.1.2 Program Translation
8.1.3 Instruction Cycle

8.2 Types of Instruction Set Architecture
8.2.1 Addressing Modes
8.2.2 Instruction Format
8.2.3 Stack-ISA
8.2.4 Accumulator-ISA
8.2.5 CISC-ISA
8.2.6 RISC-ISA

8.3 Design Example
8.3.1 Acc-ISA Instruction Set Design
8.3.2 Acc-ISA Processor: Single-Cycle
8.3.3 Acc-ISA Processor: Pipelined
8.3.4 RISC-ISA Processor

8.4 Advanced Processor Architectures

8.4.1 Deep Pipelining
8.4.2 Branch Prediction
8.4.3 Instruction-Level Parallelism
8.4.4 Multithreading

References
Exercises

9 Computer Architecture: Interconnection
9.1 Introduction

9.1.2 Interconnection Architectures
9.2 Memory Controller

9.2.1 Simple Memory Controller
9.2.2 Modern Memory Controller

9.3 I/O Peripheral Devices
9.4 Controlling and Interfacing I/O Devices

9.4.1 I/O Ports
9.5 Data Transfer Mechanisms

9.5.1 Interrupt-Driven Transfer
9.5.2 Programmed Transfer
9.5.3 DMA Transfer

9.6 Interrupts
9.6.1 Handling Interruptions
9.6.2 Interrupt Structures

9.7 Design Example: Interrupt Handling CPU
9.8 USB Host Controller Interface

9.8.1 Standards
9.8.2 Transactions
9.8.3 Transfers
9.8.4 Descriptors
9.8.5 Frames
9.8.6 Transaction Organization
9.8.7 Transaction Execution

References
Exercises

10 Memory System
10.1 Introduction

10.1.1 Memory Hierarchy
10.2 Cache Mapping

10.2.1 Direct Mapping
10.2.2 Types of Cache Misses
10.2.3 Set-Associative Mapping

10.3 Cache Coherency
10.3.1 Invalidation versus Update Protocols
10.3.2 Snoop Cache Coherence Protocol
10.3.3 Write-Through Protocol
10.3.4 Write-Back Protocols

10.4 Virtual Memory
10.4.1 Virtual Address Translation
10.4.2 Translation Lookaside Buffer
10.4.3 Processor Organization

References
Exercises

11 Computer Architecture: Security
11.1 Introduction

11.1.1 Security Engineering Methodology
11.1.2 Threat Classes
11.1.3 Access Control and Types
11.1.4 Security Policy Models
11.1.5 Attack Classes

11.2 Hardware Backdoor Attacks
11.2.1 Data and Control Attacks
11.2.2 Timer Attack
11.2.3 Security Policy Mechanisms

11.3 Software/Physical Attacks
11.3.1 Spoofing
11.3.2 Splicing
11.3.3 Replay
11.3.4 Man-in-the-Middle

11.4 Trusted Computing Base
11.5 Cryptography

11.5.1 Symmetric-Key Ciphers
11.5.2 Modes of Operation
11.5.3 Asymmetric-Key Ciphers

11.6 Hashing
11.7 Cryptography Hash

11.7.1 Message Authentication Code
11.7.2 Hash MAC

11.8 Storing Cryptography Keys through Hardware
11.8.1 Keychain Organization
11.8.2 Storage and Access
11.8.3 Application Example: Keychain as Access Control

11.9 Hash Tree
11.9.1 Application Example: Keychain Authentication
11.9.2 Application Example: Memory Authentication

11.10 Secure Coprocessor Architecture
11.10.1 Trusted Platform Module

11.11 Secure Processor Architecture
11.11.1 Program Code Integrity
11.11.2 Operational Security Mechanisms
11.11.3 Program Code Confidentiality
11.11.4 Program Code Integrity and Confidentiality
11.11.5 Program Data Integrity
11.11.6 Program Data Confidentiality
11.11.7 Program Data Integrity and Confidentiality
11.11.8 Program Code and Data Integrity and Confidentiality

11.11.9 Handling Interruption
11.12 Design Example: Secure Processor

11.12.1 SP Specification
11.12.2 Processor Architecture
11.12.3 Encryption Decryption Hashing Engine
11.12.4 Hash Tree Engine

11.13 Further Reading
References
Exercises

Bibliography

Index

T

Preface

his book is designed with the goal of providing a
comprehensive understanding of digital logic design and

computer organization in a single textbook. In addition, the book
contains an entire chapter on computer architecture for security.

The book covers both the fundamentals of digital logic design and
design with the Verilog hardware description language. Separate
chapters are allocated to cover design methodologies of simple and
complex combinational and sequential circuits. Modern tools and
methodology for circuit design are discussed in general, and Verilog
examples illustrate only the basic and synthesizable features of the
language. If desired, instructors may choose to use VHDL instead.
However, the book does not require using a hardware description
language.

The book covers memory organization, processing core and
processor organization, and computer security through hardware. As
advancements in technologies and demand for high-speed and low-
power designs have changed the fundamentals of computer
organization, an attempt is made to provide not only simple
examples to illustrate basic design concepts, but also provide an
understanding of modern computer design objectives.

The book also covers computer architecture concepts from
instruction set architecture, including the architecture for secure
execution, pipelining and parallelism, and memory hierarchy. An
attempt is made to provide numerous examples that illustrate the
applications of pipelining and parallelism to increase concurrency

and reduce or hide latency (two factors that affect performance).
Program code examples are also used to illustrate the link between
CPU architecture and a compiler and between programing
methodologies and performance.

Overview of Chapters
There are 11 chapters in this book. An overview of digital systems,
innovations in computing, number systems, digital logic design, and
computer organization/architecture and security is given in Chap. 1.

Chapters 2 and 3 cover simple and complex combinational
circuits, including integer and floating-point arithmetic. In Chap. 2,
where design methodologies for small circuits are discussed, it is
assumed that when it is necessary to minimize truth tables with more
than four input variables, students would be using logic minimization
software, such as Espresso, which is available for free download
from the Internet. The chapter also provides an introduction to
design tools, structural and behavioral design models, and design
with programmable logic devices, and includes sample designs in
Verilog and presents synthesis and simulation results. Chapter 3
covers methodologies used to design large combinational circuits
and introduces integer and floating-point computer arithmetic and
also presents design examples.

Chapters 4, 5, and 6 cover simple and complex sequential circuits
from basic modules to complex data paths and control to timing
constraints, design efficiency, and power usage. Chapter 4 covers
latches, flip-flops, and their timing requirements. Chapter 5 covers
finite state machine (FSM) design and timing requirements and
handling of asynchronous inputs. Chapter 6 covers single-cycle,
multicycle, and pipelined data paths and controls. Design examples
illustrate data path and FSM-based, microprogrammed, and
pipelined control unit organizations. Several data path design
examples, including for unsigned and signed multiplication and two-
dimensional virtual object rotation, are also presented.

Chapter 7 is dedicated to memory and covers memory
technologies, including SDRAM technologies, and memory design,
including interleaving and multichannel. Memory communication
protocols, performance, and uniform memory access (UMA) and
nonuniform memory access (NUMA) organizations are also
presented. Examples of programing methodologies to take
advantage of a NUMA organization to improve performance are also
discussed.

Chapter 8 covers CPU design, from single-cycle and pipeline, to
reduced instruction set computer (RISC), deep pipelining, and
branch prediction, to static and dynamic instruction-level parallelism
(ILP), to multithreading. The chapter includes design and simulation
of CPU data path examples and presents program code examples to
illustrate compiler optimization to improve performance, branch
prediction, ILP, and multithreading.

Chapter 9 is dedicated to microcomputer architecture and covers
the history from simple bus-based to integrated to modern point-to-
point architectures, and topics from I/O port addressing, to interrupt-
driven I/O and direct memory access (DMA), to modern “plug and
play” device controller interfaces, such as the USB host controller
interface. Interruption and related operating system tasks are also
discussed. A data path and instruction set of an interrupt handling
CPU is also used as an example to explain the architecture and
operations of a simple computer.

Chapter 10 covers the rationale and organization of a memory
hierarchy. Cache coherency in a single processor system and an
introduction to cache coherency in shared-memory multiprocessor
systems are covered. Examples are used to illustrate advantages of
different cache-mapping techniques in terms of miss rate, amount of
hardware, and power usage. The chapter also presents virtual
address translation, the management of page tables, and alternative
processor organizations for translating a virtual address.

Chapter 11 starts by providing a general understanding of the
security engineering methodology applied to computer architecture.
It introduces access control, security policy models, hardware
security policy mechanisms, and software/physical attack

mechanisms, and presents an introduction to cryptography
techniques. The chapter also covers the architecture of a trusted
computing base (TCB) either as a secure coprocessor—to
implement, for example, secure data storage and communication—
or as a secure general purpose processor. The architecture of a
secure processor for enforcing program (instructions and data)
confidentiality and integrity is also presented in detail.

While the topics of Chap. 11 are compiled into one chapter for the
convenience of readers, the topics in this chapter can concurrently
be covered with other chapters. For instance, students can design
simple cryptography circuits when learning sequential circuit design
techniques. Other selected topics from this chapter that may be
covered in conjunction with the topics of other chapters are hardware
Trojans and hardware security policy mechanisms, memory
authentication, secure handling of interrupts, and the architecture of
a secure co-processor and processor. In order to provide a sample
presentation of this chapter’s topics in conjunction with the topics of
other chapters, the Exercise sections in Chaps. 1, 3, and 5 to 10
include a list of exercises from Chap. 11 under the title “Computer
Security.” Instructors may choose exercises from this list in these
chapters.

Keywords are bolded, for easy reference, when it is first
introduced. The abbreviated keywords are not bolded and
occasionally spelled out for readers’ convenience. Also, for better
student understanding, at times brief texts inside two square
brackets (“[]”) explain topics that are related (e.g., certain operating
system tasks) but are outside the scope of this book or are out of
context. The instructors at academic institutions who adopt this as
the required textbook in their classes will have access to exercise
solutions and PowerPoint presentation slides.

Audience

By most accounts, this textbook intentionally covers both digital
design and computer organization in more depth than do existing
similar textbooks. For the two subject areas, the objectives are to
provide a more balanced depth versus breadth of coverage. In a
single semester, instructors can judiciously choose both the topics
and the depth versus breadth for each topic they want to emphasize
in their classes. The textbook also has enough topics for a two-
quarter or two-semester course sequence to cover both the digital
logic design and computer organization/architecture subjects in
depth and allow more time for students to acquire a good
understanding of design practices and tradeoffs. The following is a
suggested list of ways the textbook may be used:

1. For undergraduate students with no or limited background in
digital logic, the course could cover Chaps. 1 through 5 and
selected topics from Chaps. 6 to 9 and exposure to some other
topics from the remaining chapters. Some sections and design
examples may be skipped.

2. For undergraduate students in computer science and computer
engineering who have some digital logic knowledge, the course
could cover Chap. 1, review/cover selective topics from Chaps.
2 to 5, and cover Chaps. 6 to 10 and topics from Chap. 11.

3. Academic departments that offer degree programs for
prospective graduate students with no or limited background in
digital logic design and computer organization, this may be an
ideal textbook for covering both digital logic design and
computer organization and architecture in detail in a single
book.

4. Professionals who wish to refresh their knowledge in digital
logic and/or computer organization and architecture and/or to
familiarize themselves with security-related computer
architecture concepts would benefit from this book.

A

Acknowledgment

number of people have provided valuable inputs to the
content of this book. Special thanks go to my colleagues

Isaac Ghansah and Thomas Mathews, for their valuable suggestions
and contribution to the content of the book; and Martin Nicholes (now
at Intel), for his insightful comments on the content of Chap. 11. I
would also like to thank the reviewers for their thoughtful comments.
The final copy reflects some of the changes they have suggested.

Many of my students have also provided useful feedback on the
drafts of this book and have helped identify some bugs in the text.
Their detailed analysis of some textbook examples was effective in
identifying some typos and mislabeling. I especially would like to
thank Kevin Schultz, Andrew Larsen, Branden Garner, Chris Dalisay,
Thomas Lee, Robert Carreras, Ian Reif, and Matt Larsen. I would
also welcome any corrections that may have been missed and any
suggestions to improve the book. I also would like to thank
sponsoring editor Michael McCabe, editorial supervisor Donna
Martone, production supervisor Lynn Messina, copy editor Lisa
McCoy, and art director Jeff Weeks at McGraw-Hill Publishers and
project manager Dheeraj Chahal and Surendra Shivam with MPS
Limited for their valuable support, cover page design and final
preparation of the book.

Last but not least, I would like to thank my wife, Gita, and sons
Kian and Ryon for their patience and support, especially for
accepting the long hours and my occasional preoccupation with this
project.

CHAPTER 1
Introduction

1.1 Introduction
Computers, iPads, cell phones, etc. have created a digital revolution that
has changed many aspects of our lives. All forms of data, from numbers
and text to audio, image, and video, are represented in a series of digits
as 0’s and 1’s. Digital systems have changed the way we communicate,
work, are entertained, and even shop, and are very much in everything
we see and use. They are also in cars, in grocery checkout equipment,
in utility meters, in set-top boxes, in emergency equipment, in medical
devices, in factory control systems, etc. As more people use digital
systems, more data is also created, processed, stored, transmitted, and
accessed. This has created a demand for more powerful computers,
whether personal computers or large systems used in many areas such
as e-commerce, banking, search engines, and research.

Innovations in computing, however, are evolutionary and depend on
many factors such as integrated chip (IC) technologies and software
development, including operating systems. The innovations in the IC
technologies have steadily pushed the transistor count to billions in a
single chip. Feature size, the size of the elements in an IC that
determines the size of a transistor as an electronic switch, has become

smaller and smaller over the years. Both the reductions in the feature
size and increases in the size of a die (rectangular semiconductor
material) have increased transistor density by about 35 percent every
year. This, in turn, has increased transistor count on a single chip
between 40 and 55 percent every 18 to 24 months [1]. This rate of
increase in the number of transistors is commonly known as Moore’s
law.

Over the years, microprocessor designers have used Moore’s law as
a guide to design future processors. They have used the increasing
number of available transistors to design high-performance processors,
revolutionizing personal computers.

Innovations in application developments have also revolutionized the
way digital systems are designed. Today, innovations in computer-aided
design (CAD) tools for IC have enabled chip designers to use a
hardware description language (HDL) to describe the behavior of a
digital circuit. The description can then be simulated, debugged,
evaluated, and even automatically mapped to hardware, creating a
circuit. CAD tools for circuit design are now commonly used in industry
as well as in educational settings.

In a digital world, there is also the possibility of unauthorized access
to data and information. Personal information, as well as intellectual
properties of various organizations, may be stolen, modified, or erased.
Malicious software could gain access to private computer systems or
disrupt computer operations. However, because digital systems are
made of both hardware and software and hardware is more secure than
software, hardware can play an important role in keeping digital
information secure.

This chapter provides an introduction and an overview of the topics
covered in the remaining chapters. In this book, we discuss the
hardware aspect of digital systems, from basic circuits to circuit modules
that perform computations to the design of a processing element,
commonly called a processing core or central processing unit (CPU).
We also discuss memory, memory system design, and computer
systems that contain multiple cores, either as a multicore processor or
multiprocessor system. The book also covers an introduction to
computer architecture for security.

1.1.1 Data Representation
Digital systems all contain circuits that input and output logic values as
either true or false. A voltage range defines each logic value. For
example, using a 5 V power source, any voltage value between 2.4 and
5 V is considered true, and value between 0 and 0.8 V is considered
false. Battery-powered handheld digital devices typically use a lower
voltage source to save power. True and false logic values are
interpreted as 1’s and 0’s, forming binary numbers.

Binary numbers are used to represent characters to create text,
pixels to create an image, digital audio and video data, and integer and
real numbers used in computations. Characters are typically
represented either in 8-bit American Standard Code for Information
Interchange (ASCII) codes or 16-bit Unicode. While only 256 (28)
different characters (letters, decimal digits, and symbols) can be
represented with ASCII codes, over 65,000 (216) different
representations are possible with Unicode, thus making Unicode
suitable for word-based languages such as Asian languages.

Images are made of thousands or millions of pixels as dots seen on
the screen. Each pixel on a color monitor is composed of three dots
(red, green, and blue) that converge into a single dot on the screen,
creating a dot with different colors or shades of gray. For example, a
monitor that operates in true color mode uses 8 bits to represent each of
the red, blue, and green colors, creating a 24-bit color code capable of
displaying over 16 million (224) colors. There is also deep color, where
30 or more bits are used to represent billions of colors.

Digital audio and video data are created by digitizing (i.e., converting)
analog and continuous electrical signals into a stream of numbers. For
instance, a microphone converts a continuous sound wave that travels
through the air into an analog electrical signal. A digitizer then samples
the electrical signal at fixed intervals to create a stream of integer
numbers representing the sound. The interval is determined from a
sampling rate. For example, a sampling rate of 44.1 kilohertz(kHz) will
generate 44,100 samples per second, producing a compact disk (CD)
quality sound [2].

The higher the sampling rate, the more closely the sampled data
represents the actual sound. Each sample value indicates the signal
strength at the sampling time. Using 8 bits to represent each sampled

value implies that signal strength is divided into 256 levels, with 0 being
the lowest and 255 the highest. With 16 bits, the signal strength can be
divided into 65,536 (216) different levels. Therefore, with more bits, one
is able to more accurately capture the sound wave in digital form, but
more data is also generated. Stereo sound systems have two
independent audio channels. The sound from each channel is sampled,
producing a sound file that is twice the size of the file of a single channel
(mono) sound. However, which is better, mono or stereo, depends on
the sampling rate and bits used to represent each sampled value.

Representation of Integer Numbers
Binary numbers are either signed or unsigned. The range for a 3-bit
unsigned binary number is 0 to 7, or in binary (000)2 to (111)2, where the
subscript 2 is used here to indicate binary. For computer arithmetic,
signed numbers are represented as 2’s complement numbers. A
negative binary number is converted to its equivalent 2’s complement
representation by flipping (inverting) each bit and then adding 1 to the
inverted result. For example, the 4-bit 2’s complement representation of
–3 = –(11)2 is determined as follows:

1. Write –(11)2 as a 4-bit binary number; that is, –(0011)2.
2. Invert each bit; that is, 1100.
3. Add 1 to the inverted number to get the 4-bit 2’s complement

representation of –3 as (1101)2s, where “2s” is used here to
indicate a 2’s complement number.

One-half of all 2’s complement numbers stored in a computer are
positive, and the other half are negative. The representation for a
positive 2’s complement number is the same as binary. The 4-bit 2’s
complement representation of +3 = (11)2 is (0011)2s. The most
significant bit (MSB) of a 2’s complement number indicates the sign of
the representation; 1 indicates a negative representation and 0 a
positive representation. A similar procedure is used to convert a
negative 2’s complement number, such as (1101)2s, to its equivalent
binary representation –(0011)2, as illustrated next:

1. Invert the bits of the negative 2’s complement number (1101)2s;
that is, 0010.

2. Add 1 to the inverted result to get the 4-bit magnitude of the 2’s
complement number as (0011)2.

3. Include the negative sign; that is, –(0011)2, or –(11)2 = –3 in
decimal.

Negative numbers are also represented as signed-magnitude (sm)
numbers. For example, (0011)sm = + 3 and (1011)sm = –3, where “sm” is
used here to indicate a signed-magnitude number. In this case, the MSB
indicates if the number is negative (MSB = 1) or positive (MSB = 0), and
the rest of the bits represent the magnitude of the number as (011)2 = 3.

Table 1.1 shows decimal numbers that are equivalent to 3-bit
unsigned, 2’s complement, and signed-magnitude representations.
While arithmetic operations, such as addition, can be performed on 2’s
complement numbers, signed-magnitude numbers are only used in the
representation of real numbers; no arithmetic operations are directly
performed on signed-magnitude numbers. Computer arithmetic is
covered in Chap. 3; multiplication is also covered in Chap. 6.

TABLE 1.1 Equivalent Decimal Numbers for 3-Bit Unsigned, 2’s Complement, and
Signed-Magnitude Numbers

Table 1.2 lists 4- and 8-bit unsigned binary, 2’s complement, and
signed-magnitude representations of +5 and –5. An m-bit 2’s

complement number can be converted to an n-bit 2’s complement
representation, where n > m, by simply repeating the sign bit n – m
times. This is called 2’s complement sign extension.

TABLE 1.2 Examples of Unsigned, 2’s Complement, and Signed-Magnitude
Representations

Representation of Real Numbers
Computers also operate on real numbers, such as 2.75. The
representation of real numbers in computers is called floating-point (FP)
numbers, where each FP number includes three integer parts: sign bit,
biased exponent, and unsigned fraction. The combination of the sign bit
and the unsigned fraction creates a signed-magnitude number. As we
will see in Chap. 3, FP arithmetic takes several steps and requires
operating on the exponent and fraction values, both integer numbers,
separately.

The exponent of an FP number is an unsigned number and
represents a biased exponent. A fixed value, called bias, is used to
convert a biased exponent to a negative or positive exponent. Consider
an FP number representation that uses 4-bit biased exponents with bias
= 7. In this case, biased exponent values 0, 15, and the range 1 to 14
represent various FP numbers. Equation (1.1) shows the relationship
between an exponent and its equivalent biased exponent value.

Example 1.1. Representation of real number 2.75 as a 16-bit FP number using a 4-bit
biased exponent with bias = 7 and 11-bit fraction.

The 16-bit FP representing 2.75 has a sign bit = 0 (positive), 4-bit
biased exponent = (1000)2, and 11-bit unsigned fraction =
(01100000000)2. The implicit decimal point is to the left of the fraction.
While the 1 before the decimal point in (1.011)2 is a part of the FP
number, it is not included in the 16-bit representation stored in memory.
Likewise, the 16-bit FP representation of –2.75 is (1, 1000,
01100000000)2, or 0xC300, where “0x” indicates a hex number.

Using a k-bit biased exponent, if biased exponent is 0, the FP number
represents 0.0 if the fraction is also 0. If the biased exponent is 0 and
the fraction is not 0, the number represents an extremely small real
number known as a denormal. If the biased exponent is between 1 and
k – 2, it represents very small to very large real numbers, called normal
FP numbers. If the biased exponent is k – 1, the FP number is
considered either infinity (∞) if the fraction is 0, or an invalid number,
such as if the fraction is not 0.

The bias value determines which set of real numbers is represented
in the computer. As illustrated in Table 1.3, with 4-bit biased exponents,
the exponent range for normal FP numbers is between –6 and +7 when

bias = 7, and between –7 and +6 when bias = 8. This means that with
bias = 7, the 16-bit format can be used to represent more of the large
real numbers: the largest exponent = 7 and the smallest exponent = –6.
However, with bias = 8, the format can represent more of the small real
numbers: the largest exponent = 6 and the smallest exponent = –7.
Modern computers implement 32- and 64-bit Institute of Electrical and
Electronics Engineers (IEEE) FP standards, discussed in Chap. 3.

TABLE 1.3 4-Bit Biased Exponent versus Exponent

1.1.2 Data Path
Whether we are dealing with unsigned, signed, or FP numbers, the
inputs and outputs of digital circuits are in binary. A small digital circuit
implements a simple function and generates a single-bit output. A
complex circuit, on the other hand, generates results that are multiple
bits and may implement one or more functions. A complex digital circuit
is often made of a data path and a control unit, as illustrated in Fig. 1.1.
For the moment, much of the details in the figure are not shown.
However, note that there are multiple paths for data to travel.

FIGURE 1.1 Block diagram of a complex digital circuit with data path and
controller.

Specifically, a data path contains various circuits as modules and
collectively performs one or more functions. A module may be an
arithmetic type, such as an adder that generates the sum of its two
numbers; a selector that outputs one of its several inputs; a register that
retains a number, etc. In Fig. 1.1, the data path contains a register file
consisting of several registers, an adder, a multiplier, and a selector. It
generates either the sum or product of two register values, labeled
value1 and value2, as a result and stores the result in a register.

A controller (or control unit) generates a set of signals, each 1 or 0,
that controls the functions of a data path. For example, in the figure, the
selector outputs either the sum when its control signal is 0 or the product
when the signal is 1. A register control signal decides the exact timing
when the register loads the value available at its input. In the figure, the
initial contents of registers are read from some external module such as
memory, and a result may also be stored in memory.

1.1.3 Computer Systems
Figure 1.2 illustrates the block diagram of a computer system known as
the Von Neumann machine, the basic architecture of virtually every
computer ever built. The program instructions and data are stored in

memory, and CPU is responsible for accessing instructions and data
from memory and executing the instructions. A CPU is a digital circuit
with a data path and a control unit similar to the one shown in Fig. 1.1,
except that it is much more complex and contains subdata paths that
perform three main operations, as follows:

FIGURE 1.2 Block diagram of a computer system known as a Von
Neumann machine.

Fetch data path: Loads instructions from memory
Decode data path: Determines the control signals necessary to

execute an instruction
Execute data path: Performs the operations required by an

instruction

The work performed by the fetch, decode, and execute data paths is
collectively called instruction execution. While advancements in
computer technologies have improved the performance of both CPUs
and memory over the years, performance of CPUs has increased at a

faster rate than that of memory. Therefore, the Von Neumann
architecture presents a communication bottleneck between a faster CPU
and a slower memory.

The execute data path can execute a set of unique instructions,
including data transfer instructions that transfer data between a CPU
register and memory or an input/output (I/O) device. The set also
includes other instructions, such as arithmetic and instructions needed
to execute a for-loop, while-loop, subroutine call and return, etc.

A compiler translates high-level program statements to their
equivalent assembly instructions. Consider the high-level language
program statement “A = B + C;”, where A, B, and C are variables and
represent values stored in memory. Using the data path in Fig. 1.1, a
compiler would translate the statement to its equivalent assembly
instructions, such as those listed here using an arbitrary syntax:

The “Load,” “Add,” and “Store” are operation codes, or op-codes, and
each is identified by a unique binary number. The assembly code
consists of data transfer instructions—Load R1, B” and “Load R2,C”—for
loading the values of B and C from memory into registers 1 and 2. The
code also includes the arithmetic instruction “Add R3,R1,R2,” with
registers 1 and 2 as input and register 3 as output operands, and the
data transfer instruction “Store A,R3” for transferring the content of
register 3, as A, in memory.

A corresponding assembler would translate each assembly
instruction into binary called a machine instruction. In general, an
assembler also links static library functions, such as C language
routines “strcpy(),” “sqrt(),” etc. (if any), and creates an executable
(binary) file (e.g., myprogram.exe). Program execution begins by loading
the program into memory, and then the processor fetches each
instruction from memory to decode the op-code and generate the
necessary control signals and to execute the instruction.

The most frequently accessed instructions and data are also kept
inside cache memories to increase performance. Cache memories
minimize the number of times instructions and data are accessed from
the slower memory, reducing average processor wait time to receive
instructions and data from the memory.

A device controller interface (DCI) contains I/O ports for the
processor to communicate with a device such as keyboard or a disk
drive. A DCI may also contain other modules, including internal memory
to temporarily store a device’s data before transferring it to memory, or
vice versa, to receive data from memory before transferring it to the
device. Finally, an interconnection infrastructure interconnects
processor, memory, various DCIs, and other modules designed to
facilitate communications with memory and improve the overall
performance of the system.

A computer system may also include special and dedicated
processors, such as a graphic processing unit (GPU) in personal
computers and the digital signal processor (DSP) used in many
embedded systems. Both GPUs and DSPs have specialized data paths
and controllers and are designed, respectively, for computer graphic and
gaming operations and for efficient processing of digital audio and video
data.

1.1.4 Embedded Systems
An embedded system is a complete system with both hardware and
software built as single or multiple ICs. A simple embedded system is
typically called a microcontroller and is used in the design of simple
devices such as a computer keyboard. A complex embedded system
designed as a single chip is known as a system-on-chip (SoC).
Handheld devices such as cell phones, digital camcorders, etc. all use
embedded systems. These systems are also used in the design of
modern DCIs, such as a Universal Serial Bus (USB) Host Controller
Interface that can interface with multiple different devices.

Depending on the application, an embedded system, in addition to
one or more processing units, may contain digital data
transmitter/receiver modules and signal conversion modules, such as
analog-to-digital (A/D) and digital-to-analog (D/A) converters. An A/D
converter converts analog signals—for example, from a microphone—to

digital data for digital communication or storage. A D/A converter, on the
other hand, converts, for example, digital audio data back to an analog
signal before it is fed to speakers.

An embedded system may be implemented as a custom application-
specific IC (ASIC), or sometimes for fast prototyping, as a field
programmable gate array (FPGA). An FPGA chip contains uncommitted
but configurable circuit modules. Modern FPGAs contain CPU, memory,
and configurable circuit modules to build an SoC without requiring
fabrication labs [3].

1.2 Logic Design
A digital or logic circuit is the implementation of one or more Boolean
expressions, where each defines a logical relationship between one or
more inputs and a single output. Input and outputs are named by
Boolean variables and are called signals, each being either true (T) as 1
or false (F) as 0. Equation (1.2) defines a Boolean or logic expression
for a logic circuit with three input signals a, b, and c and one output
signal f. The circuit is illustrated as a block diagram in Fig. 1.3(a).

FIGURE 1.3 Logic circuit block diagram AND-OR and NAND circuits. vsd.

The AND, OR, and NOT in the expression refer to Boolean logic
operators. Transistors are used to implement each Boolean operator as
a logic gate. A modern IC uses millions of gates to implement a complex

logic circuit such as a processor. An AND gate produces 1 (true) if both
of its inputs are 1, an OR produces 1 if either or both of its inputs are 1,
and a NOT produces a logic value opposite to that of its input; it outputs
1 if the input is 0 (F) and 0 if the input is 1 (T). For example, when a = 0,
b = 1, and c = 0, the logic value of f is determined as follows in Eq. (1.3):

The operators, with the exception of the NOT, can be extended to
more than two Boolean variables, and their equivalent logic gates would
be implemented with two or more (up to a maximum number) distinct
input connections. There are also other gates, such as NAND and NOR,
that require fewer transistors to implement. A NAND is logically
equivalent to an AND followed by a NOT (AND-NOT logic), and a NOR
is equivalent to an OR-NOT. In general, a logic circuit is implemented
with either NAND or NOR gates. Section 1.2.2 presents the
implementations of NOT, NAND, and NOR gates using transistors.
While Fig. 1.3(b) illustrates the implementation of expression f with NOT,
AND, and OR gates (called an AND-OR circuit), Fig. 1.3(c) illustrates an
equivalent circuit with NAND gates.

As illustrated in Table 1.4, there are eight possible combinations for
the input values a, b, and c in Fig. 1.3. With a, b, and c concatenated to
form a 3-bit number (abc)2, the five numbers abc = (001)2, (010)2,
(011)2, (101)2, and (111)2 for which f = 1 correspond to five prime
numbers 1, 2, 3, 5, and 7, respectively. The remaining three numbers
abc = (000)2, (100)2, and (110)2 for which f = 0 are not prime numbers.
Therefore, Eq. (1.2) defines a logic circuit that outputs 1 each time its 3-
bit input as abc represents a prime number and 0 otherwise. Table
1.4(a) and Table 1.4(b) are two different truth table representations for
logic expression f. The equivalent expression g is discussed next.

TABLE 1.4 Input Logic Combinations and Corresponding Output Values of Eqs. (1.2)
and (1.4)

1.2.1 Circuit Minimization
While a logical relationship may be represented by many equivalent
Boolean expressions, the goal is to determine a minimized expression
that (1) requires less hardware (i.e., fewer gates, fewer gate inputs, and
shorter and fewer connection wires) to implement the expression, and
(2) the resultant circuit requires less time to generate results. Boolean
algebra is used to minimize complex expressions.

Equation (1.4) describes a logic expression for g, which is equivalent
to f in Eq. (1.2). More hardware would be required to implement
expression g than f. However, as shown in Table 1.4, the columns
associated with the outputs f and g are identical. This proves Eqs. (1.2)
and (1.4) are equivalent; both describe the same function, but Eq. (1.2)
is minimized. A circuit that implements Eq. (1.2) would use a lot less
hardware and would operate faster than the circuit that implements Eq.
(1.4).

1.2.2 Implementation
Figure 1.4 illustrates the circuit schematic of a NOT gate using a p-type
and an n-type metal-oxide semiconductor field effect (MOSFET)
transistor. The schematic is called a CMOS (“C” for complement) circuit
because the pMOS and nMOS transistors complement one another;
when one transistor is in the OFF position (not conducting), the other is
in the ON position (conducting). As illustrated in Fig. 1.4(a), when input x
is logic 0 (0 V), the pMOS transistor turns ON and the nMOS transistor
turns OFF. This changes the value of the output signal f, as expected, to
logic 1, as indicated in the schematic by the light showing turned on and
the voltmeter reading showing 4.999 V.

FIGURE 1.4 A CMOS NOT gate circuit schematic and its multisim [4]
simulations.

In Fig. 1.4(b), when input x is logic 1 (5.0 V), the opposite happens.
The pMOS turns OFF, the nMOS turns ON, and the output f becomes
logic 0, as indicated by the light showing turned off and the voltmeter
reading showing 0 V (0.05 microvolts ≈ 0 V).

Compared to old mainframe computers that were built using less
power-efficient gates, modern chips are designed using power-efficient
CMOS gates. As illustrated in Fig. 1.4, because one of the transistors is
always OFF, the CMOS NOT gate primarily uses power only when one
transistor is turning ON and the other is turning OFF. This happens each
time input x switches from logic 1 to logic 0 or from logic 0 to logic 1
voltage. However, if this switching of x values happens frequently, so will
the ON and OFF switching of the transistors, which will cause the NOT
gate to consume more power.

As both the number of transistors on the chip and their ON and OFF
switching speed increase, more power is required to operate the chip,
which in turn dissipates more heat that must be removed by cooling the
chip. For instance, the Intel 80386 processor used about 2 W, whereas
the 3.3-GHz (gigahertz) Intel Core i7 processor consumes about 130 W
(65 times more). As opposed to mainframe and supercomputers of
yesteryears, modern computer systems operate with fan-cooling
systems. Designers must deal with how much sustained power a chip
can consume without exceeding its temperature barrier that can cause
malfunction or permanent damage to the chip. Power consumption will
be further discussed in Chap. 6.

Figure 1.5 illustrates the circuit schematic of a two-input CMOS
NAND gate. Two parallel pMOS transistors and two nMOS transistors in
series are connected to the power source and ground, as shown in the
figure. The NAND gate outputs logic 0 when both of its inputs a and b
are at logic 1, making both the nMOS transistors ON and both the
pMOS transistors OFF. A truth table with four possible logic values of
inputs a and b, the corresponding logic values of output f, and the
transistor operating modes is also shown in the figure.

FIGURE 1.5 The circuit schematic of a two-input CMOS NAND gate.

Likewise, Fig. 1.6 illustrates the circuit schematic of a two-input NOR
gate. In this case, two pMOS transistors are connected in series and two
nMOS transistors in parallel. The output is logic 0 (or 0) when at least
one of the nMOS transistors is ON (a = 1, b = 1, or both a = 1 and b =
1). The output is logic 1 (or 1) when both the pMOS transistors are ON
and both the nMOS transistors are OFF (a = 0 and b = 0).

FIGURE 1.6 The circuit schematic of a two-input CMOS NOR gate.

1.2.3 Types of Circuits
Boolean expressions describe both combinational and sequential
circuits. The outputs of a combinational circuit depend only on its current
input values. Equations (1.2) and (1.4) both describe a simple
combinational circuit. The adder, multiplier, and selector modules in Fig.
1.1, on the other hand, are considered complex combinational circuits;
each circuit outputs multiple bits, which are concurrently generated
based on their respective current input logic values.

In contrast, a sequential circuit retains certain state information based
on the previously entered logic values. For example, a counter that
outputs 0, 1, 2, 3, etc. is a sequential circuit. It uses a current output
(e.g., 2) to generate the next number in the sequence (i.e., 3). The
current count is saved internally as the state of the counter. Sometimes,
a sequential circuit requires one or more inputs to determine its next
state. An up/down counter, for instance, requires a control signal to

decide the direction of the count. If the counter’s current output is 2, its
next output is either 1 if counting down or 3 if counting up.

Other examples of sequential circuits are the registers and control
unit in Fig. 1.1. Each register stores a value internally when it is signaled
by the controller and retains its current content until the next time that it
is signaled. The controller follows a set of states and generates control
signals to operate the data path. One or more control signals may be
used to control the functions of each module in the data path. In the
figure, a control signal is used to operate each of the registers and the
selector. If logic 1 is used for register load and 0 for retain, then a
register will load the logic values at its input when its control signal is 1,
and will retain its current content if the signal is 0.

Suppose the controller in Fig. 1.1 is a three-state controller that
performs the following three simple tasks and computes the sum of two
numbers entered one at a time:

State 1: Load a value in register 1 from memory.
State 2: Load a value in register 2 from memory.
State 3: Select the sum and store it in register 3.

In general, a circuit that performs, for example, an arithmetic function
could be designed either as a combinational or sequential circuit. A
combinational arithmetic circuit produces its output bits in one step, with
the bits generated in parallel, as illustrated in Fig. 1.7. On the other
hand, a sequential arithmetic circuit produces its final output
sequentially, using several steps. In each step, the circuit uses the
results from a previous step to generate the results of the current step.
The process repeats for a fixed number of steps until the final output is
produced.

FIGURE 1.7 A combination 8-bit adder.

For example, an 8-bit sequential adder could use a single-bit adder
repeatedly eight times to generate the final 8-bit sum, as illustrated in
Fig. 1.8, much like how we add two numbers by hand, one digit at a
time, from right to left. In the figure, during each step, one bit from
number A, one bit from number B, and the carry bit from the previous
step are used to generate the next sum bit. The carry bit that is kept
internally is used during the next step. The figure also shows the display
of one at a time, internally held carry bits. The initial carry bit is assumed
to be 0. The clock signal controls the timing of when the next bit of each
A and B numbers enters the adder and the next bit of S is captured.
After eight steps, the final 8-bit sum S is generated.

FIGURE 1.8 A sequential 8-bit adder: (a) illustrates multibit numbers A
and B are added by hand one bit at a time; (b) the multibit addition steps
(algorithm) are shown as a sequential circuit.

A multiplier could also be designed as a combination or sequential
circuit. A combinational multiplier would use many combinational adder
modules at the same time to generate the product. In contrast, a
sequential multiplier could use either a combinational adder or a
sequential adder repeatedly to generate the product. In comparison, a
combinational arithmetic circuit is always faster than its equivalent
sequential circuit, but requires more hardware.

1.2.4 Computer-Aided Design Tools
The rules of Boolean algebra are also implemented in software and
incorporated into many logic design CAD tools. Designers typically use
an HDL, or more specifically, a register transfer language (RTL), such as
Verilog and VHDL, which stands for Very High-Speed Integrated Circuit
(VHSIC) HDL, to describe a digital circuit. Although it is possible to enter
a Boolean expression with an RTL, designers often use high-level
statements, such as “if-else,” to describe a circuit. For example, the
following statement describes the behavior of the selector module in Fig.

1.1, where x is used to select the output of the adder (“sum”) or the
multiplier (“product”) as “result”:

The previous “if-else” statement is equivalent to logic expression in
Eq. (1.5), where s, p, and r represent 1 bit of “sum,” 1 bit of “product,”
and 1 bit of “result,” respectively:

When x = 0, the “result” becomes “sum,” as illustrated here for 1-bit r,
1-bit s, and 1-bit p using Eq. (1.5).

Likewise, when x = 1, r becomes p, as illustrated here:

Assuming that sum, value1, and value2 in Fig. 1.1 are each an 8-bit
value, the + operator in the HDL statement “sum = value1 + value2”
would indicate an 8-bit adder similar to the one shown in Fig. 1.7, where
the carry in and out bits are ignored.

An RTL description can be simulated to verify if a circuit is accurately
described. The description can then be synthesized (translated) to an
equivalent minimized circuit representation called a net-list that would

be further simulated to verify circuit timing requirements. Finally, using
an FPGA, a net-list can be automatically mapped to hardware, creating
a circuit.

Combinational and sequential circuits are discussed in Chaps. 2 and
3 and Chaps. 4 through 6, respectively.

1.3 Computer Organization
While logic design deals with circuit description, synthesis, minimization,
and simulation, computer organization refers to circuit components and
their physical relationship that comprise a processing core (CPU), a
processor, memory, and I/O device controller and interface; their
interconnection makes up a computer. For example, in Fig. 1.1 a
register file, an adder, a multiplier, and a selector are organized into a
data path. The control unit and the data path are organized (via a set of
specific control signals) to create the desired computing unit that
generates either the sum or the product of two numbers. Two CPUs with
different internal organizations could execute the same set of
instructions. For example, 32-bit Intel and AMD processors execute the
same set of instructions, but each has a very different internal
organization.

Computer organization is also affected by advancements in computer
technologies. The following lists advancements in computer
technologies that have changed the organization of a microcomputer
(e.g., Fig. 1.2):

• Advancements in data path designs have made CPUs more
efficient; modern processing cores (e.g., Intel Core i7) can execute
multiple instructions in parallel.

• Advancements in memory technologies and organization, for
example, cache and synchronous dynamic random access memory
(SDRAM), have reduced the average memory read/write time,
allowing a processor to spend its time executing instructions instead
of waiting to receive instructions and data from memory.

• Advancements in the I/O device controller interface (e.g., USB 1.0,
2.0, etc.) have simplified personal computing. Almost all devices are

now “plug and play” and do not require device installation and
system reboot.

• Advancements in system interconnection mechanisms have
resulted in even more communication paths among a system’s
components. A hierarchy of communication paths is used to better
organize the interconnection of various components. High-speed
communication paths are used between memory and the fastest
components, such as a processor and a GPU, and slower
communication paths are used to communicate with slower
components, such as I/O devices.

However, the limitation on power usage has restricted how fast a
processor can operate. For instance, in 2003, the Intel Pentium 4 Xeon
processor operated at 3.2 GHz, and in 2010, nearly seven years later,
with only a slight increase in speed, the Intel Nehalem Xeon processor
operates at 3.33 GHz [1]. Therefore, because of this limitation on power
usage, the only way for designers to create more powerful computers,
from personal computers to servers to very large-scale systems (e.g.,
warehouse and cloud computing), is to use multiple processors.

The organization of complex circuits is discussed in Chap. 6, memory
design in Chap. 7, CPU design in Chap. 8, and computer design in
Chap. 9.

1.4 Computer Architecture
While computer organization deals with how different parts of a
computer operate, computer architecture deals with the design of
computer arithmetic modules, such as adder and multiplier, and
instruction set, and deals with performance improvement concepts,
including ways to execute more instructions per second, reduce
program’s total execution time, and perform more tasks.

1.4.1 Pipelining
The concept of pipelining is similar to a factory assembly line that
assembles parts in stages to produce more products (e.g., cars) in less

time. The chart in Fig. 1.9 illustrates the working of a simplified car
assembly line with three stages. As shown in the figure, once the
assembly line is full (one car being worked on in each stage), one car
can be produced every 10 minutes, assuming that a car takes 30
minutes to build: 10 minutes to install an engine, 10 minutes to install
car doors, and 10 minutes to install car wheels. The more stages and
shorter delays per stage there are in the assembly line, the more cars
that can be built. For example, suppose the assembly line can be
divided into simple stages, each requiring only two minutes work (i.e., 2-
minute slots). In this case, in an ideal situation, more than 260,000 cars
can be built in 1 year, 1 car every 2 minutes.

FIGURE 1.9 A chart showing a simplified car assembly line.

When designing a CPU, the pipelining concept is used to organize a
CPU’s data path into stages to execute programs faster. Consider a
program statement “A = B + C;”, and its equivalent assembly language
program as shown:

The chart in Fig. 1.10 illustrates the execution of the four instructions
using a data path consisting of three pipelined stages as follows:

Stage Fetch: Read the next instruction from memory.
Stage Decode: Generate the data path control signals.
Stage Execute: Execute the instruction.

FIGURE 1.10 A chart illustrating instruction execution in a pipeline
fashion.

During the time step T = 1, instruction “Load R1, B” is fetched (read)
from memory; during T = 2, while the load instruction is being decoded
in the Decode stage, “Load R2, C” is fetched from memory. During T = 3,
while “Load R1, B” is being executed and “Load R2, C” is being decoded,
“Add R3, R1, R2” is fetched. Starting with T = 3, when the pipeline is full
and all its three stages are busy operating, one instruction executes
every time step between steps 3 through 6, as illustrated in the chart.
Each instruction still requires three time steps to complete execution, but
Fetch, Decode, and Execute tasks for different instructions are
overlapped and operate concurrently. A three-stage pipelined data path
consists of three separate and disjointed Fetch, Decode, and Execute
data paths.

While a pipelined CPU, in general, can execute more instructions
than a nonpipelined CPU can per second, branch instructions and time
to access memory can delay the execution of some instructions.

Floating-Point Unit
The pipelining concept also applies to complex arithmetic modules, such
as a floating-point unit (FPU) that operates on FP numbers. The
execution of an FP instruction requires several arithmetic and shift
operations, and if the operations are performed in a pipelined fashion, a
program will execute faster. For example, consider the following for-loop
statement that operates on arrays of FP numbers:

The for-loop executes 100 FP add instructions. Using a pipelined
FPU, these 100 add instructions would require about 100 time-steps to
execute. This reduces the total time needed to execute the for-loop,
even though each FP ADD instruction, in reality, would require multiple
time-steps to execute, as will be discussed in Chap. 3. In this case, the
Execute stage shown in Fig. 1.10 would itself be made of several
pipelined stages.

1.4.2 Parallelism
Pipelining is applied when tasks are dependent, such as the Fetch,
Decode, and Execute tasks required to execute an instruction.
Parallelism, on the other hand, is applied when tasks are independent
and can be performed in parallel. In addition, both pipelining and
parallelism require high availability of inputs and fast handling of
outputs. A factory can only produce more products in less time if its
assembly line runs efficiently, necessary parts arrive in time, and final
products are hauled away quickly. This is similar to data and instructions
arriving from memory to the processor faster and computed data quickly
stored in memory. This is accomplished by using faster (cache) memory
to hold most recently used instructions and data for quick access, while
slower but larger and less expensive memory is used to hold different
programs and data.

The following sections provide brief descriptions of parallelism
techniques when applied to the design of CPUs, processors, and
systems.

Single Instruction Multiple Data
As the number of available transistors increased due to advancements
in IC technologies, modern processors started to include special
instructions that would operate on multiple data items in parallel, thereby
increasing performance [5]. An example of these instructions is the
streaming single instruction multiple data (SIMD) extension (SSE)

instruction set used in Intel processors, or 3DNow instructions used in
the AMD processors [6, 7].

Many application areas, such as computer gaming, require multiple
arithmetic operations to generate a single result. A virtual game object
typically includes thousands of data points, each called a vertex. Moving
a virtual game object on a computer screen requires each of its vertices
to be repositioned on the screen using a technique called vertex
transformation. Each vertex transformation requires several
multiplication and addition operations involving the coordinates of the
vertex and the rotation angle of the object, as will be illustrated in Chap.
6 using a two-dimensional (2-D) coordinate rotation digital computer
(CORDIC) rotation algorithm. The design and simulation of a 2-D
CORDIC rotation pipeline data path is also discussed.

Figure 1.11 illustrates an SIMD data path with four multipliers that
generate four product terms in parallel. With SIMD architecture, a single
instruction operates on multiple data items, thus reducing the total time
that would be required to transform a single vertex. With multiple SIMD
execution units, which are commonly used in a GPU, it is possible to
create more-realistic video games.

FIGURE 1.11 An SIMD multiply data path.

Typically, the SIMD capabilities of a general-purpose processor, such
as the Pentium IV, are limited to only few data items—not enough for

more advanced gaming. GPUs, on the other hand, contain similar and
more specialized data paths to increase performance.

Instruction-Level Parallelism
With the increased number of available transistors in an IC, further
increase in performance required executing multiple instructions in
parallel (i.e., at the same time). In this case, a CPU data path is
designed to fetch multiple instructions from memory, decode multiple
instructions, and execute multiple independent instructions
simultaneously [8].

The list of independent instructions is either determined dynamically
by hardware inside the processor, such as with the Intel Core i7, or
statically by a compiler, such as in the Intel Itanium-based systems. The
assembly instructions of a program for an Itanium-based system are
organized by compiler into bundles, with a maximum of three
independent instructions in each bundle. The processor fetches,
decodes, and executes each bundle of instructions in parallel. However,
existing programs must be recompiled to take advantage of Itanium’s
data path, which many believe was the reason for its demise.

Figure 1.12 illustrates the instruction-level parallelism (ILP) execution
of a three-instruction, statically organized instruction bundle. In each
time-step three instructions are fetched, decoded, and executed. First,
the three instructions I0 through I2 are fetched, and then while these
three instructions are being decoded, the next three instructions I3
through I5 are fetched. Starting with time-step 3, nine instructions are
processed concurrently. However, data dependencies among
instructions in a program prevent full utilization of available hardware.

FIGURE 1.12 Instruction-level parallelism illustrating fetching, decoding,
and executing three instructions at a time.

Studies of various benchmark programs reported indicate that there
are a limited number of independent instructions that can be executed at
the same time and in parallel [9]. This, therefore, sets a limit on how
many transistors can be used to execute a single program efficiently,
fully utilizing the available processing hardware during the execution of a
program. Thus, while the transistor count was increasing, designers
were not able to utilize the excess transistors to further increase the
efficiency of a processing core. Sometimes, a core is designed to
execute multiple (e.g., two) programs concurrently, called
multithreading, in order to increase its efficiency. In addition, a
common trend has been to utilize the increasing number of transistors
and implement multiple identical cores within a single chip, thus creating
a multicore processor. ILP and multithreading architectures are further
discussed in Chap. 8.

Multicore Processors
Figure 1.13 illustrates a quad-core processor. Each of the cores can
execute one or a small number of programs, each called a thread,
thereby allowing a multicore processor to perform multiple tasks at the
same time. Because at any given instance each processing core
potentially executes a different instruction and operates on different data
items, a multicore processor is said to use multiple instructions and
multiple data (MIMD) architecture [5]. Recall that a single SIMD
instruction operates on multiple data items at the same time. Likewise,
single instruction and single data (SISD) defines the architecture of a
single core when it is executing non-SIMD instructions; however, ILP
may be used to accelerate SISD execution.

FIGURE 1.13 A quad-core processor with three levels of cache memories.

The architecture in Fig. 1.13 is also a representation of a shared
memory system. In this case, to achieve faster program execution,
programmers need to create multiple program threads, known as
multithreaded programming, by partitioning a program’s data
structures among several threads, which would be executing in parallel
and/or concurrently on a multicore processor or, in general, on a shared-
memory multiprocessor system. Each thread would operate on subsets
of the program data and would need to synchronize and communicate
with other threads. While each thread may access its own local
variables, all the threads in a multithreaded program can share and
operate on globally declared variables. Furthermore, the cores may
execute threads from different programs.

Other types of multicore processors include heterogeneous cores that
consist of cores with varying complexities to support the processing
needs of different applications [10]. For instance, an ILP core could be
used for sequential computation, while large SIMD cores could be used
to operate on many data items in parallel, suitable for applications that
also require data-parallel computations. It is expected that applications
requiring both sequential and data-parallel computations will execute
faster in a heterogeneous-core processor than in a homogenous-core
processor. Typically, a processor uses multiple levels of cache

memories (e.g., Fig. 1.2) to facilitate quick access to instructions and
data inside the chip, as well as to share data among different cores.

Figure 1.14 illustrates the anatomy of the fourth-generation Intel i7
processor with four processing cores, each with two levels of cache
memories (not shown), an L3 shared cache memory, and a graphic
processor.

FIGURE 1.14 The anatomy of the fourth-generation Intel Core i7
processor. (Source: With permission of Intel Corporation.)

However, as the number of transistors and their switching speed
increase, the amount of sustained power consumption and heat
dissipation increase. This creates a limitation on how many cores can be
implemented in a single processor. The power and cooling requirements
can be formulated into a metric known as thermal design power,
where several mechanisms, such as dynamically reducing the transistor
switching speed (i.e., clock frequency), can be used to better balance
the power consumption and cooling requirements. While these
mechanisms help to increase the performance of a processor at times,

further increase in performance requires using multiple processors
(each potentially a multicore) to create a multiprocessor system.

Multiprocessor Systems
A multiprocessor system may be designed as either shared memory or
message passing. In a shared-memory multiprocessor system, the
operating system may need to be “thread aware” so that each thread is
able to quickly access its local variables. In a message-passing system,
however, threads must communicate by sending and receiving
messages; there are no shared variables in a message-passing system
that threads can access.

A multiprocessor system can execute many threads in parallel and
concurrently. Hence, it increases the system’s throughput, defined as
the number of tasks the system can perform per unit time. The number
of floating-point operations per second (FLOPS) that is necessary to run
a scientific application, such as simulating ocean waves, or the number
of Google searches the system can handle at the same time within, say,
a couple of seconds, are examples of system throughputs. These
systems also use a large amount of memory that may be partitioned
among either individual processors or groups of processors that are
interconnected.

Figure 1.15 illustrates a three-node, shared-memory multiprocessor
system. In this case, each node consists of a two-core processor,
memory, and an internode communication interface. Each core can
access any of the M0, M1, and M2 memories. Shared-memory
multiprocessor systems are used in the design of various servers.

FIGURE 1.15 The architecture of a three-node, shared-memory
multiprocessor system.

On the other hand, networked systems, each one a single processor
system or server node, create a message-passing multiprocessor
system. The nodes form a cluster and communicate by sending and
receiving messages via the network. Finally, warehouse-scale
computers are clusters that are designed from thousands of servers.
Some warehouse-scale computers are designed as modern
supercomputer systems used for scientific computations, requiring
extensive FLOPS.

Clusters and warehouse-scale computers provide availability (if one
server crashes, others continue to operate), interactive applications
(e.g., online shopping, Google, Facebook, banking, etc.), and large-
scale storage and computing (e.g., cloud computing). Power distribution

and cooling problems are among the challenges facing the designers of
very large-scale computing systems. Multicore and shared-memory
multiprocessor systems are further discussed in Chap. 10.

1.5 Computer Security
As computer and network security have become more important, new
computer architecture concepts are required to build computer systems
that are able to detect malicious software (malware) attacks, such as
from viruses or spyware. Individuals, government, and business
organizations all have digital assets (programs and data) that need
protection from attacks, and in many cases, also protection from
unauthorized access by employees. Portable devices are additionally
subject to physical attacks for the purpose of changing their functions or
performing reverse-engineering tasks.

Because ICs are more secure than the hard disk and flash drives and
memory, computer architects have become interested in special and
general-purpose processors designed and securely built for computer
security purposes, such as performing secure data storage, secure
communication, secure e-commerce, and secure program execution.
Chapter 11 introduces computer architecture for security.

References
 1. J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach,

5th edition, Morgan Kaufmann, 2012.
 2. Jennifer Burg, Jason Romney, and Eric Schwarts, “Digital, Sound, and Music:

Concepts, Application, and Science,”
http://csweb.cs.wfu.edu/~burg/CCLI/Documents/Chapter5.pdf.

 3. Xilinx FPGA, http://www.xilinx.com/
 4. NI Multisim, National Instruments, http://www.ni.com/multisim/.
 5. Michael Flynn, Some computer organizations and their effectiveness, IEEE

Transactions on Computers, Vol., No. 9, Sep. 192, pp. 948-960.

http://csweb.cs.wfu.edu/~burg/CCLI/Documents/Chapter5.pdf
http://www.xilinx.com/
http://www.ni.com/multisim/

 6. Intel SSE4 Programming Reference, white paper
http://home.ustc.edu.cn/~shengjie/REFERENCE/sse4_instruction_set.pdf

 7. AMD 3DNow, https://refspecs.linuxbase.org/AMD-3Dnow.pdf
 8. Ramakrishna Rau and Fisher Josheph, Instruction-level parallel processing:

History, overview, and perspective, Journal of Supercomputing, 7, 9-50, 1993.
 9. David Culler, Jaswinder Pal Singh, and Anoop Gupta, Parallel Computer

Architecture: Hardware/Software Approach, Morgan Kaufmann, 1999.
10. Mark D. Hill, Amdahl’s law in the multicore era, IEEE Computer, July 2008, 33-38.

Exercises
 1.1. Represent the following numbers as directed:

a. 12 as a 4-bit unsigned number
b. 12 as a 5-bit unsigned number
c. +1 as a 4-bit 2’s complement number
d. –1 as a 4-bit 2’s complement number
e. –1 as a 5-bit 2’s complement number
f. +1 as a 4-bit signed-magnitude number
g. –1 as a 4-bit signed-magnitude number

 1.2. Create a table similar to Table 1.1 for 4-bit unsigned, 2’s
complement, and signed-magnitude numbers.

 1.3. What is the 16-bit FP number representation of –5.375 in hex with
1-bit sign, 4-bit biased exponent, and 11-bit fraction, where bias =
7?

 1.4. What is the real number equivalent to FP number 0x3400 with 1-
bit sign, 4-bit biased exponent, 11-bit fraction, and bias = 7?

 1.5. What is the real number equivalent to FP number 0x3400 with 1-
bit sign, 4-bit biased exponent, 11-bit fraction, and bias = 8?

 1.6. What is the biggest positive FP number that can be represented in
16-bit format using 1-bit sign, 4-bit biased exponent, and 11-bit
fraction, where bias is 7?

 1.7. What is the biggest positive FP number that can be represented in
16-bit format using 1-bit sign, 4-bit biased exponent, and 11-bit

http://home.ustc.edu.cn/~shengjie/REFERENCE/sse4_instruction_set.pdf
https://refspecs.linuxbase.org/AMD-3Dnow.pdf

fraction, where bias is 8?
 1.8. Do the following assuming 16-bit FP numbers with 4-bit bias

exponent, bias = 7, and 11-bit fraction:
a. What real number does an FP number with sign = 0, bias

exponent = 1, and fraction = 0 represent?
b. What real number does an FP number with sign = 1, bias

exponent = 14, and fraction = (11111111111)2 represent?

 1.9. Represent the following real numbers as 16-bit FP numbers with
4-bit biased exponent, bias = 7, and 11-bit fraction:
a. 1.0
b. 0.5
c. 0.25

1.10. Do the following assuming 16-bit FP numbers with 4-bit bias
exponent, bias = 8, and 11-bit fraction:
a. What real number does an FP number with sign bit = 0, bias

exponent = 1, and fraction = 0 represent?
b. What real number does an FP number with sign bit = 1, bias

exponent = 14, and fraction = (11111111111)2 represent?

1.11. Represent the following real numbers as 16-bit FP numbers with 4-
bit biased exponent, bias = 8, and 11-bit fraction:
a. 1.0
b. 0.5
c. 0.25

1.12. Draw a data path similar to the one shown in Fig. 1.1 that would be
used to generate the result for variable A described in the high-level
language program statement “A = A + B;”, where the values of A
and B are brought in from an external memory and are stored in
registers before use. Use only two registers. Also, the initial value of
A and the final result A + B share the same register. Label all the
logic modules in the data path and indicate the functions the
controller would need to perform. Keep the final computed value A
+ B in the register.

1.13. CPUs can perform addition, subtraction, multiplication, and
division operations. Assuming that a separate module is used for

each of the four math functions, draw a data path that can be used
to generate the result for variable A described in the high-level
language statement “A = A + B* C;”, or “A = A + B/C;”, where the
values of variables A, B, and C are read from an external memory
and stored in registers before use. Use no more than three
registers. Your data path should be able to generate the result for A
+ B * C or A + B/C. The final value should be kept in a register.

1.14. What is a Von Neumann architecture bottleneck?
1.15. Draw a transistor-level schematic of a three-input CMOS NAND

gate and determine its truth table in terms of transistor ON and OFF
positions.

1.16. Draw a transistor-level schematic of a three-input CMOS NOR
gate and determine its truth table in terms of transistor ON and OFF
positions.

1.17. What does the “C” in CMOS stand for, and why is that important?
1.18. What is the difference between pipelining and parallelism

architectures? Identify their application areas.
1.19. Explain in which ways the increases in transistor count have

influenced computer architecture.
1.20. What is an efficient processing core?
1.21. Explain why a further increase in performance comes from parallel

processing.
1.22. Draw an SIMD data path to accelerate the execution of the

following for-loop statement:

1.23. Draw an SIMD data path to accelerate the execution of the
following for-loop statement:

1.24. There is a limit to ILP. What is the source for this limitation, and
how were processor designers able to increase performance
beyond ILP?

1.25. Explain the reasons for multiprocessor systems.
1.26. Computer security (understanding security): Selective problems

from Exercises 11.1 to 11.11. Also refer to Sec. 11.1. Students may
be asked to read this section on their own.

CHAPTER 2
Combinational Circuits: Small

Designs

2.1 Introduction
Combinational circuits and their application in digital systems were
briefly discussed in Chap. 1. In this chapter, we will cover small
combinational circuit design techniques that are different from the ones
used to design large combinational circuits. Furthermore, here we will
limit the number of the input signals to four when minimizing by hand,
and we will use a minimization software to minimize designs that require
more than four but still a small number (e.g., five or six) of inputs. In
contrast, a large combinational circuit requires many more inputs and is
implemented using smaller circuit modules. The design methodology of
large combinational circuits is discussed in Chap. 3.

The relationships between an output and inputs of a small
combinational circuit are defined by the truth table constructed from the
description of the design problem. For example, consider the design of a
2-bit unsigned multiplier that multiplies a 2-bit unsigned multiplicant A =
a1a0 by a 2-bit unsigned multiplier B = b1b0 and produces a 4-bit
unsigned product P = p3 p2 p1 p0, as illustrated in Fig. 2.1 using its block

diagram. In the figure, uppercase and lowercase letters are used to
indicate inputs and outputs that are multiple bits and single bit,
respectively. In addition, an arrow with the line crossed indicates multibit
inputs or outputs (Fig. 2.1(a)). Alternatively, multibit inputs or outputs
may be shown with arrows that are bolded (Fig. 2.1(b)).

FIGURE 2.1 Block diagram for 2-bit unsigned multiplier circuit; two options
to show multibit inputs/outputs.

Table 2.1 shows the truth table of the unsigned multiplier. For
example, the product of A = 3 = (11)2 and B = 2 = (10)2 is P = 6 =
(0110)2, as shown in the truth table. Each of the output bits p3 to p0
identifies a logic function in terms of the four inputs a1, a0, b1, and b0.

TABLE 2.1 Truth Table for 2-Bit Unsigned Multiplication Module

A truth table contains all the input logic conditions for which an output
bit (e.g., p0) is 0, as well as all the input conditions for which an output
bit is 1. If an output bit is always 0 or always 1, then the bit is not a
function of the inputs and should be deleted from the table. The number
of rows in a truth table depends on the number of inputs to the circuit.
With three inputs (each 1 or 0), there would be eight possible
combinations, or eight rows in the table, and with four inputs, 16

possible rows, as in Table 2.1. In general, with n inputs, there would be
2n rows in the truth table. There are two ways a truth table can be
implemented in hardware:

• The entire truth table can be stored as a look-up-table (LUT). For
example, Table 2.1 can be stored in a 16-entry, 4-bit-wide memory.

• A minimal logic circuit is determined for each of the outputs in terms
of the inputs.

An LUT has the advantage of not requiring further design steps; the
truth table is stored as-is in a memory module inside an integrated chip
(IC). The disadvantage of an LUT, however, is twofold:

• Both 0 and 1 output values must be stored, which would require
more hardware.

• An LUT is typically slower, as it requires a longer time to read its
content.

In contrast, a minimal logic circuit implements either the input logic
conditions for which the output is 1 or the input logic conditions for which
the output is 0, thus requiring less hardware in terms of fewer gates,
gates with fewer inputs, and fewer wire connections.

On the other hand, truth tables stored as LUTs have applications in
configurable ICs, such as field programmable gate arrays (FPGAs).
Each of the LUT modules in an FPGA chip can be updated with a
different truth table to implement a different combinational logic.

In the rest of the chapter we will cover how to convert a truth table to
its equivalent logic expressions for NAND or NOR circuit
implementation. Manual and algorithmic logic minimization techniques,
as well as the use of minimization software, Verilog hardware
description language (HDL) circuit descriptions, and computer-aided
design (CAD) tools for circuit designs, are discussed with examples. The
chapter also presents circuit timing and potential timing hazards. Other
gates, such as standard and tristate buffers, are also discussed. These
have many applications, including design of modules used in the
interconnection architectures. The chapter also includes design
examples of some standard small combinational circuit modules.

2.1.1 Signal Naming Standards
Recall that a signal refers to a circuit’s input or output as 1 or 0. Each
signal name also has a polarity indicator that defines how a signal value,
0 or 1, is interpreted by the circuit. Signal polarities are defined as
follows:

• Active-high signal polarity—A signal is called active-high if logic 1
represents the active, asserted, or enabled state of a logic condition
and 0 represents the inactive, not asserted (deasserted), or not
enabled (disabled) state of a logic condition. Typically, a signal
name without a prefix or postfix symbol identifies an active-high
signal (e.g., x).

• Active-low signal polarity—A signal is called active-low if 0
represents the active, asserted, or enabled state of a logic condition
and 1 represents the inactive, not asserted, or disabled state of a
logic condition. Typically, it has a signal name with a prefix or postfix
symbol. For example, _x, x′,/x, or x# may be used to name an
active-low signal.

Unless otherwise stated, we will use an underscore (_) prefix, such
as in _x or _X, to identify an active-low signal or multiple active-low
signals, respectively.

Example 2.1. Draw the block diagram of a 1-bit inverter circuit and appropriately
label its input and output signals. The circuit inputs 1-bit data and a control signal
labeled active-low as _c. The circuit outputs the 1-bit data input unchanged when _c is
not active (deasserted, disabled) and inverts and outputs the data bit when the control
signal is active (asserted, enabled). Since the input data is not interpreted by the
inverter circuit, both the data and the output, for convenience, are labeled active-high
as x and y, respectively.
Solution: Figure 2.2 illustrates the inverter’s block diagram with 1-bit data x, an
output y, and an active-low control signal _c. Table 2.2 shows the truth table for the 1-
bit inverter. Since _c is an active-low signal, y = when _c = 0 (active), and y = x when
_c = 1 (not active).

FIGURE 2.2 Block diagram of a 1-bit inverter circuit with an active-low
control signal _c.

TABLE 2.2 Truth Table for 1-Bit Inverter with Active-Low Control Signal _c

2.2 Logic Expressions
Figure 2.3 displays the symbols and the truth tables of gates used to
implement a logic circuit. The AND, OR, NAND, NOR, and NOT gates
were discussed in Chap. 1. XOR and XNOR are two-input gates. An
XOR gate outputs 0 whenever its inputs are the same and 1 otherwise.
The XNOR (XOR-NOT) gate, on the other hand, outputs 1 whenever its
inputs are different and 0 otherwise. The XOR and XNOR gates may
each be viewed as a 1-bit comparator. The NAND and NOR gates are
universal gates because they can be used to implement any logic
expression. In addition, they require fewer transistors to build. Internally,
all ICs are implemented with NAND or NOR gates.

FIGURE 2.3 Primitive logic gate symbols and their truth tables.

Table 2.3 illustrates a truth table of a two-variable function f defined to
be 1 when x = 0 AND y = 0 OR when x = 1 AND y = 1. The function is 0
for other values of x and y. Equation (2.1) is one way to express the
truth table as a Boolean expression where the dot (“.”) indicates an AND
operator, “+” indicates an OR operator, and bar indicates a NOT
operator.

TABLE 2.3 A Two-Variable Function

A logic expression is said to be equivalent to its truth table if it
produces the exact same truth table when evaluated for all possible
input values. For example, Eq. (2.1) generates the same output values
in Table 2.3, as illustrated here for all values of x and y:

Note that Eq. (2.1) contains only the two logic terms . and x. y that
correspond to the input logic conditions for which f is 1. Often, an AND
operator is implicitly indicated by a null operator (without the “.”), as
illustrated in Eq. (2.2).

2.2.1 Sum of Product Expression
A Boolean expression is called sum of product (SOP) if it defines an
output signal f in terms of its input conditions for which f is 1 (e.g., Eq.
(2.2)). Each term in the expression is written by ANDing (product) of
each distinct input condition, thus forming a product term. Output f is 1
if one or more of the product terms is 1; thus, f is the result of ORing

(summing) the product terms. In Eq. (2.2), f is 1 when both x and y are
zero; thus, = 1, or when both x and y are 1, and thus xy = 1.

An SOP expression can be translated into its equivalent logic circuit
by using NOT, AND, and OR gates. The circuit for Eq. (2.2) is shown as
a two-level AND-OR schematic in Fig. 2.4, not counting the NOT gates.
The circuit contains seven signals; inputs x and y; output f; and

 and h = xy as intermediate signals. The two AND
gates generate the intermediate signals g and h that are fed as input to
the single OR gate to produce f.

FIGURE 2.4 The AND-OR gate-level schematic of function

Using NOT, AND, and OR gates to implement an expression is more
intuitive than using the universal NAND or NOR gate.

Implementation of SOP Expressions with NAND Gates
Replacing all NOT, AND, and OR gates of an AND-OR circuit with
NAND gates produces an equivalent but NAND-only circuit. This is
based on the following DeMorgan’s theorems shown in Eq. (2.3). A
NAND operator is shown as an AND followed by a NOT (e.g.,), and a
NOR is shown as an OR followed by a NOT (e.g.,):

The two expressions and + in Theorem 1 would produce the
same truth table and thus are said to be equivalent. Likewise, the two
expressions and in Theorem 2 are equivalent. These theorems
apply to any number of variables. Theorem 1 states that an OR gate
with inverted inputs is logically equivalent to a NAND gate without

inverted inputs. Theorem 2 states that an AND operator with inverted
inputs is logically equivalent to a NOR operator without inverted inputs.

Consider the AND-OR circuit in Fig. 2.4. The circuit can be changed
to all NAND gates using the following procedure:

1. Replace each NOT gate (if any) with its equivalent NAND gate by
connecting the inputs of a two-input NAND gate to the single input
of the NOT gate, as shown. That is, .

2. Place two NOT gates on each end of the intermediate signals g
and h as shown in Fig. 2.5. This will not change the circuit behavior
since the two NOT gates will not alter the value of the original
signal ().

FIGURE 2.5 An AND-OR circuit with two NOT gates added at both ends
of the wires used for intermediate signals g and h.

3. Replace each AND-NOT pair with a NAND gate as shown in Fig.
2.6; a NAND gate is equivalent to an AND gate followed by a NOT
gate. The inner NOT gates in Fig. 2.5 are shown with small
bubbles.

FIGURE 2.6 An AND-OR circuit with added bubbles.

The only gate not yet converted to a NAND gate is the OR
gate with inverted inputs. The gate is logically equivalent to a
NAND gate according to DeMorgan’s Theorem 1: .

4. Replace the OR gate with inverted inputs with a NAND gate as
shown in Fig. 2.7.

FIGURE 2.7 NAND-only implementation of the SOP expression f = + x
y.

The circuit schematic with all NAND gates in Fig. 2.7 is equivalent to
the AND-OR circuit of Fig. 2.4. Alternatively, the following Boolean
algebra expresses an SOP expression with only NAND operators:

Recall that
substitute the SOP expression xy for f to yield:

apply DeMorgan’s Theorem 2 to express as . The two
NAND terms and are again NANDed to define f as follows,
requiring only NAND operators:

2.2.2 Product of Sum Expression

A Boolean expression is called a product of sum (POS) if it defines an
output signal f in terms of the input conditions for which f is 0. Recall that
an SOP defines an output f in terms of its input conditions for which f is
1. Each term in a POS expression is written by ORing (sum) each
distinct input condition for which f is 0, thus forming a logic sum term;
signal f is 0 if one of the sum terms is 0, thus making f the result of
ANDing (product) its sum terms. Both SOP and POS expressions for an
output signal are equivalent, and they would generate the same truth
table. Only one expression (SOP or POS) is needed to describe an
output signal. However, POS expressions are not as intuitive to
understand as are SOP expressions.

SOP Versus POS
The following rules hold between the SOP and POS expressions of an
output signal f:

Rule 1: POS expression of f = Complement of the SOP expression of

Rule 2: SOP expression of f = Complement of the POS expression of

Using Rule 1, the POS expression for a function f is derived by
complementing the SOP expression of . Everywhere that f is 0 in its
truth table, is 1, and everywhere that f is 1, is 0. Since the SOP of
defines in terms of the input conditions for which is 1,
complementing the SOP expression of results in a POS expression
that defines f in terms of the input conditions for which f is 0. This is
illustrated here:

thus,

applying DeMorgan’s Theorem 2, yields
or

applying DeMorgan’s Theorem on each of the logic terms
yields

Each of the logic terms and is a sum (i.e., OR) term,
and the sum terms are multiplied (ANDed) to create a POS expression.
Rule 2 would be used to determine an SOP expression for f from the
POS expression of .

Alternatively, a POS expression of f can be obtained from the dual
principle (defined next) applied to an SOP expression of :

Dual Principle—The dual of an expression is equal to
 where AND and OR operators are interchanged; ANDs are

converted to ORs and ORs are converted to ANDs, but the variable names
remain the same in their complemented or uncomplemented form.

In general, the dual of a Boolean algebraic rule, such as x(y + z) = xy
+ xz, results in x + yz = (x + y)(x + z), which is another valid Boolean
algebraic rule. If an algebraic rule contains a 1 or 0, such as in x + 0 = x,
its dual expression requires that 0 be replaced with a 1 and 1 be
replaced with a 0, for example, to produce x. 1 = x (dual of x + 0 = x) as
another Boolean algebraic rule.

A simpler way to obtain the POS expression from
its truth table is to first obtain the dual expression for which

would be, and then complement each variable in the dual expression to
obtain the POS of .

Example 2.2. Find the POS expression of g given that an SOP expression of

Solution: First, obtain the dual expression of as:

then complement (NOT) each variable in the dual expression to obtain
the POS expression of g:

In summary, two different methods to determine a POS expression of
a function f from an SOP expression of were presented, as follows:

Method I: and then apply DeMorgan’s theorems.
Method II: Find the dual expression for the SOP of and then
complement each variable.

Figure 2.8 presents the OR-AND circuit for the POS in Eq. (2.4). An
OR-AND circuit, similar to an AND-OR circuit, is a two-level circuit not
counting the initial NOT gates (if any). The intermediate outputs of two
concurrently operating OR gates are then fed to the single AND gate to
produce f.

FIGURE 2.8 The AND-OR gate-level schematic of POS expression.

Implementation of POS Expressions with NOR Gates
Replacing all the NOT, OR, and AND gates of an OR-AND circuit with
NOR gates produces an equivalent NOR-only circuit. This is based on
DeMorgan’s Theorem 2 that states Consider the OR-AND

circuit in Fig. 2.8. The circuit can be designed using all NOR gates with
the following procedure:

1. Replace each NOT gate (if any) with its equivalent NOR gate by
connecting the inputs of a NOR gate to the single input of the NOT
gate as shown. That is,

2. Place two NOT gates on each end of the intermediate signals m
and n as shown in Fig. 2.9. This will not change the circuit behavior
since the two NOT gates will not alter the output of the original
signal (e.g., = m).

FIGURE 2.9 An OR-AND circuit with two NOT gates added at both ends
of the wires used for intermediate signals m and n.

3. Replace each OR-NOT pair with a NOR gate as shown in Fig.
2.10; a NOR gate is equivalent to an OR gate followed by a NOT
gate.

FIGURE 2.10 POS circuit with added bubbles.

The only gate symbol not yet converted to a NOR gate is the AND
gate with inverted inputs (shown with bubbles). The gate symbol is
logically equivalent to NOR according to DeMorgan’s Theorem 2,

4. Replace the AND gate with inverted inputs with a NOR gate as
shown in Fig. 2.11.

FIGURE 2.11 NOR-only implementation of the POS expression.

The following Boolean algebra alternatively expresses a POS
expression with NOR-only operators:

The logic terms and represent NOR terms, which are
NORed to produce f. In summary, the SOP and POS expressions of a
function are equivalent, and each would produce the same truth table.
Therefore, use SOP expressions for NAND-only and POS expressions
for NOR-only circuits.

2.3 Canonical Expression
An expression is called canonical if each logic term contains all of the
input variables either in their complemented or uncomplemented forms.
For example, a two-variable f = + xy is a canonical SOP expression.

Both of the product terms in the expression include both variables x and
y either in their complemented or uncomplemented forms. Similarly, a
two-variable f = (x +) (+ y) is an example of a canonical POS
expression. A noncanonical expression contains one or more logic
terms that do not include all the variables. For example, a three-variable
SOP expression

is a noncanonical expression since the logic term x is missing
variables z and and z is missing variables y and . A given
noncanonical SOP or POS expression may or may not be minimal;
however, it can be first converted to its equivalent canonical expression
and then minimized using the minimization techniques presented below.

2.3.1 Min-Terms
The input values corresponding to product terms are called the min-
terms. For example, consider the canonical SOP expression f = + xy
with two product terms and x y. The two product terms of f
correspond to input values x = 0 and y = 0 or (00)2 = 0 if x and y are
concatenated, and x = 1 and y = 1 or (11)2 = 3. The 2 and 3 are called
the min-terms of f and are written as follows using the Greek symbol Σ
(sigma) for sum to indicate an SOP:

f(x, y) = Σ(2, 3)

Using min-terms, it is a straightforward process to write the canonical
SOP expression for an output. If the min-terms are given in decimal
numbers, they are first converted to binary and then the product terms
are determined from the binary numbers, as illustrated here for an
arbitrary function g:

Note that for an output variable, its truth table, its list of min-terms,
and its canonical SOP expression are three equivalent representations.

2.3.2 Max-Terms
Likewise, the input values corresponding to sum-terms are called max-
terms. Max-terms are also written as integer numbers and identified by
the Greek symbol (pi) for product to indicate a POS. Each max-term
corresponds to a sum-term in the canonical POS expression. For
example, the expression

describes f in terms of its max-terms; f is 0 when its two inputs x and y
concatenated equal (00)2 = 0 or (01)2 = 1.

The max-terms of a function f are the min-terms of its complement
function and vice versa. The following steps 1 to 3 illustrate how to
determine the canonical POS expression of an arbitrary function h from
its list of max-terms. Steps i and ii are listed for convenience, and they
are used to determine the SOP expression of from its min-terms.

1.

2.

3.

i.

ii.

Steps 2 and 3, however, may be replaced using the dual principle
(i.e., Method II), as follows:

Apply the principle of duality to the SOP expression of to determine
its dual expression then
complement each of the variables in the dual expression to obtain the
POS expression of h.

Again, note that for an output variable, its truth table, its list of max-
terms, and its canonical POS expression are three equivalent
representations.

2.4 Logic Minimization
As was discussed in Chap. 1, it is important that a minimum number of
gates and each gate with a minimum number of inputs are used to
generate an output signal. A minimal SOP or POS expression contains
the least number of terms, and each term has the least minimum
number of variables. Figure 2.12 illustrates the advantage of logic
minimization. In both cases, circuit implementations of the canonical
expressions require more gates and, therefore, more transistors and
wires.

FIGURE 2.12 SOP and POS minimal vs. canonical expressions.

In Fig. 2.12, the circuit for the SOP canonical expression would
require four 3-input AND gates, three NOT gates, and one 4-input OR
gate, or a total of eight NAND gates, including the NOTs, each with 4 or
fewer inputs. On the other hand, its equivalent minimal SOP expression
would require only two 2-input AND gates, one NOT gate, and one 2-
input OR gate, or a total of four NAND gates, each with fewer inputs.
Likewise, the circuit for the canonical POS expression of f would require
a total of eight NOR gates versus five NOR gates, each with fewer
inputs.

As was discussed earlier, canonical SOP or POS expressions are
easily derived from min-terms or max-terms, respectively. The min-/max-
terms are read directly from truth tables. It is also equally straightforward
to create a truth table from a given canonical SOP or POS expression;
however, this is not recommended and not necessary.

Determining min-terms or max-terms from a given noncanonical
expression is not a straightforward process. One option, which is not
recommended, is to evaluate the expression for every input signal
condition. For example, to construct the truth table for f = y(+ xz), one
has to evaluate the function for all the possible 3-bit values that make up
the bit values of inputs x, y, and z. For example, x = 0, y = 1, and z = 0
yields f = 1; x = 1, y = 1, and z = 0 yields f = 0; and so on to construct
the entire truth table. The list of min-terms or max-terms of f is then read
from the table.

An alternative option, which is recommended, is to use Boolean
algebra and convert a noncanonical expression to its canonical
expression and then directly convert the canonical expression to its list

of min-terms, if the expression is an SOP, or its list of max-terms, if the
expression is a POS. This is done by reversing the minimization steps,
as illustrated here.

Use the following steps to convert a noncanonical POS of a function f
to its corresponding canonical expression:

1. Convert the noncanonical POS of f to its noncanonical SOP of
using

2. Determine the canonical SOP of from its noncanonical
expression.

3. Convert the canonical SOP of to its corresponding canonical
POS of f using

2.4.1 Karnaugh Map
A Karnaugh map (K-map) is a graphical technique used to identify and
eliminate redundancies in canonical expressions and obtain one or more
equivalent minimal expressions. Two min-terms or max-terms with
binary representations that differ in only one bit can be simplified to one
less variable. For example, with three variables x, y, and z, two min-
terms 2 = (010)2 and 3 = (011)2 differ in the bit corresponding to variable
z. The terms minimizes to y as illustrated here:

Likewise, two max-terms with binary representations that differ in only
one bit simplify to a logic term with one less variable. Consider the

following canonical POS expression consisting of two max-terms 2 =
(010)2 and 3 = (011)2 that differ in only one bit:

A K-map organizes the min-/max-terms in such a way that any two
terms with binary representations that differ in only one bit become
physically adjacent in the map, making it easier to identify such terms.
For example, with three variables x, y, and z, the eight possible
min-/max-terms are organized as either a 2 × 4 or 4 × 2 map, as shown
in Fig. 2.13(a) and Fig. 2.13(b), respectively. Each cell in a K-map
represents a min-/max-term, and is identified from the row and column
labels in binary. For example, row 0 and column 00 identify the cell for
the min-/max-term 0; row 0 and column 01 identify the min-/max-term 1;
etc.

FIGURE 2.13 A three-variable K-map organization; each cell represents a
min- or max-term; choose either organization (a) or (b).

Note that in the figure, the adjacent rows and columns are labeled
with binary numbers that differ in only one bit. The two columns with
binary labels 00 and 10 in Fig. 2.13(a) are also considered adjacent; so
are rows with labels 00 and 10 in Fig. 2.13(b). This makes it easier to
visually identify two min-/max-terms with binary representations that
differ in only one bit. Each term is adjacent to its physically east, west,
north, or south term. For example, in Fig. 2.13(a), term 0 = (000)2 is
adjacent to its west term 2 = (010)2, to its east term 1 = (001)2, and to its
south term 4 = (100)2. Term (000)2 has 1-bit difference with (001)2,
(010)2, and (100)2. Figure 2.14 illustrates a four-variable K-map. Term 0,
for example, is adjacent to terms 1 (east), 2 (west), 4 (south), and 8
(north).

FIGURE 2.14 A four-variable K-map; cells are numbered by their
corresponding min-/max-terms.

The K-map for function g(x, y, z) = Σ(2, 6, 7) is shown here with 1 in
each corresponding min-term cell. The remaining cells correspond to
max-terms and are left blank.

In the K-map, min-term 2 = (010)2 is adjacent to min-term 6 = (110)2
and min-term 6 is adjacent to min-term 7 = (111)2. Min-term 2, however,
is not adjacent to min-term 7 since binary (010)2 and (111)2 differ in two
bits. A K-map for POS g(x, y, z) = II(0, 1, 3, 4, 5) is shown here:

2.4.2 K-Map Minimization
A K-map always produces a minimal expression. A function may have
more than one minimal expression, yet they are equivalent. Since any
pair of adjacent terms reduces to a simplified expression with one less
variable, multiple adjacent terms can result in an even simpler logic term
with fewer variables. This is illustrated in Fig. 2.15 using a K-map with
four min-terms: 2, 3, 6, and 7.

FIGURE 2.15 A K-map with four min-terms: 2, 3, 6, and 7.

The min-term (010)2 is adjacent to min-term (011)2 and (110)2, the
term (011)2 is adjacent to (010)2 and (111)2, and the min-term (110)2 is
adjacent to (010)2 and (111)2. Using Boolean algebra, these min-terms
simplify to y as follows:

The following steps use Eq. (2.6) and Fig. 2.15 as an example to
illustrate the K-map minimization technique:

1. Compare the two column labels 11 and 10 that are associated with
the group of min-terms (010)2, (011)2, (110)2, and (111)2. The bit
label associated with variable z changes, while the bit label
associated with variable y remains unchanged; thus, z should be
eliminated. (Algebraically, two smaller terms y and xy are factored
out to eliminate z.)

2. Compare the two row labels. Signal x changes, while the bit label
associated with y (the remaining variable) remains unchanged;
thus, x should be eliminated. (Algebraically, y is factored out to
eliminate x.)

3. Write only the signals that were not deleted (only y in this case) as
the result of the simplification in steps 1 and 2, but write the signal
either as y if its bit label is 1, or as complement if its bit label is 0.
This produces y as the minimal expression for this group of min-
terms, which was also illustrated in Eq. (2.6) using Boolean
algebra.

Using K-maps eliminates the need to apply Boolean algebra to
reduce a canonical to its equivalent minimal expression. Consider the
following K-map with five min-terms: 1, 2, 3, 6, and 7.

It was just illustrated that the group of adjacent min-terms 2, 3, 6, and
7 reduces to y. For the min-term 1 = (001)2, the only adjacent min-term
is 3 = (011)2. By comparing the columns 01 and 11, y changes and thus
is eliminated from the resultant logic term y, which corresponds to x = 0
and z = 1. Therefore, the final minimal expression for min-terms 1, 2, 3,
6, and 7 is

Note that min-term 3 was used twice, once in the grouping of min-
terms 2, 3, 6, and 7, and again in the grouping of min-terms 1 and 3.
This redundant use of a term in the grouping of min-terms is based on
the Boolean algebra rule x = x + x (or x.x = x for max-terms). The rules
state that repeated terms in a logic expression do not change its truth
table, but they do help create larger groups of adjacent terms that
eliminate more variables in the final simplified expression. The following
Boolean algebra illustrates this point:

Given a canonical SOP expression
repeat the logic term yz associated with min-term 3 once to yield

regroup the terms using the adjacency property:

minimize each group to yield the final minimal SOP expression y + z.

Without a K-map, it is difficult to know which terms must be repeated
and how many times. A minimal expression is derived by making sure
that each grouping of the terms in the K-map contains a maximum

number of adjacent terms. The K-map minimization rules are
summarized in the following section.

K-Map Minimization Rules
1. Min-/max-terms that differ in only one bit are adjacent, and they

are said to form an implicant. A K-map is assumed to wrap
around on both sides; for example, column 00 is also adjacent to
column 10.

2. A set of implicants may be combined to form a large group
called a prime implicant. The number of terms in each group
must be powers of 2; that is, a group with one term, two terms,
four terms, or eight terms.

3. Each prime implicant must contain at least a single term that
doesn’t belong to any other prime implicant (i.e., no redundant
groups). A prime implicant that satisfies this rule is called an
essential prime implicant (EPI). The final minimal expression
must include the logic term for all the EPIs.

4. All terms must be grouped.

Example 2.2. Minimize f (x, y, z) = Σ(1, 3, 6, 7).
Solution: A K-map of f:

The four min-terms 1, 3, 6, and 7 form not one but three prime implicants as shown in
the K-map. This is because min-term 1 = (001)2 and 6 = (110)2 are adjacent to only
one other term in the K-map. The prime implicant associated with min-terms 3 = (011)2
and 7 = (111)2 is not an EPI. For the prime implicant associated with min-terms 1 and 3
= (011)2, the column labels for variable y changes, resulting in logic term y. For the
prime implicant associated with min-terms 6 and 7, the column labels change for
variable z, thus resulting in logic term xy. The final minimal SOP expression is:

Example 2.3. Minimize f (x, y, z) = Σ (0, 2, 3, 4, 5, 6,).
Solution:

Both the four corner min-terms 0, 2, 4, and 6 and the four min-terms 0, 1, 2, and 3 on
the first row form two EPIs. For the prime implicant associated with the min-terms 0, 1,
2, and 3, labels of both variables y and z change; thus, the term reduces to . Likewise,
for the prime implicant associated with the four corner min-terms, labels of variables x
and y change, resulting in . The final minimal SOP is:

Example 2.4. Minimize f (w, x, y, z) = Σ (0, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13).
Solution:

There are five prime implicants listed here with their corresponding list of min-terms.
Only the prime implicants labeled a, d, and e are EPIs. This is because the prime
implicants a, d, and e include the min-terms that are part of prime implicants b, c, and
f.

For prime implicant a, the labels for variables x and z change, resulting in the minimal
term y. For prime implicant d, the labels for variables w and z change, resulting in x
, and for e, the labels for variables w and y change, resulting in . The final minimal
SOP expression is:

Example 2.5. Minimize f (w, x, y, z) = Σ (1, 9, 11, 14, 15).
Solution:

The list of prime implicants is:

a:Σ(1, 9)
b:Σ(14, 15)
c:Σ(9, 11)
dΣ(11, 15).

The prime implicants a and b and either c or d are EPIs. The EPIs a, b, and c yield the
following minimal SOP expression:

Likewise, we may instead write an equivalent minimal SOP expression using the EPIs
a, b, and d as follows:

Two minimal expressions are equivalent if they produce the same truth table; that is,
the same list of min-/max-terms.

Example 2.6. Minimize g (w, x, y, z) = II (1, 9, 11, 14, 15).
Solution:

The prime implicants of a POS expression are determined exactly the same way as
the prime implicants of an SOP expression. However, in this case, 0’s of g in the map,
which are equivalent to the 1’s of , are grouped to determine the POS expression of g
using the technique () discussed earlier. In this example, similar to
Example 2.5, the list of SOP prime implicants of are Σ(1,9) = z, Σ(14, 15) = wxy,
Σ(9, 11) = w z, and Σ(11, 15) = wyx. Thus, the list of POS prime implicants of g are:

Again, there exist two minimal POS expressions for g: (1) using the EPIs a, b, and c; or
(2) using the EPIs a, b, and d. Option 2 yields the following POS expression:

Example 2.7. Minimize f (w, x, y, z) = ∏ (0, 1, 2, 5, 8, 9, 14).
Solution:

The prime implicants are:

a: ∏ (0, 1, 8, 9)
b: ∏ (0, 2)
c: ∏ (1, 5)
d: ∏ (14).

These prime implicants are all essential, and the corresponding minimal POS
expression is determined as follows:

a: Labels for variables w and z change, resulting in (x + z).
b: Labels for variable y change, resulting in (w + x + z).
c: Labels for variable x change, resulting in (w + y +).
d: The implicant consists of only one term, resulting in (+ + +

z).

The final minimal expression is:

Don’t-Cares
Occasionally, an output may be defined only for a subset of input
conditions, and for the remaining input conditions, the input is undefined.
For example, consider a 7-segment display unit (7SDU) and its
converter module in Fig. 2.16. Suppose the converter is designed to
display binary coded decimal (BCD) numbers 0 to 9. Given a 4-bit input
between 0 = (0000)2 and 9 = (1001)2, the converter generates seven
signals fa through fg: one signal to turn on each of the seven segments
a to g and display a corresponding decimal digits 0 to 9.

FIGURE 2.16 A 7-segment display unit and converter.

For example, to display 0, all seven segments except g must be
turned on; thus, all signals except fg need to be 1 (assuming active-high
outputs). To display 9, all segments but ff must be turned on; thus, all
but ff must be 1. A BCD-to-7SDU converter is expected to generate
correct values for signals fa to fg when its 4-bit input is between 0 and 9.
For inputs 10 to 15, the outputs are undefined and can be considered
don’t-cares, which would be marked as “d” in the truth table.

A don’t-care min-/max-term is interpreted as a “wild card”—either as
0 or 1 in the K-map as needed. Thus, it helps eliminate variables and
simplify the final expression. Consider an expression f (w, x, y, z) = Σ (1,
9, 14) + ∏d (3, 7, 11) where d is used to indicate the list of min-terms for
which f is don’t-care. Likewise, symbol IId is used to indicate a list of
max-terms for which a function is don’t-care. As illustrated next, one of
the EPIs includes two don’t-cares. Only the don’t-cares that help reduce
the expression are used. The min-terms 3 and 11 as don’t-cares are
used with min-terms 1 and 9 to generate the EPI z. Min-term 7, also a
don’t-care, is not needed and therefore not used. The final minimal SOP
expression reduces to .

2.5 Logic Minimization Algorithm
A K-map, being a graphical method, is only suitable for a small number
of variables, such as four. For more than four variables, an algorithmic
method that was developed in the mid-1950s and known as the Quine-

McCluskey algorithm is more appropriate. The algorithm finds a minimal
logic expression using steps similar to those used with K-maps. The
min-terms are grouped into different sets, where each set contains only
the min-terms that have a specific number of 1’s in their binary
representation. Consider the expression f (w, x, y, z) = Σ (0, 2, 3, 4, 5, 6,
7, 8, 10, 12, 13) from Example 2.4. In binary, the min-terms are 0000,
0010, 0011, 0100, 0101, 0110, 0111, 1000, 1010, 1100, and 1101. They
can be grouped into four sets as follows:

One pair at a time, one min-term from Set 1 with one term from Set 2,
are compared. The single bit change in any pair indicates an implicant.
The changing bit is replaced by a dash (–) indicating the omission of the
corresponding variable.

For example, min-term 0000 from Set 1 is compared with 0010 from
Set 2 to generate the implicant 00–0 with signal y omitted. Min-term
0000 is again compared with min-term 0100 to generate the implicant 0–
00 with variable x omitted, and so on. The same process (one pair at a
time) is applied to the min-terms from Set 2 with those of Set 3 and Set
3 with those of Set 4 to generate the first set of implicants for the output.
The initial Sets 1 to 4 are shown as Sets I.1 to I.4 under column I in
Table 2.4.

The list of implicants generated using the terms in Sets I.1 to I.4 is
shown as Sets II.1 to II.3 under column II in Table 2.4. Next to each min-
term in Sets I.1 to I.4, an “x” is placed if the min-term contributes to an
implicant in column II; otherwise, the term is marked by an asterisk (*),
identifying a prime implicant (none exists in this case). Once the
implicants of column II are generated, the process repeats; one pair at a
time, one implicant from Set II.1 with one implicant from Set II.2 is
compared. In this case, any dashes between each pair of the implicants
must line up.

TABLE 2.4 List of All Prime Implicants (Marked *) Generated from Min-terms 0, 2, 3,
4, 5, 6, 7, 8, 10, 12, and 13

For example, implicant 00–0 from Set II.1 is compared with implicant
10–0 from Set II.2 to generate the implicant –0–0. The generated
implicants are shown in the table as Sets III.1 and III.2 in column III.
Again, an implicant pair is marked by an “x” in column II if it contributes
to the list of implicants for the next cycle (column III); otherwise, it is

marked by an asterisk (*)—again, none exist in this case. The process
repeats using the implicants listed in column III, but this time, no further
processing is possible because none of the implicants from Set III.1
when compared with those of Set III.2 generates new implicants; thus,
all the implicants in Sets III.2 and III.3 are marked with asterisks and are
listed in Fig. 2.17 along with their corresponding logic terms.

FIGURE 2.17 The list of prime implicants obtained from Table 2.4.

The next step in the process is to use a minimum-set algorithm to
select EPIs from the list of prime implicants a through f. Figure 2.17 is
an organization of the prime implicants and their corresponding min-
terms. An “x” is placed in each cell in the table when a prime implicant
covers a min-term. For example, the prime implicant 0––0 with two
dashes covers min-terms 0 = (0000)2, 2 = (0010)2, 4 = (0100)2, and 6 =
(0110)2, and thus these cells are marked with an “x” in row 1, as
illustrated in the table.

The minimum-set algorithm is also an iterative process and starts by
first selecting a prime implicant with only a single “x” in any one column,
which always identifies an EPI. In this case, the columns associated with
min-terms 3, 10, and 13 each contain only a single “x”; these are bolded
and underlined in the table.

Suppose the min-terms are processed from left to right in Table 2.5.
During iteration 1, the column associated with min-term 3 contains only
a single “x,” and thus the corresponding prime implicant 0–1– is selected
as an EPI because it is the only one covering min-term 3. It also covers
min-terms 2, 3, 6, and 7, and therefore, the associated columns and the
row are marked deleted (D), as illustrated in the table. This effectively
reduces the size of the table for the next iteration. In iteration 2, the
prime implicant –0–0 that corresponds to a single “x” in the column
associated with min-term 10 is selected as the next EPI. Thus, the
columns 0, 8, and 10 and row 2 are marked D. Finally, in iteration 3, the
prime implicant –10– associated with min-term 13 is selected as the
next EPI, which results in deleting all of the remaining columns in the
table, as well as the row corresponding to EPI = –10–.

TABLE 2.5 Illustrating the Minimum-Set Algorithms Using the Prime Implicants
Obtained from Table 2.4

The algorithm ends when all the columns associated with the min-
terms are deleted. In this case, the algorithm stops after three iterations
and produces three EPIs, –0–0, 0–1–, and –10– associated with the

three rows marked D under the heading “Iteration”. The EPIs generate
the minimal SOP expression + y + x , which was also determined
earlier in Example 2.5 using a K-map.

If the minimum-set algorithm determines that there are no columns
with a single “x” in the table, the following rules are used to select the
next prime implicant candidate:

1. Identify the columns with the least number of “x” markings and then
select the corresponding prime implicants as candidates.

2. From the list of prime implicants in step 1, select those prime
implicants that cover the largest number of the remaining min-
terms (excluding columns that are marked D).

3. If multiple prime implicants are obtained in step 2, choose the one
that has the largest number of dashes; the corresponding logic
term would have fewer variables.

4. If there is more than one prime implicant satisfying step 3, then
there are two or more equivalent minimal expressions.

The algorithm for obtaining a minimum POS expression is similar,
except that max-terms are used in Table 2.4 and Table 2.5 instead of
min-terms.

Typically, if a circuit has multiple outputs, a minimal expression for
each output is not determined independently. Instead, the minimization
goal would be to select those prime implicants that are common among
the different expressions in order to minimize the total number of gates
needed to implement all the expressions as a single circuit. Output
signal from some gates may be shared and connected as inputs to more
than one gate. Espresso minimization software [1] does exactly that
when there are two or more expressions to minimize at the same time.
CAD tools for logic design typically include this and other minimization
software.

2.5.1 Minimization Software
Example 2.9 illustrates the format of Espresso’s input and output files
using the min-terms of f (w, x, y, z) = Σ (0, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13).
A dot (.) in the first column indicates a parameter. For example, “.i 4”
indicates the number of inputs—four in this case—and “.o 1” indicates
the number of output bits—1 in this case. The label “.ilb w x y z” lists

input variables—four in this case; “.ob f” lists output variables—one in
this case; and “.e” indicates the end of the input file. The symbol
“#”indicates a comment line. In the output file, “.p” indicates the number
of EPIs.

Example 2.8. Use Espresso to minimize the function f(w, x, y, z) = Σ (0, 2, 3, 4, 5, 6,
7, 8, 10, 12, 13).
Solution:

(a) Input file

(b) Output file; all comment lines are printed first

The output file lists three EPIs: –10–, –0–0, and 0–1–. These EPIs are the same as
those obtained earlier manually, as illustrated using Table 2.4 and Table 2.5.

The following Espresso output displays the EPIs for two output
signals f and g. The “11,” “11,” and “10” printed next to the EPIs indicate
that all the three EPIs belong to f, and the first two (–10– and –0–0) are
shared and also belong to g.

Table 2.6 shows the results of the minimization algorithm applied to
expression f (w, x, y, z) = Σ (1, 9, 14) + Σd (3, 7, 11), which was also
minimized earlier in Sec. 2.4.2. In column I, each of the don’t-care terms
is marked with “d.” The minimization algorithm discussed earlier is the
same, except that only one min-term in each pair can be a don’t-care;
two don’t-care terms are never compared. For example, min-term
(0011)2 in Set I.2 and min-term (0111)2 in Set I.3, both don’t-cares, are
never paired to generate the unnecessary prime implicant 0–11.

TABLE 2.6 Prime Implicants of f (w, x, y, z) = Σ (1, 9, 14) + Σd (3, 7, 11)

The algorithm produces three prime implicants (marked with
asterisks), one in each column. Table 2.7 is the organization of the prime
implicants obtained in Table 2.6 for the minimum-set algorithm. The
prime implicant (1110)2 in Set I.3 is an EPI. From the two remaining
prime implicants –0–1 and –001 that cover both min-terms 1 and 9, –0–
1 is selected because it has more dashes than –001. These EPIs were
also produced using Espresso in Example 2.9, where a dash (–) in the
input file indicates a don’t-care.

TABLE 2.7 Illustrating the Minimum-Set Algorithms Using the Prime Implicants
Obtained from Table 2.6

Example 2.9. Use Espresso to minimize f (w, x, y, z) = Σ (1, 9, 14) + ∏d(3, 7, 11).

(a) Input file

(b) Output file

2.6 Circuit Timing Diagram
We will start with the timing diagram of a NOT gate before we discuss a
circuit’s timing diagram. There is a delay associated with each gate. It is
the time required for the gate output to change from logic 0 to logic 1 or
vice versa from the time that one or more of its inputs change. Figure
2.18 illustrates the timing of a NOT gate with 0.1 ns gate delay. As
shown in Fig. 2.18(a), the output z transitions from 1 to 0 in 0.1 ns from
the time that input x transitions from 0 to 1. Likewise, z transitions from 0
to 1 in 0.1 ns from the time x transitions from 1 to 0. In Fig. 2.18(a), the
signal transitions are shown to happen instantly. However, in reality,
signals do not change instantly.

FIGURE 2.18 A NOT gate timing diagram with 0.1-ns delay: (a) a
simplified timing diagram; (b) a more realistic timing diagram.

A signal’s rise time is the amount of time that the output voltage
associated with logic 0 rises (increases) to that associated with logic 1.
Similarly, a signal’s fall time is the amount of time required for the
output voltage associated with logic 1 to fall (decrease) to that
associated with logic 0. The rise and fall times of a gate may not be the
same. Figure 2.18(b) illustrates a more realistic timing diagram of a NOT
gate with the signal rise and fall times. The midpoints of the rise and fall
times are often used to indicate instant signal transition as shown in the
figure.

With a +5.0 voltage source, any value between 0 and 0.8 V at the
input is interpreted as logic 0, and between 2.0 and 5.0 V as logic 1. An
input voltage greater than 0.8 and less than 2.0 V is considered
undefined. For logic 1 output, the voltage range is between 2.4 and 5.0
V, and for logic 0, it is between 0 and 0.4 V. A lower voltage source (e.g.,
1.8 or 1.2 V) is typically used in battery-powered systems.

Recall that a minimal Boolean expression defines the logic
relationship between a circuit’s inputs and its output without considering
gate or wire delays. A circuit’s timing diagram is an illustration of the

actual changes that happen at the output of each gate in the circuit due
to gate and wire delays. A timing diagram provides a more realistic view
of a circuit behavior when changes take place at its inputs. For example,
consider the expression f (a, b, c, d) = Σ(1, 3, 5, 7, 10, 11, 14, 15) that
has the minimal SOP expression f = d + ac; note that f does not
depend on b. Figure 2.19 shows its equivalent NAND-only circuit with
the intermediate signal, x, and y; the gates are also labeled G1 through
G4 for reference.

FIGURE 2.19 Circuit for d + ac with intermediate signal names; f does
not depend on b.

Figure 2.20 illustrates the timing diagram of the circuit when its input
changes from concatenated acd = 111 to acd = 011; that is, a changes
from 1 to 0. The delay for all the gates is assumed to be 0.1 ns, and wire
delays are ignored. (Wire delays are outside the scope of this book.)
Note that f = d + ac produces f = 1 when input is acd = 111 or acd =
011. However, due to gate delays, f does not remain at logic 1, as
illustrated in the timing diagram, between time = 0.2 ns and 0.3 ns.

FIGURE 2.20 A timing diagram for the circuit in Fig. 2.19 when input a
changes from 1 to 0.

The change in signal a causes to change to 1 after a 0.1 ns delay at
gate G1 from its initial value of 0 to 1 at time-step 1. This change is
shown by an arrow from the time signal a changes to 0 to the time when
signal changes to 1. An arrow indicates signal dependency. At the
same time, signal y also changes from 0 to 1 at time-step 1 after a 0.1
ns delay at gate G3. The change in at time = 0.1 ns causes signal x to
change from its initial value of 1 to 0 at time-step 2 after a 0.1 ns delay
at gate G2. This change is also shown by an arrow from the time
changes to 1 and x changes to 0.

At time = 0.1 ns when both x and y are at logic 1, f changes from 1 to
0 after a 0.1 ns delay at gate G4. And when x changes to 0 at time = 0.2
ns, f changes back to 1 after a 0.1 ns delay at time = 0.3 ns. Signal f
then remains at 1 thereafter.

The unexpected change in f from 1 to 0 and back to 1 is called a
hazard or glitch, and is due to gate and wire delays in the circuit (wire
delays are ignored here). In this case, function f = d + ac is said to have
a 1-hazard when its input changes from acd = 111 to acd = 011. An OR-
AND (or NOR-only) circuit has a 0-hazard when its timing diagram
shows an unexpected change from 0 to 1 and back to 0 when its input
changes.

Hazards violate the expected behavior of a combinational circuit and
must be prevented from affecting the state (i.e., register contents) of a
digital system. In Chap. 4, we will introduce a clock, an alternating 1 0 1
0 1 0 1 0..., signal with a fixed period to control the loading time of a
register. In Fig. 2.20, output f is valid only after 0.3 ns from the time that
there is a change at the circuit’s input. The clock period is determined
from the signal propagation delay as well as other delays discussed in
Chaps. 4 and 5.

2.6.1 Signal Propagation Delay
Typically, there are several signal paths from the inputs to one or more
outputs of a circuit. For example, output signal f in Fig. 2.19 is
determined by signal paths G1-G2-G4 or G3-G4. The time required for
each path to propagate a signal change at its input all the way to the
output signal depends on the number and size of the gates on the path
and wire delay. The delay of the longest path is known as the circuit’s
propagation delay. Ignoring wire delay, a circuit’s propagation delay is
proportional to the number of gates in its longest path. The path G1-G2-
G4 in Fig. 2.19 is the longest path. Thus, the circuit’s propagation delay
is proportional to three gate delays, or 0.3 ns, as shown in Fig. 2.20; for
simplicity, assume a 0.1 ns gate delay. The 0.3 ns delay is also the
minimum time required for the 1-hazard at output f to disappear and for
the circuit to output f = 1, as defined by its logic expression when the
input to the circuit changes from concatenated acd = 111 to acd = 011.

In general, the propagation delay of a circuit module with multiple
outputs is determined by the longest path from its inputs to its many
outputs. In this case, some of the individual outputs may have shorter
propagation delays; however, at least one of the output signals would
have the longest path that would determine the propagation delay for
the entire module.

The circuits that implement SOP and POS expressions always have
signal paths consisting of either two levels of gates or three levels of
gates, including the initial NOT gate. This results in a propagation delay
proportional to only two or three gate delays. Thus, the SOP or POS
expressions are always preferred to speed up outputs and thus increase
performance.

However, an expression that contains logic terms with many variables
may not be implemented as a two- or three-level circuit due to fan-in
limitations of the gates (discussed next). In this case, an expression
must be partitioned into smaller expressions, each implemented with a
smaller circuit requiring gates with fewer fan-in. The smaller circuits are
then connected to create the final multilevel circuit with more than two
levels, not counting the initial NOT gates. For instance, FPGAs, being a
programmable chip, typically have restrictive resources and therefore
cannot implement any arbitrarily sized SOP or POS expression. FPGAs
are typically slower than the custom chips built for high performance.

2.6.2 Fan-In and Fan-Out
Fan-in is the number of inputs a gate can have, and the fan-out is the
number of connections to which a gate’s output can connect. For
example, a NAND gate with a fan-in of 3 and a fan-out of 5 is shown in
Fig. 2.21. The fan-in of a NOT gate is always 1. The fan-in of an XOR
and XNOR gate is typically 2. The fan-in of AND, OR, NAND, and NOR
gates could vary; however, each gate has a maximum fan-in and fan-out
limit (e.g., 8) in order to operate normally.

FIGURE 2.21 A NAND gate with fan-in of 3 and fan-out of 5.

2.7 Other Gates
In addition to the standard gates discussed earlier, there are other useful
gates necessary to design a digital system. These gates are known as a
buffer, an open collector (OC) buffer, and a tri-state buffer.

2.7.1 Buffer
The symbol and truth table of a buffer are shown in Fig. 2.22(a). A buffer
does not alter its input signal; it simply amplifies it. Assuming that the
fan-out of an AND gate is 5, a buffer can increase the fan-out of the
AND gate from 5 to, for example, 9, as illustrated in Fig. 2.22(b).

FIGURE 2.22 A buffer gate: (a) buffer symbol and truth table; (b) buffer
used to increase the fan-out.

2.7.2 Open Collector Buffer
An OC buffer is similar to a buffer gate, except that when its input is
logic 1, its output becomes high impedance, shown as Z (Fig. 2.23(a)).
A high-impedance signal is neither driven to logic 0 nor logic 1, and is
shown electrically isolated, as if the wire is “floating” and not connected.
Figure 2.23(b) illustrates a circuit with two OC buffers. The output of
each gate is either 0 or Z, and thus the outputs can be connected
together to generate a single output f. A Z-output can be changed to
logic 1 or logic 0 using a “pull-up” or “pull-down” resistor connected to
either the power source (e.g., 5.0 V) or ground (0.0 V), respectively. The
Z-output in Fig. 2.23(b) is pulled up.

FIGURE 2.23 Open collector buffer and application: (a) symbol and truth
table; (b) a two-input wired-AND logic and truth table; (c) the design of
expansion slots.

Figure 2.24 illustrates the behavior of a high-impedance output using
the circuit in Fig. 2.23(b) with two inputs a and b. When a = 0 and b = 0,

the OC buffers B1 and B2 output 0, thus connecting f to ground, logic 0
(Fig. 2.24(a)). When a = 1 and b = 1, the outputs of both OC buffers B1
and B2 become Z (floating); this leaves f connected to power, logic 1
(Fig. 2.24(d)). When a = 0 and b = 1 or a = 1 and b = 0, one of the
buffers outputs 0 while the output of the other becomes Z, thus
connecting f to logic 0, as illustrated in Fig. 2.24(b) and (c). The four
cases are summarized as a truth table in Fig. 2.23(b). The truth table
illustrates an AND logic, and the circuit in this case is called a wired-
AND logic. A wired-logic circuit can have a large fan-in.

FIGURE 2.24 A two-input wired-AND logic with four different input
scenarios.

Wired-AND and wired-OR are two commonly used wired-logic
circuits. For example, a wired-logic circuit is used in the design of
computer systems with expansion slots. In this case, one can add a new
functionality to a computer system by inserting an expansion card, a
device controller interface (DCI), in one of the computer’s expansion
slots. An n-input wired-OR circuit, for example, can be used to OR n
signals, one from each device, and generate an output to inform the
CPU when a device needs service, as illustrated in Fig. 2.23(c). The
device interfacing will be discussed in more details in Chap. 9.

2.7.3 Tri-State Buffer
Figure 2.25 shows a tri-state buffer and its truth table. It is a combination
of a buffer and an OC buffer. It operates like a buffer when enabled (e =
1), but its output becomes Z when disabled (e = 0). Tri-state buffers are
useful when two or more signals need to share a common wire known
as a bus line (or simply a bus). Typically, a bus has many lines. Figure
2.26 illustrates the connection of three tri-state buffers to a 1-bit bus.
One at a time, one of the enabling signals e1, e2, or e3 may be asserted
to place the corresponding signal a, b, or c on the bus. The other
disabled tri-state buffers make their outputs Z (“floating”), and thus
become isolated from the bus.

FIGURE 2.25 A tri-state buffer and its truth table.

FIGURE 2.26 Three tri-state buffers sharing a 1-bit bus: (a) actual
connections; (b) connections typically are shown with arrows.

A bus connection can be bidirectional if a module outputs to the bus
and inputs from the bus. Figure 2.27(a) illustrates an example of
bidirectional bus connections, using a buffer to input from the bus and a
tri-state buffer to output to the bus. A data item that is transmitted over a
bidirectional bus has a source module and a destination module. The
source module places a data item using a tri-state buffer on the bus, and
a destination module inputs the data using a buffer. A buffer protects a
system from fan-out violation at the source module if the bus fan-out at
the destination module is greater than 1; that is, a bus signal is
connected to two or more gates inside a destination module, as
illustrated in Fig. 2.27(a) for destination module C.

FIGURE 2.27 Module interconnection: (a) three modules interconnected
using a bus; (b) three modules with one-to-one connections.

A bus reduces interconnection overhead. It can replace many one-to-
one connections among several modules (Fig. 2.27(b)) as long as the
rate (how often) at which data (number of bits) is transmitted over the
bus is sufficiently large enough to handle the load. The data rate of a
bus is called bandwidth. For example, in Fig. 2.27(a), 1-bit data can be
transmitted over the 1-bit bus every 10 ns if the enabling signals e1, e2,
and e3 are asserted one at a time every 10 ns, or if one of the enable
signals remains asserted for multiples of 10 ns durations. A 1-bit bus
that is capable of transferring a 1-bit data every 10 ns has the same
bandwidth as a 10-bit bus capable of transferring a 10-bit data every
100 ns; in 100 ns both buses would transfer 10 bits. Therefore, the width

of a bus (number of lines) and the speed of the bus (how often)
determine the bandwidth of the bus.

Two tri-state buffers may be used as a transceiver
(transmitter/receiver) circuit that connects, for example, two separate
buses as illustrated in Fig. 2.28. Each transceiver circuit creates a
bidirectional connection between two bus lines. The direction (dir) signal
decides the data direction either from bus A to bus B or from bus B to
bus A. The enable (e) signal, when asserted, connects the two bus
lines, keeping them connected while active.

FIGURE 2.28 A transceiver module [2] shown for two bus lines; signal dir
indicates data direction and e connects the two bus lines.

2.8 Design Examples

As discussed in Chap. 1, a data path includes many circuit modules.
This section covers a few commonly used but small combinational
circuit modules. The “selector” module in Fig. 1.1 (Chap. 1) is known as
a multiplexer. Other examples discussed here are a simple adder,
decoder, and encoder modules.

A 1-bit adder, known as a full adder (FA), generates the sum of two 1-
bit inputs plus an incoming carry-in bit as 0 or 1. A decoder module
converts a number A (0, 1, 2, etc.) to a corresponding output signal
(e.g., f0, f1, f2, etc.). Only one of the outputs f0, f1, etc. can be active at
any time. An encoder, on the other hand, performs the reverse operation
and generates a number associated with an active input signal.
Specifically, the following examples are discussed:

• The design of an FA with active-high signals
• The design of a 1-bit, 2-to-1 multiplexer and 1-bit, 4-to-1 multiplexer
• The design of a 1-to-2 decoder with active-low output signals
• The design of a 3-to-2 encoder with active-low input signals

2.8.1 Full Adder
An FA has three 1-bit inputs, one of which is the carry-in (cin) and
outputs a 1-bit sum (s) and a 1-bit carry-out (cout), as illustrated in Fig.
2.29. Table 2.8 shows its truth table. In each case in the table, s and cout
are determined as the sum of three-bits a, b, and cin. Multiple FA
modules, as will be illustrated in the next chapter, can be used to design
a large adder.

FIGURE 2.29 The block diagram of an FA.

TABLE 2.8 FA Truth Table

Minimal SOP expressions for s and cout are determines as follows:

Alternatively, the expressions of s and cout can be written as
illustrated in Eq. (2.9) also using XOR gates, thus simplifying the gate-
level schematic of the circuit, as shown in Fig. 2.30. However, this

solution would result in a longer propagation delay as compared to the
circuit designed from the SOP expressions in Eq. (2.8).

FIGURE 2.30 An alternative circuit for an FA.

Propagation Delay Estimation

Assuming that a NAND gate has 0.1 ns delay, Eq. (2.10) shows the
estimated propagation delay, denoted by symbol ∏, for signals s and
cout in Eq. (2.8). The SOP expressions for s and cout have three and two
levels of gates, respectively. Wire delays are ignored in the calculation
of the estimated delays for s and cout.

Equation (2.11) shows the estimated delays for signals s and cout in
Eq. (2.9) where an XOR designed from its SOP expression has 0.3 ns
delay:

2.8.2 Multiplexer

A 1-bit, 2-to-1 multiplexer, or MUX for short, is a simple combinational
circuit as shown in Fig. 2.31. The inputs x and y are each 1-bit data, and
s (a selector signal) causes the MUX to output either x or y. As
illustrated in the block diagram, labels 1 and 0 are arbitrarily assigned to
inputs x and y, respectively, and are reflected in the MUX’s truth table
(Table 2.9). The MUX outputs y when s = 0 or x when s = 1. Its minimal
SOP expression is determined as follows:

FIGURE 2.31 The block diagram and circuit of a 1-bit, 2-to-1 MUX.

TABLE 2.9 Truth Table of the 1-bit, 2-to-1 MUX

For example, when s = 0, Eq. (2.12) evaluates, as expected, to r = y,
as illustrated here:

Likewise, when s = 1, the MUX outputs (i.e., selects) input x. Figure
2.32 shows the block diagram of a 1-bit, 4-to-1 MUX with four data bits,
w, x, y, and z, which are labeled as input numbers 3 to 0, respectively.
The MUX requires two select signals, labeled s1 and s0. Table 2.10
shows its simplified truth table. Its expanded truth table would have six
inputs, larger than the limit of four we have assumed for using K-maps.
There are two ways to determine the minimal SOP expression of the 4-
to-1 MUX without using a K-map: (1) use Espresso software, or (2)
extrapolate Eq. (2.12) to four inputs and two selection signals. That is,
when s1s0 = 0 = (00)2, the MUX should output z, and for s1s0 = 1 =
(01)2, it outputs y; for s1s0 = 2 = (10)2, it outputs x, and for s1s0 = 3 =
(11)2, it outputs w. Its minimal SOP expression, therefore, is:

FIGURE 2.32 The block diagram of a 1-bit, 4-to-1 MUX.

TABLE 2.10 Simplified Truth Table of the 1-bit, 4-to-1 MUX

For example, when s1s0 = 2 = (10)2, Eq. (2.13) evaluates, as
expected, to r = x, illustrated here:

The circuit for the 4-to-1 MUX is given in Fig. 2.33. As the size of an
MUX increases, so do its fan-in and fan-out requirements. Consider the

circuits for the aforementioned 2-to-1 and 4-to-1 MUXs. Their respective
maximum fan-in and fan-out requirements are 2 and 2 and 4 and 3.
Large MUXs, if designed using the methods discussed here, will lead to
fan-in and fan-out problems. In Chap. 3, we will discuss design
methodologies for large combinational circuits by first partitioning a
problem into smaller design problems, and then for each smaller
problem, a circuit is designed using the techniques learned in this
chapter. The smaller circuits are then assembled to create a large
combinational circuit that would be free of any fan-in and fan-out
problems.

FIGURE 2.33 Circuit of a 1-bit, 4-to-1 MUX; maximum fan-in = 4;
maximum fan-out = 2.

2.8.3 Decoder
The block diagram and the circuit of a 1-to-2 decoder circuit with active-
low outputs are shown in Fig. 2.34. Active-low labeled pins are typically

shown with bubbles at the base of each pin, as illustrated in Fig. 2.34(b).
However, the bubbles in Fig. 2.34(b) do not necessarily imply that they
are NOT gates. Table 2.11 shows the truth table of the decoder. Only
one or none of the outputs _f1 and _f0 is asserted, depending on the
values of signals v and e. When e = 1 and v = 0, _f0 = 0 (asserted).
When e = 1 and v = 1, _f1 = 0 (asserted). Otherwise, when e = 0 (not
active), both _f1 and _f0 are 1 (deasserted).

FIGURE 2.34 Block diagram and circuit of a 1-to-2 decoder: (a) block
diagram with signal names; (b) block diagram with pin labels; (c)
decoder circuit.

TABLE 2.11 A 1-to-2 Decoder Truth Table with Active-Low Outputs

The expressions of signals _f1 and _f0 may be expressed as SOP or
POS. However, in this case, both SOP and POS expressions for these
signals are the same as determined here. The NAND-only decoder
circuit has one gate delay, not counting the NOT gate (Fig. 2.34(c)).

Large decoders are also designed using a different methodology to
avoid fan-in and fan-out problems. Decoders have many applications
and are used in the design of, for example, memory and CPU data
paths. Decoders are used to decode a memory address so that the
content of the address can be read or written. Decoders are also used to
decode a register number when writing a register file (Chap. 1).

2.8.4 Encoder
The block diagram and circuit of a 3-to-2 encoder with active-low inputs
are given in Fig. 2.35(a), and the active-low labeled pins are shown with
bubbles in Fig. 2.35(b). Table 2.12 shows its truth table. The input
signals are arbitrarily numbered 0 through 2 as illustrated in the figure.
An encoder circuit outputs the number assigned to an active input
signal. For example, when _z = 0 (active), _ y = 1 (not active), and _ x =
1 (not active), the encoder outputs r1r0 = (00)2 = 0, correctly identifying
the asserted signal _z as the input number 0. However, when none of
the encoder’s inputs are active, another output signal named a (input-
active) is necessary. When a = 1 (asserted), it indicates that one or more
of the signals _ x, _ y, and _ z are active, and thus the 2-bit result r1r0
identifies the active signal. On the other hand, when a = 0 (not
asserted), the output r1r0 = (00)2 is ignored.

FIGURE 2.35 Block diagram and circuit of a 3-to-2 encoder: (a) block
diagram with signal names; (b) block diagram with pin labels; (c)
encoder circuit.

TABLE 2.12 Truth Table of a 3-to-2 Encoder with Active-Low Inputs

It is also possible that two or more of the encoder inputs become
active at the same time. For example, when _ x = 0, _ y = 0, and _ z = 1,
the encoder must output either the number assigned to active signal _ x

or active signal _ y based on some signal priority. Such an encoder is
called a priority encoder.

Table 2.12 presents the truth table of the 3-to-2 priority encoder (Fig.
2.35) with _ x as the highest-priority input and _ z the lowest. Therefore,
when _ x = 0 (active), _y = 0 (active), and _z = 1 (not active), the
encoder outputs a = 1 and r1r0 = (10)2, identifying _x as the higher-
priority input signal.

The POS expressions for output signals a, r1, and r0 are determined
as follows:

Encoders are also designed without the output signal a, such as the
one shown in Fig. 2.36. It is designed as a 4-to-2 encoder without the
signal a, but the input number 0 is not used and is tied to power (or
ground for active-high inputs), and thus effectively changes the circuit to
a 3-to-2 encoder. When none of the inputs _ x, _ y, and _ z are
asserted, the encoder outputs r1r0 = (00)2, indicating that inputs are not
active. When one or more of the input signals become active, the
encoder outputs 3, 2, or 1, and respectively identifies input _ x, _ y, or _
z as an active signal. This eliminates the logic required to generate a,
and reduces one less signal when compared to the design shown in Fig.
2.35. The input that is tied to power can be implemented internally.
Again, a different methodology is used to avoid fan-in and fan-out
problems when designing a large encoder.

FIGURE 2.36 A 3-to-2 encoder block diagram without an input-active
output signal.

Encoders also have many applications, especially in the design of a
motherboard. An encoder, for example, can be used to quickly inform
the CPU when an external signal becomes active. The active external
signal may be generated by an input/output (I/O) device or by a module
on the board requesting a service from the CPU.

2.9 Implementation
Modern digital circuit designers rely on CAD tools to translate a design
into implementation data. A digital design CAD tool synthesizes
(translates) a description of a digital circuit into an optimized and
technology-dependent gate-level description called a netlist. The
application-specific integrated chip (ASIC) and FPGA are examples of
noncustom IC technologies. A processor chip would typically be a
custom IC. A circuit may be described schematically or using an HDL or
a combination of both. However, modern CAD tools require circuits
described in HDL.

2.9.1 Programmable Logic Devices
Programmable logic devices (PLDs) are prefabricated, off-the-shelf
devices that contain no manufacturing faults. They can be programmed
(i.e., configured) to implement a netlist, instantly, and sometimes

dynamically on demand. Simple PLDs (SPLDs) are the simplest among
all PLDs. An SPLD uses wired-logic to implement logic expressions, and
is suitable for implementing small digital circuits. Complex PLDs
(CPLDs) are the next generation of PLDs that contain configurable
wiring channels within the chip to implement a more complex digital
circuit.

FPGAs, which briefly were discussed in Chap. 1, are the modern
version of PLDs that contain many configurable logic blocks (CLBs),
configurable wiring channels, and configurable IO blocks that interface
with the chip’s (I/O) pins. An FPGA may be viewed as the modern-day
equivalent of both the TTL 7400 chip series and circuit boards. The
7400 series were the first family of ICs that were designed for general
use. The series included the standard logic gates, as well as larger
combinational logic modules, such as MUX, decoder, and adder, and
modules used to design sequential circuits. They were used to build the
mini and mainframe computers during the 1960s and 1970s. Today, the
7400 series chips are sometimes used in education, especially in some
introductory logic design courses.

An FPGA requires programming data to configure and interconnect
CLBs and I/O blocks as indicated by a netlist. Some I/O blocks are
configured as input pins and some as output pins. Figure 2.37 illustrates
the internal organization of a simple FPGA with nine CLBs, each
capable of implementing one or two simple logic functions. The wiring
channels and the switch blocks are used to interconnect the inputs and
outputs of each CLB to other CLBs and via the I/O blocks to I/O pins.

FIGURE 2.37 A simple FPGA block diagram.

Some FPGAs contain a configuration memory for implementing a
different netlist on demand. Modern FPGAs typically contain thousands
of CLBs, and some also contain memory blocks. There are system-on-
chip (SoC) FPGA chips [3–4] that also contain complex modules such
as CPU and digital signal processor (DSP). With these chips, it is easier
to design custom and complex digital circuits without requiring
fabrication. Both Altera and Xilinx provide FPGA design kits with a
universal serial bus (USB) interface [3–5].

2.9.2 Design Flow

Figure 2.38 illustrates a typical digital circuit design flow. It includes
design entry, synthesis, and implementation phases. Each step in the
design flow produces a different description of a target circuit, where
each description is verified for design errors.

FIGURE 2.38 Digital circuit design flow [6].

Design Entry

During this phase of the design, a target digital circuit is described
manually using a schematic design tool, an HDL, or a combination of
both. The strict uses of schematic design tools in the industry have
diminished over the years in favor of HDLs. The Verilog HDL is
discussed in Sec. 2.10. Figure 2.39 shows the design of an FA using a
schematic design and simulation tool called LogicWorks [7]. No
synthesis tools are available in LogicWorks. A schematic design tool
typically includes a library of logic gates and some commonly used
combinational and sequential circuit modules. It may also include a
library of the 7400 chip series. In addition, an schematic design tool may
include hybrid design entry features to enter a data path schematically,
where the individual modules in the data path are selected from a library
or designed using an HDL.

FIGURE 2.39 A circuit schematic of a full-adder (FA) in LogicWorks, a
schematic design tool.

Functional Simulation
A schematically and/or HDL designed circuit must be verified to make
sure it operates as expected. For example, for a given input, does the
FA shown in Fig. 2.39 output the same results as indicated in its truth

table? Because this verification process can take a long time, especially
for large circuits, the process is typically divided into functional, post-
synthesis, and timing simulations. A functional simulation is used only to
verify the correctness of a design without concern for its implementation
issues. It is the first step to make sure a design is correct. If the
functional simulation of a circuit is error free, then synthesis is started as
the first phase of implementation; however, the design may still have
synthesis and timing errors.

Post-Synthesis Simulation
During the synthesis phase, a design is translated into its corresponding
netlist based on the available resources in a given technology, such as
the logic resources available in each CLB in a specific FPGA chip. Each
CLB can only implement a few and simple logic expressions—for
example, two 4-variable logic expressions. A design’s logic expressions
may need to be divided into simpler expressions—for example, no more
than four variables. The simpler expressions are saved as the circuit’s
netlist.

A post-synthesis simulation phase may be necessary to make sure a
design has been translated correctly and that the generated netlist
accurately describes the target circuit. A post-synthesis simulation
requires less processing time than does a timing simulation. In addition,
some delay information—for example, the CLB’s signal propagation
delay—may be available for post-synthesis simulation.

Timing Simulation
A timing simulation is performed after a netlist is mapped to the
available resources of a target device that is virtually modeled in the
computer. For example, using the virtual model of an FPGA chip, a
netlist is used to configure the CLBs, the I/O blocks, and the wiring
channels through a process called placement-and-route.

During the placement phase, the minimized expressions in the netlist
are assigned to the CLBs and the circuit’s primary input and output
signals are assigned to the I/O pins via the I/O blocks. Some designs
may also require complex modules—for example, CPU, DSP, and
memory, that already exist inside the chip.

During the routing phase, the signal dependency information in the
netlist is used to wire (interconnect) the signals among the different

CLBs and the I/O blocks using the available on-chip wiring channels and
switch blocks. However, the placement and the routing tasks are not
typically done independently; the assignments of logic expressions to
the CLBs and the primary I/O signals to I/O blocks may be changed in
order to (1) maximize the use of the available resources in the chip or
(2) minimize propagation delays. A timing simulation is used to make
sure the timing requirement of a design is met.

2.10 Hardware Description Languages
Verilog and VHDL (VHSIC, or very-high-speed integrated circuit) are two
industry-standard HDLs used to describe digital circuits. An HDL is used
to formally describe a digital circuit and a test-bench is used to
generate tests (i.e., test vectors) for the circuit.

An HDL description is called structural if a circuit is described in terms
of a set of interconnected modules. The modules can be small, like
AND, OR, NAND, etc., logic gates, or large circuits, like a decoder,
multiplexer, adder, etc. Some commonly used large modules, such as
an adder, may be predefined and used during synthesis.

An HDL description is called behavior if the HDL code describes the
relationships between a module’s inputs and its outputs using high-level
language statements such as “if-else” or “case” (i.e., switch).

2.10.1 Structural Model
In this section, we briefly introduce the Verilog HDL. Other examples are
included elsewhere in the book. However, the description is not
complete and additional references may be necessary. Example 2.11
illustrates a structural model of an FA with two XOR gates and three
NAND gates, as shown schematically in Fig. 2.39. A Verilog model
starts with the keyword “module” and includes a name (e.g., full_adder)
and a list of input and output ports (e.g., a, b, cin, s, and cout). A module
description ends with the keyword “endmodule.” The port listing can
appear in any order, but must be specifically declared as “input” or
“output.” Signal names that are not declared as input and output ports
are considered local and should be declared as a wire when the design

is structural. For instance, the three signals out 1, out 2, and out 3 in the
example are all local.

Example 2.11. A Verilog structural model for the FA shown in Fig. 2.39:

endmodule

The standard gates are called primitive gates and are known to the
Verilog complier and need not be described. The x1, x2, n1, n2, and n3
in the example are optional and are names given to two instantiated
XOR and three NAND primitive gates. The leftmost argument in each
instantiated primitive gate is output, and the others are inputs. For
instance, the signals out 1, s, out 2, out 3, and cout are all outputs and
thus are listed as the leftmost argument. A primitive gate can be
instantiated with one or more input arguments, depending on its type.
For example, a three-input primitive NAND gate would have one output
(the leftmost) and three input arguments.

The modules can be instantiated in any order, similar to the way they
are instantiated on the screen when using a schematic design tool (e.g.,
Fig. 2.39). The interconnections of the modules are determined from the
list of their ports. For instance, the first instantiated primitive XOR gate
has out 1 as its output port, and the second XOR uses out 1 as an input
port. This implies that there is a wire that connects the two out 1 ports.

Likewise, the out 2 and out 3 signals are each connected by a wire.
These signals are declared as “wire.”

A test-bench module, such as the one given in Example 2.12, is also
described in HDL and is used to test a circuit model, such as the FA
model in Example 2.11. A test-bench module has no input or output
ports. The ‘include directive may be needed (depending on the design
tool) to import a nonprimitive but already created HDL model in another
model—for example, a test-bench. In general, each imported module
may be instantiated one or more times as needed to create the target
circuit model before testing. In Example 2.12, the “full_adder” HDL
model is imported and is instantiated once for testing.

An initial block is used to list the test vectors in the “full_adder”
module. All the statements inside an initial block are processed in
sequence. All the variables to the left of an assignment operator (e.g., =)
within an initial block or an always block (discussed later) must be
declared as type reg. When describing a combinational circuit, the type
reg has no specific significance. The type reg, however, becomes
important when designing sequential circuits.

Example 2.12. A test-bench for testing the FA structural model in Example 2.10:

When using a design tool without a debugger, a $display statement is
used to output the value of one or more input signals. A $monitor
statement, on the other hand, is entered only once to track the values of
one or more signals (input or output) during a simulation run. Each time
that there is a change in the value of one or more signals listed in the
$monitor statement, the statement is executed to output the signal
values. The syntax for both the $display and $monitor are the same and
are similar to that of a “printf” statement in the C programming
language. The output format “%d”, “%h”, “%o” and “%b” can be used to
display values in decimal, hexadecimal, octal, and binary, respectively.
Additional display formats, such as “%s” and “%f” are used to display
string and floating-point numbers.

A simulation time-step is specified using the symbol “#” followed by
the length of simulation time as an integer number. If no delays are

assigned to modules, a functional simulation will assume each module
has zero propagation delay and one simulation time (#1) is sufficient to
generate outputs.

Using the Synopsys design tool, the simulation output to test the FA
model in Example 2.12 is shown here. It can be seen that when, for
example, a = 1, b = 1, cin = 1, the $monitor outputs s = 1 and cout = 1 at
simulation time = 2.

The “=” symbol is called a blocking assignment. All the blocking
assignment statements within an initial or an always block are evaluated
sequentially one at a time, much like in a programming language. On
the other hand, a nonblocking assignment (discussed later) is indicated
by the symbols “<=” and is evaluated simultaneously with the other
nonblocking statements in an initial or an always block. The HDL
statements within an initial block are evaluated only once, whereas
those of an always block are evaluated as long as the circuit is being
simulated, much like a real circuit that operates as long as it is powered.

Verilog also supports “for-loop,” “case” (switch), “forever,” and other
control statements. However, not all Verilog statements are
synthesizable. A test-bench, such as the one shown in Example 2.13,
uses a for-loop to fully test the FA model. In the example, signals a, b,
and cin are declared as a 1-bit reg, and variable k, used in the for-loop,
is declared as a 4-bit reg in Little Endian bit order. The “reg [0:3] k;”
would define k in Big Endian bit order. A multibit variable can be
referenced as a group or individually bit by bit. For example, in the
example, k[2] refers to the third bit of the multibit variable k, and k[0]
refers to the least significant bit (LSB) in k.

Example 2.13. A test-bench model to fully test the FA structure model given in
Example 2.10:

In the test-bench in Example 2.13, a new value is assigned to each of
the inputs a, b, and cin during each simulation step. The inputs are also
displayed before each simulation step. After each simulation step, the
$monitor statement automatically displays the values of the output
signals, provided that one or more signal values change. The output of

the simulation run is shown next. Note that the $monitor does not
display outputs when signals s and cout do not change between the test
vector a = 0, b = 0, and cin = 1 and the test vector a = 0, b = 1, and cin =
0, and again between the test vector a = 1, b = 0, and cin = 1 and the
test vector a = 1, b = 1, and cin = 0.

2.10.2 Propagation Delay Simulation

It is also possible to include an optional propagation delay for each of
the primitive gates at the time of their instantiations. This provides a
more realistic functional simulation. Example 2.14 is a description of the
FA with a 1 ns delay assigned to each of the primitive NAND gates and
a 3 ns delay to each of the primitive XOR gates. Therefore, Δs = 6 ns
and Δcout = 5 ns.

Example 2.14. Structural modeling of an FA using primitive gates with delays:

The compiler directive ‘timescale indicates the timing scale applied
during the simulation. The ‘timescale in Example 2.14 defines the scale
as 1 ns with 100 ps (picoseconds) increments. However, the timing
scale is an estimation and the simulation results do not provide any real
timing data.

The test-bench in Example 2.15 contains two test vectors entered at
simulation times 0 and 10. As illustrated in the following simulation
output, initially, the values of both signals cout and s are unknown (“x”).
For the test vector a = 0, b = 0, and cin = 1, which is applied at
simulation time 0, the $monitor outputs, as expected, cout = 0 at time =
5 and s = 1 at time = 6. For the test vector a = 0, b = 1, and cin = 1 at
time = 10, the outputs, as expected, are cout = 1 at time = 15 and s = 0

at time = 16. The two test vectors were selected to expose the worst-
case delay scenarios.

Example 2.15. A test-bench for the FA model with delays:

Nonprimitive modules cannot be instantiated with delay information.
For these modules, the delay information is determined from the delay
values specified within the module. However, it is possible to use a
parameterized delay to overwrite the delay information of any module
during instantiation.

2.10.3 Behavioral Modeling
The basic behavioral description in Verilog is the assign statement. It is
used to directly enter a Boolean expression using the symbols “~”, “&”,

“|”, and “∧” to express bit-wise NOT, AND, OR, and XOR operators,
respectively. The NAND, NOR, and XNOR operators are also expressed
using combined symbols “&~”, “|~”, and “~∧” or “∧~”, respectively. Table
2.13 is a summary of the operators used in the Verilog HDL. Example
2.16 illustrates a behavior description of a 1-bit 2-to-1 MUX using an
assign statement.

TABLE 2.13 A Summary of the Verilog HDL Operators

Example 2.16. A behavior model of a 1-bit 2-to-1 MUX using an assign statement:

The most commonly used statement to describe the behavior of a
circuit is an always block. It is declared using the keyword “always”
followed by the symbol @ and a set of signal names as its sensitivity
list, and like an initial block, contains a begin-end block. Example 2.17
illustrates an alternative behavior model of a 1-bit 2-to-1 MUX using an
“if-else” statement. Because the r signal depends on signals s, x, and y,
these signals are included in the sensitivity list of the always block.

Example 2.17. A behavior modeling of a 1-bit, 2-to-1 MUX using an “if-else”
statement:

Like an initial block, all the variables to left of an assignment (=)
symbol within an always block must additionally be declared as type reg.
A proper way to declare an output variable both as type output and type
reg is the combined syntax output reg, as illustrated in Example 2.17.

The syntax 1’b0 is used to enter a 1-bit binary number. Other
examples to enter numbers are 5’b11111, 8’hFF, and 9’o777 to enter a 5-
bit binary number (11111)2, an 8-bit hex number 0xFF, and a 9-bit octal
number (777)8, respectively, where “8” is used here to indicate an octal
number.

In addition, depending on the compiler version, alternative syntaxes
are available to describe a sensitivity list. For example, “always@(s or x
or y)”, “always@(s, x, y)”, “always@(*)”, or “always@*” are all acceptable
syntaxes to enter a sensitivity list for a combinational circuit model.
Furthermore, using a * as the sensitivity list in a combinational always
block is the most preferred syntax, allowing the compiler to determine
the list of sensitivity variables. A missing variable in a sensitivity list can
result in an incorrect combinational circuit behavior.

Example 2.18 illustrates the behavior model of an FA using a case
statement to enter its truth table. In the example, the curly brackets ({})
indicate concatenation. A “default” case is also normally required to
handle missing cases. The acceptable signal values are 0, 1, x
(unknown), and z (high-impedance, Z). Alternatively, “casex” ignores the
x and z signal values and treats them as don’t-cares.

Example 2.18. A behavior model of a FA using a “case” statement:

Example 2.19 illustrates a behavior description of a 4-bit tri-state
buffer with an active-low enable signal, where 4’bz indicates a 4-bit
high-impedance Z value.

Example 2.19. A behavior model of a 4-bit tri-state buffer:

2.10.4 Synthesis and Simulation
The FA HDL model in Example 2.18 was synthesized using the Altera
Quartus II design and synthesis tool [4]. For synthesis,
EP4CGX15BF14A7 1.2V, one of the Altera Cyclone IV GX family of
programmable chips, was used. The synthesized circuit was then
simulated with the Altera ModelSim simulation tool. Figure 2.40
illustrates the synthesized circuit with two CLBs used to implement the
expressions for the sum and carry-out bits. In this case, the inputs a, b,
and cin and the outputs s and cout are also buffered to prevent possible
fan-out violations. The simulation of the synthesized circuit with eight
test vectors using a waveform is shown in Fig. 2.41.

FIGURE 2.40 The synthesized circuit of the FA behavioral model given in
Example 2.18.

FIGURE 2.41 A gate-level simulation of the synthesized FA in Fig. 2.40.

Likewise, the 4-bit tri-state buffer model in Example 2.19 was
synthesized and simulated using the Altera design, synthesis, and
simulation tools. The synthesized circuit is shown in Fig. 2.42. Because
the enable signal _e is active-low, an extra NOT gate is not required to
operate the active-low enabled tri-state buffers. The simulation of the
synthesized circuit with two test vectors is shown in Fig. 2.43.

FIGURE 2.42 A synthesized 4-bit tri-state buffer using the Altera Quartus
II design tool.

FIGURE 2.43 The simulation output of the 4-bit tri-state buffer in Fig. 2.42.

References
 1. Espresso,

http://diamond.gem.valpo.edu/~dhart/ece110/espresso/tutorial.html.
 2. SN54/74LS245 Octal Bus Transmitter/Receiver from 7400 chip

series.
 3. Xilinx FPGAs, http://www.xilinx.com/.
 4. Altera, http://www.altera.com.
 5. EasyFPGA, http://www.easyfpga.com/.
 6. Ducan Buel, Tarek El-Ghazawi, Kris Gaj, and Voldymyr

Kindratenko, “High-performace reconfigurable computing,” IEEE
Computer, March 2007, pp. 23–27.

http://diamond.gem.valpo.edu/~dhart/ece110/espresso/tutorial.html
http://www.xilinx.com/
http://www.altera.com/
http://www.easyfpga.com/

 7. LogicWorks, Digital design schematic tool, Pearson Publishing,
http://www.pearsonhighered.com/.

Exercises
 2.1 Evaluate f = x + yz for x = 1, y = 0, and z = 1 and for x = 1, y = 1,

and z = 0.
 2.2 Evaluate and x = 1 and for _c = 1 and x = 1

where _c is an active-low signal.
 2.3 Proof Demorgan’s theorem by creating truth tables for

 and g = + . Are the two truth tables identical?
 2.4 Proof Demorgan’s theorem by creating truth tables for

 and g = . Are the two truth tables identical?
 2.5 Draw the circuit schematic for f = x + yz and then convert the

schematic to NAND gates using the steps illustrated in the textbook.
 2.6 Evaluate f = (x + y)(+ z) for x = 1, y = 0, and z = 1 and for x = 1,

y = 1, and z = 0.
 2.7 Draw the circuit schematic for f = (x + y)(+ z) and then convert

the schematic to NOR gates using the steps illustrated in the
textbook.

 2.8 Given f = x + yz (an SOP expression) determine its equivalent
POS expression. Hint: First find the SOP of and then use the rule
“POS expression of f = Complement of the SOP expression of ”.

 2.9 Obtain the POS expression of f by applying the Dual Principle to
the SOP of where f = x + yz.

2.10 Suppose we would like to build function Y = 2X + 3 where X
denotes a 3-bit unsigned value (x2x1x0)2 and Y = y4..y0 is a 5-bit
value in hardware. Construct its truth table where input bits are x2,
x1, and x0 and output bits are y4 through y0. Then do the following
for output y2 (you may repeat this for the other outputs):
a. Determine the canonical SOP expression for output bit y2.
b. Write the min-terms for y2.

http://www.pearsonhighered.com/

c. Use K-map and find a minimal SOP expression for y2.
d. Draw a minimal NAND circuit for y2.
e. Compare the number of transistors required to implement the

canonical and the minimal SOP expressions.
2.11 Repeat Problem 2.10 but this time use POS expressions for y2.
2.12 Repeat Problem 2.10 b through d but this time use 3-bit 2’s

complement values for X and output y4.
2.13 Repeat Problem 2.12 b through d but this time use POS

expressions for y4.
2.14 Find a minimal SOP expression for each of the following functions

using K-maps:
a. f(w, x, y, z) = Σ(0, 2, 8, 10) + Σd(12, 14)
b. g(a, b, c, d) = Σ(5, 7, 13, 15) + Σd(6, 14)
c. h(w, x, y, z) = II(0, 2, 8, 10) + IId(12, 14)
d. t(a, b, c, d) = II(5, 7, 13, 15) + IId(6, 14)

2.15 Find minimal POS expressions for each of the functions given in
Problem 2.14.

2.16 Use Espresso software to generate the minimal SOP expressions
for all the output bits of function Y = 2X + 3 where X is a 4-bit
unsigned value less than 10. The X values 10 to 15 are ignored and
are treated as don’t cares.

2.17 Repeat Exercise 2.16 but use 4-bit 2’s complement values for –5 ≤
X ≤ 5 and don’t care for X ≤ –5 and X ≥ 5.

2.18 Given the function Y = X mod 7 where X = x3x2x1x0 is a 4-bit
unsigned input and Y = y2y1y0 is a 3-bit unsigned result, create a
truth table for Y and determine SOP and POS expressions for y2,
y1, and y0.

2.19 Use the logic minimization algorithm to determine a minimal SOP
expression for the output bit y0 of function Y = X – 3 where X =
x3..x0 and Y = y3..y0 are 4-bit 2’s complement numbers.

2.20 Use the logic minimization algorithm to determine a minimal SOP
expression for y = Σ(2, 3, 6, 9, 10, 13).

2.21 The prime implicants for f(a, b, c, d) = Σ(1, 3, 5, 7, 10, 11, 14, 15)
are d + ac and cd. The timing diagram for its minimal expression f
= d + ac is shown in Fig. 2.25. Draw the circuit for the non-minimal
f = d + ac + cd which includes all its prime implicants, and label its
internal signals. Draw a timing diagram for the new circuit when its
input change from acd = 111 to acd = 011. Does the circuit produce
a glitch?

2.22 The minimal POS expression for f(a, b, c, d) = (0, 2, 4, 6, 8, 9, 12,
13) has two essential prime implicants (a + d) and (+ c) and a non-
essential prime implicant (c + d).
a. Draw a timing for minimal f = (a + d)(+ c) when its inputs

change from acd = 000 to acd = 100. Does the circuit produce a
glitch?

b. Draw a timing for the non-minimal f = (a + d)(+ c)(c + d) when
its inputs change from acd = 000 to acd = 100. Note f includes all
its prime implicants. Is there a 1-hazard?

2.23 Design a two-input wired-OR gate (Hint: Use Demorgan’s
theorems.).

2.24 Determine a POS expression for the 2-to-1 MUX in Fig. 2.31.
2.25 Design an arbitrary function f(w, x) = Σ(0, 2) using a 4-to-1 MUX.
2.26 Use a 2-to-4 decoder to connect four modules each outputting one

bit to a one-bit bus. Only one module at a time can place data on
the bus. At times no module may be allowed to place data on the
bus. Show details.

2.27 Design a circuit for the 3-to-2 encoder in Fig. 2.35 using NAND
gates.

2.28 Suppose, the decoder in Problem 26 is able to activate each output
signal every 10 ns in a round-robin fashion and allow each module
to output 1 bit once every 10 ns. What is the peak rate of transfer
for each module in bytes? Also, what is the peak bus bandwidth?
Hint: Rate of transfer and bandwidth are measured in bytes per
second. Peak rate of transfers is the maximum number of bytes (in
KB, MB, etc.) a module can send per second. Peak bus bandwidth
is the maximum number of bytes a bus can transfer per second.

2.29 Create and simulate for all values of x, y, and z a Verilog model for
f = x + yz using:
a. A structural description with NOT, AND, and OR gates
b. A structural description with NOT and NAND gates
c. A structural description with delays using 1 ns delay for NOT and

NAND and 2 ns delay for AND and OR gates
d. A behavioral description using an “assign” statement
e. A behavioral description using an “always” statement

2.30 Create and simulate for all values of x, y, and z a Verilog model for
f = (x + y)(+ z) using:
a. A structural description with NOT, AND, and OR gates
b. A structural description with NOT and NOR gates
c. A structural description with delays using 1 ns delay for NOT and

NOR and 2ns delay for AND and OR gates
d. A behavioral description using an “assign” statement
e. A behavioral description using an “always” statement

2.31 For the cases below create and simulate a Verilog behavioral
description for a 1-to-4 MUX.
a. Use “if-else” statements
b. Use a “case” statement

2.32 For the cases below create and simulate a Verilog behavioral
description for a 2-to-4 decoder. Label signal names with correct
polarity (e.g., _x can be used to indicate an active-low signal and x
an active-high signal).
a. Active-high inputs and active-high outputs using an “always”

statement
b. Active-high inputs and active-low outputs using an “always”

statement
2.33 For the cases below create and simulate a Verilog behavioral

description for a 3-to-2 decoder. Label signal names with correct
polarity (e.g., _ x would indicate an active-low signal and x an
active-high signal).
a. Active-high inputs and active-high outputs using an “always”

statement

b. Active-low inputs and active-high outputs using an “always”
statement

CHAPTER 3
Combinational Circuits: Large

Designs

3.1 Introduction
The design techniques that were presented in the previous chapter
apply only to combinational circuits with a small number of inputs.
Combinational circuits that have many inputs must be designed
differently. For example, consider a combinational circuit with n = 32
inputs. Its truth table would have more than four billion rows—too large
to be designed using the techniques of Chap. 2. Moreover, large circuits
must meet design fan-in and fan-out requirements. This requires a top-
down methodology to repeatedly partition a large combinational circuit
design problem into smaller problems until the final set of design
problems is small enough to use the techniques learned in Chap. 2. The
larger circuit is then created by assembling the smaller circuit modules.

Circuits that perform four elementary arithmetic operations—addition,
subtraction, multiplication, and division—are examples of large
combinational circuits used in modern processors. Like software
solutions that may implement alternative algorithms with each requiring
different processing time and memory usage, large combinational

circuits may be implemented using a different amount of hardware (e.g.,
transistor count). A circuit solution with more transistors implies a higher
number of logic operations will be performed in parallel, which typically
means smaller circuit propagation delay, but also more power
consumption.

In general, more hardware implies less processing time. A CPU that
contains fast arithmetic modules is expected to execute programs faster;
a multicore processor is expected to perform tasks faster than a single-
core processor, etc.

In this chapter, we provide design examples of arithmetic circuits. In
particular, we discuss the design of a commonly known fast adder and
also present the design of a subtractor, a 2’s complement adder, an
arithmetic logic unit (ALU), a multiplier, and a divider. The chapter also
presents IEEE floating point (FP) number standards and arithmetic.

3.1.1 Top-Down Design Methodology
A top-down methodology, also known as hierarchical, refers to a design
flow, such as a tree, that consists of parent and leaf nodes. A large
design problem at the root node is successively partitioned into a set of
smaller design problems at the leaf nodes. The problem at the root is
first partitioned into smaller design problems as children nodes. The
design problem at each child node (now a parent node) is again divided
into yet smaller design problems, if necessary. The process continues
until each of the design problems at the leaf nodes is small and has
fewer inputs.

For each design problem at the leaf nodes, the techniques of Chap. 2
are applied to design a circuit. These circuits are then successively
combined to build the target large combinational circuit. A design may
require one or more copies of each smaller circuit. A final circuit must be
free from any fan-in and fan-out problems.

At each step in the design flow, various methods and algorithms are
examined, design tradeoffs such as circuit delay and gate counts are
analyzed, and the best solutions that meet the overall design
requirements are selected. In general, a bit-parallel or bit-serial design
partitioning technique (defined next) is applied at each parent node,
starting at the root node.

A partitioning is called bit-parallel when a design problem is
partitioned into smaller design problems, each a single function. For
example, the design of the combined AND/ADD circuit module that
generates the result of either an n-bit bitwise AND or an n-bit addition
can be viewed as three separate design problems: an n-bit bitwise AND,
an n-bit adder, and an n-bit 2-to-1 multiplexer (MUX), as illustrated for n
= 8 in Fig. 3.1. The MUX would select either the result generated by the
bitwise AND module or the sum generated by the adder. Even though
the bitwise AND, the adder, and the MUX are now associated with only
a single function, they are still too big to design using the techniques of
Chap. 2. Each of these modules must be further partitioned into yet
smaller design problems.

FIGURE 3.1 A top-down, bit-parallel and bit-serial design partitioning
example.

The bit-serial methodology is used to partition a design problem into
smaller problems, each requiring fewer inputs. For example, the design
of a large circuit with n-bit inputs can be partitioned into a k-bit input

design problem called a slice, with k (preferably) evenly dividing n. Each
slice may perform one or more functions, but only operates on fewer
bits. For instance, an 8-bit adder can be designed using 8 copies of a
full-adder (FA), or the 8-bit, 2-to-1 MUX can be designed using eight
copies of a 1-bit, 2-to-1 MUX. In the figure, the number next to each
node indicates the number of copies. The constant k is selected in such
a way that a k-bit slice would not violate the fan-in and fan-out limitations
of the gates used.

It is also possible to use the bit-serial methodology to design an 8-bit
AND/ADD module using eight copies of a 1-bit AND/ADD slice, four
copies of a 2-bit AND/ADD slice, etc., as illustrated in Fig. 3.2 for 1-bit
and 2-bit AND/ADD slices. In general, an n-bit module may be designed
using n 1-bit, n/2 2-bit, n/4 4-bit slices, etc. Each slice may also need to
output additional signals—for example, a carryout bit that would be used
by an adjacent slice when the ADD function is selected. For a minimum
propagation delay, a bit-serial slice is modeled with a truth table and
either designed as a minimized sum of product (SOP) or product of sum
(POS) circuit.

FIGURE 3.2 A top-down, bit-serial design partitioning example: (a) eight
1-bit slices; (b) four 2-bit slices.

Which design methodology, bit-parallel or bit-serial, to use in each
step of the design process will have an impact on the maximum

propagation delay of the resultant circuit and the total number of
required gates. This chapter presents the design of some commonly
used large combinational circuits.

3.2 Arithmetic Functions
Adding, subtracting, multiplying, and dividing are four basic arithmetic
functions. More complex functions such as square root, exponential,
sine, etc., that operate on floating-point (FP) numbers use the basic four
functions to produce outputs. As the number of transistors in an
integrated chip (IC) has increased over the years, more and more of the
arithmetic functions have been implemented in hardware. For example,
the earlier microprocessors only implemented addition and subtraction
functions, and the remaining functions were implemented in software.
Many calculators are still designed this way, where a small number of
functions are implemented in hardware and the rest in software. Modern
microprocessors typically include integer arithmetic circuits called an
integer unit (IU) and floating-point unit (FPU). Often, a modern
microprocessor includes multiple IUs and FPUs as well as integer and
floating-point single instruction multiple data (SIMD) units, discussed in
Chap. 1.

3.3 Adder
An n-bit integer adder inputs two n-bit numbers and an optional carry-in
bit (cin) to generate an n-bit sum and a final carryout bit (cout). As
illustrated in Fig. 3.3, starting from the right (i.e., the least significant bits
first), two bits and the previous carry-bit are added to generate a sum-bit
and a carry-bit (0 or 1) to be used with the next two bits. In the figure,
the initial cin is assumed to be 0. The algorithm repeats until the last two
bits are added and the final sum bit and the final carryout bit, cout, are
generated.

FIGURE 3.3 The illustration of a 4-bit binary addition.

In the figure, the first two bits (both 1) and cin = 0 are added to
generate 0 as the sum bit and 1 as the carry bit. The next two bits, again
both 1, and the previous carry-bit (1) are added to generate 1 for both
the next sum-bit and the next carry-bit. Other bits are similarly added.
This simple addition algorithm can be viewed as multiple 1-bit addition
steps, each an FA, as illustrated in Fig. 3.4 for the ith step. During each
step of the algorithm, two 1-bit inputs ai and bi and the previous carry-bit
ci–1 are added to generate the sum-bit si and the next carry-bit ci. For n
bits, the steps can be repeated n times for i = 0, 1, …, n – 1 with c–1 =
cin and cout = cn–1.

FIGURE 3.4 Viewing each binary addition step as an FA.

3.3.1 Carry Propagate Adder
An n-bit adder that implements the simple addition algorithm illustrated
in Fig. 3.4 is designed by connecting n FA slices in series, as shown in
Fig. 3.5. The carry-bits c0 through cn–1 are generated one at a time,
starting from the least significant carry-bit, similar to the way addition is
performed by hand. The adder is called a carry propagate adder (CPA)
because the carry-bits propagate from one FA slice to the next. The
adder is also called a ripple carry adder (RCA) because the carry-bits
ripple through the circuit as one carry-bit is fed to the next FA slice in a
chain.

FIGURE 3.5 An n-bit adder: (a) block diagram; (b) an n-bit CPA.

The CPA is the simplest circuit for an adder and has the longest
propagation delay that is proportional to the number of the carry-bits.
Each carry signal depends on the preceding carry signal; c0 depends on
c1, c1 depends on c0, c2 depends on c1, etc. Equation (3.1) is used to
estimate the propagation delay of an n-bit CPA, where ΔCPA(n)
represents the propagation delay of an n-bit CPA and the ΔFAc and
ΔFAs, respectively, stand for the carry and sum signal propagation
delays of an FA.

Equation (3.2) presents the propagation delay calculation for an n-bit
CPA using ΔNAND = 0.1 ns and for an FA, ΔFAc = 0.2 ns and ΔFAs =
0.3 ns, as given in Eq. (2.8) in Chap. 2 as SOP expressions. For n = 8,
ΔCPA(8) = 1.7 ns.

3.3.2 Carry Look-Ahead Adder
For large values of n, the propagation delay of a CPA would be
prohibitively long. The circuit would consist of a long carry-generate
chain. However, it is possible to use more gates and generate the carry-
bits independently and concurrently in less time. To illustrate this, two
signals, named propagate (p) and generate (g), are defined as follows
for the bit position i, for i = 0, 1, 2, …, n – 1.

Note that all the p and g bits can be generated at the same time and
in parallel using n XOR and n AND gates, respectively. Recall from Eq.
(2.9) (Chap. 2),

The substitution of Eq. (3.3) into Eq. (3.4) yields:

Equation (3.6) lists the logic expressions for the first three carry-bits
in terms of the p, g, and preceding carry-bits. The expressions clearly
illustrate the recursive dependency of the carry-bits.

It is possible to generate the carry-bits c1, c2, etc. in parallel if the
expression of each successive carry-bit is substituted in the expression
of the next carry-bit. This is illustrated next for carry-bits c1 and c2.

Both of the final expressions of c1 and c2 now depend on c–1 and thus
can be generated in parallel. Each expanded expression, however, will
require more hardware, including gates, with larger fan-in and fan-out
requirements, as compared to those required for implementing Eq. (3.6).

The p and g bits are used to identify certain bit patterns that can be
used to quickly determine a carry-bit for a block of inputs. The examples
in Fig. 3.6 illustrate this point using 3-bit inputs A = a2a1a0 and B =
b2b1b0. In example (a), p2, p1, and p0 are all 1; therefore, 1 as the carry
in (c–1 = 1) will propagate out as c2 = 1 because p2 p1 p0c–1 = 1 in Eq.
(3.7). In example (b), p2 = 1, p1 = 1, and g0 = 1; therefore, a carry-bit
generated at bit position 0 (i.e., a0 = 1 and b0 = 1, and thus g0 = 1) will
propagate out as c2 = 1 because p2p1g0 = 1. The remaining examples
illustrate other bit patterns that cause c2 to become 1. In example (c),
p2g1 = 1, thus c2 = 1, and in example (d), g2 = 1, thus c2 = 1.

FIGURE 3.6 Examples illustrating the concept of carry look-ahead adder.

The sum-bits s0, s1, and s2 are also generated in parallel, as
determined by their respective equations shown next, once the carry-
bits become available.

Figure 3.7 illustrates the circuit of a 3-bit carry look-ahead (CLA)
adder. The p and g bits are generated in parallel using three XOR and
three AND gates within 0.3 ns, the maximum of ΔXOR = 0.3 ns and
ΔAND = 0.2 ns, assuming 0.1 ns delay for a NAND gate. The circuit is
called a PG-unit (PGU). The p and g bits and the initial carry-in c–1 are
fed into a carry generate unit (CGU). The three carry circuits in the CGU
are independent and would in parallel generate all the carry-bits c0, c1,
and c2 within 0.2 ns, assuming the circuits are implemented with NAND

gates. Using another set of XOR gates, the final sum-bits are also
generated in parallel using the p and the carry-bits as inputs. These
XOR gates are combined into a module called a sum-unit (SU).

FIGURE 3.7 A 3-bit CLA with carry-bits c0, c1, and c2 generated in
parallel.

An 8-bit CLA with carry-bit c0 through c7 is still small enough that the
design will not violate the fan-in and fan-out limitations of the gates. In
this case, the circuit that implements the carry-bit ci uses gates with fan-
in ≤i + 2. The delay of the CLA(8) would be 0.8 ns, as determined by Eq.
(3.8), using 0.1 ns delay for a NAND gate. The CLA(8) is more than two
times faster than the CPA(8); however, its implementation would require
more hardware.

An alternative CLA circuit uses AND gates for g bits, OR gates for p
bits, and FAs for the sum bits [1].

Large CLA Adder
For large values of n (e.g., n > 8), the successive substitution of the
carry expressions, as it was illustrated in Eq. (3.7) for the carry-bits c1
and c2, would eventually result in long carry expressions, and thus the
corresponding circuits would require gates with large fan-in numbers. In
addition, some of the gates, such as the XOR gates that generate the p
signals, require large fan-out values, as the p’s are the inputs to multiple
carry-generate circuits in the CGU, as well as the sum circuits in the SU.
Therefore, when n is a large number (e.g., 32 or 64 bits), a different
method is used that limits the fan-in and fan-out requirements of each
circuit module.

In this case, the carry expressions are grouped into different sets so
that the maximum fan-in and fan-out of the gates in the corresponding
circuits are within an acceptable range. For simplicity, this is illustrated
for n = 8. The carry expressions of a CLA(8) are grouped into three sets,
as illustrated in Eq. (3.9). An expression in each of the sets has fewer
than three logic terms and fewer than three variables. The
corresponding circuits would have fan-in ≤3 and fan-out ≤2. For
example, for c1 in set 1, the circuit would have a maximum fan-in = 3
and a maximum fan-out = 2 due to signal p0. The carry expressions in
each set are data independent; thus, the carry-bits can be generated in
parallel as soon as the inputs, including the carry-in signals, are

available. For the expressions in set 1, c–1 is the carry-in bit; in set 2,
carry in is c2; and in set 3, carry in is c5.

Among the carry-in signals c–1, c2, and c5, the carry-in bit c–1 is a
primary input, while the other two must be generated. They are defined
in Eq. (3.10) and grouped as set 4.

Note that the expressions of c2 and c5 are data independent when
they are written in terms of the p* and g* signals. The p* and g* signals
are also data independent and are defined in terms of p and g signals.
Also, the final expressions of c2 and c5 are similar to those in sets 1 to 3,
except that these expressions require p* and g* signals as inputs. The *
in a p* implies a carry propagation within a block of bits. Likewise, the *
in a g* implies a carry generation and propagation within a block of bits.
When a p* = 1, it implies that a 1 as the carry bit entering the block will
be propagated as 1 for the carryout. Likewise, when a g* = 1, it implies a
carry of 1 generated within the block will be propagated out as the
carryout.

The carry bits of set 1 depend on the carry bit c–1 and the p and g
signals; thus, they can all be generated in parallel as soon as the p and
g bits are available. The carry-bits of set 4 also depend on c–1 and can
be generated in parallel as soon as the p* and g* bits are available. Note
that since all the p* and g* bits can be generated at the same time and

when c0 and c1 are generated, they are moved into sets 1 to 3, as
shown in Eq. (3.11).

A detailed block diagram of the 8-bit CLA is illustrated in Fig. 3.8. All
the eight carry-bits c0 through c7 are generated in three steps, as
follows:

1. The carry-bits c0 and c1 in set 1 and all the p* and g* bits in sets 1,
2, and 3 are generated first.

2. Next, the carry-bits c2 and c5 of set 4 are generated.
3. Finally, the carry-bits c3, c4, c6, and c7 of sets 2 and 3 are

generated.

FIGURE 3.8 An 8-bit CLA using BCGUs. Signals p8 and g8 are set to 0.

The circuit that implements the expressions in each of the sets 1 to 3
is called a block carry generate unit (BCGU). The circuit that implements
the expressions in set 4 is still a CGU. Once all the carry-bits are
generated, c–1 to c6 and p0 to p7 are fed to the SU to generate all the
sum-bits s0 to s7 in parallel.

For a large n (e.g., n = 32 or 64), the circuit for a CLA(n) is the same
as the one shown in Fig. 3.8 for CLA(8). Except that when n is a large
number, the carry-bits must be sliced into multiple sets such that there
are no BCGU or CGU fan-in and fan-out violations. Based on the design
shown in Fig. 3.8, Eq. (3.12) estimates the propagation delay of a
CLA(n), assuming 0.1 ns delay for a NAND gate.

A large CLA adder is a lot faster than an equivalent CPA, but requires
more hardware. Alternatively, one may design a hybrid adder that is
partly a CLA adder and partly a CPA. A hybrid adder would be faster
than a CPA but slower than a CLA adder. For example, a 16-bit hybrid
adder may be designed using two CLA(8) slices, where the carry-bit c7
from the first slice is fed as carry-in to the second slice. The resultant
16-bit adder would be faster than a CPA(16) but slower than a CLA(16)
and would require fewer hardware to implement than a CLA(16).

HDL Model
Examples 3.1 to 3.6 present a Verilog description of an 8-bit CLA using
a PGU, three BCGUs, a CGU, and an SU. Both the behavioral and
structural models are used to design the adder.

Example 3.1. A structural description of an 8-bit CLA adder:

Example 3.2. A structure model of an 8-bit carry-generate module using BCGUs and a
CGU:

Example 3.3. A behavior description of a 3-bit BCGU:

Example 3.4. A behavior description of a 2-bit CGU:

Example 3.5. A behavior description of an 8-bit PGU:

Example 3.6. A behavior description of an n-bit SU:

3.4 Subtractor
A subtractor generates the difference D of its two inputs X and Y using
one of the two methods illustrated in Fig. 3.9 for 4-bits [2]. In method (a),
each time that xi < yi, a 1 as a borrow is subtracted from xi+1 (the next

higher bit) if xi+1 > 0 and a 2 is added to xi. If xi+1 = 0, a borrow comes
from the next higher bit xi+2 if xi+2 > 0 and a 2 is added to xi+1. Again, if
xi+2 = 0, the borrow comes from xi+3 and a 2 is added to xi+2, and so on.
This process recursively continues until xi ≥ yi, and di = xi – yi result in a
0 or 1. In the figure, x0 = 0 is less than y0 = 1; thus, a borrow from x1 is
needed. However, since x1 = 0, a 1 is borrowed from x2. The remaining
bits are handled in the same way. This example does not produce a 1 as
borrow out since X = 12 = (1100)2 is greater than Y = 3 = (0011)2 and
thus D = 12 – 3 = 9 = (1001)2.

FIGURE 3.9 Illustrating unsigned subtraction: (a) borrow method; (b)
credit method.

In method (b), each time that xi < yi, a 1 as a credit is added to yi+1
(the next higher bit) and a 2 is added to xi to produce di = xi – yi as a 0
or 1. In the example, x0 = 0 is less than y0 = 1; thus, a 1 as a credit is
added to y1, making y1 = 2, and a 2 is added to x0, also making it 2. At
this point, d0 = x0 –y0 is 1 (2 – 1 = 1). Next, x1 = 0 is less than y1 = 2;
thus, again, a 1 as credit is added to y2, making it 1, and a 2 is added to
x1, also making it 2. This results in d1 = 2 – 2 = 0. The remaining bits are
handled in the same way to produce the final D = 9 = (1001)2.

An n-bit borrow propagate subtractor (BPS), similar to an n-bit CPA,
is designed using n copies of a 1-bit subtractor slice. Each of the slices
inputs one bit from X, one bit from Y, and a borrow/credit bit (0 or 1) and
outputs one bit difference and the next borrow/credit bit, as illustrated for
the ith bit. An n-bit BSP is illustrated in Fig. 3.10.

FIGURE 3.10 An n-bit BPS: (a) its block diagram; (b) its detailed block
diagram.

Borrow and credit subtraction algorithms are described next for the ith
bit. Note that the equation for difference bit d[i] is the same in both
algorithms, except that parentheses are used to enforce precedence
and thus illustrate the concept of borrow in method (a) and credit in
method (b).

Subtraction Algorithms
Method (a): Borrow (parentheses illustrate how borrow is used)

Table 3.1 and Eq. (3.13) show the truth table and logic expressions
for a 1-bit subtractor slice. The truth table is easily determined using one
of the two subtraction algorithms discussed earlier. Note that the
difference and borrow (credit) expressions are similar to the sum- and
carry-bit expressions of an FA. Alternatively, a borrow-look-ahead (BLA)
subtractor can be created using the techniques to design a CLA.

TABLE 3.1 The Truth Table for a 1-Bit Subtrator (Sub)

3.5 2’s Complement Adder/Subtractor
For signed arithmetic, the values are either positive or negative 2’s
complement numbers. The subtraction of two n-bit numbers (A)2s and
(B)2s can be interpreted as the sum of (A)2s and (–B)2s, as illustrated
next, where (B)1s is used here to indicate the 1’s complement of B
obtained by simply inverting each bit.

2’s complement subtraction algorithm:

2: Discard the carryout bit.
Figure 3.11 illustrates the 2’s complement subtraction algorithm. The

“+ 1” is implemented by using a 1 for the carry in.

FIGURE 3.11 Illustrating 2’s complement subtraction.

Likewise, the following algorithm describes an n-bit 2’s complement
addition. In this case, the input B is used as-is (unchanged) and the
carry in is set to 0.

2’s complement addition algorithm:

 2: Discard the carryout bit.
A 2’s complement arithmetic generates an n-bit 2’s complement

output, except that the carryout is ignored and is not counted as part of
the final result. However, the result may overflow. For instance, consider
subtracting a 1 from the smallest n-bit 2’s complement negative number,
or adding a 1 to the largest n-bit 2’s complement positive number. In
both cases, the resultant difference and the sum will exceed the ranges
defined for the n-bit negative and positive 2’s complement numbers.

When both A and B are 2’s complement positive numbers, their sign-
bits are 0. In this case, in order for the quantity A + B not to overflow, the
carry-bit that is added to the sign-bits must be 0. This will also produce 0
as the carryout; otherwise, there will be an overflow. For example,
consider examples (a) and (c) in Fig. 3.12. In example (a), A = (0111)2s
= 7 and B = (0001)2s = 1 are both positive 2’s complement numbers,

and in addition, A is the largest 4-bit positive number. As shown in the
figure, when B = 1 is added to A = 7, the result is (1000)2s = –8, a
negative number, which indicates an overflow. Note that, in this case, c3
= 1 and when it is added to the sign-bits, both 0, this makes the sign of
the resultant sum 1 (negative) and carryout c4 = 0 ≠ c3 = 1. For the
overflow not to occur, both c3 and c4 must be 0 when adding two
positive 2’s complements numbers.

FIGURE 3.12 Examples of 2’s complement arithmetic.

In example (c), when two negative numbers A = –1 and B = –2, both
with sign-bits equal to 1, are added, the quantity A + B will not overflow
if c3 = 1 generates c4 = 1. Otherwise, the result will overflow, resulting in
a positive number for the result. Therefore, the conclusions from

examples (a) and (c) is that when c3 = c4, the resultant sum will not
overflow, regardless if both A and B are positive or negative 2’s
complement numbers.

Examples (b) and (d) illustrate subtraction. In this case, the quantity A
–B is computed as A + (B)1s + 1. In example (b), when B = 1 (a positive
number) is subtracted from A = –8 (the smallest 4-bit negative 2’s
complement number), c3, which is 0, when added to the sign bits (both
1), generates 7 (an incorrect value). Note that c4 = 1 ≠ c3 = 0. In
example (d), both A = –1 and B = –2 are negative 2’s complement
numbers and when subtracted, the result should never overflow. Note
that in this case, c3 = 1 is the same as c4 = 1 (i.e., again, c3 = c4). The
subtraction of two positive numbers also should never result in an
overflow.

Table 3.2 presents the truth table for the overflow signal ovf for an n-
bit 2’s complement adder/subtractor. The carry-bit cn–2 is added to the
sign bits to generate the final carryout cn–1. Equation (3.14) defines the
overflow signal.

TABLE 3.2 Truth Table for Arithmetic Overflow Signal

Figure 3.13 shows two block diagrams: (a) a 2’s complement adder,
and (b) a 2’s complement subtractor. The two block diagrams differ only
in the way the input (B)2s and the initial carry-in bit are handled. In Fig.
3.13(a), the input B is added to A as-is, unchanged. In Fig. 3.13(b), the
input B is first bitwise NOTed before it is added to A. Therefore, it is
possible to combine the two block diagrams into a single

adder/subtractor module using only one adder module. An inverter
module is used to output either B when adding, or bitwise NOT of B,
denoted as E = en–1... e1e0 equals to the 1s complement of B or (B)1s,
when subtracting. A mode signal m is used to perform either addition
when m = 0 (carry in is 0) or subtraction when m = 1 (carry in is 1).

FIGURE 3.13 2’s complement adder and subtractor block diagrams: (a)
adder block diagram; (b) subtractor block diagram that also includes an
adder module.

Table 3.3 presents the truth table of a 1-bit inverter slice. The final
combined design is illustrated in Fig. 3.14, where m also serves as the
initial carry-in value. Note that this module with m connected to the
carry-in input cannot be used to design a bit-serial larger
adder/subtractor circuit. For that, you must use a separate input for
carry-in.

TABLE 3.3 Truth Table of a 1-Bit Inverter

FIGURE 3.14 2’s complement adder/subtractor data path.

3.6 Arithmetic Logic Unit
An ALU is included in every processor and performs not only integer
arithmetic, but also bitwise logic functions such as bitwise AND and OR.
An ALU is used in the execution of integer arithmetic and logic
instructions.

Example 3.7. Design an n-bit, seven-function ALU that performs add, subtract,
increment, decrement, and bitwise AND, OR, and NOT. A 3-bit function code F = f2f1f0
is used to select an ALU operation as specified in Table 3.4. The ALU also outputs

overflow flag ovf when it performs an arithmetic operation (F = 0, 1, 2, or 3). F = 7 is
not used in this design, and when selected, the ALU may perform an unknown
operation. The details of bit-parallel and bit-serial designs are discussed next.

TABLE 3.4 A List of ALU Functions, F = f2f1f0

Figure 3.15 illustrates the top-level block diagram of the ALU. Each of
the input values A and B and result value R is interpreted as a 2’s
complement number when F specifies an arithmetic operation. Signal
ovf indicates an arithmetic overflow when asserted. Step-by-step bit-
parallel and bit-serial ALU designs are discussed in the following
sections.

FIGURE 3.15 An ALU example.

3.6.1 Design Partitioning: Bit-Parallel

The ALU is considered a large combinational circuit when n is large.
Using the top-down bit-parallel design methodology discussed earlier,
the functions of the ALU are first partitioned into arithmetic and logic
operations. The circuits for the four arithmetic operations add, subtract,
increment, and decrement are combined into a single arithmetic module
in the ALU data path shown in Fig. 3.16. The three bitwise operations
are implemented using AND, OR, and NOT gates. An 8-bit, 4-to-1 MUX
selects one of the outputs W, X, Y, and Z as the ALU output.

FIGURE 3.16 A data path for the ALU of Example 3.1.

In the ALU data path, the A and B inputs are both connected to the
arithmetic and the three bitwise modules. These modules
simultaneously operate on inputs A and B, and each generates a result,
but only one must be selected as the final output of the ALU. Therefore,
when F specifies a logic operation, it is still possible for the arithmetic
module to assert ov_flag depending on the values of A and B at the

time. However, in such cases, the overflow signal should be masked
and not output as asserted ovf by the ALU. This is done using the Mask
module.

The data path also includes a Map module that translates a given
ALU function code F to internal signals s0, s1, s2, m, and msk in the ALU
data path. The design of the ALU is complete when all its modules are
designed and interconnected.

The 4-to-1 MUX in the data path selects and outputs one of the four
n-bit results generated by the arithmetic and the three bitwise modules.
The Mask module sets the ovf to 0 (not active) if F indicates a logic
operation (F = 4 to 6); otherwise, ovf is set to ov_flag, an output of the
arithmetic module.

If necessary, the top-down design methodology is successively
applied to partition all the larger modules in the data path to smaller
circuit modules until each of the lowest-level circuit modules is small and
requires fewer inputs. The design techniques presented in Chap. 2 are
then used to design each small circuit module. The bitwise logic
modules are designed using n 2-input AND, n 2-input OR, and n NOT
gates. These modules generate n-bit values X = xn–1…x0, Y = yn–1… y0,
and Z = zn–1…z0, respectively, as shown in the figure, where the ith bit in
each case is defined as follows:

As an example, Fig. 3.17 illustrates the circuit of a 4-bit bitwise AND.
When A = a3a2a1a0 = (1011)2 and B = b3b2b1b0 = (1101)2, X = x3x2x1x0
= (1001)2 is determined as x0 = a0.b0 = 1.1 = 1, x1 = a1.b1 = 0.1 = 0, etc.
Other bitwise logic modules are similarly designed.

FIGURE 3.17 A 4-bit bitwise AND and its corresponding logic circuit.

The design of a small multiplexer circuit was discussed in Chap. 2.
The ALU requires an n-bit, 4-to-1 MUX that can be designed in one of
two ways as follows:

1. Use n copies of a 1-bit, 4-to-1 MUX.
or

2. Use n-bit, 2-to-1 MUXs. An n-bit, 2-to-1 MUX is designed using n
copies of a 1-bit, 2-to-1 MUX, as illustrated in Fig. 3.18.

FIGURE 3.18 An n-bit, 2-to-1 MUX: (a) block diagram; (b) designed using
1-bit, 2-to-1 MUX slices.

Option 2 has the advantage of extending the design to any n-bit, k-to-
1 MUX without running into any fan-in and fan-out problems. Table 3.5
shows a minimized truth table of an n-bit, 4-to-1 MUX. The s1 signal
selects either W or X if it is 0, or Y or Z if it is 1. On the other hand, the
s0 signal selects either W or Y if it is 0, or X or Z if it is 1. Thus, it is
possible to apply the process of elimination and use three 2-to-1 MUXs
to design a 4-to-1 MUX, as illustrated in Fig. 3.19 for n bits. For
example, when s1s0 as a 2-bit number is 2 (i.e., s1 = 1 and s0 = 0), the
top two 2-to-1 MUXs correctly choose the two possible input candidates

W and Y, and the bottom 2-to-1 MUX correctly chooses the input Y as
the final output. This is illustrated in the figure.

In general, the previous approach requires log2k levels of 2-to-1
MUXs. Equation (3.15) is used to estimate the propagation delay of a k-
to-1 MUX designed using 2-to-1 MUXs.

TABLE 3.5 Simplified Truth Table of an n-Bit, 4-to-1 MUX

FIGURE 3.19 An n-bit, 4-to-1 MUX designed using n-bit, 2-to-1 MUXs.

For example, an 8-to-1 MUX would require three levels of 2-to-1
MUXs, and a 64-to-1 MUX would require six levels of 2-to-1 MUXs. The
number of levels and thus the total delay could be reduced if a
combination of different MUXs is used. For instance, an 8-to-1 MUX can
also be designed using a combination of 2-to-1 and 4-to-1 MUXs. In this
case, a 4-to-1 MUX would be designed as an AND-OR (SOP) or OR-
AND (POS) circuit to minimize its propagation delay.

The inputs to the arithmetic module are two n-bit 2’s complement
numbers A and B and two control signals m and s2, as illustrated in Fig.
3.20 for n = 8. The arithmetic module has two outputs: an n-bit 2’s
complement W and an (active-high) overflow signal ov_flag. Table 3.6
lists the specific values of signals m and s2 for operating the arithmetic
module. The m signal selects either add or increment, if it is 0, or
subtract or decrement, if it is 1. The s2 signal that controls the 2-to-1
MUX selects either B when adding or subtracting or the 8-bit value
(00000001)2 when incrementing or decrementing. The signal ov_flag is
asserted if W overflows.

FIGURE 3.20 The detailed block diagram of the arithmetic module; the
result is A + B, A − B, A + 1, or A − 1.

TABLE 3.6 Operating Signal Values for the ALU’s Arithmetic Module

The truth table and the circuit for the Mask module are given in Fig.
3.21. The module outputs ovf = 0 when msk = 1, masking the ov_flag
generated by the arithmetic module; it outputs ovf = ov_flag when msk =
0.

FIGURE 3.21 The overflow signal-masking module: its truth table and
logic circuit.

Table 3.7 presents the truth table for the Map module. Some of the
control signals in the table, except the msk, can be don’t-cares (d). For
example, when F specifies a logic operation (i.e., F = 4 to 6), output W
from the arithmetic module will never be selected as the ALU output.
Therefore, the control signals m and s2 can both be don’t-cares to
minimize the circuit size. However, signal ov _ flag must be masked so it
won’t be output as ovf from the ALU. The circuit for Map is shown in Fig.
3.22.

TABLE 3.7 The Truth Table for the ALU Map Module

FIGURE 3.22 The circuit for the ALU map function.

In addition, because no operation is assigned to F = 7, all the control
signals, except the msk, can be considered as don’t-cares when F = 7.
However, because the Map circuit in Fig. 3.22 generates s2 = 0, s1 = 1,
s0 = 0, m = 1, and msk = 1 when F = 7 and these signal values

correspond to bitwise OR, the ALU is said to perform a bitwise OR when
F = 5 or 7.

3.6.2 Design Partitioning: Bit-Serial
A bit-serial design, as opposed to a bit-parallel design, requires the input
data bits divided into slices. For a bit-serial ALU design, each ALU slice
would operate on a fraction of the data bits but perform all the ALU
functions. For example, Fig. 3.23 illustrates a bit-serial ALU designed
using n copies of a 1-bit ALU slice. Table 3.8 presents the truth table of
the 1-bit ALU slice. For inputs not shown in the table, the r and co
signals are considered zero. In addition, in order for the increment and
decrement operations to work correctly, the carry-in signal c–1 must be
1. This requires that the Inc/Dec module in the figure must generate c–1
= 1 when the ALU function code F is either 2 (increment) or 3
(decrement); that is,

FIGURE 3.23 One-bit ALU slice and n-bit ALU designed from the 1-bit
slices.

TABLE 3.8 The Truth Table of a 1-Bit ALU Slice

Note that because the ALU performs no operations when F = 7, the
corresponding table entries are set to don’t-cares. The truth table is too
big to be minimized manually. The Espresso-generated essential prime
implicants are listed next. Although no specific function was defined for
F = 7, the 1-bit ALU slice outputs 1 when F = 7. Therefore, an 8-bit bit-
serial ALU would output eight 1s or (11111111)2 = 0xFF when F = 7.
Note that the output 0xFF may also be interpreted as 8-bit 2’s
complement number for –1. Table 3.9 presents the final list of the bit-
serial ALU operations where ALU outputs –1 when F = 7.

TABLE 3.9 The Final List of ALU Functions Performed by an n-Bit Bit-Serial ALU
Using 1-Bit ALU Slices

The essential prime implicants of the 1-bit ALU slice:

In general, a bit-serial design may be advantageous if the word sizes
are nonstandard (e.g., 256- or 1024-bit operands used by a bit-serial
encryption hardware), or the equivalent bit-parallel design would require
prohibitively more hardware or creates less concurrency compared to
bit-serial.

3.7 Design Examples
In addition to combinational circuits that perform integer addition and
subtraction operations discussed earlier, the following subsections
present the design of combinational integer multiplier and divider
circuits. The basic arithmetic operation for a multiplier is addition and for
a divider is subtraction. However, some multiplier and divider algorithms
use both addition and subtraction operations. A 2’s complement
multiplier using addition and subtraction operations is discussed in
Chap. 6.

3.7.1 Multiplier
Figure 3.24 illustrates the multiplication of the 4-bit unsigned multiplier B
= b3b2b1b0 and the 4-bit unsigned multiplicand A = a3a2a1a0. Each
multiplication step generates an addend. In the figure, the values
(1001)2, (1001)2, (0000)2, and (1001)2 are four addends generated,
respectively, by ANDing b0, b1, b2, and b3 with the bits of A. Each new
addend is shifted left k – 1 times, where k is the multiplication step. As
illustrated in the figure, the four addends are shifted left, in order, by 0-,
1-, 2-, and 3-bits before they are added to produce the final product P.

FIGURE 3.24 A 4-bit unsigned binary multiplication example.

One way to design a combinational n-bit multiplier circuit, such as the
one illustrated in Fig. 3.25 for n = 4, is to use n – 1 n-bit adders and n n-
bit bitwise AND modules. The design is straight forward and is based on
the steps illustrated in Fig. 3.24. The design, however, has a long
propagation delay because, except for the first two addends, the
remaining addends are added one at a time, creating long signal paths
from the input to the final output signals.

FIGURE 3.25 A 4-bit unsigned multiplier using n-bit adder modules.

Alternatively, one can use FA slices to add the addends, one column
at a time. When connected, the FA slices create a two-dimensional
structure called an array multiplier. Figure 3.26 illustrates a 4-bit array
multiplier using six columns of FAs. The sum of the addends is
determined one column at a time, similar to how one adds several
numbers by hand. In the figure, an addend is represented by its
individual bits as aibj where ai is the ith bit of the multiplicand A and bj is
the jth bit of the multiplier B. Each of the product bits is the 1-bit final
sum generated by a chain of FAs organized in a column. In each

column, the unused inputs are connected to 0. The last product bit p7 is
equal to the final carryout bit from the last FA column.

FIGURE 3.26 A 4-bit array multiplier using an array of FAs.

In the figure, the FAs at the bottom row create a CPA, which may be
replaced by a CLA adder to minimize the total propagation delay of the
multiplier.

3.7.2 Divider
Figure 3.27 illustrates the steps to divide a 4-bit unsigned dividend
(numerator) N = n3n2n1n0 = 4’b1011 by a 4-bit divisor (denominator) D =
4’b0010 to generate the 4-bit quotient Q = q3q2q1q0 = 4’b0101 and the
4-bit remainder R = 4’b0001. The N is padded with n – 1, or in this case,
with three zeroes from the left; that is, the starting dividend becomes
{000, N}, where {} is used here to indicate concatenation. In each step,
the divisor D is subtracted from the higher n bits of the dividend,
denoted as Ak, during the division step k. If D ≤ Ak, the corresponding
quotient bit is 1; otherwise, the quotient bit is 0.

FIGURE 3.27 A restoring division example.

The steps illustrated in the figure are known as the restoring
division algorithm because every time that the Ak < D (e.g., A3 =
4’b0001 < D = 4’b0010) and thus the difference Ak –D < 0, the Ak, not
the remainder Rk = Ak –D, is used to start the next division step—thus,
the name “restoring.” In this case, the lower n – 1 bits from Ak is
concatenated with the next bit in N to make up the next n-bit dividend
Ak-1. Specifically, for n = 4, the steps to divide {000, N} by D and
generate the 4-bits Q and 4-bits R, as illustrated in the figure, are as
follows:

1. R3 = A3 –D (4’b0001 – 4’b0010 = 4’1111) results in R3 = –1 and
thus borrow-out = 1 (i.e., bo3 = 1) and q3 = 0.

2. R2 = A2 –D (4’b0010 – 4’b0010) results in R2 = 0 and thus bo2 = 0
and q2 = 1.

3. R1 = A1 –D (4’b0001 – 4’b0010) results in R1 = –1 and thus bo1 = 1
and q1 = 0.

4. R0 = A0 –D (4’b0011 – 4’b0010) results in R0 = 1 and thus bo0 = 0
and q0 = 1. The final remainder is R0 = 4’b0001.

Figure 3.28 illustrates the data path of a 4-bit bit-parallel restoring
divider. A subtractor, a NOT gate, and a MUX are needed to implement
each division step. The subtractor computes Rk = Ak –D and generates
the bok. The NOT gate generates the quotient bit as The MUX is
used to select either Ak or Rk using the quotient bit qk. Equation (3.16)
estimates the propagation delay for each division step.

FIGURE 3.28 A 4-bit “restoring” divider data path.

An array divider, similar to an array multiplier, can be designed using
an array made of 1-bit divide slices. Each slice would perform a
combined subtractor-MUX function. The combined function can be
translated into a truth table for minimal SOP or POS expressions (refer
to the Exercise section for more details).

For a large n, an arithmetic function designed as a combinational
circuit may require a prohibitively large number of gates. This is
especially true when the algorithm, such as that of the multiplier and
divider, is repetitive and can alternatively be implemented iteratively. For
example, instead of using four subtractors, four MUXs, and four NOT
gates to implement a 4-bit restoring divider, as shown in Fig. 3.28, one
can use only one subtractor, one MUX, one NOT gate, and a set of
registers to generate the four quotient bits in four steps. The results of
each step would be saved in the registers. However, a repeated use of a
hardware module requires some extra hardware to control the timing of
each step, and would slightly increase the total time required to produce
the final result. The design of such circuits is discussed in Chap. 6.

3.8 Real Number Arithmetic
The representation of real numbers as FP numbers was briefly
discussed in Chap. 1. Table 3.10 presents, as an example, three
different representations of 3-bit exponent values as 2’s complement
signed numbers, as biased numbers with bias = 3, and as biased
numbers with bias = 4. The exponent range for each of the three
representations, respectively, are –4 to +3, –3 to +4 when the bias = 3,
and –4 to +3 when the bias = 4.

TABLE 3.10 The List of 3-Bit Signed vs. Biased Exponent Values

In general, with biased exponents, the designers have more freedom
when deciding which set of real numbers to represent in a computer
system. Note that, in this case, the highest positive exponent is 4 when
bias = 3 vs. 3 when bias = 4. Likewise, the smallest negative exponent
is –3 when bias = 3 and –4 when bias = 4. This implies that with bias =
3, there would be more real numbers > |1| (absolute values) that can be
represented as FP numbers, but more real numbers < |1| (again
absolute values) that would be represented as FP numbers when bias =
4.

3.8.1 Floating-Point Standards
The IEEE 754 standards [3] include three types of FP representations
known as single, double, and double extended. Table 3.11 lists the
exponent and fraction sizes of each type. Both the single and double FP
numbers have in-memory, or external, representation with 23 and 52
fraction bits, respectively, and also in-register, or internal, representation
inside the FPU with 24 and 53 fraction bits, respectively. The double
extended representation has a 64-bit fraction and is used to increase the
accuracy of FP arithmetic. The fractions are represented as signed

magnitude numbers, using a separate bit for the sign bit. There is no
external (in-memory) representation for the double extended data type.

TABLE 3.11 IEEE 754 FP Standards

In addition, the IEEE standards group FP numbers into five data
classes, listed here for the single data type:

• Zero
• Denormal with 23-bit fraction
• Normal with 24-bit fraction (only 23 bits are stored in memory)
• Infinity
• NaN (not-a-number), which indicates an invalid FP number or

operation

Equation (3.17) presents the relationship between the unbiased
exponent e and the biased exponent E. The format of a representable
single or double normal FP number is 1.F×2E with an explicit 1 before
the decimal point; however, the 1 is not stored in memory. The F is the
external (in-memory) fraction, and 1.F is the internal (in-register)
fraction. A denormal FP number is defined as 0.F×2E with an explicit 0
before the decimal point.

Table 3.12 presents the ranges for each of the data classes. In the
table, the quantities emin and emax indicate the actual (not biased)
exponent range for the normal FP numbers.

TABLE 3.12 IEEE FP Data Classes

For example, assuming 3-bit biased exponents with bias = 3, Eq.
(3.18) defines the E and F values for each of the data classes.

3.8.2 Floating-Point Data Space
A FP data space refers to all the real numbers that can be represented
as FP numbers in a computer system. Figure 3.29 displays an FP data
space using the positive real axis. The dotted horizontal line between 0
and 2e

min (not including 0 or 2e
min) indicates the denormal data space.

The thin and bold vertical lines indicate the specific real numbers that

can be represented as FP numbers when fractions are only 2-bits each.
The more fraction bits there are in the representation, the more real
numbers can be represented as FP numbers.

FIGURE 3.29 An FP data space with 2-bit fractions.

For instance, in the single precision representation, the 8-bit unbiased
exponent rage is from emin = –126 to emax = 127 with bias = 127. Each
fraction is 23-bits. Its data space would have 222 – 1 thin lines between
each pairs of the bold lines. The data space of the double precision
representation would have 252 – 1 thin lines between each pair of bold
lines.

Figure 3.30 displays the list of positive real numbers that can be
represented as 6-bit FP numbers using 1-bit for sign, 2-bits for a
fraction, and 3-bits for an exponent with bias = 3. As shown in the figure,
17 real numbers ranging between 0.25 and 14.0 (inclusive) can be
represented with the 6-bit FP format. The FP numbers between 0 and
0.25 (exclusive) would be considered denormals.

FIGURE 3.30 Real numbers represented as 6-bit FP numbers with 2-bit
fractions and 3-bit exponents with bias = 3.

Example 3.2. Determine the external (in-memory) single precision FP representation
of real number +10.75.

Solution: First, the number is converted into binary. Then the
representation is converted into its scientific format in binary.

The result is a 32-bit number created from concatenating the 1-bit sign = 0, the 8-bit
biased exponent E = 130 = (10000010)2, and the 23-bit fraction F = (010110….0)2 as
follows:

Or, 0x412C0000 in hex. The 1 in the 1. F format is not stored in memory.

Other than the sign bit, the representation of negative and positive FP
numbers is the same. Negative FP numbers have a 1 as the sign bit. As
an example, the single precision FP in-memory representation of –10.75
is 0xC12C0000.

Two-Dimensional Display
Alternatively, another way to display an FP data space is to use
rectangular regions [4], as illustrated in Fig. 3.31 for the single precision.
A separate two-dimensional display is shown for each positive and
negative FP data spaces. In the figure, the x-axis is arbitrarily selected
to represent the exponent values and the y-axis to represent fraction
values. A different scale is used in each of the axes.

FIGURE 3.31 Two-dimensional display of the single precision FP data
space.

When compared to the one-dimensional display in Fig. 3.29, it is
easier with the two-dimensional display to identify the location of a
special FP number or the domain and/or the range for an FP function,
such as cosine. For instance, the range for the cosine function is all the
representable FP numbers between 0 and 1.0, inclusive. A function’s

domain and range may be used, for example, to generate test vectors
for an FPU [4]. Figure 3.32 illustrates the location of few sample FP
numbers in the two-dimensional FP data space.

FIGURE 3.32 Examples of the single precision FPNs.

The smallest positive normal FP number is marked as item 1 in the
figure and is located at the bottom-left corner of the positive normal
region with E = 1 and F = 0. The smallest (i.e., largest magnitude)
negative normal FP number is marked as item 2 and is located at the
upper-right corner of the negative normal region with exponent E = 254
and F all 1’s. The +1.0 is marked as item 3 and is located in the bottom
center of the +normal region with E = 127 and F = 0. The ±zero is
shown with E = 0 and F = 0. The ±infinity is shown with E = 255 and F =
0. Also, as implemented in the Intel Pentium processors, there are other

special FP numbers, such as, the quite NaN (QNaN) that indicates an
invalid operand—for example, –1 in the computation of —or the
signaling NaN (SNAN) that indicates an invalid operation [5].

The two-dimensional display of the double precision FP data space is
similar, with the exception that the number of bits used to represent
each exponent and fraction are, respectively, 11- and 52-bits.

3.8.3 Floating-Point Arithmetic
Both the exponent and the fraction of an FPN are integer numbers and
are operated on separately when FP arithmetic is performed. For
example, in order to add the two real numbers 0.1075 (10.75 × 10-2) and
72.5 (0.725 × 102) in decimal, the smaller fraction is shifted right to line
up the decimal points before the two fractions are added to produce the
sum 72.5075 (0.725075 × 102). The number of bits the smaller fraction
is shifted is determined from the two exponents. The algorithm to add
two binary real numbers is the same as that in decimal and is outlined
next. The labels A.s and B.s, A.E and B.E, and A.F and B.F,
respectively, refer to the sign bits, biased exponent values, and the
external (in-memory) fraction values of two FP numbers A and B. That
is,

where {} is used to indicate concatenation.

Floating-Point Addition Algorithm: Normal Data Class

1. Initialize the inputs: A must be bigger than or equal to B.
 i. Let A. F= {1, A. F} and B. F= {1, B.F} be the internal (in-register)

representations of the fractions.
ii. Make sure |A| ≥ |B|. If |A| <|B|, then switch B with A; |X| indicates

the absolute value of X.
2. Line up decimal points: Shift B. F right by D bits as determined

next.
 i. Let D = A.E – B.E.

ii. Shift B.F right D number of times, entering 0 from left.
3. Generate the result (R): Compute R.F= A.F± B.F.

 i. Generate the R.F as the sum or the difference of A.Fand B.
Fdepending on the values of A.s and B.s as follows:

ii. Let R.s = A.s and R.E = A.E.

4. Normalize the result: Convert the R.F to 1.F format, if it is not
already.
 i. If the format of the R.F is 1x.F where x is either 0 or 1 in step 3.i,

then add a 1 to R.E and shift R.F 1-bit right to change its format
to 1.F; the LSB (least significant bit) of 1 x.F will be lost.

ii. Or, if R.F in step 3.i has leading zeroes, then subtract a 1 from
R.E each time that R.F is shifted left in order to remove the
leading zeros necessary to represent R.F as 1.F. For example, if
R.F = 0.01xxxxxx….x, then it would be shifted left twice to
1.xxx…x (1.F format). In this case, R.E must be reduced by two.

5. Round the result:
The final output, S. F = {1, S.F}, is selected from the upper bits of
R.F depending on the size of the target fraction: 24-bits for single
precision and 54-bits for the double precision internal
representations. The unused lower bits of R.F will be lost. However,
the lost bits can be used to round up the result by adding a 1 to the
LSB of S. F. If the format of the rounded S. F becomes 1x.F again,
another normalization step would be necessary to change its format
back to 1.F. A more complete discussion on rounding involving the
guard (G), round (R), and sticky (S) bits, as outlined in the IEEE FP
standards, is beyond the scope of this book.

6. Final output:
The R.s, R.E, and S.F are concatenated to create either a 32-bit
number, if single precision, or a 64-bit number, if double precision,
before storing it in memory. That is,

S ={R.s, R.E, S.F}

The size of R.F is 64-bits, and all the integer arithmetic and shift
functions are performed in 64-bit fractions to minimize rounding errors
when billions of computations are performed.

Example 3.3. Determine S = A + B given that A = 17.875 and B = 15.75. Assume A, B,
and S are 16-bit FP numbers with 1-bit sign, 7-bit e exponents with bias = 63, and 8-bit
fractions.

Solution: The five steps to determine S = A + B are as follows:
1. Convert each of the real numbers A and B into their binary

representations.
2. Convert the binary representation to their equivalent unbiased

scientific format.
3. Convert the unbiased scientific formats to their equivalent biased

format.
4. Convert each of the biased scientific formats to a 16-bit in-memory

representation.
5. Follow the FP addition algorithm to add the two FP numbers.

1. Initialize the inputs:
Because |A| ≥ |B|, there is no need to switch A with B.

2. Line up the decimal points:

Shift B. F right once (D= 1) to produce B. F= 0.111111000
3. Generate the sum:

4. Normalize the result:
 i. Add 1 to the R.E to yield R.E= 68 (67 + 1).
ii. Right-shift the R.F by 1 to yield R.F = 1.000011010 (now in the 1.

F format).
5. Round the result:

Select the upper 9-bits from the new R.F as S. F= 1.00001101. The
lower only remaining bit of R.F is 0 and thus would be ignored. The
result is:

S.F= 1.00001101 with S.F= 00001101

(However, if the new R.F was instead 1.000011011 with 1 as its
LSB, we would have had the option to round up the S. F to
1.00001110 (i.e., 1.00001101 + 0.00000001).

6. Final sum:

The S is converted to a decimal number as follows:

FP subtraction, multiplication, and division are similarly performed in
several steps. For subtraction, the fractions are first lined up, as in the

case of the FP add, and then they are subtracted if A.s = B.s or added if
A.s ≠ B.s. For multiplication, the fractions are multiplied, the exponents
are added, and the sign bits are XORed. Finally, for division, the
fractions are divided (integer division), the exponents are subtracted,
and the sign-bits are XORed. The rounding and normalization steps are
the same as those discussed for the FP addition.

However, because for FP division the most significant bits of the
numerator internal fraction N. F and denominator internal fraction D. F
are both 1, N. F is not padded with 0’s from left as it was done in Fig.
3.28 for integer division (refer to Exercise 3.29).

3.8.4 Floating-Point Unit
Figure 3.33 illustrates the data path of a floating-point adder. The data
path includes combinational circuit modules that implement the tasks
outlined in the algorithm. In the data path, the Switch module is used to
test if |A| < |B|. In order for |A| to be less than |B|, either A.E must be
less than B.E, or in case of A.E = B.E, A. F must be less than B. F. Two
subtracting modules inside the Switch (not shown) generate the
difference A.E – B.E and A. F– B. F. The borrow-out signals from these
modules would indicate whether or not |A| ≥ |B|.

FIGURE 3.33 A data path for FP addition.

If |A| < |B|, then A and B must be switched so that the larger number
is used as A, the left input of the data path. Two 2-to-1 MUXs (not
shown) would be needed to switch A with B and B with A when
necessary. The two inputs A and B are switched if A.E < B.E or if A.F <
B.F if A.E = B.E.

The Right Shifter module is used to align the decimal points when
computing A. F± B. F. A Shift module is also used within each of the
normalization and rounding modules. A combinational shifter is
described next.

Combinational Shifter
A combinational shifter is designed using log2(k) 2-to-1 MUXs organized
in log2(k) levels, where k indicates the range for the number of shifts.
For example, for k = 8, a combinational shifter can shift its input 0 to k –
1 or 7 bits. Figure 3.34 illustrates an 8-bit combinational right shifter with
k = 8. The 3-bit S = s2s1s0 specifies the shift size between 0 and 7 bits.
The bits s2, s1, and s0 are used as the select inputs to the three MUXs.

FIGURE 3.34 An 8-bit combinational right shifter with zero fill.

As illustrated in the figure, the top (Level 0) MUX selects either the
input X if s0 = 0 or the X shifted right by 1-bit if s0 = 1. The next MUX
selects either the Y if s1 = 0 or the Y shifted right by 2-bits if s1 = 1.

Finally, the bottom (Level 2) MUX selects either the Z if s2 = 0 or the Z
shifted right by 4 bits if s2 = 1.

For example, when S = s2s1s0= (011)2, s0 = 1 causes the Level 0
MUX to shift input X right by 1-bit. The signal s1 = 1 causes the Level 1
MUX to shift Y by 2 bits. Finally, the signal s2 = 0 causes the Level 2
MUX to pass Z as-is to its output. As a result, the shifter shifts its input X
3 bits to the right. When S = (101)2, X would be shifted right five times.
The maximum number of times that X can be shifted is seven when S =
(111)2.

References
 1. Vincent P. Heuring and Harry F. Jordan, Computer Systems Design and

Architecture, Pearson Education, Inc., 2004.
 2. Steve Wilson, “Alternative Subtraction Algorithms,”

http://www.sonoma.edu/users/w/wilsonst/courses/math_300/groupwork/altsub/defa
ult.html.

 3. W. Kahan, “Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-
Point Arithmetic,” http://www.cs.berkeley.edu/~wkahan/ieee754status/.

 4. Nikrouz Faroughi, “A floating-point data space model: domain and range of a
function,” WORLDCOMP’03, The 2003 World Congress in Computer Science,
Computer Engineering, and Applied Computing, June 25-28, 2007, Las Vegas,
USA.

 5. Intel 64 and IA-32 Architecture Software Developer’s Manual; Volume 1: Basic
Architecture.

Exercises
 3.1 Consider a CPA(8), an 8-bit CPA, and do the following:

a. Design the adder using NOT and NAND gates and determine the
total number of each gate used. Use SOP expressions for the FA
from Chap. 2.

b. Determine the total number of transistors.

http://www.sonoma.edu/users/w/wilsonst/courses/math_300/groupwork/altsub/default.html
http://www.cs.berkeley.edu/~wkahan/ieee754status/

c. How many transistors would be needed to design a CPA(32)?
 3.2 Calculate the following 2’s complement sum and difference for the

following values. Indicate if any will result in an overflow.

 3.3 Determine the POS expressions of a 1-bit PGU and 1-bit CGU and
then draw their circuits using NOT and NOR gates, but combine
and use the minimum number of gates.

 3.4 Suppose an 8-bit adder is designed using two 4-bit CPAs (labeled
CPA1 and CPA2), where carry-out c3 is fed as carry-in into CPA2.
CPA1 inputs the initial carry-in c–1. In order to speed up the adder,
c3 is generated as c3 = g3 + p3 g2 + p3 p2 g1 + p3 p2 p1g0 + p3 p2
p1p0c–1, where p’s and g’s are generated in 0.3 ns. Determine how
much faster the new adder will be if ΔFAc = 0.5 ns.

 3.5 Design and estimate the propagation delay of a 16-bit hybrid adder
using
a. Two CLA(8) modules
b. Four CLA(4) modules
c. Eight CLA(2) modules

 3.6 Compare ΔCPA(8) with ΔCLA(8) by calculating the speedup as the
ratio of ΔCPA(8) over ΔCLA(8). Use SOP expressions for an FA.

 3.7 Design a 15-bit CLA using 4-bit BCGUs, where each BCGU
outputs three carry-bits and p* and g* signals.

 3.8 Design a 1-bit, 8-to-1 MUX using 1-bit, 2-to-1 MUXs. Also estimate
its propagation delay assuming that NAND gates have 0.1 ns delay.

 3.9 Design a 1-bit, 8-to-1 MUX using a combination of 1-bit, 2-to-1 and
1-bit, 4-to-1 MUXs. Also estimate its propagation delay assuming
that NAND gates have 0.1 ns delay and a 4-to-1 MUX implements
SOP expressions.

3.10 Estimate the delay of the 8-bit ALU in Fig. 3.16 assuming 0.1 ns
delay for NAND gates, the adder is a CLA(8), and there are only 2-
to-1 MUXs available.

3.11 Verify that the circuit in Fig. 3.22 implements the ALU Map module.
3.12 Consider an 8-bit bit-parallel ALU with only four functions: add,

subtract, and bit-wised AND and XOR. Assume an adder/subtractor
module uses a hybrid adder designed from CLA(2) modules. In
addition, the overflow flag must be masked out when performing
bitwise computation. Assume only 8-bit, 2-to-1 MUXs are available.
Do the following:
a. Draw the data path and estimate its propagation delay assuming

0.1 ns delay for each NOT and NAND gate.
b. Construct the truth table for its Map module.

3.13 Design a 4-to-2 encoder using 2-to-1 encoder modules. Hint: You
also need a 1-bit, 2-to-1 MUX and a two-input OR gate.

3.14 Design an 8-to-3 encoder using 4-to-2 encoder modules. Hint: You
also need a 2-bit, 2-to-1 MUX and a two-input OR gate.

3.15 Design the 8-bit bit-serial ALU shown in Fig. 3.23 and use the truth
table given in Table 3.8 for the 1-bit ALU slice.

3.16 Design a 2-bit 2’s complement comparator, and then use four of the
comparator modules to design an 8-bit comparator. Hint: A 2-bit 2’s
complement comparator inputs two 2-bit inputs A and B and also gti
(greater than), eqi (equal), and lti (less than) signals, where “i”
stands for input from the previous module and then outputs three
signals, gto, eqo, and lto, where “o” stands for output. First design a
2-bit 2’s complement with only inputs A and B to generate three
outputs gtt if A > B, eqt if A = B, and ltt if A < B, where “t” stands for

temporary. Then combine gtt, eqt, and ltt with the gti, eqi, and lti to
generate the gto, eqo, and lto. For example, gto = 1 if (gti = 1 and
gtt = 1) or (gti = 1 and eqt = 1) or (eqi = 1 and gtt = 1) or (lti = 1 and
gtt = 1).

3.17 Consider the 4-bit array multiplier given in Fig. 3.26. Do the
following:
a. Estimate its propagation delay in terms of propagation delays of

the carry- and sum-bits of an FA; that is, in terms of ΔFAc and
ΔFAs.

b. Give a generalized equation for the propagation of an n-bit array
multiplier.

3.18 Consider an 8-bit array multiplier where a CLA(8) is used to replace
the CPA(8) in the last row. Assuming that ΔFAc = 0.2 ns, ΔFAs =
0.3 ns, and CLA(8) = 0.8 ns, how much faster will the new multiplier
will be compared to the original?

3.19 Use the restoring division algorithm discussed to divide N =
10101101 by D = 1110. Note you can use binary calculation on your
calculator to double-check your results.

3.20 Design an array divider by first designing a 1-bit combined
subtract-MUX bit slice with minimum delay (i.e., SOP or POS
expressions); then use it to design a 4-bit bit-serial subtract-MUX
module; then replace each of the 4-bit subtract and 4-bit MUX pairs
in the divider in Fig. 3.28. with a 4-bit bit-serial subtract-MUX
module.

3.21 Write a program in the language of your choice (or use Excel) to
implement the following reciprocal division algorithm and make an
observation when D becomes 1.0. Then verify that the reciprocal
division algorithm, which computes Q, is equal to N/D computed by
using the divide (/) operator. The reciprocal division algorithm is as
follows:

Note that no division operator is used in the calculation of Q; only
multiplication and subtraction operations are used to compute the
result of N divided by D. This algorithm was implemented in
hardware as the FP divide instruction in an Intel x486 processor.
Run the program twice, once with inputs D = 1.99 and N = 2.4, and
again with D = 1.56 and N = 2.4. Note the fraction of D is always
less than 2 (e.g., maximum fraction of D in binary is 1.1111111…1 <
2 with 23 1s after the decimal point for the “float” data type and 52
1s for the “double” data type).
Compare the N value when D becomes 1.0 with the Q value
computed as the original N (N0) divided (/) by the original D (D0)
(e.g., Q = 2.4/1.99). Compare Ni with Q = N/D when D i becomes
1.0 for some i. Is Q = Ni when Di = 1.0? What do you notice
between the two runs?

3.22 Determine the IEEE floating point representations of 6.725 for:
3.23 Determine the IEEE floating point Single precision representation

of 0.35.
3.24 0x41DD0000 is an IEEE single precision FP number. What number

does it represent in decimal?

3.25 Show the steps to compute the sum (S) of two single precision FP
numbers A = 0xC18D0000 = –17.625 and B = 0x41080000 = 8.5.

3.26 Design an 8-bit combinational arithmetic right shifter. Each time a
number is arithmetic right shifted, the sign bit is repeated. Also
illustrate –80 right shifted three times (i.e., –80 >>> 3).

3.27 Design and simulate a Verilog behavior and structural model for an
8-bit 2’s complement adder/subtractor using a CPA(8). Use a “case”
statement to describe an FA; then use a Verilog structural model to
design the CPA(8) with eight copies of the FA modules. Use an
“assign” statement to enter the expression for the overflow flag (ovf)
and an “if-else” statement to describe the inverter module. Create a
Verilog tester module and test your design using test vectors 0x80 –
0x01 and 0x7F + 0x01. Is the overflow flag asserted in both cases?

3.28 Design an 8-bit restoring divider in Verilog. Use a behavior Verilog
model to create a 1-bit subtractor similar to an FA. Also create an 8-
bit BPS similar to an 8-bit CPA. Create a behavior description of 8-
bit, 2-to-1 MUX. Combine several BPS and MUX modules to design
the divider. Create a tester module to test your design.

3.29 Consider the FP numerator with external fraction N.F = {1, N.F}
and denominator external fraction D.F = {1, D.F} where N.F and D.F
are 4-bit numbers. Use four 4-bit bit-serial subtractor-MUX modules
from Exercise 3.20 to design an integer divider used in an FPU.
Hint: N.F will be padded with 0’s from the right; in this case, Ak in
each step is always a 5-bit number and Ak[4], the most significant
bit (MSB), is not used to determine the next remainder (i.e., Ak[3:0]
– D.F); Ak[4] is used instead with the conjunction of borrow-out (bo)
in each step to determine the next quotient bit as

3.30 Computer security (hardware Trojans): Exercise 11.12 to
understand how a computational malicious circuit is designed. Do
not implement the triggering mechanism; instead, directly operate
the multiplexer to cause a computational attack (also see Sec.
11.2).

3.31 Computer security: (access control) Exercise 11.26 to design a
hierarchical access control scheme suitable for hardware
implementation (also see Sec. 11.1.4 and Sec. 11.1.5).

CHAPTER 4
Sequential Circuits: Core Modules

4.1 Introduction
While combinational circuits are necessary and are an important part of a
digital system, their outputs depend only on the inputs currently applied. Any
change in the inputs is expected to change the outputs. On the other hand,
the outputs of a sequential circuit depend not only on the current inputs, but
also on the inputs previously entered. For example, as illustrated in Fig. 4.1, if
a single adder is used to generate the sum of several numbers, then a partial
sum, initially zero, must be saved and added with each new number to
generate the next partial sum. Therefore, the circuit is a sequential circuit
because the current partial sum is the sum of all the previously entered
numbers, and the next partial sum is determined by adding the next number,
now the current input to the adder, to the saved partial sum.

FIGURE 4.1 An illustration of a sequential circuit; it computes the sum of
several numbers, V0, V1, etc.

In general, a complex sequential data path requires combinational circuits
to generate outputs as results and storage modules (typically registers) to
save those results. The data path also requires a control unit (a controller)
that follows a specific set of steps (i.e., an algorithm) to compute a complex
function using the data path. A control unit is a sequential circuit and uses
storage modules to save its current state (e.g., a specific step in the
algorithm) in order to determine its next state using the inputs it currently
receives.

Sequential circuits also require a timing control signal called a clock. It is
used to determine when a value—for example, the sum from the adder in Fig.
4.1—should be stored in the storage module. Note that the adder does not
generate all the sum bits at the same time. Each sum bit is the output of a
combinational circuit with a specific propagation delay. The circuits that have
shorter propagation delays generate their outputs sooner than those that
have longer propagation delays. Therefore, the sum is valid when the circuit
with the longest propagation delay in the adder generates its output.
Otherwise, one or more of the sum bits would be still changing, and thus the
sum would be invalid. The clock signals the validity of the sum and allows the
storage module to save it.

This chapter presents the core logic circuits required to design a storage
module. In a core circuit, outputs are fed back as inputs so the circuit can
retain an output value, thereby creating a storage module. However, these
core circuits require certain operating constraints to remain stable and retain
their stored values. They are used in the design of small and large sequential

circuits. Small sequential circuit designs are covered in Chap. 5, large
designs in Chap. 6, and CPU design in Chap. 8.

4.2 SR Latch
The circuit of an SR latch is illustrated in Fig. 4.2. The circuit has two inputs: s
and r. They, respectively, stand for set q, meaning q becomes 1, and reset q,
meaning q becomes 0. Signals p and q are interdependent and are defined
as and In order to determine the value of q, one must
know the value of p, or vice versa. Therefore, because the initial values of q
and p are not known, the circuit activities are best understood by examining
the following four cases.

FIGURE 4.2 A basic SR latch.

Case 1: s = 0 and r = 0
a. Assuming that the current value of q = 0, let s = 0 and r = 0 and then

determine the new values of p and q. In this case,

b. Assuming that the initial value of q = 1, let s = 0 and r = 0 and then
determine the new values of p and q.

That is, when s = 0 and r = 0, qnew = 0 (no change) and pnew = 1.

That is, when s = 0 and r = 0, qnew = 1 (again no change) and pnew = 0.
Case 1 indicates that when both s = 0 and r = 0, the values of p and

q remain unchanged and .

Case 2: s = 0 and r = 1
a. Assuming that q = 0, let s = 0 and r = 1. Thus,

That is, when > = 0 and r = 1, qnew = 0 (no change) and pnew = 1.
b. Assuming that q = 1, let s = 0 and r = 1.

In this case, the value of q changes, but eventually stabilizes and
remains at 0.

That is, when no matter what the current value of q is, if s = 0 and r =
1, then qnew = 0 and pnew = 1. That is, q is reset to 0 (or the latch
stores logic 0) and p = .

Case 3: s = 1 and r = 0
a. Assuming that q = 0, let s = 1 and r = 0.

That is, if s = 1 and r = 0, then qnew = 1 (changes from 0 to 1) and pnew

= 0.
b. Assuming that q = 1, let s = 1 and r = 0.

Case 3 indicates that no matter what the current value of q is, if s = 1
and r = 0, then qnew = 1 and pnew = 0. That is, q is set to 1 (or the latch
stores logic 1) and p = .

Case 4: s = 1 and r = 1
a. Assuming that q = 0, let s = 1 and r = 1.

In this case, both qnew and pnew become 0.
b. Assuming that q = 1, let s = 1 and r = 1.

Again, in this case, both qnew and pnew become 0.

Case 4 is a special case. It indicates that no matter what the initial
value of q is, if s = 1 and r = 1, then pnew and qnew both become 0,
unlike the other three cases. This case produces inconsistent values for
p and q as compared to the previous three cases, where p and q
always have the opposite values. This case is also inconsistent
because if both r and s are simultaneously set to 0 after both being 1, p
and q signals will oscillate, both will become 1 and then both will
become 0, and then it would repeat again. While the oscillation will
continue forever (never stabilizing) during simulation, the oscillation
would eventually stop in a real circuit. However, the final and stabilized
value of q would be random, 0 or 1, and p = . Case 4 can alter the
state of a system, randomly causing problems. For this reason, Case 4
should never happen. That is, r and s should never become 1 at the
same time.

Cases 1 to 3, on the other hand, provide the necessary functions one
would expect from a storage module: retain q (Case 1), reset q or store
0 (Case 2), or set q or store 1 (Case 3), with p always being equal to .

Figure 4.3 illustrates the final SR latch circuit, with p replaced with . Its
characteristic table (also called a truth table) is shown in the figure with Case
4 (s = 1 and r = 1) marked unused. In the table, the current value of q is
shown as qt to mean the value of q at time t. The new (next) value of q is
shown as qt+1 to indicate the stabilized values of both q and .

FIGURE 4.3 SR latch and its characteristic table: (a) SR latch’s characteristic
table; (b) a NOR-gate SR latch.

The SR latch circuit still lacks certain features to be a useful circuit:

• We must make sure that r and s signals both do not become active at the
same time (i.e., Case 4 never happens).

• We must be able to initialize q to a known value, 0 or 1, during a system
startup.

4.2.1 Clocked SR Latch
A clock is a signal generated by an electronic device called an oscillator that
repeatedly outputs 1 and 0, each with a fixed duration. It is used to sample
signals at specific times, and the sampling is done either when the clock is 0
or when the clock is 1. Figure 4.4 presents the circuit for a clocked SR latch.
The clock signal is individually ANDed with r and s signals. It controls the
timing when both r and s signals are allowed to change the state of the core
circuit (Fig. 4.3(b)), defined by the q and signal values.

FIGURE 4.4 A positive-level SR latch.

When clk = 0 in Fig. 4.4, both G1 and G2 AND gates in the circuit would
output 0, independent of the values of r and s. This, in turn, will cause the
core SR latch to retain its current state (Case 1). However, when clk becomes
1, G1 will output an incoming r value and G2 an incoming s value. At this
time, the r and s values could alter the state of the core SR latch according to
the characteristic table in Fig. 4.3(a).

The circuit in Fig. 4.4 is called a positive-level SR latch if r and s signal
values “enter” the core circuit when clk = 1, and a negative-level SR latch if
the signals “enter” the core circuit when clk = 0. Figure 4.5 illustrates a few

timing scenarios for a positive-level SR latch, assuming that signal s has a
shorter propagation delay than r.

FIGURE 4.5 SR latch timing examples.

During time slot 1, both s and r signals are changing, and since s has a
shorter propagation delay than r, it changes to 1 while r is still 1. Thus, as
illustrated in the figure, both r and s are 1 momentarily (i.e., Case 4), as
illustrated by the shaded area in the timing diagram. However, because clk =
0 during this time slot, both G1 and G2 AND gates output 0 and prevent s = 1
and r = 1 from “entering” the core. The latch, therefore, retains its current
state, unaffected.

During time slot 2, when clk = 1, r = 0, and s = 1, the AND gates would
pass the r = 0 and s = 1 to the core circuit, changing q to 1. During this time
slot, the latch is said to be sampling its r and s input values.

During time slot 3, when clk = 0 (retain), the latch retains q = 1, keeping it
at 1. Finally, during time slot 4, when clk = 1 and the latch is sampling, a
momentary change in the value of r (e.g., due to a glitch) unexpectedly
changes q to 0. For this reason, both r and s signal values must stabilize prior
to each sampling time. This is a disadvantage of an SR latch.

Another disadvantage of an SR latch is that the latch requires two inputs (r
and s) to operate. This is especially true today with modern integrated chips
(ICs), where wires also occupy chip real estate. A modern IC implements
thousands of latches to build registers. If each latch requires two input signals
to operate, this will double the space required to wire those signals.

A D-latch, designed from an SR latch, resolves both of these
disadvantages. The D-latch will be discussed in the next section.

Because the r and s inputs affect the core circuit only during the sampling
time, they are known as the synchronous reset and synchronous set signals,
respectively. However, it is often necessary to initialize the latch to either q =
0 or q = 1 asynchronously, independent of the clock levels. Figure 4.6
illustrates a clocked SR latch with asynchronous reset and asynchronous
preset signals. These signals are direct inputs to the NOR gates, and each
can independently change both q and when active. When reset = 1 and

preset = 0, q becomes 0, independent of the values of r, s, and clk signals.
Likewise, when preset = 1 and reset = 0, q becomes 1. The reset and preset
signals both should not be active at the same time; only one needs to be
active to either initialize q to 0 or 1.

FIGURE 4.6 An SR latch with asynchronous reset and preset signals.

NAND Version
The NOR-version SR latch in Fig. 4.6 is easier to understand because it uses
active-high signals. An equivalent NAND version of the latch is shown in Fig.
4.7 with asynchronous active-low _reset (or _r) and _preset (or _s) signals.
Note that, when compared to the NOR version, the position of the r and s
signals have changed in the NAND version; the s is now lined up with the q
signal and r with the signal. The figure also shows the symbol for a clocked
SR latch, where the input c indicates “clock.” Unless otherwise stated, the
term “SR latch” implies a clocked SR latch, either positive or negative level.

FIGURE 4.7 A positive-level SR latch: (a) NANDs-only SR latch; (b) SR latch
logic symbol.

4.3 D-Latch
An SR latch can be converted to a D-latch by eliminating the retain option
(Case 1) when both s and r signals are 0. In synchronous mode, a D-latch
requires a single input d in addition to the clock signal to operate it. This is
done by connecting d to s and to r, as illustrated in Fig. 4.8; the d stands for
data. A D-latch operates in only two modes, setting q (q = 1) synchronously
when d = 1 or resetting q (q = 0) synchronously when d = 0. The q signal
always becomes d when the clock signal indicates sampling. However, a D-
latch, just like an SR latch, does retain q when the clock is in the “off” and
nonsampling level.

FIGURE 4.8 The circuit and logic symbol of a D-latch.

4.4 Disadvantage of Latches
Both SR and D-latches have a disadvantage that limits their application in the
design of most sequential circuits. When two or more latches operate with the
same clock signal, no data dependency can exist among their d signals.
Consider two or more D-latches that operate with the same clock signal. In
this case, none of the d inputs among the latches can be a function of any of
the q’s or ’s; otherwise, a condition called signal chasing will prevent the
circuit from operating correctly.

For instance, consider the two positive-level D-latches illustrated in Fig.
4.9. Both latches operate using the same clock signal clk. In this case, d0
depends on q1 (i.e., d0 = q1). The circuit is supposed to operate as a 2-bit
right-shift register, but it does not. Each time that clk changes from 0 to 1, the
current register content, indicated by q1 and q0 signals, should change to its
new content as = 0 and = .

FIGURE 4.9 Illustrating an incorrectly designed 2-bit right-shift register; no
latches should be used.

To illustrate this, suppose that after using the active-low _reset signal to
reset the latches, making their q bits 0, the q1 is set to 1 using the switch

connected to the Latch 1 active-low asynchronous set (_s) input. This makes
the concatenated values of q1 and q0 or q1q0 = (10)2, indicated in the figure
as the initial values of q1 and q0. Now, when clk changes from 0 or 1, the next
value of q1q0 should be (01)2 indicating a right shift where d1 = 0 is entered
from the left. However, that will not happen with latches.

Specifically, when clk becomes 1, both the D-latches will simultaneously
begin to sample their inputs, changing the current (in this case, initial) values
of = 1 and = 0 to = d1 = 0 and = d0 = = 1.
However, if clk remains at 1, the D-latches will continue sampling their inputs,
causing to take the value of , making the final q1q0 = (00)2 instead of,
as expected, (01)2. In this case, signal d1 = 0 chases and changes d0 to 0
when clk stays 1 for a longer time.

In general, a set of interconnected latches with dependent inputs will fail to
operate independently, and thus cannot be used in the design of many
important sequential circuits, such as shift registers and control units. The
circuit that prevents signal chasing is called a flip-flop.

4.5 D Flip-Flop
A flip-flop can be designed from two connecting latches, as illustrated in Fig.
4.10 for a D flip-flop. During each clock level, only one of the latches samples
its input signal, while the other latch retains its current value. The two latches
operate like a double-door entry system, much like the ones used in many
buildings. Only one door at a time is kept open while the other door is closed.
To enter the building, one must enter through the first door and then the
second door. In the figure, the two latches are labeled A (door A) and B (door
B). Their inputs and outputs are, respectively, referred to as A.d, A.q, B.s, etc.
Both A and B are positive-level latches but operate with complementing clock
levels. Latch A is a D-latch and Latch B is an SR latch.

FIGURE 4.10 A D flip-flop.

When clk = 1 and thus = 0, Latch A would not be sampling (i.e., door A
is closed), and thus retains its q, A.q. During this time, a change in the
primary input d (A.d = d) will not affect A.q and A. . These two signals are
connected, respectively, to B.s and B.r inputs of Latch B, and thus if d
changes, B.q will not change even though Latch B is still sampling when clk =
1 (i.e., door B is open).

However, when clk transitions from 1 to 0 and transitions from 0 to 1,
the latches switch modes; Latch A starts sampling A.d (i.e., door A opens),
and Latch B stops sampling A.q (i.e., door B closes); thus, Latch B retains
B.q. At this time, any change in the primary input d will change A.q but not
B.q. Therefore, the two latches that operate with opposite clock levels prevent
signal chasing. The output of Latch A can only affect the output of Latch B if
the clk transitions again from 0 to 1. Thus, the flip-flop requires a clock pulse
to operate.

In the figure, when the clk signal changes from 1 to 0 and again back to 1
(a 1-0-1 transition), the flip-flop samples and stores its primary input d as B.q,
its primary output.

4.5.1 Alternative Circuit
A different D flip-flop circuit with fewer total required gates is illustrated in Fig.
4.11. The D flip-flop operates like the one shown in Fig. 4.10. It samples the
primary input d when the clk makes a 1-0-1 transition. Specifically, when clk
transitions from 1 to 0, both signals and become 1, causing the flip-flop to
retain q, independent of the current value of d. When clk transitions from 0 to
1, the flip-flop starts sampling d. If d = 1, then = 0 and = 1 will change q
to 1; or, if d = 0, then = 1 and = 0 will change q to 0. The values of both
and remain unchanged until the next time that clk makes a 1-0-1 transition.

FIGURE 4.11 An alternative D flip-flop with fewer gates.

4.5.2 Operating Conventions
Latch A and Latch B in Fig. 4.10 do not operate (i.e., sample) during the
same clock level (0 or 1). One latch is always not sampling (one door is
closed) while the other is always sampling (one door is open). The only time
that a sampled input d is passed from Latch A to Latch B (i.e., B.q) is when
clk makes a 0-1 transition and causes Latch A, which was sampling, to stop
sampling and Latch B to start sampling A.q. Note that A.q will not change
even if d changes since Latch A is now not sampling. The next time that
Latch A will start sampling is when clk makes a 1-0 transition, which makes
Latch B stop sampling.

With D flip-flops, data moves from one latch to the next on the clock edge
and not on the clock level; thus, a D flip-flop is called edge triggered. It is
called a positive- or rising-edge triggered flip-flop if a 1-0-1 clock transition
causes d to be loaded (A.q = d on 1-0 transition) and stored as q (B.q = A.q
on 0-1, positive, up arrow transition). Likewise, a negative- or falling-edge
triggered flip-flop would require a 0-1-0 clock transition to load d (A.q = d on
0-1 transition) and store it as q (B.q = A.q on 1-0, negative, down arrow
transition). As illustrated in Fig. 4.12, the clock input of an edge triggered flip-
flop is marked with the right angle (>) symbol, and also with a small bubble if
the flip-flop is negative edge triggered.

FIGURE 4.12 Positive- and negative-edge triggered flip-flop symbols.

4.5.3 Setup and Hold Times
A D flip-flop, as opposed to, say, an SR flip-flop, that is designed (but not
used today) using positive-level and negative-level SR latches has the
advantage of allowing its d input to change while Latch A (the first latch) is
still sampling. The only requirement is that the d signal must stabilize and
remain stable during a small period when the clock is transitioning.

For example, consider the positive edge-triggered flip-flop in Fig. 4.10.
When clk = 0, Latch B retains B.q (i.e., door B is closed), and because is
1, Latch A samples A.d (i.e., door A opens). Now, the instant that the clk
makes a rising-edge (0-1) transition and becomes 1, both the clk and the
are still at logic 1 until the changes to 0 after the short propagation delay of
the NOT gate and stops Latch A from sampling d (i.e., door A closes). During
this short period, both the latches will be sampling their respective inputs.

Therefore, in order for the D flip-flop to operate correctly during this time, d
must become stable—so the s and r signals within Latch A can become
stable—a short time before clk transitions from 0 to 1, and in order to
continue keeping the s and r signals stable, d must remain stable for a short
time after clk has transitioned to 1. This is required because the signals clk
and do not change simultaneously at the same time, thus causing Latch A
to stop sampling (“closing”) with a delay (see Fig. 4.10). The amount of time
that d must remain stable before and after a 0-1 clk transition is called,
respectively, setup time (τst) and hold time (τht) of the flip-flop. For a negative-
edge flip-flop, d must remain stable before and after a 1-0 clock transition.

The violation of setup and hold times destabilizes a D flip-flop—a condition
known as metastability, as illustrated in the following two figures. In Fig.
4.13(a), signal d changes too close to clk transitioning from 0 to 1; thus, it
violates the flip-flop’s setup time and causes B.q and B. to oscillate. On the
other hand, in Fig. 4.13(b), because d stabilizes earlier before clk transitions

to 1 by at least an amount ≥ τst, the flip-flop correctly loads d, making B.q = d
and B. = .

FIGURE 4.13 D flip-flop timing: (a) setup time violation; (b) no setup time
violation.

Likewise, in Fig. 4.14(a), when d changes too soon after clk transitions
from 0 to 1, it violates the hold-time requirement of the flip-flop. This would
also cause signal oscillations at B.q and B. . On the other hand, in Fig.
4.14(b), the D flip-flop operates normally and makes B.q = d and B. =
when d continues to remain stable after clk transitions to 1. The hold time (τht)
is the amount of time that d must remain stable after clk transitions to 1. The
τht must be greater than or equal to the clock-to-q (τcq) delay, which is the
time required for the flip-flop to stabilize and output the final values of B.q and
B. . The τcq is also known as clock-to-output (τco).

FIGURE 4.14 D flip-flop timing: (a) hold-time violation; (b) no hold-time
violation.

Negative Hold Time
The setup and hold times discussed earlier pertain to d and clk signal
sources at the flip-flop and not at the boundary of an IC or a module within a
chip. These setup and hold times may also be determined with respect to the
data and clock sources at a chip’s or a module’s boundary. Figure 4.15
illustrates a flip-flop inside a chip with five interface signals d, clock, q, and
active–low signals _preset and _reset at the chip’s boundary. In this case, the
input signals will affect the flip-flop after some signal routing delay, as
illustrated in the figure. Likewise, the output of the flip-flop as q will be
available after some signal routine delay at the chip’s boundary. In addition,
the signal routing delays to the flip-flop may not be the same. Therefore, in
such cases, the timing diagram may look different from the ones shown in
Figs. 4.13 and 4.14.

FIGURE 4.15 Illustrating signal delay within an integrated chip (IC) or a
module.

Figure 4.16 illustrates the timing simulation of a D flip-flop that was
synthesized in an Altera field programmable gate array (FPGA). All the
input/output signals—d, reset, preset, clock, q, and not_q— are at the FPGA’s
boundary, which are then routed with some delay and fed to the
corresponding inputs and outputs of the flip-flop inside the FPGA. As shown
in the figure, even though initially, d = 1 and changes to 0 at –2.902 ns before
the rising edge of the clock at 250.0 ns (a reference point), the flip-flop is still
able to load d = 1 and change q to 1 at 5.922 ns after the rising edge of the
clock. In this case, the flip-flop is said to have a negative hold time with
respect to the input sources at the chip’s boundary. The flip-flop also has τcq =
5.922 ns delay with respect to the chip’s boundary. The flip-flop’s simulation
waveform illustrating a violation of negative hold time at –3.489 ns is shown
in Fig. 4.17.

FIGURE 4.16 A D flip-flop timing diagram illustrating its normal operation with a
negative hold time.

FIGURE 4.17 A D flip-flop timing diagram illustrating a negative hold-time
violation at –3.489 ns.

Likewise, it is possible for the flip-flop in Fig. 4.15 to have a negative setup
time with respect to the d and clock signals at the chip’s boundary. In this
case, d may stabilize later with respect to the 0-1 clock transition at the chip’s
boundary, but still arrive in time, meeting the flip-flop’s required setup time.
The d may also be an input to a combinational circuit that has an output
connected to the D-input of the flip-flop. In this case, the timing of when the d
signal will affect the flip-flop depends on both signal routing delays and the
propagation delay of the combinational circuit.

Furthermore, an FPGA or an application-specific integrated chip (ASIC)
may include fixed and prefabricated circuit modules. For example, consider
an FPGA chip that contains the circuit in Fig. 4.1 designed with a CLA adder
as a prefabricated module. In addition, the module may include some internal
clock signal routing delay. Such modules may have negative hold/setup times
with respect to the input signals at their boundary. It has been shown that a
more accurate timing simulation can be achieved when negative hold/setup
time requirements of prefabricated modules are modeled in HDL simulation
software [1].

4.6 Clock Frequency Estimation without Clock Skew
Figure 4.18 illustrates the minimum clock period (τ) required to operate a D
flip-flop. The period is the duration of one clock cycle and includes the
amount of time that the clock is 1 and the amount of time that the clock is 0.
The period is calculated in terms of signal d’s maximum propagation delay
(τpd-max), the maximum clock-to-q delay (τcq-max), and the flip-flop’s setup time
(τst).

FIGURE 4.18 The relationship between the clock period and different delays.

Equation (4.1) is used to calculate the estimated minimum clock period.
The estimated period does not take into account a sequential circuit
phenomenon called clock skew discussed in Chap. 5.

Equation (4.2) defines the maximum clock frequency as the number of
cycles per second (cycles/second), also called hertz. It is the number of clock
cycles in 1 second.

Typically, large frequency values are converted into thousands, or kilohertz
(KHz); millions, or megahertz (MHz); or billion, or gigahertz (GHz), by dividing

the number of cycles/second by one thousand, one million, or one billion,
respectively.

4.7 Flip-Flop with Enable
A complex digital circuit typically contains hundreds or thousands of flip-flops.
The flip-flops are not all active (sampling) at the same time. Some of the flip-
flops may be individually activated, and some may be activated as a group.
For instance, a processor that has 16 32-bit registers contains 512 (16 * 32)
flip-flops. A group of, say, 32 flip-flops that make up a 32-bit register would be
all selected (enabled) at the same time to load a 32-bit result generated, for
example, by an adder during the execution of an ADD instruction. Therefore,
an additional control signal is necessary to select a flip-flop or a group of flip-
flops during a particular clock cycle.

Figure 4.19 illustrates the design of a D flip-flop with an enable signal e
that controls a 2-to-1 multiplexer (MUX). When e = 0, the MUX selects q and
causes the flip-flop to reload q and thus retain its stored value. When e = 1,
the MUX selects the d_in input and causes the flip-flop to load and change q
to d_in. The flip-flop is said to be enabled, or selected, when e = 1, and
disabled, or not selected, when e = 0.

FIGURE 4.19 A D flip-flop circuit with enabling signal and its symbol.

4.8 Other Flip-Flops

A historically popular flip-flop is called the JK flip-flop. It uses two input
signals j and k as shown in Fig. 4.20(a). In the figure, the SET and CLR
signals indicate active-high asynchronous set and reset signals, respectively.
The outputs of the flip-flop toggle; q becomes and becomes q during each
clock cycle when j and k inputs are both 1. JK flip-flops have the
disadvantage of requiring two control signals. However, in general, circuits
that use JK flip-flops have the advantage of requiring simpler circuits for the j
and k signals as compared to the d signals of a circuit that uses D flip-flops.
An edge-triggered JK flip-flop can be designed using a D flip-flop, as
illustrated in Fig. 4.21.

FIGURE 4.20 Other types of flip-flops.

FIGURE 4.21 A circuit for an edge-triggered JK flip-flop.

In Fig. 4.20(b), another flip-flop called a T flip-flop is shown. This flip-flop
is designed using a JK flip-flop with both j and k inputs connected to a single
signal t, which stands for toggle. A T flip-flop performs only one of two
functions: retain its current state (q) or toggle. If t = 0, a T flip-flop retains the
value of its q. If t = 1, its outputs toggle: q becomes and becomes q every
clock cycle. A T flip-flop, similar to a D flip-flop, also has the advantage of
requiring only a single input (t) to synchronously either set or reset its q.

In general, any flip-flop can be designed systematically from any other flip-
flop. For example, the behavior of a JK flip-flop, like many other sequential
circuits, can be expressed by a finite state diagram (FSD). FSDs and their
implementations, known as finite state machines (FSMs), are discussed in
Chap. 5.

4.9 Hardware Description Language Models
Example 4.1 presents a Verilog behavior model for a positive-level D latch
with active-low asynchronous _reset and _preset signals. With latches and
flip-flops, the nonblocking or concurrent assignment operator “<=” guarantees
simultaneous clocking of multiple latches and flip-flops that operate with the
same clock. The “always” block in the example includes the four signals—
clock, _reset, _preset, and d—in its sensitivity list. In the description, the
_reset is assigned the highest priority and the clock is the lowest. When
_reset = 1 (not active), _preset = 1 (not active), and clock = 1, a change in the
d signal will affect the q signal, as expected, as long as clock stays at 1
(sampling level). The Verilog code has a missing “else” statement for when
clock = 0, and this creates an implicit latch that retains q when clock = 0.

Example 4.1. A behavior model of a positive-level, asynchronous active-low reset (_reset)
and active-low preset (_preset) for a D-latch, a test-bench, and the simulation output are
listed here. As shown in the output, when clock = 0, d = 1 at simulation time 3, q still 0
indicates the latch is retaining its 0 state as expected. At time 4, when clock = 1 and d = 1, q
changes to 1 as expected, but while clock is still 1 at time 5 and d changes to 0, q changes to
0, as it should, illustrating a latch behavior.

HDL Model:

Test-bench:

Simulation Output:

V C S Simulation Report

Example 4.2 presents a Verilog D flip-flop behavior model. The posedge or
negedge keyword stands for rising- or falling-edge triggered behavior,
respectively. The Verilog code describes a positive-edge triggered D flip-flop
with asynchronous active-low _reset and _preset signals, with priority given
to _reset. These two signals operate the circuit asynchronously because they
are listed as part of the “always” block sensitivity list; otherwise, if they are not
included in the sensitivity list, they would operate the circuit synchronously
and only when clk makes (in this case) a rising-edge transition.

Example 4.2. A behavior model for a positive-edge triggered D flip-flop with asynchronous
active-low _reset and _preset and active-high enable (e) signals and a test-bench and
simulation output are listed. Note that, in the model, the d and e signals are not included in
the sensitivity list of the “always” block; thus, as expected, they will affect the D flip-flop
synchronously. When _reset = 1 and _preset = 1, a 0-1 clock transition will cause the flip-flop
to load and make q = d if the flip-flop is enabled (e = 1). Otherwise, if e = 0 and the flip-flop is
disabled, the value of q is retained. A flip-flop also retains q when clk is not making a 0-1
transition; that is, clk is either 0 or 1. A 1-0 level change in signal _reset asynchronously
resets q (q = 0), and a 1-0 level change in signal _preset asynchronously would set q (q = 1).
Again, the concurrent, nonblocking operator “<=” causes simultaneous clocking of multiple
instantiated flip-flops (if any).

As shown in the simulation output, when clock = 0 at simulation time 3, d changing 1 will
not change q as expected. When clock makes a 0-1 transition at time 4, d = 1 also changes q
to 1 as expected. When clock is still 1 at time 5 and d changes to 0, as expected, q should
not change, illustrating a flip-flop behavior.

HDL Model:

Test-bench:

Simulation Output:

V C S Simulation Report

References
1. Mi-Sook Jang and Hoi-Jin Lee, “Methods of HDL simulation considering

hard macro core with Negative Setup/Hold time,” US Patent 7,213,222
B2, May 1, 2007.

Exercises
 4.1 Part 1: Given the circuit in Fig. 4.22 where qa is the output of a positive-

level D latch, complete the timing waveform for qa given in Fig. 4.23.
Assume τst = τcq = 0.

FIGURE 4.22 Circuit for Exercises 4.1 and 4.2.

 4.2 Part 2: Given the circuit in Fig. 4.22 where qb is the output of a positive-
edge triggered D flip-flop, complete the timing waveform for qb given in
Fig. 4.23. Assume τst = τcq = 0.

FIGURE 4.23 Waveform for Exercises 4.1 to 4.4.

 4.3 Part 1: Given the circuit in Fig. 4.24 where qa is the output of a negative-
level D latch, complete the timing waveform for qa given in Fig. 4.23.
Assume τst = τcq = 0.

FIGURE 4.24 Circuit for Exercises 4.3 and 4.4.

 4.4 Part 2: Given the circuit in Fig. 4.24 where qb is the output of a negative-
edge triggered D flip-flop, complete the timing waveform for qb given in
Fig. 4.23. Assume τst = τcq = 0.

 4.5 Given the circuit in Fig. 4.22 where qb is the output of a positive-edge
triggered D flip-flop, complete the timing waveform for qb given in Fig.
4.25. Assume τst = 0.15 ns and τcq = 0.1 ns.

FIGURE 4.25 Waveform timing diagram for Exercise 4.5.

 4.6 Given the circuit in Fig. 4.22 where qb is the output of a positive-edge
triggered D flip-flop, complete the timing waveform for qb in Fig. 4.26.
Assume τst = 0.15 ns, and τcq = 0.2 ns.

FIGURE 4.26 Waveform for Exercises 4.6.

 4.7 Given that a D flip-flop has 0.1 ns setup time and 0.1 ns hold time and
the maximum propagation delay for d is 0.3 ns, determine the maximum

clock frequency for the proper operation of the D flip-flop.
 4.8 Create and simulate a Verilog structural model of a D flip-flop using

NAND gates with reset and preset signals.

CHAPTER 5
Sequential Circuits: Small Designs

5.1 Introduction
Like combinational circuits (CCs), sequential circuits can also be classified as
small and large circuits. An up-counter, for example, that generates the
sequence 0, 1, 2, 3, etc., as output would be considered a small sequential
circuit. On the other hand, a processor core (a CPU) is a very large
sequential circuit that may execute multiple instructions simultaneously. Each
instruction would require a set of operations and involves one or more
registers and possibly memory.

All small and large sequential circuits are made of flip-flops and a set of
CCs, such as the one shown for a 2-bit up-counter in Fig. 5.1. The counter
circuit includes two flip-flops and a set of CCs associated with the 2-bit adder
shown in the figure. Contrary to CCs, a sequential circuit has states and
transitions from a current state to a next state every clock cycle. A current
state is determined from the flip-flops’ q bits. In the figure, if the 2-bit Q = q1q0
= (00)2, then the counter is said to be currently in state 0; if the Q = q1q0 =
(01)2, then the counter is said to be currently in state 1, etc. The counter also
outputs the 2-bit state number Q = q1q0 as count every clock cycle.

FIGURE 5.1 An FSM as a 2-bit counter with two flip-flops.

The adder (i.e., the set of the counter’s CCs) generates the counter’s next
state as a 2-bit number D = d1d0 = q1q0 + 1. If the counter’s current state is Q
= q1q0 = (00)2, then its next state is D = d1d0 = (01)2. The d1 and d0 are
saved in the flip-flops during the next clock cycle.

The design of sequential circuits requires additional methodologies. A
sequential circuit design problem is typically modeled as a finite state
diagram (FSD). An FSD consists of circles as states and arcs (arrows) as
transitions. It formally specifies the behavior of a target sequential circuit. The
2-bit counter has four states, numbered 0, 1, 2, and 3. It transitions from state
0 to state 1, then from state 1 to 2, then from state 2 to 3, and finally from
state 3 back to 0. An FSD is systematically converted into a circuit called a
finite state machine (FSM), such as the one in Fig. 5.1.

A large sequential circuit design problem is typically partitioned into the
design of a data path and a control unit. The data path would contain both
CC modules, such as arithmetic logic units (ALUs), multiplexers (MUXs), and
decoders, and small sequential circuits, such as registers and counters. The
design of large sequential circuits is discussed in Chap. 6, and CPU design,
specifically, is discussed in Chap. 8.

Occasionally, it is possible to design a sequential circuit without first
constructing an FSD. This is an important design concept and, in many
cases, simplifies the design of some small and large sequential circuits,
including CPUs. For example, the CC module (i.e., an adder) in Fig. 5.1
performs addition, which is a known function, and thus the counter can be
designed without an FSD.

On the other hand, the design of, for example, a sequence recognizer
that inputs a sequence of 1’s and 0’s, one at a time, and outputs a 1 each
time it encounters a prespecified subsequence would require an FSD. In this
case, as opposed to the 2-bit counter example, it would be nearly impossible
for a designer to determine in advance what specific known function the CCs
of a sequence recognizer would be performing.

Sequential circuits are also subject to environmental hazards, such as
transient faults that occur at random and can change the state of a
sequential circuit, causing a malfunction. One way to protect sequential
circuits from environmental hazards is through fault-tolerant design.

We will start this chapter with a small FSM design problem and then
formally present the design of FSMs in general, including the design of a
fault-tolerant FSM. We will also present timing requirements of sequential
circuits and discuss examples of FSM descriptions in Verilog.

5.2 Introduction to FSM: Register Design
A register, as a small sequential circuit, is used as a storage module to save
the output of a CC. As a shift register, it would have the capability of shifting
its content either to the right or to the left by a number of bits. We have
selected a simple register as the first design problem for the following
reasons:

• To illustrate design partitioning
• To first design a simple FSM
• To provide a formal design for a flip-flop that was discussed in Chap. 4

Figure 5.2 illustrates a 4-bit parallel-load register with input X = x3… x0
and output Z = z3… z0. Assuming that _reset = 1 (i.e., not active), the register
would load X, making Z = X on the next rising edge of the clk if the register is
enabled (i.e., enable = 1). Otherwise, if enable = 0, the register is disabled
and retains its content.

FIGURE 5.2 A 4-bit, parallel-load register.

In the figure, the asynchronous preset signal _s of each flip-flop is
assumed to be 1 (disabled), and thus is not shown. However, if _reset is
supposed to initialize some of the register bits to 1 and others to 0, then
_reset signal would be connected to the _s inputs of those flip-flops that
initialize to 1 and the _r inputs of the remaining flip-flops. In addition, all the
unused _s and _r inputs would need to be disabled, and being active-low
signals in this case, they would be connected to 1.

5.2.1 Register Model
As illustrated in Fig. 5.2 for n = 4, the design of an n-bit register can be
partitioned using n 1-bit register slices. The behavior of the register slice can
be formally modeled as an FSD, shown in Fig. 5.3. The circles represent a
set of unique but finite number of states determined by analyzing the design
problem. Because the 1-bit register slice can store either a 0 or a 1 as its
content, its FSD has two possible states (i.e., two circles). The arcs represent
transitions from one state to the next, and there are conditions for each
transition.

FIGURE 5.3 One-bit register slice modeled as an FSD.

As shown in the figure, if the register slice is not enabled (i.e., e = 0), as
expected, the register slice will remain in its current state 0 or 1. This is
indicated by an arc (Arc1) from the state 0 back to itself and again a second
arc (Arc4) from the state 1 back to itself. The signal values associated with
each transition are listed next to its corresponding arc. For example, the
signals associated with Arc1 and Arc4 are e = 0 and x as don’t-care (0 and
1). If the register slice is in state 0 and e = 1 and x = 1, then the register slice
will transition from state 0 to state 1 on the next clock cycle. This is illustrated
by Arc3. The other arcs are similarly drawn.

Figure 5.4 illustrates a detailed block diagram of the 1-bit register slice as
an FSM. It includes a single flip-flop that holds the 1-bit register state as 0 or
1 and a CC that inputs the current state, indicated by the q signal, and the
external inputs x and e to output the next state, indicated by the d signal. The
output of the register slice is defined as z = q.

FIGURE 5.4 The detailed block diagram of a 1-bit register slice.

The logic expression for the d signal is determined from a truth table, also
known as a transition table. The table is a tabular representation of
information in an FSD. Table 5.1 presents the transition table of the 1-bit
register slice. For example, the first two rows in the table define Arc1 (Fig.
5.3); row 3 defines Arc2; row 4 defines Arc3; etc. From the transition table,
one can determine the minimal sum of product (SOP) expression .

TABLE 5.1 Transition (Truth) Table for the 1-Bit Register Slice Determined from Its FSD

Note that the expression defines a 2-to-1 MUX. As expected, if e = 0, then
d = q, else if e = 1, then d = x. The circuit for the 1-bit register slice is shown
in Fig. 5.5. Recall that the exact same circuit was initially introduced in Chap.
4 as a flip-flop with an enable signal (Fig. 4.19). However, the circuit was
formally designed here using an FSD.

FIGURE 5.5 One-bit register-slice (also shown in Fig. 4.19).

5.2.2 Multifunction Registers
Occasionally, a register may need to perform one of several functions. Figure
5.6 shows the block diagram of a four-function register with an n-bit input X,
an n-bit output Z, and a 2-bit function code F = f1 f0. The register is enabled
when its active-high enable signal is asserted. The register also requires an
active-low _reset signal to initialize it asynchronously to 0. The four functions
of the register are synchronous reset (clear), parallel load, arithmetic right
shift that repeats the sign bit, and right shift that enters a 0 from left.

FIGURE 5.6 The block diagram of a four-function register.

Bit-Serial Design
The detailed block diagram and the FSD of a 1-bit four-function register slice
are given in Fig. 5.7. Contrary to the previous example, the flip-flops in this

case are assumed to include an enable signal e. Also, for clarity and
convenience, don’t-care signal values are not shown and omitted from the
arcs in the FSD. For instance, i and x are don’t-care and thus are not shown
for the arcs for which F = 0 (f1 f0 = 00). When F = 0, the register slice must be
synchronously initialized to 0 (cleared), independent of the values of its i and
x inputs.

FIGURE 5.7 A detailed block diagram and the FSD of a 1-bit four-function
register slice.

In Fig. 5.7, the combinational circuit has five inputs—q (the current state),
f1, f0, i, and x—and one output d (the next state). Its truth table would consist
of 32 rows and thus is not shown. However, using the Espresso minimization
software yields the expression The final circuit and the symbol
for the 1-bit four-function register slice are shown in Fig. 5.8. Using four
copies of the register slice, a 4-bit four-function register can be designed as
illustrated in Fig. 5.9. For each register slice in the figure, the input i, except
the leftmost one, is connected to the z output from its preceding connected
slice. The i input for the leftmost slice is defined as It repeats the
sign-bit z3 when F = 2 that specifies an arithmetic right shift.

FIGURE 5.8 One-bit four-function register slice and its symbol.

FIGURE 5.9 A 4-bit 4-function bit-serial register design.

Note that the combination circuit in Fig. 5.8 defines a 1-bit 4-to-1 MUX with
the inputs 0, x, i, and i (the i is used twice), as shown in Fig. 5.10. The SOP
expression of the MUX simplifies to which is the exact
same expression shown in Fig. 5.8 obtained using the FSD. This is a
valuable technique that can be used to design a bit-serial or a bit-parallel
FSM without actually requiring an FSD model. The technique does, however,
require analyzing the design problem to determine whether a known CC
module, such as the MUX in this case, can be used in the design. This is
illustrated next by using the bit-parallel technique to design the 4-bit four-
function register. However, if one cannot identify a known module by
analyzing the design problem, then one must use an FSD to formally model
the design problem.

FIGURE 5.10 A 1-bit 4-to-1 MUX with inputs, 0, x, and i used twice.

Bit-Parallel Design
Figure 5.11 illustrates the design of the four-function register given in Fig. 5.6
using a 4-bit parallel-load register and a 4-bit 4-to-1 MUX. The MUX routes
one of its four 4-bit inputs to its output, which is then loaded into a 4-bit
parallel-load register. The four inputs of the MUX are defined as follows:

FIGURE 5.11 Bit-parallel design of a 4-bit four-function register.

Input-0: Synchronous clear (F = 0), grounded and set to logic 0
Input-1: Parallel loading (F = 1), connected to the 4-bit input X
Input-2: Arithmetic right shift (F = 2), connected to {z3, z3z2z1}, the sign-

bit z3 is concatenated (indicated by {}) with the upper three bits
of register output Z to create a 4-bit number

Input-3: Right shift (F = 3), connected to {0, z3z2z1}, a 0 is concatenated
with the upper three bits of register output Z to create a 4-bit
number

5.3 Finite State Machine Design
In the previous section, simple examples of bit-serial and bit-parallel FSMs
were presented. In general, FSMs are categorized into Mealy, Moore, or
hybrid machines. In addition, the combinational circuits of an FSM can be
grouped into two sets: those forming a next-state generator (NSG) and
those forming an output generator (OG). An NSG determines the next state,
and an OG generates output signals.

Figure 5.12 illustrates an FSM detailed block diagram. An FSM is called
a Mealy machine if its outputs, known as Mealy outputs, are determined
using its current state as well as using its current (external) inputs—not
counting the clock, reset, and preset signals that directly connect to flip-flops
and the enable signal used with flip-flops. A change in the values of one or
more of the external inputs could change the value of a Mealy output
independent of the clock signal. In the figure, this is shown by a wire (a bold
and dashed line) connecting the external input signals to the inputs of the
OG. Mealy outputs are said to asynchronously dependent on the external
input values. Unlike Mealy outputs, Moore outputs synchronously depend
on the external input values. A hybrid machine has both Mealy and Moore
outputs.

FIGURE 5.12 A detailed block diagram illustrating Mealy and Moore FSMs.

We use a sequence recognizer as an example to further discuss these
topics, as well as the design decisions that affect circuit size. A sequence
recognizer operates much like the controller of a combinational digital lock. It
monitors inputs one bit at a time and outputs a 1 (assuming active high) each
time that the recognizer encounters a target sequence, for example, a 3-bit
sequence “101.” A recognizer can be designed to recognize either an
overlapping or nonoverlapping sequence. For example, the input
sequence “10101” contains two overlapping sequences of “101,” where the
“1” in the center of the input sequence is shared. On the other hand, there
are two nonoverlapping “101” sequences in the input sequence “101101.”

Example 5.1 The design of a Moore FSM that detects the overlapping sequence “101”:

Solution Figure 5.13 shows the top-level block diagram of the sequence recognizer with the
external input x and the output z. Its Moore FSD is also shown with four states labeled A, B,
C, and D. The active-high reset signal is used to asynchronous initialize the machine to a
known state A, as illustrated by an arrow labeled reset in the FSD. An input sequence is
processed one bit at a time. The recognizer makes a transition to a new state each time that
it counters the next bit in the target sequence. For example, if the recognizer is in the state
C, it indicates that it has received the first 2-bits of the target sequence. The output z is
shown below each state and becomes 1 when the recognizer receives the last bit of the
target sequence and enters state D. The z is 0 in all other states. The recognizer would
reject all other 3-bit sequences that it inputs and start over each time. The details of
alternative solutions are discussed next.

FIGURE 5.13 A block diagram of a “101” sequence recognizer and its Moore
FSD.

An FSD is called deterministic if each of its states has a unique set of
transitions (arcs). However, if there was also a second transition from state A
in Fig. 5.13, say, to state C when x = 1, then the FSD would be
nondeterministic. In this case, if x = 1, then it could not be determined if the
transition should be from state A to B or to C. There are two ways to
implement a deterministic FSD:

1. Binary encoded states—In this case, the states are assigned (labeled)
with unique binary numbers with the least number of bits possible. For
example, four states in Fig. 5.13 can be labeled with 2-bit binary
numbers: 00, 01, 10, and 11.

2. One-hot encoded states—In this case, the states are labeled with
unique binary numbers, each consisting of only a single 1 (one-hot); the
remaining bits are 0. For example, the 4-bit one-hot numbers 0001,
0010, 0100, and 1000 can be used to label the four states in Fig. 5.13.

5.3.1 Binary Encoded States
The minimum number of bits required to encode the states of an FSD is
determined from Eq. (5.1), where k is the total number of states. The symbols
⌈ ⌉ indicate the ceiling function.

For instance, if the number of states is more than 4 and less than 8 (i.e., 4
< k < 8), then 3-bit numbers are needed to label anywhere between five and
eight states. Which one of the numbers should be assigned to each state is a
logic optimization problem. Figure 5.14 illustrates a detailed block diagram for
the sequence recognizer in Fig. 5.13 using binary encoded states.

FIGURE 5.14 The detail block diagram of a “101” sequence recognizer.

The following two transition (truth) tables (Tables 5.2 and 5.3) are
determined from the FSD, where binary numbers 00 is assigned to the state
A, 01 to state B, 10 to state C, and 11 to state D. The truth tables are used to

determine minimum SOP expression (Eq. (5.2)) for each of the state
variables d1, d0, and the output variable z. A completed circuit using positive-
edge triggered flip-flops and active-high reset is shown in Fig. 5.15.

TABLE 5.2 The NSG Transition Table Compiled from the FSD in Fig. 5.13

TABLE 5.3 The OG Truth Table Complied from the FSD in Fig. 5.13

FIGURE 5.15 A Moore FSM to detect the overlapping sequence “101.”

An alternative circuit schematic (layout) with distributed CCs is illustrated
in Fig. 5.16. In this case, each of the CCs—CC1 and CC2—are schematically
shown next to its corresponding flip-flop. This is how circuits are generally
implemented.

FIGURE 5.16 An alternative and typical layout for the circuit shown in Fig.
5.15.

Upon reset, the sequence recognizer initializes to state 0 (i.e., q1q0 = 00)
and, as expected, outputs z = 0. Assuming x = 1, the expressions yield d1 = 0
and d0 = 1, given q1 = 0 and q0 = 0. The recognizer transitions from state 0 to
state 1 as soon as d signals are loaded into the flip-flops, making q1q0 = 01.

Suppose the next input is 0 (i.e., x = 0). This time, the expressions yield d1
= 1 and d0 = 0, and thus would cause the recognizer to transition to state 2
(q1q0 = 10). Finally, suppose the next input is 1 (x = 1). This yields d1 = 1 and
d0 = 1, and the recognizer would transition to state 3 (q1q0 = 11). Once in

state 3, z becomes 1 and recognizes the sequence “101.” In general, testing
every transition of an FSM, especially a large one, is difficult and can require
a prohibitively large number of tests.

The amount of hardware required for implementing an NSG and an OG
depends on the binary label assigned to each state. The circuit in Fig. 5.15
was designed using 00, 01, 10, and 11 to label the states A through D,
respectively. Suppose we decide to change the assignments and instead use
the labels 00, 11, 10, and 01 in order for states A to D. This would yield a
circuit requiring less total hardware. Equation (5.3) lists a minimal SOP
expression for each of the state variables d1 and d0 and the output z using
the new binary state labels. Note that, compared to the circuits in Fig. 5.15,
the circuit for d1 is simpler, as shown in Fig. 5.17.

FIGURE 5.17 A Moore FSM to detect the overlapping sequence “101” with
alternative encoded states.

5.3.2 One-Hot Encoded States
The design technique of binary encoded states minimizes the number of flip-
flops. On the other hand, the design technique of one-hot encoded states
minimizes the size of the CCs. The one-hot design technique is especially
advantageous with programmable logic devices (PLDs) where there are
numerous configuration logic blocks (CLBs), each with one or more flip-flops.
For example, an FPGA with thousands of CLBs would contain thousands of
flip-flops. Therefore, it may be more efficient to use more flip-flops (one per
state) and less complex CCs. The one-hot design technique is more likely to
produce circuits with the least propagation delay, not counting wire delays,
which can be longer in some PLD designs.

During each clock cycle, only one flip-flop is set (i.e., only one q is 1), while
the remaining flip-flops are reset (the other q’s are 0). For example, suppose
instead of using 2-bit numbers to label the four states of the FSD in Fig. 5.13,
4-bit one-hot labels 0001, 0010, 0100, and 1000 are used. Figure 5.18
illustrates a detailed block diagram of the corresponding one-hot FSM. Note
that, upon reset, the machine must start in state A (q3q2q1q0 = 0001) with one
of the flip-flops set. Therefore, the reset signal must be connected to the
preset (s) input of the flip-flop associated with q0 and to the reset (r) input of
the remaining flip-flops, as illustrated in the figure. Table 5.4 presents the
truth table for the NSG, and Table 5.5 presents the truth table for the OG.
The missing table entries are don’t-cares and are not shown. However, the
don’t-care output values should be entered in Karnaugh maps (K-maps),
Espresso files, and in HDL models to further minimize the circuits. In
addition, don’t-care values are especially important in HDL models to avoid
creating implicit latches.

TABLE 5.4 One-Hot Design NSG Truth Table Compiled from the FSD in Fig. 5.12

FIGURE 5.18 The detailed block diagram of a one-hot FSM for detecting the
sequence “101.”

Equation (5.4) lists the minimal expressions for the next state variables d3
through d0 and the output variable z.

The final circuit is shown in Fig. 5.19. When compared to the binary
encoded FSM in Fig. 5.17, the one-hot FSM requires more gates, but simpler
circuits for each next state-bit, and output z requires no circuit.

FIGURE 5.19 A one-hot design FSM to detect the sequence “101.”

Example 5.2 The design of a Mealy FSM that detects an overlapping sequence “101”:

Solution Figure 5.20 shows the block diagram and a Mealy FSD for the sequence
recognizer. Note that, in this case, the z being a Mealy output is assigned to the arcs and not
to the states. The label of each arc has two parts separated by a slash (/), the inputs (only x
in this case) are listed to the left of the slash, and the outputs (only z in this case) are listed
to the right of the slash. Before a Mealy solution is presented, additional, Mealy and Moore
design issues are discussed next using this example.

FIGURE 5.20 The block diagram of the “101” sequence recognizer and its
Mealy FSD.

The detailed block diagram for the Mealy FSM is illustrated in Fig. 5.21.
Note that if the FSM is in state C, then either z = 0 if x = 0 or z = 1 if x = 1.
Therefore, as expected, the Mealy output z (z-Mealy) depends
asynchronously on external input x. This is a typical behavior of a Mealy
FSM. As soon as the x signal changes, the z signal could change,
independent of the clock signal. The FSD has three states. It can be
implemented using either two flip-flops with binary encoded state labels or
three flip-flops with one-hot state labels.

FIGURE 5.21 A detail block diagram of the “101” Mealy sequence recognizer.

Assuming that states A, B, and C are encoded with 2-bit binary codes, one
of the four possible binary state labels would not be used. For example,
suppose, the binary label 00 is assigned to state A, 01 to state B, and 10 to
state C. The binary label 11 will not be used and would constitute an
unknown/undefined machine state. An environmental hazard (e.g., a
transient fault) that causes a state change in one or more of the flip-flops
could alter the state of the FSM. For example, a 1-bit accidental change in
the value of q1 or q0 would switch state 01 (C) either to the known state 00
(A) or to the unknown state 11 (e.g., D). In general, there are several choices
for how to handle the unknown states in a design:

• The unknown FSM states are ignored in the design—In this case, the
unknown states are considered unimportant, for example, if the FSM
operates a simple toy. If the FSM enters into one of its unknown states
and thus malfunctions, the FSM needs to be reset. More specifically, the
binary labels of the unknown states are entered in the NSG and OG truth

tables, but the values for the next state and the output variables are set
to don’t-care. This helps to reduce the size of the NSG and OG circuits.

• The unknown FSM states are transitioned to a known state—In this
case, each time that an FSM enters into an unknown state, the machine
is transitioned into a known state during the next clock cycle. For
example, Fig. 5.22 shows a binary encoded FSD with one unknown state
D. If, due to an environmental hazard, the FSM accidentally enters the
unknown state D, it would not only transition to the known state A on the
next clock cycle, as shown in the figure, but also would not generate
invalid outputs. In this case, the label for the unknown state D would be
entered in both the NSG and OG truth tables, but the label for the state A
would be entered as the next state for both when x = 0 and x = 1. Also,
the output z would be set to 0.

• The sequential circuit is designed as a fault-tolerant FSM—In this
case, the FSM would be able to recover from an unknown state or from
an accidental transition to a known state and would continue operating
normally. For example, a single bit fault, which would set or reset a single
flip-flop, can be detected and corrected by including additional hardware
that implements a single error detection and correction scheme. A fault-
tolerant FSM would use extra flip-flops and logic to detect and correct the
errors caused by faults. Note that error detection is simpler if one-hot
state labels are used. We will discuss the design of a fault-tolerant FSM
in Sec. 5.5.

FIGURE 5.22 A binary encoded FSD with one unknown state D.

Assuming that the first option (ignoring the unknown states) is used to
design the Mealy FSD in Fig. 5.20, Table 5.6 presents the truth table for the
NSG with the unknown state D ignored in the design; when the current state
is D, the next state is defined as don’t-care. Likewise, Table 5.7 presents the
truth table for the OG with the output z set to don’t-care when the current
state is D. Equation (5.5) lists the minimal expressions for the next state
variables d1 and d0 and the output variable z.

TABLE 5.5 One-Hot Design OG Truth Table Compiled from the FSD in Fig. 5.12

TABLE 5.6 The NSG Truth Table Determined from the FSD Given in Fig. 5.20

The corresponding FSM circuit is given in Fig. 5.23. Mealy machines, in
general, require fewer flip-flips than their equivalent Moore machines.
However, sometimes Moore outputs are preferred. In such cases, additional
flip-flops, one per Mealy output, are used to convert a Mealy output to its

corresponding Moore output. In the figure, a flip-flop converts the z-Mealy to
its equivalent z-Moore. While the z-Mealy asynchronously depends on the
external input x, the z-Moore does not. However, the z-Moore would lag the
z-Mealy by one clock cycle.

FIGURE 5.23 The circuit for the Mealy “101” sequence recognizer. Also
illustrated is the conversion of a Mealy output to a Moore output using a
synchronizing flip-flop.

5.4 Counters
In the previous sections, various FSM design techniques and sample
applications were discussed. A counter is a sequential circuit that outputs a
finite set of prespecified values. For example, a 2-bit binary counter, also

known as mod-4 counter, outputs the binary numbers 00, 01, 10, and 11 in
order and then it repeats, (3 + 1) mod 4 = 0. In general, a mod-k counter
outputs k values starting at 0 and ending at k – 1 and then it repeats.

There are many other counter examples. A binary-coded-decimal (BCD)
counter would output the sequence 0 through 9 and then it would repeat. A
Gray code counter would output a sequence of numbers, where each
number is different in only 1-bit when compared with an immediately
preceding number. For example, the numbers 000, 001, 011, 010, 110, 111,
101, 100, and then 000, repeating, would be the outputs of a 3-bit Gray code
counter.

The fact that two consecutive Gray codes differ in only 1-bit helps to limit
the number of possible bit errors to only one when a Gray code is accessed
as external data by a totally separate sequential circuit. For an example of
why Gray code counters would be necessary for two independently
functioning sequential circuits to access a first-in-first-out (FIFO) buffer, refer
to Exercise 5.30 (also see Sec. 5.6.2).

Example 5.3 The design of a bit-serial mod-8 counter with asynchronous active-high reset
that uses three copies of a 1-bit counter slice. For k = 8, the counter outputs 0 through 7 and
then repeats. This would require the design of a hybrid FSM with both Mealy and Moore
outputs.

Solution A k-bit binary counter slice must perform one of two operations: It should either
retain its current count or increment it by 1. The slice associated with the least significant
digits must increment every clock cycle. The other slices only increment when they receive a
signal indicating “increment.” Figure 5.24 illustrates the block diagram and the FSD of a 1-bit
binary counter slice. The FSD defines a hybrid FSM with a Moore output z-Moore and a
Mealy output o-Mealy. The i input is used as an enabling input signal in each slice. If i = 1,
the slice increments its current value; otherwise, it retains its current value. Each o-Mealy
output connects to the i input of its immediately succeeding slice.

FIGURE 5.24 The block diagram and the FSD of a 1-bit counter slice.

Table 5.8 presents a combined NSG and OG transition (truth) table determined from the FSD
of the 1-bit counter slice. The minimal expressions for the z-Moore and o-Mealy outputs and

the next state variable d are listed in Eq. (5.6). The circuit for the 1-bit counter slice and a
corresponding mod-8 counter are shown in Fig. 5.23. The 1-bit counter slice can be used to
design any mod-k counter as long as k ≥ 2 is power of 2 (i.e., k = 2m, where m ≥ 1).

TABLE 5.7 The OG Truth Table Determined from the FSD Given in Fig. 5.20

TABLE 5.8 A Combined NSG and OG Truth Table Complied from the FSD in Fig. 5.24

Example 5.4 A bit-serial mod-6 counter with active-high reset; note that 6 is not a power of
2.

Solution A mod-6 counter outputs 0, 1, 2, 3, 4, 5, and then it repeats. Like a mod-8 counter,
it also requires three flip-flops to store a value between 0 and 5 as its current states.
However, a mod-6 counter, contrary to a mod-8 counter, must reinitialize when it reaches 5
and starts the count from 0 on the next clock cycle. For this, a simple but less preferred
solution is to use the output of a simple CC that asynchronously resets the counter as soon
as count reaches 6, but before the next clock cycle. A signal labeled aclear (“a” for

asynchronous) is defined as aclear = z2z1z0_ and then combined with the master
asynchronous signal reset to asynchronously reset each slice, as illustrated in Fig. 5.26.

FIGURE 5.25 A bit-serial mod-8 counter: (a) 1-bit counter slice; (b) mod-8
counter with three slices.

FIGURE 5.26 An asynchronously cleared bit-serial mod-6 counter (not a
preferred solution).

However, since r = aclear + reset is used to asynchronously reset all the flip-flops, Δr (delay
of signal r) would not be included in the calculation of the minimum operating clock period.
Thus, it is very likely (due to signal routing delays) that all the flip-flops may not reset to the
initial value 0. That is, it is possible that when aclear = 1, some of the flip-flops may reset
quickly, causing aclear to become 0 (deasserted) before all the flip-flops are able to reset.
Hence, the counter may produce an incorrect output on the next clock cycle.

A preferred solution is to reset the flip-flops synchronously each time the counter outputs 5
and reserve the asynchronous reset only for counter initialization during startup. To do this,
the 1-bit counter slice must include an additional external input, for example, sc
(synchronous clear). Figure 5.27 illustrates the block diagram of the modified 1-bit counter
slice. Its FSD is also shown. When sc = 1, the next state is always 0 and the o-Mealy is a
don’t-care independent of the value of the i input. For convenience and clarity, the i and the o
signals are omitted and not shown on those arcs that sc = 1.

FIGURE 5.27 The block diagram and the FSD of a synchronously cleared (sc)
1-bit counter slice (a preferred solution).

Table 5.9 presents the combined NSG and OG truth table. The minimized
logic expressions for the next state variable d and the z-Moore and o-Mealy
outputs are given in Eq. (5.7). The circuits for the bit slice and the mod-6
counter are illustrated in Fig. 5.28. The signal sc is defined as sc = z2z1_ z0
and is asserted each time that the counter outputs 5 and thus synchronously
clears all the flip-flops during the next clock cycle.

TABLE 5.9 The Combined Truth Table of the NSG and OG for the 1-Bit Counter Slice in
Fig. 5.27

FIGURE 5.28 A synchronously cleared bit-serial counter: (a) modified 1-bit
counter slice; (b) circuit for the mod-6 counter (a preferred solution).

Also note that often an enabling signal is also required in the design of a
counter so that the counter operates only when it is enabled. Two design
options are available: (1) include a counter enable signal in its FSD model, or
(2) use flip-flops with enable. The former counter, however, would operate
with a faster clock.

Example 5.5 The design of a bit-serial mod-16 up/down counter using two copies of a 2-bit
counter slice is presented. An up/down counter either counts up or down, based on the value
of a control signal. The direction to count up or down can change at any time.

Solution Figure 5.29 illustrates the block diagram and the FSD of a mod-4 up/down counter
slice. The slice generates the sequence 0, 1, 2, 3 and then repeats when counting up, and
generates the sequence 3, 2, 1, 0 and then repeats when counting down. The signal u
indicates the direction of the counter. If u = 1, the counter counts up; otherwise, if u = 0, the
counter counts down. For a mod-16 counter, the first slice, which is responsible for the least
two significant bits, counts every clock cycle, while the second slice counts only once every
four clock cycles. The input i, if asserted, enables the corresponding slice during the next
clock cycle. Disabling the first slice will automatically disable the second slice. However, the
second slice is only enabled when the first slice reaches its maximum value = 3 when
counting up or its minimum value = 0 when counting down. For example, when current count
= (0011)2, both the slices must be enabled to generate the next count = (0100)2 while
counting up. That is, the first slice must count up to produce 0 = (00)2, (3 + 1) mod 4 = 0, and
the second slice must count up to produce 1 = (01)2, (0 + 1) mod 4 = 1.

FIGURE 5.29 The block diagram and the FSD of a 2-bit up/down counter slice.

The design requires two flip-flops and thus there are two current-state variables q1 and q0
and two next-state variables d1 and d0. Table 5.10 is the combined truth tables of the NSG
and OG. The corresponding Espresso minimized SOP logic terms are listed next. Figure
5.30 is the final circuit for the mod-16 counter using two copies of the counter slice, labeled

Slice1 and Slice0. Slice0 is shown always enabled (i.e., i0 = 1), while Slice1 is enabled only
when Slice0 outputs 3 when counting up or 0 when counting down.

TABLE 5.10 The Combined Truth Table for the NSG and OG of the 2-Bit Counter Slice in
Fig. 5.29

FIGURE 5.30 An up/down bit-serial mod-16 counter using 2-bit up/down
counter slices.

Alternatively, because all counters require some kind of an adder that
performs a known function, they could be designed without requiring an FSD.
This is illustrated in the following example.

Example 5.6 The bit-parallel design of a mod-8 up-counter using a set of known combi-
national circuit (CC) modules and a parallel-load register is presented.

Solution Figure 5.31 illustrates the data path of a bit-parallel mod-8 up-counter. The data
path includes a 3-bit binary adder, a 2-to-1 3-bit MUX, and a 3-bit parallel-load register with
an active-high asynchronous reset. The register is also designed using flip-flops with enable.
The adder always outputs the register content plus 1. The signal sc (synchronous clear)
controls the MUX and is used to synchronously initialize the counter to 0. On every clock
cycle, the register, if enabled, loads the 3-bit output of the MUX, either the quantity Z + 1 if sc
= 0 or zero if sc = 1.

FIGURE 5.31 A synchronously cleared bit-parallel mod-8 up-counter.

The speed of the counter depends on the propagation delay of the adder. A carry propagate
adder (CPA), for example, would introduce a longer signal delay, similar to that of a bit-serial
circuit. On the other hand, one may use a faster adder, such as, a carry look-ahead (CLA)
adder, to design a high-speed counter. Figure 5.32 illustrates the simplified circuit of a
synchronously cleared mod-8 up-counter using a 3-bit CLA adder. The circuit in Fig. 5.32 is
the result of further simplifications of the CLA’s and the MUX’s logic expressions using the
constant operand (001)2 for the CLA adder and the constant input (000)2 for the MUX in Fig.
5.31.

FIGURE 5.32 A synchronously cleared bit-parallel mod-8 up-counter using a
simplified CLA adder and a simplified MUX.

In order to design a bit-parallel k-bit counter slice, the slice must include
both the i and o interface signals that were discussed earlier in the design of
the bit-serial counters. In addition, a bit-parallel (including a bit-parallel slice)
solution, especially for large designs, has the advantage of not requiring an
FSD. The technique, however, does require the designers’ ability to
determine, from the description of the design problem, the functions that will
be performed by the combinational circuits. In Chap. 8, we will use this
approach to design a CPU data path.

5.5 Fault-Tolerant Finite State Machine
A fault-tolerant FSM refers to an FSM that detects and corrects faults that
occur, not because of a manufacturing or design error, but rather because of

some random environmental hazard during operation. In general, such
hazards affect storage elements like latches, flip-flops, and memory. The
state of a flip-flop, indicated by its q bit, can suddenly change from 0 to 1 or
vice versa. A fault can cause an FSM to transition to an invalid state and
therefore cause circuit malfunction. A fault can cause a counter to suddenly
output a wrong value, a sequence detector to recognize a wrong sequence,
or skip and not recognize a right sequence, etc.

In general, faults can affect a single bit or multiple bits. However, single-bit
faults are more common. A fault-tolerant FSM requires extra hardware to
implement redundancy in the circuit and be able to detect and correct errors
caused by faults. For example, a fault-tolerant FSM requires extra flip-flops
and extra combinational circuits. The number of extra flip-flops depends on
how many states there are originally in the FSD. For example, to design a
single-bit fault-tolerant FSM, each binary state label must be different in at
least 3-bits when compared to the other labels. In general, the number of bits
that two binary numbers differ is called their Hamming distance.
Furthermore, a set of binary numbers is called Hamming code if each code
is at least a three Hamming distance away from any other code in the set.

For example, if an FSD has three states, then for a single-bit fault-tolerant
FSM we must use 5-bit Hamming codes, such as 00000, 00111, and 11001,
to label the three states. Note that the Hamming distance between any of the
three 5-bit codes is 3 or more. The codes 00000 and 00111 differ in the first
3-bits; thus, their Hamming distance is 3. The codes 00111 and 11001 differ
in bit numbers 1, 2, 3, and 4 (Little Endian); thus, their Hamming distance is
4. A Hamming distance of any two codes is calculated as the number of 1’s in
their bitwise XOR. Table 5.11 presents the Hamming distances calculated for
the three codes 00000, 00111, and 11001.

TABLE 5.11 Hamming Distance between a Pair of Codes

Suppose a fault causes bit 2 in the code 00000 to change from 0 to 1 and
produce an invalid code 00100. The new code is 1 Hamming distance away
from the valid 00000, but 2 or more distances away from each of the valid
codes 00111 and 11001. Thus, the invalid code is closer to the valid code

00000 than the other two valid codes. Therefore, the error caused by the fault
can be detected and corrected by replacing the invalid code 00100 with the
valid code 00000.

Example 5.7 The design of a fault-tolerant FSM using the Mealy FSD given in Fig. 5.33 is
presented. As shown in the figure, each state is labeled with a 5-bit Hamming code.

FIGURE 5.33 An FSD using 5-bit Hamming state codes as the state labels.

Solution Table 5.12 presents a combined truth table for the NSG and OG of the fault-tolerant
FSM using five flip-flops. In the table, all the single-bit invalid current-state labels are
interpreted the same as the corresponding valid-state label. For example, because each of
the invalid labels 00001, 00010, 00100, 01000, and 10000 is 1 Hamming distance away from
the valid code 00000, they all are interpreted as state A. In the first six rows in the table, if x
= 0, then the next state label is 00000 (state A). Therefore, a single-bit error in any of the q4,
q3, q2, q1, and q0 signals will not alter the state of the FSM. The final circuit is not shown.
However, one can use Espresso minimization software to minimize the truth table and obtain
the required logic expressions for the circuit. Alternatively, the circuit can be modeled in
Verilog using a “case” statement to enter the truth table (see Exercise 5.25).

TABLE 5.12 A Fault-Tolerant Combined NSG and OG Truth Table Determined from the
FSD in Fig. 5.33

A single fault can be simulated if one uses individually controlled input
signals to reset or preset each flip-flop. For example, assuming that the
current state is 00000, a fault can be introduced, say, in the q2 bit by using
the corresponding preset signal to change the state to 00100 (an invalid
state). As indicated in Table 5.12, the FSM should correctly transition from
this invalid state either to the valid state 00000 if x = 0 or to the valid state
00111 if x = 1. Thus, the circuit will detect and correct the single-bit error.
Note that in this case, the detecting and correcting mechanism would be
embedded in the NSG and OG modules. A technique that would convert a
nonfault-tolerant sequential circuit to a single-bit fault-tolerant circuit without
requiring the construction of a large truth table is discussed later.

In addition, in general, it is easy to come up with a small number of
Hamming codes to design a small fault-tolerant FSM. However, it is more
appropriate to use the Hamming coding scheme described next to generate
as many Hamming codes as necessary for a given FSD of any size.

5.5.1 Hamming Coding Scheme
Hamming codes are useful for detecting and correcting a single-bit error or
detecting a double-bit error. The errors can occur during data transmission in
digital communication or in a data storage module such as a flip-flop or
memory. Each Hamming code includes a certain number of parity bits and a
certain number of data bits. A parity bit can be calculated as even parity or
odd parity. For example, consider a 7-bit Hamming code. The bits would be
numbered right to left from 1 to 7 with bits 1, 2, and 4 reserved for three even
parity bits and bits 3, 5, 6, and 7 for four data bits. Equation (5.8) is used to
compute the even parity bits p1, p2, and p4 from the data bits d3, d5, d6, and
d7. Now suppose d7 = 1, d5 = 1, and d3 = 0. The parity bit p1, as an even
parity, must be 0 so that the number of 1’s among d7, d5, d3 and p1 is an even
number. If d7 = 1, d5 = 1, and d3 = 1, then p1 must be a 1.

Given the 4-bit data 1101, its 7-bit Hamming code is determined as follows
using Eq. (5.8).

Data bits: d3 = 1, d5 = 0, d6 = 1, d7 = 1
Even parity bits:

The 7-bit Hamming code is organized as d7d6d5p4d3p2p1 = 1100110. The
parity bit p1 is determined from the data bits d3, d5, and d7. These data bits
are located in the bit positions 011 (3), 101 (5), and 111 (7) in the Hamming
code, respectively. Note that the first bit in each of the position numbers is 1,
indicated by the underline. Likewise, the parity bit p2 is determined from the
data bits located in the bit positions 011 (3), 110 (6), and 111 (7). In general,
a parity bit p2k for k = 0, 1, 2, etc., is generated by XORing all the data bits
that have a 1 in the kth bit of their respective position numbers. For instance,
for k = 2, p4 is determined by XORing the data bits at bit positions 5 (101), 6
(110), and 7 (111) because 5 is 4 + 1, 6 is 4 + 2, 7 is 4 + 3, where 4 is the
common value among them.

The parity bits are used to determine the location of an error bit (if any).
For example, consider the 7-bit Hamming code d7 d6 d5 p4 d3 p2 p1 =
1001100. Suppose this Hamming code is transmitted wirelessly to a remote
destination. Furthermore, suppose, the received Hamming code indicated as
d′7 d′6 d′5 p′4 d′3 p′2 p′1 = (1101100)2 includes a single-bit error in bit d6
(underlined). The received parity and data bits are then p′4 p′2 p′1 = 100 and
d′7 d′6 d′5 d′3 = 1101. Using Eq. (5.8), the new parity bits, p″4, p″2, and p″1 are
computed from the received data bits d′7 d′6 d′5 d′3 = 1101 as follows:

Equation (5.9) is used to determine the location of the bit in error as a 3-bit
number E = e2e1e0.

That is,

The 6 indicates that the bit in location 6 (i.e., d6) in the received Hamming
code is in error and should be changed from 1 to 0 to yield the correct
Hamming code 1001100 that was transmitted.

With an additional overall parity bit c, a Hamming code can also be used to
detect, but not correct, a double-bit error. Equation (5.10) defines an overall
even parity bit. The four parity bits c, p4, p2, and p1 and the four data bits d7,
d6, d5, and d3 create an 8-bit Hamming code. Table 5.13 presents some
examples of Hamming code sizes.

TABLE 5.13 Sample Hamming Code Sizes

Table 5.14 presents the rules of the Hamming coding scheme (HCS) using
the E, c′ (the received overall parity bit), and c″(the computed overall parity bit
from the received data bits). When c′ and c″ are equal and E = 0, then there
are no faults in the received Hamming code. If the c′ and c″ are the same but
E ≠ 0, then there is a double and uncorrectable error in the received code. If
c′ ≠ c″ and E = 0, then the error is in c′. Finally, if c′ ≠ c″ and E ≠ 0, then the E
identifies the bit in error. If 3 or more bits are in error, the HCS will interpret
the error (incorrectly) either as a single-bit or a double-bit error.

TABLE 5.14 The Rules of the HCS (Hamming Code Scheme)

In Example 5.7, we selected the three Hamming codes 00000, 00111, and
11001 to encode the three states of the FSD in Fig. 5.33. Here, we will
illustrate how the HCS can be used to systematically encode the states of an
FSD with Hamming codes. Suppose the states A, B, and C in Fig. 5.33 are
initially encoded with 2-bit binary numbers s1s0 = 00 for A, 01 for B, and 10
for C. By interpreting the 2-bit state labels as two data bits, Eq. (5.11) is used
to compute the parity bits using the data bits d7 = 0, d6 = 0, d5 = s1 and d3 =
s0.

For example, for s1s0 = 01, p1 = 1, p2 = 1, and p4 = 0, the corresponding
Hamming code is s1 p4 s0 p2 p1 = (00111)2. Table 5.15 presents a summary
of the parity bit calculations. Note that the resultant Hamming codes are the
same as those used in Example 5.7.

TABLE 5.15 The 5-Bit Hamming Codes Generated From the 2-Bit Numbers 00, 01, and 10

An alternative fault-tolerant FSM design to the one was discussed in
Example 5.7 involves first designing the FSM as a nonfault-tolerant circuit
and then incorporating in the circuit the additional circuits required to
implement the Hamming error detection and correction mechanism.
Consider, for example, the fault-tolerant FSM design problem in Example 5.7.
First, the FSM is designed as a nonfault-tolerant FSM. This will require two
flip-flops (two state bits), an NSG, and an OG. Suppose the two next state
bits generated by the NSG are labeled s1 and s0. A fault-tolerant circuit would
require six flip-flops that are associated with the two state bits s1 and s0,
three parity bits p1, p2, and p4, and an overall parity bit c.

Suppose the six flip-flop q bits are labeled q0 to q5. For a fault-tolerant
design, the flip-flops would be interpreted as a transmission medium and a
receiver. The d bits are “transmitted” through the flip-flops and then are
“received” as the q bits. A single fault can switch one of the q bits and thus
cause an error. On the transmission side, the six state bits (d’s) would be
connected to the s1 and s0 signals and the four parity bits p1, p2, p4, and c.
On the receiver side, the q’s represent two current state bits labeled s′1 and
s′0 and four received parity bits labeled p′1, p′2, p′4, and c′. The relationships
between the Hamming codes and the flip-flop inputs and outputs are
summarized in Table 5.16.

TABLE 5.16 Converting a FSM to a Fault-Tolerant FSM Using the Hamming Error
Detection and Correction Mechanism

An explicitly designed fault-tolerant FSM would require two additional
modules: a parity generator (PG) module and an error detection and
correction (EDC) module. The PG module would input s1 and s0 and would

generate four even parity bits p1, p2, p4, and c. The EDC would input the bits
s′1 and s′0 (the “received” next state bits) and would generate the parity bits
p″4, p″2, and p″0. The bits p′4, p′2, and p′0 and the p″4, p″2, and p″0 would be
used to compute the error bit position E (Eq. (5.9)) if c′ ≠ c″.

Using a 3-to-8 decoder, the E is decoded into one of seven output signals
(1 through 7) for which only one could be active if E ≠ 0. The active decoder
signal (if any) would subsequently be used to correct the bit in error using an
XOR gate if c′ ≠ c′′. The resultant FSM, however, will have a longer
propagation delay than the one designed using the truth table in Example 5.7
and SOP or POS expressions.

5.6 Sequential Circuit Timing
Flip-flops that share a common clock signal are expected to receive the
sampling edge of the clock at approximately the same time so that all the flip-
flops can sample their respective inputs simultaneously and before the arrival
of the next sampling edge. Otherwise, as illustrated in Fig. 5.34, if there are
delays in the transmission of the clock signal to the flip-flops, then it is
possible that some of the flip-flops will receive the sampling clock edge much
later than other flip-flops. For example, as shown in the figure, clk1 arrives
after some delay (due to signal routing delay) as clk2 at the second flip-flop
(FF2). This variation in the arrival times of a sampling clock edge at different
flip-flops is known as clock skew (τcs).

FIGURE 5.34 Illustrating a potential clock skew problem within one clock cycle;
the d2 signal could be changing if the sampling edge of clk2 arrives late at
FF2.

A clock skew can cause many problems. The flip-flops that receive a
sampling clock edge earlier will be able to sample their inputs, and thus
change their outputs, before others will. As a result, this could cause the
newly sampled inputs to modify all or some of the inputs for those flip-flops
that have not yet completed sampling their inputs. This may, in turn, either
cause a timing (setup-time or hold-time) violation or cause an invalid state
transition resulting in a circuit malfunction.

In the figure, when FF1 receives the sampling edge of clk1, it samples
d1

current and changes q1
current to . When FF2 receives the sampling edge

of clk2, it is supposed to sample d2
current and change q2

current to q2
new.

However, because of a clock skew, one of three scenarios may occur, as
stated next and illustrated in Fig. 5.35.

FIGURE 5.35 A timing diagram illustrating the effect of a clock skew within one
clock cycle (Fig. 5.34 circuit).

Scenario a:
The propagation delay of d2 is about the same as the clock skew (Δd2 ≅ τcs). In this
case, d2 would be changing while FF2 is still sampling and, therefore, may cause a setup
or hold-time violation at FF2.

Scenario b:
The propagation delay of d2 is smaller than the clock skew (Δd2 < τcs). In this case,
would be able to change d2currentto d2new prior to the arrival of the clk2’s sampling edge
at FF2, and thus would cause FF2 to load d2newwhile FF1 loads d1current. This will cause
an invalid state transition, resulting in a functional error.

Scenario c:
The propagation delay of d2 is larger than the clock skew (Δd2 > τcs). In this case, the
clk2’s sampling edge will arrive at the FF2 before q1new can change the d2current to
d2new; thus, FF2 would load d2current as it should for normal circuit operation.

The circuit in Fig. 5.34 includes only two flip-flops. In general, a circuit may
contain many flip-flops, and the d input of each flip-flop may depend on one
or more q’s. In this case, for the circuit to operate normally, the earliest time
that a qnew can change a dcurrent is the sum of the minimum clock-to-q time
(τcq–min) and the minimum circuit propagation delay (τpd–min). This implies that
the relationship in Eq. (5.12) must hold for the circuit to operate correctly:

Otherwise, a dcurrent would change too quickly, such as in the scenarios a
and b in Fig. 5.35, and would either cause a setup or hold time violation
(scenario a) or cause a functional error (scenario b). How close τcs can be to
quantity τcq-min + τpd-min can be defined in relation to the τht (hold time) as
shown in Eq. (5.13):

Figure 5.36 illustrates another circuit with possible clock skew problems. In
this case, the sampling edge of clk1 arrives at FF2 before the sampling edge
of clk2 arrives at FF1.

FIGURE 5.36 Illustrating a potential clock skew problem between a current
sampling edge and the next sampling edge of ckl1; the d2 signal could be
changing when the next sampling edge of clk1 arrives at FF2.

In the figure, a clock skew could create the following two possible
scenarios between the time that clk2’s sampling edge arrives at FF1 and the
time that the next clk1’s sampling edge arrives at FF2. The two scenarios are
described next and illustrated in Fig. 5.37:

FIGURE 5.37 A timing diagram illustrating the effect of clock skew between the
current and the next sampling edge of the clk1 (Fig. 5.36 circuit).

Scenario a:
The propagation delay of d2 is about the same as the clock period (τ) minus the clock
skew (i.e., (Δd2 < τ –τcs). In this case, the d2new may be changing when the next
sampling edge of clk1 arrives at FF2; therefore, d2new may cause a setup or hold-time
violation at the FF2.

Scenario b:
The propagation delay of d2 is smaller than the clock period (τ) minus the clock skew
(i.e., Δd2 < τ – τcs). In this case, d2new stabilizes prior to the arrival of the next clk1’s
sampling edge, and thus, FF2, as expected, would load d2new. Therefore, the circuit
would operate normally.

Example 5.8 Consider the circuit in Fig. 5.34. Suppose τ = 0.65 ns, ΔCC = 0.25 ns, Δdelay =
0.3 ns, τst = 0.05 ns, and τcq = 0.05 ns. Draw a timing diagram and discuss if there is a
problem due to clock skew.

Solution The timing diagram is illustrated in Fig. 5.38. The signal d1current is sampled at the
positive edge of clk1 and thus, q1new becomes d1current τcq = 0.05 ns after clk1 edge. At this
time, q1new starts changing d2, and it would take ΔCC = 0.25 ns for d2current to change to
d2new from the time that changes to q1new. This time is ΔCC + τcq, or, in this case,
0.3 ns. Therefore, d2 will change exactly when FF2 starts sampling d2, resulting in setup
time violation at FF2.

FIGURE 5.38 A timing diagram illustrating a setup or hold-time violation due to
clock skew.

5.6.1 Clock Frequency Estimation with Clock Skew
The total estimated minimum clock period, which was discussed in Chap. 4,
did not include the time lost due to clock skew. As illustrated in Fig. 5.37, the
total time needed for a signal to stabilize before the arrival of the next clock

edge can be reduced by an amount equal to the clock skew. This implies that
the minimum clock period must include the delay caused by clock skew, as
given in Eq. (5.14) [1].

5.6.2 Asynchronous Interface
Sequential circuits that depend on external inputs, such as d1 in Fig. 5.36,
expect that an external signal always changes at the right time with respect
to the sampling edge of the clock. However, an external signal may change
at any time if it is generated by an input device, for example, a keyboard, or it
is the output of another sequential circuit that uses a different clock source.
As a result, this may violate the setup or hold time of the sequential circuit’s
flip-flops, causing metastability and possibly a malfunction.

A recommended solution [2–3] for resolving this problem is to sample the
external inputs before they are fed into the target sequence circuit, as
illustrated in Fig. 5.39(a). In the figure, the external input is fed into a
synchronizing flip-flop. It is assumed that any possible metastability
caused by the input will be resolved by the synchronizing flip-flop before the
next clock edge. That is, if the input violates the setup or the hold time of the
synchronizing flip-flop and causes the flip-flop’s output to oscillate
(metastability), it is expected that the oscillating output would stabilize to 1 or
0 before the arrival of the next clock edge. Therefore, the sequential circuit
will input the synchronized signal and potentially will avoid a metastability of
its own. This is illustrated by an example timing diagram shown in Fig. 5.40
using the circuit in Fig. 5.39(a). Furthermore, a synchronizing flip-flop may be
designed so its outputs stabilize quickly when the external input value
changes at the wrong time, violating the flip-flop’s setup or hold time [4].

FIGURE 5.39 External input synchronization [1]: (a) using one synchronization
flip-flop; (b) using two flip-flips to allow the maximum metastability resolution
time.

However, in order to avoid a potential metastability at the output of the
synchronizing flip-flop in Fig. 5.39(a) from ever entering the sequential circuit,
two synchronizing flip-flops are recommended, as illustrated in Fig. 5.39(b).

FIGURE 5.40 An example timing diagram illustrating the resolution of a
metastability due to an external input.

5.7 Hardware Description Language Models
Examples 5.9 and 5.10 present HDL models for Mealy and Moore FSMs.

Example 5.9 A Verilog behavior model for the Moore sequence recognizer in
Example 5.1 that detects the overlapping sequence “101” is presented,
where the code is divided into three sections as follows:

Code section 1: A behavior description of the NSG. It describes the arcs of
the recognizer’s FSD. The FSD consists of four states labeled A to D.
Code section 2: A behavior description of the OG. It describes the state in
which the recognizer outputs a 1, signaling the detection of a “101”
sequence.
Code section 3: A behavior description of the flip-flops with asynchronous
reset capability. Upon reset, the FSM is initialized to the initial state A.

Simulation Output
The functional simulation output for the Moore FSM is shown next. The
Moore signal z becomes 1 at the simulation time slots 55 and 75, indicating
that there were two “101” sequences in the test vector.

Example 5.10 A Verilog behavior model for the Mealy sequence recognizer
in Example 5.2 that recognizes the overlapping sequence “101” is presented,
where the code consists of two sections as follows:

Code section 1: A behavior description for the combined NSG and OG.
However, note that a combined code for some larger designs may create
synthesizing problems, especially when PLDs with restricted hardware
resources are used. The code describes the Mealy FSD. The FSD consists
of only three states, labeled A, B, and C.

Code section 2: A behavior description of the flip-flops with asynchronous
reset capability. Upon reset, the FSM is initialized to its initial state A.

HDL Model

Simulation Test-Bench
The test-bench is the same as the one given in Example 5.9, with the
exception that “mealy_seq.v” is instantiated instead.

Simulation Output
The functional simulation output for the Mealy FSM is given next. Note that,
in this case, the Mealy output z depends on the current state as well as the
input x. If x changes, so might z. On the other hand, in the case of the Moore
machine, the input x affects the Moore output z on the next clock cycle. Here,
Mealy-z is 1 at the same time as when the last bit of the target sequence
“101” is entered at the simulation times 50 and 70.

5.7.1 Synthesis and Simulation
The Verilog model for the Mealy sequence recognizer in Example 5.10 was
synthesized and simulated using the Altera Quartos II and ModelSim design
and simulation tools. The synthesized circuit is shown in Fig. 5.41 and its
simulation waveform is shown in Fig. 5.42. As illustrated in the timing
diagram, signal z becomes 1 each time x inputs indicates a “101” sequence.

FIGURE 5.41 The synthesized circuit of the Mealy sequence recognizer of
Example 5.10.

FIGURE 5.42 A simulation waveform for the synthesized Mealy sequence
recognizer in Fig. 5.41.

References

1. E. G. Friedman, ed., Clock Distribution Networks in VLSI Circuits and
Systems, IEEE Press, 1995.

2. Wakerly, J. F., Digital Design: Principles and Practices, 4th ed., Prentice
Hall, 2006.

3. Cypress Semiconductor, “Are Your PLDs Metastable?” May 1992,
Revised March 6, 1997.

4. Ryan Donohue, Synchronization in digital logic circuits, Lecture notes,
Stanford University.

5. Shomit Das, Comparison of synchronization techniques in pointer FIFOs,
Technical report, University of Utah, 2009.

Exercises
5.1. Use Espresso to minimize the truth tables for the FSD in Fig. 5.7 and

draw the minimized circuit. Is your solution the same as that shown in
Fig. 5.8?

5.2. Consider a 1-bit 4-to-1 MUX like the one given in Fig. 5.10. Use the
MUX and design a 1-bit four-function register slice that performs
synchronous clear when F = f1 f0 = 0, parallel-load when F = 1,
arithmetic right shift when F = 2, and right shift with a left input (li)
when F = 3. Then, use four copies of the slice to draw the details of a
4-bit four-function register showing all the signal connections to each
MUX.

5.3. Determine the minimum clock period for the bit-serial multifunction
register given in Fig. 5.9 where τst and τcq are each assumed to be 0.1
ns and delay for NOT and NAND gates are each 0.1 ns.

5.4. Determine the minimum clock period for the bit-parallel multifunction
register given in Fig. 5.11 in terms of τst, τcq, and delay of a NAND
gate, and assuming only 2-to-1 MUXs are available.

5.5. Refer to Exercise 5.2. This time, design the 4-bit register directly from
a 4-bit 4-to-1 MUX and a 4-bit parallel-load register.

5.6. Design an 8-bit multifunction register with asynchronous reset that
performs parallel load, circular right shift, or circular left shift.

5.7. Verify that the circuit in Fig. 5.16 works correctly by constructing a
truth table with current state bits q1 and q0, input x, next state bits d1

and d0, and output z. After reset, the flip-flops initialize to q1 = 0 and q0
= 0. Enter these values in the table as they indicate the current state of
the FSM. Next, set x = 1 and determine the values of d1, d0, and z
using the expressions in Eq. (5.2). Enter these values in the table.
Now assume the clock signal makes a 0-1 transition and thus changes
the values of q1 and q0 to those of d1 and d0. Enter the new values of
q1 and q0 in the table, and repeat the process for the next values of x
in order as 1, 0, 1, 0, 1, and 0. From the z values, determine if the
circuit works correctly.

5.8. Design a Moore sequence recognizer that detects the nonoverlapping
sequence “101.” Use binary encoded state labels and design and
draw the circuit schematic similar to the one shown in Fig. 5.16.

5.9. Design a Mealy sequence recognizer that detects the nonoverlapping
sequence “101.” Use binary encoded state labels and draw the circuit
schematic similar to the one shown in Fig. 5.16.

5.10. Design a Moore sequence recognizer that detects the overlapping
sequence “1001.” Use binary encoded state labels.

5.11. Design a Mealy sequence recognizer that detects the overlapping
sequence “1001.” Use binary encoded state labels.

5.12. Consider the FSD in Fig. 5.13. Use the binary encoded state labels
11, 01, 10, and 00, in order, for the states A to D. Draw the circuit,
making sure that upon reset, the FSM starts at state 11 (A). Compare
the size of the combinational circuits with those in Fig. 5.15 and Fig.
5.17.

5.13. Design a Mealy sequence recognizer that detects the overlapping
sequence “1001.” Use one-hot state labels and use Espresso to
minimize the combined truth table.

5.14. Formally design a JK flip-flop using a D flip-flop (also see Chap. 4).
5.15. Simulate the following circuits modeled in Verilog as specified:

a. Design the FSM in Example 5.1, but use the expressions given in
Eq. (5.2).

b. Design the FSM in Example 5.1 by directly describing the FSD.
5.16. Consider the FSD in Fig. 5.22. Design the corresponding FSM using

binary encoded labels and compare the circuit size with the one in Fig.
5.15.

5.17. Design a bit-serial mod-11 counter (also refer to Fig. 5.28) with
asynchronous active-low reset.

5.18. Design a bit-parallel mod-11 counter (also refer to Fig. 5.31) with
asynchronous active-low reset.

5.19. Simulate the following circuits modeled in Verilog as specified:
a. Model the 1-bit binary counter slice given in Fig. 5.28 and then use

it to design the counter in Exercise 5.17.
b. Use behavioral models for an adder, an MUX, and a parallel-load

register and then use them to design the counter in Exercise 5.18.
c. A complete behavioral model for the counter in Exercise 5.18.

5.20. Design a mod-4 up/down counter (not a counter slice) with
asynchronous active-low reset.

5.21. Design a mod-4 up/down counter (not a counter slice) with both
synchronous and asynchronous reset capabilities.

5.22. Design a 3-bit gray-code counter with both synchronous and
asynchronous reset signals.

5.23. Non-return-to-zero inverted (NRZI) is a data coding scheme used to
communicate with universal serial bus (USB) devices. The output
signal (z) of an NRZI generator transitions when the input bit (x) is 0
and remains at the constant previous value (0 or 1) when the input bit
is 1. That is, from right to left, when the input to the NRZI generator is
0 0 0 0 0 0, its output from right to left will transition as 1 0 1 0 1 0. Its
output for consecutive 1’s at the input, however, will remain at the
previous output value. For example, the NRZI generator outputs from
right to left z: 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 1 for input X: 1 1 1 1 0 0 0 1
1 1 0 0 0 0 1 1 read from right to left. Likewise, for X = 0xCF0C, Z:
0xEFAE. Design the NRZI generator. (Hint: design a Mealy FSM).

5.24. Suppose an FSD has five states. Use the Hamming coding scheme
and generate five Hamming codes to label the states. Each pair of
labels should have a Hamming distance of 3 or more.

5.25. Create and simulate a Verilog model for the fault-tolerant FSM in
Example 5.7. Specifically, copy the entries of Table 5.12 to an Excel
sheet. Then use the Excel “concatenate” function to concatenate bits
q4 to q0 and x in each row into a 6-bit binary number. Do the same for
bits d4 to d0 and z. (You may also use the Excel “bin2hex” function to
convert the concatenated 6-bit numbers to a 6-bit hex). Then sort the
table so the rows of the table for the current state bits and x in the

Excel sheet are in ascending order. Then create two columns and use
concatenation to convert the two 6-bit entries to a syntactically correct
Verilog statement to be used in a “case” statement. For example,
000000 for the q’s and x is written as “6’b000000:” and 000000 for the
d’s and z is written as “{d, z} = 6’b000000;” where d would be declared
as a 5-bit next state variable in Verilog. Copy the two columns from
Excel into a Verilog text editor and model the FSM using a combined
model for the NSG and OG modules. For simplicity, model the flip-
flops with a common reset but separate preset signals. In the test-
bench, use the preset signals to cause a 1-bit fault; that is, change a q
= 0 to 1. The FSM should continue operating as if there were no faults.

5.26. Design a fault-tolerant mod-4 up-counter (not a counter slice).
5.27. Consider the circuit given in Fig. 5.15. Without altering its

combinational circuits, use the Hamming error detection scheme and
add modules to the circuit so it would operate as a single-bit fault-
tolerant FSM.

5.28. A serial adder inputs 2-bits x and y and outputs their sum-bit s every
clock cycle. It keeps the presence or the absence of a carryout bit
internally. Assuming that the initial carry-in is zero, do the following:
a. Draw a Mealy FSD for the serial adder.
b. Design the Mealy serial adder FSM.
c. Draw a Moore FSD for the serial adder.
d. Design the Moore serial adder FSM.
e. Design a fault-tolerant Mealy serial adder.

5.29. Consider the circuit in Fig. 5.34. Suppose ΔCC = 0.3 ns, τsc = 0.2 ns,
τst = 0.05 ns, τcq = 0.05 ns. Assuming that τ = 0.6 ns, draw a timing

diagram and discuss if there can be problems in operating the circuit
due to clock skew.

5.30. Consider the circuit in Fig. 5.36. Suppose ΔCC = 0.3 ns, τsc = 0.2 ns,
τst = 0.05 ns, and τcq = 0.05 ns. Assuming that τ = 0.6 ns, draw a
timing diagram and discuss if there can be problems in operating the
circuit due to clock skew.

5.31. Consider the circuit in Fig. 5.36. Suppose ΔCC = 0.3 ns, τsc = 0.2 ns,
τst = 0.05 ns, and τcq = 0.05 ns. Assuming τ = 0.7 ns, draw a timing
diagram and discuss if there can be problems in operating the circuit
due to clock skew.

5.32. Consider a hardware FIFO buffer with input and output ports
accessed by two sequential circuits A and B that perform concurrent
computations [4–5]. Circuit A generates IN as the next buffer location
to write a value to, and circuit B generates OUT as the next buffer
location to read a value from. Two counters, X and Y, each controlled
by one of the circuits, are used to generate the IN and OUT values,
respectively. The buffer operates in a circular fashion. The two circuits,
and thus their respective counters, also operate with two different
clocks. Circuits A and B also need to input IN and OUT values in order
to determine when the buffer is full or empty. Do the following:
a. Draw the block diagrams of circuits A and B, counters, and the

buffer with labels and signal names. IN is an asynchronously input
to circuit B, and OUT is an asynchronous input to circuit A. Use two
synchronizing flip-flops for each bit.

b. Suppose the buffer size is 8 and X and Y are designed as mod-8
counters. Assuming that IN is 6, list the possible values circuit B
may input as IN from the synchronizing flip-flops. Discuss how the
buffer empty flag can be generated if input IN to circuit B is not 3.

c. Repeat part (b), but this time assume X and Y are designed as Gray
code counters.

5.33. Computer security (hardware Trojans): See Exercise 11.12 to
understand single-input trigger computational malicious circuits (also
see Sec. 11.2).

5.34. Computer security (hardware Trojans): See Exercise 11.13 to
understand timer attack malicious circuits (also see Sec. 11.2).

5.35. Computer security (confidentiality): See Exercise 11.14 to design a
hardware encryption circuit (also see Sec. 11.5).

5.36. Computer security (computer security threats): See Exercise 11.15 to
understand computer security threats (also see Sec. 11.1.3).

5.37. Computer security (hardware developmental threats): See Exercise
11.16 to understand homomorphic encryption as a hardware
developmental security policy mechanism (also see Secs. 11.1.3 and
11.2).

CHAPTER 6
Sequential Circuits: Large Designs

6.1 Introduction
A large sequential circuit is made of a data path and a control unit, as
illustrated in Fig. 6.1. The data path consists of both sequential and
combinational circuit modules, such as registers, counters, multiplexers
(MUXs), decoders, arithmetic logic unit (ALUs), and others, that are either
standard or problem specific. The modules collectively implement a list of
simple operations, such as adding the content of two registers and storing
the result in a third register. The control unit is responsible for asserting the
necessary control signals for the data path to carry out an operation. A data
path may perform one or more operations during each clock cycle.

FIGURE 6.1 A diagram block of a large sequential circuit.

Each data path operation requires one or more inputs as data and
generates one or more outputs, where each is then stored in a register or
memory. An operation may also use one or more combinational circuit
modules to compute an output. Two or more operations may share some or
all of the combinational circuit modules in the data path. For example, two
operations that compute a sum but use data values read from different
sources may share an adder to reduce hardware.

A data path may also perform one or more operations conditionally,
depending on the value of a signal either internal to the data path or
generated by another module external to the data path. Arithmetic overflow
flag, a specific register bit value, and a specific counter value are examples
of signals internal to the data path that indicate a condition. External event-
triggering signals, such as a signal starting the control unit, a signal
generated by a keystroke, and a signal indicating a memory data is available
to read, are examples of conditions indicated by external signals to the data
path.

There are alternative architectures to design data paths and control units.
Many factors, including operating clock frequency and how often results
should be generated, affect the architecture of a data path. A high clock
frequency implies that the data path has a short maximum propagation delay,
which determines how fast results can be generated. However, there is a
relationship between a circuit’s clock frequency and its number of transistors
with the amount of power the circuit consumes, which determines how much

heat the circuit can dissipate. As was mentioned in Chap. 1, there is a limit to
how fast a sequential circuit may operate and still remain within the allowable
temperature range using a fan cooling system. In practice, the amount of
heat an integrated circuit (IC), such as a processor, can dissipate on average
sets a limit on how high its clock frequency can be and how many transistors
it can contain using current chip technologies.

In this chapter, we examine different data path and control unit
architectures, illustrate their organizations, and estimate performance
parameters. We also present power and energy usage models for a complex
sequential circuit, discuss how such models may be used to reduce power
consumption, and how to estimate the energy efficiency of a complex
sequential circuit.

6.1.1 Register Transfer Notation
A register transfer notation (RTN) is used to formally describe an operation of
a data path. Each operation generates a result that must be stored in a
storage module such as a register or memory. The syntax for RTN is
arbitrary. For example, R3 ← R1 + R2 that involves three registers, R1, R2,
and R3, is an RTN. The left arrow (←) indicates that the sum of the two
register contents will be stored in register R3 during the next clock cycle.
Table 6.1 presents some RTN syntax examples used in this book. Some of
the syntax is borrowed from the Verilog hardware description language
(HDL).

TABLE 6.1 RTN Syntax Examples Using Both an Arbitrary Syntax and Verilog HDL Syntax

6.2 Data Path Design
The architecture of a data path can be classified as single-cycle,
multicycle, or pipelined. A single-cycle data path requires more hardware
but a simpler control unit. A multicycle data path requires less hardware but
generates results in steps using several clock cycles. A pipelined data path
also requires more hardware but can operate on multiple inputs concurrently.
Pipelining is only efficient when there are many inputs to process.

Example 6.1. The design and performance of single-cycle, multicycle, and pipelined data
paths performing one or more RTN operations of the type R ← A + B + C ± D is presented. A
to D represent values read simultaneously from some registers or memory. The pipeline data
path, however, will perform Ri ← Ai + Bi + Ci ± Di for i = 0, 1, 2, 3, etc.

The RTNs R ← A + B + C + D and R ← A + B + C – D do not represent
operations a typical CPU instruction performs, as we will see in Chap. 8.
Such RTNs would be considered fused operations, requiring computations
performed on three or more data values. A typical arithmetic instruction
operates on two data values. Here, the RTNs are used to illustrate and
compare single-cycle, multicycle, and pipelined data path designs. However,
some CPUs (e.g., [1]) have instructions that perform fused operations on
three data values, such as multiply-add (R ← A + B ∗ C), a common
operation used in computations involving matrices. If A, B, and C are floating-
point (FP) numbers, a fused operation has the advantage of producing a
result in memory with only one rounding error (see Sec. 3.8.3). Done
separately with two instructions, the result of B ∗ C, if stored in memory, will
result in one rounding error, and the result of adding A to the memory
content, again if stored in memory, will result in another rounding error.

Other examples include custom instructions that perform fused operations
as proposed in the design of configurable CPUs [2]. In this case, the
dependent operations performed by a set of instruction sequences within a
program loop can be combined into a single custom instruction with fused
operations. The new instruction replaces the instruction sequence within the
loop, and thus increases performance by reducing the number of instructions
that must be fetched from memory.

The SIMD architecture, which was discussed in Chap. 1, is another
variation of instructions that operate on multiple data values. In this case,
however, each SIMD instruction specifies only one operation that is
performed simultaneously and with no data dependency on multiple data
values. The design of control units for each of the three data paths is
discussed in Sec. 6.4.

6.2.1 Single-Cycle
Figure 6.2 illustrates a single-cycle data path that computes either the
quantity A + B + C + D or A + B + C – D and stores the result in register R
within one clock cycle. The data path contains two adder (+) modules and
one adder/subtractor (+/–) module. The signal mode controls the functions of
the adder/subtractor module. If mode = 0, the data path performs R ← A + B
+ C + D; otherwise, it performs R ← A + B + C – D.

FIGURE 6.2 A single-cycle two-function data path that computes either A + B +
C + D or A + B + C – D in one clock cycle.

Equation (6.1) estimates the minimum clock period required to run the
data path. The period is proportional to the propagation delay of the longest
signal path that starts from the inputs of the first adder and ends at the input
of the register.

In general, if a single-cycle data path implements several simple and
complex operations, its minimum clock period would be proportional to the
time required to complete the most complex operation. Therefore, both
simple and complex operations would each require the same amount of time
to complete. This will increase the total time needed to complete a task that
requires both simple and complex operations.

6.2.2 Multicycle
A multicycle data path requires that a computation be divided and completed
in steps, each requiring a simple data path operation. Figure 6.3 illustrates a
multicycle data path with a single adder/subtractor and two multiplexer (MUX)
modules. The data path can perform five possible simple operations as R ←
A, R ← R + B, R ← R + C, R ← R + D, or R ← R – D. The following algorithm
implements R ← A + B + C ± D using four clock cycles:

A multicycle algorithm to implement R ← A + B + C ± D:

Cycle 1: R ← A
Cycle 2: R ← R + B
Cycle 3: R ← R + C
Cycle 4: If mode == 0 then R ← R + D; otherwise, R ← R – D

FIGURE 6.3 A multicycle data path requiring four clock cycles to compute A +
B + C + D or A + B + C – D.

The clock period of a multicycle data path is also proportional to the delay
of its longest signal path. In this case, the longest path starts from the inputs
of the MUX1 through the adder/subtractor module and ends at the input of
the register. Equation (6.2) estimates the minimum clock period of the data
path. Note that the propagation delay of a MUX is less than that of an adder.
Therefore, the estimated minimum clock period of the multicycle data path is
shorter than that of the single-cycle data path. However, the multicycle
algorithm requires four clock cycles to complete the task versus one clock
cycle required by the single-cycle data path.

A multicycle data path has the advantage of reducing the required total
hardware. In the figure, a single adder/subtractor module is used several

times to produce the final result. In general, a multicycle data path is also
advantageous if it performs both simple and complex computations. In this
case, fewer clock cycles would be required to complete a simpler
computation and more cycles to complete a complex one. Therefore, it will
reduce the total number of clock cycles required to complete a task. In
addition, compared to a single-cycle data path, a multicycle data path would
require a higher-frequency (shorter period) clock. A single-cycle data path, on
the other hand, would require a slower (longer period) clock but would use
only one clock cycle to perform each simple or complex computation.

6.2.3 Pipelined
A pipelined data path, or pipeline for short, is the ideal architecture for
processing a stream of data. For example, consider adding N pairs of FP
numbers one pair at a time, to generate N sums, or consider executing N
assembly instructions. When processing in a pipelined fashion, a
computation is divided into a set of dependent operations, much like the ones
used for the multicycle data path, where each is performed in a separate
subdata path called a pipeline stage.

The stages do not share any modules and are separated by parallel-load
registers forming an assembly line, like a car-manufacturing assembly line
discussed in Chap. 1. All the stages operate concurrently to process a
stream of data. For example, consider the problem of computing N quantities,
each Ai + Bi + Ci ± Di for i = 0 to N – 1. Each Ai to Di identifies four data
items, such as the ith element from four different arrays. One way to divide
each computation Ai + Bi + Ci ± Di to its set of dependent operations is as
follows:

Figure 6.4 illustrates the architecture of a pipelined data path with three
stages labeled 1 to 3. Three sets of registers are used to separate the result
generated by each stage. In the figure, the pipeline receives a set of four
values, Ai, Bi, Ci, and Di, from an external module and sends the result Ri,
also to an external module. During each clock cycle, stage 1 takes its inputs
from an external data source, stage 2 takes its inputs from stage 1, and stage
3 takes its inputs from stage 2. Therefore, all three stages operate
concurrently during each clock cycle.

FIGURE 6.4 A two-function pipelined data path computing a stream of
quantities Ai + Bi + Ci ± Di for i = 0, 1, 2, etc.

Figure 6.5 shows two different pipeline chart styles for illustrating
pipelining. Note the charts do not include the one-cycle delay caused by the
interfacing registers shown in Fig. 6.4. The pipeline chart in Fig. 6.5(a) has a
horizontal organization, with the clock cycles shown on the x-axis. On the
other hand, the chart in Fig. 6.5(b) has a vertical organization, with the clock
cycles shown on the negative y-axis.

FIGURE 6.5 Two alternative pipeline charts: (a) from left to right; (b) from top to
bottom; showing the results R0, R1, etc.

As illustrated in Fig. 6.5, during cycle 3, while stage 3 is generating R0,
stage 2 is generating the intermediate result Y1 required for R1, and stage 1
is generating the intermediate result X2 required for R2. Therefore, the
pipeline performs three simple operations at the same time, and thus
concurrently operates on multiple data values. This helps to complete tasks
quickly.

A pipeline uses more hardware, similar to a single-cycle data path, but
operates with a higher-frequency clock, similar to a multicycle data path.
Furthermore, it can process a stream of data a lot faster than the other two
data paths. The clock period of a pipelined data path is proportional to the
propagation delay of its longest stage. In Fig. 6.4, stage 3 has the longest
propagation delay; it uses an adder/subtractor module, while the other two
stages use an adder module. Equation (6.3) estimates the pipeline clock
period.

The pipelined data path in Fig. 6.4 is known as a linear pipeline, where
each of its three stages is used only once to compute a final result (e.g., R0).
A nonlinear pipeline, on the other hand, would use one or more of its stages
multiple times to compute a final result. Designs of nonlinear pipelines are
referred to elsewhere.

During a clock cycle, each stage in a linear pipeline inputs one or more
data items from its immediately preceding stage. In general, the data for the
first stage is read either from an external module (e.g., memory) or from
memory located internally. The final result is either stored in a storage
module (register or memory) in one of the stages or is sent to an external
module. This is further discussed in Chap. 8.

Pipeline Performance
A careful study of the pipeline chart (a) or (b) in Fig. 6.5 reveals that R0,
being the first result, requires three clock cycles to compute (not including the
clock cycle required to load the interface registers), whereas the results R1,
R2, etc., each requires only one clock cycle to compute. This reduces the
total time required to compute N final results. In general, a k-stage (linear)
pipeline requires k clock cycles to produce its first output. Equation (6.4)
estimates the total time required to process a data stream of size N using a
k-stage linear pipeline in terms of its clock period τpipeline.

For example, when N = 3 and k = 3, the pipeline will require a total of 5
τpipeline to produce three outputs, such as the three outputs R0, R1, and R3
shown in Fig. 6.5(b). Assuming that the clock period of a single-cycle data
path τsingle-cycle is approximately equal to k ∗τpipeline, where τpipeline is the clock
period of a corresponding pipeline, Eq. (6.5) estimates the total time required
to process a data stream of size N using a single-cycle data path.

However, note that, in general, even if both a single-cycle data path and its
corresponding k-stage pipeline use identical combinational circuit modules
with identical propagation delays, τsingle-cycle would be slightly less than k ∗

τpipeline. The quantity k ∗ τpipeline includes the sum of k register setup time and
k clock-to-q delays, whereas τsingle-cycle would include the sum of only one
register setup time and one clock-to-q delay. The k ∗ τpipeline is also an upper
bound estimate because τpipeline is proportional to the propagation delay of
the longest stage in the pipeline. In Fig. 6.4, τpipeline is calculated based on
the propagation delay of stage 3, which uses an adder/subtractor module,
while the other two stages each use an adder. However, the difference
between τsingle-cycle and its k ∗ τpipeline approximation is ignored to simplify the
performance analysis of a pipeline as compared to a corresponding single-
cycle data path.

Speedup is a performance parameter that, in general, measures the
performance of a faster system as compared to a slower system when
performing the same task. It is defined as the ratio of the time required to
complete a task by a slower system over that of a faster system. It indicates
how much faster a faster system is as compared to an equivalent slower
system. For example, Eq. (6.6) defines the speedup between a faster
pipelined data path as compared to a corresponding slower single-cycle data
path when processing a data stream of size N with τ= τpipeline. For N = 3 and
k = 3, a pipeline is approximately 1.8 (3 ∗ 3 ∗ τpipeline/5 τpipeline = 1.8) times
faster than the single-cycle data path. For N = 1000 and k = 3, the speedup is
approximately 2.99. Note that the speedup increases and approaches k (the
number of stages) as N approaches infinity (∞). The more stages there are in
a pipeline, the larger the speedup would be, provided that it processes a
large data stream. As N increases, the processing of a data stream becomes
more efficient as the time required to fill the pipeline becomes negligible as
compared to the total time required to process the entire stream.

Efficiency is a performance parameter that measures how well a system’s
resources were utilized to complete a task. The efficiency of a pipeline data
path is said to be 100% if all its stages were busy all the time; that is, there
were no idle stages. For example, consider the pipeline chart in Fig. 6.5(a).
The efficiency of the pipeline reaches 100% starting with clock cycle 3 when
all the three stages become busy for the rest of the computations. However,
we need an overall efficiency value and not just when all the resources are
utilized. From Eq. (6.6), the speedup of the pipeline approaches K, the
number of stages, when the number of computations N approaches infinity

(∞). Therefore, an overall efficiency of a system can be defined as the ratio of
its speedup to its maximum possible speedup. Equation (6.7) defines the
efficiency of a pipeline data path with K stages.

The substitution of Eq. (6.6) in Eq. (6.7) yields,

As N approaches infinity (∞), the efficiency of the pipeline in Fig. 6.4, as
expected, approaches 1 or 100%.

Throughput is another performance parameter that measures a system’s
rate of processing. It indicates the number of items (N) performed per
second. It is calculated as the ratio of the total number of items (tasks,
calculations, operations, Google search, etc.) performed over the total
required time (T). Equation (6.8) defines the throughput of a linear pipeline
with k stages. For N = 3 and k = 3, the throughput is about 0.6τ–1 (3/5τ). For
N = 1000 and k = 3, it is about 0.99τ–1 (1000/1002τ). In general, the
throughput of a linear pipeline could approach to τ–1 (the operating clock
frequency) as N approaches infinity (∞). For example, if the clock frequency (f
= 1/τ) of the pipeline in Fig. 6.4 is 1 GHz (one billion cycles per second), its
peak throughput (τ–1) would be one billion computations (each A + B + C ±
D), or three billion arithmetic operations (each + or –) per second, not
including the delays required for reading the input data, for example, from
memory and writing the outputs back to memory.

As discussed in Chap. 1, the CPU data path is pipelined as it executes
many instructions, including floating-point (FP) instructions that operate on
FP numbers. For a data path to perform FP arithmetic, it must perform
several operations, such as initialization, lining up decimal points, integer
arithmetic, normalization, and rounding, as discussed in Chap. 3. These FP

operations are typically divided into several pipeline stages to increase
throughput. For example, consider the following for-loop where an FP ADD
instruction (e.g., “FADD”) would be executed 1000 times to add 1000
elements of array A with 1000 elements of array B to produce 1000 elements
of array C. With a pipelined floating-point unit (FPU), the 1000 ADD
instructions would execute in less time as compared to, say, a single-cycle
FPU.

The FLOPS (floating-point operations per second) or the less popular
MIPS (millions of instructions per second) are two examples of throughput
measurement units that are typically reported by processor designers.
However, these throughput units reported by the designers often assume
ideal conditions and may represent peak performance values. In addition,
MIPS may be based on executing a set of some random instruction mix. In
general, a more realistic performance measurement requires the execution of
some benchmark (existing standard) programs, such as the compute-
intensive workload called standard performance evaluation corporation 2006
(SPEC CPU2006) benchmark for measuring the performance of a computer
system, or the graphic-intensive workload SPECviewperf benchmark for
measuring the performance of a computer-graphic system [3].

6.3 Control Unit Design Techniques
A control unit is a finite state machine (FSM). As a hardwired control unit,
the control signals are generated using a set of combinational circuits. For
maximum speed, each control signal can be the output of an AND-OR (SOP
expression) or OR-AND (POS expression) circuit with the maximum 3ΔNAND
or 3ΔNOR.

A control unit may be modeled as a finite state diagram (FSD) or designed
using the bit-parallel methodology discussed in the previous chapter.
However, once a hardwired control unit is built, it cannot be repaired if there
are design errors, especially if it implements a set of very complex

algorithms. A high-performance pipelined data path is typically controlled by
a hardwired control unit.

On the other hand, a memory-based control unit, called a
microprogrammed control, keeps the values of the control signals in
memory inside the IC. The content of the memory can be updated in the
future in case some design errors are discovered after manufacturing. A
memory-based control unit, however, can be slow, depending on the size of
the memory. It takes a lot longer than 3ΔNAND to perform a memory
read/write operation, which will be discussed in Chap. 7.

The application of a microprogrammed control has diminished over the
years, especially due to the advantage of reduced instruction set computer
(RISC) versus complex instruction set computer (CISC) architecture. With an
RISC, as opposed to a CISC, the CPU has simpler and fewer instructions.
Therefore, it is easier to design a hardwired control unit to control an RISC
data path. RISC and CISC will be discussed in Chap. 8.

The application of microprogrammed control has also diminished due to
the availability of modern HDL synthesis tools today. The tools have
simplified the design and verification of hardwired control units. However,
microprogrammed controls would still be used when designing control units
that have a large number of states [4], or when it is necessary to translate
legacy CISC instructions to a list of simple operations that would be
performed on a more efficient RISC data path.

6.3.1 Hardwired Control: FSD
Figure 6.6 shows the multicycle data path given in Fig. 6.3 with an FSD
model of its control unit. The FSD has four states and defines the data path
operations in RTN. The control unit generates control signals for the data
path to compute either the quantity A + B + C + D if the external input signal
mode = 0 or the quantity A + B + C – D if mode = 1 in four clock cycles. The
result will be stored in the register within the data path. An external input
signal start, when asserted, triggers the start of the computation. In contrast,
Fig. 6.7 illustrates the FSD with the actual control signals. Note that it is much
easier to verify an FSD if data path operations are specified in RTN than if
they are specified with actual control signals.

FIGURE 6.6 Illustrating an FSM-based control unit for the data path shown in
Fig. 6.3 with RTNs, where “d” stands for don’t-care.

FIGURE 6.7 The FSD in Fig. 6.6 with the actual control signals; d stands for
don’t-care.

Figure 6.8 illustrates a detailed block diagram of the corresponding FSM
with two flips: a next-state generator (NSG), and an output generator (OG).
The OG generates the data path control signals. During each clock cycle,
only the control signals associated with a specific data path operation are
asserted. For example, initially, when start = 0, the register R is disabled and
the data path is said to be “doing nothing.” When start becomes 1, the control
unit asserts e (i.e., e = 1), enabling the register R, and makes s0 = 0 so the
MUX selects the input A. In each clock cycle, only control signals that are
required to perform a specific data path operation are asserted, while other
control signals would be deasserted or set to don’t-care (d) as necessary.
The NSG module implements the specific order in which the data path must
perform operations as dictated by the algorithm. The design is completed by
following the FSM design steps discussed in Chap. 5.

FIGURE 6.8 The detailed block diagram of the FSM-based control unit.

6.3.2 Microprogrammed Control
A microprogrammed control unit uses a memory called control memory
(CM) for storing a description of an algorithm called a microprogram. The
program is made of a set of microinstructions, where each specifies one or
more data path operations called micro-operations. Each microinstruction
also includes microprogram flow control information in the form of “jump”
or “no-jump” that decides which microinstruction will execute next.

Figure 6.9 shows the microprogram for computing R ← A + B + C ± D
using the multicycle data path in Fig. 6.3. Note, the microprogram reads like
a program. It consists of five microinstructions that would be translated into
binary, called a microcode, and would be stored in CM at locations (i.e.,
addresses) 0 to 5. The microprogram consists of three types of
microinstructions.

FIGURE 6.9 The multicycle data path in Fig. 6.3 is controlled using a
microprogram.

The microinstruction in address 0, or simply instruction 0, includes the
condition “if start == 0” and operates like a while-loop that checks the value of
start every clock cycle until the signal becomes 1 and the control is
transferred to instruction 1. Otherwise, if start = 0, instruction 0 executes
again. The condition “if start == 0” and the address 0 form the flow control
information of instruction 0. Note that instruction 0 does not include any
micro-operations that, otherwise, would be listed as RTNs.

The instructions 1 to 3, where each consists of only one micro-operation,
are not conditional and are executed in sequence. The program flow control
information for these three instructions is to execute the next instruction.
Instruction 4 is also conditional. It checks for mode = 0, and if 0, it performs a
micro-operation and then jumps to instruction 0 at the start of the
microprogram. The condition “if mode == 0” and address 0 form the flow
control information of instruction 4. Otherwise, if mode = 1, instruction 5 (the
next instruction), which is an unconditional instruction and additionally
performs a micro-operation (an RTN), executes. Instruction 5 also performs
“go to 0”—an unconditional jump to address 0—where 0 is the flow control
information of the instruction.

A detailed block diagram of a microprogrammed control unit is illustrated in
Fig. 6.10. It consists of a CM and a next-address-generator (NAG) that
generates the address of the next microinstruction in CM. It also consists of a
multifunction counter called a microprogram counter (MPC) and a 1-bit k-
to-1 MUX, where k is the number of condition signals (e.g., start and mode)
plus 2; k = 4 in this case. The MPC holds the address of the currently

executing microinstruction. In each clock cycle, the MPC either increments
the address of the current instruction it holds or loads a new (jump) address
from CM. The MUX decides which function, increment or load, the MPC will
perform next. In the figure, the MPC is designed to load a jump address if
load = 1 or to increment its content if load = 0.

FIGURE 6.10 A detailed block diagram of a microprogrammed control unit.

A microcode is organized as a table and stored in CM. Each table entry
consists of a condition code, a set of control signals, and may be a jump
address. Table 6.2 lists four arbitrarily assigned condition codes to implement
the microprogram control shown in Fig. 6.9 as illustrated in Fig. 6.11. Each
condition code selects one of the four inputs of the 4-to-1 MUX as load signal
value.

FIGURE 6.11 Microprogrammed control unit for the multicycle data path in Fig.
6.9.

TABLE 6.2 Condition Codes for the Microprogram in Fig. 6.9

Condition code 0 (c1c0 = 00) is assigned to the microinstructions that are
not conditional, such as instructions 1 to 3 in Fig. 6.9. The code represents a

“no-jump” statement (making load = 0), which causes the MPC that points to
the current microinstruction to increment the next clock cycle. Code 1 (c1c0 =
01) represents a “jump” statement (making load = 1). It is assigned to the
microinstructions that are unconditional, such as instruction 5. Code 2 (c1c0 =
10) is assigned to the microinstruction 0. It represents the “if start == 0”
condition and, via the MUX, makes load = . If start = 0, then load = 1
(jump); otherwise, load = 0 (no-jump). Last, code 3 (c1c0 = 11) is assigned to
the microinstruction 4. It represents the “if mode == 0” condition and, via the
MUX, makes load = .

Table 6.3 lists the microcode for the microprogram in Fig. 6.9. It has six
rows, each a 10-bit binary representation of a microinstruction as {c1c0, s2,
s1, s0, e, m, a2a1a0}. The binary representations are also shown in hex in the
last column.

TABLE 6.3 Microcode for the Microprogram in Fig. 6.9

6.3.3 Hardwire Control: Pipeline
The control signals for all the stages of a pipeline are generated at once, but
applied to each stage at the right time. A stage that performs only a single
operation requires no control signals. Figure 6.12 illustrates the pipelined
data path in Fig. 6.4 with a pipelined control unit. The data path performs N
computations each Ai + Bi + Ci ± Di for i = 0, 1, 2,... N – 1. The signal modei
decides if the last arithmetic operation that the data path will perform is an
addition or a subtraction. All the registers in the figure are enabled by the
incoming start signal. It is assumed that start will remain at logic 1 (active) for
N + 4 clock cycles, the required number of clock cycles to perform N

computations (also counting the one clock signal required by the interface
registers). The modei signal along with four data values Ai to Di enter the
pipeline on every clock cycle for N cycles, but the modei is passed from one
stage to the next until it is used in stage 3 to generate the final quantity Yi +
Di if modei = 0 or Yi – Di if modei = 1. The values of modei for the last four
final cycles are set to don’t-care. Note that, in this case, the pipeline control
unit uses only a set of registers and no combinational circuits, and stages 1
and 2 require no control signals other than the start.

FIGURE 6.12 A pipeline control unit and the pipelined data path in Fig. 6.4.

6.4 Energy and Power Consumption
As stated in Chap. 1, as the number of transistors and the operating clock
frequency of ICs increase, they use more power and also dissipate more
heat. Consider the CMOS NOT gate circuit shown next that was discussed in
Chap. 1. Recall that in CMOS circuits, pMOS and nMOS transistors are
complementary; one transistor remains in ON position and the other in OFF
position once the gate output stabilizes to either logic 1 or logic 0 voltage
level.

In Fig. 6.13, the circuit is also shown with a capacitive load C, where its
size determines the amount of dynamic energy necessary to charge the
capacitance and generate logic 1 as the gate output. It is called dynamic
energy because inputs and outputs of a gate do not instantly change from
logic 1 to logic 0 or from logic 0 to logic 1, as was discussed in Sec. 2.6
(Chap. 2). For example, when input x = 1, the pMOS and nMOS transistors
remain OFF and ON (not shown), respectively. As x starts to change from
logic 1 voltage level to logic 0 voltage level, both the transistors start
switching. Each transistor becomes partially ON or partially OFF until x falls
to logic 0 voltage level. At that time, the pMOS and nMOS that have
completely switched to ON and OFF positions, as shown in the figure, will
remain in those ON and OFF positions as long as x remains at logic 0.

FIGURE 6.13 CMOS NOT gate circuit from Chap. 1 illustrating capacitance
charging when x transitions from 1 to 0 that results in a 0-1 transition at the

output.

During this transistor-switching time where x makes a 1-0 transition and
the output of the NOT gate makes a 0-1 transition, the circuit is said to be a
short circuit. During this time, a certain amount of current, also known as
shoot-through current, flows from VDD to ground. The total amount of
energy drawn from the power source for 0-1 transition at the NOT gate output
is CVDD2. From this total energy, one half dissipates as heat and the other
half is stored in the capacitance, as specified in its simplified form by Eq.
(6.9).

where “Joules” is the unit for energy. The 1-0 transition at the output of the
NOT gate, however, does not draw energy from the power source. Instead,
the charge () that was stored in the capacitance discharges to
ground, as illustrated in Fig. 6.14. This is called the 1-0 transition dynamic
energy, or

FIGURE 6.14 CMOS NOT gate circuit from Chap. 1 illustrating capacitance
discharging when x transitions from 0 to 1 that results in a 1-0 transition at

the output.

The amount of total dynamic energy that a NOT gate dissipates as heat
due to a single transition, 0-1 or 1-0, at the gate output is shown in Eq. (6.10):

Recall that in sequential circuits, signals make 0-1 or 1-0 transitions during
each clock cycle; some signals transition from 0 to 1 and others from 1 to 0.
Each signal then remains at its final logic value 0 or 1 until the next clock
cycle. Equation (6.11) defines the total dynamic power (in watts) a
sequential circuit consumes during one clock cycle. It is determined from the
amount of total dynamic energy (in joules) the circuit consumes during one
second. In the equation, τ and f represent the period and frequency of the
clock signal, respectively and Ctotal represents the total equivalent capacitive
load in the circuit; Ctotal is determined from the capacitive load of all the gates
(NOT, NAND, etc.) and all the wire connections in the circuit.

Or

Equation (6.11) indicates that as the clock frequency increases, so will the
number of 0-1 and 1-0 transitions in the circuit. This, in turn, will increase the
total dynamic power consumed and the heat generated by the circuit. There
are three ways that one may be able to reduce the dynamic power
consumption of a complex circuit:

• Reduce total capacitance, Ctotal

• Reduce supply voltage, VDD

• Reduce clock frequency, f

The size of the capacitive load or more precisely the effective capacitive
load, however, depends on many parameters including the circuit topology
(the gates and they way they are connected) [5]. In addition, dynamic power
consumption can be reduced if there are fewer glitches in the circuit. Recall
that glitches are unwanted signal transitions in the circuit and, therefore, they
would cause unwanted capacitance charging and discharging that contribute
to the amount of total dynamic energy dissipated as heat. Because glitches
happen when signals do not arrive at the gates’ inputs at the same time,
designing gates with equal rise and fall times can eliminate some glitches,
reducing some dynamic power usage.

In addition to dynamic power, circuits consume static (standby) power.
This is the amount of power used by the circuit when no transistor switching
is taking place. This happens when inputs to the circuit are static (not
changing) and the outputs are at fixed DC voltage levels representing logic 1
or logic 0. In this case, a certain amount of current, called DC current (IDD) or
leakage current, would flow through the transistors that are off. Equation
(6.12) defines a circuit’s static power consumption.

While energy and power consumption in a circuit are related, energy is a
preferred metric to compare the efficiency of two complex circuits (e.g.,
processors) [6]. From Eq. (6.11), if we increase the clock frequency, the
amount of dynamic power consumed to perform a task also increases.
However, the amount of dynamic energy consumed remains unchanged
(constant). Consider, for example, two processors A and B. Now suppose,
during the execution of a program, processor A’s dynamic power
consumption PA is greater than PB consumed by processor B (i.e., PA > PB).
However, processor A is able to execute the program faster than processor
B. That is, tA < tB, where tA and tB are, respectively, the program execution
times by processors A and B. In this case, it is possible that processor A
could be more energy efficient than processor B.

Suppose, for a given program, PA is 20% more than PB and tA is 40% less
than tB. That is, processor A consumes 20% more power than processor B,
but executes the program faster, requiring only 60% of the time it takes
processor B to execute the program. In another word, PA = (1 + 0.2)PB and tA

= (1 – 0.4)tB. Therefore, according to Eq. (6.13), processor A consumes 72%
of the energy consumed by processor B.

Even though during the execution of the program, processor A consumes
more dynamic power than processor B, processor A is better than processor
B because it consumes 28% less total energy. Processor B consumes less
dynamic power, but since it takes a longer time to execute the program,
overall, processor B consumes more dynamic energy than processor A. As
also discussed in Chap. 1, the power and cooling requirements (i.e., thermal
design power) of a complex IC can be incorporated into its operations so that
its clock frequency may be increased on occasion to improve performance,
subject to meeting its cooling requirements.

6.5 Design Examples
In Chap. 3, an unsigned multiplier was designed as a combinational circuit
with several adder modules. As a sequential circuit, a multicycle multiplier
can reduce hardware, and a pipelined multiplier can increase throughput.
Table 6.4 lists a set of design examples. Section 6.5.1 presents the design of
a multicycle unsigned multiplier using a hardwired control unit designed from
an FSD. Section 6.5.2 presents the design of a multicycle signed multiplier
using a microprogrammed control unit. The signed multiplier uses a single
adder/subtractor module and iteratively multiplies two 2’s complement
numbers. Section 6.5.3 presents the design of a rudimentary graphic pipeline
that implements a two-dimensional (2-D) CORDIC (COordinate Rotation

Digital Computer) rotation algorithm. In general, CORDIC algorithms can be
used to implement elementary complex functions, including trigonometric,
hyperbolic, logarithmic, exponential, and square root. The last two large
sequential circuit designs in the table will be covered in Chap. 8.

TABLE 6.4 A Set of Large Sequential Circuit Design Examples

6.5.1 Unsigned Sequential Multiplier
The advantage of a sequential multiplier is that it computes the product of
two numbers in steps using a multicycle data path with only one adder. In
each step, the next addend is added to the accumulated sum of previously
generated addends. As discussed earlier, a multicycle data path has the
disadvantage of being slow but uses less hardware. This section presents
the design of the unsigned multiplier data path and its FSD-based controller.
The section also discusses alternative hardware description language (HDL)
design models, and the code for an all-behavioral Verilog model for the
multiplier is provided and simulation results are discussed.

Data Path
Figure 6.15 illustrates the data path of an unsigned multiplier using a single
adder, three registers, and a mod n + 1 counter. The A and B registers are n
bits each and are used to load an n bits multiplicand A_value and n bits
multiplier B_value. The P register is used to hold an n + 1 bits partial sum

(including the carry-out bit) each time that two multiplication addends are
added. Recall that an addend is the result of a bitwise AND of all the A
register bits with a single B register bit. Here, only the addends that are not
zero are added to reduce the total computation time. Therefore, the wired-
AND circuits that were used in the design of the multiplier as a combinational
circuit in Chap. 3 are not necessary. If bi = 1, addendi= A_value; otherwise,
addendi = 0 and the step to add the addend to the partial sum is skipped.
Furthermore, the register B will be shifted right after each multiplication step
so that its least significant bit (LSB) b0 is used to determine the value of the
next addend. The counter is used to keep track of the n iterations required to
produce the final product result.

FIGURE 6.15 A multicycle unsigned multiplier data path.

In the first clock cycle, all three registers and the counter are initialized.
Each time that a partial sum is generated, the sum is loaded to P register.
The P and B registers are then both shifted right. This simplifies the algorithm
and reduces hardware. Specifically, the shifts allow (1) to replace the current
b0 with the next higher bit in B; (2) to line up the partial sum bits for the next
multiplication step; and (3) to store the P’s LSB in B as P and B registers are
simultaneously shifted right. The final product will be stored in both P and B
registers. The aforementioned steps are summarized as the multiplier
algorithm as follows:

Sequential unsigned multiplication algorithm:

Table 6.5 presents a step-by-step illustration of the unsigned multiplier
algorithm using A_value = 7 = (111)2 and B_value = 5 = (101)2. After three
steps, the final 6-bit result in {P[2:0], B} is (100,011)2, or 35 in decimal.

TABLE 6.5 Step-by-Step Illustration of Multiplying Unsigned Numbers A_value = (111)2 and
B_value = (101)2

Control Unit Design: FSD
There are several ways to design a large sequential circuit using HDL and/or
an schematic design tool. The following outlines three general design
practices for all types of data paths and controllers:

I. All structural—The design would use a hierarchy of interconnected
modules, where all the modules at the leaf of the hierarchy would be
modeled with Boolean expressions (i.e., using “assign” statements)
or circuits (i.e., using primitive gates). The modules would then be
interconnected operating with explicitly declared control signals.
This option is not recommended for very large designs. In addition,
one may use a schematic design tool.

II. Hybrid—The design would use both structural and behavioral
models. In this case, a hierarchical model uses behavioral models
(e.g., “always” blocks) for the leaf modules that would then be
interconnected and operated with explicitly declared control signals.
One may also use an schematic design tool that has an HDL
interface.

III. All behavior—The design would describe the behavior of the circuit
modeled as an FSD with data path operations indicated in RTNs. The
design would require no explicitly RTN-related control signals.

We first present the design requirements for the unsigned multiplier circuit,
starting with the explicitly declared control signals that would be needed to
operate each of the registers and the counter in Fig. 6.15. Table 6.6 presents
the list of functions each of the registers A, B, and P and the counter (CNTR)
must perform. The A is a single-function parallel-load register; B is a dual-
function parallel-load and right-shift register; and P is a three-function
parallel-load, right-shift, and synchronous-clear register. The CNTR is a dual-
function counting-up and synchronous-clear counter.

TABLE 6.6 Register and Counter Functions in RTN

For all structural (Option I) or hybrid (Option II) designs, all the registers
and the counter must be assigned a set of control signals, as shown in Fig.
6.16. A simple combinational circuit (CC) is used to convert a multibit output
from the CNTR to a single signal, flag, used by the control unit. If count = n,
flag = 1; otherwise, flag = 0. Table 6.7 lists the specific control signal values
and the corresponding data path operation for each. The registers and the
CNTR are assumed to be implemented with flip-flops with no enable signals.

FIGURE 6.16 Data path of unsigned multiplier with control signals.

TABLE 6.7 The Control Signals of the Data Path in Fig. 6.16 for Structural HDL Models

Figure 6.17 shows the detailed block diagram of the unsigned multiplier
circuit. The external triggering signal start, which is the output of a
synchronizing flip-flop (FF1), starts the multiplier control unit. The done
(Mealy) signal is asserted at the end of the computation and is saved as
done_moore in another flip-flop (FF2). FF1 is reset if either _reset = 0 or
done = 1, and FF2 is reset if either _reset = 0 or start_asyn = 1.

FIGURE 6.17 Unsigned multiplier block diagram, control signals, and
interfacing signals.

Figure 6.18 presents the multiplier control unit FSD with data path
operations indicated in RTNs. The FSD consists of three states labeled “Idle,”
“Check,” and “Add”. Upon reset, the control unit initializes to the Idle state as
shown in the FSD. Once in Idle state, the control unit monitors the start signal
until the signal becomes 1 and triggers the control unit that multiplies A_value
and B_value according to the unsigned multiplication algorithm discussed
earlier.

FIGURE 6.18 Unsigned multiplier controller FSD; adding only the non-zero
addends.

HDL Model
The multiplier all-structural and hybrid designs are deferred to the Exercises
section. However, for an example of a design that uses explicitly declared
control signals refer to Sec. 6.5.2. Next is an all-behavioral (Option III) HDL
code for the unsigned multiplier and its interface module shown in Fig. 6.17.
The HDL code models the FSD in Fig. 6.18 with no explicitly declared data
path control signals. Specifically, the code describes an FSM with an NSG,
an OG, and a set of flip-flips. The OG is responsible for generating the data
path control signals as specified implicitly by the RTNs. Therefore, an all-
behavioral OG using the RTNs would model the multiplier data path with
implicit control signals.

Example 6.2. A Verilog behavior model of the unsigned multiplier and its interface module in
Fig. 6.17 is described. The description uses no explicitly declared data path control signals.
Solution: The multiplier is described exactly as specified in its FSD in Fig. 6.18 with the data
path operations given in RTN.

Simulation

The multiplier and its interface module were synthesized and simulated using
Altera Quartus II and Altera ModelSim 10.1b. The tool also provides a “state
machine viewer” verification feature that reconstructs the FSD from a given
Verilog description. Figure 6.19 shows the reconstructed FSD of the multiplier
control unit from the Verilog description in Example 6.2.

FIGURE 6.19 FSD reconstructed from the multiplier Verilog description in
Example 6.2.

Example 6.3 is a test-bench with two test vectors. The corresponding
simulation timing diagram is shown in Fig. 6.20. Note that because the
algorithm skips addends that are zero, the multiplier takes a longer time to
multiply A_value = 8’h03 with B_value = 8’h7F that has seven 1’s, as
compared to A_value = 8’h7F with B_value = 8’h03 that has only two 1’s.
Alternatively, a multiplier may be designed with a comparator that switches
the operands A_value and B_value if there are fewer 1’s in the A_value.

FIGURE 6.20 A simulation output for the multiplier in Fig. 6.17, using the test-
bench in Example 6.3.

Example 6.3. The HDL model of a test-bench with two test cases 8’h03 ×
8’b7F and 7’h7F × 8’h03 is described.

6.5.2 Signed Sequential Multiplier
A 2’s complement multiplication algorithm, commonly known as the Booth’s
multiplier, uses both addition and subtraction to multiply two 2’s complement
positive or negative numbers. Its data path is similar to that of the unsigned
multiplication discussed earlier with three registers A, B, and P. A 2’s
complement multiplicand A_value and a 2’s complement multiplier B_value
are loaded in the A and B registers, respectively, and the final product result
is read from the P and B registers.

In the Booth’s algorithm, a sequence of, for example, three 1’s or (111)2 is
interpreted as (100)2; where is used here to represent – 1. Both (111)2 and
(100)2 represent 7 in decimal; (111)2 = 4 + 2 + 1 is 7 and so is (100)2 = 8 –
1. This interpretation replaces the computations of three partial sum values
that typically would be needed to multiply 7 by A_value by only two partial
sum computations: a subtraction at the start of the sequence and an addition
at the end of the sequence. The intermediate 1’s would be interpreted as 0’s
and would be skipped.

This is done by examining the quantity {B_value, 0} (i.e., the B_value
concatenated with a 0) two bits at a time but overlapping, starting from its
LSB and using the rules specified in Table 6.8 to multiply A_value by
B_value.

TABLE 6.8 Bit Interpretations in the Booth’s Multiplier

Data Path
A data path for the Booth’s multiplier is illustrated in Fig. 6.21. The x and the
b1 signals are used by the control unit. If x = 0, both registers P and B (shown
as {P, B}) are arithmetic right shifted at the same time, saving the LSB of P in
B. If x = 1, then if b1 = 0, A_value is added to the content of P; otherwise,
A_value is subtracted from the content of P. The combinational circuit (CC),
as in the case of the unsigned multiplier, converts the counter output to a
signal, flag. If count = n, flag = 1; otherwise, flag = 0.

FIGURE 6.21 Sequential Booth’s multiplier data path.

In addition to the B register, which is an n + 1 bits register, both A and P
registers are also n + 1 bits so the multiplier circuit can handle the largest
magnitude n-bit 2’s complement negative number. For example, consider
A_value = – 8 or (1000)2s as the smallest 4-bit 2’s complement negative
number and the content of P is 0 (i.e., P_value = 0). Now, the quantity
P_value – A_value, which should equal to +8, would be represented
incorrectly in 4-bits as (1000)2s, which is – 8 using 4-bit 2’s complement
representations. Therefore, making both the A and the P 5-bit registers
resolves this problem. With 5-bits, – 8 is represented as (11000)2s in the A
register, and the quantity (00000)2s – (11000)2s would be represented as
(01000)2s = +8 in the P register, correctly.

The B register stores the n + 1 bit quantity {B_value, 0}. Suppose the 4-bit
B_value = (1111)2s = – 1. Note that A_value × B_value or A_value × – 1
should result in – A_value, where A_value is an arbitrary 4-bit 2’s
complement number. Initially, as illustrated in the data path, the B_value
would be stored in the B register in 5-bits as (11110)2s with its two LSB bits
b1b0 = (10)2. Using the rules in Table 6.8, if b1b0 = (10)2, then the content of
the P register, initially 0, will become 0 – A_value = – A_value. Next, {P, B}
would be arithmetic shifted right, repeating the sign of P, which is now a 1.
Because the remaining bits in the B register are all 1’s, {P, B} will be
arithmetic right shifted four times, each time repeating the sign of P. This will
produce the final correct product result – A_value in {Pn-1..0, Bn..1} as a 2n bits

2’s complement negative number. Table 6.9 illustrates – 8 × – 5 using the
data path in Fig. 6.21 with n = 4. The result is 40 = (0010, 1000)2s = 8’h28.

TABLE 6.9 A 4-Bit Booth’s Multiplication Example: A_value = – 8 = (1000)2s and B_value =
– 5 = (1011)2s

Multiplier Algorithm: Microprogram
Assuming that the interface module in Fig. 6.17 is also used to generate the
two interfacing signals start and done, Table 6.10 lists the microprogram for
controlling the signed multiplier in Fig. 6.21.

TABLE 6.10 A Microprogram to Control the Signed Multiplier Data Path in Fig. 6.21

Control Unit Design: Microprogrammed
A microprogrammed control unit of the signed multiplier is shown in Fig. 6.22.
The conditions “if start == 0,” “if CNTR == n,” and “if x == 0” are arbitrarily
assigned the condition codes 2, 3, and 4, respectively. The microprogram
counter (MPC) loads a jump address (a2a1a0) if load = 1 or increments its
content if load = 0. The microcode for the microprogram is listed in Table
6.11.

TABLE 6.11 The Microcode of the Microprogram in Table 6.10

HDL Model
Example 6.4 describes the microprogrammed control unit in Fig. 6.22 and the
data path in Fig. 6.21 with explicitly specified control signals. The description
of the data path includes the initialization of the CM.

FIGURE 6.22 A microprogrammed control unit for the Booth’s multiplier data
path in Fig. 6.21.

Example 6.4. A Verilog model of the 2’s complement Booth multiplier using both HDL
structural and behavioral descriptions is presented.
Solution: Assume the interface in Fig. 6.17 is used to interface with the control unit.

Simulation
Example 6.5 describes a test-bench for the signed multiplier. Figure. 6.23
illustrates the simulation timing diagram illustrating –8 multiplied by –5. The
result is 40 in decimal.

FIGURE 6.23 Simulation output of multiplying –8 by –5.

Example 6.5. A test-bench to compute –8 × –5, indicated as 0xF8 × 0xFB in
hex or 8’hF8 × 8’hFB in Verilog is described. Assume that the interface
module in Fig. 6.17 is used to interface with the control unit.

6.5.3 Computer Graphics: Rotation
In computer graphics, a virtual object is defined by several points in the
Cartesian coordinate system. For example, as illustrated in Fig. 6.24, a 2-D
virtual object “house” is defined by its five points, labeled a through e in the x-
y coordinate system. Each point is viewed as a vector connecting the origin
coordinate point (0, 0) to a coordinate point (X, Y). The x-y coordinates for
vectors a through e are (10, 10), (10, 20), (15, 30), (20, 20), and (20, 10),
respectively.

FIGURE 6.24 A 2-D virtual object with five x-y coordinate points. Also shown is
the new vector b’ as vector b rotated by 55°.

In order to rotate the “house,” say, by 55 degrees (55°), we must rotate
each of its vectors by 55° as shown in the figure for the vector b. A rotation is
a linear transformation of a coordinate point (X, Y) to a new coordinate point
(X’, Y’) using a rotation angle β. For a positive β, the rotation is in the
counterclockwise direction, and it is in the clockwise direction if β is negative.
Equation (6.14) presents the expressions used for a 2-D rotation.

In the figure, vector b, with coordinate points (0, 0) and (X, Y) = (10, 10), is
transformed to vector b’ with the coordinate points (0, 0) and (X’, Y’) = (–
10.64, 19.66). The calculations for this transformation are given in Eq. (6.15).

CORDIC Algorithm
The CORDIC algorithms can be used to perform trigonometric, hyperbolic,
logarithmic, exponential, square root, etc. functions. CORDIC algorithms may
be used in the design of pocket calculators and 2-D/3-D graphic processors.
Furthermore, it has been shown that one can develop simple CORDIC
algorithms that are iterative and require only simple functions, such as
integer addition, subtraction, and arithmetic right shift [7]. The right shift is
used to perform an integer division by 2, 4, 8, etc. An iterative CORDIC
algorithm, discussed next, can be used to perform a linear transformation
(Eq. (6.14)). Also presented is the design of a data path for a simple graphic
processor.

The expressions in Eq. (6.14) require complex cosine and sine functions.
However, they can be simplified by factoring out the “cos β” term from both
the expressions, as shown in Eq. (6.16). As you will see, it is easier to
compute tan β and keep the factored-out “cos β” separate from the
computations required for a linear transformation. The result of “cos β,”
however, will be used as a scaling factor to adjust each of the new computed
coordinate points.

The iterative and simple algorithm only uses a set of fixed rotation angles
with predetermined tangent values. Table 6.12 lists seven angles, 45°, 27°,
14°, 7°, etc., with tangent values equal to, respectively, 1 and fractions 1/2,
1/4, 1/8, etc. For integer arithmetic, each angle in the table is rounded up to
its nearest integer value.

TABLE 6.12 Seven “Tan β” Values and Their Corresponding Approximate β Values

A vector, such as the b in Fig. 6.24, can be rotated by an angle β = 55° in
four steps by first rotating the vector by 45°, then by 7°, then by 2°, and finally
by 1°, as illustrated in Eq. (6.17). The result in step 4 includes the scaling
factor 0.701 = cos 1° ∗ cos 2° ∗ cos 7° ∗ cos 45°. Without the scaling factor,
the values X ' = – 15.1 and Y’ = 28.1 are larger by a constant 1.427 (1/0.701).
The final values of X’ and Y’ without this (1.427) gain are given in step 5. The
small difference between these values and those obtained in Eq. (6.15) are
due to rounding errors caused by manual calculations.

Although this example illustrates that the iterative process can eliminate
the need for computing the tangent of an arbitrary angle, such as 55°, for a
simple graphic data path, there exist some implementation complexities, as
follows:

• How to select the next βi in Table 6.12
• When to end the computation
• What scaling factor should be used for a given rotation angle

A solution that resolves all those implementation complexities is to use a
fixed number of steps, independent of the target rotation angle [7]. This
requires that some rotations in the opposite direction may be necessary if the
previous step resulted in an over-rotation. For instance, a vector can be
rotated, say, by 55° in seven steps using 45°, 27°, – 14°, – 7°, 4°, 2°, and –
1°. Furthermore, only one scaling factor = 0.6048 (Eq. (6.18)) would be
needed for all target rotation angles. Note that since cos βi = cos – βi, the
single scaling factor is not affected by the direction of the rotations. The more
steps there are, the closer the scaling factor would become to its maximum
0.607 as the number of steps approaches infinity.

For a simple graphic data path, each step of the algorithm requires integer
arithmetic. Each of the products, 1/8 X, 1/32 X, etc., in Eq. (6.17) is
implemented by an arithmetic right shift. For instance, the quantity 1/8 ∗ 10, if
converted to its nearest integer, is equal to 10 = (01010)2 being right shifted 3
times, as illustrated next. An arithmetic right shift is used to handle both
positive and negative coordinate values.

The following describes the iterative rotation algorithm for β values that are
between – 90° and +90° (i.e., β ≤ |90°|). The final new coordinate values are

determined by the two expressions in Eq. (6.19).

The quantity Ak is the scaling factor and is an FP number. For instance, for
k = 7, A7 = 0.6048. Therefore, for each vector, once its last computed
coordinate point (Xk, Yk) is determined, the Xk and Yk are then each
multiplied by the constant Ak to produce the final new coordinate point (X ', Y
'). This requires an FP multiplier, and thus it would be performed by CPU.
Equation (6.20) shows the calculations of (Xi+1, Yi+1) for i = 0, 1, and 2 where
(X0, Y0) = (10, 20) and β0 = 55°. Table 6.13 lists all the Xi+1, Yi+1, and Ai + 1
values for i = 0, 1, and 6.

TABLE 6.13 Illustrating the Intermediate Results Obtained for Rotating the Vector b with
the Coordinates (10, 20) in Figure 6.24 by 55°

The transformed coordinate point at the end of step 7 is (X7, Y7) = (– 18,
34) and includes a gain of 1/A7 = 1.427. The final new coordinate point (X ', Y
') is determined by multiplying X7 and Y7 by A7 = 0.6048, as follows:

The values X ' = – 10.88 and Y ' = 20.56 given in Eq. (6.21) are slightly
different from the – 10.64 and 19.6 that were obtained in Eq. (6.15) due to
integer arithmetic.

For rotation angles β = |90°|, an initial rotation by ±90° or ± 180° is
required. For example, for β = 125°, an initial rotation by 90° reduces the
target rotation angle to 35°, which is < 90°. Since cosine of ± 90° = 0 and sine
of ± 90° = ± 1, an initial ± 90° rotation changes the initial values X0, Y0, and
β0 as follows:

Alternatively, a 180° initial rotation would reduce a β = 125° to – 55° > –
90° and change the initial values X0, Y0, and β0 as follows:

For a β > |180°| and ≤ |360°|, an initial rotation by ± 360° is required to
reduce β to < |180°|. This, however, will keep the initial values the same as
follows:

Finally, for β > |360°|, the β is replaced with β mod 360. That is,

The pseudo-code shown next specifies the steps necessary to rotate a
virtual object by a given angle β.

Pipelined Data Path and Control
Typically, a virtual object includes thousands or millions of coordinate points
that all must be transformed to new coordinate points when the object is
rotated by a given angle. A pipelined data path that implements the
aforementioned “vector transform” function given in the pseudo-code can
process many vectors in a short time or even in real time. A nonpipelined
data path, such as a multicycle data path, would have a lower throughput as
compared to a pipelined data path, but would require less hardware.

In a nonpipelined data path, these incremental angles must be stored in a
look-up-table (LUT) and would be read one at a time to compute the rotation
angle for the next step. In addition, a nonpipelined data path may need to use
a combinational shifter (discussed in Chap. 3) to shift the Xi and Yi values
during iteration i.

Figure 6.25 illustrates a seven-stage pipelined data path implementing the
“vector_transform” function. Note that – 90° ≤ β ≤ 90°. Each pipeline stage
performs one of the seven vector transformation steps, illustrated by an
example in Table 6.13. Each stage includes three 2’s complement
adder/subtractor modules. The sign of an incoming 2’s complement rotation
angle (Bin) is used to determine the value of the direction signal d that is
used to compute the rotation angle Bout and the new coordinate values Xout
and Yout used for the next stage.

Each stage also inputs the arithmetic right shifted values SXin and SYin
obtained by shifting Xin and Yin values. Note that in the pipeline data path,
no circuits are used to generate the SXin and SYin values; they are hard-
wired shifts. The first stage is responsible for transforming an initial
coordinate point (Xin, Yin) by 45°; the second stage is responsible for
transforming its input coordinate point by 27°; etc.

HDL Model
The HDL code in Example 6.6 describes the pipelined data path in Figure
6.25. The seven rotation angles are specified in Table 6.12, column 3. All the

stages perform the same functions, and, therefore, only one control signal is
needed to enable all the pipeline registers.

FIGURE 6.25 A seven-stage pipeline data path implementing a 2-D linear
transformation.

Example 6.6. An HDL behavior description of the seven-stage pipelined data path in Figure
6.25 is presented.
Solution: The “cordic” module is described structurally, while the “stage” and “register”
modules are described behaviorally (i.e., using the Option II design model described in Sec.
6.5.1). Furthermore, in order to simply the description of the “cordic” module, the “stage” and
“register” modules are instantiated using their port names instead of by their port positions.

Simulation
The Verilog model of the pipeline in Example 6.6 was synthesized and
simulated using the Altera Quartos II and ModelSim design and simulation
tools. Example 6.7 describes a test-bench for transforming the five vectors of

the virtual object “house” shown in Fig. 6.24 by 55°. The simulation waveform
is shown in Fig. 6.26. For convenience, the simulation data is shown in
decimal.

Example 6.7. A test-bench to simulate the pipelined model in Example 6.6 is presented.
Solution: There are only five vectors in the object “house,” and thus they are listed as five
test vectors in the code. One may read the test vectors from a file if there are many test
vectors.

Table 6.14 presents the original and the computed coordinate points
captured from the simulation waveform in Fig. 6.26. The new coordinate
values include a gain that is equal to 1.653 = 1/0.6048 and, therefore, the
rotated virtual object looks bigger, as shown in Fig. 6.27. In order to remove
the gain, each of the coordinate values must be multiplied by the constant
0.6048. This requires an FPU, and thus this rescaling must be performed by
CPU.

TABLE 6.14 The Simulation Data Summary Obtained from the Simulation Waveform in Fig.
6.26

FIGURE 6.26 A waveform for simulating the pipeline description in Example
6.6; values are in decimal.

FIGURE 6.27 The original “house” object and its 55° rotation. The new object
is shown enlarged by 1.653 = 1/0.6048.

The new computed coordinate values without the gain and those
calculated using the transformation expressions in Eq. (6.14) are given in
Table 6.15. The computed values are close, but not the same as the
calculated ones. The reason for this difference is that the algorithm presented
here uses integer division, which results in more rounding errors than if FP
division is used.

TABLE 6.15 The new Coordinate Values Computed Using the Iterative Rotation Algorithm
versus Calculated Using the Transformation Expressions in Eq. (6.14)

The CORDIC rotation pipeline may be implemented as a simple 2-D
graphic processor with two internal memory units: (1) to store a virtual
object’s initial coordinate points as input and (2) to store the computed new
coordinate points as output. The CORDIC processor will be a co-processor
much like a graphic processor unit (GPU). However, the co-processor, in this
case, would perform the fixed CORDIC rotation task as outline earlier using
its internal memories; the co-processor would have no instructions to
execute. The CPU would start the co-processor by initiating the transfer of
both the initial and final coordinate points of a virtual object between the main
(system) memory and each of the input and output internal memory units.
Once the co-processor is done computing the new coordinate points and the
new points are transferred to the main memory, the co-processor will inform
the CPU, which would then access the new coordinate points from the main
memory and after multiply each new coordinate point by the constant scaling
factor 0.6048 would display the rotated virtual object on the screen. For how
to calculate the throughput of the CORDIC processor refer to Exercise 6.15.
Memory design is presented in the next chapter and CPU initiated transfers
of large memory data are discussed in Chap. 9.

References
1. Intel Architecture Instruction Set Extensions Programming Reference,

www.intel.com.
2. Steven Leibson and James Kim, Configurable processors: a new era in

chip design, IEEE Computer, 2005, pp. 51-59.

http://www.intel.com/

3. SPEC CPU2006 and SPECviewperf from the Standard Performance
Evaluation Corporation, http://www.spec.org/.

4. B. W. Bomar, Implementation of microprogrammed control in FPGAs,
IEEE Transactions on Industrial Electronics, Vol. 49, No. 2, Apr 2002,
415-422.

5. Anantha Chandrakasan and Robert Broderson, Minimizing power
consumption in digital CMOS circuits, Proceedings of the IEEE, Vol. 83,
No. 4, 1995, 498-523.

6. J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, 5th ed., Morgan Kaufmann, 2012.

7. Ray Andraka, A survey of CORDIC algorithms for FPGA based
computers, In: Proc. ACM/SIGDA 6th International Symposium on Field
Programmable Gate Arrays, 191-200, 1998.

Exercises
For Exercises 6.1 to 6.3: Suppose the propagation delay of an 8-bit adder is
0.8 ns, adder/subtractor is 1.1 ns, 2-to-1 MUX is 0.3 ns, and 4-to-1 MUX is
0.6 ns. Also, assume register setup time (τst), clock-to-q (τcq), and clock skew
(τcs) are all 0.05 ns.

6.1 Calculate the required maximum clock frequency for each of the
following data paths:
a. Single-cycle

data path in Fig. 6.2
b. Multi-cycle data path in Fig. 6.3
c. Pipelined data path in Fig. 6.4

6.2 Calculate the total time required to compute the quantity A + B + C ± D
by the data paths in Exercises 6.1(a) and 6.1(b).

6.3 Estimate the speedup between the following data paths when
generating N = 1000 quantities Ai + Bi + Ci ± Di for i = 0, 1, 2, ..., 999.
Ignore the data reading and writing delays.
a. Exercise 6.1(a) vs. 6.1(c)
b. Exercise 6.1(b) vs. 6.1(c)

6.4 Suppose a new processor has 25% less capacitive load than the old
processor and operates with 20% higher clock frequency. Determine

http://www.spec.org/

the ratio of the dynamic powers consumed by the two processors.
Comment on the result obtained.

6.5 Suppose the voltage source for a new processor is 50% of that used to
operate the older processor, its total capacitive load is 15% less, and it
operates with 40% higher clock frequency. Determine the ratio of the
dynamic powers consumed by the two processors. Comment on the
result obtained.

6.6 Show the register contents for multiplying 3-bit A_value = 6 with 3-bit
B_value = 5 using the multicycle unsigned multiplier given in Fig. 6.15.

6.7 Design an 8-bit unsigned multiplier circuit modeled as follows:
a. Use a schematic design tool (e.g., LogicWorks) or all structural HDL

model to design to model the multiplier circuit. You may design a
multifunction register to implement registers A, B, and P in the data
path.

b. Use a hybrid HDL model. Use behavioral models for registers A, B,
and P and the mod-8 counter. Then combine the A, B, P, counter and
an adder to complete the design.

6.8 Show the register contents for multiplying 4-bit 2’s complement A_value
= 5 and B_value = – 2 using the 2’s complement multiplier given in Fig.
6.21.

6.9 Show the register contents for multiplying 4-bit 2’s complement A_value
= – 5 and B_value = – 2 using the 2’s complement multiplier given in
Fig. 6.21.

For Exercises 6.10 and 6.11: Use the standard non-return-to-zero inverted
(NRZI) generator FSM (see Chap. 5 Exercise section) and design an NRZI
conversion system. Assume that the input stream is processed 16-bits at a
time. Also, because no common clock is used between a source and a
destination module and the bits are transmitted on a pair of twisted wires
called D+ and D+, with D– being the opposite of D+, we must prevent the
data synchronization problem between the source and destination modules
by making sure the NRZI output does not remain at 1 or 0 for several clock
cycles. This is done by making sure that for every six consecutive 1’s at the
input stream there is a transition at the output. This will ensure that an output
stream can have maximum seven consecutive 1’s or seven consecutive 0’s.
For example, for input X = 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 (0xC7F3)
processed, from right to left, the modified NRZI generator must output Y = 1 1
1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 (or 0x1D3FB from right to left); for X = 0xFFFF, Y

= 0x3E03F; for X = 0xCFF6, Y = 0x123F8; and for X = 0x0000, Y = 0xAAAA.
The NRZI system consists of a data path and a control unit. Do the following:
6.10 Design a data path that includes a 16-bit multifunction (parallel load and

right shift) input register, a standard NRZI FSM, and a mod-17 counter
that keeps track of the input bits. Design an FSM-based control unit for
a data path that implements the NRZI and keeps track of six
consecutive 1’s at the input. (An 18-bit parallel-load and right-shift
register may be used, if necessary, to capture the output bits.)

6.11 Design a data path that consists of a 16-bit multifunction input register, a
standard NRZI FSM, a mod-17 counter (CNTR1) to keep track of the
processed input bits, and a mod-7 counter (CNTR2) that keeps track of
consecutive 1’s at the input. Design an FSM-based control unit for a
data path that implements the NRZI and keeps track of six consecutive
1’s at the input. (An 18-bit parallel-load and right-shift register may be
used, if necessary, to capture the output bits.)

6.12 Design a microprogrammed controller for the data path in Exercise 6.11.
6.13 Calculate the new coordinate points of the virtual “house” object in Fig.

6.24 rotated by 35°. Compare your results with those calculated using
the expressions in Eq. (6.14).

6.14 Calculate the new coordinate points of the virtual “house” object in Fig.
6.24 rotated by – 35°. Compare your results with those calculated using
the expressions in Eq. (6.14).

6.15 Suppose a 2-D graphic processor implements the seven-step pipelined
CORDIC rotation algorithm discussed in the text. Also, assume the
delay of an adder or a subtractor is 0.8 ns and register setup time (τst),
clock-to-q (τcq), and clock skew (τcs) are all 0.05 ns. What is the
approximate maximum number of coordinate points the pipeline can
process within 0.001 seconds? Ignore delays associated with reading
and writing coordinate points.

6.16 Write a program in the language of your choice to implement the
CORDIC rotation pseudo-code described in the book.

6.17 The following defines an exponential function as a k-term Taylor series:

Each term in the series can be computed from the previous term, as
illustrated here for the first four terms:

Using a combinational adder, a multiplier, a divider, and other modules as
necessary, do the following:

a. Draw a multicycle data path to compute ex for five terms for a given
x. Also, determine the minimum clock period in terms of the delays of
modules used and, τst, τcq and τcs.

b. Draw a minimum delay pipeline data path to compute ex for five
terms for a given x. Also determine the minimum clock period in
terms of the delays of the modules used and τst, τcq, and τcs.

6.18 Computer security (confidentiality): Use Exercise 11.17 to design a
stream cipher with control unit (also see Sec. 11.5.1).

6.19 Computer security (confidentiality): Use Exercise 11.18 and/or Exercise
11.19 to understand the RSA encryption algorithm (Sec. 11.5.3).

6.20 Computer security (confidentiality): Use Exercise 11.20 to understand
asymmetric versus symmetric ciphers (also see Sec. 11.5).

6.21 Computer security (integrity, understanding cryptography hash): Use
Exercises 11.21 to 11.23 (Sec. 11.6 and Sec. 11.7).

CHAPTER 7
Memory

7.1 Introduction
A register is designed to store single value that is readily available when
needed. Memory, on the other hand, is designed to store the code and data
of programs during execution. The storage technologies used to implement
different types of memory require much less hardware than a latch or flip-
flop. However, memory requires more time to store (write) or retrieve (read)
data.

The storage size of memory is defined in terms of bytes, 8 bits per byte
(B). Table 7.1 presents a list of commonly used memory storage sizes, and
Fig. 7.1 illustrates two logical views of 1024 B (1 KB) memory. In Fig. 7.1(a),
the memory is viewed as having 1024 locations, each with 1 B content. That
is, a 1024 × 8 (i.e., 1024 by 8) memory requires a 10-bit address (1024 =
210) to identify each of the 1 B (8 bits) content. In Fig. 7.1(b), 1024 B
memory is viewed as 512 × 16, with 512 locations, each with 2 B content. It
requires a 9-bit address (512 = 29) to identify each of the 2B (16 bits)
content.

TABLE 7.1 Examples of Memory Sizes

FIGURE 7.1 Two logical views of a 1-KB memory with arbitrary contents: (a)
1K × 1B; (b) 512 × 2B.

The performance of a Von Neumann machine (Fig. 1.2 in Chap. 1)
directly depends on how fast data can be read or written to memory. Over
the years, as the speed of CPUs has increased at a higher rate than that of
memory, a quest for faster memory technologies and better memory
architectures and organizations have helped bridge this speed gap.
Pipelining has been used to increase concurrency by overlapping memory
operations and reduce average read/write time. Parallelism has been used
to deliver more data in less time to improve the performance of
multiprocessor systems and real-time applications.

FIGURE 7.2 Memory cells: (a) an SRAM cell; (b) a DRAM cell; (c) an nMOS
pass transistor.

This chapter introduces commonly used memory technologies and their
applications, and covers memory cell structures, a cell schematic logic
model, and the arrangements of memory cells within a memory chip to
support various applications. The chapter also covers memory organization,
timing, and communication protocols, including those of commonly used
memory technologies today. Memory architectures of modern computer
systems and an introduction to programming practices for reducing memory
traffic and increasing performance are also discussed and examples
provided. An example of the hardware description language (HDL) model for
memory is also provided.

7.2 Memory Technologies
In general, memory technologies are categorized as read-only memory
(ROM) or random access memory (RAM). The hardware used to store 1 bit
of data is called a memory cell. In a ROM, the cells are nonvolatile and thus
can retain their contents even when they are not powered. Other nonvolatile
memory technologies used today are magnetic disks, flash memory [1], and

optical discs (e.g., CD-ROM) where data is organized and accessed in
blocks. Magnetic disks are discussed in Chap. 9.

On the other hand, the cells in a RAM are volatile and would lose their
content when not powered. Both ROM and RAM are random access in the
sense that the amount of time required to access the content of a location is
the same. For this reason, ROM is sometimes called nonvolatile RAM
(NVRAM).

7.2.1 Read-Only Memories
The content of a ROM cell is fixed at logic 0 or 1. A programmable ROM
(PROM) uses fuse-based technologies that make them one-time
programmable; each cell can be programmed to logic 0 (e.g., keeping the
fuse) or 1 (e.g., burning the fuse). An ultraviolet erasable PROM (EPROM),
not commonly used today, would erase its content when placed under an
ultraviolet light source (e.g., for 30 minutes). An electrically erasable PROM
(EEPROM), which is common today, uses electrically rewritable ROM
memory cells to trap logic 0 or 1 values for a long time. EEPROM cells,
however, can only be programmed a certain number of times (e.g., typically
100,000 minimum).

7.2.2 Random Access Memories
On the other hand, RAMs are designed to function as the main storage for
programs and data during execution. A RAM cell is called static if logic 1 is
stored as a static charge, and it can be retained as long as the memory is
powered. The static-cell RAMs are called SRAMs. A RAM cell is called
dynamic if logic 1 is stored as a dynamic charge, and it can only be retained
for a very short time unless it is refreshed, typically once every few
milliseconds (ms). The dynamic cell RAMs are called DRAMs.

SRAM versus DRAM Cells
Figure 7.2 illustrates circuit examples for SRAM and DRAM cells. The SRAM
cell, which requires two transistors and two cross-coupled NOT gates, is
much larger than the DRAM cell that requires one transistor and a small
capacitor. The schematic of an nMOS pass transistor is shown in Fig.
7.2(c) with three pins labeled a, b, and e. The e input acts like an enable
signal. If e = 1, the nMOS pass transistor conducts current in either direction
from a to b or from b to a as if the pins a and b are connected by a wire.
Otherwise, if e = 0, the transistor keeps the pins a and b electrically isolated

(high impedance, Z), with a very small amount of current flowing in either
direction as if there is no connection between the two pins.

In Fig. 7.2(a), when the cell is selected, the two pass transistors connect d
to q and to . The cell content can now be either read or written as the q
and signals. Otherwise, when the cell is not selected, the two pass
transistors keep the two cross-coupled NOT gates isolated from the q and
signals. During this time, the cell retains its stored value d as long as the cell
is powered.

DRAM cells operate differently. In Fig. 7.2(b), when the cell is selected
and the memory is performing a write operation, the capacitor is charged to
a voltage level representing logic 1. Otherwise, the pass transistor keeps the
capacitor isolated and not connected to the q signal. However, the isolated
capacitor, if charged to logic-1 voltage level, retains its charge for only a
short time, typically a few milliseconds (ms). Therefore, the charge in the
capacitor must be refreshed periodically during a refresh cycle. Otherwise,
the content would be lost over time due to a leakage current, much like
batteries left in a flashlight that is turned off discharge over time.

The capacitor can be charged to a voltage required to represent logic 1 in
about τ = R ∗ C seconds when the cell is selected. The R is the size of the
equivalent resistor of the transistor in ohms when the cell is selected. The C
is the size of the capacitor in farads. The capacitor can discharge in about t
= Rz ∗ C seconds, where Rz is the size of the equivalent resistor of the
transistor when the cell is not selected (i.e., the cell is isolated). However, Rz
is much greater than R.

[The equation defines how a capacitor is charged. If
the charging voltage source Vs = 5.0 V (V for volts), the voltage level in the
capacitor would reach 3.16 V in about t = 1RC seconds, 5.0(1 – e–1)V = 3.16
V. The 3.16 V is the voltage level for logic 1 when using the 0 to 5.0 voltage
range. A capacitor would, however, be fully charged in about t = 5RC
seconds. The equation defines how a capacitor discharges
[2].]

A DRAM refresh cycle must be performed before the cells lose their
contents. For example, the Micron 64MB DRAM [3], which is organized as a
128M × 4 memory and has 512 million (128M ∗ 4) cells, requires every cell
to be refreshed within 64 ms. Therefore, many cells must be refreshed
during each refresh cycle so that the DRAM can still be used for read/write
operations between each refresh cycle. For instance, the Micron DRAM
refreshes 64K (65,536) cells at the same time during a refresh cycle. This

requires 8192 (512M/64K) refresh cycles to refresh all the 512M cells once
every 64 ms. This implies that each refresh cycle can start once every 7.8 μs
(64ms/8192 cycles) to refresh 64K cells at the same time. The DRAM
requires 7.5 ns to read or write its content. Therefore, the DRAM can support
more than 1000 (7.8 μs/7.5 ns) read/write operations between each refresh
cycle.

During a read operation, the charge in the capacitor is measured to
determine the cell content as 1 or 0. If the capacitor’s charge is at the logic-1
voltage level, some of its charge would be lost during this read operation,
and thus the cell must be refreshed again. This is done by performing a write
operation after each read to restore the contents of the cells that were just
read.

7.2.3 Applications
There are many applications for ROMs. For example, EEPROM is used to
store a startup (bootloader) program that begins to execute when the
system is powered, or to store a configuration file for a ROM-based
programmable logic device (PLD). EEPROM technologies are also used in
the design of flash memory, for example, flash drives. However, because
data in a flash drive is organized and accessed in blocks, like in magnetic
disks and optical discs, flash drives are also relatively slow. Many portable
devices today use flash drives in place of disk drives.

SRAMs require more hardware and thus are more expensive per byte,
but they are faster than equivalent DRAMs because they do not require
refresh and write-after-read cycles. Modern computers use DRAMs as main
memory and SRAMs as cache memory to decrease the average time
required to access data. Cache memory organizations are discussed in
Chap. 10.

7.3 Memory Cell Array
All memories internally use two-dimensional (2-D) cell organizations in order
(1) to reduce the total number of signals required to select a set of target
cells, and (2) to refresh multiple cells at the same time if the cells are
dynamic. A 2-D organization would require two selection signals per cell
instead of only one that would be needed if the cells were organized in one
dimension. However, a 2-D organization requires far fewer selection signals.

For example, consider a 128B memory that contains 1024 (128 ∗ 8) cells. If
the cells are organized in one dimension, as illustrated in Fig. 7.3(a), 1024
selection signals would be needed to select 1024 cells, one at a time. The
cells are said to be organized as a 1K × 1 × 1 (i.e., 1K by 1 by 1) cell array
consisting of 1024 rows, with one column and one cell at each row-column
intersection.

FIGURE 7.3 The internal organization of a 1024-cell memory: (a) one-
dimensional organization requiring 1024 selection signals; (b) two-
dimensional organization requiring only 64 selection signals.

On the other hand, as illustrated in Fig. 7.3(b), a 32 × 32 × 1 cell array
consists of 32 rows, 32 columns, and one cell at each row-column
intersection. It requires only 64 (32 + 32) selection signals to select, one at a
time, 1024 (32 ∗ 32) cells. Likewise, a 1M × 1 memory would require 1M

selection signals (a very large number) in one-dimensional organization
versus only 2048 (2 ∗ 210) selection signals in a two-dimensional
organization. Clearly, a two-dimensional organization is advantageous.

A 32 × 32 × 1 cell array would also require only 32 refresh cycles, each
one refreshing all the 32 cells in one row, versus 1024 refresh cycles, each
one refreshing only one cell in a 1K × 1 × 1 cell array. When one of the row-
selection signals is asserted, all the cells in that row are selected at the
same time. This is called a row activation. Furthermore, because a row-
selection signal is the output of an address decoding circuit (not shown), the
signal does not have the required fan-out to directly activate a large number
of cells. Instead, the signal enables a transistor that allows a power source
to activate all the cells on that row.

The content of each cell on the activated row is determined (“sensed”) as
logic 0 or logic 1 using a special electronic circuit known as a sense
amplifier. The amplifier compares a cell’s voltage level with a reference
voltage source, for example, 50% of the voltage used to represent logic 1.
During a read operation, if the cell contains logic 0, it will pull down the
reference voltage slightly, causing the sense amplifier to detect logic 0;
otherwise, the voltage level for logic 1 in the cell will pull the reference
voltage slightly up, causing the sense amplifier to detect logic 1.

Only one sense amplifier per column is needed. The logic 0 or 1 output
from the sense amplifier is latched and is made available to the tri-state
buffers controlled by the column-selection signals. In the case of DRAMs,
the output of the latch is also used to refresh the target cell after each read.
A more detailed discussion of sense amplifiers is outside the scope of this
book and thus is referred to elsewhere.

7.3.1 Word Access
Figure 7.4 illustrates the organization of a 512 × 2 (a 2-bit word) memory. In
the figure, the 1024 cells are organized as two separate 32 × 16 × 1 cell
arrays, effectively creating a 32 × 16 × 2 cell array. The cells are now
accessed two at a time, one from each of the 32 × 16 × 1 cell arrays. For
example, the assertion of the row-0 and col-0 selection signals will select the
cell at the intersection of row 0 and column 0, as well as the cell at the
intersection of row 0 and column 16. The 32 × 16 × 2 cell array, which still
consists of 32 rows and 32 columns, requires, as in Fig. 7.3, 32 refresh
cycles to refresh a row of 32 cells at the same time.

FIGURE 7.4 A 1K cell organized as a 32 × 16 × 2 cell array to create a 512 ×
2 memory (shown for read operation).

7.3.2 Burst Access
A burst access refers to the memory’s ability to transfer a burst of data (one
word each). A burst size may be small—a few bytes—or large—the size of a
large block (e.g., 4 KB) called a page. Burst accessing is implemented by
activating a row and then asserting the column-selection signals one at a
time and in some specified order (e.g., sequentially) to either read or write a
set of target cells. Each burst access must be first preceded by a row
activation operation. If a page access, or page mode access, expands
multiple rows, the memory may be enabled to automatically activate each

succeeding row when the access from the current row is completed. A page
mode access increases memory efficiency by reducing the memory idle
time, and at the same time, it makes a page transfer seamless.

In order to make memory even more efficient, the cells can be organized
into banks, each a cell array, as illustrated in Fig. 7.5. In the figure, a 4K × 1
memory is designed using four banks, each a 32 × 32 × 1 cell array. In this
case, a row activation operation in another bank can be started while the
memory operation on the current bank is still in progress. Therefore, this
makes bank-access turn around time shorter when memory is required to
perform operations that involve different banks.

FIGURE 7.5 The organization of a 4K × 1 memory into four banks, each a 32
× 32 × 1 cell array.

A multibank memory may be designed to support intermittent short burst
accesses from one bank while a block transfer is taking place from another
bank. In this case, an intermittent access would momentarily interrupt an

ongoing block transfer from one bank to allow a short burst access from
another bank.

Most modern memory chips support word access and are also
multibanked. They also support burst and page mode accesses. For
example, consider the Micron 512 Mb (million bits) DRAM memory [3]. It is
available as a 128M × 4 RAM with four banks, each a 8192 × 4096 × 4 cell
array; a 64M × 8 RAM with four banks, each a 8192 × 2048 × 8 cell array; or
a 8M × 16 RAM with four banks, each a 8912 × 1024 × 16 cell array. For
instance, the Micron 128M × 4 RAM supports 1, 2, 4, or 8 burst word and
4096-bit page transfers, where a word is 4 bits.

7.4 Memory Organization
Memory organization refers to the internal components and their
organization within a memory chip, using several memory chips to create a
larger memory called a memory unit, and memory communication
protocols. Three sets of signals—address bus, data bus, and control bus
—are used to control the operations of a memory chip or unit. The address
bus signals specify the address of a single memory location, which could be
the starting address of a burst or page access. They are used to select a set
of target cells for read or write operation. For a basic memory organization,
the control bus is used to specify read or write operations, or neither in case
the data bus is also used to communicate with other components in the
system.

Figure 7.6 illustrates the logical view of a 1K × 1 memory, its block
diagram as an SRAM, and its block diagram as a DRAM. The SRAM
requires a 10-bit address bus with signals labeled a0to a9; a 1-bit data bus
labeled d; and three active-low control bus signals labeled _ce (chip enable),
_we (write enable), and _oe (output enable). The _ce, when asserted,
selects the memory chip and, therefore, a set of target cells to perform either
a read operation if _we = 1 (not asserted) or a write operation if _we = 0
(asserted). The _oe signal, when asserted, causes the data from the SRAM
to appear on the data bus during a read operation.

FIGURE 7.6 Logical view and block diagram of 1K × 1 memory with active-low
control signals: (a) logical view; (b) SRAM block diagram; (c) DRAM block
diagram.

A DRAM, which typically has many more cells and also requires the cells
to be refreshed, has additional control signals. The row address strobe (ras)
and column address strobe (cas) are used to specify a single memory
address in two parts, a row address and a column address, using the
address bus. The _ras and _cas signals are also used to place the memory
in a refresh cycle mode. The DRAM block diagram in the figure has a 5-bit
address bus labeled a0 to a4, a 1-bit data bus also labeled d, and a 5-bit
control bus, all active-low signals.

7.4.1 Modern DRAMs
A modern DRAM chip is designed to operate synchronously, and the chip is
called a synchronous DRAM (SDRAM). The chip may contain one or more
pipelined data paths to increase memory bandwidth by processing multiple
read/write requests concurrently.

Typically, a modern DRAM chip uses the interface signals _ce, _ras, _cas,
and _we as a 4-bit instruction, also called a memory command, to select
and send row and column addresses, and an access mode (e.g., a single or
burst access) to the chip. Commands are also used to perform other
memory tasks, such as to start a refresh cycle. Figure 7.7 shows the data
path of a modern SDRAM consisting of two memory banks. It contains
registers to load an access mode and row and column addresses. A bank
number (0 or 1) is the same as one of the row address (e.g., the highest or
the lowest) bit. The column address is stored in a counter and is

incremented every clock cycle when the access mode indicates a burst or
page transfer.

FIGURE 7.7 An internal organization of an SDRAM with two banks. A signal
from the row address selects one of the banks. Not all signal connections
are shown [3].

Table 7.2 presents a list of commands used in a Micron SDRAM. For
example, if command = (0000)2, which implies _ce = 0, _ras = 0, _cas = 0,

and _we = 0, the SDRAM inputs an access mode using the address bus,
which is then loaded into the mode register, as shown in the figure. If
command = (0011)2, a row address (including a bank number) is loaded into
one of the row-address registers identified by the bank number. If command
= (0101)2, a column address is loaded into the column address counter. The
row address is used to activate a row in the target bank. The counter is used
to generate column addresses if the access mode indicates a burst access.

TABLE 7.2 Examples of Commands Used by a Micron SDRAM

Over the years, the demands for greater memory bandwidth and various
system requirements have produced various memory technologies.
Advancements in memory chip internal organization and communication
protocols have resulted in today’s high-performance SDRAMs. For example,
while an SDRAM operates at the speed of one data item per clock cycle, a
double data rate (DDR, DDR2, DDR3, etc.) SDRAM operates at the speed
of two data items per clock cycle; one data item is transferred on the positive

edge of the clock signal and another on the negative edge of the clock
signal.

Another example is the Rambus proprietary technologies, such as
RDRAM and XDR DRAM high-speed, point-to-point communication using
packets [4]. In this case, a packet is a short burst of, for example, 1-bit wide
data transmitted from a source (e.g., memory) to a destination module (e.g.,
a processor). Packet communications work similar to how people
communicate with letters. Each letter (a packet) contains a source address,
a destination address, and a payload (content) that goes through one or
more (point-to-point) post offices before arriving at the destination.

7.4.2 SRAM Cell Model
While a real memory cell cannot be modeled with logic gates, the behavior
of an SRAM cell can be modeled with logic gates to illustrate memory design
and its operation. Figure 7.8(a) illustrates a schematic logic model of an
SRAM cell. It consists of an SR latch (without the clock) and three tri-state
buffers. Two resistors that connect the outputs of the input tri-state buffers to
ground are called pull-down resistors. They cause the outputs to become 0
instead of high impedance (Z) when the tri-state buffers are not enabled.
This makes the s and r inputs of the SR latch both 0, causing the latch to
retain its stored 1 or 0 value when the cell is not selected. The model uses
tri-state buffers to mimic the functions of the pass transistors used in Fig.
7.2(a). The SR latch becomes electrically isolated when it is not selected,
much like the cross-coupled NOT gates in a real SRAM cell. Figure 7.8(b)
shows the cell’s block diagram, and a pull-down tri-state buffer and its truth
table are shown in Fig. 7.8(c).

FIGURE 7.8 A logic model of an SRAM cell: (a) gate-level model; (b) the cell’s
block diagram; (c) a pull-down tri-state buffer and its truth table.

7.4.3 Internal Organization: SRAM Chip
While a cell array is the core storage hardware, additional circuits are
needed to translate a given memory address into one of many row and
column selection signals and route data in and out of cell array, typically
using a bidirectional data bus. A bidirectional bus reduces the number of
wires required to transmit data in and out of memory.

Example 7.1. The design of 16 × 1 SRAM is presented. It requires a 4-bit address bus, a 1-
bit bidirectional data bus, and a 3-bit control bus.
Solution: The logical and block diagrams of the SRAM are shown in Fig. 7.9 with four
address bus signals labeled a3 to a0, a 1-bit bidirectional data bus signal labeled d, and
three active-low control bus signals labeled _ce, _we, and _oe. The design detail and
read/write operations are described next.

FIGURE 7.9 Logical view and block diagrams of a 16 × 1 SRAM.

Figure 7.10 illustrates the internal organization of the SRAM using a 4 × 4
× 1 cell array and two 2-to-4 decoders. The row decoder translates the
upper two address signals a3 and a2 into four row-selection signals. The
column decoder translates the lower two address signals a1 and a0 to four
column-selection signals. The row decoder may always be enabled to allow
early row activation, but the column decoder must be enabled when _ce = 0,
as shown in the figure. All the input signals are buffered to avoid possible
fan-out violations at the source of the signals.

FIGURE 7.10 The internal organization of a 16 × 1 SRAM using a 4 × 4 × 1
cell array.

During a memory operation when _ce = 0, an active row-selection signal
will enable all the four cells in the row associated with a given memory
address. This will enable all the output tri-state buffers in each cell on that
row, and will cause their 1-bit contents to appear on the four data lines d0 to
d3 within the cell array. An active column-selection signal enables one of the
column tri-state buffers to pass d0, d1, d2, or d3 as d_out. During a read
operation when _we = 1, the d_out is placed on the data bus if _oe is
asserted. The single output tri-state buffer is used to design a 1-bit
bidirectional data bus labeled d.

A memory write operation works similar to the read operation, but this
time, the single input tri-state buffer is enabled to route an incoming data d
into the cell array. The tri-state buffer reduces the SRAM’s power
consumption during a read operation. The _we, d, and asserted column-
selection signal are used to generate si = d and ri = for a target cell in the
activated row. The si and ri inputs for the remaining cells on that row will be
zero, causing these cells to retain their 1-bit contents.

Example 7.2. The design of an 8 × 2 SRAM is presented. It requires a 3-bit address bus, a
2-bit bidirectional data bus, and a 3-bit control bus.
Solution: Figure 7.11 shows the logical view and the block diagram of an 8 × 2 SRAM that
consists of eight locations, each one capable of storing a 2-bit value. Figure 7.12 illustrates
the internal organization of the SRAM that contains two 4 × 2 × 1 cell arrays, a 2-to-4 row
decoder, and a 1-to-2 column decoder.

The 8 × 2 SRAM still uses a 4 × 4 array of cells, as in Fig. 7.10, except
that in this case, a 1-to-2 column decoder is used to select one cell from
each of the 4 × 2 × 1 cell arrays. Also, the memory has two input and two
output tri-state buffers. The 2-bit bidirectional data bus signals are labeled d1
and d0.

FIGURE 7.11 Logical view and block diagram of an 8 × 2 SRAM.

FIGURE 7.12 The internal organization of an 8 × 2 SRAM using two 4 × 2 × 1
cell arrays.

7.4.4 Memory Unit Design
A single memory chip typically does not have sufficient storage space to
support a complex digital system such as a computer. Processors operate
on multiple data bits (e.g., 16-, 32-, or 64-bits) at the same time, and several
GB of storage space may be necessary to store program instructions and
data, each as a memory data item, during execution. A memory unit refers to
the physical organization of the storage space, known as the main memory
that may be accessed by one or more processors. When there is more than
one processor, each processor must take turns accessing the memory unit,
which typically is designed using one or more memory modules (e.g.,
memory cards). Each module stores multiple bytes, generally 4B or 8B, per
memory address.

The internal organization of a memory unit depends on how data is
distributed among the many individually referenced storage spaces (i.e.,
cells). In one organization, data from several consecutive addresses may be
stored in one memory module, and in another organization, they may be
stored in different modules and/or in different banks if multibank cell
organizations are used. In Sec. 7.6, we will present several organizations of
data storage in memory. In the remaining sections and chapters, the terms
memory and main memory may be used to mean one or more memory
units.

Memory Module
A memory module organized as a memory card is either a single inline
memory module (SIMM), which is not very common today, or dual inline
memory module (DIMM). While a SIMM card has pins on one side, a DIMM
is smaller and has half the pins on one side and half on the other side of the
card. Figure 7.13 illustrates an example 16 × 8 SIMM using eight 16 × 1
memory chips. Address, data, and control bus signals connect to all the
memory chips for simultaneous read/write access. Buffer gates prevent fan-
out violation at the source of the bus signals.

FIGURE 7.13 A 16 × 8 SIMM.

A small outline DIMM (SODIMM) is about half the size of regular SDRAM
DIMMs. For examples of memory modules, refer to [5]. Error correction code
(ECC) SDRAMs implement a Hamming coding scheme to detect and correct
a single-bit memory error. For example, a 64-bit ECC SDRAM module uses
eight parity bits to store a 64-bit data as a 72-bit Hamming code.

Memory Unit
Computers are typically built with several memory expansion slots to install
one or more memory cards, one per slot. Assuming that only 2-GB and 4-GB
DIMMs are available, a 1G × 64 memory unit is designed using either four 2-
GB DIMMs or two 4-GB DIMMs, depending on how many memory
expansion slots are available.

Example 7.3. The design of a 64 × 4 (32 B) memory unit using 16 × 4 memory modules is
presented, where a module uses 16 × 1 memory chips.
Solution: Figure 7.14 shows the logical view and block diagram of a 64 × 4 memory unit
with six address lines labeled a5 to a0 and four data bus lines labeled d3 to d0. The memory
unit requires four (64/16) modules each to store data from one-fourth of the address space.
Two of the six address signals are used to identify a target memory module that will perform
a read or write operation. The remaining four address signals are used to identify a 4-bit

target memory content from the selected memory module. For example, the address bits a5
and a4 can be used to divide the memory address space into four data regions of size 16
each, as shown in Fig. 7.14(a). The data from each region is stored in one memory module.

FIGURE 7.14 A 64 × 4 memory unit: (a) logical view divided into four data
regions; (b) block diagram.

The memory unit requires a 2-to-4 decoder to translate the address bits
a5 and a4 to four chip enable signals _ce0 to _ce3, one for each of the
memory modules, as illustrated in Fig. 7.15. The decoder itself is enabled
when a master chip enable (i.e., _ce) is asserted. The address lines a3 to a0
and the remaining control signals, _we and _oe if SRAM or _ras, _cas, _we,
and _oe if DRAM or SDRAM, are used to perform a read or write operation.
Only the enabled memory module can transfer data using the 4-bit data bus.

FIGURE 7.15 A 32-B memory organized as a 64 × 4 memory unit.

The internal organization of the 64 × 4 memory unit in Fig. 7.15 stores
each region’s data, shown in Fig. 7.14(a), in one memory module. Other
data storage organizations are presented in Sec. 7.6.

7.5 Memory Timing
A memory-timing diagram precisely illustrates memory communication
protocol. It specifies the timing of SRAM or DRAM control signals or the
timing of SDRAM commands. The total time required to select target cells
and perform a read or write operation is called a memory access time. A
memory cycle includes both an access time and a data transfer time.

The access time is directly proportional to the size of the memory cell
array, which determines the size of the row and column decoders inside the
memory chip. The decoders in turn determine the time required to activate a
target row and access target cells. Moreover, the decoders are multilevel
and thus have long propagation delays. In addition, while the communication
protocols of a memory unit, module, or chip are the same, the protocols
differ with each memory technology.

7.5.1 SRAM
Figure 7.16 illustrates an SRAM read cycle from the memory point of view. A
memory-timing diagram can also be drawn from the CPU point of view that
will be discussed in Chap. 9.

FIGURE 7.16 An SRAM read cycle from the memory point of view.

At the start of a memory read cycle, a memory address is placed on the
address bus prior to or at the same time that the _ce signal is asserted.

The _oe signal is used with the _ce to control one or more output tri-state
buffers (e.g., Fig. 7.12). In order to minimize the duration of a read cycle, the
_oe can be asserted at any time within a maximum time after the _ce is
asserted, as illustrated in the timing diagram. The _oe allows the data bus to
be used only when data from the cell array is available and not before. The
_ce is deasserted last because it would disable the output tri-state buffer(s)
as well as the column decoder.

A memory write cycle is similar to a read cycle, except that data must be
placed on the data bus at the same time that _ce is asserted or within a
maximum delay after _we is asserted to minimize the time the data bus is
used. Figure 7.17 illustrates an SRAM memory write cycle.

FIGURE 7.17 An SRAM write cycle from a memory point of view.

A memory cycle is initiated by CPU and typically takes multiple CPU clock
cycles to complete.

7.5.2 DRAM
The read and write cycles of a DRAM require that the target memory
address be issued in two parts as row and column addresses using the
address bus. This reduces the size of the address bus, and can reduce the
total time required to complete a burst access. That is, while a row is still
activated, multiple column addresses can be applied in sequence to either
read or write multiple data values quickly. Figure 7.18 illustrates DRAM read
and write cycles from the memory point of view.

FIGURE 7.18 DRAM read and write cycles from the memory point of view: (a)
read cycle; (b) write cycle.

A DRAM read or write cycle starts by issuing a row address and asserting
the _ce signal. Next, the _ras signal is asserted so the DRAM can load the
row address into an internal register and activate a target row. Next, a
column address is issued and the _cas is asserted. This selects one or more
target cells on the activated row. The _oe and _we signals function as
described earlier for SRAMs.

In addition to the read and write cycles, DRAMs require refresh cycles to
restore the content of each cell. A cas-before-ras refresh cycle, for
example, requires the assertion of the _cas signal before _ras to switch the
DRAM into a refresh mode. DRAMs are used to build SDRAMs with
standard communication protocols that have simplified the way computers
are designed. This, therefore, has helped reduce the cost of computers.

7.5.3 SDRAM
In addition to standardized communication protocols, SDRAMs implement
different refresh cycles, including the normal and partially powered-down
modes [3]. A memory cycle starts with a row-activation command followed
by one or more read/write commands for the same row.

Figure 7.19 illustrates a hypothetical SDRAM timing diagram for two
consecutive read cycles from the same row with burst size = 4. It is assumed
that one SDRAM bus clock cycle is required to enter a burst size, three clock
cycles to activate a row, and two clock cycles to complete a read or write
access. Each data value takes one clock cycle to be transmitted out of
SDRAM. Furthermore, because an SDRAM’s data path is pipelined, another
read cycle for the same row may start while the data for the previous cycle is
being transferred.

FIGURE 7.19 A hypothetical SDRAM access illustrating two consecutive read
cycles with burst size = 4. Assume 1 clock cycle to enter a burst size, 3 clock
cycles to activate a row, and 2 clock cycles to complete a read or write
access.

Specifically, in Fig. 7.19, a burst size of four is issued on the first clock
cycle (burst type is not shown), followed by a row activation command on the
second clock cycle, which also requires a row address. The target row will
be activated by the end of the fourth clock cycle. On the fifth clock cycle, a
read command is issued for column address x, and thus the four data values
associated with column addresses x to x + 3 appear on the data bus starting
at the seventh clock cycle for three more clock cycles. The column
addresses x + 1 to x + 3 are generated internally. The second read
command (from the same row) is issued at the ninth clock cycle. Its four data
values appear on the data bus starting at the eleventh clock cycle as y to y +
3; however, only the data for address y is shown in the figure.

Figure 7.20 illustrates a hypothetical SDRAM timing diagram with two
consecutive read cycles with burst size = 1 followed by two consecutive
write cycles also with burst size = 1 for the same row. Note that because the
SDRAM data path is pipelined, consecutive read or consecutive write
commands with burst size = 1 can be issued every clock cycle.

FIGURE 7.20 A hypothetical SDRAM access illustrating two consecutive read
and then two consecutive write cycles, each with burst size = 1. Assume one
clock cycle to enter a burst size, three clock cycles to activate a row, and two
clock cycles to complete a read or write access.

7.5.4 DDR SDRAM
DDR SDRAMs are designed to double the effective bandwidth of SDRAMs.
In this case, data is transmitted on every positive edge and every negative
edge of the clock. Figure 7.21 illustrates a hypothetical DDR SDRAM timing
diagram with three read cycles for the same row with burst size = 4. As
illustrated in the figure, the four data values of each read cycle are
transferred in two clock cycles for a total of 6 clock cycles versus 12 in a
SDRAM. Therefore, DDR effectively doubles peak memory bandwidth,
which is defined as the maximum memory bandwidth when data bus is
utilized 100% of the time (i.e., zero idle time).

FIGURE 7.21 A hypothetical DDR SDRAM timing diagram illustrating three
burst read cycles with burst size = 4. Assume one clock cycle to enter a
burst size, three clock cycles to activate a row, and two clock cycles to
complete a read or write access.

7.6 Memory Architecture
Memory architecture refers to various ways that data can be stored in (i.e.,
distributed to) two or more memory units, two or more memory modules, or
two or more memory banks (cell arrays) in order to increase efficiency and
thus achieve higher bandwidth. For example, in a two-processor system
where each processor communicates with its own dedicated memory unit, it
is more efficient if the data accessed by each processor is stored in a

memory unit assigned to the processor. Moreover, the data in each of the
memory units can be organized in ways to optimize and increase its
bandwidth to satisfy the data rate required by the processing cores in each
of the processors.

7.6.1 High-Order Interleaving
A high-order interleaving technique divides the total logical memory space
into two or more continuous data regions. The data of each region is stored
in separate memory modules, or even separate memory units. For example,
consider the two-way high-order interleaving of 1 GB data to two memory
units, as illustrated in Fig. 7.22. In this case, the two data regions are
identified by byte addresses 0 to 512M – 1 (the top half, starting from
address 0) and 512M to 1G – 1 (the bottom half).

FIGURE 7.22 A two-way high-order memory interleaving of 1 GB data.

In a k-way high-order interleaving, the k most significant address bits are
used to partition the logical memory space into 2k regions. For instance, the
memory organization in Fig. 7.15 is an example of a four-way high-order
interleaving of 32B memory space, organized as a 64 × 4 memory unit, into
four regions, referenced by byte addresses 0 to 15 (region 0), 16 to 31
(region 1), 32 to 47 (region 2), and 48 to 63 (region 3). Data of each region,
as shown, is stored in a separate memory module.

7.6.2 Low-Order Interleaving

Consider a multibank memory organization. A low-order (or fine)
interleaving, also commonly known as simply interleaving, stores the first
data item in one memory bank, the next sequentially accessed data item in
another memory bank, and so on, and then it repeats. For example,
assuming that each data item is stored as a 4B word, a four-way (low-order)
interleaving stores word 0 in bank 0, word 1 in bank 1, word 2 in bank 2,
word 3 in bank 3, and then starts over and stores word 4 in bank 0, word 5 in
bank 1, etc. This is illustrated in Fig. 7.23 for a 512-MB memory space,
organized as a 128M × 4B memory module, using four-bank memory chips.
In this case, each four consecutively accessed 4B words are stored in four
different banks.

FIGURE 7.23 A four-way low-order interleaving of 512 MB data in a four-bank
memory chips.

Figure 7.24 illustrates the timing diagram of a hypothetical two-bank DDR
SDRAM with interleaved data storage. In this case, the amount of data
accessed is doubled from four in Fig. 7.21 to eight in Fig. 7.24, effectively
doubling the peak bandwidth of the memory without changing the internal
clock frequency of the SDRAM. Twice as many data items must now be
transmitted to a destination module using either a twice-as-wide data bus or
a twice-as-fast bus clock. This is how DDR2, DDR3, etc., SDRAMs are
designed, each doubling the size of data accessed.

FIGURE 7.24 Illustrating a hypothetical two-bank interleaved (DDR2) SDRAM
timing diagram. Assume one clock cycle to enter a burst size, three clock
cycles to activate a row, and two clock cycles to complete a read or write
access.

Fine interleaving may also be used with memory modules to further
increase bandwidth. For example, consider a memory unit with two fine
interleaved memory modules. In addition, suppose the memory modules are
made of two-bank DDR SDRAM (i.e., DDR2) chips. In this case, the memory
unit would be capable of delivering twice as much data as compared to that
shown in Fig. 7.24. That is, with each memory module capable of delivering
four data items per SDRAM clock cycle—two on the rising edge (e.g., x and
x + 1) and two on the falling edge (e.g., x + 2 and x + 3)—the memory unit
would deliver eight data items (four from each module) per clock cycle,
therefore doubling the bandwidth of one module.

7.6.3 Multichannel
A multichannel memory refers to memory architecture with two or more
communication channels with the rest of the system [6, 7]. For example, Fig.
7.25 illustrates the architecture of two systems with a CPU and a digital
signal processor (DSP) communicating with a single- or dual-channel
memory. An interconnection network, as a set of buses or point-to-point
connections (discussed in Chap. 9), is used to interconnect the CPU and the
DSP with the memory. In this case, each channel potentially can serve a
different processing unit.

FIGURE 7.25 Illustrating single- and dual-channel memory architecture.

In the single-channel architecture, the CPU and the DSP must take turns
accessing the memory. In the dual-channel architecture, however, the two
processors can simultaneously access the memory, each from a different
channel, provided that their respective data is not stored in the same
memory unit.

A multichannel memory unit becomes more efficient (i.e., less idle time)
when larger burst sizes are used to deliver the same amount of data. In
another words, each channel may continuously deliver data using larger and
more efficient burst sizes without actually delivering too much data for a
destination module to handle. This makes multichannel memory architecture
more suitable for real-time systems where continuous delivery of data is
important.

Example 7.4. Consider a 64-bit single-channel and 32-bit dual-channel memory
organization as illustrated in Fig. 7.25. Assume the memory units are designed using DDR
SDRAM modules. We would like to determine the efficiency of a channel when the CPU
accesses 128 B data using four separate burst read cycles from the same row as illustrated
in Fig. 7.21. Assume each read delivers 32 B data.
Solution: Equation (7.1) defines memory efficiency.

In order to access 32 B from the single-channel memory, the burst size
must be 4 (32 B/64 b). As illustrated in Fig. 7.21, it takes six clock cycles
before the first data item appears on the bus and two cycles per 32 B for a
total of eight (2 ∗ 4) cycles to access 128 B (4 ∗ 32 B). Therefore, the
memory efficiency is 57%, as calculated next:

On the other hand, in order to access 32 B from one of the channels in
the dual-channel memory, the burst size must be 8 (32 B/32 b). Again, it
takes 6 clock cycles before the first data item appears on the bus, as in the
single-channel memory, and 4 cycles per 32 B for a total of 16 (4 ∗ 4) cycles
to access 128 B. In this case, the channel efficiency increases to 73%, as
calculated next:

7.7 Design Example: Multiprocessor Memory
Architecture
As discussed earlier a low-order memory interleaving is used to increase
memory bandwidth by accessing multiple banks or multiple modules in
parallel. On the other hand, a high-order memory interleaving is used to
partition a memory space into multiple regions and store the data of each
region in a separate memory module or memory unit.

7.7.1 UMA versus NUMA
A multiprocessor system with nonuniform memory access (NUMA)
architecture is shown in Fig. 7.26(a). In this case, a memory unit is assigned
to each processor, creating a processing node. An interconnection network
interconnects the processing nodes, creating a shared memory system.

FIGURE 7.26 NUMA and UMA system architectures: (a) a NUMA system
architecture with shared but locally distributed memory units; (b) an UMA
system architecture with a shared global memory unit.

Each processor has a shorter connection to its local memory unit (or
simply local memory) and longer connection to a remote memory, another
processor’s local memory. Therefore, the duration of a memory read/write
cycle, called memory latency, is shorter when memory accesses are from
local memory and longer when they are from remote memory. Therefore,
read/write memory cycles in a NUMA system are nonuniform; some are
short, requiring fewer clock cycles, and some are long, requiring many clock
cycles.

On the other hand, in a uniform memory access (UMA) architecture
multiprocessor system (Fig. 7.26(b)), all the processors communicate with a
single memory unit that may, in addition, be organized as multi-channel.
However, among memory accesses, there is less variation in memory
latencies; they are all about the same (uniform). Moreover, in both the
NUMA and UMA systems, memory units may be low-order interleaved to
better serve the processing cores in each of the processors.

The Silicon Graphics’ SGI Altix 4700 system, for example, is a NUMA
system that can support 512 to 1024 processors and up to 128 TB shared
memory [8]. However, the architecture in many smaller systems today is also
NUMA, such as the AMD Quad FX platform with two dual-core processors
[9].

7.7.2 A NUMA Application

A low-order interleaving would also work with two or more memory units,
called node interleaving, if two or more processors in a NUMA system
cooperate to complete a task. For example, if two processors are performing
an image-processing task, where one processor produces intermediate
results to be processed by the second processor, it would be advantageous
for the first processor (P0) to read the image data elements from its local
memory unit (M0) but write the results to the second processor’s (P1’s)
memory unit (M1). This can be done by creating, for example, an array of
structures, each with two data items. For example, consider the following
program code that defines an example data structure named “foo_t” with two
elements a and b. Suppose P0 operates on the a elements and generates
the b elements and P1 modifies the b elements. With node interleaving, all
the a elements of the array would be stored in M0, and all the b elements
would be stored in M1.

In this case, P0 would read the a image elements from its local memory
(M0) with shorter latency and write the computed b image elements to M1,
P1’s local memory, with longer latency. P1 would then read the b image
elements from its local memory (M1) with shorter latency. [As we will see in
Chap. 10, P1 may access some recently computed b elements from P0’s
cache memories with longer latency. However, in order to simplify, P0 is
assumed to write all the b elements to M1 with longer latency and P1 to read
all the computed b elements from M1 with shorter latency. A more accurate
analysis of the latencies would require a program execution simulation
environment. In addition, with cache memories, it is very likely that the
longer memory latency required to write the computed b elements in M1, for
the most part, would be done in the background and the delay would not
increase the average memory latency for the program.] Once, P0 computes
one or more of the b image elements, both P0 and P1 would operate in
parallel (at the same time) and access the image elements from their

respective local memories with shorter latency. This, therefore, results in a
reduced execution time for the program in a NUMA system. On the other
hand, because in an equivalent UMA system, both P0 and P1 would access
the same memory unit, the average memory latency for the program would
be relatively longer. This in turn would increase the program’s total execution
time in a UMA system.

7.8 HDL Models
Example 7.5 describes a combined behavioral and structural model of a
memory unit. Memory modules are modeled using SRAM chips. The
memory unit implements high-order interleaving, similar to the one shown in
Fig. 7.15. The SRAM chip HDL model implements bidirectional data lines. It
also implements a simplified memory communication protocol; that is, the
memory read/write control signals, when asserted or deasserted, are done
at the same time. A more accurate model of the protocol would require
generating memory control signals with precise timings, such as those
shown in Figs. 7.16 and 7.17. This would require the memory chip (e.g., Fig.
7.10) either to be modeled using a schematic design tool or the HDL model
(structural or behavioral) that includes signal timing delays.

Example 7.5. The design and simulation of a 64 × 8 memory unit using four 16 × 8 memory
modules is illustrated. A memory module is structurally modeled using two 16 × 4 SRAM
chips with bidirectional data lines. Note the use of the keyword “inout” to declare the
variable data as bidirectional data lines. Also, note that in the SRAM chip model, the assign
statement makes data high impedance (Z) when memory is not in the read mode. When
writing to the memory unit (i.e., _ce = 0, _we = 0, and _oe = 1), data will be an input. When
reading from the memory unit (i.e., _ce = 0, _we = 1, and _oe = 0), data will be set to the
memory content identified by the 4-bit adrs.

Simulation Test-Bench:
A simulation test model is shown here. In this case, an “assign” statement is
used to place an 8-bit value as content on the bidirectional data lines when

the memory unit is writing (i.e., _ce = 0, _we = 0, and _oe = 1). Four test
cases are simulated: two memory write cycles followed by two memory read
cycles. The test vectors simulate simplified memory read/write cycles. A
write cycle begins with a target address adrs, a data value as content, and
the activation of the control signals for a write. The control signals are
deasserted at the end of the write cycle. A read cycle begins with an address
adrs and the activation of the read control signals, which are then
deasserted at the end of the read cycle.

This is similar to how a CPU accesses memory as it executes load and
store instructions. A write cycle is initiated by a executing a store instruction,
which provides a memory address and a value (i.e., a register content) to be
stored in memory. A read cycle is initiated by a load instruction, which only
provides a memory address and saves the retrieved memory content in a
register. Because the CPU also executes arithmetic and other types of
instructions and therefore does not access memory all the time, in the test-
bench, this is simulated with some random delays between each memory
read/write cycle.

Simulation Result:
As expected, the memory data lines indicated as data become high
impedance (Z) when memory is not accessed.

References
1. Flash Memory: An Overview,

http://www.spansion.com/Support/TechnicalDocuments/Pages/Technical

http://www.spansion.com/Support/TechnicalDocuments/Pages/TechnicalDocuments.aspx

Documents.aspx.
2. C. R. Nave, HyperPhysics, Georgia State University,

http://hyperphysics.phy-astr.gsu.edu/.
3. Memory chips from Micron, http://www.micron.com/products/dram/.
4. Memory from Rambus, http://www.rambus.com/.
5. Memory modules, http://www.newegg.com/.
6. Gomony MD, Akesson B, Goossens K. Architecture and optimal

configuration of a real-time multi-channel memory controller, Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2013,
1307–1312.

7. Siqueira HM, Silva IS, Kreutz ME, Correa EF. DDR SDRAM memory
controller for digital TV decoders, Symposium on Computing System
Engineering (SBESC), 2011, 78–82.

8. NUMA SGI Altix 4700 system, http://www.sgi.com/products/.
9. AMD Quad FX Platform, http://support.amd.com/.

Exercises
7.1. Draw the logical view and the block diagram of a 128 KB memory. Also

indicate the number of memory locations and number of address lines
required for the following:
a. One byte wide
b. Two bytes wide

7.2. Show the cell array organizations for the following memory sizes:
a. 128 × 1
b. 64 × 2
c. 32 × 4

7.3. Using the SRAM cell model in Fig. 7.8, design a 32 ×2 SRAM (no need
to draw every cell).

7.4. Using the cell model in Fig. 7.8, design a 16 × 4 SRAM (no need to
draw every cell).

7.5. Design a 256-B memory organized as a 128 × 16 memory unit using
memory modules with 32 × 4 SRAM chips.

http://www.spansion.com/Support/TechnicalDocuments/Pages/TechnicalDocuments.aspx
http://hyperphysics.phy-astr.gsu.edu/
http://www.micron.com/products/dram/
http://www.rambus.com/
http://www.newegg.com/
http://www.sgi.com/products/
http://support.amd.com/

7.6. Design a 256-B memory organized as a 128 × 16 memory unit using
memory modules with 16 × 8 SRAM chips.

7.7. Design a 256-B memory organized as a 128 × 16 memory unit
partitioned into 128-B ROM space for the lower addresses and 128-B
RAM space for the upper addresses. Design the memory unit using 64
× 8 ROM chips and memory modules with 32 × 8 SRAM chips.

7.8. Research and write a short paper on each of the following memory
technologies:
a. Rambus RDRAM
b. Rambus XDR
c. Rambus XDR2
d. EDO DRAM

7.9. Draw an SDRAM timing diagram for a read cycle followed by a write
cycle, both with burst size = 4. Assume that it takes one clock cycle to
enter a burst size, four clock cycles to activate a row, and three cycles
to complete a read or write access.

7.10. Consider a 32-bit data bus SDRAM. Given that the clock frequency of
the bus is 200 MHz, what is the peak memory bandwidth in megabytes
per second (MBs)?

7.11. Consider a 64-bit data bus SDRAM. Given that the clock frequency of
the bus is 200 MHz, what is the peak memory bandwidth in megabytes
per second (MBs)?

7.12. Consider a 32-bit data bus DDR SDRAM. Given that the clock
frequency of the bus is 200 MHz, what is the peak memory bandwidth
in megabytes per second (MBs)?

7.13. Consider the SDRAM timing diagram in Fig. 7.19. Suppose there are
four memory read cycles, as follows, where the data bus is 32 bits:

a. Draw the timing diagram.
b. Determine memory efficiency. Ignore row deactivation time.

7.14. Consider the DDR SDRAM timing diagram in Fig. 7.21. Suppose there
are four memory read cycles, as follows, where data bus is 32 bits:

a. Draw the timing diagram.
b. Determine memory efficiency. Ignore row deactivation time.

7.15. Consider a 64-B memory unit high-order interleaved into four 16 × 8
memory modules, but data is low-order interleaved within each module.
Suppose each module is made of eight SDRAM chips, each with four
banks and organized as a 2 × 2 × 1 cell array. Show/describe how a 2-
bit burst data would be stored in the memory unit.

7.16. Consider a four-channel memory designed using 400 MHz DDR
SDRAM modules. What is the peak bandwidth of the memory if each
channel is 64 bits (8 B) wide?

7.17. Consider a NUMA system with local memory latency = 1τ and remote
memory latency = 4τ. If a program execution results in 80% local
accesses and 20% remote accesses, what is the average memory
latency? Compare your result with an equivalent UMA system with 4τ
average memory latency.

7.18. Show/describe how physically the elements of an array[8][8] of type
“foo_t” would be stored in a two-node interleaved 128 × 32 memory
units M0 and M1.

7.19. Computer security (memory authentication): Select Exercise 11.24
and/or 11.25 (also see Sec. 11.9). Note, the details of cache memory
are covered in Chap. 10. However, here, first determine the number of
blocks in memory, and then assign each block a block address starting
with 0.

CHAPTER 8
Instruction Set Architecture

8.1 Introduction
The preceding chapters covered digital design concepts and techniques as
well as memory organization and architecture. In this chapter, we discuss
data paths for CPU. Unless explicitly stated, the terms CPU and processor
are both used to refer to a processing core. Multicore processors will be
discussed in Chap. 10.

An instruction set architecture (ISA) refers to a single-cycle, multicycle,
or pipelined data path that executes a program. In this case, a data path is
capable of executing many different instructions, each requiring a set of data
path operations. The data path fetches an instruction from memory; decodes
the instruction by generating the necessary data path control signals;
executes the instruction by performing data path operations, which
additionally may require retrieving data from memory, according to those
control signals; and stores (writes back) the computed result (if any) or data
read from memory in a register. Register content may be stored in memory.

In general, each different CPU has its own set of unique instructions.
However, some Intel and AMD processors execute the same set of
instructions. For example, X86 refers to a 32-bit instruction set in both Intel
and AMD processors. Other commonly known instruction set examples are
Intel’s IA-64 (Itanium Architecture), AMD’s X64 (64-bit instruction set), MIPS,
Sparc, and ARM. While each instruction set is different, the instructions in

each set are complete for developing any type of software, including systems
software, stand-alone, and online application software.

With the increases in transistor count, modern CPUs implement pipelining
and instruction-level parallelism (ILP) to increase performance as was briefly
discussed in Chap.1. A pipelined data path in this case is also called an
instruction pipeline. The efficiency of the data path increases as the stages
of the pipeline are kept busy operating on multiple instructions concurrently.
This increases instruction throughput, the number of instructions executed
per second, and reduces a program’s total execution time.

However, as data-dependent instructions go through the pipeline stages,
additional hardware is needed to stall the pipeline, if necessary, and make
sure data-dependency relationships are not violated. This, in turn, can reduce
pipeline efficiency unless certain hardware is used and compiler
optimizations are performed to eliminate or reduce such data dependencies.

In addition, branch instructions change execution flow, introducing bubbles
that also decrease pipeline efficiency. However, modern CPUs implement
branch prediction mechanisms to minimize this.

With ILP, an instruction pipeline is made of multiple parallel pipelines that
execute several instructions at the same time. Which set of instructions can
execute at the same time is program dependent and is determined either
statically by compiler (i.e., in software) or dynamically in hardware. ILP also
reduces a program’s total execution time. However, as was discussed in
Chap. 1, only a limited number of independent instructions in each program
can be executed during each pipeline cycle. In addition, because instructions
and data must come from memory, many modern CPUs (e.g., Intel Core i7)
implement multithreading so they can switch to executing another program
(thread) if the CPU must wait to receive instructions or data. While this does
not reduce a program’s total execution time, it helps to increase the overall
efficiency of the processor, which would perform more tasks and idle less.

In this chapter, we start by providing some background information and
examine different instruction set architectures, and then, in order to provide a
better understanding of instruction set and data path design, we begin the
discussion with a simple high-level language code example. Using this
example, an instruction set and a single-cycle data path are presented. A
hardware description language (HDL) description for the single-cycle data
path is presented. Execution simulation results for both a single-cycle and
pipelined data path for the example program are presented, and performance
parameters are discussed.

The chapter then presents reduced instruction set computer (RISC)
architecture and its advantages. It provides an introduction to RISC compiler
optimization, as well as techniques used to improve instruction throughput.

Specifically, we use examples to illustrate ways to increase pipeline clock
frequency, branch prediction techniques, ILP, and multithreading. An
introduction to multithreaded programs using an example is also provided.

8.1.1 Type of Instructions
A processor is typically designed for general-purpose programming.
However, for better performance and some real-time applications, it is often
necessary for computer systems to use special-purpose processors, such as
a graphic processing unit (GPU) and digital signal processor (DSP). Each
special-purpose processor has a set of instructions designed to efficiently
perform computer graphics (e.g., object rotation), signal processing (e.g.,
audio compression), etc. DSPs are typically used in embedded systems, like
cell phones and digital cameras, for signal and image processing tasks.
Modern processors may also include certain special-purpose instructions,
such as the single instruction multiple data (SIMD) (Chap. 1) instruction sets
and computer security related instructions of the Intel and AMD processors.

Instructions that perform arithmetic and logic computations are generally
referred to as data-manipulation instructions for performing calculations on
data. Others are referred to as program-flow control instructions, such as
conditional and unconditional branch (or jump) instructions, and data-
movement instructions, such as those used for reading and writing memory.
The program-flow control instructions alter a program’s execution path, and
are necessary in the execution of high-level language statements, such as “if-
else,” “for-loop,” “while-loop,” and subroutine procedure calls. The latter
requires saving a return address and state (i.e., register contents) of the
processor, either in a special set of registers inside the processor (e.g.,
Sparc’s register windows) or in memory (e.g., memory stack). (For more
information on register windows, refer to Exercise 9.14 in Chap. 9.)

8.1.2 Program Translation
As shown in Fig. 8.1, a software program is typically written in a high-level
language, such as C/C++ or Java, and is translated by a compiler into
assembly instructions (C/C++) or bytecode (Java). A bytecode is converted
to instructions at run time. An assembly instruction is defined by its
mnemonic, an easy-to-remember operation-code (op-code) name, such as
ADD for addition and SUB for subtraction. For more information on
mnemonics and assembly language conventions, refer to IEEE Standard for
Microprocessor Assembly Language [1].

FIGURE 8.1 Basic program translation and execution process.

Unique binary numbers are assigned to each mnemonic op-code by
assembler, and are used to translate instructions to binary, creating an
object code that would be saved as a file on disk. Two or more object files (if
any) are linked to create an executable program file (e.g., an.exe file in a

Windows environment). The linker program links object codes of static (e.g.,
math) library functions if such functions are called in the program. In addition,
not shown in Fig. 8.1, a program may include some dynamically linked codes
(i.e., DLLs) that are linked during run time. The OS loader program loads an
executable code (generally not in its entirety) into memory for execution.

8.1.3 Instruction Cycle
Figure 8.2 illustrates an instruction execution data path, also called an
instruction cycle, with four circuit modules labeled fetch, decode, execute,
and write back. The data path may be implemented as single-cycle,
multicycle, or pipelined. Instructions are fetched from the instruction
memory (IM) and data read from or written to the data memory (DM).
Because the clock frequency used to operate a modern processor is higher
than that used to operate synchronous dynamic random access memory
(SDRAM), the IM and DM are organized to operate as fast cache memories
built from static random access memory (SRAM) technology. Instructions and
data are copied from SDRAMs to these cache memories during program
execution. Therefore, the cache memories increase the overall performance
of the system by keeping the frequently executed instructions (e.g., those
forming a loop) or frequently accessed data inside the processor. Cache
memory organization is discussed in Chap. 10.

FIGURE 8.2 An instruction data path with instruction memory (IM) and data
memory (DM).

8.2 Types of Instruction Set Architecture
Over the years, ISA developments are guided by advancements in integrated
chip (IC) technologies and computer architecture concepts, such as
pipelining. In addition to an op-code, an instruction includes a set of
operands that are specified explicitly, implicitly, or both. The operands are
grouped into input operands and, typically, one output operand. An input
operand specifies either a constant value, also called an immediate data
such as the number 9, or a register or memory content. An output operand is
either a register number or a memory address. Addressing modes define
the many ways input operands are interpreted to identify a target data used
in the execution of the instruction.

8.2.1 Addressing Modes
Table 8.1 lists examples of how various addressing modes are declared. In
the table, parentheses are used to distinguish a memory address from an
immediate value. These notations are used by the assembler to translate an
instruction to its equivalent binary, typically called a machine instruction. An
immediate (I) operand is a 2’s complement number and is immediately
available to be used in the execution of the instruction. A direct (D) operand
is a memory address, and the data must come from memory. An indexed (X)
operand defines the address of the next array element in memory. There are
other addressing mode examples, and their coverage is referred to
elsewhere.

TABLE 8.1 Examples of Addressing Modes

Table 8.2 illustrates several instruction examples with explicit and/or
implicit operands; however, the instructions do not all belong to a single

processor. Each instruction computes the sum of two data values and stores
the sum in a register. The first instruction in the table has no explicitly listed
operands. In this case, the source for the two data values and the destination
to store the computed sum is a hardware stack within the data path. The
second instruction includes only a single explicitly declared immediate data
operand, 9. In this case, a register that implicitly is known to the instruction is
used both as a data source register and as the destination register to store
the computed sum.

The third instruction example includes two explicitly declared operands:
the register R1 and the immediate value −9. In this case, R1 is also used to
store the computed sum. That is, the instruction performs R1 ← R1 + −9. In
the fourth example, the second operand is a memory address, and the
instruction performs R1 ← R1 + M[9] where M[9] indicates the content of
memory address 9. In the fifth example, the second and third operands
specify the address of the next data item in memory as R2 + 9, and the
instruction performs R1 ← R1 + M[R2 + 9]. In the sixth example, the two
input operands are both register contents, and the first register is also used
as the destination register number; the instruction performs R1 ← R1 + R2.
In the seventh example, a destination register is explicitly declared and may
or may not be the same as one of the two input operand register numbers.
The instruction performs R3 ← R1 + R2.

8.2.2 Instruction Format
An instruction format is used to convert a mnemonic assembly instruction to
a machine instruction. The format indicates the number of bits required to
specify an op-code, an addressing mode, a source register (if any), a
destination register (if any), a n-bit immediate data value (if any), and a
memory address (if any). Figure 8.3 illustrates the format used for each of the
instructions listed in Table 8.2.

FIGURE 8.3 Examples of instruction formats for the eight instruction examples
listed in Table 8.2.

TABLE 8.2 A List of Instruction Examples with Implicit and/or Explicit Operands

For example, with 8-bit op-codes, 16 registers, and a 16-bit immediate
data, the instruction 3 (ADD, r1, −9) in Table 8.2 becomes a 4B instruction,
determined as follows, assuming that the op-code for ADD is (000000001)2
and the register-immediate (RI) addressing mode is encoded as (1000)2:

The size and the number of different instruction formats depend on the
type of ISA. In general, ISAs are classified as Stack-ISA, Accumulator-ISA
(Acc-ISA), CISC-ISA, and RISC-ISA, discussed next.

8.2.3 Stack-ISA
A processor with a Stack-ISA uses a hardware stack that operates in a last-in
and first-out (LIFO) order; the last value stored is also the first value
retrieved. Data read from memory is pushed onto the stack. Data used in a
computation or stored back into memory is popped from the stack. The result
of a computation is always pushed on the stack.

A Stack-ISA has the advantage of using the shortest instructions for a
majority of instructions. Therefore, a Stack-ISA is an ideal architecture to
design a processor with limited I/O pins. The processor would operate like an
Hewlett-Packard (HP) calculator, requiring a math statement to be first
ordered into reverse polish notation. For example, to calculate 2(3 + 4) in
an HP calculator, one must enter 3, then 4, then +, then 2, and then *.
Consider the following high-level language program statement:

A = B * (C + D);

In order to execute the statement in a Stack-ISA processor, the compiler
must first translate the statement to the reverse polish natation C D + B * = A.
The compiler then converts the notation to the following Stack-ISA example
assembly program. Note that the arithmetic instructions ADD and MULT
require no operands, making each a very short instruction. The PUSH and
POP, each a data movement instruction, require only one operand. In
general, program control-flow instructions, such as branch and subroutine
calls, also require a single operand.

Figure 8.4 illustrates the execution of the previous program by a Stack-ISA
processor. In the illustration, it is assumed that (B) = 2, (C) = 3, and (D) = 4.
The figure shows the content of both a logical stack and a hardware stack as
the instructions execute.

FIGURE 8.4 An illustration of stack content when computing the reverse polish
notation C D + B * = A; it is assumed that (B) = 2, (C) = 3, and (D) = 4.

A Stack-ISA has the disadvantage of not being able to reuse memory
content in a future computation. Once memory content is popped from the
stack, it is no longer available inside the processor. For example, consider

the program statement “A = (B + C) * (B + D);” that requires the variable B to
be pushed twice on the stack, thus increasing memory traffic.

8.2.4 Accumulator-ISA
An Acc-ISA is the simplest architecture and requires less hardware. The data
path contains a special source and destination register called accumulator
(ACC). The register is used as both an implicit input operand and an implicit
output register name. For example, again consider the high-level program
statement “A = B * (C + D);” and its Acc-ISA example assembly program
given next. As opposed to a Stack-ISA, arithmetic instructions in the Acc-ISA
can directly operate on memory data; thus, when compared to a Stack-ISA,
an Acc-ISA reduces the total number of instructions required to translate a
high-level language program into an assembly program.

However, the disadvantage of an Acc-ISA is that the register ACC, like a
hardware stack, may become a bottleneck. The content of ACC may need to
be stored in memory so ACC becomes available to be used in the next
computation. For example, consider the computation of A = (C + D) * (E − F),
where C + D and E − F must be computed first before their results can be
multiplied. In this case, once C + D is computed, the sum in the ACC must be
stored in a temporary memory location before E − F can be computed. An
Acc-ISA may also include other registers, such as an index register to access
an array element in memory and a link register to save a subroutine return
address.

8.2.5 CISC-ISA
A complex instruction set computer (CISC) ISA is an improvement over the
Acc-ISA by increasing the number of working registers in the data path. Each
arithmetic instruction can now include one or two explicitly declared register
operands. Like an Acc-ISA, arithmetic instructions of a CISC-ISA can
reference data in memory directly. In addition, a CISC-ISA typically

implements many addressing modes, requiring many instruction formats of
various sizes.

The input operands for arithmetic instructions could be an immediate data,
register, or memory content. However, only one of the operands can be an
immediate value or memory content. Typically, a CISC-ISA processor
implements many simple and complex instructions. Therefore, a high-level
language program translated into CISC instructions would require the least
number of instructions. However, some complex instructions may require
more time to execute. The following is a CISC-ISA example assembly
program to compute the statement “A = B * (C + D);”:

Because there are more registers to choose from, the statement “A = (C +
D) * (E − F);” can easily be computed using a register (e.g., R1) to compute C
+ D and another register (e.g., R2) to compute E − F, and then the contents
of the two registers would be multiplied to generate the final product.
However, even with having more working registers in a CISC-ISA, the
number of available registers is still very small when compared to the number
of variables in a typical high-level language program. Also, depending on the
size of each high-level program statement, there could be many intermediate
results (e.g., C + D and E − F) that must be saved either in registers inside
the processor or in memory. Therefore, similar to the Acc-ISA, an
intermediate result in one of the registers may still need to be stored in
memory to free up a register for the next computation.

[A CISC-ISA compiler, as opposed to the Stack-ISA or Acc-ISA compilers,
needs to implement a register selection policy to minimize memory accesses
when all the registers contain intermediate results. A register allocation
policy, such as least recently used (LRU), is used to free up a register by
storing its content, if intermediate, in memory. On the other hand, if the LRU
register content is a memory data, it is discarded.]

8.2.6 RISC-ISA
As stated earlier, typically, the data path of a CSIC-ISA implements many
different addressing modes. On the other hand, the designers of a RISC ISA

believed (correctly) in having simpler instructions to implement a simpler and
more efficient data path. Alpha, MIPS, and Sparc are examples of processors
that were designed from the beginning as a RISC-ISA processor.

A RISC-ISA, also known as load/store architecture, uses only two
instructions (e.g., LD and ST) to access memory. No arithmetic instructions
can operate directly on data in memory. A memory data must be loaded into
a register before it can be used in a computation. The following is an
example of a RISC-ISA assembly program to compute the statement “A = B *
(C + D);”:

The assembly program uses five registers to keep three memory contents
and two intermediate results (i.e., C * D and B * (C + D)) inside the processor.
Usually, there are more such registers in a RISC-ISA processor than there
are in a typical CISC-ISA. The reason for this is to keep more data in
registers and thus increase the processor throughput.

8.3 Design Example
The design of a simple Acc-ISA CPU is presented. However, the objective
here is not to create a complete set of instructions, but rather, to provide a
top-down design methodology that starts from a simple example high-level
language code and includes the following:

• Instruction set design (the list of instructions necessary to translate an
example high-level language program code to its equivalent assembly
language program)

• Assembly language program code listing
• Binary executable code (machine instructions)
• Data path design

• HDL model
• Simulation

8.3.1 Acc-ISA Instruction Set Design
Example 8.1 presents a high-level program code that sums the elements of
an array using a for-loop. We would like to create a set of Acc-ISA
instructions to compile the code and generate an equivalent assembly
program.

Example 8.1. A program code listing that sums the elements of an array with size 8:

A close examination of the example code reveals that we would need to
create arithmetic instructions (e.g., add and compare); data movement
instructions, including array indexing; and program control-flow instructions
(e.g., jump and jump greater than). For array indexing, the data path must
contain another register (X) that would hold the next index for the array. Table
8.3 lists the instruction set required to translate the example program code to
an equivalent assembly language program. In the table, a program pointer
(PP), also called a program counter (PC), holds the address of the next
executing instruction. Here, integer numbers starting from 0 are arbitrarily
assigned to the op-codes. The op-code 0 is named no-operation (NOP). A
NOP instruction, while not used here, is necessary to design a high-
performance RISC processor.

TABLE 8.3 Example Acc-ISA Instruction Set That Translates a High-Level Program into an
Equivalent Assembly Language Program

Acc-ISA Example Assembly Program
Because there are no compilers for the example Acc-ISA processor, the code
in Example 8.1 must be manually converted to an assembly program—for
example, the one shown in Example 8.2. Each line in the Acc-ISA assembly
language program contains four fields: an optional label field, an op-code
field, an operand field (if any), and an optional comment field. The label field
may include a jump address, such as the L1 and L2 in Example 8.2.

The “.code” and “.data” are called assembler directives and are used to
separate the instructions and data in the program, respectively. This is
necessary if the processor data path requires that instructions and data be
stored in separate memory sections during execution. For high performance,
this allows instructions to be stored in an IM and data in DM inside the
processor, as illu strated in Fig. 8.2. The “RB,” which here stands for reserve
byte, is an example of a pseudo-instruction. The pseudo-instruction “RB” is
interpreted by the assembler for allocating memory addresses to each of the
variables sum and i and data structure array in the program.

Example 8.2. The listing of an Acc-ISA assembly language program for the program in
Example 8.1:

The program in Example 8.2 uses an arbitrary syntax. However, for an
example of a specific syntax, refer to the Microsoft assembler (MASM) [2].

Code and Data Memory Spaces
Figure 8.5 illustrates how program’s code and data are typically stored in
virtual memory during execution. The range for a virtual address determines

the maximum program size in bytes. For example, with 32-bit user virtual
addresses, user programs can be a maximum of 4 GB.

FIGURE 8.5 A program’s code and data in virtual memory address space.

The amount of the virtual memory address space that is allocated to run a
program is typically divided into program code and program data regions, as
illustrated in Fig. 8.5. Virtual memory systems are covered in Chap. 10.
However, here we will as sume Fig. 8.5 represents the way our sample
program is stored in memory.

Pentium IV Example Assembly Program
Example 8.3 presents Intel Pentium IV assembly code for the program in
Example 8.1. It is generated by using the “gcc” compiler in CygWin, a Linux
utility for the Windows environment [3]. In the listing, integer data types are
4B, and the rightmost listed operand in each instruction indicates destination.
In the program, registers are prefixed with the symbol “%”. The register %ebp
is called a base pointer and holds the starting memory address for the
program’s data region. Also, in order to avoid cache and memory

misalignments and achieve better performance [4], larger data structures are
allocated first. However, with the availability of large main memory, data
structures may be declared larger than necessary (i.e., padded) to achieve
better cache performance [5]. In the code, the data address %ebp − 40 is
assigned to the array, %ebp − 44 to the i, and %ebp − 48 to the sum. The
load effective address (“leal”) instruction loads a memory address (not
memory content) into a register.

Example 8.3. A Pentium IV assembly code for the sample program given in Example 8.1:

Sparc Example Assembly Program
Example 8.4 presents a gcc compiler generated AltraSparc II assembly
language program for the code in Example 8.1. For this example, the gcc
compiler was used on a virtual Aurara SPARC Linux system, created on the
Virtutech Simics Environment [6].

The AltraSparc is a RISC-ISA processor, and thus, the arithmetic
instructions do not access memory; they only operate on register contents
and immediate data values. Only the load (“ld”) and store (“st”) instructions
access memory. Registers are prefixed with the symbol “%,” and register
%fp, which stands for frame pointer, like the Intel’s base pointer, holds the
starting address for the memory data region. Because the Sparc processor
automatically executes the instruction that follows a branch instruction, such
as “bg” and “b,” a nonoptimized code must include a NOP instruction
following each branch instruction.

As expected, the RISC program in Example 8.4 has more instructions (19)
as compared to 11 for the CISC program in Example 8.3.

Example 8.4. A Sparc assembly code for the sample program given in Example 8.1. The
code, however, is not optimized.

Executable Codes
An assembly language program is translated to its equivalent binary code by
an assembler, typically, through a two-pass process. During the first pass, an
assembler assigns a memory address to each label in the code and data
sections. The instructions listed in Table 8.3 are represented in binary using
one of the three instruction formats shown in Fig. 8.6. For simplicity, each
instruction is made of an 8-bit op-code and an 8-bit data or address operand
(if any). The “NOP” and “MVX” instructions do not have operands; thus, the
operand field in these two instructions is set to 0.

FIGURE 8.6 The instruction formats for the Acc-ISA example processor.

Example 8.5 lists a typical output of an assembler using the program in
Example 8.2. The listing uses an arbitrary syntax. For simplicity, the example
Acc-ISA processor is assumed to be a 16-bit machine. It is also assumed
that a program’s code and data address space is 256B, with program codes
starting at address 0 and data space starting at address 0xFF (a base
address), as was shown in general in Fig. 8.5.

Example 8.5. The manually assembled output for the assembly program in Example 8.2.
The array starts at data address 0xF0 for 16B, i at 0xEE for 2B, and sum at 0xEC for 2B.

Example 8.6 is the assembler output for the Intel program in Example 8.3.
The Intel’s Pentium family of processors executes CISC instructions of
different sizes. For example, “movl” is a 7B instruction, and “jg” is a 2B
instruction.

Example 8.6. The output of the assembler for the Pentium IV program in Example 8.3. The
numbers 0xffffffd0, 0xffffffd4, and 0xffffffd8 are the 2’s complement representations of −48,
−44, and −40, respectively.

Example 8.7 is the output of the assembler for the AltraSparc II program in
Example 8.4. Because Sparc is a RISC-ISA, all the instructions are the same
size for efficient implementation.

Example 8.7. The output of the assembler for the AltraSparc II program in Example 8.4:

8.3.2 Acc-ISA Processor: Single-Cycle
Figure 8.7 illustrates a single-cycle data path for the example Acc-ISA
processor. It consists of fetch, decode, execute, and write-back units. During
each clock cycle, an instruction is fetched, decoded, and executed, and the
result (if any) is written back to register ACC, X, or 1-bit status register (SR).
The instructions are assumed already loaded into the IM (instruction cache
memory) and data into the DM (data cache memory).

FIGURE 8.7 The Acc-ISA single-cycle data path to execute the program in
Example 8.2.

Also, during each clock cycle, the PP register either loads the output of the
adder, if the next instruction is the next sequential instruction in the program,
or the output of the multiplexer (MUX), if the next instruction is a result of a
jump instruction, either “JGT” or “JMP.” In the figure, it is assumed that PP
retains byte addresses, but IM inputs a word address to output the next 16-bit
instruction.

The decode unit contains a combinational circuit that inputs an op-code
and generates all the control signals necessary to execute the current
instruction. It also contains the ACC, X, and SR. In general, an SR is multibit
register with a bit allocated for each condition, such as equal-to (E), less-than
(L), not-equal-to (NE), arithmetic output is zero (Z), carry-out bit (C),
arithmetic over-flow (O), and many other condition bits related to the state of
the processor. The decode unit forwards all the control signals, the single
immediate data operand (if any), and the content of the registers to the
execute unit.

The execute unit contains all the components necessary to execute an
instruction. MUXs are needed when there are multiple data sources for a
module. For example, the adder/comparator (Add/Cmp) module either
computes a sum or compares its inputs and outputs the greater-than-flag
(gtf) signal. The module inputs both ACC and either an immediate or a direct
memory operand. Therefore, a MUX is needed to choose either the operand
when the operand is an immediate data or M[operand] when the operand is
an address and indicates memory content. Likewise, another MUX is used to
select either a direct addressing or the quantity X + operand for index
addressing. (Refer to the Exercises section in Chap. 3 for how to design a
comparator.)

The write-back unit consists of a MUX. It is used to choose one of the
several possible results generated by the execute unit. The result of
executing “LD” and “ADD” instructions is stored (written back) in the ACC; the
result of executing “MVX” instruction is stored in the X register, and the result
of executing “CMP,” which is a 1-bit greater than flag gtf, is stored in the 1-bit
SR. Executing a “JMP” instruction causes the next instruction address to be
loaded into PP.

Simulation
Example 8.8 presents the HDL model of the single-cycle Acc-ISA data path
illustrated in Fig. 8.7. For simplicity, the IM and DM are assumed to be 64B
each, organized as a 32 × 16 memory. In a real processor, both IM and DM
are organized as cache memories (Chap. 10). Since the processor is a
single-cycle data path, an instruction is executed within one clock cycle.

Example 8.8. An HDL behavioral description of the example single-cycle Acc-ISA data path
includes two “initial” blocks to initialize IM with program instructions and DM with the array
elements. The DM is initialized with eight values, 100 to 107. An extra “JMP 0x1A” instruction
is inserted at the end of the program to create an infinite loop for simulation purposes. The
description consists of two major code sections discussed next.

Decode and execute units—This combined behavioral description implicitly
describes the control signals required to execute each instruction. The code
also describes all the necessary combinational circuits required to create the
data path. However, the HDL model does not explicitly describe any
computing circuit module; their implementation details are left for the Altera’s
synthesis tool to determine.

Fetch and write-back units—These units update the state of the processor
by changing the contents of registers PP, ACC, X, and SR. Thus, their
descriptions are combined, but each could also be described separately. The
combined unit includes the behavioral descriptions of the adder and the MUX
used in the fetch unit and the MUX used in the write-back unit, as illustrated
in Fig. 8.7.

Figure 8.8 shows the simulation waveform illustrating the beginning of the
program execution after an asynchronous reset. The waveform lists each

instruction in hex and the contents of ACC, X, and SR registers in decimal.
Figure 8.9 shows the ending of the simulation waveform when SR bit
becomes 1. As expected, the figure shows ACC = 828, the final sum of the
array elements. The program execution continues in a loop with the “JMP
0x1A” (0x051A) instruction.

FIGURE 8.8 The example Acc-ISA single-cycle processor simulation
waveform; illustrating the beginning section of the waveform.

FIGURE 8.9 The example Acc-ISA single-cycle processor simulation
waveform; illustrating the ending section of the waveform with the final sum =
828 .

8.3.3 Acc-ISA Processor: Pipelined
Figure 8.10 illustrates a block diagram of a four-staged instruction pipeline for
the example Acc-ISA, and Fig. 8.11 illustrates its detailed circuit. All the
control signals to execute an instruction are generated in the decode stage
and, along with the register contents, are fed to the execute stage. Those
control signals that are needed in the write-back stage are forwarded from
the execute stage, along with the computed results. The write-back stage
then selects and passes one of the computed results (if any) to the decode
stage. The write-back stage also forwards the selected result to the execute
state for possible use in the execution of the next sequential instruction.

FIGURE 8.10 Illustrating a four-stage pipelined instruction data path.

FIGURE 8.11 The pipelined data path of the example Acc-ISA processor.vsd.

The control signals ex, esr, and eacc from the write-back stage are used in
the decode stage to store a newly computed result into one of the registers
ACC, X, or SR, and also in the execute stage to choose a newly computed
result. This is done by using three additional MUXs, labeled MUX5, MUX6,
and MUX7. The MUXs use the control signals ex, esr, and eacc from the
write-back stage to form a forwarding unit and thus increase pipeline
throughput. As illustrated in the figure, each MUX chooses between a
register’s current content and a newly computed result from the write-back

stage that is not yet stored in the respective register. This enables the
processor to use a newly computed result from the write-back stage in the
execution of a data-dependent instruction that follows without waiting first for
the result to be stored in a register. The complexity of a forwarding unit
depends on the complexity of the specific ISA. The functions of a forwarding
unit are discussed in more detail later in this section.

Simulation
Figure 8.12 shows the simulation waveform illustrating the beginning of the
program execution after an asynchronous reset. The waveform lists each
instruction in hex and the contents of ACC, X, and SR in decimal. While the
waveform illustrates the instructions are moving from one stage to the next,
the information passed from one stage to the next is different. The write-back
is also known as the instruction retire stage. It indicates the completion of
executing an instruction. A pipeline operates with the efficiency of 100%
when all the stages are busy and concurrently executing instructions.

FIGURE 8.12 A simulation waveform for the example Acc-ISA pipelined data
path; illustrating the beginning section of the waveform. The stages are
displayed top to bottom.

Figure 8.13 shows the ending of the simulation waveform when the 1-bit
content of SR becomes 1. Note that each time a jump instruction (“JMP” or
“JGT”) executes, the pipeline starts over. This is called a pipeline flush. For
example, as illustrated in Fig. 8.13, when the unconditional instruction
0x0506 (“JMP 6”) executes or the execution of the conditional instruction
0x041A (“JGT 0x1A”) results in a jump, it causes a pipeline flush and thus
decreases the efficiency of the pipeline. In this case, when there is a pipeline
flush, no instructions retire for three clock cycles as illustrated by the write-
back stage (inst_WB) in the figure. The figure shows the content of ACC =
828 as the final sum of the array elements. The program execution continues
in a loop with a “JMP 0x1A” instruction.

FIGURE 8.13 A simulation waveform for the example Acc-ISA pipelined data
path; illustrating the ending section of the waveform with final sum = 828.

Forwarding and Hazard Units
A forwarding unit, which forwards a newly generated result from the write-
back stage to the execute stage, was briefly discussed earlier for the
example Acc-ISA pipelined processor. Here, the discussion is more general.
Consider the following two data-dependent instructions from Example 8.2,
the Acc-ISA example program:

The LD instruction loads a memory data into the ACC, and the ADD
instruction increments the content of the ACC. Figure 8.14 illustrates two
pipeline charts for executing the two instructions in sequence. In Fig. 8.14(a),
the processor uses a forwarding unit to forward the newly read memory data
(M[i]), not yet stored in the ACC, to the execute stage to be used in the
execution of the ADD instruction.

FIGURE 8.14 Illustrating the effect of a forwarding unit; (a) a pipeline chart with
a forwarding.vsd.

On the other hand, the chart in Fig. 8.14(b) illustrates the execution of the
same two instructions without a forwarding unit. In this case, when the LD
instruction is executing, the ADD instruction is decoding. When the LD
instruction moves to the write-back stage, the execution of the ADD
instruction must be stalled until the ACC is updated with the M[i]. Therefore,

the execution of the ADD instruction would be stalled for two clock cycles, as
illustrated with bubbles in the figure.

Pipeline stalling is implemented by a hazard unit that delays and prevents
a data-dependent next instruction (i.e., ADD) from moving into the execute
stage by executing an implicit NOP instruction during that clock cycle. Once
the ACC is updated with the new value, the dependent instruction (i.e., ADD)
is allowed to move into the execute stage for execution.

Because the execution unit in this case consists of only one stage (i.e.,
“Execute,” in Fig. 8.14), the processor either requires a forwarding unit or
hazard unit, but not both. Figure 8.15 illustrates the Acc-ISA pipelined data
path with a hazard unit, and Example 8.9 presents an HDL model for the
hazard unit. The MUX4, MUX5, and MUX6 that were used to implement a
forwarding unit in Fig. 8.11 are now removed from the data path in Fig. 8.15.

FIGURE 8.15 The example ACC-ISA pipelined data path with a hazard
unit.vsd.

Example 8.9. The HDL code section describes the hazard unit for the Acc-ISA pipelined
processor in Fig. 8.15 using explicitly declared register control signal names. The hazard unit
compares the register control signals ex, eacc, and esr from the write-back stage with those
in the execute stage. If each pair of control signals (e.g., eacc in the execute stage with the
eacc in the write-back stage) are the same, the hazard unit located in the decode stage
delays the execution of the current instruction. Specifically, the hazard unit asserts the

hazard signal and synchronously resets (clears) the pipeline register that passes the register
control signals for the current instruction from the decode stage to the execute stage, as
shown in the figure.

In general, an execution unit is made of two or more stages to better
distribute the required hardware into several stages and minimize the clock

period of the pipeline. In such cases, a pipelined data path requires both a
forward unit and a hazard unit, as will be discussed in Sec. 8.3.4 for a RISC
processor. In addition, because a typical CISC or RISC ISA uses not one but
several general-purpose registers, forwarding and hazard units must be able
to check data dependency among several different registers.

Performance Analysis
The performance of a processor is often measured in terms of cycles per
instruction (CPI). It is calculated as the total number of clock cycles used to
execute a program divided by the number of instructions in the program (see
Eq. (8.1)).

Figure 8.16 illustrates a pipeline chart for the example Acc-ISA program.
As illustrated in the chart and summarized in Table 8.4, it takes 6 clock cycles
(labeled i through vi in the chart) to execute the instructions before the for-
loop and 12 clock cycles to execute each iteration of the for-loop. Finally, two
clock cycles (labeled I and II) are required to exit the for-loop. The program
has three instructions before the for-loop, 10 instructions in the body of the
for-loop, and two instructions (“CMP” and “JGT”) to exit the for-loop.

FIGURE 8.16 A pipeline chart illustrating the execution of the Acc-ISA program
in Example 8.2.

TABLE 8.4 Data from the Pipeline Chart in Fig. 8.16

Equation (8.2) presents N, the total number of pipeline clock cycles, and n,
the total number of instructions using m for-loop iterations.

For m = 8 iterations, the CPI of the example program is calculated as
follows:

Equation (8.4) presents the CPI for the example program as m
approaches infinity (∞). The CPI is larger than 1 due to executing m “JMP”
instructions and one “JGT” instruction that results in a jump, where each
causes a pipeline flush. However, even though the CPI of a single-cycle
processor is always 1, a single-cycle data path requires a much longer clock
period than an equivalent pipeline data path, as was discussed in Chap. 6.

In Eq. (8.4), the CPI is a lower-bound (the lowest value). If CPI is 1.0 for a
program, the corresponding pipeline chart will have no bubbles, indicating
100% efficiency. The CPI limit of 1.2, which is greater than 1.0, indicates the
efficiency of the pipeline is less than 100% and, at best, it takes, on average,
the duration of 1.2 clock cycles to execute each instruction. A CPI value can
be used to estimate the execution time of n instructions, as given in Eq. (8.5),
where β is the period of the clock signal in seconds.

Achieving CPI = 1.0 is a difficult task due to presence of data-dependency
relationships among the instructions, branch instructions in the program, and
latency to access instructions or data from a cache or memory. However,
while a forewarning unit can resolve some data dependencies among
instructions, there are other techniques to improve CPI that will be discussed
later.

8.3.4 RISC-ISA Processor
Figure 8.17 illustrates a block diagram of a five-stage RISC-ISA instruction
pipeline. The DM (as data cache) is now placed in its own separate stage.
This is similar to the five-stage data path used in an initial MIPS processor.
The execute stage is now responsible for all the arithmetic operations and
memory address calculations, but not for accessing data from cache that is
performed in the DM stage. An arithmetic result is now passed unchanged
from the DM to the write-back stage. The five-stage data path is more
suitable for a RISC-ISA because data items must first be loaded into
registers before they can be used by an arithmetic instruction in the execute
stage. However, all the arithmetic direct (D) and indexed (X) instructions in
the example Acc-ISA must now be converted into register-register arithmetic
instructions. The data path has the advantage of simplifying the complexity of
each stage and achieving a more uniform propagation delays among the five
stages.

FIGURE 8.17 A five-stage RISC-ISA pipelined data path.

Program Example
Example 8.10 presents a RISC-ISA assembly program corresponding to the
high-level language program code in Example 8.1. In the program, it is
assumed that register R0 is always 0, and registers R1 through R4 are
general-purpose registers. However, no code optimizations are performed.

Example 8.10. A RISC-ISA assembly program for the example program in Example 8.1; no
compiler optimization is performed.

Compiler Optimization
Because the DM cache resides in a separate stage, the RISC-ISA data path
must implement a forwarding unit as well as a hazard unit. This is because
the “LD R3, R1, (array)” and “ADD R4, R2, R3” instructions are data
dependent, and therefore there is a one-cycle delay for the new content of
R3, read from DM, to be forwarded to the execute stage, as illustrated in Fig.
8.18. At the time when instruction “LD R3, R1, (array)” is in the execute
stage, instruction “ADD R4, R2, R3” is in the decode stage. When the “LD”
instruction moves to the DM stage, the hazard unit must prevent the “ADD”
instruction from moving to the execute stage by inserting a bubble (an implicit
NOP instruction), as shown in the figure.

FIGURE 8.18 Illustrating RISC data dependency between an LD and ADD
instruction.

However, it is occasionally possible for the compiler to optimize programs
and eliminate bubbles due to memory load instructions, such as the one
shown in Fig. 8.18. In this case, the compiler may be able to rearrange and
delay the execution of some or all instructions that depend on LD

instructions. Example 8.11 presents an optimized code where instruction
“ADD R1, R1, 1” is moved between instructions “LD R3, R1, (array)” and
“ADD R4, R2, R3” in Example 8.10; thus, the execution of instruction “ADD
R4, R2, R3” is delayed by one cycle, eliminating one bubble.

Example 8.11. Program in Example 8.10 optimized by compiler to delay the execution of
instruction “ADD R4, R2, R3” by one clock cycle:

The compiler optimization must be done with care so that the program is
not modified incorrectly. The program may generate invalid outputs, or may
even fail to execute due to an out-of-bounds data access. For instance, in
Example 8.10, moving both the “LD R2, (sum)” and “LD R3, R1, (array)”
instructions to before the “JGT” instruction would not be a correct compiler
optimization step in order to eliminate the one-cycle delay required to
execute the “ADD R4, R2, R3” instruction. The reason for this is that after the
last iteration, the “LD R3, R1, (array)” instruction, if placed before the “JGT,”
will try to access array[8], which refers to an element outside the array
boundary. The array in Example 8.1 has eight elements array[0] to array[7].

Performance Analysis
The RSIC data path in Fig. 8.17 contains five pipeline stages versus four in
its equivalent pipelined Acc-ISA data path shown in Fig. 8.10. The execute
stage in the Acc-ISA data path, which contains the data cache and thus has
the longest propagation delay, is divided into two stages (execute and DM) in
the RISC data path, each with a smaller propagation delay. This reduction in
the propagation delay of the longest stage enables RISC processors to use a
faster clock, thus increasing the processor throughput.

In addition, as illustrated by Example 8.11, with the compiler optimization,
it is often possible to further improve a RISC’s CPI for an arbitrary program
by overlapping a one-cycle delay cache access with the execution of another
instruction (i.e., “ADD R1, R1, 1”). Instructions “ADD R1, R1, 1” and “LD R3,
R1, (array)” are data independent, and thus moving the “ADD R1, R1, 1”
instruction from where it was in Example 8.10 to before the “ADD R4, R2,
R3” instruction in Example 8.11 does not alter the correctness of the original
program—only the order in which the instructions execute changes. “ADD
R1, R1, 1” is executed earlier, and the execution of “ADD R4, R2, R3” is
delayed by one cycle to allow time for the “LD R3, R1, (array)” instruction to
load data from DM. The newly accessed data is then forwarded to the
execute stage, where “ADD R4, R2, R3” is executed next.

As will be discussed in Chap. 10, if the target data is not in DM (a cache),
it must be copied from a lower-level cache or the main memory requiring
multiple CPU clock cycles. However, in the following section, we will further
discuss multithreading to improve the efficiency of a pipeline when data is not
in cache.

8.4 Advanced Processor Architectures
While the RISC pipeline improves instruction throughput, additional
performance increases would come from reducing the pipeline clock period.
One way to do this is to physically divide the data path of one or more
pipeline stages into smaller sub-data paths, creating a deeper pipeline, one
with many stages. Because each of the smaller stages will have a shorter
propagation delay, a deep pipeline would operate with a faster clock, thus
increasing instruction throughput.

If the data path of a pipeline stage is physically undividable (e.g., contains
a memory), the stage is modified to include two or more copies of the
undividable hardware. All the copies would operate in parallel but overlap,
creating parallelism within the stage called superpipelining. While the
propagation delay of a superpipelined stage remains about the same as that
of the original stage, the stage, now with duplicate copies, is able to generate
outputs more frequently. However, deep pipelining (including superpipelining)
increases power consumption.

While deep pipelining improves instruction throughput, program flow
control (i.e., conditional and unconditional) instructions reduce pipeline
efficiency, increasing CPI and thus reducing throughput. Modern processors
also implement branch prediction mechanisms to minimize pipeline flush
and therefore increase efficiency.

In addition, modern processors increase the instruction throughput by
using instruction level parallelism (ILP). The processor, in this case, is often
referred to as superscalar because each stage contains additional
resources and is able to execute multiple independent instructions in parallel.
For a single program, the efficiency of an ILP pipeline, even with perfect
branch prediction, is typically less than 100%. That is, a pipeline that
implements k-instruction ILP would sometimes execute one, two, etc. up to k
instructions due to data-dependency relationships among instructions, and
sometimes would execute no instructions at all due to time lost for accessing
data from caches or the main memory. Therefore, some or all of the data
path resources will remain idle for one or more clock cycles, unless the
pipeline is equipped to execute multiple programs (threads) simultaneously.
In this case, the pipeline is said to implement multithreading.

In the following sections, we will further explore deep pipelining, branch
prediction, statically and dynamically scheduled ILP, and multithreading.

8.4.1 Deep Pipelining

Figure 8.19(a) displays an original four-stage pipeline where stage 3 has the
longest propagation delay, indicated by 2Δ + Δclocking, where Δclocking = τst +
τcq + τcs; the τst, τcq, and τcs stand for setup time, clock-to-q time, and clock
skew, respectively. In Fig. 8.19(b), the hardware of stage 3 (e.g., a multilevel
MUX, CLA adder, combinational divider, etc.) is shown divided into two
smaller modules, each with a smaller propagation delay.

FIGURE 8.19 Deeper pipeline design: (a) original four-stage pipeline with
dividable stage 3; (b) original pipeline converted into five stages, reducing the
clock period.

For example, for simplicity, consider stage 3 to include one 2-level 4-to-1
MUX, designed using three 2-to-1 MUXs (Chap. 3). The 4-to-1 can be
divided into two parts and organized to operate as two separate stages. The
propagation delay of each of the two stages will be approximately one-half
the propagation delay of the original stage 3 in Fig. 8.19(a). The new pipeline
will have five stages and will operate with a shorter clock period

 The only extra hardware used in this case is one more
pipeline register.

On the other hand, Fig. 8.20(a) illustrates a four-stage pipeline where the
data path of stage 3 cannot be divided into smaller stages. For example,
suppose stage 3 in the figure is a DM stage. In this case, the memory can be
organized to operate as a two-way low-order (fine) interleaving (Chap. 7) that

keeps the content of even memory addresses in one memory module and
that of odd addresses in another module. As long as consecutive memory
accesses are from alternating even and odd addresses, the operations of the
two interleaved memory accesses can be overlapped, creating
superpipelining. This is illustrated with two modules in Fig. 8.20(b). In
general, any pipeline stage can be superpipelined.

FIGURE 8.20 Superpipelining design: (a) original four-stage pipeline with
undividable stage 3; (b) superpipeline organization of stage 3.

Table 8.5 illustrates a superpipelining chart using the data path shown in
Fig. 8.20(b). The two identical undividable modules in stage 3 are labeled
M3a and M3b. Using a clock cycle with period τ = Δ + Δclocking, at time 3τ,
instruction I1 enters stage 3 and is executed using M3a, which will take two
clock cycles, or about 2τ, to complete. Note Δ also includes the delay of the
MUX.

TABLE 8.5 Illustrating Superpipelining of Stage 3 in Fig. 8.20(b) with Two Identical Modules
Labeled M3a and M3b

Because the pipeline controller takes turns and uses M3a and M3b
alternately, one clock cycle later and at time 4τ when I2 enters stage 3, the
pipeline controller selects M3b, which also takes 2τ to complete. Therefore,
one result is available from stage 3 every clock cycle even though M3a and
M3b each requires two clock cycles to generate a result.

At time 5τ, the output from M3a is fed to stage 4, allowing I1 to continue
execution. At time 6τ (the next cycle), the output of M3b is fed to stage 4,
allowing I2 to continue execution. This enables the pipeline to execute one
instruction per τ, as illustrated in the table.

Deep pipelining enables the use of a faster clock to improve performance.
In Fig. 8.19(a), the original clock period τold = 2Δ + Δclocking is reduced to τnew
= Δ + Δclocking in Fig. 8.19(b), approximately doubling the clock frequency. In
Fig. 8.20(b), the original clock period, 2Δ + Δclocking in Fig. 8.20(a), is also
effectively reduced approximately to Δ = Δclocking.

A deep pipelining (including superpipelining), however, increases the
number of bubbles each time the pipeline restarts. In Fig. 8.20(b), one more
bubble is introduced at time 4τ due to superpipelining as if the pipeline has
five stages instead of four stages in the original pipeline in Fig. 8.20(a). As a
deep instruction pipeline increases concurrency by operating on many more
instructions at the same time, there are certain limitations, as follows, on how
deep an instruction pipeline should be:

• Deep pipelining (including superpipelining) not only increases the
amount of hardware, but also increases clock frequency. When the
amount of hardware and/or clock frequency of a pipeline increase, so will
the amount of power consumption (Chap. 6). Therefore, there is a limit
for how deep a pipeline can be.

• Deep pipelining (including superpipelining) beyond a certain limit can
also be counterproductive as it executes jump/branch instructions. Any
change in program flow would cause a pipeline flush, which would, in this
case, introduce more pipeline bubbles and therefore reduce pipeline
efficiency and its performance.

8.4.2 Branch Prediction
Branch prediction means determining the direction of program flow in
advance of executing a conditional or unconditional instruction. The target
jump/branch address is determined early in the pipeline so that the fetch
stage can start fetching instructions starting at a target address, thus
minimizing the number of pipeline bubbles if there is a change in program
flow.

[Note that for simplicity, a jump and a branch instruction is treated the
same here. However, in general, they are implemented differently. A branch
address is typically computed as a short distance (a displacement) from the
current content of the PP, whereas a jump address is determined as an
absolute address (not relative to PP). In general, a branch instruction is used
when a jump distance is short—for example, in the implementation of a for-
loop—and a jump instruction is used for a long jump—for example, a
subroutine call. In the following sections, the terms “jump” and “branch” are
used interchangeably, both causing a change in program flow.]

When the current instruction is a jump (e.g., “JGT” or “JMP”), the earliest
time that the direction of program flow can change in Fig. 8.11 or in Fig. 8.17
is when the instruction is in the write-back stage. For example, in the Acc-ISA
data path, when the “JMP” instruction is in the execute stage (e.g., clock
cycle 15 in Fig. 8.15), on the next clock cycle, as “JMP” moves to the write-
back stage, the content of PP also changes to the target address L1, causing
the fetch stage to fetch the “CMP 7” instruction. Branching flushes the
pipeline, discarding all the instructions that were partially executed
(processed), and the program execution continues from the branch address.
However, with additional hardware, branch directions can be predicted to
reduce pipeline bubbles and improve efficiency.

Static Branch Prediction
Static or default branch prediction can be used by itself or in conjunction with
dynamic branch prediction. Consider a branch instruction, such as “JGT L2”
in Example 8.11, where L2 > PP is a forward branching address. In this
case, using “Not Taken” as the default branch decision for this instruction
would be correct as long as the for-loop is executing. The processor will
mispredict the branch direction only once when the for-loop exits.

Likewise, when the conditional instruction causes backward branching,
for example, during the execution of a “do-while” where the condition
statement is at the bottom of the loop, using “Taken” as the default branch
decision in this case would also be correct as long as do-while is executing.
The processor will mispredict the branch direction again only once when do-
while exits.

Typically, the rules of static predictions are taken into account during
program compilation for optimal execution. For example, the condition “i < 8”
in Example 8.1 would be compiled to “CMP 7” and “BGT L2” as they were
listed in Examples 8.2 and 8.11. Likewise, the condition is compiled to similar
instructions in Example 8.3 (Pentium processor) and in Example 8.4 (Sparc
processor).

The earliest time that static branch prediction can be performed is when a
branch instruction is in the decode stage and its op-code is known. However,
this will result in a one-cycle delay necessary to perform static branch
prediction. For example, if the pipeline implements only the static branch
prediction described above (i.e., no dynamic branch predictor), the one-cycle
delay may be overlapped with the execution of another instruction selected
by the compiler.

Consider the unconditional jump instructions “JMP L1” in Example 8.11. It
is possible to utilize this one-cycle delay by yet another compiler optimization
step, as illustrated in Example 8.12. In order to utilize the one-cycle delay
and execute a useful instruction during that clock cycle, the compiler can
move an instruction from the body of the for-loop (e.g., “ST (i), R1”) to after
the “JMP L1” instruction. The pipeline, however, must be modified to always
execute the instruction that follows an unconditional jump/branch instruction.

Example 8.12. A RISC-ISA assembly program for Example 8.1 optimized for static branch
prediction for the “JMP” instruction. Instruction “ST (i), R0, R1” in Example 8.11 is moved to
after the “JMP L1” instruction in order to eliminate the one-cycle delay that would be
necessary to statically predict the branch direction for the “JMP L1” instruction.

In those cases where the compiler is unable to move an instruction to after
an unconditional jump/branch instruction, a no-op (NOP) instruction must be
inserted, as was illustrated in the unoptimized Example 8.4 AltraSparc II
program. Note that the Sparc program also includes a NOP instruction after
the conditional instruction “gt.” This is because the Sparc processor also
executes the instruction that follows a conditional branch instruction and
therefore provides compilers the option to further optimize the code when
possible.

Dynamic Branch Prediction

It is simple to predict a branch decision as “Taken” for an unconditional
jump/branch (e.g., “JMP”) instruction when the instruction always branches
and changes program flow. On the other hand, the prediction of “Taken” or
“Not Taken” for a conditional branch instruction (e.g., “JGT”) is data
dependent, and it can be harder to always predict it correctly, especially when
the conditional branch instruction controls an “if-else” statement within a loop.
That is, depending on the state, true or false, the “if” condition evaluates,
either the “then” or the “else” section of the code will execute. The static
branch predictor described earlier works well with backward branching used
in the execution of “for-loop” and “do-while” statements. However, good
forward branch prediction is also necessary to improve pipeline efficiency.

Modern processors typically implement dynamic branch prediction
mechanisms that collect and use branch history data for each
conditional/unconditional branch instruction that executes. Initially, when the
execution of a program starts and there is no branch history data, the rules of
static branch prediction may be used the first time that a
conditional/unconditional branch instruction executes. For best performance,
the branch history data and prediction logic are kept in the fetch stage.

Before we discuss dynamic branch prediction techniques, Table 8.6
illustrates the execution of two iterations of the “for-loop” in Example 8.11.
However, the following assumption is made:

TABLE 8.6 Program Execution for Two Iterations Using a RISC Pipeline

The RISC pipeline in Fig. 8.17 implements both static and dynamic branch
prediction logic. The static branch predictor discussed earlier is implemented
in the decode stage, and a “perfect” dynamic branch predictor is

implemented in the fetch stage. Note that in this case, there is no need for
the compiler to optimize the code to utilize the one-cycle delay required to
complete a static branch prediction.

For the conditional jump instruction “JGT L2” at clock cycle 6, the static
prediction decision is “Not Taken” (no jump), and the program execution
continuous with the next sequential instruction “LD R2, (sum)”. When the
execution of “JGT L2” instruction completes at clock cycle 9, the dynamic
predictor is also updated with the branch decision “Not Taken.” For the
unconditional jump instruction “JMP L1” at clock cycle 13, the static
prediction decision is “Taken” (jump), and the execution starts at the jump
address L1 with the instruction “LD R1, (i)” resulting in one pipeline bubble at
cycle 14. At clock cycle 16, when instruction “JMP L1” retires, the dynamic
predictor is also updated with the branch decision “Taken.” For the “JMP L1”
instruction at cycle 23, the dynamic branch predictor predicts “Taken” and the
program execution continues with instruction “LD R1, (i)” with no additional
pipeline bubbles at cycle 24.

The program executes without additional branch-related stalls until after
the last iteration, when the execution of the “JGT L2” instruction for the last
time results in a misprediction at cycle 29. The jump causes a pipeline flush,
introducing three pipeline bubbles. The program execution continues with the
“Ix” instruction after the for-loop.

Figure 8.21 illustrates a finite state diagram (FSD) for implementing a 1-bit
dynamic branch predictor. As illustrated in Table 8.6, when the “JGT L2”
instruction executes for the first time, the static branch predictor in the
decode stage would correctly predict “Not Taken” because L2 > PP indicates
a forward branch address. The “Not Taken” decision at clock cycle 8 will be
used to initialize the 1-bit predictor to the “Predict Not Taken” state during
cycle 9. For the rest of the iterations, the “Not Taken” would be predicted
correctly by the 1-bit predictor. After the last iteration, the execution of “JGT
L2” instruction for the last time (e.g., at cycle 29 for two iterations of the for-
loop) will result in a misprediction and the state of the 1-bit predictor will
change to “Predict Taken.”

FIGURE 8.21 FSD for a 1-bit dynamic predictor.

If the for-loop executes only once, the 1-bit dynamic predictor would
predict correctly as expected, illustrated in Table 8.6. However, suppose the
for-loop in Example 8.11 executes as an inner loop and therefore would
execute multiple times. The second time that the for-loop executes, the 1-bit
predictor, which is now in the “Predict Taken” state, will cause a misprediction
when instruction “JGT L2” executes at the start of the for-loop, and the state
of the predictor will change to “Predict Not Taken.” The 1-bit predictor will
cause another misprediction at the end of the for-loop, resulting in two
mispredictions for each time that the for-loop executes. Therefore, the 1-bit
predictor will perform worse than the static predictor alone.

2-Bit Dynamic Predictor
Figure 8.22 illustrates the FSD used for a 2-bit dynamic predictor [7]. Again,
consider the for-loop in Example 8.11 executing as an inner loop. During the
first time that the for-loop executes, the state of the 2-bit predictor FSD for
the “JGT L2” instruction would be initialized to “Predict Not Taken.” The
predictor will remain in this state until after the last iteration when the for-loop
exits, and the 2-bit predictor will mispredict, causing the state of the predictor
to change to “Predict Likely Not Taken.”

FIGURE 8.22 Illustrating two 2-bit dynamic branch prediction algorithms [7].

The next time that the for-loop executes, the dynamic predictor, being in
the “Predict Likely Not Taken” state, will correctly predict “Not Taken” for the
“JGT L2” instruction in the first iteration. When “JGT L2” in the first iteration
completes execution and it is determined that the “Not Taken” prediction was
correct, the state of the 2-bit FSD correctly changes to the “Not Taken” state,
with no misprediction, as if the for-loop was executing for the first time. The
2-bit predictor will cause one misprediction at the end of the for-loop,
resulting, as expected, in only one misprediction each time the “for-loop”
executes.

Figure 8.23 illustrates the data path of a 2-bit dynamic branch predictor
implemented in the fetch stage. It includes a branch history table (BHT) that
for each branch instruction it holds a branch instruction address (BIA), a
branch target address (BTA), and a 2-bit current state (CS) of a 2-bit
dynamic predictor. The 2-bit storage space used for each CS in the table
represents the two flip-flops that would be required otherwise to implement a
finite state machine (FSM). The table holds the history for the branch

instructions that are executed recently depending on the size of the table.
During the execution of a program, the lower bits of PP are used to access
the table. For example, with 10-bits, the table can hold 1K entries; however,
not all entries will be branch instructions.

FIGURE 8.23 Partial illustration of 2-bit dynamic branch prediction logic placed
in the fetch stage.

Each time that the content of the PP matches with a BIA in the BHT, it
identifies a jump/branch instruction. The 2-bit CS read from the table is used
to predict the direction of the branch. If, for example, the CS indicates
“Predict Taken” or “Predict Likely Taken,” then “Taken” is predicted and the
content of the PP is replaced with the BTA saved in the table. The next
instruction that is fetched is the one at address BTA stored in PP. On the
other hand, if the CS indicates “Predict Not Taken” or “Predict Likely Not

Taken,” then “Not Taken” is predicted and the program execution continues
from the next instruction.

If the content of PP does not match a BIA stored in the table, it indicates
that there is no history for the current branch instruction in the table. In this
case, on the next clock cycle, the static prediction is applied. Once the
branch instruction executes and the decision “Taken” or “Not Taken” is
determined as the initial value of the 2-bit CS, the BIA, BTA, and CS for the
instruction are entered at an index determined from the BIA in the table as
the instruction retires. The CS field in the table entry is then updated each
time the branch instruction executes and retires.

It has been shown that using a 2-bit predictor (a four-state FSD) is as good
as, or even better, than using a predictor with more states [8]. Because a 2-
bit branch predictor works independent of previously executed branch
instructions, it is called a local predictor.

It has also been shown that, for some programs, branch decisions are not
always independent, and in some cases, there are correlations between the
decisions made by recently executed branch instructions and the decision
that will be made when a current branch instruction executes.

Branch Correlation-Based Prediction
For “if-else” statements that execute repeatedly (e.g., within a loop), it has
been shown that a branch prediction algorithm works better when one uses a
separate 2-bit predictor for each possible execution path [8, 9]. For instance,
consider the following for-loop with three if-else statements. Also, assume the
compiler translates the conditional statement of each “if-else” statement into
a conditional branch instruction that the branch decision “Not Taken” refers to
the “then” part of the “if-else” code.

There are four possible execution paths to reach the branch instruction
“BEQ,” as shown in Fig. 8.24. Note that for the “BEQ” instruction, the branch
decision depends on an execution path. If x and y are both 2, then for sure
the condition “x ! = y” is false. Therefore, in some programs, there are often
strong correlations among the branch decisions of recently executed branch
instructions. This information can be used to implement a better dynamic
predictor.

FIGURE 8.24 All possible execution paths to reach instruction “BEQ” within the
for-loop noted earlier.

In order to identify an execution path, a branch prediction register (BPR) is
used to encode the recently executed branch decisions. For the previous for-
loop, a 2-bit BPR register can encode the four execution paths in Fig. 8.24 as
(11)2, (10)2, (01)2, and (00)2, where 1 implies yes (Y) and 0 no (N). If the
branch decisions for the two instructions “BNE” and “BNE” were “Not Taken”
(i.e., x = 2) and “Taken” (y ≠ 2), respectively, then content of BPR becomes
(01)2.

Figure 8.25 illustrates the data path of a 2-bit correlation branch predictor.
In the figure, the lower bits of PP and the 2-bit BPR are concatenated to
create an index to the BHT. The index selects a different 2-bit predictor for
the “BEQ” instruction, depending on which execution path the program took
in Fig. 8.24. Refer to the Exercises section for examples.

FIGURE 8.25 A correlation predictor using a global view of the branch
decisions.

Because a BPR identifies an execution path in the program, it is said to
provide a global view of program execution. For this reason, a correlation-
based predictor is often called a global predictor. Still other predictors use a
combination of both local and global branch history data [9].

Studies of SPEC89 benchmark programs have shown that the frequency
of misprediction—for example, for a “gcc” compiler—was 12% when a local
predictor (e.g., Fig. 8.23) with a 4096-entry BHT was used versus 11% when
a 2-bit global predictor (e.g., Fig. 8.25) with a 1024-entry but the same size
(1024 * 4 = 4096) BHT was used. With the Spice circuit simulation program,
the misprediction rates were 9% for local and 5% for global, and with
Espresso logic minimization software it was 5% for local and 4% for global
[10]. This shows that using multiple predictors often works better than using
only one as discussed next.

Tournament Predictor
Modern processors often implement multiple predictors and dynamically
select the best among them for each branch instruction. For example,
consider implementing a local predictor and a global predictor and then using
a 2-bit predictor (Fig. 8.22) to choose the best predictor. The mechanism is
called a tournament predictor because for each branch instruction, the winner
predictor (local or global) is the one that is selected more often.

For example, using a tournament predictor, 40% of the time the predictor
selected a global predictor for the SPEC Integer benchmark programs versus
only 15% for the SPEC floating-point (FP) benchmark programs [10].
Tournament predictors have been used in the AMD Opteron and Phenom
processors.

8.4.3 Instruction-Level Parallelism
In order to execute two or more instructions in parallel on a superscalar
processor, all those instructions must be data independent. With ILP, there
are three possible dependencies, as defined with examples in Table 8.7.
Data dependency exists among some instructions in all programs, no matter
if ILP is used or not. An antidependency and/or output dependency, on the
other hand, may exist between two instructions if the instructions execute in
parallel (during the same pipeline cycle). An instruction pair with one or more
of these dependencies, if executed in parallel, would result in hazards known
as read after write (RAW), write after read (WAR), or write after write
(WAW) hazards. Furthermore, these hazards cannot be resolved during
execution.

TABLE 8.7 Types of Dependencies in ILP

For example, consider the execution of the program code given in
Example 8.13 on a superscalar processor. There are data-dependency,
antidependency, and output-dependency relationships among these
instructions that, if executed in parallel, would cause RAW, WAR, or WAW
hazards, as illustrated using a graph in Fig. 8.26.

FIGURE 8.26 Using a graph to illustrate RAW, WAR, and WAW hazards
among the instructions in Example 8.13.

Example 8.13. A program code example assuming that registers R1 and R2 are already
initialized with values loaded from memory:

There are five RAW, two WAW, and one WAR potential hazards in the
example program. Any pair of instructions that are shown connected by a
solid arrow (→) in the graph are data dependent and cannot be executed in
parallel. The instructions “ADD R3, R1, R2” and “SUB R3, R2, R1” have an
output-dependence relationship because they both update register R3. Their
execution in parallel would cause a WAW hazard. Likewise, instructions
“MUL R4, R3, R3” and “ADD R4, R3, R5” that both write to register R4 would
cause a WAW hazard if they are executed in parallel. Instructions “SUB R3,
R2, R1” and “MUL R4, R3, R3” have an antidependence relationship. There
will be a WAR hazard if “SUB” executes before “MUL” that operates on the

result produced by the “ADD R3, R1, R2” instruction and not on the result
produced by the “SUB” instruction.

The requirement for ILP is that data-dependence, antidependence, or
output-dependence relationships cannot exist among those instructions that
are scheduled to execute during the same pipeline cycle. The instructions
that can be executed in parallel are selected either statically by the compiler
(i.e., a software solution) or dynamically by hardware during execution. Both
the software and hardware solutions have advantages and disadvantages
that will be discussed next.

Statically Scheduled ILP
For statically scheduled ILP, the compiler and not hardware decides which
set of instructions should be issued for parallel execution during each
pipeline cycle. The compiler for a superscalar processor must examine a
group of instructions and divide them into sets. The instructions in each set
must not have any dependency relationship among them that can cause a
RAW, WAR, or WAW hazard. Consider the program code in Example 8.13.
Suppose the processor is a two-issue superscalar—can issue maximum two
instructions every clock cycle—with the following specifications:

• The compiler must organize the instructions into maximum two-issue ILP.
• The instruction pipeline contains enough resources (adder/subtractor,

multiplier, and divider) to execute any two arithmetic instructions in
parallel, if needed. For simplicity, it is also assumed that each arithmetic
computation takes one clock cycle.

• “LD” instructions are scheduled as soon as possible to hide the single-
cycle delay required to load data from cache (DM).

Example 8.14 lists the compiler generated two-issue organization of the
instructions in Example 8.13. Table 8.8 illustrates the execution of the
program code, with the assumption that both variables a and b are already
loaded into cache. During each pipeline cycle, two instructions are fetched
and executed in parallel.

TABLE 8.8 Execution Two-Issue Statically Scheduled Program Code Using a Five-Stage
Superscalar Pipeline

Example 8.14. The instructions in Example 8.13 are organized for a statically scheduled
two-issue ILP execution. The pipeline is capable of executing two arithmetic instructions in
parallel.

Because a superscalar processor typically executes multiple instructions
during each clock cycle, a program’s CPI is generally less than 1. For this
reason, the preferred performance parameter is called instructions per
cycle (IPC) and is calculated as the inverse of CPI, as defined by Eq. (8.6).

Not counting the clock cycles required to fill the pipeline, the IPC for
Example 8.14, as illustrated in Table 8.8, is determined as follows:

An additional technique to further improve IPC is called compiler-based
speculative execution. In this case, instructions independent of branch
directions are selected for parallel execution. One compiler-assisted
speculative execution method that is used with Intel Itanium architecture is to
convert instructions of an “if-else” statement to conditional instructions called
predicated instructions. For example, consider the following simple “if-else”
statement:

The compiler would translate the if-else statement to the following
assembly code by attaching the condition “a > 0” to all instructions (one in
this case) in the “then” code section and the condition “! (a > 0)” to all the
instructions (again, one in this case) in the “else” code section as shown
next. This would also eliminate the branch instruction that would otherwise be
needed to execute the instructions associated either with the “then” or the
“else” code section.

Both the “SUB” and “ADD” instructions can now be scheduled to execute
in parallel. The processor would compute both a − 1 and a + 1. However,
only one of these results would be committed (written) to register R1,
depending on the value of the greater than flag (GTF). If “a > 0,” then R1
takes the result of a − 1; otherwise, R1 takes the result of a + 1. One of the
computations (a − 1 or a + 1) is called speculative because its computed
result may not be used.

An advantage of statically scheduled ILP is that the processor is more
power efficient in that it doesn’t use hardware to decide which set of
instructions should execute in parallel during each pipeline cycle. For this
reason, processors (e.g., ARM Cortex-A8) that implement statically schedule
ILP are typically used in handheld devices such as smart phones. Another
advantage of these processors as compared to those that implement
dynamically scheduled ILP (discussed next) is that compiler can potentially
examine a longer list of instructions for ILP than the list of instructions that
must be dynamically and quickly examined during each pipeline cycle.

Dynamically Scheduled ILP
The pipeline of a superscalar processor that implements dynamically
scheduled ILP is more complex and consumes more power. The fetch stage
contains a queue of instructions that are not yet scheduled for execution.
Dedicated hardware dynamically examines several instructions in the queue
and decides which set of instructions to issue for parallel execution. When
compared to a pipeline that is designed for statically scheduled ILP, the
pipeline for a dynamically scheduled ILP provides certain advantages, such
as

• The exact program flow is only known at run time. Therefore, there are
more opportunities for the processor to select and issue more
instructions for parallel execution.

• The processor could also implement a register renaming mechanism
where antidependence and output-dependence relationships can be
removed dynamically by changing register names in some instructions
with temporary registers that are not visible to programmers. This

enables the processor to schedule instructions out of order and achieve
higher ILP.

• Programs are not required to be recompiled to take advantage of a next
generation of the processor that implements dynamically scheduled ILP
or when the dynamic scheduling in the next generation is implemented
differently.

The pipeline of the Intel Core i7, for example, implements dynamically
scheduled ILP. Its high-instruction throughput makes it suitable for high-end
desktop or server computers.

Dynamic instruction scheduling requires that the pipeline implement
certain techniques, known as score boarding or a more advanced version
called Tomasulo’s algorithm that also supports speculative execution. The
pipeline can dynamically rename registers to avoid WAR and WAW hazards
and allow out-of-order execution. For example, consider the program code in
Example 8.13 that was discussed earlier with five RAW, two WAW, and one
WAR potential hazards (Fig. 8.26).

Figure 8.27 illustrates the removal of two antidependence and one output-
dependence relationships using register renaming. The output dependence
between instructions “ADD R3, R1, R2” and “SUB R3, R1, R1” is resolved by
changing the destination register R3 with temporary register T1 in the “ADD”
instruction. This is because in program order, “MUL R4, R3, R3” that uses the
result computed by the “ADD” instruction comes before the “ADD R4, R3,
R5” that uses the output computed by the “SUB” instruction. R3 is also
renamed to T1 in the “MUL” instruction. This removes the antidependence
relationship that exists between the “MUL” and the SUB” instructions.

FIGURE 8.27 Illustrating register renaming to remove WAR and WAW
dependencies in Fig. 8.26.

Likewise, the output-dependence relationship between the “MUL” and the
“SUB” instructions is removed by renaming R4 in the “MUL” instruction with
another temporary register T2. R4 is also renamed T2 in the “ST (a), R4”
instruction. This leaves R4 in “ADD R4, R3, R5” unchanged, as it should,
since this instruction computes the last value stored in register R4 as if the
program is executed one instruction at a time.

Table 8.9 illustrates the execution of the program code in Example 8.13 on
a two-issue dynamically scheduled superscalar processor using the modified
instructions shown in Fig. 8.27. Again, the following list of requirements is
assumed; they are the same as those we used with the two-issue statically
scheduled superscalar processor.

TABLE 8.9 Dynamically Scheduled Two-Issue Execution of Program Code

• The instruction pipeline contains enough resources (adder/subtractor,
multiplier, and divider) to execute any two arithmetic instructions in
parallel, if needed. For simplicity, it is also assumed that each arithmetic
computation takes one clock cycle.

• “LD” instructions are scheduled as soon as possible to hide the single-
cycle delay required to load data from cache.

During the first pipeline cycle, from the three independent instructions
“ADD T1, R1, R2,” “SUB R3, R2, R1,” and “LD R5, (b)” as shown in Fig. 8.27,
two must be issued. “ADD” is selected because it comes before “SUB” in
program order. “LD” is selected so data can be loaded early to hide the one-
cycle cache latency required before the “ADD R4, R3, R5” instruction can
execute.

During cycles 2 and 3, the scheduler issues the two independent
instructions “MUL T2, T1, T1” and “SUB R3, R2, R1” followed by the two

independent instructions “ST (a), T2” and “ADD R4, R3, R5.” Finally, during
cycle 4, “DIV R6, R4, R1” is issued. Normally, as instructions are scheduled,
new instructions are fetched and stored in the instruction queue. However, in
order to keep the illustrations simple, such steps are ignored here.

Assuming that the initial cycles to fill the pipeline are ignored, the IPC for
the program code, as determined by Eq. (8.8), is 1.75. This makes the
dynamically scheduled two-issue superscalar processor 25% (1.75/1.4 =
1.25) faster than its equivalent statically scheduled superscalar processor for
the program example.

However, because a typical RISC processor has many (e.g., 32) registers
and compilers do avoid reusing recently used registers, compilers can assign
different registers to instructions to reduce some of the antidependency and
output dependency among instructions to achieve better statically scheduled
ILP.

Speculative execution is also possible with dynamic scheduling. In this
case, the processor executes instructions as soon as their operands are
available, independent of branch directions. Some speculatively computed
results may be discarded if there is a change in program flow, and the results
that must be committed to registers and/or memory must be done in program
order as if instructions were executed one at a time.

8.4.4 Multithreading
As was said earlier in this chapter and in Chap. 1, there is a limit to ILP. For a
given program, there are only a few independent instructions, even with
register naming, that can be executed at the same time during each pipeline
cycle. Studies of some benchmark programs have shown that about 30% of
the time three instructions and about 2% of the time six or more instructions
can be executed in parallel, with the average being about 2.5 instructions
[11]. Even with the availability of more transistors and allowable maximum
power consumption, there is a limit on how quickly a single program can be
executed. Therefore, the only way to perform a task faster is to divide the
work into subtasks that can be performed concurrently.

Program Example
Consider the C program given next that has a for-loop with 100 million
iterations. For simplicity, the array elements are initialized to 1.0.

One way to reduce the total time required to compute the sum of the array
elements is to divide the array into two halves and compute the sum of each
half using a different thread of code. For example, the following two-threaded
program in C can be used to sum the array elements. The “main” program
first creates a thread (Thread 0) to sum the first half of array elements, and
then itself, as Thread 1, sums the second half of array elements. Once, the
“main” (now Thread 1) is done with its half of the array, it must check to make
sure Thread 0 is also done with its half of the array. The “main” then
computes and prints the grand total sum. Note that both threads can access
globally declared “array” and “sum.”

The execution of the two-threaded C program will cause two sets of code,
as follows, to execute concurrently if the CPU implements multithreading:

The instruction pipeline must contain two copies of all the registers,
including PP. The following sections describe three k-issue multithreading
pipeline organizations.

Coarse-Grained
Each time the execution of an “LD” or “ST” instruction causes a long wait—
for example, when main memory access is required—the pipeline switches

and resumes execution of a second thread. For example, when executing
Thread 0 and Thread 1 discussed above the pipeline continues and issues
up to k instructions from Thread 0 until it determines that an array element is
not in cache and it must be accessed from main memory, which has a long
latency. At that time, while the data is being accessed from memory, the
pipeline switches and continues issuing up to k instructions from Thread 1
until it encounters a long delay; the pipeline then switches back and issues k
instructions from Thread 0.

It is called a coarse-grained multithreading architecture because the
pipeline executes one thread at a time until it encounters a long delay.
Because each thread uses its own private set of registers, the state of the
switched thread is automatically saved. While this method is good when the
delays are long, it is not efficient when delays are short—for example, when
the access is from a lower-level cache with shorter latency. This is because
each time that a switch to a different thread takes place, the pipeline must be
flushed, wasting pipeline cycles. Furthermore, in some applications, thread
switching may happen less frequently than necessary. For example, some
real-time applications may require faster thread execution.

The pipeline organization, however, has the advantage of requiring the
least amount of hardware as compared to other multithreading architectures
discussed next because the pipeline resources at any time are used for
executing only one thread. Another advantage of this architecture is that it
can be implemented as a statically or dynamically scheduled ILP
multithreading processor. Note that, in general, the threads may or may not
belong to the same program. Threads from two different programs may be
executed concurrently.

Fine-Grained
In this case, thread switching happens every clock cycle. For example, when
executing the above Thread 0 and Thread 1 the pipeline issues up to k
instructions from Thread 0 during the first pipeline cycle, then switches and
issues up to k instructions from Thread 1 during the second pipeline cycle,
and then it repeats. Again, in general, the threads may or may not belong to
the same program.

It is called a fine-grained multithreading architecture because the pipeline
switches threads every cycle. This pipeline organization is more efficient as
compared to a coarse-grained multithreading pipeline, but the execution of
each thread is still slow. As the pipeline executes instructions from only one
thread during each cycle, other threads must wait their turn. The pipelines in
the Sun Niagara processor and Nvidia GPUs, for example, implement this
type of multithreading.

Because threads are switched every clock cycle, the architecture provides
a higher thread-level concurrency as compared to the coarse-grained
architecture. Likewise, the architecture can be implemented as a statically or
dynamically scheduled ILP multithreading processor.

Simultaneous
In this case, the pipeline issues up to k instructions selected from all running
threads during each clock cycle. For example, when executing the above
Thread 0 and Thread 1, the pipeline issues k0 (0 ≤ k0 ≤ k) instructions from
Thread 0 and k1 (0 ≤ k1 ≤ k) instructions from Thread 1 during each cycle,
where 0 ≤ k0 + k1 ≤ k. Because the pipeline selects independent instructions
from several (e.g., two) threads and executes them simultaneously, this
architecture is called simultaneous multithreading. The pipeline must
implement dynamically scheduled ILP and, therefore, its implementation
requires the most amount of hardware. Thread-level parallelism (TLP), where
instructions from multiple threads execute at the same time, is the advantage
of this architecture as compared to the others.

Example 8.15. Consider the execution of the following two program codes, labeled Thread A
and Thread B, on a simultaneous multithreading four-issue superscalar processor with
dynamically scheduled ILP. Thread A is the program code given in Example 8.13 with data-
dependence, antidependence, and output-dependence relationships among some of the
instructions. Thread B, for simplicity, contains only data-dependence relationships among its
instructions.

The following is also assumed:

• The execute stage has enough resources (e.g., adder/subtractor,
multiplier, and divider) to execute any four arithmetic instructions in
parallel, if needed. For simplicity, it is also assumed that each arithmetic
operation takes one clock cycle.

• The organization of DM (cache) is two-way fine interleaved (Chap. 7),
and the pipeline is designed to execute one “LD” instruction (if any) and
one “ST” instruction (if any) simultaneously, if needed. It is assumed that

there is less chance for a conflict in a fine interleaved memory when
executing a load with a store at the same time than when executing two
load or two store instructions at the same time.

• The pipeline will issue “LD” instructions as soon as possible to hide the
single-cycle delay required to load data from cache.

• Variables a, b, and x to z reside in cache without conflicts.

Table 8.10 illustrates the execution of Thread A and Thread B in Example
8.15. During pipeline cycle 1, the pipeline issues two possible instructions,
“ADD T1, R1, R2” and “LD R5, (b)” from Thread A, and two instructions, “ST
(x), R3” and “ADD R4, R1, R2” from Thread B. During cycle 2, the pipeline
again issues two instructions from Thread A and two instructions from Thread
B. During cycle 3, the pipeline issues two instructions from Thread A and one
instruction from Thread B. Finally, during cycle 4, the pipeline issues two final
instructions, one from each thread. The instructions issued during each cycle
are data independent and can execute in parallel. Because the pipeline can
only issue one “LD” and one “ST” (if any) during a cycle, the instruction “LD
R8, (y)” cannot be issued earlier and during cycle 1. Therefore, the execution
of the “SUB R9, R6, R8” instruction is delayed until cycle 6.

TABLE 8.10 Dynamically Scheduled Two-Thread Simultaneous Multithreading of Program
Codes on Four-Issue Superscalar Processor

Based on the four-issue ILP shown in Table 8.10, the IPC for Thread A or
Thread B executed separately is 1.75 (7/4), where the number of clock cycles
required to fill the pipeline is ignored. However, the IPC of simultaneous
multithreading of Threads A and B—again with ignoring the cycles required
to fill the pipeline—is 3.5, as determined by Eq. (8.9).

Multithreading, especially a simultaneous multithreading architecture,
increases pipeline efficiency. In addition, a simultaneous multithreading
pipeline implements small-scaled TLP. Higher levels of TLP require a
multicore processor or multiprocessor system, which we will discuss in Chap.
10.

References
1. IEEE standard for microprocessor assembly language (IEEE Std. 694-

1985), IEEE, 1985.
2. MASM, http://www.masm32.com/.
3. cygWin (GNU + Cygnus + Windows), http://www.cygwin.com/.
4. Intel Architecture Optimization Manual, 1997, www.intel.com.
5. Intel 64 and IA-32 Architectures Optimization Reference Manual, 2014.
6. Simics (system level instruction set simulator), http://www.virtutech.com/
7. J. E. Smith, A study of branch prediction strategies, Proceedings of the

8th Annual International Symposium on Computer Architecture, June
1981, pp. 135−147.

8. Shien-Tai Pan, Kimrning So, Joseph T. Rahmeh, Improving the accuracy
of dynamic branch prediction. Proceedings of the Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS V), Sept 1992, pp. 76−84.

9. M.-C. Chang and Y.-W. Chou, Branch prediction using both global and
local branch history information, IEE Proc-Comput Digit Tech, Vol. 149,
No. 2, 2002, 33−38.

http://www.masm32.com/
http://www.cygwin.com/
http://www.intel.com/
http://www.virtutech.com/

10. J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, 5th ed. Morgan Kaufmann, Waltham, 2012.

11. David Culler, Jaswinder Pal Singh, and Anoop Gupta, Parallel Computer
Architecture: Hardware/Software Approach, Morgan Kaufmann, San
Francisco, 1999.

Exercises
8.1 Consider an Acc-ISA CPU that executes the pseudo-code shown. Do

the following:

a. Create a set of 8-bit Acc-ISA instructions with 3-bit op-codes and 5-
bit operands. Any of the variables A through C may be a negative 2’s
complement number.

b. Write an assembly program using your instruction set. Also assume
that the code starts from memory address 0 and increases by 1, and
data starts from memory address 0x1F and decreases by 1.

c. Manually assemble your assembly program and write instructions in
binary and in hex. Assign op-codes to the instructions in the order
they were used in the assembly program, starting from address 0.

d. Draw the CPU data path with only the data paths necessary.
8.2 Consider the Acc-ISA assembly instructions “LD data” (ACC ← data),

“LD (adrs)” (ACC ← Memory[adrs]), “ST (adrs)” (Memory[adrs] ←
ACC), “ADD (adrs)” (ACC ← ACC + Memory[adrs]), “XOR (adrs)” (ACC
← ACC M[adrs]). Do the following:
a. Write an assembly program for the following program:

b. For the assembly instructions, draw a single-cycle instruction data
path.

8.3 An Acc-ISA CPU executes the following instructions using 3-bit op-
codes and 5-bit address or 2’s complement data. Do the following:

a. Draw a data path for the CPU, assuming the DM has separate input
and output buses, as in the data path shown in Fig. 8.7. Do not
include data paths not used by the instructions.

b. Draw a data path for the CPU, assuming the DM has a bidirectional
data bus. Do not include data paths not used by the instructions.

8.4 For the high-level code segment shown next, create a set of
instructions and write an equivalent assembly program for each of the
following architectures:

a. Stack-ISA
b. Acc-ISA
c. CISC-ISA
d. RISC-ISA

8.5 Design a simple 8-bit hardware stack with depth = 16 using registers.
Also, include four signals push, pop, ovf (for stack overflow), and udf
(for stack underflow). Assume active-high signals. The ovf becomes 1
(asserted) if the stack is full and push is asserted. The udf becomes 1 if
stack is empty and pop is asserted.

8.6 Discuss how different CISC instruction formats versus the fixed RISC
instruction formats can complicate the design of an instruction data
path.

8.7 Given the single-cycle CPU data path in Fig. 8.7, estimate an upper
bound for the clock frequency. Assume ΔIM and ΔDM are each 1.2 ns,
Δadd = 0.8 ns, Δadd/cmp = 0.9 ns, Δmux = 0.3 ns, ΔNAND = 0.1 ns, and τst =
τcq = τcs = 0.05 ns.

8.8 Given the pipelined data path in Fig. 8.11 estimate an upper bound for
the clock frequency. Assume ΔIM and ΔDM are each 1.2 ns, Δadd = 0.8
ns, Δadd/cmp = 0.9 ns, Δ2-to-1 MUX = 0.3 ns, ΔNAND = 0.1 ns, and τst = τcq =
τcs = 0.05 ns.

8.9 Consider an instruction pipeline with four stages, fetch (F), decode (D),
execute (E), and write-back (WB), where ΔE is twice that of the other
stages. Do the following as the pipeline executes n instructions.
a. Suppose the E stage can be divided into two stages, E1 and E2,

each with ΔE1 = ΔE2 = + ΔE. Determine an expression for speed-up in
terms of ΔE and Δclocking as n approaches infinity (∞). Assume CPI =
1. Also, estimate the speed-up as n + ∞ if ΔE = 2 ns and Δclocking =
0.1 ns.

b. Suppose the E stage can be superpipelined using two copies of the
stage hardware and an MUX. Determine an expression for speed-up
in terms of ΔE, Δclocking, and ΔMUX as n approaches infinity (∞).

Assume CPI = 1. Also, estimate the speed-up as n + ∞ if ΔE = 2 ns,
and Δclocking = 0.1 ns, and ΔMUX = 0.3 ns.

8.10 Discuss the effect of switching the positions of the execute and DM
stages in Fig. 8.17.

8.11 Given the assembly code in Example 8.10, do the following:
a. Show the pipeline chart for two iterations of the for-loop using the

five-stage pipeline in Fig. 8.17. Do not include the time used to
execute the instructions (i.e., Ix, Iy, Iz) that are after the for-loop.

b. Calculate the program’s CPI for two iterations.
c. Determine an equation for CPI in terms of k iterations.
d. Determine the limit for the CPI as k approaches infinity.

8.12 Given the assembly code in Example 8.11, do the following:
a. Show the pipeline chart for two iterations of the for-loop using the

five-stage pipeline in Fig. 8.17. Do not include the time used to
execute the instructions (i.e., Ix, Iy, Iz) that are after the for-loop.

b. Calculate the program’s CPI for two iterations.
c. Determine an equation for CPI in terms of k iterations.
d. Determine the limit for the CPI as k approaches infinity.

8.13 For the pipeline chart in Table 8.6, determine CPI for k = 10 iterations.
Also, determine the lower bound for the CPI as k approaches infinity.

8.14 Consider the following for-loop with a single if-else statement and its
compiler-generated branch instructions. Suppose the processor uses a
correlation branch predictor. When the for-loop executes, the “then”
section of the code executes when i is an even number (0, 2, 4, etc.)
and the “else” section executes when i is an odd number. Do the
following:

a. Suppose the predictor uses a 2-bit BHR. Complete the following table
for six iterations and determine the number of mispredictions, where
“N” (predictor not taken), “T” (predict taken), “LN” (predict likely not
taken), and “LT” (predict likely taken) are used to indicate the states
of a 2-bit predictor where one 2-bit predictor is used for each of the
execution paths BHR = NN, NY, YN, and YY. In the table, the state in
a prior row is used to predict the branch direction as Y or N for the
current instruction. For example, initially, when executing the “JMP
endif” instruction where BHR = NN (no branching for “BGT” and no
branching for “BLE”), the 2-bit predictor for BHR = NN is initialized to
“T” because “JMP endif” branches. The next time that BHR = NN, the
correlation predictor will predict “taken” for the current instruction.
This is illustrated for BHR = NY in the table.

b. Suppose the predictor uses a 3-bit BHR that identifies one of eight
total execution paths as NNN, NNT, NTN, NTT, TNN, TNT, TTN, or
TTT. However, which of the eight possible execution paths the
program will follow depends on the data it processes.

8.15 Consider the program code shown next. Assume (1) DM is fine
interleaved and any combination of two memory instructions can

execute at the same time; and (2) each arithmetic instruction takes one
clock cycle to execute. Do the following:

a. Organize the program for execution on a two-issue (ILP) statistically
scheduled superscalar processor.

b. Organize the program for execution on a two-issue (ILP) dynamically
scheduled superscalar processor.

8.16 Consider the program code in Example 8.13. Suppose a dynamically
scheduled two-issue (ILP) superscalar processor schedules arithmetic
instead of “LD” instructions as soon as possible. Use a pipeline chart to
show program execution and calculate IPC. Ignore the cycles required
to fill the pipeline when calculating the IPC.

8.17 Consider a four-issue simultaneous multithreading superscalar
processor. Also, consider a two-thread multithreaded program with
approximately 1011 executing instructions per thread. Do the following:
a. Suppose the program’s IPC = 3.5 when there is no memory access

latency. How long will it take for the processor to execute the
program, assuming a 1 GHz clock? Also, ignore delays due to OS
overhead.

b. Suppose 20% of the instructions are “LD” and “ST” instructions and
10% of these instructions will cause data loading and storing memory
latency where the IPC drops to 1.75. Determine the program
execution time.

8.18 Computer security (secure co-processor): Exercise 11.27 (also see
Secs. 11.4, 11.8, and 11.10).

8.19 Computer security (secure processor): Select Exercises 11.28 and/or
11.29 (also see Secs. 11.4, 11.9.2, and 11.11).

8.20 Computer security (spoofing, splicing, and replay attacks): Exercise
11.30 (also see Secs. 11.3 and 11.11).

8.21 Computer security (secure processor performance-related issue):
Exercise 11.31 (also see Sec. 11.11).

CHAPTER 9
Computer Architecture:

Interconnection

9.1 Introduction
A modern computer system is an interconnection of one or more processors,
memory units, and input/output (I/O) devices. A personal computer (i.e., a
microcomputer) additionally may include an optional special-purpose or
custom processor used as an accelerator (e.g., GPU, FPGA). A keyboard,
mouse, printer, network adapter, hard disk or flash drive, portable drive (e.g.,
memory stick), CD drive, microphone, etc. are examples of I/O devices used
in a microcomputer.

While innovations in CPU and memory architectures have enabled
instruction-level parallelism (ILP), multithreading and multicore processors
and innovations in integrated chip (IC) technologies have increased the
speed of CPUs from 16.7 MHz (Sun-4 Sparc) in 1986 to 3.33 GHz (Intel
Nehalem Xeon) in 2010; it is the innovations in interconnection architectures
that have increased the overall system performance. Today, a shared
memory system runs multiple applications and allows programs to
communicate with various I/O devices simultaneously. Furthermore,
innovations in interconnection architectures have enabled “plug and play”
I/O device interface where users of modern microcomputers are able to use
an abundance of devices with ease.

All I/O devices do not operate the same; the frequency, speed, and
amount of communicated data of each device are different. In addition, in
some cases, the processor must be directly involved in communicating with a
device, and in other cases, a device may be instructed to communicate
directly with memory. And still in other cases, the processor may need to poll
devices to provide service (i.e., send or receive data) when there are many
devices in the system, or a device can inform the processor via interruption
when it needs a service. And because various system components, from
special-purpose processors, to memory units, to I/O devices, operate
differently and with various speeds as compared to a processor, special
hardware modules are needed to interconnect these components with one or
more processors.

A memory controller controls the timing and responds to memory
read/write requests. A device controller interface (DCI), introduced in Chap.
1, is a simple or complex embedded system and acts as a “middle man”
between an I/O device and processor or both processor and memory. A
bridge translates the communication protocol used by one component, such
as processor, to a typically standard protocol used, for example, by a GPU or
a disk DCI.

As a simple embedded system, a DCI is typically a microcontroller,
which, as discussed later, is a small system with CPU, RAM, ROM, and other
modules used for interfacing. Each I/O device additionally needs a device
controller (DC), also typically a microcontroller, to control the actual
hardware of the device. For example, a keyboard DC controls the hardware
of the keyboard; a disk DC controls the hardware of a disk drive; etc. A DCI
that connects via a cable or wirelessly to a DC performs the following two
tasks:

• It controls the functions of a device by sending control data to the DC.
• It communicates with the DC to exchange data with the device. It can

receive data from an input device (e.g., keyboard), send data to an
output device (e.g., a printer), or both send and receive data from a disk
drive or a network adapter.

Furthermore, in order to support a “plug and play” interface with devices,
modern microcomputers use one or more general-purpose DCIs, such as the
one commonly called a host controller interface used to interface with
Universal Serial Bus (USB) devices. A USB host controller can interface
and communicate with many different types of USB devices simultaneously.

In this chapter, we will discuss four generations of interconnection
architectures, from single-bus to multibus, and integrated to linked-based

point-to-point. The chapter then presents a list of I/O devices to highlight their
communication needs and the I/O ports (initially introduced in Chap. 1) used
in the design of a DCI and DC.

Interruption, interrupt structures, and the requirements for a direct device
communication with memory are discussed, and circuit modules are
presented. An example CPU data path with interrupt handling circuitry is
used to familiarize readers with interrupt handling mechanisms and the steps
the CPU must take to provide service to a device. Alternative interrupt
structures to improve performance are also discussed and illustrated. Finally,
for a better understanding of the tasks performed by a, host controller
interface, the chapter presents both the internal organization and
communication protocols of a USB host controller interface.

9.1.2 Interconnection Architectures
The architecture of single-bus system is simple. All system modules share a
single bus to communicate. However, as the speed of microprocessors and
memory started to diverge, single-bus architectures no longer worked
efficiently. Processors were operating with higher-frequency clocks than the
rest of the modules in the system. In addition, because processors typically
use proprietary buses to communicate with memory and devices,
manufacturers needed to use a set of standard I/O buses to interconnect
DCIs with memory and/or processor. This, in turn, created several
generations of multibus system architectures.

In order to simplify designs and bring the cost of personal computers
down, many modules, including a memory controller and certain bridges and
DCIs, were integrated into two ICs: one IC for interconnecting fast modules
such as processors and an optional GPU to memory, and a second IC for
interconnecting various DCIs designed to interface with standard I/O buses.
However, while the integrated interconnections worked well with limited
number of processing cores, this architecture created a memory bottleneck
as the number of cores in each processor, as well as the number of
processors, increased.

This integrated interconnection architecture was no longer scalable; you
could not use more memory units to increase memory bandwidth. Therefore,
there was a need for a scalable interconnection architecture that would allow
memory bandwidth to increase without significant increase in memory
latency.

Single Bus

Figure 9.1 illustrates a single-bus architecture with a CPU, a memory unit,
and three DCIs that interface with three peripheral devices. The bus consists
of an address bus (AB), a bidirectional data bus (DB), and a control bus (CB).
The CPU would use the bus to access the memory or to communicate with a
DCI. For instance, the CPU would send register content as data or a
command to a DCI and receive, via the DCI, data and status information from
the corresponding DC.

FIGURE 9.1 A simple microcomputer system architecture.

The bus would also be used to transfer a large amount of data (e.g., when
reading a file) between a disk drive and the memory. However, in order for
the computer to operate as expected, run a program, accept a user’s input
without delay, etc., the CPU would also use the bus to access memory while
a disk transfer to/from memory is taking place. For this reason, another
module, known as a direct-memory-access (DMA) controller would be
used. Both the disk DCI and the DMA controller would receive commands
from CPU to transfer large data blocks between a disk drive and memory
without involving the CPU in the actual transfer of data. The CPU and DMA
controller would share the bus, taking turns to access memory. Currently,
however, only microcontrollers use single-bus architecture.

Multibus
Figure 9.2 illustrates an example of a multibus system architecture using a
bus hierarchy known as mezzanine [1]. It uses a processor bus called a
front-side bus (FSB) and a combination of standard I/O buses, such as
those listed in Table 9.1. Peripheral devices are also not treated the same as

in Fig. 9.1; they may be grouped into slow, medium, and fast devices. In the
figure, a hierarchy of standard I/O buses is used to separate the fast and
more frequently communicating devices from those that are slow and
communicate less frequently.

FIGURE 9.2 A multibus microcomputer architecture with front-side bus and I/O
buses.

TABLE 9.1 A List of Contemporary Buses

A memory controller and two Peripheral Component Interconnect Express
(PCI-E) bridges are shown interfacing with the FSB. The bridges are used to
interface with a GPU and facilitate high-speed communications between the
FSB and other I/O buses. In this case, the PCI-E bus that is interfacing I/O
devices, connects an Ethernet DCI, a USB host controller interface, a serial
advanced technology advancement (SATA) bridge, a video graphics array
(VGA) bridge, a DMA controller, and a (slower) PCI-bus expansion bridge to
the rest of the system, creating a motherboard.

The SATA bus supports chained connections of SATA hard and CD disk
drives. A second USB host controller interface is also shown installed via one
of the available PCI-bus expansion slots for communicating with a USB
keyboard and a USB mouse. The mouse interfaces the system via a USB
hub located in the keyboard. Each device connects to a USB port and
communicates through one or more USB hubs and a USB root hub with a
USB host controller interface.

Integrated Architecture

Interconnection chips, such as a memory controller hub (MCH) that was
called a north bridge and an I/O controller hub (ICH) that was called a
south bridge simplified the design of Intel and AMD next-generation
computer system boards, as illustrated in Fig. 9.3. The modules that used to
be scattered on the motherboard were integrated into the MCH and ICH
chips. In the figure, an MCH includes a memory controller, a bridge
connection to an optional accelerator (e.g., GPU), and a bridge to an ICH.
The ICH, in turn, included a DMA controller, a high-definition audio (HDA)
interface, a USB host controller interface, a network DCI, and a set of bridges
to standard buses.

FIGURE 9.3 An integrated microcomputer system architecture using
interconnection ICs.

The memory hub was later expanded to operate with multiple processors,
thus creating a uniform memory access (UMA) architecture, which was only
efficient when the total number of processing cores (CPUs) was small (e.g.,
four). However, as the number of cores increased, so did the number of
requests to memory, resulting in long memory latency.

Point-to-Point Architecture
Figure 9.4 illustrates an example of a scalable nonuniform memory access
(NUMA) architecture based on the Intel QuickPath links or AMD
HyperTransport or tunnel architecture. The links are used to create one-to-
one interconnections of processors for serial point-to-point communication.
Instead of multiple processors sharing an FSB to access memory, each
processor is directly interfaced with its own local memory, creating a NUMA
architecture. As discussed in Chap. 7, average memory latency in a NUMA
would be smaller than that of UMA architecture. Furthermore, the average
memory latency in NUMA architecture would increase slowly as more
processors are interconnected.

FIGURE 9.4 A modern microcomputer NUMA architecture.

In addition, due to increased demand for single-chip embedded systems
(system-on-chip, or SoC), more modules, such as the memory hub, migrated
into the processor chip. For example, Intel’s Sandy Bridge architecture
includes a memory controller, PCI-E, and other bridges all within a single
processor chip. Figure 9.5 illustrates a two-node NUMA system.

FIGURE 9.5 A two-node NUMA system. (Courtesy of Intel.)

9.2 Memory Controller
A memory controller is responsible for responding to requests made to
memory. Its complexity depends on the communication protocols used by
both the processor and memory unit. For example, a simple single-bus
architecture with static random access memory (SRAM) requires a simple
memory controller. On the other hand, a modern system that uses a complex
bus, such as the FSB of an Intel processor, and communicates, for example,
with synchronous dynamic random access memory (SDRAM), would require
a more complex memory controller.

9.2.1 Simple Memory Controller

An example of a simple memory controller is illustrated in Fig. 9.6. The
controller consists of a counter and a combinational circuit (CC). The
processor control bus consists of four signals, labeled address strobe (_as),
write (_wr), read (_rd), and acknowledge (e.g., ack). The signal _as is
asserted to start a memory read or write cycle. The _as, _wr, and _rd signals
are typically used as memory controller signals from processor points of view,
whereas _ce, _we, and _oe (discussed in Chap. 7) are control signals used
from memory point of view.

FIGURE 9.6 An SRAM control unit from processor point of view.

If there is more than one memory unit, _as and the target memory address
are used to generate the _ce for a specific memory unit. In the figure, it is
assumed there is only one memory unit in the system, hence _as directly
connects to the _ce in the SRAM memory unit.

As shown in the figure, both the memory unit and counter are enabled
when _as is asserted. Once enabled, the counter starts incrementing every
clock cycle and asynchronously resets when _as is deasserted or the master
reset is asserted. The counter is used to count the number of clock cycles,
called wait cycles, required to access memory. The number of wait cycles is
proportional to memory access time. The counter module asserts the ack
signal and notifies the processor of the completion of a memory read or write
access. The processor is said to be in a wait state (also called an idle state)
while waiting for the ack to be asserted.

Figure 9.7 illustrates a memory read cycle from processor point of view.
The number of wait cycles is determined using Eq. (9.1). The symbols ⌈ ⌉
indicate the ceiling function, τ is the clock period of the bus, and m is the
required number of clock cycles for the processor to detect ack = 1 and then
end at he memory cycle. For example, suppose in the figure the clock period
is 10 ns, memory read access time is 45 ns, and the processor requires one
clock cycle to detect ack = 1 and another clock cycle to end the read cycle.
From Eq. (9.1), the number of wait cycles is 3 (i.e., ⌈ 45ns/10ns ⌉ – 2 = 3).

FIGURE 9.7 Illustration of a simple SRAM read cycle from processor point of
view.

In the figure, the three fine dotted arrows indicate signal dependencies
commonly referred to as signal handshaking. A processor communication
with the memory controller starts when the processor places a target address
on the address bus and asserts _as, which marks the start of a memory cycle
at time t0. The signal enables both the counter and the memory unit. The
counter value becomes 3 at time t1 at the start of the fourth clock cycle since
the start of memory cycle and causes the ack signal to become 1 at time t 2

(ΔCC = t 2 − t 1 in Fig. 9.6). This is indicated by an arrow from the time _as =
0 to when ack = 1.

When the processor detects ack = 1 at time t 3 (one clock cycle later), it
leaves the wait state and gets ready to load the data to its internal register on
the next cycle at time t 5. As shown in the figure, memory places data on the
data bus starting at time t 4 (45 ns = t 4 − t 0). The processor deasserts _as,
making it 1, and ends the read cycle at time t 6. The communication between
the processor and the memory ends when the counter resets when _as = 1
and deasserts ack, making it 0 at time t 7. These are illustrated by an arrow
from when ack becomes 1 to when _as becomes 1, and again from when
_as becomes 1 to when ack becomes 0. Another memory cycle can now
begin starting at clock cycle 8 or later.

A memory write cycle is similar, except that when the processor detects
ack = 1, it can remove the data from the data bus. Again, assuming that the
processor requires one clock cycle to detect ack = 1 and another cycle to
remove its data from the data bus, ack may be asserted earlier, as was done
for a read cycle. In addition, if memory read access and write access times
are different, the memory controller may implement two different wait cycles,
one based on read access time and another based on write access time.

A memory controller for a dynamic access random memory (DRAM) also
requires a counter, similar to the one discussed for an SRAM. In addition, a
DRAM memory controller requires circuitry required to implement refresh
cycles. However, when a refresh cycle is triggered, the memory controller
typically would allow a current read or write cycle (if any) to complete before
starting a refresh cycle. A new read/write cycle can start only after an
ongoing refresh cycle is completed.

9.2.2 Modern Memory Controller
Figure 9.8 illustrates a modern memory controller interfacing with a complex
FSB and a contemporary memory unit. The controller interprets memory
requests it receives over a complex bus and communicates, for example,
with a double data rate (DDR) SDRAM over the standard DDR SDRAM bus.
Table 9.2 is a partial signal listing of the 533 MHz FSB of the Mobile Intel
Pentium 4 Processor. A FSB, or a complex serial link, for example, the Intel’s
QuickPath, typically implements split transactions to communicate with a
memory controller. A split transaction consists of a request transaction and
a response transaction.

FIGURE 9.8 A complex memory controller.

TABLE 9.2 Partial Signal Listing of the Mobile Intel Pentium 4 Processor 533 MHz FSB

A request read transaction includes an address and a command (e.g.,
read). A request write transaction also includes data. A response transaction
includes one or more acknowledgement signals, as well as data if the
request was a read transaction. A modern memory controller typically
handles multiple outstanding split transactions.

In the table, the symbol # is used to indicate an active-low signal. The
Mobile Intel Pentium 4 Processor with 533 MHz FSB [2] has 478 pins, with
several pins reserved for power and ground connections, as well as power
management, board-level design issues, performance measurement, bus
error signaling, transaction flow control, and testing. It includes 36 pins for
address bus (A[35:3]#) that can reference 236 bytes of physical memory, 5
pins to issue a memory command (REQ[4:0]#), and 64 pins for data bus
(D[63:0]#). A request transaction (i.e., address and command) is issued by
an address strobe signal (ADS#), which is then latched by the memory
controller in two parts using two additional strobe signals (ASTB[1:0]#). ADS#
starts and ends a memory request transaction, and ASTB[1]# and ASTV[0]#
are used as clock signals to operate two register buffers in the memory
controller for loading the upper and lower bits of a target address.

A response transaction includes a data ready signal (DRDY#), a 3-bit
response code (RS[2:0)]#), and data for a read command. If a response
transaction includes data, it is latched by the processor in four negative
(DSTBN[3:0]#) or positive (SDTBP[3:0]#) edge-triggered data strobe signals.
The 36-bit address, 64-bit data, and 3-bit response code also include a parity
error protection signal AP[1:0] for the address, DP[3:0] for the data, and
RSP# for the response code. Some of the remaining control bus signals
listed in the table deal with cache memory (discussed in Chap. 10), with
request for service from peripheral devices, and with atomic bus access
when two or more CPUs try to modify the content of a shared memory
location. Only one CPU at a time is permitted to modify the content of a
shared memory location.

A modern memory controller operates as a middleman between a
processor by interfacing its FSB and memory unit using SDRAM modules.
Using, for example, the A, D, REQ, ADS, and ADSTB bus lines in Table 9.2,
the processor issues a memory transaction to the controller requesting to
access the memory. The controller logs the transaction and then converts the
communication protocol of the FSB to that of the SDRAM bus and vice versa.
Refer to Chap. 7 for examples of SDRAM bus transactions.

9.3 I/O Peripheral Devices
Each peripheral device requires a specific communication protocol, operating
speed, and data size. For example, a keyboard generates small data values
(e.g., a key value) each time that a key is pressed. On the other hand, a
magnetic hard disk drive is an electromechanical device designed to transfer
a large amount of data fast. A hard drive has many recording circular
surfaces (disks), each with many tracks (like the tracks on a CD). A track is
divided into several equal-sized regions called sectors. Each recording
surface has its own read/write head, and some hard drives can transfer data
simultaneously from multiple sectors.

For example, consider a Samsung 260 GB hard drive (e.g., HD 642JJ). Its
magnetic disks rotate at the speed of 7200 rotations per minute (RPM) and
has 175 Mbps (megabits per second) peak transfer rate between its
recording surfaces and its 16 MB internal (DRAM) memory. The internal
memory, also called a buffer, is used as a temporary storage to store sector
data to/from the main memory. Its peak data transfer rate between the buffer
and the main memory is 300 Mbps. Its sector size is 512 B. Modern personal
computers use disks with 4 KB sectors. Some modern disk drives operate at
10,000 RPM or higher.

The Samsung hard drive has 8.9 ms (millisecond) average seek time, the
amount of time required to move a disk’s read/write head to a specific track.
The disk drive also has 4.17 ms average latency, the average amount of
time required to rotate a disk 50% (half of its circumference). That is, at 7200
RPM, one-half (50%) rotation would require 4.17 ms (0.5/7200 RPM). The
sum of the two averages is the approximate amount of time required to locate
a target sector for read or write operation.

Example 9.1. Using the average and peak performance parameters of the Samsung disk
drive, determine the approximate average required time to transfer 512 B (data from one
sector) to memory.

Solution: Four sequential tasks are required to copy sector data to memory:
Task 1: Seek the target track with an average seek time of 8.9 ms.
Task 2: Locate the target sector with an average latency of 4.17 ms.
Task 3: Copy data from the sector to the internal buffer with the peak
transfer rate of 175 Mbps.
Task 4: Copy data from the internal buffer to main memory with the peak
transfer rate of 300 Mbps.

The average approximate required total time to transfer 512 B to memory is
13.075 ms, as calculated next:

However, transfers to/from multiple physically adjacent sectors would be faster. A transfer
from memory to disk is similar, except that the data is first copied from memory to the internal
buffer before it is written onto the target sector.

RAID (redundant array of independent disks) is designed to increase the
bandwidth or both the bandwidth and the reliability of disks. For example,
data interleaving, similar to memory interleaving (Chap. 7), is used to
increase bandwidth by storing strips of data from a single record on several
sectors, one strip on each independent disk. Interleaving can be done at a bit
level (RAID-2 and RAID-3) or at a block-level (RAID-0 and RAID-4 to -6).
Copies of files may be duplicated to create file storage redundancy (RAID-1).
Error correction codes can be used to avoid the extra cost of storage
redundancy by implementing a recovery mechanism if one or even two disks
fail, such as in RAID-2 to -4, if only one disk fails, or RAID-6 and RAID DP
(double parity) if two disks fail.

Other devices that have no mechanical parts can communicate at even
faster rates. For example, an Ethernet network adapter is capable of
transferring data between two communicating computers at the rate of 10
Mbps, 100 Mbps, or higher. In this case, data originates from memory and is
communicated with a receiving computer via a DMA controller and the DCI of
the adapter. The Ethernet adapter at the receiving computer receives the
data and, via its DCI and a DMA controller, transfers the data to main
memory.

9.4 Controlling and Interfacing I/O Devices
Peripheral devices are slow, medium, or fast; each requiring a clock with
different operating frequency and data transfer rate. Some devices may
contain electromechanical parts and operate differently from digital systems
and may require data conversions to digital signal values. The data format
and signal voltage levels in a device may also be different from those used by
processors and memory. In addition, the processor must be able to

communicate with each device without affecting the functions of other
devices in the system.

A DCI communicates with the rest of the system via a processor bus (e.g.,
Fig. 9.1), I/O bus (e.g., Fig. 9.2), or ICH (e.g., Fig. 9.3 or Fig. 9.4). In the past,
personal computers were designed with each device having its own
dedicated DCI. Even the basic devices such as keyboard, mouse, and printer
required its own DCI, as was illustrated in Fig. 9.1 for the keyboard and the
mouse.

For example, older standards such as the parallel port (IEEE 1284) and
RS-232 (recommended standard 232), including its smaller version DE-9,
supported only a single point-to-point connection to a peripheral device and
required a dedicated DCI. This meant they did not implement the “plug and
play” device interface, and therefore increased the cost of a personal
computer and, in addition, required system reboot each time that a device
was installed. A typical system also supported only a limited number of slots
for installing new devices, which created a restriction for personal computer
users. Today, most, if not all, peripheral devices are “plug and play.”

As was briefly discussed earlier, both DCIs and DCs use I/O ports. The
ports are designed using tri-state buffers and registers, and each is identified
by a unique address and accessed similar to memory. Isolated I/O or port-
mapped I/O and memory-mapped I/O are two commonly used I/O port
addressing schemes, as illustrated in Fig. 9.9.

FIGURE 9.9 I/O port addressing: (a) port-mapped I/O, a 512-B address space
for memory and another 512-B address space for I/O ports; (b) memory-
mapped I/O, a single 512-B address space divided between memory and I/O
ports.

In Fig. 9.9(a), port-mapped I/O requires two separate address spaces, one
for memory (e.g., 512 B), and another with an equal size for I/O ports. An
additional control bus signal, for example, _m, indicates whether a given
address is a memory address if _m = 0 or an I/O port address if _m = 1.

On the other hand, memory-mapped I/O requires only one address space
divided between memory and I/O ports, as shown in Fig. 9.9(b). In the figure,
a 512 B address space is divided between memory and I/O ports. The same
control signals (e.g., _as, _rd, _wr, and _ack) that are used to access
memory are also used to access memory-mapped I/O ports. In this case, it is
the responsibility of the memory controller and each of the DCIs to determine
if an address is within the address range reserved for the memory unit or if
the address belongs to an I/O port.

Any computer system may implement the memory-mapped I/O addressing
scheme. Intel processors also support port-mapped I/O addressing, with two
special I/O instructions: “IN” and “OUT.” Typically, all reduced instruction set
computer (RISC) processors support only memory-mapped I/O addressing,
which has the advantage of using memory reference instructions to access
I/O ports. On the other hand, the port-mapped I/O addressing has the
advantage of not using any part of memory address space for I/O ports;
however, this advantage has diminished as memory address space has
increased over the years. For example, modern computer systems have
main memory address space in GB, which is more than enough to easily
support memory-mapped I/O port addressing to access many I/O ports.

9.4.1 I/O Ports
Figure 9.10 illustrates an example of a simple memory-mapped I/O port with
an input port and an output port. The port refers to both the set of tri-state
buffers that isolates an input data from the data bus and to a parallel-load
register that holds an output value. In the figure, the parallel-load register,
also called a buffer, is built from positive-level latches.

FIGURE 9.10 An illustration of an I/O port that includes an input port and an
output port; the memory-mapped I/O port addressing is assumed.

For the input port, a read cycle starts when processor places the port’s
address on the address bus and asserts the _as (address strobe) signal, as
illustrated in Fig. 9.11 at time t 0. The _as signal, when asserted (_as = 0) by
the processor, indicates the address currently on the address bus (AB) is
valid. The _as = 0 enables the address decoder in Fig. 9.10, which in turn
asserts the sel signal at time t 1 if the address on the address bus is the
target port address. A 1-0 _rd transition at time t 2 enables the tri-state
buffers, causing the input data to be placed on the data bus at time t 3. The
processor inputs the data and deasserts _rd at time t 4. The read cycle ends
when _as returns to 1 and makes sel = 0 at time t 5.

FIGURE 9.11 An illustration of an memory-mapped I/O input port read cycle
from processor point of view; also may require an ack handshaking signal
(not shown).

As illustrated in Fig. 9.12, an output port write cycle starts similar to
reading an input port. The processor places the port address on the address
bus and asserts the _as signal. A 1-0 _wr transition results in a 0-1 transition
at the output of the AND gate connected to the register in Fig. 9.10 if sel = 1.
This causes the positive-level parallel-load register (built using positive-level
latches) to load the data on the data bus at time t 1. A 0-1 _wr transition
completes the write. The write cycle ends when _as returns to 1 at t 2 and
makes sel = 0 at t 3.

FIGURE 9.12 An illustration of an memory-mapped I/O output port write cycle
from processor point of view; also may require an ack handshaking signal
(not shown).

A port-mapped I/O port reading or writing is similar, except that the
address decoder in Fig. 9.10 also inputs the control bus signal _m (discussed
earlier). Assuming an Acc-ISA processor, the “LD” and “ST” instructions
(discussed in Chap. 8) would also generate _m = 0 to access memory, and
two new instructions, for example, “IN” and “OUT,” would generate _m = 1 to
access port-mapped I/O ports. With memory-mapped I/O ports, the _m signal
is not needed, and the “LD” and “ST” instructions would be used to address
memory as well as I/O ports.

Configurable Ports

As illustrated in Fig. 9.13, a configurable I/O port also contains a data
direction register (DDR) used for configuring each bit in the I/O port either
as a 1-bit input port or a 1-bit output port. Figure 9.14 illustrates the design
detail for 1-bit configurable I/O port. The DDR.q0 = 0 configures the bit d0 as
a 1-bit input port by disabling the tri-state buffer 1. The tri-state buffer 2 is
enabled during a read cycle. The DDR.q0 = 1 configures d0 as a 1-bit output
port by enabling tri-state buffer 1 and disabling tri-state buffer 2.

FIGURE 9.13 A block diagram for an 8-bit configurable port [3].

FIGURE 9.14 A detained circuit for a 1-bit configurable I/O port.

For example, if the content of DDR is 0x0F, it configures the upper 4-bits of
the I/O port in Fig. 9.13 as a 4-bit input port, and its lower 4-bits as a 4-bit
output port. The content of the DDR may be read and dynamically modified
to reconfigure the I/O port during setup. The tri-state buffer 3 is used when
the content of the DDR is read.

However, it is also possible to include, for example, a “command” port in a
microcontroller that would be used to configure a set of I/O ports with limited
configuration options but general enough to support the development of
many DCIs and DCs.

Figure 9.15 shows an example of a microcontroller with three configurable
I/O ports 0, 3, and 4 and two multipurpose I/O ports 1 and 2. Ports 1 and 2
are not only configurable, but also have dual use. In one application, the pins
associated with ports 1 and 2 may be used as configurable I/O ports, and in
another application, the same pins may serve as data or control signals.

FIGURE 9.15 A microcontroller architecture: pins connected to ports 1 and 2
have dual use [3]; not all modules shown.

A microcontroller, as an embedded system, includes CPU, RAM, ROMs, a
set of I/O ports, one or more timer modules, an interrupt controller, one or
more data communication modules, etc. A timer module is used when the
microcontroller performs certain tasks periodically. The interrupt controller,
which will be discussed later, is used to interrupt the microcontroller when
there is an external event.

The electrically erasable programmable read-only memory (EEPROM) and
flash memory (organized as memory) are used for firmware, software stored
inside an embedded device. The EEPROM is loaded with a bootloader

program, and the flash memory is used to store a DC or DCI firmware that
can be updated by the system during setup. The RAM is used to store
program data during execution and/or store setup data. A timer module
includes a counter and is used to schedule events. For example, a timer
module that uses a mod-12K counter and operates with a 12-MHz clock can
be used to monitor the keyboard hardware for keystrokes once every 1 ms
(12 K cycles / 12 M cycles/s ∗ 1000 ms/s = 1 ms).

In the figure, the microcontroller also includes three different data
communication modules to support various design applications. It includes a
universal asynchronous receiver/transmitter (UART), serial peripheral
interface (SPI), and a USB port, all within a single chip. UART, SPI, and USB
are three different communication protocols used with I/O devices.

In general, not all the resources in a microcontroller are expected to be
used in a single application, and thus some of the modules may share the
same I/O pins. For example, in the figure, the pins from ports 1 and 2 could
be used as the receive (Rx) and transmit (Tx) signals by UART module; as
the master in slave out (MISO), master out slave in (MOSI), serial clock
(SCK), and slave select (SS) signals by the SPI module; or the interrupt 0
(INT0) and interrupt 1 (INT1) signals by the interrupt controller.

Figure 9.16 illustrates a keyboard DC operating a key matrix. Each row-
column intersection in the key matrix identifies a key. The DC scans the
matrix by activating the 20 column signals, for example, setting each to 0 one
at a time using Ports 0, 1, and 3, as illustrated in the figure, and reading the
8-bit row signals using Port 2. Each time a key is pressed, it creates a
contact between a column wire and a row wire, making the corresponding
row signal 0 if and only if its corresponding column signal is also 0; the other
row signals remain at 1. A key is considered released when its row signal
returns to 1. The DC generates a code, referred to as a make code, when a
key is pressed and a contact is made, and a break code when the key is
released and the contact is broken.

FIGURE 9.16 Illustrating a keyboard device controller operating a key matrix;
not all microcontroller modules shown.

There are three standards for keyboard scan codes, known as scan code
set 1, set 2, and set 3. For example, using the scan code set 2, the data
sequence 0xE012, 0xE01C, 0xE0F01C, and 0xE0F012 indicate capital letter
A. The code 0xE012 is the make code for the SHIFT key, 0xE0IC is the make
code for the a key, 0xE0F012 is the break code for the a key, and finally
0xE0F012 is the break code for the SHIFT key. A key may also be held down
to have its make code repeated every so often. The keyboard DC is
initialized with a key repetition rate that determines how often a make code
is generated if a key is held down.

The make and break codes for all the keys, including CTRL, ALT, etc., are
transmitted via a DCI and stored in memory. The code is then converted, for
example, to an ASCII code by a basic input/output system (BIOS) routine for
use by application programs.

The keyboard DC also receives instructions through the keyboard DCI. For
example, the DC receives a key repetition rate during initialization, or a
command to turn on the Caps-On light-emitting diode (LED), if any, when the
CAPS-LOCK key is pressed.

Ports with Status Bits
The I/O port shown in Fig. 9.10 is an example of an I/O port with no status
bits. There is no way to know when input data is available to be read or when
the output data has been read. I/O ports with no status bits are used in the

design of a DC that directly controls the device hardware, such as those
shown in Fig. 9.16 for controlling the key matrix.

On the other hand, I/O ports that are used in the design of a DCI require
status bits to indicate when input data is available to be read or when output
data has been read by the device. For instance, when communicating with a
printer DCI, when the next print data should be sent to the printer DCI
depends on how fast the printer is able to print the data it has already
received. The next print data should be sent to the printer DCI when the DCI
has already sent the previous data to the printer DC and the DCI indicates it
is ready to receive the next print data.

Other examples are the keyboard DCI indicating the availability of a new
scan code it has received from the keyboard DC, a DMA controller indicating
the completion of a data transfer between main memory and a disk drive DCI
or a network adapter DCI, etc.

An application example of I/O ports with status bits will be discussed in the
next section, but first, there are three different mechanisms to transfer data
to/from a DCI, one of which is DMA transfer, which was briefly discussed
earlier.

9.5 Data Transfer Mechanisms
Data communication with a DCI is either done directly by a processor or
directly by a DMA controller. Furthermore, even when a processor is directly
communicating with a DCI to transfer data, the data is actually in main
memory. The processor inputs data from a DCI and then writes it to memory,
or the processor reads data from the memory and then outputs it to the DCI.
Interrupt-driven and programmed I/O are two data transfer mechanisms
that directly involve the processor.

9.5.1 Interrupt-Driven Transfer
An interrupt-driven transfer, also known as interrupt-driven I/O, is used
when a device causes an interruption. The execution of a currently running
program stops, and the processor invokes an interrupt handler (IH), also
called an interrupt service routine. When the IH executes, it transfers data
between the device and main memory. Because the processor is executing
the IH, it is directly involved in the transfer of data between the device and
memory.

An interrupt structure (discussed in Sec. 9.6) is used to assign each
device an interrupt priority in case multiple devices wish to interrupt the
processor. Some devices, such as the keyboard, have a lower interrupt
priority than, say, a disk drive. If there are too many devices in the system,
service for some devices could be delayed.

In order to illustrate interrupt-driven transfer and application of I/O ports
with status bits, consider a legacy keyboard DCI shown in Fig. 9.17. In the
figure, the DCI has two I/O ports, labeled port-0 and port-1. However,
because both the processor and the DCI access these ports, an input port
that the processor inputs data from is also an output port for the DCI.
Likewise, an output port that the processor writes to is also an input port for
the DCI. Two registers are associated with each port address, one as an
input port and one as an output port.

FIGURE 9.17 A keyboard DCI (device controller interface) to illustrate I/O port
accessing and interrupt driven transfer; not all signal and data path modules
are shown; ports are shown labeled from DCI point of view.

In the figure, the registers are labeled “Scancode,” “Data,” “Status,” and
“Command.” Table 9.3 lists the input and output ports from both the
processor and the keyboard device DCI point of view. The ports, however,
are labeled from the keyboard DCI point of view in the figure.

TABLE 9.3 How Ports Are Viewed by the Processor and Device Controller Interface in Fig.
9.17

The processor can read the “Status” port, which contains the status bits for
the remaining ports, at any time. The input buffer full (IBF) status bit (or
active-high signal ibf) and output buffer full (OBF) status bit (or active-low
signal _obf) indicate the status of the other three ports. When _obf = 0 (full), it
indicates a scan code is loaded into the “Scancode” register for the processor
to access. When ibf = 1 (full), it indicates that there is data from the processor
available in the “Data” or in the “Command” port for the keyboard DCI to
access.

A keyboard driver routine must first configure the DCI for either interrupt-
driven or programmed data transfer. The driver routine executed by the
processor writes a configuration command in the “Command” register
initiating the configuration of the DCI. Upon receiving the command, the DCI
starts the execution of a configuration program. The driver then writes
configuration data in the “Data” register. The configuration program reads the
data and stores it in a “configuration buffer” within the DCI.

For example, to illustrate how the I/O ports are accessed, the following
program code is used to check the IBF bit, and if the bit is 0 (i.e., ibf = 0), a
value as configuration command is stored in the “Command” register. The
program code is written using instructions from an Acc-ISA, discussed in
Chap. 8.

Keyboard Driver Routine Polls the “Status” Port and then Outputs to the
“Command” Port:

For interrupt-driven transfer, configuration data must set the OBF interrupt
enable (INTE) bit in the “configuration buffer.” The interrupt request (INTR) bit
(signal intr) is used to trigger an interruption if INTE is enabled. That is, for an
OBF interruption, the intr becomes 1 (active) when we have both _obf = 0,
which indicates the “Scancode” port is full, and inte = 1, which indicates
interrupt-driven data transfer.

As soon as a key is pressed (Fig. 9.16), the keyboard DC sends a scan
code to the keyboard DCI, which writes it to the “Scancode” register setting
the OBF bit (_obf = 0). This asserts the interrupt request signal intr making it
1 if inte = 1. The intr = 1 notifies the processor, which invokes the keyboard
IH, a routine. The handler then reads and stores the scan code in the main
memory. Because this is an interrupt-driven transfer, the IH does not need to
poll the OBF status bit; the intr = 1 is an indication that the “Scancode” buffer
is full. When an input port read cycle starts (see Fig. 9.11), a 1-0 _rd
transition clears the INTR bit, making intr = 0. When the processor reads the
scan code in the “Scancode” buffer, a 0-1 _rd transition clears the OBF bit,
making _obf = 1, which indicates the buffer is now empty. The DCI can now
write another scan code in the “Scancode” buffer.

9.5.2 Programmed Transfer
The programmed transfer, also known as programmed I/O, is not interrupt
driven; instead, the processor periodically executes a polling program,
triggered by a timer module, and checks the I/O port status bits in each DCI
to determine if any device requires a service. The polling is done in some

priority order. The following program illustrates a programmed transfer where
it checks the OBF and IBF flags of each device. The program either inputs
from the port if ibf = 1 (input buffer full) or outputs to the port if _obf = 1
(output buffer is empty). In the program, this is shown for keyboard Port 0 in
Fig. 9.17. Program code sections for other devices are labeled DCI_X,
DCI_Y, etc.

A Polling Program For Implementing Programmed I/O:

In this case, the processor not only is involved in the actual transfer of data
between the devices and memory, but also is directly involved in the frequent
polling of each device. A programmed transfer is only efficient when there are
a large number of devices in the system. For example, when using a
computer to monitor many sensors in a factory, if interrupt-driven I/O is used,
this would cause frequent processor interruption. At the same time, a

programmed transfer wastes valuable processor time. However, programmed
transfer can be offloaded and performed by a host controller interface, such
as a USB host controller interface, which would interrupt the processor when
it needs services.

For example, consider a modern personal computer system with several
different types of USB peripheral devices, such as digital speakers, digital
phone, digital camera, digital fax machine, removable flash memory, etc., as
illustrated in Fig. 9.18. The list of USB interfaced devices is growing every
day. Currently, a single USB host controller interface can poll 127 USB
devices.

FIGURE 9.18 A modern personal computer with several connected USB
devices [4].

A USB host controller communicates with each device using packets,
which is a collection of several data fields, each containing a piece of
information. Figure 9.19 illustrates one way the USB devices in Fig. 9.18 may
be interfaced with a single USB host controller interface that includes a root
hub with three ports. Also, as illustrated, USB hubs in the printer are used to
interface with USB speakers and a USB fax machine, and the hubs in the
keyboard are used to interface a flash memory and the mouse.

FIGURE 9.19 USB device connections to a single USB host controller interface
with three root hubs.

The services required by all the connected USB devices are classified into
four priority packet classes, as outlined in Table 9.4. Periodically, packets for
all the connected devices are made into a frame and communicated serially
from a USB host controller interface and through a USB root hub, USB hubs,
and USB ports and USB cables to the USB devices; or vice versa from the
USB ports and USB cables, through USB hubs and a USB root hub, to the
USB host controller interface.

TABLE 9.4 Four Packet Classes Used with USB Devices

Frame communication is frequent enough (e.g., every few microseconds)
to capture all the pending interrupt requests for timely service of devices that
require interrupt driven I/O, such as keyboard and mouse, and also transfer
data to/from real-time peripheral devices, such as digital speakers and
phones, that require real-time data communication. A bulk packet is used to
communicate with slower devices such as a printer. A control packet is used
to poll the USB hubs as devices are connected and disconnected.

While a host controller can communicate with several devices at the same
time, the basic operations required to communicate with each device are still
the same. Each packet sent by the host controller to each device must
contain an I/O port address and the type of service as either reading or
writing the port. For a read packet, the device sends a response packet
containing the device data (e.g., scan codes) back to the host controller,
which stores the data in the main memory. For a write packet, the host
controller must first access device data (e.g., print data) from the main
memory and send the data to the device.

Because the size of the data communicated between a host controller and
a device is in the order of many bytes at a time, both the host controller and
the DCI of each device contain memory as buffer space to temporarily store

the received or transmitted data. A USB host controller interface is described
in more detail in Sec. 9.7.

9.5.3 DMA Transfer
Interrupt-driven or programmed transfer is efficient if data transferred
between devices and memory is small (a few bytes). For devices such as
disk drives that require large (e.g., 4 KB) data transfers to/from memory, a
DMA transfer, which does not involve the processor in the actual transfer of
data, is more efficient. In order to illustrate a DMA transfer, consider the
simple system organization shown in Fig. 9.20.

FIGURE 9.20 A simple DMA controller to illustrate DMA transfer; assumed
memory-mapped I/O ports.

Both the processor and the DMA controller need to access the memory. In
general, a module, known as an arbitrator, is needed to grant access to the
shared bus. However, in a simple system organization like the one shown in
the figure, often, the processor is also the arbitrator. The following steps
explain a DMA transfer:

1. The operating system (OS), via the processor, initiates a DMA transfer
by first writing the I/O ports of both the DMA controller and the DCI.
Specifically, the processor (via a device driver) writes the memory
address register (MAR) port with a starting memory address and the
byte count register (BCR) port with a number of bytes to be transferred.
The processor also writes the configuration register (CR) port to indicate
both the direction of data transfer (to or from memory) and type of DMA
as either continuous—for example, when starting up a computer—or
noncontinuous—for example, during normal system operation when
the processor also needs to use the bus between each DMA transfer
to/from memory. The processor also writes to the I/O ports in the, for
example, disk DCI to configure the disk for a read or write operation.
Once both controllers are programmed, the processor starts the DMA
transfer by writing and setting a “start” bit in the disk DCI.

2. The disk DCI communicates with both the disk DC, which controls the
actual hardware of the disk, and DMA controller to complete data
transfer to/from memory. Assuming that the direction of a DMA transfer
is from the device to memory, the DCI first stores the device data in its
internal memory (refer to the Samsung disk drive in Example 9.1), and
then it asserts the DMA request (reqDMA) signal requesting a DMA
transfer. The DMA controller, in turn, asserts the bus request (br) signal
requesting the processor to release the bus. The processor, upon
completing its current bus cycle (if any), releases the bus and asserts
the bus grant (bg) signal, which grants the bus to the DMA controller.
The bus is released when the processor disables all its bus-connecting
tri-state buffers. Upon receiving the asserted signal bg, the DMA
controller becomes a bus master and thus is now able to initiate a
memory write cycle. A DMA memory read cycle is similarly performed,
except that data is transferred from memory to the DCI, and then from
there the data is sent to the DC.

3. As a bus master, the DMA controller starts a memory write cycle using
the content of MAR as the next memory address. It also asserts the
DMA acknowledge (ackDMA) signal for the DCI to place the data on the
data bus. MAR is incremented and BCR is decremented after each bus
transfer. For a memory read cycle, the ackDMA is asserted when the

memory data is on the bus (e.g., Fig. 9.7) and is ready to be transferred
to disk DCI.

4. Once the DMA controller completes one transfer, it does one of two
things: it either transfers the next data item (repeating step 3) if the
transfer type is continuous, or it releases the bus if the transfer type is
noncontinuous. The bus is released when the DMA controller deasserts
br. Another DMA transfer can begin starting at step 2. Once all the data
bytes are transferred and BCR becomes zero, the DMA controller
interrupts the processor to initiate another DMA transfer if needed.

A modern DMA controller, however, may provide service to multiple
devices by implementing multiple DMA channels, each equipped with its
own I/O ports that can be configured to service a different device. A modern
DMA controller may also include ports to minimize its communication with the
processor and improve performance. For example, instead of requiring a
processor to initiate a DMA transfer each time, the processor creates a DMA
transfer table (or a linked list) in memory and passes its address to the DMA
controller. Each of the table entries contains the information necessary to
initiate a separate DMA transfer. When one transfer is completed, the DMA
controller automatically fetches the information for the next DMA transfer
from memory without interrupting the processor. The DMA controller only
interrupts the processor when it has processed the entire table.

Alternatively, with some modern DMA controllers, the processor may also
configure the controller to interrupt each time it has processed several DMA
transfers. In this case, the processor is able to check the status and update
the transfer table, for example, by adding more DMA transfers, if necessary.

A modern multichannel DMA controller may also need to operate
differently if it is used to transfer data between two memory units (i.e.,
memory-memory DMA). A memory read cycle from one unit may be followed
by a memory write cycle to another unit. Finally, each device may include its
own dedicated DMA controller instead of sharing a multichannel DMA
controller. In this case, several DMA controllers would compete to
communicate with the main memory.

As we will see in Sec. 9.8, a USB host controller interface contains two
DMA controllers. The controller uses one DMA controller to transfer data
between the host interface and the main memory, and a second DMA
controller is used to transfer data between the host interface and each of the
connecting devices.

9.6 Interrupts
Interruptions are typically classified into hardware interrupts, caused by
hardware modules internal or external to the processor, and software
interrupts, caused by executing a special instruction, such as “INT” that
invokes a system-level routine. Internal hardware interrupts, also sometimes
called synchronous interrupts, exceptions, or traps, are due to an error,
such as arithmetic overflow, divide by zero, or invalid op-code, that occurs
within the CPU data path. They are called traps because they are instruction
dependent. If the execution of a program results, for example, in an
arithmetic overflow at a specific instruction—an “ADD” instruction at memory
address X—the overflow will occur at exactly same instruction no matter how
many times one runs the program (assuming that interruption on arithmetic
overflow is enabled and input to the program is the same).

Other internal hardware interruptions, however, may not be synchronous.
For example, consider a multiprogramming execution environment where
programs are often too big to fit in the main memory. This creates a scenario
in which a target instruction or data is not in main memory during the
execution of a program. This results in an interruption, commonly known as a
page fault. The program code or data page (e.g., 4 KB) must be copied on
demand from a disk drive to main memory using a DMA transfer before the
execution of the program can resume. The timing of the page fault may not
be synchronous as pages from different programs move in and out of
memory. Page faults will be discussed further in Chap. 10.

[In a multiprogramming execution environment, interruption of any kind
stops the execution of the currently running program (called a process). In
the case of a page fault interruption, the OS initiates a disk-to-memory DMA
transfer and places the ID of the interrupted process (e.g., process-1) in a
wait queue. While the page is being transferred, the OS starts or resumes
the execution of another process. When the DMA transfer completes, the
DMA controller interrupts the currently executing process (e.g., process-2),
returning control to OS, which then moves the process-1 ID from the wait
queue and places it in a ready-to-execute queue called a ready queue.

Processes (including process-1) that are in the ready queue take turns and
execute for a fraction of processor time called a time slice. A timer module
controls the duration of the time slice and causes an interruption when the
current time slice expires. Each process may use one or more time slices to
complete execution. Upon a time slice interruption, the OS places the ID of
the interrupted process on the ready queue and assigns the processor to the
process with its ID at the head of the queue. Process-1 (like other processes
in the ready queue) resumes execution when its turn arrives and continues

executing until there is another interruption, including another page fault, a
time slice interruption, etc.]

Hardware interrupts, such as a DMA interrupt and a DCI interrupt, that are
not internal to the processor, are called asynchronous interrupts. These
interrupts can happen at random and at any time during the execution of an
arbitrary program. For example, when a system uses interrupt-driven I/O to
service the mouse or keyboard, the exact moment when mouse is moved or
a key is pressed is not known.

The Intel “INT” and the ARM “SWI” are two examples of software interrupt
instructions. Software interrupts are always synchronous, and they are used
for many purposes, including allowing programs to take turn and access
shared resources, such as a disk drive for reading and writing files. Here, we
use the term interrupts to mean all types of interrupts.

9.6.1 Handling Interruptions
Figure 9.21 illustrates the difference between invoking a hardware interrupt
handling (IH) routine and a subroutine call (i.e., function, procedure, or
method). A subroutine is called by another routine when the routine executes
a jump/branch subroutine instruction, such as “JSUB sort,” that includes the
starting address of subroutine sort. The starting and ending addresses of
subroutine or an IH are labeled B and C in the figure. Because an instruction
starts the execution of a subroutine, the call is illustrated, by solid arrows in
Fig. 9.21(a), from A to B and subroutine return from C to D. After executing a
subroutine, control is returned to the calling routine where its execution
resumes starting at address D.

FIGURE 9.21 An illustration of subroutine call verses interrupt handler (IH);
solid arrows verses dashed arrows.

The execution of a hardware IH, on the other hand, is not started by an
instruction; thus, this is illustrated using dashed arrows in Fig. 9.21(b). In this
case, the CPU must first find out the cause of interruption and from that it
determines which IH to invoke. For example, if the cause of the interruption is
because the mouse was moved, the mouse IH is invoked.

After executing a current instruction, the CPU checks for pending requests
for interruptions, such as checking whether or not the intr signal in Fig. 9.17
is asserted. For example, if the CPU finds the intr signal associated with the
mouse is asserted, the CPU invokes the mouse IH. The IH then
communicates with the mouse DCI, accessing its ports to input the mouse
displacement information, which the IH uses to move the cursor on the
screen.

The software interruption handlers are typically numbered with integer
numbers. For example, Pentium instruction “INT 3,” which stands for
breakpoint exception, is used by debugger tools to create breakpoints in a
program during testing [5]. When the program execution reaches a
breakpoint, the IH is invoked that breaks the execution of the program under
test.

When an IH is invoked or a subroutine call is made, the state of CPU, for
example, the contents of ACC, X, SR, and program pointer (PP) in Fig. 8.7
(Chap. 8) are saved within CPU or typically in main memory by the IH or
subroutine. The saved state is restored when the execution of the IH or
subroutine completes and control is returned to the interrupted or calling
routine. The saved PP is called a return address or a return program pointer
(RPP). In the figures, the RPP for a subroutine call would be address D, and
for an IH, it would be either address A or D, as discussed next.

Precise Interruption
A precise interruption refers to a set of rules that must be carried out by CPU,
depending on the cause of an interruption. The following is a list of rules
applied for a precise interruption:

1. All the instructions prior to the RPP must have been executed and have
modified the state of CPU.

2. All the instructions starting at the RPP must not have been executed.
3. If the interruption is due to a synchronous event, except for software

interrupts, the RPP must point to the instruction that caused the
exception. In addition, if the exception is raised by the execution unit,
such as arithmetic overflow, the result of the execution may not change
the processor state. For example, the content of the ACC register in Fig.
8.7 (Chap. 8) should not change if an “ADD” instruction causes

arithmetic overflow, so the content of ACC can be analyzed by the
corresponding IH.

4. If the interruption is due to an asynchronous (external) event or software
interrupt, the RPP must point to the next instruction.

If the CPU data path is single-cycle, the checking for interruption is
performed during the execution of a current instruction, as will be illustrated
in Sec. 9.7. If the CPU data path is multicycle, the checking for interruption is
performed during the last data path operation required to retire each
instruction. If the CPU data path is pipelined, the checking for interruption is
performed in the write-back stage, where it indicates the execution of the
instruction is complete and the instruction is about to retire.

A precise interruption in a pipelined CPU is more complex than a single-
cycle or multicycle data path. Multiple interrupt requests may be generated at
the same time as stages are operating concurrently in the pipeline. In this
case, the instruction address (i.e., the content of PP) is also forwarded from
the fetch stage to the decode stage along with the fetched instruction. The
instruction address and any interrupt request generated in each stage are
forwarded from one stage to the next until they reach the write-back stage.

Upon an interruption, the RPP is saved internally in a register as part of
the CPU state that is saved in main memory, and the PP is changed to
execute an IH. If the CPU data path is pipelined, this will also cause a
pipeline flush. Note that the registers would not be cleared and would be left
as is so they can be saved in main memory by the IH. As was discussed
earlier, the state may also be saved internally within CPU (see Exercises
section). The details of a precise interruption in a pipelined CPU are referred
to elsewhere.

Vectored Interrupts
Vectored interrupts refers to several IHs in the system. Nonvectored
interrupts, on the other hand, means there is only one IH that handles all
interruptions. Figure 9.22 illustrates the organization of a single IH and
multiple IHs in memory. In the case of the nonvectored interrupts, the single
IH is invoked each time there is an interruption. The handler then determines
the highest-priority interrupting device to service. A nonvectored interrupt
mechanism is simple to implement, but because all interruptions are handled
by a single routine, interrupts are not handled quickly; thus, a nonvectored
interrupt is not common in modern computer systems. However, as
discussed in Sec. 9.7, a nonvectored interrupt mechanism is used for
simplicity to illustrate the data path details of an interrupt handling CPU.

FIGURE 9.22 Handling of vectored interrupts; assuming 2 bytes per word
memory.

The following outlines the requirements to implement vectored interrupts:

• A small region in main memory must be reserved for a vector table,
starting at a known address labeled “Base Address” as illustrated in Fig.
9.22(b).

• The interrupt requests from each DCI and DMA controllers must be
prioritized in hardware to generate a unique number, called an interrupt
vector (IV), associated with the highest-priority IH. The IV is used to
invoke a corresponding handler.

• During system startup, the entries of vector table must be filled with jump
instructions to different IHs, one for each IV.

• The processor data path must be extended by adding new registers and
circuits to execute new instructions and features as necessary to
implement vectored interruptions.

Equation (9.2) is an example of how an interrupt handler pointer (IHP) can
be defined as a linear function of an IV and the base_address of the vector
table. For IV = 1, 2, 3, etc., IHP = base_address + 2, base_address + 4, etc.,

is used as an index to access a vector table entry assuming each entry is 2B.
IV = 0, as illustrated later, may be used to indicate no pending requests for
interruption.

Figure 9.23 illustrates the execution order of multiple prioritized IHs. A
higher-priority handler always interrupts a lower-priority one, but not the other
way around. Furthermore, with each handler invocation, the processor status,
including a return address for the interrupted program, must be saved
(typically in memory).

FIGURE 9.23 Invocation of a multiple interrupts handlers.vsd

The following describes the steps CPU takes to invoke an IH; it is
assumed that IVs are prioritized so that IH1 (IV = 1) has lower priority to IH2
(IV = 2), and IH2 has lower priority to IH3 (IV = 3), etc., as shown in Fig. 9.23.
Furthermore, IV = 0 is used to indicate there are no pending requests for
interruption:

1. Processor ignores a receiving IV (labeled IVr) if the CPU’s checking for
interrupt requests feature is disabled or the IV of the currently executing
IH (labeled IVc) is greater than IVr. That is, when IVr ≤ IVc, the CPU
ignores IVr, keeping the request for an interruption pending until the
execution of the current handler associated with IVc ends. Otherwise, if
the CPU’s checking for interrupt requests feature is enabled and IVr >

IVc, CPU saves both the RPP for the currently executing IH and the IVc
in special registers within the CPU and changes the content of PP with
the IHP = IV ∗ 2 + base_address and makes IVc = IVr. For example, if
IVc = 1 and IVr = 2, then the CPU saves RPP1 for IH1 and IVc = 1 and
replaces the content of PP with the quantity base_address+4 and
makes IVc = IV2.

2. The CPU starts executing the jump instruction at memory address IHP
and thus begins the execution of the IH corresponding to the current IVc
(e.g., IH2 when IVc = 2).

3. The invoked handler must first save the processor state, including the
saved RPP and saved IVc in memory (see Sec. 9.6.2). The CPU,
however, continues monitoring the IVr for the next higher-priority IV.

4. The IH services the interrupting device—for example, a DCI or DMA
controller. Upon completion, the handler restores the processor saved
state, including the saved RPP and save IVc, and returns to the
interrupted program so the execution of the program can resume, which
could be a lower-priority IH (e.g., IH1) or a systems or application
program.

9.6.2 Interrupt Structures
Figure 9.24 illustrates two hardware interrupt structures, daisy-chained and
independent request, for prioritizing interrupt requests. They are used to
determine the IV of the interrupting device. The IV, in turn, is used to
determine which IH to invoke to service the device. The details of these
structures are explained next.

FIGURE 9.24 Interrupt structures: (a) daisy-chained structure; (b) daisy chain
module; (c) independent request structure.

Daisy-Chained
The structure in Fig. 9.24(a) orders all the interrupt requests into fixed
priorities. When the signal int is asserted, the CPU asserts an interrupt
acknowledge (iack) signal to identify the highest-priority IV.

A detailed circuit of a daisy-chain module is shown in Fig. 9.24(b). The
iack signal is forwarded from one daisy-chain module to the next until the
highest-priority IV (at that moment) as IVr is selected. A unique IV typically is
assigned to each DCI during setup. With the USB devices, only the USB host
controller interface interrupts the processor.

While the structure in Fig. 9.24(a) is scalable and more devices can be
added to the system, it has the disadvantage of resulting in starvation of
DCIs that are at the end of a long daisy-chain. A higher-priority DCI can
prevent iack = 1 from reaching the lower-priority daisy-chain modules at the
end of the chain.

Independent Request
The structure in Fig. 9.24(c) uses a priority encoder to quickly identify the
highest-priority IV. In the figure, the 8-to-3 priority encoder is used as a 7-to-3
encoder by connecting its input-0 signal to ground. In this case, IVr = 0 when
none of the seven interrupt request signals are active. Furthermore, IVr = 0 is
used to indicate to CPU there are no pending requests for interruption. This
would eliminate the int signal in Fig. 9.24(a), reducing one signal that the
CPU inputs.

The independent request structure requires no iack signal, unless a hybrid
—partly independent and partly daisy-chained—structure is used to
implement interrupt priority classes. All the DCIs in a system would be
grouped into different priority classes. For example, all the disk drives (e.g.,
hard disk and CD disk drives) may be considered part of a device class. In
this case, an IVr identifies all the DCIs in the same class (i.e., all the disk
drives), and an iack would then be used to identify the IVr of a specific device
(e.g., hard disk drive) in that class.

9.7 Design Example: Interrupt Handling CPU
This section presents the data path of an interrupt handling CPU with the
following requirements and specifications:

• The data path of the single-cycle Acc-ISA CPU in Fig. 8.7 (Chap. 8) is
extended to implement the invocation mechanism of a single IH that

provides service to several devices.
• The IHP is hardcoded to memory address 0x40 within the CPU,

assuming 8-bit addresses. Here, address 0x40 is arbitrarily selected.
• The IH can service a maximum of 16 devices, including a timer module,

a DMA controller, and 1 to 14 I/O devices.
• A daisy-chained structure (Fig. 9.29(a)) is used to prioritize the interrupt

requests from the 16 devices, where IV = 15 (the highest) is assigned to
the timer module, IV = 14 to the DMA controller, and 0 (the lowest) to
keyboard. Note that because we are using a daisy-chained interrupt
structure, we may also use IV = 0 as a valid device IV.

• Upon an interruption, the state of the CPU, defined by the content of
registers ACC, X, and SR, is saved in memory by the IH. The the return
address (RPP) is saved internally within the CPU.

Figure 9.25 illustrates a 16-level daisy-chained interrupt structure that
prioritizes a timer, DMA, and 1 to 14 I/O interrupt requests (only one,
keyboard, is shown). The DCI of each device generates an interrupt request
(intr) signal, which becomes 1 each time the device wants service from the
CPU. For example, a key depressed on the keyboard would set its interrupt
request signal as intr0 (also see Fig. 9.17), causing the CPU to interrupt the
currently executing program and start executing the IH to service the
keyboard.

FIGURE 9.25 A 16-level daisy-chained interrupt structure that prioritizes
interrupt requests from 16 devices from highest (IV = 15) to lowest (IV = 0).

Likewise, a DMA controller would assert its respective interrupt request
signal as intr14 (also see Fig. 9.20) when it completes a DMA transfer. The
timer module would interrupt, making intr15 = 1, so the OS can start or
resume the execution of another program. An I/O DCI can be device specific
or universal, such as a USB host controller interface.

The intr signals from the timer module, DMA controller, and maximum of
14 DCIs are wired-ORed to create the external interrupt request signal xint as
shown in Fig. 9.25. The xint signal, which enters the CPU, causes an
interruption if asserted and if the CPU’s interrupt handling feature is enabled.
The data path of the interrupt handling CPU is presented in Fig. 9.26.

FIGURE 9.26 The data path of the interrupt handling CPU, which is an
extension to the Acc-ISA discussed in Chap. 8.

The new data path implements eight new instructions, listed in Table 9.5,
and also includes added hardware as follows:

TABLE 9.5 New Instructions Required to Implement the Single Interrupt Handling
Mechanism

• A D flip-flop (FF) is used to enable or disable the CPU’s checking for
interrupts feature. The FF will be set to 1 (i.e., FF.q = 1) when the “EI” or
“RTI” instruction executes.

• An auxiliary program pointer register (PPX) is added to save the RPP,
which in this case, is the address of the next instruction in the currently
running program. Upon returning from an interruption, the program
resumes execution, starting from the address saved in the PPX. The
added 2-to-1 MUX7 in the fetch unit selects PPX (the content of register
PPX) as the next PP (the content of register PP) when instruction “RTI”
executes.

• The added 2-to-1 MUX5 in the fetch unit selects the hard coded IHP =
0x40 as the next PP upon interruption.

• An auxiliary status register (SRX) is added in the decode unit to save the
incoming IV of the highest-priority interrupting device.

• The instruction decoder unit is also modified to include three more
signals as ei (enable the CPU’s checking for interrupts feature), rstr
(restore), and di (disable the CPU’s checking for interrupts feature). The
ei signal is asserted when the “EI” instruction executes. The ei signal
sets the FF (FF.q = 1) on the next clock cycle, which in turn enables the
CPU’s checking for interrupts feature. The rstr signal, which also sets the
FF to 1, is asserted when the “RTI” instruction executes. The di signal is
asserted when the “DI” instruction executes, which synchronously resets
the FF (FF.q = 0) and disables the CPU’s checking for interrupts feature.

• The write-back multiplexer (MUX4) is also replaced with an 8-to-1 MUX
to additionally implement ACC ← SRX, ACC ← SR, and ACC ← X,
which are required for the IH to save the CPU state in memory.

Initially, upon reset, the FF would be set to 0 (FF.q = 0), disabling the
CPU’s checking for interrupts feature. FF.q remains 0 until the system starts
and the operating system initializes the system by:

• Loading the single IH into memory starting, for example, at location 0x42
• Storing the instruction “JMP 0x42” at location IHP = 0x40
• Enabling interrupts by executing an “EI” instruction, which makes FF.q =

1, and thus enables the CPU’s checking for interrupts feature

During normal system operation, one or more interrupt request (intr)
signals (Fig. 9.25) may be asserted. Each time that xintr becomes 1 and

checking for interrupts is enabled (i.e., FF.q = 1), the int signal within the CPU
becomes 1 and causes the following operations to take place during the next
clock cycle:

• Via MUX7, int = 1 will cause data path to perform PPX ← PP + 2. This
saves the quantity PP + 2 as the RPP. The interrupted program will
resume execution (after returning from an interruption) starting from
instruction address at RPP (see Fig. 9.21(b)).

• Via MUX 5 and MUX 7, int = 1 will cause data path to perform PP ←
0x40. This will cause the “JMP 0x 42” instruction at memory location
0x40 to execute next, which will start the execution of the single IH.

• The int = 1 also causes SRX ← IV and thus saves the IV of the highest-
priority interrupting device. Note that when both int = 1 and xintr = 1, iack
becomes 1 and in turn selects the IV of the highest-priority device (Fig.
9.25) that is requesting service.

• The int = 1 also synchronously resets FF, making FF.q = 0. This disables
the CPU’s checking for interrupts feature. While FF.q = 0, int remains 0
and prevents a currently executing program, which could be an OS
routine during system initialization or IH during normal operation, from
interrupting.

The pseudo-code in Example 9.2 outlines the steps the single IH must
take to provide service, one at a time, for an interrupting device among
several devices. The handler performs four main tasks as follows:

1. The IH saves the state of the interrupted program, which is defined as
the content of ACC, X, and SR registers, in memory. In the pseudo-
code, this is shown by calling function save_cpu_status(), which can
include the following code section:

2. The IH must determine the IV of the interrupting device so it can call a
driver routine to service the device and thus reset the device interrupt
request signal (intr)—refer to Sec. 9.5.1 for the keyboard example. This
is shown by “iv = get_iv()” and a “switch” statement in the pseudo-code.
The “get_iv()” function would use the MVSRX2ACC instruction to copy

the content of SRX into ACC, which will then be compared with 0, 1, 2,
etc., to determine the IV of the interrupting device.

3. The interrupt handler must restore the state of the interrupted program
before returning. This is shown by calling function restore_cpu_status(),
which can include the following code section:

4. The IH would then execute the “RTI” instruction, which will cause the
data path to perform PP ← PPX and FF.q ← 1 on the next clock cycle.
This restores the return address, which resumes the execution of the
interrupted program, and also enables the CPU’s checking for interrupts
feature.

Example 9.2. Describes a pseudo-code outlining the functions of a single IH that services an
interrupting device, a timer module, DMA controller, or an I/O device one at a time:

If, upon returning from an interruption, the CPU finds xintr = 1, the handler
will be invoked again to service another device that has its pending intr = 1.

Finally, the disable interrupts (“DI”) instruction in Table 9.5 is included in
case a “soft” reset—for example, using a “restart” menu option—is used. The
disadvantage of a single IH mechanism is that if a higher-priority device
requests a service while the CPU is executing the IH, the high-priority device
must wait until the handler completes its task and returns. For this reason,
modern computer systems implement a vectored interrupt mechanism so that
the IH of a lower-priority device can be interrupted and the CPU can execute
the IH of a higher-priority interrupting device (e.g., DMA) as was illustrated in
Fig. 9.23.

9.8 USB Host Controller Interface
The need for a host controller interface was briefly discussed in Sec. 9.5.2.
The USB host controller interface is designed to offload CPU from performing

the task of directly providing services to potentially many I/O devices. In this
case, the interrupt-driven transfer may not be a practical option because
there could be many device interruptions. Programmed transfer would not be
a viable option because it would waste valuable CPU time. In addition, the
USB host controller interface implements “plug and play” device interface that
can support numerous USB devices without requiring device installation and
system restart.

9.8.1 Standards
The USB 1.x standard was designed according to the specification of either
the universal host controller interface (UHCI) or the open host controller
interface (OHCI) suitable for low-speed and full-speed devices requiring,
respectively, 1.5 Mbps and 12 Mbps data transfer rates. The USB 2.0
standard, on the other hand, is based on the specification of the enhanced
host controller interface (EHCI) and is designed for high-speed devices with a
transfer rate of up to 480 Mbps. USB 3.0 is designed to support super-speed
devices requiring transfer rates of up to 5 Gbps. Each generation of USB
host controller interfaces also contains root hubs to service a slower device.
For example, the USB 2.0 host interface contains root hubs to service low-
speed and full-speed devices in addition to providing service to high-speed
devices.

A USB cable consists of four wires, two of which are power and ground,
and the other two are data signals labeled D+ and D−. A USB communication
module uses the D+ and D− signals to send/receive packets with the non-
return-to-zero inverted (NRZI) coding scheme (refer to the “Exercises”
section in Chaps. 5 and 6 for information on NRZI). USB packets are
grouped into token, data, and handshake as illustrated in Fig. 9.27. Each
packet starts with a synchronization sequence and ends with an end-of-
packet (EOP) marker. USB 1.x packets start with an 8-bit synchronization
sequence (i.e., 00000001) and end with an EOP marker that keeps the D+
and D− signals at 0 for the duration of 2 bits. The USB 2.0 standard, on the
other hand, uses a 32-bit (4-B) synchronization sequence and an 8-bit EOP
marker.

FIGURE 9.27 Three types of USB communication packets. Each packet starts
with a synchronization sequence and ends with an EOP marker.

9.8.2 Transactions
Each USB transaction consists of one or more packets. For example, a
transaction that sends print data to a printer, requires, in order, a token
packet, a data packet, and a handshake packet.

As shown in Fig. 9.27, token and data packets each include a type field, a
data field, and a field for an error detection code. Handshake packets have
only a type field. A token packet identifies one of four possible transactions,
called start-of-frame (SOF), setup (SETUP), input (IN), and output (OUT), as
described in Table 9.6. A data packet contains a payload and is typed either
as Data0 or Data1. The USB 2.0 has other data types, such as Data2, which
is used to communicate the size of a large payload that would be transmitted
via several transactions.

TABLE 9.6 Examples of USB Packet Identifiers

If a transaction contains an entire data payload from/to a device, its data
packet would be typed as Data0. On the other hand, if two or more
transactions are used to transfer a large payload, the consecutive data
packets would be labeled alternating Data0 and Data1. Every source and
destination module includes a toggle bit that is initially set to 0.

Each time that a Data0 or Data1 packet is sent by a source module and is
received by a destination module, their toggle bits are toggled; if 0 (i.e.,
indicating Data0), it becomes 1 (i.e., expecting Data1 next), or if the tag was
1 (indicating Data1), it becomes 0 (expecting Data0 next). This ensures that
a data packet at the destination is received only once in case of an error,
such as when a destination module receives a packet correctly and toggles
its toggle bit but the source thinks otherwise and keeps its toggle bit
unchanged and retransmits the packet. In this case, since the two toggle bits
are no longer the same, the receiver (correctly) rejects the retransmitted
packet. Handshake packets serve multiple purposes. For example, an
acknowledgement (ACK) packet is used to confirm the receipt of a data
packet, or a negative acknowledgment (NACK) packet is used to control the
flow of data, for example, when a device that receives a packet to send data
has no data to send at that time.

9.8.3 Transfers
The four types of data transfers, named interrupt, isochronous, bulk, and
control, which were described in Table 9.4, are used to service all classes of
USB devices. Also, as was discussed earlier, USB devices do not use

interrupt-driven transfer. Instead, an interrupt packet is used to poll those
devices, such as the keyboard and mouse, that normally use interrupt-driven
transfer in legacy personal computers. In this case, a device, such as
keyboard, will send a NACK handshake packet each time that it is polled but
has no scan code to send.

Real-time USB devices, such as digital phones must be able to send or
receive data and speakers must receive data frequently without interruptions
when they are in use. These devices use isochronous transfers, and the
corresponding transactions include token and data packets but no
handshake packets; the data of these transactions is never retransmitted.
Bulk transfers are used with devices such as printers, fax machines,
scanners, and plotters that require accurate data communication but can
tolerate interruptions in receiving data. Control transfers are used during a
device or hub configuration.

Many devices may use a single host controller interface to send or receive
packets. However, a single device cannot be allowed to communicate
continuously and starve other devices, negatively affecting their normal
operations. For example, consider the system shown in Fig. 9.18. Suppose a
user wants to print a document while listening to music on USB speakers.
Both the printer and speakers must share the host controller to receive print
and music data, respectively. If the host controller is allowed to transfer print
data continuously for a long time, the transfer of music data to the speakers
will be interrupted, thus resulting in poor audio quality. Similarly, if the host
controller is allowed to transfer music data continuously, the print job may
never finish. In another scenario, a user may want to work on, say, a
document at the same time that the printer is printing and the music is on. In
this case, the keyboard and mouse must also be able to communicate with
the system.

9.8.4 Descriptors
Each USB host controller interface implements one or more access points,
each one called an endpoint. Each endpoint includes a set of I/O ports that
are accessed by the host controller. Each endpoint contains a descriptor
called an endpoint descriptor that identifies its transfer type—for example,
control, interrupt, isochronous, or bulk—as well as other requirements, such
as the maximum amount of data allowed in each data packet. The control,
interrupt, and bulk transfers use a maximum data size of 64 B. Isochronous
transfers, on the other hand, use a larger maximum data size (e.g., 1024 B in
USB 2.0). A USB hub controller implements a status change endpoint,

which is polled once every 255 ms to detect a possible port event, such as
connecting or disconnecting a device from a USB port.

A device may contain multiple sets of endpoints to implement different
types of interfaces. For example, a USB CD-ROM drive would implement
three different interfaces: a mass storage interface for reading/writing files, an
audio interface for handling music, and a video interface for handling video
images. Each interface in a USB device includes an interface descriptor
that includes a number of endpoint descriptors. The interface descriptors
themselves are part of a configuration descriptor, which may consist of
multiple different configurations, including, for example, a low-power
configuration used with battery-powered systems. All these descriptors are
organized in a hierarchy and included in a device descriptor, which also
contains device information such as the manufacturer name and serial
number. Each time that a newly plugged-in device is detected by polling the
hub, the device’s descriptor is accessed by a USB driver. The descriptor
contains all the necessary device information, including a list of I/O port
relative addresses within the device and the type of transfer used by the
device. The driver assigns a unique address to the device and configures its
endpoints.

9.8.5 Frames
A USB host controller interface is designed to service all the devices that are
currently attached and active. It sends and receives packets at regular
intervals called frames. For example, the USB 1.x uses 1 ms (millisecond)
frame, and USB 2.0 uses 125 μs (microsecond) frames, each called a
microframe. Each frame for full-speed USB 1.x devices is 12,000 bits (12
Mbits/s ∗ 1 ms ≈ 12,000 bits) long. A microframe is 60,000 bits (480 Mbits/s ∗
125 μs ≈ 60,000 bits) long.

Assuming that the system shown in Fig. 9.18 is using a single USB host
controller interface, Fig. 9.28 illustrates one possible frame content for the
USB 1.x host controller. In the figure, each frame includes packets for several
transactions and begins with an SOF transaction. For example, consider a
scenario where a user is talking on a digital phone, working on a document,
listening to music, printing a print job, sending/receiving a fax, and writing
flash memory. In this case, a frame would contain packets for the following
transactions as follows:

FIGURE 9.28 Illustrating USB transfers during a single frame; frame duration is
1 ms for USB 1.x [4].

Two isochronous audio IN and OUT transactions with the digital phone
An isochronous stereo audio OUT transaction with the speakers
An interrupt IN transaction with the keyboard
An interrupt IN transaction with the mouse
Zero or more control transactions with the hubs
If possible, a bulk OUT transaction with the printer, fax machine, and flash

memory

Packets that are associated with the interrupt, isochronous, and control
transfers have higher priority and are included first in every frame. Packets

that are associated with bulk transfers are included in the frame only if there
is enough leftover bandwidth.

In general, not all devices, except for those that require interrupt or
isochronous transfers, need to have packets in every frame. Typically, 90% of
the frame bandwidth is reserved for interrupt and isochronous transfers and
10% for control transfers, leaving up to 0% of frame bandwidth for bulk
transfers. If at any time there are more interrupt or isochronous transfers, no
bulk packets will be allowed, which may result in short interruptions in the
operation of devices that use bulk transfers. Furthermore, a newly attached
device would not be configured if its transfer type requires more bandwidth
than is currently possible with the existing devices.

The USB 2.0 host controller uses split transactions to communicate with
low- and full-speed devices that are interfaced through a high-speed hub. In
this case, a low- or full-speed OUT transaction is split into several start-split
(SS) microframe transactions. The data from these SS transactions are
stored in a buffer in the high-speed hub and later are sent to the low- or full-
speed devices. A USB 2.0 low- or full-speed IN transaction starts with a
single SS microframe transaction. Once a target low- or full-speed device
receives the IN request, it uses a lower packet rate of 1.5 Mbits/s or 12
Mbits/s to transmit its data to the high-speed hub, which receives it in an
input buffer. The data in the buffer is then transmitted to a USB 2.0 host
controller via several split transactions called complete split (CS)
transactions.

9.8.6 Transaction Organization
Each USB device uses a driver routine called a client driver that
communicates with the device through two pieces of host software: a USB
driver and USB host driver. A client driver knows what to communicate with
the device and issues requests to the USB driver. Each client request
includes a memory space that data to/from the device is stored. For example,
a USB keyboard (a client) driver initiates an interrupt transfer request and
provides a memory address where data (scan codes) from the keyboard
should be stored. The USB driver translates each client request into one or
more USB transaction descriptors (TDs). Each TD is a data structure and
includes all the necessary information about a transfer, as well as links to the
next TD and memory space that either holds the client’s OUT data or the
client’s IN data.

All the TDs from the active clients are grouped and organized as a set of
linked lists of TDs in memory. The control and bulk TDs in USB 2.0 are
organized separately than those for interrupt and isochronous packets. The

interrupt and isochronous TDs, shown as iTDs in Fig. 9.29, are grouped into
an array of linked lists and processed (executed) at regular periods
(intervals). The control and bulk TDs, shown as qTDs, on the other hand, are
organized as a queue of linked lists and are processed with no specific
intervals. Each of the linked lists of iTDs is executed within a 125-μs
microframe. A qTD is executed when there are no unexecuted iTDs left in the
array.

FIGURE 9.29 The organization of USB 2.0 transactions in memory [4].

A USB driver stores the starting addresses of the array and the head of
the queue in a USB host controller interface via a USB host driver. A USB
host controller uses two counters to execute the iTDs, as shown in the figure.
The counter-1 is a mod-60000 counter and operates with a 480-MHz clock.
The counter-2 holds a current frame number and is used as an index to the
array. The counter-2 is incremented once every 125 μs. The array size is

programmable and may be defined with 1024, 512, or 256 elements. The
array base address is stored in a register called a periodic list base
address, and is concatenated with the counter-2 to locate the next
transaction in memory. The asynchronous list base address points to the
head of the queue of linked lists in memory, as illustrated in the figure.

Each time that the counter-2 increments, an SOF transaction is executed,
which informs all the devices that use isochronous transfers to synchronize
their activities. If a TD (iTD or qTD) describes an OUT transaction, the host
controller fetches its token and data packets from main memory and
transmits them to the target endpoint. If the endpoint implements an interrupt,
control, or bulk transfer, the controller receives a corresponding handshake
packet from the endpoint. As stated earlier, isochronous transfers require no
handshake packets.

If a TD is an IN transaction and indicates an interrupt, control, or bulk
transfer, the host controller fetches the TD’s token and handshake packets
from memory and transmits the token packet to the target endpoint. After
receiving a data packet from the endpoint, the controller transmits the
handshake packet to the endpoint if the data was received error free.

9.8.7 Transaction Execution
Like any DCI (e.g., Fig. 9.17), a USB host controller interface includes a set
of I/O ports that are accessed by both CPU and the host controller (an
embedded system), as illustrated in Fig. 9.30 for the USB 2.0 host controller
interface. No device data is directly communicated by the CPU using the I/O
ports; instead, the ports are used only to configure and setup the host
controller. Table 9.7 lists a few USB 2.0 host I/O ports called USB
operational registers. They are used to set the size of the frame array with
1024, 512, or 256 entries; how often to interrupt CPU; etc. The interrupt
frequency is specified in terms of the number of microframes. This is referred
to as an interrupt threshold that is defined in terms of once every 1, 2, 4, 8,
16, 32, or 64 microframes.

FIGURE 9.30 A single port USB 2.0 EHCI block diagram [6].

TABLE 9.7 A List of the USB 2.0 Operation Registers (i.e., I/O Ports)

For example, if the interrupt threshold is set to once every two
microframes, the host controller first will execute all the TDs (iTDs and qTDs)
allowable within two microframes, where iTDs are processed first. If the

interrupt-on-complete (IOC) bit is set in one or more of the TDs, the host
controller will issue a request to interrupt CPU at the end of the second
microframe. As part of the host controller interface configuration, CPU may
choose to enable or disable the execution of TDs.

Once the processor fully configures the host controller interface, it sets the
run-bit—similar to how the processor initiates a DMA transfer—in the USB
command register, which enables the host controller and starts the
execution of the TDs. A first in, first out (FIFO) memory buffer is used to hold
the OUT data packets before they are transmitted and IN data packets
received from devices before they are transmitted to the main memory. The
memory controller in this case is responsible for generating memory
addresses for fetching TDs, reading and writing endpoint data from/to main
memory, and writing status data to main memory. For example, in Fig. 9.30,
the DMA-1 is used to fetch TDs from the main memory and store them in a
RAM within the list processor and to fetch endpoint OUT data and, via the
DMA-2, store them in the FIFO buffer. The DMA-2 is also used to store the
endpoint IN data from the FIFO buffer via DMA-1 in the main memory.

The DMA controllers are used for concurrent processing; they accelerate
data transfer in and out of the host controller interface. The root hub, which
also includes a set of configuration registers, is responsible for the
management of the ports, such as port reset and resume, as well as port
connections or disconnections. The interface engine (IE) is responsible for
NRZI data encoding/decoding, token construction, etc.

References
1. William Stallings, Computer Organization and Architecture, Prentice Hall,

8th ed., 2010.
2. Mobile Intel Pentium Processor with 533MHz Front Side Bus,

http://www.intel.com/Assets/PDF/datasheet/253028.pdf.
3. Microcontroller, http://www.atmel.com.products/,

http://www.cypress.com/products/.
4. Don Anderson and Dave Dzatko, Universal Serial Bus System

Architecture, 2nd ed., Addison Wesley, 2002.
5. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume

3A: Systems programming Guide, Part 1, 2009.
6. USB 2.0 host controller core (inSilicon), http://www.synopsys.com/.

http://www.intel.com/Assets/PDF/datasheet/253028.pdf
http://www.atmel.com.products/
http://www.cypress.com/products/
http://www.synopsys.com/

Exercises
9.1 Consider an FSB that interconnects four 1-GHz processors to a shared

memory unit creating a UMA architecture. Suppose, on average, 10% of
the instructions are “ST” that write to memory. Do the following:
a. Assuming that CPI = 1 and each write is 4 B, determine the memory-

write bandwidth required by the four processors.
b. Considering that memory also needs to provide instructions and data

to the processors, determine the required clock frequency of the FSB
for twice the bandwidth calculated in part (a), assuming the FSB
operates similar to an SDRAM bus with burst size = 1 and has a 32-
bit data bus.

c. Suppose the memory controller operates a 32-bit 400 MHz SDRAM
memory unit, determine a memory organization for peak
performance; that is, there is 4 B transfers every FSB clock cycle.

9.2 Research and write a short paper on Intel’s QuickPath link.
9.3 Research and write a short paper on AMD’s HyperTransport tunnel.
9.4 Draw a six-node NUMA architecture with only nine serial links, where

each processor is no more than two links away from another processor.
9.5 Consider a four-processor NUMA architecture with serial

interconnection links versus a bus-based four-processor UMA system.
Answer the following:
a. Compare serial versus bus interconnections.
b. Compare NUMA versus UMA architectures as the number of

processors increases.
9.6 Consider the memory controller shown in Fig. 9.6. Suppose the SRAM

has a read/write access time of 4 ns, the CPU bus clock frequency is
0.5 ns and requires one clock cycle to detect ack = 1 and one clock
cycle to complete the memory cycle, either to load the data sitting on
the bus to an internal register and end a read cycle or to remove the
data from the bus and end a write cycle. Assuming that memory read
and write access times are the same, determine the size of the counter.

9.7 Suppose the RPM of a new Samsung disk drive is twice the one in
Example 9.1. Determine how much faster a 512-B transfer between
memory and the disk drive will be.

9.8 Draw a circuit for a port-mapped I/O port access as in Fig. 9.10 that
illustrates the circuit for a memory-mapped I/O port.

9.9 Consider the timing diagram in Fig. 9.12. Do the following:
a. Briefly explain why, when sel = 1 and _wr = 0, the output port will

load the data on the bus.
b. Suppose the output port is designed using flip-flops. What changes

would be required to interface and operate the port? Also, draw the
output port and illustrate/explain how and when it will load the data
from the bus. Note: the port flip-flops are not operated with a
continuously changing clock signal.

9.10 Suppose port addresses 0x60 and 0x 64 are, respectively, assigned to
memory-mapped I/O ports 0 and 1 (each a 4-B port) in Fig. 9.17. Design
an address decoding circuit for the two ports. For simplicity, assume an
8-bit address bus.

9.11 Explain in what way a modern DMA controller that processes a data
structure containing DMA transfer information is better than a simple
DMA controller shown in Fig. 9.20 and how a modern controller may
affect the performance of a system.

9.12 Explain why when a receiving IV (IVr) is less than or equal to the IV of
the currently executing interrupt handler (IVc), the CPU will ignore the
IVr until IVr > IVc.

9.13 Assuming that the delay for a NAND gate is 0.1 ns and for a tri-state
buffer is 0.2 ns, estimate the worst-case delay before an IV from a 16-
node daisy-chained interrupt structure is placed on the bus.

9.14 The Sparc CPU implements eight-window “register windows” where the
CPU data path includes eight copies of all the user-accessible registers.
For example, ACC, X, and SR in Fig. 9.26 are the user-accessible
registers. With a register window, the state of a currently executing
program, upon subroutine call or interruption, would be saved within the
CPU instead of on memory. Do the following:
a. Suppose the CPU in Fig. 9.26 has four register windows; explain how

having register windows improves service to the waiting devices.
b. Suppose four copies of ACC, X, and SR registers are used in Fig.

9.26 to create register windows of size 4. Also, assume the registers
are now labeled ACC0, X0, and SR0 for window 0, ACC1, X1, and
SR1 for window 1, etc. Upon an interruption, the next instruction that
executes and requires a register uses, for example, one of the
registers in window 1. That is, for example, the instruction

“MVSRX2ACC” in the IH when it executes performs ACC1 ← SRX,
and the state of the interrupted program will remain saved as the
content of the registers ACC0, X0, and SR0 in window 0. RTI will also
switch back to window 0 so the interrupted program resumes
execution using the registers in window 0. Design the four-window
register windows circuit and briefly describe how it would be used to
switch windows.

c. Discuss how to extend the register windows in part (b) to also support
subroutine calls with the ability to pass a single parameter to a
subroutine via ACC. Also, what should be done when there are
several levels of subroutine calls.

d. A register window provides certain advantages. Suppose a CPU has
eight register windows. What can programmers do to take advantage
of register windows?

e. Research and write a short paper on how a Sprac processor
implements overlapping register windows to pass parameters.

9.15 Briefly state why a USB host controller combines packets into frames
that are periodically transmitted to/from devices.

9.16 Briefly state why the iTDs are processed before the qTDs in Fig. 9.29.
9.17 Briefly state why DMA-1 and DMA-2 in Fig. 9.30 are necessary.
9.18 Briefly state the purpose for the interrupt on asynchronous list advance

in a USB host controller interface. (Hint: How modern modern DMA
controllers work.)

9.19 Computer security (secure interruption): See Exercise 11.36 for
detecting register spoofing, splicing, or replay attack upon returning
from an interruption (also see Sec. 11.11.9).

CHAPTER 10
Memory System

10.1 Introduction
The performance of both uniform memory access (UMA) and nonuniform
memory access (NUMA) systems depends on latency. Any improvement in
latency, including memory latency, would increase the bandwidth of the
system. The longer a CPU (processing core) stays idle, the number of clock
cycles required to execute programs increase, reducing instruction
throughput. In addition, the capacity of both nonvolatile storage and main
memory has to be large enough for a system to store many programs and
data so it can run systems and application programs concurrently. This
means memory must be cost effective too. However, at the moment, there is
no single technology available that can be used to build a low-latency, large-
capacity, and low-cost memory.

Commonly used memory technologies today are static random access
memory (SRAM), synchronous dynamic random access memory (SDRAM),
and magnetic and flash memory. SRAM technologies are the fastest, but
because SRAMs are used as cache memory inside the processor, they are
also the most expensive. SDRAM technologies cost less, but are slower,
requiring access time in the order of 100 CPU cycles. Magnetic and flash
memories are nonvolatile and cost the least, but they are the slowest and
require access time in the order of milliseconds; they are about 1,000,000
times slower than CPU.

However, programs contain loops and data is typically accessed from
memory sequentially. Thus, only by using a combination of different memory
technologies, organized in a hierarchy, as illustrated in Fig. 10.1, with the
slowest memory at the bottom and the fastest memory on top, can one
create a memory system that reduces average latency, minimizes cost, and
has large storage capacity. Note that the instruction memory (IM) and data
memory (DM) that were introduced in Chap. 8 as part of CPU data path are
relabeled as instruction cache (Ic) and data cache (Dc) in the figure.

FIGURE 10.1 A memory system with four levels of memory hierarchy.

Other memory system design objectives may include low power usage,
high reliability, and small physical size. The low power and small size
requirements are especially important for handheld devices.

Data is copied from the lowest level of memory hierarchy to the next
higher level until it is at the highest level before they are accessed by the
CPU. In addition, multiple data items (as a block or page) are copied
between levels of the hierarchy. Furthermore, the CPU will wait to receive
data as long as data is in main memory. A program’s execution will be

stopped, as we see in Sec. 10.4, if the instruction or data the CPU requested
is not in the main memory.

While a program is executing, modified data is copied from a higher level
to the next lower level of memory hierarchy to create space or to inform the
lower-level memory of changes when necessary. This creates scenarios
where two copies of the same data in two different memories may not be the
same. For example, consider a data item at memory address X that is copied
from main memory to Level 2 (L2) cache in Fig. 10.1. The data is then copied
from the L2 cache to Level 1 (L1) data cache before it is accessed by CPU.
Now suppose the CPU, after operating on the data item, writes the new value
in the L1 cache, modifying the copy, indicated as “(X)′” in the cache. The
copy of the data item in the L1 cache is now different from the one still stored
in the L2 cache and main memory.

Now, at this time, suppose the operating system (OS) instructs a direct
memory access (DMA) controller to transfer data, including the data at
address X, from main memory to the hard disk. Clearly, the data item that
should be copied to the disk must be the modified one sitting in the L1 cache.
Likewise, in another scenario, the OS may instruct the DMA controller to
update the main memory, including the content of address X, with the copy
on the hard disk. This time, the copy in the main memory would be the latest
and valid and the ones in the two caches would be stale and not valid.
Therefore, in order to prevent stale data from ever being saved on disk or
ever being accessed by the CPU, certain data coherency protocols must be
implemented between levels in memory hierarchy.

In addition, because volatile memory access time is very small (in the
order of 100 CPU cycles maximum) as compared to the speed of a
nonvolatile memory (disk or flash drive), the tasks of copying and maintaining
coherency between memory levels, except between the lowest two levels in
the hierarchy, are performed in hardware. Copying and maintaining data
coherency between the nonvolatile memory (e.g., hard disk), known as
virtual memory, and the main memory, known as physical memory, require
certain functions be performed in software and certain operations in
hardware. A virtual memory management system decides where in physical
memory to store the codes and data of one or more programs stored on the
hard disk.

This chapter presents the architecture and organization of memory
hierarchy and provides alternative cache organizations and coherency
protocols. Depending on the requirements, a cache can be designed to
minimize hardware and access time or traffic. Power consumption and the
relationship between a cache organization and system performance are also
discussed.

The chapter also presents and illustrates virtual-to-physical address
mapping schemes, and where exactly within the processor chip this mapping
scheme must be implemented is discussed and alternative solutions are
presented.

10.1.1 Memory Hierarchy
In Fig. 10.1, less costly nonvolatile memory is used to build potentially
unlimited memory storage. DRAM technologies, typically SDRAMs, are used
to build a large main (physical) memory, and SRAM technologies are used to
build small but fast cache memories inside the processor.

Program code and data are copied from the nonvolatile storage to the
main memory and from there to the L2 cache and then to the two L1 caches
during program execution. Only a small fraction of each lower-level memory
content can be retained in the next higher-level memory. In addition, because
DMA transfers (Chap. 9) and burst memory transfers (Chap. 7) are more
efficient, pages (e.g., each 4 KB) are transferred between a nonvolatile
storage and main memory. Blocks (e.g., 32 B or 64 B), also called a cache
block or cache line, are transferred between main memory and the L2
cache, and even smaller cache lines are transferred between the L2 cache
and each of the L1 caches. Instruction cache lines are transferred from the
L2 cache to Ic and data cache lines between the L2 and Dc.

A request from the CPU to access memory always goes first to the Ic if the
address indicates an instruction or to the Dc if the address indicates data
(also see Fig. 8.5 in Chap. 8). If the copy of the target memory block is in Ic
or Dc, the access is called a cache hit. Otherwise, the access is called a
cache miss, and the request is forwarded by the Ic or Dc to the unified L2
cache, which contains both instructions and data. Again, the access is called
a cache hit if the copy of the block is in the L2 cache and a cache miss
otherwise. If it is a cache hit, the L2 cache transfers a copy of the block, if
instructions, to Ic or, if data, to the Dc. On the other hand, if the access is a
cache miss, the L2 cache forwards the request to main memory.

In modern computer systems, a program is typically not loaded into main
memory in its entirety. Instead, program and data pages are copied from the
nonvolatile storage to main memory as needed. The modified data pages are
copied back to nonvolatile storage to free up space in main memory. The
instruction pages, however, are discarded if they are not referenced for some
time and memory space is needed. This process is called paging, and it
involves the OS and requires hardware to implement a virtual memory
organization, discussed in Sec. 10.4.

Specifically, if a page in main memory contains a target instruction or data
block on L2 cache miss, a copy of the block is transferred to the L2 cache.
Otherwise, if the page is not in main memory, the request causes a page fault
interruption (Chap. 9), and the execution of the program is suspended and
control is returned to the OS. The execution of the program resumes once
the page is loaded into main memory.

As was discussed in Chap. 8, during the entire time that a cache miss is
being resolved, the processing core (CPU) is idle and does not execute
instructions. Cores that implement multithreading can switch to execute
instructions from a different thread. Modern processors are typically designed
with three levels of cache memories, as illustrated in Fig. 10.2. Each of the
processing cores communicates with its own L2 cache, and all the L2 caches
communicate with a shared third-level L3 cache, thus creating a UMA system
within the processor chip. A shared cache has the advantage of sharing
cache lines used by two or more threads, but also has the disadvantage of
one thread causing the removal of blocks used by another thread.

FIGURE 10.2 Example of a five-level memory hierarchy.

For example, consider Thread 0 and Thread 1 from the program example
in Sec. 8.4.4 (Chap. 8). Recall that each thread operates on different array
elements, computing their sum as sum[0] by Thread 0 and sum[1] by Thread
1. Thread 1 then outputs the quantity sum[0] + sum[1]. With a shared L3

cache, Thread 1 would be able to access sum[1] from L3, saving one main
memory access. In general, with the L3 shared cache, not only would the
execution of two communicating threads be faster, but also the execution
would generate less main memory traffic. An Intel’s Xeon-E7-4870 (Nehalem
architecture) processor has 10 cores, each attached to a 256KB L2 cache
and then to a 30-MB shared L3 cache. The processor can access a
maximum of 32-GB main memory space.

Memory Latency
The memory hierarchy reduces average latency because programs contain
loops, and data accesses are typically sequential. Consider the memory
hierarchy shown in Fig. 10.1. Suppose a block in main memory contains the
instructions of a small for-loop. The first time that the for-loop executes, the
request to fetch the first instruction will result in a cache miss. The block
would then be copied from main memory to the L2 cache and from there to
Ic. Therefore, the latency to transfer a copy of a block from main memory to
Ic can be long.

However, once the block is loaded into Ic (a smaller SRAM), the
subsequent instructions from that block are fetched more quickly (e.g., within
1 CPU clock cycle) from Ic. Therefore, this reduces the average memory
latency for executing the for-loop. The same is true when data is accessed
sequentially from main memory. It takes a longer time to access the first data
item in each data block that causes a miss, but the subsequent accesses
from the block in Dc (also a smaller SRAM) would be quicker.

In general, how soon each instruction in a program is executed again
gives an indication of how much temporal locality exists in the program.
Because the instructions in a small for-loop are frequently executed and once
an instruction executes it will soon execute again (due to a small loop), high
temporal locality is said to exist in the for-loop.

Likewise, in what order a program’s data structure elements are accessed
during execution indicates how much spatial locality exists in the program.
For example, consider a for-loop that processes an array. During the
execution of the for-loop, if the array elements are accessed from sequential
memory addresses, then there is a high spatial locality among the elements
accessed from main memory.

Note that temporal locality may also apply to program data—for instance, if
the same set of data elements is accessed within a loop. Likewise, spatial
locality would apply to program instructions.

Cache hit is determined in terms of probability of an access resulting in a
hit. For example, while executing a program, if 95% of the time instructions
are found in Ic, then the instruction hit ratio (also called the hit rate) is 0.95,

resulting in an instruction miss ratio (also called a miss rate) of 0.05 (1.0 –
0.95). How often data is found in Dc determines a program’s data hit and
miss ratios. L2 and L3 caches are unified (both contain instructions and
data). Thus, they would provide hit and miss ratios for the entire program. A
high or low hit ratio depends on how much temporal and spatial localities
exist in the program.

While a good programmer is expected to be mindful of temporal and
spatial locality properties when writing programs, compilers do rearrange
codes (e.g., switching nested loops) when possible to improve data spatial
locality of programs during execution.

Example 10.1. Consider the memory hierarchy shown in Fig. 10.1. Given the following
information, estimate its average memory latency. Also assume peak main memory
bandwidth.

Solution: For peak performance, the time required to activate a row and issue a column
address is ignored. This can happen when SDRAM memory operations to access multiple
blocks are overlapped. For example, consider the SDRAM timing diagram shown in Fig. 7.19
(Chap. 7), where two separate burst accesses (each forming a block) of size 4 are read from
memory in sequence. In the figure, the first data items in the two blocks are labeled x and y,
respectively. Note that memory operations are overlapped. After the first data item x is
accessed (i.e., appears on the data bus), one new data item is accessed every data bus
clock cycle. The total time to access data items y, y + 1, y + 2, and y + 3 is only proportional
to four data bus clock cycles. If memory is capable of supplying one data item every clock
cycle, the memory is said to be operating with peak bandwidth. As calculated next, the
SDRAM can deliver 1.6 GB peak transfer. Therefore, it would take 20 ns to transfer a 32-B
block from main memory to L2 cache.

There is a 95% chance that a target instruction block is in the Ic cache and a target data
block is in the Dc cache. During the 5% (100 – 95) of the time that a target block is not in the
L1 caches (Ic or Dc), there is a 90% chance that the block is in the L2 cache. Finally, during

the 10% (100 – 90) of the time that the block is not in L2, the block is in main memory. As
discussed earlier, if the block is not in main memory, the execution of the program would be
stopped and the CPU would be assigned by the OS to execute a different program.
Therefore, the estimated average memory latency calculated next does not (and should not)
include paging delays; however, paging delays are included in the program’s total execution
time.

Note the 1.185 ns average latency is almost the same as the 1 ns latency assumed for both
L1 caches, which are the fastest memories in the memory hierarchy.

10.2 Cache Mapping
Each lower-level volatile memory in a hierarchy, starting from main memory,
has more blocks than there is space in the next higher-level memory.
Therefore, each cache memory must implement a method to quickly verify if
the copy of the requested block is in cache, or if the copy must be transferred
from the next lower-level memory. Because a cache is simply a fast
temporary storage space, a main memory address, issued by the CPU, is
partitioned into a block address and an offset, which identifies a specific
byte/word within the block. The block address is then used to determine the
location of the block in cache called a slot address (or slot number) or an
index.

Example 10.2. Consider 64 KB main memory, 1 KB L2 cache, and 8 B blocks. Determine
the number of memory blocks, the number of cache slots, the range for block addresses, and
the range for slot addresses.

Solution: The number of blocks is determined by dividing the main memory size by the
block size as follows:

The number of slots in the cache is similarly determined:

The 16-bit (216 B = 64 KB) memory address is partitioned into a 13-bit block address and a
3-bit offset, as illustrated in Fig. 10.3. The range for block addresses is 0 to 8191, and the
range for slot addresses is 0 to 127. Note that the cache memory can only hold 1.56%
(128/8192 ∗ 100) of total blocks in the main memory.

FIGURE 10.3 A memory address is made of a block address and an offset;
each block is assumed to be 8 B.

Direct mapping and set-associative mapping are two commonly used
methods to map a block address to a slot address and are used between any
two connecting memories in a hierarchy, starting with main memory. In a
direct-mapped cache, a block copy can be stored in only one specific cache
slot. In a set-associative mapped cache, a copy can be stored in a slot
among a smaller set of slots. Direct-mapped caches are simpler, faster, and
more power efficient because a block copy can only be in one slot.

Fully associative mapping is often used in some applications where a
cache miss has a much longer latency. In this case, data can be stored in any

cache slot, resulting in a higher hit ratio. A fully associative mapped cache,
however, requires more hardware, as all the slots are searched in parallel (at
the same time). In the following sections, direct mapped and set-associative
mapped cache organizations are discussed in detail. The application of a
fully associative mapped cache in the design of virtual memory system is
presented in Sec. 10.4.

10.2.1 Direct Mapping
For a direct-mapped cache, we need two pieces of information to quickly
determine whether or not the cache contains a copy of a target block. One is
a slot address, which is determined using modular (Mod) arithmetic, and the
other is called a tag, determined using integer division. For example,
consider two block addresses, 129 and 1153, and a cache memory with K =
128 slots. For these two block addresses, the corresponding slot and tag
values are calculated as follows:

However, if K is a power of 2 (i.e., K = 2m), the mapping is simple and
requires no hardware, as Eqs. (10.1) and (10.2) illustrate for an n-bit block
address X.

This is further illustrated as follows for block addresses X = 16 and 29
using K = 8 (23):

Cache Organization
Table 10.1 shows two main memory addresses, 0x408 and 0x240B, that
point to byte 0 in block 129 and byte 3 in block 1153, respectively. Only the
copy of one of the blocks (shown by its address value) can be stored in slot
1, as illustrated in Fig. 10.4. The tag, which also is stored in cache, indicates
the block address (129 or 1153) that the slot contains a copy of. In the figure,
tag = 9 = (1001)2 indicates that Slot 1 contains a copy of block 1153.

TABLE 10.1 Direct-Mapped Cache Examples Using 64 KB Main Memory, 1 KB L2 Cache,
and 8 B Blocks

FIGURE 10.4 A logical view of a direct-mapped cache illustrating block 129
and 1153 mapping to slot 1; also shown is block 1153 copied to slot 1.
Memory addresses 0x408 and 0x240B point to a byte in each of the blocks.

The cache also stores additional bits per slot that indicate the state of a
block copy. The bits are used to implement a cache coherency protocol to
make sure no stale data can be sent to the CPU or stored on disk. These bits
are shown as cache coherency bits (CCB) in the figure.

Figure 10.5 illustrates the data path for the direct-mapped cache shown
logically in Fig. 10.4. The data path consists of a 128-entry tag memory and
a 128-entry line memory. The cache has the capacity to store a maximum of
128 blocks. Both the tag memory and the line memory are accessed at the
same time using a slot address. The incoming tag is compared with the tag
stored in the tag memory. If the two tags match, the cache access is a hit;
otherwise, it is a miss. For performance reasons, while an incoming tag is
compared with the tag stored in cache, the multiplexer (MUX) identifies the
target byte (or word). If the cache access is a hit, the byte is sent to the CPU
(assuming an L1 cache) on a read cycle, which is illustrated in the figure. If
the access is a miss, the cache controller is triggered to access the block

from its connecting lower memory. Until a cache miss is resolved, execution
of the program is stalled.

FIGURE 10.5 A direct-mapped cache data path with 128 slots and 8 B block
illustrating cache read.

10.2.2 Types of Cache Misses

In general, a cache miss is classified as a cold miss, conflict miss,
capacity miss, true sharing miss, or false sharing miss. The following
examples illustrate cold, conflict, and capacity misses. The true and false
sharing misses relate to two or more threads accessing shared data blocks
and are discussed in Sec. 10.3.

Example 10.3. Consider the direct-mapped cache shown in Fig. 10.4. Assuming an L1
cache, suppose the CPU accesses the following memory addresses in order 20 times.
Determine the cache miss ratio for this sequence of memory accesses. Also, determine the
number of cold, capacity, and conflict misses. The addresses are 16-bits, given in hex.

A. 0x3C10 assume address points to a byte in memory block Ba
B. 0x049 Cassume address points to a byte in memory block Bb
C. 0x0410 assume address points to a byte in memory block Bc
D. 0x1C8 Dassume address points to a byte in memory block Bd

Solution: We will first determine the number of cache misses and then use it to determine
the miss ratio for this sequence of memory accesses. The mapping of the block addresses to
slot addresses is given in Table 10.2. In the first round, the four memory addresses generate
four cache misses. Those misses associated with blocks Ba, Bb, and Bd are cold misses
because the blocks are copied into three initially empty slots in cache. The address C also
maps to the same slot 2 as address A. However, because these two addresses have
different tags, they are pointing to bytes in two different blocks in main memory; thus, a copy
of Bc replaces the copy of Ba in slot 2, causing a conflict miss. It is called a conflict miss
because there are still empty slots in the cache, but copies of Ba and Bc must still be stored
in the same slot 2. In the first round, there are three cold misses and one conflict miss.

TABLE 10.2 Direct Map of Four Addresses Given in Example 10.3

In the second round, the copies of blocks Bb and Bd are already in the
cache and any read/write from these copies results in a cache hit. The copy
of Ba, which was replaced with a copy of Bc in the first round, now replaces
the copy of block Bc when address A is accessed again, causing another
conflict miss. Accessing address C again causes yet another conflict miss
and replaces the copy of Ba in slot 2 with a copy of Bc. In the second round,
there are no cold misses but two conflict misses.

The hit/miss pattern in the second round repeats for the remaining 18
rounds, resulting in zero cold and two conflict misses per round. The four
addresses generate zero capacity misses because there are still empty slots
available in the cache. The four addresses, accessed 20 times, generate 42
total cache misses, resulting in miss ratio of 52.5%, as determined by Eq.
(10.3).

Example 10.4. Consider the direct-mapped cache illustrated in Fig. 10.4. Suppose main-
memory blocks 0 through 255 are accessed 10 times and in order. These blocks correspond
to memory addresses 0x0 to 0x7FF. Determine the cache miss ratio for this sequence of
memory accesses. Also determine the number of cold, capacity, and conflict misses.

Solution: Again, we will first determine the number of cache misses and then use it to
determine the miss ratio for this sequence of memory accesses. The mapping of the block
addresses to slot addresses is given in Table 10.3. In the first round, the copies of the first
128 blocks (0 to 127) fill the entire cache, each causing a cold miss, for a total of 128 cold
misses because slots are initially empty. Each of the next 128 blocks (128 to 255) causes a
miss and replaces the copy of one of the blocks 0 to 127 already in cache. For example, a
copy of block 128 replaces the copy of block 0; a copy of block 129 replaces the copy of
block 1; etc.

TABLE 10.3 Direct Map of Main-Memory Addresses Given in Example 10.4

Therefore, in the first round, accessing blocks 128 to 255 would generate
128 capacity misses (the reason is forthcoming). In the second round, each
of the blocks 0 to 127, whose copies in cache were replaced with copies of
blocks 128 to 255 in the first round, will cause a capacity miss. A copy of
block 0 will replace the copy of block 128 now in cache; a copy of block 1 will
replace the copy of block 129 now in cache; etc. The access of blocks 128 to
255 in the second round will replace blocks 0 to 127 already in cache,
causing a total of 256 capacity misses in the second round.

The capacity miss pattern in the second round will repeat in the remaining
eight rounds. On odd-numbered rounds, copies of blocks 0 to 127 replace
the copies of blocks 128 to 255 in cache, and on even-numbered rounds
(starting at 2), copies of blocks 128 to 255 replace copies of blocks 0 to 127,
resulting in 256 capacity misses in each round. The number of total cache
misses for 10 rounds is 2560 and the miss ratio is 100%, determined by Eq.
(10.4). There are no conflict misses in this case.

Capacity miss is somewhat different and distinct from a conflict miss that
does not depend on cache size. For example, if the cache size in Example
10.4 were doubled from 1 KB to 2 KB, the cache would have enough space
to hold copies of all 256 blocks; thus, it would result in only 256 total cold
misses in the first round and zero misses during the remaining nine rounds.
This will improve the miss ratio from 100% to 10% (256/2560) and, therefore,
the hit ratio from 0% to 90%. In general, a cache size is fixed and is
determined during design. However, cache simulations can be used to

choose a reasonable cache size that will not result in too many capacity
misses. Conflict and capacity misses are sometimes grouped together.

In general, miss ratio also depends on block size. For example, as
expected, with smaller blocks, there will be more cold misses. Using larger
block sizes will reduce the number of cold misses. However, the relationship
between block size and miss rate is program dependent, but in general,
when blocks are too small or too large relative to cache size, miss rate
increases.

10.2.3 Set-Associative Mapping
Direct mapping is simple and requires less hardware, but it has the
disadvantage of being too restrictive. Two or more frequently referenced
block addresses that map to the same slot address may generate frequent
cache misses and cause delays, as was illustrated by Example 10.3. Figure
10.6 illustrates a program example with two such blocks located 1 KB apart
in memory. The cache is assumed to be 1 KB with an 8 B block size. As
illustrated in the figure, block 129 contains instructions for a “sort” routine,
and block 1153 contains instructions for a for-loop. As the for-loop executes
and the sort routine is called repeatedly, blocks 129 and 1153, which both
directly map to slot 1 (Table 10.1), will replace each other’s copy in cache
repeatedly. This will increase execution time because the Ic must frequently
retrieve instructions in blocks 129 and 1153 from the L2 cache. This will also
increase CPU idle time; however, multithreading (Chap. 8) could minimize
this CPU idle time.

FIGURE 10.6 A program example illustrating the limitations of a direct-mapped
cache; cache is 1 KB and block size is 8 B.

A set-associative mapping is a way to decrease misses due to conflicts,
such as the memory access scenario shown in Fig. 10.6. In a set-associative
mapping, the cache memory is organized in sets, each with a small (e.g.,
two, three, four, or eight) number of slots. A block address is directly mapped
to a set address, but not to a slot address as is done in a direct-mapped
cache. Within each set, a block can be stored in one of the slots determined
by a replacement algorithm, such as least recently used (LRU), cyclic (in a
circular fashion, first-in, first out), or random.

A replacement algorithm is implemented in hardware, and this could make
set-associative caches even more complex and slower. LRU would require
the most hardware as compared to the other two replacement algorithms,
and random would require the least hardware. It has been shown that LRU
generally is the best in terms of a lower miss ratio and random is the worst
when cache size is small. The performance of LRU and random for large
cache sizes is about the same and better than cyclic [1]. For further
discussion on implementation complexities, refer to the Exercises section.

Figure 10.7 illustrates the mapping of block addresses to a two-way (two
slots/set) 1 KB set-associative cache, assuming 8 B blocks. The 128 cache

slots are grouped into 64 = 26 sets, with two slots in each set. A block
address is converted to a set address and a tag using Eqs. (10.1) and (10.2),
with m = 6 instead. The mapping of two memory addresses, 0x408 and
0x240B, to a two-way set-associative cache with 64 sets is given in Table
10.4.

FIGURE 10.7 Logical view of a two-way set-associative cache with 128 slots
grouped into sets of two slots each.

TABLE 10.4 The Mapping of Blocks 129 and 1153 to a Two-Way Set-Associative Cache
with 64 Sets

As illustrated in Fig. 10.7, block 1153 is copied to the cache first (assuming
the memory access scenario shown in Fig. 10.6) and is stored in slot 0 of set
1. A copy of block 129, which also maps to set 1, is now stored in slot 1 of set
1. Therefore, the execution of the program in Fig. 10.6 will generate only two
cache misses for accessing blocks 129 and 1153, as compared to many
misses if the direct-mapped cache of Fig. 10.4 is used.

Cache Organization
Figure 10.8 illustrates the data path for the two-way set-associative cache
logically shown in Fig. 10.7. The top tag and line memories are reserved for
slot 0 in each of the 64 sets. The bottom tag and line memories are reserved
for slot 1 in each of the 64 sets. During a cache read/write cycle, all four
memories are accessed at the same time, and the incoming tag is compared
with both tags stored in the two tag memories. If a copy of the target block is
in the cache, one of the two tags read from the tag memories will match the
incoming tag, resulting in a cache hit. Otherwise, the copy is not in the cache
and the access will result in a cache miss.

FIGURE 10.8 A data path for a two-way 64-set set-associative cache
illustrating a cache read hit.

Because all four memory modules in a two-way set-associate cache are
accessed at the same time, set-associative caches consume more power.
One way to reduce power consumption is to use way-predicting set-
associative caches, where only one of the tag-line memory pairs is searched
first. If this produces a cache miss, then all the tag-line memory pairs are
searched next at the same time [2].

The number of ways in a set-associative cache needs not be multiples of
two. For example, a three-way set-associative cache would require three
pairs of tag and line memory modules; there are only two such pairs in Fig.
10.8. Intel’s eight-core Xeon processor, includes a 24MB shared L3 cache
organized as an eight-ported three-way (called 24-way) set-associative
cache. Eight connecting L2 caches can access the L3 cache at the same
time as long as accesses are from eight different sets.

Example 10.5. Consider the set-associative cache illustrated logically in Fig. 10.7. Suppose
the CPU references the addresses given in Example 10.3 20 times and in order. Determine
the cache miss ratio for this sequence of memory accesses. Also, determine the number of
cold, capacity, and conflict misses.

Solution: Table 10.5 presents the calculations to map block addresses to set addresses. In
the first round, the addresses generate four cold cache misses. Copies of blocks Bb and Bd
are loaded into two empty slots in two different sets. The addresses for blocks Ba and Bc
both map to set 2, but this time, the copies of both Ba and Bc are stored in two separate
slots in set 2. In the remaining 19 rounds, because all the copies of the four blocks are in the
cache, none of the four addresses would cause a cache miss. There are also no capacity
misses. The number of total misses is now four and miss ratio improves to 5% (hit ratio =
95%), as calculated next. This is compared to 42 total misses and miss ratio = 52.5% (hit
ratio = 47.5%) using a direct-mapped cache (see Example 10.3).

TABLE 10.5 Illustrating Two-Way Set-Associative Mapping of the Addresses Given in
Example 10.3

10.3 Cache Coherency
Each cache memory must implement a coherency protocol to ensure that a
read cycle always returns data from the latest copy of the block, no matter
where the latest copy is (in a cache or main memory). For example, consider
a two-processor system illustrated in Fig. 10.9. For simplicity, each processor
is shown with one core and an L2 cache that connects to the memory bus.
The system also contains a bridge between the memory bus and I/O bus.
The DMA controller transfers pages between main memory and the disk
drive. Also shown in the figure are the copies of two memory blocks, Ba and
Bb, already copied to some of the cache memories.

FIGURE 10.9 Two-processor UMA architecture.

In the figure, processor 1 (P1) may execute a store instruction to update a
word, say, in the copy of block Bb in Dc1. Because the copies of Bb also exist
in other caches and also in main memory, unless the other caches and the
main memory are made aware of this update, these copies will be old and
different from the copy in Dc1. Likewise, a DMA transfer may write a block,
such as Ba, in main memory where copies of Ba are in one or more caches.

Because CPUs take turns to complete a write cycle, copies of blocks (if
any) are either invalidated or are updated in the other caches. The two
options are known as invalidation and update cache coherency protocols. A
hybrid cache implements a combination of both invalidation and update
coherency protocols.

10.3.1 Invalidation versus Update Protocols

In an invalidation protocol, when a block is updated in one cache, the other
caches invalidate their copies and thus prevent stale data from ever being
accessed. A cache memory with an invalidated copy must request to receive
the updated copy when needed. Invalidation protocols have the disadvantage
of invalidating an entire block even if only a single word is updated. This can
increase the miss ratio especially when processors (or cores) access a
shared block.

For example, suppose P0 in Fig. 10.9 accesses the first half of block Bb,
and P1 the second half of Bb. Each time that P0 writes to its copy of block
Bb, the copies of Bb in C1 and Dc1 are invalidated. If P1 accesses block Bb
again, there will be a cache miss in Dc1. Dc1 must now request an updated
copy of Bb, even though the update was made to the first half of the block
and not the second half accessed by P1. In this case, the cache miss is
called false sharing because P0 and P1 are not really sharing data in block
Ba. If P0 and P1 were indeed accessing the same one or more data items in
block Ba, the Dc1’s cache miss would be called a true sharing miss.

In an update protocol, each cache memory must broadcast and inform
other caches of any updates. The caches must update (not invalidate) their
copies of the block (if any). However, update protocols have the
disadvantage of increasing overall bus traffic due to unnecessary updates.
For example, suppose P1 is done processing data in block Bb, but Bb is still
in C1. Now, each time that P0 writes to block Bb, an update protocol must
inform C1 even though P1 no longer needs to access block Bb.

Because update protocols can potentially increase protocol-related traffic,
they are not very common. However, a hybrid cache protocol can use an
adaptive scheme to utilize the best features of the two protocols. For
example, a hybrid cache protocol may invalidate a copy of a block when the
copy has been updated a number of times. In this case, if P1 is done
processing block Ba and C1 still has a copy of Ba, the copy would be
invalidated thus, preventing future unnecessary updates. Two common
invalidation protocols, write through and write back, are discussed next.

10.3.2 Snoop Cache Coherence Protocol
Each cache memory requires two controllers: a cache controller and a
snoop controller. A cache controller responds to requests it receives from
its higher-level cache or requests from a processing core if the controller
belongs to an instruction or data cache (Ic or Dc). An snoop controller
responds to requests it receives from its lower-level cache or responds to
read/write transactions that appear on the memory bus if the controller
belongs to the lowest-level cache.

For example, in Fig. 10.9, the cache controller of Dc0 responds to
requests it receives from P0. The snoop controller of Dc0 responds to
requests it receives from cache C0. Likewise, the cache controller of C0
responds to requests it receives from either Ic0 or Dc0, and its snoop
controller responds to memory bus transactions.

Assuming an invalidation protocol, if the DMA controller in Fig. 10.9
initiates a write transaction to block Ba, the C0’s snoop controller, which
continuously monitors (snoops) the memory bus, detects the write and
invalidates its copy of Ba. C0, in turn, communicates with its higher-level
cache Ic0 or Dc0 and invalidates the copy of Ba (if any). A memory write
transaction initiated by one of the two L2 caches would be similarly detected
by the snoop controller of the other L2 cache, and the copies of the block (if
any) in that processor would be invalidated. The cache and snoop controllers
that implement an update protocol operate similarly, except that, in this case,
cache copies are updated with the new values (instead of being invalidated).

10.3.3 Write-Through Protocol
Write-through is an invalidation protocol. As its name implies, all write
requests made by a processing core go “through” the cache to update main
memory. On a write hit (i.e., cache hit is due to a write cycle), not only the
copy of the block in cache is updated—the copy in main memory is also
updated. However, if the copy of the block is not already in cache, the write
cycle updates main memory, and typically, the copy of the block is not loaded
into cache. The reason for this is that because a cache write transaction will
always be forwarded to main memory, whether a copy is in the cache or not,
there is no need to copy the block to the cache. This is known as a write
through with no allocation cache protocol, as illustrated by a finite state
diagram (FSD) in Fig. 10.10.

FIGURE 10.10 A finite state diagram illustrating write-through protocol with no
allocation.

A write-through cache uses 1 bit per block that indicates the state of the
block either as valid (“V”) or invalid/not present (“I”), as shown in the FSD.
The “V” and “I” states are encoded into a 1-bit CCB (Fig. 10.5) and stored in
tag memory. For example, 1 may be used to indicate the copy in cache is
valid, and 0 indicates the copy is either invalid or not yet loaded and therefore
not present.

The FSD shows five possible transitions as IWM → I, IRM → V, VWM → V,
VRH → V, and VXWH → I. The WM, RM, WH, RH, and XWH, respectively,
stand for write miss, read miss, write hit, read hit, and external write hit (a
write hit in another cache). For example, as stated earlier for a write hit, a
write miss means the cache miss is due to a write cycle, read miss means
the miss is due to a read cycle, etc.

The write-through protocol has the advantage of being simple; a copy of a
block can only be in one of two states in each cache. However, this protocol
has the disadvantage of potentially causing excessive bus and cache traffic,
and thus, it is especially not recommended for multicore or multiprocessor
systems.

For example, consider the multiprocessor system in Fig. 10.9 and assume
the caches implement the write-through protocol shown in Fig. 10.10.
Suppose the following code segment runs in P0. Because sum is declared
global, the array elements will not be summed in register; instead, the block
that contains sum (e.g., Ba in Fig. 10.9) will be updated in caches as well as
in main memory each time that the next array element is added to the partial
sum. Now because sum will be updated 100 times during the execution of
the for-loop, Dc0 will need to issue 100 memory transactions to update the
L2 cache, and the L2 cache in turn would need to issue 100 write transitions
to update main memory, wasting valuable memory bandwidth.

10.3.4 Write-Back Protocols
Write-back protocols are designed to reduce unnecessary bus and cache
traffic and still keep caches coherent. A commonly used write-back
invalidation protocol is known as the MESI (pronounced “messy”) protocol.
Two other MESI-type protocols, called MESIF (used by Intel) and MOESI
(used by AMD), are designed for more efficient cache-to-cache
communication.

MESI
In the MESI protocol, a cache copy of a memory block can be in one of four
states: modified (M), exclusively owned (E), shared (S), and invalid (I) or not
present. The FSD of the MESI protocol is shown in Fig. 10.11. The “M”
means the copy in the cache is modified (“dirty”) and is no longer “clean”—
that is, the same as the copy in main memory. The state “E” indicates the
cache has the only copy outside main memory. The “S” indicates two or more
caches contain a copy, and in addition, each copy is “clean.”

FIGURE 10.11 MESI protocol finite state diagram.

Table 10.6 describes each of the MESI state transitions. The protocol
greatly reduces traffic, but is more complex than the write-through protocol.
For example, in order to update a shared (“S”) copy, a MESI cache must
perform the following tasks:

TABLE 10.6 State Transitions in the MESI Protocol

1. The cache (via its snoop controller) must inform all other caches before
it can modify an “S” copy. This is to make sure the copies in other
caches are invalidated first.

2. The cache then modifies its copy of the block and changes the state of
the copy from “S” to “M.” Its snoop controller is responsible for

responding to a memory read/write request, which may be issued by
another cache or by a DMA controller, for the block.

3. The cache must write the modified copy back to memory if the copy is
replaced.

A write hit to an “E” copy does not, however, require the snoop controller
to inform other caches; thus, it saves bus transactions and reduces cache
traffic.

In many existing computers that implement the MESI protocol, it is
common that main memory and not a cache is responsible for sending an “S”
(clean) copy to a requesting cache. In addition, when a copy of a modified
block in a cache is transferred from the cache to a requesting cache, the
main memory is updated, and thus the state of the copy in both the caches
changes to “S.”

In a NUMA system the total memory space is divided among different
nodes, such as the one shown in Fig. 10.12. Each node of a NUMA system
includes a communication interface (CI) for internode communications. The
CI of a requesting node routes a remote memory transaction to the CI of a
destination node and therefore creates a virtual connection between the two
nodes. For example, in the figure, CI0 and CI1 would make the memory
buses in nodes 0 and 1 appear connected, providing seamless
communication between nodes 0 and 1. However, this point-to-point
communication can potentially increase latency when several caches request
copies of a shared block. For example, consider block Ba in the figure. In this
case, if the caches implement the MESI protocol without the “flush2” option
(i.e., without the arcs Read-X/flush2 in Fig. 10.11), M3 would need to send a
copy of Ba to any cache that requests it. This could potentially make M3 a
hot spot that would introduce delays and thus increase average latency.
Likewise, if the caches implement the MESI protocol with the “flush2” option
for cache-to-cache communication, the processor with a shared copy can
become a hot spot. Two protocols, introduced earlier, that resolve this issue
are MESIF and MOSEI, described next.

FIGURE 10.12 A three-node NUMA system block diagram.

MESIF
This protocol is designed for cache-to-cache communication of shared (“S”)
copies. When two or more caches contain shared copies of a block, one of
the cache copies (the first) is marked “F” (forward), and the copies of the
other caches are marked “S.” The cache with the copy in the “F” state is
responsible for transferring (forwarding) a copy to another cache that is next
in line to receive a copy. However, the transmitting cache changes the state
of its copy from “F” to “S” after the transfer, and the receiving cache stores its
copy in the “F” state.

Because only one cache can have the copy of a block in the “F” state, and
the state of the copy changes to “S” after one transfer, the MESIF protocol
prevents any cache from becoming a hot spot. The “F” state enables caches
to take turns transferring a shared block copy to a requesting cache. Note
that in the NUMA organization in Fig. 10.12, because each node contains
only a single processor, MESIF would enable node-to-node communication
of shared copies. If each node was a UMA multiprocessor system, the cache-
to-cache communication would allow each cache within a node to receive a
shared copy (if any) from a local cache instead of from another node with
longer latency. The “M,” “E,” “S,” and “I” states work the same as in the MESI
protocol.

For example, suppose the four-node NUMA system in Fig. 10.12
implements the MESIF protocol. Also, suppose each node contains a
directory (not shown in the figure) and for each memory block in a node, the
directory holds a list of nodes that have cached copies of a block (if any).
Furthermore, assume that block Ba in Fig. 10.12 was loaded in cache C3
(node 3) first and then a copy was sent to cache C0 (node 0). The entry for
block Ba in the directory of node 3 would list nodes 0 and 3 and would mark
node 0 “F.” A request for a copy of Ba from another cache, say, C1 (node 1),
would first go to node 3. The CI3 communication interface will check the
directory entry for block Ba and will forward the C1’s request to node 0 and
then change the directory entry to also include node 1, but this time it will
mark node 1 “F.” The next time that node 3 receives a request for an “S” copy
of Ba, a cache in node 1, which has the block in the “F” state, will be
responsible for sending a copy. A single node (e.g., node 2) with a modified
cached copy, such as Bb′ where′ indicates modified, will be marked as “M” in
the directory.

Also, with the MESIF, like the MESI protocol, main memory must be
updated each time that a modified copy is transferred to another processor.
In a NUMA architecture, this requires a second transaction to be sent by the
cache with the modified copy to update the corresponding memory unit. Note
that in a MESI cache UMA architecture, where the lowest-level caches and
main memory share a common bus, main memory is updated (via its snoop
controller) when a transfer of a modified block on the bus is detected.

MOESI
As opposed to MESIF, this protocol is designed to support cache-to-cache
communications of modified copies. The “O” state stands for “owned” and is
used to share a modified copy of a block without updating main memory.
When a cache issues a request for a copy of a block that is modified, the
cache that has the modified copy transfers a copy to the requesting cache
and changes the state of its copy from “M” to “S.” The receiving cache,
however, stores the copy in the “O” state. The next time that the modified
cache copy is requested, the cache with the copy in the “O” state would be
responsible for transferring a copy to the requesting cache. After the transfer,
the state of the copy in the source cache changes from “O” to “S.” The
destination cache, however, stores the copy in the “O” state. Therefore,
systems that implement the MOESI protocol, like those implementing MESIF,
prevent a cache from becoming a hot spot.

Note that in the MOESI protocol, a request for a “clean” copy has to come
from the corresponding memory unit unless an “M” or “O” copy exists in
another cache. In the MOESI protocol, the replacement of an “M” or “O”

cache copy requires a transaction to update memory. Likewise, in a MOESI
NUMA organization, a directory in each node logs the list of caches that have
an “S” copy where only one is marked “O” (if any). Also, note that, in the
MOESI protocol, an “S” copy may or may not be the same as the copy in the
main memory. Directory logging of nodes with modified cached copies is the
same as that in the MESIF protocol.

10.4 Virtual Memory
Modern single-core, multicore, and multiprocessor computer systems
implement multiprogramming, where several single- and/or multithreaded
programs (Chap. 8) execute concurrently. That is, the operating system (OS)
takes turns and allocates a fraction of CPU time to each thread. On a
multicore processor or multiprocessor system where there are several
processing cores (CPUs), multiple threads would be executing in parallel. If
each core also implements simultaneous multithreading (Chap. 8), an even
greater number of threads would be executing concurrently.

In addition to the OS allocating CPU time to each thread, the OS would
need to allocate main (physical) memory space for each running single- or
multithreaded program, called a process. While individual processes may
not share their allocated memory spaces, the threads of a multithreaded
program do share the memory space allocated to the process (i.e., all the
threads of a program can access the globally declared variables in the
program). Therefore, a modern computer system must implement the
following requirements involving the bottom two levels (nonvolatile memory
and main memory) in memory hierarchy:

• To run a program too big for the physical memory. The program contains
many instructions and large data structures that cannot be stored in their
entirety in the main (physical) memory.

• To execute multiple processes, including those of the OS when there is
not enough space in physical memory to store instructions and data
structures for all the processes at the same time.

• To protect processes so that one process cannot access another
process’s memory space without permission.

A virtual memory system is a way to implement these three requirements
of a modern computer system. As each program runs, its instructions and
data must be copied from the nonvolatile memory (e.g., hard disk) to physical

memory for execution. However, because the size of physical memory is
smaller than the size of the hard disk, like a cache, only a small fraction of
each process’s instructions and data on the hard disk can be stored in the
available space in the physical memory.

For example, a 32-bit CPU that has 32-bit address and 32-bit data buses
can only read or write a maximum 4 GB (232 B) memory space, organized as
a 230 × 32 memory unit. Even with this much physical memory space, it is not
possible to fit all the instructions and data structures for all the processes,
including those of operating system, in the memory unit.

Therefore, the total 4 GB memory space that a 32-bit CPU is able to
access is interpreted as a virtual and not a physical space. Furthermore, in
order to be able to run both OS as well as user processes, half of the 4 GB
virtual space (i.e., 2 GB) may be reserved for a user process and the other
half (2 GB) for a systems process. Alternatively, an additional bit in the CPU
status register could indicate whether the CPU is operating in user mode and
the address belongs to a user process or whether it is in supervisor mode
and the address belongs to a systems process. The allocated virtual memory
space to each process (e.g., 4 GB) is further divided into instruction and data
regions (see Fig. 8.5 in Chap. 8). A very large program (>4 GB in size),
however, would need to be compiled to run on a 64-bit computer system.

When the OS allocates a fraction of CPU time to each thread, the OS is
said to be performing a context switch, which is invoked by a timer
interruption (Chap. 9). During a context switch, the state of a thread that was
just executing for a fraction of CPU time is saved and the state of a thread
that is waiting to execute is restored so that the execution of each thread is
the same as if no context switching takes place. This gives users the illusion
that there is one CPU per thread.

A context switch is typically called a thread switch if the switch does not
change the current virtual address space the CPU is accessing. Otherwise, it
is called a process switch where the CPU will begin to execute a thread
from a new virtual space. In the rest of this section, we will focus on a
process switch, which involves memory.

Like instruction and data blocks that are copied from the physical memory
to cache memory, instruction and data blocks, each called a page, are copied
as needed from virtual memory (e.g., hard disk) to physical memory (refer to
DMA transfers in Chap. 9). The content of a physical page if dirty (i.e.,
modified) must be copied back on to the hard disk before it is replaced with
the content of a new virtual page.

The size of each page in a modern PC system is typically 4 KB (a
relatively large block), which makes DMA transfers between the hard disk

and the physical memory more efficient. If memory space is divided into
bigger size pages, for a given process, there would be fewer page misses
(faults), much like larger block sizes that would cause fewer cache cold
misses. Some systems may use variable size pages, called segments, but
here we will focus on a page-based virtual memory management system.

10.4.1 Virtual Address Translation
Using a page-based virtual memory system, Fig. 10.13 illustrates, as an
example, the state of a system with two processes. In the figure, Process 0 is
shown with 12 and Process 1 with 9 virtual pages. The physical memory is
also shown with eight physical pages. During the execution of a process,
the memory system must map and store the content of process virtual pages
in the physical memory as needed. The mapping is fully associative;
therefore, the content of a virtual page can be stored in any page in the
physical memory. However, unlike a memory-to-cache mapping, which is
performed 100% in hardware, virtual-to-physical memory address mapping is
performed partly in software (i.e., the OS) and partly by a hardware module,
called a memory management unit (MMU).

FIGURE 10.13 Illustrating virtual-to-physical memory page mapping.

In Fig. 10.13, the virtual pages are numbered 0 to 11 for Process 0 and 0
to 8 for Process 1. Also shown are, respectively, the mapping of Process 0
virtual page numbers 3, 5, and 8 to physical page numbers 5, 2, and 7, and
Process 1 virtual page numbers 2 and 5 to physical page numbers 3 and 0,
respectively. Physical page numbers 1, 4, and 6 are shown not occupied and
therefore are free (available).

A virtual memory system uses a page table to keep records of virtual-to-
physical page mapping information. For example, with 4KB pages, a 2-GB
virtual memory would require a page table with 512K entries . Because
each process has its own page table, as the number of processes increase in
a system, so will the number of page tables. Therefore, in general, some
least accessed table entries may be temporarily stored on the hard disk and
would be copied back to physical memory as needed.

Figure 10.14 conceptually illustrates the mapping of Process 0 virtual page
numbers 3, 5, and 8 to physical page numbers 5, 2, and 7, respectively. In
the figure, it is assumed that each page is 256 B, each virtual memory space
is 32 KB (215 B) with 128 virtual pages , and the physical memory

space is 8 KB with 32 physical pages . In this case, a 15-bit virtual
address is viewed consisting of a 7-bit virtual page number (VPN, the upper
7-bits) and an 8-bit page offset (the lower 8-bits). A page offset, similar to a
cache block offset, identifies the target byte or word within a virtual or
physical page.

FIGURE 10.14 Illustrating MMU virtual-to-physical address translation steps
shown for the virtual pages of Process 0 in Fig. 10.13.

Suppose each 128-page table has 16-bit (2 B) entries . Each entry
would hold a 5-bit (25 = 32) physical page number (PPN, if any) and a set of
status bits, such as a valid bit (v) and access control bits (e.g., read, write,
dirty, user vs. supervisor). The valid bit, when 1 (v = 1) indicates the table
entry contains a valid PPN.

Specifically, the execution of a program starts from virtual address 0 when
a virtual memory system is implemented. Both an instruction address and a
data address—for example, during the execution of an “LD” or “ST”
instruction (Chap. 8)—represent virtual addresses. Using the illustration in
Fig. 10.14, the following steps describe the operations performed by the
MMU to translate the 15-bit virtual address 0x0501 to the 13-bit physical
address 0x0201 and for the physical memory to transfer the corresponding
cache line to the processor:

1. The MMU would view the 15-bit virtual address 0x0501 as a 7-bit VPN =
5 (0x05) and an 8-bit page offset 0x01. Using the VPN = 5 as an index,
the MMU would access the Process 0 page table, which is stored in the
physical memory, starting at the page table base address TBA = 0x600,
as illustrated in the figure. The table entry that corresponds to VPN = 5
contains PPN = 2 = (00010)2 and valid bit v = 1, which indicates physical
memory page 2 is valid (contains up-to-date data). The PPN = 2 is then
concatenated with page offset 0x01 to create the 13-bit valid physical
memory address 0x0201.

2. Next, the physical memory would transfer the block containing the
content of address 0x0201 as a cache line to processor, as illustrated in
the figure.

Therefore, two separate physical memory accesses are required for the
processor to receive the content of virtual address 0x0501. During the first
access, the MMU accesses the physical memory directly to translate the
virtual address 0x0501 to the physical address 0x0201. During the second
access, the physical memory, responding to a cache miss, transfers the block
containing the content of physical address 0x0201 to the processor.

In systems where virtual memory space is very large and thus requires a
large page table, MMU may need to access the physical memory a number
of times before completing a virtual-to-physical address translation. Multilevel
is one way to organize the storage of a very large table. Each entry in a
multilevel page table, except the lowest level, would contain a TBA for the
next lower-level page table. The lowest-level page table would contain PPNs.

Suppose a system with a 256-B page size has 4 MB (222 B) virtual
memory space, or 16K virtual pages , much more than the one with
only 128 virtual pages shown in Fig. 10.14. Figure 10.15 illustrates the
organization of the 16K virtual pages as a two-level page table. This time, the
MMU will view the larger 22-bit virtual address consisting of three parts as
shown in Fig. 10.15: a 7-bit index to access the first-level page table (Table 1
in the figure), a 7-bit index to access the second-level page table (Table 2,
again in the figure), and an 8-bit page offset (the lower 8-bits).

FIGURE 10.15 A 2-level page table organization.

The MMU would use the first (highest) 7-bit index 0x00 to read TBA =
0x400 from Table 1 in order to access Table 2. The TBA to access Table 1 is
0x600 as shown in Fig. 10.15. The MMU would then use the second 7-bit

index to access the target PPN = 2 = (00010)2 and its v = 1 from Table 2, the
lowest-level page table. The PPN = 2 is then concatenated with the 8-bit
page offset to create the target 13-bit physical address. As it is illustrated, in
this case, it would take two physical memory accesses, as compared to only
one access in Fig. 10.14, for the MMU to translate a virtual address (e.g.,
0x0501) to its corresponding physical address (i.e., 0x0201).

10.4.2 Translation Lookaside Buffer
In order to reduce the long latency of a virtual-to-physical address translation,
the most recently referenced PPNs are also kept in a special fully associative
cache memory called a translation lookaside buffer (TLB). Figure 10.16
illustrates a fully associative TLB organization with 32 slots. Instead of tag
and data memories that are used in direct and set-associative mapped
caches, a fully associative TLB requires registers to store tags and PPNs.
Without a slot or a set address, the search for a target tag is performed in
parallel, as illustrated in the figure.

FIGURE 10.16 The data path of a fully associative TLB illustrating a TLB read
(not all details are shown). A miss will cause the MMU to translate the virtual
address to a physical address.

A TLB requires no cache coherency bits. Instead, as shown in the figure, it
holds the status bits from the page table including a dirty (d) bit. Initially, the
first time that a data page is accessed, its PPN in the TLB is marked not dirty
(d = 0). If the processor writes (either write-through or write-back) and
therefore modifies a block from that page, the d bit in the TLB is set to 1. The
d bit when 1 indicates the page in the physical memory is modified, and that

the page must be copied to the hard disk before it is replaced with the
content of a newly translated virtual page. Also, a TLB, being fully
associative, must implement a slot replacement algorithm.

A replacement algorithm that requires less hardware, as compared to, say,
LRU, is to use a single use (u) bit in each tag register as shown in the figure.
Each time that a PPN is accessed from the TLB, its u bit is set to 1. All the u
bits would then be periodically reset to 0 so that the list of pages that are not
accessed recently is identified. Any time that a TLB access results in a miss,
the MMU would start a new virtual-to-physical address translation, and would
then select one of the slots with its u = 0. If the d bit in the selected slot is 1
(indicating a modified page in physical memory), the d bit in the page table
for the modified page would be set to 1. The slot will then be updated with the
newly determined PPN.

10.4.3 Processor Organization
Figure 10.17 illustrates three processor internal organizations. In Fig.
10.17(a), two TLBs quickly translate two virtual addresses, one for instruction
and one for data (if any), to their corresponding physical addresses before
each physical address is applied to its respective L1 cache. This organization
has the advantage of using physically addressed caches as opposed to
virtually addressed caches used in Fig. 10.17(b). Its disadvantage,
however, is a relatively long L1 cache latency.

FIGURE 10.17 Alternative processor organizations: (a) long L1 cache latency;
(b) short L1 cache latency, but OS must flush caches on each process
switch; (c) short L1 cache latency but its size is tied to page size.

The organization in Fig. 10.17(b), which uses virtually addressed caches,
requires a single TLB to quickly translate a virtual address from the lowest-
level cache (L2 in this case) to its corresponding physical address before an
access from the physical memory is made. This organization, however, is not
very common, as it requires the OS to flush all the caches during a process

switch. Without a flush, caches would not be able to differentiate between the
content of, for example, VPN = 5 of Process 0 from VPN = 5 of Process 1 in
Fig. 10.13. The advantage of this organization is that the design does not
increase the latency of L1 caches.

In the organization of Fig. 10.17(c), a TLB is embedded with each of the
L1 caches. As illustrated in Fig. 10.18, an L1 tag memory retains PPNs as
tags. During a cache access, a hit/miss is determined by comparing a PPN
produced by the TLB with the one read from the tag memory. Such a cache is
said to be virtually addressed but physically tagged, such as the one used in
the AMD Opteron processor.

FIGURE 10.18 The organization of a TLB embedded with the cache.

This organization has two advantages: (1) it uses physically addressed
caches; and (2) the latencies of the L1 caches are the lowest, the same as in
Fig. 10.17(b). The disadvantage of this organization, however, is that the size
of each L1 cache has to be the same or smaller than the page size. For

example, if the page size is 4 KB, then an L1 cache has to be a maximum of
4 KB. A high-performance processor using this organization may need to
implement a virtual memory system with larger page sizes.

In addition to the TLBs in Fig. 10.17 (a) and (c), it is possible for a
processor to contain a second-level (L2) TLB, similar to an L2 cache. An L2
TLB would store a larger set of the recently referenced PPNs. If the search
for a PPN in one of the L1 TLBs results in a miss, the search will continue
with the L2 TLB. If the search still results in a miss, the MMU would be
triggered to translate a target VPN to its corresponding PPN. An L2 TLB,
typically being larger than an L1 TLB, would be implemented as a direct- or
set-associative mapped cache.

References
1. John Hennessy and David Patterson, Computer Architecture: A

Quantitative Approach, Morgan Kaufman, 5th ed., Waltham, 2012.
2. Inoue Koji, Ishihara Tohru, Murakami Kazuaki, Way-predicting set-

associative cache for high performance and low energy consumption,
ACM, 1999, 173-275.

Exercises
10.1. We would like to improve the estimated average memory latency in

Example 10.1. Suppose, instead of SDRAMs, the memory unit is
designed using DDR SDRAMs. Recalculate the average memory
latency.

10.2. The estimated average memory latency in Example 10.1 is computed
for peak performance. Suppose in the worst-case scenario none of the
request and response transactions can be overlapped. Recalculate the
estimated average memory latency, assuming that every SDRAM
access (from the time a row address is issued until the first data item
appears on the bus) takes five SDRAM clock cycles. Ignore the time
required to deactivate a row.

10.3. Consider the following four memory locations accessed N times in a
loop by CPU, and suppose a memory address is partitioned into tag,
slot, and offset, as shown. Do the following:

0x3C1C (16-bit address)
0x0421
0x041F
0x0C88

a. Determine the number of misses in the first round, assuming the
cache is initially empty.

b. Determine the total number of misses for N rounds, assuming the
cache is initially empty.

c. Suppose the cache mapping is changed to a two-way set
associative. Calculate the tag, set, and offset field sizes, and then
determine the number of misses in the first round, assuming the
cache is initially empty.

d. Determine the total number of misses for N rounds, assuming the
cache is initially empty and a cyclic replacement policy (if needed) is
used.

10.4. Repeat Exercise 10.3(a) through (d) for the following four addresses:
0x0C1C (16-bit address)
0x0521
0x041F
0x4D28

10.5. Repeat Exercise 10.3(a) through (d) for the following four addresses:
0x3C1F (16-bit address)
0x042C
0x0460
0x3C1D

10.6. Repeat Exercise 10.3(a) through (d) for the following four addresses
but assume a four-way set-associative cache for parts (c) and (d):
0x3C17 (16-bit address)

0x3817
0x3917
0x1C17

10.7. Suppose main memory is 64KB, cache is 4KB, and block size is 16B.
Determine the tag, slot, and offset field sizes for direct-mapped cache.

10.8. Consider a four-way set-associative cache. Discuss the complexity
(e.g., hardware required) of implementing one of the following
replacement algorithms.

a. Cyclic: Slots within a set are selected in cyclic, first-in, first out
fashion (i.e., slot 0, 1, 2, 3, 0, 1, 2, etc.).

b. LRU: The least recently used slot is selected to be replaced. (Hint:
Consider a four-element LRU algorithm using a 4 × 4 matrix with 1-
bit entries. Suppose the four slots are numbered 0 to 3. Each time
that one of the slots is referenced, the corresponding four row
entries in the matrix are set to 1 and then the corresponding four
column entries are set to 0. For example, suppose slot 0 is
accessed first; then row 0 of the matrix will be (0111)2, and the
remaining rows will be (0000)2. Suppose slot 2 is accessed next;
then the rows of the matrix, in order, will be (0101)2, (0000)2,
(1101)2, and (0000)2. The LRU slot is the one when its
corresponding row is 0 = (0000)2.)

c. Random: A slot within a set is randomly selected to be replaced.
10.9. Consider the write-through protocol in Fig. 10.10. Determine which FSD

transition will take place when the high-level language program
statement “A = 1;” executes the first time.

10.10. Consider the MESI cache protocol in Fig. 10.11. Determine which FSD
transitions will take place when the high-level language program
statement “A = A + 1;” executes the first time.

10.11. Consider the MESI IRM → E and EWM → M transitions that take place
when variables that are not shared are accessed. State how
programmers can use this information when writing a multithreaded
program so the program runs more efficiently on a multicore or
multiprocessor system.

10.12. Consider a two-processor system with two MESI caches, C0 and C1.
Suppose the processors execute two threads, T0 and T1, that share

variable A. Outline a scenario when the MESI transition EXWH → I will
take place, assuming memory block BA contains A.

10.13. Consider the following two threads, T0 and T1, and the system in Fig.
10.9. Assume initially x = 0 and y = 0. Suppose P0 executes T0, P1
executes T1, Bx contains x, and By contains y. Use the following table
to indicate the state transitions of block Bx and Bx in the caches as T0
and T1 execute. In the assembly code listings, the execution order of
memory reference instructions are shown as comments. For example,
“STA (y)” of T0 executes first (//1), then “LDA (x)” of T1 executes next
(//2), etc. Also, state the number of times memory is updated or will
eventually be updated in each case.

a. Write-through protocol
b. Assume MESI protocol
c. Assume MESIF protocol

d. Assume MOESI protocol
10.14. Repeat Exercise 10.13, except that this time, T0 and T1 execute the

memory reference instructions in a different order, as given in the
following table.

10.15. Briefly explain how when a cache becomes a hotspot, it would
increase average memory latency.

10.16. In each of the following architectures, state when will memory be
updated:
a. Bus-based UMA with MESI protocol
b. NUMA architecture with MESIF protocol
c. NUMA architecture with MOSEI protocol

10.17. Suppose a system has 16 KB virtual memory space, 16 B page size,
and 2 KB physical memory. Do the following:
a. Determine the number of virtual and physical pages.
b. Assuming that each page table entry is 2 B, what is the maximum

size of a page table?
c. Design a page table organization to translate a 16-bit virtual address

to an 11-bit physical address.
10.18. Consider a TLB; answer the following questions:

a. Briefly explain the purpose for a TLB (e.g., what if no TLB is used?).
b. Explain why a TLB should be designed as fully associative cache

(e.g., what if it is implemented as a direct-mapped cache?).
10.19. Discuss the benefits of using a use (u) bit versus the implementation

of LRU algorithm in hardware. Also see Exercise 10.8.

10.20. Computer security (secure virtual memory): See Exercise 11.32 (also
see Sec. 11.11).

10.21. Computer security (virtual memory replay attack): See Exercise 11.33
for how to detect virtual memory replay attacks (also see Sec. 11.11).

10.22. Computer security (memory authentication task): See Exercise 11.34
(also see Sec. 11.9.2 and Sec. 11.11).

10.23. Computer security (preventing information leakage): See Exercise
11.35 for how to implement randomized encryption (also see Sec.
11.11).

10.24. Computer security (secure program execution): See Exercise 11.37 for
how to set up a trusted program for secure execution (also see Sec.
11.11).

10.25. Computer security (preventing information leakage more efficiently):
See Exercise 11.38 for how to prevent information leakage using less
memory (also see Exercise 10.22).

10.26. Computer security (organization of virtual address space to support
secure execution mode): See Exercise 11.39 for how to allocate
multiple virtual address spaces (also see Sec. 11.11.8).

CHAPTER 11
Computer Architecture: Security

11.1 Introduction
Throughout the previous chapters, we focused on digital design
techniques and computer architecture concepts to improve performance.
Additional techniques and concepts are needed to design a secure
computer. Today, more people and organizations are using computers,
and thus, not only are they generating large amounts of data, but also
creating new application software, some possibly with security holes.
This creates opportunities and benefits for a range of attackers, from an
individual hacker to a cyber-war army. Many organizations, such as
government (e.g., military), financial institutions (e.g., banks),
infrastructures (e.g., power grids), service industries (e.g., law firms),
commercial businesses (e.g., e-commerce), industrial complexes (e.g.,
factory control systems), and social networking companies (e.g.,
Facebook) all have digital assets (programs, documents, data, etc.) that
need protection.

Assets, especially those in electric power grids and industrial factory
control systems, may have numerous security problems [1]. For
example, they can become a cyber-war target for an enemy country that
is willing to spend time and resources to develop a complex cyber-

weapon. All security problems, however, can be characterized as having
one of three security properties as follows:

Confidentiality. Concealing assets and/or preventing unauthorized
access (e.g., eavesdropping). This includes programs, documents,
data, etc., stored on the hard disk and, in some cases, instructions
and data stored in memory.

Integrity. Ensuring that unauthorized modifications of assets are
detectable and, if possible, preventable. For example, code
injection would change the integrity of a program in memory, and
illegal data modification would change the integrity of a database.

Availability. Preventing attacks that deny service to legitimate users.
These attacks can have many forms and include server overload.
A malicious attack can consume resources like memory and
network bandwidth, and may cause overloading that slows down or
stops the computer from carrying out its intended services.

How important each of the three security properties is for an
organization depends on the types of assets and how they are used. For
instance, the integrity of bank accounts, perhaps more so than their
confidentiality, is critical for a banker; maintaining accurate balances is
more important than, say, safeguarding knowledge of assets. Likewise,
while it is necessary, for example, for students to have access to
computers at university campuses, an interruption and thus unavailability
of computers for a few hours may not be that crucial. On the other hand,
all three properties would be essential for a government agency such as
the military.

While the scope of computer security is large and covers many
subject areas, this chapter presents an introduction to computer security
topics related to computer architecture. In addition, even within the
computer architecture domain, the scope is large and evolving; new
concepts and methods are currently being researched. The chapter
introduces computer security for computer architects and presents
heuristic solutions. Others, including information-flow tracking methods,
are deferred to the Further Readings section and elsewhere. The
information flow-tracking techniques require every critical bit or word in
memory to be marked as secure or not secure. For example, data
entered via an I/O device would be tagged as not secure, and systems
data would be tagged as secure. A marked data item would then be

tracked as it enters the CPU. Controls would be implemented to prevent
unauthorized modifications of CPU state (i.e., registers). These methods
require additional memory space to store tags and may require altering
hardware design practices (logic circuits, data path, memory
organization) prevalent today.

Where a piece of software or hardware is developed and installed can
lead to security problems. This is especially important today when many
software and hardware companies rely on using third-party modules that
may not be designed or implemented correctly or that may contain
Trojans (illicit codes or HDL models). Software security policies and
mechanisms are often based on some proven models, such as those
used in military, and hardware security policies and mechanisms are
based on a set of techniques to prevent an attack. The chapter presents
examples of known software security models and their applications, as
well as an introduction to security policy mechanisms applicable to
hardware.

While there may be unlimited ways for attackers to exploit software
security holes, software attacks are typically the result of inserting invalid
data or copying data from one section to another in memory. For
example, consider a poorly written C program that uses the “strcpy”
(string copy) library function call to copy its command-line argument into
a locally declared array (a buffer) within a subroutine. In this case, an
attacker may use a specific argument value to “spoof” and cause a
buffer overflow attack [2]. In general, attackers may use a statically or
dynamically allocated buffer in a program to modify the memory stack
area where subroutine return addresses are stored. They may then use
the buffer to embed malicious codes and change a subroutine return
address on the stack in order to, for example, run malicious software
(malware) or invoke and use tools available on the system in privileged
mode. Software attacks can be used, for example, to intentionally disrupt
or overload a system, making it unavailable or too slow to conduct
business as normal. An attacker may gain access to classified
documents, modify a database, or trigger a hardware Trojan that could
cause a hardware malfunction, leak secret information, etc.

Attackers may also use spoofing and other techniques to perform
physical attacks [3−5] when they have exclusive access to a system.
An attacker may be able to use sophisticated equipment to spoof or
observe signal values for the purpose of gaining access to a portable
device or performing reverse-engineering tasks on the device. The

chapter also introduces spoofing and other techniques used to perform
software/physical attacks.

Because, in general, there are too many security holes to fill, it is not
possible to securely design, develop, and install every piece of hardware,
firmware, and software used in a secure system. What is necessary,
however, is to have a trusted computing base (TCB) to implement a
secure system [6]. TCB, which must be designed to be secure and
dependable (i.e., remain trustworthy), referrers to a minimum set of
hardware and firmware and their secure implementation (design,
develop, and install) requirements. In addition, depending on the security
requirements of a system, TCB may include software that not only must
be implemented securely, but the software must also execute securely.
The following is a list of security application areas:

• For a handheld device to securely exchange data with a host
computer and guard against physical attacks

• For system designers to implement security policy mechanisms to
prevent unauthorized access to systems resources: password files,
systems stack memory area, etc.

• For system designers to implement security policy mechanisms
when the commodity operating system (OS) frequently is
compromised [3, 7–9]

• For software companies to be able to develop and build secure
application-dependent security policy mechanisms

• For a software company to securely distribute programs for remote
installation

• For a user to be able to conceal information in the form of
documents, data, pictures, etc., and store it securely on a local or
remote disk drive; securely send and receive e-mails; perform
secure remote login; etc.

• For a company to implement security policy mechanisms to prevent
unauthorized access to its vital business resources: personnel data,
customer data, intellectual properties, etc.

• For an entertainment company to target the delivery of its products
to only authorized handheld devices

• For a cloud computing company to provide certified execution
service to its customers, for example

Finally, the chapter introduces confidentiality and integrity techniques
used in the implementation of software/physical security policy
mechanisms, and provides architecture examples of coprocessor- and
processor-based TCB and their application areas.

11.1.1 Security Engineering Methodology
The security engineering methodology (SEM) shown in Fig. 11.1
provides a step-by-step procedure for designers to identify potential
threats; develop required security policies and mechanisms; and design,
verify, and evaluate a computer architecture for security. The analysis of
usage scenarios and potential security problems defines the scope of
security risks. Usage scenarios are often application dependent and may
involve a wide class of systems, such as embedded systems, real-time
systems, and distributed systems, and may cover many industries,
including IT, manufacturing, healthcare, business, etc. [10–11]. The
analysis of threat model, security policy, and security mechanisms
identifies a possible list of threats and required security policy and
mechanisms for each threat.

FIGURE 11.1 A security engineering methodology [12].

To better understand the SEM, Table 11.1 presents the development
of a paper-based security mechanism for changing students’ grades as
an example of university assets.

TABLE 11.1 Developing a Paper-Based Security Mechanism to Change Students’
Grades

In Fig. 11.1, the usage scenarios may be expressed as a set of use
cases, and a threat model as a list of threat vectors. In general, a threat

vector can be viewed as the attack path that could lead to stealing,
damaging, or disabling a personal, business, IT, or other asset.

Table 11.2 lists data storage and remote server connection as two
examples of computer use cases. Viruses and other types of malware,
as well as the theft or other loss of a computer, can present certain
security risks. A malware can delete, modify, and/or steal data stored on
the hard disk. A lost or stolen computer (e.g., desktop, laptop, etc.) or a
handheld device (e.g., smartphone) that contains valuable information
can be a security risk; data stored on the hard disk or flash memory is
susceptible to tampering. In addition, if the lost device belongs to a
company, there is a chance that someone will wrongfully gain access to
servers in the company and cause damage; important company files
may be deleted or modified, or proprietary company business information
may be stolen.

TABLE 11.2 Five Steps of SEM Applied to Two Computer Usage Scenarios

Each of the two use cases in the table includes potential security
vulnerabilities, a threat model, a security policy, and a list of security
mechanisms. However, the security mechanisms are described in
layman’s terms, and more precise solutions will be provided later.

11.1.2 Threat Classes
Threats may be grouped into two broad categories: operational and
developmental.

Operational Threats
Operational threats depend on asset types and usage scenarios, such as
those listed in Table 11.2. Operational threats also depend on the tools
used in the implementation of security mechanisms. While a security
mechanism itself might be well designed, the tools (e.g., “locks”) might
be weak; for example, the “locks” themselves might be of poor quality
and easily unlocked. Other examples of operational threats are briefly
discussed next.

Devices, such as smart meters installed by utility companies in houses
or portable devices used by the military or during an emergency by
firefighters or emergency medical personnel, may face additional threats.
These devices may require a secure communication channel with a host
computer, but an attack may cause communication interference, for
example, during an emergency.

Remotely installed devices that are physically accessible, as well as
portable devices, are also subject to physical attacks. For example, an
embedded device that is installed in an automobile and tracks the
vehicle’s odometer reading may be tampered with in order to change and
reduce the odometer reading of an old car. Likewise, a high-tech portable
device may be hacked to modify or reverse engineer its functions.

Developmental Threats
These threats depend on trust models used for software and hardware
development, as well as delivery and installation of software. Incomplete
specifications, incorrect implementations, and improper security policies
and mechanisms are, in general, the three sources of software,
hardware, and firmware vulnerabilities. Often, these vulnerabilities are
unintentional, but they are sometimes intentionally caused by designers.

For instance, large integrated chip (IC) designs, especially processors,
can include designer-injected malicious circuits, for example, by adding
extra lines of hardware description language (HDL) code on purpose in
the design [13]. In general, an intentionally caused vulnerability is harder
to detect during validation. Many factors, including the growing use of

third-party “soft” components (e.g., Verilog models) in hardware designs,
increase vulnerability to attacks.

11.1.3 Access Control and Types
The data storage security mechanisms described in Table 11.2 are
designed to protect data stored on the hard disk from malware or
physical attacks. Other usage scenarios require mechanisms to restrict
access. For example, in an organization, who should be able to access
an employee’s personal data (e.g., salary, Social Security number, etc.)?
The answer might be that perhaps only an employee’s supervisor should
be allowed to examine employee’s personal data, and the data should
remain confidential to all other employees.

Likewise, in a computer system, only systems programs, not
application programs, should be able to access systems data. Such
security mechanisms are called access control. The access control
list (ACL) used, for example, in Linux/Unix systems decides which files
and directories (folders) each user can access. Users can use the
command “chmod” to assign read (r), write (w), and/or execute (x) rights
to each of their files and folders. For instance, for file foo, which initially
had read/write (rw-) permission assigned to all users, the command
“chmod 640 foo” assigns read/write (rw- indicated by 110 in binary) to the
owner (i.e., Joe Smith), read-only (r-- indicated by 100 in binary) to the
users in the group (e.g., system people), and no access (--- indicated by
000 in binary) to all other users. This is illustrated as shown:

With the ACL, even if files and folders are not concealed, they will
remain confidential and not accessible to some users. The Linux/Unix
ACL is an example of a discretionary access control because each
user decides what access rights he or she wants to assign to each of his
or her files and folders. On the other hand, a mandatory access
control, which may be rule based, enforces a set of confidentiality and

integrity security rules to all subjects (people and programs) or all assets
(objects) in an organization. For example, if only employees with the title
of supervisor are permitted to examine employees’ personal data, then
the mandatory access control is called a capability list (CL) [14, 15].
Each subject is assigned a list of capabilities—a set of permitted actions
that the subject is allowed to do with respect to all the objects in an
organization. On the other hand, a mandatory access control that is
organized by objects, not by subjects, is called a mandatory ACL,
similar to the Linux/Unix discretionary ACL example discussed earlier.
To illustrate an example, Table 11.3 presents an access control matrix
created from a university’s grading policy.

TABLE 11.3 An Access Control Matrix for Students’ Grades

In the table, the rows are subjects (instructors, students, etc.),
columns are objects (courses), and the matrix entries are a set of access
rights to students’ grades. The access rights are defined as read (R or r),
write (W or w), both read and write, or neither read nor write. The capital
letters R and W indicate read and write access for all grades in a single
course. The lowercase letters r and w indicate a read and write access to
a single grade, respectively. No-read and no-write accesses are shown
as blanks in the table. The matrix is shown with one department
chairperson p, two instructors x and y, two students s1 and s2, one staff

employee e, and three courses labeled A, B, and C. The matrix entries
also show instructor x can assign (R/W) grades to students enrolled in
courses A and C, instructor y can assign grades to students enrolled in
B, student s1 can read (r) her or his grades in courses A and C, and
student s2 can read his or her grades in courses B and C. The matrix
contains no single write (w) access rights.

An access control matrix would produce a CL if the matrix is stored in
terms of its rows. For example, chairperson p, instructor x, and student
s1 each has the following list of capabilities, shown as a relation:

For example, the assigned capabilities for instructor x are read access
and write access to all grades in courses A and C. The assigned
capabilities for student s1 are read access to his or her grade in each of
the courses A and C.

On the other hand, as shown next for courses A and B, an access
control matrix would produce a mandatory ACL if the matrix is stored in
terms of its column data:

For example, course A’s access list indicates chairperson p and staff e
have read access to all students’ grades, x has both read and write
access to all grades, and student s1 has only read access to his or her
grade. Because an ACL is a data-oriented mechanism, it is easier to
change rights for an object—for instance, to add student s3 to course A.

A program that wants to access an object (e.g., a file, data item,
certain memory locations, network connection, USB port, etc.) must be
listed in the object’s access list; otherwise, access is denied. In contrast,
a CL is subject oriented, and thus a subject can delegate (i.e., pass) its
assigned capability list fully or partially to another subject. For example,
instructor x can delegate his/her capability item “(C, W)” to chairperson p,

who then becomes the responsible person (not instructor x) to assign
(enter) grades to all students in course C.

While an ACL-based system is easier to implement, a CL-based
system can provide better protection; a user or process can only access
objects that are in its capability list. A CL-based system can also provide
finer protection; a delagetee’s responsibilities could be limited to a subset
of data, memory locations, tasks, etc. For instance, instructor x can
delegate only the responsibility of assigning a single grade, such as (C,
w(i)), to chairperson p, where index i identifies a single student, such as
s2, in course C. However, once a capability is delegated, there is no
control; the capability could again be delegated to another subject. A
system may use a hybrid approach to take advantage of both ACL and
CL schemes. The discussions on other access control schemes, such as
role based and originator based, are deferred to elsewhere.

11.1.4 Security Policy Models
Confidentiality and integrity security policy models must be able to create
a complete security perimeter for a computer system that covers all its
hardware and software components. As an example, consider the Flame
virus that can activate a computer’s audio system to listen in and transfer
office chatter through the network, capture screenshots, log keystrokes,
and even steal data from Bluetooth-enabled cell phones that are near the
computer. Likewise, the Stuxnet cyber-weapon is able to enter an
industrial control system through a universal serial bus (USB) port and
change the operating specifications of the control system—for example,
it can cause an industrial motor to spin too fast and actually cause
physical damage.

A mandatory access control is typically defined based on some proven
confidentiality and integrity security policy models, like those used in
military and business environments. Security policy models are
characterized as multilevel (hierarchical) or multilateral
(compartmental). The following is a description of some well-known
multilevel and multilateral security policy models.

Multilevel Models
A multilevel model is used in places where access to information is
naturally hierarchical, like the military or a medical office. In the military,
both subjects (people) and objects (e.g., documents) are assigned

clearances and classifications, such as, “top secret,” “secret,”
“confidential,” and “unclassified.” In a medical office, only doctors are
permitted to access certain patient medical records. A security policy
model is then used to control who can read or write each type of
document or a medical record.

Bell-LaPadula (BLP) [16] is a multilevel security model that was
designed to enforce confidentiality in the military. The BLP’s “no write
down” policy prevents an employee with a higher clearance from writing
or appending a document with a lower classification level. In addition, the
policy prevents the flow of information from a higher classified object to
a lower classified object. For instance, a corrupted army general with
top-secret clearance will be prevented from reading a classified
document and then transferring the information to an unclassified
document. This is known as the *-property of the BLP model. In a
computer system, the *-property can prevent the general from copying a
classified file to a USB flash memory, which would have a low
classification in the system. (Also, all high-clearance personnel may be
prevented from taking smart phones into their offices.)

The BLP’s “no read up” policy prevents subjects that have low
clearances from accessing objects that have high classifications. The
policy can prevent an unclassified employee in the military from reading
a top-secret document. The policy can also prevent malware that was
downloaded from the Internet, and thus is assigned a low clearance in
the system, from accessing a high-classified object, such as the
password file or confidential user data.

The integrity Biba [17] model enforces “no write up” and “no read
down” policies. Both subjects and objects are assigned integrity levels
(or labels); for instance, system files are labeled high and network files
low. The “no write up” policy can prevent a low-labeled malware
downloaded from the Internet from modifying a high-labeled systems
data, such as replacing a subroutine return address stored on the
system’s stack. The “no read down” policy can be used to lower the
integrity label of a systems program as soon as the program receives
data from the network. In this case, even if malware is somehow able to
gain an administrator privilege (i.e., [forks a root shell]), its integrity label
will still be low and thus it cannot write the password file, for example.
However, the malware would still be able to read (up) the password file
and therefore would be able to transfer (write down) the file through a
network connection unless the BLP policies are also implemented.

With both BLP and Biba policies implemented, “writing up,” “writing
down,” “reading up,” and “reading down” will not be permitted. As a
result, the combined policies produce a stronger security model.
However, the combination can potentially create access restrictions in
some applications, such as a database, when data sharing might be
necessary. An example implementation of Biba is the LOMAC, a
mandatory access control extension to the commercial off-the-shelf Linux
OS [18].

Multilateral Models
A multilateral model is used in places where access to information is not
hierarchical but compartmental, such as separation of duties in business
transactions or activities that are deemed to create conflicts of interest.

The BLP model for confidentiality does not apply to nonhierarchical
service-oriented businesses such as law firms, accounting firms, and
advertising agencies that may have competing clientele. An employee of
these service industries may receive sensitive client information that
must be protected and not shared with other clients in the same industry.
This type of information confidentiality is not multilevel, but rather
multilateral. The Chinese Wall [19] multilateral model is designed to
prevent conflict of interest.

For example, a law firm that has clientele from various industries (e.g.,
banks, oil companies, etc.) should not allow its employees to engage in
activities that have a conflict of interest and may result in sharing one
client’s business information (e.g., Citibank’s) with another in the same
sector (e.g., Wells Fargo Bank).

Likewise, Biba, a multilevel integrity model, does not work in
commercial environments. For example, a subject (an employee in a
company or software) that enters an order to purchase merchandise
should be different from the subject that receives the merchandise and
pays for it. In this case, a multilateral integrity model, such as the Clark-
Wilson [20] model that implements the principles of separation of duties
in business transactions, is used. Table 11.4 presents a summary of
these security policy models.

TABLE 11.4 Multilevel and Multilateral Security Policy Models

11.1.5 Attack Classes
Developmental threats, as discussed earlier, can produce unintentional
and sometimes intentional vulnerabilities in the form of backdoors. A
hardware backdoor attack is generally due to the presence of one or
more malicious circuits (hardware Trojans) within hardware modules
used to build a system. Given the large size of the modern ICs, malicious
circuits in the design are unlikely to be discovered during validation.
Moreover, almost all FPGAs now built elsewhere and some ICs may
contain a remotely activated “kill switch” [21]. Thus, hardware backdoor
attacks could present serious security risks. After the IC is fabricated and
installed in a system, a malicious circuit may be triggered remotely, either
by using malware or by having full access to the system and executing a
triggering program.

On the other hand, malware such as viruses and spyware are
examples of attacks due to generally unintentional backdoors in
software, which are exploited by attackers. Physical attacks are possible
when special equipment is interfaced to the hardware to alter its behavior
during its normal operation. Both software and physical attacks use
similar attack mechanisms.

There are still other types of attacks known as side-channel attacks
that are not due to backdoors, but rather are based on some side
information gathered while a program is executing. Examples of
information used for side-channel attacks are program execution time,
known as a timing attack (see Sec. 11.5.3), electromagnetic radiation
and acoustic signals that naturally are released during execution [22, 23],
and cache-based side-channel attacks [24].

11.2 Hardware Backdoor Attacks
Figure 11.2 illustrates three triggering mechanisms for hardware Trojans.
In this case, an attacker uses a triggering input to cause the multiplexer
(MUX) to select the result generated by the malicious circuit instead of
that produced by the original circuit. A triggering input may be data,
control (e.g., instruction), or time dependent. Also, it may consists of one
data item or one control or both, a sequence of data or control inputs or

both, or a counter (timer) to trigger an attack. The latter case is called a
ticking time bomb.

FIGURE 11.2 Examples of hardware Trojans [12]: (a) A one data or control
triggered Trojan; A data or control sequence triggered Trojan; (b) A timer
triggered Trojan (a ticking time bomb).

In addition, an attack may be classified either as noncomputational,
which targets memory, registers, MUXs, and other items that do not
operate on data and simply store or route it, or computational, which
targets arithmetic logic units (ALUs), decoders, finite state machines
(FSMs), etc. that manipulate incoming data.

Furthermore, a hardware backdoor attack can potentially take many
forms. For example, if the output of the MUX in Fig. 11.2 is a data item
and the attack causes a change in data values, it is called a corrupter
attack. On the other hand, if the output bits of the MUX represent control
signals and potentially cause more events to follow, it is called an
emitter attack [13].

A backdoor attack may alter and simplify cryptography algorithms
implemented in hardware, generate more cache memory traffic, cause
computational errors, consume more power, etc. The following sections
provide examples of data, control, and timer backdoor attacks.

11.2.1 Data and Control Attacks
Figure 11.3 illustrates two hardware Trojan examples with a single
instruction and a three-instruction sequence triggering mechanisms. In
Fig. 11.3(a), the Trojan is triggered by an “ADD” instruction with a
specific operand “11001100...”, and in Fig. 11.3(b), a three-instruction
sequence—“ADD 0,” “ADD 0,” and “ST 0”—triggers the Trojan. The
instructions are just examples and assumed to be of type Acc-ISA
(Chap. 8). The triggering inputs for both types of Trojans would normally
be selected in such a way that it is unlikely for the Trojans to be detected
during testing. For example, what are the chances of randomly selecting
an “ADD” instruction with the specific operand “11001100...,” or three
instructions “ADD 0,” “ADD 0,” and “STM 0” in order during circuit
testing?

Both the Trojans require an attacker to gain access to the hardware,
either directly or via malware, and input the necessary triggering inputs.
The attacker must be able to execute the “ADD” instruction for the circuit
in Fig. 11.3(a) or the three instructions in sequence for the circuit in Fig.
11.3(b) to trigger an attack.

FIGURE 11.3 Examples of hardware Trojan triggering mechanisms: (a) a
single instruction; (b) a sequence of instructions.

11.2.2 Timer Attack
A timer triggered Trojan, illustrated in Fig. 11.4, does not require the
attacker to have access to hardware. As soon as the counter counts
down to 0, the Trojan will be activated. Because most tests, especially

those that are random, are not long and only require a few millions of
cycles, the size of the counter would only need to be large enough to
escape detection during testing.

FIGURE 11.4 Examples of a timer-based corrupter and emitter backdoor:
(a) a ticking time bomb corrupter backdoor; (b) a ticking time bomb
emitter backdoor.

In Fig. 11.4(a), an attack will switch the data generated by an original
ALU with the data output by the malicious ALU, thus corrupting the
result. In Fig. 11.4(b), when writing to certain memory locations, an attack
could alter the signals of the cache controller to emit additional activities
in the downstream memory and thus leak information. Many other
examples of such Trojans can be thought of that are left to the reader’s
imagination.

11.2.3 Security Policy Mechanisms
One way to detect possible hardware backdoors during circuit design
cycle is to take advantage of the fact that hardware designer teams are
typically hierarchically organized, and each team does not design all the
modules necessary for a complex IC (e.g., processor). Each team may
design their own modules, and may also need to interconnect their
modules with other in-house or third-party “soft” modules, such as some
hardware description language (HDL) modules. However, while some in-

house modules may have to go through code review and other quality
control techniques to ensure their trustworthiness, others may still
contain Trojans that can lead to security problems.

The following sections give examples of hardware backdoor security
policy mechanisms.

Data Obfuscation
A security policy that prevents a single input triggering attack is data
confidentiality. However, depending on the type of the untrusted circuit
module, different policy mechanisms are needed. If the untrusted module
is noncomputational, such as the one shown in Fig. 11.5, only a simple
data confidentiality technique known as data obfuscation [25] is needed
to prevent an attack. In the figure, an output (00110011)2 from the trusted
module is XORed with a random number to obfuscate the data before it
is input to the untrusted module. In this case, when an attacker
generates the triggering input (00110011)2 to activate the Trojan in the
untrusted noncomputation module, the data actually presented to the
triggering circuit changes to (10010001)2, and, therefore, prevents an
attack.

FIGURE 11.5 Untrusted noncomputational module interface with data
obfuscation.

Homomorphic Encryption
Data obfuscation, however, is a bit difficult when it is used with a single
input triggering Trojan in a computational module. For instance, if the
untrusted computational module performs a square function, then a more
complex data obfuscation technique known as homomorphic
computation, also called homomorphic encryption, may be used [25–26].
Two functions, f and g, are said to have a homomorphic relationship if
the equality in Eq. (11.1) holds.

For example, if f is the multiplication function and g is the square
function, then f has a homomorphic relationship to g, as illustrated:

Suppose a design team decides to incorporate an untrusted HDL
model of floating-point square function in the design of a processor. In
this case, in order to prevent a single input triggering attack, either the
design team must incorporate the homomorphic encryption discussed
earlier in the hardware, or in systems that use the processor the
homomorphic encryption is implemented in software, for example, as
follows:

In this case, because y is generated randomly and is used to conceal
x, the quantity x * y is also random, making it an unlikely triggering input.
The square function computes (x * y)2 and not x2, which could trigger an
attack. The quantity x2 is then securely computed by dividing the quantity
(x * y)2 by the quantity y * y.

The advantage of homomorphic encryption is that operations for a
computation are performed on encrypted (concealed) data and not on
the original known values. For example, in order to illustrate another
application and an advantage of homomorphic computation, suppose the
“square” function in the previous code represents a unique remote
function call for which a homomorphic relationship exists. Suppose the
function is only available on a remote computer (e.g., a cloud) and the
user does not want the value x (representing some secret input, for
example, medical data) to be sent over the network or be accessible at
the remote computer. In this case, the user is able to conceal (encrypt)
inputs applied to the remote function without exposing the actual inputs
to the outside world and still is able to securely use a remote function.
Refer to the Exercises section for a potential problem with homomorphic
computation.

In addition, for some functions such as the square root, while the
homomorphic relationship exits when both x and y are
positive numbers, the relationship does not hold with negative numbers.
For instance,

In theory, in terms of circuit size, the cost of implementing a
computational module that also implements a hardware homomorphic
encryption/decryption algorithm can be unacceptably large.

Sequence Breaker
If a specific input sequence triggers an attack, a security policy to
prevent such attacks is to alter the order in which a sequence of inputs is
presented to an untrusted module. Random reordering of the inputs and
inserting dummy inputs within the normal inputs are examples of policy
mechanisms used to prevent input sequence attack. Many modern
processors, such as a dynamically scheduled superscalar CPU (Chap.
8), already reorder instructions to improve performance; thus, it may be
possible to introduce some randomness to this task. Random ordering of
the inputs, however, may not work for memory read operations. In such
cases, and for those where reordering due to data dependencies does

not work, dummy inputs should be used. For instance, to alter the order
of memory accesses, extra load instructions with pseudo-randomly
generated memory locations can be inserted within a large sequence of
load and store instructions [25].

Power Reset
A security policy for preventing a time bomb attack is to stop the counter
from reaching the trigger value. A policy mechanism to do this is to
frequently reset power to the untrusted module. How often an untrusted
module must have its power reset would be determined based on how
many clock cycles the module was tested. Because it is not known which
type of backdoor may exist in an untrusted module, data obfuscation,
input sequence reordering, and power reset all must be implemented to
prevent an attack.

Duplication
An alternative but potentially costly solution is to use duplication in
scenarios where attack prevention techniques may not work. Figure 11.6
illustrates an example of using a module duplication technique, where
each copy of module X is designed by two teams, A and B. The outputs
from the two copies are compared. As long as the outputs are the same,
the copies are considered free from attacks. However, this requires that
the modules be designed following the exact same specification; any
small variation in the design could result in a false-positive backdoor
attack.

FIGURE 11.6 Module duplication to detect hardware backdoor attacks
[12].

Automatic HDL Code Analysis
Another technique to potentially detect a backdoor is to automatically
analyze the HDL (e.g., Verilog) codes and tag the modules for possible
backdoors. The tagged modules are then watched for malicious activities
during run time [27].

Table 11.5 presents the summary of hardware backdoor attacks and a
list of potential security policies and mechanisms to prevent attacks.

TABLE 11.5 Summary of Security Policies and Mechanisms for Hardware Backdoors

11.3 Software/Physical Attacks
Spoofing, splicing, replay, and man-in-the-middle are four types of
software and physical attack mechanisms. They can be used to
physically monitor the behavior of, alter the functions of, or reverse
engineer a computing device. Physical attacks are often called hardware

attacks, but this should not be confused with hardware backdoor attacks
discussed earlier.

These types of attack techniques, however, are detectable if
appropriate confidentiality and integrity security policy mechanisms using
cryptography are implemented.

11.3.1 Spoofing
A spoofing attack, as was discussed earlier, is caused by illegally
inserting information (program code or data) into the system, as
illustrated in Fig. 11.7. A virus can insert invalid data on the hard disk or
memory. An attacker who gets physical hold of a computing device could
use specialized tools to conduct a physical spoofing attack. For example,
the attacker can intercept a memory transaction and spoof his or her
data in place of the data in memory. Spoofing violates data integrity.

FIGURE 11.7 Illustrating a spoofing attack [28]: a different value is inserted
in a target location.

11.3.2 Splicing
A splicing attack is caused by illegally transposing information
(instruction or data) with another one already in the system, as illustrated

in Fig. 11.8. Malicious software that copies instructions from one memory
section to another is an example of a splicing attack and so is a physical
attack that intercepts a memory transaction and supplies the processor
with previously accessed but different data from memory.

FIGURE 11.8 Illustrating a splicing attack [28]: data in location 5 is
replaced with the data in location 1.

A splicing attack can occur unnoticed even if data is kept confidential;
the attacker simply replaces one set of confidential data with another set.
Splicing attacks also violate data integrity, but one must integrate data
location information (e.g., memory address, register number, etc.) in the
integrity security mechanism to detect such attacks. An attacker that
changes an instruction physical page number A with B in a page table is
an example of a splicing attack [29]. In this case, the attacker can force
the OS or an application process to instead start executing instructions
from physical page B.

11.3.3 Replay
A replay attack is caused by illegally replacing data with an earlier
version in the system, as illustrated in Fig. 11.9. A replay attack is similar
to a splicing attack, except that the replaced data is not relocated from

another region in the system. For example, an attacker saves a specific
data item at a memory location and uses it later when the same location
is read again. Likewise, at the hardware level, an attacker can intercept a
memory transaction for address X in order to save a copy of the memory
content for later use [30]. The attacker then waits for a write-to-memory
transaction for address X to complete. The next time that a read
transaction for address X is detected, the attacker supplies the
previously saved, but now old, content to the processor.

FIGURE 11.9 Illustrating a replay attack [28]: data in location 5 at time t2 is
replaced with data in location 5 at time t1.

A replay attack may not need to happen in such a direct way. An
attacker may enable both new and old data to remain in the system. For
example, a replay attack may map a single virtual address to two
different physical addresses and cause new data to be stored in one
physical location but access older data from the second physical
location.

A replay attack also violates data integrity, but in a different way—
everything about the replaced data appears valid except that it is not
current. For example, a replay attack can cause an older and lower
reading of electricity usage to be communicated from a smart meter to
the utility company. Replay attacks are much harder to detect; neither

keeping information confidential nor implementing simple integrity
mechanisms can help to detect them. A more complex security
mechanism that integrates timing information (e.g., bus transaction
number, communication session identifier, etc.) is necessary to detect
replay attacks.

11.3.4 Man-in-the-Middle
A man-in-the-middle attack can happen in scenarios when two subjects
(people, software, firmware) are communicating without using adequate
confidentiality and integrity mechanisms. A malicious subject may
intercept messages being exchanged between two legitimate subjects
and then either copy the message (i.e., eavesdrop) or substitute a
different message in place of the original message, as illustrated in Fig.
11.10. The A and B entities are unaware of entity C. Both A and B think
they are communicating with each other.

FIGURE 11.10 Illustrating a man-in-the-middle attack. The A and B entities
are unaware of entity C.

11.4 Trusted Computing Base
A TCB encompasses secure design, development, installation, and
functioning of hardware and firmware and possibly software modules
responsible for maintaining security in a system. The hardware modules
must be protected from backdoor attacks so they continue to operate
correctly. We call this a trusted hardware module (THM). Firmware must
also be securely designed, developed, and installed. We call this trusted

firmware module (TFM), which would be embedded in THM, a
tamperproof IC. Also, in some secure system application areas, one or
more security-related software modules must also securely execute. In
this case, the software modules must securely be designed, developed,
and installed. Such a software module is called a trusted software
module (TSM).

A THM-TFM would be organized as a secure coprocessor (SCP), for
example, a cryptoprocessor that operates as an embedded system
responsible for providing cryptography services to the OS as well as
application software. The SCP would be responsible for generating
secure cryptography keys (see Sec. 11.5) for protecting the
confidentiality and integrity of files and data stored locally or remotely on
a server and keys required for secure communication. The TFM, being
embedded in the THM, is protected from software spoofing, splicing, and
replay attacks, but not from physical attacks. The trusted platform
module (TPM) as an example SCP is discussed in Sec. 11.10.

A THM-TFM-TSM, on the other hand, would be organized as a
general-purpose secure processor (SP) for maximum applicability. An SP
may support multiple secure execution environments, each
implemented as a secure execution mode (SXM) to run an arbitrary
TSM. Depending on the application area, an arbitrary TSM may require
confidentiality or integrity or both of its instructions, as well as
confidentiality or integrity or both of its data. An SP-based system can
support all security-related application areas, including those supported
by an SCP. An example of security application areas that would require
an SP is the implementation of mandatory access controls (Sec. 11.1.4)
when a commodity OS frequently is compromised or when a portable
device must be protected from physical attacks [31–33]. Furthermore,
handheld devices, such as a smart phone, may require a power-efficient
SP. Consider, for example, the digital rights management [34] policies
that would permit an encrypted media file to be decrypted only by a
target handheld device.

Because a TSM may be subject to software attacks, an SXM must
implement the necessary security policy mechanisms to protect a TSM
from spoofing, splicing, and replay attacks, as well as physical attacks if
the system is a portable device. SXMs are discussed in Sec. 11.11, and
the architecture of an SP for maximum protection is presented in Sec.
11.12.

Other examples of security application areas that require a TCB
include software piracy prevention, cloud computing, and certified
execution. For instance, consider the Search for Extraterrestrial
Intelligence (SETI) project [35] and a general-purpose distributed
computing project at www.distributed.net [36] that utilize at-home
computing power from thousands of volunteer users to conduct research
in many areas important to public and academia. A user can download a
free program that analyzes research data, for example, from the radio
telescope for SETI. However, without certified execution, it is not
possible to verify the correctness of the results.

11.5 Cryptography
Confidentiality is enforced by applying an encryption algorithm, also
called a cipher, to scramble and conceal the information in a plaintext
document, e-mail message, authentication data, memory content, etc.
The output of a cipher is called a ciphertext. Likewise, a decryption
algorithm, also called a cipher, unscrambles a ciphertext and generates
the original plaintext, as illustrated in Fig. 11.11.

FIGURE 11.11 Illustration of encryption/decryption cryptography.

A cipher is called secure if its generated ciphertext does not contain
any information that could be used to obtain the original plaintext input. A
symmetric-key cipher uses a single cryptography key for both
encryption and decryption. An asymmetric-key cipher, on the other
hand, uses one key for encryption and a different key for decryption. In

http://www.distributed.net/

practice, only cryptography keys need to be secret; ciphers (the
algorithms), however, can be known [37].

A cipher is called a stream cipher if it encrypts or decrypts its input
one bit at a time. Otherwise, a cipher is called a block cipher, where it
encrypts/decrypts its input one block (multiple bits) at a time. For inputs
that are longer than one block, there are multiple ways, called modes of
operation, in which a cipher is repeated to encrypt/decrypt the remaining
input blocks. Examples of symmetric-key and asymmetric-key ciphers
are discussed next.

11.5.1 Symmetric-Key Ciphers
Figure 11.12 illustrates an 8-bit linear feedback shift register (LFSR) as
an example of a simple symmetric-key cipher, called a stream cipher.
The cipher is designed using a parallel-load/right-shift register with four
tap bits: 4, 5, 6, and 8. The tap bits are numbered starting with 1 and
refer to the register bits from right to left. The four tap bits are XORed to
generate the next left-input (LI) bit as the register is shifted right.

FIGURE 11.12 Illustration of an 8-bit LFSR cipher with tap bits 4, 5, 6, and
8.

The register is initialized with a secret key, and as the register shifts
right, the bits that are shifted out create a key-stream one bit at a time.
For example, after 16 shifts, the LFSR generates a 16-bit key-stream;
after 32 shifts, it generates a 32-bit key-stream; etc. The period of a key-
stream, which is determined by the selected tap bits, is the number of
shifts before the key-stream repeats. A key-stream is bitwise XORed with
an equal-size plaintext stream to generate an equal-size ciphertext
stream one bit at a time. Likewise, the key-stream is bitwise XORed with
a ciphertext stream to generate its corresponding original plaintext
stream one bit at a time.

The initial secret key is carefully selected so that the register content
does not become zero as it shifts right. In the figure, the LFSR cipher is
initialized with an 8-bit secret key = 8’hEB (hex in Verilog) and requires
16 clock cycles to encrypt the 16-bit plaintext = 16’hAFE0 to its
corresponding 16-bit ciphertext = 16’h44CF. Likewise, the register is
initialized with the same secret key = 8’hEB before the 16-bit ciphertext =
16’h44CF is decrypted, in 16 clock cycles, to generate the original 16-bit
plaintext = 16’hAFE0.

A5/1
A5/1 is a practical stream cipher and uses three 19-, 22-, and 23-bit
LFSRs, as illustrated in Fig. 11.13. The three LFSRs are labeled X, Y,
and Z, respectively. The symbol indicates bitwise XOR. The LFSRs are
not shifted during every clock cycle; instead, register bits x8, y10, and z10
are used as inputs to a majority circuit that outputs m = 1 if two or more
of the inputs are 1, or m = 0 if two or more of the inputs are 0. For
example, if x8 = 0, y10 = 0, and z10 = 1, then m = 0, and if x8 = 1, y10 = 1,
and z10 = 0, then m = 1.

FIGURE 11.13 The A5/1 stream cipher.

The x8, y10, and z10 bits are individually compared (XNORed) with m
to either enable or disable each register during the next clock cycle. For
example, if then register X is enabled; otherwise, X is disabled
during the next clock cycle. This introduces additional randomness to the
key-stream. The bits x18, y21, and z22 are used to generate the key-
stream. The initial secret key is 64 (19 + 22 + 23) bits long.

Block Ciphers
Data Encryption Standard (DES) is one of the oldest block ciphers. It
operates on 64-bit blocks and uses a 56-bit key. Advanced Encryption
Standard (AES), the most common today, is recommended by the
National Institute of Standards and Technology (NIST) [38].

Advanced Encryption Standard (AES)
The 128-bit AES cipher (the standard) requires a 128-, 192-, or 256-bit
key to encrypt/decrypt blocks of 128-bits. If the number of bits in a
plaintext input is not divisible by 128, the plaintext is padded with extra
bits. AES organizes each input block into columns and rows. An

encryption step requires 10, 12, or 14 rounds of operations, depending
on the length of the key. Each round involves certain byte substitutions
using a lookup table, row shifting, column mixing, and bitwise XOR
operation to generate the input for the next round. The output of the last
round is a 128-bit ciphertext. Depending on the mode of operations
(discussed next), decryption operations may be performed in the reverse
order or in the same order as encryption.

11.5.2 Modes of Operation
Figure 11.14 illustrates the application of the AES cipher in cipher block
chaining (CBC) mode. Each encryption step starts with a bitwise XOR of
the current 128-bit plaintext block and the preceding 128-bit ciphertext
block; thus, the word “chaining” in the name. The first plaintext block,
however, is XORed with a 128-bit randomly generated, but not
necessarily secret, initialization vector (IV).

FIGURE 11.14 Illustrating the AES cipher in CBC mode: (a) encryption; (b)
decryption.

While the blocks of a plaintext are encrypted recursively in CBC mode,
as illustrated in Fig. 11.14(a) and also outlined in Table 11.6, the blocks
of a ciphertext can be decrypted in random order and even in parallel. In
the table, the letter E stands for encryption; D for decryption; K for secret

key; P0, P1, etc., for plaintext blocks 0, 1, etc.; and C0, C1, etc., for
ciphertext blocks 0, 1, etc.

TABLE 11.6 Encryption/Decryption in CBC Mode

Another common mode of operation is the counter mode (CTR), as
outlined in Table 11.7. It uses a sequence of IVs for concurrent
processing. The function E(IV, K) indicates the encryption of an IV with
K, which is then XORed with the first plaintext block P0 to generate the
first ciphertext block C0. The IV is then incremented and is used to
encrypt the next plaintext block (P1) independent of C0. This process
continues until all the plaintext blocks are encrypted.

TABLE 11.7 Encryption/Decryption in CTR Mode

The CTR mode has the advantage of using a single cipher for both
encryption and decryption. Note that, in the table, no decryption (D)

cipher is used. In addition, blocks can be encrypted or decrypted
concurrently. For example, a 16-block plaintext can be partitioned into
two groups of eight blocks, such as, blocks P0 to P7 in one group and
blocks P8 to P15 in another group. The blocks of each group can then be
processed concurrently, for example, using two threads. One thread
operates on blocks P0 to P7 and uses IV to IV+7, and a second thread
operates on blocks P8 to P15 and uses IV+8 to IV+15.

Many processors, including those of Intel and AMD, have
implemented the AES instruction set, where CBC, CTR, and other
modes can be implemented in software [39].

11.5.3 Asymmetric-Key Ciphers
An asymmetric-key cipher, as stated earlier, requires two keys, one for
encryption and another one for decryption. The primary application of
asymmetric-key cryptography, as illustrated in Example 11.1, is for
communication. In the example, Alice and Bob represent two subjects as
people, programs, or hardware.

Example 11.1. Suppose Alice would like to send a secret message to Bob. Alice and
Bob each have a nonsecret public key and a secret private key. Also, suppose, no one
else will send a secret message to Bob and pretend to be Alice or alter Alice’s message
in any way.
Solution: Because Alice is only concerned with keeping the message confidential,
Alice and Bob can use the following two steps:

1. Alice uses Bob’s public key to encrypt her private message to Bob.
2. Upon receiving the message, Bob uses his private key to decrypt

the message.

Since no one else knows Bob’s private key, only Bob can decrypt Alice’s
encrypted message.

RSA
RSA, which stands for Ron Rivest, Adi Shamir and Leonard Adleman,
the names of the three people who developed it, is an asymmetric-key
cipher that requires one key for encryption and a different key for
decryption. Each plaintext or ciphertext is viewed as an integer number.
For example, using the ASCII coding scheme, the string message
“HELLO” consists of five 8-bit ASCII codes; that is, 2’h48 or 72 for

character H, 2’h45 or 69 for E, 2’h4C or 76 for L, 2’h4C or 76 for the
second L, and 2’h4F or 79 for O.

The string may be partitioned and viewed as five separate ASCII
codes with decimal numbers 72, 69, 76, 76, and 79, or viewed as single
large 40-bit number: 40’h48454C4C4F (hex in Verilog). Other partitions
of the string into integer numbers are also possible. For example, the
string may be partitioned into three 16-bit numbers: 16’h4845 = 18501,
16’h4C4C = 19532, and 16’h4F00 = 20224. The last partition is padded
with an 8-bit 0 to make it a 16-bit number.

For simplicity, it is assumed that the string “HELLO” is partitioned into
five plaintext integer numbers as P0 = 72, P1 = 69, P2 = 76, P3 = 76, and
P4 = 79. The string can then be encrypted, one number at a time, using,
for example, CBC or CTR mode of operation discussed earlier. However,
asymmetric ciphers, as discussed next, are not designed to encrypt large
inputs.

The RSA requires two relatively prime numbers as keys: a public key
(e) used for encryption, and a private key (d) used for decryption.
Equation (11.3) defines the relationships between an n-bit plaintext P
and its n-bit ciphertext C.

Assuming that the public key e = 5 and n = 91, Eq. (11.4) illustrates
the encryption of a plaintext P = 72 to its ciphertext C = 11, which is the
remainder of 725 divided by 91. (Note that for 8-bit plaintext ASCII codes,
n has to be 256).

Equation (11.5) illustrates the calculations required to decrypt C = 11
and obtain its corresponding original plaintext number P = 72 using
private key d = 29 and n = 91. Note that the integer quantity 1129 is too
big to compute using a calculator or even some computers. It must be
divided into smaller forms until each form is small and computable.

A very large integer quantity Xy may be written as Xa+b, Xa*b, or Xa*b+c.
Equation (11.6) illustrates Xa*b+c mod n divided into smaller forms.

If, for example, quantity Wb is still too big a number in Eq. (11.6), the
quantity is again successively divided into smaller forms until all such

quantities are small numbers and the result of each mod function can be
computed.

The following is an algorithm to determine an RSA encryption key e
and decryption key d [40, 41]. Public keys are securely stored in a
trusted center, such as the public key infrastructure (PKI).

1. Select two prime numbers p and q; for example, p = 7 and q = 13.
2. Determine n = p * q; that is, n = 7 * 13 = 91.
3. Determine m = (p − 1)(q − 1); that is, m = (7 − 1)(13 − 1) = 6 * 12 =

72.
4. Find a prime number e such that e is relatively prime to m and e <

m; that is, gcd(e, m) = 1 and e < m, where “gcd” stands for greater
common divisor; for example, select e = 5.

5. Find an integer where k is an integer number and d < m;

for example, for . If there is no such integer

k, select a different value for e in step 4 and repeat step 5. If there
are no such e and d values, select two different prime numbers in
step 1 and repeat.

6. Use the values of e and n as public (known) and d as private
(unknown) information; that is, use e as a public key and d as a
private key.

It is also possible to reverse the order and first select a value for d and
then determine a value for e according to the requirements of steps 4
and 5.

The RSA cipher requires more computations when P, C, e, and d are
very large numbers. For instance, a 128-character message may be
interpreted as a 1024-bit integer (128 * 8) message, one of 256128

possible combinations made with 128 ASCII characters. This implies that
P and C can be a very large number <21024. The encryption of a 1024-bit
P would result in a 1024-bit ciphertext C, also containing 128 ASCII
characters. Because typical processors do not have, for example, a
1024-bit arithmetic unit required for 1024-bit RSA cipher, large arithmetic
functions must be either implemented in software or as a coprocessor in
hardware [42].

The bigger the values of ciphertext C and the decryption key (d) are,
the harder it is, requiring many days, months, or even years of
computations, to break the RSA cipher. One possible technique is to use
a brute-force approach and examine every possible decryption key value
until the right key is identified and the resultant P makes sense.
However, given a 2048-bit C, it could take a prohibitively long time to
determine the corresponding 2048-bit P. A timing attack has been used
to reduce the list of possible decryption key values based on the amount
of time required to perform decryption, much like a thief guessing the
numbers required to unlock a combinational lock based on how long it
takes a person to turn the dial to unlock the lock.

Example 11.2. Suppose Alice would like to send a secret message to Bob, and she
also wants to make sure no one else is able to send a secret message to Bob and
pretend to be her.
Solution:

1. Alice uses her private key and encrypts her secret message. Since
no one else knows Alice’s private key, the encrypted message, in a
way, has her signature.

2. Alice then uses Bob’s public key and encrypts her already
encrypted message; thus, only Bob can access the message and
not anyone else who knows Alice’s public key.

3. After receiving the message, Bob first uses his private key and
decrypts the message.

4. Bob then uses Alice’s public key and decrypts the secret message
Alice sent.

These four steps require four applications of the RSA cipher: two for
encryption by Alice and two for decryption by Bob. This is a
disadvantage, considering the significant processing time of the RSA
cipher. However, Alice and Bob could use the steps in Example 11.2 to
share a symmetric key and use it instead to exchange large messages.
Symmetric ciphers are faster and require fewer key bits to achieve the
same level of security as compared to asymmetric ciphers; for example,
3072-bit RSA is comparable to 128-bit AES [43].

Example 11.3. Suppose Alice and Bob would like to exchange many secret messages.
Therefore, they decide to be efficient and use a symmetric-key cipher instead of an
asymmetric-key cipher, such as the RSA.

Solution:

1. Alice and Bob use the four steps outlined in Example 11.2 for Alice
to send a message containing, for example, a 128-bit symmetric key
to Bob.

2. Both Alice and Bob now know a common secret key that they can
use to exchange secret messages using a symmetric-key cipher
such as AES.

With both Examples 1.2 and 1.3, there is a chance for a man-in-the-
middle attack. For instance, suppose Mary is able to access Alice’s hard
disk or performs a timing attack and discovers Alice’s private key. Mary
then is able to intercept and access Alice’s secret symmetric key in
Example 11.3. Once Mary knows the symmetric key, she can monitor
secret messages exchanged between Alice and Bob. Therefore,
additional security policy mechanisms are needed to detect man-in-the-
middle attacks.

Example 11.4. Suppose Alice wants to send Bob a symmetric key and she wants to
make sure there is no chance for any man-in-the-middle attacks. Also, assume the
communication medium is secure and any data transmission errors (if any) can be
resolved.
Solution: Both Alice and Bob need to include randomly generated numbers unknown to
an adversary in their messages to make sure they are communicating with each other
and not with a middle man [44]. In the following “ptxt” stands for plaintext, “ctxt” for
ciphertext, “pr” for private key, and “pu” for a public key.

1. Alice uses Bob’s public key (Bpu) and encrypts a random number
(r1) plus her name or an ID number (IDAlice); r1 is generated by a
trusted software. Alice sends the encrypted message to Bob and
waits for a response.

2. Bob’s receives the message and uses his private key (Bpr) to
decrypt the message and discover r1 (labeled r1Bob-rcvd).

3. Bob uses Alice’s public key (Apu) to encrypt and send both r1Bob-rcvd
and another random number (r2) that his trusted software generated
to Alice. Bob then waits for a response from Alice.

4. Alice receives the message and uses her private key (Apr) to
decrypt the message and discover both r1 (r1Alice-rcvd) and r2
(r2Alice-rcvd). Alice compares r1Alice-rcvd with r1. If the two values are

the same, Alice knows the message came from Bob and not from
someone else.

5. Alice then uses Bob’s public key (Bpu) and encrypts and sends
r2Alice-rcvd back to Bob.

6. Alice also generates a plaintext symmetric key (Ksym-ptxt) and
encrypts the key as Ksym-ctxt1 using her private key (Apr). She then
uses Bob’s public key (Bpu) and encrypts Ksym-ctxt1 to generate Ksym-

ctxt2 that she sends to Bob.
7. Bob uses his private key (Bpr) and discovers the r2 he had sent to

Alice (r2Bob-rcvd). Bob compares r2Bob-rcvd and r2. If the two values
match, Bob knows he is communicating with Alice.

8. Bob then first uses his private key to discover Ksym-ctxt1 from Ksym-

ctxt2, and then he uses Alice’s public key to discover Alice’s Ksym-ptxt
from the Ksym-ctxt1.

9. Bob sends an acknowledgement message encrypted with Ksym-ptxt
to Alice.

These steps are summarized here using E for encryption, D for
decryption, and symbols {} for concatenation:

Elliptic Curve Cryptography (ECC)
There are other asymmetric-key ciphers. The elliptic curve cryptography
(ECC) requires smaller public/private key sizes to provide the same level
of security as compared to RSA. For example, 2048-bit RSA provides
the same level of security as 224-bit ECC, and 3072-bit RSA is
comparable to 256-bit ECC [42, 43]. Furthermore, because both RSA
and ECC ciphers require about the same amount of processing time with
equal key sizes, ECC is more cost effective in terms of both required key
storage space and processing time. This makes ECC advantageous
when compared to RSA, especially in handheld devices where less
power consumption is desirable. Mathematically, however, ECC is more
complex. Its description is deferred to textbooks on cryptography.

11.6 Hashing
Hashing is like a fingerprint used for message authentication. A hash
function converts the entire message into a unique hash value, also
called a hash code, or simply just a hash, which is a number in the order
of only a few bytes. A message is validated by verifying a received hash
value with the one computed from the received message, as illustrated in
Fig. 11.15. If the two hash values match, the message is considered
valid; otherwise, the message, the hash, or both have been modified.
Furthermore, a hash function is always one-way; it is impossible to
retrieve the original message from a hash value of only a few bytes. A
hashing function is called standard if no secret key is used to generate a
hash.

FIGURE 11.15 Message authentication using hashing.

A hash simplifies message authentication, which otherwise could be a
very difficult task, especially if a message is, for example, a picture or
binary file. Figure 11.16 illustrates a simple standard hash function using
8-bit bitwise XOR logic. In the figure, the ASCII string “HELLO”
generates a hash = 8’h8E. It would be impossible to determine the
original message “HELLO” from its hash value 8’h8E. A standard hash is
also known as a checksum, which is typically used to detect data
transmission errors.

FIGURE 11.16 A simple standard hash function using 8-bit bitwise XOR; it
generates a 1-byte hash for the string message “HELLO.”

Example 11.5. Suppose Alice wishes to share an important personal message with her
friends so she decides to digitally sign the message before sending it.

Solution: In the following, “H” indicates a hashing function, “M” a message, and “HV” a
hash value:

Software companies can also use the technique illustrated in Example
11.5 to securely distribute nonconfidential software products.

A hash function must be collision resistant, never producing the
same hash value for two different messages. For example, the simple
hash function illustrated in Fig. 11.16 is not a collision-resistant hash
function. The hash of string “WORLD” with the same IV = 8’hCC, as
illustrated in Fig. 11.17, is the same as the hash of string “HELLO.”

FIGURE 11.17 An example illustrating a noncollision-resistant hash
function; two messages—“WORLD” and “HELLO”—generate the same
hash value.

The Secure Hash Algorithm (SHA) that was developed by the NIST
[38] now includes four hashing algorithms: the original SHA-1, SHA-256,
SHA-384, and SHA-512. SHA-1 generates the following two hash values
for the two strings “HELLO” and “WORLD” [45]. The two hash values are
very different. However, SHA-1 has since shown to be not collision
resistant [40].

Each SHA algorithm successively processes a 512-bit (SHA-1 and
SHA-256) or 1024-bit (SHA-384 and SHA-512) message block and
generates a final 160-, 256-, 384-, or 512-bit hash value, respectively. A
message must be padded (if necessary) with extra bits and then

concatenated with the size of the message before hashing. The padding
and concatenation create an input message that is an integer multiple of
block size in length. For example, Fig. 11.18 illustrates the format for the
input message used with SHA-512. The message is first padded (as
needed) with a 1 followed with zero or more 0’s, and then it is
concatenated with the size of the message (N) represented as a 128-bit
unsigned number. The result becomes an M * 1024-bit message, with M
being an integer number. Table 11.8 presents a list of properties for each
of the SHA algorithms.

TABLE 11.8 Properties of Secure Hash Algorithms

FIGURE 11.18 The message format used with the SHA-512 hash
algorithm.

An SHA, like the simple hash function illustrated in Fig. 11.16, starts
with a k-bit known IV, where k is typically less than the block size n (k <
n), and performs several compression rounds to generate a hash value
for the first block, which is then used as the IV to hash the next block.
This process continues until the final hash, also called a message
digest, is generated. Any change made to the message will result in a
different hash value that will not match the one transmitted with the

original message. The SHA algorithms could be used either with
plaintext or ciphertext input.

11.7 Cryptography Hash
A standard hash cannot be protected. It is still possible for an adversary
to alter both the message and its hash without detection. Cryptography
hash algorithms, on the other hand, require a secret key to generate a
hash value. In this case, the hash is called a keyed hash. Two examples
of keyed hash algorithms are discussed next.

11.7.1 Message Authentication Code
A message authentication code (MAC), also called a cipher MAC
(CMAC), requires a cipher to generate a secure hash. For example, Fig.
11.19 illustrates the generation of a MAC using the AES-CBC cipher with
n-bit blocks and a k-bit key (K). The n-bit keys K1 and K2 in the figure
depend on the message size and are determined from K and a constant
that depends on n [40]. If the message size is an integer divisible by n,
then constant K1 is used; otherwise, the last block is padded with 1
followed by 0’s to create an n-bit last block and the constant K2 is used.
A few bytes from the last cipher block are selected as the MAC.

FIGURE 11.19 The AES-CBC-MAC; the MAC is m bits long where m ≤ n.

The combined abbreviations AES-CBC-MAC means an AES cipher in
CBC mode is used to generate a MAC. AES-CBC-MAC has the
advantage of performing both encryption and keyed hashing at the same
time.

If an accidental or intentional modification is made to one or more of
the input blocks, the algorithm produces a different MAC. Therefore, it is
not possible for an adversary who doesn’t know the secret key to alter
the input and still generate the same MAC. However, both the sender
and the receiver need to know the secret key and the technique used to
generate a MAC. In addition, a MAC may be generated for a plaintext or
ciphertext input.

11.7.2 Hash MAC
As opposed to a CMAC that requires a cipher, a hashed MAC (HMAC)
requires a more efficient (less computationally intensive) standard
hashing algorithm, such as SHA-256. An HMAC could be computed in
two hashing cycles using two additional secret (S) codes Si (input S) and
So (output S), derived from a secret key K and two integer constants
called input pad (iPAD) and output pad (oPAD).

The iPAD and oPAD do not make the hashing algorithm more secure;
instead, they are used to improve the quality of the secret key through a
technique known as whitening [46]. For example, given an initial 16-bit
key = 16’h1234 and iPAD = 8’h36, a 32-bit Si is generated as follows
using bitwise XOR () as the whitening technique:

Given a message M, a secret key K, the iPAD and oPAD constants,
and a standard hash algorithm H, an HMAC is generated as follows:

The HMAC Algorithm:

1. Generate Si from K and iPAD, as illustrated in Eq. (11.7); that is, Si
= K iPAD+. The original secret key may need to be padded with
0’s, and iPAD is repeated as needed to create Si of desired length.

2. Generate a hash value (HV) for Si concatenated with M; that is HV
= H({Si, M}), where {} indicates concatenation.

3. Generate So using K and oPAD (e.g., oPAD = 8h’5C). So is
generated in a similar way as Si; that is, So = K oPAD+.

4. Generate the HMAC for So concatenated with HV; that is, HMAC =
H({So, HV}).

Equation (11.8) summarizes these four steps.

11.8 Storing Cryptography Keys through Hardware
As was discussed at the start of the chapter, confidentiality and integrity
are fundamental to computer security. However, storing cryptography
keys on the hard disk creates a security risk and a threat to the system.
Securely storing many secret keys, such as those used in an
organization, requires creating a key structure tied to a secret key inside
a tamperproof IC. This is known as data storage through hardware or
binding data to platform.

The NIST lists a set of recommended key sizes and derivation
techniques [38]. For example, 2048-, 3072-, or 4096-bit key sizes for the
RSA, or 256- or 384-bit key sizes for the ECC are recommended for
public key encryption. Likewise, 256-, 384-, and 512-bit SHA are
recommended for hashing. AES-CBC-MAC is one of the
recommendation for protecting both confidentiality and integrity. For
integrity only, a 128-bit HMAC using SHA-256 is recommended. Readers
are referred to the NIST documents for application-specific
recommendations. The secure storage of cryptography keys must be
maintained by a trusted computing base (TCB).

11.8.1 Keychain Organization
A key structure, or keychain, is organized hierarchically as a tree with
parent and leaf nodes. Figure 11.20 illustrates an example organization
of one or more keychains, each with one or more nodes [47, 48]. In the
figure, a parent node is shown by a square, and it refers to a storage
key required to protect the content of its children nodes. A leaf node,
shown by a diamond, refers to a signature key, also called a signing
key. It is used, for example, to encrypt the hash of an e-mail message or
the output of a program to certify results. A leaf node, shown as a circle,
indicates a small amount of data, for example, a symmetric key used to
encrypt a large data file. A key structure may also include other leaf
nodes, such as an attestation identity key (AIK). It is an asymmetric key
tied to the platform and used, for example, in server authentication
applications.

FIGURE 11.20 Keychains tied to an SRK inside a tamperproof IC.

The root parent node is protected by a secret root key (SRK) securely
stored inside a tamperproof IC. Secret keys based on physical
unclonable functions (PUFs) have been shown to be resistant to many
types of attacks [49–51]. An arrow indicates a key derivation. Each
parent and leaf node contains a set of key material that includes a
unique number called nonce (number used once) and may also include
one or more constants that identify a key type. The keys themselves are
not saved; only the key material of each node is securely saved. In
addition, an authorized user typically may need to provide one or more
correct passcodes, known as an authdata, before a child key can be
used. A keychain may be organized in several ways [48, 52–55], such as
the ones discussed next.

11.8.2 Storage and Access
Figure 11.21(a) illustrates a 10-node keychain with 4 parent nodes
labeled 0, 2, 5, and 7, and 6 leaf-nodes labeled 1, 3, 4, 7, 8, and 9. The
nonce N0 is assigned to root parent Node 0, N1 is assigned to data leaf
Node 1, N3 is assigned to signature leaf Node 3, etc. As shown in Fig.
11.21(b), a record is created for each node and securely stored either
locally or remotely on a server. Each record contains a key identification
number, for example, the node number; a parent identification number;
the names of a cipher and a hashing algorithm, referred to as
cryptography algorithm identifiers; the encrypted key material; and keyed
hash for the entire record.

FIGURE 11.21 An example key structure: (a) a keychain; (b) a node as a
record [53, 55].

The SRK is a secure unique key embedded in each SCP or SP chip.
The key may be programmed into the chip during setup through a set of
secure I/O mechanisms without OS intervention [55]. In the figure, the
key of root parent Node 0 is used to protect its two children nodes 1 and
2; the key of the data leaf Node 1 is used to protect, for example, a 128-
bit AES key used for encrypting a large user file or a large application
data; the key of parent Node 2 is used to protect its four children nodes
3, 4, 5, and 7; etc.

A keychain is maintained using trusted firmware module (TFM) in SCP
or using a trusted software module (TSM) executed on the SP (also see
Sec. 11.4). TFM/TSM (TFM or TSM) would include a set of application
programming interfaces (APIs), such as “Add2Keychain” and “Encrypt”
used by an OS or an application program to request secure cryptography
services.

In the following example, it is assumed that each node may use
different encryption and hashing algorithms. In addition, for simplicity, no
authdata is required. All items marked plaintext (“ptxt”) are considered
secure within an SCP or an SP. The examples assume an application is
requesting security services from SCP or SP.

Example 11.6. Application software requests TFM, if SCP, or TSM, if SP (indicated as
TFM/TSM), to add parent Node 0 to key chain A in Fig. 11.21.

Solution:
Application task:
Using the following API, a request is sent to TFM/TSM to add root parent
Node 0 and create a keychain; TFM/TSM will use the application-
provided cipher0 and hash algorithm algHash0 to encrypt and perform a
keyed hash of the key material. The parent of root Node 0 is Null.

Addkey2Keychain(Keychain_A, 0, Null, cipher0, algHash0, nodeType0,
R0)//nodeType: parent

TFM/TSM task:
Generates a nonce and then uses SRK to encrypt both the nonce and
the Node 0’s key material. The record is also keyed-hashed using SRK.

The concealed record is returned to the application for storage. In the
following, “nodeType” indicates parent or leaf (data) node, R indicates a
reference to key record data structure in memory, “KID” indicates a key
node ID (a number), “PID” indicates a parent node ID (a number), “EKM”
indicates encrypted key material, N is a nonce, and HV is a hash value.
SRK is the secure root key stored in the SCP chip if TFM implements the
APIs, or in the SP chip if the TSM impalements the APIs. Specifically,
TFM/TSM use SRK to perform the following tasks because KID = 0 and
PID = null:

Example 11.7. The application software requests TFM/TSM to add data leaf Node 1 to
parent Node 0 in keychain A in Fig. 11.21.

Solution:
Application task:
Using the following API, the TFM/TSM is instructed to add an encryption
key node to parent Node 0 in keychain A; the application provides
cipger1 and algHash1 for encrypting and keyed hashing of Node 1’s key
material, where “K” stands for a key (also see Example 11.6).

TFM/TSM task:
Performs the following operations because PID = 0:

Example 11.8. The application software requests TFM/TSM to encrypt application data
using data-leaf key number 1 in Fig. 11.21.

Solution:
Application task:
Using the following API, the TFM/TSM is instructed to encrypt application
data using encryption key 1 from keychain A, where dataptxt and datactxt
reference the application data structures in memory. (Also see Examples
11.6 and 11.7.)

TFM/TSM task:
Generates encryption key 1 using the key material of data leaf Node 1,
and then encrypts the application data using the application-provided
cipher. Application data as ciphertext is returned to the application.

Table 11.9 illustrates hypothetical records for Nodes 0 to 9 in Fig.
11.21(a); only four records are shown. The fact that in the figure, the
keychain parent Node 0 is concealed by the SRK inside an IC; Nodes 1
and 2 are concealed by parent Node 0; Nodes 3, 4, 5, and 7 are
concealed by Node 2; Node 6 is concealed by Node 5; and Nodes 8 and
9 are concealed by Node 7, the keychain is said to be sealed through
hardware.

TABLE 11.9 Recorded Keychain in Fig. 11.21(a) Using the Format in Fig. 11.21(b)

11.8.3 Application Example: Keychain as Access
Control
The farther away a node is from the root of a keychain, the more
computations are necessary to determine a key. Thus, a keychain can be
used to implement a multilevel access control (Sec. 11.1.4) using a
hierarchical authdata generation scheme. Figure 11.22 illustrates the
data organization of a company that has three departments. In each
department, the data is classified into several security levels. In the
Project Department, for example, data is classified into four
classifications as those accessed by engineers, by production engineers,
by project leaders, and by the director. Anyone who has the role and
privileges of an “engineer,” for instance, would be able to access all the
data that is classified as “engineering data.” A production engineer would
be able to access all the “production data” as well as all the “engineering
data.” The director, however, would be able to access the “director data”
as well as all the other data in their department.

FIGURE 11.22 An access control keychain [54].

The keychain is organized using an SRK-protected RSA public/private
key pair for each class of data (four in Fig. 11.22) and a prime nonce to
each node [54]. An initial authdata is then computed for each data class j
≥ 0 using all the public keys in the path from class j to class 0. To access
a leaf node k in class j, an authdata is derived using the assigned initial
authdata of class j, all the private keys in the path from class j to class 0,
and the nonce assigned to node k.

Thus, the computation of an authdata—for example, for the lowest
classified “engineering data”—would involve only one private key, while
the computation of an authdata for a top classified “director data” would
involve four private keys, making the “director data” more secure.

11.9 Hash Tree
While the keychain in Fig. 11.21 is concealed through hardware, it
remains unprotected from replay attacks (Sec. 11.3.3). A malicious
software can save the entire keychain, wait for the keychain to be
updated, and then cause a replay attack. That is, it replaces the updated
keychain with the one it has saved, and therefore, prevents access to
some concealed data and potentially makes the system unavailable to
the legitimate users. There is no way to detect a keychain replay attack
unless a hash of the keychain is saved inside a tamperproof IC. The
hash of the tree would need to be recomputed every time that the
keychain is updated and every time that a key from the keychain is used.
Given that a keychain could be large and may contain thousands of
keys, this could be a costly task unless a hash tree, discussed next using
examples, is used.

11.9.1 Application Example: Keychain
Authentication
Figure 11.23(a) illustrates the keycha in shown in Fig. 11.21(a) organized
also as a hash tree, also known as a Merkle hash tree [56]. The arrows
go in both directions—from a parent node to a child node when
generating a key, and from a child node to a parent node when
generating a hash. Instead of computing the hash of an entire keychain
each time the keychain is updated or a key is used (a computationally
intensive task), only the hash of children nodes of each parent node is
computed and stored in the parent node. The hash of the root node,
called the secure root hash (SRH), is stored inside an IC, as illustrated in
the figure.

FIGURE 11.23 A keychain organized as a Merkle hash tree.

Figure 11.23(b) shows the structure of a record used for parent nodes.
In this case, instead of the record hash value (RHV) (Fig. 11.21(b)), each
parent record contains the hash of its children records. Figure 11.24
illustrates an example of a keychain hash tree using mock values as
node contents. An 8-bit bitwise XOR, for illustration purposes, is used as
the hashing function. Each parent node in the figure is assumed to
contain a 16-bit content plus, as indicated in Fig. 11.23(b), a space for a
hash computed from the content of its children nodes. A leaf node
contains only a 16-bit data and no hash value.

Figure 11.24(a) illustrates the calculation of the root hash 8’hC0 (hex
in Verilog) for the original hash tree. The hash would be stored as an
SRH inside the chip. In Fig. 11.24(b), the content of a child node is
shown changed from 16’h2345 to 16’h2355—a one-digit change. This
results in a new root hash value of 8’hD0. If the change is a result of a
normal update, 8’hD0 will replace SRH = 8’hC0. On the other hand, if the
change is the result of an attack, the change would be detected because
the new hash = 8’hD0 would not match SRH = 8’hC0 stored inside the
IC.

FIGURE 11.24 Computing a root hash using an 8-bit bitwise XOR as the
hash function: (a) an original hash tree with root hash = 8’hC0; (b) a
modified hash tree with different root hash = 8’hD0.

11.9.2 Application Example: Memory Authentication
A Merkle hash tree has other applications, such as the n-ary hash tree
shown in Fig. 11.25 used for memory authentication. The integrity of a
TSM can be protected by authenticating its instructions and data in
memory. Each node has exactly n children nodes. For n = 2, the tree is

binary. An entire virtual or physical memory, or just a section, can be
organized as an n-ary hash tree with a memory block at each node. A
leaf block contains instructions or data, but a parent block contains only
the hash computed from the contents of its children blocks.

FIGURE 11.25 An n-ary hash tree with leaf nodes (circle) and data and
parent nodes (rectangle) as hash values.

Figure 11.26 illustrates a binary hash tree with four data blocks as leaf
nodes and three hash blocks as parent nodes. In the figure, the size of
each block is assumed to be two bytes (2B), and an 8-bit bitwise XOR is
used as the hash function. Each parent block stores two 8-bit hash
values, one from each of its two children blocks. The hash of the root
block is stored as an SRH inside an IC. In the figure, the original SRH =
8’h00. Any change made to a block (leaf or parent) will result in a
different root hash. Note that a change in a node’s content only changes
the hash values in the path from the node to the root node. Thus, only
the contents of a small subset of blocks are affected when the content of
a single block is updated.

FIGURE 11.26 A binary memory authentication hash tree illustrating a
change in one of the leaf memory blocks.

There are many ways to organize an n-ary hash tree. For example, a
hash tree with 32-B blocks may be organized as a 32-ary hash tree with
1-B hash values, as a 16-ary tree with 2-B hash values, as an 8-ary tree
with 4-B hash values, or as a binary tree with 16-B (128-bit) hash values.
In addition, the parent blocks may be stored with the leaf blocks in the
same memory or maintained separately.

11.10 Secure Coprocessor Architecture
An SCP is as an embedded system and as it was discussed earlier in
Sec. 11.4 includes a trusted firmware module (TFM). Because the
instructions and data of firmware are not accessible from outside of the
chip, TFM is not subject to spoofing, splicing, or replay attacks. However,
because an SCP must communicate with the other components on the
platform to exchange data, the SCP may be subject to physical attacks if
an attacker is able to get a physical hold of the platform. For instance,
any data that SCP must access from main memory is not secure.

The required cryptographic algorithms may be implemented in
software as part of the TFM, but many are very time consuming and,
therefore, for performance reasons, they would be implemented in
hardware. Figure 11.27 shows the organization of an SCP containing a
minimum set of required modules. It includes nonvolatile memory to
store an secret root key (SRK), a random number generator, and
encryption/decryption and hash algorithms implemented in hardware.
The SRK may be a symmetric key [53] or the private key of a
public/private key pair [47].

FIGURE 11.27 A secure coprocessor as an embedded system.

Random access memory (RAM) is used during the execution of the
TFM and to temporarily store keys from a keychain (also see Sec.
11.8.2). The RAM may be also used to store an SRH if the TFM also
manages a keychain protected by a hash tree.

The smart card [57] and trusted platform module (TPM) [47, 52, 58]
are two examples of SCP. However, the smart card has very limited
capabilities.

11.10.1 Trusted Platform Module

The TPM is designed to provide total platform security; it verifies the
validity of the hardware and OS software components during startup.
The OS and even application programs can use APIs to access secure
services of the TPM.

TPM’s specification is developed by a consortium of industry
representatives, known as the Trusted Computing Group (TCG). Many
companies, including AMD, HP, IBM, Intel, and Microsoft, are members
of the TCG. Figure 11.28 illustrates a block diagram of the TPM chip as
an embedded system. The nonvolatile storage is used to store an
endorsement key (EK), an SRK, and flags to enable or disable certain
functions. EK is a secret key embedded in the chip, typically by the
manufacturer. SRK is used to protect TPM-generated keys. An
Attestation Identity Key (AIK) is a private key generated based on SRK
and is used for multiple purposes, including platform authentication.

FIGURE 11.28 The architecture of the TPM [58].

The random number generator may use the thermal noise in the
chip [59] to generate nonce as needed. The RSA Engine performs RSA
encryption and decryption. The RSA Key Generator is used to generate
asymmetric RSA keys. The SHA-1 Engine is used for hashing purposes.

The Opt-In module allows a user to opt in or opt out according to the
privacy guidelines of the manufacturer of the platform. With the opt-in
mechanism enabled, a user is prompted before a feature or service is
provided. The opt-in mechanism is disabled by default. With the opt-out
mechanism enabled, the user is prompted to either keep or disable a

particular feature or function. By default, the opt-out mechanism is
enabled.

11.11 Secure Processor Architecture
An SP may implement multiple secure execution modes (SXMs), as was
discussed in Sec. 11.4, to create the desired secure execution
environment for a given TSM. An SP may provide software developers
with the option to choose the protection level of a program as integrity
only, confidentiality only, or both and whether the protection should apply
to program code (instructions and static data), to program dynamic data,
or both to program code and data [30]. While program static data never
changes, dynamic data is generated during program execution, including
dynamically generated code produced by just-in-time compilers.

11.11.1 Program Code Integrity
Programs (i.e., trusted software modules, TSMs) executing in code
integrity secure execution mode (CI-SXM) are protected from spoofing
and splicing attacks. Replay attacks are not an issue because program
code (including static data) does not change during execution. Hash
values are used to verify the validity of instructions and static data during
execution. However, because modern processor chips contain cache
memories and cache transactions are in blocks, one hash value per
block (i.e., cache line) is sufficient.

There are two ways the hash values of program code blocks may be
organized in memory [31, 55]. One option is to include a hash value
embedded within each block with instructions and static data, as
illustrated in Fig. 11.29. For example, assuming that SP is a 32-bit RISC
processor and the lowest (e.g., L2) cache lines are 64 B each, the figure
illustrates a 128-bit (16-B) keyed hash (e.g., HMAC) embedded in each
block. A hash is computed for every 48-B program code, named a code
block, that could contain 12 4-B instructions or static data words. A
block refers to 64 B of memory content.

FIGURE 11.29 Program blocks with embedded hash values, assuming
64B blocks [55].

Each code block that is loaded into the cache must be authenticated
by computing and comparing each code block’s hash with the hash
embedded in the block. If the two hashes match, the block is considered
valid and the hash bytes are changed to NOP (no operation) instructions
before the block is stored in the cache. On the other hand, if the two
hash values do not match, the block is marked invalid in cache, and an
exception is raised that terminates the execution of the program.

Alternatively, the hash values can be kept separately and not
embedded within the blocks. One way to do this is to build the memory
from 72-bit ECC (error correcting code) synchronous dynamic random
access memory (SDRAM) modules. In this case, 72-bit memory content
is made of 64-bit program code and an 8-bit hash value in place of an 8-
bit ECC [31]. The SP, however, would need to use the lowest-level cache
with 128-B cache lines. The program binary would be divided into blocks
of 128 B each, consisting of 16 64-bit content. A 128-bit (or 16-B) keyed
hash is computed for each 128-B block and is stored as 16 8-bit hash
quantities in the 16 ECC fields reserved for each block, as illustrated in
Fig. 11.30. During a cache miss, 16 72-bit memory contents are
transferred from memory into the SP. Each 72-bit memory content
contains 64-bits program code and one of the 16 8-bit hash quantities. If
the SP-computed 16-B hash value matches the 16-B hash read from
memory, the cache line is marked valid. A 16-B hash is not stored in the
cache. Although, in this case, a 16-B hash value cannot be used for error
correction, it can, however, be used to detect multiple bit errors.

FIGURE 11.30 Program instructions and static data blocks in memory
designed from ECC SDRAMs; the hash values are stored in the space
reserved for the ECC bits.

Program Compilation
Two different memory block organizations for code integrity were
discussed earlier. Consider the block organization shown in Fig. 11.29
where a hash is embedded in each block. In this case, each memory
block only partly contains instructions or data. Therefore, the compiler
would need to take into account the location of the hash bytes when
computing jump/branch addresses.

11.11.2 Operational Security Mechanisms
The binary of the SXM program must not only be securely distributed
and installed, but also securely loaded in memory during execution. The
set of procedures similar to those outlined in [55, 60, 61] must be
followed to install and load the program. In the following sections, a set
of security mechanisms for software distribution and installation, as well
as loading binary into memory for execution, are discussed.

Secure Binary Distribution
If the TSM is developed to be delivered for public distribution, a program
plaintext binary (binaryptxt) would need to be hashed in case an
unauthorized modification is made to the program. The hash of the
binary file is encrypted to create a header record using the private key
(PRcompany) of the developer. The record would be attached to the binary
file for secure delivery. An example of public distribution is illustrated
next, using Easym to indicate an asymmetric cipher (e.g., RSA), H to
indicate a (standard) hashing algorithm such as SHA-256, “PU” to
indicate a public key.

Program binary may also be delivered to a specific device using
instead the public key (PUdevice) of the device as follows:

For device-specific delivery, the header record can only be encrypted
by the device using its private key (PRdevice); the program can only be
executed by the target device.

Secure Program Installation
For secure installation of a TSM, the installer program would need to
have access to the SRK of the SP and possibly a password provided by
an authorized party (a person) who installs the program [61]. The
installer program generates a secret program-specific signing key (e.g.,
Ksym-prog-sign) within the SP and uses the key to hash each of the
program code blocks during installation.

One way to do this is to use an installer TFM (i.e., an embedded
installer trusted firmware) to ensure that the installer program remains

secure from attacks. In this case, the installer input arguments, such as
the size and location of uninstalled TSM binary in memory and the
installation key information (e.g., PUcompany) are stored by the OS in a
known memory space before the firmware can install the program.

Figure 11.31 is an illustration of installation steps for a CI-SXM
program using the block organization in Fig. 11.29. The hash of each
code block is stored with the code block to create a program block.

FIGURE 11.31 Secure installation for program code integrity SXM [30].

The hashing of just each code block will detect spoofing attacks during
execution. However, in order to also detect splicing attacks, the starting
address of each block, referred to here as a block address, is also used
to compute the hash of each code block. The installer-generated signing
key Ksym-prog-sign (e.g., a random number) is also encrypted using the
processor SRK before it is stored (on the hard disk) with the installed

binary, as illustrated in the figure. The following outlines the required
steps to install a program for CI-SXM using the block organization in Fig.
11.29. Also, Hkeyed indicates a keyed hash, code_blockj indicates
program code (instructions and static data) sections within blockj, n is the
number of blocks, and HV stands for hash value.

Steps to install a program for CI-SXM:

Secure Loading Executable Binary
The loader program must also have access to the SRK within the SP in
order to decrypt and store the installer-generated signing key Ksym-prog-

sign in a special register inside the SP before program execution can
start. Therefore, like the installer program, the basic loader program is a
TFM. Both the installer and loader firmware must not leak processor
secrets. The OS accesses and stores loader input arguments in memory
so the loader can extract the signing key before the execution of the
TSM can be started.

Depending on the TSM protection level, the loader program may need
to perform additional initialization, which will be discussed later, before
program execution can begin.

11.11.3 Program Code Confidentiality
TSMs compiled to execute in code (instructions and static data)
confidentiality secure execution mode (CC-SXM) must be kept
confidential on the hard disk as well as in memory. The protection of
instructions and static data integrity, however, is not required in this
mode; thus, no hash values are needed. The installer firmware (see Sec.
11.11.2) generates an encryption symmetric key Ksym-prog-enc to
individually encrypt program code blocks. In addition, in order to prevent

information leak, the block address is included in the encryption of each
block in case two blocks have the same content. This is illustrated next
using a block address to create an IV for a symmetric-key cipher (Esym),
such as AES.

Steps to install a program for CC-SXM:

11.11.4 Program Code Integrity and Confidentiality
This secure execution mode, indicated as CICC-SXM, implements the
protection of both integrity and confidentiality of a TSM’s code
(instructions and static data). It is the combination of CI-SXM and CC-
SXM discussed earlier.

Steps to install a program for CICC-SXM:

11.11.5 Program Data Integrity
Dynamic data is generated during execution, and contrary to static data,
values change in memory. TSMs that are compiled to execute in data
integrity secure execution mode (DI-SXM) must be protected from replay
attacks in addition to spoofing and splicing attacks. Recall that a replay
attack can replace an updated value in memory with a saved older value.
Therefore, a hash value alone computed for each block, as discussed for
CI-SXM, will not detect replay attacks. A hash tree is necessary to detect
replay attacks of data blocks. Figure 11.32 illustrates a binary hash tree
with data blocks as leaf nodes and hash blocks as parent nodes. It is
assumed that each block is 32 B and each parent block can hold two
128-bit hash values computed from each of its children blocks.

FIGURE 11.32 Illustrating an update to the hash tree of dynamic data
blocks; numbers are block addresses.

In this case, the loader firmware (see Sec. 11.11.2) generates a
session signing key (e.g., Ksym-session-sign) and then creates an initial
hash tree using the session key before TSM execution in the DI-SXM
can start. The figure also shows the tree organization in memory. The
number shown below each block is a block address. Leaf blocks are in
the high-address section of the memory and parent blocks in the low-
address region. The hash of block 1 (the root block) is stored as an
secure root hash (SRH) inside the SP; note that block 0 is not used.

In theory, each time a modified block is evicted from the lowest-level
cache and leaves the secure perimeter of the SP, a new SRH must be
computed. This requires that parent blocks in the path from the evicted
block all the way to the root block must also be updated, as was
illustrated in Fig. 11.26. However, in practice, because cache memories
are inside SP and thus are considered secure, this updating of the parent
blocks can be stopped as soon as a parent block in the path from the
leaf block to the SRH is found in cache.

For example, suppose both leaf (i.e., data) block 14 and its parent
block 7 are in cache, and block 14 is updated, shown as 14′ in the figure.
Now suppose block 14′ is evicted from cache (shown crossed out) at
time t0. Because block 7 is in cache and considered valid, the hash of
block 14 (Hash14), which is stored in block 7, is replaced with the newly
computed Hash14′ at time t1. There is no need to continue and update
parent blocks 3 and 1 and the SRH. The next time that block 14′ is read
from memory and loaded into cache, block 7′, assuming it is still in
cache, would still contain Hash14′, the most recent hash of block 14′.

Now, suppose block 15 is loaded next from memory and block 7′ is
still in cache. Hash15 must be compared with the hash stored in block 7′.
Because Hash15, originally computed from the data in block 15, is still
contained in block 7′, block 15 would be considered valid if its hash
matches with Hash15. The process is the same; block 3, the parent of
block 7′, is updated when block 7′ is evicted from cache; block 1 is
updated if block 3′ is evicted from cache; and SRH is updated if block 1′
is evicted from cache. This reduces the overhead of maintaining a hash
tree, which will be discussed in more detail in Sec. 11.12.

The tree organization of Fig. 11.32 works if the size of the dynamic
data space is declared in advance in the program and the space is pre-
allocated in physical memory. On the other hand, in order to allocate
data memory space dynamically during run time, a different mechanism
using paging (also see Chap. 9) is needed. In this case, the hash tree is

a virtual tree and its nodes are blocks from virtual address space. One
way to organize such a hash tree is to construct a two-level tree
consisting of only root pages and leaf pages. A page consists of several
blocks. For example, a 4-KB page would contain 1 to 64 64-B data
blocks. Such a hash tree may be constructed as follows [30]:

1. Organize each dynamic data block in each leaf page with an
embedded hash value, as was illustrated for code blocks in Fig.
11.29. For example, assuming that each hash value is 16 B, each
64-B dynamic data block would contain 48-B data and 16-B hash. A
4-KB leaf page would contain 3072 B (48 B * 64) dynamic data and
1024 B (16 B * 64) hash values.

2. Compute a checksum (using a bitwise XOR) of all the embedded
hash values of each leaf page and store it in a block in a root page.
A 4-KB root page would store a maximum of 256 16-B checksums
in 64 blocks—four 16-B hash values in each block. In addition, a
root page can hold checksums for 1 to 256 leaf pages.

3. Compute an accumulative checksum (again using bitwise XOR) of
all the checksums in all the root pages and store it as an SRH inside
SP.

As needed, more leaf and root pages are dynamically allocated. A
virtual hash tree also protects leaf and root pages that migrate back to
the hard disk. If there is an unauthorized change made to a page on the
disk, the change can be detected the next time a modified page is copied
back to memory and blocks from this page are accessed by SP.

Because the integrity of every data block that is loaded into cache
must be verified, the secure loader firmware (discussed earlier) must
create an initial hash tree for those blocks that are allocated prior to the
start of program execution.

11.11.6 Program Data Confidentiality
DC-SXM is similar to CC-SXM, except that because data blocks change
in memory during program execution, it may be possible for an adversary
to find out, for example, that a data block in memory has the same value
at different times. In order to prevent such information leaks, a
randomized encryption of data blocks is needed [33]. Each time that a
modified data block in cache gets evicted, in addition to the block-

address a unique number is also used to encrypt the block using a
session encryption key (Ksym-session-enc) generated by the loader. The
loader firmware also performs the initial randomized encryption of any
allocated data blocks before the execution of the TSM can begin. The
session key, like the other keys, remains securely inside the SP.

In this case, even if the content of the block at times remains the
same, the encrypted copy of the block would be different. Also, because
dynamic data is generated at run time, the most recent unique number
assigned to each block is saved in memory and then is accessed to
decrypt the block the next time that the block is loaded from memory. For
randomized encryption, there are two options to generate unique
numbers for each data block:

1. Random sequence. A sequence of unique numbers for each block
is randomly generated. The following illustrates a randomized
encryption of data_blockj using a random sequence. RNj indicates a
random number assigned to data_blockj and Yj is a memory
location used to save RNj. The IV of the cipher (e.g., AES) is
created from the block address and its assigned random unique
number. An IV = {block_address, RN} may be padded with 0’s to
create the right size IV for the encryption. Each time that there is a
cache miss for data_blockj, its current RN, stored in location Yj, is
read to create the IV used to decrypt the block. A new RN is
generated each time a block (modified or not) is evicted from the
cache. Note that, using an initial RN (e.g., RN0) for each block j
during initialization by the loader is not necessary. However, using
an initial RN simplifies the architecture of the processor.

One must make sure a random number assigned to each block is
indeed unique; but because there is no way to know this in advance, it is
possible that, in some cases, some random numbers might not be
unique for some blocks. If, for instance, short 32-bit random numbers are
used, then there is a higher chance that some numbers may be repeated
for a given block if the block is accessed many times. On the other hand,
although using large random numbers for each block may reduce the
probability of repeats, more memory space is needed to store large
random numbers.

2. In-order sequence. A sequence of unique numbers, such as 0, 1,
2, etc., is sequentially generated for each data block. The following
illustrates randomized encryption of data_blockj using an in-order
sequence, assuming that the initial in-order number 0 is assigned by
the loader and is stored in memory location Yj.

While using in-order sequences will guarantee unique numbers are
assigned to a block each time the block is evicted from cache, one must
make sure that each sequence is not exhausted while the program is still
executing. For example, if a dynamic data item is updated once every
100 ns in memory, a 32-bit in-order sequence (i.e., 0, 2, 3, ..., 232 − 1)
will overflow in about 429 (232 * 100 ns/109 ns) seconds, or about 7.16
minutes. A 64-bit in-order sequence, on the other hand, will overflow in
about 58.5K years. However, like large random numbers, more memory
space would be needed to store large in-order sequence of unique
numbers.

In general, there are two options to minimize the required memory
storage space using in-order sequences:

1. Using short in-order sequences. In this case, each time the in-
order sequence for one of the blocks overflows while the program is
still executing, the SP stops the execution of the program,
generates a new session key (Ksym-session-enc), and encrypts all the
data blocks using the new key and the initial unique number (e.g., 0)

in each sequence before the execution of the program can resume
[30, 33]. However, the time required to re-encrypt all the data blocks
can be long if this scheme is used for TSMs that operate on a large
number of data blocks.

2. Using split in-order sequences. In this case, blocks are organized
into small groups, for example, 256 blocks in each group. A16-bit in-
order unique number is assigned to each block and a longer (e.g.,
48-bit) in-order unique number is shared with all the blocks in one
group [62]. To implement randomized encryption of each block
within a group, the concatenation of the shared 48-bit unique
number of the group with the block’s 16-bit private unique number
creates a long 64-bit in-order unique number for the block. However,
each time one of the short sequences in one group overflows, the
corresponding shared 48-bit unique number is incremented, the
private short in-order sequences in that group are initialized, and all
the blocks in that group are re-encrypted. Because no new session
key is required and the number of blocks in each group is relatively
small as compared to a TSM’s total number of data blocks, with split
in-order sequences, the length of time required to re-encrypt only
the blocks in one group is much shorter as compared to the time
required in Option 1. This is illustrated next using data_blocki,j to
indicate a data-block j in group i. Each time data-blocki,j is evicted
from cache, its assigned short 16-bit private unique number is
incremented. After 65,536 evictions, the block’s shared 48-bit
unique number is incremented and is used with an initial 16-bit
unique number (e.g., 0) to encrypt all the (256) blocks in group i.
Assuming that the loader stores the initial 48-bit unique number
(e.g., 0) assigned to group i in memory location Xi and the initial
short private 16-bit unique number (e.g., 0) assigned to data_blocki,j
in Yj, the following illustrates the randomized encryption of
data_blocki,j using split in-order sequences:

The unique numbers assigned to the most referenced blocks may
be saved in a specialized cache inside the SP to improve
performance.

The re-encrypting task of all (Option 1) or some (Option 2) blocks will
be managed as part of the TSM process. If the TSM is interrupted, its
corresponding re-encrypting task will be also stopped, and it will resume
when execution of the TSM resumes.

11.11.7 Program Data Integrity and Confidentiality

In DIDC-SXM, each dynamic data block must be encrypted, as in DC-
SXM, and must be hashed and a hash tree must be maintained, as in DI-
SXM. In addition to protecting the integrity of each data block, each
block’s assigned unique number, used for implementing randomized
encryption, must be protected as well. However, it has been shown that
there is no need to maintain a hash tree for data blocks and another
hash tree for the assigned unique numbers in order to detect replay
attacks [63, 64]. A single hash tree for the unique numbers, which would
be smaller than the hash tree for data blocks, is sufficient to detect replay
attacks. Furthermore, the unique numbers need not be encrypted [65].
Note that, the data blocks are still hashed, as illustrated next, but
maintaining a hash tree for data blocks as in Fig. 11.32 is not needed.
The hash value of each data block may be embedded within each block
or stored separately, as was illustrated for code blocks in Fig. 11.29 or
Fig. 11.30, respectively.

Figure 11.33 illustrates the organization of dynamic data blocks with
embedded hash values and the hash tree for the data blocks’ assigned
unique numbers. In the figure, each cache block is assumed to be 64 B
and contains a 48-B data block and a 16-B (128-bit) hash. Assuming that
a long (64-bit) unique number is used for each dynamic data block, eight
such numbers can be stored in each 64-B cache block (8 = 64 B/64 bits).

FIGURE 11.33 Protecting dynamic data: (a) dynamic data block with
embedded hash; (b) hash tree for dynamic data unique numbers.

Figure 11.34 illustrates a sophisticated replay attack using the data
block organization shown in Fig. 11.33 with arbitrary unique numbers
assigned to each block. The attacker replays both the cache block (data
and embedded hash) and its assigned unique number. The attacker
replaces both block 1 and its assigned unique number 23 at time t2 with
an older copy saved at time t1. However, because the hash tree of the
unique numbers will detect 17 as an invalid number at time t2, the
execution of the process will be stopped, preventing the attacker from
achieving the intended goal.

FIGURE 11.34 Illustrating a replay attack of a block and its sequence
number.

11.11.8 Program Code and Data Integrity and
Confidentiality
The CICC-SXM and DIDC-SXM combination provides maximum
program protection. This combined execution mode requires four secret

keys as Ksym-prog-enc and Ksym-prog-sign generated by the installer firmware
and Ksym-session-enc and Ksym-session-sign generated by the loader firmware
(Sec. 11.11.2). The first two keys are used for the encryption and hashing
of program code blocks (including static data). The latter two keys are
used for the encryption and hashing of program data blocks and
maintaining a hash tree for the data blocks’ assigned unique numbers
used for randomized encryption of data blocks. This requires that the two
types of blocks must be distinguishable so that the SP can use the right
keys with each type of block during execution. There are two possible
solutions, as follows:

1. Physical Memory Organization. One option is to split the main
(physical) memory space into two regions: a non-SXM, including
DMA access region, and an SXM region, which also includes a
hash tree region. This option, however, may require a security
kernel (part of operating system, OS) or a DMA transfer initiated by
a trusted routine.

If the SXM memory space reserved for code and data are further
partitioned into code and data regions, then if the address indicates
a code region (Fig. 8.5 in Chap. 8), the SP would use program
keys to decrypt and authenticate an incoming cache block. On the
other hand, if the memory address indicates a data block, the SP
would use session keys to decrypt and authenticate an incoming
cache block.

Alternatively, if the SXM virtual pages are mapped to anywhere
in the reserved SXM memory region (outside the hash tree region)
and additionally randomized encryption of SXM data blocks is
used, then number 0 could be assigned to each code block and a
non-zero unique number to each data block [33]. Each time that
there is a miss at the lowest-level cache, if the block’s unique
number is 0, the block is considered a code block, and program
keys would be used to decrypt and authenticate the block;
otherwise, if the unique number is non-zero, indicating a data
block, the SP would use session keys to decrypt and authenticate
the block. As stated earlier, zero and non-zero unique numbers
need not be encrypted. However, a hash tree is used to
authenticate the zero and non-zero assigned numbers.

2. Virtual Memory Organization. Another option is to use an
additional virtual memory space, separate from the SXM and non-

SXM virtual spaces, for the hash tree. Using a separate virtual
space will allow an entire SXM virtual address space, divided into
code and data regions, to be used by an SXM program (i.e., TSM).
For any hash tree block that is cached, its virtual block address is
also saved in the lowest cache so it can be used to determine the
virtual address for the corresponding parent hash node, assuming
physically addressed caches (Chap. 10). Furthermore, a separate
translation look-ahead buffer (TLB) may be used for translating a
hash tree virtual page number to its corresponding physical page
number. Hash tree blocks may be saved in a separate cache
memory for efficiency. If the virtual memory address (stored in the
cache) indicates a code block, the SP would use program keys to
decrypt and authenticate an incoming cache block. On the other
hand, if the virtual memory address indicates a data block, the SP
would use session keys to decrypt and authenticate an incoming
cache block. Again, in addition, if randomized encryption of data
blocks is used, the unique numbers assigned to each data block,
which would be saved in the virtual memory space reserved for the
hash tree and its leaf blocks, need not be encrypted.

11.11.9 Handling Interruption
Interrupts require the state of the CPU (i.e., register contents and
interrupt return address) to be saved upon interruption and then restored
when the control is returned to the interrupted program (Chap. 9). In
SXM, the register contents and the return address must be securely
saved to detect attacks. The amount of extra resources required inside
an SP depends on whether the SP is designed to execute only one SXM
program (i.e., single TSM process) at a time [55] or multiple TSMs (i.e.,
SXM multiprocessing) concurrently [31–33].

Single Secure Execution Environment
In this case, only one TSM at a time can execute in SXM, indicated as
SXM-OP (one process). Therefore, only one SXM state needs to be
protected upon interruption. This can be done by encrypting and hashing
SXM register contents using the SP’s SRK. In addition, the encryption of
register contents may be randomized to protect against any register
information leak by using a unique number (e.g., a nonce randomly
generated). The encrypted register contents are then stored back into

their respective registers so they can be saved in memory by the
interrupt handler (IH). The hash value, the interrupt return address, and
the nonce (if any) are securely kept inside the SP. The required
cryptography keys and their key materials, as well as the SRH (if any),
also remain inside the SP.

Within the SP, registers and cache lines are tagged—for example, with
1 for SXM and 0 for non-SXM. Any read/write of a tag-1 register or tag-1
cache line by a non-SXM process or any read of a tag-0 register or tag-0
cache line by an SXM process will result in an exception. An SXM
process can write any register or data block, thereby changing its tag to
1. Upon interruption, the SP clears all SXM-tagged registers, flushes
SXM-tagged data blocks from caches, and changes the SP from SXM to
non-SXM before turning control to the IH.

The SP may execute non-SXM programs in addition to one TSM
(SXM program), all in a time-sharing environment. While a TSM is
running, the OS cannot start to execute another SXM process. Upon
returning from an interruption, the SP compares the return address with
the one stored internally. If the two addresses match, the SP switches to
SXM, decrypts the restored encrypted register contents, and resumes
the execution of the SXM process. Otherwise, the return address
indicates either the resumption of an interrupted non-SXM process if the
address indicates non-SXM (Sec. 11.11.8) or an attack, in which case an
exception would be raised.

Multiple Secure Execution Environments
In this case, the SP is designed to execute multiple SXM and non-SXM
processes in a time-sharing environment. A key table would be used to
store the interrupted SXM process state under the process ID. For
example, a non-zero ID is used to identify an SXM process and ID = 0 to
identify a non-SXM process. The SP resources (i.e., registers and cache
lines) are also tagged by process ID. The table may be a private key
table (embedded) within the SP or a virtual key table that resides
outside the SP.

If a private key table is used, the SP can only execute a fixed number
of SXM processes in a time-sharing environment. If there is an
interruption, cryptography keys, return address, register contents, etc.
are saved in the private table, SXM registers are cleared; and SXM data
blocks are cleared from caches before the control is turned to the IH.
Alternatively, instead of saving register contents in the private table,

which would require maintaining a larger table, register contents may be
processed as in SXM-OP. Register contents are encrypted, hashed, and
then stored back in the registers to be saved by the IH in memory, and
the hash along with the other information is saved in the table.

On the other hand, because a virtual key table may be copied on the
hard disk, its size can grow as needed to allow the execution of any
number of SXM processes in a time-sharing environment. However, the
processor state (cryptography keys, register contents, return address,
etc.) must be encrypted using the SP SRK before being stored under the
process ID in the virtual table. The pages of the virtual key table are
mapped to physical memory pages by the OS, just like how program
virtual pages are mapped to physical pages (Chap. 10). A hash tree,
similar to the one discussed in Sec. 11.11.5, is used to authenticate
memory pages associated with the virtual key table.

Maintaining a virtual key table adds a delay to the handling of
interrupts when compared to having an on-chip private key table. This
delay, however, can be reduced if the recently accessed physical page
addresses associated with the virtual key table are kept in a specialized
cache memory within the SP for quick access.

Resuming from an interruption when using a private or virtual key
table is handled similar to that described for the SXM-OP. However,
since there can be more than one running SXM process, the return
address is compared with that saved in the key table under the process
ID; if the two addresses match, execution of the SXM process is
resumed.

11.12 Design Example: Secure Processor
This section presents the architecture, including data path and sample
SXM instructions, of an SP. The data path includes a standard processor
core and the modules required for secure execution. An example
application of TSM is also presented.

11.12.1 SP Specification
The following list specifies the features and limitations of an example SP:

1. The SP supports the execution of only one SXM process at a time
(i.e., SXM-OP; see Sec. 11.11.9).

2. The SP implements the CICC-SXM and DIDC-SXM combination for
maximum program protection. Throughout this section, the term
SXM will mean maximum program protection that includes
maintaining confidentiality and integrity of a trusted software module
(TSM) code and data.

3. The SP includes a set of SXM instructions used to enable or disable
SXM.

4. The SP contains a set of SXM status bits that indicates the SP
status as either SXM or non-SXM.

5. A TSM code blocks (including static data) are encrypted and
hashed to detect code spoofing and splicing attacks (if any). The
code blocks are organized by compiler in the format shown in Fig.
11.29. When necessary, the term “program block” is used to refer to
a cache block with an embedded code block and hash value, as
illustrated in the figure. Furthermore, the terms TSM and “SXM
program” may be used interchangeably. “SXM process” refers to a
running TSM.

6. SXM program data blocks, which dynamically change during
execution, are encrypted and a hash tree is maintained to detect
dynamic data spoofing, splicing, and replay attacks (if any).

7. The encryption of dynamic data blocks is not randomized.
8. An SXM program is entirely self-contained with library routines

statically linked at compile time. The program does not call external
library or systems routines.

9. Data blocks are statically declared in the SXM program and
memory space is allocated during compile time; no memory space
is allocated during run time.

10. A region in main (physical) memory is reserved for SXM. The
region is also partitioned into program code (including static
program data) and dynamic data regions. The most significant
address bit identifies each region; 0 identifies the code region and 1
identifies the data region. The data region is further partitioned into
data and hash tree regions, as shown in Fig. 11.35(a). A hash tree
of dynamic data blocks with four leaf (dynamic) blocks is shown in
Fig. 11.35(b).

11. An SXM program is considered small enough to fit in its entirety in
the SXM code region. Therefore, no virtual-to-physical address
translation is performed in SXM.

12. L2 is the lowest cache memory and uses a write-back coherency
protocol such as the MESI protocol (Chap. 10).

13. The SP contains an encryption/decryption and hashing engine
(EDHE) implemented in hardware as an embedded system within
the SP. It is used to decrypt and hash an incoming SXM code block,
to decrypt an incoming SXM dynamic data block, and to encrypt an
outgoing modified SXM data block.

14. The SP also contains a hash tree engine (HTE) implemented in
hardware, which is also an embedded system within the SP. It is
used to authenticate an incoming SXM data block using the hash
tree and to update the hash tree when a modified data block is
evicted from the L2 cache.

15. Both EDHE and HTE require trusted firmware where each is
securely installed by the motherboard manufacturer.

16. The perimeter of the SP is the security boundary of the system.
Therefore, caches are secure and contain instructions and data in
plaintext.

17. The SP also includes the trusted program installer and loader
firmware (Sec. 11.11.2). The loader firmware communicates with
the OS to perform three tasks:
a. The loader firmware extracts the two program cryptography keys

Ksym-prog-enc and Ksym-prog-sign generated by the installer and
stores them within the SP.

b. The loader generates two session cryptography keys Ksym-session-

enc and Ksym-session-sign and stores them within the SP. Session
keys change each time the execution of an SXM program is
started.

c. The loader firmware creates the initial hash tree for TSM data
blocks. The initial contents of the data blocks can be unknown.

The OS starts the execution of the SXM program once the loader
firmware completes its tasks.

18. Interruptions are handled the same way as was described for SXP-
OP.

19. For simplicity, we will assume that the SP core includes the
hardware to handle interruptions. Here, we will focus on the EDHE
and HTE data paths.

FIGURE 11.35 The organization of an SXM program code and data in
memory: (a) memory map; (b) hash tree (shown as a binary tree).

11.12.2 Processor Architecture
Figure 11.36 illustrates the data path of the SP. It includes a processor
core, L1 and L2 caches, and the modules required to implement the
SXM. A set of registers is used to store cryptography keys, Ksym-prog-enc
and Ksym-prog-sign, generated by the installer firmware and extracted by
the loader firmware, and two session keys, Ksym-session-enc and Ksym-

session-sign, generated by the loader firmware to protect the TSM’s
(dynamic) data blocks during execution.

FIGURE 11.36 The data path of the example SP. The SXM implements
CICC and DIDC secure execution modes.

The EDHE is responsible for decrypting and hashing an incoming
SXM program block or SXM data block and encrypting a modified
outgoing data block. An SXM program block contains a code block and
an embedded hash. A code block contains instructions and/or static
data. Because the contents of code blocks are not expected to change,
these blocks are deleted from caches when they are replaced. The HTE
is responsible for maintaining a hash tree for SXM data blocks. EDHE
and HTE are discussed later in this chapter.

The SP data path also includes a 2-bit SXM status register [55]; the
two register bits are called secure execution enable flag (SXEF) and
secure execution active flag (SXAF). The SXEF enables both EDHE and
HTE. The SXAF is used to ensure there is only one SXM process
currently running. When SXAF is active, it prevents the OS from starting
another SXM process as long as one is still running. The SP can be in
one of three valid modes outlined in Table 11.10. An interruption of an

SXM process resets SXEF, making it a 0, and a return from an SXM
interruption sets SXEF, making it a 1.

TABLE 11.10 The SP State Based on Values of SXM Status Bits SXAF and SXEF

As shown in Fig. 11.36, register contents and cache blocks used by
the current process are tagged as 1 (SXM) or 0 (non-SXM). An SXM
process can only read SXM-tagged register contents and cached blocks.
The process, however, can write any register or data block, changing its
tag to 1 (SXM). A non-SXM process, on the other hand, can only read or
write a non-SXM-tagged register content or non-SXM-tagged cache
block. All the blocks in the combined L2 cache are also marked with non-
SXM or SXM tags. In addition, instruction blocks in L2 cache are tagged
“I” and data blocks as “D.” This prevents an SXM process from
accessing a data block in cache as instructions.

Table 11.11 presents a set of SXM instructions. Similar instructions are
also defined elsewhere [31, 33, 55].

TABLE 11.11 The SXM Instruction Set

Application Example: Secure Encryption Service
Consider a TSM that implements an encryption API. Application
software, as well as commodity OS, may use the API to encrypt
application- or OS-specific data. For example, consider an application
software that uses the API and specifies an encryption key number in a
keychain, the starting memory address of its plaintext data in memory,
and the starting memory address for the destination ciphertext (refer to
Sec. 11.8.2 for an example). The following outlines the steps the TSM
uses to securely encrypt the application’s data:

1. The TSM executes instruction “SXM-ENTER.” If SXAF is 0, and
thus switches SP to SXM. Otherwise, if SXAF = 1, the application
must wait until a currently executing (different) SXM process
terminates, resets SXAF (making it a 0), and returns control to OS,
which then can start the secure encryption TSM.

2. Once the TSM is invoked, it copies the application’s plaintext, a
non-SXM data, into the SXM data region in main memory using
“LD” (Chap. 8) and “ST_TO_SXM” instructions.

3. The TSM securely extracts the encryption key from the application-
provided keychain.

4. Using the “SXM_LD” and “SXM_ST” instructions, the TSM securely
encrypts the plaintext, now stored in the SXM data region in
memory, and stores the ciphertext, also in the SXM data region.

5. Finally, using the “LD_FROM_SXM” and also “ST” (Chap. 8)
instructions, the TSM copies the generated ciphertext from the SXM
data region to the application’s ciphertext (non-SXM) data region in
memory.

11.12.3 Encryption Decryption Hashing Engine
The EDHE contains encryption, decryption, and hashing functions
implemented as an embedded system within the SP. It performs multiple
tasks when SXEF is set to 1. The EDHE decrypts, hashes, and
authenticates an incoming program cache block, which includes a code
block and an embedded hash. It also decrypts an incoming data block
when executing the “SXM_LD,” “SXM_ST,” “LD_FROM_SXM,” or
“ST_TO_SXM” instruction and encrypts an outgoing SXM-tagged
modified data block. Note, no randomized encryption of SXM data blocks

is implemented in the example SP. An unmodified SXM-tagged data
block is deleted from caches when the block is replaced. The block
address of an SXM program or data block is also used in the encryption,
decryption, and hashing of the block. The inclusion of the block address
in the hashing is used to detect splicing attacks (if any).

Cache Line Authentication: Code Blocks
The most significant two address bits (MSB1 and MSB0) identify the two
different types of blocks; (00)2 identifies a program block and (11)2
identifies a data block (Fig. 11.35(a)). Ksym-prog-enc is used to decrypt
each SXM program block, and Ksym-prog-sign is used to hash each SXM
code block. The session encryption key Ksym-session-enc is used to
decrypt/encrypt an SXM data block.

For an incoming SXM program block (a code block plus an embedded
hash), if the computed hash of the code block matches the embedded
hash, the hash values in the program block are replaced with NOP
instructions before the program block is stored in the L2 cache. The
block is marked valid in the cache and its tag is set to 1 (SXM).
Otherwise, the cache line is marked invalid (I) and an exception is raised,
which terminates the SXM process (to prevent an attack).

If an incoming SXM data block is the result of executing an “SXM_LD”
or “LD_FROM_SXM” instruction, the block is considered an SXM data
block. The block is loaded from memory and decrypted (using Ksym-

session-enc) before it is stored in the L2 cache. The data block and its block
address are also loaded to the HTE for authentication. However, the
block in the cache is considered valid and program execution continues
as normal unless the HTE raises an exception, signaling an attack. The
handling of an incoming SXM data block due to a write miss as a result
of executing the “SXM_ST” or “ST_TO_SXM” instruction is the same—
the block is decrypted and loaded into caches, HTE is invoked to
authenticate the block, and the block is updated in the L1 data cache and
marked modified in both the L1 data cache and the L2 cache.

Figure 11.37 illustrates the EDHE and HTE data paths for a read
cycle, and Fig. 11.38 illustrates the data paths for a write cycle.

FIGURE 11.37 Loading an SXM block from memory; a code block
decrypted and authenticated with embedded hash in the program block;
a data block decrypted and authenticated by the HTE (some parts from
[66]).

FIGURE 11.38 Write-back data block to memory; data path to evict a
modified data block.

11.12.4 Hash Tree Engine
The HTE is responsible for both parsing the hash tree to authenticate an
incoming SXM data block and for updating the hash tree when a
modified SXM data block is evicted from the L2 cache and leaves the
secure perimeter of the SP. However, because tree parsing takes time,
the authentication is performed in the background; no data speculative
execution is necessary. A data speculative execution, in this case,
means the processor continues to execute the program, but does not
commit the computed results to the registers until the data used in the
speculative execution is validated. However, because there are no
known universal techniques to recover from an attack other than to
restart the program [66], the SP can commit the computed results to
registers. That is, on a cache miss, an SXM data block that is loaded into

the L2 cache is marked valid (e.g., the state E or S in the MESI protocol),
and program execution continues as usual until the HTE raises an
exception, which signifies an attack. The exception causes the SP to
terminate the process and return control to the OS; the program
nevertheless may be restarted.

Cache Line Authentication: Data Blocks
The data path of the HTE for authenticating a data block is also
illustrated in Fig. 11.37. The HTE recursively operates on the nodes of
the hash tree, as illustrated by examples in Table 11.12 using the hash
tree shown in Fig. 11.35(b).

TABLE 11.12 Dynamic Data Block Authentication Examples Using a Hash Tree

Suppose caches are initially empty and the first data item accessed by
the SP is in SXM data Block5. When memory supplies Block5, the block
is decrypted and stored in the L2 cache by the EDHE. From there, the
block is copied to the L1 data cache. At this time, the state of Block5 is

assumed to be valid in all the caches. Block5 and its block address are
also loaded into a buffer in the HTE when the block is loaded into the SP.
Block5 is then authenticated by the HTE. Using the block address, the
HTE determines that Block2 is the parent block of Block5 and attempts
to access Block2 from the L2 cache. However, because the caches were
initially empty, Block2 not being in the cache causes a miss. When
memory supplies Block2, the block is stored in the L2 cache and, along
with its block address, is also entered into the buffer in the HTE. Note
that the parent blocks contain hash values and thus need not be
decrypted before being loaded into the L2 cache, as illustrated in Fig.
11.37.

This time, the HTE tries to access Block1, the root and the parent
block of Block2. Again, Block1 not being in the cache causes a miss. It is
read from memory and loaded into L2, and along with its block address,
is also entered into the buffer in the HTE. Recall that all the blocks,
including the hash blocks, are marked valid in the L2 cache upon
loading. Because Block1 is the root block, the HTE computes and
compares its hash (Hash1) with the stored SRH inside the SP. If Hash1
matches the SRH, Block1 is considered authentic and is removed from
the buffer, leaving Block2 next in line in the buffer to be authenticated.

This time, the HTE computes the hash of Block2 (Hash2) and
compares it with Block1.Hash2. If the two hash values match, Block2 is
considered authentic and is removed from the buffer, leaving Block5 still
in the buffer to be authenticated. Finally, the hash of Block5 (Hash5) is
computed and compared with Block2.Hash5. Again, if the two hash
values match, Block5 is considered authentic and is removed from the
buffer. This terminates the parsing of the hash tree to authenticate
Block5. If at any time during the tree parsing any two compared hash
values do not match, the HTE would raise an exception, which would
cause the SP to clear all SXM-tagged registers and flush the L1 data
cache and all the SXM-tagged L2 data blocks before terminating the
SXM process and returning the control to the OS.

As illustrated in Table 11.12, since Block5 was the very first data block
accessed from memory, it took the HTE several steps to authenticate the
block. However, authenticating another data block, such as Block4,
would take only one step. This is because Block2, the parent block of
Block4, is already in the L2 cache (assuming not replaced) and was
authenticated when the HTE was authenticating Block5, as indicated in
the table. Therefore, there is no need to continue and verify the hash

values in the path from Block2 all the way to the SRH as was done with
Block5.

In the final example, SXM data Block7 is loaded into the cache and,
along with its address, is also entered into the buffer in the HTE. Its hash
value (Hash7) would need to be computed and compared with
Block3.Hash7. However, because Block3 is not in the cache, Block3 is
loaded from memory into the L2 cache and, along with its address, is
also entered into the buffer in the HTE. Because Block1 is already
authenticated and valid in the cache, as shown in the table, Hash3 is
computed and compared with Block1.Hash3. If the two hash values
match, Block3 is considered authentic and is removed from the buffer,
leaving Block7 in the buffer yet to be authenticated. The HTE computes
and compares Hash7 with the Block3.Hash7. If the two hash values
match, data Block7 is considered authentic and is removed from the
buffer.

Note that, while Block5 was being authenticated Block4 and Block7
may be entered into the buffer. The HTE authenticates data blocks in the
first come first service (FCFS) order.

Hash Tree Update
The HTE also computes a new SRH when a modified SXM data block is
evicted from the cache. This is illustrated by examples in Table 11.13
using the data path shown in Fig. 11.38 and the hash tree in Fig.
11.35(b).

TABLE 11.13 Hash Tree Update Examples

Suppose SXM data Block5′, where ′ indicates the block is modified, is
in the L2 cache. Also, suppose Block5′ is evicted from the cache, and
thus will be encrypted and copied to memory. In order to update the hash
tree, the encrypted Block5′, along with its block address, is copied to the
buffer in the HTE as the block leaves the L2 cache. Because the caches
are inside the SP and therefore are considered secure, the HTE only
needs to update Block2, the parent block of Block5. Assuming that
Block2 is not in the cache, this would cause a cache miss. Block2 would
be copied from memory to the L2 cache and authenticated by the HTE,

which also requires Block1 to be authenticated, as it was discussed
earlier for the read cycle.

The content of Block2′ in the L2 cache changes to {Hash4, Hash5′},
where {} indicates concatenation, and Block5′ is removed from the buffer,
completing the hash tree update. Next, suppose Block4′ is evicted from
the L2 cache. Assuming that Block2′ is still in the cache, this update will
not cause a cache miss and will be quick, changing Block2″ to {Hash4′,
Hash5′}, where ″ indicates two updates. The eviction of Block7′ requires
Block3 to be updated with Hash7′. However, assuming that Block3 is
missing in the cache, it will be loaded from memory, authenticated, and
then updated. This causes Block3.Hash7 to be replaced with Hash7′ in
the cache and Block7′ to be removed from the buffer.

Next, suppose Block2″ that contains {Hash4′, Hash5′} is evicted from
the cache. Block2″ and its block address are also entered into the buffer
in the HTE. From its block address, it is determined that Block1, the
parent of Block2, must now be updated. Assuming that Block1 is still in
the cache, after the update, the content of Block1′ becomes {Hash2″,
Hash3}, and Block2″ is removed from the buffer.

Table 11.13 also illustrates the eviction of Block1′, which causes the
HTE to update the SRH with Hash1′, and then the eviction of Block3′,
which causes Block1′ to be reloaded and authenticated and then
modified with Hash3′. Note that hash blocks need not be encrypted when
they leave the SP or decrypted when they are loaded into the cache.

The SP introduces additional overhead when compared to a standard
processor. As illustrated in Fig. 11.37, each SXM program and data block
is decrypted, requiring a cipher, before it is loaded into the L2 cache. In
addition, hash tree parsing or updating generates additional cache traffic,
which could slow down the execution of an SXM process. However, a
separate cache may be used to store hash blocks to improve
performance.

11.13 Further Reading
While we provided an introduction and background information, we also
discussed protecting the cryptography keychain through hardware, a
memory authentication mechanism, and compartmentalization of the

execution environment by creating SXMs. The following is a sample list
of other types of runtime hardware checkers:

• A processor may be implemented with a hardware secure return
address stack (SRAS) that can be used to detect buffer-overflow
attacks [67, 68]. Even if malicious software is able to cause a buffer
overflow and spoof a new address (e.g., address of a virus) into the
memory stack, the return address will be different from that stored
inside the SRAS within the processor, and thus, no jump will take
place to execute the virus. This would be similar to using a private or
virtual table discussed in Sec. 11.11.9, limited to return addresses
only, but for all types of processes.

• The hardware array bound checker uses the base address and size
of the array to monitor out-of-bound errors [69].

• Hardware monitors can detect abnormal program behavior. This
includes creating intra- and interprocedural control-flow monitors in
hardware [70]. The monitor would be an FSM-based checker and
would use program control-flow and data-flow graphs determined
during compilation to dynamically monitor jump (intraprocedural) and
call/return (interprocedural) addresses. An FSM and a table would
be used to keep track of all permissible caller-callee relationships.
The table stores the call/return addresses and is used to map an
address to an FSM state. An invalid call/return address indicates an
invalid behavior that causes the FSM to enter an invalid state.

• A program profiling–based checker verifies whether or not a
program follows a normal execution path [71]. All possible program
paths are recorded during some training runs, and the record is used
by the checker to detect an invalid path. The training time must be
long enough to reduce the number of false positives.

• Dynamic tracking of program information flow in hardware [72–75].
An integrity policy is implemented within the processor that prevents
an OS-tagged low-integrity input data to be used as high-integrity
data. An input is marked as low-integrity data if it enters the system,
for example, through a device controller interface (DCI) such as a
USB host controller interface. Tainted data values would be
prevented from being used as instructions or memory addresses
(pointers). Gate-level information flow tracking [74] hardware
requires a shadow logic for every gate to track the trustworthiness of
each bit. Each input bit and, thus each output bit, is marked as

trusted (0) or untrusted (1). Therefore, simply using an untrusted bit
does not always mean the result is also untrusted. That would
depend on the gates used to process the untrusted bit. For example,
using an AND gate with one trusted input x = 0 and one untrusted
input y = 0 or 1, the output will be 0 and trusted. An instruction set
architecture (ISA) data path using this methodology requires that the
program pointer (PP) is never conditionally modified and there are
no indirect memory load/store instructions. If the condition is
untrusted, then the content of the PP would be untrusted, and this
will lead to untrusted content for all registers and potentially all
memory space. Therefore, all the instructions that depend on a
condition must be converted to predicated instructions, and all
unbounded loops must be converted into bounded loops (to prevent
timing information leaks) using a counter with a termination condition
where all the instructions within the loop are predicated with the
negation of this termination condition. The counter is initialized by a
special instruction (“countjump”) and is decremented by 1 every
iteration until it reaches 0. With this mechanism, a loop (including
nested loops) is executed as an entity, and when it completes, it
causes the PP to increment and thus exit the loop without branching.
Untrusted information flow via hardware Trojans and physical attacks
that may tamper with memory content is not considered. It has been
shown that while shadow logic would increase the size of the circuit
(e.g., by 70% in one study), it does not negatively affect clock
frequency.

• Code and data replication to detect attacks by comparing the
behavior of multiple copies of a running program [76]. With each
replication, a different memory layout is used to detect memory
access errors, a different hashing scheme is used with each copy to
protect the integrity of critical data, and a different encryption
scheme is used with each copy to better protect data confidentiality.

• Protect availability by implementing a better memory bandwidth
allocation scheme. A memory controller (MC) typically employs a
variety of algorithms to prioritize and schedule the outstanding cache
misses supplied by memory. A first come first serve (FCFS)
scheduler, for example, may also assign the highest priority to
column accesses from the current active row (Chap. 7) to increase
memory throughput and the next highest priority to the oldest
nonactive row among the remaining outstanding requests [77, 78].

However, a malicious thread that flushes the MC with random
(address) transactions could potentially increase the number of row
accesses and thus increase stall times for other threads. A stall-time
fair memory scheduler (STFM) uses memory-slowdown values to
better schedule memory requests [79]. In this case, the memory
controller computes a memory-slowdown (S) value for each thread
that has a list of outstanding transactions as the ratio of the average
stall-time if memory is shared with other threads (Tshared) and the
expected stall-time if the thread is executed alone (Talone). That is,
S = Tshared/Talone. An unfairness (U) parameter then is computed as
U = Smax/Smin where Smax and Smin are the maximum and minimum
memory-slowdown values among all the outstanding requests. If U is
less than some acceptable value (i.e., U < a), then the scheduler
would use an algorithm to increase memory throughput—for
example, by assigning a higher priority to burst transactions. On the
other hand, if U ≥ a and thus there is unfairness in the processing of
the outstanding memory requests, the requests from a thread with S
= Smax would be assigned top priority. The FCFS scheduling is then
used to prioritize transactions among all the top priority requests.

References
1. M. M. Olama, J. J. Nutaro, V. Protopopescu, and R. A. Coop,

Security concerns and disruption potentials posed by a compromised
AMI network: risks to the bulk power system, The 2012 International
Conference on Security and Management (SAM’12), Las Vegas,
2012, pp. 133-137.

2. A program example illustrating buffer overflow attack,
http://www.cse.scu.edu/~tschwarz/coen152_05/Lectures/BufferOverfl
ow.html.

3. Champagne David, “Scalable security architecture for trusted
software,” a Ph.D. dissertation, Princeton University, 2010.

4. Markus G. Kuhn, Cipher instruction search attack on the bus-
encryption security microcontroller DS5002FP, IEEE Transactions on
Computers, vol. 47, no. 10, October 1998, pp. 1153-1157.

http://www.cse.scu.edu/~tschwarz/coen152_05/Lectures/BufferOverflow.html

5. Huang Andrew, Hacking the Xbox: An Introduction to Reverse
Engineering, No Starch Press, San Francisco, 2003.

6. Butler Lampson, Martín Abadi, Michael Burrows, and Edward
Wobber, Authentication in distributed systems: theory and practice,
SOSP ‘91: Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, pp. 165-182

7. Hoglund, Greg. and Butler, James, Rootkits: Subverting the
Windows Kernel, Addison-Wesley Professional, 2005.

8. Elias Levy, Approaching zero, Security & Privacy, IEEE Volume: 2,
Issue: 4. pp. 65-66.

9. Tal Garfinkel et al., Terra: a virtual machine-based platform for
trusted computing, Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles (SOSP ’03), 2003, pp. 193-206.

10. Michael Fey, Brian Kenyon, Keven Readon, Brandon Rogers, and
Charles Ross, Security Battleground: An Executive Field Manual,
Intel Press, 2012.

11. Thomas A. Fuhrman, The new old discipline of cyber security
engineering, SAM ’12, 2012, pp. 547-553.

12. Ruby Lee, Simha Sethumadhavan, Edward Suh, and David
Grawock, Tutorial on security for computer architects, ISCA Security
Tutorial, San Jose, California, June 4, 2011.

13. Adam Waksman and S. Sethumadhavan, Tamper evident
microprocessors, In: Proceedings of the 31st IEEE Symposium on
Security and Privacy, 2010.

14. Mark S. Miller et al., Capability Myths Demolished, SRL, 2003, pp.
42-49.

15. Capability-Based Computer Systems, available from:
http://www.cs.washington.edu/homes/levy/capabook/Chapter1.pdf.

16. D. E. Bell and L. J. LaPadula, Secure Computer Systems, Mitre
Corporation, Bedford, MA, 1977.

17. K. J. Biba, Integrity Consideration for Secure Computer Systems,
Mitre Corporation, Bedford, MA, 1977.

18. Timothy Fraser, LOMAC: Low Water-Mark Integrity Protection for
COTS Environments, 2000 IEEE Symposium on Security and
Privacy, 2000 (S&P 2000), pp. 230-245.

19. David D. C. Brewer and Michael J. Nash, The Chinese wall security
policy. In Proc. of the IEEE Symposium on Security and Privacy,
Oakland, IEEE Press, 1989, pp. 206-214.

http://www.cs.washington.edu/homes/levy/capabook/Chapter1.pdf

20. David D. Clark and David R. Wilson, A comparison of commercial
and military computer security policies, IEEE, 1987, pp. 184-194.

21. Sally Adee, “The Hunt for the Kill Switch,” IEEE Spectrum, May
2008, pp. 35-39.

22. K. Gandolfi et al., Electromagnetic analysis: concrete results, In:
Proceedings of 3rd International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), 2001, pp. 251-261.

23. D. Asonov and R. Agrawal, Keyboard acoustic emanations, In:
Proceedings of the IEEE Symposium on Security & Privacy, May
2004, pp. 3-11.

24. Zhenghong Wang and Ruby B. Lee, A novel cache architecture with
enhanced performance and security, In: Proceedings of the 41st
Annual IEEE/ACM International Symposium on Microarchitecture
(Micro-41), 2008, pp. 88-93.

25. Waksman and S. Sethumadhavan, Silencing hardware backdoors,
SP ‘11 Proceedings of the 2011 IEEE Symposium on Security and
Privacy, pp. 49-63.

26. Craig Gentry, A fully homomorphic encryption scheme, Ph.D.
dissertation, spring 2009, Stanford University.

27. M. Hicks, S. T. King, M. M. K. Martin, and J. M. Smith, Overcoming
an untrusted computing base: detecting and removing malicious
hardware automatically, In: Proceedings of the 31st IEEE
Symposium on Security and Privacy, 2010.

28. Reouven Elbaz, David Champagne, Catherine Gebotys, Ruby B.
Lee, Nachiketh Potlapally, and Lionel Torres, Hardware mechanisms
for memory authentication: a survey of existing techniques and
engines, Trans. on Comput. Sci. IV, LNCS 5430, 2009, pp. 1-22.

29. Champagne, David, Elbaz, Reouven, and Lee, Ruby B., The
reduced address space (RAS) for application memory authentication,
In Proceedings of the 11th International Conference on Information
Security (Taipei, Taiwan, September 15-18, 2008, pp. 47-63.

30. Austin Rogers, Designing cost-effective secure processors for
embedded systems: principles, challenges, and architectural
solutions,” a dissertation, University of Alabama in Huntsville, 2010.

31. D. Lie, C. Thekkath, M. Mitchell, et al., Architectural support for copy
and tamper resistant software, Proc. of the 9th Intl Conf. on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-IX), 2000, pp. 168-177.

32. G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk,
and Srinivas Devadas, AEGIS: architecture for tamper-evident and
tamper-resistant processing, Proceedings of the 17th Annual
International Conference on Supercomputing (ICS ’03), 2003, pp.
160-171.

33. G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk,
and Srinivas Devadas, AEGIS: architecture for tamper-evident and
tamper-resistant processing, Computer Science and Artificial
Intelligence Laboratory (CSAIL), MIT, 2004. (An extended version of
[48]).

34. Qiong Liu, Reihaneh Safavi-Naini, and Nicholas Paul Sheppard,
Digital rights management for content distribution, Proceedings of
the Australasian information security workshop conference on ACSW
frontiers 2003 - Volume 21, Australian Computer Society, January
2003.

35. Search for Extraterrestrial Intelligence (SETI),
http://setiathome.ssl.berkeley.edu/.

36. Distributed.net, http://www.distributed.net/Main_Page.
37. Auguste Kerckhoffs, La cryptographie militaire, Journal des

Sciences Militaires, http://www.petitcolas.net/fabien/kerckhoffs/.
38. National Institute of Standards and Technology (NIST),

http://csrc.nist.gov/publications/.
39. AES-NI instruction set, http://software.intel.com/.
40. William Stallings, Cryptography and Network Security, Pearson

Prentice Hall, 4th ed., 2006.
41. RSA calculator,

https://www.cs.drexel.edu/~jpopyack/IntroCS/HW/RSAWorksheet.ht
ml.

42. Francis Crowe, Alan Daly, and William Marnane, Scalable dual
mode arithmetic unit for public key cryptosystems, Information
Technology: Coding and Computing, Vol. 1, 2005, pp. 568-573.

43. Efficiency of ECC Cipher, http://www.certicom.com/index.php/the-
basics-of-ecc.

44. R. Needham and M. Schroeder, Using encryption for authentication
in large networked computers, Communications of the ACM, Volume
21 Issue 12, Dec. 1978, pp. 993-999.

45. SHA-1 calculator, http://www.sha1.cz/

http://setiathome.ssl.berkeley.edu/
http://www.distributed.net/
http://www.distributed.net/Main_Page
http://www.petitcolas.net/fabien/kerckhoffs/
http://csrc.nist.gov/publications/
http://software.intel.com/
https://www.cs.drexel.edu/~jpopyack/IntroCS/HW/RSAWorksheet.html
http://www.certicom.com/index.php/the-basics-of-ecc
http://www.sha1.cz/

46. Richard Spillman, Classical and Contemporary Cryptology, Pearson
Prentice Hall, 2005.

47. Hans Brandl, Trusted Computing: The TCG Trusted Platform Module
Specification, Infineon Technologies AG, Embedded Systems 2004.

48. Chu-Hsing Lin, Hierarchical key assignment without public-key
cryptography, Computers and Security, Vol. 20, No. 7, 2001, pp. 612-
619.

49. Blaise Gassend, Dwaine Clarke, Marten van Dijky, and Srinivas
Devadas, Silicon physical random functions, Proceedings of the 9th
ACM Conference on Computer and Communications Security (CCS
’02), 2002, pp. 148-160.

50. Yohei Hori, Hyunho Kang, Toshihiro Katashita, and Akashi Satoh,
Pseudo-LFSR PUF: A compact, efficient and reliable physical
unclonable function, 7th International Conference on Reconfigurable
Computing and FPGAs (ReConFig ’11), Cancun, Quintana Roo,
Mexico, 2011, pp. 223-228.

51. G. Edward Suh, Charles W. O’Donnell, and Srinivas Devadas,
AEGIS: a single-chip secure processor, Information Security
Technical Report (2005) 10, pp. 63-73.

52. Sundeep Bajikar, Trusted platform module (TPM) based security on
notebook PCs: white paper, Intel Corporation, June 2002.

53. Jeffry Dwoskin and Ruby Lee, Hardware-rooted trust for secure key
management and transient trust, CCS’-07, Alexandria, Virginia,
2007, pp. 389-400.

54. Weiping Peng, Yajian Zhou, Cong Wang, Yixian Yang, and Yuan
Ping, A new hierarchical key authdata management scheme for
trusted platform, International Conference on Multimedia Information
Networking and Security, 2010, pp. 463-467.

55. Ruby Lee et al., Architecture for protecting critical secrets in
microprocessors, 32nd International Symposium on Computer
Architecture, 2005 (ISCA ‘05), pp. 2-13.

56. Ralph C. Merkle, Protocols for public key cryptography, In: IEEE
Symposium on Security and Privacy, 1980, pp. 122-134.

57. Smart card basics, http://www.smartcardbasics.com/.
58. TCG Specification Architecture Overview, Specification Revision 1.2

28 April 2004,
http://class.ee.iastate.edu/tyagi/cpre681/papers/TCG_1_0_Architectu
re_Overview.pdf.

http://www.smartcardbasics.com/
http://class.ee.iastate.edu/tyagi/cpre681/papers/TCG_1_0_Architecture_Overview.pdf

59. Y. Wang, H. Zhang, Z. Shen, and K. Li, Thermal noise random
number generator based on SHA-2 (512), in Proceedings of the 4th
International Conference on Machine Learning and Cybernetics,
Guangzhou, China, 2005, pp. 3970-3974.

60. M. Milenković, A. Milenković, and E. Jovanov, A framework for
trusted instruction execution via basic block signature verification, In:
Proceedings of the 42nd Annual ACM Southeast Conference, 2004,
pp. 191-196.

61. D. Kirovski, M. Drinic, and M. Potkonjak, Enabling trusted software
integrity, In: Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X), 2002, pp. 108-120.

62. Chenyu Yan, Rogers B, Englender D, Solihin D, and Prvulovic, M,
Performance and security of memory encryption and authentication,
Computer Architecture, 2006. ISCA ’06. 33rd International
Symposium on Digital Object Identifier, 2006, pp. 179-190.

63. A. Rogers, Low overhead hardware techniques for software and
data integrity and confidentiality in embedded systems, master’s
thesis, Electrical and Computer Engineering Department, University
of Alabama in Huntsville, 2007.

64. B. Rogers, S. Chhabra, Y. Solihin, and M. Prvulovic, Using address
independent seed encryption and bonsai Merkle trees to make
secure processors OS- and performance-friendly, In: Proceedings of
the 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-40), Chicago, IL, 2007, pp. 183-196.

65. Jun Yang, Lan Gao, and Youtao Zhang, Improving memory
encryption performance in secure processors, IEEE Trans on
Computer, 2005, pp. 630-640.

66. Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten van Dijk,
and Srinivas Devadas, Caches and Merkle trees for efficient memory
authentication, MIT-LCS-TR-857, 2002.

67. J. P. McGregor, D. K. Karig, Z. J. Shi, and R. B. Lee, A processor
architecture defense against buffer overflow attacks, Proc. IEEE Intl.
Conf. on Information Technology: Research And Education (ITE
2003), August 2003, pp. 243-250.

68. R. B. Lee, D. K. Karig, J. P. McGregor, and Z. J. Shi, Enlisting
hardware architecture to thwart malicious code injection, Proc. Intl.
Conf. on Security in Pervasive Computing (SPC-2003), lecture notes
in computer science, Springer Verlag, March 2003.

69. Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve
Zdancewic, HardBound: architectural support for spatial safety of the
C programming language, Proceedings of the 13th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XIII), 2008, pp. 103-114.

70. Divya Arora, Srivaths Ravi, Anand Raghunathan and Niraj K. Jha,
Secure embedded processing through hardware-assisted run-time
monitoring, Proceedings of the Conference on Design, Automation
and Test in Europe (DATE ’05), 2005, pp. 1530-1591.

71. Tao Zhang, Xiaotong Zhuang, Santosh Pande, and Wenke Lee,
Anomalous path detection with hardware support, Proceedings of the
2005 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems (CASES ’05), 2005, pp. 43-54.

72. G. Edward Suh, Jaewook Lee, and Srinivas Devadas, Secure
program execution via dynamic information flow tracking,
Proceedings of the 11th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-XI), 2004, pp. 85-96.

73. Shashidhar Mysore, Bita Mazloom, Banit Agrawal, and Timothy
Sherwood, Understanding and visualizing full systems with data flow
tomography, Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XIII), 2008, pp. 211-221.

74. Mohit Tiwari, Hassan M. G, Wassel Bita, et al., Complete
information flow tracking from the gates up, Proceedings of the 14th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XIV), 2009, pp. 109-
120.

75. Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos
Prvulovic, FlexiTaint: a programmable accelerator for dynamic taint
propagation, In: 14th International Symp. on High Performance
Computer Architecture (HPCA), 2008, pp. 173-184.

76. Ruirui Huang, Daniel Y. Deng, and G. Edward Suh, Orthrus: efficient
software integrity protection on multi-cores, Proceedings of the 15th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XV), 2010, pp. 371-
383.

77. Scott Rixner, Memory controller optimizations for web servers,
Proceedings of the 37th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO-37 2004), pp. 355-366.
78. Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and

John D. Owens, Memory access scheduling, Proceedings of the 27th
Annual International Symposium on Computer Architecture (ISCA
’00), 2000, pp. 128-138.

79. Onur Mutlu and Thomas Moscibroda, Stall-time fair memory access
scheduling for chip multiprocessors, Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO
40), 2007, pp. 146-158.

Exercises
11.1 List various security issues that users, organizations (e.g., military,

banks), application programs, and systems (e.g., personal
computers, cloud, handheld devices) might face.

11.2 Consider a government office issuing passports. Follow the SEM
and the example in Table 11.1 to develop a security mechanism for
“issuing a hard-to-forge passport.”

11.3 Give a reason as to why a mandatory access control is needed in
an organization.

11.4 Consider a bank with safe deposit boxes that customers can rent.
The bank needs to select a secure scheme to allow only authorized
access to safes. In addition, customers wish to have more freedom
and occasionally allow their friends or relatives to access their
boxes. For each of the following techniques, itemize what the bank
and the owner of a safe need to do and what protections are
needed to prevent an unauthorized person from accessing a safe
or denying access to a legitimate owner.
a. Derive a secure mandatory ACL-based scheme that the bank

can use. Hint: Each customer gives the bank a list of names that
can also access the safe.

b. Derive a secure capability list-based scheme that the bank can
use. Hint: Bank issues each customer n keys to give to a friend
or a relative.

11.5 What is a multilevel security policy model?

11.6 What is a multilateral security policy?
11.7 Briefly explain the BLP’s *-property.
11.8 Which policy model could be used to prevent the Stuxnet malware

from changing the specifications of an industrial control system?
11.9 Stuxnet is designed to search for a specific control system known

as a programmable logic controller (PLC). Which policy model
could be used to prevent Stuxnet from transferring the control
system information through the network?

11.10 Flame malware is designed to “suck” information (keystrokes,
screenshots, audio, etc.) from a computer system and send it over
the Internet to those who control it. Which policy model could be
used to prevent Flame from transferring data through the network?

11.11 Why does the software that implements an access control
mechanism and the system that runs it need to remain trustworthy?

11.12 Suppose a CPU uses an 8-bit carry look-ahead adder (CLA). Use
two CLA modules, but purposely modify one of the CLAs so it
outputs the wrong results. For example, change the correct
expression With billions of transistors in a
typical processor, it would be hard to detect there are two adders.
Do the following:
a. Design a single input triggering hardware Trojan that outputs

wrong results after it is triggered using the input 0xAA.
b. Suppose you apply 50 unique test vectors to test the adder.

What are the chances of detecting the Trojan?
c. Suppose the adder is a 32-bit CLA with the same exact Trojan

with trigger input 0xAAAAAAAA. Determine the chance of
detecting the Trojan with one million tests.

11.13 Suppose a MOD 24 counter is used to create a time bomb Trojan.
a. How many test vectors do you need to trigger the Trojan?
b. Suppose you applied 10M tests and the circuit worked correctly.

How often do you need to reset power in order to prevent a time
bomb trigger?

c. Design a circuit that outputs 1 to reset the power to the module
that may use a counter to create a time bomb Trojan. Also
assume that the number of test vectors in part (b) includes tests

applied during post silicon testing; that is, before mass
production. Sample chips are manufactured for post-silicon
testing purposes only in order to apply more tests using actual
hardware instead of a simulation tool.

11.14 Design the following 16-bit encryption/decryption circuit shown in
Fig. 11.39. It uses a multifunction 16-bit input register, a right-shift
register as output register, and an 8-bit LSFR with a secret key. The
circuit operates manually (no control unit is required). Validate your
design.

FIGURE 11.39 Data path for Exercise 11.14.

11.15 What are the three sources of development threats?
11.16 What is the purpose of using homomorphic encryption, and in

addition to requiring more hardware, what potential problem may
exist that would make implementation of a homomorphic encryption
more difficult? (Hint: Also refer to FP arithmetic in Chap. 3.)

11.17 Design an FSM-based control unit to encrypt/decrypt 16 bits of
data at a time. The block diagram is shown in Fig. 11.40. The
controller starts when signal start is asserted. A user selects a 16-
bit input and toggles the switch connected to the DFF to assert the
start signal, as illustrated in the figure. Once the controller starts,
signal ack (acknowledge) is used to reset the DFF. The
encryption/decryption data path contains a counter for counting the

number of times the multifunction registers must shift. In the block
diagram, C.C. stands for combinational circuit. When the counter
reaches the right number, the operation stops and the controller
returns to standby, its initial state. The system should be reset only
once and should work multiple times, each time
encrypting/decrypting a 16-bit input. (Also see Exercise 11.14).

FIGURE 11.40 Data path and control unit for Exercise 11.17.

11.18 Given e = 5, d = 29, and n = 91, use RSA to encrypt P = 6 and
decrypt C = 41.

11.19 Given e = 5, d = 29, and n = 91, use RSA to encrypt P = 13.
11.20 Suppose IV = 8’h77. Determine the ciphertext for plaintext =

“HELLO” using RSA in CBC mode and use public key e = 5 and n
= 91. For example, the first P0 = 72 = 8’h48 is XORed with 8’h77
before it is encrypted to generate ciphertext C0; then P1 = 8’h45 is
XORed with C0 before it is encrypted to generate C1, etc.

11.21 State why an MAC or HMAC is needed.
11.22 What is the advantage of an MAC? Also check the properties of

AES-GCM online.

11.23 What is the advantage of an HMAC?
11.24 Consider a system with 8-B cache blocks and 256-B main memory.

Organize this memory as a binary hash tree. Specifically, given the
memory address of a child block, formulate a technique to identify
the memory address of its parent block.

11.25 Consider a system with 8-B cache blocks and 128-B main memory.
Organize this memory as a 4-ary hash tree. In a 4-ary tree, each
parent node has four children nodes. Specifically, given the
memory address of a child block, formulate a technique to identify
the memory address of its parent block.

11.26 A hierarchical access control suitable for hardware
implementation: Refer to reference [48] and write an HDL code to
generate 8-bit Rji and Nji for given 8-bit IDi, IDj, SRK, Ki, and Kj.
Use the following data to test your code. Then use each of the
values for IDi, IDj, Rji, and Nji to compute secret Ki. Values of Rji,
and Nji for all i and j would be public.

11.27 Explain in what ways a secure co-processor can improve the
security of a computer.

11.28 Outline the basic functions an SP must be able to perform in a
system that runs a TSM.

11.29 Explain in what ways an SP can improve the security of a
computer.

11.30 Suppose for a DI-SXM program, a hash tree of sequence numbers
is created for the program’s data blocks. What would happen if an
attacker performs a block spoofing, splicing, or replay attack? Will
each type of attack be detected and why?

11.31 Suppose for DI-SXM programs, the sequence numbers of data
blocks are stored inside the SP instead of on memory. Briefly state

the advantage and disadvantage of storing the sequence numbers
inside the SP.

11.32 Consider the design of a secure virtual memory management
system. Suppose we would like to authenticate each virtual page
using two-level hash trees. Each hash tree contains one root page
and several leaf data pages. The hash (using bitwise XOR in this
case) of each leaf page is stored in its corresponding root page.
Assuming that pages are 4 KB, cache blocks are 64 B, and each
hash value is 16 B, how many root pages are needed to
authenticate 16 MB dynamically allocated virtual memory space?

11.33 Consider a hash tree of virtual memory data blocks (i.e., the hash
tree uses virtual addresses). Suppose the SP implements
physically addressed caches. In this case, a block’s virtual address
is also saved in the lowest-level cache. Briefly explain why saving
the virtual address is necessary for processing the hash tree and
detecting replay attacks.

11.34 Consider eight data blocks. Draw the hash tree and illustrate the
authentication of blocks 8, 9, and 14 by the HTE. Also, determine
how many cache misses will result due to accessing these blocks.
Assume none of the cached parent blocks are replaced.

11.35 We would like to compare the memory space required to maintain
a hash tree of sequence numbers assigned to memory data blocks.
Two different sequence numbers are investigated: 64-bit vs. 64-bit
split (48-bits long and 16-bits short) sequence numbers. Also,
assume one long number is used for every 16 consecutive blocks,
blocks are 64B, each hash value is 256 bits, and the maximum size
of dynamic data memory space is 1MB. Determine how much
memory space is needed to maintain the hash tree in each case.

11.36 Consider a SXM-OP system. Assume the CPU has four user-
accessible registers and data and addresses are 8-bits each.
Suppose during an interruption, the 8-bit register contents and an
8-bit return address are hashed using bitwise XOR and the hash
value is saved inside the CPU. The register contents and the return
address are then saved in memory by the interrupt handler. If the
hash value is stored inside the CPU, show how it can be used to
detect spoofing, splicing, and replay attacks. If any of the attacks
cannot be detected, identify the reason and suggest a security

mechanism. You may assume there are five registers numbered 0
to 4, where register 4 is used to store a return address.

11.37 An HTE is a microcontroller and executes a firmware located
inside the SP. For simplicity, consider a hash tree of data blocks (as
opposed to a hash tree of sequence numbers assigned to data
blocks). Before a program can access its dynamic data in DI-SXM,
the hash tree for the dynamic data blocks must already exist.
Assuming the SP implements the MESI cache protocol, describe
how the initial hash tree for a program’s dynamic data blocks would
be created. Also assume there are other SP state bits so that the
OS can invoke the firmware when necessary and can choose to
enable or disable the HTE read cycle, which, when disabled,
causes data blocks that are loaded from memory to not be
authenticated. The data memory space may be statistically
declared during programming or allocated during run time.

11.38 Suppose split sequence numbers are used with each dynamic
data block. Also assume that the starting address and the size of
the dynamic data space are stored within the SP during the time a
DI-SXM program is executing. Discuss/explain how a hash tree
would be updated when one of the short sequence numbers
overflows. Also, see Exercise 11.37.

11.39 Suppose an SP-based system uses separate virtual address
spaces for an SXM process (code and data), a non-SXM process
(code and data), a hash tree to protect SXM process data blocks,
and a systems process (code and data). Outline a mechanism the
SP could use to identify the right page table to use with each
different virtual address.

Bibliography

Abd-El-Barr Mostafa and El-Rewini Hesham, Fundamentals of
Computer Organization and Architecture, Wiley, 2005.

Agner Fog, “Branch prediction in the Pentium family,”
www.x86.org/articles/branch/branchprediction.htm.

Altera Quartus II, CPLD, FPGA design tool, http://www.altera.com/.
Anderson John A., Foundations of Computer Technology, CRC

Press, 1994.
ATI Xenos GPU (for Xbox 360), www.amd.com.
Buchanan William J., Introduction to Security and Network

Forensics, CRC Press, 2011.
Carpinelli John D., Computer Systems Organization and

Architecture, Addison Wesley, 2001.
Christof P., Jan P., and Bart P., Understanding Cryptography: A

Textbook for Students and Practitioners, Springer, 2010.
Ciletti Michael D., Starting Guide to Verilog 2001, Pearson Prentice

Hall, 2004.
Clements Alan, Principles of Computer Hardware, Oxford, 2006.
Culler David, Singh Jaswinder, and Gupta Anoop, Parallel

Computer Architecture: A Hardware/Software Approach, Morgan
Kaufman, San Francisco, 1999.

Easttom William, Computer Security Fundamentals, 2nd ed.,
Pearson, 2011.

Gendrullis Timo, “Hardware-based cryptanalysis of the GSM A5/1
encryption algorithm,” thesis, May 2008.

Hard drive interfaces, http://www.harddrivereport.com/.

http://www.x86.org/articles/branch/branchprediction.htm
http://www.altera.com/
http://www.amd.com/
http://www.harddrivereport.com/

Harris David and Harris Sarah, Digital Design and Computer
Architecture, Morgan Kaufmann, 2007.

Harvey A. F., Data Acquisition Division Staff, “DMA Fundamentals
on Various PC Platforms,” National Instruments.

Hennessy John and Patterson David, Computer Architecture: A
Quantitative Approach, 5th ed., Morgan Kaufman, Waltham,
2012.

Hwang Kai, Computer Arithmetic Principles, Architecture, and
Design, Wiley, 1979.

Intel, “Optimization techniques for integer-blended code,”
http://download.intel.com/design/pentiumii/manuals/24281603.p
df.

Intel QuickPath,
http://www.intel.com/technology/quickpath/introduction.pdf.

Katz R. and Borriello G., Contemporary Logic Design, Pearson,
2005.

King S. T., Tucek J., Cozzie A., Grier C., Jiang W., and Zhou Y.,
Designing and implementing malicious hardware, In:
Proceedings of the 1st USENIX Workshop on Large-Scale
Exploits and Emergent Threats, April 2008.

Luebke David and Humphreys Greg, How GPUs work? IEEE
Computer, February 2007, 96–100.

Mano Morris M. and Kime Charles R., Logic and Computer Design
Fundamentals, 4th ed., Pearson Prentice Hall, 2008.

Mano Morris M. and Ciletti Michael D., Digital Design, 4th ed.,
Prentice Hall, 2007.

Marcovitz Alan B., Introduction to Logic Design, McGraw-Hill,
2005.

Microsoft Keyboard scan code specification,
http://www.microsoft.com/.

Northbridge and Southbridge,
http://www.nvidia.com/page/home.html,
http://www.intel.com/products/chipsets/,
http://www.amd.com/us/PRODUCTS/.

Null Lina and Lobur Julia, Computer Organization and
Architecture, Jones Bartlett Learning, 2012.

http://download.intel.com/design/pentiumii/manuals/24281603.pdf
http://www.intel.com/technology/quickpath/introduction.pdf
http://www.microsoft.com/
http://www.nvidia.com/page/home.html
http://www.intel.com/products/chipsets/
http://www.amd.com/us/PRODUCTS/

NVIDIA GeForce GPUs, www.nvidia.com.
Osadchy M., Pinkas B., Jarrous A., and Moskovich B., Scifi: a

system for secure computation of face identification, In:
Proceedings of the 31st IEEE Symposium on Security and
Privacy, 2010.

Patterson David and Hennessy John, Computer Organization and
Design: The Hardware/Software Interface, Morgan Kaufmann,
San Francisco, 2005.

Saba A. and Manna N., Digital Principles and Logic Design, Jones
and Bartlett, 2010.

Saltzer Jerome H. and Kaashoek M. Frans, Principles of Computer
System Design: An Introduction,
http://ocw.mit.edu/resources/res-6-004-principles-of-computer-
systemdesign-an-introduction-spring-2009/online-
textbook/protection_open_5_0.pdf.

Samsung hard drives, www.samsung.com.
Shen John P. and Lipasti Mikko H., Modern Processor Design,

McGraw-Hill, 2005.
Smith James E. and Pleszun Andrew R., Implementing precise

interrupts in pipelined processors, IEEE Transactions on
Computers, 1988, 562–573.

Spansion Flash Memory, http://www.spansion.com.
Stallings William, Computer Organization and Architecture,

Pearson Education, 2010.
Stallings William, Cryptography and Network Security, Pearson

Prentice Hall, 4th ed., 2006.
Tanenbaum Andrew, Structure Computer Organization, Pearson,

2006.
Universal Host Controller Interface (UHCI) Design Guide,

http://download.intel.com/technology/usb/UHCI11D.pdf.
Universal peripheral interface slave microcontroller (UPI-42),

www.alldatasheet.com.
USB (universal serial bus), http://www.usb.org/home.
USB 3.0 specification, http://www.usb.org/developers/docs/.
Vahid Frank, Digital Design with RTL Design, VHDL, and Verilog,

John Wiley and Sons Publishers, 2011.

http://www.nvidia.com/
http://ocw.mit.edu/resources/res-6-004-principles-of-computer-systemdesign-an-introduction-spring-2009/online-textbook/protection_open_5_0.pdf
http://www.samsung.com/
http://www.spansion.com/
http://download.intel.com/technology/usb/UHCI11D.pdf
http://www.alldatasheet.com/
http://www.usb.org/home
http://www.usb.org/developers/docs/

Vray Jogn Shaley, Interprocess Communications in UNIX, Prentice
Hall, 2003.

Wakerly J. F., Digital Design: Principles and Practices, 4th ed.,
Prentice Hall, 2006.

Index

Please note that index links point to page beginnings from the print
edition. Locations are approximate in e-readers, and you may need
to page down one or more times after clicking a link to get to the
indexed material.

2’s complement number, 3
3DNow instruction set, 20
7400 chip series, 76
7-segment display unit, 50

A
Access control list, 469
Access control matrix, 470
Access control, 469
Access point, 417
Address bus, 281
Address strobe, 380
Addressing modes, 311
AMD Opteron processor, 353, 458
AMD Phenom processor, 353
AMD processors, 307, 353
AMD Quad FX platform, 299

Analog-to-digital (A/D), 9
Antidependence, 353
Application programming interface, 544
Application specific IC (ASIC), 9, 75, 155
Arbitrator, 399
ARM Cortex-A8, 307, 357
Array divider, 139
ASCII codes, 2
Assembler directive, 318
Asynchronous interrupts, 402
Atomic bus access, 384
Attestation identity key, 499
Authdata, 500, 501, 503
Availability security property, 463, 504, 536

B
Bandwidth, 64, 92, 282, 536
Basic input/output system (BIOS), 384
Bell-Lapadula security policy, 472
Bi-directional. See Bus
Biased-exponent, 5, 127
Biba security policy, 472
Binary-coded decimal (BCD), 50, 184
Binding data to platform, 498
Bit-parallel design, 96
Bit-serial design, 97
Block carry generate unit (BCGU), 105
Block cipher, 485
Block replacement, 442
Bootloader, 277, 390
Borrow look-ahead (BLA) subtractor, 108
Borrow propagate subtractor (BPS), 108

Branch history table, 390
Branch prediction, 382
Bridge, 374
Buffer-overflow attack, 465, 534
Bulk USB data transfer, 398
Bus, 63
Bus master, 400

C
Cache coherency protocol, 435
Cache controller, 444
Cache hit, 429
Cache line, 429
Cache miss, 429, 445
Capability-list access control, 470
Capacity cache miss, 435
Carry generate unit (CGU), 101
Checksum, 494, 515
Chinese Wall security policy, 473
Cipher, 485
Cipher MAC, 496
Cipher Block Chaining (CBC), 487
Ciphertext, 485
Clark-Wilson security model, 473
Clock cycle, 155
Clock period, 155
Clock signal, 146
Clock skew, 156, 198
Clock-to-output. See Clock-to-q
Clock-to-q, 156
Cloud computing, 25
Cluster, 25

Code injection, 463
Cold cache miss, 435
Communication interface, 448
Comparator logic, 138
Complex instruction set computer (CISC), 225, 315
Computational attack, 475
Confidentiality security policy, 463
Configurable CPU, 218
Configurable logic block (CLB), 76, 178
Configuration USB descriptor, 418
Conflict cache miss, 435
Context switch, 451
Control bus, 281
Control memory, 227
Control unit, 6, 215
Control USB data transfer, 418
Coordinate rotation digital computer (CORDIC), 20, 235
Corrupter attack, 475
Counter mode cipher, 488
Cryptography key stream, 485
Cryptography key whitening, 497
Cryptoprocessor, 484
Cycles per instruction (CPI), 335

D
Data bus, 281
Data cache, 427
Data dependence, 353
Data Encryption Standard (DES) cipher, 487
Data-parallel computation, 22
Data path, 6, 215, 271, 282, 305, 374, 435, 464
Data storage through hardware, 487

DeMorgan’s theorem, 34
Denormal FP number, 5, 128
Deterministic FSM, 174
Device controller, 374
Device controller interface (DCI), 9, 374
Device driver routine, 353
Device USB descriptor, 418
Digital rights management, 484
Digital signal processor (DSP), 9
Digital-to-analog (D/A), 9
Digitizing analog signal, 2
Discretionary access control, 470
DMA channel, 400
DMA transfer table, 400
Double data rate (DDR) SDRAM, 294
DRAM refresh cycle, 276
Dual principle, 37z
Dynamic energy, 231
Dynamic memory (DRAM), 275
Dynamic power consumption, 233

E
Edge triggered flip-flop, 151
Efficiency, 223, 279, 298, 308
Embedded systems, 9, 374
Emitter attack, 475
Endpoint USB descriptor, 417
Error correcting code (ECC) SDRAM, 510
Error detection and correction, 192, 198
Espresso minimization software, 54
Essential prime implicant (EPI), 46
Exceptions, 401

External cache hit, 445

F
Fair memory access scheduler, 536
False-sharing cache miss, 444
Fault tolerant FSM, 174
Feature size, 1
Field programmable gate array (FPGA), 9, 155
FIFO buffer, 185
Firmware, 351, 484
Flame virus, 471
Flash memory, 274, 390
Floating-point (FP) number, 5, 126
Floating point operations per second (FLOPS), 24, 224
Floating point unit (FPU), 98
Forward branching, 344
Forwarding unit, 330
Frame, 398, 416
Front-side bus (FSB), 376
Fully associative mapping cache, 433, 456
Fused operation, 217

G
Glitch, 60, 147
Global branch predictor, 352
Graphic processing unit (GPU), 9, 20, 269
Gray code, 184

H
Hamming code, 192, 510
Hamming distance, 192
Hardware backdoor, 473
Hardware description language (HDL), 2, 16

Hardware interrupts, 401
Hardware Trojan, 473
Hash value, 494
Hashed MAC, 497
Hazard. See Glitch
Hazard unit, 332
Heterogeneous cores, 22
High impedance, 61, 284
Hit ratio, 431
Homomorphic computation, 520
Host controller interface, 9, 374
Hot-spot, 449
Hybrid FSM, 172, 185
HyperTransport interconnect, 378

I
I/O Controller Hub, 377
I/O ports, 9, 374
Implicant, 46
Implicit latch, 158, 179
Information flow tacking, 464, 535
Input port, 387
Instruction cache, 427
Instruction cycle, 310
Instruction pipeline, 307
Instructions per cycle (IPC), 308, 340
Integrated chip, 1
Integrity security property, 463
Intel Core i7, 21, 23, 308, 358
Intel Itanium processor, 21, 356
Intel Pentium IV processor, 360
Intel Xeon processor, 430, 442

Interface USB engine, 423
Integer unit, 98
Interleaving, 295, 300, 341
Interrupt acknowledge, 407
Interrupt-driven I/O, 393
Interrupt handler, 393, 522
Interrupt priority, 393
Interrupt request, 395
Interrupt structure, 393
Interrupt USB data transfer, 398, 420
Interrupt vector table, 405
Invalidation cache protocol, 444, 446
Isochronous USB data transfer, 398, 417

J
JK flip-flop, 157

K
K-Map minimization rules, 46
Keyboard key matrix, 391
Keyed-hash, 496, 500, 510

L
Latency, 299, 375, 378, 385
Leakage current, 234, 276
Leaking information, 476, 513, 516, 522, 535
Level 1 cache, 428
Level 2 cache, 428
Level 3 cache, 430, 442
Line memory, 435
Linear feedback shift register (LFSR), 485
Local memory, 299
Local branch predictor, 350, 392

Logic gates, 10
Logic product term, 34
Logic sum term, 36

M
Machine instruction, 8, 311
Mandatory access control, 470, 473, 484
Mealy FSM, 172
Memory access time, 289
Memory authentication, 551
Memory banks, 279
Memory cell, 274
Memory controller hub (MCH), 374
Memory cycle, 289
Memory management unit (MMU), 452
Memory-mapped I/O, 386
Memory row activation, 277
Message digest, 496
Message passing system, 24
Metastability, 152
Micro-operation, 227
Microcontroller, 374, 390
Microinstruction, 227
Microprogram, 227
Microprogrammed control, 225
Million instruction per second (MIPS), 224
MIPS processor, 225, 307, 316, 336
Miss ratio, 431
Mnemonic opcode, 310
Moore FSM, 172
Moore’s law, 1
Motherboard, 377

Multi-lateral security policy, 472
Multi-level security policy, 472, 503
Multiple instruction multiple data (MIMD), 22
Multiprogramming, 401, 450
Multithreaded programming, 22, 308, 362
Multithreading, 22, 341

N
National Institute of Standards and Technology (NIST), 487, 498
Net-list, 17, 75
Network adaptor, 386
Non-computational attack, 475
Non-return-to-zero inverted (NRZI), 212, 270, 415
Non-uniform memory access (NUMA), 378, 448
Non-volatile memory, 274
Nonce, 499
Normal FP number, 5, 128
Normalizing FP result, 133
Northbridge, 377

O
Object code, 310
Out-of-order execution, 357
Output dependence, 353
Output port, 387

P
Packet, 283, 415
Page fault, 401, 430
Page mode access, 279
Paging, 430
Parity bit, 195
Parity generator, 198

Pass transistor, 275
Physical attacks, 25
Physical memory, 429
Physically addressed cache, 458, 521
Pipeline chart, 220
Pipeline flush, 331
Pipeline stage, 220
Placement-and-route, 79
Plug and play devices, 373
Point-to-point communication, 64, 378
Port-mapped I/O, 346
Precise interruption, 361
Predicated instruction, 356, 535
Prime implicant, 46
Primitive gates, 80
Priority encoder, 73
Private key, 489
Process switch, 452
Process, 451
Processing core, 2
Program counter. See Program pointer
Program pointer, 318
Programmable logic device (PLD), 75
Programmed I/O, 393
Propagate-generate unit (PGU), 101
Pseudo instruction, 318
Public key, 489
Public key infrastructure (PKI), 491

Q
QuickPath interconnect, 378
Quine-McCluskey algorithm, 51

R
Random access memory (RAM), 274
Randomized encryption, 516
Read after write (RAW) hazard, 353
Reciprocal division algorithm, 139
Redundant array of independent disks (RAID), 385
Register renaming, 357
Register transfer language (RTL), 16
Register window, 309
Remote memory, 299
Replay attack, 481, 504, 514, 519
Restoring division algorithm, 124
Reverse polish notation, 313
Ripple carry adder (RCA), 99
Rotations per minute, 385
Rounding error, 133, 217

S
Sampling rate, 2
Scan code, 392
Score boarding, 358
Secret root key, 499
Secure execution environment, 484, 509
Secure execution mode (SXM), 484, 509
Secure root hash, 504
Security key storage, 499
Seek time, 385
Sense amplifier, 277
Sensitivity list, 86, 158
Server overload, 464
Session key, 512
Shared cache, 430

Shared memory system, 22
Shoot-through current, 232
Side channel attacks, 474
Sign extension, 4
Signal chasing, 148
Signal fall time, 58, 234
Signal handshaking, 381
Signal polarity, 31
Signal rise time, 58, 234
Signature security key, 499
Signed magnitude number, 3, 127
Silicon Graphics’ SGI Altix 4700 system, 299
Single instruction multiple data (SIMD), 20, 98, 218, 308
Single instruction single data (SISD), 22
Snoop controller, 444
Software interrupt, 401
Southbridge, 377
Sparc processor, 307, 344, 345
Spatial locality, 431
SPEC CPU2006, 224
SPEC89, 352
Speculative execution, 356, 529
SPECviewperf, 224
Speedup, 223
Splicing attack, 481, 509
Split transaction, 383
Spoofing attack, 481, 509, 534
Static memory, 275
Static power consumption, 234
Status change USB endpoint, 417
Steaming SIMD extension (SEE), 20
Stream cipher, 485, 486

Stuxnet malware, 472
Superpipelining, 340
Superscalar processor, 340
Synchronizing flip-flop, 203
Synchronous interrupts, 401
System-on-chip (SoC), 9, 378

T
T flip-flop, 157
Tag memory, 435
Temporal locality, 431
Test-bench, 79
Thermal design power, 23, 235
Third-party modules, 464
Thread, 22, 361
Thread-level parallelism (TLP), 363
Thread switch, 452
Threat vector, 509
Throughput, 24, 223, 307
Time slice, 402
Timing attack, 474, 489
Transceiver. See Bus
Transient fault, 166
Transistor, CMOS 12
Trap, 401
True color mode, 2
True-sharing cache miss, 444
Trusted computing base (TCB), 465, 508
Trusted firmware module, 484
Trusted hardware module, 484
Trusted platform module, 484
Trusted software module, 484, 536, 551

U
Unicode, 2
Uniform memory access (UMA), 378, 430
Universal serial bus (USB), 9, 374
Update cache protocol, 442

V
Vertex transformation, 20, 261
Virtual memory, 319, 429
Virtually addressed cache, 452
Volatile memory, 274
Von Neumann machine, 7

W
Wait cycle, 380
Wait queue, 401
Wait state, 380
Warehouse computing, 25
Wired-logic, 62
Write after read (WAR) hazard, 353
Write after write (WAW) hazard, 353

	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgment
	1 Introduction
	1.1 Introduction
	1.1.1 Data Representation
	1.1.2 Data Path
	1.1.3 Computer Systems
	1.1.4 Embedded Systems

	1.2 Logic Design
	1.2.1 Circuit Minimization
	1.2.2 Implementation
	1.2.3 Types of Circuits
	1.2.4 Computer-Aided Design Tools

	1.3 Computer Organization
	1.4 Computer Architecture
	1.4.1 Pipelining
	1.4.2 Parallelism
	1.5 Computer Security
	References
	Exercises

	2 Combinational Circuits: Small Designs
	2.1 Introduction
	2.1.1 Signal Naming Standards

	2.2 Logic Expressions
	2.2.1 Sum of Product Expression
	2.2.2 Product of Sum Expression

	2.3 Canonical Expression
	2.3.1 Min-Terms
	2.3.2 Max-Terms

	2.4 Logic Minimization
	2.4.1 Karnaugh Map
	2.4.2 K-Map Minimization

	2.5 Logic Minimization Algorithm
	2.5.1 Minimization Software

	2.6 Circuit Timing Diagram
	2.6.1 Signal Propagation Delay
	2.6.2 Fan-In and Fan-Out

	2.7 Other Gates
	2.7.1 Buffer
	2.7.2 Open Collector Buffer
	2.7.3 Tri-State Buffer

	2.8 Design Examples
	2.8.1 Full Adder
	2.8.2 Multiplexer
	2.8.3 Decoder
	2.8.4 Encoder

	2.9 Implementation
	2.9.1 Programmable Logic Devices
	2.9.2 Design Flow

	2.10 Hardware Description Languages
	2.10.1 Structural Model
	2.10.2 Propagation Delay Simulation
	2.10.3 Behavioral Modeling
	2.10.4 Synthesis and Simulation
	References
	Exercises

	3 Combinational Circuits: Large Designs
	3.1 Introduction
	3.1.1 Top-Down Design Methodology

	3.2 Arithmetic Functions
	3.3 Adder
	3.3.1 Carry Propagate Adder
	3.3.2 Carry Look-Ahead Adder

	3.4 Subtractor
	3.5 2’s Complement Adder/Subtractor
	3.6 Arithmetic Logic Unit
	3.6.1 Design Partitioning: Bit-Parallel
	3.6.2 Design Partitioning: Bit-Serial

	3.7 Design Examples
	3.7.1 Multiplier
	3.7.2 Divider

	3.8 Real Number Arithmetic
	3.8.1 Floating-Point Standards
	3.8.2 Floating-Point Data Space
	3.8.3 Floating-Point Arithmetic
	3.8.4 Floating-Point Unit
	References
	Exercises

	4 Sequential Circuits: Core Modules
	4.1 Introduction
	4.2 SR Latch
	4.2.1 Clocked SR Latch
	4.3 D-Latch
	4.4 Disadvantage of Latches
	4.5 D Flip-Flop
	4.5.1 Alternative Circuit
	4.5.2 Operating Conventions
	4.5.3 Setup and Hold Times

	4.6 Clock Frequency Estimation without Clock Skew
	4.7 Flip-Flop with Enable
	4.8 Other Flip-Flops
	4.9 Hardware Description Language Models
	References
	Exercises

	5 Sequential Circuits: Small Designs
	5.1 Introduction
	5.2 Introduction to FSM: Register Design
	5.2.1 Register Model
	5.2.2 Multifunction Registers

	5.3 Finite State Machine Design
	5.3.1 Binary Encoded States
	5.3.2 One-Hot Encoded States

	5.4 Counters
	5.5 Fault-Tolerant Finite State Machine
	5.5.1 Hamming Coding Scheme

	5.6 Sequential Circuit Timing
	5.6.1 Clock Frequency Estimation with Clock Skew
	5.6.2 Asynchronous Interface

	5.7 Hardware Description Language Models
	5.7.1 Synthesis and Simulation

	References
	Exercises

	6 Sequential Circuits: Large Designs
	6.1 Introduction
	6.1.1 Register Transfer Notation

	6.2 Data Path Design
	6.2.1 Single-Cycle
	6.2.2 Multicycle
	6.2.3 Pipelined

	6.3 Control Unit Design Techniques
	6.3.1 Hardwired Control: FSD
	6.3.2 Microprogrammed Control
	6.3.3 Hardwire Control: Pipeline

	6.4 Energy and Power Consumption
	6.5 Design Examples
	6.5.1 Unsigned Sequential Multiplier
	6.5.2 Signed Sequential Multiplier
	6.5.3 Computer Graphics: Rotation

	References
	Exercises

	7 Memory
	7.1 Introduction
	7.2 Memory Technologies
	7.2.1 Read-Only Memories
	7.2.2 Random Access Memories
	7.2.3 Applications

	7.3 Memory Cell Array
	7.3.1 Word Access
	7.3.2 Burst Access

	7.4 Memory Organization
	7.4.1 Modern DRAMs
	7.4.2 SRAM Cell Model
	7.4.3 Internal Organization: SRAM Chip
	7.4.4 Memory Unit Design

	7.5 Memory Timing
	7.5.1 SRAM
	7.5.2 DRAM
	7.5.3 SDRAM
	7.5.4 DDR SDRAM

	7.6 Memory Architecture
	7.6.1 High-Order Interleaving
	7.6.2 Low-Order Interleaving
	7.6.3 Multichannel

	7.7 Design Example: Multiprocessor Memory Architecture
	7.7.1 UMA versus NUMA
	7.7.2 A NUMA Application

	7.8 HDL Models
	References
	Exercises

	8 Instruction Set Architecture
	8.1 Introduction
	8.1.1 Type of Instructions
	8.1.2 Program Translation
	8.1.3 Instruction Cycle

	8.2 Types of Instruction Set Architecture
	8.2.1 Addressing Modes
	8.2.2 Instruction Format
	8.2.3 Stack-ISA
	8.2.4 Accumulator-ISA
	8.2.5 CISC-ISA
	8.2.6 RISC-ISA

	8.3 Design Example
	8.3.1 Acc-ISA Instruction Set Design
	8.3.2 Acc-ISA Processor: Single-Cycle
	8.3.3 Acc-ISA Processor: Pipelined
	8.3.4 RISC-ISA Processor

	8.4 Advanced Processor Architectures
	8.4.1 Deep Pipelining
	8.4.2 Branch Prediction
	8.4.3 Instruction-Level Parallelism
	8.4.4 Multithreading

	References
	Exercises

	9 Computer Architecture: Interconnection
	9.1 Introduction
	9.1.2 Interconnection Architectures

	9.2 Memory Controller
	9.2.1 Simple Memory Controller
	9.2.2 Modern Memory Controller

	9.3 I/O Peripheral Devices
	9.4 Controlling and Interfacing I/O Devices
	9.4.1 I/O Ports

	9.5 Data Transfer Mechanisms
	9.5.1 Interrupt-Driven Transfer
	9.5.2 Programmed Transfer
	9.5.3 DMA Transfer

	9.6 Interrupts
	9.6.1 Handling Interruptions
	9.6.2 Interrupt Structures

	9.7 Design Example: Interrupt Handling CPU
	9.8 USB Host Controller Interface
	9.8.1 Standards
	9.8.2 Transactions
	9.8.3 Transfers
	9.8.4 Descriptors
	9.8.5 Frames
	9.8.6 Transaction Organization
	9.8.7 Transaction Execution

	References
	Exercises

	10 Memory System
	10.1 Introduction
	10.1.1 Memory Hierarchy

	10.2 Cache Mapping
	10.2.1 Direct Mapping
	10.2.2 Types of Cache Misses
	10.2.3 Set-Associative Mapping

	10.3 Cache Coherency
	10.3.1 Invalidation versus Update Protocols
	10.3.2 Snoop Cache Coherence Protocol
	10.3.3 Write-Through Protocol
	10.3.4 Write-Back Protocols

	10.4 Virtual Memory
	10.4.1 Virtual Address Translation
	10.4.2 Translation Lookaside Buffer
	10.4.3 Processor Organization

	References
	Exercises

	11 Computer Architecture: Security
	11.1 Introduction
	11.1.1 Security Engineering Methodology
	11.1.2 Threat Classes
	11.1.3 Access Control and Types
	11.1.4 Security Policy Models
	11.1.5 Attack Classes

	11.2 Hardware Backdoor Attacks
	11.2.1 Data and Control Attacks
	11.2.2 Timer Attack
	11.2.3 Security Policy Mechanisms

	11.3 Software/Physical Attacks
	11.3.1 Spoofing
	11.3.2 Splicing
	11.3.3 Replay
	11.3.4 Man-in-the-Middle

	11.4 Trusted Computing Base
	11.5 Cryptography
	11.5.1 Symmetric-Key Ciphers
	11.5.2 Modes of Operation
	11.5.3 Asymmetric-Key Ciphers

	11.6 Hashing
	11.7 Cryptography Hash
	11.7.1 Message Authentication Code
	11.7.2 Hash MAC

	11.8 Storing Cryptography Keys through Hardware
	11.8.1 Keychain Organization
	11.8.2 Storage and Access
	11.8.3 Application Example: Keychain as Access Control

	11.9 Hash Tree
	11.9.1 Application Example: Keychain Authentication
	11.9.2 Application Example: Memory Authentication

	11.10 Secure Coprocessor Architecture
	11.10.1 Trusted Platform Module

	11.11 Secure Processor Architecture
	11.11.1 Program Code Integrity
	11.11.2 Operational Security Mechanisms
	11.11.3 Program Code Confidentiality
	11.11.4 Program Code Integrity and Confidentiality
	11.11.5 Program Data Integrity
	11.11.6 Program Data Confidentiality
	11.11.7 Program Data Integrity and Confidentiality
	11.11.8 Program Code and Data Integrity and Confidentiality
	11.11.9 Handling Interruption

	11.12 Design Example: Secure Processor
	11.12.1 SP Specification
	11.12.2 Processor Architecture
	11.12.3 Encryption Decryption Hashing Engine
	11.12.4 Hash Tree Engine

	11.13 Further Reading
	References
	Exercises

	Bibliography
	Index

