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Preface

As any author knows, writing a textbook is a long but rewarding process. I enjoy
writing, but even more so, I enjoy having written a book that can help students study,
learn, and apply subject matter.

Discrete mathematics is about the processes that consist of a sequence of individual
steps. Discrete mathematics, which includes a multitude of diverse yet interrelated topics,
is the study of discrete structures and is accounted as an effective approach for developing
problem-solving strengths and critical thinking skills. The relevance, importance, and
applications of discrete mathematics have significantly increased over the past few de-
cades, mainly due to the development of an array of computers, which all operate in
discrete steps; they are ubiquitous and indispensable in all facets of life.

This book presents the essentials and applications of discrete mathematics in a simple
and intuitive approach while maintaining a reasonable level of mathematical rigor. With
an accessible writing style, the goal is to introduce a mathematical method of thinking to
help solve an array of problems in computer science, software engineering, information
technology, and engineering design.

As the topics in mathematics are best understood when they are introduced in a va-
riety of contexts and used to solve problems in a broad range of applied situations, the
focus of this book is on the concise and lucid introduction of core concepts, followed
by illustrative examples and practical applications. With a basic background in algebra
as the only prerequisite, the topics presented in a manner that can be understood by
both first-year and second-year undergraduate students in engineering and computer sci-
ence, and can be taught in a one-semester course (36 lecture hours). This book consists of
20 short chapters, each discusses one major topic. A chapter can be covered in one to two
lecture hours, depending on the breadth and depth of its topic.

The pedagogy behind this book and its choice of contents evolved over many years.
Almost all of the material in the book has been class tested and proven very effective.
There are over 400 independent examples to help understand the fundamental concepts
and a total of 200 exercises to test understanding of the material. Upon request from the
publisher, a Solutions Manual can be obtained only by instructors who use the book for
adoption in a course.

No book is flawless, and this book is certainly no different from others. Your com-
ments and suggestions for improvement are always welcome. I would greatly appreciate
it if you would please send your feedback to ali.grami@ontariotechu.ca.
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The philosopher Aristotle is often called the father of logic. Logic is the basis upon which
correct inferences may be made from facts. Logic deals with formal principles of
reasoning, strict criteria of validity, and necessary rules of thought. Logic is extensively
used to solve a multitude of problems and make valid arguments in our everyday lives.
Although logic is an essential tool in our interactions with other people as well as in
the decisions we make every day, it does have limitations, simply because logic cannot
help convince someone out of something they were not reasoned into in the first place.
The rules of logic provide meaning to mathematical statements, verify the correctness of
programs and algorithms in computer science, and help construct some proofs in software
systems. Logic can also be employed in the optimum design of engineering systems,
where the system is complex and consists of many subsystems with redundancy. Logic
is also applied in physical and social sciences to draw conclusions from experiments.
This chapter briefly presents the fundamentals of propositional logic.

1.1 Propositions

The basic building blocks of logic are propositions. A proposition is a declarative state-
ment, which is either true or false but not both; that is, it has a well-defined truth value.
In addition, it is sometimes difficult to know if a sentence is a proposition, and if it is a
proposition, it may not be known for some reason whether it is true or false. The area
of logic that deals with propositions is called propositional logic.

Example 1.1
Consider the following statements, and if a statement is a proposition, identify its
truth value.
(a) How are you?
(b) What a kind person!
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(c) 2þ 2 ¼ 3.
(d) Ice floats in water.
(e) The earth is flat.
(f) Yellow is a primary color.
(g) Blue is the best color.
(h) Close the door.
(i) God exists.

Solution
(a) It is not a proposition, as it is a question.
(b) It is not a proposition, as it is an exclamation.
(c) It is a proposition, and it is false.
(d) It is a proposition, and it is true.
(e) It is a proposition, and it is false.
(f) It is a proposition, and it is true.
(g) It is not a proposition, as it is an opinion.
(h) It is not a proposition, as it is a command.
(i) It is not a proposition, as it is an opinion.

Example 1.2
Consider the following statements, and if a statement is a proposition, identify its
truth value.
(a) xþ 1 ¼ 5.
(b) There is life in outer space.
(c) This sentence is false.
(d) Fermat’s last theorem: The equation xn þ yn ¼ zn, where x, y, and z are in-

tegers and xyzs0, has no solutions for an integer n > 2.
(e) Human beings will never live to be 200 years old.

Solution
(a) It is not a proposition because x is unknown. However, for a value of x, it

becomes a proposition.
(b) It is a proposition. Because science has not advanced enough to know with

certainty, we cannot show if this proposition is true or false.
(c) If we assume the sentence “This sentence is false” is true, then the sentence

says it is false, which contradicts our assumption. If we assume the sentence
“This sentence is false” is false, then the sentence says it is true, which again
contradicts our assumption. We can thus conclude that “This sentence is
false” is a self-contradictory sentence, and it is not a proposition but a paradox.

(d) It is a proposition. However, for over 300 years, we did not know if this prop-
osition was true or false, but in 1994, it was proven to be true.

(e) It is a proposition. Because science has not advanced enough to know with
certainty what the future holds, at the present time, we cannot know if this
proposition is true or false.
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The mathematician Gottfried Leibniz introduced symbolism into logic. We use lower-
case letters, such as p; q; r; s; and t, to denote propositional variables or statement vari-
ables. The truth value of a proposition is either true or false. If the truth value of a
proposition is true, it is denoted by T, and if the truth value of a proposition is false,
it is denoted by F.

If a proposition cannot be broken down into simpler propositions, it is then called a
simple proposition, a primitive proposition, or an atomic proposition. For instance, the
proposition “The earth is flat” is a simple proposition, which is false, and the proposition
“The sun is hot” is a simple proposition, which is true.

If a proposition is a composite (i.e., it is composed of more than one proposition), it is
then called a compound proposition. The truth value of a compound proposition is
completely determined by both the truth values of its simple propositions and the logical
operators connecting the simple propositions. For instance, the proposition “Water boils
at 50 degrees celsius and water freezes at 0 degrees celsius,” which is a compound prop-
osition connected by an “and”, is false, and the proposition “There are more women than
men in the world or men can become pregnant,”which is a compound proposition con-
nected by an “or”, is true.

1.2 Basic Logical Operators

Logical operators, also known as logical connectives, are used to combine two or more
simple propositions to form a compound proposition. A statement form or a propositional
form is an expression consisting of propositional variables and logical operators.

The truth table for a given propositional form presents the truth values that corre-
spond to all possible combinations of truth values for the propositional variables.
Two compound propositions are called logically equivalent or simply equivalent
if they have identical truth tables (i.e., they have the same truth values regardless of
the truth values of its propositional variables). The notation “h” denotes logical
equivalence.

The negation of the proposition p, denoted by p, is the statement “It is not the case
that p.” The simple proposition p, which is read as “not p,” has the truth value that is the
opposite of the truth value of p. Table 1.1 presents the truth table for the negation of a
proposition p, where it has two rows corresponding to the two possible truth values of p.

TABLE 1.1 Truth table for the negation
of a proposition.

p p

T
F

F
T

Propositional Logic 3



For instance, if p denotes hope is a good thing, then p denotes it is false (or not true) that
hope is a good thing or hope is not a good thing.

The conjunction of the two propositions p and q, denoted by p^ q and read as “p and
q,” is a compound proposition that is true when both p and q are true and is false other-
wise. For instance, the compound proposition “The sun is hot and water is a liquid” is
true because both its simple propositions are true, and the compound proposition “2þ
2 ¼ 4 and the United States of America is a country with a very long history” is false
because not both of its simple propositions are true. Note that the word “but” sometimes
is used instead of the word “and” to show conjunction. As an example, in the proposi-
tional logic, the two statements “The United States of America is the most advanced
country in the world but it was built on indigenous land” and “The United States of
America is the most advanced country in the world and it was built on indigenous
land” are equivalent. Table 1.2 presents the truth table for the conjunction of two
propositions.

The disjunction of the two propositions p and q, denoted by pnq and read as “p or q,”
is a compound proposition that is false when both p and q are false and is true otherwise.
Note that the word “or” in the propositional logic is an inclusive or, meaning a disjunc-
tion is true when at least one of the two propositions is true. In other words, pnq implies
“p or q or both”; that is, it is an inclusive disjunction. For instance, the proposition “It is
August or it is sunny” is true in the month of August or when it is sunny. It is false if it is
not August and also it is not sunny. Table 1.3 presents the truth table for the disjunction
of two propositions.

TABLE 1.2 Truth table for the conjunction of two propositions.

p q p^ q

T
T
F
F

T
F
T
F

T
F
F
F

TABLE 1.3 Truth table for the disjunction of two propositions.

p q pnq

T
T
F
F

T
F
T
F

T
T
T
F
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Example 1.3
When a brother and a sister stop playing in their backyard, their father says, “At
least one of you has a muddy forehead,” and then asks the children to answer
“yes” or “no” to the question: “Do you know whether you have a muddy fore-
head?” The father asks this question twice, and the children answer each question
simultaneously. What will the children answer each time this question is asked,
assuming that a child can see whether his or her sibling has a muddy forehead
but cannot see his or her own forehead?

Solution
Let s be the statement that the son has a muddy forehead, and let d be the state-
ment that the daughter has a muddy forehead. When the father says that at least
one of the two children has a muddy forehead, he is saying that snd is true. Both
children will answer “no” the first time the question is asked because each sees
mud on the other child’s forehead. That is, the son knows that d is true but
does not know whether s is true, and the daughter knows that s is true but
does not know whether d is true. After the son has answered “no” to the first
question, the daughter can determine that d must be true. This follows because
when the first question is asked, the son knows that snd is true but cannot deter-
mine whether s is true. Using this information, the daughter can conclude that d
must be true, for if d were false, the son could have reasoned that because snd is
true, then smust be true, and he would have answered “yes” to the first question.
The son can reason in a similar way to determine that s must be true. It follows
that both children answer “yes” the second time the question is asked.

The exclusive or of the two propositions p and q, denoted by p4q and read as “exclu-
sive or of p and q,” is a compound proposition that is true when exactly either p or q (i.e.,
only one of the two) is true and is false otherwise. In other words, when p and q are both
true or when they are both false, the exclusive or of p and q is false. For instance, the
exclusive or is employed when “You must take one of the two courses, as a required
course.” Table 1.4 presents the truth table for the exclusive or of two propositions.

Each of Tables 1.2, 1.3, and 1.4 has four rows corresponding to the 4
� ¼ 22

�
possible

combinations of truth values of p and q, as there are two variables, each with two truth
values. Table 1.5 shows the total number of nonequivalent compound propositions, each

consisting of two propositions, p and q, is 16
�
¼ 2ð22Þ

�
.

TABLE 1.4 Truth table for the exclusive or of two propositions.

p q p4q

T
T
F
F

T
F
T
F

F
T
T
F
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Note that the number of rows in a truth table is 2m when m in the exponent represents
the number of propositional variables, and 2 in the base indicates the two possible truth
values of each variable. In addition, the total number of different ways to combine m sim-
ple propositions to make a compound proposition is 2ð2mÞ.

Example 1.4
Determine the truth table for the propositional logic ðp4qÞ ^ ðpn qÞ.
Solution
As shown in Table 1.6, p and q each can have two different truth values. The truth
table thus has four rows.

It is also important to note that the dual of a compound proposition, with the logical op-
erators negation, conjunction, and disjunction, is the compound proposition obtained by
replacing each n by ^ , each ^ by n, each T by F, and each F by T. Moreover, the
duals of two equivalent compound propositions are equivalent, provided that they
contain only the logical operators of negation, conjunction, and disjunction. The dual
of the dual proposition of a proposition is logically equivalent to the original proposition.
A proposition and its dual are equivalent if and only if the proposition is simply one prop-
ositional variable. It may be a difficult task to determine if a compound proposition con-
sisting of only one propositional variable and its dual are logically equivalent.

Example 1.5
Determine the dual of each of the following propositions.
(a) p^ q^ r.
(b) ðp^ q^ rÞns.
(c) ðpnFÞ ^ ðqnTÞ.
(d) p.
(e) q^T.

TABLE 1.5 Truth tables for all nonequivalent logical statements with two propositions.

p q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T T T T T T T T T T F F F F F F F F
T F T T T T F F F F T T T T F F F F
F T T T F F T T F F T T F F T T F F
F F T F T F T F T F T F T F T F T F

TABLE 1.6 Truth table for Example 1.4.

p q p q p4q pnq ðp4qÞ ^ ðpn qÞ
T
T
F
F

T
F
T
F

F
F
T
T

F
T
F
T

T
F
F
T

T
T
F
T

T
F
F
T
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Solution
(a) pnqnr.
(b) ðpnqnrÞ ^ s.
(c) ðp^TÞnðq^ FÞ.
(d) p (equivalent to the original proposition).
(e) qnF (equivalent to the original proposition).

1.3 Conditional Statements

Let p and q be propositions. The conditional statement p/q, read as “if p, then q” or “p
implies q;” is a compound proposition that is false when p is true and q is false and is true
otherwise. Table 1.7 presents the truth table for the conditional statement. There are also
other ways to express this conditional statement, such as “p is sufficient for q,” “a suffi-
cient condition for q is p,” “q is necessary for p,” or “a necessary condition for p is q.” In
the implication p/q, p is called the hypothesis, the premise, or the antecedent, and q is
called the conclusion or the consequence. In an implication, the hypothesis and its conclu-
sion are not required to have related subject matters.

If the implication is true, we do not automatically know that either the hypothesis or
the conclusion is true. For instance, consider the conditional statement “If you obey the
law, you never go to prison.” In this implication, if you obey the law, then you do not
expect to go to prison. If you do not obey the law, you may or may not go to prison
depending on other factors. However, if you do obey the law but you go to prison,
you feel outraged. This last scenario corresponds to the case when p is true, but q is false,
and thus the truth value of the conditional statement p/q is false.

From an implication p/q, the following well-known conditional statements, whose
truth tables are presented in Table 1.8, can be made:
• The converse of p/q is q/p.
• The inverse of p/q is p/q.
• The contrapositive of p/q is q/p.

Noting that logically equivalent propositions have the same truth values regardless of
the truth values of its propositional variables, the implication (original conditional

TABLE 1.7 Truth table for the conditional statement.

p q p/q

T
T
F
F

T
F
T
F

T
F
T
T
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statement) and its contrapositive are equivalent, and the converse and the inverse of a
conditional statement are also equivalent. Some people mistakenly think that an impli-
cation and its converse mean the same thing as they usually say one to mean another.
In fact, their truth tables are not identical.

Example 1.6
Determine the contrapositive, converse, and inverse of the conditional statement
“If you start using drugs, then you are a moron.”

Solution
Noting p represents the statement “You start using drugs,” and q represents the
statement “You are a moron,” that is, for p/q, we have the following statements:
• The contrapositive statement (q/p) is “If you are not a moron, then you do

not start using drugs.”
• The converse statement (q/p) is “If you are a moron, then you start using

drugs.”
• The inverse statement (p/qÞ is “If you do not start using drugs, then you are

not a moron.”

Example 1.7
Determine the contrapositive, converse, and inverse of the conditional statement
“If it is a Sunday, then I rest all day.”

Solution
Noting p represents the statement “It is a Sunday,” and q represents the statement
“I rest all day,” that is, for p/q, we have the following statements:
• The contrapositive statement (q/p) is “If I do not rest all day, then it is not a

Sunday.”
• The converse statement (q/p) is “If I rest all day, then it is a Sunday.”
• The inverse statement (p/qÞ is “If it is not a Sunday, then I do not rest all

day.”

TABLE 1.8 Truth tables for the contrapositive, converse, and inverse of the conditional statement.

p q p q p/q q/p q/p p/q

T
T
F
F

T
F
T
F

F
F
T
T

F
T
F
T

T
F
T
T

T
F
T
T

T
T
F
T

T
T
F
T
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Example 1.8
Determine the contrapositive, converse, and inverse of the conditional statement
“If I am a man, then I am not a mother.”

Solution
Noting p represents the statement “I am a man,” and q represents the statement “I
am not a mother,” that is, for p/q, we have the following statements:
• The contrapositive statement (q/p) is “If I am a mother, then I am not a

man.”
• The converse statement (q/p) is “If I am not a mother, then I am a man.”
• The inverse statement (p/qÞ is “If I am not a man, then I am a mother.”

Note that the original implication and the contrapositive are both true, while
the converse and inverse need not be true, as a woman may not be a mother.

Let p and q be propositions. The biconditional statement p4q, read as “p if and only if q,”
“p iff q,” “if p, then q, and conversely,” or “p is necessary and sufficient for q,” is a com-
pound proposition that is true when p and q have the same truth values and is false other-
wise. Biconditional statements are also called bi-implications. Table 1.9 presents the truth
table for the biconditional statement.

To construct compound propositions, parentheses are generally used to specify the
order in which operators are to be applied. Parenthesized expressions are evaluated start-
ing with the innermost pair of parentheses outward, analogous to the evaluation of an
arithmetic expression. Parenthesized subexpressions are always evaluated first, and with
two operators of equal precedence, the corresponding expression is evaluated from the
left. The precedence rules, which can reduce the number of parentheses required, for
logical statements must be performed as follows: the negation operator is applied before
all other logical operators, and the conjunction operator takes precedence over the
disjunction operator. It is advised to use parentheses for the exclusive or operator. A con-
ditional operator takes precedence over a biconditional one. In addition, the conditional
and biconditional operators have lower precedence than the conjunction and disjunction
operators. Table 1.10 highlights the precedence of logical operators.

TABLE 1.9 Truth table for the biconditional statement.

p q p4q

T
T
F
F

T
F
T
F

T
F
F
T

Propositional Logic 9



Example 1.9
Determine how each of the following statements must be evaluated.
(a) ðp/qÞ ^ q/p.
(b) p/q4q/p.

Solution
Using the precedence rule, we have the following statements:
(a) ðp/qÞ ^ q/phððp/qÞ ^ qÞ/p.
(b) p/q4q/phðp/qÞ4ðq/pÞ.

It is sometimes necessary to translate English sentences into expressions involving prop-
ositional variables and logical connectives so as to analyze them using rules of inference.

Example 1.10
Let p and q be the following propositions.

p: You drive impaired.
q: You die in a car accident.

Write the following propositions using p and q and logical connectivities including
negations.
(a) You do not drive impaired.
(b) You drive impaired, but you do not die in a car accident.
(c) You will die in a car accident if you drive impaired.
(d) If you do not drive impaired, then you will not die in a car accident.
(e) Driving impaired is sufficient for dying in a car accident.
(f) You die in a car accident, but you do not drive impaired.
(g) Whenever you die in a car accident, you are driving impaired.

Solution
(a) p.
(b) p^ q.
(c) p/q.
(d) p/q.
(e) p/q.
(f) q^ p.
(g) q/p.

TABLE 1.10 Precedence of logical operators (connectives).

Operator Symbol Precedence

Negation
Conjunction
Disjunction
Conditional
Biconditional

�
^
n
/
4

1
2
3
4
5
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Example 1.11
Noting that the number of different nonequivalent logical statements with two
propositions is 16

�
¼ 2ð22Þ

�
, provide examples of compound propositions for

all nonequivalent logical statements.

Solution
Table 1.11 presents all 16 different combinations, where compound propositions
are shown at the top of the columns.

1.4 Propositional Equivalences

It is sometimes important to replace a logical statement with an equivalent statement in a
mathematical argument. One method to determine whether two compound proposi-
tions are equivalent is to use well-known logical identities to establish new logical iden-
tities. This method is quite effective, especially when there are a large number of
propositional variables involved. Table 1.12 presents some important logical equivalences
involving the negation, conjunction, and disjunction operators. Of all logical equiva-
lences, De Morgan’s laws are of great importance, as they have wide applications in logic.
De Morgan’s laws state that (1) the negation of an “and” statement is logically equivalent
to the “or” statement in which each component is negated, and (2) the negation of an
“or” statement is logically equivalent to the “and” statement in which each component
is negated.

Table 1.13 presents some important logical equivalences involving conditional and
biconditional statements.

Example 1.12
Using logical identities, verify the logical equivalence ðp^ qÞ ^ ðpnqÞhp.

Solution
Using Table 1.12, we can have

ðp^ qÞ ^ ðpnqÞ h
�
p
¼
nq

�
^ ðpnqÞ by De Morgan’s laws

h ðpnqÞ ^ ðpnqÞ by the double negation law
h pnðq^ qÞ by the distributive law

h pnðq^ qÞ by the commutative law

h pnðFÞ by the negation law
h p by the identity law

Propositional Logic 11



TABLE 1.11 Truth tables for Example 1.11.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

p q T pnq q/p p p/q q p4q p^ q pnq p4q q p^ q p p^ q p^ q F

T T T T T T T T T T F F F F F F F F
T F T T T T F F F F T T T T F F F F
F T T T F F T T F F T T F F T T F F
F F T F T F T F T F T F T F T F T F

12
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TABLE 1.12 Logical equivalences.

Equivalence Name

p^Thp

pnFhp

Identity

laws
pnThT

p^FhF

Domination

laws
pnphp

p^ php

Idempotent

laws
p
¼
hp Double negation law

pnqhqnp

p^ qhq^ p

Commutative laws

ðpnqÞnrhpnðqnrÞ
ðp^ qÞ ^ rhp^ ðq^ rÞ

Associative laws

pnðq^ rÞhðpnqÞ ^ ðpnrÞ
p^ ðqnrÞhðp^ qÞnðp^ rÞ

Distributive laws

p^ qhpnq

pnqhp^ q

De Morgan’s laws

pnðp^ qÞhp

p^ ðpnqÞhp

Absorption laws

pnphT

p^ phF

Negation laws

T denotes the compound proposition that is always true.
F denotes the compound proposition that is always false.

TABLE 1.13 Logical equivalences involving conditional and
biconditional statements.

p/qhpnq

p/qhq/p

pnqhp/q

p^ qhðp/qÞ
ðp/qÞhp^ q

ðp/qÞ ^ ðp/rÞhp/ðq^ rÞ
ðp/rÞ ^ ðq/rÞhðpnqÞ/r

ðp/qÞnðp/rÞhp/ðqnrÞ
ðp/rÞnðq/rÞhðp^ qÞ/r

p4qhðp/qÞ ^ ðq/pÞ
p4qhp4q

p4qhðp^ qÞnðp^ qÞ
ðp4qÞhp4q
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To verify logical equivalences or simplify logical statements, truth tables can also be used,
where in each row of the truth table, the truth value of one statement is the same as the
truth value of the other statement.

Example 1.13
Using a truth table, verify p4qhðp4qÞ.
Solution
The last two columns of Table 1.14, representing the two sides of the statement,
are identical for every single row.

Example 1.14
(a) Prove that the negation of the conditional statement “If p, then q” is logically

equivalent to “p and not q.”
(b) Write the negation of the conditional statement “If I sleep late at night, then I

cannot get up early in the morning.”

Solution
(a) From Table 1.13, we have p/qhpnq; therefore its negation using De

Morgan’s laws and the double negative law is as follows:

ðp/qÞhpnqh p
¼^ qhp^ q, which means p and not q.

(b) Let p be the proposition “I sleep late at night” and q be the proposition “I can
get up early in the morning.” Based on ðp/qÞhp^ q, the negation is “I sleep
late at night, and I can get up early in the morning.”Note that the negation of
an implication (if-then statement) does not start with the word “if”.

Note that DeMorgan’s laws can be extended to more than two variables; that is, we have
8>><
>>:

ðp1np2n ::: npnÞhðp1^ p2^ ::: ^ pnÞ

ðp1^ p2^ ::: ^ pnÞhðp1np2n ::: npnÞ

where p1; p2; :::; pn are n propositions.

TABLE 1.14 Truth table for Example 1.13.

p q p4q p4q p4q

T
T
F
F

T
F
T
F

F
T
T
F

T
F
F
T

T
F
F
T
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Example 1.15
Apply De Morgan’s laws to write the negation for each of the following
statements.
(a) My friend is 2 meters tall and he weighs at least 100 kilograms.
(b) The flight was delayed or the airport’s clock was slow.

Solution
Note that to avoid any potential confusion in the English language, De Morgan’s
laws can be applied if there exist complete statements on either side of each “and”
and on either side of each “or.”
(a) My friend is not 2 meters tall or he weighs less than 100 kilograms.
(b) The flight was not delayed and the airport’s clock was not slow.

A compound proposition that is always true, regardless of the truth values of the prop-
ositional variables (i.e., the compound proposition contains only T in the last column
of its truth table), is called a tautology. In other words, a tautology is an always-true
proposition regardless of the truth values of the propositional variables. A statement
whose form is a tautology is a tautological statement. Note that the compound prop-
ositions p and q are logically equivalent if p4q is a tautology. Some simple examples of
tautology in English are “Parents are older than their children,” “You don’t give what
you don’t have,” and “Dead people do not breathe.” A simple example of tautology
in logic is pnp.

A compound proposition that is always false, regardless of the truth values of the
propositional variables (i.e., the compound proposition contains only F in the last column
of its truth table), is called a contradiction. In other words, a contradiction is an always-
false proposition regardless of the truth values of the propositional variables. A statement
whose form is a contradiction is a contradictory statement. Note that the negation of a
tautology is a contradiction, and the negation of a contradiction is a tautology. Some sim-
ple examples of contradiction in English are “Some are more equal than others,” “Rich
people need a tax cut because they do not have enough money,” and “Texting while
driving reduces chances of having a car accident.” A simple example of contradiction
in logic is p^ p.

Note that a compound proposition that is neither a tautology nor a contradiction is
called a contingency. In most practical applications and statements in logic, the proposition
happens to be contingency. A statement whose form is a contingency is a contingent
statement. Some simple examples of contingency in English are “Politicians are
dishonest” and “People in this country are not racist.” A simple example of contingency
in logic is p/p.
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Example 1.16
Show that the logical expressions p4q and p4q are equivalent.

Solution
Table 1.15 presents the truth table for ðp4qÞ4ðp4qÞ. Because the truth values
in the last column are all true, the logical expressions are equivalent.

Example 1.17
Show that ðp^ qÞ^ ðp4qÞ is a contradiction.
Solution
As shown in Table 1.16, ðp^ qÞ^ ðp4qÞ is a contradiction (i.e., the truth values in
the last column are all false).

Example 1.18
Show that pnðq^ rÞ is a contingency.
Solution
As shown in Table 1.17, pnðq^ rÞ is a contingency (i.e., the truth values in the last
column consist of both true and false values).

A compound proposition is satisfiable if there is at least one assignment of truth values to
its variables for which it is then true. Such an assignment is called a solution of the satisfi-
ability problem. When there exists no such an assignment (i.e., the compound proposi-
tion is false for all assignments of truth values to its variables), the compound proposition

TABLE 1.15 Truth table for Example 1.16.

p q p4q p4q p4q ðp4qÞ4ðp4qÞ
T
T
F
F

T
F
T
F

T
F
F
T

F
T
T
F

T
F
F
T

T
T
T
T

TABLE 1.16 Truth table for Example 1.17.

p q p^ q p4q ðp^ qÞ ^ ðp4qÞ
T
T
F
F

T
F
T
F

T
F
F
F

F
T
T
F

F
F
F
F
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is unsatisfiable. In other words, a compound proposition is unsatisfiable if and only if its
negation is a tautology. There are many applications of satisfiability in a multitude of dis-
ciplines in engineering. However, solving the satisfiability problem for a compound
proposition with a very significant number of propositional variables is a time-
consuming process.

Example 1.19
Determine if the compound proposition ðpnqnrnsntÞ^ ðpnqnrnsntÞ is
satisfiable.

Solution
This compound proposition is true when these five variables do not all have the
same truth value (i.e., at least one of the propositional variables p, q, r, s, and t is
true, and at least one is false). Hence, this compound proposition is satisfiable
because there is at least one assignment of truth values for these variables that
makes it true.

1.5 Logic Puzzles

Logic puzzles require solutions that are based on logical reasoning. A logic puzzle is a
problem that can be solved through deductive reasoning. The fact that if an assumption
leads to a contradiction and that assumption must be false forms the basis for solving many
logic puzzles by eliminating contradictory answers.

Example 1.20
Knights and Knaves is a type of logic puzzle with two types of people, where
knights can only answer questions truthfully (always tell the truth) and knaves
can only answer questions falsely (always lie). On the island of knights and knaves,

TABLE 1.17 Truth table for Example 1.18.

p q r q^ r pnðq^ rÞ
T
T
T
T
F
F
F
F

T
T
F
F
T
T
F
F

T
F
T
F
T
F
T
F

T
F
F
F
T
F
F
F

T
T
T
T
T
F
F
F
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you come to a fork in the road with one individual standing before each path. You
know that one of them is a knight, and the other is a knave. You also know that
one path leads to freedom, and the other path leads to certain death. You can ask
one of the individuals one yes-no question. What do you ask to determine the
path to freedom?

Solution
It is important to note there is no need to figure out which person is a knight and
which one is a knave to figure out which path leads to freedom. There are several
ways to find out which way leads to freedom. One possible question is “Would
the other individual tell me that your path leads to freedom?”With this question,
the knight will tell the truth about a lie, while the knave will tell a lie about the
truth. Therefore the given answer will always be the opposite of the correct one.

Example 1.21
Suppose there are signs on the doors to two rooms. The sign on the first door reads
“In this room, there are $1 billion to have, and in the other room, there is a deadly
virus to catch,” and the sign on the second door reads “In one of these rooms,
there is a deadly virus to catch, and in the other one, there are $1 billion to
have.” Suppose that you know that one of these signs is true and the other is false.
The question is, behind which door are there $1 billion?

Solution
If the first sign is true, then the second sign would also be true. In that case, we
could not have one true sign and one false sign. Rather, if the second sign is
true and the first is false, there are $1 billion in the second room and a virus in
the first room.

Exercises
(1.1)
Which of the following sentences are propositions? What are the truth values of
those that are propositions?
(a) Mount Everest is the highest mountain on the earth.
(b) xþ 7 ¼ 11.
(c) Answer all the questions in this chapter.
(d) The sun is cold at night.

(1.2)
We have the following propositions.

p: He is smart.
q: He is hardworking.
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Write the following propositions using p and q and logical connectives and
negations.
(a) He is smart and hardworking.
(b) He is smart but not hardworking.
(c) He is not smart, and he is not hardworking.
(d) He is smart or hardworking or both.
(e) If he is smart, then he is hardworking.
(f) Either he is smart or he is hardworking, but he is not hardworking if he is

smart.

(1.3)
We have the following propositions.

p: He studied hard for the final exam.
q: He got an Aþ in the course.
Express each of the following propositions as an English sentence.

(a) p^ q.
(b) pnq.
(c) p/q.
(d) q/p.
(e) p/q.
(f) p4q.
(g) p^ ðpnqÞ.
(1.4)
Translate each of the following statements into a logical statement.
(a) It is not cold, but it is cloudy, where p: it is cold, and q: it is cloudy.
(b) It is neither sunny nor rainy, where r: it is sunny, and s: it is rainy.
(c) 0 < x � 5, where t: fx> 0g, u: fx< 5g, and w: fx ¼ 5g.
(1.5)
Prove the following De Morgan’s laws.
(a) ðp^ qÞhpnq.
(b) ðpnqÞhp^ q.

(1.6)
Construct a truth table for each of the following propositions.
(a) ðpnqÞ/ðp4qÞ.
(b) ðp4qÞ4ðp4qÞ.
(1.7)
Determine the converse, inverse, and contrapositive of each of the following con-
ditional statements.
(a) If you do not work hard in life, then you fail in life.
(b) If you have no empathy, then you are nobody.
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(1.8)
Determine a compound proposition involving three different propositional vari-
ables that is true when exactly two of them are true and is false otherwise.

(1.9)
Construct the truth table for each of the following compound propositions, and
then determine if the compound proposition is a tautology, a contradiction, or a
contingency.
(a) p/ððp^ qÞ4ðpnqÞÞ.
(b) ðp/qÞ/p.

(1.10)
Evaluate each of the following statements using the order of precedence.
(a) pnq^ r.
(b) p4q/r.
(c) pnq/r ^ s.
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CHAPTER 2
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Contents

2.1 Predicates 21
2.2 Quantifiers 22
2.3 Negations of Quantified Statements 27
2.4 Nested Quantifiers 29

“Everyone who is born can learn to love.” “My wife has given birth to our daughter.”
“Our daughter can learn to love.” This simple analysis is intuitively perceived as correct,
yet its validity cannot be derived using propositional logic. Propositional logic sometimes
cannot adequately provide the appropriate meaning of a statement, as some mathematical
statements and everyday situations may involve the notion of quantification. To this end,
another type of logic, known as predicate logic, is needed to allow us to reason. The sym-
bolic analysis of predicates and quantifiers is called predicate logic or predicate calculus.
Predicate logic uses quantified variables and allows the use of expressions that contain
variables. This chapter briefly presents basic aspects of predicate logic.

2.1 Predicates

To understand predicate logic, we first need to understand the concept of a predicate. A
predicate refers to the part of a sentence that attributes a property to the subject. For
instance, in the sentence “The United States of America is a powerful country,” “The
United States of America” is the subject, and the part of the sentence from which the
subject has been removed (i.e., “is a powerful country”) is the predicate. Another
example is the sentence “x represents the world population”, in which the variable
“x” is the subject and “represents the world population” is the predicate.

A predicate contains a finite number of variables and becomes a propositional state-
ment when specific values are substituted for the variables. The domain, also known as
the universe of discourse or the domain of discourse, is the set of all values of a variable
that can replace it.

A predicate that involves just one variable may be denoted by PðxÞ. The statement
PðxÞ is said to be the value of the propositional function P at x: A propositional function
P, by itself, is neither true nor false. However, once a value from the domain has been
assigned to the variable x, PðxÞ becomes a propositional statement and thus has a truth
value.
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A predicate that involves n variables is called an n-ary predicate and denoted by
Pðx1; x2; .; xnÞ. Once a set of values has been assigned to the variables
x1; x2; .; xn, Pðx1; x2; .; xnÞ has a truth value, as it is then a propositional state-
ment. Note that a predicate with two variables is called a binary predicate.

Example 2.1
Discuss the following statements in the context of predicate logic.
(a) The statement x > 2, for x ¼ 0 and x ¼ 7:2, where the domain for the

variable consists of all real numbers.
(b) The statement x2 þ y2 ¼ z2, for x ¼ 3, y ¼ 4, and z ¼ 5 and for x ¼ 5,

y ¼ 6, and z ¼ 7, where the domain for each of the three variables consists of
all positive integers.

Solution
(a) The statement x > 2 has two parts. The first part is the variable x,which is the

subject of the statement, and the second part is the predicate P,which denotes
“is greater than 2.” The propositional function PðxÞ denotes the statement
x > 2. Therefore Pð0Þ and Pð7:2Þ are both propositional statements, where
Pð0Þ, indicating 0 > 2, is false, and Pð7:2Þ, indicating 7:2 > 2, is true.

(b) The statement x2 þ y2 ¼ z2 has two parts. The first part consists of the vari-
ables x, y, and z, and the second part is the predicate Q. The propositional
function Qðx; y; zÞ denotes the statement x2 þ y2 ¼ z2. Therefore
Qð3; 4; 5Þ and Qð5; 6; 7Þ are both propositional statements, where
Qð3; 4; 5Þ, indicating 9þ 16 ¼ 25, is true, and Qð5; 6; 7Þ, indicating
25þ 36 ¼ 49, is false.

2.2 Quantifiers

As stated earlier, by assigning a value to the variable x, the propositional function PðxÞ
becomes a propositional statement with a truth value. Another way to obtain a propo-
sition from a propositional function is to add quantifiers. For instance, the propositions
“Few people are very compassionate,” “Some people are racist,” “All people are mortal,”
“None of them are good,” “One even prime number exists,” and “Every day the sun
rises” each contains a word indicating a quantity, such as “few,” “some,” “all,”
“none,” “one,” and “every.” These words are called quantifiers, as each word reveals
for how many elements a given predicate is true. In other words, quantification is a
way to express the extent to which a predicate is true over a range of elements. There
are two widely known quantifications in predicate logic, namely, universal quantification
and existential quantification.
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Universal quantification indicates that a predicate is true for every element under
consideration. In other words, universal quantification asserts that a predicate is true
for all values of a variable in a given domain. Because the domain specifies the possible
values of a variable, by changing the domain, the meaning of the universal quantification
of a predicate may change. For instance, if the domain consists of all real numbers greater
than 1, then the assertion that every number, say 2, is greater than its inverse (i.e., 12) is

true, as we have 1
2 < 2. However, if the domain changes and includes all positive real

numbers, then the assertion that every number, say 1
3, is greater than its inverse (i.e., 3)

is false, as we have 1
3 < 3.

The universal quantification of PðxÞ, which is the statement PðxÞ for all values of x in
the domain, is denoted by cxPðxÞ. The symbol c is called the universal quantifier and
read as “for all” or “for every.” Note that if a domain is not specified when a universal
quantifier is used, then the universal quantification of a statement is not defined. The
statement cxPðxÞ is defined to be true if and only if PðxÞ is true for every x in the
domain, and it is defined to be false for at least one x in the domain. A value of x for
which PðxÞ is false is called a counterexample to the universal statement cxPðxÞ. More-
over, if the domain is empty, thencxPðxÞ is true for any PðxÞ, as there exists no element
x in the domain for which PðxÞ is false.

Example 2.2
Determine the truth values of the universal statement cxðx� ffiffiffi

x
p Þ for the

following domains.
(a) All positive integers less than or equal to 3.
(b) All positive real numbers less than or equal to 3.

Solution
(a) The statement is true for each element in the domain, that is, for x ˛f1; 2; 3g,

as we have 1 ¼ 1, 2 >
ffiffiffi
2

p
and 3 >

ffiffiffi
3

p
. Hence, cxðx� ffiffiffi

x
p Þ is true.

(b) The statement is false for at least one element in the domain x˛ð0; 3�. As a
counterexample, if x ¼ 0:49, we then have 0:49 � ffiffiffiffiffiffiffiffiffi

0:49
p ¼ 0:7, which in

turn means cxðx� ffiffiffi
x

p Þ is false. In fact, the statement is false for x ˛ð0; 1Þ.
Note that to prove a universal statement is false, a single example is sufficient.

Existential quantification indicates that a predicate is true for at least one element under
consideration. In other words, existential quantification asserts that a predicate is true for
at least one value of a variable in a given domain. Because the domain specifies the
possible values of a variable, by changing the domain, the meaning of the existential
quantification of a predicate may change. For instance, if the domain consists of all
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females, then the assertion that there is at least one person who is pregnant is true. How-
ever, if the domain changes and includes all males, then the assertion that there is at least
one person who is pregnant is false.

The existential quantification of PðxÞ, which is the statement PðxÞ for at least one
value of x in the domain, is denoted by dxPðxÞ. The symbol d is called the existential
quantifier and read as “for some,” “there exists a,” or “for at least one.” Note that if a
domain is not specified when an existential quantifier is used, then the existential quan-
tification of a statement is not defined. The statementdxPðxÞ is defined to be true if and
only if PðxÞ is true for at least one x in the domain, and it is defined to be false for every x
in the domain. Moreover, if the domain is empty, thendxPðxÞ is false for every PðxÞ, as
there exists no element x in the domain for which PðxÞ is true.

Example 2.3
Determine the truth values of the existential statement dx ðx< ffiffiffi

x
p Þ for the

following domains.
(a) All positive integers less than or equal to 3.
(b) All positive real numbers less than or equal to 3.

Solution
(a) The statement is false for each element in the domain, that is, for

x ˛f1; 2; 3g, as we have 1 ¼ 1, 2 >
ffiffiffi
2

p
and 3 >

ffiffiffi
3

p
. Hence, dxPðxÞ is

false.
(b) The statement is true for an element in the domain x˛ð0; 3�, as for

x ¼ 0:49, we have 0:49 <
ffiffiffiffiffiffiffiffiffi
0:49

p ¼ 0:7. Hence, dxPðxÞ is true. In fact,
the statement is true for x ˛ð0; 1Þ. Note that to prove an existential statement
is true, a single example is sufficient.

Of all quantifiers, the uniqueness quantifier, denoted byd! or d1, is perhaps most often
used. The notation d!xPðxÞ ord1xPðxÞ states that “There exists a unique x such that
PðxÞ is true,” “There is exactly one x such that PðxÞ is true,” or “There is one and
only one x such that PðxÞ is true.” For instance, d!x

�
x2 ¼ 1

�
, where the domain

is the set of positive integers, states that there is only one positive integer x such that
x2 ¼ 1, that is x ¼ 1.

It is important to note that universal statements are generalizations of “and” state-
ments, and existential statements are generalizations of “or” statements. Therefore
when the domain of a quantifier is finite, quantified statements can be expressed
using propositional logic. In particular, when the elements of the domain are
x1; x2; .; xn; where n is a positive integer (i.e., all elements in the domain can be
listed), the universal quantification cxPðxÞ is the same as the conjunction

24 Discrete Mathematics



Pðx1Þ^Pðx2Þ^.^PðxnÞ, because this conjunction is true if and only if the propositional
functions Pðx1Þ, Pðx2Þ, ., and PðxnÞ are all true, and the existential quantification
dxPðxÞ is the same as the disjunction Pðx1ÞnPðx2Þn.nPðxnÞ, because this disjunc-
tion is true if and only if at least one of the propositional functions Pðx1Þ; Pðx2Þ,., and
PðxnÞ is true.

When a quantifier is used on the variable x, it is then called a bound variable, as it is
bound by the quantifier. When a variable is not bound by a quantifier or is not equal to a
particular value, it is called a free variable, as it can roam over the domain. A statement
with free variables is not a proposition. A propositional function can be turned into a
proposition by quantifiers and/or value assignments. The part of a logical expression
to which a quantifier is applied is called the scope of the quantifier.

Example 2.4
Identify the bound and free variables and the scopes of the quantifiers in the
following statement.

Solution
The variables x and y are bound by the two quantifiers, and the variable z is free, as
it is not bound by a quantifier, nor does it have an assigned value. The scope of the
first quantifier (i.e.,dx) is x � yþ z ¼ 2, and the scope of the second quantifier
(i.e.,cy) is x � y � z ¼ 1, and the scopes of the two quantifiers do not overlap.

In the context of logical equivalence for quantified statements, the statements are logically
equivalent if and only if they have identical truth values regardless of what predicates are
substituted into these statements and what domains are used for the variables in these
propositional functions. If the two statements P and Q are logically equivalent, we
then indicate their equivalence by PhQ. For instance, the logical equivalence of a
unique existential quantifier is as follows:

d!xP xð ÞhdxðP xð Þ^cyðP yð Þ/ ðx ¼ yÞÞÞ:

Example 2.5
Show that dxðPðxÞnQðxÞÞ and dxPðxÞndxQðxÞ are logically equivalent.

Solution
To prove these two quantified statements are logically equivalent, we need to
prove first ifdxðPðxÞnQðxÞÞ is true, thendxPðxÞndxQðxÞ is true, and second
if dxPðxÞndxQðxÞ is true, then dxðPðxÞnQðxÞÞ is true.

ðdxðx� yþ z ¼ 2ÞÞnðcyðx� y� z ¼ 1ÞÞ:
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First, suppose that dxðPðxÞnQðxÞÞ is true. This means that there exists a c, a
particular value of x, for which PðcÞnQðcÞ is true. Hence, either PðcÞ or QðcÞ or
both are true. Therefore either dxPðxÞ or dxQðxÞ or both are true. This means
that dxPðxÞndxQðxÞ is true.

Second, suppose that dxPðxÞndxQðxÞ is true. This means that either
dxPðxÞ or dxQðxÞ or both are true. Hence, there exists a c, a particular value
of x, for which either PðcÞ or QðcÞ or both are true. Therefore PðcÞnQðcÞ is
true. This means that dxðPðxÞnQðxÞÞ is true.

Example 2.6
(a) Show that cxPðxÞncxQðxÞ and cxðPðxÞnQðxÞÞ are not logically

equivalent.
(b) Show that dxPðxÞ^dxQðxÞ and dxðPðxÞ^QðxÞÞ are not logically

equivalent.

Solution
To show two statements are not logically equivalent, only an example is required
to show one of the two statements is true, and the other is false. Suppose PðxÞ is
the statement that x is odd andQðxÞ is the statement that x is even. Let the domain
of discourse be the positive integers.
(a) cxPðxÞ represents all odd numbers, cxQðxÞ represents all even numbers,

and cxPðxÞncxQðxÞ represents positive integers are all odd or all even,
which is false. However, cxðPðxÞnQðxÞÞ represents all positive integers
are either odd or even, which is true.

(b) dxPðxÞ^dxQðxÞ indicates that there is at least an odd number and there is at
least an even number, which is true. However, dxðPðxÞ^QðxÞÞ indicates
that there exists an integer that is both odd and even, which is false.

In a compound logic statement consisting of both propositional and predicate logic state-
ments, the precedence rules suggest that the universal and existential quantifiers have
higher precedence than all logical operators from propositional logic. For instance, the
quantified statement dxPðxÞ^QðxÞ means the conjunction of dxPðxÞ and QðxÞ, that
is, we have dxPðxÞ^QðxÞhðdxPðxÞÞ^QðxÞ, and not dxðPðxÞ^QðxÞÞ.

Mathematical writing may contain many examples of implicitly quantified
statements. For instance, an algebraic identity is an example of implicit universal

quantification, saycx
�ðxþ 1Þ2 ¼ x2 þ 2xþ 1

�
, and an algebraic equation with at least

one solution is an example of implicit existential quantification, say dx
�ðxþ 1Þ2 ¼

x2 � 2xþ 1
�
.
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Example 2.7
Provide examples for the following cases.
(a) Implicit universal quantification.
(b) Implicit existential quantification.

Solution
(a) An example of implicit universal quantification is as follows:

If we have x > 4, we then have x3 > 64, that is, cx
�
x> 4/x3> 64

�
.

(b) An example of implicit existential quantification is as follows:
The integer 8 can be the sum of two integers, that is,
dxdyðx and y integers/xþ y ¼ 8Þ.

2.3 Negations of Quantified Statements

Consider the statement “Every poor person deserves to live a better life.” This statement
is a universal quantification, namelycxPðxÞ, where PðxÞ represents “x deserves to live a
better life” and the domain consists of all people in the world living in poverty. The nega-
tion of this statement is “It is not the case that every poor person deserves to live a better
life,” or equivalently, “There is at least one poor person who does not deserve to live a
better life.” This negation is simply the existential quantification of the propositional

function PðxÞ, that is, dxPðxÞ. Therefore the negation of a universal statement (“All
are”) is logically equivalent to an existential statement (“Some are not” or “There is at
least one that is not”).

Consider the statement “Some people are caring.” This statement is an existential
quantification, namely, dxPðxÞ, where PðxÞ represents “x is caring,” and the domain
consists of all people in the world. The negation of this statement is “It is not the case
that some people are caring,” or equivalently, “No person is caring.” This negation is

simply the universal quantification of the propositional function PðxÞ, that is, cxPðxÞ.
Therefore the negation of an existential statement (“Some are”) is logically equivalent
to a universal statement (“None is” or “All are not”).

The rules for negations of quantified statements, which are called De Morgan’s laws
for quantifiers, are as follows:

8>><
>>:

cxPðxÞhdxPðxÞ

dxPðxÞhcxPðxÞ
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The meanings of the universal and existential qualifiers as well as those of their negations
are summarized in Table 2.1. Note that the quantifier must be changed when negating a
quantified proposition in English. For instance, the negation of the quantified statement
that “Some people are racist” is not the statement that “Some people are not racist,” but it
is that “No person is racist.”

Example 2.8
Determine the negations of the following statements:
(a) All prime numbers are odd.
(b) There is an honest politician.
(c) Rich people do not have empathy.
(d) Some people do not live to be 100 years old.

Solution
(a) Let PðxÞ denote “x is an odd number,” and the domain consists of all prime

numbers. Then, the statement “All prime numbers are odd” is represented by
cxPðxÞ, and its negation is dxPðxÞ. This negation can be expressed as
“There exists at least one prime number that is not odd.”

(b) Let PðxÞ denote “x is an honest politician,” and the domain consists of all pol-
iticians. Then, the statement “There is an honest politician” is represented by
dxPðxÞ, and its negation is cxPðxÞ. This negation can be expressed as “All
politicians are dishonest.”

(c) Let PðxÞ denote “x has empathy,” and the domain consists of all rich people.
Then, the statement “Rich people do not have empathy” is represented by
cxPðxÞ, and its negation is dxPðxÞ. This negation can be expressed as
“There exists at least one rich person who has empathy.”

(d) Let PðxÞ denote “x lives to be 100 years old,” and the domain consists of all
people. Then, the statement “Some people do not live to be 100 years old” is
represented by dxPðxÞ, and its negation is cxPðxÞ. This negation can be
expressed as “All people live to be 100 years old.”

TABLE 2.1 Quantifiers and De Morgan’s laws for quantifiers.

Statement When true? When false?

cxPðxÞ PðxÞ is true for every x. There is an x for which
PðxÞ is false.

dxPðxÞ There is an x for which
PðxÞ is true.

PðxÞ is false for every x.

cxPðxÞhdxPðxÞ There is an x for which
PðxÞ is false.

PðxÞ is true for every x.

dxPðxÞhcxPðxÞ PðxÞ is false for every x. There is an x for which
PðxÞ is true.
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Negations of universal conditional statements are of great importance in mathematics.
Noting that in propositional logic, the negation of an implication is logically equivalent

to an “and” statement, namely, ðPðxÞ/QðxÞÞhPðxÞ^QðxÞ, the negation of a universal
conditional statement is thus as follows:

cxðPðxÞ/QðxÞÞhdx
�
PðxÞ^QðxÞ�

Example 2.9
Determine the negations of the following statements.
(a) Every person who is a vegetarian is healthy.
(b) Some people weigh more than 100 kg and are not healthy.

Solution
(a) Let PðxÞ denote “x is a vegetarian,” and QðxÞ denote “x is healthy,” where

the domain consists of all people. The statement “Every person who is a vege-
tarian is healthy” is represented bycxðPðxÞ/QðxÞÞ, and its negation is thus
dx

�
PðxÞ^QðxÞ�, that is, “There are some people who are vegetarian and not

healthy.”
(b) Let PðxÞ denote “x weighs more than 100 kg,” and QðxÞ denote “x is

healthy,” where the domain consists of all people. The statement “Some
people weigh more than 100 kg and are not healthy” is represented by
dx

�
PðxÞ^QðxÞ�, and its negation is thus cxðPðxÞ/QðxÞÞ, that is, “Every

person who weighs more than 100 kg is healthy.”

2.4 Nested Quantifiers

Nested quantifiers are defined where one quantifier is within the scope of another.
Quantifications of more than one variable can be viewed as nested loops. A propositional
function of n variables has no truth value. However, if it is preceded by a quantifier for
each variable, then it denotes a predicate logic statement and has a truth value.

Example 2.10
Determine the truth value of each of the following statements if the domain of
each variable consists of all real numbers.
(a) cx1dx2ððx1 þ x2 ¼ 2Þ^ð2x1 � x2 ¼ 1ÞÞ.
(b) cx1cx2dx3ðx3 ¼ 0:5ðx1 þ x2ÞÞ.
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Solution
(a) The statement says that for every x1, there exists at least one x2 that this system

of two linear equations is satisfied. It is false. The system has a unique solution,
so not any x1 can then satisfy the simultaneous equations. For example, with
x1 ¼ 0, there can be no x2 satisfying both equations.

(b) The statement says for every x1 and every x2, there exists at least one x3 that
the equation is satisfied. It is true, as for every x1 and every x2, there exists an
x3 ¼ 0:5ðx1 þ x2Þ.

Table 2.2 presents some logical equivalences in predicate logic, which can prove to be
helpful in addressing problems in logic. The order of quantifiers generally matters, as a
different ordering of the quantifiers may yield a different statement. However, when
they are all universal quantifiers or they are all existential quantifiers, the order of the
variables can be changed without affecting the truth value of the proposition. Table 2.3
provides insights into different possible quantifications involving two variables.

TABLE 2.2 Logical equivalences.

cxPðxÞ^cxQðxÞhcxðPðxÞ^QðxÞÞ
cxPðxÞncxQðxÞhcxcyðPðxÞnQðyÞÞ
dxPðxÞ^dxQðxÞhdxdyðPðxÞ^QðyÞÞ
dxPðxÞndxQðxÞhdxðPðxÞnQðxÞÞ
cxPðxÞ^dxQðxÞhcxdyðPðxÞ^QðyÞÞ
cxPðxÞndxQðxÞhcxdyðPðxÞnQðyÞÞ

TABLE 2.3 Quantifications of two variables.

Statement When true? When false?

cxcyPðx; yÞ
cycxPðx; yÞ

Pðx; yÞ is true for every pair
x, y.

There is a pair x; y for which
Pðx; yÞ is false.

cxdyPðx; yÞ For every x there is a y for
which Pðx; yÞis true.

There is an x such that
Pðx; yÞ is false for every y.

cydxPðx; yÞ For every y there is an x
for which Pðx; yÞis true.

There is a y such that Pðx; yÞ
is false for every x.

dxcyPðx; yÞ There is an x for which
Pðx; yÞ is true for every y.

For every x there is a y for
which Pðx; yÞ is false.

dycxPðx; yÞ There is a y for which
Pðx; yÞ is true for every x.

For every y there is an x for
which Pðx; yÞ is false.

dxdyPðx; yÞ
dydxPðx; yÞ

There is a pair x; y for
which Pðx; yÞ is true.

Pðx; yÞ is false for every pair
x, y.
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Example 2.11
Let Pðx; yÞ be the statement y < x4. Determine the truth values of the following
quantifications, where the domain for each of the two variables consists of all real
numbers ð�N; NÞ. Comment on the results:
(a) cxcyPðx; yÞ.
(b) cycxPðx; yÞ.
(c) cxdyPðx; yÞ:
(d) cydxPðx; yÞ.
(e) dxcyPðx; yÞ:
(f) dycxPðx; yÞ.
(g) dxdyPðx; yÞ.
(h) dydxPðx; yÞ.
Solution
Note that the inequality y < x4 indicates the region of interest in the x� y plane
that lies under the graph y ¼ x4.
(a) This quantification denotes the proposition “For all real numbers x and all real

numbers y, y < x4.” It is false, as no point above the graph satisfies the
inequality.

(b) This quantification denotes the proposition “For all real numbers y and all real
numbers x, y < x4.” It is false, as no point above the graph satisfies the
inequality.

(c) This quantification denotes the proposition “For every real number x, there is
a real number y, y < x4.” It is true, as every vertical line intersecting the re-
gion of interest satisfies the inequality.

(d) This quantification denotes the proposition “For every real number y, there is
a real number x; y < x4.” It is true, as every horizontal line intersecting the
region of interest satisfies the inequality.

(e) This quantification denotes the proposition “There is a real number x for all
real numbers y, y < x4.” It is false, as there is no vertical line wholly within
the region of interest satisfying the inequality.

(f) This quantification denotes the proposition “There is a real number y for all
real numbers x, y < x4.” It is true, as there is a horizontal line wholly within
the region of interest satisfying the inequality.

(g) This quantification denotes the proposition “There is a real number x, there is
a real number y, y < x4.” It is true, as every point in the region of interest
satisfies the inequality.

(h) This quantification denotes the proposition “There is a real number y, there is
a real number x, y < x4.” It is true, as every point in the region of interest
satisfies the inequality.
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As expected, parts (a) and (b) are the same proposition, simply because they
both employ universal quantification, and parts (g) and (h) are the same proposi-
tion, as they both employ existential quantification. When the two quantifications
are different (i.e., one is universal and the other is existential), the truth values may
remain the same, such as parts (c) and (f), or the truth values may differ, such as
parts (d) and (e).

Mathematical statements and English sentences can be translated into logical expressions
and vice versa.

Example 2.12
(a) Translate the statement “The sum of the squares of two negative numbers is

positive, where the domain is all real numbers” into a logical expression.
(b) Translate the statement “Some student has solved at least one exercise in every

topic covered in this course” into a logical expression.
(c) Translate the statement “cxðx> 0Þ/dyðy ¼ ln xÞ” into English.

Solution
(a) Let x and y represent two negative numbers. The logical expression is thus

cxcy
�ððx< 0Þ^ðy< 0ÞÞ/�

x2 þ y2
�
> 0

�
.

(b) Let Pðx; yÞmean that student x has solved exercise y, andQðy; zÞmean that
exercise y is in topic z in this course. The logical expression is thus
dxczdyðPðx; yÞ^Qðy; zÞÞ.

(c) For every positive number x, there exists a real number y such that y ¼ ln x:

Quantifications of more than two variables are also common, and the truth values of such
statements can be determined by examining the type of each quantifier and the order of
quantifiers.

Example 2.13
Let Pðx; y; zÞ be the statement x2 þ y2 ¼ z2. Determine the truth values of the
following statements, where the domain of each variable consists of all positive
numbers.
(a) dxdydzPðx; y; zÞ.
(b) cxcyczPðx; y; zÞ.
(c) cxdydzPðx; y; zÞ.
Solution
(a) The statement means that there exist a positive number x, a positive number

y, and a positive number z, for which x2 þ y2 ¼ z2. The statement is true.
For instance, for x ¼ 3, y ¼ 4, and z ¼ 5, the equality holds.
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(b) The statement means that for all positive numbers x, for all positive numbers
y, and for all positive numbers z, we have x2 þ y2 ¼ z2. The statement is
false. For instance, for x ¼ 5, y ¼ 6, and z ¼ 7, the equality does not
hold. In fact, for any positive number x and any positive number y, the value
of z cannot be any positive number, as it must have a particular value that is
the square root of the sum of the square of x and the square of y.

(c) The statement means that for all positive numbers x, there exist a positive
number y and a positive number z for which x2 þ y2 ¼ z2. The statement
is true. For instance, for any positive number x, say x ¼ 7, we can choose
a positive number y, say y ¼ ffiffiffiffiffi

15
p

, and a positive number z, say z ¼ 8, so
the equality holds. In fact, for any positive number x, we get to choose a pos-
itive number y and a positive number z in such a way that when we subtract
the square of y from the square of z, the difference is the square of x.

Quantified statements with more than one variable may be negated by successively
applying De Morgan’s laws for quantifiers from left to right.

Example 2.14
Consider the statement cxdydzðxy> zÞ, where the domains of x, y, and z are
all real numbers.
(a) Translate the statement into English, and determine its truth value.
(b) Express the negation of the statement, and determine its truth value.

Solution
(a) The English translation of the statement is as follows: “For every x, there exist

a y and a z; such that xy > z.” It is thus true.
(b) As the statement cxdydzðxy> zÞ involves nested quantifiers, it can be

negated by sequentially applying the rules for negating statements with a sin-
gle quantifier. The resulting quantification denotes the following proposition:
cxdydzðxy > zÞhdxdydzðxy > zÞhdxcydzðxy > zÞh
dxcyczðxy > zÞhdxcyczðxy� zÞ.
The negation of the statement is as follows: “There is an x, for all real numbers
y and z, such that xy � z.” It is thus false.

Exercises
(2.1)
Determine the truth value of each of the following statements if the domain of
each variable consists of all real numbers.
(a) dx

�
x4< �1

�
.

(b) cx
�
x2s4x

�
.
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(2.2)
Determine the truth value of each of the following statements if the domain of
each variable consists of positive real numbers.
(a) cxdyðxy ¼ 1Þ.
(b) dxcy

�
x� y2

�
.

(2.3)
Determine the truth values of each of the following statements if the domain of
each variable consists of all real numbers.
(a) cxdy

�
x2 ¼ y

�
.

(b) cxdy
�
x ¼ y2

�
.

(c) dxcyðxy ¼ 0Þ.
(d) dxcyðys0/xy ¼ 1Þ.
(e) dzdxdyð2xþ 4y ¼ 7zÞ.
(2.4)
Translate the following English statements into logical expressions, where the do-
mains of x and y each consists of all real numbers.
(a) For every x, there exists a y such that xþ y ¼ 100.
(b) There exists an x such that xþ y ¼ y for every y.
(c) For every x and y, xþ y ¼ yþ x.
(d) There exist x and y such that xþ y ¼ 100.

(2.5)
Negate each of the following statements.
(a) dydxczPðx; y; zÞ.
(b) Some people are 90 years old or older.
(c) cyððcxczTðx; y; zÞÞ^ðdxdzUðx; y; zÞÞÞ.
(2.6)
Let Pðx; yÞ be the statement “x loves y,” where the domains of x and y each
consist of all people in the world. Use quantifiers to express each of the following
statements.
(a) Everybody loves somebody.
(b) There is somebody whom everybody loves.
(c) Nobody loves everybody.
(d) There is somebody whom no one loves.
(e) Everyone loves himself or herself.
(f) There is someone who loves no one besides himself or herself.
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(2.7)
Translate each of the following nested quantifications into an English statement,
where the domain of each variable consists of all real numbers.
(a) dxcyðxy ¼ yÞ.
(b) cxcyðððx< 0Þ^ðy< 0ÞÞ/ðxy> 0ÞÞ.
(c) dxdy

��
x2> y

�^ðx< yÞ�.
(d) cxcydzðxþ y ¼ zÞ.
(2.8)
Use quantifiers to express each of the following statements.
(a) There is a person who has eaten a meal in every restaurant in town.
(b) There does not exist a person who has eaten a meal in every restaurant in

town.

(2.9)
Express each of the following statements in predicate logic.
(a) Every positive integer is the sum of the squares of four integers.
(b) A negative real number does not have a square root that is a real number.

(2.10)
Express the meaning of each of the following statements quantifying a predicate
with two variables where the domains are real numbers, and determine whether
each is true or false.
(a) dxdyðxþ y ¼ 0Þ.
(b) cxdyðxþ y ¼ 0Þ.
(c) dxcyðxþ y ¼ 0Þ.
(d) cxcyðxþ y ¼ 0Þ.
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Tautology provides rules of logic that are used in proofs. If the tautology includes an
implication, it is often useful to convert it into a statement called a rule of inference.
Each step of an extended argument involves drawing intermediate conclusions. When
each step of the argument is a valid intermediate conclusion, the argument is then valid.
As the rules of inference are the essential building blocks in yielding valid arguments, we
will briefly discuss in this chapter the rules of inference in both propositional and pred-
icate logic and also introduce a set of invalid arguments, known as fallacies.

3.1 Valid Arguments

A proof is often called an argument. In everyday life, the word “argument” usually carries
a clear connotation of disagreement or controversy. No such negative connotation
should be associated with a mathematical argument.

In the context of propositional logic, an argument is a sequence of propositional state-
ments. All propositions in an argument, except for the final one, are called hypotheses,
premises, antecedents, or assumptions, and the final proposition that follows from the
hypotheses is called the conclusion or consequence. A valid argument is a sequence of prop-
ositions where the truth of all the premises implies the truth of the conclusion.

Example 3.1
Consider the two hypotheses that today there are more residents in a small town
than the number of days every resident of the town has ever lived, and no one was
born today. Show that we can conclude at least two residents of the town have the
same age, that is, at least two of them were born on the same day.

Solution
Suppose there are n residents in that small town, where n is obviously a positive
integer. The argument contains two hypotheses that we assume they are both
true. The first hypothesis suggests that the number of days every resident has
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ever lived is less than n, and the second hypothesis suggests that the number of days
every resident has ever lived is at least 1. If no two residents are of the same age,
there must be n positive integers less than n, which is impossible. Therefore at least
two residents have been born on the same day. The argument is thus valid because
the truth of all the premises implies the truth of the conclusion.

An argument is valid because of its form, not because of its content. An argument form is a
sequence of compound propositions involving propositional variables. In a valid
argument form, no matter which particular propositions are substituted for the proposi-
tional variables in its premises, the conclusion is true if all the premises are true. To say
that an argument is valid means that its form is valid. Therefore an argument is valid if
the conjunction of all hypotheses logically implies the conclusion, that is, such an impli-
cation is a tautology. Otherwise, the argument is invalid or a fallacy, that is, there is an
error in reasoning or, equivalently, a flaw in the argument. One effective way to test
an argument form for its validity is to take the following steps:
1. Identify the premises and conclusion of the argument form and construct a truth table

showing their truth values, noting that a row of truth table in which all the premises
are true is called a critical row.

2. Check critical rows. If the conclusion in every critical row is true, the argument form
is then valid, otherwise, it is not a valid argument form.

Example 3.2
Determine the validity of this argument form: If s ¼ qnr and t ¼ p^r, then r/
ðs4tÞ.
Solution
As Table 3.1 reflects, there are critical rows, namely rows 1 and 3, where each row
has a false conclusion ðr/ðs4tÞÞ, but its premises ðs ¼ qnr and t ¼ p^rÞ are
true. Hence this form of argument is invalid.

TABLE 3.1 Truth table for Example 3.2.

p q r
s ¼ qnr
(premise)

t ¼ p^r
(premise) s4t

r/ðs4tÞ
(conclusion)

T
T
T
T
F
F
F
F

T
T
F
F
T
T
F
F

T
F
T
F
T
F
T
F

T
T
T
F
T
T
T
F

T
F
T
F
F
F
F
F

F
T
F
F
T
T
T
F

F
T
F
T
T
T
T
T
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Noting in a valid argument, the truth of all of its premises implies the truth of the conclu-
sion, an argument is called sound if and only if it is both valid and all of its premises are true,
and as a consequence, its conclusion is true as well. Note that in a sound argument as well
as in a valid argument, the conclusion is true. However, in a sound argument, all of its
premises are true, whereas in a valid argument, all of its premises are assumed to be true.

Example 3.3
(a) Provide an example of an argument that is valid and sound.
(b) Provide an example of an argument that is valid but not sound.

Solution
(a) All humans need water to survive. My teacher is human. Therefore my

teacher needs water to survive. Because of the logical necessity of the conclu-
sion, this argument is valid. The argument is valid and its premises are true; the
argument is thus sound.

(b) All birds can fly. Ostriches are birds. Therefore ostriches can fly. This argu-
ment is valid because, assuming the premises are true, the conclusion must
be true. However, the first premise is false. Not all birds can fly. Hence the
argument is valid but not sound.

A rule of inference is a valid argument form that can be used in the demonstration that
arguments are valid. Rules of inference are the basic tools for establishing the truth of
statements.

3.2 Rules of Inference for Propositional Logic

Table 3.2 presents the important rules of inference in propositional logic. They are all
tautologies, where the hypotheses are written in a column, followed by a horizontal
bar, followed by a line that begins with the therefore symbol “r” and ends with the
conclusion. Using truth tables, all these rules of inference (tautologies) can be proven.
Rules of inference extensively used for propositional logic are as follows:
• Modus ponens (law of attachment): If a conditional statement and its hypothesis are

both true, then its conclusion must be true.
• Modus tollens (law of contrapositive): If a conditional statement is true, but its conclu-

sion is false, then its premise is false.
• Hypothetical syllogism (rule of transitivity): If one statement implies a second

statement and the second statement implies the third statement, then the first state-
ment implies the third statement.

• Disjunctive syllogism (rule of elimination): When there are two possibilities, and one
can be ruled out, the other must be the case.

• Generalization (rule of addition): If a statement is true, then the disjunction of this
statement and another statement, regardless of its truth value, is also true.
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• Simplification rule: If the conjunction of two statements is true, then both statements
are true.

• Conjunction rule: If two statements are true, then their conjunction is also true.
• Resolution rule: If two clauses containing complementary propositional variables are

true, then a new clause containing all noncomplementary propositional variables is
true, where a clause is a disjunction of variables.

Example 3.4
Provide examples illustrating the rules of inference presented in Table 3.2.

Solution
• Modus ponens: Suppose that the conditional statement “If the weather is nice

tonight, then I will go for a walk” and its hypothesis “The weather is nice
tonight” are both true. Then it follows that the conclusion of the conditional
statement “I will go for a walk” is also true.

TABLE 3.2 Rules of inference for propositional statements.

Rule of
inference

Tautology Name

p

p/q
r q

ðp^ðp/qÞÞ/q Modus ponens (law of attachment)

p/q
q

r p

ððp/qÞ^qÞ/p Modus tollens (law of contrapositive)

p/q

q/r
r p/r

ððp/qÞ^ðq/rÞÞ/ðp/rÞ Hypothetical syllogism (rule of transitivity)

pnq
p

r q

ððpnqÞ^pÞ/q Disjunctive syllogism (rule of elimination)

p
r pnq

p/ðpnqÞ Generalization (rule of addition)

p^q
r p

ðp^qÞ/p Simplification rule

p

q
r p^q

ðp^qÞ/ðp^qÞ Conjunction rule

pnq
pnr

r qnr

ððpnqÞ^ðpnrÞÞ/ðqnrÞ Resolution rule
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• Modus tollens: Suppose that the conditional statement “If the weather is nice
tonight, then I will go for a walk” is true, but its conclusion, “I will go for a
walk,” is false. Then it follows that the hypothesis “The weather is nice
tonight” is false too.

• Hypothetical syllogism: As the statements “If a number is divisible by 6, then it
is divisible by 3” and “If a number is divisible by 3, then the sum of its digits is
divisible by 3” are both true, the statement “If a number is divisible by 6, then
the sum of its digits is divisible by 3” is also true.

• Disjunctive syllogism: The proposition “Positive integers are either even or
odd” is true. Therefore the proposition “If a positive integer is not even,
then it must be odd” is true.

• Generalization: Suppose the proposition “It is sunny today” is true. Therefore
the proposition “It is sunny today or it is cold today” is true.

• Simplification rule: Suppose the proposition “It is sunny and cold today” is true.
Therefore the propositions “It is sunny today” and “It is cold today” are true.

• Conjunction rule: If the propositions “All students in a math course have
passed the course” and “All students in a physics course have passed the course”
are both true, then the proposition “Any student who took both courses has
passed them both” is true.

• Resolution rule: If the propositions “Cyrus is happy or Neda is sad” and “Cyrus
is not happy or Bita is happy” are both true, then the proposition “Neda is sad
or Bita is happy” is true.

Example 3.5
Consider the following premises:
A. “I am not sad tonight and today is more fun than yesterday.”
B. “I will go out only if I am sad.”
C. “If I do not go out, then I will watch a basketball game on TV.”
D. “If I watch a basketball game on TV, then I sleep late.”

Using rules of inference show that these premises lead to the conclusion “I will
sleep late.”

Solution
We first define these propositions: p as “I am sad tonight,” q as “Today is more fun
than yesterday,” r as “I will go out,” s as “I will watch a basketball game on TV,”
and t as “I will sleep late.” We can thus construct the following valid argument:

Step Reason

(i) p^q Premise A

(ii) p Simplification using (i)

(iii) r/p Premise B
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Step Reason

(iv) r Modus tollens using (ii) and (iii)

(v) r/s Premise C

(vi) s Modus ponens using (iv) and (v)

(vii) s/t Premise D

(viii) t Modus ponens using (vi) and (vii)

3.3 Rules of Inference for Predicate Logic

Rules of inference for quantified statements, as summarized in Table 3.3, are as follows:
• Universal instantiation is the rule of inference that allows us to conclude that PðaÞ is

true, where a is a particular member of the domain, given the hypothesiscxPðxÞ. For
instance, birds produce offspring by laying eggs, and falcons are birds; we can thus
conclude falcons lay eggs.

• Universal generalization is the rule of inference that allows us to conclude that
cxPðxÞ is true, given the premise that PðaÞ is true for all elements a in the domain.
Note that the element a must be an arbitrary, and not a specific, element of the
domain. For instance, every arbitrary university student has a high school diploma;
we can therefore conclude that all university students have a high school diploma.

• Existential instantiation allows us to conclude that there is a (nonarbitrary) element a
in the domain for which PðaÞ is true, given the premisedxPðxÞ. For instance, there is
someone who got an Aþ in the course, let’s call her a and say that a got an Aþ.

• Existential generalization allows us to conclude thatdxPðxÞ is true when a particular
a with PðaÞ true is known. For instance, Cyrus got an Aþ in the course, therefore
someone got an Aþ in the course.

TABLE 3.3 Rules of inference for quantified statements.

Name Rule of inference

Universal instantiation
cxPðxÞ
r P að Þ

Universal generalization
P að Þ for an arbitrary element a

rcxPðxÞ

Existential instantiation
dxPðxÞ

r P að Þ for some element a

Existential generalization
PðaÞ for some element a

r dxP xð Þ
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Example 3.6
Consider the following premises:
A. “A student writing an exam cheated.”
B. “Everyone writing the exam was penalized.”

Using rules of inference show that the conclusion “Someone who was penal-
ized had cheated” is implied.

Solution
Let UðxÞ, V ðxÞ, and W ðxÞ be propositions “x wrote the exam,” “x cheated on
the exam,” and “x was penalized”, respectively. Using rules of inference for
both propositional and qualified statements, we can thus construct the following
valid argument:

Step Reason

(i) dxðUðxÞ^V ðxÞÞ Hypothesis A

(ii) UðaÞ^V ðaÞ Existential instantiation from (i)

(iii) UðaÞ Simplification from (ii)

(iv) cxðUðxÞ/W ðxÞÞ Hypothesis B

(v) UðaÞ/W ðaÞ Universal instantiation from (iv)

(vi) W ðaÞ Modus ponens from (iii) and (v)

(vii) V ðaÞ Simplification from (ii)

(viii) V ðaÞ^W ðaÞ Conjunction from (vi) and (vii)

(xi) dxðV ðxÞ^W ðxÞÞ Existential generalization from (viii)

Example 3.7
Using rules of inference, prove ðcxðPðxÞ/QðxÞÞ^cxPðxÞÞ/cxQðxÞ.
Solution
Using rules of inference for both propositional and qualified statements, we can
thus construct the following valid argument:

Step Reason

(i) cxðPðxÞ/QðxÞÞ Premise

(ii) PðxÞ/QðxÞ Universal instantiation on (i)

(iii) cxPðxÞ Premise

(iv) PðxÞ Universal instantiation on (iii)

(v) QðxÞ Modus ponens on (ii) and (iv)

(vi) cxQðxÞ Universal generalization on (v)
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The rules of inference for propositional logic and predicate logic can be combined.
Two such well-known rules, as summarized in Table 3.4, are universal modus ponens
and universal modus tollens:
• Universal modus ponens states that if xmakes PðxÞ true, then x makes QðxÞ true, and

also a makes PðaÞ true, we can therefore conclude that a makes QðaÞ true.
• Universal modus tollens states that if x makes PðxÞ true, then x makes QðxÞ true, and

also a does not makeQðaÞ true, we can therefore conclude that a does not make PðaÞ
true.

Example 3.8
Write each of the following arguments in the form of a logical expression using
quantifiers and state if each is valid.
(a) All humans want to be healthy, and Bita is a human. We can thus conclude

that Bita wants to be healthy.
(b) All humans want to be healthy, and Bita does not want to be healthy. We can

thus conclude that Bita is not human.

Solution
(a) Let PðxÞ and QðxÞ be the propositions “x is human” and “x wants to be

healthy,” respectively, and let a represent Bita. Then the argument
ðcxðPðxÞ/QðxÞÞÞ^PðaÞ/QðaÞ is in the form of universal modus ponens,
and it is therefore valid.

(b) Let PðxÞ and QðxÞ be the propositions “x is human” and “x wants to be
healthy,” respectively, and let a represent Bita. Then the argument
ðcxðPðxÞ/QðxÞÞÞ^Q að Þ/P að Þ is in the form of universal modus tollens,
and it is therefore valid.

3.4 Fallacies

Fallacies arise in invalid arguments where they resemble rules of inference, but they are
based on contingencies rather than tautologies. It is important to note that in logic the

TABLE 3.4 Rules of inference for propositions and quantified statements.

Name Rule of inference

Universal modus ponens
cxðPðxÞ/QðxÞÞ

PðaÞ; where a is a particular element
r Q að Þ

Universal modus tollens

cxðPðxÞ/QðxÞÞ
QðaÞ; where a is a particular element

r P að Þ
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words “true” and “valid” have totally different meanings. A valid argument may have a
false conclusion and an invalid argument may have a true conclusion. In fact, many peo-
ple often mistake the concept of validity for the concept of truth and vice versa. If they
find an argument valid, they accept the conclusion as true, and if they find an argument
invalid, they take the conclusion as false. This approach in logic is not correct.

Flawed, yet common, argument forms are known as fallacies. Fallacies are statements
that might sound reasonable, seemingly plausible, widely agreed, or superficially true, but
they are actually defective and deceptive. Fallacies are often psychologically persuasive
but logically flawed. Known fallacies are quite many, but a few common fallacies that
we come across in life nowadays are briefly highlighted in Table 3.5. Fallacies can be
generally divided into two broad categories:
• Fallacies with irrelevant premises, such as rejecting a claim by criticizing the person

who makes it rather than the claim itself: What she says is totally wrong because
she does not have much money.

• Fallacies with unacceptable premises, such as incorrectly asserting that only two alter-
natives exist: Either there should be a reduction in government services or there
should be a cut in the social assistance to those in need.
In valid arguments, premises must be both relevant and acceptable, and in a fallacious

argument, at least one of these two requirements is not met. Oftentimes a person makes a
fallacy either intentionally, usually by one in a position of power to manipulate and
persuade by deception, or unintentionally, due to carelessness and ignorance; in either
case, it is invalid and appears to be better than it really is. In the age of social media,
one must be very careful not to easily fall into accepting fallacies that have been decep-
tively crafted and masterfully delivered to attract like-minded people.

TABLE 3.5 Common fallacies.

Circular Reasoning: The fallacy of making assertions sufficiently different to obscure the fact that
the same proposition occurs as both a premise and a conclusion.

Example: A says “God exists.” B says “How do you know that God exists?” A says “The holy
book says so.” B says “Why should I believe the holy book?” A says “Because it is the word of
God.”
Hasty Generalization: The fallacy of jumping to conclusions, making assumptions, or reaching
results about a group without adequate evidence, such as atypical or just too-small sample size.
It is a mistaken use of inductive reasoning.

Examples: (i) Stereotypes about people are a common example of the hasty generalization. Last
month, two immigrants who had committed a crime were arrested; I believe all immigrants are
criminals. (ii) My neighbor, who is on welfare, is watching TV all the time and doing nothing; I
believe social assistance to people should be cut off; we do not want lazy citizens.
Genetic Fallacy: The fallacy of assuming a claim is true or false solely due to its origin or judging
something is good or bad on the basis of where it comes from or from whom it comes.

Continued
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TABLE 3.5 Common fallacies.dcont'd

Example: Someone appeals to prejudices surrounding someone’s background: He is not a good
citizen of this country because his parents were not born here.
Composition: The fallacy of assuming that what is true of a part must be true of the whole, that

is, the characteristics of the parts are somehow transferable to the whole itself.
Example: If every single tool in a toolbox is lightweight, the toolbox itself must then be light.
Division: The fallacy of assuming that what is true of the whole must be true of individual parts,

that is, the properties of the whole must be the same as characteristics of individuals.
Example: He is a government employee, and the government is corrupt; therefore he is a
corrupt person.
Equivocation: The fallacy of using a word deliberately in different senses in an argument or

altering its definition halfway through a discussion.
Example: Plato says the end of a thing is its perfection; some say that death is the end of life;
hence death is the perfection of life. Here the word “end” means goal in Plato’s usage, but it
means the final event in the second usage.
Appeal to Popularity: The fallacy of asserting a claim must be true simply because a lot of people

believe it, that is, using the popularity of a premise or proposition as evidence for its
truthfulness. This fallacy, also known as the bandwagon fallacy, is difficult to spot as common
sense suggests that if something is popular, it must be good/true/valid/right, but this is not so.

Examples: (i) God exists because most people believe in God. (ii) Capital punishment is the right
sentence for a convicted murderer because most people in this country believe it is.
Appeal to Tradition: The fallacy of stating a claim must be true simply because it is part of a

tradition or that a premise must be true because people have always believed it or the premise
has always worked in the past and will thus work in the future.

Example: A marriage by common law is unacceptable simply because it does not follow the long
tradition of a civil or religious ceremony.
Appeal to the Person: The fallacy of rejecting or accepting a claim by attacking or praising the

character of the person who makes an argument rather than discussing the substance of the
argument itself.

Example: Persuasion comes from irrational psychological transference rather than from an appeal
to evidence concerning the issue at hand. She does not deserve healthcare because she is an
addict.
Appeal to Hypocrisy: The fallacy of arguing a claim must be true or false just because the

claimant is hypocritical by not following it.
Example: Advice given by an obese, inactive father to his children that diet and exercise are
important in life is dismissed.
Appeal to Heaven: An extremely dangerous fallacy of asserting that God supports or approves

one’s own standpoint or actions so it is right, and no further justification is required, and no
serious challenge is possible.

Examples: (i) God gave us this land; it is thus ours. (ii) God ordered me to kill my son, and I was
just following his orders.
Appeal to Authority: A fallacy in which support for a standpoint is provided by a well-known

individual whose authority is in a field unrelated to the argument. This fallacy attempts to
capitalize upon feelings of respect or familiarity with the individual. In an appeal to biased
authority, the authority is one who truly is knowledgeable on the topic but unfortunately one
who may have professional or personal motivations that render that judgment.
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TABLE 3.5 Common fallacies.dcont'd

Examples: (i) My dentist, whom I respect a lot, says he will vote for the most conservative
candidate in the upcoming election, so I will too. (ii) To determine whether the military budget
is big enough, the views of some army generals and the CEOs of military equipment
manufacturers were solicited.
Faulty Analogy: The fallacy of reasoning that because two things are similar in some respects,
they must be similar in some further respect, that is, relying only on comparisons to prove a
point rather than arguing deductively and inductively.

Examples: (i) No one objects to a physician looking up a difficult case in medical books; why,
then, shouldn’t medical students taking a difficult examination be permitted to use their
textbooks? (ii) If knives can kill, and there is a knife in every house, why shouldn’t we have guns
in every house?
Appeal to Ignorance: The fallacy of arguing a lack of evidence or an absence of knowledge as
proof, that is, a claim has to be true (or false) because it has not been proven to be false (or
true).

Examples: (i) God exists because it has not been proven that God does not exist. (ii) Scientists
cannot positively prove their theory that humans evolved from other creatures because we were
not there to see it; therefore it proves the 6-day creation account is literally true as written.
Appeal to Emotion: The fallacy of allowing premises to be based on emotions rather than
relevant reasons or manipulating an emotional response in place of a valid argument.

Example: A good citizen must fight in a war for his country and does not question if the war is
just, and waging it serves the best interest of the majority of his fellow countrymen.
Red Herring: The fallacy of raising an irrelevant or invalid point deliberately during an argument
with the sole purpose of distraction, changing the subject, or diverting the real question at
issue.

Example: The president should not be held accountable for cheating on his income tax returns;
after all, he was democratically elected.
StrawMan: The fallacy of distorting, weakening, or oversimplifying someone’s position so it can
be more easily refuted rather than honestly engaging in the real nuances of the debate. It can
also refer to attacking one of the opposition’s unimportant arguments while ignoring the
opposition’s best argument.

Examples: (i) One says poor people need the government’s financial assistance; the other says
you mean people should get a free ride from the tax money of hardworking, honest citizens? (ii)
One says vegetarians say animals have feelings too; the other says have you seen a cow ever
laugh?
Begging the Question: The fallacy of assuming what is to be proven without having derived it
from the premises.

Example: Building a highway in the north of the country that hardly anyone uses is a waste of
money; I am therefore against building this highway. It is true that spending money on a useless
highway is something that no one wants, but nobody proved this highway was useless.
False Dichotomy: The fallacy of stating that there are binary alternatives when there are more
than two possible outcomes.

Examples: (i) Either we go to war with them or our way of life will collapse. (ii) If you do not
believe in my religion, you will then go to hell.
Stacking the Deck: A fallacy in which examples that disprove the point are ignored, and
examples that support the case are listed.

Continued
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Example 3.9
Identify the type of each of the following fallacies:
(a) My three best friends failed an introductory calculus course; therefore I

conclude that most students who take this course will fail it.
(b) Useless projects like this downtown multimillion-dollar project are a waste of

taxpayers’ money.
(c) This house is quite large. Therefore all its rooms are large.
(d) Religions have been around for thousands of years. They are thus good for

people.
(e) A good citizen of this country will carry out this responsibility.

TABLE 3.5 Common fallacies.dcont'd

Example: He is a family man who loves his children, goes to church every Sunday, and has been
a valued member of his community for decades. There is no mention that he is a racist.
False Cause and Effect: A fallacy that establishes a cause/effect relationship that does not exist.

This occurs when one mistakenly assumes that because the first event preceded the second
event, it must mean the first event must have caused the second one; sometimes it does, but
sometimes it doesn’t.

Example: She was scratched by a cat last week, and 2 days later, she came down with a fever. The
cat’s scratch thus caused the fever.
Othering: A badly corrupted, discriminatory argument where facts, experiences, or objections

are arbitrarily disregarded, ignored, or put down without serious consideration because those
involved “are not like us” or “don’t think like us.”

Example: It’s OK for those people overseas to earn a buck an hour by our corporations. If it
happened here, it is nothing but brutal exploitation and daylight robbery, but over there, the
economy is different and they’re not like us.
Tiny Percentage Fallacy: An amount or action that is significant in and of itself somehow

becomes insignificant simply because it’s a tiny percentage of something much larger.
Example: The killings of tens of African Americans by the police every year is a tiny percentage
of thousands of African Americans who are arrested by the police every year.
The Big Lie Technique: The contemporary fallacy of repeating a lie, slogan, talking point,

nonsense statement, or deceptive half-truth over and over in different forms, particularly in
the media, until it becomes part of daily discourse, and people accept it without further proof
or evidence.

Examples: (i) The nonexistent “weapons of mass destruction” in Iraq paved the way for the
invasion of Iraq in 2003. (ii) The US president-elect in 2016 stated that “millions” of ineligible
votes were cast in that year’s American presidential election.
Gaslighting: A recently prominent fallacy denying or invalidating a person’s own knowledge

and experiences by deliberately twisting or distorting known facts, memories, events, and
evidence to disorient a vulnerable opponent and to make someone doubt their sanity.

Example: Who are you going to believe? Me or your own eyes? You’re crazy! You seriously
need to see a shrink.
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(f) God exists, and you cannot prove it otherwise.
(g) We must never ban capital punishment in this country; otherwise, commit-

ting murder and mass shooting will be as common as jaywalking.
(h) Everyone agrees that an embryo is a human, and all humans have a right to

life. Therefore an embryo has a right to life.
(i) Each note of the song sounds great. Therefore the whole song sounds great.

Solution
(a) It is jumping to a conclusion, as from some exceptional cases, one cannot

generalize a rule that fits those alone.
(b) It is begging the question, as why this downtown multimillion-dollar project

is a useless project.
(c) It is the fallacy of division; what is true of the whole is not true of the parts.
(d) It is appeal to tradition, as how long something has been around brings no

validity to it.
(e) It is appeal to emotion, as no evidence is supplied to support if the argument is

true; only assertions about people who agree or disagree with the argument
are made.

(f) It is appeal to ignorance. It involves the notion of burden of proof, which rests
on the side that makes a positive claim.

(g) It is slippery slope, as there is no good reason to believe the assertions.
(h) It is equivocation. Human was first used in the sense of something having

human characteristics and was then used in the sense of a person with moral
rights.

(i) It is composition, as what is true of the parts is not necessarily true of the
whole.

The argument that when an implication and its conclusion are both true, then its hypoth-
esis is true; that is, if p/q and q are both true, then p is true is an incorrect reasoning called
the fallacy of affirming the conclusion or the fallacy of affirming the consequent. The prop-
osition ððp/qÞ^qÞ/p is not a tautology because it is false when p is false and q is true.
This fallacy is also known as converse error.

The argument that when an implication and the negation of its hypothesis are both
true, then the negation of its conclusion is true, that is, if p/q and p are both true, then q
is true is an incorrect reasoning called the fallacy of denying the hypothesis or the fallacy of
denying the antecedent. The proposition ððp/qÞ^pÞ/q is not a tautology because it is
false when p is false and q is true. This fallacy is also known as inverse error.
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Example 3.10
Comment on the following arguments:
(a) The premises “If you do not work hard, then you fail in life” and “You failed

in life” are both true. Therefore the statement “you did not work hard” is
true.

(b) The premises “If you do not work hard, then you fail in life” and “You
worked hard” are both true. Therefore the statement “You did not fail” is
true.

Solution
(a) Let p be the proposition “You do not work hard,” and q be the proposition

“You fail in life.” Then the argument is in the form of “if p/q and q, then p.”
This is an example of incorrect argument using the fallacy of affirming the
conclusion. It is possible for you to fail in life even if you work hard.

(b) Let p be the proposition “You do not work hard,” and q be the proposition
“You fail in life.” Then the argument is in the form of “if p/q and p, then q.”
This is an example of incorrect argument using the fallacy of denying the hy-
pothesis. It is possible for you to work hard, and you still fail.

An argument also in the context of quantified logic can exhibit the converse error or the
inverse error. A converse error in the quantified form states that if xmakes PðxÞ true, then
x makes QðxÞ true and also a makes QðaÞ true; we can therefore conclude that a makes
PðaÞ true, which is an invalid conclusion. An inverse error in the quantified form states
that if xmakes PðxÞ true, then xmakesQðxÞ true and also a does not make PðaÞ true; we
can therefore conclude that a does not make QðaÞ true, which is an invalid conclusion.

Example 3.11
Write each of the following arguments using quantifiers, variables, and predicate
symbols, and state if each is valid:
(a) All humans are mortal, and Rumi is mortal. We can therefore conclude that

Rumi is human.
(b) All humans are mortal, and Rumi is not human. We can therefore conclude

that Rumi is not mortal.

Solution
(a) Let PðxÞ and QðxÞ be the propositions “x is human” and “x is mortal,”

respectively, and let a represent Rumi. Then the argument
ððcxðPðxÞ/QðxÞÞÞ^QðaÞÞ/PðaÞ is in the form of converse error for
quantified form, and it is therefore invalid. A counterexample is if Rumi is
a bird, then it implies that Rumi is mortal but not human.
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(b) Let PðxÞ and QðxÞ be the propositions “x is human” and “x is mortal,”
respectively, and let a represent Rumi. Then the argument
ððcxðPðxÞ/QðxÞÞÞ^PðaÞÞ/QðaÞ is in the form of inverse error for quan-
tified form, and it is therefore invalid. A counterexample is if Rumi is a bird,
then it implies that Rumi is not human but mortal.

In informal language, simple conditional statements are often used to mean biconditional
statements. This is the main reason why many people make converse and inverse errors.
In fact, if the premise was a biconditional rather than a conditional, the resulting argu-
ment would be valid. However, the closer the premise comes to being a biconditional,
the more likely the conclusion is to be true. A variation of the converse error, known as
abduction, is a powerful reasoning tool, provided it is used prudently. Abduction is a
reasoning in which the major premise is certain, but the minor premise and therefore
the conclusion is only probable; it thus involves forming a conclusion from the informa-
tion that is known. It goes like this: If xmakes PðxÞ true, then xmakesQðxÞ true and also
QðaÞ is true for a particular a. Then check out PðaÞ, as it just might be true.

Abduction is a form of logical reasoning that starts with a set of observations and then
seeks to find the simplest and most likely explanation for the observations. This process
yields a plausible conclusion but does not positively verify it. Abductive conclusions are
thus qualified as having a degree of uncertainty or doubt, which is expressed in terms
such as “best available” or “most likely.” Abduction is like troubleshooting, which is
employed when the symptoms are needed to be identified to the best of knowledge
and ability. For instance, it is widely used by doctors to make medical diagnoses, by com-
puter scientists to conduct research in artificial intelligence, and bymechanics to repair cars.

Example 3.12
(a) Provide examples highlighting when people tend to conflate biconditionals

and conditionals and the impacts of the resulting arguments.
(b) Provide a real-life example of how abduction can be used.

Solution
(a) (i) All criminals go to the Infamous bar located in the dangerous neighbor-

hood of the city, and Cyrus goes to the Infamous bar. Therefore Cyrus is a
criminal. The argument is invalid, as it results frommaking the converse error,
which is due to the fact that the premise is a conditional. (ii) Hardly anyone
but criminals go to the Infamous bar in the dangerous neighborhood of the
city, and Cyrus also goes to the Infamous bar. Therefore it is likely (though
not certain) that Cyrus is a criminal. (iii) Only criminals go to the Infamous
bar located in the dangerous neighborhood of the city, and Cyrus goes to
the Infamous bar. Therefore Cyrus is certainly a criminal, which is due to
the fact that the premise is a biconditional.
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(b) A doctor knows that “If a patient has pneumonia, then the patient has a fever
and chills, coughs deeply, and feels very tired.” The doctor also knows that the
patient she is now seeing in her office has the very same symptoms. The doctor
thus concludes that a diagnosis of pneumonia is a possibility, and even quite
likely, but not a certainty. The doctor, however, will gain further support
for the diagnosis through laboratory testing designed to detect pneumonia.
As the set of symptoms and lab tests come to being a necessary and sufficient
condition for pneumonia, the more certain the doctor can be of her diagnosis.

Exercises
(3.1)
Prove the following rules of inference:
(a) Modus ponens: ðp^ðp/qÞÞ/q.
(b) Modus tollens: ðq^ðp/qÞÞ/p.

(3.2)
For each of the following sets of premises, what relevant conclusion can be drawn?
(a) “If I drink, then I do not sleep well.” “I do not sleep well if I have back pain.”

“I slept well.”
(b) “I am either eating and sleeping or working out.” “I am not eating and

sleeping.” “If I am working out, I feel good about myself.”

(3.3)
(a) Give an example of a valid argument with false premises and a false conclusion.
(b) Give an example of an invalid argument with true premises and a true

conclusion.

(3.4)
Determine what is wrong with each of the following arguments:
(a) Let PðxÞ be “x is empathetic.” Given the premisedxPðxÞ, we conclude that

PðNedaÞ. Therefore Neda is empathetic.
(b) LetQðx; yÞ be “x is more caring than y.”Given the premisedwQðw; MinaÞ,

it follows that QðMina; MinaÞ. Then by existential generalization, it follows
that dxQðx; xÞ, so that someone is more caring than himself.

(3.5)
(a) Prove that if cxðPðxÞ/QðxÞÞ and cxðQðxÞ/RðxÞÞ are true,

thencxðPðxÞ/RðxÞÞ is true, where the domains of all qualifiers are the
same. This valid argument is known as universal transitivity.

(b) Consider these two hypotheses: “No polynomial functions have asymptotes.”
“This function has an asymptote.” Show that “This function is not a polyno-
mial function.”
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(3.6)
Comment on the following fallacies:
(a) This country needs tougher immigration policies. I have a neighbor who says

we should let in many more immigrants. But I must say he is quite lazy, loud,
and eats and drinks a lot.

(b) If supporters of the government’s gun registry get their way, all recreational
and hunting guns will have to be registered, and before you know it, it
will be illegal to own a gun for target practice. Eventually, the government
will want to know if you own weapons, whether it is a pocket knife or a base-
ball bat.

(c) My doctor asserts that there is the prevalence of police brutality against visible
minorities, including indigenous and black people, while most police brutal-
ity goes unreported. But my doctor’s husband and her brother are both police
officers. I do not think she truly believes there exists a widespread use of
excessive and/or unnecessary force by the police.

(3.7)
Consider these two hypotheses: “If an integer is even, then its square is even.” “a is
a particular integer that is even.” Show that “a2 is even.”

(3.8)
Show that the premises cxðPðxÞ/QðxÞÞ and QðaÞ for a particular element a in
the domain imply PðaÞ.
(3.9)
Consider these two hypotheses: “If Bita comes late, then Bita sits in the back
row.” “Bita sits in the back row.” Can we therefore conclude that “Bita came
late”?

(3.10)
Consider these two hypotheses: “If inflation is going up, then employment will go
down.” “Inflation is not going up.” Can we therefore conclude “Employment
will not go down”?
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Proofs are the heart of mathematics, and no mathematical results are accepted as correct
unless they are proven using logical reasoning. A proof starts with something that is
known. To construct a proof for a theorem, the hypotheses of the theorem, relevant def-
initions of terms, pertinent identities and axioms, and previously proven theorems along
with rules of inference may be employed in intermediate steps leading to the final step of
the proof. Each step of a mathematical proof needs to be correct, that is, it must follow
logically from the steps preceding it, using relevant assumptions if need be. The state-
ments that need to be proven in mathematics are very diverse and complex, a host of
different proof methods are thus needed. The brief focus of this chapter is on some proof
methods.

4.1 Terminology

Before embarking on the introduction of some of the methods of proof, it is important to
introduce some terminology related to proofs:

Definition: A statement expressing the essential nature of a concept and a set of asso-
ciated properties that describe the concept.
Axiom: A self-evident true statement, that is, a statement that is accepted on its
intrinsic merit without proof. It may also be known as postulate.
Theorem: A mathematical statement that can be shown (proven) to be true.
Corollary: A proposition that can be proven as an immediate consequence of some
other theorems.
Lemma: A less important theorem that can help prove a more important theorem.
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Conjecture: A statement that is being proposed to be a true statement but is not
proven yet.

Example 4.1
Provide specific examples to highlight some terminology related to proofs.

Solution

Definition: A circle is a closed plane curve every point of which is equidistant from
a fixed point within the curve.

Axiom: In Euclidean geometry, within a two-dimensional plane, for every given
straight line and a point that is not on the line, there exists exactly one straight
line passing through the point that is parallel to the line.

Theorem: If two sides of a triangle are equal, then the angles opposite them are
equal.

Corollary: If three sides of a triangle are equal, then all three angles of the triangle
are equal.

Lemma: If we subtract 1 from a positive integer, then the result is either a positive
integer or 0.

Conjecture: If a transformation sends an even integer x to x
2 and an odd integer x

to 3x þ 1, then for all positive integers x, the repeated application of the
transformation will eventually reach integer 1.

A proof is a sequence of logically valid statements to demonstrate the validity of some pre-
cise statement, simply put, a proof is a derivation of new valid statements from old ones. A
mathematical proof is an inferential argument for a mathematical statement showing that
the stated assumptions methodically and logically lead to guarantee the conclusion. It is
imperative to note that every statement that is not an axiom or definition needs to be
proven.

Note that in the context of proofs, the phrase “without loss of generality” means that
the case being made would not change in any way the validity of the proof, and no addi-
tional argument is required to prove other special cases. There are various types of proofs,
each of which is appropriate in certain circumstances.

4.2 Proofs of Equivalence

Sometimes a theorem states that a group of n � 2 propositions p1; p2; .; pn are equiv-
alent ðp14p24.4pnÞ, that is, they have the same truth values. To show a proof of
equivalence, we need to show that the n conditional statements p1/p2;
p2/p3; .; pn/p1 are all true, that is, we have the following:

ðp14 p24.4 pnÞ 4 ððp1/ p2Þ^ ðp2/ p3Þ^.^ðpn/ p1ÞÞ:
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In other words, instead of biconditional statements (if and only if statements), impli-
cations (if, then statements) are employed.

Example 4.2
Prove that for every positive integer n, n is even if and only if n� 1 is odd.

Solution
There are two statements p1: n is even, and p2: n� 1 is odd. To show they are
equivalent, that is, p14p2, we need to prove that p1/p2 and p2/p1. We first
prove that if n is even, then n� 1 is odd. If n is even (i.e., n is an integer that is
a multiple of 2), then n ¼ 2k for some positive integer k, and thus
n � 1 ¼ 2k � 1, which is odd as it is 1 less than the even number 2k. We
then prove that if n� 1 is odd, then n is even. If n� 1 is odd, then n� 1 ¼ 2kþ
1 for some positive integer k, and thus n ¼ 2k þ 2 ¼ 2ðk þ1Þ, which is even as
it is a multiple of 2.

4.3 Proof by Counterexample

A counterexample is a form of proof. To prove that a statement of the form cxPðxÞ
is false, we need to find an element x such that P xð Þ is false. In other words, to disprove
a statement, we need to find an example in the domain of discourse for which the
hypothesis is true and the conclusion is false, such an example is called a
counterexample. For instance, for the statement that all prime numbers are odd, 2 is
a counterexample as it is even. It is imperative to note that a theorem cannot be proven
by considering examples unless every possible case in the domain, with no exception, is
included.

Example 4.3
(a) Disprove that for every positive integer n, 2n þ n is prime.
(b) Disprove that for all real numbers a and b, if a2 ¼ b2, then a ¼ b.

Solution
(a) To disprove it, we need a counterexample. For instance, when n ¼ 4, we

have 24 þ 4 ¼ 20, which is not prime.
(b) Note that if the absolute values of a positive real number and a negative real

number are equal, then the statement can be disproved. A counterexample is
a ¼ 5 and b ¼ �5, we thus have asb, yet we have a2 ¼ b2 ¼ 25.
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4.4 Vacuous Proofs and Trivial Proofs

The vacuous and trivial proofs are based on the truth table for implication (conditional
statement), and they are quite simple. The implication p/q can be proven to be true
using the truth values of p or q. Vacuous and trivial proofs are often employed to prove
special cases of theorems.

If the hypothesis p can be shown to be false, the implication p/q is true by default;
such a proof is called a vacuous proof. Note that in a vacuous proof, the conclusion q is not
used.

Example 4.4
Prove the proposition “If 1 ¼ 0, then 5 ¼ 2” is true.

Solution
The proposition is vacuously true, as the hypothesis “1 ¼ 0” is false. Note that in
conclusion, “5 ¼ 2” was not used.

If the conclusion q can be shown to be true, the implication p/q is true by default, such a
proof is called a trivial proof. Note that in a trivial proof, the premise p is not used.

Example 4.5
Prove the proposition “If x is a real number with x4 þ 1 ¼ 0, then 2 > 1” is
true.

Solution
The proposition is trivially true, as the conclusion “2 > 1” is true. Note that the
premise “x is a real number with x4 þ 1 ¼ 0” was not used.

4.5 Direct Proofs

Direct proof, which is based on using definitions, axioms, theorems, logical equivalences,
and the rules of inference, is the most common proof strategy. A direct proof of an
implication is constructed with the assumption that the premise is true, and a series of
intermediate implications eventually leads to the fact that the conclusion of the implica-
tion must also be true. In other words, we show that the combination that the premise is
true and the conclusion is false never occurs. It is important to note that not all direct
proofs are straightforward, as some may require insights.
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Example 4.6
Prove the following statements are true.
(a) If n is an odd integer, then n2 is odd.
(b) If a and b are positive integers, then a2 � ab þ b2 > 0.
(c) The sum of two rational numbers is rational.

Solution
(a) Assuming n is odd, that is, n ¼ 2kþ 1 for some positive integer k, we have

n2 ¼ ð2kþ 1Þ2 ¼ 4k2 þ 4k þ 1. Noting that m ¼ 4k2 þ 4k ¼ 4
�
k2þk

�
is an even integer as it is a multiple of 4, we can thus conclude that
n2 ¼ mþ 1 is an odd integer.

(b) Assuming a > 0 and b > 0, we thus have ab > 0. Note that a2 � abþ b2 ¼
a2 � 2abþ b2 þ ab ¼ ða� bÞ2 þ ab > 0; as ða� bÞ2 and ab are both positive.

(c) Suppose s and t are both rational numbers, that is, s ¼ a
b and t ¼ c

d for some
integers a, b, c, and d with bs0 and ds0. We therefore have
s þ t ¼ a

b þ c
d ¼ adþbc

bd ¼ p
q, where p and q are integers because products

and sums of integers are integers, and also qs0. Hence sþ t is rational.

4.6 Proofs by Contraposition and Proofs by Contradiction

When we cannot easily employ a direct proof, we make use of an indirect proof. Indirect
proofs do not start with the premises and end with the conclusion. There are two general
types of indirect proofs, namely, proofs by contraposition and proofs by contradiction.

A proof by contraposition is based on the law of contrapositive, that is, the conditional
statement p/q is equivalent to its contrapositive q/p. In other words, in a proof by
contraposition of p/q, we take q as a premise, and we show that p must follow.

Example 4.7
Prove the following statements using a proof by contraposition.
(a) If a real number is irrational, then its square root is irrational.
(b) If r ¼ mn, where m and n are positive integers, then m � ffiffi

r
p

or n � ffiffi
r

p
.

Solution
(a) By letting x be an arbitrary real number, we need to prove that if x is irratio-

nal, then
ffiffiffi
x

p
is irrational. Using a proof by contraposition, we want to prove

that if
ffiffiffi
x

p
is not irrational, then x is not irrational, or equivalently if

ffiffiffi
x

p
is

rational, then x is rational. If
ffiffiffi
x

p
is rational, then

ffiffiffi
x

p ¼ m
n for some integers

m and ns0. As a result, we have x ¼ m2

n2 , which is the quotient of integers.
Hence x is rational. We just showed the negation of the hypothesis of the
original conditional statement is true.

Proof Methods 59



(b) Using a proof by contraposition, we want to prove that if m� ffiffi
r

p
or n� ffiffi

r
p

is
false, then r ¼ mn is false, or equivalently if both m >

ffiffi
r

p
and n >

ffiffi
r

p
are

true, then r ¼ mn is false. However, if m >
ffiffi
r

p
and n >

ffiffi
r

p
, then mn > r.

This shows that mnsr, which contradicts the premise mn ¼ r. We just
showed the negation of the hypothesis of the original conditional statement
is true.

When a conditional statement is true but the conclusion is false, then the hypothesis is
false. In other words, if the implication p/q is true, but q is false, then p is false or, equiv-
alently, p is true. Note that a contradiction is a proposition of the form r^r, where r may
be any proposition, thus it is always false regardless of the truth value of r. Therefore if we
show p/ðr^rÞ is true, then p is true. The method of proof by contradiction, which is an
indirect proof, states that if the supposition that statement p is false leads logically to a
contradiction, then p is true.

Example 4.8
Prove the following statements using a proof by contradiction.
(a) The earth cannot be flat.
(b) The sum of any rational number and any irrational number is irrational.
(c)

ffiffiffi
2

p
is irrational.

(d) There is no greatest integer.

Solution
(a) If the earth is flat, then people fall off the edge, which is absurd.
(b) Suppose there is a rational number t ¼ a

b and irrational number u such that
t þ u ¼ c

d is rational for some integers a, b, c, and d with bs0 and ds0.
We can thus have u ¼ bc�ad

bd . Because a, b, c, and d are all integers, bc � ad
and bds0 are also integers. Thus by definition, u is rational, which contradicts
the supposition that u is irrational.

(c) If
ffiffiffi
2

p
is not irrational, then it is rational and can be thus written as the fraction

of two integers m and n, where we assume m
n is in lowest terms, so m and n are

not both even (i.e., we assume m
n is reduced and thus cannot be simplified).

Therefore we can reach the following step-by-step conclusions:

ffiffiffi
2

p
¼ m

n
/ 2 ¼ m2

n2
/ m2 ¼ 2n2 / m2 is even / m is even /

m ¼ 2k / m2 ¼ 4k2 ¼ 2n2 / n2 ¼ 2k2 / n2 is even / n is even:

We showed that if
ffiffiffi
2

p
is not irrational, then both m and n are even, which

contradicts our assumption that m and n are not both even. Therefore
ffiffiffi
2

p
is

irrational.
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(d) Suppose there is a greatest integer N , then N > n for every integer n. Let
M ¼ N þ 1. Therefore M is an integer as it is the sum of integers 1 and
N . Thus M is an integer greater than N . Therefore N is not the greatest
integer, which is a contradiction to the premise.

4.7 Proof by Cases and Proofs by Exhaustion

Sometimes we need to partition the proof into several disjoint parts whose union is the
complete theorem and then prove each part individually. Suppose we must prove p/ q
and that p is equivalent to p1np2n.npn (where p1; p2;.; pn are the cases). To prove a
conditional statement of the form ðp1np2n.npnÞ/q, we prove
ðp1/qÞ^ðp2/qÞ^ . ^ðpn/qÞ, as the two statements are equivalent. Such a proof
is called a proof by cases, as we have

ðp/ qÞ4 ððp1np2n.npnÞ/qÞ 4 ððp1/ qÞ^ðp2/ qÞ^. ^ðpn/ qÞÞ:

Example 4.9
Assuming k is a positive integer, show that m ¼ k3 � k is an even integer.

Solution
Using a proof by cases, we consider two mutually exclusive cases for k, that is, k is
even, and k is odd, as every positive integer falls into one of these two mutually
exclusive cases. Assuming k is even, then for some integer n, we have
k ¼ 2n / m ¼ k3 � k ¼ kðk þ1Þðk �1Þ ¼ 2nð2n þ1Þð2n �1Þ, that is,
m is even, as it is a multiple of 2. Assuming k is odd, then for some integer n, we
have k ¼ 2n þ 1/ m ¼ k3 � k ¼ ðk �1Þkðk þ1Þ ¼ 2nð2n þ1Þð2n þ2Þ,
that is, m is even, as it is a multiple of 2.

A proof by cases must check all possible cases that arise in a theorem. However, when
each case involves checking an example, such a proof is called a proof by exhaustion or
an exhaustive proof. Note that when the number of cases is infinitely many or just
very large, then neither proof by cases nor proof by exhaustion is possible or even feasible.

Example 4.10
Assuming m and n are positive integers, show that 4m2 þ 9n2 ¼ 36 has no
solutions.

Solution
As m and n are positive integers, 4m2 and 9n2 are in turn both positive. We can thus
conclude that 4m2 < 36 / 2m < 6 / m < 3 and 9n2 < 36 / 3n < 6 /
n < 2. Using a proof by exhaustion, this leaves the cases that m ¼ 1 or m ¼ 2 as
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well as n ¼ 1. Neither when we have m ¼ 1 and n ¼ 1 nor when we have
m ¼ 2 and n ¼ 1 can 4m2 þ 9n2 be equal to 36. It is therefore impossible for
4m2 þ 9n2 ¼ 36 to hold when m and n are positive integers.

4.8 Existence Proofs: Constructive Proofs and Nonconstructive
Proofs

Some theorems in mathematics are about establishing the existence of a particular object.
A proof of a proposition of the form dxPðxÞ is called an existence proof. There are two
types of existence proofs. If we can find an object a such that PðaÞ is true, then such an
existence proof is called a constructive existence proof. If we cannot find an object a such
that PðaÞ is true but rather establish its existence by an indirect proof, usually using a proof
by contradiction, then such an existence proof is called a nonconstructive existence proof.

Example 4.11
(a) Show that there is a set of three positive integers that the square of one of

them is equal to the sum of the squares of the other two integers.
(b) Prove that there exists an even integer that can be written in two ways as a

sum of two prime numbers.
(c) Given an integer n, there is an integer m with m > n.

Solution
(a) We employ a constructive existence proof. This problem presents in a way a

form of Pythagorean theorem. To this effect, there exist the set f3; 4; 5g and
the set f5; 12; 13g, which both can satisfy the requirement, as 52 ¼ 42 þ 32

and 132 ¼ 52 þ 122:
(b) Using a constructive existence proof, the integer 24 is an even number and

can be written as 24 ¼ 7þ 17 as well as 24 ¼ 11 þ 13, where 7, 11, 13,
and 17 are all prime numbers.

(c) We employ a constructive existence proof. Suppose that n is an integer. Let
m ¼ n þ 1. Then m is an integer and m > n. The proof established the
existence of the desired integer m by showing that its value can be computed
by adding 1 to the value of n.

Example 4.12
(a) Let X ¼ x1þx2þ.þxn

n be the average of the n real numbers x1; x2;.; xn.
Show that there exists at least one real number among them, say xk, where
k˛f1; 2; :::; ng, which is greater than or equal to X , that is, xk � X .

(b) Given a nonnegative integer n, there is always a prime number p that is greater
than n.
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Solution
(a) We employ a nonconstructive existence proof. Using a proof by contradic-

tion, we assume the negation of the conclusion, that is, we have

ðdkðxk � XÞÞhckðxk � XÞhckðxk < XÞ; this in turn means x1 < X ;

x2 < X ;.; xn < X : This assumption yields first x1 þ x2 þ.þ xn < nX
and then x1þx2þ.þxn

n < X , which contradicts the original hypothesis (the
definition of the average of n real numbers).

(b) We employ a nonconstructive existence proof. With n as a nonnegative
integer, consider the positive integer n! þ 1. Then n!þ 1 > 1 is divisible
by some prime number p because every integer greater than 1 is divisible
by a prime number. Also, p > n because when n!þ 1 is divided by any
positive integer less than or equal to n, the remainder is 1.

4.9 Proof of a Disjunction

Proof of a disjunction is based on proving p/ðqnrÞ by proving one of the logical equiv-
alences ðp^qÞ/r or ðp^rÞ/q is true.

Example 4.13
Prove that for all integers a and b, if b is prime, then either b is a divisor of a or a is
also prime.

Solution
To employ the proof of a disjunction, we define the following propositions:

p: b is prime
q: b is a divisor of a
r: a is prime (i.e., a and b have no common divisor greater than 1)

Noting that there are two ways to prove p/ðqnrÞ, we choose to prove
ðp^qÞ/r. Because p is true (i.e., b is prime and its only positive divisors are
thus 1 and b), and q is true (i.e., b is not a divisor of a; and the only possible positive
common divisor of a and b is thus 1), then r is true (i.e., a is prime).

4.10 Uniqueness Proofs

Some theorems state the existence of a unique element with a particular property. To
prove such a statement, we need to employ a uniqueness proof, which consists of two
distinct parts of existence (i.e., an element with the desired property exists) and unique-
ness (i.e., there is no other element with the desired property).
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Example 4.14
Show that if m and n are positive integers, then there is a unique integer k such that
mn � 0:5k ¼ 0.

Solution
The integer k ¼ 2mn is a solution of mn � 0:5k ¼ 0. This is the existence part of
the proof. If there is an integer such that mn � 0:5j ¼ 0. Then
mn � 0:5k ¼ mn � 0:5j; that is, k ¼ j. This means that if jsk, then
mn � 0:5js0. This establishes the uniqueness part of the proof.

Exercises
(4.1)
(a) Prove “If it is raining, then 1 ¼ 1” is true.
(b) Prove “If I am dead, then 2 þ 2 ¼ 5” is true.

(4.2)
(a) Consider two different positive real numbers. Prove their arithmetic mean is

greater than their geometric mean.
(b) Prove that x2 þ x�2 � 2, if x is a nonzero real number.

(4.3)
(a) Using a proof by contradiction, prove that

ffiffiffi
3

p
is irrational.

(b) Using a proof by contradiction, prove that
ffiffiffi
5

p
is irrational.

(4.4)
(a) Using a constructive existence proof, prove that there exists a real number x

satisfying a < x < b, where a and b are real numbers with a < b.
(b) Using a proof by counterexample, disprove that for every prime p, 2p � 1 is

prime.

(4.5)
(a) Using a proof by contradiction, prove that for all real numbers x and y, if xþ

y � m, then either x � m
2 or y � m

2, where m is a real number.
(b) Using a proof by contraposition, prove that n is odd if mnþ k is odd, k is even,

and m is odd.

(4.6)
(a) Using a proof of equivalence, prove that if n is an integer, then n is even if and

only if n2 is even.
(b) Prove that if the product and the sum of two integers are both odd, then both

integers are odd.
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(4.7)
(a) Suppose that a and b are odd integers with asb. Prove there is a unique

integer c such that ja � cj ¼ jb � cj.
(b) Prove that there are no solutions for x3 þ y3 ¼ 64 with x and y positive

integers.

(4.8)
(a) Prove that there exists a pair of consecutive positive integers such that one of

these integers is a perfect square and the other is a perfect cube.
(b) Prove that if n ¼ abc, where a; b, and c are positive integers, we then have

a <
ffiffiffi
n3

p
, b <

ffiffiffi
n3

p
, or c <

ffiffiffi
n3

p
:

(4.9)
(a) Using a proof by exhaustion, show that ðnþ 1Þ3 � 3n if n is a positive integer

with n � 4.
(b) Using a proof by contradiction, show that there are infinitely many primes.

(4.10)
(a) Prove or disprove that if you have an 8-liter jug of water and two empty jugs

with capacities of 5 liters and 3 liters, then you can provide 4 liters of water in
one of the jars by successively pouring some of all of the water in a jug into
another jug.

(b) Prove the pigeonhole principle: If more than n pigeons fly into n pigeon
holes, then at least one pigeonhole will contain at least two pigeons.
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The concept of set is basic to all mathematics and mathematical applications, as almost all
mathematical objects can be construed as sets, regardless of any additional properties they
may possess. The set is the fundamental discrete structure uponwhich other discrete struc-
tures are built. According to Greg Cantor, the founder of set theory, a set is a many that
allows itself to be thought of as a one. Our focus here is on naïve set theory, which is based
on Cantor’s intuitive notion of an object and a set as defined informally in natural lan-
guage, rather than on axiomatic set theory, which is based on the rules of inference pro-
vided by formal logic. This chapter briefly highlights fundamental aspects of sets.

5.1 Definitions and Notation

A set is an unordered collection of distinct objects that are called elements or members of
the set. It is essential to have a clear and rigorous definition of a set. For instance, “smart
children in a town” does not form a set, as the word “smart” does not have a universally
agreeable definition, and its membership is debatable, whereas “pregnant women in a
town” does form a well-defined set.

It is common to use capital letters, such as A, to denote sets, and lowercase letters,
such as x, to refer to set elements. If x is an element of the set A or equivalently x belongs
toA,we then use the notation x˛A, and if x does not belong to the setA or equivalently
x is not an element of A, we then write x;A. For instance, if A is the set of all capital
cities, then Tokyo, denoted by x, is an element of A, that is, x˛A, and if B is the set of all
European cities, then Tokyo, denoted by x, is not a member of B, because it is a city in
Asia, we thus have x;B.

A set is generally represented by braces (curly brackets), that is, by fg. One way to
specify a set with a finite number of elements is to use the set roster method, by which
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all the elements of the set are listed between curly brackets (i.e., within braces), such as
f3; 6; 9g. The order of elements presented in a set is irrelevant, and a set remains the
same if its elements are repeated or rearranged. Note that a set of a very large number
of elements that follow a recognizable pattern is usually described by listing the first
few elements, followed by ellipses “.,” which is read as “and so forth,” such as
f1; 2; 3; 4;.g.

Another way to specify a set is the set builder notation, through which some property
held only by all members of the set is clearly and completely described, such as
fx˛N j x is a multiple of 3; 0 < x < 10g, where the vertical line ðjÞ is read as “such
that” and the comma ð; Þ as “and,” and N represents the set of all positive integers.
Note that the general form fx˛S j QðxÞg, where QðxÞ is a predicate indicating the
property that the object x of the set S has, is read as “the set of all x in S such that x
has the property QðxÞ.”

A set usually presents a group of elements with common properties. However, it is
possible for a set to contain any kind of elements whatsoever, and they are not required
to be of the same type, such as the set fChina, nose, baby, movie, ice cream, p, rainbow,
stamp, soccerg.

A Venn diagram is a group of simple closed curves arranged in a plane to visually illus-
trate collections of sets and their logical relationships through geometric intuition so as to
help understand set concepts and operations. Fig. 5.1 shows the Venn diagrams for some
special sets.

The universal set, also known as the universe of discourse, denoted by U, is defined to
include all elements in a given setting as well as every set under consideration. Thus the
universal set varies depending on which objects are of interest. For instance, the universal
set may be defined to include all the people living in the world, and the sets under consid-
eration may include people of various nationalities or people with different eye colors.
The universal set U is usually represented pictorially as the set of all points within a rect-
angle, as shown in Fig. 5.1a, whereas the other sets are represented by enclosed areas lying
within it, where the interior of each closed curve represents a set.

Two sets A and B are equal if and only if they have exactly the same elements, as
shown in Fig. 5.1b. We write A ¼ B if A and B are equal sets. For instance, the set
A ¼ fa; e; i; o; ug and the set B ¼ fx˛U j x is a vowel in the English alphabet;
U is the set of all its lettersg are equal, that is, A ¼ B. If the sets A and B are not
equal, then we write AsB. For instance, the sets A ¼ fx˛N j x is an odd integerg
and B ¼ fx˛N j x is a prime numberg, where the set N represents all positive inte-
gers, are not equal, that is, AsB.

The set B is a subset of the set A, and the set A is a superset of the set B, if and only if
every member of B is also a member of A. We use the symbol4 to denote subset; B4 A
thus implies B is a subset of A; or alternatively B is contained in A or A contains B. In
order to show that B is not a subset of A, that is, B?A, it is only needed to find one
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(e)

Fig. 5.1 Venn diagrams. (a) Universal set. (b) Equal sets. (c) Proper subset. (d) Disjoint sets. (e) Parti-
tioned set.
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element x˛B with x;A. In other words, find a counterexample x, that is, an x that
shows the assertion to be false. For instance, if A is the set of all odd numbers and B is
the set of all prime numbers, we have B?A, as 2˛B, but 2;A.

Every set is a subset of itself and a subset of the universal set. Note that if B4A and
A4C, then B4C.

The set B is a proper subset of the set A if every member of B is also a member of A,
but there is at least one element ofA that is not an element of B. We use the symbol3 to
denote proper subset; B3A thus implies B is a proper subset of A, as shown in Fig. 5.1c.
Oftentimes the terms “subset” and “proper subset” are interchangeable because it is not
important to differentiate them. Fig. 5.2 shows special sets of numbers, where we have
P3N3W3Z3Q3R3C, and Table 5.1 presents the subsets of real numbers, called
intervals of real numbers.

The empty set or null set, denoted by B, is defined as the set with no elements. For
instance, the set of human beings who are 200 years old is the empty set. The empty set is
thus a subset of every set. The empty set is unique, that is, there is exactly one empty set.
Therefore if A and B are both empty sets, then A ¼ B, because they have exactly the
same elements, namely, none. To prove a set A is an empty set, we first suppose A
has an element x and then derive a contradiction.

A set with one element is called a singleton set or a unit set. For instance, the set fBg
is a singleton set, and its only element is the empty set B. Therefore fBg has one more
element than B, so fBgsB. Another example of a singleton set is the set of integers
that are both prime and even, that is, f2g.

The sets A and B are known as disjoint if and only if the sets A and B have no com-
mon elements, as shown in Fig. 5.1d. For instance, the set of odd numbers and the set of
even numbers are disjoint. In addition, if two sets are disjoint, then neither is a subset of
the other unless one is the empty set. The sets A1; A2;.; An aremutually exclusive, also
known as pairwise disjoint, if and only if no two sets have any element in common. For
instance, the sets of birds, cars, books, and trees are all mutually disjoint.

A partition of a nonempty set A is a finite collection of n nonempty subsets,
A1; A2;.;An, that are all pairwise disjoint, and every element of the set A belongs
to only one of these n mutually exclusive subsets, where n � 2 is an integer. Note
that a set can be arbitrarily partitioned. The nonoverlapping subsets in a partition are
called cells or blocks. Fig. 5.1e shows a partition of the setA. For instance, the set of letters
in an English word can be partitioned into two nonempty mutually exclusive subsets of
vowels and consonants. Another example is that the population of a country can be par-
titioned into three nonempty mutually exclusive subsets, children who are younger than
18 years, senior citizens who are at least 65 years old, and those adults who are at least 18
years old but not older than 65 years. Note that the same population can be partitioned
into males and females. In principle, the partitioning of a set is done in a way that is most
beneficial to help analyze and solve the problem of interest.
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Fig. 5.2 Special sets of numbers.
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Some concepts from both set theory and predicate logic can be tied. A propositional
function PðxÞ defined on a set A has the property that PðaÞ is true or false for each
element a of A. In other words, PðxÞ becomes a statement with a truth value whenever
any element a˛A replaces the variable x. The set A is called the domain of PðxÞ, and the
set of all elements of A for which PðxÞ is true is called the truth set of PðxÞ. In general,
when A represents a set of numbers, the condition PðxÞ has the form of an equation or
inequality involving the variable x.

Example 5.1
Determine the truth sets of the following predicates, where the domain is the set
of all positive integers N:
(a) TðxÞ is x2 ¼ 0.
(b) W ðxÞ is x2 � 3x > 0.
(c) V ðxÞ is x2 � 3x þ 2 ¼ 0.

Solution
(a) The truth set of T,

�
x˛N j x2 ¼ 0

�
, is the set of positive integers for which

x2 ¼ 0, that is, x ¼ 0. As 0 is not a positive integer, the truth set of T is the
empty set.

(b) The truth set of W,
�
x˛N j x2 �3x> 0

�
, is the set of positive integers for

which x2 � 3x > 0, that is, x < 0 or x > 3. As the integers less than 0 are not
positive integers, the truth set of W is thus the set f4; 5; 6; .g.

(c) The truth set of V,
�
x˛N j x2 �3x þ2 ¼ 0

�
, is the set of positive integers

for which x2 � 3x þ 2 ¼ 0, that is, x ¼ 1 or x ¼ 2. As both 1 and 2 are
positive integers, the truth set of V is the set f1; 2g.

TABLE 5.1 Intervals of real numbers.

½a; b� ¼ fx˛Rja� x� bg
½a; bÞ ¼ fx˛Rja� x< bg
ða; b� ¼ fx˛Rja< x� bg
ða; bÞ ¼ fx˛Rja< x< bg

ð �N; aÞ ¼ fx˛Rj �N< x< ag
ðb;NÞ ¼ fx˛Rjb< x< Ng

ð �N; a� ¼ fx˛Rj �N< x� ag
½b;NÞ ¼ fx˛Rjb� x< Ng

ð�N;NÞ ¼ fx˛Rj �N< x< Ng
Note: a and b are both real numbers with a > b.
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5.2 Set Operations

As propositions can be combined to construct new propositions in various ways, sets can
be combined to build a new set, which then has a certain property. There is a close rela-
tionship between logic operations and set operations. Fig. 5.3 shows the Venn diagrams
for some special set operations.

The union of two sets A and B, denoted by AWB, is the set of all elements that are in
A or in B or in both, as shown in Fig. 5.3a, that is, we have

AWBbfx˛U j x˛A or x˛Bg:
Here, “or” within the curly brackets is used in the sense of “and” as well as “or”, thus it
implies at least in one of the two sets. The intersection of two sets A and B, denoted by
AXB, is the set of all elements that exist in both A and B, as shown in Fig. 5.3b, that is,
we have

AXBbfx˛U j x˛A and x˛Bg:
The intersection of two disjoint sets A and B is thus the empty set, that is, AXB ¼ B.
The difference of setsA and B (or the relative complement of Bwith respect toA), denoted
by A� B or A\B, is the set of elements in A that are not in B, as shown in Fig. 5.3c, that
is, we have

A�Bbfx˛U j x˛A and x;Bg:
Note that the set A� B, read as “A minus B,” is different from the set B � A. The ab-
solute complement or, simply, the complement of a set A, with respect to the universal set
U, denoted by Ac or A, is the set of all elements that are not in A, as shown in Fig. 5.3d,
that is, we have

Ac ¼ Abfx˛U j x;Ag:
Note that the complement of the universal set is the empty set and vice versa, the union
of a set and its complement is the universal set, that is, AWAc ¼ U , and the intersection
of a set and its complement is the empty set, that is, AXAc ¼ B. The symmetric differ-
ence of sets A and B, denoted by A4B or ADB, consists of those elements that belong to
A or B but not to both, as shown in Fig. 5.3e, that is, we have

A4B ¼ ADBbfx ˛U j ðx˛A; x;BÞ or ðx;A; x˛BÞg:
We thus have

A4B ¼ ðAWBÞ � ðAXBÞ:
The precedence rules, which can reduce the number of parentheses required, must be per-
formed in the following order: (i) operations from left to right, (ii) operations between
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(e)

Fig. 5.3 Venn diagrams. (a) Union of two sets. (b) Intersection of two sets. (c) Difference between two
sets. (d) Complement of a set. (e) Symmetric difference.

74 Discrete Mathematics



parentheses first with the innermost of nested parentheses, (iii) complementation, (iv) in-
tersections, and (v) unions. Note that the set difference or symmetric difference must
always use parentheses.

Example 5.2
Suppose the universal set U represents all possible outcomes when a typical six-
sided cube-shaped die is rolled, that is, U ¼ f1; 2; 3; 4; 5; 6g. We also define
the set A representing the odd outcomes and the set B representing the outcomes
that are prime. Determine the following sets:AWB,AXB,A � B,Ac , andA4B.

Solution
We first identify the elements of the sets A and B from the universal set U and
then perform the required set operations:

U ¼ f1; 2; 3; 4; 5; 6g/
(

A ¼ f1; 3; 5g
B ¼ f2; 3; 5g /

8>>>>>>>><
>>>>>>>>:

AWB ¼ f1; 2; 3; 5g
AXB ¼ f3; 5g
A� B ¼ f1g
Ac ¼ f2; 4; 6g
A4B ¼ f1; 2g:

The union and intersection operations can be repeated for an arbitrary number of sets.
Thus the union of n sets is the set of all elements that are in at least one of the n sets,
and the intersection of n sets is the set of all elements that are shared by all n sets, where
n � 2 is an integer. Note that the intersection of any n sets, B1; B2;.;Bn, is a subset of
each of the n sets, and in turn, each of the n sets is a subset of the union of the n sets, that is,
we have:

�
X
n

i¼ 1
Bi

�
4Bi4

�
W
n

i¼ 1
Bi

�
i ¼ 2; 3; .; n:

Example 5.3
Suppose the universal set U represents all positive integers less than or equal to
20, that is, we have U ¼ f1; 2; .; 20g. We also define the set A representing
the positive integers that are divisible by 3, the set B representing the positive
integers that are divisible by 4, and the set C representing the positive integers
that are divisible by 6. Determine the following sets: AWBWC, AXBXC,
ðAWBÞXC, and AWðBXCÞ. Comment on the results.
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Solution
We first identify the elements of the sets A, B, and C and then perform the
required set operations:

U ¼ f1; 2;.; 20g/

8>>><
>>>:

A ¼ f3; 6; 9; 12; 15; 18g
B ¼ f4; 8; 12; 16; 20g
C ¼ f6; 12; 18g

/

8>>>>>>><
>>>>>>>:

AWBWC ¼ f3; 4; 6; 8; 9; 12; 15; 16; 18; 20g
AXBXC ¼ f12g
ðAWBÞXC ¼ f6; 12; 18g
AWðBXCÞ ¼ f3; 6; 9; 12; 15; 18g:

When the set operations are all unions or all intersections, their order does not
matter. However, when they are a mix of unions and intersections, the order of
unions and intersections does matter. Hence we have ðAWBÞXCsAWðBXCÞ.

Suppose there are n distinct sets, X1; X2; .; Xn. A fundamental product of these n sets is
a set defined as Y1XY2X.XYn, where Yi is either the set Xi or its complement, that is,
Xc
i , for i ¼ 1; 2; .; n, where n � 1 is an integer. There are therefore 2n such funda-

mental products, as there are two choices for each Yi. There is a geometric description for
each fundamental product. It can be shown that all 2n fundamental products are disjoint
and their union is the universal set U , that is, the universal set U is partitioned by the 2n

sets representing the fundamental products of the n sets.

Example 5.4
Consider three sets A; B; and C. Identify all fundamental products and show
them in a Venn diagram.

Solution
There are three sets, the number of fundamental products is then 8

�¼ 23
�
. The

fundamental products are as follows:
S1 ¼ AXBXC
S2 ¼ AXBXCc

S3 ¼ AXBcXC
S4 ¼ AcXBXC
S5 ¼ AXBcXCc

S6 ¼ AcXBXCc

S7 ¼ AcXBcXC
S8 ¼ AcXBcXCc:
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These eight fundamental products correspond to eight disjoint sets
S1; S2; .; S8 through which the universal set U is partitioned, as shown in
Fig. 5.4.

5.3 Set Identities and Methods of Proof

A set identity is an equality between two set expressions that is true for all elements of the
sets involved in the identity. In a set identity, some basic set operations are combined to
form another set. Table 5.2 presents some important set identities. These identities in set
theory are similar to the logical equivalences in logic.

It is a fact of set algebra, called the principle of duality, that the dual of an identity is
also an identity, where the dual of an identity can be obtained by replacing each occur-
rence ofW,X; U, andB in the identity byX,W,B, and U, respectively. Many of the
identities in Table 5.2 arranged in pairs reflect the principle of duality.

De Morgan’s laws are prominent set identities that provide a pair of transformation
rules. The laws can be expressed as the complement of the union of two sets is the
same as the intersection of their complements, and the complement of the intersection
of two sets is the same as the union of their complements. De Morgan’s laws are used
when the complements of sets are easier to define than the sets themselves.

To prove set identities, membership tables can be used. A table that displays the mem-
bership of elements in sets is called a membership table, also known as a truth table. The
columns of a membership table must represent the original basic sets and the two sets on
both sides of the set identity, where 1 is used to indicate an element that is in the set, and
0 is used to indicate an element that is not in the set. Note that there is a great similarity
between membership tables in set theory and truth tables in propositional logic.

Fig. 5.4 Venn diagram: Fundamental products for Example 5.4.
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Table 5.3 presents a membership table for the union, intersection, difference, and
symmetric difference of two sets, as well as the complements of the two sets.

Insights regarding set identities can be obtained from Venn diagrams, but Venn dia-
grams cannot be used when proving theorems unless special attention is paid to make sure
that the diagrams are sufficiently general to encompass all possible cases, and that is a diffi-
cult task. As the role of Venn diagrams is not to provide formal proofs, we need formal
methods of proving set identities. Here are three distinct methods to prove a set identity:
1. Show each side of the identity is a subset of the other side. This method of proof

is known as the element argument or containment proof. In other words, to prove

TABLE 5.2 Set identities.

Identity Name

AWB ¼ BWA
AXB ¼ BXA

Commutative laws

ðAWBÞWC ¼ AWðBWCÞ ¼ AWBWC
ðAXBÞXC ¼ AXðBXCÞ ¼ AXBXC

Associative laws

AWðBXCÞ ¼ ðAWBÞXðAWCÞ
AXðBWCÞ ¼ ðAXBÞWðAXCÞ

Distributive laws

AWB ¼ A
AXU ¼ A

Identity laws

AWU ¼ U
AXB ¼ B

Domination laws

AWA ¼ A
AXA ¼ A

Idempotent laws

ðAcÞc ¼ A Complementation law
AWAc ¼ U
AXAc ¼ B

Complement laws

A � B ¼ AXBc Relative complement law
AWðAXBÞ ¼ A
AXðAWBÞ ¼ A

Absorption laws

ðAWBÞc ¼ AcXBc

ðAXBÞc ¼ AcWBc
De Morgan’s laws

A4B iff AWB ¼ B
A4B iff AXB ¼ A

Consistency laws

jAWBj ¼ jAj þ jBj � jAXBj Inclusion-exclusion principle

TABLE 5.3 Membership tables for basic set operations.

A B AXB AWB Ac Bc A � B B � A A4B

1 1 1 1 0 0 0 0 0
1 0 0 1 0 1 1 0 1
0 1 0 1 1 0 0 1 1
0 0 0 0 1 1 0 0 0
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M ¼ K, we need to proveM4K and K4M . This powerful method brings insight
into the proof, but in some cases, this proof method may prove to be rather complex.

2. Transform one side into the other side step by step by employing the other known set
identities. This method of proof is known as the algebraic proof. This is usually the
shortest method, provided that there are relevant set identities that can be applied
to simplify the set expressions.

3. Build a membership table step by step for each side of the set identity, and show the
columns corresponding to the both sides of the identity are identical. This method,
known as proof by membership table, does not provide any insight into the proof.
However, it is a straightforward method if the number of the original sets in the iden-
tity is just a few, otherwise, a computer should be used to build the membership table
of interest.

Example 5.5
Prove that ðA�CÞXðB�CÞ ¼ ðAXBÞXCc, using all three methods of proof.

Solution
The first method is to show that each side of the identity is a subset of the other
side. The first step is to show ðA �CÞXðB �CÞ4ðAXBÞXCc . When
x˛ðA �CÞXðB �CÞ, then by definition of intersection, x˛ðA�CÞ and
x˛ðB �CÞ. When x˛ðA �CÞ, then by definition of difference, x˛A and
x;C, and when x˛ðB �CÞ, then by definition of difference, x˛B and x;C.
When x˛A and x˛B and x;C, then by definition of complement, x˛A and
x˛B and x˛Cc . Hence x˛ðAXBÞXCc by definition of intersection. The second
step is to show ðAXBÞXCc4ðA �CÞXðB �CÞ. When x˛ðAXBÞXCc, then
x˛ðAXBÞ and x˛Cc by definition of intersection. When x˛ðAXBÞ, then x˛A
and x˛B by definition of intersection, and when x˛Cc; then x;C by definition
of complement. When x˛A and x˛B and x;C, then x˛ðA �CÞ and
x˛ðB�CÞ by definition of difference. Hence ðA�CÞXðB�CÞ by definition
of intersection.

The second method is to apply the relevant set identities step by step to make
one side equal to the other side. We thus have

ðA�CÞXðB�CÞ ¼ ðAXCcÞXðBXCcÞ by the difference equivalence
¼ ðAXBÞXðCcXCcÞ by the associative law
¼ ðAXBÞXCc by the idempotent law.

The third method is to build a membership table. There are three basic sets A,
B, and C that have been combined to create the set identity of interest. The pres-
ence of an element to any one of these three sets is denoted by 1 and its absence by
0. We thus have a membership table consisting of 8

�¼ 23
�
rows, as shown in Ta-

ble 5.4. After forming the three columns associated with the three sets A, B, and
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C, which are the building sets of the identity, we first form the columns corre-
sponding to the sets ðA�CÞ and ðB�CÞ to construct the column associated
with the set ðA �CÞXðB �CÞ, which is the left-hand side of the identity. We
then form the columns corresponding to the sets ðA�BÞ and Cc to construct
the column associated with the set ðAXBÞXCc, which is the right-hand side
of the identity. We notice that because the columns for the sets
ðA�CÞXðB�CÞ and ðAXBÞXCc are the same, the identity is valid.

Example 5.6
Let A; B; and C be sets, where the sets Ac, Bc, and Cc are complements of A; B;
and C, respectively. Using a membership table, show the following identities:
(a) ðAWBcWCcÞchAcXBXC.
(b) ðAcWBWCÞchAXBcXCc .
(c) ðAWBWCcÞchAcXBcXC.

Solution
Table 5.5 shows the membership tables for all three cases.
(a) Columns 7 and 8 are identical.
(b) Columns 9 and 10 are identical.
(c) Columns 11 and 12 are identical.

5.4 Cardinality of Sets

The number of distinct elements in a set A is called the cardinality of A, written as jAj.
The cardinality of a set (i.e., the size of a set) may be finite or infinite. For instance, we
have jBj ¼ 0 because the empty set has no elements. A set with a finite number of el-
ements is defined as a finite set, and it is thus countable. The exact number of elements in
a finite set can be known, such as the set of cards in a deck of playing cards, or unknown,

TABLE 5.4 Membership table for Example 5.5.

A B C A � C B � C ðA �CÞXðB �CÞ AXB Cc ðAXBÞXCc

1 1 1 0 0 0 1 0 0
1 1 0 1 1 1 1 1 1
1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 1 0
0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
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TABLE 5.5 Membership table for Example 5.6.

A Ac B Bc C Cc ðAWBcWCcÞc AcXBXC ðAcWBWCÞc AXBcXCc ðAWBWCcÞc AcXBcXC

1
1
1
1
0
0
0
0

0
0
0
0
1
1
1
1

1
1
0
0
1
1
0
0

0
0
1
1
0
0
1
1

1
0
1
0
1
0
1
0

0
1
0
1
0
1
0
1

0
0
0
0
1
0
0
0

0
0
0
0
1
0
0
0

0
0
0
1
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
0
0
1
0

0
0
0
0
0
0
1
0
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such as the set of fish in the world. A set that is not finite is infinite, an infinite set is either
countable or uncountable. In a countably infinite set, it is possible to list the elements of
the set in a sequence indexed by positive integers, such as the set of all prime numbers.
On the other hand, in an uncountably infinite set, it is not possible to list the elements of
the set in a sequence indexed by positive integers, such as the set of all real numbers be-
tween 0 and 1.

A set can have other sets as members. The set of all subsets of a set A, which also in-
cludes the empty set B and the set A itself, is called the power set of A and is denoted by
PðAÞ. If A is a finite set, then we have

jPðAÞj ¼ 2 jAj

which in turn implies jAj < jPðAÞj. Given two sets of A and B, the Cartesian product of
A and B, denoted by A� B and read as “A cross B,” is the set of all ordered pairs ða; bÞ,
where a˛A and b˛B. The number of ordered pairs in the Cartesian product of A and B
is equal to the product of the number of elements in the set A and the number of ele-
ments in the set B, that is, jA�Bj ¼ jAj jBj: The Cartesian product of more than
two sets can also be defined. The Cartesian product of n sets A1; A2; ., An is the set
of all ordered n-tuples, and symbolically is shown as follows:

A1�A2 �.� An ¼ fða1; a2; .; anÞ j a1 ˛A1; a2 ˛A2; .; an ˛Ang:
The notation for an ordered n-tuple is a generalization of the notation for an ordered
pair, and it takes both order and multiplicity into account.

A subset R of the Cartesian product A� B is called a relation from the set A to the set
B. The elements of R are ordered pairs, where the first element belongs to A and the
second to B. In general, we have A� BsB� A, unless A ¼ B, B ¼ B, or A ¼ B.

Example 5.7
(a) Suppose X ¼ f3; 6; 9g; determine the power set of set X .
(b) Suppose A ¼ f1; 2; 3g, B ¼ fa; bg, and C ¼ f1; #g; determine the

Cartesian products A� B� C and A � C � B. Comments on the results.

Solution
(a) Because we have jX j ¼ 3, we have jPðXÞj ¼ 23 ¼ 8. PðXÞ is thus a set

with the following eight subsets:

PðXÞ ¼ fB; f3g; f6g; f9g; f3; 6g; f3; 9g; f6; 9g; f3; 6; 9gg:
(b) We have

A�B�C ¼ fð1; a; 1Þ; ð1; a; #Þ; ð1; b; 1Þ; ð1; b; #Þ;
ð2; a; 1Þ; ð2; a; #Þ; ð2; b; 1Þ; ð2; b; #Þ;
ð3; a; 1Þ; ð3; a;#Þ; ð3; b; 1Þ; ð3; b;#Þg:

82 Discrete Mathematics



and

A�C�B ¼ fð1; 1; aÞ; ð1; 1; bÞ; ð1;#; aÞ; ð1;#; bÞ;
ð2; 1; aÞ; ð2; 1; bÞ; ð2;#; aÞ; ð2;#; bÞ;
ð3; 1; aÞ; ð3; 1; bÞ; ð3;#; aÞ; ð3;#; bÞg:

Each of these two Cartesian products is a set consisting of 12 ð ¼ 3�2�2Þ
ordered triples. However, the resulting two sets are different, that is,
A� B� CsA� C � B, because both order and multiplicity matter.

The cardinality of the union of two finite sets A and B can be found using the principle of
inclusion-exclusion, that is, we have

jAWBj ¼ jAj þ jBj � jAXBj
Note that jAj þ jBj counts each element that is in set A but not in set B once and in set B
but not in set A once, and each element that is in both sets A and B exactly twice. The
number of elements that are in both A and B, that is, jAXBj, is then subtracted from
jAj þ jBj so as to count the elements in the intersection only once. If the sets A and B
are disjoint, then we have jAWBjbjAj þ jBj. The principle of inclusion-exclusion
can be extended to n sets A1;A2;.;An; thus we can have

jA1WA2W.WAnj ¼
Xn
i¼ 1

jAij �
Xn�1

i¼ 1

Xn
j¼ iþ1

��AiXAj
��þ

Xn�2

i¼ 1

Xn�1

j¼ iþ1

Xn
k¼ jþ1

��AiXAjXAk
��

�.þ ð�1Þnþ1jA1XA2X.XAnj

In general, for n sets, where n is a positive integer, the principle of inclusion-exclusion has
a maximum of 2n � 1 terms. However, some of these terms may be zero because it is
possible that some of the n sets are mutually exclusive.

Example 5.8
Give formulas for the number of elements in the union of three sets as well as in
the union of four sets.

Solution
The formula for three sets contains 7

� ¼ 23�1
�
different terms, and that for four

sets contains 15
� ¼ 24�1

�
different terms:

jA1WA2WA3j ¼ jA1j þ jA2j þ jA3j � jA1XA2j � jA1XA3j � jA2XA3j
þ jA1XA2XA3j
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and

jA1WA2WA3WA4j ¼ jA1j þ jA2j þ jA3j þ jA4j � jA1XA2j � jA1XA3j
� jA1XA4j � jA2XA3j � jA2XA4j � jA3XA4j
þ jA1XA2XA3j þ jA1XA2XA4j þ jA1XA3XA4j
þ jA2XA3XA4j � jA1XA2XA3XA4j

5.5 Computer Representation of Sets

Various set operations can be implemented using a computer. Although the members of a
set have inherently no order, an order is imposed to make computing combinations of
sets easy. Suppose that the universal set U is finite, whose number of elements n is not
larger than the memory size of the computer being used. In computer representation
of sets, the elements are represented by the bits 0 and 1, where the universal set U is
an array with n bits, that is, a1, a2; .; an, each containing a 1, and a subset A of U is
an array with n bits, where the ith bit in this string is 1 if ai belongs to A and is 0 if ai
does not belong to A. The sets are represented by arrays of bits.

Example 5.9
With the universal set U consisting of positive integers less than 9, consider the set
A consisting of even integers less than 9 and the set B consisting of integers less
than 9 that are divisible by 3. Determine the bit sequences representing the union,
intersection, difference, and symmetric difference of the sets A and B.

Solution
We first determine the sets U, A, and B, and then obtain their computer repre-
sentations as follows:

U ¼ f1; 2; 3; 4; 5; 6; 7; 8g /U ¼ f1; 1; 1; 1; 1; 1; 1; 1g
A ¼ f2; 4; 6; 8g /A ¼ f0; 1; 0; 1; 0; 1; 0; 1g
B ¼ f3; 6g / B ¼ f0; 0; 1; 0; 0; 1; 0; 0g
The bit sequences representing the union, intersection, difference, and sym-

metric difference of sets A and B are thus as follows:

AWB ¼ f2; 3; 4; 6; 8g/AWB ¼ f0; 1; 1; 1; 0; 1; 0; 1g
AXB ¼ f6g /AXB ¼ f0; 0; 0; 0; 0; 1; 0; 0g
A � B ¼ f2; 4; 8g /A � B ¼ f0; 1; 0; 1; 0; 0; 0; 1g
A4B ¼ f2; 3; 4; 8g /A4B ¼ f0; 1; 1; 1; 0; 0; 0; 1g
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It is important to note that there is a close relationship between sets and bit strings. For
instance, Table 5.6 lists the bit sequences representing all subsets of the set fa; b; c; dg.

5.6 Multisets

As defined earlier, a set is an unordered collection of objects, where the multiplicity of
objects is ignored, and the membership of an object has a binary status, that is, either
an element belongs to the set or it does not. We now deviate from this general definition
of a set to briefly introduce multisets, where the multiplicity of an object is explicitly sig-
nificant, and later present fuzzy sets, where membership of an object is not binary but a
continuum of values.

A multiset (short form for multiple-membership set), also known as a bag, is an un-
ordered collection of objects where an object can occur as a member of a set more than
once, that is, repeated occurrences of objects are allowed. For instance, multisets
f7; 8; 9g and f9; 8; 7g are the same, but multisets f7; 8; 9g and f7; 8; 7; 9g are
different. The number of occurrences, given for each element, is called the multiplicity
of the element in the multiset. A multiset corresponds to an ordinary set if the multiplicity
of every element is one.

Example of multisets may include the multiset of prime factors of an integer, such as
the integer 360 that has the prime factorization 360 ¼ 23 � 32 � 51, which gives the
multiset {2, 2, 2, 3, 3, 5}. The sets of distinct letters forming the words “are,” “era,”
“ear,” and “rear” are the same, which is fr; a; eg; however, their multisets of letters

TABLE 5.6 Representation of subsets by bit strings.

Subset Bit string

B 0000
fag 1000
fbg 0100
fcg 0010
fdg 0001
fa; bg 1100
fa; cg 1010
fa; dg 1001
fb; cg 0110
fb; dg 0101
fc; dg 0011
fa; b; cg 1110
fa; b; dg 1101
fa; c; dg 1011
fb; c; dg 0111
fa; b; c; dg 1111

Sets 85



forming these words are different, as the multiset of the words “are,” “era,” and “ear” is
fr; a; eg, whereas that for the word “rear” is fr; r; a; eg.

The multiset A is a subbag of the multiset B, that is, A4B, if the number of occur-
rences of each element x in A is less than or equal to the number of occurrences of x in B.
For instance, if A ¼ fa; b; c; bg and B ¼ fa; b; c; a; bg, then A is a subbag of B, but B
is not a subbag ofA. Two bagsA and B are equal if and only ifA is a subbag of B and B is a
subbag of A.

The notation fm1$a1; m2$a2; .; mn$ang denotes the multiset with the element
a1 occurring m1 times, the element a2 occurring m2 times, and so on. The numbers
mi; i ¼ 1; .; n are called the multiplicities of the elements ai; i ¼ 1; .; n, where
elements not in a multiset are assigned 0 as their multiplicity. The cardinality of a multiset
is determined by summing up the multiplicities of all its elements, that is,
m1 þ m2 þ. þ mn. For example, in the multiset fc; a; n; a; d; i; a; ng, the multi-
plicities of the distinct members c, a, n, d, and i are respectively 1; 3; 2; 1, and 1, and
therefore the cardinality of this multiset is 8 ð¼ 1 þ3 þ2 þ1 þ1Þ.

The union or intersection of two multisets is the multiset in which the multiplicity of
an element is the maximum or the minimum of its multiplicities in those two multisets,
respectively. The difference of two multisets is the multiset in which the multiplicity of an
element is the difference between the multiplicities of the element in these two multisets,
unless the difference is negative, in which case the multiplicity is 0. The sum of two multi-
sets is the multiset in which the multiplicity of an element is the sum of multiplicities in
those two multisets.

Example 5.10
Suppose that H and K are the multisets f4$a; 3$b; 2$c; 1$dg and f2$a; 3$b;
4$c; 1$eg, respectively. Determine their union ðHWKÞ, intersection ðHXKÞ,
difference ðH � KÞ, and sum ðH þ KÞ.
Solution
We thus have the following multisets sets:

HWK ¼ fmaxð4; 2Þ$a;maxð3; 3Þ$b;maxð2; 4Þ$c;maxð1; 0Þ$d;maxð0; 1Þ$eg
¼ f4$a; 3$b; 4$c; 1$d; 1$eg.

HXK ¼ fminð4; 2Þ$a;minð3; 3Þ$b;minð2; 4Þ$c;minð1; 0Þ$d;minð0; 1Þ$eg
¼ f2$a; 3$b; 2$cg.

H � K ¼ fmaxð4� 2; 0Þ$a;maxð3� 3; 0Þ$b;maxð2� 4; 0Þ$c;maxð1� 0; 0Þ$d;
maxð0� 1; 0Þ$eg

¼ f2$a; 1$dg.
H þ K ¼ fð4 þ2Þ$a; ð3 þ3Þ$b; ð2 þ4Þ$c; ð1 þ0Þ$d; ð0 þ1Þ$eg

¼ f6$a; 6$b; 6$c; 1$d; 1$eg.
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5.7 Fuzzy Sets

In a world of many shades of gray, a black-white dichotomy is an unnecessary artificial
imposition. The concept of fuzzy sets is an important and practical generalization of the
notion of classical sets. For instance, if the universe of discourse consists of knowledgeable
people, then in fuzzy set theory, members of a set can have varying degrees of knowl-
edge. Fuzzy sets, introduced by Lotfi Zadeh, where each member of the set is defined
by the degree of fuzziness, have an array of applications in modeling, control systems, lin-
guistics, information retrieval, decision-making, and of course artificial intelligence,
where information is incomplete or imprecise.

In classical set theory, a set A is defined in terms of its characteristic function mAðxÞ, a
mapping from the universal set U to the binary set f0; 1g, where x belongs to A if and
only if mAðxÞ ¼ 1 and x does not belong to A if and only if mAðxÞ ¼ 0. In fuzzy set
theory, a set A is defined in terms of its membership function mAðxÞ, a mapping from
the universal set U to the unit interval ½0; 1�, where x in the fuzzy set A has a certain
degree of membership. Therefore the fuzzy set A is denoted by listing the elements
with their degrees of membership.

Classical sets are special cases of fuzzy sets, in which the membership functions of fuzzy
sets only take values 0 or 1. In the context of fuzzy sets, classical sets are usually called crisp
sets. For instance, the membership functions for fuzzy and crisp sets of tall people reflect-
ing their degrees of tallness are shown in Fig. 5.5. The crisp set assigns a number from the
binary set f0; 1g to indicate whether a person is considered tall or not (e.g., whether the
person’s height is greater than or less than 180 cm), whereas the fuzzy set assigns a real
number in the interval ½0; 1� to indicate the extent to which a person is a member of
the set of tall people (e.g., the person’s height ranges between 170 cm and 190 cm).

The degree of fuzziness for each member of the fuzzy set needs to be always specif-
ically stated, noting that elements with 0 degree of membership are not listed. As an
example, the fuzzy set A of healthy people consists of a, b, c, d, and e, whose degrees

Fig. 5.5 Membership functions of sets.
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of membership (i.e., degrees of healthiness) are as follows: mAðaÞ ¼ 0:99, mAðbÞ ¼ 0:9,
mAðcÞ ¼ 0:5, mAðdÞ ¼ 0:05, and mAðeÞ ¼ 0:001. In turn, this points to a being the
healthiest and e having the poorest health in the fuzzy setA. As another example, the fuzzy
setB of wealthy people consists of a, b, c, and d,whose degrees of membership (i.e., degrees
of wealthiness) are as follows: mBðaÞ ¼ 0:999, mBðbÞ ¼ 0:95, mBðcÞ ¼ 0:2, and
mBðdÞ ¼ 0:001. This in turn indicates that a is the wealthiest and d is the poorest in
the fuzzy set B.

The concepts of set inclusion and equality can also be extended to fuzzy sets.
Assuming A and B are fuzzy sets, we have A3B, that is, A is a proper subset of B, if
and only if for every element x, we have mAðxÞ < mBðxÞ, and we have A ¼ B if and
only if for every element x, we have mAðxÞ ¼ mBðxÞ.

Set operations in classical sets can be extended to fuzzy sets in terms of membership
function, namely, we have
• The complement of fuzzy set A is Ac, where mAcðxÞ ¼ 1 � mAðxÞ.
• The union of fuzzy sets A and B is AWB, where mAWBðxÞ ¼ maxfmAðxÞ;mBðxÞg.
• The intersection of fuzzy sets A and B is AXB, where mAXBðxÞ ¼

minfmAðxÞ;mBðxÞg.

Example 5.11
Suppose the fuzzy set I of three intelligent students a, b, and c has the degrees of
membership mIðaÞ ¼ 0:9, mIðbÞ ¼ 0:7, and mIðcÞ ¼ 0:3, respectively, and the
fuzzy set D of three diligent students a, b, and c has the degrees of membership
mDðaÞ ¼ 0:5, mDðbÞ ¼ 0:6, and mDðcÞ ¼ 0:8, respectively. Determine the
fuzzy sets IWD and IXD.

Solution
We thus have the following fuzzy sets:

IWD ¼ fajmIWDðaÞ ¼ 0:9; bjmIWDðbÞ ¼ 0:7; cjmIWDðcÞ ¼ 0:8g
and

IXD ¼ fajmIXDðaÞ ¼ 0:5; bjmIXDðbÞ ¼ 0:6; cjmIXDðcÞ ¼ 0:3g:

5.8 Paradoxes in Set Theory

A paradox is defined as a self-contradictory statement that at first seems true. There are
paradoxes in naïve set theory, where any property whatever (i.e., without restrictions) as
the defining property of a set can lead to paradoxes (logical inconsistencies). We now
introduce just a few well-known paradoxes in set theory.
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Suppose S is the set of all sets, then every subset of S is also a member of S. The power
set PðSÞ is therefore a subset of S, that is, we have PðSÞ4S, which in turn means
jPðSÞj � jSj. However, we know that we always have jSj < jPðSÞj. Thus the concept
of the set of all sets leads to a contradiction, known as Cantor’s paradox. Most sets are not
members of themselves, yet a few are. For instance, the set of all countries is not a coun-
try, therefore such a set does not belong to the set of countries. On the other hand, the set
of all sets each having at least one member is a set with at least one member, therefore
such a set does belong to the set of all sets each having at least one member (i.e., such
a set belongs to itself).

Suppose S is the set of all sets that are not members of themselves, that is, we have
fS j S is a set; S;Sg. Is S a member of itself, that is, do we have S˛S? On the one
hand, if S˛S, then by definition, S;S but on the other hand, if S;S, then again by
definition, S˛S. Therefore in either case, there is a contradiction. This paradox, known
as Russel’s paradox, shows that not every predicate defines a set, that is there is no set
consisting of all sets that do not contain themselves. Russel devised a puzzle, known as
the barber puzzle, to help explain his paradox. In a certain town, there is a male barber
who shaves all those men, and only those men, who do not shave themselves. The ques-
tion is, who shaves the barber? The answer is neither yes nor no.

The liar’s paradox, also known as Epimenides’ paradox, reveals a problem with self-
reference. A person says, “I am lying.” If the person is lying, then the sentence “I am
lying” is false. Hence the person is telling the truth. If the person is telling the truth,
then the sentence “I am lying” is true. Hence the person is lying.

It is interesting to note that there may be cases in which countably infinite sets, vis-
�a-vis finite sets, can address certain issues. This is best illustrated byHilbert’s paradox. Hil-
bert imagined a grand hotel that has a countably infinite number of rooms, each occupied
by a guest. In a hotel with a finite number of rooms where all rooms are occupied, a new
guest cannot be accommodated without evicting a current guest. However, in the grand
hotel, a new guest can always be accommodated, even when all rooms are occupied.
Moving the guest in room 1 to room 2, the guest in room 2 to room 3, and so forth,
frees up room 1, which we assign to the new guest, and all the current guests have rooms.

Exercises
(5.1)
Using the truth table, prove the following set identities:
(a) A4B ¼ ðAWBÞ � ðAXBÞ:
(b) A4B ¼ ðA� BÞWðB� AÞ:
(c) A � B ¼ AXBc:

(5.2)
(a) Prove the set identity ðAWBÞ � ðC �AÞ ¼ AWðB �CÞ.
(b) Write the dual of the set identity ðUXAÞWðBXAÞ ¼ A.
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(5.3)
(a) Using set identities, verify that ðX �YÞ � Z ¼ X � ðYWZÞ.
(b) Simplify the set expression ðAXBcÞWðAcXBÞWðAcXBcÞ.
(5.4)
(a) Find the Cartesian product of sets A ¼ fxg; B ¼ fy; zg; and

C ¼ f1; 2; 3g
(b) Partition the set of nonnegative integers into four blocks of integers.

(5.5)
AssumingAi ¼ f::; �4; �3; �2; �1; 0; 1; 2; 3; 4; :::; ig, determine the following
set expressions:
(a) Wn

i¼1Ai:
(b) Xn

i¼1Ai:

(5.6)
In a survey of 1200 people, it was found that 650 have shares of AA stock, 450
have shares of GG stock, and 420 have shares of ZZ stock. It was also found
that 200 have shares in both AA and GG stocks, 250 have shares in both AA
and ZZ stocks, 150 have shares in both GG and ZZ stocks, and 80 have shares
in all three AA, GG, and ZZ stocks.
(a) Determine the number of people who have shares at least in one of the three

stocks.
(b) Determine the number of people who have shares exactly in one stock.

(5.7)
Consider the set A ¼ fa; b; c; dg.
(a) Determine the power set of A.
(b) Find all partitions of A.

(5.8)
Let A, B, and C be sets. Prove ðAWðBXCÞÞc ¼ ðCcWBcÞXAc using the
following methods:
(a) Membership tables.
(b) Set identities.

(5.9)
Let U ¼ fa; b; c; d; e; f ; g; hg, A ¼ fb; e; g; hg, and B ¼ fa; b; c; e; gg.
Using bit representations, find the following sets as eight-bit words:
(a) AXB:
(b) AWB:
(c) A4B:
(d) Ac:
(e) B � A:
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(5.10)
Five people, a, b, c, d, and e, are rated based on how rich they are, yielding the
following fuzzy set:

R ¼ fajmRðaÞ ¼ 0:9; bjmRðbÞ ¼ 0:7; cjmRðcÞ ¼ 0:5; djmRðdÞ ¼ 0:3; ejmRðeÞ ¼ 0:05g

and based on their conservatism in their political beliefs, yielding the following
fuzzy set:

C ¼ fajmCðaÞ ¼ 0:99; bjmCðbÞ ¼ 0:88; cjmCðcÞ ¼ 0:7; djmCðdÞ ¼ 0:1; ejmCðeÞ ¼ 0:01g:

Determine the fuzzy intersection reflecting their wealth and conservatism.
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Matrices arise in representing discrete structures. In almost all fields, from science and en-
gineering to social and medical sciences, it is necessary to express and use data in rectan-
gular arrays. However, when an array is very large, which is almost always the case,
analytical methods fail, and it is required to obtain numerical solutions. With the advent
of computers and rapid advances in computer processing power and speed in recent de-
cades, matrix formulation of problems as well as efficient methods of matrix manipulation
have been incorporated into all widely used software packages. In this chapter, the basic
aspects of matrices are introduced, and some applications of matrices will be briefly
discussed.

6.1 Definitions and Special Matrices

A matrix is a rectangular array of numbers, and the numbers in the array are called the
entries or elements. A matrix is denoted by a boldface capital letter, such as A, and its en-
tries by a regular lowercase letter with two subscripts, such as aij. In the context of matrix
algebra, a quantity described by a real number and represented by a regular lowercase let-
ter, such as k, is referred to as a scalar.

Matrices vary in size, and the size of a matrix is specified by its number of rows (hor-
izontal sets of numbers) and its number of columns (vertical sets of numbers). Noting that
m and n are positive integers, a matrix A with m rows and n columns is called an m� n
matrix, and thus it has a total of m� n entries. Every entry is denoted by a variable with
two subscripts reflecting its row number and column number. For instance, the entry aij
of the matrix A appears in the ith row and the jth column, where i˛f1; 2; .; mg and
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j˛f1; 2; .; ng. Generally, the entries of a matrix are real numbers. A common short-
hand notation to express the matrix A is to write

�
aij
�
; we thus have the following:

A ¼

0
BB@

a11 / a1n
« 1 «

am1 / amn

1
CCA4 A ¼ �

aij
�
; i ¼ 1; 2; .; m & j ¼ 1; 2; .; n:

Two matrices are said to be equal if they have the same size (i.e., the same number of
rows and the same number of columns) and the corresponding entries in every position in
the two matrices are equal. Therefore the equality of two m� nmatrices is equivalent to
a system of m� n equalities, one for each corresponding pair of entries.

If a matrix has only one row (i.e., m ¼ 1), then it is called a row vector, and if a matrix
has only one column (i.e., n ¼ 1), then it is called a column vector. Vectors are generally
denoted by boldface lowercase letters, such as u and v. Moreover, if m ¼ n ¼ 1, then the
matrix is referred to as a scalar.

A matrix A with the same number of rows as columns (i.e., when m ¼ n) is a square
matrix. The entries a11; a22; .; ann are said to be on the main diagonal of the square
matrix A. The sum of entries on the main diagonal is called the trace. For instance,
the trace of the square matrix A is as follows:

trace A ¼ a11 þ a22 þ . þ ann:

If all entries off the main diagonal of a square matrix are zero, then it is called a diag-
onal matrix. If all entries of the square matrixA below the main diagonal are zero, thenA
is called an upper triangular matrix. If all entries of the square matrix A above the main
diagonal are zero, then A is called a lower triangular matrix. Triangular matrices arise in
solving systems of linear equations.

A square matrix with 1s on the main diagonal and 0s off the main diagonal is called an
identity matrix. An identity matrix of size n is denoted by In; where n � 2 is an integer.
Some examples of identity matrices are as follows:

I2 ¼
 
1 0

0 1

!
; I3 ¼

0
BB@

1 0 0

0 1 0

0 0 1

1
CCA; . In ¼

0
BBBBBBBBBBBB@

1 0

0 1

/ 0

0 «

0

0

«

0

0

«

1

0

0

1

«

0

0 0 / 0 1

1
CCCCCCCCCCCCA

:
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Note that an identity matrix is a diagonal matrix. A matrix whose entries are all 0s is
called a null matrix or a zero matrix. A null matrix of size m� n is denoted by 0m�n;
where m � 2 and n � 2 are both integers. Some examples of null matrices are as follows:

02�3 ¼
 
0 0 0

0 0 0

!
; 03�3 ¼

0
BBB@

1 0 0

0 1 0

0 0 1

1
CCCA; 0m�n ¼

0
BBBBBBBBBBB@

0 0

0 0

/ 0

0 «

0

0

«

0

0

«

0

0

0

0

«

0

0 0 / 0 0

1
CCCCCCCCCCCA

:

If a matrix has relatively few nonzero entries, it is then called a sparse matrix. Sparse
matrices frequently arise in solving large systems of linear equations because in many
physical models, a given variable typically interacts with relatively few others. Linear sys-
tems derived from sparse matrices require less storage space and can be solved more effi-
ciently than those derived from a dense matrix, a matrix where most of its entries are
nonzero.

If the m rows and n columns of the matrix A are interchanged, the resulting matrix is
then called the transpose of the matrix A, denoted by AT, which has n rows and m col-
umns. In other words, we have

A ¼ �
aij
�
4 AT ¼ �

aji
�
; i ¼ 1; 2;.;m & j ¼ 1; 2;.; n:

For instance, the following two matrices A and B are the transpose of one another:

A ¼ BT ¼
 
�1 2 4

�7 0 5

!
& B ¼ AT ¼

0
BB@

�1 �7

2 0

4 5

1
CCA:

Note that the transpose of a row vector is a column vector, and vice versa. If for the
square matrixA, we haveA ¼ AT, then we have aij ¼ aji. Such a matrix is called a sym-
metric matrix. For instance, the identity matrix is a symmetric matrix. Symmetric matrices
are found in many applications, such as control theory, statistical analyses, and optimiza-
tion, and they play important roles in many computations.

Example 6.1
Consider the matrix A ¼

 
x w

z y

!
. Specify the relationship among x, y, z, and

w, and determine their values for each of the following cases.
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(a) A is an upper triangular matrix.
(b) A is a lower triangular matrix.
(c) A is an identity matrix.
(d) A is a null matrix.
(e) A is a symmetric matrix.

Solution
(a) z ¼ 0, where x, y, and w can have any values.
(b) w ¼ 0, where x, y, and z can have any values.
(c) x ¼ y ¼ 1 and z ¼ w ¼ 0.
(d) x ¼ y ¼ z ¼ w ¼ 0.
(e) z ¼ w, where x and y can have any values.

6.2 Matrix Addition and Scalar Multiplication

It is of great importance to highlight the fact that only matrices of the same size can be
added. The sum of any two matrices of the same size is obtained by adding entries in the
corresponding positions. Matrix addition is thus defined as follows:

A ¼ �
aij
�
& B ¼ �

bij
�
/ Aþ B ¼ �

aij þ bij
�
; i ¼ 1; 2;.;m

& j ¼ 1; 2;.; n:

Note that the zero matrix in the context of matrix addition plays much the same role
as the number 0 plays in the arithmetic addition of real numbers. In other words, if the
matrix A and the zero matrix 0 are of the same size, then their sum is A.

Scalar multiplication refers to the product of a matrix A and a scalar k, where every
entry of A is multiplied by the constant k. A matrix of any size can be multiplied by a
scalar. Thus we have

A ¼ �
aij
�
/ kA ¼ �

kaij
�
; i ¼ 1; 2;.;m & j ¼ 1; 2;.; n:

Note that if k ¼ �1, then the matrixeA is called the negative ofA. If for the square
matrix A, we have A ¼ �AT, then we have aij ¼ �aji. Such a matrix is called a skew-
symmetric matrix or antisymmetric matrix. Note that the diagonal entries of a skew-
symmetric matrix are all zero.

The difference between any two matrices of the same size is obtained by subtracting
entries in the corresponding positions. Matrix subtraction is thus defined as follows:

A ¼ �
aij
�
& B ¼ �

bij
�
/ A� B ¼ Aþ ð� 1ÞB ¼ �

aij þ ð� 1Þbij
�
; i ¼ 1;.;m

& j ¼ 1;.; n:

Note that matrices of different sizes cannot be added or subtracted. Thus we can
conclude that a linear combination of any number of matrices can be determined as
long as all matrices are of the same size.
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Example 6.2
Suppose the matrices A, B, and C are as follows:

A ¼
 
x 1

1 y

!
;B ¼

 
1 z

4 2

!
& C ¼ 2A� 3BT ¼

 
3 t

w 2

!
:

Noting C is a symmetric matrix, determine the values of the unknown vari-
ables x, y, z, w, and t, as well as the matrices A, B, and C.

Solution
Because C is a symmetric matrix, we have t ¼ w. Having B, its transpose is then

BT ¼
 
1 4

z 2

!
. Thus we can obtain the following:

C ¼ 2A� 3BT ¼ 2

 
x 1

1 y

!
þ ð�3Þ

 
1 4

z 2

!

¼
 
2x 2

2 2y

!
þ
 

�3 �12

�3z �6

!
¼
 
2x� 3 2� 12

2� 3z 2y� 6

!

¼
 

3 w

w 2

!
:

The equality of the two 2� 2 matrices warrants a system of 4 ð¼ 2�2Þ
equations, one for each corresponding pair of entries. Thus we have

8>>>>>>><
>>>>>>>:

2x� 3 ¼ 3

2� 12 ¼ w

2� 3z ¼ w

2y� 6 ¼ 2

/

8>>>>>>><
>>>>>>>:

x ¼ 3

w ¼ �10

z ¼ 4

y ¼ 4

/

A ¼
 
3 1

1 4

!
;B ¼

 
1 4

4 2

!
& C ¼

 
3 �10

�10 2

!
:

6.3 Matrix Multiplication

It is important to note that the product of two matrices is defined only when the number
of columns in the first matrix and the number of rows in the second matrix are the same.
If the matrix A is an m� n matrix and the matrix B is an n� r matrix, then the product
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ofA and B, i.e.,AB, is the m� r matrix whose entry in the ith row and the kth column is
the sum of the product of the corresponding entries from the ith row of A and the kth
column of B. Matrix multiplication is defined as follows:

A ¼ �
aij
�
& B ¼ �

bjk
�
/ C ¼ AB ¼ ðcikÞ ¼

 Xn
j¼1

aijbjk

!
; i ¼ 1;.;m

& k ¼ 1;.; r:

A convenient way to determine whether a product of two matrices is defined is to
write down the size of the first matrix, i.e., m � n, and to the right of it, write down
the size of the second matrix, i.e., n � r. If the inside integers are the same, then the prod-
uct is defined. The outside integers, i.e., m � r, then give the size of the product. In other
words, we have

Am�n � Bn�r ¼ Cm�r :

Note that the identity matrix in the context of matrix multiplication plays much the
same role as the number 1 plays in the arithmetic multiplication of real numbers. In other
words, if the matrix A and the identity matrix I can be multiplied, then their product
is A.

In general, the commutative law for multiplication does not hold in matrix algebra. In
other words, AB and BA need not be equal. One reason can be that AB is defined, but
BA is undefined, say A is a 3� 3 matrix and B is a 3� 2 matrix. Another reason can be
that AB and BA are both defined but have different sizes, say A is a 2� 3 matrix and B is
a 3� 2 matrix. Finally, AB and BA are both defined and have the same size (A and B are
both square matrices), but the end results are different, that is, ABsBA.

Example 6.3
Consider the row vector A ¼ ð 1 3 2 Þ and the row vector BT ¼ ð 3 2 4 Þ.
Determine AB and BA.

Solution
We have the following matrix products:

AB ¼ ð 1 3 2 Þ

0
BB@

3

2

4

1
CCA ¼ 17:
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and

BA ¼

0
BB@

3

2

4

1
CCAð 1 3 2 Þ ¼

0
BB@

3 9 6

2 6 4

4 12 8

1
CCA:

Both AB and BA are defined, yet they have different sizes.

Example 6.4
Consider the following four matrices:

A ¼
 
0 2

0 4

!
;B ¼

 
2 2

6 8

!
;C ¼

 
4 10

6 8

!
; & D ¼

 
9 21

0 0

!
:

Determine AB, BA, AC, and AD. Comment on the results.

Solution
We obtain the following matrix products:

AB ¼
 
12 16

24 32

!
;BA ¼

 
0 12

0 44

!
;AC ¼

 
12 16

24 32

!
& AD ¼

 
0 0

0 0

!
:

BothAB and BA are defined, but they are not equal. We haveAB ¼ AC and
As 0; nevertheless, we cannot employ the cancellation law that exists in the arith-
metic of real numbers. More specifically, it is incorrect to cancel A from both sides
of AB ¼ AC and write B ¼ C because we know B and C are not equal. Also,
we have AD ¼ 0, but neither A nor D is a zero matrix; this is another rule of the
arithmetic of real numbers that does not hold for matrix algebra.

Multiplication by diagonal matrices has the effect of scaling the rows or columns of a ma-
trix. More specifically, premultiplication by a diagonal matrix scales the rows, and post-
multiplication by a diagonal matrix scales the columns.

Example 6.5
Consider the following two matrices:

A ¼
 
4 0

0 7

!
& B ¼

 
1 2

3 4

!
:

Determine AB and BA. Comment on the results.
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Solution
We have the following matrix products:

AB ¼
 

4 8

21 28

!
& BA ¼

 
4 14

12 28

!
:

Note that the nonzero entries of the diagonal matrix A are 4 and 7. By
comparing AB to B, we realize that the first row of B has been multiplied by
4 ð ¼ a11Þ and its second row by 7 ð ¼ a22Þ to get AB. By comparing BA to
B, we realize that the first column of B has been multiplied by 4 ð ¼ a11Þ and
its second column by 7 ð ¼ a22Þ to get BA.

Powers of square matrices can be defined, as matrix multiplication is associative. Assuming
A is an n� nmatrix, we can then defineAr ,meaning the matrixA is multiplied by itself r
times, where r is a positive integer. For instance, for r ¼ 2, we have A2 ¼ AA, and for
r ¼ 1, we have A1 ¼ A. Note that A0bIn.

6.4 Matrix Inversion

A square matrix A is said to be invertible if there exists a square matrix B such that

AB ¼ BA ¼ I / B ¼ A�1 & A ¼ B�1;

where the matrix B is called the inverse of the matrix A and denoted by A�1. If B is the
inverse of A, then A is the inverse of B. A square matrix that is not invertible is called
singular. Note that if a matrix is not square, then it has no inverse. In addition, a product
of invertible matrices is always invertible, and the inverse of the product is the product of

the inverses in the reverse order, that is, we have ðABÞ�1 ¼ B�1A�1. The inverse of the
matrix A plays much the same role in matrix algebra that the reciprocal of a number plays
in the arithmetic of real numbers.

An effective method to find the inverse of a matrix is to employ the elementary row
operations. The elementary row operations consist of the following suboperations:

• Interchange two rows.
• Multiply all entries in a row by a nonzero number.
• Add a multiple of a row to another row.

To find the inverse of the matrix A of size n using the elementary row operations, we
take the following steps:
1. Form the n� 2n matrix ðA; IÞ, that is, the matrix A is in the left half of it and the

identity matrix I is in its right half.
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2. Play around with the rows by row switching, row multiplication, and row addition,
in no particular order, to change ðA; IÞ step by step to form ðI;BÞ, where the identity
matrix I has then replaced A in the left half. It is of great importance that there is no
unique set of steps to make ðA; IÞ into ðI;BÞ, as the process highly depends on the
matrix A. It is imperative to note that if the process generates a zero row in the
left half, then A has no inverse.

3. Set A�1 ¼ B, where B is in the right half of the resulting matrix.

Example 6.6
Consider the matrix A ¼

0
BB@

1 1 2

2 1 0

1 2 2

1
CCA. Determine A�1.

Solution
We first form the matrix ðA; IÞ and then use the elementary row operations to
create the matrix ðI;BÞ starting with the leftmost column of ðA; IÞ, noting that
R1, R2, and R3 refer to row 1, row 2, and row 3, respectively. Thus we have

ðA; IÞ ¼

0
BBBB@

1 1 2

2 1 0

1 2 2

1 0 0

0 1 0

0 0 1

1
CCCCA
:

Use

R1 ¼ R1

R2 ¼ R2� 2� R1

R3 ¼ R3� R1

to obtain

0
BBBB@

1 1 2

0 �1 �4

0 1 0

1 0 0

�2 1 0

�1 0 1

1
CCCCA
.

Use

R1 ¼ R1þ R2

R2 ¼ �R2

R3 ¼ R3þ R2

to obtain

0
BBBB@

1 0 �2

0 1 4

0 0 �4

�1 1 0

2 �1 0

�3 1 1

1
CCCCA
.

Use

R1 ¼ R1

R2 ¼ R2

R3 ¼ �0:25� R3

to obtain

0
BBBB@

1 0 �2

0 1 4

0 0 1

�1 1 0

2 �1 0

0:75 �0:25 �0:25

1
CCCCA
.
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Use

R1 ¼ R1þ 2� R3

R2 ¼ R2� 4�R3

R3 ¼ R3

to obtain

0
BBBB@

1 0 0

0 1 0

0 0 1

0:5 0:5 �0:5

�1 0 1

0:75 �0:25 �0:25

1
CCCCA

¼ ðI;BÞ:

Thus we have

B ¼ A�1 ¼

0
BB@

0:5 0:5 �0:5

�1 0 1

0:75 �0:25 �0:25

1
CCA ¼ 1

4

0
BB@

2 2 �2

�4 0 4

3 �1 �1

1
CCA:

Example 6.7

Consider the matrix C ¼

0
BB@

1 3 �4

1 5 �1

3 13 �6

1
CCA. Determine C�1.

Solution
We first form the matrix ðC; IÞ and then use the elementary row operations to
create the matrix ðI;DÞ starting with the leftmost column of ðC; IÞ, noting
that R1, R2, and R3 refer to row 1, row 2, and row 3, respectively. Thus we have

ðC; IÞ ¼

0
BBBB@

1 3 �4

1 5 �1

3 13 �6

1 0 0

0 1 0

0 0 1

1
CCCCA
:

Use

R1 ¼ R1

R2 ¼ R2�R1

R3 ¼ R3� 3�R1

to obtain

0
BBBB@

1 3 �4

0 2 3

0 4 6

1 0 0

�1 1 0

�3 0 1

1
CCCCA
.

Use

R1 ¼ R1

R2 ¼ R2

R3 ¼ R3� 2� R2

to obtain

0
BBBB@

1 3 �4

0 2 3

0 0 0

1 0 0

�1 1 0

�1 �2 1

1
CCCCA
.

A zero row in its left half of the matrix indicates that C has no inverse.
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If the inverse of a real square matrix A is equal to its transpose, that is, A�1 ¼ AT, then
the matrix is called an orthogonal matrix.

Example 6.8
Show the matrix A ¼ 1

9

0
BB@

4 8 1

7 �4 4

�4 1 8

1
CCA is orthogonal.

Solution
Using the elementary row operations, the inverse of the matrix A is as follows:

A�1 ¼ 1
9

0
BB@

4 7 �4

8 �4 1

1 4 8

1
CCA:

Noting that A�1 ¼ AT, A is an orthogonal matrix.

Table 6.1 presents a list of matrix properties, where a, b, and c are some scalars, n is a pos-
itive integer, andA, B, andC as well as I and 0 have sizes that allow the matrix operations
to be performed.

TABLE 6.1 Matrix identities.

Aþ B ¼ Bþ A
Aþ ðBþCÞ ¼ ðAþBÞ þ C

AðBCÞ ¼ ðABÞC
AðB�CÞ ¼ AB� AC
ðB�CÞA ¼ BA� CA
aðB�CÞ ¼ aB� aC
ða�bÞC ¼ aC � bC

(abÞC ¼ aðbCÞ
aðBCÞ ¼ ðaBÞC ¼ BðaCÞ

Aþ 0 ¼ 0þ A ¼ A
A � A ¼ 0
0 � A ¼ �A
A0 ¼ 0A ¼ 0

IA ¼ A
AI ¼ A�
AT
�
T ¼ A

ðAþ BÞT ¼ AT þ BT

ðaAÞT ¼ aAT

ABð ÞT ¼ BTAT

AA�1 ¼ A�1A ¼ I
ðABÞ�1 ¼ B�1A�1�

A�1
��1 ¼ A

ðAnÞ�1 ¼ �
A�1

�n
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6.5 Zero-One Matrix

Assuming a and b are binary digits, also known as bits (0 or 1), the Boolean operationsn
and ^ are defined as follows:

anb ¼
(
0 if a ¼ b ¼ 0

1 otherwise

and

a^b ¼
(
1 if a ¼ b ¼ 1

0 otherwise

A matrix whose entries are either 0 or 1 and subject to the Boolean operations is called
a zero-one matrix, Boolean matrix, or logical matrix. LetA and B be zero-one matrices of
the same size. The join of A and B, denoted by AnB, and the meet of A and B, denoted
by A^B, are defined respectively as follows:

AnB ¼ �
aijnbij

�

and

A^B ¼ �
aij^bij

�
:

Let A ¼ �
aij
�
be an m� n zero-one matrix and B ¼ �

bij
�
be an n� r zero-one ma-

trix. The Boolean product of A and B, denoted by A1B, is the m� r zero-one matrix
C ¼ �

cij
�
, where we have the following:

A1B ¼ C/ðcikÞ ¼ ððai1^b1kÞn.nðain^bnkÞÞ; i ¼ 1;.;m & k ¼ 1;.; r:

The Boolean product is obtained in the same fashion as the ordinary product of
matrices where addition and multiplication are replaced with the operations n and ^
respectively, noting that the Boolean product can be obtained by finding the usual prod-
uct of matrices and then replacing any nonzero integer by 1.

Example 6.9
Suppose we have the following zero-one matrix:

A ¼

0
BB@

1 1 0

0 1 1

1 0 0

1
CCA:

Determine the Boolean power of Ar , where r � 2 is an integer.
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Solution
We find Ar , r ¼ 2; 3, ., until we see a pattern.

A2 ¼

0
BB@

1 1 0

0 1 1

1 0 0

1
CCA

0
BB@

1 1 0

0 1 1

1 0 0

1
CCA ¼

0
BB@

1 1 1

1 1 1

1 1 0

1
CCA

A3 ¼ AA2 ¼

0
BB@

1 1 0

0 1 1

1 0 0

1
CCA

0
BB@

1 1 1

1 1 1

1 1 0

1
CCA ¼

0
BB@

1 1 1

1 1 1

1 1 1

1
CCA

and

A4 ¼ AA3 ¼

0
BB@

1 1 0

0 1 1

1 0 0

1
CCA

0
BB@

1 1 1

1 1 1

1 1 1

1
CCA ¼

0
BB@

1 1 1

1 1 1

1 1 1

1
CCA:

Because A3 ¼ A4, we can conclude that Ar ¼ A3 for every integer r � 3.

6.6 Applications of Matrices

There are applications of matrices in multitudes of fields, as reflected in Table 6.2. How-
ever, the brief focus of this section is only on three applications, namely, solving systems
of linear equations, the best fitting of a linear function, and linear transformations.

TABLE 6.2 Applications of matrices.

Systems of linear equations
Mesh and node analysis in circuits

Markov chains in stochastic processes
Multivariate normal distribution
Leontief models in economics

Optimal strategy in game theory
Inheritance of traits in genetics

Simplex method in linear programming
Least squares fitting of a straight line

Cryptography
Geometrical optics
Computer graphics

Equilibrium of rigid bodies
Finite methods

Network modeling
Channel coding in digital systems

Linear transformations
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One of the important applications of matrices is to help solve systems of linear
equations efficiently. Matrices can be used to compactly write and work with n linear
equations with n unknowns, as follows:

8>>>>>>><
>>>>>>>:

a11x1 þ a12x2 þ.þ a1nxn ¼ b1

a21x1 þ a22x2 þ.þ a2nxn ¼ b2

« ¼ «

an1x1 þ an2x2 þ.þ annxn ¼ bn

/

0
BBBBBB@

a11 a12

a21 a22

. a1n

. a2n

« «

an1 an2

« «

. ann

1
CCCCCCA

0
BBBBBB@

x1

x2

«

xn

1
CCCCCCA

¼

0
BBBBBB@

b1

b2

«

bn

1
CCCCCCA

/ Ax ¼ b;

where A is the matrix of coefficients, x is the vector of unknowns, and b is the vector of
constants. If b ¼ 0, the system is called homogeneous, and if bs0, the system is called
nonhomogeneous.

When a system of linear equation has at least one solution, it is said to be consistent;
otherwise, it is called inconsistent. Table 6.3 provides all possible cases arising in finding a
solution to a system of linear equations.

Example 6.10
Solve the following systems of linear equations:

(a)

(
2x1 � x2 ¼ 0

3x1 þ x2 ¼ 5

(b)

(
2x1 � x2 ¼ 0

3x1 þ x2 ¼ 0

(c)

(
2x1 � x2 ¼ 0

4x1 � 2x2 ¼ 5

TABLE 6.3 Possible solutions to a system of linear equations.

b ¼ 0 bs0

A�1 exists The trivial solution: x ¼ 0 A unique solution:
x ¼ A�1b; xs0

A�1 does not exist Infinitely many solutions Either no solution or infinitely
many solutions
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(d)

(
2x1 � x2 ¼ 2:5

4x1 � 2x2 ¼ 5

(e)

(
2x1 � x2 ¼ 0

4x1 � 2x2 ¼ 0

Solution

(a)

(
2x1 � x2 ¼ 0

3x1 þ x2 ¼ 5
/ b ¼

 
0

5

!
s0 & A ¼

 
2 �1

3 1

!
/

A�1 ¼
 

0:2 0:2

�0:6 0:4

!
/ x ¼

 
0:2 0:2

�0:6 0:4

! 
0

5

!
¼
 
1

2

!
/

A unique solution ðx1 ¼ 1; x2 ¼ 2Þ.

(b)

(
2x1 � x2 ¼ 0

3x1 þ x2 ¼ 0
/ b ¼

 
0

0

!
¼ 0 & A ¼

 
2 �1

3 1

!
/

A�1 ¼
 

0:2 0:2

�0:6 0:4

!
/ x ¼

 
0:2 0:2

�0:6 0:4

! 
0

0

!
¼
 
0

0

!
/

The trivial solution ðx1 ¼ x2 ¼ 0Þ.

(c)

(
2x1 � x2 ¼ 0

4x1 � 2x2 ¼ 5
/ b ¼

 
0

5

!
s0 & A ¼

 
2 �1

4 �2

!
/

A�1 does not exist /

(
4x1 � 2x2 ¼ 0

4x1 � 2x2 ¼ 5
/

Inconsistent equations / No solution

(d)

(
2x1 � x2 ¼ 2:5

4x1 � 2x2 ¼ 5
/ b ¼

 
2:5

5

!
s0 & A ¼

 
2 �1

4 �2

!
/

A�1 does not exist /

(
4x1 � 2x2 ¼ 5

4x1 � 2x2 ¼ 5
/

Only one equation ð# of equations < # of unknownsÞ /
Infinitely many solutions ðx1 ¼ t & x2 ¼ 2t � 2:5; the trivial solution
not includedÞ:

(e)

(
2x1 � x2 ¼ 0

4x1 � 2x2 ¼ 0
/ b ¼

 
0

0

!
¼ 0 & A ¼

 
2 �1

4 �2

!
/

A�1 does not exist /

(
4x1 � 2x2 ¼ 0

4x1 � 2x2 ¼ 0
/

Only one equation ð# of equations < # of unknownsÞ /
Infinitelymany solutions ðx1 ¼ t & x2 ¼ 2t ct; including the trivial solution).
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Another important application of matrices lies in the best fitting of a polynomial function
to a set of points in the plane. Our brief focus here is the least squares fitting of a straight
line to bivariate data, which is known as linear regression. It is commonly available in sta-
tistical software packages.

Given n > 1 points ðx1; y1Þ, ðx2; y2Þ; .; ðxn; ynÞ, the least squares straight line fit is
y ¼ mxþ b, where the unknown constants m and b can be found as follows:

X ¼

0
BBBBBB@

1 x1

1 x2

«

1

«

xn

1
CCCCCCA

& y ¼

0
BBBBBB@

y1

y2

«

yn

1
CCCCCCA

/ v ¼ �
XTX

��1XTy ¼
�

b
m

�
:

Example 6.11
Find the least squares straight line fit to the four points ð0; 1Þ, ð1; 3Þ, ð2; 4Þ, and
ð3; 4Þ.
Solution
We have

X ¼

0
BBBBBBB@

1 0

1 1

1 2

1 3

1
CCCCCCCA

/ XT ¼
 
1 1 1 1

0 1 2 3

!
/

XTX ¼
 
1 1 1 1

0 1 2 3

!

0
BBBBBBB@

1 0

1 1

1 2

1 3

1
CCCCCCCA

¼
0
@ 4 6

6 14

1
A/

�
XTX

��1 ¼
 

0:7 �0:3

�0:3 0:2

!
& y ¼

0
BBBBBB@

1

3

4

4

1
CCCCCCA
:
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We can now find the unknowns m and b as follows:

v ¼
 

0:7 �0:3

�0:3 0:2

! 
1 1 1 1

0 1 2 3

!
0
BBBBB@

1

3

4

4

1
CCCCCA

¼
�
1:5
1

�
¼
�

b
m

�
/ y ¼ xþ 1:5:

Linear transformations, also known as linear maps, can be performed by using matrices. A
real m� n transformation matrix A gives rise to a linear transformation Rn / Rm,
mapping each column vector x in Rn to the matrix productAx,which is a column vector
in Rm. In a two-dimensional system, linear transformations can be represented using a
2� 2 transformation matrix. The most common geometric transformations in R2 that
keep the origin fixed are linear, and they are as follows:
• Rotation (by an angle about the origin).
• Scaling (stretching or compression along the x-axis or the y-axis).
• Shearing (a transformation in which all points along a given line remain fixed,

whereas other points are shifted parallel the line by a distance proportional to their
perpendicular distance from the line).

• Reflection (with respect to the x-axis or the y-axis).
• Squeezing (stretching in one axis and compression in the other axis).

Example 6.12
Suppose we have a unit square whose vertices are ð0; 0Þ, ð1; 0Þ, ð0; 1Þ, and
ð1; 1Þ. Suppose we use the following matrix A to transform this square to a quad-
rilateral shape.

A ¼
 
a b

c d

!
:

Determine the type of the quadrilateral shape. What should be the relationship
among a, b, c, and d that the quadrilateral shape becomes a rhombus whose every
side is 1?

Matrices 109



Solution
The vertices of the quadrilateral shape are as follows:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0
B@

x1

y1

1
CA ¼

0
B@

a b

c d

1
CA

0
B@

0

0

1
CA ¼

0
B@

0

0

1
CA

0
B@

x2

y2

1
CA ¼

0
B@

a b

c d

1
CA

0
B@

1

0

1
CA ¼

0
B@

a

c

1
CA

0
B@

x3

y3

1
CA ¼

0
B@

a b

c d

1
CA

0
B@

0

1

1
CA ¼

0
B@

b

d

1
CA

0
B@

x4

y4

1
CA ¼

0
B@

a b

c d

1
CA

0
B@

1

1

1
CA ¼

0
B@

aþ b

c þ d

1
CA

The line connecting ð0; 0Þ and ða; cÞ and the line connecting ðb; dÞ and
ðaþb; cþdÞ have the same slope of ca, that is, they are parallel. Also, the line con-
necting ð0; 0Þ and ðb; dÞ and the line connecting ða; cÞ and ðaþb; cþdÞ have the
same slope of db, that is, they are parallel. Thus the quadrilateral shape is a parallelo-
gram. To be a rhombus, two adjacent sides of a parallelogrammust be equal, so we
should have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ d2

p ¼ 1.

Exercises
(6.1)
Let A and B be two matrices given by

A ¼
"

xþ y 6

2x� 3 2� y

#
& B ¼

"
5 5xþ 2

y x� y

#
:

Determine if there are values of x and y so that A and B are equal.
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(6.2)
Let A and B be two matrices given by

A ¼
"

3 1 5

�2 0 6

#
& B ¼

"
4 1 0

8 1 �3

#
:

Determine C ¼ 3A � 2B.

(6.3)
Let A and B be two matrices given by

A ¼
"
x y

2 w

#
& B ¼

"
1 3

2 4

#
:

Determine the values of x, y, z, and w so that we have AB ¼ BA.

(6.4)
Find the inverse of the following matrix:

A ¼
"
4 2

3 1

#
:

(6.5)
Suppose we have

A ¼
"
1 2

3 �4

#
:

Determine B ¼ A2 þ 3A � 10I.

(6.6)
Suppose we have

A ¼

2
664
1 0 2

2 �1 3

4 1 8

3
775:

Find the inverse of matrix A.
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(6.7)
Suppose we have

A ¼
"
1 3

4 �3

#
:

Determine the column vector u ¼
"
x

y

#
such that Au ¼ 3u.

(6.8)
Find the Boolean product of A and B, where we have

A ¼

2
6664

1 0 0 1

0 1 0 1

1 1 1 1

3
7775 & B ¼

2
666664

1 0

0

1

1

1

1

0

3
777775
:

(6.9)
Determine AnB, A^B, and A1B if A and B are as follows:

A ¼
"
1 1

0 1

#
& B ¼

"
0 1

1 0

#
:

(6.10)
Solve the following system of linear equations using elementary row operations:

8>><
>>:

7x1 � 8x2 þ 5x3 ¼ 5

�4x1 þ 5x2 � 3x3 ¼ �3

x1 � x2 þ x3 ¼ 0
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CHAPTER 7
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The word function indicates the dependence of one varying quantity on another. The
concept of function is one of the very important concepts in mathematics. Functions
were first defined by Leonard Euler and later formulated by Peter Dirichlet. In discrete
mathematics, functions have various applications of great importance. For instance, func-
tions are used in the definition of discrete structures, such as sequences and strings, or they
are employed to represent how long it takes for a computer to solve a problem of a given
size. The focus of this chapter is on basic aspects of functions and also some special
functions.

7.1 Basic Definitions

A function associates each member in one set, say the set of all people living in the world,
with a member in another set, say the set of all positive real numbers representing their
heights. Let X and Y be two nonempty sets of real numbers. A function from X to Y,
denoted by f : X/Y, is a relation from X to Y, a subset of X � Y ; that must satisfy
both of the following two requirements:
1. Every element in X is related to some element in Y .
2. No element in X is related to more than one element in Y .
A relation from X to Y that contains only one ordered pair ðx; yÞ for every element
x˛X defines a function f from X to Y where y˛Y, as shown in Fig. 7.1. For instance,
assuming X and Y are the set of real numbers, y ¼ x2 is a function, as it meets both
requirements. However, y2 ¼ x is not a function because there is an element x > 0
in X that is related to the two elements � ffiffiffi

x
p

and
ffiffiffi
x

p
in Y . Note that f ðxÞ does not

mean f times x; it simply means f is a function of x, and f ðxÞ, read as “f of x,” is
just the value of f at x. Although it is incorrect, we may call f ðxÞ the function. f ðxÞ
is the short form for a function of x. Note that functions may also be called maps, map-
pings, or transformations.
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With f as a function from X to Y, the set X is the domain of the function f ; and Y is
the codomain of f . Moreover, y is the image of x; and x is a preimage or an inverse image
of y. The range of f is the set of all images of elements of X . Note that the codomain of a
function is the set of all possible values (i.e., all elements of Y ), and the range is the set of
all values of f ðxÞ for x˛X ; therefore the range is a subset of the codomain.

Example 7.1
Determine whether or not the correspondences in Fig. 7.2 are functions. If an
assignment is a function, determine its domain, codomain, and range.

Solution
(a) The correspondence in Fig. 7.2a is not a function because it maps an element

in X to two distinct elements in Y .
(b) The correspondence in Fig. 7.2b is a function because each member in X is

associated with exactly one member in Y . Its domain is the set fa; b; c; dg,
codomain is the set f1; 2; 3; 4g, and range is the set f1; 3; 4g.

(c) The correspondence in Fig. 7.2c is not a function because there is an element
of X, namely b that is not mapped to any element of Y .

For a function of y ¼ f ðxÞ, the variable x is called the independent variable, as it can have
any value from its domain, and the variable y is called the dependent variable because its
value solely depends on the value of x. If f represents a system, then y is the output cor-
responding to the input x.

As a function is defined by its domain, codomain, and the mapping of elements of the
domain to elements in the codomain, two functions are equal when they have the same

Fig. 7.1 The function f maps X to Y.
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domain, the same codomain, and the same mapping of elements in the domain. A func-
tion is called real valued if its codomain is the set of real numbers R, and it is called integer
valued if its codomain is the set of integers Z.

Example 7.2
Let f ðxÞ ¼ 2x, where the domain is the set of real numbers. Determine the
ranges for the following domains:
(a) f ðZÞ, where Z is the set of integers.

(a)

(b)

(c)

Fig. 7.2 Arrow diagrams for Example 7.1.
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(b) f ðNÞ, where N is the set of natural numbers (positive integers).
(c) f ðRÞ, where R is the set of real numbers.

Solution
(a) The range consists of the set of even integers.
(b) The range consists of the set of positive even integers.
(c) The range consists of the set of real numbers.

A function is uniquely represented by the set of all pairs ðx; f ðxÞÞ. When the domain X
and codomain Y of a function are sets of real numbers, each such pair may be considered
as the Cartesian coordinates of a point in the plane. The graph of the function f is the set
of ordered pairs fðx; yÞjx˛X; f ðxÞ ¼ y˛Yg.

Let f : X/R and g: X/R. The sum and product of the functions f and g denoted
by f þ g and fg, respectively, are also functions from X to R defined for all x˛X by

ðf þ gÞðxÞ ¼ f ðxÞ þ gðxÞ
and

ðfgÞðxÞ ¼ f ðxÞ � gðxÞ.
The functions f þ g and fg are defined only wherever both f and g are defined. The
domain of the function f þ g or the domain of the function fg is the intersection of
the domain of f and the domain of g.

Example 7.3
Let f ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p
and gðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p

, where f ðxÞ and gðxÞ are both real-
valued functions. Determine the functions ðf þgÞðxÞ and ðfgÞðxÞ and their
domains.

Solution
We first find the domains of f ðxÞ and gðxÞ. The domain of f ðxÞ is �2 � x � 2
and the domain of gðxÞ is x � 1. Therefore both ðf þgÞðxÞ and ðfgÞðxÞ are defined
only when 1 � x � 2. We can now have the sum and product of the two func-
tions as follows:

ðf þ gÞðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p
þ ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p

and

ðfgÞðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p
� ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4� x2Þðx� 1Þ

q
.
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7.2 Special Functions

Let the domain and codomain of the function f be subsets of the set of real numbers. f is
called a nondecreasing function if f ðx1Þ � f ðx2Þ and an increasing function if
f ðx1Þ < f ðx2Þ, whenever x1 < x2 and both x1 and x2 are in the domain of f . f is called
a nonincreasing function if f ðx1Þ � f ðx2Þ and a decreasing function if f ðx1Þ > f ðx2Þ,
whenever x1 < x2 and both x1 and x2 are in the domain of f . Using quantifiers and
assuming x1 and x2 are in the domain of the function, and f ðx1Þ and f ðx2Þ are in the
codomain of the function, we have the following:
• Nondecreasing function: cx1cx2ðx1 < x2/f ðx1Þ � f ðx2ÞÞ.
• Increasing function: cx1cx2ðx1 < x2/f ðx1Þ < f ðx2ÞÞ.
• Nonincreasing function: cx1cx2ðx1 < x2/f ðx1Þ � f ðx2ÞÞ.
• Decreasing function: cx1cx2ðx1 < x2/f ðx1Þ > f ðx2ÞÞ.

Example 7.4
Consider the following four functions of the form f : R/R. Determine the inter-
vals for which they are nondecreasing, decreasing, nonincreasing, or increasing
functions.
(a) f ðxÞ ¼ x2.
(b) gðxÞ ¼ e�x.
(c) hðxÞ ¼ x3 � x.
(d) kðxÞ ¼ x3.

Solution
The following categorizes each function over some intervals:
(a) It is decreasing over the interval ð�N; 0Þ and increasing over the interval

ð0; NÞ.
(b) It is decreasing over the interval ð�N; NÞ.
(c) It is increasing over the intervals

�
�N; � 1ffiffi

3
p

�
and

�
1ffiffi
3

p ; N
�
and decreasing

over the interval
�
� 1ffiffi

3
p ; 1ffiffi

3
p
�
.

(d) It is increasing over the interval ð�N; NÞ.

The definition of a function in mathematics generally consists of just one formula. How-
ever, many practical functions reflecting real-world applications may consist of more than
one formula, depending on the values of x. Such a function is called a piecewise defined
function. Functions that are defined piecewise are written as if-then-else statements in
most programming languages.
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The unit step function, used often in modeling physical systems, is piecewise defined
as follows:

f xð Þ ¼ 0; if x < 0; and f xð Þ ¼ 1; if x � 0:

The absolute-value function is piecewise defined as follows:

f xð Þ ¼ jxj / f xð Þ ¼ x; if x � 0; and f xð Þ ¼ �x; if x < 0:

A function that assigns each element x˛X to itself is called the identity function on X .
For an identity function f : X/X, we have f ðxÞ ¼ x (i.e., it leaves every input un-
changed). The graph of the identity function on R is the straight line y ¼ x.

The floor function, also known as the greatest integer function, assigns to the real num-
ber x the largest integer that is less than or equal to x. The floor of x rounds down x and is
denoted by PxR. The ceiling function, also known as the least integer function, assigns to
the real number x the smallest integer that is greater than or equal to x. The ceiling of x
rounds up x and is denoted by dxe. For instance, if x ¼ 6:4, then bxc ¼ 6 and dxe ¼ 7,
and if x ¼ �6:4, then PxR ¼ �7 and dxe ¼ �6. Table 7.1 presents some of the prop-
erties of the floor and ceiling functions. The floor and ceiling functions are often used in
the analysis of the number of steps required by algorithms and can thus help provide mea-
sures of complexities of algorithms. Note that all programming languages provide the
floor and ceiling functions as built-in functions.

TABLE 7.1 Properties of the floor and ceiling functions.

bxc ¼ n if and only if n � x < nþ 1
dxe ¼ n if and only if n � 1 < x � n
bxc ¼ n if and only if x � 1 < n � x
dxe ¼ n if and only if x � n < xþ 1

bxþ nc ¼ bxc þ n

dxþ ne ¼ dxe þ n�
n
2

�
¼ ðn� 1Þ

2
if n is odd &

�
n
2

�
¼ n

2
if n is even

�
n
2

�
¼ ðnþ 1Þ

2
if n is odd &

�
n
2

�
¼ n

2
if n is even

b� xc ¼ �dxe
d� xe ¼ �bxc

x � 1 < bxc � x � dxe < xþ 1

Note: n is an integer and x is a real number.
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Example 7.5
Determine the maximum number of identical cube boxes that can be fit inside a
storage room, where the size of a box is 0:5 m� 0:5 m� 0:5 m and the size of the
room is 5:6 m � 5 m � 3:75 m.

Solution
As the number of boxes that can be put in any direction is an integer, the
maximum number of boxes that can be fit inside the storage room is as follows:

�
5:6
0:5

�
�
�
5
0:5

�
�
�
3:75
0:5

�
¼ 11� 10� 7 ¼ 770:

Example 7.6
Suppose a and b are both positive integers. Show that the number of positive in-
tegers no greater than a and divisible by b is

j
a
b

k
.

Solution
Suppose there are k positive integers no greater than a and divisible by b. There-
fore the largest multiple of b is kb � a (i.e., k � a

b). In addition, ðkþ1Þb > a (i.e.,
kþ 1 > a

b or
a
b � 1 < k). We thus have

a
b
� 1 < k � a

b
/ k ¼

ja
b

k
.

A function f : R/R defined as f ðxÞ ¼ anxn þ an�1xn�1 þ.þ a1xþ a0, where the
coefficients a0; a1.; an�1 and ans0 are all real numbers and n is a positive integer, is
called a polynomial function of degree n. When n ¼ 1, f ðxÞ is called a linear function,
and when n ¼ 2, it is called a quadratic function. Polynomial functions have numerous
features, including being continuous for all values of x, where x˛ð�N;NÞ, and having
no asymptotic lines. Moreover, the term anxn in a polynomial function, regardless of the
value of an, becomes the dominant term as the value of x becomes very large.

Noting m˛W ¼ f0; 1; 2; 3;.g and f ðmÞ˛N ¼ f1; 2; 3;.g, the function
f : W/N, denoted by f ðmÞ ¼ m!, where m!bm� ðm�1Þ � ðm�2Þ �.� 2� 1
and f ð0Þ ¼ 0!b 1, is called the factorial function. For instance, if m ¼ 6, then
f ð6Þ ¼ 6! ¼ 6 � 5 � 4 � 3 � 2 � 1 ¼ 720.

As a very useful tool in the calculation of m factorial when m is very large, the factorial

of m can be asymptotically approximated by the Stirling’s formula m!z
ffiffiffiffiffiffiffiffiffi
2pm

p �
m
e

�m
, as

m/N, where p ¼ 3:141592. and e ¼ 2:718281..
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An important use for the factorial notation is in calculating values of quantities that

occur in the study of counting methods. The symbol

	
n

r



¼ n!

r!ðn�rÞ!, read as n choose

r and called a binomial coefficient, represents the number of subsets of size r that can
be chosen from a set with n elements, where 0 � r � n.

The function f :R/Rþ, defined by f ðxÞ ¼ ax, where a˛Rþ and as1, is called the
exponential function to the base a. Note that x˛R (i.e., x belongs to the set of all real
numbers), f ðxÞ˛Rþ (i.e., f ðxÞ belongs to the set of all positive real numbers), and
a0b1. Table 7.2 presents some properties of exponential functions.

The function f :Rþ/R, defined by f ðxÞ ¼ logax, where a˛Rþ and as1, is called
the logarithmic function to the base a. Note that x˛Rþ (i.e., x belongs to the set of all
positive real numbers) and f ðxÞ˛R (i.e., f ðxÞ belongs to the set of all real numbers).
Table 7.3 presents some properties of logarithmic functions.

Exponential and logarithmic functions are thus related as follows:

x ¼ loga f ðxÞ 4 f ðxÞ ¼ ax.

As an example, with a ¼ 2, we have f ð8Þ ¼ 28 ¼ 256 as well as 8 ¼ log2256.
Compared to the linear function y ¼ x, for a > 1, the logarithmic function
y ¼ logax grows very slowly and the exponential function y ¼ ax grows very quickly.
The most frequently used bases for logarithmic functions are as follows:

• If a ¼ lim
n/N

�
1þ 1

n

�n
z 2:718281828459, which is known as e and referred to as

Euler’s number or Napier’s constant, the logarithmic function is then called the nat-
ural logarithm and denoted by lnf ðxÞ, rather than by logef ðxÞ.

TABLE 7.2 Properties of exponential functions.

ax1ax2 ¼ ax1þx2

ðax1Þx2 ¼ ax1x2
ax1
ax2 ¼ ax1�x2

ðabÞx1 ¼ ax1bx1

Note: a>0, b>0, x1, and x2 are real numbers.

TABLE 7.3 Properties of logarithmic functions.

logax1 þ logax2 ¼ logaðx1x2Þ
logax1 � logax2 ¼ loga

�
x1
x2

�

logaðx1Þx2 ¼ x2logax1

logax1 ¼ logbx1
logba

Note: as1, bs1, x1, and x2 are positive real numbers.
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• If a ¼ 10, the logarithmic function is then called the common logarithm and denoted
by log f ðxÞ rather than by log10f ðxÞ.
There are other important functions, such as the mod and div functions, Boolean and

hashing functions, and recursively defined functions, which will be discussed in other
chapters in broader contexts.

7.3 One-to-One and Onto Functions

A function f :X/Y is said to be one-to-one or injection if and only if f ðx1Þ ¼ f ðx2Þ
implies that x1 ¼ x2 for all elements in X . In other words, if at least two different
elements in the domain of a function can be found that have the same element in the
codomain, then the function is not one-to-one. Using quantifiers, a function f is
one-to-one if cx1cx2ðf ðx1Þ ¼ f ðx2Þ/x1 ¼ x2Þ or equivalently, cx1cx2ðf ðx1Þs
f ðx2Þ/x1sx2Þ, where x1 are x2 are in the domain of the function and f ðx1Þ and
f ðx2Þ are in the codomain of the function.

A function f :X/Y is said to be onto or surjection if and only if, for every element
y˛Y , there is at least one element x˛X with f ðxÞ ¼ y. In other words, if the range and
codomain are not the same, then the function is not onto. Using quantifiers, a function f
is onto ifcydxðf ðxÞ ¼ yÞ, where x and y are in the domain and codomain of the func-
tion, respectively.

A function f :X/Y is said to be one-to-one correspondence or bijection if and only if
it is both one-to-one and onto. When a function is a one-to-one correspondence, the
elements of its domain and codomain match up perfectly.

Example 7.7
Consider the four arrow diagrams in Fig. 7.3, where each represents a function.
Identify the functions that are one-to-one and those that are onto.

Solution
Only the arrow diagrams in (a) and (c) are one-to-one functions, because in each
of them, different elements of the domain have distinct images (i.e., no two values
in the domain are assigned to the same function value). Only the arrow diagrams
in (b) and (c) are onto functions, because in each of them, all elements in the codo-
main are images of elements in the domain. In summary, the function in (a) is one-
to-one, but not onto, the function in (b) is onto, but not one-to-one, the function
in (c) is both one-to-one and onto, i.e., one-to-one correspondence, and the
function in (d) is neither one-to-one nor onto.

Functions 121



Geometrical characterization of one-to-one and onto functions can bring about mean-
ingful insights. Consider functions of the form f :R/R. The graphs of such functions
can be plotted in the Cartesian plane using the set of ordered pairs ðða; bÞja˛R
and f að Þ ¼ bÞ, where the graph of a function f is an aid in understanding the behavior
of the function. The concepts of being one-to-one, onto, and one-to-one correspon-
dence have some geometrical meaning, which are as follows:
• If the function f :R/R is one-to-one, then each horizontal line intersects the graph

of the function f in at most one point (i.e., the number of intersection points � 1).
• If the function f :R/R is onto, then each horizontal line intersects the graph of the

function f in at one or more points (i.e., the number of intersection points � 1).
• If the function f :R/R is a one-to-one correspondence, then each horizontal line

intersects the graph of the function f in at exactly one point (i.e., the number of inter-
section points ¼ 1).

(b)(a)

(c) (d)

Fig. 7.3 Arrow diagrams for various functions in Example 7.7: (a) One-to-one, but not onto. (b) Onto,
but not one-to-one. (c) Both one-to-one and onto. (d) Neither one-to-one nor onto.
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Example 7.8
Consider the following four functions of the form f :R/R. Using their geomet-
ric characterizations, identify the functions that are one-to-one and those that are
onto:
(a) f ðxÞ ¼ x2.
(b) gðxÞ ¼ e�x.
(c) hðxÞ ¼ x3 � x.
(d) kðxÞ ¼ x3.

Solution
The graphs of these functions are shown in Fig. 7.4. The functions gðxÞ and kðxÞ
are both one-to-one, because in the graphs of gðxÞ and kðxÞ, no horizontal line
intersects the graph at more than one point. The functions hðxÞ and kðxÞ are
both onto, because in the graphs of hðxÞ and kðxÞ, each horizontal line intersects
the graph at one or more points. In summary, the function gðxÞ is one-to-one, but
not onto, the function hðxÞ is onto, but not one-to-one, the function kðxÞ is both
one-to-one and onto (i.e., one-to-one correspondence), and the function f ðxÞ is
neither one-to-one nor onto.

7.4 Compositions of Functions

In addition to simple operations on functions, such as addition and multiplication, there is
a fundamentally different way, called composition, to combine two functions so as to
construct a new function.

Consider the function f :X/Y and the function g:Y /Z. The composition of the
functions f and g, denoted by g+f and read as “g circle f ,” is a function from X to Z,
defined as follows:

ðg+ f ÞðxÞ ¼ gðf ðxÞÞ.
In order to find ðg +f ÞðxÞ, we first apply the function f to x to obtain f ðxÞ; and then we
apply the function g to f ðxÞ to obtain ðg+f ÞðxÞ ¼ gðf ðxÞÞ. Fig. 7.5 shows the compo-
sition of functions.

In general, the domain of the function g need not be the same as the codomain of the
function f . The composition of g+f cannot be defined unless the range of the function f
is a subset of the domain of the function g. For instance, suppose the domain of the func-
tion g is the set of positive real numbers if the range of the function f is the set of positive
integers, then g+f can be defined; however, if the range of the function f is the set of all
integers, then g+f cannot be defined.
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(a)

(b)

(c)

(d)

Fig. 7.4 Graphs for Example 7.8: (a) f(x) ¼ x2: neither one-to-one nor onto; (b) g(x) ¼ e�x: one-to-one,
but not onto; (c) h(x) ¼ x3 � x: onto, but not one-to-one; (d) k(x) ¼ x3: both one-to-one and onto.
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At a system level, the composite function can be viewed as a system with two sub-
systems in series, where the output of the first subsystem forms the input of the second
subsystem, and the composite function represents the system output ðg+f ÞðxÞ for the sys-
tem input x.

Note that the order of the functions matters in a composition. Even if both g+f and
f +g are defined, though, in general, we have g+fsf +g. In other words, the commuta-
tive law does not hold for the composition of functions.

Example 7.9
Consider the functions f :R/R and g:R/R, where R represents the set of real
numbers. Assuming f ðxÞ ¼ xþ 1 and gðxÞ ¼ x3 þ x, determine ðg +f ÞðxÞ and
ðf +gÞðxÞ. Comment on the results.

Solution
We form the compositions of functions:

ðg + f ÞðxÞ ¼ gðf ðxÞÞ ¼ gðxþ 1Þ ¼ ðxþ 1Þ3 þ ðxþ 1Þ ¼ x3 þ 3x2 þ 4xþ 2

and

ðf + gÞðxÞ ¼ f ðgðxÞÞ ¼ f
�
x3þ x

� ¼ �
x3þ x

�þ 1 ¼ x3 þ xþ 1:

Because we have x3 þ 3x2 þ 4xþ 2sx3 þ xþ 1, we can conclude
g+fsf +g.

Fig. 7.5 The composition of the functions g and f.
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It is worth noting that with the functions f :X/Y and g:Y /Z, we can make the
following statements:
• If the functions f and g are one-to-one, then ðg+f ÞðxÞ ¼ gðf ðxÞÞ is one-to-one.
• If the functions f and g are onto, then ðg +f ÞðxÞ ¼ gðf ðxÞÞ is onto.
• If the functions f and g are one-to-one correspondence, then ðg+f ÞðxÞ ¼ gðf ðxÞÞ is

a one-to-one correspondence.
Suppose f :X/Y is a one-to-one correspondence. The inverse function of the func-

tion f , denoted by f �1; is the function that assigns to an element y belonging to Y the
unique element x in X such that f ðxÞ ¼ y. Hence we have

f �1ðyÞ ¼ x 4 y ¼ f ðxÞ.
Fig. 7.6 shows the concept of an inverse function. Note that the domain of f becomes
the codomain of f �1 and the codomain of f becomes the domain of f �1. The indepen-
dent variable x for f acts as the dependent variable for f �1, and correspondingly the
dependent variable y for f becomes the independent variable for f �1. For instance,
if we have f ðxÞ ¼ ex, we then have ln f ðxÞ ¼ x. By changing the roles of the
independent and dependent variables, the inverse function of f ðxÞ ¼ ex is then
f �1ðxÞ ¼ ln x.

A function is invertible if and only if it is a one-to-one correspondence, consequently,
a function is not invertible if it is not a one-to-one correspondence because the inverse of
such a function does not exist.

Fig. 7.6 The function f�1 is the inverse of function f.
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Example 7.10
Determine if the following functions are invertible, where their domains and
codomains are the set of real numbers:
(a) hðxÞ ¼ ðx� 1Þ4 þ 2.
(b) kðxÞ ¼ ðx� 7Þ5.
Solution
(a) The function hðxÞ is not a one-to-one correspondence because it is not even

one-to-one. Therefore it is not invertible. However, the inverse is obtained as
follows:

hðxÞ ¼ ðx� 1Þ4 þ 2/ x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðxÞ � 24

p
þ 1/ h�1ðxÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffi

x� 24
p þ 1:

Its inverse, h�1ðxÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffi
x� 24

p þ 1, is not a function because for a given
x > 2, we have two distinct values for h�1ðxÞ.

(b) The function kðxÞ is a one-to-one correspondence. Therefore it is invertible.
The inverse is obtained as follows:

k xð Þ ¼ ðx� 7Þ5 / x ¼
ffiffiffiffiffiffiffiffiffi
k xð Þ5

p
þ 7 / k�1 xð Þ ¼ ffiffiffi

x5
p þ 7:

As expected, its inverse, k�1ðxÞ ¼ ffiffiffi
x5

p þ 7, is also a function.

It is important to note that if f :X/Y and g:Y /X are both invertible, the function

g+f is then invertible, and we have ðg+f Þ�1 ¼ f �1+g�1.

Example 7.11
Show ðg+f Þ�1 ¼ f �1+g�1, if f ðxÞ ¼ x3 þ 2 and gðxÞ ¼ xþ 4.

Solution
We have

ðg+f Þ ¼ gðf xð ÞÞ ¼ �
x3 þ 2

�þ 4 ¼ x3 þ 6 / ðg+f Þ�1 ¼ ffiffiffiffiffiffiffiffiffiffiffi
x� 63

p

and also
8<
:

f xð Þ ¼ x3 þ 2 / f �1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
x� 23

p

g xð Þ ¼ xþ 4 / g�1 ¼ x� 4
/ f �1+g�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 4Þ � 23

p
¼ ffiffiffiffiffiffiffiffiffiffiffi

x� 63
p

We can thus conclude

ðg+f Þ�1 ¼ f �1+g�1 ¼ ffiffiffiffiffiffiffiffiffiffiffi
x� 63

p
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Exercises
(7.1)
Let X ¼ fa; b; cg and Y ¼ f1; 2; 3; 4g, and also let the function f : X/Y be
defined as fða; 2Þ; ðb; 4Þ; ðc; 2Þg.
(a) Determine the domain, codomain, and range of the function f .
(b) Determine f ðaÞ and inverse images of 1, 2, 3, 4.

(7.2)
Let f ðxÞ ¼ 2xþ 1. Determine the range of f ðxÞ if the domain is as follows:
(a) The set of integers.
(b) The set of positive integers.
(c) The set of real numbers.

(7.3)
Prove or give a counterexample for each of the following statements:
(a) An increasing function from R to R is one-to-one.
(b) A nondecreasing function from R to R is one-to-one.
(c) A decreasing function from R to R is one-to-one.
(d) A nonincreasing function from R to R is one-to-one.

(7.4)
(a) Round down e ¼ 2:718281. to two decimal places.
(b) Round up p ¼ 3:141592. to three decimal places.

(7.5)
Suppose a and b are both real numbers where a < b. Use the floor and/or ceiling
functions to express the number of integers n that satisfy the following cases:
(a) a � n � b.
(b) a < n < b.
(c) Assuming a ¼ 4:56 and b ¼ 9, determine n for the above two parts.

(7.6)
Let f : Z/Z; noting Z is the set of integers. Assuming f ðnÞ ¼ 5n � 2, deter-
mine if it is (a) one-to-one, (b) onto, and (c) one-to-one correspondence. Prove
or give a counterexample.

(7.7)
Let f : Rþ/R, where R is the set of real numbers and Rþ is the set of positive real
numbers. Assuming f ðxÞ ¼ log x, determine if it is (a) one-to-one, (b) onto, and
(c) one-to-one correspondence. Prove or give a counterexample.
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(7.8)
Let A ¼ fa; b; cg, B ¼ fx; y; zg, and C ¼ fr; s; tg. Let f : A/B and g: B/C
be defined by the following: f ¼ fða; yÞ; ðb; xÞ; ðc; yÞg and g ¼ fðx; sÞ;
ðy; tÞ; ðz; rÞg.
(a) Determine composition function g+f : A/C.
(b) Determine images of f , g, and g+f .

(7.9)
Let f ðxÞ ¼ axþ b and gðxÞ ¼ cxþ d, where a, b, c, and d are constants. Deter-
mine the necessary and sufficient conditions on the constants a, b, c, and d so that
g+f ¼ f +g.

(7.10)
Show that the function f ðxÞ ¼ ex from the set of real numbers to the set of real
numbers is not invertible, but if the codomain is restricted to the set of positive real
numbers, the function is then invertible.
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Boolean algebra was developed by the mathematician George Boole. His contribution
was the development of a theory of logic using symbols instead of words. The laws
that are used to define an abstract mathematical structure called Boolean algebra are
similar to those for sets and propositional logic. Later, Claude Shannon, known as the
father of information theory, used Boolean algebra to analyze digital circuits. His contri-
butions allowed Boolean algebra to become an indispensable tool for the analysis and
design of electronic circuits, including all digital devices, systems, and networks. In this
chapter, we develop basic properties of Boolean algebra and briefly discuss its applications
to digital circuits.

8.1 Basic Definitions

A Boolean algebra is a mathematical system. A Boolean algebra consists of a nonempty set
B together with two binary operations of addition “þ” and multiplication “$”, where
they map elements of B� B to elements of B (i.e., if x, y˛B, then xþ y and x$y are
also in B), a unary operation of complementation “0” where it maps elements of B to el-
ements of B, two distinct elements “1” and “0”, and the axioms for all elements x, y, and
z in B, as summarized in Table 8.1.

In symbols, a Boolean algebra is designated by its six parts fB; þ; $; 0; 0; 1g. The
operators “þ”, “$”, and “0” are called sum, product, and complement, respectively.
Note that “þ” and “$” are not the usual arithmetic operators “plus” and “times.” The
symbols “0” and “1”, which are called the zero element and the unit element, respectively,
do not represent numbers on the real number line. However, the names “plus,” “times,”
“complement,” “zero,” and “one” are commonly used informally when discussing Bool-
ean algebras. For convenience, “x$y” is shown as “xy”, and it is also common to replace
the complement operation “0” by a bar “-” (e.g., x0 ¼ x).

Discrete Mathematics
ISBN 978-0-12-820656-0, https://doi.org/10.1016/B978-0-12-820656-0.00008-3

© 2023 Elsevier Inc.
All rights reserved. 131



It is important to follow the precedence rules governing Boolean algebra. No paren-
theses appear when there is no possibility of confusion, and parentheses have the highest
precedence. The complement operator “-” has the second-highest precedence, followed
by the product operator “$,” and the sum operator “þ” with the lowest precedence. For
instance, we have xy þ x y ¼ ðxyÞ þ ððxÞðyÞÞ.

Example 8.1
Provide examples for sets and propositional logic as Boolean algebras.

Solution
(i) In sets as Boolean algebra, we can let S be any nonempty set and B be the

power set of S (i.e., the elements of Boolean algebra will be all the subsets
of S), 1 be the set S, and 0 be the null set B, plus be union, times be inter-
section, and the Boolean complement be set complement. For instance,
assuming C; D˛S, if the Boolean notation is ð0 þCÞðD þ 1Þ, then the cor-
responding set notation is ðBWCÞXðDWSÞ.

(ii) In propositional logic as Boolean algebra, we can let B ¼ fF; Tg, plus be
disjunction, times be conjunction, the Boolean complement be negation,
equality be logical equivalence, and the Boolean variables be propositions.
For instance, assuming P and Q are propositions, if the Boolean notation
is ð0 þ PÞ$ðQ þ 1Þ, then the corresponding propositional notation is
ðFnPÞ^ðQnTÞ.

According to the definition of Boolean algebra, a Boolean algebra contains the zero
element and the unit element. Consequently, the simplest Boolean algebra contains
exactly two elements of 0 and 1. Let us now focus on such a Boolean algebra. Let B ¼
f0; 1g, the set of bits (binary digits). The complement operation is defined as 0 ¼ 1 and

TABLE 8.1 Boolean algebra axioms.

Identity laws:
For every x˛B, there exist distinct elements 0 and 1 in B such that

x þ 0 ¼ x and x$1 ¼ x
Complement laws:
For every x˛B, there exists a unique element x˛B such that

x þ x ¼ 1 and x$x ¼ 0
Commutative laws:
For every pair of (not necessarily distinct) elements x; y˛B;

x þ y ¼ y þ x and x$y ¼ y$x
Distributive laws:
For every three (not necessarily distinct) elements x; y; z˛B;

x$ðy þ zÞ ¼ x$y þ x$z and x þ y$z ¼ ðx þ yÞ$ðx þ zÞ
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1 ¼ 0. The binary operations “þ” (Boolean sum) and “$” (Boolean product) for all
cases are defined as follows:

8>>>>><
>>>>>:

1þ 1 ¼ 1

1þ 0 ¼ 1

0þ 1 ¼ 1

0þ 0 ¼ 0

&

8>>>>><
>>>>>:

1 $ 1 ¼ 1

1 $ 0 ¼ 0

0 $ 1 ¼ 0

0 $ 0 ¼ 0

Notice the unusual definition for 1 þ 1 ¼ 1, and note that when x ˛B, we have
x þ x ¼ x and x$x ¼ x.

Example 8.2
Let x, y, and z be variables whose values are in the binary set B ¼ f0; 1g.
Determine the values of the following Boolean expressions, if x ¼ 0, y ¼ 1,
and z ¼ 1:
(a) 1$x þ ð0 þ yÞ þ z.
(b) ðx$yÞ þ ðz$zÞ$y.
(c) ððxþ yÞ$zÞ.
Solution
(a) 1$x þ ð0 þ yÞ þ z ¼ 1$0 þ ð0 þ 1Þ þ 1 ¼ 0 þ 1 þ 1 ¼ 1.
(b) ðx$yÞ þ ðz$zÞ$y ¼ ð0$1Þ þ ð1$1Þ$1 ¼ 0 þ 1$0 ¼ 0 þ 0 ¼ 0.
(c) ððxþ yÞ$zÞ ¼ ðð0þ 1Þ$1Þ ¼ ð1$1Þ ¼ 1 ¼ 0.

8.2 Boolean Expressions and Boolean Functions

Let B ¼ f0; 1g. The variable x is called a Boolean variable if it assumes values only
from B (i.e., if its only possible values are 0 and 1). Then, Bn ¼
fx1; x2;.; xnjxi˛B for 1� i� ng is the set of all possible n-tuples of 0s and 1s and
has 2n elements. A function from Bn to B is called a Boolean function of degree n. Boolean
functions can be defined by Boolean tables. Because a Boolean function is an assignment

of 0 or 1 to each of these 2n different n-tuples, there are ð2Þð2nÞ different Boolean func-
tions of degree n, labeled F1; F2; .; F22n . Table 8.2 presents all Boolean functions of
degree two (i.e., n ¼ 2), labeled F1; F2; .; F16.

A Boolean expression consists of Boolean variables and Boolean operators. The Boolean
expression in the Boolean variables x1; x2; .; xn are defined recursively through the
basic clause that states that 0; 1; x1; x2; .; xn are Boolean expressions, and the recursive
clause that states that the sum and the product of any two Boolean expressions as well as the
complement of any Boolean expression are also Boolean expressions. Each Boolean
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expression represents a Boolean function. The values of a Boolean function are obtained by
substituting 0 and 1 for the Boolean variables in the Boolean expression.

Example 8.3
Verify that xyþ x y is a Boolean expression, where the variables x and y are
Boolean variables.

Solution
Because x and y are Boolean variables, they are Boolean expressions by the basic
clause. Consequently, xy and x y are Boolean expressions by the recursive clause.
Therefore by the recursive clause, xyþ x y is a Boolean expression.

Every Boolean function f : Bn/B can be represented by a Boolean expression in n
Boolean variables. Two Boolean expressions that represent the same function are called
equivalent. For instance, the Boolean expressions xy and x þ y are equivalent. The com-

plement of the Boolean function Fðx1; x2; .; xnÞ is the function Fðx1; x2; .; xnÞ.
The Boolean sum and product of two Boolean functions of degree n are as follows:

8>><
>>:

Sðx1; x2; .; xnÞ ¼ Fðx1; x2; .; xnÞ þGðx1; x2; .; xnÞ

Pðx1; x2; .; xnÞ ¼ Fðx1; x2; .; xnÞ $ Gðx1; x2; .; xnÞ

For notational simplicity, we often write the elements of Bn as an n-bit sequence without
commas.

Example 8.4
Assume x ¼ 11100 and y ¼ 01010 belong to Bn, where n ¼ 5. Determine the
sum of their complements and the complement of their product.

Solution
The operations in Boolean algebra are done bit by bit in the 5-bit sequences. We
thus have x ¼ 00011 and y ¼ 10101, and consequently, obtain xþ y ¼
00011þ 10101 ¼ 10111 and xy ¼ ð11100Þ ð01010Þ ¼ 01000 ¼ 10111.

TABLE 8.2 All Boolean functions of degree 2.

x y F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

1
1
0
0

1
0
1
0

1
1
1
1

1
1
1
0

1
1
0
1

1
1
0
0

1
0
1
1

1
0
1
0

1
0
0
1

1
0
0
0

0
1
1
1

0
1
1
0

0
1
0
1

0
1
0
0

0
0
1
1

0
0
1
0

0
0
0
1

0
0
0
0
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8.3 Identities of Boolean Algebra

There is an array of identities in Boolean algebra. The important identities that are widely
used in the analysis and design of digital circuits are shown in Table 8.3. Note that any
identity can be proven using a Boolean table, as both sides of a Boolean identity are the
same in a Boolean table.

Example 8.5
Prove the distributive identity xþ yz ¼ ðxþ yÞðxþ zÞ using a Boolean table.

Solution
As there are three Boolean variables, the Boolean table shown in Table 8.4 has
8
�¼ 23

�
rows. The identity holds because the last two columns representing

both sides of the identity are identical.

The Boolean identities, the logical equivalences, and the set identities are all the special
cases of the same identities. Each collection of identities can be obtained by making the
appropriate changes.

In order to determine the dual of a Boolean expression, Boolean sums and Boolean
products should be interchanged, and 0s and 1s should also be interchanged. For instance,

TABLE 8.3 Boolean identities.

Identity Name

x þ x ¼ x
xx ¼ x

Idempotent laws

ðx þyÞ þ z ¼ x þ ðy þzÞ
ðxyÞz ¼ xðyzÞ

Associativity laws

x ¼ x Involution law
x þ 1 ¼ 1
x$0 ¼ 0

Domination laws

xþ y ¼ x y
xy ¼ x þ y

De Morgan’s laws

x þ xy ¼ x
x$ðx þyÞ ¼ x

Absorption laws

x þ 0 ¼ x
x$1 ¼ x

Identity laws

x þ y ¼ y þ x
xy ¼ yx

Commutative laws

x þ yz ¼ ðx þyÞðx þzÞ
xðy þzÞ ¼ xy þ xz

Distributive laws

x þ x ¼ 1 Unit property
xx ¼ 0 Zero property
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the dual of the Boolean expression xþ 1ðyþ 0Þ is x$ð0 þðy$1ÞÞ. The principle of
duality states that when the duals of both sides of an identity are taken, another identity
is obtained. For instance, the dual of the identity xy ¼ xþ y is another identity xþ y ¼
x y. Due to the principle of duality, all identities in Table 8.3, except the law of the dou-
ble complement (involution), come in pairs.

8.4 Representing Boolean Functions

We often need to determine a Boolean expression that represents a given Boolean func-
tion. Any Boolean function can be represented by a Boolean sum of Boolean products of
the Boolean variables and their complements. A literal is a Boolean variable or its com-
plement. A minterm of the Boolean variables x1; x2; .; xn is a Boolean product
y1y2.yn,where yi ¼ xi or yi ¼ xi, and i ¼ 1; 2; .; n. Hence a minterm is a product
of n literals, with one literal for each of the n variables. A minterm y1y2.yn has the value
1 if and only if each yi is 1 for i ¼ 1; 2; .; n. This occurs when yi ¼ xi for xi ¼ 1, and
yi ¼ xi for xi ¼ 0: For instance, with 3 literals x1; x2, and x3, there are 8

� ¼ 23
�
min-

terms and each has value 1, as reflected in Table 8.5.

TABLE 8.4 Boolean table for Example 8.5.

x y z yz x þ y x þ z x þ yz ðx þyÞðx þzÞ
1
1
1
1
0
0
0
0

1
1
0
0
1
1
0
0

1
0
1
0
1
0
1
0

1
0
0
0
1
0
0
0

1
1
1
1
1
1
0
0

1
1
1
1
1
0
1
0

1
1
1
1
1
0
0
0

1
1
1
1
1
0
0
0

TABLE 8.5 Minterms for three literals.

x1 x2 x3 Minterm

1
1
1
1
0
0
0
0

1
1
0
0
1
1
0
0

1
0
1
0
1
0
1
0

x1x2x3
x1x2x3
x1x2x3
x1x2x3
x1x2x3
x1x2x3
x1x2x3
x1x2x3
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Given a Boolean function in the form of a Boolean table, a Boolean sum of minterms
can be formed that has the value 1 when the Boolean function has the value 1, and it has
the value 0 when the Boolean function has the value 0. Therefore the minterms in the
Boolean sum correspond to those combinations of values for which the Boolean function
has the value 1. The sum of minterms that represents the function is called the sum-
of-products expansion or the disjunctive normal form of the Boolean function. Note
that this sum is unique except for the order in which the minterms appear in the sum
and the order of literals in each minterm.

Example 8.6
Construct the sum-of-products expansion by determining the values of the Bool-
ean function Fðx; y; zÞ ¼ xðzþ yÞ þ y z for all possible values of the variables x,
y, and z.

Solution
Table 8.6 presents the Boolean function Fðx; y; zÞ for all possible values of the
variables x, y, and z. The sum-of-products expansion of Fðx; y; zÞ ¼ x zþ
x yþ y z is the Boolean sum of four minterms corresponding to the four rows
of the table that give the value 1 for the function. We therefore have

Fðx; y; zÞ ¼ xy zþ xyzþ x yzþ x y z:

Another way to construct the sum-of-products expansion is to use Boolean identities to
expand the product and then simplify. For every product in the sum-of-product expan-
sion that does not involve the variable xi, multiply the product by ðxi þ xiÞ, rewrite the
expression for the function so that no parentheses remain, and then delete any repeated
products (i.e., remove any duplicate terms). This step is possible due to the fact that xiþ
xi ¼ 1, and the sum of two identical products P is P.

TABLE 8.6 Boolean table for Examples 8.6 and 8.7.

x y z x y z x y x z y z Fðx; y; zÞ xyz xyz xy z Gðx; y; zÞ
1
1
1
1
0
0
0
0

1
1
0
0
1
1
0
0

1
0
1
0
1
0
1
0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
1
1

0
0
0
0
0
1
0
1

0
0
0
1
0
0
0
1

0
0
0
1
0
1
1
1

1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0

1
1
0
1
0
0
0
0
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Example 8.7
Determine the sum-of-products expansion for the function Gðx; y; zÞ ¼ xyz.
Comment on the result.

Solution
To obtain the sum-of-product expansion, we first use De Morgan’s law, then
simplify to remove parentheses and form the sum of product terms, next bring
in each variable that does not involve a product term, and finally remove duplicate
terms. Therefore we have

Gðx; y; zÞ ¼ xyz ¼ xðyþ zÞ ¼ xyþ xz ¼ xyðzþ zÞþ xzðyþ yÞ
¼ xyzþ xyzþ xzyþ xz y ¼ xyzþ xyzþ xy z:

The last column of Table 8.6 presents the Boolean function Gðx; y; zÞ and
confirms the above result.

8.5 Functional Completeness

A set of Boolean operators is functionally complete if every Boolean function can be
defined using them. The triad of Boolean operators fþ; $; �g forms a functionally com-

plete set. By using De Morgan’s law, x þ y ¼ xþ y ¼ x$y, the Boolean operator “þ”

can be defined using “$” and “-.” Therefore the pair of operators f$; �g is a functionally
complete set of two Boolean operators. Also, by using De Morgan’s law,
x$y ¼ x$y ¼ xþ y, the Boolean operator “$” can be defined using “þ” and “�:”
Therefore the pair of operators fþ; �g is also a functionally complete set of two Boolean
operators. Note that the set fþ; $g is not functionally complete because it is not possible
to express the Boolean function x using the set f þ; $g.

It is important to note that there are sets each with only one operator that is function-
ally complete, namely,NAND (not AND) andNOR (not OR) operators, as respectively
defined below:

NAND : x[ybxy ¼

8>><
>>:

0 if x ¼ y ¼ 1

1 otherwise

and

NOR : xYybxþ y ¼

8>><
>>:

1 if x ¼ y ¼ 0

0 otherwise
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Both NAND and NOR operators are functionally complete because either operator can
express each of the triad of Boolean operators fþ; $; �g, as illustrated in Table 8.7.

Example 8.8
Verify that f[g is functionally complete.

Solution
Because f$ ; �g is functionally complete, we only need to show that both oper-
ators “-” and “$” can be expressed in terms of f[g. By the definition of NAND
operator and the idempotent law, we have

xy ¼ x[ y / xx ¼ x[ x / x ¼ x[x:

By using the above result, the definition of NAND operator, and the involu-
tion law, we have

xy ¼ ðxyÞ ¼ xy[ xy ¼ ðx[ yÞ[ðx[ yÞ:

Example 8.9
Using Boolean tables, prove the following identities, where[ represents a NAND
operator:
(a) x$y ¼ ðx[yÞ[ðx[yÞ:
(b) x þ y ¼ ðx[xÞ[ðy[yÞ.
(c) x ¼ x[x:

Solution
Noting that [ represents a NAND operator, we can build Boolean tables for both
sides of each identity:
(a) As shown in Table 8.8(a), the third and the fifth columns are identical.
(b) As shown in Table 8.8(b), the third and the eighth columns are identical.
(c) As shown in Table 8.8(c), the second and the third columns are identical.

TABLE 8.7 Functional completeness of NAND and NOR operators.

Boolean operations NAND operator “[” NOR operator “Y”

Boolean product “$” x:y ¼ ðx[yÞ[ðx[yÞ x:y ¼ ðxYxÞYðyYyÞ
Boolean sum “þ” x þ y ¼ ðx[xÞ[ðy[yÞ x þ y ¼ ðxYyÞYðxYyÞ

Boolean complement “-” x ¼ x[x x ¼ xYx
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Example 8.10
Using Boolean tables, prove the following identities, where Y represents a NOR
operator:
(a) x$y ¼ ðxYxÞYðyYyÞ:
(b) x þ y ¼ ðxYyÞYðxYyÞ:
(c) x ¼ xYx:

Solution
Noting that Y represents a NOR operator, we can build Boolean tables for both
sides of each identity:
(a) As shown in Table 8.9(a), the third and the eighth columns are identical.
(b) As shown in Table 8.9(b), the third and the fifth columns are identical.
(c) As shown in Table 8.9(c), the second and the third columns are identical.

In summary, the five sets fþ; $; �g, fþ; �g, f$; �g, f[g, and fYg are all functionally
complete, because each set can define any Boolean function.

8.6 Logic Gates

Logic circuits are used in all digital devices, from cell phones and computers to calculators
and routers, and are built from basic elements of circuits called gates. Each type of gate

TABLE 8.8 Boolean tables for Example 8.9.

(a)

x y x$y x$yhx[y ðx [yÞ[ðx [yÞ
1
1
0
0

1
0
1
0

1
0
0
0

0
1
1
1

1
0
0
0

(b)

x y x þ y x$x x:xhx[x y$y y yhy[y ðx [xÞ[ðy [yÞ
1
1
0
0

1
0
1
0

1
1
1
0

1
1
0
0

0
0
1
1

1
0
1
0

0
1
0
1

1
1
1
0

(c)

x x xhx[x

1
1
0
0

0
0
1
1

0
0
1
1
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implements a Boolean operation. Each gate has one or more inputs but only one output.
A gate is a function from Bn to B, where B denotes the Boolean algebra f0; 1g and n rep-
resents the number of inputs. Combinational circuits are made up of different types of
logic gates, where the output is a function of only the input, and not on the current state
of the circuit, that is, combinational circuits have no memory capabilities. Combinational
circuits are designed to perform a variety of tasks. There are three basic logic gates, namely,
the AND gate, the OR gate, and inverter (the NOT gate), that can implement the three
basic Boolean operations of product, sum, and complement, respectively. We follow the
convention that the lines entering the gate symbol from the left are inputs and the single
line on the right is the gate output.

An inverter, a NOT gate, produces an output bit that is complement to the input bit.
Fig. 8.1(a) shows an inverter. An inverter resembles the logical operator NOT. For
instance, if the input data sequence for an inverter is 1100011, the corresponding output
data sequence is then 0011100.

AnOR gate receives two or more arbitrary Boolean variables and outputs the Boolean
sum of the input values. Fig. 8.1(b) shows the basic OR gate consisting of only two inputs.
Note that n inputs into an OR gate yield an output of 1 if and only if at least one input is 1.
For instance, if the input data for an OR gate are 00110011 and 10101010, the output data
sequence is then 10111011. Note that the OR gate yields 0 only when all input bits are 0.

An AND gate receives two or more arbitrary Boolean variables and outputs the
Boolean product of the input values. Fig. 8.1(c) shows the basic AND gate, which

TABLE 8.9 Boolean tables for Example 8.10.

(a)

x y xy x y x þ xhxYx y þ yhyYy ðxYxÞYðyYyÞ
1
1
0
0

1
0
1
0

1
0
0
0

0
0
1
1

0
1
0
1

0
0
1
1

0
1
0
1

1
0
0
0

(b)

x y x þ y x þ yhxYy ðxYyÞYðxYyÞ
1
1
0
0

1
0
1
0

1
1
1
0

0
0
0
1

1
1
1
0

(c)

x x xhxYx

1
1
0
0

0
0
1
1

0
0
1
1
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consists of only two inputs. Note that n inputs into an AND gate yields an output of 1 if
and only if every input is 1. For instance, if the input data for an AND gate are
00110011 and 10101010, the output data sequence is then 00100010.

Example 8.11
Design a logic circuit for a light fixture controlled by four switches, where flipping
any one of the switches turns the light on if it is off and turns it off if it is on.

(a)

(b)

(c)

(d)

(e)

Fig. 8.1 Basic types of gates: (a) NOT gate (inverter), (b) OR gate, (c) AND gate, (d) NOR gate, and (e)
NAND gate.
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Solution
We first construct the Boolean table with four variables x, y, z, and w, when one
of the four switches changes, the light status changes, as shown in Table 8.10. The
Boolean expression reflecting the implementation of the circuit with four switches
x, y, z, and w is as follows:

wxyzþw xyzþ wxyzþ wxyzþ wx yzþ wxyzþ wxy zþ w x y z:

The circuit will have 32 inputs, combined by AND gates in groups of four,
with inverters where necessary, to produce outputs corresponding to the eight
minterms in this expression. These outputs are combined with one big OR
gate consisting of eight inputs.

There are two additional gates, namely a NAND gate, equivalent to an AND gate fol-
lowed by an inverter, and a NOR gate, equivalent to an OR gate followed by an
inverter. NAND and NOR gates are shown in Fig. 8.1(d) and (e), respectively, which
are basically AND and OR gates each followed by a circle reflecting an inverter. The
output of a NAND gate is 0 if and only if all the inputs are 1, and the output of a
NOR gate is 1 if and only if all the inputs are 0. NAND and NOR gates each can be
combined to perform the basic three Boolean operations of AND, OR, and NOT gates
because each is functionally complete. Table 8.11 summarizes the Boolean tables for all
these five gates. Many basic logic circuits used in digital devices are built from NAND

TABLE 8.10 Boolean table for Example 8.11.

x y z w Fðx; y; z;wÞ
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0

1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0

1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

1
0
0
1
0
1
1
0
0
1
1
0
1
0
0
1
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gates. It is advantageous to reduce the number of kinds of logic gates, but the price to be
paid is an increase in the total number of gates.

Example 8.12
The statement xyþ z can be implemented by using three basic gates OR, AND,
and NOT gates. Assuming only NAND gates should be used to implement such a
statement, how many NAND gates are then required?

Solution
Assuming w ¼ xy, we have

w ¼ xy ¼ ðx[ yÞ[ðx[ yÞ ¼ ðx[ ðy[ yÞÞ[ðx[ ðy[ yÞÞ:
Therefore we have

xyþ z ¼ w þ z ¼ ðw [wÞ[ðz[ zÞ
¼ ððx[ ðy[ yÞÞ[ ðx[ ðy[ yÞÞ[ ðx[ ðy[ yÞÞ[ ðx[ ðy[ yÞÞÞ[ðz[ zÞ:

The final logical equivalence contains only one kind of operator as opposed to
three kinds of operators in the original statement. However, there are only three
operators in the original statement, whereas there are 13 logical operators in the
new statement.

8.7 Minimization of Combinational Circuits

It is important to note that combinational circuits are equivalent if and only if their cor-
responding Boolean expressions are equal or their Boolean tables are identical. In order
to design a combinational circuit, we need to have a table specifying the output for each
combination of input values. We then determine the sum-of-product expansion to find
a set of logic gates that can implement the combinational circuit. However, the sum-
of-product expansion generally contains more terms than necessary. The Boolean iden-
tities along with the binary expression simplification rule, which states ef þ ef ¼ f ,

TABLE 8.11 Boolean tables for basic logic gates.

Input
ðxÞ

Input
ðyÞ

NOT gate
ðxÞ

OR gate
ðx þyÞ

AND gate
ðxyÞ

NOR gate
xþ y

NAND gate
xy

1
1
0
0

1
0
1
0

0
0
1
1

1
1
1
0

1
0
0
0

0
0
0
1

0
1
1
1
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where e and f are binary expressions, can be used iteratively to reduce an expression into
a simpler, but equivalent, expression. In order to minimize the number of logic gates, it
is important to produce Boolean sums of products that represent a Boolean function
with the fewest products of literals such that these products contain the fewest literals
possible among all sums of products. This process is called the minimization of the
Boolean function, by which a circuit with the fewest gates and fewest inputs can be
constructed.

Example 8.13
Simplify the following Boolean expression so as to be able to obtain a simpler
combinational circuit:

Fðx; y; zÞ ¼ xyzþ xyzþ xy zþ xyzþ xyz:

Solution
Using idempotent law ðx þ x ¼ xÞ, we add the xyz term to the expression,
which is already in the expression. Using the unity property ðx þ x ¼ 1Þ, the
identity law ðx$1 ¼ xÞ, and the binary expression simplification rule law, we
can then simplify the expression:

Fðx; y; zÞ ¼ xyzþ xyzþ xy zþ xyzþ xyz

¼ xyzþ xyzþ xy zþ xyzþ ðxyzþ xyzÞ
¼ xðyzþ yzþ y zþ yzÞ þ yzðxþ xÞ ¼ xðyþ yÞðzþ zÞ þ yz

¼ x$1$1þ yz ¼ x$1þ yz ¼ xþ yz:

If we do not simplify the original expression, we need three inverters, five
AND gates, and four OR gates, whereas after simplification, we need only one
AND gate and one OR gate.

Reducing the number of gates on a chip can lead to an increase in circuit reliability, a
decrease in cost production, an increase in the number of circuits on a chip, and a reduc-
tion in processing time required by a circuit. However, simplification of a Boolean
algebra to reduce the number of logic gates may be a very difficult task because grouping
various terms and applying the laws of Boolean algebra may not always be quite
straightforward.

Minimizing Boolean functions with many variables is a computationally intensive
problem, but there are methods that can significantly simplify, but not necessarily mini-
mize, Boolean expressions with a large number of literals. One such method is the Kar-
naugh map, which is an effective graphical method involving just a few variables, as it
becomes significantly more difficult when the number of variables is beyond a few.
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The essence of theKarnaugh map lies in grouping minterms that differ by exactly one
literal. It proceeds by circling pairs of minterms that are candidates for simplification. The
Karnaugh map has a rectangular grid of squares. Each square presents a possible minterm
in a sum-of-products expansion of the Boolean expression that represents the circuit. We
label the squares, so the minterms in any two adjacent squares in each row and in each
column differ by exactly one literal. Each square contains a 1 if the corresponding min-
term exists in the Boolean expression.

We draw loops around squares that represent minterms that can be combined and then
find the corresponding sum of products. It is, however, important to note that we need to
identify the largest possible loops of squares first and to cover all the 1s with the fewest
loops using the largest loops. Each square representing a minterm must either be used
to form a product using fewer literals or be part of the expansion. Two squares are adjacent
if and only if the minterms they represent differ in only one literal. Note that if there is a 1
in every square of the Karnaugh map, then the Boolean expression can be combined into
the Boolean expression 1 that involves none of the variables.

A 2� 2 Karnaugh map corresponds to Boolean expressions Fðx; yÞ with two vari-
ables x and y. Accordingly, the four possible minterms with two literals, xy, xy, xy,
and x y, are represented by the four squares in the map. Noting that two squares are
defined as adjacent if they have a side in common, each square is adjacent to two other
squares in a 2� 2 Karnaugh map. The simplification of a sum-of-products expansion in
two variables is carried out by identifying those loops of two and four squares that repre-
sent minterms that can be combined. The minterms in two adjacent squares can be com-
bined to involve just one of the two variables, the variable that is common to both
squares. For instance, xyþ x y can be simplified to x, as xy and x y are adjacent squares
and x is common to both squares.

Example 8.14
Find the Karnaugh map and simplify each of the following Boolean expressions:
(a) xy þ xy:
(b) xy þ x y:
(c) xy þ xy þ xy:
(d) xy þ xy þ xy þ x y:

Solution
Using the Karnaugh map, the minterms for each expression, as shown in Fig. 8.2,
are grouped. The simplifications are as follows:
(a) xy and xy are adjacent and both involve x. We thus have xy þ xy ¼ x.
(b) xy and x y are not adjacent. Therefore xyþ x y cannot be simplified.
(c) xy and xy are adjacent and both involve x and also xy and xy are adjacent and

both involve y. We thus have xy þ xy þ xy ¼ x þ y.
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(d) xy and xy are adjacent and both involve x and also xy and x y are adjacent and
both involve x. We thus have xy þ xy þ xy þ x y ¼ x þ x ¼ 1.

(a)

(b)

(c)

(d)

Fig. 8.2 Karnaugh maps for Example 8.14.
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A 2� 4 Karnaugh map corresponds to Boolean expressions Fðx; y; zÞ with three vari-
ables x, y, and z. Accordingly, the eight possible minterms with three literals (xyz, xyz,
xy z, xyz, xyz, xyz, x y z, x yz) are represented by the eight squares in the map. A square
can have three adjacent squares. The simplification of a sum-of-products expansion in
three variables is carried out by identifying those loops of two, four, and eight squares
that represent minterms that can be combined.

Note that in each of the two rows, the first square and the fourth square are consid-
ered to be adjacent because they differ by only one literal. The minterms in two adjacent
squares can be combined to involve just two variables, the variables that are common to
both squares. The minterms in the four squares of a row can be combined to involve just
one variable, the variable that is common to all four squares. The minterms in the four
squares that share a corner (i.e., two adjacent squares in a row and the two adjacent
squares exactly below them) can be combined to involve just one variable, the variable
that is common to all four squares.

Example 8.15
Find the Karnaugh map and simplify each of the following Boolean expressions:
(a) xyz þ xyz þ xyz þ x y z:
(b) xyz þ xyz þ xy z þ xyz:
(c) xyz þ xyz þ x yz þ xyz:
(d) xyz þ xyz þ xyz þ xy z þ xyz:

Solution
Using the Karnaugh map, the minterms for each expression, as shown in Fig. 8.3,
are grouped. The simplifications are as follows:
(a) xz þ x z:
(b) x.
(c) z.
(d) x þ yz:

A 4� 4 Karnaugh map corresponds to Boolean expressions Fðx; y; z; wÞwith four var-
iables x, y, z, and w. Accordingly, the sixteen possible minterms with four literals (xyzw,
xyzw, xy zw, xyzw, xyzw, xyzw, x y zw, x yzw; xyzw, xyz w, xy z w, xyzw, xyzw,
xyz w, x y z w, x yzw) are represented by the sixteen squares in the map. Each square is
adjacent to four other squares. The simplification of a sum-of-products expansion in
four variables is carried out by identifying those loops of 2, 4, 8, and 16 squares that repre-
sent minterms that can be combined.

Note that in each of the four rows of squares, the first square and the fourth square are
considered to be adjacent, as they differ by only one literal, and in each of the four col-
umns of squares, the first square and the fourth square are considered to be adjacent, as
they differ only in one literal. The minterms in two adjacent squares can be combined to
involve just three variables, the variables that are common to both squares. The minterms
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in the four squares of a row or in the four squares of a column can be combined to involve
just two variables, the variables that are common to all four squares. The minterms in the
four squares that share a corner (i.e., two adjacent squares in a row and the two adjacent
squares exactly below them) can be combined to involve just two variables, the variables
that are common to all four squares. The minterms in the eight squares of two adjacent
rows or in the eight squares of two adjacent columns can be combined to involve to just
one variable, the variable that is common to all eight squares. We must always begin with
the largest loops of squares and use the minimum number of loops.

(a)

(b)

(c)

(d)

Fig. 8.3 Karnaugh maps for Example 8.15.
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Example 8.16
Find the Karnaugh map and simplify each of the following Boolean expressions:
(a) xyzw þ xywz þ xy w z þ xywz þ xyw z:
(b) xywz þ xy wz þ xy w z þ xywz þ xywz.
(c) xywz þ xywz þ x y wz þ xy wz þ xyw z þ x y w z:
(d) xywz þ xywz þ xywz þ xywz:

Solution
Using the Karnaugh map, the minterms for each expression, as shown in Fig. 8.4,
are grouped. The simplifications are as follows:
(a) ywz þ xy z þ xyw z:
(b) xy þ xwz:
(c) wz þ x w:
(d) wx:

(a)

(b)

(c)

(d)

Fig. 8.4 Karnaugh maps for Example 8.16.
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In using Karnaugh maps to simplify, cover squares according to the following rules:
• Cover all marked squares at least once.
• Cover the largest possible groups of marked squares.
• Do not cover any unmarked square.
• Use the fewest groups possible.

It is important to highlight that in some combinational circuits, some combination of
inputs never occurs. Consequently, we don’t care about corresponding output values in
such cases. This allows us to construct a simple circuit with the desired output while arbi-
trarily choosing the output values for those combinations that never occur. To this effect, a
d is placed in each square in the Karnaugh map corresponding to a don’t care condition,
which simply means that the corresponding value of the function can be arbitrarily
assigned. In the minimization process, a d can count as a 1 if that leads to the largest blocks
of squares in the Karnaugh map, that is, the solution depends on a judicious choice of d’s.

Example 8.17
Simplify the Boolean expression presented by the Karnaugh map shown in
Fig. 8.5.

Solution
Loops are drawn to take advantage of those d’s that lead to the largest blocks of
squares. The Boolean expression is thus as follows:

ðxywzþ xy wzþ x ywzþ x y wzÞþ ðxywzþ xywzþ xywzþ xywzÞ
¼ yzðxwþ xwþ xwþ x wÞ þ ywðxzþ x zþ xzþ xzÞ ¼ yzþ yw:

Fig. 8.5 Karnaugh maps for Example 8.17.
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Karnaugh maps can be, of course, used to minimize Boolean functions with very few var-
iables, but beyond that, they become extremely complex to analyze. However, the con-
cepts of Karnaugh maps are important because they help understand some of the new
algorithms.

There is another procedure, called the QuineeMcCluskey method, which can
simplify sum-of-products expansions and thus minimize the number of circuits. Func-
tionally, the QuineeMcCluskey method is identical to the Karnaugh map, but it uses
tables. Its tabular form makes it more efficient for use in computer algorithms when a
large number of inputs are available, and it also gives a deterministic way to check that
the minimal form of a Boolean function has been reached. The method involves two
steps: (i) finding those terms that are candidates for inclusion in a minimal expansion
as a Boolean sum of Boolean products, and (ii) determining which of these terms are
essential to use by successively combining terms into terms with one fewer literal.

Exercises
(8.1)
Determine the values of the following Boolean expressions:
(a) 1$aþ ð0þ bÞ$c, for a ¼ 0, b ¼ 1, and c ¼ 1.
(b) ð0þ 1Þ þ 0$1.

(8.2)
Using Boolean tables, show for each of the following cases both Boolean func-
tions are equivalent:
(a) xy þ yz þ xz ¼ xy þ yz þ xz.
(b) x þ yz ¼ ðx þ yÞðx þ zÞ.
(8.3)
Express each Boolean expression Eðx; y; zÞ as a sum of products and then in its
complete sum-of-products form:
(a) E ¼ zðx þ yÞ þ y.
(b) E ¼ yðxþ yzÞ.
(c) E ¼ ðxþ yÞ þ xy.

(8.4)
Let E ¼ xy þ xyz þ xyz. Prove the following statements:
(a) xz þ E ¼ E.
(b) x þ EsE.

(8.5)
Construct a digital circuit using AND and OR gates that implements majority
voting for five individuals, where each individual can vote either yes or no for
each proposal, and a proposal is passed if it receives at least three yes votes.
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(8.6)
(a) Consider the expression f ðx; y; zÞ ¼ xz þ xyz þ x. Write a Boolean func-

tion in sum-of-products expansion.
(b) Consider the expression f ðx; yÞ ¼ xy þ xy. Write a Boolean function in

product-of-sums expansion.

(8.7)
Determine the Boolean expression for the following cases:
(a) Half adder: Add two bits without considering a carry from a previous addi-

tion; compute the sum bit and the carry bit. Note that the circuit has two in-
puts x and y and two output bits s and c.

(b) Full adder: Add two bits with considering a carry from a previous addition;
compute the sum bit and the carry bit. Note that the circuit has three inputs
(x, y, and ci) and two output bits (s and ciþ1). Expand on how half adders can
be used to implement a full adder.

(8.8)
Construct logic circuits for the following Boolean expressions, where w is the
output and x; y; z are the inputs:
(a) w ¼ ðxþ yzÞ þ y.
(b) w ¼ ðxyÞ þ ðxþ zÞ.
(c) w ¼ xy þ ðxþ yÞ þ ðxyÞ.
(8.9)
Using the Karnaugh map, simplify the following Boolean expressions:
(a) F ¼ xyzw þ xyzw þ xyzw þ xy z w þ x y z w þ xyzw þ xyzw þ

xyz w þ xyzw.
(b) G ¼ xyz w þ xyzw þ xyzw þ xyzw þ x yzw þ x yzw þ xyz w.

(8.10)
Simplify the Boolean expression presented by the Karnaugh map shown in Fig. 8.6.

Fig. 8.6 Karnaugh map for Exercise 8.10.
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There are many forms of relations. Relationships exist between people, such as parent-
child, student-teacher, and employer-employee. Relationships exist also in mathematics,
such as less than, parallel to, a subset of, logarithm of, and factorial of. In fact, all math-
ematical functions are a special type of relation. In a way, a relation considers the exis-
tence of a certain connection often between pairs of objects in a definite order. In this
chapter, we briefly present the mathematics of relations defined on sets, focus on ways
to represent relations, and explore various properties they may have.

9.1 Relations on Sets

In the context of mathematics of relations, relationships between two sets are often
based on ordered pairs made up of two related elements, each belonging to a set. An
ordered pair of elements a and b is denoted by ða; bÞ, while noting that ða; bÞsðb; aÞ
unless a ¼ b. The sets of ordered pairs are called binary relations. The binary relations
are in contrast to n-ary relations, which express relationships among elements of n sets
with n > 2 being an integer and thus involve ordered n-tuples. Such a relation is the
fundamental structure used in relational databases. The term relation by itself generally
refers to a binary relation unless otherwise stated or implied.

A relation between the sets A and B is a subset R of the Cartesian product A� B,
where the Cartesian product is defined as A � B ¼ fða; bÞja˛A and b˛Bg. If
ða; bÞ˛R, it is then read as a is related to b. The set A is called the domain of the relation,
and the set B is called the range of the relation. If ða; bÞ;R, it is then read as a is not
related to b. If A ¼ B, the relation is said to be a relation on A.
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The relation R is a one-to-one relation if no element of B appears as a second coor-
dinate in more than one ordered pair in R, and the relation R is an onto relation if every
element of B appears as a second coordinate in at least one ordered pair in R.

Unlike functions, every relation has an inverse. If R is a relation between the sets
A and B, then the inverse relation of R, denoted by R�1, is a subset of the Cartesian
product B � A. In other words, the inverse relation is defined as follows: R�1 ¼
fðb; aÞjða; bÞ˛Rg. The domain and range of R�1 are equal, respectively, to the range
and domain of R. Moreover, if R is a relation on A, then R�1 is also a relation on A. The
complementary relation R is the set of ordered pairs, which is defined as follows: R ¼
fða; bÞjða; bÞ;Rg.

Example 9.1
(a) Let A ¼ f1; 2; 3g and B ¼ f7; 8; 9g. Determine A� B and B � A.
(b) Let A ¼ f12; 14; 18; 20g and B ¼ f6; 8; 10g, and define a relation R from

A to B as follows: R ¼ fða; bÞja is a multiple of bg. Determine the domain
and range of R.

(c) LetA ¼ f2; 3; 4g and B ¼ f8; 9; 10g. LetR be the divisibility relation from
A to B (i.e., for all ða; bÞ˛A � B, a divides b). Determine R�1 and describe it
in words.

Solution
(a) A� B ¼ fð1; 7Þ; ð1; 8Þ; ð1; 9Þ; ð2; 7Þ; ð2; 8Þ; ð2; 9Þ; ð3; 7Þ; ð3; 8Þ; ð3; 9Þg

B� A ¼ fð7; 1Þ; ð8; 1Þ; ð9; 1Þ; ð7; 2Þ; ð8; 2Þ; ð9; 2Þ; ð7; 3Þ; ð8; 3Þ; ð9; 3Þg .
(b) Because we have R ¼ fð12; 6Þ; ð18; 6Þ; ð20; 10Þg, the domain of R is

f12; 18; 20g and the range of R is f6; 10g.
(c) Because we have the relation R ¼ fð2; 8Þ; ð2; 10Þ; ð3; 9Þ; ð4; 8Þg, we have

the inverse relation R�1 ¼ fð8; 2Þ; ð10; 2Þ; ð9; 3Þ; ð8; 4Þg. Therefore for
all ðb; aÞ˛R�1, b is a multiple of a.

9.2 Properties of Relations

A binary relation on a set A is a binary relation from A to A that is a subset of A� A.
There are various ways to classify relations on a set. In this section, we focus on the
most important properties that a relation R on a set A can have, namely, reflexive, sym-
metric, and transitive. In order to prove a relation has one of these properties, the method
of exhaustion or the method of generalization needs to be employed.

A relation R on a set A is reflexive if and only if ða; aÞ˛R for every element a˛A. In
informal terms, in a reflexive relation, each element is related to itself. An example of a
reflexive relation is the equality relation on the set of real numbers, as every real number
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is equal to itself, another example of a reflexive relation is the divides relation on the set of
positive integers, as every positive integer divides itself. Using quantifiers, the relation R
on the set A is reflexive if caðða; aÞ˛RÞ.

A relationR on a set A is antireflexive, also known as irreflexive, if and only if ða; aÞ;
R for every element a˛A. In informal terms, no element in A is related to itself. An
example of an antireflexive relation is the greater-than relation on the real numbers.
Note that antireflexive does not mean not reflexive, as it is possible to define a relation
where some elements are related to themselves, but others are not (i.e., neither all nor
none is).

Example 9.2
(a) Provide examples for reflexive and antireflexive relations and for a relation

that is neither reflexive nor antireflexive.
(b) Assuming the following three relations are defined on the setA ¼ f1; 2; 3g,

determine which of the relations are reflexive, which are not reflexive, and
which are antireflexive:

R1 ¼ fð1; 1Þ; ð1; 2Þ; ð2; 2Þ; ð3; 1Þ; ð3; 3Þg
R2 ¼ fð1; 1Þ; ð1; 2Þ; ð2; 3Þ; ð3; 1Þ; ð3; 3Þg
R3 ¼ fð1; 3Þ; ð1; 2Þ; ð2; 3Þ; ð3; 1Þ; ð3; 1Þg

Solution
(a) Consider the relation that the product of two positive integers is even on the

set A. If A is the set of even numbers, the relation is then reflexive because the
square of an even number is even. IfA is the set of odd numbers, the relation is
then antireflexive because the square of an odd number is not even. If A is the
set of natural numbers (i.e., positive integers), the relation is then neither re-
flexive nor antireflexive.

(b) R1 is reflexive as it contains all the three pairs ð1; 1Þ, ð2; 2Þ, and ð3; 3Þ. R2 is
not reflexive, as it does not contain all the three pairs ð1; 1Þ, ð2; 2Þ, and
ð3; 3Þ; more specifically, ð2; 2Þ does not belong to R2. R3 is antireflexive,
as it does not contain even one of the three pairs ð1; 1Þ, ð2; 2Þ, and ð3; 3Þ.

A relation R on a set A is symmetric if and only if ða; bÞ˛R, then ðb; aÞ˛R for all
a; b˛A. Thus R is not symmetric if there exists a˛A and b˛A such that ða; bÞ˛R
but ðb; aÞ;R. In informal terms, in a symmetric relation, if any one element is related
to any other element, then the second element is related to the first as well. An example
of a symmetric relation is the equality relation on the set of real numbers because if a ¼ b
is true, then b ¼ a is also true. Using quantifiers, the relation R on the set A is symmetric
if cacbðða; bÞ˛R/ðb; aÞ˛RÞ.

Relations 157



A relation R on a set A is antisymmetric if and only if ða; bÞ˛R, then ðb; aÞ;R for
all a; b ˛A and asb. In informal terms, in an antisymmetric relation, if any one element
is related to any other element, then the second element cannot be related to the first.
An example of an antisymmetric relation is the divisibility relation on the natural
numbers. Using quantifiers, the relation R on the set A is antisymmetric if
cacbððða; bÞ˛R^ðb; aÞ˛RÞ/ðb ¼ aÞÞ.

A relation R is called asymmetric if ða; bÞ˛R implies that ðb; aÞ;R. Note that anti-
symmetric does not mean not symmetric, as it is possible to define a relation that may lack
both these properties. A relation cannot be both symmetric and antisymmetric if it con-
tains some pair of the form ða; bÞ, where asb.

Example 9.3
Assuming the following four relations are defined on the set A ¼ f1; 2; 3; 4g,
determine which of the relations are symmetric or antisymmetric:
(a) R1 ¼ fð1; 1Þ; ð1; 2Þ; ð2; 3Þ; ð1; 3Þ; ð4; 4Þg
(b) R2 ¼ fð1; 1Þ; ð1; 2Þ; ð2; 1Þ; ð2; 2Þ; ð3; 3Þ; ð4; 4Þg
(c) R3 ¼ fð1; 3Þ; ð3; 1Þ; ð2; 3Þg
(d) R4 ¼ fð1; 1Þ; ð2; 2Þg
Solution
(a) R1 is not symmetric because ð1; 2Þ˛R1, but ð2; 1Þ;R1. However, R1 is

antisymmetric.
(b) R2 is not antisymmetric, as ð1; 2Þ and ð2; 1Þ belong to R2, but 2s1. How-

ever, R2 is symmetric.
(c) R3 is neither symmetric nor antisymmetric.
(d) R4 is both symmetric and antisymmetric.

A relation R on a set A is called transitive if and only if ða; bÞ˛R and ðb; cÞ˛R, then
ða; cÞ˛R, for all a; b; c˛A. In informal terms, if any one element is related to a second
element and that second element is related to a third element, then the first element is
related to the third element. Examples of transitive relation may include the less than
(<Þ relation or the subset (4Þ relation. Using quantifiers, the relation R on the set A
is transitive if cacbccðða; bÞ˛ R^ðb; cÞ˛R/ða; cÞ˛RÞ.

The relation R is not transitive, also called intransitive, if for all a; b; c˛A; ða; bÞ˛R;
ðb; cÞ˛R, but ða; cÞ;R. An example of intransitive relation is if in plane geometry the
straight lines a and b are perpendicular to one another and the straight lines b and c are
perpendicular to one another, then the straight lines a and c are not perpendicular to
one another. Using quantifiers, the relation R on the set A is intransitive if
cacbccðða; bÞ˛R^ðb; cÞ˛R/ða; cÞ;RÞ.

Table 9.1 summarizes the properties of a binary relation R on a set A and their re-
quirements, where a; b; c˛A.
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Example 9.4
Consider the “likes” relation on the set of people. Highlight various properties of
this relation.

Solution
• Reflexivity: Everyone likes themselves.
• Irreflexivity: No one likes themselves.
• Symmetry: If a likes b, then b likes a.
• Antisymmetry: No pair of distinct people like each other.
• Transitivity: If a likes b and b likes c, then a likes c too.
• Intransitivity: If a likes b and b likes c, then a does not like c.

Example 9.5
Determine which of the following relations on the set of real numbers are reflex-
ive and/or symmetric and/or transitive:
(a) The equality relation.
(b) The inequality relation.
(c) The greater-than-or-equal-to or less-than-or-equal-to relation.
(d) The greater-than or less-than relation.

Solution
Using Table 9.1, Table 9.2 presents the properties of the relations.

TABLE 9.1 Requirements for various properties of a binary relation.

Property Requirement

Reflexive ða; aÞ˛R for every element a˛A
Irreflexive ða; aÞ;R for every element a˛A
Symmetric ða; bÞ˛R / ðb; aÞ˛R, for all a; b˛A

Antisymmetric ða; bÞ˛R / ðb; aÞ;R, for all a; b˛A and asb
Transitive ða; bÞ˛R and ðb; cÞ˛R / ða; cÞ˛R, for all a; b; c˛A
Intransitive ða; bÞ˛R and ðb; cÞ˛R / ða; cÞ;R, for all a; b; c˛A

TABLE 9.2 Properties of relations for Example 9.5.

Set Relation Reflexive? Symmetric? Transitive?

Any nonempty set
Any nonempty set
Real numbers
Real numbers

¼
s

� or �
< or >

Yes
No
Yes
No

Yes
Yes
No
No

Yes
No
Yes
Yes

Relations 159



Example 9.6
Determine whether the following relations R on the set of all people living in the
world is reflexive and/or symmetric and/or transitive:
(a) ða; bÞ˛R if and only if a has more money than b.
(b) ða; bÞ˛R if and only if a and b were born on the same day.
(c) ða; bÞ˛R if and only if a and b have a common grandparent.

Solution
(a) The relation is neither reflexive nor symmetric, but it is transitive.
(b) The relation is reflexive, symmetric, and transitive.
(c) The relation is both reflexive and symmetric, but it is not transitive.

The total number of binary relations on a set with n elements is 2n
2
. Table 9.3 presents

formulas for the number of binary relations with various properties while noting that
they can all be derived using mathematical induction.

Example 9.7
Determine all relations on the set A ¼ f1; 2g, and identify the relations that are
reflexive and/or symmetric.

Solution
In the set A, we have two elements, therefore n ¼ 2. As shown in Table 9.4, the
total number of relations is 16, out of which 4 are reflexive and 8 are symmetric.

9.3 Representations of Relations

There are various ways to represent a binary relation between two finite sets. Suppose
that the relation is from the set A to the set B, where the elements of A and B have
been listed in some arbitrary order. A set of ordered pairs reflecting a binary relation
from A to B can be represented by tables, arrow diagrams, digraphs, and matrices.

TABLE 9.3 Formulas for various properties of a binary relation.

Type of relation Number of relations

Reflexive 2nðn�1Þ
Irreflexive 2nðn�1Þ

Symmetric 2
nðnþ1Þ

2

Antisymmetric 2n � 3
nðn�1Þ

2

Asymmetric 3
nðn�1Þ

2
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Tables can be used to represent binary relations on the same set or on two different
sets. In a table, columns are labeled by the elements of the finite set A, and rows are
labeled by the elements of the finite set B. Only the entries of the table that show the
set of the ordered pairs are marked. In other words, if a certain entry in the table high-
lights an ordered pair that is not in the set of ordered pairs reflecting the relation of in-
terest, it is then left unmarked.

Arrow diagrams can show binary relations on the same set or on two different sets
using two disjoint disks. In an arrow diagram, the elements of the finite set A (the domain
of the relation) are shown in the left-hand disk and the elements of the finite set B (the
range of the relation) are shown in the right-hand disk; then arrows from the elements in
the left-hand disk to the elements in the right-hand disk are drawn to represent all or-
dered pairs reflecting the relation of interest.

Example 9.8
Noting A ¼ fa1; a2; a3g and B ¼ fb1; b2; b3; b4g, the relation R from the set A
to the set B is defined by the set of ordered pairs fða1; b1Þ; ða1; b2Þ; ða2; b3Þ;
ða3; b3Þ; ða3; b4Þg. Represent this relation in a table and an arrow diagram.

Solution
The relation R can be represented graphically using a table and an arrow diagram,
as shown in Fig. 9.1.

TABLE 9.4 Properties of relations for Example 9.7.

Relations Reflexive? Symmetric?

R0 ¼ fBg
R1 ¼ fð1; 1Þg
R2 ¼ fð1; 2Þg
R3 ¼ fð2; 1Þg
R4 ¼ fð2; 2Þg

R5 ¼ fð1; 1Þ; ð1; 2Þg
R6 ¼ fð1; 1Þ; ð2; 1g
R7 ¼ fð1; 1Þ; ð2; 2Þg
R8 ¼ fð1; 2Þ; ð2; 1Þg
R9 ¼ fð1; 2Þ; ð2; 2Þg
R10 ¼ fð2; 1Þ; ð2; 2Þg

R11 ¼ fð1; 1Þ; ð1; 2Þ; ð2; 1Þg
R12 ¼ fð1; 1Þ; ð1; 2Þ; ð2; 2Þg
R13 ¼ fð1; 1Þ; ð2; 1Þ; ð2; 2Þg
R14 ¼ fð1; 2Þ; ð2; 1Þ; ð2; 2Þg

R15 ¼ fð1; 1Þ; ð1; 2Þ; ð2; 1Þ; ð2; 2Þg

No
No
No
No
No
No
No
Yes
No
No
No
No
Yes
Yes
No
Yes

Yes
Yes
No
No
Yes
No
No
Yes
Yes
No
No
Yes
No
No
Yes
Yes
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Fig. 9.1 Arrow diagram and table for Example 9.8.
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Digraphs, also known as directed graphs, will be extensively discussed in the chapter on
graphs. However, we briefly mention it here in the context of representation of relations.
To draw the digraph of a binary relation on a set A, points, vertices, or nodes, representing
the elements of A are drawn. Each ordered pair is represented using an arc, a link, or an
edge, with its direction indicated by an arrow. A directed graph, also known as digraph,
consists of a set V of vertices together with a set E of edges. In the edge ða1; a2Þ, a1 is
called the initial vertex, and a2 is called the terminal vertex. Note that when the initial
vertex is the same as the terminal vertex, the edge is called a loop.

Note that the digraph representing a relation can be used to determine the relation
properties in an insightful way. The digraph of a reflexive relation has a loop at every
vertex of the digraph. The digraph of a symmetric relation has the property that when-
ever there is a direct edge from one vertex to another, there is also a direct edge in the
opposite direction. The digraph of an antisymmetric relation has the property that be-
tween any two distinct vertices, there is at most one direct edge. The digraph of a tran-
sitive relation has the property that whenever there are directed edges from, say, the first
node to the second node and from the second node to the third node, there is also a
directed edge from the first node to the third node.

Example 9.9
Highlight the features of the digraphs of the following relations defined on the set
of real numbers:
(a) The equality relation.
(b) The inequality relation.

Solution
(a) Every node has a loop. If there is a direct edge from one node to another, then

there is a direct edge in the opposite direction. If there are directed edges from
node a to node b and from node b to node c, then there is also a directed edge
from node a to node c.

(b) There are no loops. If there is a direct edge from one node to another, then
there is no direct edge in the opposite direction. If there are directed edges
from node a to node b and from node b to node c, then there is also a directed
edge from node a to node c.

A zero-one matrix is an effective way to represent a relation, as it allows a computer to
easily analyze a relation. In a zero-one matrix, columns are labeled by the elements of the
finite set A and rows are labeled by the elements of the finite set B. Note that in the zero-
one matrix of a binary relation on a set, the same ordering for the rows as for the columns
is used. In the zero-one matrix of the relation R, denoted byMR, each entry that belongs
to the set of the ordered pairs in the relation is set to 1; otherwise, it is set to 0.
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Note that the zero-one matrix representing a relation on a set can be used to deter-
mine the relation properties. Whenever the zero-one matrix of a relation on a set, which
is a square matrix, has 1s on the main diagonal, the relation is reflexive, while noting that
the elements off the main diagonal can be either 0 or 1. Whenever the zero-one matrix of
a relation on a set and its transpose are the same (i.e., it is a symmetric matrix), the relation
is symmetric. The relation is antisymmetric if an element in row i and column j is 1 with
isj, then the element in row j and column i is 0. The relation is transitive if and only if
whenever an entry in row i and column j in the square of the zero-one matrix is nonzero,
the entry in row i and column j in the zero-one matrix is also nonzero.

Example 9.10
Determine if each of the following relations is reflexive, symmetric, antisym-
metric, and/or transitive:
(a) Using digraph representation of the following relation on fa1; a2; a3g:

R ¼ fða1; a2Þ; ða1; a3Þ; ða2; a3Þ; ða3; a2Þg:
(b) Using zero-one matrix representation of the following relation on

fa1; a2; a3g:
R ¼ fða1; a1Þ; ða2; a2Þ; ða3; a3Þ; ða1; a3Þ; ða3; a1Þg:

Solution
(a) As Fig. 9.2 shows the digraph, the relation R is not reflexive but is irreflexive

because there are no loops. It is not symmetric, as the edge ða1; a2Þ is present
but not the edge ða2; a1Þ. It is not antisymmetric because both edges ða2; a3Þ
and ða3; a2Þ are present. It is not transitive because the edges ða2; a3Þ and
ða3; a2Þ are not accompanied by the edge ða2; a2Þ.

(b) We have

MR ¼

0
BB@

1 0 1

0 1 0

1 0 1

1
CCA/MT

R ¼

0
BB@

1 0 1

0 1 0

1 0 1

1
CCA& M2

R ¼

0
BB@

2 0 2

0 1 0

2 0 2

1
CCA:

Fig. 9.2 Digraph for Example 9.10.
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The relation R is reflexive, as all the diagonal elements of the matrix MR are
equal to 1. Because we have MR ¼ MT

R , the relation R is symmetric. The
relation R is not antisymmetric, for there are two 1s symmetrically placed
about the main diagonal (i.e., at positions row 1, column 3 and row 3, col-
umn 1). Whenever entry row i, column j in M2

R is nonzero, and entry row
i, column j in MR is also nonzero, the relation R is therefore transitive.

9.4 Operations on Relations

Relations can be combined to produce new relations. Operations on relations may
include union, intersection, difference, and composition.

Let R and S be any two relations from A to B. The union of two relations R and S is
defined as RWS ¼ fða; bÞjða; bÞ˛R and =or ða; bÞ˛Sg; the intersection of two relations
R and S is defined as RXS ¼ fða; bÞjða; bÞ˛R and ða; bÞ˛Sg; and the difference of two
relations R and S is defined as R � S ¼ fða; bÞjða; bÞ˛R and ða; bÞ;Sg. Graphically
(i.e., in terms of digraphs), RWS consists of all edges in R together with those in S,
RXS consists of all common edges in R and S, and R � S consists of all edges in R
that are not in S.

Suppose the zero-one matrices for the relations R and S are represented by MR and
MS, respectively. The zero-one matrix representing the union of these relations, denoted
byMRWS, has a 1 in the position where eitherMR orMS has a 1 or both of them have a 1.
The zero-one matrix representing the intersection of these relations, denoted by MRXS,
has a 1 in the position where bothMR andMS have a 1. The zero-one matrix represent-
ing the difference between the relations R and S, denoted by MR�S, has a 1 in the po-
sition where MR has a 1 but MS does not have a 1.

Example 9.11
Consider the following relations on fa1; a2; a3g:

R ¼ fða1; a1Þ; ða1; a2Þ; ða2; a3Þg
and

S ¼ fða1; a1Þ; ða1; a3Þ; ða2; a2Þ; ða2; a3Þ; ða3; a3Þg:
Identify the zero-one matrices for the relations reflecting the union and inter-

section of these two relations, and determine the corresponding relations.
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Solution
The zero-one matrices of R, S, RWS, and RXS are as follows:

MR ¼

0
BBB@

1 1 0

0 0 1

0 0 0

1
CCCA;MS ¼

0
BBB@

1 0 1

0 1 1

0 0 1

1
CCCA;MRWS ¼

0
BBB@

1 1 1

0 1 1

0 0 1

1
CCCA&MRXS ¼

0
BBB@

1 0 0

0 0 1

0 0 0

1
CCCA:

We thus have

RWS ¼ fða1; a1Þ; ða1; a2Þ; ða1; a3Þ; ða2; a2Þ; ða2; a3Þ; ða3; a3Þg
and

RXS ¼ fða1; a1Þ; ða2; a3Þg:

Let A, B, and C be sets, R be a relation from A to B, S be a relation from B to C, with
a˛A; b˛B; and c˛C, while noting that A, B, and C have m, n, and p elements, respec-
tively. Then R and S give rise to a relation from A to C, denoted by S+R, called the
composition of two relations R and S, and defined by ða; cÞ˛ðS +RÞ if there exists an
element b in B such that ða; bÞ˛R and ðb; cÞ˛S. Note that the composition of relations
R and S is denoted by S+R rather than R+S. This is done in order to conform with the
usual use of g+f to denote the composition of f and g, where f and g are functions. How-
ever, when a relation R is composed with itself, then the meaning of R+R is
unambiguous.

Suppose R is a relation on a set A, that is R is a relation from a set A to itself. The
powers of a relation R can be recursively defined from the composition of two relations.
Therefore R+R ¼ R2 is always defined, and similarly, Rn ¼ Rn�1+R is defined for all
integers n � 2.

Example 9.12
Let R ¼ fð3; 2Þ; ð7; 7Þ; ð2; 7Þ; ð5; 3Þg. Find the powers Rn, n ¼ 2; 3;..

Solution

R ¼ fð3; 2Þ; ð7; 7Þ; ð2; 7Þ; ð5; 3Þg/R2 ¼ R+R ¼ fð7; 7Þ; ð2; 7Þ; ð3; 7Þ; ð5; 2Þg/

R3 ¼ R2+R ¼ fð7; 7Þ; ð2; 7Þ; ð3; 7Þ; ð5; 7Þg/
R4 ¼ R3+R ¼ fð7; 7Þ; ð2; 7Þ; ð3; 7Þ; ð5; 7Þg:

We can thus conclude that all powers Rn for n � 3 are the same.
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The zero-one matrices for the relations R, S, and S+R, denoted byMR, MS, andMS+R,
respectively, display an interesting connection, as the matrix resulting from the Boolean
product ofMR andMS (i.e.,MR1MS) and the matrixMS+R have the same nonzero en-
tries, while noting that MR, MS, and MS+R have sizes m� n, n� p, and m� p, respec-
tively. In other words, we have the following Boolean product:

MS+R ¼ MR1MS:

Example 9.13
Let A ¼ fa1; a2; a3g, B ¼ fb1; b2; b3; b4g, and C ¼ fc1; c2; c3; c4g. Determine
S+R when the relation R is defined as R ¼ fða1; b1Þ; ða1; b3Þ; ða2; b2Þg from A
to B, and the relation S is defined as S ¼ fðb1; c2Þ; ðb1; c3Þ; ðb2; c1Þ; ðb2; c4Þ;
ðb4; c3Þg from B to C.

Solution
The corresponding zero-one matrices are as follows:

MR ¼

0
BBBB@

1

0

0 1 0

1 0 0

0 0 0 0

1
CCCCA

& MS ¼

0
BBBBBBBBB@

0 1

1 0

1 0

0 1

0

0

0

0

0

1

0

0

1
CCCCCCCCCA

/

MS+R ¼ MR 1MS ¼

0
BBB@

0

1

1 1 0

0 0 1

0 0 0 0

1
CCCA:

The nonzero entries of MS+R indicate that S+R ¼ fða1; c2Þ; ða1; c3Þ; ða2; c1Þ;
ða2; c4Þg.

An interesting application of the composition operation lies in databases. For instance,
the file R is considered to be a relation from the set of names of people to the set of their
annual incomes, and the file S is considered to be a relation from the set of people’s
annual incomes to the set of their annual income taxes. Therefore the composition
S+R is a relation from the set of names of people to the set of their annual income taxes.

9.5 Closure Properties

A relation R may not have a desired property, such as reflexivity, symmetry, or transi-
tivity. If there is a relation containingR and having the desired property, then the smallest
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such relation is the closure of the relation R with respect to the property. Assuming R is a
relation on a set A with n elements, the reflexive closure of R, the symmetric closure of
R, and the transitive closure of R exist. Moreover, these closures are also unique, in that
there cannot be even two distinct reflexive closures, symmetric closures, or transitive clo-
sures of some relation.

The reflexive closure of the relation R is the smallest relation Rr, such that R3 Rr

and Rr is reflexive on the set A. The relation Rr is obtained by simply adding to R all
pairs of the form ða; aÞ with a˛A that do not already belong to R. In other words, the
reflexive closure of R is RWDA, where DA ¼ fða; aÞja˛Ag is known as the diagonal
relation on A.

The symmetric closure of the relation R is the smallest relation Rs, such that R3 Rs

and Rs is symmetric on the set A. The relation Rs is obtained by simply adding to R all
pairs in the form ðb; aÞ whenever ða; bÞ belongs to R. In other words, the symmetric
closure of R is RWR�1, where R�1 ¼ fðb; aÞjða; bÞ˛Rg.

The transitive closure of the relation R is the smallest relation Rt, such that R3 Rt

and Rt is transitive on the set A with n elements. Every possible matched pair of the
form ða; bÞ4ðb; cÞ is examined, and then make sure that the ordered pair ða; cÞ is either
in the relation or is added to the relation. Obviously, obtaining the transitive closure is
more complicated than obtaining either the reflexive closure or the symmetric closure.
The relation Rt is obtained by simply including all pairs that belong to the relations
R; R2 ¼ R+R; .; and Rn ¼ Rn�1+R. In other words, the transitive closure of R
is RWR2W ::: WRn.

Example 9.14
Consider the relation R ¼ fð1; 2Þ; ð2; 3Þ; ð3; 3Þg on the set A ¼ f1; 2; 3g.
Determine the reflexive, symmetric, and transitive closures of the relation R.

Solution
We have

Rr ¼ RWfð1; 1Þ; ð2; 2Þ; ð3; 3Þg ¼ fð1; 1Þ; ð1; 2Þ; ð2; 2Þ; ð2; 3Þ; ð3; 3Þg
and

Rs ¼ RWfð2; 1Þ; ð3; 2Þg ¼ fð1; 2Þ; ð2; 1Þ; ð2; 3Þ; ð3; 2Þ; ð3; 3Þg:
As n ¼ 3, we then obtain

8>>><
>>>:

R ¼ fð1; 2Þ; ð2; 3Þ; ð3; 3Þg
R2 ¼ R+R ¼ fð1; 3Þ; ð2; 3Þ; ð3; 3Þg
R3 ¼ R2+R ¼ fð1; 3Þ; ð2; 3Þ; ð3; 3Þg

/

Rt ¼ RWR2WR3 ¼ fð1; 2Þ; ð1; 3Þ; ð2; 3Þ; ð3; 3Þg:
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Note also that the zero-one matrix for the transitive closure is the join of the
zero-one matrices of the first three powers of the zero-one matrix ofR. We there-
fore have

MR ¼

0
BB@

0 1 0

0 0 1

0 0 1

1
CCA / MR2 ¼

0
BB@

0 0 1

0 0 1

0 0 1

1
CCA / MR3 ¼

0
BB@

0 0 1

0 0 1

0 0 1

1
CCA /

Mt ¼ MRnMR2nMR3 ¼

0
BBB@

0 1 1

0 0 1

0 0 1

1
CCCA / Rt ¼ fð1; 2Þ; ð1; 3Þ; ð2; 3Þ; ð3; 3Þg;

which confirms the earlier result.

It can be shown that the number of bit operations required for the transitive closure of a
relation on a set with n elements using the join of the zero-one matrices of the first n
powers of the zero-one matrix is 2n3ðn � 1Þ. However, there are more efficient algo-
rithms. For instance, there is an algorithm that requires only 2n3 operations, that is, a
reduction in computation by a factor of ðn � 1Þ. Table 9.5 shows how to obtain various
closures of a relation R with matrixMR on a set Awhose cardinality is n. Note thatMRi is
the ith Boolean power of the matrix MR for the relation R.

9.6 Equivalence Relations

The central idea of equivalence relations is the idea of grouping things that look different
but are in some way alike. Equivalence relations matter whenever it is important to show
that an element of a set is in a certain class of elements, instead of finding out about its
particular identity.

Let A be a set and R a relation on A; R is an equivalence relation if and only if R is re-
flexive, symmetric, and transitive. If we letA be a set with partition fAig (i.e.,AiXAj ¼ B,
whenever isj), and let R be the relation induced by the partition, then the relation R is
an equivalence relation. For instance, if we have the set A ¼ f1; 2; 3g and let

TABLE 9.5 Various closures of a binary relation.

Relation Set Matrix

Reflexive closure RWfða; aÞja˛Ag MRnIn
Symmetric closure RWR�1 MRnMR�1

Transitive closure W
n

i¼ 1
Ri MRnMR2n ::: nMRn
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ff1; 2g; f3gg be a partition of A, then the relation R caused by the partition ofA, that is,
R ¼ fð1; 1Þ; ð1; 2Þ; ð2; 1Þ; ð2; 2Þ; ð3; 3Þg, is reflexive, symmetric, and transitive.

Let R be an equivalence relation on a set A. The set of all elements that are related to
an element a of A is called the equivalence class of a and is denoted by ½a�. If x˛½a�, then x
is a representative of the class ½a�. Moreover, if we let R be an equivalence relation on a set
A, then the distinct equivalence classes of R form a partition of A, and every partition of
A induces an equivalence relation on A. For instance, let R ¼ fð1; 1Þ; ð1; 2Þ;
ð2; 1Þ; ð2; 2Þ; ð3; 3Þg be an equivalence relation on the set A ¼ f1; 2; 3g. We
thus have the equivalent class ½1� ¼ f1; 2g where 1 and 2 are its representatives, and
the equivalent class ½3� ¼ f3g where 3 is its representative. Accordingly, the partition
of A induced by R is ½f1; 2g; f3g�.

Example 9.15
(a) Let A ¼ f0; 1; 2; 3; 4g whose partition is as follows: f0; 3; 4g, f1g, and

f2g. Determine the relation R induced by this partition. Is the relation R an
equivalence relation?

(b) Let R ¼ fð1; 1Þ; ð1; 5Þ; ð2; 2Þ; ð2; 3Þ; ð3; 2Þ; ð3; 3Þ; ð4; 4Þ; ð5; 1Þ; ð5; 5Þg
be the equivalence relation on the set A ¼ f1; 2; 3; 4; 5g. Determine
the partition of A induced by R (i.e., find the equivalence classes of R).

Solution
(a) We can have the following ordered pairs:
8>><
>>:

f0; 3; 4g/fð0; 0Þ; ð0; 3Þ; ð0; 4Þ; ð3; 0Þ; ð3; 3Þ; ð3; 4Þ; ð4; 0Þ; ð4; 3Þ; ð4; 4Þg
f1; 1g / fð1; 1Þg
f2; 2g / fð2; 2Þg

/

R ¼ fð0; 0Þ; ð0; 3Þ; ð0; 4Þ; ð1; 1Þ; ð2; 2Þ; ð3; 0Þ; ð3; 3Þ; ð3; 4Þ; ð4; 0Þ; ð4; 3Þ; ð4; 4Þg:

The relation R is an equivalence relation on f0; 1; 2; 3; 4g, simply because it
is clearly reflexive, symmetric, and transitive.

(b) The elements related to 1 are 1 and 5, hence ½1� ¼ f1; 5g. We then select an
element not belonging to ½1�, say 2. The elements related to 2 are 2 and 3,
hence ½2� ¼ f2; 3g. The only element that does not belong to ½1� or ½2�
is 4. The only element related to 4 is 4, hence ½4� ¼ f4g. Accordingly,
the partition of A induced by the relation R is ½f1; 5g; f2; 3g; f4g�.

The approach to find the smallest equivalence relation containing a given relation con-
stitutes first taking the transitive closure of the relation, then taking the reflexive closure
of that relation, and finally taking its symmetric closure.
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9.7 Partial Orderings

Having relations to order some or all of the elements of sets are often very much needed.
A relation on the set of tasks required to build a house and a relation on the words listed in
a dictionary are some examples of partial orderings. LetR be a relation defined on a setA.
R is a partial order relation or partial ordering relation if and only if R is reflexive, anti-
symmetric, and transitive, as these properties characterize relations that can be employed
to order the elements of sets. For instance, the less-than-or-equal-to ð� Þ relation on a
set of real numbers, the subset ð4Þ relation on the power set of sets, and the divisibility
ðjÞ relation on a set of positive integers are all partial orderings.

A set A together with a partial ordering R is called a partially ordered set, or poset, and
is denoted by the pair ðA; RÞ. Members of the set A are called elements of the poset.
Note that if R is a partial order on a set A, the notation a7 b is sometimes used to indi-
cate that ða; bÞ˛R in an arbitrary poset ðA; RÞ. Suppose that R is a partial order relation
on a set A. If a; b˛A and either a7 b or b7 a, then the elements a and b are called com-
parable; otherwise, they are incomparable. In other words, if a; b˛A and neither a7 b
nor b7 a, then the elements a and b are called incomparable or noncomparable.

If R is a partial order relation on a setA, and every pair of elements inA is comparable,
then R is called a total order relation or linear order relation on A, and A is called totally
ordered set or linearly ordered set. For instance, the less-than-or-equal-to relation R on the
positive integersA is a total order, for if a and b are integers, either a � b or b � a,whereas
the divisibility relation R on the set of positive integers A is a partial order, as it has both
comparable elements, such as 4 and 8, and incomparable elements, such as 5 and 9.

Example 9.16
Consider the set of integers Z and define the relation R ¼ fða; bÞjb ¼ arg for
some positive integer r.
(a) Show that R is a partial order relation on Z.
(b) Show that R is not a total order relation on Z.

Solution
(a) In order to prove that the relationR on the set Z is a partial ordering, we need

to prove it is (i) reflexive, (ii) antisymmetric, and (iii) transitive.
(i) R is reflexive, as we have a ¼ a1.
(ii) Suppose ða; bÞ˛R and ðb; aÞ˛R, that is, we have b ¼ as and a ¼ bt

for some positive integers s and t. We then have a ¼ ast, which in
turn leads to the following three possibilities:

8>><
>>:

st ¼ 1 / s ¼ 1 and t ¼ 1 / a ¼ b

a ¼ 1 / b ¼ 1s ¼ 1 / a ¼ b

a ¼ �1 / b ¼ �1 ðas bs1Þ / a ¼ b

/R is antisymmetric; as a ¼ b:
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(iii) Suppose ða; bÞ˛R and ðb; cÞ˛R, that is, we have b ¼ as and c ¼ bt for
some positive integers s and t. We then have c ¼ ast, that is ða; cÞ˛R.
Hence R is transitive.

(b) In order to prove that the relation R on the set Z is a total ordering, we need
to prove that every pair of elements in Z is comparable. Because the integers 3
and 5 are incomparable, R is not a total ordering.

The directed graph for a finite poset can be simplified quite significantly. For instance,
because a partial order is reflexive, each vertex has a loop, which can be deleted. In addi-
tion, all edges whose existence is implied by transitivity can be dropped. Moreover, if the
remaining edges are drawn upward and all arrows are removed, the resulting diagram is
called the Hasse diagram of a poset.

Example 9.17
Construct the Hasse diagram for the partial ordering ðA; jÞ, where
A ¼ f1; 2; 5; 25; 50g, that is, for all a; b˛A, we have ajb if and only if we
have b ¼ ka for some integer k.

Solution
The steps to obtain the Hasse diagram are as follows:
(i) Fig. 9.3a shows the digraph of the poset.
(ii) Fig. 9.3b shows when loops in Fig. 9.3a are dropped.
(iii) Fig. 9.3c shows when all edges implied by transitivity in Fig. 9.3b are deleted.
(iv) Fig. 9.3d shows when all arrows are omitted in Fig. 9.3c and edges are drawn

upward.

To recover the directed graph of a relation from the Hasse diagram, these steps are
required: first, reinsert the direction markers on the arrows making all arrows point up-
ward, next add loops at each vertex, and finally for each sequence of arrows from one
node to a second and that second node to a third, add an arrow from the first node to
the third.

9.8 Relational Databases

A database is an organized collection of structured information or data. A database is usu-
ally controlled by a database management system. The data can be easily accessed,
managed, modified, updated, controlled, and organized. A database management system
responds to queries, where a query is a request for information from the database. Most
databases use structured query language, widely known as SQL, for writing and querying
data.
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A relational database consists of a collection of n-ary relations involving ordered
n-tuples. An n-ary relation is a subset of a Cartesian product of n sets. An n-ary relation
on the sets A1;A2; .; An, called the domains of the relation, is a subset of
A1 � A2 � .� An, where n is called its degree. The special cases of 2-ary, 3-ary,
and 4-ary relations are called binary, ternary, and quaternary, respectively. For instance,
the equation x2 þ y2 þ z2 ¼ 1 determines a ternary relation R on the set of real
numbers, where a triple ðx; y; zÞ is the coordinates of a point on the sphere with radius
1 whose center is at the origin ð0; 0; 0Þ. There are basically three systems of designations
that are commonly used in describing relational databases, and it is not uncommon to mix
the three systems of terminology.

From a mathematical standpoint, a relational database consists of a number of n-ary
relations, where each relation has n-tuples and the coordinated positions in each tuple
are called attributes. An attribute must be single valued and not a set. Each attribute
has an attribute name and all attribute names form the attribute set.

(a) (b)

(c) (d)

Fig. 9.3 Hasse diagram for Example 9.17.
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From the standpoint of storing a database on a computer, each relation is stored as a
separate file, the tuples are considered to be records and the attributes are called fields.

From a two-dimensional structure standpoint, a relation is visualized as a table, the
rows are ordered tuples of attributes that represent a unique entity, and the columns in
a table represent attributes. The order of the rows is unimportant and there are no dupli-
cate rows. The entry in a given row and column is single valued.

A domain, that is an attribute, of an n-ary relation is called a primary key when the
value of the n-tuple from this domain uniquely determines the n-tuple (i.e., when no
two n-tuples in relation have the same value from this domain). Each table has a primary
key, consisting of one or more attributes. When the values of a set of domains determine
an n-tuple in a relation, the Cartesian product of these domains is called a composite key.
It is important that primary and composite keys remain valid when new records (rows,
tuples, records) are added to the database.

Example 9.18
Table 9.6 provides relevant information regarding the employees in a company.
Identify the relevant terms in the context of relational databases.

Solution
• Table 4 Relation 4 File.
• Rows 4 Tuples 4 Records (e.g., Avicenna, 11256566, March 2, 1960,

$200,000, 30 years).
• Columns 4 Attributes 4 Fields (e.g., Salary).
• Degree n ¼ 5.
• Primary key: ID number.

TABLE 9.6 Relevant information for Example 9.18.

Name ID number Date of birth Salary Years of service

G. Carlin
A. Avicenna
J. Rumi

F. Nietzsche
C. Guevara
M. Gandhi
J. Maxwell
N. Mandela

M. X
A. Einstein
M. Angelou

10997722
11256566
12042579
12345678
12444490
12537487
15588892
16392630
18172530
18253377
19119123

June 13, 1955
March 2, 1960
June 22, 1965
April 6, 1970
June 5, 1974
July 22, 1975
May 1, 1980
March 8, 1985
August 5, 1990
May 31, 1995
March 6, 1997

$500,000
$200,000
$180,000
$170,000
$160,000
$150,000
$120,000
$100,000
$80,000
$60,000
$50,000

40
30
28
27
26
25
20
12
8
5
2
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Exercises
(9.1)
Suppose a, b, and n > 0 are integers such that n divides b� a (i.e., a is congruent to
b modulo n), that is, ahb ðmod nÞ: Determine if congruence modulo n is an
equivalence relation on the integers.

(9.2)
Let R ¼ fð1; yÞ; ð1; zÞ; ð3; yÞ; ð4; xÞ; ð4; zÞg be a relation from the set
A ¼ f1; 2; 3; 4g to the set B ¼ fx; y; z;w; tg.
(a) Determine the domain and range of the relation R.
(b) Using the zero-one matrix of the relationR, determine the inverse relationR.

(9.3)
Let A ¼ f2; 3; 4; 6; 12g. Let R be the divisibility relation from A to A, that is,
for all ða; bÞ, a˛A divides b˛A.
(a) Determine the set that represents the relation R.
(b) Determine the zero-one matrix representing the relation R.
(c) Determine if the relation R is reflexive and/or symmetric and/or transitive.

(9.4)
Represent the relation R ¼ fða; bÞja is a factor of bg defined on the set
A ¼ f2; 3; 4; 6; 8; 12g. Is the relation R reflexive and/or symmetric and/or
transitive?

(9.5)
The relations R and S have been defined on the set A ¼ f0; 1; 2; 3g. Deter-
mine if each of the following relations is reflexive and/or symmetric and/or
transitive:
(a) R ¼ fð0; 0Þ; ð0; 1Þ; ð0; 3Þ; ð1; 0Þ; ð1; 1Þ; ð2; 2Þ; ð3; 0Þ; ð3; 3Þg.
(b) S ¼ fð0; 0Þ; ð0; 2Þ; ð0; 3Þ; ð2; 3Þg:
(9.6)
(a) Which of the relations R ¼ fða; bÞ; ðb; cÞ; ða; cÞg, S ¼ fða; aÞ; ða; bÞ; ða; cÞ;

ðb; aÞ; ðb; cÞg, T ¼ fða; aÞ; ðb; bÞ; ðc; cÞg; and U ¼ fða; bÞg on fa; b; cg are
transitive?

(b) Determine if any one of the relations represented by the following zero-one
matrices are equivalence relations:

MR1 ¼

0
BBB@

1 1 1

0 1 1

1 1 1

1
CCCA; MR2 ¼

0
BBBBBBBBB@

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1
CCCCCCCCCA

; & MR3 ¼

0
BBBBBBB@

1 1

1 1

1 0

1 0

1 1

0 0

1 0

0 1

1
CCCCCCCCA
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(9.7)
Find the transitive closures of the following relations defined on the set fa; b; cg:
(a) R ¼ fða; bÞ; ðb; aÞ; ðb; cÞg.
(b) S ¼ fða; aÞ; ðb; bÞ; ðc; cÞg:
(c) T ¼ B.

(9.8)
Determine the transitive closure of the relation R ¼ fða; bÞ; ðb; aÞ; ðb; cÞ;
ðc; dÞ; ðd; aÞg on the set fa; b; c; dg.
(9.9)
(a) Let R be the relation on the set A, where A is the set of real numbers and

R ¼ fða; bÞja �b is an integerg. Show that R is an equivalence relation.
(b) Let R be the relation on the set A, where A is the set of integers and

R ¼ fða; bÞjahb ðmod mÞ; integer m > 1g. Show that R is an equivalence
relation.

(9.10)
(a) Let R be the divisibility relation on the set A, where A is the set of positive

integers. Show that R is not an equivalence relation.
(b) Let R be the relation on the set A, where A is the set of real numbers and

R ¼ fða; bÞj ja �bj< 1g. Show that R is not an equivalence relation.
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Number theory, known as a pure branch of mathematics, is about the properties of in-
tegers. Although integers are familiar and their properties seem simple, number theory is a
challenging subject. For instance, until just recently, Fermat’s last theorem, which states
the equation xn þ yn ¼ zn, where x, y, and z are integers and xyzs0, has no solutions
for an integer n > 2, had remained unsolved for more than 300 years. Other examples,
including Goldbach’s conjecture, which states that every even integer greater than two is
the sum of two primes, and the twin prime conjecture, which asserts that there are infi-
nitely many twin primes (pairs of primes that differ by 2), are yet to be proven. Number
theory has become increasingly important because of its applications to modern cryptog-
raphy. In this chapter, the fundamental yet basic concepts of number theory are briefly
discussed.

10.1 Numeral Systems

A numeral is any symbol used to represent a number. Before embarking on a brief dis-
cussion of integers and their properties, it may be important to briefly describe the widely
known numeral systems representing integers, namely the Roman numerals and the
Hindu-Arabic numerals. The Roman numeral system was used by most Europeans until
the fourteenth century, when they were replaced throughout most of Europe with the
much more effective Hindu-Arabic numerals still used today.

In the Roman numeral system, numerals are represented by seven distinct letters. The
basic numerals used by the Romans are as follows: I ¼ 1; V ¼ 5; X ¼ 10; L ¼ 50;
C ¼ 100; D ¼ 500; and M ¼ 1000. These seven numerals can be combined
together to represent larger integers, based on some basic rules. For example, the integer
1173 ð¼ 1000þ100þ50þ20þ3Þ would be represented as MCLXXIII. Although the
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Roman numeral system allowed easy addition and subtraction, multiplication and divi-
sion proved to be much more difficult. The lack of an effective system for utilizing frac-
tions and irrational numbers, combined with the imperative absence of the important
concept of zero, hindered mathematical advances.

TheHindu-Arabic numeral system, which is based on 10 distinct symbols, reflects hu-
man anatomy with its 10 fingers. Note that there are various symbol sets representing the
10 distinct symbols in the Hindu-Arabic numeral system that are used in different parts of
the world. The most powerful aspect of the Hindu-Arabic system is the existence of a
separate numeral for zero that can serve both as a placeholder and as a symbol for
“none.” The modern system of notation, using 10 different numerals including a zero,
was invented in India and reached its present form by the seventh century. This system
was then spread to Europe by the Arabs, hence the name the Hindu-Arabic numeral sys-
tem. It is now universally used to represent numbers.

10.2 Divisibility

Let a and b be integers with as 0. If there is an integer c such that b ¼ ac, then we say a
divides b, a is a factor of b, a is a divisor of b, b is divisible by a, or b is a multiple of a.

The notation ajb denotes a divides b; that is, ba is an integer. For instance, 16j48 implies

16 divides 48, as 4816 ¼ 3 is an integer. In contrast, the notation a§b denotes a does not

divide b, which in turn means ba is not an integer. For instance, 20§48 implies 20 does not

divide 48, as 4820 ¼ 2:4 is not an integer. Note that if a is a nonzero integer, then aj0, as
0 ¼ 0 � a.

With b ¼ ac, every integer b is divisible by a ¼ �1 (i.e., c ¼ �b) and by a ¼ �b
(i.e., c ¼ �1), where they are called the trivial divisors of b.

Assuming as0, b, c, m, and n are integers, some of the properties of divisibility of
integers are as follows:
• If ajb and bjc, where bs0, then ajc.
• If ajb, then ajnb.
• If ajb and ajc, then ajðmb þncÞ.
• If ajb and bja, where bs0, then a ¼ �b.
• If aj1, then a ¼ �1.
• If ajb, then majmb.
The process of long division is known as the division algorithm or the quotient-remainder
theorem. Assuming a is an integer and d is a positive integer, then there exist unique in-
tegers q and r such that a ¼ dqþ r. Note that d is called the divisor, a is called the div-
idend, q is called the quotient, and 0 � r < d is called the remainder.
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It is important to highlight that the notations q ¼ a div d and r ¼ a mod d are often
used to express the quotient and remainder, respectively. For 0 � r < d, we thus have
the following:

a ¼ dq þ r 4

(
q ¼ a div d

r ¼ a mod d

Note that we also have the following:
8><
>:

a div d ¼
ja
d

k

a mod d ¼ a � d
ja
d

k

Example 10.1
For each of the parts (a) and (b), determine integers q and r such that a ¼ dqþ r
and 0 � r < d.
(a) a ¼ 54 and d ¼ 4.
(b) a ¼ �51 and d ¼ 5.
(c) Assuming a is an integer, determine 4a mod 11 if we have a mod 11 ¼ 6.

Solution
(a) 54 ¼ 4� 13þ 2/ q ¼ 13 and r ¼ 2: We thus have 2 ¼ 54 mod 4

and 13 ¼ 54 div 4.
(b) �51 ¼ 5� ð� 11Þ þ 4 / q ¼ �11 and r ¼ 4 (as the remainder must be

positive). We thus have 4 ¼ �51 mod 5 and �11 ¼ �51 div 5.
(c) a mod 11 ¼ 6 / a ¼ 11q þ 6 / 4a ¼ 4ð11qþ 6Þ ¼ 44q þ 24/

4a ¼ 11ð4qþ 2Þ þ 2 / 4a mod 11 ¼ 2:

10.3 Prime Numbers

Primes are the building blocks of positive integers, and as Euclid’s theorem states, there are
infinitely many primes. Prime numbers, once of only theoretical interest, now are impor-
tant in many applications, especially in modern cryptography, where large primes play a
pivotal role.

All integers greater than 1 are grouped into two mutually exclusive sets of integers:
one set consists of prime numbers (or simply primes), and the other consists of composite
numbers. An integer p � 2 is prime if it is divisible only by 1 and itself (i.e., p). If an
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integer greater than 1 is not prime, it is then composite. In other words, an integer n � 2 is
composite if and only if there exists an integer a such that ajn with 1 < a < n, that is, na is
an integer. Note that 1 is neither prime nor composite.

The fundamental theorem of arithmetic states that every integer greater than 1 is either
prime or the product of two or more primes. In other words, if an integer n is greater than
1, then there is prime p � n such that pjn. For instance, 101 is a prime number as there are
no positive integers, but 1 and 101 that divide 101, and 102 is a composite number that
can be expressed as the product of the prime numbers 2, 3, and 17 (i.e.,
102 ¼ 2 � 3 � 17).

Every integer n > 1 can be expressed uniquely as n ¼ p1p2.pk, with
p1 � p2 � . � pk as primes, where k is a positive integer. For instance, we have
10; 800 ¼ 2 � 2 � 2 � 2 � 3 � 3 � 3 � 5 � 5. The unique factorization of an
integer n > 1 formed by grouping together equal prime factors produces the unique
prime-power factorization n ¼ pm1

1 pm2
2 .p

mj

j , where p1 < p2 < . < pj are distinct

primes, and m1;m2; .; mj are positive integers. For instance, with n ¼ 10; 800, we
have p1 ¼ 2; p2 ¼ 3; p3 ¼ 5 and m1 ¼ 4; m2 ¼ 3; m3 ¼ 2, as 10; 800 ¼ 24�
33 � 52.

If n is composite, then n has a prime factor less than or equal to P
ffiffiffi
n

p
R, that is, n is com-

posite if and only if n has a divisor d satisfying 2 � d � P
ffiffiffi
n

p
R. If n is not divisible by any

prime, from 2, which is the smallest prime, up to the largest prime that is not exceeding
P
ffiffiffi
n

p
R, then n is prime. However, if n is divisible by a prime factor p, then the procedure is

continued by prime factorization of np,while noting that
n
p has no prime factors less than p.

Again, if n
p is not divisible by any prime, from p up to the largest prime that is not

exceeding

� ffiffi
n
p

q �
, then n

p is prime. If np has a prime factor q, then continue by factoring

n
pq. This process continues until the factorization has been reduced to a prime.

Example 10.2
Determine the prime factorization of each of the following integers:
(a) 1547
(b) 1601

Solution
(a) To find the prime factorization of 1547, first perform divisions of 1547 by

successive primes, beginning with 2 and no greater than
ffiffiffiffiffiffiffiffiffiffi
1547

p
. None of

the primes 2, 3, and 5 divides 1547. However, 7 divides 1547, as we have
1547
7 ¼ 221.We then divide 221 by successive primes, beginning with 7 itself.

Neither of the primes 7 and 11 divides 221. However, 13 divides 221, as we
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have 221
13 ¼ 17. As 17 is prime, the procedure is completed. We thus have

1547 ¼ 7 � 13 � 17.
(b) We first list all primes less than or equal to

ffiffiffiffiffiffiffiffiffiffi
1601

p
, namely 2, 3, 5, 7, 11, 13,

17, 19, 23, 29, 31, and 37. None of them is a factor of 1601, so 1601 is prime.

There is an important quantity in number theory, referred to as Euler’s totient function
and denoted by 4ðnÞ, defined as the number of positive integers less than n and relatively
prime to n. By convention, 4ð1Þ ¼ 1. For instance, if n ¼ 9, then 4ð9Þ ¼ 6, namely,
the set of relatively primes is f1; 2; 4; 5; 7; 8g. It should be noted that for prime p, we
have 4ðpÞ ¼ p � 1. For instance, if p ¼ 11, then 4ð11Þ ¼ 10, namely, the set of rela-
tively primes is f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g. If p and q are two prime numbers, with
psq, we then have

4ðnÞ ¼ 4ðpqÞ ¼ 4ðpÞ � 4ðqÞ ¼ ðp� 1Þðq� 1Þ:
For instance, if p ¼ 7 and q ¼ 3, we then have 4ð21Þ ¼ 4ð7 �3Þ ¼ 4ð7Þ�
4ð3Þ ¼ ð7 �1Þð3 �1Þ ¼ 12, namely, the set of relatively primes is f1; 2; 4; 5; 8; 10;
11; 13; 16; 17; 19; 20g.

10.4 Greatest Common Divisors and Least Common Multiples

The greatest common divisor (gcd) of two nonzero integers a and b, denoted by gcdða; bÞ,
is the largest integer d such that dja and djb, except that gcdð0; 0Þ ¼ 0. Note that if

gcdða; bÞ ¼ d, then gcd
�
a
d;

b
d

�
¼ 1. For instance, the set of divisors of 24 is

f1; 2; 3; 4; 6; 8; 12; 24g and the set of divisors of 42 is f1; 2; 3; 6; 7; 14; 21g.
Because the set of common divisors is f1; 2; 3; 6g, we have gcdð24; 42Þ ¼ 6, also

gcd
�
24
6 ;

42
6

�
¼ gcdð4; 7Þ ¼ 1.

The integers a and b are relatively prime if their gcd is 1. For instance, neither 15 nor
16 is prime; however, 15 and 16 are relatively prime, as their gcd is 1. In addition, integers
are called pairwise relatively prime if the gcd of any two integers is 1. For instance, none
of the integers 25, 26, and 27 is prime, yet they are pairwise relatively prime.

The gcd of two nonzero integers exists if the set of their common divisors is
nonempty and finite. The methods to determine the gcd of two integers a and b are as
follows:

Brute-force method: First, find all the positive divisors of each integer, then determine
the set of all common divisors of both integers, and finally select the largest common di-
visor in the set.
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Prime factorization: The prime factorizations of integers a; b, and gcdða; bÞ are as
follows:

(
a ¼ pa11 p

a2
2 . pann

b ¼ pb11 p
b2
2 . pbnn

/ gcdða; bÞ ¼ pminða1; b1Þ
1 pminða2; b2Þ

2 .pminðan; bnÞ
n

where p1 < p2 < . < pn are distinct primes, each exponent is a nonnegative integer
with minðx; yÞ representing the minimum of the two nonnegative integers x and y,
all primes occurring in the prime factorization of either a or b (i.e., p1, p2, ., pn) are
included in both factorizations, and an exponent may be zero if necessary.

The Euclidean algorithm: Assuming a � b, r0 ¼ a, and r1 ¼ b, successive application
of the division algorithm yields the following sequence of equations:

r0 ¼ r1q1 þ r2
r1 ¼ r2q2 þ r3
«
rn�2 ¼ rn�1qn�1 þ rn
rn�1 ¼ rnqn þ rnþ1

0 � r2 < r1
0 � r3 < r2
«
0 � rn < rn�1
rnþ1 ¼ 0;

where n � 1 is an integer. Because the remainders are nonnegative and getting smaller,
the sequence of remainders r2 > r3 > . � 0 must eventually terminate with a
remainder of zero. Using mathematical induction, we can show

gcdðr0; r1Þ ¼ gcdðr1; r2Þ ¼ . ¼ gcdðrn�1; rnÞ ¼ gcdðrn; rnþ1Þ ¼ gcdðrn; 0Þ ¼ rn:

In summary, by applying the division algorithm successively, the gcd is the last (i.e., the
smallest) nonzero remainder in the sequence of divisions.

Example 10.3
Determine the gcd of 72 and 108 using the three above-mentioned methods.

Solution
(i) The divisors of 72 include 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, and 72, whereas the

divisors of 108 include 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, and 108. The common
divisors are then 2, 3, 4, 6, 9, 12, 18, 36. The gcd is thus 36.

(ii) The prime factorizations of 72 and 108 are 23 � 32 and 22 � 33, respec-
tively. The gcd is thus 2minð3; 2Þ � 3minð2; 3Þ ¼ 22 � 32 ¼ 36.

(iii) Using the Euclidean algorithm, we have 108 ¼ 72 � 1 þ 36. As we have
72 ¼ 36 � 2 þ 0, 36, which is the last (i.e., the smallest) nonzero
remainder in the sequence of divisions, is the gcd.
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Finding the gcd of two large integers using the brute-force method or prime-
factorization method often proves to be time-consuming. However, the Euclidean
algorithm is more computationally efficient, and it is thus the preferred method to
find the gcd.

Example 10.4
Determine the gcd of 2766 and 9960.

Solution
Successive application of the division algorithm yields the following sequence of
equations:

9960 ¼ 2766 � 3 þ 1662
2766 ¼ 1662 � 1 þ 1104
1662 ¼ 1104 � 1 þ 558
1104 ¼ 558 � 1 þ 546
558 ¼ 546 � 1 þ 12
546 ¼ 12 � 45 þ 6
12 ¼ 6 � 2 þ 0

The gcd is 6, as it is the last (i.e., the smallest) nonzero remainder in the
sequence of divisions.

If a and b are positive integers, then there exist some integers s and t such that
gcdða; bÞ ¼ sa þ tb. This equation is called Bezout’s identity, and s and t are referred
to as Bezout coefficients of a and b. Note that if a and b are relatively prime (i.e.,
gcdða; bÞ ¼ 1), we then have sa þ tb ¼ 1. In order to express gcdða; bÞ as a linear
combination of integers a and b (i.e., to determine the integers s and t), a method based
on working backward through the divisions of the Euclidean algorithm, known as the
extended Euclidean algorithm, can be employed.

Example 10.5
Express the gcd of 210 and 54 as a linear combination of 210 and 54, that is, deter-
mine the integers s and t in gcdð210; 54Þ ¼ 210s þ 54t.

Solution
Using the Euclidean algorithm, we first find gcdð210; 54Þ. Successive application
of the division algorithm yields the following sequence of equations:

210 ¼ 54� 3þ 48

54 ¼ 48� 1þ 6

48 ¼ 6� 9þ 0
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Note that gcdð210; 54Þ ¼ 6, as 6 is the last nonzero remainder in the
sequence of divisions. We now employ the Euclidean algorithm in the reverse or-
der as follows:

gcdð210; 54Þ ¼ 6 ¼ 54� 1� 48 ¼ 54� 1� ð210� 54� 3Þ
¼ �1� 210þ 4� 54 ¼ 210sþ 54t / s ¼ �1 & t ¼ 4:

The least common multiple (lcm) of the positive integers a and b, denoted by lcmða; bÞ, is
the smallest positive integer that is divisible by both a and b. The prime factorizations of
integers a, b, and lcmða; bÞ are as follows:

(
a ¼ pa11 p

a2
2 . pann

b ¼ pb11 p
b2
2 . pbnn

/ lcmða; bÞ ¼ pmaxða1; b1Þ
1 pmaxða2; b2Þ

2 . pmaxðan; bnÞ
n

where p1 < p2 < . < pn are distinct primes, each exponent is a nonnegative integer
with maxðx; yÞ representing the maximum of the two numbers x and y, and all primes
occurring in the prime factorization of either a or b, that is, p1, p2,., pn, are included in
both factorizations.

It is important to note that for the positive integers a and b, we have the following
identity:

a� bhgcdða; bÞ � lcmða; bÞ:

Example 10.6
Determine the lcm of 72 and 108 using the prime factorization. Using
lcmð72; 108Þ, determine gcdð72; 108Þ.
Solution
The prime factorizations of 72 and 108 are 23 � 32 and 22 � 33, respectively.
Their lcm is thus 2maxð3; 2Þ � 3maxð2; 3Þ ¼ 23 � 33 ¼ 216. As we have
a � b ¼ gcdða; bÞ � lcmða; bÞ, we have 72 � 108 ¼ gcdð72; 108Þ � 216.
We therefore have gcdð72; 108Þ ¼ 36.

10.5 Divisibility Test

A divisibility test is a quick way to determine whether an integer, called dividend, is divis-
ible by a smaller integer, called divisor, without performing the division. The test is usu-
ally based on the examination of the digits of the dividend in a way that solely depends on
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what the divisor is. Consider an integer a with n digits fan�1; an�2;. ; a1; a0g whose
decimal representation is then as follows:

a ¼ an�1
�
10n�1�þ an�2

�
10n�2�þ . þ a1

�
101
�þ a0

�
100
�
:

Note that a0 is the least significant digit and an�1 is the most significant digit. As an
example, we have 71524 ¼ 7 � �104� þ 1 � �103� þ 5 � �102� þ 2 � �101�þ
4 � �100�, where the least significant digit is 4 and the most significant digit is 7.

The divisibility rules for dividing an integer a by the integers 1, 2, 3, 4, 5, 6, 7, 8, 9, or
10 are as follows:

Divisibility by 1: 1ja/ No special condition on the coefficients an�1; an�2; .; a0
(i.e., every integer is divisible by 1).
Divisibility by 2: 2ja/a mod 2 ¼ a0 mod 2 ¼ 0/ a0 ˛f0; 2; 4; 6; 8g (i.e., the
least significant digit must be even).
Divisibility by 3: 3ja/a mod 3 ¼ ðan�1 þ an�2; .þ a0Þ mod 3 ¼ 0 (i.e., the
sum of all digits must be divisible by 3).
Divisibility by 4: 4ja/a mod 4 ¼ �

a1
�
101
�þ a0

�
100
��

mod 4 ¼ 0 (i.e., the
number representing the last two digits must be divisible by 4).
Divisibility by 5: 5ja/a mod 5 ¼ a0 mod 5 ¼ 0 (i.e., the last digit must be a
0 or a 5).
Divisibility by 6: 6ja/a mod 6 ¼ 0 / a mod 2 ¼ 0 and a mod 3 ¼ 0 (i.e., the
integer must be divisible by both 2 and 3).
Divisibility by 7: 7ja / a mod 7 ¼ ��

an�1
�
10n�2

�þ an�2
�
10n�3

�þ . þ
a1
�
100
��� 2ða0Þ

�
mod 7 ¼ 0. Note that the process may need to be repeated.

Divisibility by 8: 8ja / a mod 8 ¼ �
a2
�
102
�þ a1

�
101
�þ a0

�
100
��

mod 8 ¼ 0
(i.e., the number representing the last three digits must be divisible by 8).
Divisibility by 9: 9ja/ a mod 9 ¼ ðan�1 þ an�2; .þ a0Þ mod 9 ¼ 0 (i.e., the
sum of all digits must be divisible by 9).
Divisibility by 10: 10ja/ a mod 10 ¼ a0 mod 10 ¼ 0 (i.e., the last digit must
be a 0).

Note that for some divisors, such as 7, there are multiple rules of divisibility, and only one
of them is given here. Moreover, applying the divisibility by 7 to a large dividend may
require several iterations (i.e., the process needs to be repeated until the divisibility be-
comes obvious). In addition, there are divisibility rules for notable prime divisors greater
than 10, such as 11, 13, and beyond.

In order to test divisibility by any number expressed as the product of prime factors,
we must separately test for divisibility by the highest power of each of its prime factors.
For example, testing divisibility by 72 ¼ 23 � 32 is equivalent to testing divisibility
by both 23ð¼ 8Þ and 32ð¼ 9Þ, which are relatively prime. In other words, checking
the divisibility by both 4 and 18 (as we have 72 ¼ 4 � 18) or by both 3 and 24 (as
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we have 72 ¼ 3 � 24) would not be sufficient, simply because 4 and 18 are not rela-
tively prime, nor are 3 and 24.

Example 10.7
Determine which one of the integers from 1 to 10 inclusive divides 2520.

Solution
• As any integer is divisible by 1, 2520 is divisible by 1.
• As its last digit (i.e., 0) is even, 2520 is divisible by 2.
• As the sum of all its digits (i.e., 9) is divisible by 3, 2520 is divisible by 3.
• As its last two digits (i.e., 20) is divisible by 4, 2520 is divisible by 4.
• As its last digit is a 0, 2520 is divisible by 5.
• As it is divisible by 2 and 3 both, 2520 is divisible by 6.
• As it is not clear if 252� 2ð0Þ ¼ 252 is divisible by 7, we need to continue the

process. As 25� 2ð2Þ ¼ 21 is divisible by 7, 2520 is divisible by 7.
• As its last three digits (i.e., 520) is divisible by 8, 2520 is divisible by 8.
• As the sum of all its digits (i.e., 9) is divisible by 9, 2520 is divisible by 9.
• As its last digit is a 0, 2520 is divisible by 10.

Note that the integers from 1 to 10 inclusive all divide 2520. As an alternative
method, we could show that 2520 is divisible by 5, 7, 8, and 9, which are pairwise
relatively prime, and we have 2520 ¼ 5 � 7 � 8 � 9. The integer 2520 is
divisible by 8, it is thus divisible by 2 and 4; it is divisible by 9, thus it is divisible
by 3; it is divisible by 3 and 2, therefore it is divisible by 6; and it is divisible by 2
and 5, hence it is divisible by 10. Moreover, 2520 is the smallest integer that is
divisible by all integers from 1 to 10 inclusive.

10.6 Congruences

Modular arithmetic is an important aspect of divisibility. Some trivial examples of
modular arithmetic may include that 2 hours and 20 minutes after 7:45 is 10:05 and
that 17 days after a Tuesday is a Friday. Congruences have many applications, such as
generating pseudorandom numbers for computer simulations, generating parity check
bits to detect and correct errors in digital transmission and storage, storing huge records
in a rather small table and retrieving them quickly, and above all modern cryptography.

Assuming a and b are integers and m is a positive integer, a is congruent to b modulo m,
denoted by ahb ðmod mÞ, if m divides a� b, that is, mjða�bÞ or equivalently a� b ¼ km
for some integer k. We say that ahb ðmod mÞ is a congruence and that m is its modulus.

Congruence is an equivalence relation, as for integers a; b; c; and m > 0, we have
• Reflexivity property: aha ðmod mÞ:
• Symmetry property: ahb ðmod mÞ / bha ðmod mÞ:
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• Transitivity property: ahb ðmod mÞ and bhc ðmod mÞ / ahc ðmod mÞ:
While noting that the notation ahb ðmod mÞ represents a relation on the set of integers
and the notation a mod m ¼ b represents a function, we have

ahb ðmod mÞ if and only if a mod m ¼ b mod m
where a; b, and m > 0 are all integers. In addition, for integers a; b; c; d; n; and m > 0,
we have

(
ahb ðmod mÞ
chd ðmod mÞ /

8>>>>>>><
>>>>>>>:

aþ chbþ d ðmod mÞ

a� chb� d ðmod mÞ
achbd ðmod mÞ

anhbn ðmod mÞ
Note that achbc ðmod mÞ does not imply ahb ðmod mÞ unless gcdðc; mÞ ¼ 1. For
instance, 85h55 ðmod 10Þ does not yield 17h11 ðmod 10Þ as gcdð5; 10Þs1; but
85h55 ðmod 6Þ does yield 17h11 ðmod 6Þ as gcd(5, 6) ¼ 1.

Fermat’s little theorem, which is very useful in computing the remainder modulo
prime of large powers of integers, can be expressed in terms of congruences. Fermat’s
little theorem states that if p is prime and a is an integer not divisible by p, then

ap�1h 1 ðmod pÞ 4 ap�1 mod p ¼ 1;

or equivalently,

aph a ðmod pÞ 4 ap mod p ¼ a:

Example 10.8
Find 39 mod 5, using Fermat’s little theorem.

Solution
Noting 5 is prime and 3 is not divisible by 5, we employ Fermat’s little theorem as
follows:

34h1 ðmod 5Þ/ 34 ¼ 5k1 þ 1;

where k1 is an integer. Using this result, we proceed as follows:

39 ¼ 3� 38 ¼ 3� �34�2 ¼ 3� ð5k1 þ 1 Þ2 ¼ 3� �25k21þ 10k1þ 1
�

¼ 3� �5� �5k21þ 2k1
�þ 1

� ¼ 3� ð5k2þ 1Þ ¼ 5� ð3k2Þ þ 3

¼ 5k3 þ 3 / 39h3 ðmod 5Þ;

where k2 ¼ 5k21 þ 2k1 and k3 ¼ 3k2 are integers. We thus have 39 mod 5 ¼ 3:
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Example 10.9
Find 3201mod 11, using Fermat’s little theorem:

Solution
Note that 11 is prime and 3 is not divisible by 11, we can thus employ Fermat’s
little theorem as follows:

310h 1 ðmod 11Þ/310 ¼ 11k1 þ 1/
�
310
�20 ¼ ð11k1 þ 1Þ20

¼ 11k2 þ 1:

While noting 201 ¼ 1 þ 20 � 10, we then have

3201 ¼ 3� �310�20 ¼ 3ð11k2 þ 1Þ ¼ 11ð3k2Þ þ 3

¼ 11k3 þ 3/ 3201h 3 ðmod 11Þ;
where k1, k2, and k3 are integers. We thus have 3201 mod 11 ¼ 3.

Euler’s theorem states that for every a and n that are relatively prime, we have

a4ðnÞh1 ðmod nÞ;
where 4ðnÞ is Euler’s totient function. As an example, a ¼ 3 and n ¼ 10 are relatively
prime, and 4ð10Þ ¼ 4: We thus have 34ð10Þ ¼ 34 ¼ 81h1 ðmod 10Þ. As another
example, for a ¼ 2, if we have n ¼ 11 and consequently 4ð11Þ ¼ 10; we then
have 24ð11Þ ¼ 210 ¼ 1024h1 ðmod 11Þ:

A congruence of the form axhb ðmod mÞ is known as a linear congruence in one var-
iable, where m > 0, a, and b are all integers and x is an unknown variable. A major appli-
cation of linear congruences lies in cryptography.

For all integers a and m > 1, if gcdða; mÞ ¼ 1 (i.e., a and m are relatively prime),
then there exists a unique integer a such that aah1 ðmod mÞ, where the integer a is
called an inverse of a modulo m and 0 < a < m. As an example, knowing that 5 and
11 are relatively prime, we can find an inverse of 5 modulo 11, that is, we need to
find a multiple of 5 that is one more than a multiple of 11. For instance, we have
ð�13Þ � 5h1 ðmod 11Þ, but �13 is not a positive integer less than 11. We can add
a multiple of 11 to �13, so the result will be a positive integer less than 11. More
specifically, we can have ð�13 þ2 �11Þ � 5h1 ðmod 11Þ, that is, we have 9� 5h
1 ðmod 11Þ. Therefore 9 is an inverse of 5 modulo 11, as we have 0 < 9 < 11. To
find an inverse of amodulo m when a and m are relatively prime, the method of inspec-
tion can be helpful if m is small. However, a more efficient algorithm, known as the
extended Euclidean algorithm, can be employed, which is based on the reverse steps
in the Euclidean algorithm.
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Example 10.10
Noting 43 and 660 are relatively prime numbers, find an inverse of 43 modulo
660 using the extended Euclidean algorithm.

Solution
We use the Euclidean algorithm not to find gcdð43; 660Þ, as we already know
gcdð43; 660Þ ¼ 1, but to employ the extended Euclidean algorithm in order
to find an inverse of 43 modulo 660. The steps are as follows:

660 ¼ 43 � 15 þ 15
43 ¼ 15 � 2 þ 13
15 ¼ 13 � 1 þ 2
13 ¼ 2 � 6 þ 1:
We now use the above results in the reverse order to find 1 in terms of 43 and

660:

1 ¼ 13� 2� 6 ¼ 13� ð15� 13Þ � 6 ¼ 7� 13� 6� 15

¼ 7� ð43� 15� 2Þ � 6� 15 ¼ 7� 43� 20� 15

¼ 7� 43� 20� ð660� 43� 15Þ ¼ 307� 43� 20� 660:

Therefore 307 is an inverse of 43 modulo 660, as 43 � 307h1 ðmod 660Þ.

There are applications that require solutions to systems of linear congruences. The Chi-
nese remainder theorem provides a unique solution when the modulo of a system of
linear congruences are pairwise relatively prime. The Chinese remainder theorem states
that if m1, m2, ., mn are pairwise relatively prime positive integers and a1; a2; ., an
are arbitrary integers, then the following system of linear congruences has a unique so-
lution x modulo m ¼ m1m2.mn;with 0 � x < m:

8>>>>>>><
>>>>>>>:

xha1 ðmod m1Þ

xha2 ðmod m2Þ
«

xhan ðmod mnÞ
where the simultaneous solution is as follows:

xh

 Xn
i¼ 1

ai biyi

!
ðmod mÞ

with bi ¼ m
mi
and an integer yi is an inverse of bi modulo mi, that is, biyih1 ðmod mi).
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Example 10.11
Determine the number when it is divided by 3 the remainder is 2, when it is
divided by 5 the remainder is 4, and when it is divided by 7 the remainder is 6.

Solution
We must find a unique solution x for the following system of linear congruences:

8>>><
>>>:

xh2 ðmod 3Þ

xh4 ðmod 5Þ
xh6 ðmod 7Þ:

As 3, 5, and 7 are pairwise relatively prime, we can use the Chinese remainder
theorem. Noting y1, y2, and y3 can be found by using the extended Euclidean
algorithm or the method of inspection, we can then have

8>><
>>:

m1 ¼ 3

m2 ¼ 5

m3 ¼ 7

/ m ¼ m1m2m3 ¼ 105 /

8>>>>>><
>>>>>>:

b1 ¼ m
m1

¼ 35

b2 ¼ m
m2

¼ 21

b3 ¼ m
m3

¼ 15

/

8>><
>>:

y1 ¼ 2

y2 ¼ 1

y3 ¼ 1

with a1 ¼ 2; a2 ¼ 4; a3 ¼ 6, the solution to the simultaneous congruences is
thus as follows:

xhða1b1y1 þ a2b2y2 þ a3b3y3Þ ðmod mÞh ð2� 35� 2þ 4� 21� 1þ 6

� 15� 1Þ ðmod 105Þh 314 ðmod 105Þh 104:

It is important to note that the sum and product of two integers in the modular arithmetic
using the same divisor are as follows:

(
ðaþ bÞ mod m ¼ ðða mod mÞ þ ðb mod mÞÞ mod m

ða� bÞ mod m ¼ ðða mod mÞ � ðb mod mÞÞ mod m

In modern cryptography, exponentiation in modular arithmetic, also known as fast
modular exponentiation, is often much needed. It is important to calculate cd mod m,
where c, d, and m are very large integers. Computing cd and then dividing it by m to
determine its remainder is totally impractical. To this effect, a two-step approach is gener-
ally taken. As the first step, the exponent d can be written in the binary form, that is, d is
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written as the sum of terms, each in the form of 2k, where k is a nonnegative integer. As
the second step, the product property of modular arithmetic is used to reduce the number

of calculations. To this end, the algorithm successively determines c2
0
mod m, c2

1
mod m,

c2
2
mod m, c2

3
mod m, and so on, multiplies together only those terms of interest as

defined by d, and then finds the remainder of the product when it is divided by m.

Example 10.12
Find 3644 mod 645.

Solution
Because 3644y1:84� 10307 is an extremely large number, it is practically impos-
sible to find the remainder without using fast modular exponentiation. To this ef-
fect, we first represent the exponent in the binary form, we thus have

644 ¼ 29 þ 27 þ 22 ¼ 512þ 128þ 4 / 3644 mod 645

¼ �
3512 � 3128 � 34

�
mod 645:

We now successively determine 32
1
mod 645, 32

2
mod 645; and all other

terms up to and including 32
9
mod 645, as follows:

Exponent ¼ 20 ¼ 1/ 31 mod 645 ¼ 3 mod 645 ¼ 3:
Exponent ¼ 21 ¼ 2/ 32 mod 645 ¼ ��

31 mod 645
���

31 mod 645
��

mod 645 ¼ ð3� 3Þ mod 645 ¼ 9:
Exponent ¼ 22 ¼ 4/ 34 mod 645 ¼ ��

32 mod 645
���

32 mod 645
��

mod 645 ¼ ð9� 9Þ mod 645 ¼ 81:
Exponent ¼ 23 ¼ 8/ 38 mod 645 ¼ ��

34 mod 645
���

34 mod 645
��

mod 645 ¼ ð81� 81Þ mod 645 ¼ 111:
Exponent ¼ 24 ¼ 16/ 316 mod 645 ¼ ��38 mod 645

���
38 mod 645

��
mod 645 ¼ ð111� 111Þ mod 645 ¼ 66:

Exponent ¼ 25 ¼ 32/ 332 mod 645 ¼ ��
316 mod 645

���
316 mod 645

��
mod 645 ¼ ð66� 66Þ mod 645 ¼ 486:

Exponent ¼ 26 ¼ 64/ 364 mod 645 ¼ ��
332 mod 645

� ��
332 mod 645

��
mod 645 ¼ ð486� 486Þ mod 645 ¼ 126:

Exponent ¼ 27 ¼ 128/ 3128 mod 645 ¼ ��
364 mod 645

���
364 mod 645

��
mod 645 ¼ ð126� 126Þ mod 645 ¼ 396:

Exponent ¼ 28 ¼ 256/ 3256 mod 645 ¼ ��
3128 mod 645

���
3128 mod 645

��
mod 645 ¼ ð396� 396Þ mod 645 ¼ 81:

Exponent ¼ 29 ¼ 512/ 3512 mod 645 ¼ ��
3256 mod 645

���
3256 mod 645

��
mod 645 ¼ ð81� 81Þ mod 645 ¼ 111:
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Based on the product of integers in the modular arithmetic and the modular
exponentiation, we have

3644 mod 645 ¼ �
3512� 3128� 34

�
mod 645

¼ ��
3512 mod 645

�� �3128 mod 645
�� �34 mod 645

��
mod 645

¼ ð111� 396� 81Þ mod 645 ¼ 36:

Data (record) that is stored in a computer memory (table) typically has two parts: a key
that uniquely identifies that piece of data and a value that is the information of interest.
Often, a key is a large number k consisting of many digits, say a 13-digit ISBN to identify
books. One way to store the records is to place the record with key k into location k of
the table, thus theoretically requiring a huge table (e.g., 1013 locations in the case of a 13-
digit ISBN). This is very wasteful of computer memory space, as the number of records to
be stored is relatively small. A solution to this problem is to use hashing functions defined
from larger to smaller sets of integers.

In order to map data of arbitrarily large size to small fixed size, a hashing function h is
used to assign memory location hðkÞ to the record that has k as its key. Frequently, mod
functions are used as hashing functions to convert keys into memory (list) locations. The
location numbers are formally called indices. The index produced by h determines the
spot in the list (i.e., the memory location) to store the value of the record.

The most common hashing function is hðkÞ ¼ k mod m, where m is the number of
available memory locations. Therefore to find hðkÞ, we need only to find the remainder
when k is divided by m. This hashing function can be easily evaluated so that files can be
quickly retrieved. In addition, this hashing function is onto, so all memory locations are
possible. For instance, the memory location assigned by the hashing function
hðkÞ ¼ k mod 65536 to the records of a book with ISBN 9780124076822 is 19,222.

Because a hashing function is not one to one, simply because there are much more
possible keys than memory locations, more than one record may be assigned to a memory
location. In such a case, we say a collision has occurred. In other words, hðk1Þ ¼ hðk2Þ,
but k1sk2. To handle collisions, a collision resolution policy is required. One simple way
to resolve a collision is to find the next unoccupied memory location following the occu-
pied memory location assigned by the hashing function. If we come to the end of the list
without finding a memory location, then we would continue the search back at the
beginning of the list, as if the array were circular. This method of collision resolution
is called linear probing. Note that there are other methods to resolve collisions.

10.7 Representations of Integers

Any positive integer a can be uniquely represented in the following form:

a ¼ ak
�
bk
�þ ak�1

�
bk�1�þ . þ a1 bð Þ þ a0;
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where b, known as the base, is an integer greater than 1, k is a nonnegative integer, a0,
a1,., ak are nonnegative integers less than b, and aks0. This representation of the integer
a is called the base�b expansion of a, which can be denoted by ðakak�1. a1a0Þb. Note
that b represents the number of different symbols that can be used in a numeral system.
There are various representations of integers, including the following expansions:

• Decimal expansions: b ¼ 10/10 symbols f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g.
• Binary expansions: b ¼ 2/2 symbols f0; 1g.
• Octal expansions: b ¼ 8/8 symbols f0; 1; 2; 3; 4; 5; 6; 7g.
• Hexadecimal expansions: b ¼ 16/16 symbols f0; 1; 2; 3; 4; 5; 6; 7; 8; 9; A; B;

C; D; E; Fg.
Note that the subscript 10 representing the base in the decimal expansion is commonly
omitted, and the binary expansion of an integer is just a bit string. The binary expansion is
widely used in digital devices and networks to represent and carry out arithmetic with
integers. The hexadecimal system is commonly used to describe locations in memory
because it can represent every byte (8 bits) as two consecutive hexadecimal digits instead
of the eight digits that would be required by the binary expansion. While noting
that in hexadecimal expansions, A ¼ 10; B ¼ 11; C ¼ 12; D ¼ 13; E ¼ 14; and
F ¼ 15, it is much easier to read hexadecimal numbers than binary numbers.

Example 10.13
Express the following expansions in base 10:
(a) ð11001101Þ2:
(b) ðCDÞ16:
Solution
(a) ð11001101Þ2 ¼ 1ð27Þ þ 1

�
26
� þ 0

�
25
� þ 0

�
24
� þ 1

�
23
� þ 1

�
22
�þ

0
�
21
� þ 1

�
20
� ¼ 205:

(b) ðCDÞ16 ¼ 12
�
161
� þ 13

�
160
� ¼ 205:

Base conversion of an integer a in the decimal expansion into any nondecimal base b is as
follows: divide a and its successive quotients by b until a zero quotient is reached, then
pick the remainders in the reverse order.

Example 10.14
Express 3489, which is in the decimal expansion, in the following representations:
(a) The binary expansion, that is, the base is 2.
(b) The hexadecimal expansion, that is, the base is 16.
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Solution
(a) 3489 ¼ 2 � 1744 þ 1/ 1744 ¼ 2 � 872 þ 0/ 872 ¼ 2 � 436 þ

0/ 436 ¼ 2 � 218 þ 0/ 218 ¼ 2 � 109 þ 0/ 109 ¼ 2 � 54 þ
1/ 54 ¼ 2 � 27 þ 0/ 27 ¼ 2 � 13 þ 1/ 13 ¼ 2 � 6 þ
1/ 6 ¼ 2 � 3 þ 0/ 3 ¼ 2 � 1 þ 1/ 1 ¼ 2 � 0 þ 1.
The successive remainders that we have found (i.e., 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1)
are digits from the right to the left of 3489 in base 2. Hence (3489)10 ¼
(110110100001)2.

(b) 3489 ¼ 16 � 218 þ 1/218 ¼ 16 � 13 þ 10/13 ¼ 16 � 0 þ 13:
The successive remainders that we have found, 1, 10ð¼ AÞ, and 13ð¼ DÞ,
are digits from the right to the left of 3489 in base 16. Hence ð3489Þ10 ¼
ðDA1Þ16. Note that for the conversionof thehexadecimal expansion to thebinary
expansion, each hexadecimal digit corresponds to a block of four binary digits.

10.8 Binary Operations

The computational methods of binary arithmetic are analogous to those of decimal arith-
metic. In binary arithmetic, the number 2 ¼ ð10Þ2 in binary notation plays a role similar
to that of the number 10 in decimal arithmetic.

In binary addition, carryovers of binary addition are performed in the same manner as
in decimal addition. We thus have 0þ 0 ¼ 0; 0þ 1 ¼ 1; 1þ 0 ¼ 1; and 1þ 1 ¼
10; all in base 2.

The binary multiplication is carried out by multiplying the multiplicand by one bit of
the multiplier at a time and the result of the partial product for each bit is placed in such a
manner that the least significant bit is under the corresponding multiplier bit. Finally, the
partial products are added to get the complete product.

In binary subtraction, like decimal subtraction, it may be necessary to borrow. How-
ever, the method introduced here is based on not using borrow, as one’s complement and
two’s complement of binary numbers are used to perform subtraction.

The one’s complement of a binary number can be obtained by inverting each bit from
1 to 0 or from 0 to 1. For example, one’s complement of the binary number 110010 is
001101. To get two’s complement of a binary number is to first obtain the one’s comple-
ment of the number and then add 1 to the least significant bit. For example, two’s com-
plement of the binary number 10010 is 01101 þ 00001 ¼ 01110.

The binary subtraction can be carried out using the following steps:
(i) Find the two’s complement of the subtrahend, and then add it to the minuend.
(ii) If the final carryover of the sum is 1, it is dropped and the result is positive, and if there

is no carryover, the two’s complement of the sum will be the result and it is negative.
The binary division is similar to that employed in the decimal system. However, in

the case of binary numbers, the operation is simpler because the quotient can have either
1 or 0 depending upon the divisor.
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Example 10.15
Consider the two binary numbers m ¼ ð1111Þ2 and n ¼ ð11Þ2. Perform the
following binary operations: (a) mþ n; (b) m� n; (c) m� n, and ðdÞ mOn.

Solution
The details of the binary operations are presented in Fig. 10.1.
(a) Addition: m þ n ¼ ð1111Þ2 þ ð11Þ2 ¼ ð10010Þ2:
(b) Multiplication: m � n ¼ ð1111Þ2 � ð11Þ2 ¼ ð101101Þ2:
(c) Subtraction: m � n ¼ ð1111Þ2 � ð11Þ2 ¼ ð1100Þ2:
(d) Division: mOn ¼ ð1111Þ2Oð11Þ2 ¼ ð101Þ2.

Exercises
(10.1)
(a) Assuming we have gcdða; 105Þ ¼ 15 and lcmða; 105Þ ¼ 210, determine

the integer a.
(b) Assuming we have gcdða; bÞ ¼ 6 and lcmða; bÞ ¼ 72, determine the

possible values for the positive integers a and b.

(10.2)
Determine the gcd and lcm of 82,320 and 950,796 using prime factorization.

Fig. 10.1 Binary operations for Example 10.15.
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(10.3)
(a) Convert 130, which is in the decimal expansion, to the binary expansion.
(b) Convert 20,385, which is in the decimal expansion, to the hexadecimal

expansion.
(c) Convert 10110101, which is in the binary expansion, to the decimal

expansion.

(10.4)
Using the division algorithm, determine q and r for each of the following cases:
(a) a ¼ 4461 and b ¼ 16:
(b) a ¼ �262 and b ¼ 3:

(10.5)
(a) Determine the gcd of 2310 & 2431 using the Euclidean algorithm.
(b) Show that 209 and 221 are relatively prime, using the Euclidean algorithm.

(10.6)
Consider the two binary numbers m ¼ ð10110Þ2 and n ¼ ð1011Þ2. Perform the
following binary operations: (a) mþ n; (b) m� n; (c) m � n, and ðdÞ mOn.

(10.7)
Evaluate the following functions to obtain the corresponding remainder or
quotient:
(a) �101 mod 13:
(b) 199 mod 19:
(c) 228 div 119:
(d) �111 div 99:

(10.8)
Use Fermat’s little theorem to compute the following expressions:
(a) 3302mod 11:
(b) 52003mod 13:

(10.9)
A sequence of pseudorandom numbers fxng, with 0 � xn < m for all positive in-
tegers n; can be successively generated by using the recursively defined function
xnþ1 ¼ ðaxnþcÞ mod m, for a given modulus m, multiplier 2 � a < m, incre-
ment 0 � c < m, and seed 0 � x0 < m. Assuming m ¼ 9, a ¼ 7, c ¼ 5, and
x0 ¼ 3, determine the first 10 pseudorandom numbers.

(10.10)
Determine the smallest integer that is divisible by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11.
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Governments for military intelligence and diplomatic purposes over the past couple of
millennia have been protecting information through secret messaging. In view of the
advent of the Internet, there is an indispensable need to protect the information, in its
transmission as well as its storage from unauthorized access and malicious actions. Cryp-
tography is the field to keep information secret and offer protection of data from un-
wanted access and from any manipulation, impersonation, and forgery. An overview
of cryptography is briefly presented in this chapter.

11.1 Classical Cryptography

Cryptography is about making secret communication to make messages secure in the
presence of adversaries. By encryption, an original message, called plaintext, is trans-
formed into a coded message, called ciphertext. This transformation is performed before
the plaintext is transmitted or stored. The reverse process is called decryption and is per-
formed after the ciphertext is received or retrieved. The algorithm used for encryption
and decryption is often called a cipher, and the process of encryption and decryption re-
quires a secret key. A key is a number (value) that the cipher operates on, without which
the unauthorized parties must not be able to recover the original message.

In classical cryptography, symbols, characters, letters, and digits were directly manip-
ulated with the sole goal to provide secrecy through obscurity. It appears that encrypted
messages were first developed in ancient Egypt using disordered hieroglyphics, which
consisted of visual symbols and characters. There were then other forms of message
concealment, which were developed by the Greeks, namely stenography, through which
a secret message was hidden within an ordinary nonsecret message, and by the Spartans,
namely scytale, by which a narrow strip of parchment was wound on a rod and the mes-
sage written across the adjoining edges.
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A well-known classical cryptography technique, which was developed by Romans,
was the Caesar cipher, a simple encryption method based on substitution. The Caesar ci-
pher shifts each letter in the alphabet by three letters forward, for instance, the letter G
becomes J. It thus requires a letter three places further along, while wrapping the letters at
the end of the alphabet around to the letters at the beginning of the alphabet that is X
wraps around to A, Y to B, and Z to C.

Mathematically described, in the Caesar cipher, each letter is coded by its position
relative to others. To this effect, an integer i ˛f0; 1; :::; 24; 25g replaces a letter whose
position in the alphabet fA; B;.; Y; Zg is the ith; for instance, D is the fourth letter
in the alphabet, that is i ¼ 3, D is thus replaced by 3. Assuming the nonnegative integer
p � 25, the functions providing the encrypted message and the decrypted message are
f ðpÞ ¼ ðpþ3Þ mod 26 and f �1ðpÞ ¼ ðp �3Þ mod 26, respectively.

A slight generalization of the Caesar, cipher called the shift cipher or the additive
cipher, is when 3 is replaced by the integer b, called a key. In other words, the numerical
equivalent of each letter is shifted by b, thus yielding the following functions:

8<
:

Encryption / f ðpÞ ¼ ðpþ bÞ mod 26

Decryption/ f �1ðpÞ ¼ ðp� bÞ mod 26

Example 11.1
Using the shift cipher with key b ¼ 7, encrypt the message DESTROY ALL
THE EVIDENCE.

Solution
The following steps, shown in Table 11.1, must be taken to encrypt the message:
(i) Break the message DESTROY ALL THE EVIDENCE into a set of individ-

ual letters.
(ii) Translate each letter to the corresponding number.
(iii) Apply f ðpÞ ¼ ðpþ7Þ mod 26 to each number in part (ii).
(iv) Translate the new set of numbers to get a set of encrypted letters.

The encrypted text is thus KLZAYVFHSSAOLLCPKLUJL.

Example 11.2
Using the shift cipher with key b ¼ 11, decrypt the message LEELNVHTESH
SLEJZFSLGP.

Solution
The following steps, shown in Table 11.2, must be taken to decrypt the message:
(i) Break the message “LEELNVHTESHSLEJZFSLGP” into a set of individual

letters.
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Table 11.1 Steps in shift cipher for Example 11.1.

(i) D E S T R O Y A L L T H E E V I D E N C E
(ii) 3 4 18 19 17 14 24 0 11 11 19 7 4 4 21 8 3 4 13 2 4
(iii) 10 11 25 0 24 21 5 7 18 18 0 14 11 11 2 15 10 11 20 9 11
(iv) K L Z A Y V F H S S A O L L C P K L U J L

Table 11.2 Steps in shift cipher for Example 11.2.

(i) L E E L N V H T E S H S L E J Z F S L G P
(ii) 11 4 4 11 13 21 7 19 4 18 7 18 11 4 9 25 5 18 11 6 15
(iii) 0 19 19 0 2 10 22 8 19 7 22 7 0 19 24 14 20 7 0 21 4
(iv) A T T A C K W I T H W H A T Y O U H A V E
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(ii) Translate each letter to the corresponding number.
(iii) Apply f �1ðpÞ ¼ ðp�11Þ mod 26 to each number in part (ii).
(iv) Translate the new set of numbers to get a set of decrypted letters.

The decrypted text is thus ATTACK WITH WHAT YOU HAVE.

A generalization of the shift cipher, called the affine cipher, is when for the given alphabet
size n, the encryption function is f ðpÞ ¼ ðmpþbÞ mod n, where 0 � p � n� 1, b, m,
and n are all integers, and gcdðm; nÞ ¼ 1 to ensure f ðpÞ is a one-to-one correspondence.
To decrypt a message using an affine cipher, we need to find p using phðmðf ðpÞ �bÞÞ
ðmod nÞ, where m is an inverse of m modulo n, that is, mmh1 ðmod nÞ.

Example 11.3
Consider the affine cipher f ðpÞ ¼ ð11pþ4Þ mod 26.
(i) Encrypt the letter N.
(ii) Decrypt the letter S.

Solution
(a) We first translate the letter N to the corresponding number; we therefore

have p ¼ 13. We then apply f ðpÞ ¼ ð11pþ4Þ mod 26 for p ¼ 13 to
obtain f ð13Þ ¼ ð11 �13þ4Þ mod 26 ¼ 17. We then translate 17 to get
the letter R, the encrypted letter of N.

(b) We first translate the letter S to the corresponding number, and therefore
obtain f ðpÞ ¼ 18. With m ¼ 11, we find m ¼ 19 as mmh1 ðmod 26Þ.
We thus have phð19ð18�4ÞÞðmod 26Þhð19Þð14Þðmod 26Þh266 ðmod
26Þh6: Having p ¼ 6, we translate 6 to get back the letter G, the decrypted
letter of S.

Both shift ciphers and affine ciphers replace a letter by another letter; hence they are
called monoalphabetic ciphers. In a polyalphabetic cipher, each occurrence of a character
may have a different substitute; for instance, T could be enciphered as P at the beginning
or the end of the text but as M in the middle. Therefore each character in the ciphered
message depends on both the corresponding original text character and its position in the
message.

Monoalphabetic ciphers and even polyalphabetic ciphers are simple methods of
encryption and easy to break, thus being very vulnerable to attacks. This vulnerability
led the way to the introduction of block ciphers, which are significantly more effective
methods of encryption. A block cipher breaks up the original text into fixed blocks of let-
ters and then replaces blocks of letters by other blocks of letters using a one-to-one cor-
respondence transformation. A type of block ciphers is the transposition cipher, in which
the order of letters in a block of letters are rearranged (reordered) according to a fixed
permutation rather than being substituted with other letters of the alphabet. In other
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words, the letters of a block do not change, but instead they are just shuffled in a deter-
ministic way to encrypt the block.

Example 11.4
Using the transposition cipher based on the permutation of the set f1; 2; 3g with
1/3; 2/1, and 3/2, encrypt the message HELP IS COMING.

Solution
As the given set for the permutation consists of three integers, the plaintext message
is then split into blocks of three letters, we thus need to encrypt HEL, PIS, COM,
and ING. In order to encrypt each block based on the given mapping, the first letter
replaces the third letter, the second letter replaces the first letter, and the third letter
replaces the second letter. The encrypted message is thus ELH ISP OMC NGI.

11.2 Modern Cryptography

To encrypt a message, an encryption algorithm, an encryption key, and the plaintext are
needed, and to decrypt a message, a decryption algorithm, a decryption key, and the
ciphertext are required. The encryption and decryption algorithms are public (i.e.,
anyone can access them), but the keys are secret and thus need to be protected.

Number theory uniquely plays a pivotal role in modern cryptography. Cryptography
has become increasingly complex and its applications more varied. The major require-
ments for a system employing cryptography are as follows:
• To provide an easy and inexpensive means of encryption and decryption to all autho-

rized users in possession of the appropriate key.
• To ensure that the task of producing the plaintext without the key is made extremely

difficult and time-consuming.
Relying on the processing power and speed of modern computers, original messages

are no longer encoded in characters in a specified language, nor are they encoded one at a
time.Modern cryptography operates on binary bit sequences and relies on publicly known
algorithms for encoding the message. Secrecy is obtained through a secret key, which is
used as the seed for the algorithms. In modern cryptography, encryption and decryption
can be carried out rapidly using complicated functions that are designed to be resistant to
attack. The computational difficulty of algorithms in conjunction with the fact that only
the parties interested in secure communication possess the secret key makes it extremely
difficult for anyone else to obtain the original information.

The underlying need for modern cryptography stems from the fact there are essential
applications in today’s world that require sensitive information to be fully protected.
Some of the widely popular applications requiring cryptography are electronic and
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mobile commerce transactions, email privacy, secure remote surveillance, file transfers of
confidential data, secure e-voting, banking data, secure cloud computing, medical re-
cords, and secure remote access.

There are numerous threats that can arise in transmission and storage of data, the array
of attacks is constantly widening, and network security is continually becoming more
challenging. The notion of security is tied to computing power, as a coded message is
only as safe as the amount of computing power needed to break it. In short, the goal
is to make undecipherability by an adversary as difficult as possible. Protecting informa-
tion in its storage and retrieval as well as in transactional and messaging services is always
of paramount importance.

The primary reasons to make messages secure through cryptographic mechanisms are
as follows:
• Confidentiality: ensuring the transmitted message containing confidential data is hid-

den from unauthorized parties.
• Authentication: verifying the communicating parties are those they claim to be.
• Integrity: confirming that the message content has not been tampered with.
• Nonrepudiation: not being able to deny the transmission between the two parties has

taken place.
There are fundamentally two types of adversaries. Passive adversaries are a threat to

confidentiality, as they do not interrupt, alter, or insert any data. Active adversaries addi-
tionally threaten integrity and authentication. In any event, potential adversaries may
have powers and resources ranging from minimal to unlimited.

There are two broad categories of cryptography: private-key cryptography, also
known as secret-key cryptography or symmetric-key cryptography, and public-key cryptog-
raphy, also referred to as asymmetric-key cryptography. Public-key cryptography is
growing, but private-key cryptography is more common. They often complement
each other, as there are applications in which both public-key cryptography and
private-key cryptography are used.

11.3 Private-Key Cryptography

Private-key cryptography is based on sharing secrecy by permuting or substituting char-
acters in the plaintext. All classical ciphers with no exception fall into private-key cryp-
tography. The private-key cryptography is often used for long messages, for they require
less time to encrypt. In private-key cryptography, an n-bit block of plaintext is encrypted
and an n-bit block of ciphertext is decrypted. If a message block has fewer than n bits,
padding must be added to make it an n-bit block. The common values of n are 64,
128, 256, and 512 bits. Private-key cryptography uses the same k-bit key for both the
encryption at the transmitter and the decryption at the receiver, as shown in Fig. 11.1.
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In private-key cryptography, once the key is known, both encryption and decryption can
be carried out.

In private-key cryptography, the decryption algorithm is the inverse of the encryp-

tion algorithm, and the number of private keys for N users to communicate is NðN�1Þ
2 ,

as each pair must have a unique private key. The number of keys grows quadratically,
thus making these systems infeasible for larger-scale use. In private-key distribution, a
trusted third party, referred to as a key distribution center (KDC), is used. In private-
key cryptography, each user establishes a shared secret key with KDC. The secret
keys, created by KDC, are used exclusively between KDC and the users and not among
the users themselves. When a user wants to transmit secretly with another one, the trans-
mitter then asks KDC for a session (temporary) secret key to be used between the two
users. A session private key between two parties is used only once.

A widely known example of private-key cryptography is the Data Encryption Stan-
dard (DES), which has a block cipher structure. DES was developed in the 1970s, and for
over 25 years, DES was used by the US government to protect binary data during trans-
mission and storage in computer systems and by the banking industry and businesses to
protect financial transactions for commercial data security. At the transmitter, a 64-bit
plaintext is created into a 64-bit ciphertext, and at the receiver, a 64-bit cipher text is
converted back to a 64-bit plaintext, noting that in DES, the same 56-bit key is used
for both encryption and decryption. The key in fact consists of 64 bits. However,
only 56 of these are actually used by the algorithm. Eight bits are used solely for error
detection and are thereafter discarded. Despite its deprecation as an official standard,
DES remains popular; it is used across a wide range of applications, including ATM
encryption, email privacy, and secure remote access.

Another widely known example of private-key cryptography is the Advanced
Encryption Standard (AES), which was established in 2001 as a replacement for DES.
The highly complex structure of AES yields a high degree of protection against crypt-
analysis. AES has a block size of 128 bits but with three different key lengths of 128,
192, and 256 bits. AES has been adopted by the US government and supersedes DES.
AES is based on block ciphers and is efficient in both software and hardware.

Fig. 11.1 Private-key Cryptography.
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11.4 Public-Key Cryptography

Public-key cryptography is based on personal secrecy rather than sharing secrecy. In
public-key cryptography, the plaintext and ciphertext are numbers that are manipulated
by mathematical functions. In public-key cryptography, a public key and a private key
are used (see Fig. 11.2). It is a salient requirement that it must not be possible to determine
the private key from the public key. In general, the public key is small, and the private
key is large. A pair of keys can be used many times. The number of keys for N users to
communicate is 2N . The algorithm is complex and more efficient for short messages.

In public-key distribution, an organization, known as a certification authority (CA), is
used. In public-key cryptography, public keys, like secret keys, need to be distributed
securely; otherwise, the process can be subject to forgery. CA first checks the identifica-
tion of a user, asks the user’s public key, and writes it on the certificate. To prevent the
certificate itself from being forged, CA signs the certificate with its own private key,
which is difficult to be forged. The user uploads the signed certificate. Anyone who
wants a user’s public key downloads the user’s signed certificate and then uses the
CA’s public key to obtain the user’s public key.

Message authentication protects two communicating parties from any third party; it
does not, however, protect the two parties against each other. In situations where some-
thing more than authentication is needed, the digital signature is the most attractive so-
lution; in addition, it can also prevent denial and forgery. Public-key cryptography can be
used to provide nonrepudiation by producing a digital signature. A digital signature uses a
pair of private-public keys belonging to the sender to provide message integrity and mes-
sage authentication. In short, a digital signature is reminiscent of an ordinary signature, as
they both have the benefit of being easy to produce but difficult enough for anyone else
to forge. A digital signature can be permanently tied to the content of the message being
signed, and it cannot be moved then from one digital file to another, for any attempt will
be detected.

Fig. 11.2 Public-key Cryptography.
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In a digital signature system, on the one hand, the messages are normally long, but on
the other hand, we must use public-key cryptography systems that are very inefficient
when dealing with long messages. The solution is to create a digest of a message through
a hashing function, for instance, a checksum is produced that is much smaller than the
message. Therefore the transmitter first produces a digest, then encrypts it using its
own private key to produce the signature, and then sends the signature along with the
message to the receiver. At the receiver, the signer’s public key is applied to the signature
to get the transmitted digest, and the digest is also directly determined from the message.
If both digests are the same, then only the given transmitter could have issued the message
and that the message has maintained its integrity.

It is important to highlight the distinction between how private and public keys are
used in digital signature, vis-�a-vis in cryptography for confidentiality. In digital signature,
the signer (transmitter) signs the message digest with the signer’s private key and the veri-
fier (receiver) verifies with the signer’s public key. In contrast, in cryptography, the public
and private keys of the receiver are used in the process.

Another important application of public-key cryptography is the digital envelope. A
digital envelope is a framework for data encryption, in which the data is encrypted under a
secret key using a private-key cryptography, such as DES or AES, while this secret key is
encrypted using a public-key cryptography such as RSA, and sent to the other party. In
short, a public key cryptography can be used to distribute private keys to pairs of individ-
uals wishing to communicate.

11.5 The RSA Cryptosystem

The RSA, named after the initials of its inventors, is the most widely used public-key
cryptography for secure data transmission. Its effectiveness is based on the fact that
very large prime numbers are fairly easy to produce on a computer, but it is enormously
difficult (i.e., extremely time-consuming) to factor a product of two large unknown
prime numbers. Digital envelopes and digital signatures are two important applications
of RSA. However, these two security functions are mutually independent (i.e., neither,
either, or both can be applied to a message). A digital envelope is the electronic equiv-
alent of putting the message into a sealed envelope to provide privacy and prevent un-
authorized alterations. A digital signature is the electronic equivalent of signing and
sealing the letter. The digital envelope protects the digital signature.

The following steps show how the RSA keys can be generated:
(i) Choose two very large prime numbers p and q at random, on the order of a couple

of hundred digits each, often using probabilistic computer algorithms, and calculate
n ¼ pq. As the number of digits in n is approximately equal to the sum of digits in p
and q, no computer currently can factor it in a reasonable length of time. Note that
due to the nature of factoring algorithms, p and q need to be of similar size to keep
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the RSA system secure. In addition, the large numbers are stored in binary form and
generally 2048 to 4096 bits are needed for n to ensure a reasonably high degree of
security.

(ii) Compute 4ðnÞ ¼ ðp �1Þðq �1Þ, and choose an arbitrary integer e satisfying 1 <
e < 4ðnÞ; which is relatively prime to 4ðnÞ. In other words, gcdðe; 4ðnÞÞ ¼ 1.
Although for some applications, such as making encryption faster on small devices
like smart cards, it is desirable to have small values of e, it is best not to choose a small
value for e, as the secrecy of the cipher may then be compromised.

(iii) Find the positive integer d, an inverse of e modulo 4ðnÞ, that is, find an integer d
such that edh1 ðmod 4ðnÞÞ: Note that as gcdðe; 4ðnÞÞ ¼ 1, we have
deþ c4ðnÞ ¼ 1, where the integers c and d can be found using the extended
Euclidean algorithm, with the condition that 0 < d < 4ðnÞ.

The public key is fn; eg, which is widely distributed, and thus anyone with the public key
can encrypt a message to send. The private key is fn; dg, where the security of the system
depends on d being very difficult to calculate if only n and e are known. Because d is not
publicly available, only someone in possession of that value can correctly decrypt the
message.

The correctness of the RSA cryptosystem follows from the elementary number the-
ory, in particular from Euler’s theorem. The RSA cryptosystem is a block cipher and the
following steps reflect how to encrypt using the public key and decrypt using the private
key:
(i) Translate each letter in the plaintext message M into a two-digit number because

the RSA cipher works only on numbers while noting that A is translated into
00, B is translated into 01, ., and Z is translated into 25.

(ii) Concatenate the two-digit numbers into a sequence of digits representing the plain-
text message, and then divide the sequence of digits into the largest possible equally
sized blocks of even number of digits. Note that a block of digits is represented by
m, where 0 < m < n, and gcdðm; nÞ ¼ 1.

(iii) Pad the plaintext message with a number of random characters at the beginning and
the end of the message to foil some potential code breaking attacks (if needed) or if a
block is not full, additional characters need to be filled in to make the last block the
same size as all other blocks or to ensure gcdðm; nÞ ¼ 1.

(iv) Determine the cyphertext C block by block using c ¼ me mod n, which is the
encryption of m in the RSA cryptosystem.

(v) Determine the plaintext M block by block using m ¼ cd mod n, which is the
decryption of c in the RSA cryptosystem.

Example 11.5
Assuming p ¼ 101, q ¼ 103; and the message is PASSION. Determine the
blocks of integers that are encrypted using the RSA cryptography.
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Solution
We have n ¼ pq ¼ 101 � 103 ¼ 10; 403. The translation of the seven letters
in PASSION into their numerical equivalents is 15001818081413. We now
need to divide this sequence of fourteen digits into the largest possible equally
sized blocks of even number of digits, where each block is less than 10,403.
This results in blocks of four digits, as a block of six digits is greater than
10,403. Therefore the sequence of 14 digits are groups into 4 blocks of 4 digits,
where we have padded the end of the sequence, say, with 24, so as to make
the sequence into 16 digits, a multiple of 4. The four blocks of integers to be
encrypted block by block are thus as follows: 1500 1818 0814 1324.

Example 11.6
Show how the message 19 can be encrypted using the RSA cryptography by the
sender and how accordingly the encrypted message can be decrypted by the
receiver.

Solution
Suppose the sender arbitrarily chooses the two prime numbers p ¼ 83 and q ¼ 53
and thus has n ¼ pq ¼ 83� 53 ¼ 4399 and 4 nð Þ ¼ ðp� 1Þðq� 1Þ ¼
82 � 52 ¼ 4264. The sender then chooses an arbitrary e ¼ 23, which is relatively
prime to 4264, because we have gcdð4264; 23Þ ¼ 1. Therefore ð4399; 23Þ is a
valid public key. The encrypted message using fast modular multiplication is then
as follows: c ¼ me mod n ¼ 1923 mod 4399 ¼ 2556.

The valid private key is thus ð4399; 927Þ, which the receiver possesses. Note
that d ¼ 927, as it is an inverse of e modulo 4ðnÞ ¼ 23 modulo 4264 while
noting that deþ c4ðnÞ ¼ 23d þ 4264c ¼ 1. The decrypted message using
fast modular multiplication is then as follows: m ¼ cdmod n ¼ 2556927

mod 4399 ¼ 19.

Example 11.7
Suppose in an RSA cryptosystem, we have p ¼ 23 and q ¼ 31. Encrypt
M ¼ 572 to get C and then decrypt C to get M back.

Solution

Given

8>><
>>:

p ¼ 23

q ¼ 31

/ n ¼ pq ¼ 713 / 4ðnÞ ¼ ðp� 1Þðq� 1Þ ¼ 660:
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Having

8>><
>>:

e < 4ðnÞ

gcdðe;4ðnÞÞ ¼ 1

/

Choosing e ¼ 29

as an arbitrary choice;

while meeting both requirements:

Having

8>><
>>:

d < 4ðnÞ

deh1 ðmod 4ðnÞÞ
/ Using the Euclidean algorithm / d ¼ 569:

Having

8>><
>>:

Public key : f713; 29g

Private key : f713; 569g
/ Obtaining

8>><
>>:

C ¼ 57229 mod 713 ¼ 113

M ¼ 113569 mod 713 ¼ 572

Note that by replacing each exponent by its binary expansion and then using
the modular exponentiation algorithm, C and M were calculated.

Example 11.8
Suppose in an RSA cryptosystem, we have p ¼ 53 and q ¼ 61. Encrypt M ¼
1717 to get C and then decrypt C to get M back.

Solution

Given

8>><
>>:

p ¼ 53

q ¼ 61

/ n ¼ pq ¼ 3233 / 4ðnÞ ¼ ðp� 1Þðq� 1Þ ¼ 3120:

Having

8>><
>>:

e < 4ðnÞ

gcdðe;4ðnÞÞ ¼ 1

/

Choosing e ¼ 17

as an arbitrary choice;

while meeting both requirements:

Having

8>><
>>:

d < 4ðnÞ

deh1 ðmod 4ðnÞÞ
/ Using the Euclidean algorithm / d ¼ 2753:
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Having

8>><
>>:

Public key : f3233; 17g

Private key : f3233; 2753g
/ Obtaining

8>><
>>:

C ¼ 171717 mod 3233 ¼ 2460

M ¼ 24602753 mod 3233 ¼ 1717

Note that by replacing each exponent by its binary expansion and then using
the modular exponentiation algorithm, C and M were calculated.

Exercises
(11.1)
Encrypt HELLO using the shift cipher with b ¼ 15.

(11.2)
Encrypt the message BEWARE OF MARTIANS using the transposition cipher
with blocks of four letters, and the permutation 1/3; 2/1; 3/4; and 4/2:

(11.3)
Propose a method to decrypt a ciphertext message if a transposition cipher was
used.

(11.4)
Suppose the alphabet in a language consists of n letters. Assuming the shift cipher is
employed, determine a key b for which the enciphering function and deciphering
function are the same.

(11.5)
Determine an inverse of 43 modulo 660, that is, find an integer s such that
43sh 1 ðmod 660Þ.
(11.6)
Show why the RSA cryptography works, that is, for the cyphertext C and plain-
text M we have

C ¼ Me mod n / M ¼ Cd mod n:

(11.7)
In a trivial, certainly unrealistic, example of the RSA cryptosystem, we have p ¼
3 and q ¼ 13. Encrypt 20.

(11.8)
Suppose in an RSA cryptosystem, we select two prime numbers p ¼ 17 and
q ¼ 11. After determining a private key and a public key, determine the encryp-
tion of 88 and show how 88 can be obtained back from the encrypted number.
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(11.9)
Suppose in an RSA cryptosystem, we select two prime numbers p ¼ 59, q ¼ 43,
and e ¼ 13. Assuming the encrypted message is 0667 1947 0671, determine the
original message.

(11.10)
Show that in the RSA cryptography, when n ¼ pq, with p and q being primes,
and 4ðnÞ ¼ ðp�1Þðq�1Þ are both known, we can easily factor n to find p and q.
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CHAPTER 12

Algorithms
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The term algorithm is the corrupted version of the last name of the famous mathematician
al-Khowarizmi, whose book on Hindu numerals was principally responsible for
spreading the Hindu-Arabic numeral system throughout Europe and the development
of mathematics during the European Renaissance. Algorithms are very widely used in
everyday life in one way or another. For instance, there are several search engines on
the Internet, where each has its own proprietary algorithm that ranks websites for each
keyword or combination of keywords. From seeking the shortest route and online shop-
ping to biometric authentication and video compression, algorithms are everywhere in
modern life. This chapter briefly discusses some aspects of algorithms and describes several
sorting and search methods.

12.1 Algorithm Requirements

An algorithm is a finite unambiguous sequence of instructions, set of rules, or number of
steps that involves repetition of an operation or reiteration of a procedure for performing
a computation, solving a mathematical problem, or accomplishing some end in a finite
amount of time. Some of the important requirements for an algorithm are as follows:
• An algorithm has input values from a specified set.
• An algorithm produces the output values from the input values, which is the solution

to a problem.
• An algorithm possesses finiteness, that is, it produces the output after a finite number

of steps.
• An algorithm possesses definiteness, that is, all steps of the algorithm are precisely

defined using unambiguous, well-defined operations.
• An algorithm possesses correctness, that is, it produces correct output values for any

set of input values.
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• An algorithm possesses effectiveness, that is, it performs each step precisely and in a
finite amount of time, and no step can be impossible to do, such as division by zero.

• An algorithm is well-ordered, as a computer can only execute an algorithm if it knows
the exact order of steps to perform.

• An algorithm possesses generality, that is, it should accept any general set of input
values.

Example 12.1
Noting a chessboard (a square board divided into 64 alternating dark and light
squares) is referred to as an 8� 8 board, the total number of squares of all sizes
(from the largest square to the smallest squares) in an n� n chessboard is as follows:

S ¼
Xn
i¼ 1

i2

Describe the steps of an algorithm that finds the sum S for an integer n � 1.

Solution
Noting that this algorithm meets all requirements, the following sequence of steps
is required:
(1) Input n.
(2) Set S ¼ 0.
(3) Set i ¼ 1.
(4) Compute i2 ¼ i � i.
(5) Add i2 to S:
(6) Add 1 to i.
(7) Compare i to n; if i > n, then output S and stop.
(8) Go back to step (4).

An algorithm is called optimal for the solution of a problem with respect to a specific
operation (e.g., the number of comparisons) if there is no algorithm for solving this prob-
lem using a fewer number of operations.

In order to implement an algorithm using a computer, a flowchart or a pseudocode
may be required. A flowchart is a graphical method of presenting an algorithm to illustrate
its flow of execution. A flowchart shows how the flow of execution proceeds from one
statement to the next until the end of the algorithm is reached. A pseudocode is a semi-
formal language, an intermediate step between a text description of an algorithm and an
implementation of the algorithm in a programming language. There are no required syn-
tax rules for pseudocode, as it is intended for human reading rather than machine reading.
However, there are many useful notational conventions to eliminate ambiguity and aid in
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clarity. The flowchart or pseudocode of an algorithm can be converted into a program-
ming language of choice, such as Java or Cþþ.

There are some problems for which it can be shown that no algorithm exists for solv-
ing them, one such problem is the halting problem. The halting problem is a procedure
that takes as input a computer program and the input to the program and determines
whether the program will eventually finish running (i.e., will ultimately stop) or continue
to run forever. It is obviously very important to have such a procedure to test whether a
program may enter into an infinite loop when writing and debugging programs. Alan
Turing proved that a general algorithm to solve the halting problem for all possible
program-input pairs cannot exist. Based on proof by contradiction, it can be shown
that the halting problem on Turing machines (an abstract computational model that per-
forms computations by reading and writing to an unlimited amount of memory) is un-
decidable, hence unsolvable, as the halting problem seeks an algorithm that works for all
programs and all input data.

12.2 Algorithmic Paradigms

An algorithmic paradigm is an abstraction higher than the notion of an algorithm. An
algorithmic paradigm is a generic model, based on a particular approach, which underlies
the design of a class of algorithms for solving a multitude of problems. Some of the
important algorithmic paradigms are as follows:
• Brute-force algorithms: The brute-force algorithm is a simple algorithm in concept

that blindly iterates all possible solutions to search for one or more than one solution
that may solve a problem without any regard to the heavy computational require-
ments. It takes an inefficient approach for solving problems, as it does not take advan-
tage of the special structure of the problem. Examples include using all possible
permutations of numbers to open a safe, finding the largest number in a list of
numbers, sorting problems, such as the bubble, insertion, and selection sorts, and poll-
ing a multitude of communication devices to determine those having messages to
transmit.

• Divide-and-conquer algorithms: The divide-and-conquer algorithm is an effective
algorithm that works by recursively breaking down a problem into two or more sub-
problems of the same or related type until these become simple enough to be solved
directly and rather easily. The solutions to the subproblems are then combined to give
a solution to the original problem. Examples include sorting problems, such as quick-
sort and merge sort, binary search, solving the closest pair problem, routing mail by
sorting letters into separate bags for different geographical areas, and applying the law
of total probability.
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• Backtracking algorithms: The backtracking algorithm incrementally builds candidates to
the solution and abandons a candidate (i.e., backtracks) as soon as it determines that the
candidate cannot possibly be a part of a valid solution. It is generally applied to find so-
lutions to some constrained optimization problems. Examples include the eight queens
puzzle, which asks for all arrangements of eight chess queens so that no queen attacks
any other, crosswords, Sudoku, the knapsack problem, and finding spanning trees.

• Dynamic programming: The dynamic programming algorithm can be effectively used
for solving a complex problem by recursively breaking down the problem. It requires
that overlapping subproblems exist, and the optimal solution of the problem can be
obtained using optimal solutions of its subproblems stored in memory with the help
of a recurrence relation. Examples include the scheduling problem, Fibonacci
numbers, matrix chain multiplication, and the traveling salesman problem.

• Probabilistic algorithms: The probabilistic algorithm can solve problems that cannot
be easily solved by deterministic algorithms. In contrast to a deterministic algorithm,
which always follows the same steps for a given input and has to go through a very
large number of possible cases, the probabilistic algorithm makes some random
choices at some steps, which may lead to different outputs in much fewer steps,
but with a tiny probability that the final answer may not be correct. Examples include
Monte Carlo algorithm in quality control, collisions in hashing functions, and
Bayesian spam filters.

• Greedy algorithms: The greedy algorithm is one of the simplest and most intuitive al-
gorithms that is used in optimization problems, and it often leads to an optimal solu-
tion. The algorithm makes the optimal choice at each step as it attempts to find the
minimum or maximum value of some parameter. Greedy algorithms sometimes fail
to produce optimal solutions because they do not consider all the data, as the choice
made by a greedy algorithm may depend on choices it has made so far, but it is not
aware of future choices it could make. A greedy algorithm in a shortsighted manner
identifies an optimal subproblem in the problem. With the goal of minimizing or
maximizing the parameter of interest, create an iterative way to go through all of
the subproblems so as to build a solution. Examples may include finding the shortest
path through a graph and a Huffman code used in lossless digital compression of data.

Example 12.2
Use the greedy algorithm to find an optimal solution in each of the following two
cases:
(a) Use the least number of coins to make 92 cents change with quarters, dimes,

nickels, and pennies.
(b) Determine the path with the largest sum in Fig. 12.1.
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Solution
(a) In this case, the greedy algorithm produces an optimal solution. To make

change for 92 cents for the least number of coins, the focus at any step is
on the largest possible coin, that is, on quarters, dimes, nickels, and pennies,
respectively. First, three quarters are selected, leaving 17 cents; next, one dime
is selected, leaving 7 cents; next a nickel is selected, leaving 2 cents; and finally
2 pennies. The total number of coins is thus 7ð¼ 3þ 1þ 1þ 2Þ, as
92 ¼ ð3 � 25Þ þ ð1 � 10Þ þ ð1 � 5Þ þ ð2 � 1Þ.

(b) In this case, the greedy algorithm does not produce an optimal solution. The
greedy algorithm fails to find the largest sum simply because it makes decisions
based only on the information it has at any one step, without regard to the
overall problem. In order to reach the largest sum, at each step, the greedy
algorithm chooses what appears to be the optimal immediate choice. It there-
fore chooses 30 instead of 20 at the second step and thus does not reach the
best solution, which is 100 ð¼ 10þ 20þ 70Þ, and it mistakenly finds
90 ð¼ 10þ 30þ 50Þ as the largest sum.

12.3 Complexity of Algorithms

The two main measures for the computational complexity of an algorithm are as follows:
• Space complexity: It is measured by the maximum amount of computer memory

needed in the execution of the algorithm, and the requirement is frequently a mul-
tiple of the data size.

• Time complexity: It is measured by counting the number of key operations using the
size of the input as its argument.
The term complexity generally refers to the running time of the algorithm. The func-

tion f ðnÞ, representing the time complexity of an algorithm, is measured by the following
two factors:
(i) The size n of the input data and the characteristics of the particular input data.
(ii) The number of basic key operations that must be performed when the algorithm is

executed, while noting they generally include addition, subtraction, multiplication,
division, and comparison.

Fig. 12.1 Possible paths for Example 12.2.
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Example 12.3
Discuss the algorithms required to perform the following mathematical operations:
(a) Matrix multiplication using direct method.
(b) Polynomial evaluation using Horner’s method.

Solution
(a) In the multiplication of two matrices, order matters (i.e., matrix multipli-

cation is not commutative). In order to multiply two matrices, we must
first make sure that the number of columns in the first matrix equals
the number of rows in the second matrix, as this is the prerequisite for
multiplication. The widely known direct method is as follows: if the first
matrix is an m� n matrix and the second matrix is an n� p matrix, where
m, n, and p are all positive integers, then their matrix product is the m� p
matrix, whose entries are given by the dot product of the corresponding
row of the first matrix and the corresponding column of the second matrix.
In other words, we multiply the elements of row i of the first matrix by the
elements of column j in the second matrix to obtain the element of the ith
row and jth column of the product. The algorithm to perform this matrix
multiplication thus requires mpn multiplications and mpðn�1Þ additions.
Note that there are other algorithms that require a smaller number of mul-
tiplications and additions to multiply two matrices than the direct method
does.

(b) Consider the following function f ðxÞ, which is a polynomial of degree n:

f ðxÞ ¼ anx
n þ an�1x

n�1 þ :::þ a2x
2 þ a1xþ a0:

Suppose we want to evaluate f ðxÞ for x ¼ c, that is, f ðcÞ. We can consider
two different algorithms for a polynomial evaluation. The first is known as

the direct method, which requires nþ ðn�1Þ þ ðn�2Þ þ. þ 1 ¼ nðnþ1Þ
2

multiplications and n additions. The second is known as Horner’s method,
which is based on rewriting the polynomial by successively factoring out x,
and is as follows:

f ðxÞ ¼ a0 þ a1xþ a2x
2 þ :::þ an�1x

n�1 þ anx
n

¼ a0 þ xða1þ xða2þ :::þ xðan�1þ xanÞÞÞ:
Horner’s method is significantly more efficient than the direct method, as it
requires only n multiplications and n additions.
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Noting the function f ðnÞ represents the time complexity of an algorithm for the input
data of size n, there are typically two types of time complexity to analyze:
(i) The average-case time complexity, that is, the expected value of f ðnÞ, is usually diffi-

cult to analyze, and it is generally assumed that the distribution of the possible inputs
is uniform when the actual distribution is unknown, and the uniform distribution
may not actually apply to real situations.

(ii) The worst-case time complexity, that is, the maximum value of f ðnÞ, is easier than the
average-case complexity to analyze, as this complexity is based on the largest number
of operations required, as a solution for any possible input is guaranteed.

12.4 Measuring Algorithm Efficiency

Algorithmic efficiency is a property of an algorithm that relates to the amount of compu-
tational resources used by the algorithm. An algorithm must be analyzed to determine its
resource usage, and the efficiency of an algorithm can be measured based on the usage of
different resources. The asymptotic growth of functions is commonly used in the analysis
of algorithms to estimate the run time and the amount of memory they require. It is very
important to provide approximations that make it easy to estimate the large-scale differ-
ences in algorithmic efficiency while ignoring differences of a constant factor and differ-
ences that occur only for small sets of input data.

The estimates of resources required by an algorithm are represented by the big-Oh
(O), big-Omega (U), and big-Theta (Q) notations without being concerned about con-
stant multipliers or smaller order terms. Note that the three notations f ðxÞ ¼ OðgðxÞÞ,
f ðxÞ ¼ UðgðxÞÞ, and f ðxÞ ¼ QðgðxÞÞ all stand for collections of functions. Hence the
equality sign does not mean equality of functions. Moreover, as we are dealing with func-
tions representing complexity, these functions take on only positive values. Therefore all
references to absolute values can be dropped for such functions.

The growth of a function representing the complexity of an algorithm can be esti-
mated using the big-O notation as its input grows. Let f ðxÞ and gðxÞ be real-valued
functions defined on the same set of nonnegative real numbers. Then f ðxÞ is
OðgðxÞÞ, which is read as f ðxÞ is big-Oh of gðxÞ, if there are real constants C and k
such that jf ðxÞj � CjgðxÞj whenever x > k. This definition indicates that f ðx) grows
slower than some fixed multiple of gðxÞ as x grows slowly without bound. However,
the rate of growth of multiple of gðxÞ should be preferably close to the rate of growth
of f ðxÞ, where gðxÞ provides an upper bound for the size of f ðxÞ for large values of x.
The constantsC and k are called witnesses to the relationship f ðxÞ isOðgðxÞÞ and are not
unique. Although there are infinitely many pairs of witnesses, we need only one pair of
witnesses. The approach to find a pair of witnesses is to first find a value of k for which
the size of jf ðxÞj can be easily estimated when x > k, and then find a value of C for
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which jf ðxÞj � CjgðxÞj when x > k. In short, if for a sufficiently large value of x, the
values of f ðxÞ are less than those of a multiple of gðxÞ, then f ðxÞ is OðgðxÞÞ.

The following properties of the big-O estimate are of importance:
• When we have f ðxÞ ¼ OðgðxÞÞ and jhðxÞj > jgðxÞj, we then have f ðxÞ ¼ OðhðxÞÞ:
• When f ðxÞ is a polynomial of degree n, we then have f ðxÞ ¼ OðxnÞ.
• If we have f1ðxÞ ¼ Oðg1ðxÞÞ and f2ðxÞ ¼ Oðg2ðxÞÞ, then we have f1ðxÞ þ f2ðxÞ ¼

Oðmaxðjg1ðxÞj; jg2ðxÞjÞÞ. Therefore if we have f1ðxÞ ¼ OðgðxÞÞ and f2ðxÞ ¼
OðgðxÞÞ, then we have f1ðxÞ þ f2ðxÞ ¼ OðgðxÞÞ.

• If we have f1ðxÞ ¼ OðgðxÞÞ and f2ðxÞ ¼ Oðf1ðxÞÞ, then we have f2ðxÞ ¼ OðgðxÞÞ.
• If we have f1ðxÞ ¼ Oðg1ðxÞÞ and f2ðxÞ ¼ Oðg2ðxÞÞ, then we have f1ðxÞf2ðxÞ ¼

Oðg1ðxÞg2ðxÞÞ.
Note that if f ðxÞ is a sum of several terms and there is one with the largest growth rate,

then that term can be kept and all others omitted, and also if f ðxÞ is a product of several
factors, then constants (terms in the product that do not depend on x) can be omitted.

Example 12.4
Show that f ðxÞ ¼ x3 þ 3x2 þ 3xþ 1 is O

�
x3
�
for three pairs of witnesses.

Solution
(a) If we choose k ¼ 1 (i.e., x > 1), we then have 3x3 > 3x2 > 3x and x3 > 1,

where these inequalities are obtained by multiplying both sides of x > 1 by
appropriate terms. An upper bound on f ðxÞ is thus as follows:

0< x3 þ 3x2 þ 3xþ 1 < x3 þ 3x3 þ 3x3 þ x3 ¼ 8x3/C ¼ 8:

(b) If we choose k ¼ 2 (i.e., x > 2), we have 3
2x

3 > 3x2, 34x
3 > 3

2x
2 > 3x, and

x3
8 > 1, where these inequalities are obtained by multiplying both sides of
x > 2 by appropriate terms. An upper bound on f ðxÞ is thus as follows:

0< x3 þ 3x2 þ 3xþ 1 < x3 þ 3
2
x3 þ 3

4
x3 þ 1

8
x3 ¼ 27

8
x3/C ¼ 27

8
:

(c) If we choose k ¼ 3 (i.e., x > 3), we have x3 > 3x2, x
3

3 > x2 > 3x, and x3
27 > 1,

where these inequalities are obtained by multiplying both sides of x > 3 by
appropriate terms. An upper bound on f ðxÞ is thus as follows:

0< x3 þ 3x2 þ 3xþ 1 < x3 þ x3 þ 1
3
x3 þ 1

27
x3 ¼ 64

27
x3/C ¼ 64

27
:

Fig. 12.2 shows f ðxÞ ¼ O
�
x3
�
for all these three pairs of witnesses.
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Example 12.5
Suppose we have f ðxÞ ¼ xn, where n is a positive integer.
(a) Show that xn is O

�
xnþ1

�
.

(b) Show that xnþ1 is not OðxnÞ.
Solution
(a) Note that when x > 1, as we multiply both sides of x > 1 by xn we have xn <

xnþ1. Consequently, we can take k ¼ 1 and C ¼ 1 as a pair of witnesses.
(b) Weuse a proof by a contradiction to show that nopair ofwitnessesC and k exists

such that xnþ1 � Cxn whenever x > k. Suppose that there is a pair of witnesses
and k for which xnþ1 � Cxn whenever x > k. This, in turn, means that when
x > 0, we have x � C (by dividing the inequality by xn). However, no matter
what C and k are, the inequality x � C cannot hold for all x with x > k. For
instance, when x is greater than both k and C, it is not true that x � C even
though x > k. This contradiction shows that xnþ1 is not OðxnÞ.

When x is a very large positive integer, the order functions satisfy the following
relationships:

Oð1Þ < Oðlog2 xÞ < OðxÞ < Oðx log2 xÞ < O
�
x2
�
< Oð2xÞ < Oðx!Þ < OðxxÞ:

Fig. 12.3 shows a display of the growth of functions commonly used in big-O esti-
mates. Note that when we say the order of magnitude of an algorithm is a constant,

Fig. 12.2 Graphs for Example 12.4.
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we mean that the execution time is bounded by a constant (i.e., it is independent of the
input size x). If the order is linear, the execution time grows linearly (i.e., it is directly
proportional to the input size x).

Example 12.6
Give a big-O estimate for f ðnÞ ¼ an logaðn!Þ þ

�
n2þ a

�
loga

�
n2þ a

�
, where

a > 1 is a real number and n > 1 is an integer.

Solution
We have

an logaðn!Þ ¼ an logað1� 2� :::� nÞ � an logaðn� n� :::� nÞ
¼ an logaðnnÞ ¼ an2 logaðnÞ:

If we choose n > aþ 1 (i.e., k ¼ aþ 1), we then have
�
n2þ a

�
loga

�
n2þ a

�� �
n2þ a

�
loga

�
n2þ an2

� ¼ �
n2þ a

�
loga

�ð1þ aÞn2�

¼ �
n2þ a

��
logað1þ aÞþ loga

�
n2
�� ¼ �

n2þ a
�ðlogað1þ aÞþ 2 logaðnÞÞ

� �
n2þ a

�ðlogaðnÞþ 2 logaðnÞÞ �
�
n2þ a

�ð3 logaðnÞÞ �
�
2n2

�ð3 logaðnÞÞ
¼ 6n2 logaðnÞ:

1

10

1000

10000

100

43 85 6 1072 9

Fig. 12.3 A display of the growth of functions.
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We therefore have

f ðnÞ ¼ an logaðn!Þ þ
�
n2þ a

�
loga

�
n2þ a

�
< an2 logaðnÞ þ 6n2 logaðnÞ

¼ �
an2þ 6n2

�
logaðnÞ ¼ ðaþ 6Þn2 logaðnÞ ¼ O

�
n2 logaðnÞ

�
/C ¼ aþ 6:

Let f ðxÞ and gðxÞ be real-valued functions defined on the same set of nonnegative real
numbers. Then f ðxÞ is UðgðxÞÞ, read as f ðxÞ is big-Omega of gðxÞ if there are real
constants C and k such that jf ðxÞj � CjgðxÞj whenever x > k. This definition indicates
gðxÞ provides a lower bound for the size of f ðxÞ for large values of x. Note that f ðxÞ is
UðgðxÞÞ if and only if gðxÞ is Oðf ðxÞÞ. In short, if for sufficiently large value of x, the
values of f ðxÞ are greater than those of a multiple of gðxÞ, then f ðxÞ is UðgðxÞÞ.

Example 12.7
Give a UðgðxÞÞ estimate for f ðxÞ ¼ 100x3 � 10x2 þ 1:

Solution
For x � 1, we have

x3 � x2 / � x3 � �x2 / � 10x3 � �10x2:

Consequently, we have

100x3� 10x2 þ 1 � 100x3 � 10x3 ¼ 90x3:

The function f ðxÞ ¼ 100x3 � 10x2 þ 1 is U
�
x3
�
with k ¼ 1 and C ¼ 90.

Example 12.8
Give a big-U estimate for f ðxÞ ¼ 15

ffiffi
x

p ð2xþ9Þ
xþ1 , if x � 0.

Solution
For x > 1, we have

15
ffiffiffi
x

p ð2xþ 9Þ
xþ 1

>
15

ffiffiffi
x

p ð2xþ 2Þ
xþ 1

¼ 30
ffiffiffi
x

p ðxþ 1Þ
xþ 1

> 30
ffiffiffi
x

p
:

The function f ðxÞ ¼ 15
ffiffi
x

p ð2xþ9Þ
xþ1 is Uð ffiffiffi

x
p Þ with x > 1 and C ¼ 30.

Let f ðxÞ and gðxÞ be real-valued functions defined on the same set of nonnegative real
numbers. Then f ðxÞ is QðgðxÞÞ, read as f ðxÞ is big-Theta of gðxÞ, if f ðxÞ is OðgðxÞÞ and
f ðxÞ is UðgðxÞÞ. This definition indicates gðxÞ provides a lower bound as well as an
upper bound for the size of f ðxÞ for large values of x. Note that f ðxÞ is QðgðxÞÞ if
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and only if there are real numbers C1 and C2 and a positive real number such that
C1jgðxÞj � jf ðxÞj � C2jgðxÞj, wherever x > k. In short, if for sufficiently large value
of x, the values of f ðxÞ are bounded both above and below by those of a multiple of
gðxÞ, then f ðxÞ is QðgðxÞÞ.

Example 12.9
Give a big-Q estimate for f xð Þ ¼ 5x3 þ 10x2 log2x, if x > 0.

Solution
Assuming x > 1, we have the following:

x > log2x > 0 / 10x3 > 10x2log2x > 0 /

5x3 þ 10x3 > 5x3 þ 10x2 log2x > 5x3 / 15x3 > f xð Þ > 5x3:

Consequently, 5x3 þ 10x2 log2x is Q
�
x3
�
, where C1 ¼ 5 and C2 ¼ 15; for

k ¼ 1:

Example 12.10
Give a big-Q estimate for f ðnÞ ¼ 1þ 2þ 3 þ ::: þ n, where n is a positive
integer.

Solution
We have

f ðnÞ ¼ 1þ 2þ 3þ :::þ n ¼ nðnþ 1Þ
2

¼ 0:5n2 þ 0:5n:

Assuming n > 1, we have the following:

0:5n2 > 0:5n > 0 / 0:5n2 þ 0:5n2 > 0:5n2 þ 0:5n > 0:5n2 / n2 > f nð Þ > 0:5n2:

Consequently, 0:5n2 þ 0:5n is Q
�
n2
�
, where C1 ¼ 0:5 and C2 ¼ 1, for

k ¼ 1:

If f ðxÞ ¼ anxn þ an�1xn�1 þ :::þ a0 is a polynomial of degree n � 0, where n is an
integer, all coefficients are real numbers and ans0; then for large values of x, we
have the following:

8>><
>>:

f xð Þ ¼ OðxsÞ for all integers s � n

f xð Þ ¼ UðxrÞ for all integers r � n

f xð Þ ¼ QðxnÞ
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Note that big-Oh, big-Theta, and big-Omega notations can be extended to functions
in more than one variable. For example, for functions in two variables and some wit-
nesses, we have the following:
8>><
>>:

f ðx; yÞ ¼ Oðgðx; yÞÞ/ jf ðx; yÞj � C1jgðx; yÞj for x > k1 and y > k2
f ðx; yÞ ¼ Uðgðx; yÞÞ/ jf ðx; yÞj � C2jgðx; yÞj for x > k1 and y > k2
f ðx; yÞ ¼ Qðgðx; yÞÞ/ C2jgðx; yÞj � jf ðx; yÞj � C1jgðx; yÞj for x > k1 and y > k2

12.5 Sorting Algorithms

An entry in a database is a 2-tuple whose first component is a key and the second compo-
nent is the corresponding data. In other words, a key in a database is a value from an or-
dered set, which is used to store and retrieve data. The process of arranging a collection of
database entries into a sequence that conforms to the order of their keys is called sorting.
A sorting algorithm is an algorithm that puts elements of a list in a certain order, such as an
ascending order or a descending order.

A sorting algorithm puts the elements of a list in a certain place or rank according to
kind, class, or nature. Such an arrangement in the context of discrete mathematics and
computer science is generally in alphabetical or numerical order. Sorting examples
may include words in a dictionary, names in a telephone directory, email addresses in
a contact list, cities according to the sizes of their populations, and countries based on
gross domestic product. A major advantage of using a sorted sequence of elements rather
than an unsorted sequence of elements is that it is very much easier to find a particular
element, especially when the sequence is quite long.

A significant portion of computing resources is often devoted to sorting problems.
There are numerous sorting algorithms. Some algorithms are easier to implement, and
some are more efficient either in general or for a set of particular inputs. Each algorithm
has certain benefits and drawbacks. The focus of this section is on comparison-sorting
algorithms, meaning sorting algorithms that can sort items of any type for which a
less-than or equal-to relation is defined (i.e., which of two elements should occur first
in the final sorted list). A comparison sort cannot perform better than Oðn log2ðnÞÞ on
average. Table 12.1 presents the complexities of various sorting methods.

The bubble sort is a simple but not very efficient sorting algorithm. In the bubble sort,
smaller elements bubble to the top and larger elements sink to the bottom. It successively
compares adjacent elements in the list and swaps them if they are not in the right order.
The first element is compared with the second element, the elements are interchanged if
the second element is smaller than the first one, otherwise no swapping is done. Then the
current second element is compared with the third element, those elements are
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interchanged if the third element is smaller than the second one. This process of inter-
changing a larger element with a smaller one following it starts with the first element
and continues to the last element for a full pass. This procedure is repeated through
several passes until the sort is complete. In a list of n elements, at the end of the ith
pass, the i largest elements are correctly placed at the end of the list, where 1 � i � n.
The bubble sort takes n� 1 passes to sort a list of n elements. There are n elements,
and for each element, n� 1 comparisons are made, this thus leads to a total time
complexity of O

�
n2
�
.

The insertion sort is a simple sorting algorithm that builds the final sorted list one
element at a time. It is less efficient than most sorting algorithms unless the number of
elements in the list is modest, say about 50 or less. The insertion sort begins with the sec-
ond element and compares it with the first element and inserts it before the first element
if it does not exceed the first element and after the first element otherwise. Then the third
element is compared with the first element, and if it is larger than the first element, it is
compared with the second element, and it is inserted in the correct position among the
first three elements. The insertion sort iterates through the list and removes one element
per iteration, finds the place that the element belongs to, and then places it there. The
resulting list after k iterations has the property where the first kþ 1 elements are sorted.
The insertion sort requires at most n� 1 comparisons and n� 1 swaps. At each step, the
number of comparisons and swaps decreases by one. Using the arithmetic progression,
this gives rise to a total of nðn�1Þ comparisons. This thus leads to a total time complexity
of O

�
n2
�
.

The merge sort, a recursive sorting algorithm, focuses on how to merge together two
presorted lists such that the resulting list is also sorted. A merge sort proceeds by iteratively
splitting lists into two sublists of equal or almost equal numbers of elements until each sub-
list contains one element; a list of one element is considered sorted. The merge sort then
successively merges pairs of sublists, where both sublists are in increasing order, to produce
a new larger sublist with elements in increasing order. This continues until the original list
is put into increasing order. The merge sort is a recursive algorithm and time complexity

TABLE 12.1 Complexities of various sorting methods.

Sorting methods Worst-case time complexity Average-case time complexity

Bubble sort

Insertion sort

Merge sort

Quicksort

Selection sort

O
�
n2
�

O
�
n2
�

Oðn log nÞ
O
�
n2
�

O
�
n2
�

O
�
n2
�

O
�
n2
�

Oðn log nÞ
Oðn log nÞ
O
�
n2
�
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can be expressed as the following recurrence relation f ðnÞ ¼ 2f
�
n
2

�þOðnÞ, where
OðnÞ is what it takes to combine the sublists. The solution, that is, the time complexity
of the merge sort, is then Oðn log nÞ.

The quicksort is an efficient sorting algorithm employing a divide-and-conquer strat-
egy. It begins by selecting a pivot element, usually the first element from the list, and par-
titioning the other elements into two sublists. One sublist consists of all elements in the
list less than the pivot and the other consists of all elements greater than the pivot. Then
the pivot is put at the end of the first list as its final resting place. The two sublists are then
recursively sorted until all sublists contain only one element. The sorted list can then be
obtained by combining the sublists of one item in the order they occur. The quicksort
requires OðnÞ comparisons to scan through all n elements to divide them into two sub-
lists. The quicksort is a recursive algorithm. In a balanced division, we have the average-
case time complexity that can be expressed as the following recurrence relation

f ðnÞ ¼ 2f
�
n�1
2

�
þOðnÞ, whose solution is then Oðn log nÞ. In the worst-case

scenario (i.e., the pivot is the smallest or the largest in the list), the corresponding recur-
rence relation is f ðnÞ ¼ 2f ðn �1Þ þOðnÞ, whose solution is then O

�
n2
�
.

The selection sort is a very simple but inefficient sorting algorithm. The algorithm
proceeds by finding the smallest element in the unsorted list and moves it to the top
of the sorted list. Then the least element among the remaining elements of the unsorted
list is found and moved to the second position of the ordered list. This procedure is
repeated until the entire list has been sorted. The selection sort requires at n� 1 compar-
isons to select the smallest element and swap it to make it into the first position, and n� 2
comparisons to select the second smallest element and swap it, and so on. Using the arith-

metic progression, this gives rise to a total of nðn�1Þ
2 comparisons. This thus leads to a total

time complexity of O
�
n2
�
.

Example 12.11
Sort the list f7; 6; 1; 9; 5g using the following sorting algorithms:
(a) Bubble sort.
(b) Insertion sort.
(c) Merge sort.
(d) Quicksort.
(e) Selection sort.

Solution
(a) In each step of a pass, elements in boldface are being compared.
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1st pass/

8>>>>>>>>>><
>>>>>>>>>>:

7; 6; 1; 9; 5

6; 7; 1; 9; 5

6; 1; 7; 9; 5

6; 1; 7; 9; 5

6; 1; 7; 5; 9

; 2nd pass/

8>>>>>>>>>><
>>>>>>>>>>:

6; 1; 7; 5; 9

1; 6; 7; 5; 9

1; 6; 7; 5; 9

1; 6; 5; 7; 9

1; 6; 5; 7; 9

;

3rd pass/

8>>>>>>>>>><
>>>>>>>>>>:

1; 6; 5; 7; 9

1; 6; 5; 7; 9

1; 5; 6; 7; 9

1; 5; 6; 7; 9

1; 5; 6; 7; 9

; 4th pass/

8>>>>>>>>>><
>>>>>>>>>>:

1; 5; 6; 7; 9

1; 5; 6; 7; 9

1; 5; 6; 7; 9

1; 5; 6; 7; 9

1; 5; 6; 7; 9

Note that the bubble sort needs one whole pass (i.e., the fourth pass) without
any swap to know it is sorted.

(b) The insertion sort begins with 6 and compares it with 7. It inserts it before 7,
as it does not exceed 7. Then, 1 is compared with 6, and as it is smaller than 6,
it is inserted before 6. Next, 9 is compared with 1, as it is larger than 1, it is
compared with 6, as it is larger than 6, it is compared with 7, as it is larger than
7, it is inserted after 7. Finally, 5 is compared with 1, as it is larger than 1, it is
compared with 6, as it is smaller than 6, it is inserted after 1 and before 6. Note
that the following shows the required steps, where the element under consid-
eration in each step is in boldface:

7; 6; 1; 9; 5/ 6; 7; 1; 9; 5/1; 6; 7; 9; 5/1; 6; 7; 9; 5/1; 5; 6; 7; 9.

(c) Fig. 12.4 shows the merge sort, where the top part is the split and the bottom
part is the merge.

(d) Employing the quicksort, the first element (i.e., 7) is selected, and we partition
the other elements into two sublists. The first sublist consists of all elements in
the list less than 7 (i.e., 6, 1, 5), and the other consists of all elements greater
than 7 (i.e., 9). Then 7 is put at the end of the first sublist as its final resting
place. The two sublists are then recursively sorted the same way, that is, 6
is selected in the first sublist and the other elements in that sublist are
compared with 6 (i.e., 1, 5), and 9 is selected in the second sublist. Note
that the following shows the required steps, where the element under consid-
eration in each step is in boldface:

7; 6; 1; 9; 5/ 6; 1; 5; 7; 9/1; 5; 6; 7; 9/1; 5; 6; 7; 9
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(e) The selection sort finds 1, as it is the smallest element in the unsorted list, and
moves it to the top of the sorted list. Then the least element among the
remaining elements of the unsorted list (i.e., 5) is found and moved to the sec-
ond position of the ordered list. This procedure is repeated until the entire list
has been sorted. Note that the following shows the required steps, where the
element under consideration in each step is in boldface:

7; 6; 1; 9; 5 / 1 / 1; 5 / 1; 5; 6 / 1; 5; 6; 7 / 1; 5; 6; 7; 9 / 1; 5; 6; 7; 9:

12.6 Search Algorithms

Searching is the process of locating an element in a list. A search algorithm is an algorithm
that involves a search problem. Searching a database employs a systematic procedure to
find an entry with a key designated as the objective of the search. A search algorithm lo-
cates an element x in a list of distinct elements or determines that it is not in the list. The
solution to the search is either the location of the element x in the list or 0 if x is not on
the list. We now briefly introduce two well-known search algorithms whose worst-case
and average time complexities are presented in Table 12.2.

TABLE 12.2 Complexities of various search methods.

Search methods Worst-case time complexity Average-case time complexity

Linear search
Binary search

OðnÞ
Oðlog nÞ

OðnÞ
Oðlog nÞ

Fig. 12.4 Merge sort for Example 12.11.
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The linear search, also known as the sequential search, is the simplest search algorithm.
It is an algorithm, based on the brute-force algorithmic paradigm, that scans the elements
of a list in sequence in search of x, the element that needs to be located. A comparison is
made between x and the first element in the list, if they are the same, then the solution is
1. Otherwise, a comparison is made between x and the second element in the list, if they
are the same, then the solution is 2. This process continues until a match is found and the
solution is the location of the element sought. If no match is found, then the solution is 0.
Linear search is applied on unsorted or unordered lists consisting of a small number of
elements. Because n comparisons are required to find x, the linear search has a time
complexity of OðnÞ, which means the time is linearly dependent on the number of el-
ements in the list.

The list of data in a binary search must be in a sorted order for it to work, such as
ascending order. This search algorithm, which is quite effective in large sorted array,
is based on the divide-and-conquer algorithmic paradigm. A binary search works by
comparing the element to be searched with the element in the middle of the array of
elements. If we get a match, the position of the middle element is returned. If the target
element is less than the middle element, the search continues in the upper half of the
array (i.e., the target element is compared to the element in the middle of the upper sub-
array), and the process repeats itself. If the target element is greater than the middle
element, the search continues in the lower half of the array (i.e., the target element is
compared to the element in the middle of the lower subarray), and the process repeats
itself. By doing this, the algorithm eliminates the half in which the target element cannot
lie in each iteration. Assuming the number of elements is n ¼ 2k (i.e., k ¼ log2n), at
most 2kþ 2 ¼ 2 log2nþ 2 comparisons are required to perform a binary search.
Binary search is thus more efficient than linear search, as it has a time complexity of
Oðlog nÞ: The worst case occurs when x is not in the list.

Example 12.12
Consider an array consisting of these integers: 2, 3, 5, 7, 23, 19, 17, 13, 11, 29,
31, 37.
(a) Use the linear search to find 17.
(b) Use the binary search to find 17.

Solution
(a) The first element of the array, that is, 2 is compared with 17, as they are not

the same, 3 is compared with 17, as they are not the same, 5 is compared with
17; this process continues until 17, which is in the list, is found. Then the so-
lution is 7, as 7 is the location of 17 in the list.

(b) In order to apply the binary search, we first need to sort the list. The sorted
list, in ascending order, is then as follows: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37. As the number of integers in the list is 12, there is no middle integer.
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Therefore the sorted list is split into two sublists, each consisting of six inte-
gers, namely, 2, 3, 5, 7, 11, 13 and 17, 19, 23, 29, 31, 37. Then compare
17 and the largest integer in the first list. Because 17 > 13, the search for
17 must be restricted to the second sublist, namely, 17, 19, 23, 29, 31, 37.
Next we split this sublist into two smaller sublists, each with three integers,
namely, 17, 19, 23 and 29, 31, 37. Then, compare 17 and the largest integer
in the first sublist. Because 23 > 17, the search for 17 can be restricted to the
first sublist. Next we compare 17 to the middle integer in this sublist, namely,
19, as 19 > 17, we split this sublist into two integers, one smaller than 19 (i.e.,
17) and the other larger than 19 (i.e., 23). The search has been narrowed
down to one term, we thus compare 17 and 17, and 17 is thus located in
the sorted list.

Exercises
(12.1)
Determine the increase in complexity for each of the following functions when
the input size n is increased to nþ 1, assuming n is a very large positive integer.
(a) f ðnÞ ¼ log n.
(b) f ðnÞ ¼ n.
(c) f ðnÞ ¼ n log n.
(d) f ðnÞ ¼ nm, integer m > 1:
(e) f ðnÞ ¼ 2n.
(f) f ðnÞ ¼ n!.

(12.2)
Apply the binary search algorithm to find 72 in the following sorted sequence:

1; 8; 9; 13; 22; 27; 36; 47; 49; 72; 81; 100; 121; 144; 150

(12.3)
Determine the big-Oh and big-Theta of the following function:

f ðxÞ ¼ x7 þ x4 þ x3 þ x2 þ xþ 1
x3 þ 1

:

(12.4)
Show that 8x4 is O

�
x5
�
.

(12.5)
Determine the big-Oh of the following function, where n and m are both positive
integers.

�
n log nþ n2

�m
:
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(12.6)
Describe how the number of comparisons used in the worst-case changes in each
of the following search algorithms when the size of the list increases from n to mn,
where n > 0 and m > 0 are positive integers.
(a) Linear search.
(b) Binary search.

(12.7)
Show that f ðx; yÞ ¼ �

x2 þ y2 þ xyþ y log x
�4 is O�

x8y8
�
.

(12.8)
Describe how the number of comparisons used in the worst-case changes in each
of the following sorting algorithms when the size of the list increases from n to mn,
where n > 0 and m > 0 are positive integers.
(a) Bubble sort.
(b) Insertion sort.

(12.9)
Arrange the following functions in a list so that each function is big-O of the next
function.

2n; n100; ðlog nÞ4; ffiffiffi
n3

p
log n; 10n; ðn!Þ2:

(12.10)
Noting that f ðnÞ is OðgðnÞÞ, determine gðnÞ, where f ðnÞ is as follows:

f ðnÞ ¼ 1k þ 2k þ :::þ nk;

where k and n are both positive integers.
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CHAPTER 13

Induction
Contents
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13.5 The Well-Ordering Principle 244

Induction is a very powerful method of proof. A multitude of mathematical claims can be
validated using this technique. However, it is not a tool for discovering true claims or
deriving correct formulas. Induction can be effectively used to prove a conjecture
once it has been made (and is true) while not providing insights as to why it is true. In-
duction deals with families of statements that are generally indexed by the natural
numbers (positive integers). In this chapter, mathematical induction, strong induction,
and the well-ordering principle, which are all equivalent principles, will be discussed,
where the validity of each can be proven from the validity of the other two techniques.

13.1 Deductive Reasoning and Inductive Reasoning

Deductive reasoning, which is top-down logic, contrasts with inductive reasoning,
which is bottom-up logic. While the conclusion of a deductive argument is certain, based
on the facts provided, the truth of the conclusion of an inductive argument may be prob-
able based upon the evidence given.

Deductive reasoning refers to the process of concluding that something must be true
because it is a specific case of a general principle that is already known to be true. Deduc-
tive reasoning is the process of reasoning from premises to reach a logically certain
conclusion; it is logically valid and is the fundamental method in which mathematical
facts are shown to be true. Deductive reasoning provides a guarantee of the truth of
the conclusion if the premises (assumptions) are true. In other words, in a deductive argu-
ment, the premises are intended to provide such a strong support for the conclusion that,
if the premises are true, then it would be impossible for the conclusion to be false. For
example, a general principle in plane geometry states that the sum of the angles in any
triangle is 180 degrees, then one can conclude that the sum of the angles in an isosceles
right triangle is also 180 degrees. Another example is that the colonial powers systemat-
ically colonized countries and oppressed their people, then one can conclude that the
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British Empire, as it was a major colonial power, also colonized countries and oppressed
people in a systematic manner. In summary, deductive reasoning requires one to start
with a few general ideas, called premises, and apply them to a specific situation. Recog-
nized rules, laws, theories, and other widely accepted truths are used to prove that a
conclusion is right.

Inductive reasoning is the process of reasoning that a general principle is true because
the special cases are true. Inductive reasoning makes broad generalizations from specific
observations. Basically, there is data, and then conclusions are drawn from the data.
Inductive reasoning is a process of reasoning in which the premises are viewed as supply-
ing some evidence for the truth of the conclusion. It is also described as a method where
one’s experiences and observations, including what are learned from others, are synthe-
sized to come up with a general truth. For example, if all the people one has ever met
from a particular country have been racist, one might then conclude all the citizens of
that country are racist. Inductive reasoning is not logically valid. Just because all the peo-
ple one happens to have met from a country were racist is no guarantee at all that all the
people from that country are racist. Therefore this form of reasoning has no part in a
mathematical proof. Even if all of the premises are true in a statement, inductive
reasoning allows for the conclusion to be false. For instance, my neighbor is a grandfather.
My neighbor is bald. Therefore all grandfathers are bald. The conclusion does not follow
logically from the statements. In summary, inductive reasoning uses a set of specific ob-
servations to reach an overarching conclusion. Therefore a few particular premises create
a pattern that gives way to a broad idea that is possibly true.

Inductive reasoning is part of the discovery process whereby the observation of special
cases leads one to suspect very strongly (though not know with absolute logical certainty)
that some general principle is true. Deductive reasoning, on the other hand, is the
method you would use to demonstrate with logical certainty that the special case is
true. In other words, inductive reasoning is used to formulate hypotheses and theories,
and deductive reasoning is employed when applying them to specific situations. The dif-
ference between the two kinds of reasoning lies in the relationship between the premises
and the conclusion. If the truth of the premises definitely establishes the truth of the
conclusion (due to definition, logical structure, or mathematical necessity), then it is
deductive reasoning. If the truth of the premises does not definitely establish the truth
of the conclusion but nonetheless provides a reason to believe the conclusion may be
true, then the argument is inductive.

13.2 Mathematical Induction

The idea behind mathematical induction is in showing how each statement follows from
the previous one, all that remains is to kick off this logical chain reaction from some
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starting point. Informal metaphors of mathematical induction may include climbing an
infinite ladder step by step (i.e., every rung of the ladder could be reached after reaching
the first rung) or the sequential falling of an infinite row of dominoes (i.e., every single
domino could knock over after the first domino falls backward).

Let PðnÞ be a propositional function, where n is a positive integer (i.e., n˛N). A proof
by mathematical induction consists of two steps. The first is the basis step, where we
show Pð1Þ, called the basis hypothesis, is true. The second is the inductive step, where
we show that if PðkÞ, called the inductive hypothesis, is true for an arbitrary integer
k � 1, then Pðkþ1Þ is also true. The principle of mathematical induction states that
by proving these two key steps, we can conclude that the predicate PðnÞ is true for every
positive integer n˛N. The mathematical induction is also called finite induction or weak
induction. It is also referred to as incomplete induction, which is a misnomer as not only is
it complete, but it is a valid method of proof.

Expressing as a rule of inference, while assuming the domain is the set of positive in-
tegers N, the principle of mathematical induction can be stated as follows:

ðPð1Þ^ckðPðkÞ/Pðkþ 1ÞÞÞ /cnPðnÞ:
The proof of the principle of mathematical induction is based on a proof by contradic-

tion. We thus assume that there is at least one positive integer for which PðnÞ is false. In
view of the well-ordering principle that states every nonempty subset of the set of positive
integers N has a smallest element, there is the nonempty set T of positive integers for
which PðnÞ is false and its minimum element is denoted by the integer j. According to
the basis hypothesis, Pð1Þ is true. This implies j > 1, and in turn j � 1 is a positive integer.
Because j � 1 < j, we have j � 1;T, as j is the smallest element in T . As a result,
P ðj�1Þ is true. As P ðj�1Þ is true, then induction indicates that P ðjÞ is true. This means
j;T, which contradicts j being the minimum element of T, thus resulting in an absurd
conclusion. Therefore T being nonempty just cannot be true. If T being nonempty leads
to a contradiction, then T must be empty. Hence PðnÞ is true for every integer in N.

In mathematical induction, we first show that Pð1Þ is true, and then show that if PðkÞ
is true, then Pðkþ1Þ is true, where k � 1. Therefore we know that Pð2Þ is true because
Pð1Þ is true. Moreover, we know Pð3Þ is true because Pð2Þ is true. Continuing along
these lines, we see that PðnÞ is true for every integer n > 1. In a way, the principle of
mathematical induction contains a technique based on a chain of deductive reasoning
that infinitely many steps ðn/NÞ are true in just two steps.

It is important to highlight that mathematical induction can also be used to prove
PðnÞ is true, where the basis hypothesis is not Pð1Þ. For instance, mathematical induction
can prove the equality 20 þ 21 þ 22 þ ::: þ 2n ¼ 2nþ1 � 1, where the basis hypoth-
esis is Pð0Þ, or the inequality 2n < n!, where the basis hypothesis is Pð4Þ. In principle,
mathematical induction can be used to prove a propositional function PðnÞ is true for
every integer n � a, where a is a fixed integer.
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Note that the basis and inductive steps are both essential in the principle of mathemat-
ical induction as the validity of each step is necessary, but not sufficient, to guarantee the
proposition is true. As an example, consider the formula 2n ¼ 2n, for every positive
integer n. We can easily verify the basis hypothesis, as 21 ¼ 2� 1 is true. However,
we cannot show the inductive hypothesis to be true because if we have 2k ¼ 2k for
an integer k > 1, we then have 2kþ1s2ðkþ1Þ. As another example, consider the sum-
mation formula 1þ 3þ 5 þ ::: þ ð2n�1Þ ¼ n2 þ 1 for every positive integer n. The
inductive hypothesis is true, simply because if we assume, we have 1þ 3þ 5 þ ::: þ
ð2k�1Þ ¼ k2 þ 1 for an integer k > 1, we can then have 1þ 3þ 5 þ ::: þ
ð2k�1Þ þ ð2kþ1Þ ¼ k2 þ 1þ ð2kþ1Þ ¼ ðkþ 1Þ2 þ 1 for an integer kþ 1. How-
ever, the summation formula does not hold for any positive integer, as we cannot
show the basis hypothesis to be true, simply because for k ¼ 1, we have 1s12 þ 1.

Sometimes induction errors occur mainly due to the lack of precision. A case in point
is that when we use mathematical induction carelessly to prove an ¼ 1 for as0; as1;
and n� 0. It is easy to verify the basis hypothesis, as a0 ¼ 1 is true. In the inductive step,
we can show that for k > 0, the inductive hypothesis is true, that is, if we have ak ¼ 1,

we then have akþ1 ¼ akþ1 � ak
ak ¼ ak � ak

ak�1 ¼ 1 � 1
1 ¼ 1. The flaw in the proof lies in the

inductive step because we did not include k ¼ 0. Had we done that, it would have been
obvious that in the denominator a�1s1, as as1.

Some mistakenly believe that a proof by mathematical induction is a fallacy known as
a case of circular reasoning, in that what is assumed is what needs to be proven! The
confusion stems from misinterpreting the inductive step for the conclusion. The induc-
tive step involves showing that the implication PðkÞ/Pðkþ1Þ is a tautology. In other
words, “if it is assumed” that PðkÞ is true for a particular but arbitrarily chosen k � 1,
then Pðkþ1Þ is also true, whereas the conclusion is that PðnÞ is true for every integer
n � 1.

It is important to note that in order to prove a mathematical statement, verifying it for
a number of different values of positive integer n does not form a formal proof, because
there may exist a particular value of n for which the statement may not be true. In short, a
proof for some values of n is not a proof for all values of n. To prove formally that a math-
ematical statement is true, we must show that it is true for all values of n greater than the
initial value. However, it is impossible to verify it for every single value of n, as there are
infinitely many values. For instance, in order to prove the function n2 � nþ 41, intro-
duced by Euler, produces only prime numbers, it is not good enough to verify it for a few
values of n. This is simply because for any positive integer n < 41, the function does pro-
duce a prime number, but for n ¼ 41, it does not produce a prime number.

It is also possible to use mathematical induction with more than one variable, as the
following two-dimensional mathematical induction principle reflects. Suppose fPði; jÞg is
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a set of statements such that the basis step consisting of Pð0; jÞ for j � 0 and Pði; 0Þ for
i � 0 are true and the inductive step that if Pði�1; jÞ and Pði; j�1Þ are both true, then
Pði; jÞ is true for i � 1 and j � 1. By proving these two key steps, we can then conclude
that Pðm; nÞ is true for all positive integers m and n. As an example, the principle of the
two-dimensional mathematical induction can show that for all positive integers m and n,
we have

Pðm; nÞ ¼
Xn
r¼ 1

rðrþ 1Þðrþ 2Þ:::ðrþm� 1Þ ¼ nðnþ 1Þðnþ 2Þ:::ðnþ mÞ
mþ 1

:

13.3 Applications of Mathematical Induction

Mathematical induction is a technique for proving statements of the formcnPðnÞ, where
PðnÞ is a propositional function and the domain is generally the set of positive integers.
There exists a very wide set of applications of mathematical induction, such as summation
and product formulas, inequalities, divisibility, regions in plane geometry, set identities,
complexity of algorithms, theorems about graphs and trees, and correctness of computer
programs and algorithms.

Example 13.1
Using mathematical induction, prove the following summation formulas for every
integer n � 1:

(a) 1þ 2þ 3þ.þ n ¼ nðnþ 1Þ
2

:

(b) 1þ r þ r2 þ.þ rn�1 ¼ rn � 1
r � 1

; rs1:

(c)
Xn
i¼ 0

�
� 1
2

�i

¼ 2
3
þ 1
3

�
� 1
2

�n

:

Solution
Let PðnÞ be the propositional function of interest that must be proven to be true
for every integer n � 1.

(a) Basis step: When n ¼ 1, we have 1 ¼ 1ð1þ1Þ
2 , therefore Pð1Þ is true.

Inductive step: Assuming the inductive hypothesis

PðkÞ ¼ 1þ 2þ.þ k ¼ kðkþ 1Þ
2

is true, for an arbitrary integer k � 1, we must show
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Pðkþ 1Þ ¼ 1þ 2þ.þ kþ ðkþ 1Þ ¼ ðkþ 1Þðkþ 2Þ
2

is true. If we add ðkþ1Þ to both sides of the equation representing PðkÞ, then we
have

1þ 2þ.þ kþ ðkþ 1Þ ¼ kðkþ 1Þ
2

þ ðkþ 1Þ ¼ ðkþ 1Þðkþ 2Þ
2

:

This thus means that the statement Pðkþ1Þ also holds true, as was to be
shown.
(b) Basis step: When n ¼ 1, we have 1 ¼ r1�1

r�1 , therefore Pð1Þ is true.
Inductive step: Assuming the inductive hypothesis

PðkÞ ¼ 1þ r þ r2 þ :::þ rk�1 ¼ rk � 1
r � 1

is true, for an arbitrary integer k � 1, we must show

Pðkþ 1Þ ¼ 1þ r þ r2 þ :::þ rk�1 þ �rk� ¼ rkþ1 � 1
r � 1

is true. If we add
�
rk
�
to both sides of the equation representing PðkÞ, then we

have

1þ r þ r2 þ.þ rk�1 þ �rk� ¼ rk � 1
r � 1

þ �rk� ¼ rkþ1 � 1
r � 1

:

This thus means that the statement Pðkþ1Þ also holds true, as was to be
shown.
(c) Basis step: Pð1Þ is true, as we have
X1
i¼0

�
� 1
2

�i

¼ 2
3
þ 1
3

�
� 1
2

�1

/

�
� 1
2

�0

þ
�
� 1
2

�1

¼ 2
3
� 1
6
/

1
2
¼ 1

2
:

Inductive step: Assuming the inductive hypothesis

P kð Þ ¼
Xk
i¼0

�
� 1
2

�i

¼ 2
3
þ 1
3

�
� 1
2

�k

is true, for an arbitrary integer k � 1, we must show

Pðkþ 1Þ ¼
Xkþ1

i¼0

�
� 1
2

�i

¼ 2
3
þ 1
3

�
� 1
2

�kþ1

is true. Using the assumption that PðkÞ is true, we have
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Xkþ1

i¼0

�
� 1
2

�i

¼
Xk
i¼0

�
� 1
2

�i

þ
�
� 1
2

�kþ1

¼ 2
3
þ 1
3

�
� 1
2

�k

þ
�
� 1
2

�kþ1

¼ 2
3
þ
�
� 1
2

�k�1
3
� 1
2

�
¼ 2

3
þ
�
� 1
2

�k�
� 1
6

�

¼ 2
3
þ
�
� 1
2

�k

�
�
� 1
2

�
� 1
3
¼ 2

3
þ 1
3

�
� 1
2

�kþ1

:

This thus means that the statement Pðkþ1Þ also holds true, as was to be
shown.

Example 13.2
Using mathematical induction, prove the following inequalities for every integer
n � 1:
(a) ð1þ xÞn � 1þ nx, for every real number x > �1.
(b) 2n > n.

Solution
Let PðnÞ be the propositional function of interest that must be proven to be true
for every integer n � 1.
(a) Basis step: When n ¼ 1, we have ð1þ xÞ1 ¼ 1þ x, therefore Pð1Þ is true.

Inductive step: Assuming the inductive hypothesis

ð1þ xÞk� 1þ kx

is true, that is PðkÞ is true, for an arbitrary integer k � 1, we must show

ð1þ xÞkþ1� 1þ ðkþ 1Þx
is true, that is, Pðkþ1Þ is true. Using the assumption that PðkÞ is true, we multiply
both sides of the inequality in PðkÞ by ð1þxÞ, we thus obtain

ð1þ xÞkþ1�ð1þ xÞð1þ kxÞ ¼ 1þ ðkþ 1Þxþ kx2 � 1þ ðkþ 1Þx
as kx2 � 0. This thus means that the statement Pðkþ1Þ also holds true, as was to
be shown.
(b) Basis step: When n ¼ 1, we have 21 > 1, therefore Pð1Þ is true.

Inductive step: Assuming the inductive hypothesis

2k > k

is true, that is PðkÞ is true, for an arbitrary integer k � 1, we must show

2kþ1> kþ 1
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is true, that is, Pðkþ1Þ is true. Using the assumption that PðkÞ is true, we multiply
both sides of the inequality in PðkÞ by 2, we thus obtain

2� 2k > 2� k/ 2kþ1 > 2k � kþ 1

as k � 1. This thus means that the statement Pðkþ1Þ also holds true, as was to be
shown.

Example 13.3
Using mathematical induction, prove the following divisibility cases for every
integer n � 0 :

(a) n4 þ 2n3 � n2 � 2n is divisible by 24.
(b) 7n � 2n is divisible by 5.
(c) 4� �2n�2�3nþ1

�
is divisible by 5.

Solution
Let PðnÞ be the propositional function of interest that must be proven to be true
for every integer n � 0.
(a) Basis step: When n ¼ 0, the value of the function is 0, which is divisible by

24, therefore Pð0Þ is true.
Inductive step: Assuming the inductive hypothesis

k4 þ 2k3 � k2 � 2k ¼ 24m

is true for a nonnegative integer m, that is, PðkÞ is true for an arbitrary integer
k � 0, we must then show

ðkþ 1Þ4 þ 2ðkþ 1Þ3 � ðkþ 1Þ2 � 2ðkþ 1Þ ¼ 24t

is true for a nonnegative integer t, that is, Pðkþ1Þ is true. Using the assumption
that PðkÞ is true, we have
ðkþ 1Þ4 þ 2ðkþ 1Þ3 � ðkþ 1Þ2 � 2ðkþ 1Þ ¼ k4 þ 6k3 þ 11k2 þ 6k

¼ �
k4 þ 2k3 � k2 � 2k

�þ 4k3 þ 12k2 þ 8k ¼ 24mþ 4kðkþ 1Þðkþ 2Þ
¼ 24t

as k, kþ 1, and kþ 2 are three consecutive integers, their product is thus a mul-
tiple of 6, and as a result, 4kðkþ 1Þðkþ 2Þ is also a multiple of 24. This thus means
that the statement Pðkþ1Þ also holds true, as was to be shown.
(b) Basis step: When n ¼ 0, the value of the function is 0, which is divisible by 5,

therefore Pð0Þ is true.
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Inductive step: Assuming the inductive hypothesis

7k� 2k ¼ 5m

is true for a nonnegative integer m, that is, PðkÞ is true for an arbitrary integer
k � 0, we must show

7kþ1� 2kþ1 ¼ 5t

is true for a nonnegative integer t, that is, Pðkþ1Þ is true. Using the assumption
that PðkÞ is true, we have

7kþ1� 2kþ1 ¼ 7� 7k � 2kþ1 ¼ 7
�
5mþ 2k

�� 2� 2k ¼ 35mþ 5� 2k

¼ 5
�
7mþ 2k

� ¼ 5t:

This thus means that the statement Pðkþ1Þ also holds true, as was to be
shown.
(c) Basis step: When n ¼ 0, the value of the function is 5, which is divisible by 5,

therefore Pð0Þ is true.
Inductive step: Assuming the inductive hypothesis

4� �2k�2� 3kþ 1
� ¼ 5m

is true for a nonnegative integer m, that is, PðkÞ is true for an arbitrary integer
k � 0, we must show

4� �2k�1� 3kþ1þ 1
� ¼ 5t

is true for a nonnegative integer t, that is, Pðkþ1Þ is true. Using the assumption
that PðkÞ is true, we have

4� �2k�1� 3kþ1þ 1
� ¼ 4� �2k�2� 2� 3k� 3þ 1

�

¼ 4� �6� 2k�2� 3kþ 1
�

¼ 20� 2k�2 � 3k þ 4� �2k�2� 3kþ 1
�

¼ 20� 2k�2 � 3k þ 5m ¼ 5
�
4� 2k�2� 3kþm

�

¼ 5t:

This thus means that the statement Pðkþ1Þ also holds true, as was to be
shown.
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Example 13.4
Using mathematical induction, show that n lines in the plane, where no two lines
are parallel and no three lines meeting in a point, divide the plane into the
following number of regions:

n2 þ nþ 2
2

:

Solution
Let PðnÞ be the propositional function of interest that must be proven to be true
for every integer n � 0.

Basis step: If we have no lines in the plane (i.e., n ¼ 0), then there exists just
one region, therefore Pð0Þ is true.

Inductive step: Suppose now that we have k lines dividing the plane into
k2þkþ2

2 regions and we will add a ðk þ 1Þth line. This extra line will meet each
of the previous k lines because we have assumed it to be parallel with none of
them, and also it meets each of these k lines in a distinct point, as we have assumed
that no three lines are concurrent. These k points of intersection divide the new
line into kþ 1 segments. For each of these kþ 1 segments there are now two re-
gions, one on either side of the segment, where previously there had been only
one region. Thus by adding this ðk þ 1Þth line, we have created kþ 1 new re-
gions. In total, the number of regions we now have is k2þkþ2

2 þ ðkþ1Þ ¼
ðkþ1Þ2þðkþ1Þþ2

2 . Therefore the statement Pðkþ1Þ also holds true, as was to be
shown.

Example 13.5
Using mathematical induction, prove the following product formula for every
integer n � 2:

Yn
m¼ 2

�
1� 1

m2

�
¼
�
1� 1

22

�
�.�

�
1� 1

n2

�
¼ nþ 1

2n
:

Solution
Let PðnÞ be the propositional function of interest that must be proven to be true
for every integer n � 2.

Basis step: When n ¼ 2, we have 1 � 1
4 ¼ 3

4, therefore Pð2Þ is true.
Inductive step: Assuming the inductive hypothesis

Yk
m¼ 2

�
1� 1

m2

�
¼ kþ 1

2k
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is true, that is PðkÞ is true, for an arbitrary integer k � 2, we must show

Ykþ1

m¼ 2

�
1� 1

m2

�
¼ ðkþ 1Þ þ 1

2ðkþ 1Þ
is true, that is, Pðkþ1Þ is true. Using the assumption that PðkÞ is true, we multiply

both sides of the equality in PðkÞ by
�
1 � 1

ðkþ1Þ2
�
, we thus obtain

 
1� 1

ðkþ 1Þ2
! Yk

m¼ 2

�
1� 1

m2

�
¼
 
1� 1

ðkþ 1Þ2
!�

kþ 1
2k

�

/
Ykþ1

m¼ 2

�
1� 1

m2

�
¼ ðkþ 1Þ þ 1

2ðkþ 1Þ :

This thus means that the statement Pðkþ1Þ also holds true, as was to be
shown.

Example 13.6
Using mathematical induction, prove the binomial theorem; for an integer n� 0,

where x and y are variables and

 
n

i

!
is n choose i, we have:

ðxþ yÞn ¼
Xn
i¼ 0

 
n

i

!
xiyn�i:

Solution
Let PðnÞ be the propositional function of interest that must be proven to be true
for every integer n � 0.

Basis step: When n ¼ 0, both sides of the formula are equal to 1, therefore
Pð0Þ is true.

Inductive step: If we assume the inductive hypothesis

ðxþ yÞk ¼
Xk
i¼ 0

 
k

i

!
xiyk�i

is true, we must then show

ðxþ yÞkþ1 ¼
Xkþ1

i¼ 0

 
kþ 1

i

!
xiykþ1�i

is true. We have
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ðxþ yÞkþ1 ¼ ðxþ yÞðxþ yÞk ¼ ðxþ yÞ
Xk
i¼0

 
k

i

!
xiyk�i

¼
Xk
i¼0

 
k

i

!
xiþ1yk�i þ

Xk
i¼0

 
k

i

!
xiykþ1�i:

As we take out the last term from the first sum (i.e., xkþ1) and the first term
from the second sum (i.e., ykþ1), we obtain

ðxþ yÞkþ1 ¼ xkþ1 þ
Xk�1

i¼0

 
k

i

!
xiþ1yk�i þ

Xk
i¼1

 
k

i

!
xiykþ1�i þ ykþ1:

We now make a change of variable in the first sum, as we set i ¼ i � 1; we
therefore have

ðxþ yÞkþ1 ¼ xkþ1 þ
Xk
i¼1

 
k

i� 1

!
xiykþ1�i þ

Xk
i¼1

 
k

i

!
xiykþ1�i þ ykþ1

¼ xkþ1 þ
Xk
i¼1

  
k

i� 1

!
þ
 
k

i

!!
xiykþ1�i þ ykþ1

¼ xkþ1 þ
Xk
i¼1

 
kþ 1

i

!
xiykþ1�i þ ykþ1 ¼

Xkþ1

i¼0

 
kþ 1

i

!
xiykþ1�i:

This thus means that the statement Pðkþ1Þ also holds true, as it was to be
shown.

13.4 Strong Induction

When the truth of PðkÞ might not be enough to establish the truth of Pðkþ1Þ, we need
to use strong induction. Let PðnÞ be a propositional function, where n is a positive
integer. A proof by strong induction consists of two steps. First, the basis step, where
we show Pð1Þ, called the basis hypothesis, is true. Second, the inductive step, where
we show that for all positive integers k � 1, if Pð1Þ, Pð2Þ, ., Pðk �1Þ, PðkÞ, called
the inductive hypothesis, are all true, then Pðkþ1Þ is also true. The principle of strong
induction states that by proving these two key steps we can conclude that PðnÞ is true
for every positive integer n � 1. The strong induction is also called complete induction.

Expressing as a rule of inference, while assuming the domain is the set of positive in-
tegers N, the second principle of mathematical induction can be stated as follows:

ðPð1Þ ^ckððPð1Þ ^ Pð2Þ ^ ::: ^ Pðk� 1Þ ^ P kð ÞÞ / Pðkþ 1ÞÞÞ / cnP nð Þ:
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Example 13.7
Using strong induction, show that for every integer n� 2, then either n is a prime
or n can be written as the product of prime numbers, in other words, n is divisible
by a prime number.

Solution
Let PðnÞ be the proposition that n can be written as the product of primes or n is
divisible by a prime number, for every integer n � 2.

Basis step: Pð2Þ is true, as 2 is a prime number.
Inductive step: Assuming PðjÞ is true for all integers j with 2 � j � k, we need

to prove Pðkþ1Þ is true. There are two mutually exclusive cases, namely when
kþ 1 is prime and when kþ 1 is composite (not prime):
(i) If kþ 1 is prime, then Pðkþ1Þ is true.
(ii) If ðkþ1) is composite, then kþ 1 ¼ a� b, where a and b are integers with

2 � a � b < kþ 1. Using the inductive hypothesis, both a and b can be
written as product of primes. Thus kþ 1 can be written as the product of
those primes in factorization of a and those in the factorization of b.

Example 13.8
Suppose Sð0Þ ¼ 0, Sð1Þ ¼ 4, and SðnÞ ¼ 6Sðn �1Þ � 5Sðn �2Þ. Using
strong induction, show that for every integer n � 0, SðnÞ ¼ 5n � 1.

Solution
Let SðnÞ be the propositional function of interest that must be proven to be true
for every integer n � 0.

Basis step: Sð0Þ and Sð1Þ are both true, as we have 50 � 1 ¼ 0 and
51 � 1 ¼ 4.

Inductive step: Assuming SðjÞ is true for all integers j with 0 � j � k, thus
implying SðkÞ and Sðk�1Þ are true, we then need to prove

Sðkþ 1Þ ¼ 5kþ1 � 1

is true. We have

Sðkþ 1Þ ¼ 6S kð Þ � 5Sðk� 1Þ ¼ 6
�
5k � 1

�� 5
�
5k�1 � 1

� ¼ 5kþ1 � 1:

This thus means that the statement Sðkþ1Þ also holds true, as was to be
shown.
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Example 13.9
Suppose Fð0Þ ¼ 0, Fð1Þ ¼ 1, and FðnÞ ¼ Fðn �1Þ þ Fðn �2Þ, for n � 2,
where Fð0Þ, Fð1Þ, Fð2Þ, . are known as the Fibonacci numbers. Using strong
induction, show FðnÞ < 2n for every integer n � 0.

Solution
Let FðnÞ be the propositional function of interest that must be proven to be true
for every integer n � 0.

Basis step: Fð0Þ and Fð1Þ are both true, as we have Fð0Þ ¼ 0 < 20 ¼ 1 and
Fð1Þ ¼ 1 < 21 ¼ 2.

Inductive step: Assuming FðjÞ is true for all integers j with 0 � j � k, thus
implying FðkÞ and Fðk�1Þ are true, we then need to prove

Fðkþ 1Þ < 2kþ1

is true. We have

Fðkþ 1Þ ¼ FðkÞ þ Fðk� 1Þ < 2k þ 2k�1 < 2k þ 2k < 2kþ1:

This thus means that the statement Fðkþ1Þ also holds true, as was to be
shown.

13.5 The Well-Ordering Principle

The well-ordering principle states that every nonempty set of positive integers has a least
element. It is of great importance that the well-ordering principle can often be used
directly in proofs.

Example 13.10
In each of the following cases, state the least element of the set, if it exists, and if
not, explain why the well-ordering principle is not violated:
(a) The set of all positive real numbers less than 1.
(b) The set of all positive integers n such that n4 < n:
(c) The set of all positive integers of the form 13 � 4k, where k is an integer.

Solution
(a) There is no least positive real number. Because if x is a positive real number

less than 1, then x
m, for every integer m > 1, is a positive real number less than

x. There is no violation of well-ordering principle, because this set is not a set
of integers.
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(b) There is no such positive integer to satisfy the inequality. The set is thus
empty. There is no violation of well-ordering principle, because this set has
no element, let alone a least element.

(c) The smallest positive integer of the form 13� 4k is 1, and that occurs when
k ¼ 3.

Example 13.11
Use the well-ordering principle to prove the division algorithm. The division al-
gorithm states given any integer n and any positive integer d, there exist integers q
and r such that n ¼ dqþ r and 0� r < d. Note that we may call n a dividend, d a
divisor, q a quotient, and r a remainder.

Solution
Let S be the set of all positive integers of the form n� dk, where k is an
integer. The set S has at least one element. Note that if n � 0, then for k ¼ 0,
we have n � d � 0 ¼ n � 0, and if n < 0, then for k ¼ n, we have
n � d � n ¼ nð1 �dÞ � 0. Using the well-ordering principle for the integers,
S thus contains a least element r. Then for some specific integer k ¼ q, we
have n� dq ¼ r or equivalently n ¼ dqþ r. Note that if r � d, then
n � dðqþ1Þ ¼ n � dq � d ¼ r � d � 0, and so n� dðqþ1Þ would be a pos-
itive integer in S that would be smaller than r. This is obviously a contradiction, as
r is the smallest integer in S. Hence 0 � r < d.

Exercises
(13.1)
(a) Using mathematical induction, prove the following arithmetic progression:

Xn
i¼1

ai ¼ a1 þ a2 þ :::þ an ¼ nða1 þ anÞ
2

¼ nð2aþ ðn� 1ÞdÞ
2

;

where n is a positive integer, ai ¼ aþ ði�1Þd, while noting that a, known as
the initial value, and d, called the common difference, are both finite constants.

(b) Using mathematical induction, prove the following geometric progression:

Xn
i¼1

ak ¼ a1 þ a2 þ :::þ an ¼ aðrn � 1Þ
r � 1

;

where n is a positive integer, ai ¼ ari�1, while noting that a, known as the
initial value, and rs1, called the common ratio, are both finite constants.
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(13.2)
(a) Using mathematical induction, prove the following:

PðnÞ ¼
Xn
p¼ 1

p2 ¼ nðnþ 1Þð2nþ 1Þ
6

for every integer n � 1.
(b) Using mathematical induction, prove the following:

PðnÞ ¼
Xn
p¼ 1

p3 ¼ n2ðnþ 1Þ2
4

for every integer n � 1.

(13.3)
Using mathematical induction, prove 2n < n! for every integer n � 4.

(13.4)
Using mathematical induction, prove the following function is divisible by 120,
for every integer n � 0.

P nð Þ ¼ n5 � 5n3 þ 4n:

(13.5)
Using mathematical induction, prove PðnÞ ¼ 2n3 þ 3n2 þ n is divisible by 6 for
every integer n � 1.

(13.6)
Using mathematical induction, show that for all integers PðnÞ: n � 8, n¢ can be
obtained using 3¢ and 5¢ coins.

(13.7)
Using mathematical induction, for all integers n� 0, show that PðnÞ ¼ 22n � 1 is
divisible by 3.

(13.8)
Using mathematical induction, show that PðnÞ ¼ 5n � 1 is divisible by 4 for
every integer n � 1.

(13.9)
Using mathematical induction, prove PðnÞ ¼ n5 � n is a multiple of 10, for
every integer n � 1:
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(13.10)
(a) Suppose that at the start of a game, there are two players and two piles of

matches, each pile contains the same number of matches. The player who
removes the last match wins. Using strong induction, show that the second
player can always win.

(b) Using the well-ordering principle, show that every decreasing sequence of
nonnegative integers is finite.
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Recursion is the process of defining a problem or the solution to a problem in terms of a
simpler version of itself. It is used in a variety of disciplines ranging from linguistics to
logic. Recursion is a powerful problem-solving technique extensively used in discrete
mathematics and computer science, as such many programming languages support it.
The application of recursion is where an entity being defined is applied within its own
definition. Examples include a function (e.g., a factorial function), a set (e.g., the power
set of a set), a tree (e.g., a full binary tree), a sequence (e.g., a geometric progression), and
an algorithm (e.g., a sorting algorithm). This chapter briefly discusses various methods for
solving recurrence relations, namely, by iteration, characteristic equations, and generating
functions.

14.1 Sequences

A sequence with its discrete structure presents an ordered list of terms, where repetitions
are allowed. Sequences are an important data structure in computer science and engi-
neering. A function f whose domain is a subset of the set of integers, generally consec-
utive nonnegative integers, is called a sequence. A sequence is a function whose domain is
either all the integers between two given integers or all the integers greater than or equal
to a given integer. The function f ðnÞ, denoted by an and called a term of the sequence, is
the image of the integer n. The integer n of the term an is called an index. The nth term is
the general term of a sequence, and it is often used to define a sequence. Note that the
notation fang describes the sequence. For instance, the list of terms of the sequence
fang, where an ¼ n2; n � 1, namely a1, a2, a3, a4; ., starts with 1; 4; 9; 16; ., cor-
responding to n ¼ 1; 2; 3; 4; .. Hence the sequence is as follows: f1; 4; 9; 16; .g.
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The terms of a sequence are usually ordered in increasing order of subscripts. The first
term of the sequence is called the initial term. A sequence is finite if its domain is finite;
otherwise, it is infinite. Note that a finite sequence of n terms is also called a string or an
n-tuple, its last term is known as the final term, and the length of a string is the number of
terms in the string. For instance, the set of two-digit integers that are positive represents a
finite sequence of 90 terms, where 10 is its initial term and 99 is its final term; the set of
prime numbers represents an infinite sequence, where the initial term is 2 and there is no
final term, as there are infinitely many prime numbers.

The most widely known sequences are geometric and arithmetic progressions. A geo-
metric progression is a sequence with the general term an ¼ arn, where the initial term a
and the common ratio r are real numbers, and n � 0 is an integer. The set of terms of a
geometric progression is thus as follows:

�
a; ar; ar2; :::; arn; :::

�
. An arithmetic progres-

sion is a sequence with the general term an ¼ aþ nd, where the initial term a and the
common difference d are real numbers, and n� 0 is an integer. The set of terms of an arith-
metic progression is thus as follows: fa; aþd; aþ2d; :::; aþnd; :::g.

It is often required to add or multiply a number of terms in a sequence whose terms
are as follows: ak; akþ1; ::: ; am, where m and k are both integers and m � k. The sum of
the terms and the product of the terms can be written in a compact form as follows,
respectively:

ak þ akþ1 þ ::: þ am ¼
Xm
i¼k

ai

and

ak � akþ1 � ::: � am ¼
Ym
j¼ k

aj:

Note that the symbol S, the capital Greek letter sigma, is the summation notation, the
dummy variable i is the summation index, the symbolP, which is the capital Greek letter
pi, is the product notation, the dummy variable j is the product index, and the integers k
and m are the lower limit and the upper limit of each index, respectively. Note that a se-
ries is an extended sum of terms, such as the sum of the first thousand positive integers.

The terms of a sequence can be specified either by providing a formula for each term
of the sequence as a function of its position or by expressing each term as a combination
of the previous terms. The focus of this chapter is to find an explicit formula or a general
formula, called a closed-form formula, for the terms of the sequence specified through a
recurrence relation.

250 Discrete Mathematics



14.2 Recursively Defined Functions

Recursively defined functions are of great importance in the theory of computation in
computer science. A recursively defined function f ðnÞ refers to itself, and its domain is a
subset of the set of positive or nonnegative integers. In order for the definition not to
be circular, the function definition must have the following two properties:
(i) Basis clause: A finite number of initial values of the function f ðnÞ, known as the

initial conditions, are specified, for which the function does not refer to itself. In
other words, f ðbÞ; f ðbþ1Þ; .; f ðbþk �1Þ, where integers k � 1 and b � 0 are
given.

(ii) Recursive clause: The function f ðnÞ is defined in terms of the k preceding functional
values f ðn �1Þ; f ðn �2Þ; .; f ðn �kÞ, with k < n, as the function refers to itself.
An equation expressing a term of a sequence as a function of prior terms in the
sequence is known as a recurrence relation.
Recursively defined functions are well defined, as the value of the function at every

integer in the domain is determined in an unambiguous way. A solution of a recurrence
relation is called a sequence, and a given recurrence relation may be satisfied by many
different sequences. Once the initial conditions are included, there is then only one
sequence satisfying the recurrence relation of interest. Note that any recurrence relation
for a sequence can be written in terms of their differences, and the resulting equation
involving its differences is called a difference equation. Although not all sequences can be
represented by recurrence relations, many sequences that arise in the solution of most prob-
lems can be so represented. As an example, an ¼ 2an�3 þ 3an�2 for n ¼ 4; 5; .; 8 is a
recurrence relation, with a1 ¼ 3, a2 ¼ 2, and a3 ¼ 1 as the initial conditions. Thus
we have the terms of the sequence as follows: f ð4Þ ¼ a4 ¼ 12; f ð5Þ ¼ a5 ¼ 7;
f ð6Þ ¼ a6 ¼ 38; f ð7Þ ¼ a7 ¼ 45; and f ð8Þ ¼ a8 ¼ 128:

Example 14.1
Define recursively the following functions, and then for each function, find f ð4Þ.
(a) The factorial function.
(b) The compound amount with annually compounded interest.
(c) The Fibonacci numbers: 0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; ..
(d) The number of fist bumps in a group when each person fist bumps with

everyone else only once.

Solution
(a) The factorial function f is defined by f ðnÞ ¼ n!, where f ð0Þb1. Because

n! ¼ nðn �1Þ!, this function can be defined respectively as follows:
f ð0Þ ¼ 1 (initial condition)
f ðnÞ ¼ n� f ðn�1Þ; n � 1 (recurrence relation)
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f ð4Þ ¼ 4� f ð3Þ ¼ 4� 3� f ð2Þ ¼ 4� 3� 2� f ð1Þ
¼ 4� 3� 2� 1� f ð0Þ ¼ 24:

(b) The compound amount f is defined by f ðnÞ ¼ ðcompound amount at the
end of the ðn� 1Þth yearÞ þ ðinterest earned during the nth year with an
annual interest rate of iÞ, where f ð0Þ ¼ p, known as the principal. Therefore
f can be defined respectively as follows:
f ð0Þ ¼ p (initial condition)
f ðnÞ ¼ f ðn�1Þ þ i� f ðn�1Þ ¼ ð1þiÞ � f ðn�1Þ; n � 1 (recurrence
relation)

f ð4Þ ¼ ð1þ iÞ � f ð3Þ ¼ ð1þ iÞ � ð1þ iÞ � f ð2Þ ¼ ð1þ iÞ2 � f ð2Þ
¼ ð1þ iÞ2 � ð1þ iÞ � f ð1Þ ¼ ð1þ iÞ3 � f ð1Þ
¼ ð1þ iÞ3 � ð1þ iÞ � f ð0Þ ¼ pð1þ iÞ4:

(c) Any Fibonacci number, except the first two, is the sum of the two immedi-
ately preceding it. Therefore f can be defined respectively as follows:
f ð1Þ ¼ 0 and f ð2Þ ¼ 1 (initial conditions)
f ðnÞ ¼ f ðn�1Þ þ f ðn�2Þ; n � 3 (recurrence relation)

f ð4Þ ¼ f ð3Þ þ f ð2Þ ¼ f ð2Þ þ f ð1Þ þ f ð2Þ ¼ 2� f ð2Þ þ f ð1Þ ¼ 2� 1þ 0

¼ 2:

(d) With one person in the group, the number of fist bumps is obviously zero.
With n persons in the group, one of them fist bumps with each of the remain-
ing n� 1 persons, resulting in n� 1 fist bumps, and the number of fist bumps
made by the other n� 1 persons among themselves is f ðn �1Þ. Therefore f
can be defined respectively as follows:
f ð1Þ ¼ 0 (initial condition)
f ðnÞ ¼ f ðn�1Þ þ ðn�1Þ; n � 2 (recurrence relation)

f ð4Þ ¼ f ð3Þ þ 3 ¼ f ð2Þ þ 2þ 3 ¼ f ð1Þ þ 1þ 2þ 3 ¼ 6:

14.3 Recursive Algorithms

A recurrence relation that defines a sequence can be directly converted to an algorithm to
compute the sequence, as recursive definitions consistently lead to recursive algorithms.
A recursive algorithm is an algorithm that invokes itself during execution with a reduced
version of itself, as it proceeds by reducing a problem to the same problem with smaller
input. A recursive algorithm consists of the base case and the general case. The base case

252 Discrete Mathematics



ensures the sequence of recursive calls will terminate after a finite number of steps, and
the general case continues to call itself as long as the base case is not satisfied.

To develop a recursive algorithm, the following steps are of importance:
• Find ways to reduce the problem into smaller versions of itself. For instance, ðn�1Þ! is

a smaller version of n!.
• Identify cases that can be directly solved to know when a base case is reached. For

instance, calculate directly 0!, 1!, and 2! in n!.
• Determine how the solutions of smaller versions can lead to a larger version. For

instance, ðn �1Þ!ðnÞ ¼ n!.
• Make sure that each new invocation works on a smaller problem and that eventually a

base case will be reached, thus allowing to terminate after a finite number of steps.
Otherwise, the algorithm will never terminate.
Sometimes mathematical induction and often strong induction are needed to prove a

recursive algorithm is correct, that is, for all possible input values, the correct output can
be produced.

A class of recursive algorithms is called divide-and-conquer algorithms when they
divide a problem into parts of the same problem of smaller size and they conquer the
problem by using the solutions of the smaller problems, such as binary search and merge
sort algorithms. Recurrence relation can be used to analyze the time complexity of
divide-and-conquer algorithms. Consider a problem of size n that can be broken into
a smaller subproblems, where each is the size of nb, assuming n is a multiple of b, and sup-
pose f ðnÞ is a nondecreasing function, where f ð1Þ ¼ c, noting that a� 1, b� 2, and c �
1 are all integers. Assuming f ðnÞ represents the number of operations required to solve
the problem of size n, and hðnÞ represents the maximum number of operations required
to combine the solutions of the subproblems into a solution of the original problem, we
then have the divide-and-conquer recurrence relation as follows:

f nð Þ ¼ a� f
�n
b

�
þ h nð Þ:

A recursive algorithm is devised to evaluate the value of a function at a positive integer
of interest in terms of the values of the function at smaller integers. On the other hand, an
iterative algorithm is developed to evaluate the value of a function at the base cases and
successively apply the recursive definition to find values of the function at larger integers.
Oftentimes an iterative approach requires less computation than a recursive approach, but
writing a software program for the nonrecursive version of a recursive algorithm is often a
difficult and time-consuming task.

Recursion 253



Example 14.2
Consider the Fibonacci sequence as recursively defined by f ðnÞ ¼ f ðn �1Þ þ
f ðn �2Þ, where f ð0Þ ¼ 0 and f ð1Þ ¼ 1. Find the number of additions required
for f ð6Þ for each of the following two cases, and comment on the results.
(a) Using a recursive algorithm.
(b) Using an iterative algorithm.

Solution
(a) A recursive algorithm is based on a top-down approach. We evaluate the

value of f ð6Þ in terms of the values of the function at smaller integers, namely,
f ð5Þ and f ð4Þ, and successively apply the recursive definition to find values of
the function at smaller integers. Therefore we have the following:

f ð6Þ ¼ f ð5Þ þ f ð4Þ ¼ f ð4Þ þ f ð3Þ þ f ð3Þ þ f ð2Þ
¼ f ð3Þ þ f ð2Þ þ f ð2Þ þ f ð1Þ þ f ð2Þ þ f ð1Þ þ f ð1Þ þ f ð0Þ
¼ f ð2Þ þ f ð1Þ þ f ð1Þ þ f ð0Þ þ f ð1Þ þ f ð0Þ þ f ð1Þ þ f ð1Þ

þ f ð0Þ þ f ð1Þ þ f ð1Þ þ f ð0Þ
¼ f ð1Þ þ f ð0Þ þ f ð1Þ þ f ð1Þ þ f ð0Þ þ f ð1Þ þ f ð0Þ þ f ð1Þ

þ f ð1Þ þ f ð0Þ þ f ð1Þ þ f ð1Þ þ f ð0Þ:

Thus we need to carry out 12 additions for a recursive algorithm. In fact, it can
be shown that the number of additions in a recursive algorithm to find the
Fibonacci f ðnÞ is f ðnþ1Þ � 1.

(b) An iterative algorithm is based on a bottom-up approach. We use the given
value of the function at the base cases, namely f ð0Þ and f ð1Þ, and successively
apply the recursive definition to find values of the function at larger integers
until f ð6Þ is obtained. Therefore we have the following relations:

f ð2Þ ¼ f ð1Þ þ f ð0Þ:
f ð3Þ ¼ f ð2Þ þ f ð1Þ:
f ð4Þ ¼ f ð3Þ þ f ð2Þ:
f ð5Þ ¼ f ð4Þ þ f ð3Þ:
f ð6Þ ¼ f ð5Þ þ f ð4Þ:

Thus we need to carry out five additions for an iterative algorithm. In fact, it
can be shown that the number of additions in an iterative algorithm to find the
Fibonacci f ðnÞ is n � 1.
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14.4 Solving Recurrence Relations by Iteration

A sequence is called a solution of a recursive relation if its terms satisfy the recurrence rela-
tion. We often want to know an explicit formula for a recurrence relation f ðnÞ or equiv-
alently a sequence an, especially when we need to compute terms with very large n or
assess general properties of a relation.

The most basic method for finding a closed-form formula for a recursively defined
function is iteration. In the iterative method, we take the approach based on back substi-
tution in order to see a pattern developing and then guess or discover an explicit formula.
We can then use induction to verify the closed-form formula. Although it is a straight-
forward method, it can become algebraically unwieldy if the recurrence relation is too
complex.

Example 14.3
Solve the following recurrence relations by iteration:

(a) an ¼ an�1 þ nðnþ1Þ
2 ; n � 1; a0 ¼ 0:

(b) an ¼ an�1 þ ðn �1Þ; n � 2; a1 ¼ 0:
(c) an ¼ an�1 þ m; n � 2; a1 ¼ p; ms0:
(d) an ¼ man�1; n � 1; a0 ¼ p; ms0:

Solution
(a) Using iteration, we have

an ¼ an�1 þ nð Þðnþ 1Þ
2

¼ an�2 þ ðn� 1Þ nð Þ
2

þ nð Þðnþ 1Þ
2

¼ . ¼ a0 þ ð1Þð2Þ
2

þ.þ ðn� 1Þ nð Þ
2

þ nð Þðnþ 1Þ
2

¼ a0 þ
Xn
i¼1

iðiþ 1Þ
2

¼
Xn
i¼1

iðiþ 1Þ
2

¼ 1
2

 Xn
i¼1

i2 þ
Xn
i¼1

i

!

¼ 1
2

�
nðnþ 1Þð2nþ 1Þ

6
þ nðnþ 1Þ

2

�

¼ nðnþ 1Þðnþ 2Þ
6

; n � 0:
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(b) Using iteration, we have

an ¼ an�1 þ ðn� 1Þ ¼ an�2 þ ðn� 2Þ þ ðn� 1Þ
¼ . ¼ a1 þ 1þ 2þ.þ ðn� 2Þ þ ðn� 1Þ
¼ 0þ 1þ 2þ.þ ðn� 2Þ þ ðn� 1Þ

¼ nðn� 1Þ
2

; n � 1:

(c) Using iteration, we have

an ¼ an�1 þ m ¼ an�2 þ 2m ¼ an�3 þ 3m ¼ . ¼ a1 þ ðn� 1Þm:
We therefore have

an ¼ ðn� 1Þmþ p; n � 1:

(d) Using iteration, we have

an ¼ man�1 ¼ m2 � an�2 ¼ ::: ¼ mn � a0 ¼ pmn; n � 0:

It is important to highlight that in the iteration method when substitution is performed
repeatedly, full simplification after a substitution should be in general avoided, so the
terms left in expanded form can help recognize the pattern that develops.

Example 14.4
In a sports tournament, there are n > 1 teams. Suppose each team plays all other
teams (i.e., it is a round-robin tournament in which each team plays in turn against
every other only once). Using iteration, determine the total number of games an
to be played in the tournament.

Solution
We have the following specific cases:

k ¼ 2 / a2 ¼ 1:

k ¼ 3 / a3 ¼ 2þ 1:

k ¼ 4 / a4 ¼ 3þ 2þ 1:

k ¼ 5 / a5 ¼ 4þ 3þ 2þ 1:

We can thus conclude

k ¼ n / an ¼ ðn� 1Þ þ ðn� 2Þ þ.þ 2þ 1:
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Using the arithmetic progression, we have

an ¼ nðn� 1Þ
2

:

Note that using the method of iteration to find solutions to recurrence relations may
sometimes fail; finding a closed-form formula for the Fibonacci sequence
ðan ¼ an�1þan�2Þ using iteration is a case in point.

14.5 Solving Linear Homogeneous Recurrence Relations with
Constant Coefficients

A recurrence relation of degree k is a function of the form

an ¼ hðan�1; an�2; :::; an�k; nÞ:
In other words, the nth term an of a sequence is a function of the preceding k terms

an�1; an�2; :::; an�k and the integer n. However, one class of recurrence relations that can
be explicitly solved in a systematic way and often occur in modeling of problems is the
linear homogeneous recurrence relation of degree k with constant coefficients, which has the
following form:

an ¼ c1an�1 þ c2an�2 þ ::: þ ckan�k;

where c1; c2; :::; ck are real numbers and cks0. The recurrence relation is linear, as there
are no powers or products of the aj’s, where j˛fan�1; :::; an�kg. It is homogeneous, as no
terms occur that are not multiples of the aj’s. The coefficients of the terms are all con-
stants, as they do not depend on n. The degree is k as an is expressed in terms of the pre-
vious k terms of the sequence. Such a recurrence relation can be uniquely solved for an if
the initial values of the first k terms of the sequence are specified. It is important to note
that an ¼ 0, called the trivial solution, is always a solution to any linear homogeneous
recurrence relation with constant coefficients.

Example 14.5
Determine if each of the following recurrence relations is a linear homogeneous
recurrence relation with constant coefficients (LHRRCC).
(a) an ¼ 4an�1 � 3an�2:
(b) an ¼ nan�1 � 3an�2:
(c) an ¼ 4an�2 � 3an�4 þ 9:
(d) an ¼ n2an�1 � 3an�2 þ 6:
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(e) an ¼ 4an�1an�2 þ an�3:
(f) an ¼ 4an�1 � ðn �1Þan�2an�3:
(g) an ¼ 4an�1 � 3an�2an�3 þ 2:
(h) an ¼ n3an�1an�3 � 3an�2 þ 5:

Solution
In order to have a linear homogeneous recurrence relation with constant coeffi-
cients, the recurrence relation must be linear and homogeneous as well as have
constant coefficients. If any one of these three requirements is not met, then
the recurrence relation is not a linear homogeneous recurrence relation with con-
stant coefficients, as presented in Table 14.1.

Suppose the sequence fang is generated by the linear homogeneous recurrence relation
with constant coefficients an ¼ c1an�1 þ c2an�2 þ ::: þ ckan�k, where the coefficients
are real numbers, and cks0. We can then state that an ¼ rn, where r is a constant, is a
solution of the recurrence relation if and only if we have

rn ¼ c1rn�1 þ c2rn�2 þ . þ ckr
n�k:

After dividing both sides by rn�k and taking all terms to one side, we have

rk� c1r
k�1 � c2r

k�2 .::: � ck�1r � ck ¼ 0

which is known as the characteristic equation of the recurrence relation. The solutions of
the characteristic equation are called characteristic roots, which can be used to give an
explicit formula for all the solutions of the recurrence relation. Suppose the characteristic

Table 14.1 Identification of recurrence relations for Example 14.5.

Recurrence
relation Linear? Homogeneous?

With constant
coefficients? LHRRCC?

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)

Yes
Yes
Yes
Yes

No (an�1an�2Þ
No (an�2an�3Þ
No (an�2an�3Þ
No (an�1an�3Þ

Yes
Yes

No (9Þ
No (6)
Yes
Yes

No (2Þ
No (5Þ

Yes
No (nÞ
Yes

No (n2
�

Yes
No (n �1Þ

Yes
No (n3

�

Yes
No
No
No
No
No
No
No
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equation of degree k has j distinct roots r1; r2; :::; rj with multiplicity m1; m2; :::; mj,
respectively, where m1 þ m2 þ ::: þ mj ¼ k. Then, for any choice of constants bi;p,
where 1 � i � j and 0 � p � mi � 1, the following closed-form expression generates
a solution to the recurrence relation:

an ¼ 	
b1;0 þ b1;1nþ ::: þ b1;m1�1n

m1�1� rn1 þ 	
b2;0 þ b2;1nþ :::

þ b2;m2�1n
m2�1� rn2 þ

::: þ 	bj;0 þ bj;1nþ ::: þ bj;mj�1n
mj�1� rnj :

If the initial values a1; a2; :::; ak�1 are specified, then unique values can be found for
constants bi;p where 1 � i � j and 0 � p � mi � 1, so that the closed-form formula
matches the sequence generated by the recursion relation.

Example 14.6
Solve the following linear homogeneous recurrence relations with constant
coefficients:

an ¼ 9an�1 � 26an�2 þ 24an�3; a0 ¼ 1; a1 ¼ 1; a2 ¼ �3:

Solution
We have c1 ¼ 9, c2 ¼ �26, c3 ¼ 24, and k ¼ 3: Thus the characteristic equa-
tion and the characteristic roots are as follows:

r3 � 9r2 þ 26r � 24 ¼ 0 /

8>><
>>:

r1 ¼ 2

r2 ¼ 3

r3 ¼ 4

There are three distinct roots. We therefore have

j ¼ 3 &

8>><
>>:

m1 ¼ 1

m2 ¼ 1

m3 ¼ 1

Note that m1 ¼ 1, m2 ¼ 1, and m3 ¼ 1 reflect the fact that each distinct
root has a multiplicity of 1. Therefore the constants bi;p, where 1 � i � 3 and p ¼
0, are b1;0, b2;0, and b3;0. Hence the closed-form solution is as follows:

an ¼ 	
b1;0
�
2n þ 	b2;0

�
3n þ 	b3;0

�
4n:
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Using the initial values, we can find the constants of interest and solve the
recurrence relation as follows:
8>>><
>>>:

n ¼ 0/ a0 ¼ b1;0 þ b2;0 þ b3;0 ¼ 1

n ¼ 1/ a1 ¼ 2b1;0 þ 3b2;0 þ 4b3;0 ¼ 1

n ¼ 2/ a2 ¼ 4b1;0 þ 9b2;0 þ 16b3;0 ¼ �3

/

8>>><
>>>:

b1;0 ¼ 1

b2;0 ¼ 1

b3;0 ¼ �1

/

an ¼ 2n þ 3n � 4n:

Example 14.7
Solve the following linear homogeneous recurrence relations with constant
coefficients:

an ¼ 7an�1 � 16an�2 þ 12an�3; a0 ¼ 0; a1 ¼ 1; a2 ¼ 3:

Solution
We have c1 ¼ 7, c2 ¼ �16, c3 ¼ 12, and k ¼ 3: The characteristic equation
and the characteristic roots are as follows:

r3 � 7r2 þ 16r � 12 ¼ 0 /

8>>><
>>>:

r1 ¼ 2

r2 ¼ 3

/

j ¼ 2 &

8>>><
>>>:

m1 ¼ 2

m2 ¼ 1

/

8>>><
>>>:

i ¼ 1; p ¼ 0

i ¼ 1; p ¼ 1

i ¼ 2; p ¼ 0

Noting that we have a root r2 ¼ 3 with multiplicity one and a root r1 ¼ 2
with multiplicity two, the closed-form solution is as follows:

an ¼ 	
b1;0þ b1;1n

�
2n þ 	b2;0

�
3n:

Using the initial values, we can find the constants of interest and solve the
recurrence relation as follows:

8>>><
>>>:

n ¼ 0 / a0 ¼ b1;0 þ b2;0 ¼ 0

n ¼ 1 / a1 ¼ 2b1;0 þ 2b1;1 þ 3b2;0 ¼ 1

n ¼ 2 / a2 ¼ 4b1;0 þ 8b1;1 þ 9b2;0 ¼ 3

/

8>>><
>>>:

b1;0 ¼ 1

b1;1 ¼ 1

b2;0 ¼ �1

/

an ¼ ð1þ nÞ2n � 3n:

260 Discrete Mathematics



Example 14.8
Solve the following linear homogeneous recurrence relations with constant
coefficients:

an ¼ 6an�1 � 12an�2 þ 8an�3; a0 ¼ 1; a1 ¼ 2; a2 ¼ �4:

Solution
We have c1 ¼ 6, c2 ¼ �12, c3 ¼ 8, and k ¼ 3: The characteristic equation
and the characteristic roots are as follows:

r3 � 6r2 þ 12r � 8 ¼ 0 / r1 ¼ 2 / j ¼ 1 & m1 ¼ 3 /

8>><
>>:

i ¼ 1; p ¼ 0

i ¼ 1; p ¼ 1

i ¼ 1; p ¼ 2

There is a root r1 ¼ 2 with multiplicity three. Hence the closed-form solution
is as follows:

an ¼ 	
b1;0þ b1;1nþ b1;2n2

�
2n:

Using the initial values, we can find the constants of interest and solve the
recurrence relation as follows:
8>>><
>>>:

n ¼ 0 / a0 ¼ b1;0 ¼ 1

n ¼ 1 / a1 ¼ 2b1;0 þ 2b1;1 þ 2b1;2 ¼ 2

n ¼ 2 / a2 ¼ 4b1;0 þ 8b1;1 þ 16b1;2 ¼ �4

/

8>>><
>>>:

b1;0 ¼ 1

b1;1 ¼ 1

b1;2 ¼ �1

/

an ¼ 	
1þ n� n2

�
2n:

14.6 Solving Linear Nonhomogeneous Recurrence Relations with
Constant Coefficients

A linear nonhomogeneous recurrence relation with constant coefficients is in the
following form:

an ¼ c1an�1 þ c2an�2 þ ::: þ ckak�n þ f nð Þ;
where c1; c2; :::; ck are real numbers, cks0, and f ðnÞ is a function of the variable n only.
The recurrence relation

an ¼ c1an�1 þ c2an�2 þ ::: þ ckak�n
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which is known in this context as the associated homogeneous recurrence relation with

constant coefficients, provides a solution, denoted by aðhÞn , to the linear nonhomogeneous
recurrence relation with constant coefficients. The general solution of the linear nonho-
mogeneous recurrence relation with constant coefficients is then given by

an ¼ a hð Þ
n þ a pð Þ

n ;

where aðpÞn is called a particular solution. There is no general method to find a particular
solution for every function f ðnÞ. However, when f ðnÞ is a polynomial in n and the power
of a constant, a particular solution can be rather easily found. Suppose f ðnÞ is as follows:

f nð Þ ¼ 	
btn

t þ bt�1n
t�1 þ ::: þ b1nþ b0

�
an;

where b0; b1; :::; bt and a are real numbers. Then a particular solution has the following
form:

a pð Þ
n ¼ g nð Þ	etnt þ et�1n

t�1 þ ::: þ e1nþ e0
�
an;

where e0; e1; :::; et are some constants to be determined using the initial conditions. If a
is not a root of the characteristic equation of the associated linear nonhomogeneous
recurrence relation with constant coefficient, then gðnÞ ¼ 1. If a is a root of this char-
acteristic equation and its multiplicity is m, then gðnÞ ¼ nm.

Example 14.9
Solve the following linear nonhomogeneous recurrence relation with constant
coefficients:

an ¼ 5an�1 � 6an�2 þ f nð Þ; n � 2; a0 ¼ 4; a1 ¼ 7:

(a) f ðnÞ ¼ 8n2:
(b) f ðnÞ ¼ 7n:

Solution
We first need to find the solution to the associated homogeneous recurrence rela-
tion with constant coefficients

an ¼ 5an�1 � 6an�2:

We have c1 ¼ 5, c2 ¼ �6, and k ¼ 2. The characteristic equation and its
distinct roots are as follows:

r2 � 5r þ 6 ¼ 0 /

8>><
>>:

r1 ¼ 2

r2 ¼ 3

/ j ¼ 2 &

8>><
>>:

m1 ¼ 1

m2 ¼ 1

/

8>><
>>:

i ¼ 1; p ¼ 0

i ¼ 2; p ¼ 0
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Thus we have

aðhÞn ¼ b1;02
n þ b2;03

n:

(a) As there is no constant to the power of n in f ðnÞ, a ¼ 1, and because 1 is not a
root of the characteristic equation, gðnÞ ¼ 1, we have

a pð Þ
n ¼ e2n

2 þ e1nþ e0

Thus we have the following three terms:
8>><
>>:

aðpÞn ¼ e2n
2 þ e1nþ e0

aðpÞn�1 ¼ e2ðn� 1Þ2 þ e1ðn� 1Þ þ e0

aðpÞn�2 ¼ e2ðn� 2Þ2 þ e1ðn� 2Þ þ e0

After substituting these three terms into the relation

an ¼ 5an�1 � 6an�2 þ 8n2

we have

e2n
2þ e1nþ e0 ¼ 5

	
e2ðn� 1Þ2þ e1ðn� 1Þþ e0

�

� 6
	
e2ðn� 2Þ2þ e1ðn� 2Þþ e0

�þ 8n2:

We then simplify the terms on the right-hand side and group similar terms.
Thus we obtain

e2n
2þ e1nþ e0 ¼ ð�e2þ 8Þn2 þ ð14e2� e1Þnþ ð� 19e2þ 7e1� e0Þ:

By equating the coefficients of identical powers, we obtain
8>><
>>:

e2 ¼ �e2 þ 8

e1 ¼ 14e2 � e1
e0 ¼ �19e2 þ 7e1 � e0

/

8>><
>>:

e2 ¼ 4

e1 ¼ 28

e1 ¼ 60

/ a pð Þ
n ¼ 4n2 þ 28nþ 60:

The general solution is then in the following form:

an ¼ aðhÞn þ aðpÞn ¼ b1;02n þ b2;03n þ 4n2 þ 28nþ 60:
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Using the initial conditions, we have
8>><
>>:

a0 ¼ b1;0 þ b2;0 þ 60 ¼ 4

a1 ¼ 2b1;0 þ 3b2;0 þ 92 ¼ 7

/

8>><
>>:

b1;0 þ b2;0 ¼ �56

2b1;0 þ 3b2;0 ¼ �85

/

8>><
>>:

b1;0 ¼ �83

b2;0 ¼ 27

Now that we know the values of all coefficients, the unique solution to the
recurrence relation is as follows:

an ¼ ð�83Þ2n þ ð27Þ3n þ 4n2 þ 28nþ 60:

(b) As a ¼ 7, and 7 is not a root of the characteristic equation, we have
gðnÞ ¼ 1. Therefore

a pð Þ
n ¼ e07

n:

Substituting aðpÞn into the linear nonhomogeneous recurrence relation, we can
determine the coefficient of aðpÞn :

an ¼ 5an�1 � 6an�2 þ 7n / e07
n ¼ 5e07

n�1 � 6e07
n�2 þ 7n / e0 ¼ 49

20
:

Thus we have

aðpÞn ¼ 49
20
7n:

The general solution is then in the following form:

an ¼ aðhÞn þ aðpÞn ¼ b1;02
n þ b2;03

n þ 49
20
7n:

Using the initial conditions, we have
8>>>><
>>>>:

a0 ¼ b1;0 þ b2;0 þ 49
20

¼ 4

a1 ¼ 2b1;0 þ 3b2;0 þ 343
20

¼ 7

/

8>>>><
>>>>:

b1;0 þ b2;0 ¼ 31
20

2b1;0 þ 3b2;0 ¼ �203
20

/

8>>>><
>>>>:

b1;0 ¼ 296
20

b2;0 ¼ �265
20

Now that we know the values of all coefficients, the unique solution to the
recurrence relation is as follows:

an ¼
�
296
20

�
2n �

�
265
20

�
3n þ

�
49
20

�
7n:
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Example 14.10
Determine the form of a particular solution if the linear nonhomogeneous recur-
rence relation with constant coefficients is an ¼ 8an�1 � 16an�2 þ f ðnÞ, when
f ðnÞ is as follows:
(a) f ðnÞ ¼ 	

n2þ2
�
3n:

(b) f ðnÞ ¼ 	
n3þnþ5

�
4n:

Solution
We first need to find the solution to the associated homogeneous recurrence rela-
tion with constant coefficients

an ¼ 8an�1 � 16an�2:

We have c1 ¼ 8, c2 ¼ 16, and k ¼ 2. The characteristic equation and its
roots are as follows:

r2 � 8r þ 16 ¼ 0 / r1 ¼ 4 / j ¼ 1 & m1 ¼ 2:

(a) Noting that r ¼ 4, a ¼ 3, gðnÞ ¼ 1, and t ¼ 2, we have

a pð Þ
n ¼ 	

e2n
2 þ e1nþ e0

�
3n:

(b) Noting that r ¼ 4, m ¼ 2, a ¼ 4, gðnÞ ¼ n2, and t ¼ 2, we have

a pð Þ
n ¼ n2

	
e2n

2 þ e1nþ e0
�
4n:

14.7 Solving Recurrence Relations Using Generating Functions

Generating functions is a powerful and efficient tool to solve many types of problems,
such as advanced counting, calculating the probability of discrete random variables,
and solving recurrence relations. The solution to a recurrence relation with its initial con-
ditions can be found when an explicit formula for the associated generating function is
determined.

Generating functions can translate the terms of a sequence as coefficients of powers of
a variable z in a formal power series. The generating function for the sequence
a0; a1; a2; ::: of real numbers is the following infinite series:

GðzÞb a0 þ a1zþ a2z2 þ ::: ¼
XN
n¼ 0

anzn:
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Note that two generating functions can be added and multiplied as follows:

8>>>>><
>>>>>:

G zð Þ ¼ a0 þ a1zþ a2z
2 þ ::: ¼

XN
n¼0

anz
n

F zð Þ ¼ b0 þ b1zþ b2z
2 þ ::: ¼

XN
n¼0

bnz
n

/

8>>>>>><
>>>>>>:

G zð Þ þ F zð Þ ¼
XN
n¼0

ðan þ bnÞzn

F zð ÞG zð Þ ¼
XN
n¼0

 Xn
j¼0

bjan�j

!
zn

Table 14.2 presents some useful generating functions. In addition, the following
highlights shifting a generating function and differentiating a generating function as
two important mathematical operations that can help solve recurrence relations:

zmGðzÞ ¼
XN
n¼ 0

anz
nþm ¼

XN
n¼m

an�mz
n

and

G0ðzÞ ¼
XN
n¼ 1

nanz
n�1:

It is imperative to highlight that the goal is to use the generating function and its prop-
erties to a recurrence relation in order to find GðzÞ in the form of a single summation, of
course after some mathematical manipulation, and then to determine the sequence fang
by using the definition of the generating function.

Table 14.2 Some useful generating functions.

G zð Þ an

1
1�zm ¼ PN

n¼ 0
zmn

(
1 if m divides n

0 otherwise

1
ð1�czÞm ¼ PN

n¼ 0

�
ðm þ n�1Þ!
n! ðm�1Þ!

�
cnzn

�
ðm þ n�1Þ!
n! ðm�1Þ!

�
cn

z
ð1�zÞ2 ¼ PN

n¼ 0
nzn n

z2þz
ð1�zÞ3 ¼ PN

n¼ 0
n2zn n2

Note: m is a positive integer and c is a real number.
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Example 14.11
Solve the following recurrence relation using generating functions.

an ¼ an�1 þ n; n � 1; a0 ¼ �1:

Solution
We first multiply both sides of the recurrence relation by zn to obtain

anz
n ¼ an�1z

n þ nzn:

We then sum both sides of the equation starting with n ¼ 1 to yield the
following equation:

XN
n¼ 1

anz
n ¼

XN
n¼ 1

an�1z
n þ

XN
n¼ 1

nzn:

We now change the indices and simplify the equation. Thus we have

XN
n¼ 0

anz
n� a0 ¼ z

XN
n¼ 0

anz
n þ

XN
n¼ 0

nzn:

Using the definition of GðzÞ and Table 14.2, we then have:

GðzÞ� a0 ¼ zGðzÞ þ z

ð1� zÞ2:

Noting a0 ¼ �1, GðzÞ can be obtained as follows:

GðzÞ ¼ � 1
1� z

þ z

ð1� zÞ3:

Using Table 14.2, we write each term in the preceding equation in terms of a
summation:

G zð Þ ¼ �
XN
n¼0

zn þ z
XN
n¼0

�ðnþ 2Þ!
n!2!

�
zn:
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We now perform the following mathematical manipulation to obtain GðzÞ in
terms of a single summation:

GðzÞ ¼
 

�
XN
n¼ 0

zn
!

þ
 
z
XN
n¼ 0

ðnþ 2Þðnþ 1Þ
2

zn
!

¼
 
�
XN
n¼ 0

zn
!

þ
 XN

n¼ 0

ðnþ 2Þðnþ 1Þ
2

znþ1

!

¼
 
� 1�

XN
n¼ 1

zn
!

þ
 XN

n¼ 1

ðnþ 1ÞðnÞ
2

zn
!

¼ �1þ
XN
n¼ 1

�
ð�1Þþ ðnþ 1ÞðnÞ

2

�
zn ¼

XN
n¼ 0

�
� 1þðnþ 1ÞðnÞ

2

�
zn

¼
XN
n¼ 0

�ðnþ 2Þðn� 1Þ
2

�
zn:

Using the definition of the generating function, thus we have

G zð Þ ¼
XN
n¼0

anz
n ¼

XN
n¼0

�ðnþ 2Þðn� 1Þ
2

�
zn / an ¼ ðnþ 2Þðn� 1Þ

2
; n � 0:

It is of utmost importance that after a recurrence relation of any type is solved by using
any method, the solution is checked not only to make sure that it satisfies the recurrence
relation but also that it fully meets the given initial conditions.

Exercises
(14.1)
(a) Determine the sum of the m terms in a geometric progression with the initial

term a and the common ratio rs1:
(b) Determine the sum of the m terms in an arithmetic progression with the initial

term a and the common difference d:

(14.2)
Suppose that a person deposits $p in a saving account at a bank yielding i per year
with compound interest, where i is represented in a percentage. Determine the
amount of money in the account after k years for the following cases.
(a) The interest is paid m times a year.
(b) The interest is paid continuously.
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(14.3)
Solve the following recurrence relations by iteration.
(a) an ¼ 2an�1 þ 1; n � 2 and a1 ¼ 1.
(b) an ¼ 4an�1 þ 4; n � 1 and a0 ¼ 0.

(14.4)
Find recurrence relations for sequences of n bits, along with the initial condition,
for the following patterns:
(a) Containing three consecutive zeros.
(b) Not containing three consecutive zeros.

(14.5)
Solve the following linear homogeneous recurrence relations with constant
coefficients.
(a) an ¼ 5an�1 � 6an�2; a0 ¼ 7; a1 ¼ 16.
(b) an ¼ 4an�1 � 4an�2; a0 ¼ 1; a1 ¼ 1:

(14.6)
Determine an explicit formula for the Fibonacci sequence.

fn ¼ fn�1 þ fn�2; n � 2; f0 ¼ 1; f1 ¼ 1:

(14.7)
Determine an explicit formula for the following first-degree linear recurrence.

an ¼ man�1 þ g nð Þ; n > 0; m > 0; a0 ¼ k > 0:

(14.8)
Determine the general form of the solutions of a linear homogeneous recurrence
relation if its characteristic equation has the following ten roots: 1; 1; 1; 1;
�2; �2; �2; 3; 3; �4.

(14.9)
Solve the following recurrence relation using generation functions.

an ¼ 6an�1 � 9an�2; n � 2; a0 ¼ 2 and a1 ¼ 3:

(14.10)
Solve the following recurrence relation using generation functions.

an ¼ an�1 þ n2; n � 1; a0 ¼ 0:

Recursion 269



CHAPTER 15

Counting Methods
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In a random experiment where the total number of possible outcomes is finite and the
outcomes are equiprobable, we often need to know how many possible outcomes there
are in total, as the probability of an event is the ratio of the number of outcomes in the
event to the total number of possible outcomes. Counting methods are about how to
determine the total number of equally likely outcomes in a random experiment without
actually listing the outcomes. However, there are no absolute methods that can be used
to solve all counting problems. This chapter discusses the basic rules of counting, permu-
tations, and combinations along with some interesting applications.

15.1 Basic Rules of Counting

Suppose a task can be divided into a sequence of k independent subtasks, where k > 0 is
an integer. A subtask is thus carried out regardless of how the other k� 1 subtasks are
done. Assuming n1, n2,., and nk are all positive integers, the first subtask can be carried
out in n1 ways, the second subtask in n2 ways, ., and the kth subtask in nk ways. The
fundamental principle of counting, also known as the product rule for counting, states that
there is a total of n1 � n2 �.� nk distinct ways to carry out the task consisting of k in-
dependent subtasks.

Example 15.1
How many four-digit integers are there that are multiples of 20?

Solution
In a four-digit integer, the first (the most significant) digit cannot be zero. There
are therefore nine possibilities for the first digit, from 1 to 9 inclusive. The second
digit can be any one of the ten possible digits, from 0 to 9 inclusive. To be divisible
by 20, the third digit cannot be an odd number, that is, it must be one of the five
digits 0, 2, 4, 6, and 8, and the fourth (the least significant) digit must be 0. Using
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the product rule, there is then a total of 9� 10� 5� 1 ¼ 450 four-digit inte-
gers that are multiples of 20.

Suppose a task can be done in k mutually exclusive sets of ways, where k > 0 is an
integer. The ways in any one set thus exclude the ways in the other k� 1 sets. Assuming
n1, n2,., and nk are all positive integers, the task can be carried out in one of n1 ways in
set 1, in one of n2 ways in set 2, ., and in one of nk ways in set k, where the set of n1
ways, the set of n2 ways, ., and the set of nk ways are all pairwise disjoint (mutually
exclusive) finite sets. The sum rule for counting, also known as the addition rule for count-
ing, states that there is a total of n1 þ n2 þ.þ nk distinct ways to carry out the task.

Example 15.2
How many two-digit integers are there that are divisible by 11 or 13?

Solution
There is a set of 9 two-digit integers that are divisible by 11, and there is a set of 7
two-digit integers that are divisible by 13. These two sets are mutually exclusive, as
there is no two-digit integer that is divisible by both 11 and 13. Using the sum rule,
there are therefore 9þ 7 ¼ 16 two-digit integers that are divisible by 11 or 13.

Example 15.3
How many four-digit integers are there using the digits 0, 1, 2, 3, 4, and 5, where
no digit is repeated and the integer is a multiple of 3?

Solution
For an integer to be a multiple of 3, the sum of its digits must be a multiple of 3. A
digit can be used only once; therefore the smallest sum of all digits in a four-digit
integer can be 0þ 1þ 2þ 3 ¼ 6, and the largest sum of all digits can be 2þ 3þ
4þ 5 ¼ 14. The sum that must be divisible by 3 can then be 6, 9, or 12. Note
that the first digit cannot be 0, as it is a four-digit integer. We therefore have the
following mutually exclusive cases:
• The sum of the integers is 6. The four integers are 0, 1, 2, and 3. Using the

product rule, there are 3� 3� 2� 1 ¼ 18 integers.
• The sum of the integers is 9. The four integers are 0, 1, 3, and 5. Using the

product rule, there are 3� 3� 2� 1 ¼ 18 integers.
• The sum of the integers is 9. The four integers are 0, 2, 3, and 4. Using the

product rule, there are 3� 3� 2� 1 ¼ 18 integers.
• The sum of the integers is 12. The four integers are 0, 3, 4, and 5. Using the

product rule, there are 3� 3� 2� 1 ¼ 18 integers.
• The sum of the integers is 12. The four integers are 1, 2, 4, and 5. Using the

product rule, there are 4� 3� 2� 1 ¼ 24 integers.
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By the sum rule, the total number of integers is thus 18þ 18þ 18 þ
18þ 24 ¼ 96.

Suppose a task can be accomplished in k sets of ways, where k > 0 is an integer. Assuming
n1, n2,., and nk are all positive integers, the task can be accomplished in one of n1 ways
in set 1, in one of n2 ways in set 2,., and in one of nk ways in set k, where the set of n1
ways, the set of n2 ways,., and the set of nk ways are not pairwise disjoint finite sets. In
other words, some of the ways in the sets to carry out the task are common. The subtrac-
tion rule for counting, also widely known as the principle of inclusion-exclusion, states that
the number of distinct ways to accomplish the task is n1 þ n2 þ.þ nk minus the num-
ber of common ways that have been overcounted, so no common way is counted more
than once. Note that this rule was extensively discussed in the context of sets.

Example 15.4
How many two-digit integers are there that are multiples of at least one of these
three integers 3, 4, and 5?

Solution
The set of two-digit integers that are multiples of 3, the set of integers that are
multiples of 4, and the set of integers that are multiples of 5 are not mutually
exclusive. There are 30 two-digit integers that are divisible by 3, there are 22
two-digit integers that are divisible by 4, and there are 18 two-digit integers
that are divisible by 5. Note that there are 8 two-digit integers that are divisible
by both 3 and 4, there are 6 two-digit integers that are divisible by both 3 and
5, and there are 4 two-digit integers that are divisible by both 4 and 5. Also, there
is 1 two-digit integer that is divisible by all 3, 4, and 5. Using the subtraction rule,
there are therefore 30þ 22þ 18� 8� 6� 4þ 1 ¼ 53 two-digit integers that
are multiples of 3, 4, or 5.

There are also some counting problems that cannot be directly solved using any basic
rules of counting. For instance, certain problems that require tree diagrams with asym-
metric structures to solve cannot easily use these rules because there are some conditions
in these problems that must be met.

The outcomes of a finite sequential experiment can be represented by a tree diagram.
A tree structure is a logical way to keep a systematic track of all possibilities in cases in
which events occur in sequence but in a finite number of ways. In order to use trees
in counting, a branch is used to represent each possible choice, and the leaves, which
are the nodes not having other branches starting at them, are used to represent the
possible outcomes. The number of branches that originate from a node represents the
number of events that can occur, given that the event represented by that node occurs.
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Example 15.5
How many two-digit integers are there that the least significant digit is greater
than the most significant digit?

Solution
Fig. 15.1 shows the tree diagram for all two-digit integers with the least significant
digit being greater than the most significant digit (MSD) while noting that the
MSD cannot be 0. As shown on the tree, the total number of such two-digit
integers is 36 ð¼ 8þ7þ6þ5þ4þ3þ2þ1Þ.

Example 15.6
Suppose that a random experiment begins by tossing two typical dice. If the dice
match (i.e., the outcomes are one of the six possible doubles), the dice are rolled
one more time, if not, they are not rolled any more. Determine the total number
of possible outcomes.

Solution
Note that when a pair of typical dice is rolled, there are 15 possible nondoubles:
(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6),
(4, 5), (4, 6), and (5, 6). There are also 6 possible doubles: (1, 1), (2, 2), (3, 3),
(4, 4), (5, 5), and (6, 6). Fig. 15.2 shows the tree diagram for all possible outcomes,
where there are three paths representing the three different kinds of outcome
sequences. The total number of possible outcomes is thus the sum of the path
products, namely 141 ð¼ 15þ 6 � 6þ 6 � 15Þ.

15.2 The Pigeonhole Principle

It is common sense to say if there are more items than containers, then at least one
container must contain more than one item. This obvious statement is a type of counting
argument that can be used to demonstrate possibly interesting results. For example, if a
mother has three children, at least two of them have the same sex, that is, at least two
of them are girls or two of them are boys.

The pigeonhole principle, also known as the Dirichlet drawer principle, states that if
k > 0 is an integer and k pigeonholes are occupied by kþ 1 or more pigeons, then at
least one pigeonhole is occupied by more than one pigeon.

Example 15.7
Determine the minimum number of digits in an integer to guarantee that at least
two of the digits are the same digits.
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Fig. 15.1 Tree diagram for Example 15.5.
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Solution
Using the pigeonhole principle, we have k ¼ 10, as there are ten distinct digits in
the Hindu-Arabic numeral system. In order to have at least two of the digits the
same, the minimum number of the digits in the integer must then be kþ 1 ¼ 11:

The generalized pigeonhole principle states that if k and n are positive integers and k pi-
geonholes are occupied by m ¼ knþ 1 or more pigeons, then at least one pigeonhole is
occupied by nþ 1 or more pigeons.

Example 15.8
A bag contains 18 red balls and 18 blue balls. A woman selects balls at random one
at a time without looking at them. Determine the minimum number of balls that
she must select from the bag to be sure of having at least nine balls of the same
color.

Solution
Using the generalized pigeonhole principle, we have k ¼ 2, as there are two
different colors and we have n ¼ 8, as nþ 1 ¼ 9. The minimum number of balls
that she must select to be sure of having at least nine balls of the same color is thus
m ¼ knþ 1 ¼ 2 � 8þ 1 ¼ 17.

It is important to note that the pigeonhole principles can be proven using a proof by
contraposition.

15.3 Random Arrangements and Selections

Permutations and combinations arise when a subset is chosen from a set. In a counting
problem, we may determine the number of ways to randomly choose a set of k objects
from a set of n distinguishable objects.

An ordered arrangement of k distinguishable objects from a set of n � k objects is
called a k-permutation. In a k-permutation, different outcomes are distinguished by
the order in which objects are chosen in a sequence. Therefore in a k-permutation,
both the identity of the objects and their order of arrangement matter, as a permutation
results in a list of objects.

Fig. 15.2 Tree diagram for Example 15.6.
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As order counts with permutations, some real-life examples of permutations include
the order of letters in a word in a natural language, the sequence of digits in a telephone
number, books on a shelf in a library, the winners in an Olympic game, multiplication of
matrices, and the order of alphanumeric characters in a password.

An unordered selection of k distinguishable objects from a set of n� k objects is called
a k-combination. In a k-combination, the identity of objects in a sequence matters but not
their order of selection, as a combination results in a group of objects.

As order does not count with combinations, some real-life examples of combinations
include multiplication of numbers, putting toppings on a pizza, counting subsets, buying
groceries, handshakes among a group of people, taking attendance, voting in an election,
answering questions on an exam, games in a round-robin tournament, dice rolled in a
dice game, and cards dealt to form a hand in a card game. It is interesting to note that
the term combination lock is a misnomer, as the sequence of numbers to unlock matters;
in fact, a combination lock should be called a permutation lock.

In a selection with replacement (repetition, substitution), after an object out of n ob-
jects is selected, it is returned to the set, and it is thus possible that it will be selected again.
In sampling with replacement, the total number of possible outcomes thus remains the
same after each selection.

In a selection without replacement, an object, once selected, is not available for future
selections. In sampling without replacement, the total number of possible outcomes of
each selection depends on the outcomes of previous selections.

15.4 Permutations and Combinations

Before introducing the permutations and combinations formulas, we need to define the

symbol
�m
r

�
. The symbol

�m
r

�
, read asm choose r, wherem and r are both integers with

0 � r � m, is called a binomial coefficient. Note that we have
�m
r

�
b m!

r!ðm�rÞ!, where m!,

read as m factorial, is defined as m!bm� ðm�1Þ � ðm�2Þ �.� 2� 1 and 0!b 1.
We now consider both permutations and combinations, each with and without replace-
ment (i.e., all four cases), and highlight their applications through some examples.

If n and k are integers, such that 0� k� n, then the number of ways to make ordered
arrangements of k objects from a set of n distinct objects but without repetition (i.e., per-
mutation without replacement) is as follows:

nðn� 1Þðn� 2Þ.ðn� kþ 1Þ ¼ n!
ðn� kÞ!:
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Example 15.9
Howmany different ways are there to have a gold medalist, a silver medalist, and a
bronze medalist from 32 national teams that have entered a sports competition?

Solution
Because it matters which team wins which medal, and no team can win more than
one medal, it is a permutation without replacement. Noting that n ¼ 32 and k ¼
3, the number of ways is thus 32!29! ¼ 32 � 31 � 30 ¼ 29; 760.

If n and k are integers, such that 0 � k � n, then the number of ways to make unordered
selections of k objects from a set of n distinct objects but without repetition (i.e., combi-
nation without replacement) is as follows:

� n
k

�
¼ n!

k!ðn� kÞ!:

Example 15.10
There are 22 players on a soccer team. The starting lineup consists of only 11
players. How many possible starting lineups are there, assuming what positions
they play is of no concern?

Solution
Because the order of the selection of the players is immaterial and no player can be
selected more than once, it is a combination without replacement. Noting that
n ¼ 22 and k ¼ 11, the number of ways is thus 22!

11!11! ¼ 705; 432.

If n and k are integers, such that 0 � k and 1 � n, then the number of ways to make or-
dered arrangements of k objects from a set of n objects, when repetition of objects
allowed (i.e., permutation with replacement) is as follows:

n� n�.� n ¼ nk:

Example 15.11
How many four-letter passwords from the capital letters A to Z inclusive can be
made, noting that a letter can be repeated in a password?

Solution
This is a permutation with replacement, as the order of capital letters in a password
matters and a capital letter can be used in a password more than once. Noting that
n ¼ 26 and k ¼ 4, the number of passwords is thus 264 ¼ 456; 976.
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If n and k are integers, such that 0 � k and 1 � n, then the number of ways to make un-
ordered selections of k objects from a set of n objects, when repetition of objects allowed
(i.e., combination with replacement) is as follows:

�
nþ k� 1

k

�
¼ ðnþ k� 1Þ!

k!ðn� 1Þ! :

Example 15.12
There is a list of 25 different exotic foods on the menu of a special restaurant. For a
flat price, a customer can select four foods. In how many ways can a selection of
four foods be chosen?

Solution
This is a combination but with replacement, as the order of the selection does not
matter and a food can be selected more than once. With n ¼ 25 and k ¼ 4, the
number of ways is thus 28!

4!24! ¼ 20; 475.

Table 15.1 summarizes the formulas for the numbers of ordered arrangements (i.e., per-
mutations) and unordered selections (i.e., combinations) of k objects, with and without
repetition (replacement) allowed, from a set of n distinct objects. Note that when k ¼ 0,
the number of permutations is 1 (i.e., the list has no objects) and the number of combi-
nations is 1 (i.e., the group has no objects).

Suppose n1 � k1, n2 � k2,., and nm � km are all positive integers, and k1 items from
a group of n1 items, k2 items from a group of n2 items, ., and km items from a group of
nm items are selected in an unordered fashion without replacement while noting that n ¼
n1 þ n2 þ.þ nm is the total number of items available and k ¼ k1 þ k2 þ.þ km is
the total number of items selected. The number of ways to make such a particular selec-
tion is the product of m binomial terms and is as follows:

� n1
k1

�
�.�

� nm
km

�
¼ n1!

k1!ðn1 � k1Þ!�.� nm!
km!ðnm � kmÞ!:

Table 15.1 Number of permutations and combinations.

Permutations
(ordered arrangements)

Combinations
(unordered selections)

No replacement n!
ðn�kÞ!

n!
k!ðn�kÞ!

With replacement nk ðnþk�1Þ!
k!ðn�1Þ!

Note: k is the number of elements chosen from a set with n elements.
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Example 15.13
Suppose we have 10 black balls, 20 white balls, and 18 yellow balls in a bag. Deter-
mine the number of ways to make a combination without replacement of five
black balls, four white balls, and six yellow balls.

Solution
As we have n1 ¼ 10, n2 ¼ 20, n3 ¼ 18, k1 ¼ 5, k2 ¼ 4, and k3 ¼ 6, the
number of ways is thus 10!20!18!

5!5!4!16!6!12! ¼ 22; 665; 530; 160.

Example 15.14
Bridge is a popular card game in which 52 cards are dealt to four players, each hav-
ing 13 cards. The order in which the cards are dealt is not important, only the final
13 cards each player ends up with are of importance. Howmany different ways are
there to deal hands of 13 cards to each of four players?

Solution
Note that there are

� 52
13

�
ways to choose the 13 cards of the first player,� 52� 13

13

�
¼

� 39
13

�
ways to choose the 13 cards of the second player,

� 39� 13
13

�
¼

� 26
13

�
ways to choose the 13 cards of the third player, and

� 26� 13
13

�
¼

� 13
13

�
ways to choose the 13 cards of the fourth player. The total

number of possible ways is thus as follows:

�
52

13

�
�
�
39

13

�
�
�
26

13

�
�
�
13

13

�
¼ 52!

13!13!13!13!
y5:364� 1028:

15.5 Applications

One paramount application of counting is the Birthday Paradox, which is about finding
out the minimum number of people who need to be in a room so that it is more likely
than not that at least two of them have the same birthday. It is imperative to note that the
solution to the birthday problem leads to the solution of secure communications using
message authentication.
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This problem is now addressed in a more general way, that is, determine the proba-
bility that in a set of k randomly chosen people in a room, there is at least one pair of
people who have the same birthday. To this end, we make the following assumptions:
• A year is not a leap year (i.e., there are 365 days in a year).
• Each day of the year is equally probable for a birthday.
• The birthdays of the people are independent (there are no twins, triplets, etc.).

The occurrence of one pair of people to have the same birthday seems unlikely unless
k is quite large, and in fact, by the pigeonhole principle, the probability reaches 100%
when the number of people reaches 366 (i.e., k ¼ 366). We need to take the indirect
approach, in which no two people share a common birthday. In other words, what needs
to be done is to count the number of ways that k people can have distinct birthdays in a
year.

The first selected birthday could be any day, with the probability of 365365. The prob-
ability that a randomly selected person whose birthday is different from the first birthday
is 364365. The probability that a randomly selected person whose birthday is different from

both birthdays is 363365. In general, the ith person, with 2� i � 365, has a birthday different
from the birthdays of i� 1 people, already given that these i� 1 people have different

birthdays, is 365�ði�1Þ
365 ¼ 366�i

365 . We can thus conclude that the probability that k people
have different birthdays is the multiplication of k independent probabilities. This prob-
ability is thus the number of ways of making a permutation of k days taken from 365
(i.e., 365!

ð365�kÞ!) without replacement divided by the number of ways making an ordered

with replacement selection of k days from 365 (i.e., 365k). We thus have the following:

pk ¼
�
366� 1
365

��
366� 2
365

�
.

�
366� k
365

�
¼ 365!

365kð365� kÞ!:

Note that the probability that among k people at least two people having the same
birthday is 1 � pk. It is interesting to note that the minimum number of people needed
so that the probability that at least two people have the same birthday is greater than 50%
is only 23. With only 50 people, the probability is greater than 97%, and with only 70
people, the probability is greater than 99.9%.

The probabilities are quite high simply because every pair of people are potential
matches, and as the number of people increases, the number of pairs increases much
faster. It is thus a key point to highlight the fact that in the birthday problem, neither
of the two people is chosen in advance. The probabilities are for some collection of
two or more people, and we cannot specify any of the people ahead of time.

Assuming we have n possibilities (instead of 365 days) and also n[ k, it can be shown
that the above probability of interest can be closely approximated as follows:

pk ¼ n!
nkðn� kÞ!yexp

�
� kðk� 1Þ

2n

�
/ k y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln pk

p ffiffiffi
n

p
:
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We can thus determine the smallest value of n given a value of k such that the probability
of no collision is greater than a particular threshold.

In the context of secure communications using message authentication code, we have
n ¼ 2m, where m, the number of bits in the authenticator, is typically 128, 196, or 256.

Example 15.15
In a message authentication, assuming m ¼ 128, determine k for any two mes-
sages that their authenticators match for each of these cases, 1� pk ¼ 0:5 and
1 � pk ¼ 10�12.

Solution
We can obtain k as follows:

m ¼ 128 / n ¼ 2128y3:403� 1034 /

(
1� pk ¼ 0:5 / ky2:171� 1019

1� pk ¼ 10�12 / ky2:608� 1013

Another application in counting is quality control. Suppose there are K items, out of
which k � K are defective, that is, K � k items work properly.M � K items are chosen
at random and tested, that is, K �M items remain untested. It is important to determine
the probability that m of the M tested items are found defective, where we have m � k
and m � M .

It is an unordered sampling without replacement. There are
� k
m

�
ways to choose the

m defective items from the total of k defective items and
� K � k
M � m

�
ways to choose the

M � m nondefective items from the total of K � k nondetective items. Hence, there are� k
m

�� K � k
M � m

�
possible ways to make such a selection. However, the number of ways

to select M items out of K items at random is
� K
M

�
. The probability of such an occur-

rence, also known as the hypergeometric probability, is then as follows:

p ¼

� k
m

�� K � k
M � m

�

� K
M

� :
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Example 15.16
Suppose in a factory where 10,000 items are built every day, on average, five of
them are defective. Suppose 10 items are tested at random and one of them is
defective. Determine the probability of such an occurrence.

Solution
We have K ¼ 10; 000, M ¼ 5, k ¼ 10, and m ¼ 1. We thus have

p ¼

�
10
1

��
9990
4

�

� 10000
5

� y0:5%:

Exercises
(15.1)
From 21 consonants and five vowels in the English language, how many words
can be formed consisting of two different consonants and two different vowels?
Note that the words do not need to have meaning.

(15.2)
In a bag, there are three black balls, four white balls, and five red balls. Two balls
are picked from the bag. How many ways are there if the two balls are not of the
same color?

(15.3)
How many even four-digit integers are there if only the six digits 0, 1, 2, 3, 4, and
5 can be used, but no digit more than once?

(15.4)
Determine the total number of three-symbol passwords using the letters from A to
Z inclusive and the digits 0 to 9 inclusive, while noting that a letter or a digit can
be used more than once in a password.

(15.5)
Determine the total number of four-letter words using the letters from A to Z in-
clusive while noting that the words do not need to have meaning, and a letter
cannot be used more than once in a word.

(15.6)
In the 5/52 lottery, the player picks five different numbers from a possible set of 52
different numbers, ranging from 1 to 52, inclusive. At a lottery drawing, five
different balls are drawn at random (i.e., with equal probability) from a device
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containing the 52 balls representing the 52 different numbers. Note that no repe-
tition is allowed, that is, once a ball is drawn, it is not put back in the device.
Determine the total number of possible combinations in this lottery.

(15.7)
In a bag, there are four beige balls, three gray balls, and five brown balls. Two balls
are picked from the bag. How many ways are there if the two balls are not of the
same color?

(15.8)
Suppose the number of permutations without replacement is 210 and the number
of combinations without replacement is 35. Determine n (the total number of ob-
jects) and k (the number of chosen objects).

(15.9)
A drawer has six black socks, four brown socks, and two gray socks. Determine the
number of ways two socks can be picked from the drawer for each of the
following cases:
(a) The two socks can be any color.
(b) The two socks must be the same color.

(15.10)
Teams A and B play against one another in a championship series. The first team
that wins three games or wins two games in a row wins the tournament. Deter-
mine the number of ways the tournament can occur.
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CHAPTER 16

Discrete Probability
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There is nothing certain in life, as uncertainty exists in virtually every single aspect of life.
Probability is a numerical measure of how likely an event is to occur or be the case, and
thus it provides answers to questions that involve uncertainty. Probability has numerous
applications in a host of diverse disciplines, including science and engineering. The focus
of this chapter is on the fundamental concepts in discrete probability, along with some
well-known applications.

16.1 Basic Terminology

An experiment is a measurement process where its end result is called an outcome. An
event is a collection of outcomes or consists of a single outcome. In a random experiment
the outcome is always unpredictable and the conditions under which it is performed
cannot be known in advance. A repetition of an experiment is called a trial. In indepen-
dent trials the outcome of a trial is independent of the outcomes of the past and future
trials. In other words, a trial in a random experiment is independent if the likelihood of
each possible outcome does not change from trial to trial, such as coin tossing and dice
rolling.

The sample space S of a random experiment is defined as the set of all possible out-
comes of an experiment. In a random experiment the outcomes, also known as sample
points, cannot occur simultaneously. An event is thus a subset of the sample space of an
experiment. When no single outcome is any more likely than any other, we have equally
likely outcomes, such as tossing a fair coin, where the probability of getting a head is equal
to the probability of getting a tail.

Discrete Mathematics
ISBN 978-0-12-820656-0, https://doi.org/10.1016/B978-0-12-820656-0.00016-2

© 2023 Elsevier Inc.
All rights reserved. 285



Twomutually exclusive events, also known as disjoint events, exist if the occurrence of
one excludes the occurrence of the other. The union of two events A and B, denoted by
AWB, is the set of all outcomes that are in either one of them or in both of them. The
intersection, also known as the joint event, of two events A and B, denoted by AXB, is
the set of all outcomes that are in both events.

The complement of event A consists of all outcomes that are not included in the event
and is denoted by the event Ac . A sure event, generally denoted by S, consists of all out-
comes and thus always occurs. A null event, denoted by B, contains not even one
outcome and thus never occurs.

The sample space in discrete probability, known as the discrete sample space, is count-
able. In a discrete sample space the probability law for a random experiment can be spec-
ified by giving the probabilities of all possible outcomes. With a finite nonempty sample
space of equally likely outcomes, the probability of an event that is a subset of the sample
space is the ratio of the number of outcomes in the event to the number of outcomes in
the sample space.

Example 16.1
Suppose three fair typical dice are rolled. Note that the outcome of a die, which
may include 1, 2, 3, 4, 5, or 6, is the side of a die that is uppermost while resting on
a flat surface, and a die is fair when the probability of each of its six outcomes is 16.
(a) Determine the probability of the event when the sum of the three outcomes

is 5.
(b) Provide examples of a sure event and a null event when the three dice are

rolled.

Solution
(a) There are six possible outcomes for each die, where the outcome of a die is

independent of the outcomes of the other two dice. We thus have
216 ð¼ 6� 6� 6Þ possible outcomes in rolling three dice. As the dice are
fair, we have 216 equally likely outcomes. There are six possible outcomes,
each with a sum of five, namely, ð1; 1; 3Þ, ð1; 2; 2Þ, ð1; 3; 1Þ, ð2; 1; 2Þ,
ð2; 2 ; 1Þ, and ð3; 1; 1Þ. Hence the probability that a sum of five comes
up is 6

216 ¼ 1
36:

(b) An example of a sure event is that the sum of the three outcomes is less than
19 and an example of a null event is that the sum of the three outcomes is less
than 3.
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16.2 The Axioms of Probability

Axioms are self-evidently true statements that are unproven. In the axiomatic definition
of probability, the probability of the event A, denoted by PðAÞ, in the sample space S is a
real number assigned to A that satisfies the following axioms of probability:

Axiom I: PðAÞ � 0:
Axiom II: PðSÞ ¼ 1:
Axiom III: If A1, A2,. is a countable sequence of events such that for all isj, where
B is the null event, that is, they are pairwise disjoint (mutually exclusive) events, then
PðA1WA2W.Þ ¼ PðA1Þ þ PðA2Þ þ.:

These axioms meet the intuitive requirements of probability. Axiom I of probability
points to the fact that the probability of an event is nonnegative, namely, the chance that
something happens is always at least zero. Axiom II of probability states that the proba-
bility of all possible outcomes is one, namely, the chance that something happens is
always 100%. Axiom III of probability highlights that the total probability of a number
of nonoverlapping events is the sum of the individual probabilities. Based on the axioms
of probability, Table 16.1 presents the corollaries of probability, which are quite useful in
solving probability problems.

Table 16.1 Corollaries of probability.

PðBÞ ¼ 0
The impossible event has probability zero; it provides a symmetry to Axiom II.

PðAÞ þ PðAcÞ ¼ 1
The sum of the probabilities of two events that are partitioning the sample space is one.

PðAÞ � 1
The probability of an event is less than or equal to one; it is an upper bound on Axiom I.

PðAÞ ¼ PðAXBÞ þ PðAXBcÞ
The probability of an event is the sum of the probabilities of two mutually-exclusive events.

A3B / PðAÞ � PðBÞ
Probability is a nondecreasing function of the number of outcomes in an event.

PðAWBÞ ¼ PðAÞ þ PðBÞ � PðAXBÞ
It is the generalization of Axiom III, when the two events are not mutually exclusive.

PðAWBÞ � PðAÞ þ PðBÞ
The sum of the probabilities of events is lower bounded by the probability of their union.
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Example 16.2
Suppose for the events A and B, we have PðAÞ ¼ PðBÞ ¼ 0:7. Show that
PðAXBÞ � 0:4:

Solution
Using Table 16.1, we have

PðAWBÞ � 1 / P Að Þ þ P Bð Þ � PðAXBÞ � 1

/ 0:7þ 0:7� PðAXBÞ � 1 / PðAXBÞ � 0:4

Example 16.3
The police report that among drivers stopped on suspicion of impaired driving,
80% took test A, 20% test B, and 10% both tests A and B. Determine the prob-
ability for each of the following cases:
(a) A suspect is given test A or test B or both tests.
(b) A suspect is given either test A or test B, but not both tests.
(c) A suspect is given neither test A nor test B.

Solution
Let A be the event that a suspect is given test A and B be the event that a suspect is
given test B. We thus have PðAÞ ¼ 0:8, PðBÞ ¼ 0:2, and PðAXBÞ ¼ 0:1.
Using the axioms and corollaries of probability, we have
(a) PðAWBÞ ¼ PðAÞ þ PðBÞ � PðAXBÞ ¼ 0:8þ 0:2 � 0:1 ¼ 0:9.
(b) PðAWBÞ � PðAXBÞ ¼ 0:9 � 0:1 ¼ 0:8.
(c) PðAcXBcÞ ¼ 1 � PðAWBÞ ¼ 1 � 0:9 ¼ 0:1.

Example 16.4a
There are eight identical bags. In each bag there are eight balls, numbered from 1
to 8 inclusive. We randomly pick a ball from each bag. Determine the probability
that the product of the eight numbers on the eight balls is a multiple of 3.

Solution
The product of eight numbers is not a multiple of 3 if none of them is a multiple of
3. The probability that a number from a bag is not a multiple of 3 is 68 ¼ 3

4, as out
of the eight possible numbers, there are six numbers (i.e., 1, 2, 4, 5, 7, 8) that are
not a multiple of 3. Therefore the probability that the product of eight numbers is
not a multiple of 3 is

�
3
4

�8. We can then conclude that the probability that the
product is a multiple of 3, using the complement law, is 1 � �

3
4

�8
y0:9.
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16.3 Joint Probability and Conditional Probability

The probability of the occurrence of a single event, such as PðAÞ or PðBÞ, which takes a
specific value irrespective of the probabilities of other events, is called a marginal prob-
ability. For instance, in rolling a typical die, the probability of getting a 2 represents a
marginal probability. The probability that both events A and B simultaneously occur is
known as the joint probability of events A and B, and is denoted by PðAXBÞ or
PðA;BÞ and read as the probability of A and B. For instance, in rolling a pair of typical
dice, the probability of getting a 1 on one die and a 6 on the other die represents a joint
probability.

If we assume the probability of event B is influenced by the outcome of event A and
we also know that event A has occurred, then the probability that event Bwill occur may
not be the same as PðBÞ. The probability of event B when it is known that event A has
occurred is defined as the conditional probability, denoted by PðBjAÞ and read as the
probability of B given A. The conditional probability PðBjAÞ possesses the information
that the occurrence of event A provides about event B. The conditional probability
PðBjAÞ and the conditional probability PðAjBÞ are defined as follows:
8>>>><
>>>>:

PðBjAÞb PðA;BÞ
P Að Þ P Að Þ > 0

PðAjBÞb PðA;BÞ
P Bð Þ P Bð Þ > 0

/ PðA;BÞ ¼ P Að ÞPðBjAÞ ¼ P Bð ÞPðAjBÞ:

Example 16.5
A box contains 25 cookies, of which x are bad. Two cookies are eaten one by one.
Assuming the probability that both cookies are good is 0.4, determine the value
of x.

Solution
Let A denote the event that the first cookie is good and B denote the event that
the second cookie is good. Therefore the probability that the first cookie is good
is PðAÞ ¼ 25�x

25 , and the probability that the second cookie is also good is
PðBjAÞ ¼ 24�x

24 , as there are only 24 cookies left, out of which x are bad. We
thus have

PðA;BÞ ¼ PðAÞPðBjAÞ ¼
�
25� x
25

��
24� x
24

�
¼ 0:4 / x ¼ 9:

Discrete Probability 289



Example 16.6
A bag contains twelve red marbles, eight green marbles, and four blue marbles. A
marble is drawn from the bag and it happens not to be a red marble. Determine
the probability that it is a blue marble.

Solution
Let B denote the event that the selected ball is blue, and Rc is the event that the
selected ball is not red. Therefore their probabilities are as follows:

P Bð Þ ¼ 4
12þ 8þ 4

¼ 1
6

& PðRcÞ ¼ 8þ 4
12þ 8þ 4

¼ 1
2
:

We thus have

PðBjRcÞ ¼ PðBXRcÞ
PðRcÞ ¼ PðBÞ

PðRcÞ ¼
1
6
1
2

¼ 1
3
:

16.4 Statistically Independent Events and Mutually Exclusive Events

If the occurrence of event A has some bearing on the occurrence of event B, then the
conditional probability of event B given event A, vis-�a-vis the marginal probability of
event B, may give rise to a larger probability (even one), yield a smaller probability
(even zero), or even result in no change in the probability of event B.

Example 16.7
In rolling a fair die we define event Bwhen the outcome is a multiple of 2. Deter-
mine the probability of B and the conditional probability PðBjAÞ for the
following cases:
(a) Event A represents an outcome that is a multiple of 2.
(b) Event A represents an outcome that is less than 3.
(c) Event A represents an outcome that is not a multiple of 2.

Solution
Because it is a fair die, we have the event B and its probability as follows:

B ¼ f2; 4; 6g / PðBÞ ¼ 3
6
¼ 1

2
:
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The conditional probabilities of interest can be thus obtained as follows:

(a)

8<
:

A ¼ f2; 4; 6g

P Að Þ ¼ 1
2

/

8<
:

AXB ¼ f2; 4; 6g

PðA;BÞ ¼ 1
2

/

PðBjAÞ ¼
1
2
1
2

¼ 1 / PðBjAÞ > P Bð Þ

(b)

8<
:

A ¼ f1; 2g

P Að Þ ¼ 1
3

/

8<
:

AXB ¼ f2g

PðA;BÞ ¼ 1
6

/

PðBjAÞ ¼
1
6
1
3

¼ 1
2

/ PðBjAÞ ¼ P Bð Þ

(c)

8<
:

A ¼ f1; 3; 5g

P Að Þ ¼ 1
2

/

(
AXB ¼ fBg
PðA;BÞ ¼ 0

/

PðBjAÞ ¼ 0
1
2

¼ 0 / PðBjAÞ < P Bð Þ

If the occurrence of event A has no statistical impact on the occurrence of event B, events
A and B are then statistically independent. Statistical independence often arises from the
physical independence of events and experiments. In random experiments it is common
to assume that the events of separate trials are independent, like tossing a coin and rolling
a die.

If the knowledge of event A does not change the probability of the occurrence of
event B, then we have PðBjAÞ ¼ PðBÞ. If the knowledge of event B does not change
the probability of the occurrence of event A, then we have PðAjBÞ ¼ PðAÞ. We can
thus conclude that if we have PðAXBÞ ¼ PðAÞPðBÞ, the events A and B are then
said to be statistically independent. It is important to emphasize that statistical indepen-
dence between two events does not mean one event does not affect another event,
but it merely means the probability of the joint event is equal to the product of the prob-
abilities of individual events.

The concept of statistical independence can be extended to more than two events. In
the case of n statistically independent events the probability of the intersection of events is
equal to the product of the probabilities of n individual events, and also, a similar equality
holds for every subset of the n events. Note that pairwise independence is not sufficient
for n events to be statistically independent.
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Example 16.8
The probability that the three participants A, B, and C in a TV game show each
can answer the final question correctly is 80%. Assuming each of them answers the
question once, determine the probability that all three of them fail to answer the
question correctly.

Solution
Events A, B, and C are all statistically independent, that is, the probability of any
two events is equal to the product of those two individual probabilities and also
the probability of all three events is equal to the product of the three individual
probabilities while noting that PðAÞ ¼ PðBÞ ¼ PðCÞ ¼ 0:8. By applying the
principle of inclusioneexclusion to the three events, the probability that at least
one of them answers the question correctly is then as follows:

PðAWBWCÞ ¼ PðAÞ þ PðBÞ þ PðCÞ � PðAXBÞ � PðAXCÞ � PðBXCÞ
þ PðAXBXCÞ

¼ PðAÞ þ PðBÞ þ PðCÞ � PðAÞPðBÞ � PðAÞPðCÞ � PðBÞPðCÞ
þ PðAÞPðBÞPðCÞ

¼ 0:8þ 0:8þ 0:8� 0:8� 0:8� 0:8� 0:8� 0:8� 0:8þ 0:8� 0:8

� 0:8 ¼ 0:992:

The probability that all three of them fail to answer the question correctly is
thus as follows:

1�PðAWBWCÞ ¼ 1� 0:992 ¼ 0:008:

If the joint probability of events A and B is zero, that is, PðAXBÞ ¼ 0, these two events
are then called mutually exclusive or disjoint. There is a clear distinction between the
concept of statistically independent events and the concept of mutually exclusive events,
even though both concepts seem to imply separation and distinctness. If the two events A
and B are mutually exclusive, then events A and B cannot occur at the same time. Hence
mutually exclusive events can be considered to be dependent events. If the two events A
and B are both mutually exclusive and statistically independent, then it implies that at
least one of the two events A and B has zero probability. Table 16.2 highlights the

Table 16.2 Statistically independent events and mutually exclusive events.

PðAXBÞ PðAWBÞ
Statistically independent events PðAÞPðBÞ PðAÞ þ PðBÞ � PðAÞPðBÞ

Mutually exclusive events 0 PðAÞ þ PðBÞ
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requirements for two statistically independent events and those for two mutually exclu-
sive events.

Example 16.9
Suppose for events A and B, we have PðAWBÞ ¼ 0:76 and PðAÞ�
PðBÞ ¼ 0:2. Determine PðAÞ and PðBÞ for each of the following cases:
(a) Events A and B are statistically independent.
(b) Events A and B are mutually exclusive.

Solution
(a) Because A and B are statistically independent events, their joint probability is

as follows: PðAXBÞ ¼ PðAÞPðBÞ. We thus need to solve the following sys-
tem of two linear equations:
(
PðAWBÞ ¼ P Að Þ þ P Bð Þ � P Að ÞP Bð Þ ¼ 0:76

P Að Þ � P Bð Þ ¼ 0:2
/

(
P Að Þ ¼ 0:6

P Bð Þ ¼ 0:4

(b) Because A and B are mutually exclusive events, their joint probability is as fol-
lows: PðAXBÞ ¼ 0. We thus need to solve the following system of two
linear equations:

(
PðAWBÞ ¼ P Að Þ þ P Bð Þ ¼ 0:76

P Að Þ � P Bð Þ ¼ 0:2
/

(
P Að Þ ¼ 0:48

P Bð Þ ¼ 0:28

16.5 Law of Total Probability and Bayes’ Theorem

If events B1; B2; .;Bn are all mutually exclusive events whose union forms the entire
sample space S, that is, we have S ¼ B1WB2W.WBn, we then refer to these events as
a partition of S, as shown in Fig. 16.1.

In order to determine the probability of event A, it is sometimes best to separate all
possible causes leading to eventA. The law of total probability, also known as the theorem
on total probability, is as follows:

PðAÞ ¼ PðAXB1Þ þ.þ PðAXBnÞ ¼ PðAjB1Þ PðB1Þ þ.þ PðAjBnÞ PðBnÞ:
This divide-and-conquer approach is a practical tool used to determine the probability of
A. This is due to the fact that the probability of eventA can be expressed as a combination
of the joint probabilities of event A and the mutually exclusive events B1; B2; .; Bn.
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Example 16.10
Suppose there are four companies supplying smartphones to the market. The
smartphones built by companies A, G, M, and W have reliabilities of 99.9%,
99.5%, 99.0%, and 99.8%, respectively. It is known that companies A, G, M,
andW supply 40%, 20%, 10%, and 30% of all smartphones in the market, respec-
tively. Determine the reliability of a smartphone in the market.

Solution
Let PðAÞ denote the reliability of a smartphone, BA, BG, BM, and BW denote the
market shares of smartphones for companies A, G, M, and W, respectively.
Noting that we have the following probabilities,

PðBAÞ ¼ 0:4; PðBGÞ ¼ 0:2; PðBM Þ ¼ 0:1; PðBW Þ ¼ 0:3;

and

PðAjBAÞ ¼ 0:999; PðAjBGÞ ¼ 0:995; PðAjBM Þ ¼ 0:99; PðAjBW Þ ¼ 0:998;

the reliability of a smartphone in the market is thus as follows:

PðAÞ ¼ 0:4� 0:999þ 0:2� 0:995þ 0:1� 0:99þ 0:3� 0:998 ¼ 99:7%:

A

……

Fig. 16.1 A partition of sample space S into n disjoint sets.
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When one conditional probability is given but the reversed conditional probability is
required, the following relation, known as Bayes’ theorem or Bayes’ rule, which is based
on the law of total probability, can be used:

PðB1jAÞ ¼ PðA; B1Þ
P Að Þ ¼ PðAjB1Þ PðB1Þ

PðAjB1Þ PðB1Þ þ PðAjB2Þ PðB2Þ þ. þ PðAjBnÞ PðBnÞ;

where events B1; B2; .;Bn are all mutually exclusive events whose union makes the
entire sample space S. As an insight, the law of total probability is about effects from
causes and Bayes’ theorem is about causes from effects.

Note that a priori means derived by reasoning from self-evident propositions, and a
posteriorimeans derived by reasoning from empirical evidence. To this effect, PðBiÞ, the
probability of an event Bi before the experiment is performed, is referred to as a priori
probability, and PðBijAÞ, the probability of an event Bi after the experiment has been
performed and the event A has occurred, is called a posteriori probability. Bayes’ theorem
connects the a posteriori probability with the a priori probability.

Example 16.11
In assessing the strength of evidence in a legal investigation a police detective al-
ways approaches his two informers to get information. The detective gets his in-
formation 80% of the time from informer A who tells a lie 75% of the time and
20% of the time from informer B, who tells a lie 40% of the time. Suppose the
information the detective has received is truthful; determine the probability that
the information was received from informer B.

Solution
Let T be the event that the received information is truthful. We thus have the
following probabilities:

PðTÞ ¼ PðT ;AÞ þ PðT ;BÞ ¼ PðT jAÞPðAÞ þ PðT jBÞPðBÞ
¼ 0:25� 0:8þ 0:6� 0:2 ¼ 0:32:

Using Bayes’ rule, we get

PðBjTÞ ¼ PðT ;BÞ
PðTÞ ¼ PðT jBÞPðBÞ

PðTÞ ¼ 0:6� 0:2
0:32

¼ 3
8
¼ 37:5%:
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Example 16.12
There are four bags. The first bag contains 10 black balls, 5 white balls, and 5 red
balls; the second bag contains 3 black balls, 3 white balls, and 4 red balls; the third
bag contains 18 white balls and 2 red balls; and the fourth bag contains 4 black balls
and 16 white balls. The probability of randomly selecting the first bag is 40%, the
second bag is 30%, the third bag is 20%, and the fourth bag is 10%. If a ball selected
at random from one of the bags is white, determine the probability that it was
drawn from the second bag.

Solution
There are four bags, A1, A2, A3, and A4, and the probabilities of randomly select-
ing them are as follows:

PðA1Þ ¼ 0:4; PðA2Þ ¼ 0:3; PðA3Þ ¼ 0:2; PðA4Þ ¼ 0:1

Let W represent the event that the ball is white. We thus have

PðW jA1Þ ¼ 5
20
; PðW jA2Þ ¼ 3

10
; PðW jA3Þ ¼ 18

20
; PðW jA4Þ ¼ 16

20

Using Bayes’ rule, the probability of interest is then as follows:

PðA2jW Þ ¼ PðA2;W Þ
PðW Þ ¼ PðW jA2ÞPðA2Þ

PðW Þ
¼ PðW jA2ÞPðA2Þ

PðW jA1ÞPðA1Þ þ PðW jA2ÞPðA2Þ þ PðW jA3ÞPðA3Þ þ PðW jA4ÞPðA4Þ
¼ 0:3� 0:3

0:25� 0:4þ 0:3� 0:3þ 0:9� 0:2þ 0:8� 0:1
¼ 0:09

0:45
¼ 20%:

The probability that a ball selected from the second bag reduced from 0.3,
when no extra information was available, to 0.2, once we knew that the ball
selected was white.

Example 16.13
In a country with a population of hundreds of millions, where capital punishment
is legal and carried out, research points that 10,000 individuals are charged and
tried for murder every year, and those convicted of murder are put to death.
Past records consistently indicate that out of those tried, 95% are truly guilty
and 5% are truly innocent. Out of those who are truly guilty, 95% are convicted
and 5% are wrongly set free, and out of those who are truly innocent, 95% are set
free and 5% are wrongly convicted. Determine the probability that a person who
is tried is truly innocent but wrongly convicted of murder.
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Solution
SupposeA is defined as the event that a person is truly innocent and B is defined as
the event that the court finds that person guilty. Using Bayes’ rule, we have the
following:

PðAjBÞ ¼ PðAÞ � PðBjAÞ
PðAÞ � PðBjAÞ þ PðAcÞ � PðBjAcÞ ¼ 5%� 5%

5%� 5%þ 95%� 95%

¼ 1
362

y0:276%:

Obviously, this is a very low probability. Nevertheless, it amounts to an
incredible loss of the precious lives of 27 innocent individuals in that country.
Hence capital punishment is an awful miscarriage of justice!

16.6 Applications in Probability

There are numerous applications in probability, but our focus here is limited to a few ap-
plications, including systems reliability, medical diagnostic testing, quality control using
the Monte Carlo algorithm, and Bayesian spam filtering.

Reliability is an important aspect of the analysis, design, and operation of systems.
With redundant components in a system, the probability of system failure can be mini-
mized. To assess the reliability of a system with a number of components, we assume that
the components fail independently, and the probability of failure in the ith component is
pi, where 0 � pi � 1, that is, its probability of functioning is 1 � pi.

Consider a system that consists of k components in series. Such a system functions if all
k components are functioning or it fails if any one of the k components fails. Note that the
probability that the system functions is lower than the functioning probability of the
weakest component. Table 16.3 presents the probabilities that a system with k compo-
nents in series functions or fails. In a system with components in series it is significantly
easier to first determine the probability of functioning and then the probability of failure.

Consider a system that consists of k components in parallel. Such a system functions if
at least a component is functioning or it fails if all k components fail. Note that the prob-
ability that the system functions is higher than the functioning probability of the strongest
component. Table 16.3 presents the probabilities that a system with k components in

Table 16.3 Reliability probabilities.

System configuration Probability of functioning Probability of failure

Series
Qk

i¼ 1 ð1 �piÞ 1 �Qk
i¼ 1 ð1 �piÞ

Parallel 1 �Qk
i¼ 1 pi

Qk
i¼ 1 pi
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parallel fails or functions. In a system with components in parallel it is significantly easier
to first determine the probability of failure and then the probability of functioning.

It is important to note that sometimes there are some components in a system due to
which the system does not consist of only series and parallel components. In such a com-
plex system we can take a conditional probability approach through which mutually
exclusive conditions are considered and then apply the law of total probability.

Example 16.14
Assume that the probability of failure of a component in each of the following two
systems is p and the components fail independently. Noting that n; n1; n2; :::; nn
are all positive integers, determine the probability that each of the following two
systems functions.
(a) A system consists of n subsystems in series. Each of the n subsystems consists of

parallel components, where the first subsystem consists of n1 parallel compo-
nents, the second subsystem consists of n2 parallel components, and finally the
nth subsystem consists of nn parallel components.

(b) A system consists of n subsystems in parallel. Each of the n subsystems consists
of components in series, where the first subsystem consists of n1 components
in series, the second subsystem consists of n2 components in series, and finally
the nth subsystem consists of nn components in series.

Solution
(a) The probability that the first subsystem consisting of n1 parallel components

fails is pn1 , so it functions with the probability of 1 � pn1 . By the same line
of reasoning, the probability of functioning for each of the other subsystems
can be obtained. The probability that the system with n subsystems in series
functions is thus as follows:

ð1� pn1Þð1� pn2Þ.ð1� pnnÞ:
(b) The probability that the first subsystem consisting of n1 series components

functions is ð1� pÞn1 , so it fails with the probability of 1 � ð1� pÞn1 . By
the same line of reasoning, the probability of failure for each of the other sub-
systems can be obtained. The probability that the system with n subsystems in
parallel functions is thus as follows:

1� ðð1�ð1� pÞn1Þð1�ð1� pÞn2Þ.ð1�ð1� pÞnnÞÞ:

A major application of Bayes’ theorem lies in medical diagnosis testing. Suppose that
there is a particular rare disease that is independently and identically distributed
throughout the general population. We further assume that genetics and environmental
factors do not play any role, and a randomly selected individual can thus have it.
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Assuming A is defined as the event that a person selected at random has the disease,
and B is defined as the event that the test result is positive, Table 16.4 presents the relevant
probabilities of interest. Note that for a perfect medical test, the a posteriori probabilities
PðAjBÞ and PðAcjBcÞmust be 1, or equivalently, the a posteriori probabilities PðAcjBÞ and
PðAjBcÞmust be zero. However, even for the most accurate medical diagnostic test, these
ideal a posteriori probabilities cannot be achieved, as tests are always flawed. Using Bayes’
rule, we can get the following results:
8>>><
>>>:

PðAjBÞ ¼ ð1� aÞr
ð1� aÞrþ bð1� rÞ

PðAcjBÞ ¼ bð1� rÞ
ð1� aÞrþ bð1� rÞ

and

8>><
>>:

PðAcjBcÞ ¼ ð1� bÞð1� rÞ
ð1� bÞð1� rÞ þ ar

PðAjBcÞ ¼ ar

ð1� bÞð1� rÞ þ ar

Table 16.4 Medical diagnostic testing probabilities.

PðBc jAÞ ¼ a (false-negative probability)
The probability of a negative test result given the person has the disease.

PðBjAÞ ¼ 1� a (true-positive probability)
The probability of a positive test result given the person has the disease.

PðBjAcÞ ¼ b (false-positive probability)
The probability of a positive test result given the person does not have the disease.

PðBc jAcÞ ¼ 1� b (true-negative probability)
The probability of a negative test result given the person does not have the disease.

PðAÞ ¼ r

The probability that a person selected at random has the disease.

PðAcÞ ¼ 1 � r

The probability a person in the general population does not have the disease.

PðAjBÞ
The probability a person who tests positive for the disease has the disease.

PðAc jBcÞ
The probability a person who tests negative for the disease does not have the disease.

PðAc jBÞ ¼ 1 � PðAjBÞ
The probability a person who tests positive for the disease does not have the disease.

PðAjBcÞ ¼ 1 � PðAc jBcÞ
The probability a person who tests negative for the disease has the disease.
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Example 16.15
Suppose that 2% of women in the general population have breast cancer. In total,
90% of mammograms detect breast cancer when it is there, and 5% of mammo-
grams detect breast cancer when it is not there. Determine the probability that a
woman who tests positive for the cancer has cancer.

Solution
AssumingA is defined as the event that a woman has cancer and B is defined as the
event that the mammogram test result is positive, we have PðAÞ ¼ r ¼ 2%,
PðBjAÞ ¼ 1 � a ¼ 90%, and PðBjAcÞ ¼ b ¼ 5%. It is thus important to
note that 98% of women do not have cancer, as we have PðAcÞ ¼ 1� r ¼
98% ; 10% of mammograms miss cancer, as we have PðBc jAÞ ¼ a ¼ 10%,
and 95% correctly return a negative test result, as we have PðBcjAcÞ ¼ 1 � b ¼
95%. Table 16.5 captures the available information. The top row of Table 16.5
shows the true positive and false positive probabilities, while its bottom row shows
the true negative and false negative probabilities. In addition, the two columns of
Table 16.5 highlight the test results for women who have cancer and those who
do not have cancer.

Table 16.6 provides all four possible cases with their corresponding probabil-
ities, where the sum of all four probabilities is 1. We can now get the probability of
interest as follows:

PðAjBÞ ¼ 0:9� 0:02
0:9� 0:02þ 0:05� 0:98

y26:9%:

Algorithms that make random choices at one or more steps are called probabilistic algo-
rithms. A particular class of probabilistic algorithms is theMonte Carlo algorithms. Monte
Carlo algorithms always produce answers to decision problems, but a small probability
remains that these answers may be incorrect. A Monte Carlo algorithm uses a sequence
of tests and the probability that the algorithm answers the decision problem correctly in-
creases as more tests are carried out. Suppose there are n[0 items in a batch and the
probability that an item is defective is p when random testing is done. To decide all items
are good, n tests are required to guarantee that none of the items are defective. However,

Table 16.5 Available information for Example 16.15.

With cancer (2%) No cancer (98%)

Test positive 90% 5%
Test negative 10% 95%
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a Monte Carlo algorithm can determine whether all items are good as long as some prob-
ability of error is acceptable.

A Monte Carlo algorithm proceeds by successively selecting items at random and
testing them one by one, where the maximum number of items being tested is a prede-
termined k � n. When a defective item is encountered, the algorithm stops to indicate
that out of the n items in a batch, there is at least one defective. If a tested item is good, the
algorithm goes on to the next item. If after testing k items, no defective item is found, the
algorithm concludes that all n items are good but with a modest probability of error. Note

that the probability of finding not even a defective one is ð1� pÞk, which interestingly
does not depend on n.

Example 16.16
Suppose there are 1; 000; 000 cell phones in a factory warehouse, where the prob-
ability that a cell phone is in perfect condition is 0:999. Based on the Monte Carlo
algorithm, determine the minimum number of cell phones that needs to be tested
so the probability of finding not even a defective cell phone among those tested is
less than one in a million.

Solution
With k as the number of cell phones tested, the probability of finding not even a
defective one is ð1� pÞk. We thus have

ð1� pÞk ¼ ð0:999Þk � 10�6 / logð0:999Þk � log10�6

/ k log 0:999 � �6 / k � 13; 809:

This probability is independent of 1,000,000, the total number of cell phones
in the warehouse. The Monte Carlo algorithm saves a lot of testing
ð1; 000; 000 �13; 809 ¼ 986; 191Þ. We can thus conclude that when 13; 809
tested cell phones (i.e., just less than 1.4% of all cell phones) are all good, where
the probability of such an occurrence is less than one in a million, the entire batch
of 1,000,000 cell phones, even those not tested, is good, of course, with some
probability of error.

Table 16.6 Summarized information for Example 16.15.

With cancer No cancer

Test positive 90%� 2% ¼ 1:8%
(true positive)

5%� 98% ¼ 4:9%
(false positive)

Test negative 10%� 2% ¼ 0:2%
(false negative)

95%� 98% ¼ 93:1%
(true negative)
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Another major application of Bayes’ theorem is Bayesian spam filtering. Bayesian spam
filtering is a popular spam-filtering technique that relies on word probabilities and can
tailor itself to the email needs of individual users. Bayesian spam filters look for occur-
rences of particular words. For instance, we may say if an email contains certain words
or group of words, such as urgent, bank, no catch, act now, risk free, account, money, special
deal, million, virus, update, that are often used in spam and some words, such as food,
car, see, dinner, kids, book, hope, good, glasses, love, hotel, that are hardly used in spam, it
is then likely to be spam. Such words have particular probabilities of occurring in a
spam email vis-�a-vis in a nonspam email.

Let S be the event that the email is spam and Sc be the event that the email is not
spam. Suppose there is an email with a particular word, say X1. Let W1 be the event
that the email contains the word X1. Note that the empirical probability for a spam email
containing the word X1 is PðW1jSÞ ¼ aðX1Þ, and the empirical probability for a non-
spam email containing the word X1 is PðW1jScÞ ¼ bðX1Þ. A Bayesian spam detection
software generally assumes that there is no a priori reason for an incoming email to be
spam rather than nonspam and considers both cases to have equal probabilities (i.e.,
PðSÞ ¼ PðScÞ ¼ 0:5). Using Bayes’ theorem, p1, the probability that the email is
spam, given that it contains X1 is as follows:

PðSjW1Þ ¼ PðW1jSÞPðSÞ
PðW1Þ ¼ PðW1jSÞPðSÞ

PðW1jSÞPðSÞ þ PðW1jScÞPðScÞ /

p1 ¼ aðX1Þ
aðX1Þ þ bðX1Þ:

If p1 is greater than a certain threshold, then the software classifies it as spam. Using a
single word for the detection of spam may not be very effective, as it can lead to excessive
false positives and false negatives.

If we use k � 1 words, say X1; X2; .; Xk, we can then increase significantly the
probability of detecting spam correctly. Assuming that W1; W2; .; Wk are the events
that the email contains the words X1; X2; .; Xk, the probability that an email is spam
is the same as the probability that an email is nonspam (i.e., PðSÞ ¼ PðScÞ ¼ 0:5),
and the events W1jS; W2jS; .; WkjS are all independent, by using Bayes’ theorem,
pk, the probability that an email containing all the words X1; X2; .; Xk is spam, is
thus as follows:

pk ¼ PðSjW1; :::; WkÞ ¼ PðW1jSÞ � ::: � PðWkjSÞ
PðW1jSÞ � ::: � PðWkjSÞ þ PðW1jScÞ � ::: � PðWkjScÞ

¼ aðX1Þ � ::: � aðXkÞ
ðaðX1Þ � ::: � aðXkÞÞ þ ðbðX1Þ � ::: � bðXkÞÞ:
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Example 16.17
Suppose a Bayesian spam filter is trained on a set of 100,000 spam emails and 4,000
emails that are not spam. The word money appears in 2500 spam emails and 200
nonspam emails, the word urgent appears in 8000 spam emails and 800 nonspam
emails, the word attention appears in 20,000 spam emails and 80 nonspam emails,
and the word account appears in 10,000 spam emails and 100 nonspam emails. Es-
timate the probability that a received email containing all four words of money,
urgent, attention, and account is spam. Will the email be rejected as spam if the
threshold for rejecting spam is set at 80%?

Solution
Assuming X1, X2, X3, and X4 refer to the words money, urgent, attention, and ac-
count, respectively, we have the following probabilities:

aðX1Þ ¼ 2500
100000

¼ 0:025 & bðX1Þ ¼ 200
4000

¼ 0:05

aðX2Þ ¼ 8000
100000

¼ 0:08 & bðX2Þ ¼ 800
4000

¼ 0:2

aðX3Þ ¼ 20000
100000

¼ 0:2 & bðX3Þ ¼ 80
4000

¼ 0:02

aðX4Þ ¼ 10000
100000

¼ 0:1 & bðX4Þ ¼ 100
4000

¼ 0:025:

We can thus obtain

p4 ¼ 0:025� 0:08� 0:2� 0:1
0:025� 0:08� 0:2� 0:1þ 0:05� 0:2� 0:02� 0:025

¼ 8
9
y88:9%:

As p4 > 80%, an incoming email containing all these words will be rejected.

Exercises
(16.1)
There are two events, A and B, such that PðAXBÞ ¼ 0:1 and PðAjBÞ ¼ 0:25.
Determine PðBjAÞ:
(16.2)
There are two bags of balls; the first bag contains five red balls and four blue balls
and the second bag contains three red balls and six blue balls. One ball is taken
from the first bag and put in the second bag without seeing what the color of
the ball is. Determine the probability that a ball now drawn from the second
bag is blue.
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(16.3)
Suppose we have two coins. One is fair, with PðHÞ ¼ PðT Þ ¼ 0:5, and one is
unfair, with PðHÞ ¼ 0:51 and PðTÞ ¼ 0:49, where H stands for heads and T
for tails. In case 1 we pick one of the two coins at random (i.e., with the proba-
bility of 0.5), toss it once, put it back, pick one of the two coins at random again,
and toss it. In case 2 we pick one of the two coins at random and toss it twice. In
each of these two cases determine the probability that both tosses are heads. In the
second case determine which one of the two coins is more likely to have been
picked.

(16.4)
In a certain city 20% teenage drivers text while driving. The research record in-
dicates that 40% of those who text have a car accident and 1% of those who do
not text have a car accident. If a teenage driver has an accident, what is the prob-
ability that he was texting?

(16.5)
Suppose that we have found out that the word money occurs in 500 of 4000 mes-
sages known as spam and in x of 2000 messages known not to be spam. Suppose
our threshold for rejecting a message as spam is 90%, and it is equally likely that an
incoming message is spam or not spam. Determine the range of values of x for
which the messages will be rejected.

(16.6)
The probability that a student passes an exam is 0.95, given that he studied. The
probability that he passes the exam without studying is 0.15. As he is a lazy stu-
dent, we know that the probability that the student studies for an exam is just
50%. Given the student passed the exam, determine the probability that he
studied.

(16.7)
Aman and a woman get married today. The probabilities that the husband and the
wife will be alive in 50 years from today are 0.7 and 0.8, respectively. Assume the
events that the husband and the wife will be alive in 50 years from now are
independent.
(a) Determine the probability that in 50 years both will be alive.
(b) Determine the probability that in 50 years at least one will be alive.

(16.8)
There are three boxes. The first box contains 4 brown balls and 2 white balls, the
second box contains 11 brown balls and 11 white balls, and the third box contains
5 brown balls and 15 white balls. The probability of selecting any one box is 1 in 3.
If a ball selected at random from one of the boxes is white, determine the prob-
ability that it was drawn from the first box.
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(16.9)
Suppose there are a million cars made by a car company across the globe, where
the probability that a car has a defective brake part is 0:0001. Based on the Monte
Carlo algorithm, determine the minimum number of cars that need to be tested so
that the probability of finding not even a defective car among those tested is less
than one in a million.

(16.10)
Consider the system shown in Fig. 16.2, where the probability of failure of a
component is 0 � p � 1 and the components fail independently. Determine
the probability that the system connecting points A and B fails, in terms of the
probability p. Then, assuming the system failure is 3 � 10�12, determine the value
of p (i.e., the probability of failure of a component).

BA

#3#2#1

#4

#5

Fig. 16.2 System of components for Exercise 16.10.
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CHAPTER 17

Discrete Random Variables
Contents
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A numerical representation of the outcome of a random experiment is referred to as a
random variable. Interestingly enough, the term random variable is a misnomer as it is
not random, nor is it a variable; in fact, it is a deterministic function. The focus of this
chapter is on probability models that assign real numbers to the random outcomes in
the discrete sample spaces. A detailed discussion of all major concepts associated with a
discrete random variable is provided. In addition, some well-known random variables
along with their applications are introduced.

17.1 The Cumulative Distribution Function

The name of a random variable is represented by an uppercase letter, such as X, and the
corresponding lowercase letter, such as x, represents a possible value of the random var-
iable. A random variable X is a deterministic function that assigns a real number to each
outcome in the sample space S. The sample space S is the domain of the random variable,
and the set of all values taken on by the random variable, denoted by SX , is the range of
the random variable. The range SX is a subset of all real numbers ð�N; NÞ.

The range of a discrete random variable assumes values from a countable set. The
defining characteristic of a discrete random variable is that the set of possible values in
the range can all be listed, where it may be a finite list or a countably infinite list. Exam-
ples of discrete random variables include the outcomes resulting from rolling a pair of
dice, which form a finite list, and the outcomes resulting from randomly selecting a pos-
itive integer, which form a countably infinite list.

Every random variable has a cumulative distribution function (cdf). The cdf of a
random variable contains all the information required to calculate the probability for any
event involving the random variable. The notation for cdf is FXðxÞ, where we use the up-
percase letter F with a subscript corresponding to the name of the random variable X as a
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function of a possible value of the random variable, represented by the lowercase letter x.
The cumulative distribution function of a random variable X expresses the complete prob-
ability model of a random experiment as the following mathematical function:

FXðxÞ ¼ PðX � xÞ �N < x < N:

The event fX � xg and its probability may vary, as x is varied. For any real number x, the
cdf is the probability that the random variable X is no larger than x, that is, the cdf is the
probability that the random variable X takes on a value in the interval ð�N; x�. Note that
the cdf is a function that is continuous from the right. The properties of the cdf of a
discrete random variable are presented in Table 17.1.

For a discrete random variable X, FXðxÞ has zero slope everywhere except at values of
xwith nonzero probabilities, and at these points, the cdf has a discontinuity in the form of
a jump of magnitude PðX ¼ xÞs0. The cdf for a discrete random variable is thus in the
form of a staircase of finite or countably infinite number of steps. Using the unit step
function uðxÞ, defined as uðxÞ ¼ 0 for x < 0 and uðxÞ ¼ 1 for x � 0, the cdf for a
discrete random variable can be written in terms of unit step functions, where the number
of the unit step functions corresponds to the number of nonzero probabilities.

17.2 The Probability Mass Function

A discrete random variable assumes values from a countably infinite set SX ¼
fx1; x2; x3; .g or a finite set SX ¼ fx1; x2; .; xng, where n is a positive integer.
The notation for probability mass function (pmf) is pXðxÞ, where we use the lowercase
letter p, with a subscript corresponding to the name of the random variable X, as a func-
tion of a possible value of the random variable, represented by the lowercase letter x. The
pmf of a discrete random variable X expresses the complete probability model of a
random experiment as the following mathematical function:

pXðxÞ ¼ PðX ¼ xÞ x˛ SX :

Table 17.1 Properties of the cdf of a discrete random variable.

0 � FXðxÞ � 1

a < b / FX að Þ � FX bð Þ
lim

x/�N
FXðxÞ ¼ 0

lim
x/N

FX xð Þ ¼ 1

FX ðbÞ ¼ FX ðbþÞ
Pða< X � bÞ ¼ FX ðbÞ � FXðaÞ
PðX ¼ bÞ ¼ FXðbþÞ � FXðb�Þ

PðX > xÞ ¼ 1 � FXðxÞ
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Note that pXðxÞ is a function ranging over real numbers x and that pXðxÞ can be nonzero
only at the values x˛SX . For any value of x, the function is the probability of the event
fX ¼ xg The pmf pXðxÞ contains all the information required to calculate the probabil-
ity for any event involving the discrete random variable X . The pmf of a discrete random
variable must satisfy the following properties:

(a) pX xð Þ � 0 cx
(b)

P
x˛SX

pXðxÞ ¼ 1

(c) PðX˛BÞ ¼ P
x˛B4SX

pX xð Þ;

where B is an event. All these three properties are consequences of the three axioms of
probability. The graph of pmf pXðxÞ of a discrete random variable has vertical lines of
height pXðxÞ at the values x in SX . The cdf and pmf of a discrete random variable X
are related as follows:

FXðxÞ ¼
X
u�x

pXðuÞ x˛ SX :

In other words, the value of FXðxÞ is evaluated by simply adding together the probabil-
ities pXðuÞ for all values of u that are no larger than x.

Example 17.1
Suppose we have a fair coin. Let X be the number of heads in tossing a coin four
times. Find and sketch the pmf pXðxÞ and cdf FXðxÞ of the discrete random var-
iable X :

Solution
In a coin toss there are two possibilities, namely, a head and a tail. In tossing a coin
four times there are thus a total of 16

�¼ 24
�
different possible outcomes, as pre-

sented below:

fTTTT ;TTTH ;TTHT ;TTHH ;THTT ;THTH ;THHT ;THHH ;HTTT ;

HTTH ;HTHT ;HTHH ;HHTT ;HHTH ;HHHT ;HHHHg:
As the coin is fair, the likelihood of getting a tail is the same as the likelihood of

getting a head. It is a reasonable assumption that the coin tosses are independent.
After tossing a fair coin four times, the probability of each of the 16 outcomes is
1
16

�¼ 1
2 � 1

2 � 1
2 � 1

2

�
. In short, we have 16 equally likely outcomes, and the pmf

of the random variable X is therefore as follows:

PðX ¼ 0Þ ¼ PðTTTTÞ ¼ 1
16
:
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PðX ¼ 1Þ ¼ PðTTTHÞ þ PðTTHTÞ þ PðTHTTÞ þ PðHTTTÞ ¼ 4
16
:

PðX ¼ 2Þ ¼ PðTTHHÞ þ PðHTTHÞ þ PðTHTHÞ þ PðHTHTÞ þ PðTHHTÞ
þ PðHHTTÞ ¼ 6

16
:

PðX ¼ 3Þ ¼ PðHHHTÞ þ PðHHTHÞ þ PðHTHHÞ þ PðTHHHÞ ¼ 4
16
:

PðX ¼ 4Þ ¼ PðHHHHÞ ¼ 1
16
:

The cdf FXðxÞ is thus as follows:

FXðxÞ ¼ PðX � xÞ ¼

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

0 x < 0
1
16

0 � x < 1

5
16

1 � x < 2

11
16

2 � x < 3

15
16

3 � x < 4

1 4 � x

Using the unit step function uðxÞ, the cdf can also be written in the following
compact form:

FXðxÞ ¼ 1
16

uðxÞ þ 4
16

uðx� 1Þ þ 6
16

uðx� 2Þ þ 4
16

uðx� 3Þ þ 1
16

uðx� 4Þ:

Fig. 17.1 shows the pmf and cdf of this discrete random variable.

17.3 Expected Values

Expectation provides meaningful insight into the behavior of a random variable. The ex-
pected value or the mean of a random variable X represents a real number ð�N; NÞ. The
expected value of a discrete random variable X, denoted by E½X � or mX, is defined as
follows:
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E X½ � ¼ mX ¼
XN

k¼�N

xk PðX ¼ xkÞ ¼
X
x˛SX

x pX xð Þ:

The expected value is thus obtained by multiplying each possible value by its respective
probability and then summing these products over all the values that have nonzero prob-
abilities. For a discrete random variable whose expected value is defined, it may not be
possible to observe an outcome that is equal to its expected value. For instance, the ex-
pected value of the random outcomes of a fair typical die is 3.5, but none of its outcomes
can ever be 3.5.

(a)

(b)

Figure 17.1 (a) pmf and (b) cdf for Example 17.1.

Discrete Random Variables 311



Let X be a random variable and let Y ¼ gðXÞ denote a real-valued deterministic
function of X . Therefore Y is also a random variable. The expected value of a function
of a discrete random variable is defined as follows:

E½gðXÞ� ¼
XN

k¼�N

gðxkÞ PðX ¼ xkÞ:

The expected value of a derived random variable, such as gðXÞ, can be calculated without
having its distribution. In general, the expected value of a function of a random variable is
not equal to the function of the expected value of the random variable, that is, E½gðXÞ�s
gðE½X�Þ.

Note that the statistical expectation is a linear operation; that is, the mean value of a
weighted sum of functions of a random variable equals the weighted sum of the mean
values of individual functions of the random variable. Therefore we have

E

"Xn
i¼ 1

aigiðXÞ
#
¼
Xn
i¼ 1

aiE½giðXÞ�;

where fa1; a2; .; ang are some nonrandom constants.

Example 17.2
Let X be the random outcome in rolling a fair typical die. Suppose Y is a discrete
random variable, where Y ¼ sin

�
Xp
6

�
. Determine the expected values of the

discrete random variables X and Y .

Solution
We have

E½X � ¼ mX ¼
X6
k¼ 1

1
6
� k ¼ 1

6
ð1þ 2þ 3þ 4þ 5þ 6Þ ¼ 3:5

and

E½Y � ¼
X6
k¼ 1

�
1
6

�
� sin

�
kp
6

�
¼ 1

6

�
1
2
þ

ffiffiffi
3

p

2
þ 1þ

ffiffiffi
3

p

2
þ 1
2
þ 0

�

¼ 1
6
ð2þ ffiffiffi

3
p Þy0:622:

As the expected value of a random variable fails to show the spread of random values in its
distribution, a measure to highlight its dispersion is essential and insightful. If we have

gðXÞbðX � E½X�Þ2, E½gðXÞ� is then called the variance of the random variable X .
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The variance of X is thus the mean square of the difference between a random variable X
and its mean E½X �. As the statistical expectation is a linear operation, the variance of the
random variable X, denoted by s2X , can be equivalently expressed as follows:

s2X bE
�ðX � E½X �Þ2� ¼ E

�
X2�� ðE½X �Þ2 ¼ E

�
X2�� m2X :

The variance of a random variable, if it is defined, is always nonnegative. The variance
of a random variable is a measure of the variable’s randomness, as it indicates the vari-
ability of the outcomes. For instance, a large variance indicates the random variable is
quite spread out, and it is thus more unpredictable, whereas a small variance shows the
random variable is concentrated around its mean and it is thus less random. In fact,
when the variance is zero, the variable is no longer random, meaning there is no uncer-
tainty at all. In addition, the variance, in contrast to the mean, is a nonlinear operator. In
other words, the variance of a weighted sum of random variables, in general, is not equal
to the weighted sum of the variances of the random variables.

The square root of the variance of X, denoted by sX, is called the standard deviation
of the random variable X and is a positive quantity with the same unit as X . For instance,
the random variable X and its standard deviation sX may be both in meters, volts, degrees
Celsius, or kilograms. The great importance of the standard deviation of a random var-
iable lies in the fact that it brings context to the mean value. For instance, a student who
has a test mark of 10 points above the test mean is likely to be in the middle of the class, if
the standard deviation of test marks is 20 points, however, the student is likely to be near
the top of the class if the standard deviation is 5 points.

Example 17.3
Suppose we have a fair coin. Let X be the number of heads in tossing a coin five
times. Determine the standard deviation of the discrete random variable X .

Solution
The pmf of the discrete random variable X is as follows:

pXð0Þ ¼ 1
32
; pXð1Þ ¼ 5

32
; pXð2Þ ¼ 10

32
; pXð3Þ ¼ 10

32
; pXð4Þ ¼ 5

32
; and

pXð5Þ ¼ 1
32
:

The mean is thus as follows:

E½X � ¼ mX ¼ð0Þ
�
1
32

�
þ ð1Þ

�
5
32

�
þ ð2Þ

�
10
32

�
þ ð3Þ

�
10
32

�
þ ð4Þ

�
5
32

�

þ ð5Þ
�
1
32

�
¼ 2:5;
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which intuitively makes sense, as out of five tosses of a fair coin, the number of
heads on average is 2.5. The mean square is obtained as follows:

E
�
X2� ¼ ð0Þ2

�
1
32

�
þ ð1Þ2

�
5
32

�
þ ð2Þ2

�
10
32

�
þ ð3Þ2

�
10
32

�
þ ð4Þ2

�
5
32

�

þ ð5Þ2
�
1
32

�
¼ 7:5:

Therefore the variance and standard deviation are as follows, respectively:

s2X ¼ E
�
X2�� ðE½X �Þ2 ¼ 7:5� ð2:5Þ2 ¼ 1:25 / sX ¼ ffiffiffiffiffiffiffiffiffi

1:25
p

y 1:118:

Example 17.4
Suppose Y ¼ a X þ b, where X is a random variable with mean mX and variance
s2X , and a and b are both real nonrandom constants. Determine the variance of the
random variable Y .

Solution
The mean of the random variable Y is as follows:

mY ¼ E½Y � ¼ E½aX þ b� ¼ aE½X � þ b:

This in turn means the mean value of Y is linearly related to the mean value of
X in the same way that the random variables Y and X are linearly related. The
mean square value of Y is as follows:

E
�
Y 2� ¼ E

��
aX þ bÞ2� ¼ E

�
a2X2þ b2þ 2abX

� ¼ a2E
�
X2�þ b2þ 2abE

�
X
�
:

We can now determine the variance of Y :

s2Y ¼ E
�
Y2�� ðE½Y �Þ2 ¼ �

a2E
�
X2�þ b2þ 2abE½X ��� ðaE½X � þ bÞ2

¼ a2
�
E
�
X2��ðE½X �Þ2� ¼ a2s2X :

There are two other simple measures that can provide further insights into the possible
values of a discrete random variable, namely, the mode and median. The mode and me-
dian both make the most sense when a very large discrete sample space must be described.
Themode of a random variable is that value that occurs most often (i.e., it has the greatest
probability of occurring). Sometimes, a random variable has more than one mode and is
thus named a multimodal random variable. The median of a random variable is that
particular value for which the sum of the probabilities of all values greater than the me-
dian and the sum of the probabilities of all values less than the median are equal (i.e., each
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sum is equal to 0.5). The median of a discrete random variable may not exist. Note that
median is generally employed when there are outliers in the sample data (i.e., when there
are data values that appear remote from all or most of the other data values).

Example 17.5
Determine the median, mode, and mean of the discrete random variable X ,
whose pmf is presented in Table 17.2.

Solution
The median is 6, as the sum of the probabilities of all values greater than 6 and the
sum of the probabilities of all values less than 6 each is equal to 50%. The mode is
8, as it is the most likely to occur. The mean is obtained as follows:

E½X � ¼ 0� 2%þ 1� 3%þ 2� 5%þ 3� 10%þ 4� 10%þ 5� 20%

þ 6� 0%þ 7� 20%þ 8� 25%þ 9� 3%þ 10� 2% ¼ 5:7:

17.4 Conditional Distributions

A conditional distribution can incorporate partial knowledge about the outcome of an
experiment in the evaluation of probabilities of events. If there is some information about
a random variable, then its conditional distribution needs to incorporate that. Suppose
event B, defined as fX � bg, is given, and we have PðBÞ ¼ PðX � bÞ > 0. Using Bayes’
theorem, the conditional cdf of X given event B is then defined as follows:

FXðxjBÞ ¼ PðX � xjBÞ ¼ PðX � x;X � bÞ
PðBÞ :

Table 17.2 Pmf values for Example 17.5.

x pX ðxÞ
0
1
2
3
4
5
6
7
8
9
10

2%
3%
5%
10%
10%
20%
0%
20%
25%
3%
2%
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There are now two mutually exclusive cases, depending on whether x or b is larger. As a
result, the conditional cdf and conditional pmf of X given event B can be simplified as
follows:

FXðxjBÞ ¼

8>>>>><
>>>>>:

PðBÞ
PðBÞ ¼ 1 x > b

PðX � xÞ
PðBÞ x � b

/ pXðxjBÞ ¼

8>>>><
>>>>:

0 x;B

pXðxÞ
PðBÞ x˛B

Note that dividing the pmf pXðxÞ by PðBÞ < 1 ensures that for x � b, the summation of
the conditional pmf pXðxjBÞ, over the entire range of interest, is 1.

Example 17.6
Consider rolling an unfair (loaded) die whose probabilities of its possible outcomes
are as follows:

Pð1Þ ¼ 2
7
and Pð2Þ ¼ Pð3Þ ¼ Pð4Þ ¼ Pð5Þ ¼ Pð6Þ ¼ 1

7
:

Determine the conditional pXðxjBÞ pmf, where B is the set of outcomes that
are prime numbers, that is, B ¼ f2; 3; 5g
Solution
The probability of event B is as follows:

PðBÞ ¼ PðX ¼ 2Þ þ PðX ¼ 3Þ þ PðX ¼ 5Þ ¼ 1
7
þ 1
7
þ 1
7
¼ 3

7
:

The conditional pmf is thus as follows:

pXðxjBÞ ¼

8>>>>>><
>>>>>>:

0 x ¼ 1; 4; 6�
1
7

�

�
3
7

� ¼ 1
3

x ¼ 2; 3; 5

17.5 Upper Bounds on Probability

A bound, by definition, encompasses all cases, including the worst case; therefore, when
it is applied to a particular case, it may not be very tight. Our focus is on the Markov and
Chebyshev inequalities, which both provide upper bounds on the probability that a value
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of a random variable is greater than some number. In principle, using more information
about the random variable brings about tighter bounds. The Markov bound uses only the
expected value and the Chebyshev bound uses both the expected value and the variance
of the random variable.

The Markov inequality provides an upper bound on the probability that a value of a
nonnegative random variable is greater than or equal to some positive constant. More
specifically, for a random variable X such that PðX < 0Þ ¼ 0 and thus E½X � > 0, the
Markov inequality is as follows:

PðX � cÞ � E X½ �
c

/ PðX � kE X½ �Þ � 1
k
;

where c > 0, and thus k ¼ c
E½X � > 0. A simple example of an application of the Markov

inequality is that no more than 50% of the population can have more than two times the
average income, this result is due to k ¼ 2 and c ¼ 2E½X�. Another example is when
the average mark on an exam is 60%, an upper bound on the proportion of students

who score at least 80% is then PðX � 80%Þ � EðXÞ
80% ¼ 60%

80% ¼ 3
4; thus at most, 75% of

students can possibly score this high.
The Chebyshev inequality states that the probability of a large deviation from the ex-

pected value is inversely proportional to the square of the deviation. More specifically, for
an arbitrary random variable X , the Chebyshev inequality is as follows:

PðjX � E½X�j � cÞ� s2X
c2

/ PðjX � E½X�j � ksXÞ � 1
k2
;

where E½X � and s2X are the mean and variance of the random variable X, respectively,
and we have c > 0 and k ¼ c

sX
> 0. The Chebyshev inequality thus indicates that the

probability that a random variable deviates from its mean by more than c in either direc-
tion is less than or equal to its variance divided by c2. This confirms the fact that the prob-
ability of an outcome departing from the mean becomes smaller as the variance decreases.
The Chebyshev inequality is valid for any negative or nonnegative random variable, and
it is obviously useful when c > sX , that is, k > 1. A simple example of an application of
the Chebyshev inequality is when a fair coin is flipped 100 times, where the expected
value and variance are 50 and 25, respectively. By the Chebyshev inequality, the prob-
ability that the number of times the coin lands on heads is greater than 60 or less than 40 is
then bounded as follows:

PððX < 40ÞWðX > 60ÞÞ ¼ PðjX � 50j � 10Þ � 25
102

¼ 25%:
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Example 17.7
Suppose the pmf of the discrete random variable X is as follows:

pXðxÞ ¼
�
n

x

�
pxð1� pÞn�x for x ¼ 0; 1; 2; .; n, where n is a positive

integer and p ¼ 1
10. Noting the expected value and variance of the random var-

iableX are n
10 and

9n
100, respectively, determine an upper bound on P

	
X � n

5



using

the Markov inequality and the Chebyshev inequality.

Solution
The Markov inequality is as follows:

P
	
X � n

5



�

	 n
10



	n
5


 ¼ 1
2
:

In order to determine the Chebyshev inequality, we need to find P
	
X � n

5



as

follows:

P
	
X � n

5



¼ P

	
X � n

10
þ n
10



¼ P

	
X � n

10
� n
10



¼ P

	���X � n
10

���� n
10



:

The right-hand side of the preceding equation was obtained, as X is nonneg-
ative. The Chebyshev inequality is thus as follows:

P
	
X � n

5



¼ P

	���X � n
10

���� n
10



�

9n
100
n2

100

¼ 9
n
:

The Markov bound is a constant, whereas the Chebyshev bound is a function
of n and converges to zero as n approaches infinity.

17.6 Special Random Variables and Their Applications

There are infinitely many discrete random variables, defined by their cdfs or equivalently
pmfs, out of which a few have real-life applications. Some of the probability distributions
that are important enough to have been given names, where there is a random experi-
ment behind each of these distributions, are now discussed. The mean mX and variance
s2X of each of these special discrete random variables are presented in Table 17.3.

The Bernoulli random variable X takes the value of 1 with probability p (also known
as the probability of success) and the value of 0 with probability 1� p (also known as the
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probability of failure), where 0 < p < 1. It is therefore a discrete random variable with
the range f0; 1g. The pmf of a Bernoulli random variable is defined as follows:

pXðxÞ ¼

8>><
>>:

1� p x ¼ 0

p x ¼ 1 0 < p < 1

0 xs0; xs1

:

A Bernoulli trial, which corresponds to sampling from the Bernoulli distribution, is a
random experiment with exactly two possible outcomes, in which the probability of
each of the two outcomes remains the same every time the experiment is conducted.
The Bernoulli trial is equivalent to the tossing of a biased coin or examining if a compo-
nent is defective in a system. The Bernoulli trial is a basic building block for some well-
known discrete distributions, such as the binomial, geometric, and Pascal distributions.

Example 17.8
Determine the maximum value of the variance of the Bernoulli random variable.

Solution
The maximum value of the variance is obtained as follows:

s2X ¼ p� p2 /

8>>><
>>>:

ds2X
dp

¼ 1� 2p ¼ 0

ds2X
dp2

¼ �2 < 0

/ p ¼ 1
2
:

Therefore the maximum value of the variance occurs when p ¼ 1
2, which in

turn corresponds to the highest level of uncertainty (randomness), as there are two
equally likely outcomes.

Table 17.3 Means and variances of some discrete random variables.

Distribution Mean (Expected value) Variance

Bernoulli p pð1 �pÞ
Binomial np npð1 �pÞ
Geometric

1
p

1�p
p2

Pascal
k
p

kð1�pÞ
p2

Hypergeometric
nK
N

	
nK
N


	
N�K
N


	
N�n
N�1




Poisson l l

Uniform mþ Lþ1
2

L2�1
12
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The binomial random variable X is the number of times 1 (i.e., successes) occurs in n in-
dependent Bernoulli trials, where n is a positive integer, and each occurrence of 1 is
assumed to have probability p, where 0 < p < 1. Applications of binomial distribution
may include the estimation of the probabilities of the number of times hitting the target
or the number of erroneous bits when a packet of data is transmitted over a noisy
communication channel. The pmf of a binomial random variable is defined as follows:

pX xð Þ ¼
 
n

x

!
pxð1� pÞn�x x ¼ 0; 1; .; n and 0 < p < 1;

where

�
n

x

�
b n!

x!ðn�xÞ! is known as the binomial coefficient. The binomial distribution is

frequently used to model the number of successes when the sampling is performed with
replacement, as the draws are independent. Note that if the sampling is carried out
without replacement from a finite population, the draws are not independent and the
hypergeometric distribution must be employed.

Example 17.9
Suppose a packet of data consisting of 10,000 bits is independently transmitted
over a channel in which the bit error rate (probability of an erroneous bit) is
0.0001. Using the binomial distribution, calculate the probability when the total
number of errors is less than or equal to 2.

Solution
Noting that the transmission of a bit can be viewed as a Bernoulli trial, the prob-
ability of interest is as follows:

PðX � 2Þ ¼
X2
x¼ 0

 
10000

x

!
ð0:0001Þxð0:9999Þ10000�xy 0:91971:

In a sequence of independent Bernoulli trials with a success probability p,with 0 < p < 1,
the random variable X that denotes the number of trials performed until the first success
occurs is said to have the geometric distribution with probability p. For instance, the geo-
metric distribution could be used to describe the number of candidates to be interviewed
until a candidate is accepted or the number of cars to be test-driven until a car is bought.
The pmf of a geometric random variable is defined as follows:

pX xð Þ ¼ ð1� pÞx�1p x ¼ 1; 2; . and 0 < p < 1:
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Example 17.10
Tickets for the final match of the 2026World Cup are sold exclusively online on a
single website. Suppose that the chance of successfully accessing the website by a
fan to buy a ticket is 0.01. Determine the probability that a fan has to attempt 100
or more times to get through.

Solution
The probability that a fan has to attempt 100 or more times to get through is as
follows:

PðX � 100Þ ¼ 1� PðX � 99Þ ¼ 1� �1�ð0:99Þ99� ¼ ð0:99Þ99y 0:36973:

This is simply the probability that the first 99 attempts are unsuccessful.

The Pascal distribution is commonly used in quality control for a product and represents
the number of Bernoulli trials that take place until one of the two outcomes is observed a
certain number of times. For instance, in choosing 12 citizens to serve on a jury, the Pascal
distribution could be applied to estimate the number of rejections before the jury selection
is completed. The number of trials up to and including the success in a sequence of inde-
pendent Bernoulli trials with a constant success probability p, where 0 < p < 1, has a
Pascal distribution. The pmf of a Pascal random variable is defined as follows:

pX xð Þ ¼
 
x� 1

k� 1

!
pkð1� pÞx�k 0 < p < 1; x ¼ k; kþ 1; .; for k˛ f1; 2; .g:

Example 17.11
Suppose a law firm is recruiting two lawyers, and each applicant interviewed has a
probability of 0.8 to be hired. Determine the probability that up to and including
three applicants need to be interviewed.

Solution
With p ¼ 0:8 and k ¼ 2, the probability that up to and including three appli-
cants need to be interviewed (i.e., x ¼ 2 and x ¼ 3) is as follows:

Pðx ¼ 2ÞþPðx ¼ 3Þ ¼
X3
x¼ 2

 
x� 1

1

!
ð0:8Þ2ð0:2Þx�2 ¼ 0:896:

The hypergeometric distribution has many applications in quality control, such as the
chance of picking a defective part from a production line. Suppose there is a finite
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population of N items of which K possess a certain attribute, the hypergeometric distri-
bution then describes the probability that a sample of n items, without replacement, is
selected of which x possess the attribute. The pmf of a hypergeometric random variable
is defined as follows:

pX xð Þ ¼

 
K

x

! 
N � K

n� x

!

 
N

n

! maxð0; nþ K �NÞ � x � minðn; KÞ;

0 � n � N ; and 0 � x � K :

Example 17.12
Suppose there are 40 students in a party, 16 of them are female, and the remaining
24 are male. A photo of two students is taken. Determine the probability that both
of them in the photo are female.

Solution
With N ¼ 40, K ¼ 16, n ¼ 2, and x ¼ 2, the probability of interest is thus as
follows:

PðX ¼ 2Þ ¼

�
16

2

�
�
�
24

0

�

�
40

2

� ¼ 2
13

y 0:1538:

Example 17.13
A 12-person jury is to be selected from a group of 24 potential jurors, of which 16
are men and 8 are women. Determine the probability of selecting 6 men and 6
women to form a 12-person jury.

Solution
It is an unordered sampling without replacement. There are

�
16

6

�
¼ 8008 ways

to choose the six men and

�
8

6

�
¼ 28 ways to choose the six women. There are

thus

�
16

6

��
8

6

�
¼ 224; 224 possible ways to make such a selection. However,

the number of ways to select a 12-person jury at random, regardless of the gender
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of the jurors, is

�
24

12

�
¼ 2; 704; 156. The probability of interest is the ratio of

these two numbers of ways, so we have
�
16

6

��
8

6

�

�
24

12

� ¼ 8008� 28
2; 704; 156

y 0:083:

The Poisson distribution represents the number of occurrences of events occurring
within certain specified boundaries, such as the number of text messages received by a
mobile user during an hour, the number of potholes in a road, and the number of defec-
tive units in a sample taken from a production line. The Poisson random variable arises
in situations where the events occur completely at random in time or space. These events
occur with a constant average rate and independently of the time or space associated with
the last event. The pmf of a Poisson random variable is defined as follows:

pX xð Þ ¼ e�llx

x!
x ¼ 0; 1; 2; . l > 0;

where l is the parameter of the distribution reflecting the average rate of occurrence.

Example 17.14
Suppose that the number of errors in a book has a Poisson distribution with
parameter l ¼ 7: Determine the probability that a book has no errors and the
probability that the number of errors are three or more.

Solution
The probability that there is no error is as follows:

PðX ¼ 0Þ ¼ e�770

0!
y 0:0009:

The probability that the number of errors is three or more is as follows:

PðX � 3Þ ¼ 1�
X2
i¼ 0

PðX ¼ iÞ ¼ 1�
X2
i¼ 0

e�77i

i!
y 0:0296:

The discrete uniform random variable occurs when outcomes are equally likely, such as
rolling a fair die. It takes on values in a set of L positive integers with equal probability.
This distribution is generally employed when there is no information available regarding
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the possible outcomes; as such, the outcomes are all assumed to have the same probability.
The pmf of a discrete uniform random variable is defined as follows:

PðX ¼ kÞ ¼ pX kð Þ ¼ 1
L

k ¼ mþ 1; .; mþ L; �N < m < N; L˛f1; 2; .g:

Example 17.15
Suppose the mean and variance of a discrete uniform random variable X are both
4. Determine the set of consecutive integers that this discrete uniform random var-
iable can take on.

Solution
We have

s2X ¼ L2 � 1
12

¼ 4 / L ¼ 7:

Therefore we have

mX ¼ mþ L þ 1
2

¼ 4 / mþ 7þ 1
2

¼ 4 / m ¼ 0:

Hence X takes on values in the set of integers f1; 2; 3; 4; 5; 6; 7g, each
with probability 1

7.

Exercises
(17.1)
In a bag there are 12 identical balls numbered 1 to 12 inclusive. Let X be the
discrete random variable denoting the ball drawn from the bag. Determine the
conditional pmf of X given B, where B is the event representing balls with prime
numbers.

(17.2)
The number of text messages sent by a teenager during an hour is a random var-
iable. The mean and variance of this random variable are 15 and 9, respectively.
Using the Chebyshev inequality, estimate the probability that the number of text
messages is more than 5 from the mean.

(17.3)
Assume 1000 bits are independently transmitted over a digital communications
channel in which the bit error rate is 0.001. Determine the probability when
the total number of errors is greater than or equal to 998.
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(17.4)
Suppose phone call arrivals at a call center are Poisson and occur at an average rate
of 50 per hour. The call center has only one operator. If all calls are assumed to last
1 minute, determine the probability that a waiting line will occur.

(17.5)
The variance of the discrete uniform random variable Z, which takes on values in
a set of n consecutive integers, is 4. Determine the mean of this random variable.

(17.6)
The number of major earthquakes in the world is represented by a Poisson distri-
bution with a rate of l ¼ 7:4 earthquakes in a year. Determine the probability
that there are exactly four earthquakes in a year. What is the probability that there
are no earthquakes given that there are at most two earthquakes in a year?

(17.7)
Consider a six-sided cube-shaped die that is not fair. Let X be the discrete random
variable that represents the outcome of a roll of the die. Determine the variance of
the random variable X whose pmf is as follows:

PðX ¼ 1Þ ¼ PðX ¼ 2Þ ¼ PðX ¼ 3Þ ¼ PðX ¼ 5Þ ¼ PðX ¼ 6Þ ¼ 0:1

& PðX ¼ 4Þ ¼ 0:5:

(17.8)
Suppose the average age of people in a town is 49 years. If all people over 70 years
old should be vaccinated against a certain disease, use the Markov inequality to
determine the maximum fraction of people of the town who should be
vaccinated.

(17.9)
In a typical lottery game a player chooses n distinct numbers from 1 to N inclu-
sive, where n and N are both positive integers. Determine the probability that
0 � k � n of the n balls picked match the player’s choices. Assuming N ¼ 49
and n ¼ 6, determine the specific probabilities of winning for various values of k.

(17.10)
Suppose X is a discrete random variable represented by the outcome of rolling a
fair typical die (i.e., its six outcomes 1, 2, 3, 4, 5, and 6 are equally likely), and the
random variable Y is related to X by the deterministic function Y ¼ cos

�
Xp
3

�
.

Determine the sample space, pmf, and mean value of the random variable Y .

Discrete Random Variables 325



CHAPTER 18
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In graph theory the term graph does not refer to data charts, such as line graphs or bar
graphs. In fact, graph theory, which was invented by Leonard Euler, is a branch of math-
ematics concerned with networks of points connected by lines. Graphs are used in a wide
variety of models, as they are a powerful problem-solving tool to represent a complex
situation with a single image that can be effectively analyzed both visually and with
the aid of a computer. Graph theory is a broad topic, but in this chapter, we introduce
only some basic concepts of graph theory.

18.1 Basic Definitions and Terminology

A graph G ¼ ðV ; EÞ consists of V, a nonempty finite set of vertices (points or nodes),
and E, a finite set of edges (lines, links, or arcs), where an edge either joins one vertex to
another or joins a vertex to itself. Note that the number of distinct vertices in the set V
and the number of distinct edges in the set E are represented by jV j and jEj, respectively.
Geometrically, vertices are shown by small solid circles, and edges are represented by
curves or straight-line segments. The number of vertices of a graph is called its order,
and the number of edges of a graph is called its size.

Each edge of a graph has one or two vertices associated with it, called its endpoints. An
undirected edge is said to connect its endpoints u and v and is denoted by fu; vg. An un-
directed graph consists of a set of vertices and a set of undirected edges, each of which is
associated with a set of one or two vertices. Two vertices u and v in an undirected graph
are called adjacent (or neighbors) in the graphG if u and v are endpoints of an edge e of the
graph G, and an edge e is then called incident with the vertices u and v. The set of all
neighbors of a vertex is called the neighborhood of the vertex. An isolated vertex is not
adjacent to any vertex (i.e., it is not an endpoint of an edge). A trivial graph has just
one vertex and no edges.
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An edge emanating from and terminating at the same vertex u is called a loop and is
denoted by fu; ug. A loop thus has only one endpoint. It is possible to have more than
one loop at a vertex. Adjacent edges have a common vertex. Parallel edges (or multiple
edges) have the same two vertices.

A simple graph contains no loops or parallel edges. In a simple graph, each edge is
associated to an unordered pair of vertices. Graphs that may have multiple edges connect-
ing the same vertices are called multigraphs. When there are m different edges associated
to the same unordered pair of vertices fu; vg, then it is an edge of multiplicity m. Graphs
with loops and multiple edges may be called pseudographs (or general graphs). A simple
graph in which each edge is assigned a positive number, called the weight, is a weighted
graph.

A directed edge (or arc) is associated with an ordered pair of vertices ðu; vÞ, where it
starts at u and ends at v. A directed edge is depicted by an arc with an arrow from u, the
initial vertex, to v, the terminal vertex, to indicate the direction of an edge. The initial
vertex and the terminal vertex of a loop are the same. A directed graph (or digraph) con-
sists of a nonempty, finite set of vertices and a set of finite directed edges. When a directed
graph has no loops and no multiple directed edges, it is called a simple directed graph.
Directed graphs with multiple directed edges are called directed multigraphs. A graph
with both directed and undirected edges is called a mixed graph. In general, we use
the term graph to refer only to the undirected graph.

The degree of a vertex u in an undirected graph G, denoted by degðuÞ, is the number
of edges incident with (meeting at or ending at) u. The degree sequence of a graph is the
sequence of the degrees of its vertices, usually given in increasing or decreasing order.
The total degree of the graph G is the sum of the degrees of all the vertices of G.
Note that for an isolated vertex u, degðuÞ ¼ 0, and with a loop at a vertex u,
degðuÞ ¼ 2. A vertex u with degðuÞ ¼ 1 is called a pendant vertex (or leaf vertex).

The handshaking theorem states that the sum of the degrees of all vertices in an un-
directed graph is twice the total number of edges (i.e., 2jEj), which also includes multiple
edges and loops. Because the total degree of an undirected graph is even, it is possible to
determine if a given number of edges and vertices with known degrees can generate an
undirected graph. For instance, the sequence degree f1; 2; 3; 4; 7g is not graphical
because its sum is odd. In addition, an undirected graph has an even number of vertices
of odd degree.

In a graph with directed edges, the in-degree of a vertex v, denoted by deg�ðvÞ, is the
number of edges with v as their terminal vertex (the number of arcs having v as a head).
The out-degree of a vertex u, denoted by degþðuÞ, is the number of edges with u as their
initial vertex (the number of arcs having v as a tail). Note that the sum of the in-degrees of
all vertices and the sum of the out-degrees of all vertices in a graph with directed edges are
equal, and in turn is the same as the number of edges jEj in the graph.
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Example 18.1
(a) Determine the number of vertices, the number of edges, and the degree of

each vertex in the undirected graph shown in Fig. 18.1a.
(b) Determine the number of vertices, the number of edges, and the in-degree

and out-degree of each vertex in the directed graph shown in Fig. 18.1b.

Solution
(a) There are 5 vertices and 11 edges. The degrees are as follows: degðaÞ ¼ 4,

degðbÞ ¼ 6, degðcÞ ¼ 1, degðdÞ ¼ 5, and degðeÞ ¼ 6. Note that accord-
ing to the handshaking theorem, the sum of the degrees of all vertices is twice
the number of edges, that is we have 4þ 6þ 1þ 5þ 6 ¼ 2 � 11 ¼ 22.

(b) There are 4 vertices and 8 edges. The degrees are as follows: deg�ðaÞ ¼ 2,
degþðaÞ ¼ 2, deg�ðbÞ ¼ 3, degþðbÞ ¼ 4, deg�ðcÞ ¼ 2, degþðcÞ ¼ 1,
deg�ðdÞ ¼ 1, and degþðdÞ ¼ 1. Note that the sum of the in-degrees of
all vertices and the sum of the out-degrees of all vertices are equal, and in
turn is the same as the number of edges in the graph, that is we have
2þ 3þ 2þ 1 ¼ 2þ 4þ 1þ 1 ¼ 8.

Graph models are mathematical representations that involve graphs. There are many real-
world problems in most disciplines that can be solved using graph models. In fact, it is not
very easy to find an area that graph theory has not been applied. Table 18.1 highlights
some real-life examples of graph models. In order to build a graph model, some funda-
mental questions need to be answered, such as the number of vertices, the degree of each
vertex, the number of edges (including loops and multiple edges), and the directivity and
weight of each edge.

 

 

 

  

(a) (b) 

 

 

 

 

Fig. 18.1 Graphs for Example 18.1.
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18.2 Types of Graphs

A subgraph of a simple graph G ¼ ðV ; EÞ is a graph G1 ¼ ðV1; E1Þ where V14 V
and E14E. In other words, a graph G1 is a subgraph of G if and only if every vertex
in G1 is also a vertex in G, every edge in G1 is also in G, and every edge in G1 has
the same endpoints as it has in G. A spanning subgraph of a graph G is a subgraph
that contains all the vertices of G.

The complement or inverse of a simple graph G ¼ ðV ; EÞ is the complementary
graph G1 ¼ ðV1; E1Þ that has the same vertices as G and has edges joining every pair
of vertices that are not joined in G, and vice versa, that is, two distinct vertices in G1

are adjacent if and only if they are not adjacent in G.
The converse of a directed graph G1 ¼ ðV1; E1Þ is the directed graph

G2 ¼ ðV2; E2Þ, where the set E2 of edges of G2 is obtained by reversing the direction
of each edge in the set E1 of edges of G1.

The graph union of two simple graphs G1 ¼ ðV1; E1Þ and G2 ¼ ðV2; E2Þ,
denoted by G1WG2, is the simple graph with the vertex set V1WV2 and the edge set
E1WE2. The graph intersection of two simple graphs G1 ¼ ðV1; E1Þ and
G2 ¼ ðV2; E2Þ, denoted by G1XG2, is the simple graph with the vertex set

Table 18.1 Real-life examples of graph models.

Graph model Vertices Edges

Drug interactions
Electric circuits

Family trees in genealogy
Flowcharts in computer programming

Food webs in ecology
Information management

Module dependency in software design
Personnel assignment
Physical chemistry

Protein interaction in biology
Scheduling in operations research

Semantic in linguistics
Set theory

Shortest path in network optimization
Social networks

Sport tournaments
Supply chain management

Telecommunications networks
The World Wide Web
Transportation networks

Medications
Circuit components
Family members

Steps to do
Species

Data records
Modules

People/tasks
Atoms
Proteins
Activities
Words
Elements
Locations

Individuals/organizations
Teams

Supply and demand
Transceivers

Computers/cell phones
Intersections

Interactions
Wires

Parenthood
Flow

Who eats whom
Decisions

Dependency
Job capabilities
Molecular bonds

Interactions
Activity conflicts

Connections among words
Relatedness
Distances

Relationships
Who beats whom

Supply lines
Wired/wireless links
Wired/wireless links

Roads
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V1XV2 and the edge set E1XE2. Note that the graph intersection of two simple graphs
is a subgraph of each of them, and each graph is a subgraph of the graph union.

Example 18.2
Consider the simple graphs G and H, as shown in Fig. 18.2.
(a) List all the subgraphs of the graph G that each has two edges and three

vertices.
(b) Determine the complement of the graph G.
(c) Find the graph union of the graphs G and H .
(d) Find the graph intersection of the graphs G and H .

Solution
The subgraphs, complement, union, and intersection graphs are all shown in
Fig. 18.3.
(a) There are three subgraphs of G meeting the requirements, as shown in

Fig. 18.3a.
(b) The complement of the graph G is shown in Fig. 18.3b.
(c) The graph union of the graphs G and H is shown in Fig. 18.3c.
(d) The graph intersection of the graphs G and H is shown in Fig. 18.3d.

Fig. 18.4 shows several classes of simple graphs, including complete, cycle, star, wheel,
and linear graphs, as they have many applications in telecommunications and computer
networks.

A complete graph (or mesh topology) is a simple graph with an edge between every

two distinct vertices. A complete graph with n � 3 vertices, denoted by Kn, has
nðn�1Þ

2
edges, and each vertex has degree n � 1. A simple graph for which there is at least
one pair of distinct vertices not connected by an edge is called a noncomplete graph.

G H

Fig. 18.2 Graphs for Example 18.2.
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A cycle graph (or ring topology), denoted by Cn, with n � 3, consists of n vertices
v1; v2; :::; vn as well as n edges fv1; v2g; fv2; v3g; :::; fvn�1; vng; fvn; v1g, while noting that
each vertex has degree 2.

A star graph, denoted by Snþ1, with n � 3, has nþ 1 vertices v1; v2; :::; vnþ1 as well
as n edges fv1; vnþ1g; fv2; vnþ1g; :::; fvn; vnþ1g, that is, the vertices v1; v2; :::; vn are all

(a)

(c) (d)(b)

Fig. 18.3 Graphs for solutions to Example 18.2.

Complete graphs

(Mesh topology)

Cycle graphs

(Ring topology)

Linear graphs

(Bus topology)

Wheel graphs

(Hybrid topology)

Star graphs

(Star topology)

Fig. 18.4 Special simple graphs.
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connected to a central vertex vnþ1 with degree n, but each of the other n vertices has de-
gree 1.

A wheel graph (or hybrid topology), denoted byWnþ1, with n � 3, is the union of Cn

and Snþ1 graphs; it thus has nþ 1 vertices as well as 2n edges, where each vertex around
the perimeter has degree 3, but the central vertex has degree n.

A linear graph (or bus topology), denoted by Ln, has n vertices v1; v2; :::; vn and with
n� 1 edges fv1; v2g; fv2; v3g; :::; fvn�1; vng, while noting that the last two vertices at
the two ends of the bus each has degree 1, but each of the other vertices has degree 2.

A grid graph Gm;n is a simple graph with vertices arranged in an m by n grid. Edges join
vertices that are vertically or horizontally adjacent. An n-dimensional hypercube (or n-cube)
Qn is a simple graph that has vertices representing the 2n bit strings of length n. Two vertices
are adjacent if and only if the bit strings that they represent differ in exactly one-bit position.
For instance, when n ¼ 1, it is a single edge connecting two vertices each with degree 1,
when n ¼ 2, edges form a square to connect the four vertices each with degree 2, and
when n ¼ 3, edges form a cube to connect the eight vertices, each with degree 3.

A regular graph is a simple graph in which every vertex of the graph has the same de-
gree. For instance, the complete graph Kn is a regular graph where the degree of each
vertex is n � 1, the cycle graph Cn is a regular graph where the degree of each vertex
is 2, and the n-cube is a regular graph where the degree of each vertex is n. However,
the star, wheel, and linear graphs are not regular graphs.

If the vertex set V of a simple graph GðV ; EÞ can be partitioned into two disjoint
(mutually exclusive), nonempty subsets V1 and V2, known as bipartite sets, such that
every edge in the graph connects a vertex in V1 and a vertex in V2, that is, no edge in
the graph G connects either two vertices in V1 or two vertices in V2, then we call the
graph G the bipartite graph and the pair ðV1, V2Þ a bipartition of the vertex set V of
the graph G. Let G be a bipartite graph with m vertices in V1 and n vertices in V2. If
an edge exists between every vertex in V1 and every vertex in V2, the graph G is
then called a complete bipartite graph, and has m� n edges.

Example 18.3
Determine which of the simple graphs shown in Fig. 18.5 are bipartite.

(a) (b) (c)

Fig. 18.5 Graphs for Example 18.3.
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Solution
Fig. 18.5a is a bipartite graph, as the vertex set V ¼ fa; b; c; d; e; f g consists of
the two disjoint setsV1 ¼ fa; b; cg andV2 ¼ fd; e; f g, and every edge has one
vertex in V1 and the other in V2. Note that because there is no edge connecting
vertices a and f , Fig. 18.5a is not a complete bipartite. Fig. 18.5b is not a bipartite
graph, and Fig. 18.5c is a complete bipartite graph.

18.3 Graph Representation and Isomorphism

Representations of graphs by the dot and line diagrams are quite appealing and informa-
tive but may often lead to visual misrepresentations. There are therefore other useful ways
to represent graphs, such as lists and matrices. However, complex graphs can be better
represented by matrices and thus more easily manipulated by computers.

Lists can be used to represent simple graphs, including edge lists and adjacency lists. An
edge list is a table with rows indexed by the vertices, where each row provides a list of all
edges incident with the row’s indexing vertex. An adjacency list is a table with rows
indexed by the vertices, where each row provides a list of all vertices adjacent with
the row’s indexing vertex. When there are many vertices and edges, then the represen-
tation of graphs by edge list or adjacency list can prove to be impractical. To simplify
computation, graphs can be represented using matrices, such as adjacency matrices and
incidence matrices.

Suppose G ¼ ðV ; EÞ is a simple undirected graph with n vertices v1; v2; :::; vn.
The adjacency matrix A of the graph G is an n� n zero-one matrix, with rows and col-
umns indexed by the n vertices (in the same order), where the entry aij is 1 if the vertices
vi and vj are adjacent (i.e.,

�
vi; vj

�
is an edge of G), and it is 0 otherwise.

Adjacency matrices can also be used to represent undirected graphs with loops and
multiple edges. The entry aij of the matrix equals the number of multiple edges associated
to

�
vi; vj

�
. Hence the resulting adjacency matrix is not a zero-one matrix. The entry aii of

the matrix equals the number of loops associated to the vertex vi, and the nonzero entries
along the main diagonal of an adjacency matrix thus indicate the presence of loops. Note
that all undirected graphs have symmetric matrices. In the case of a directed graph, the
entry aij represents the number of arrows from vi to vj, for all i & j ¼ 1; 2; .; n.
Note that by reordering the vertices of a directed graph, the rows and columns are
then moved around.

Suppose G ¼ ðV ; EÞ is a simple undirected graph with n vertices v1; v2; :::; vn and
m edges e1; e2; :::; em. The incidence matrixM of the graph G is an m� n zero-one ma-
trix, with rows indexed by the vertices and columns indexed by the edges, where the
entry mij is 1, if the edge ej is incident with the vertex vi, and it is 0 otherwise. A loop
is represented using a column with exactly one entry equal to 1 corresponding to the ver-
tex that is incident with this loop, and multiple edges are represented using columns with
identical entries, as these edges are incident with the same pair of vertices.
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Example 18.4
Consider the undirected pseudograph shown in Fig. 18.6.
(a) Use an adjacency matrix to represent it.
(b) Use an incidence matrix to represent it.

Solution
(a) The adjacency matrix is as follows:

v1 v2 v3 v4 v5

A ¼

v1
v2
v3
v4
v5

0
BBBBBB@

1 2 0 0 0

2 0 1 0 1

0 1 0 0 1

0 0 0 1 1

0 1 1 1 0

1
CCCCCCA
:

(b) The incidence matrix is as follows:

e1 e2 e3 e4 e5 e6 e7 e8

M ¼

v1
v2
v3
v4
v5

0
BBBBBBB@

1 1 1 0 0 0 0 0

0 1 1 1 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1

0 0 0 0 1 1 1 0

1
CCCCCCCA
:

Fig. 18.6 Graph for Example 18.4.
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Some graphs may seem to differ but can be essentially the same, as graphs can have mul-
tiple representations. Two simple graphs with the same structure and hence the same
properties (i.e., they are the same except for labeling of their vertices and edges) are called
isomorphic. There is a one-to-one correspondence between vertices of two isomorphic
graphs preserving the adjacency relationship. Isomorphism of simple graphs is an equiv-
alent relation. More formally, the simple graphs G1 ¼ ðV1; E1Þ and G2 ¼ ðV2; E2Þ
are isomorphic if there exists a one-to-one correspondence (i.e., a one-to-one and
onto function) f from V1 to V2 such that a and b are adjacent vertices in G1 if and
only if f ðaÞ and f ðbÞ are adjacent vertices in G2 for all a and b in V1.

Isomorphism has a wide range of applications, such as molecular graphs to model
chemical compounds, design of electronic circuits, bioinformatics, and computer vision.
It is thus important to show whether two simple graphs are isomorphic or not. However,
it is often a very difficult task to do so, as there are no known simple tests for determining
graph isomorphism.

A property shared by isomorphic graphs is called an isomorphism invariant. For
instance, the number of vertices, the number of edges, and the number of vertices of
each degree are all isomorphism invariants. If these invariants differ in two simple graphs,
then they are not isomorphic. However, the converse is not true, that is, when these in-
variants are the same, it does not necessarily mean that the two graphs are isomorphic.
There is no particular set of invariants that can guarantee isomorphism.

There is no efficient method to determine whether two simple graphs, each with n
vertices and m edges, are isomorphic or not while noting that the number of one-to-
one correspondences from vertices to vertices is n! and the number of one-to-one cor-
respondences from edges to edges is m!. As a result, the total number of pairs of functions
to test is ðn!Þ � ðm!Þ, which is simply impossible to calculate when n and m are not small
integers. For instance, with m ¼ n ¼ 6, which reflects a set of graphs of modest order
and size, the number of pairs of functions to be tested is over half a million.

Example 18.5
Consider the pentagon G1 ¼ ðV1; E1Þ and the pentagram G2 ¼ ðV2; E2Þ, as
shown in Fig. 18.7. Show that the two simple graphs G1 and G2 are isomorphic.

Solution
Note that both graphs have five vertices and five edges, with degree two for each
vertex. By defining a function f : V1/V2, as we have f ðaÞ ¼ u, f ðbÞ ¼ w,
f ðcÞ ¼ x, f ðdÞ ¼ y, and f ðeÞ ¼ z, it becomes obvious that it is a one-to-one
correspondence. The function f preserves the adjacency relationship because
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the adjacency matrix of G1 is identical to the adjacency matrix of G2, as reflected
below:

AG1 ¼

0
BBBBBBBB@

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

1
CCCCCCCCA

& AG2 ¼

0
BBBBBBBB@

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

1
CCCCCCCCA
:

Therefore G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ are isomorphic.

Example 18.6
Identify all nonisomorphic graphs that have two vertices and two edges.

Solution
There are four nonisomorphic graphs with two vertices and two edges, as shown
in Fig. 18.8. The graph (i) has no loops, the graph (ii) has one loop, the graph (iii)
has two loops on the same vertex, and the graph (iv) has two loops on separate
vertices. Table 18.2 shows the degrees of all vertices. Note that although the num-
ber of vertices of each degree in the graph (i) is the same as that in the graph (iv),
these two graphs are not isomorphic.

18.4 Connectivity

Going from one place to another in a graph is accomplished by going from one vertex to
another along a sequence of adjacent edges. Certain types of sequences of adjacent

= ( , )  
  

  

 

= ( , )   

 

  

 

 

Fig. 18.7 Graphs for Example 18.5.
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vertices and edges are of special importance, such as those that do not have a repeated
edge or a repeated vertex and those that start and end at the same vertex. It is of great
importance to note that there is considerable variation of terminology concerning the
concepts regarding connectivity, as the terminology used in graph theory has not been
standardized.

A walk is a finite nonempty sequence of alternating vertices and edges of the graph,
that is, it is any route through a graph from vertex to vertex along edges. Note that a walk
can travel over any edge and any vertex any number of times, and the length of a walk is
simply the number of edges passed in that walk. A closed walk is when the starting vertex
is the same as the ending vertex; otherwise, it is an open walk. If a graph does not have
any parallel edges, then any walk in the graph is uniquely determined by its sequence of
vertices.

A trail is a walk that does not pass over the same edge twice, that is, it does not contain
a repeated edge. A trail might visit the same vertex twice, but only if it comes and goes
from a different edge each time. A path is a trail that does not include any vertex twice.

( i)  

  

( iv)  

  

( iii )  

  

( ii )  

  

Fig. 18.8 Graphs for Example 18.6.

Table 18.2 Degrees of all vertices for Example 18.6.

Graphs Degree of vertex u Degree of vertex v

(i)
(ii)
(iii)
(iv)

2
3
4
2

2
1
0
2
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A cycle is a path (closed trail) that begins and ends on the same vertex and no other vertices
are repeated. A circuit is a closed trail that begins and ends on the same vertex and does
not contain a repeated edge but may have repeated vertices. Table 18.3 summarizes the
relevant requirements for various connectivities.

Note that for simple graphs, it is unambiguous to specify a walk by naming only the
vertices that it crosses or giving a sequence of edges, but for pseudographs and multi-
graphs, the edges must be specified because there might be multiple edges connecting
vertices. For digraphs, walks can travel edges only in the direction of the arrows.

Example 18.7
Consider the graph shown in Fig. 18.9 and identify the following connectivities:
(a) abcefcbd.
(b) abcefcd.
(c) abcefcdba:
(d) bcefcdb.

Solution
(a) It is a walk of length 7, but it is not a trail, nor is it a path.
(b) It is a trail, but it is not a path.

Table 18.3 Requirements for various connectivities.

Repeated edge? Repeated vertex? Starts and ends at the same point?

Walk Allowed Allowed Allowed
Trail No Allowed Allowed
Path No No No
Cycle No No Yes
Circuit No Allowed Yes

Fig. 18.9 Graph for Example 18.7.
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(c) It is a closed walk, but it is not a circuit.
(d) It is a circuit, but it is not a cycle.

A graph is connected if there is a walk between every two distinct vertices of the graph;
otherwise, it is disconnected. The length of a walk between any two distinct vertices of a
connected graph with n vertices is at most n � 1.

If G is a connected graph with n vertices v1; v2; :::; vn, and has the adjacency matrix
A, then aij of the matrixAk,with 1 � k � n � 1, is the number of walks of length k from
vertex vi to vertex vj. The graph G is connected if and only if the following has only
nonzero entries.

Xn�1

k¼ 1

Ak:

The length of the shortest walk between the vertices vi andvj is the smallest l such that
there is at least one walk of length l from vi to vj. We can find the length l by computing
successively A, A2, A3, ..., until we find the smallest positive integer l such that the aij
entry of Al is not 0.

Example 18.8
Show the graph shown in Fig. 18.10 is connected.

Solution
Noting n ¼ 4, the adjacency matrix A of the graph is as follows:

A ¼

0
BBBBB@

0 1 1 0

1 0 2 0

1 2 0 1

0 0 1 0

1
CCCCCA
:

Fig. 18.10 Graph for Example 18.8.
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Obviously, there are zero entries in A, as they reflect there are no loops at the
vertices a, b, c, or d, nor are there any lines between a and d, or b and d. We there-
fore determine A2 as follows:

A2 ¼

0
BBBBB@

2 2 2 1

2 5 1 2

2 1 6 0

1 2 0 1

1
CCCCCA
:

There are 2-stage links (walks of length 2) between any two vertices, except
between the vertices c and d. For instance, there are exactly five different 2-
stage links between the vertex b and itself, which are as follows: (i) from b to c
and c to b using the upper link exclusively, (ii) from b to c and c to b using the lower
link exclusively, (iii) from b to c using the upper link and c to b using the lower
link, (iv) from b to c using the lower link and c to b using the upper link, and
(v) from b to a and from a to b using the same link. By adding A and A2, we
get the following matrix:

AþA2 ¼

0
BBBBB@

0 1 1 0

1 0 2 0

1 2 0 1

0 0 1 0

1
CCCCCA

þ

0
BBBBB@

2 2 2 1

2 5 1 2

2 1 6 0

1 2 0 1

1
CCCCCA

¼

0
BBBBB@

2 3 3 1

3 5 3 2

3 3 6 1

1 2 1 1

1
CCCCCA
:

Because the sum has only nonzero entries, it shows that the graph is connected
and the length of shortest walk between some vertices is 1 and between some
other vertices is 2, and thus every vertex can be connected to any other vertex.

18.5 Euler Circuits and Hamilton Circuits

An Euler circuit for the connected graphG is a sequence of adjacent vertices and edges in
G that has at least one edge, starts and ends at the same vertex, uses every vertex in G at
least once, and uses every edge of G exactly once. A graph G has an Euler circuit if and
only if G is connected and the degree of every vertex is even.
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Example 18.9
Determine if each of the graphs shown in Fig. 18.11 has an Euler circuit.

Solution
(a) The graph in Fig. 18.11a does not have an Euler circuit, as not every vertex of

the graph has an even degree.
(b) The graph in Fig. 18.11b has an Euler circuit, for every vertex has an even de-

gree. However, not every circuit in the graph is an Euler circuit. For instance,
the circuit abcdefghfa is not an Euler circuit, but abcdefghfadbea is an Euler circuit.

A Hamilton circuit for a graph G is a sequence of adjacent vertices and distinct edges in
which every vertex of G appears exactly once, except for the first and the last, which are
the same. There is no test to determine if a simple graph has a Hamilton circuit. How-
ever, there are sufficient conditions for the existence of Hamilton circuits that depend on
the degrees of vertices of being sufficiently large.

SupposeG is a simple graph with n � 3 vertices.G has a Hamilton circuit, as stated by
Dirac’s theorem, if the degree of every vertex in G is at least n2, or as stated by Ore’s the-
orem, if deg ðuÞ þ degðvÞ � n for every pair of nonadjacent vertices u and v.

Example 18.10
Determine if each of the graphs shown in Fig. 18.12 has a Hamilton circuit.

Solution
(a) In Fig. 18.12a, we have n ¼ 5. Dirac’s theorem does not apply, as there is a

vertex of degree 2 < 5
2, and Ore’s theorem does not apply either, for there are

two nonadjacent vertices of degree 2, so the sum of their degrees is less than 5.
However, the circuit acdbea is a Hamilton circuit. This reflects the fact that
neither of the sufficient conditions for the existence of a Hamilton circuit
given in these theorems is necessary.

(a) (b)

ℎ

Fig. 18.11 Graphs for Example 18.9.
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(b) Noting n ¼ 5 in Fig. 18.12b, all the vertex degrees are either 3 > 5
2 or 4 > 5

2,
and the sum of the degrees for every pair of nonadjacent vertices is greater
than or equal to 5, both Dirac’s theorem and Ore’s theorem then guarantee
the existence of a Hamilton circuit.

18.6 Shortest-Path Problem

Many problems can be modeled using graphs with weights associated to their edges. In
this context, weights may mean distances, time periods, levels of risk, costs, or any other
criterion of interest. Noting the weight of a path in a weighted graph is the sum of the
weights of the edges along the path, the shortest-path problem is then about finding
the path of minimum weight from one specified vertex to another vertex of interest.
The minimum weight of interest in a graph may thus be the shortest distance, the quick-
est, the least risk, or the lowest cost. The applications of such problems are numerous,
such as routing of phone calls and the Internet packets in telecommunication networks,
transport and storage of raw materials and distribution of finished goods across a country,
and air travel in the national/global aviation transportation system.

There are several algorithms that find a shortest path between any two vertices in a
weighted graph. One such algorithm is known as a brute-force approach, by which every
path between the two vertices of interest is examined. However, when there exists a large
number of edges in the graph, such an approach is extremely impractical and seemingly
impossible.

Our focus here is on Dijkstra’s algorithm, which solves the shortest-path problem in
undirected weighted graphs with positive weights along the edges. However, it is easy to
adapt it to solve the shortest-path problem in directed weighted graphs. Note that the

(b)(a)

Fig. 18.12 Graphs for Example 18.10.
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correctness of Dijkstra’s algorithm can be shown by mathematical induction. This algo-
rithm allows to find the length of the shortest path from the starting vertex to all other
vertices, and not just to the ending vertex. Dijkstra’s algorithm is a greedy algorithm: it
seeks to find the global optimum (i.e., the shortest path) by making locally optimal choices
(edges with minimum weights) at each stage of the algorithm. Dijkstra’s algorithm uses
O
�
n2
�
operations (additions and comparisons) to find the length of a shortest path be-

tween two vertices in a connected, simple, undirected, weighted graph with n vertices.
We assume the starting vertex is a and the ending vertex is z, and the goal is to find

the shortest path between a and z in the graphG. The algorithm works outward from the
vertex a, adding vertices and edges one by one to construct a tree T . The algorithm is
based on an iterative procedure, and a labeling is carried out at each iteration. At each
iteration, the only vertices in G that are candidates to join T are those that are adjacent
to at least one vertex of T .

Each vertex u of G is given a label LðuÞ, which indicates the best estimate of the
length of the shortest path from a to u. Initially, we label a with zero, denoted by LðaÞ ¼
0, and all other vertices, such as u, with N, denoted by LðuÞ ¼ N, a number greater
than the sum of the weights of all the edges of G. After each iteration, the values of
LðuÞ are changed and eventually become the actual lengths of the shortest paths from
a to u. Therefore when the iteration procedure terminates, LðzÞ is the length of the
shortest path from a to z.

We now highlight the steps of the algorithm. We maintain two sets of vertices: one
set, denoted by V, contains vertices already visited and included in the tree T , the other
set, denoted by X, contains vertices either not yet visited or already visited. In either case,
they are not included in the tree T . Initially, V includes the vertex a and X includes all
other vertices in the graph. Note that the only vertices from X that are candidates to join
V, the so-called candidate vertices, are those that are adjacent to at least one vertex in V .
Of the candidate vertices, the one that is chosen to be added toV is the one for which the
length of the shortest path to it from a is a minimum among all the candidate vertices.
Each time a vertex is added to V, it is removed from the set of candidate vertices and
the vertices adjacent to it are added to the set of candidate vertices if they are not already
in the set of candidate vertices or in the set V .

Assuming the vertex v is the most recently vertex added to V , the only candidate
vertices for which a shorter path from a might be found are those that are adjacent to
v. The reason lies in the fact that the length of the path from a to v was a minimum among
all the paths from a to vertices in what was then the candidate vertices. To this effect, after
each addition of a vertex v to V , each candidate vertex u adjacent to v is examined.
Noting that wðu; vÞ is the weight of the edge connecting u and v, the current value
of LðuÞ and the value of LðvÞ þ wðu; vÞ are compared. If LðvÞ þ wðu; vÞ < LðuÞ, then
LðuÞ is changed to LðvÞ þ wðu; vÞ. After finding a vertex among the candidate vertices,
which has the smallest label, the vertex is added to the set V . This procedure is iterated by
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successively adding vertices to the set V until z is added. When z is added, its label, LðzÞ,
is then the length of the shortest path.

Example 18.11
Use Dijkstra’s algorithm to find the length of the shortest path between the
vertices a and h in the weighted graph shown in Fig. 18.13 (Step 0).

Solution
The steps used by Dijkstra’s algorithm to find the shortest path between a and h are
summarized in Table 18.4 and shown in Fig. 18.13, where the number next to a
line connecting two adjacent vertices represents the length between them, and the
length from a to each vertex is in a square next to the vertex. We find the shortest
path from a to z is a; c; d; e; g; h; with length 32.

Exercises
(18.1)
Consider the undirected graph G in Fig. 18.14.
(a) Determine the degree of each vertex.
(b) List all its subgraphs and the total degree of each.

(18.2)
Determine which of the following walks in Fig. 18.15 are trails, paths, or circuits.
(a) v1e1v2e3v3e4v3e5v4
(b) e1e3e5e5e6
(c) v2v3v4v5v3v6v2
(d) v1

(18.3)
Determine the adjacency matrix for the following cases.
(a) The undirected graph shown in Fig. 18.16a
(b) The directed graph shown in Fig. 18.16b

(18.4)
(a) Show that the pair of graphs shown in Fig. 18.17a and 18.17b is not

isomorphic.
(b) Show that the pair of graphs shown in Fig. 18.17c and 18.17d is isomorphic.

(18.5)
Consider an undirected graph shown in Fig. 18.18. Is it bipartite? Explain your
answer.

(18.6)
Show the graph shown in Fig. 18.19 is connected.
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Fig. 18.13 Dijkstra’s algorithm for Example 18.11.
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Table 18.4 Steps for Example 18.11.

Step Vertices of path T Edges of path T
Candidate
vertices LðaÞ LðbÞ LðcÞ LðdÞ LðeÞ LðfÞ LðgÞ LðzÞ

0 0 N N N N N N N
1 fag B fb; cg 8 6
2 fa; cg ffa; cgg fb; d; eg 8 12 18
3 fa; c; bg ffa; cg; fa; bgg fd; eg 12 18
4 fa; c; b; dg ffa; cg; fa; bg; fc; dgg fe; f g 14 22
5 fa; c; b; d; eg ffa; cg; fa; bg; fc; dg; fd; egg ff ; gg 22 24
6 fa; c; b; d; e; f g ffa; cg; fa; bg; fc; dg; fd; eg; fd; f gg fg; zg 24 36
7 fa; c; b; d; e; f ; gg ffa; cg; fa; bg; fc; dg; fd; eg;

fd; f g; fe; ggg fzg 32

8 fa; c; b; d; e; f ; g; zg ffa; cg; fa; bg; fc; dg; fd; eg;
fd; f g; fe; gg; fg; zgg
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Fig. 18.14 Graphs for Exercise 18.1.

Fig. 18.15 Graph for Exercise 18.2.

(a) (b)

Fig. 18.16 Graphs for Exercise 18.3.
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(b)(a)

(d)(c)

Fig. 18.17 Graphs for Exercise 18.4.

ℎ

Fig. 18.18 Graph for Exercise 18.5.

Fig. 18.19 Graph for Exercise 18.6.
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(18.7)
(a) Does every symmetric zero-one matrix with zeros on its diagonal represent

the adjacency of a simple graph? Explain your answer.
(b) Determine the sum of the entries in a column of the incidence matrix for an

undirected graph.

(18.8)
Determine if any one of the following set of graphs has a Hamilton circuit.
(a) Complete graphs (mesh topology)
(b) Cycle graphs (ring topology)
(c) Wheel graphs (hybrid topology)

(18.9)
Determine if any one of the following graphs has an Euler circuit.
(a) Complete graphs (mesh topology)
(b) Cycle graphs (ring topology)
(c) Wheel graphs (hybrid topology)

(18.10)
Use Dijkstra’s algorithm to find the length of the shortest path between the
vertices a and f in the weighted graph shown in Fig. 18.20.

2

6

8

12

10

14

24

4

Fig. 18.20 Graphs for Exercise 18.10.
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Trees are the most important class of graphs. Trees in general can provide an overview of
the road map through which a deeper and more intuitive understanding of the goal can
be realized. Trees are modeling tools that are widely used to solve problems and construct
efficient algorithms in a variety of areas, such as sorting and searching, computing
numeric expressions, storing data, modeling hierarchical structures, and designing net-
works. Trees also have applications in the study of a wide variety of games, such as devel-
oping strategies and accommodating constraints in chess and counting games in
elimination tournaments.

19.1 Basic Definitions and Terminology

It is of paramount importance to note that tree terminology is not standardized. A tree is
defined as a connected undirected graph with no simple circuits. As a tree does not
contain loops or multiple edges, any tree is a simple graph. A tree has a simple path be-
tween any two of its vertices. A trivial tree is a graph consisting of a single vertex. A graph
is called a forest if and only if it is circuit free and not connected. All trees are assumed
to be finite (i.e., they have a finite number of vertices). A tree with n vertices has exactly
n� 1 edges and a connected graph with n vertices and n� 1 edges is a tree.

Example 19.1
Determine if the graphs shown in Fig. 19.1 are trees.

Solution
(a) Graph (a) is connected and has no simple circuits; therefore it is a tree.
(b) Graph (b) is circuit free but is not connected; therefore it is not a tree.
(c) Graph (c) is connected but has a simple circuit; therefore it is not a tree.
(d) Graph (d) is not connected and has a simple circuit; therefore it is not a tree.
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A rooted tree is a tree in which one vertex has been designated as the root, and every edge
is implicitly directed away from the root. The level or depth of a vertex in a rooted tree is
the number of edges along the unique path from the root to the vertex. The height of a
rooted tree is the maximum level of any vertex of the tree. A tree with exactly one vertex
has height zero. In summary, the height is a feature of a tree and the level is a feature of an
individual vertex.

A child of a vertex v in a rooted tree is a vertex that is the immediate successor of v on a
path away from the root. The parent of a vertex v in a rooted tree is a vertex that is the
immediate predecessor of v on the path to v away from the root. Note that a root is a
vertex with no parent but has at least a child. Two distinct vertices that are both children
of the same parent are called siblings. Given two distinct vertices v and w, if v lies on the
unique path between w and the root, then v is an ancestor of w and w is a descendant of v.
A vertex of a rooted tree is called a leaf if it has no children. Vertices that have children are
called internal vertices.

A subtree is a subgraph of the tree consisting of a vertex and its descendants and all
edges incident to these descendants (i.e., a subtree is a subgraph of a tree that is also a
tree). An ordered rooted tree is a rooted tree where the children of each internal vertex
are linearly ordered. The term rooted tree generally implies ordered rooted tree.

(a)

(c)

(b)

(d)

Fig. 19.1 Trees for Example 19.1.
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A rooted tree in which every node has at most m children is called an m-ary tree. An
m-ary tree of height h is balanced if its leaves lie at levels h� 1 or h (i.e., if its leaves lie on
adjacent levels). There are at most mh leaves in an m-ary tree of height h. A tree is called a
full m-ary tree if every internal vertex has exactly m children. A full m-ary tree with i in-
ternal vertices contains n ¼ miþ 1 vertices, e ¼ n� 1 edges, and l ¼ ððm�1Þnþ1Þ=m
leaves.

An m-ary tree with m ¼ 2 is called a binary tree. Binary trees are often used to store
information on a computer. The height of the tree determines how quickly information
can be retrieved. The height h of a binary tree with n vertices, which is a nonnegative
integer, is log2ðn þ1Þ � 1 � h � n � 1.

In an ordered binary tree, the children are denoted as the left child and the right child.
The convention is to regard the left child as the first child (the elder child) and the right
child as the second child (the younger child). The subtree at a left child u is the left subtree
rooted at u, and the subtree rooted at a right child v is the right subtree rooted at v.

Example 19.2
Identify the relevant tree terminology for the tree shown in Fig. 19.2.

Solution
The vertex a is the root of the tree and the height of the tree is 4. The vertices
fb; cg each have a level (or depth) of 1, the vertices fh; i; jg each have a level
of 3. The vertex d is a child to the vertex b, a sibling to the vertex e, and a parent
to the left child h and the right child i. The vertex b is an ancestor of the vertex h,
and the vertex h is a descendant of the vertex b. The vertices fa; b; d; h; c; g; jg
are called internal vertices. The vertices fe; i; k; l; f ; m; ng are called leaves. The
tree is a binary tree but not a full one. The vertices fa; b; d; h; c; jg each have
two children, but the vertex g has only one child. The left subtree rooted at

Fig. 19.2 Tree for Example 19.2.
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the vertex b consists of the vertices fb; d; e; h; i; k; lg, and the right subtree
rooted at the vertex c consists of the vertices fc; f ; g; j; m; ng. The subtree at
the vertex d is a balanced subtree as its leaves lie at levels 1 or 2, but the subtree
at the vertex b is not a balanced subtree because its leaves lie at levels 1, 2, or 3.

19.2 Tree Traversal

Ordered rooted trees can be used to store data or algebraic expressions involving
numbers, variables, and operations. The process of visiting every vertex of an ordered
rooted tree in a systematic way is called tree traversal. Trees are inherently recursive, as
every node can be considered the root of its subtree. The simplest mechanism for system-
atically visiting every node is also recursive. As binary trees are the most important class of
m-ary trees and have a wide range of applications, our focus here is on binary tree tra-
versals. There are three elegant recursively defined methods for traversing a nonempty
binary tree, which are as follows:
• In a preorder traversal, the parent node is processed before the children. The nodes are

visited in the order parent, left child, right child. In other words, a preorder traversal
algorithm recursively visits the root, traverses the left subtree, and then traverses the
right subtree. This process continues until the last subtree is traversed in preorder.

• In an inorder traversal, the left child is processed first. The nodes are visited in the
order left child, parent, right child. In other words, an inorder traversal algorithm
recursively traverses the left subtree, visits the root, and then traverses the right sub-
tree. This process continues until the last subtree is traversed in inorder.

• In a postorder traversal, the parent node is processed after the children. The nodes are
visited in the order left child, right child, parent. In other words, a postorder traversal
algorithm recursively traverses the left subtree, traverses the right subtree, and then
visit the root. This process continues until the last subtree is traversed in postorder.

Note that the names reflect the position that the parent node takes relative to the left and
right children. In a transversal method, we assume the left child is given precedence over
the right child.

Example 19.3
Give the output from traversing the binary tree shown in Fig. 19.3, using the
following methods:
(a) Preorder traversal.
(b) Inorder traversal.
(c) Postorder traversal.
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Solution
(a) Root node ðaÞ/ a’s left child ðbÞ/ b’s left child ðdÞ/ d’s left child ðhÞ/

b’s right child ðeÞ / a’s right child ðcÞ / c’s left child ð f Þ / c’s right child
ðgÞ. A preorder traversal thus visits the nodes in the order of a b d h e c f g.

(b) a’s left child’s left child’s left child ðhÞ/ h’s parent ðdÞ/ d’s parent ðbÞ/ b’s
right child ðeÞ/ b’s parent ðaÞ/ a’s right child’s left child ð f Þ/ f ’s parent
ðcÞ/ c’s right child ðgÞ. An inorder traversal thus visits the nodes in the order
of h d b e a f c g.

(c) a’s left child’s left child’s left child ðhÞ / h’s parent ðdÞ / d’s parent’s right
child ðeÞ/ e’s parent ðbÞ/ a’s right child’s left child ð f Þ/ f ’s parent’s right
child ðgÞ/ g’s parent ðcÞ/ c’s parent ðaÞ. A postorder traversal thus visits the
nodes in the order of h d e b f g c a.

An algebraic expression can be represented by a binary tree, where the internal vertices
represent operations, and the leaves represent the variables or numbers. The operators in
algebraic expressions have the following priorities from the highest to the lowest:
(i) exponentiation ð[Þ, (ii) multiplication ð *Þ and division ð =Þ, and (iii) addition ðþÞ
and subtraction ð � Þ. Parentheses representing arithmetic expressions can override the
precedence rules (i.e., parenthesized subexpressions have the highest priority).

There are three types of notations to evaluate an algebraic expressiondinfix form,
prefix form, and postfix formdwhere the prefixes pre-, in-, and post- indicate the loca-
tion of the operator with respect to the operands. They are as follows:
• Prefix notation is the form of an arithmetic expression obtained from a preorder

traversal of a binary tree representing the expression. For instance, to add a and b,
we have “þ ab” as a prefix expression: the operator as the parent precedes the two
operands. We evaluate an expression in prefix form by working from right to left.
Whenever an operation is performed, the result becomes a new operand.

• Infix notation is the form of an arithmetic expression obtained from an inorder
traversal of a binary tree representing the expression. For instance, to add a and b,

Fig. 19.3 Tree for Example 19.3.
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we have aþ b as an infix expression: the operator as the parent lies between the two
operands.

• Postfix notation is the form of an arithmetic expression obtained from a postorder
traversal of a binary tree representing the expression. For instance, to add a and b,
we have “abþ” as a postfix expression: the operator as the parent follows the two op-
erands. We evaluate an expression in postfix form by working from left to right.
Whenever an operation is performed, the result becomes a new operand.

Note that an expression in prefix notation or postfix notation is unambiguous, so no
parentheses are needed in such an expression.

Example 19.4
(a) Determine the value of the prefix expression þ � * 4 6 10 = [ 4 6 8.
(b) Determine the value of postfix expression 14 4 6 * � 4 [ 18 6 = þ.

Solution
(a) þ� * 4 6 10 = [ 4 6 8 ¼ þ � * 4 6 10= 4096 8 ¼

þ � * 4 6 10 512 ¼ þ � 24 10 512 ¼ þ 14 512 ¼ 526.
(b) 14 4 6 * � 4 [ 18 6 = þ ¼ 14 24 � 4 [ 18 6 = þ ¼

10 4 [ 18 6 = þ ¼ 10000 18 6 = þ ¼ 10000 3 þ ¼ 10; 003.

19.3 Spanning Trees

A spanning tree of a graph G is a subgraph of G that is a tree and contains every vertex of
G. Any two spanning trees for a graph have the same number of edges. Spanning trees are
useful in visiting the vertices of a graph. Every connected simple graph has a spanning tree
with a path between any two vertices. As an example, Fig. 19.4 shows all spanning trees
for a graph with four vertices that are all connected to one another (a graph of a square
with its two diagonals drawn). We now discuss two algorithms to find a spanning tree in a
connected graph, namely, the depth-first search and the breadth-first search.

An outline of the recursive depth-first search (DFS) algorithm, also known as the
backtracking algorithm consists of the following steps:
(i) Choose a vertex of the graph as the root.
(ii) Form a path starting at this vertex by successively adding vertices and edges, where

each new edge is incident with the last vertex in the path and a vertex not already
visited.

(iii) Continue the process by adding vertices and edges to the path.
(iv) Check if the path goes through all vertices:

• If it does, then the tree consisting of this path is a spanning tree.
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• If it does not, then more vertices and edges must be added by moving back to
the next to the last vertex in the path to form a new path starting at this vertex
passing through vertices not already visited; if not, move back another vertex in
the path, and try again. Repeat this procedure until all vertices have been visited.

In summary, each stage of the DFS traversal seeks to move to an unvisited neighbor of
the most recently visited vertex, and backtracks only if there is none available.

An outline of the breadth-first search (BFS) algorithm consists of the following steps:
(i) Choose a vertex of the graph as the root, and mark it as visited.
(ii) Visit all unvisited vertices adjacent to this vertex, the new vertices added at this stage

become the vertices at level 1.
(iii) Visit all unvisited vertices adjacent to each of them, this in turn produces the vertices

at level 2.
(iv) Follow the same procedure until all the vertices in the tree have been visited.

In summary, after the BFS traversal visits a vertex, all of the previously unvisited
neighbors of that vertex go to the queue, then the transversal removes from the queue
whatever vertex is at the front of the queue and visits that vertex.

(a)

(b)

Fig. 19.4 (a) Graph, (b) Spanning trees.
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Example 19.5
Find a spanning tree for the graph shown in Fig. 19.5a, using the following
algorithms:
(a) DFS algorithm.
(b) BFS algorithm.

Solution
(a) The steps of the DFS algorithm, as shown in Fig. 19.5b, are as follows:

(1) Out of all vertices, we choose a to start the process.
(2) Out of the vertices adjacent to a (i.e., b and d), neither has been visited yet;

we choose b.
(3) Out of the vertices adjacent to b (i.e., a, c, and f ), a has been visited; we

choose c.
(4) Out of the vertices adjacent to c (i.e., b and f ), b has been visited; we must

then choose f .
(5) Out of the vertices adjacent to f (i.e., b, c, e, and i), b and c have been

visited; we choose e.
(6) Out of the vertices adjacent to e (i.e., d, f , and h), f has been visited; we

choose d.
(7) Out of the vertices adjacent to d (i.e., a, e, g, and h), a and e have been

visited; we choose g.
(8) Out of the vertices adjacent to g (i.e., d and h), d has been visited; we must

then choose h.
(9) We then backtrack to f . Out of the vertices adjacent to f (i.e., b, c, e, and

i), i has not been visited; we must then choose i.
(b) The steps of the BFS algorithm, as shown in Fig. 19.5c, are as follows:

(1) Out of all vertices, we choose a to start the process.
(2) Out of the vertices adjacent to a (i.e., b and d), we must visit them both;

we first choose b.
(3) Out of the vertices adjacent to a (i.e., b and d), b has been visited; we must

then choose d.
(4) Out of the vertices adjacent to b (i.e., a, c, and f ), a has been visited; we

must visit c and f ; we choose c.
(5) Out of the vertices adjacent to b (i.e., a, c, and f ), a and c have been visited;

we must then choose f .
(6) Out of the vertices adjacent to d (i.e., a; e, g, and h), a has been visited; we

must visit e, g, and h; we choose e.
(7) Out of the vertices adjacent to d (i.e., a; e, g, and h), a and e have been

visited; we must visit g and h; we choose g.
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(a) 

(b)

Fig. 19.5 Graph and trees for Example 19.5: (a) Graph; (b) Spanning tree using DFS algorithm; and (c)
Spanning tree using BFS algorithm.
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(8) Out of the vertices adjacent to d (i.e., a; e, g, and h), a, e, and g have been
visited; we must then choose h.

(9) Out of the vertices adjacent to f (i.e., b, c, e, and i), i has not been visited;
we must then choose i.

19.4 Minimum Spanning Trees

A minimum spanning tree in a connected weighted graph is a spanning tree for which the
sum of weights of its edges is the least compared to all other spanning trees for the graph.
This problem arises in a wide range of important applications, such as designing physical
systems where the system components are geographically dispersed or distanced. Some
specific applications may include (i) construction of a pipeline/road network connecting
a significant number of places to reduce the total cost, (ii) construction of a digital com-
puter system composing of high-frequency circuitry to reduce delay effects, and (iii)
design of a backbone network of high-capacity links to support high-throughput, low-
delay Internet traffic.

(c)

Fig. 19.5 cont’d
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There are many ways to find a spanning tree for a graph. One such method is the
brute force approach, in that all spanning trees for the graph are listed, the total weight
of each is computed, and one for which this total is a minimum is chosen. Although by
the well-ordering principle for the integers, the existence of such a minimum total is
guaranteed, this solution is extremely inefficient and often becomes simply impossible
to find. For instance, a complete graph with n vertices has nn�2 spanning trees.

We now discuss two algorithms: Prim’s algorithm, which was first discovered by Jar-
nik and later made known by Prim, and Kruskal’s algorithm, to construct a minimum
spanning tree in a connected graph, where each adds an edge with the smallest weight
to the current configuration based on only local information. They both guarantee to
produce a minimum spanning tree. These two algorithms employ a greedy algorithm
to make an optimal choice at each step, nevertheless, they produce optimal solutions.
Note that a connected weighted graph may have more than one minimal spanning
tree. Nonetheless, they all weigh the same.

An outline of Prim’s algorithm consists of the following steps:
(i) Pick a vertex.
(ii) Choose an edge with the least weight connected to the selected vertex.
(iii) Add successively to the tree edges of minimum weight that are incident to a vertex

already in the tree while avoiding to make a simple circuit with the edges already in
the tree.

(iv) Repeat step (iii) until n� 1 edges have been added, where n is the number of
vertices in the graph.

An outline of Kruskal’s algorithm consists of the following steps:
(i) Arrange the edges in nondecreasing order of weights.
(ii) Choose an edge with the least weight.
(iii) Add an edge of the least weight while avoiding to make a simple circuit with the

edges already in the tree.
(iv) Repeat step (iii) until n� 1 edges have been added, where n is the number of

vertices in the graph.
Note that in Prim’s algorithm, edges become eligible for inclusion in the tree gradually,
whereas in Kruskal’s algorithm, the eligible edges are known from the start.

Example 19.6
Find a minimum spanning tree for the graph shown in Fig. 19.6a, using the
following algorithms:
(a) Prim’s algorithm.
(b) Kruskal’s algorithm.

Solution
There are two minimum spanning trees as shown in Figs. 19.6b and c.
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(a) Starting at vertex a, edges are added in one of the following two orders:
(i) fa; cg; fa; bg; fc; dg; fd; f g; fd; eg.
(ii) fa; cg; fb; cg; fc; dg; fd; f g; fd; eg.

(b) Edges are added in one of the following two orders:
(i) fd; f g; fa; cg; fa; bg; fc; dg; fd; eg.
(ii) fd; f g; fa; cg; fb; cg; fc; dg; fd; eg.

19.5 Applications of Trees

Applications of trees are numerous. Here we just introduce three diverse problems that
can be studied and solved using trees, namely the magic square of order 3, a best-of-seven
game series, and the Huffman coding.

A magic square is an n� n array of distinct positive integers so that the sum of the
numbers is the same in each row, column, and main diagonal. Note that if the array in-
cludes just the positive integers 1; 2; 3; .; n2, the magic square is said to be normal.
The integer n (where n is the number of integers along one side) is the order of the
normal magic square and the constant sum, called the magic sum, is as follows:

S ¼ n
�
n2 þ 1

�
2

:

Any magic square can be rotated and reflected to produce eight different squares. In
magic square theory, all of these are generally deemed equivalent, and the eight such

(a)

(c)(b)

Fig. 19.6 Graph for Example 19.6: (a) Graph; (b) Minimum spanning tree using Prim’s algorithm; and
(c) Minimum spanning tree using Kruskal’s algorithm.
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squares are said to make up a single equivalent class. Equivalent squares are not considered
as distinct. Note that the number of distinct magic squares (excluding those obtained
by rotation and reflection) of order n ¼ 1; 2; 3; 4; and 5 are 1; 0; 1; 880; and
275; 305; 224, respectively, while noting that the number of magic squares of order
n � 6 is not exactly known, though it can be approximated.

Example 19.7
Consider the smallest nontrivial case of a normal magic square (i.e., n ¼ 3),
where the sum must be 15. Identify the locations of the numbers 1, 2, 3, 4, 5,
6, 7, 8, and 9 in such a magic square.

Solution
Fig. 19.7 shows how a tree is built in order to find out which number goes where.
We start with 9, as it is the largest integer among all and thus significantly restrict
the locations of the other eight numbers. By considering symmetric positions
equivalent, we only need to consider three possible positions for 9, namely, at
the center, in a corner, and a position where it is not at the center or in a corner.
We now examine each of these three options.

If 9 is at the center, then we cannot put 8 in any one of the remaining eight
positions, and thus cannot go any further to place other numbers in the square. If 9
is in a corner, then there is only one position that 8 can go, and following that,
there is only one position that 7 can go. With 9, 8, and 7 in these positions, we
cannot put 6 in any one of the remaining six positions, and thus we cannot go
any further to place other numbers in the square. To this effect, we must put 9
in a position where it is not at the center or in a corner.

With 9 in its right position, there are two distinct positions for 8, and for each,
there is only one position for 7. We thus have two distinct options, where in each
9, 8, and 7 have already been placed. For each of these two options, there are two
ways to place 6. We thus end up with four possible options, where in each option
we have placed 9, 8, 7, and 6. In each of these four options, there is only one way
to put the remaining five numbers 5, 4, 3, 2, and 1. We then check every option
to find out if the sum of every row, every column, and every diagonal is 15. We
notice that in three of these four options, there is one diagonal whose sum is not
15, thus being unacceptable. For the only remaining option, we see the sum
requirement is fully met.

In order to reduce the storage requirements in digital systems as well as the transmission
time requirements in digital networks, data must be encoded so fewer bits are used to
represent a data symbol. For efficient coding (i.e., effective data compression), data sym-
bols that occur more frequently should be encoded using shorter bit sequences, and
longer bit sequences should be used to encode rarely occurring data symbols. Therefore
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Fig. 19.7 Tree diagram for Example 19.7.
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data symbols are encoded using varying numbers of bits. When the statistics regarding
data symbols are available, the Huffman code is the optimum algorithm. The Huffman
code is a prefix-free (instantaneous) code, where no codeword is a prefix of another code-
word, as such a Huffman code can be represented using a rooted binary tree. It is impor-
tant to note that the Huffman code is widely used in compression of image files.

The Huffman coding algorithm begins with a forest of trees, each consisting of a sin-
gle vertex, where each vertex shows a data symbol and its probability of occurrence. It is
essential to put the vertices in the order of increasing probabilities, that is, the first vertex
indicates the least likely symbol, and the last vertex reflects the most likely symbol. At
each step, we combine two trees with the least total probability into a single tree by intro-
ducing a new root and placing the tree with larger weight as one of its subtrees and the
tree with smaller weight as the other subtree. Moreover, the sum of the two probabilities
associated with the two subtrees is assigned as the total probability of the tree. If necessary,
reorder the probabilities of trees, including the newly formed one, so they are still in
increasing order. There are many ways to come up with a Huffman code for a given
set of data symbols and their probabilities of occurrences. However, they will all have
the same average number of bits per symbol for a given set of data symbols.

Example 19.8
Use Huffman coding to encode seven symbols (A; B; C; D; E; F; and G)
whose probabilities of occurrences are as follows: A; 0:02; B; 0:03; C; 0:05;
D; 0:10; E; 0:15; F; 0:25; and G; 0:40. Determine the average number of bits
used to encode a symbol.

Solution
The steps, as shown in Fig. 19.8, are as follows:
(1) Put the vertices in increasing order of their probabilities.
(2) Combine the two least likely trees (vertices) in Step 1, B and A, where they

are labeled by 1 and 0, respectively.
(3) Combine the two least likely trees, vertex C and the tree just formed in Step

2, whereC is then labeled by a 1 and the subtree in Step 2 by a 0. Hence B and
A are labeled as 01 and 00, respectively.

(4) Combine the two least likely trees, vertex D and the tree just formed in Step
3, and then reorder the probabilities to have them all in an increasing order,
where D is then labeled by a 1 and the subtree in Step 3 by a 0. Hence C, B,
and A are labeled as 01, 001, and 000, respectively.

(5) Combine the two least likely trees, vertex E and the tree just formed in Step 4,
and then reorder the probabilities to have them all in an increasing order,
where E is then labeled by a 1 and the subtree in Step 4 by a 0. Hence D,
C, B, and A are labeled as 01, 001, 0001, and 0000, respectively.
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Fig. 19.8 Huffman algorithm for Example 19.8.
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(6) Combine the two least likely trees, vertex F and the tree just formed in
Step 5, and then reorder the probabilities to have them all in an increasing
order, where F is then labeled by a 1 and the subtree in Step 5 by a 0. Hence
E, D, C, B, and A are labeled as 01, 001, 0001, 00001, and 00000,
respectively.

(7) Combine the two least likely trees, vertex G and the tree just formed in Step
6, whereG is then labeled by a 1 and the subtree in Step 6 by a 0. Hence F, E,
D, C, B, and A are labeled as 01, 001, 0001, 00001, 000001, and 000000,
respectively.

(8) Present the Huffman code, whose average number of bits per symbol is
2:3 ð¼ 0:02 � 6 þ 0:03 � 6 þ 0:05 � 5 þ 0:1 � 4 þ 0:15 � 3 þ 0:25�
2 þ 0:40 � 1Þ.

Another important application of trees is to keep systematic track of all possibilities in sce-
narios in which events occur in order, but in a finite number of ways. There are some
counting problems that cannot be directly solved using basic rules of counting. For
instance, certain problems that require trees with asymmetric structures to solve cannot
easily use the counting rules, as there are some conditions in these problems that must
be met.

Example 19.9
In a sports championship, the eastern and western teams play against one another
in a best-of-seven series, that is, the first team that wins four games wins the series
and becomes the champion. Identify the tree highlighting all possibilities in which
a champion can be determined and determine the number of ways that the series
can end.

Solution
We use the tree diagram to find the number of ways that the championship can
occur, noting that the series can end in four games, five games, six games, or seven
games. The subtree if the first game is won by the eastern team and the subtree if
the first game is won by the western team are identical in terms of structure. As
shown in Fig. 19.9, a right branch indicates a win by the eastern team, and a
left branch indicates a win by the western team. No further branching occurs
when a team wins four games altogether. The total number of ways that a cham-
pion is determined is 70 ð¼ 2 �35Þ.
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Example 19.10
Three high school teachersda 9th-grade teacher, an 11th-grade teacher, and a
12th-grade teacherdare to be chosen from among four teachers A; B; C; and
D. Due to a number of reasons, such as their educational backgrounds, personal
interests, and teaching experiences, A cannot be a 12th-grade teacher, and either
C or D must be a 9th-grade teacher. How many ways can the teachers be chosen?

Solution
The most practical way to determine all possible choices is to build a tree diagram.
Note that at each level the two constraints imposed must be respected. Depending
on the order of the selection, there are 6 ð ¼ 3!Þ different trees to help find all
possible ways, Fig. 19.10 shows two of such trees. In any event, there are eight
different ways (paths from the root to the leaves) to select the three teachers.
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Fig. 19.9 Tree diagram for Example 19.9.
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Exercises
(19.1)
Which of the graphs shown in Fig. 19.11 are trees?

(19.2)
Answer the following questions about the rooted tree shown in Fig. 19.12.
(a) Which vertex is the root?
(b) Which vertices are internal?
(c) Which vertices are leaves?
(d) Which vertices are children of g?
(e) Which vertex is the parent of g?
(f) Which vertices are the siblings of g?
(g) Which vertices are ancestors of g?
(h) Which vertices are descendants of g?

Start

Grade-ninth

teacher

Grade-twelfth

teacher

Grade-eleventh

teacher

Start

Grade-twelfth

teacher

Grade-eleventh

teacher

Grade-ninth

teacher

Fig. 19.10 Tree diagrams for Example 19.10.

(c) (d)(a) (b)

(f) (g) (e) (h)

Fig. 19.11 Trees for Exercise 19.1.
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(19.3)
Consider a full binary tree. Answer the following questions:
(a) Assuming there are 31 vertices, how many edges does the tree have?
(b) Assuming there are 16 leaves, how many vertices does the tree have?
(c) Assuming there are 15 internal vertices, how many leaves does the tree have?

(19.4)
(a) Determine the value of the prefix expression * þ 3 þ 3 [ 3 þ 3 3 3.
(b) Determine the value of postfix expression 3 2 * 2[5 3 � 8 4= * �.

(19.5)
Give the output from traversing the binary tree shown in Fig. 19.13, using the
following methods:
(a) Preorder traversal.
(b) Inorder traversal.
(c) Postorder traversal.

Fig. 19.12 Tree for Exercise 19.2.
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(19.6)
Find a spanning tree for the graph shown in Fig. 19.14, using the following
algorithms:
(a) DFS algorithm.
(b) BFS algorithm.

(19.7)
Find a minimum spanning tree for the graph shown in Fig. 19.15, using the
following algorithms:
(a) Prim’s algorithm.
(b) Kruskal’s algorithm.

(19.8)
Find a minimum spanning tree for the graph shown in Fig. 19.16, using the
following algorithms:
(a) Prim’s algorithm.
(b) Kruskal’s algorithm.

Fig. 19.13 Tree for Exercise19.5.

Fig. 19.14 Graph for Exercise 19.6.
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(19.9)
Use Huffman coding to encode five symbols A; B; C; D, and E whose proba-
bilities of occurrences are as follows: A; 0:7; B; 0:1; C; 0:1; D; 0:05; and
E; 0:05. Determine the average number of bits used to encode a symbol.

(19.10)
Two teams are to play a soccer championship. The first team to win two matches
in a row or wins a total of three matches wins the championship. Find the number
of ways the tournament can occur.
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Fig. 19.15 Graph for Exercise 19.7.

Fig. 19.16 Graph for Exercise 19.8.
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CHAPTER 20

Finite-State Machines
Contents
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20.2 Finite-State Machines with No Output 375
20.3 Finite-State Machines with Output 382

The phrase finite-state machine refers to a finite-state model. It means the machine has to
transition from one state to another so as to perform the required action. Finite-state ma-
chines can be used to model various problems in a number of disciplines, including math-
ematics, artificial intelligence, video games, and linguistics. For instance, they are the
design plan of numerous electronic control devices from smart wristwatches to electric
cars. This chapter briefly discusses the basics of finite-state machines.

20.1 Types of Finite-State Machines

A finite-state machine is a mathematical model of computation based on a hypothetical
machine made of different states that can be used to simulate sequential logic in order to
represent and control execution flow. Only one single state of a finite-state machine can
be active at a given time. Finite-state machines accomplishing specific tasks are in essence
computer programming, and there is no specific method for carrying them out, as there
are many machines that can accomplish the same task.

In the context of finite-state machines, a string is a finite sequence of elements; an
alphabet is a finite, nonempty set that contains elements used to form strings; the length
of a string is the number of elements that make up the string; and a language is a subset of
the set of all strings over an alphabet. As a simple example to illustrate some basic terms,
Fig. 20.1 shows a finite-state machine with two final states, namely, “error” and “cor-
rect.” This machine can parse the string “yes,” whose length is 3 while noting that the
alphabet consists of 26 letters in the English language.

A finite-state machine has a set of finite states, including a starting state, an input
alphabet, and a transition function by which a next state is assigned to every pair of a state
and an input. Due to its finite states, a finite-state machine has a limited memory. A
finite-state machine is an abstract machine that can be in exactly one of a finite number
of states at any given time, where a state changes to another in response to some input.
Fig. 20.2 shows the finite-state machines discussed in this chapter.
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A finite-state machine with no output, also known as a finite-state automaton (FSA),
models the changes of states within a system until it achieves one of a collection of desired
states. The finite-state automata (the plural of automaton) do not produce output, but
they have a set of final states. They recognize input strings that take the starting state
to a final state. These machines can be used, for instance, to model ATMs, traffic lights,
parity check bits, subway turnstiles, and DVD players. They are also known as language
recognizers and thus play a central role in the design and construction of compilers for
programming languages. Finite-state automata are categorized into deterministic FSA
and nondeterministic FSA.

In a finite-state machine with output, also referred to as a finite-state transducer (FST),
each transition has an associated output that either provides some information about the
state of the machine or outputs a stream of information as the machine is intended to pro-
duce. In a finite-state machine, there are therefore no final states. These machines can be
used, for instance, to model vending machines, delay devices, binary adders, pattern
finders, network protocols, language and speech recognizers, and spelling and grammar
checking. FSTs are categorized into Moore machines and Mealy machines.

correct 

Y found 

start 

1st letter = Y 

error 

E found S found 

2nd letter = E 3rd letter = S 

1st letter ≠ Y 

2nd letter ≠ E 

3rd letter ≠ S 

Figure 20.1 A finite-state machine.
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Finite-State Automata  
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Finite-State Automata  
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Machines 

Finite-State Machines with No Output 

(Finite-State Automata) 

Finite-State Machines with Output 

(Finite-State Transducers) 

Finite-State Machines 

Figure 20.2 Finite-state machines.
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Finite-state machines are represented using either state tables, which are easier to pre-
sent, or state diagrams (directed graphs with labeled edges), which are easier to under-
stand. In a state diagram for a finite-state machine, the initial state is indicated by
means of an arrow that terminates at the initial state but has no initial vertex. Note
that every state has a transition for every input. A transition may result in a loop back
to the same state. If from some state an input is impossible, then no transition correspond-
ing to that input should be added to the state diagram. A state diagram contains transitions
for all possible inputs at each state.

20.2 Finite-State Machines with No Output

A finite-state machine with no output, referred to as an FSA, is an abstract model of a
machine that accepts input values but does not produce output values, yet it has a set of
final states. In a state diagram for an FSA, the final states are shown by using double
circles.

There are two types of finite-state automata: one is the deterministic FSA, where for
each pair of state and input values there is a unique next state given by the transition func-
tion; the other is the nondeterministic FSA, in which there is a list of possible next states
for each pair of input value and state. The adjective deterministic is often used to empha-
size that an FSA is not nondeterministic.

A deterministic FSA M ¼ ðS; I ; f ; s0; FÞ is a model that consists of the following
five characterizing parts:
• A finite set S of states.
• A finite set I of input alphabet.
• A transition function f : S � I / S, which maps state-input pairs to states.
• An initial state (or start state) s0:
• A subset F of S consisting of final states (or accepting states).

The transition function specifies the actions of the system. For instance, if a system
with half a dozen states is in state s3, and the system receives the input i where
f ðs3; iÞ ¼ s4, then the system will change to s4. Note that state changes occur as a result
of a sequence of input alphabets. When the input string consisting of single elements
causes an FSA to land in a final state, the string is said to be recognized or accepted; other-
wise, it is rejected by the automaton.

Two finite-state automata are called equivalent if they recognize the same language.
However, two equivalent finite-state automata may have different numbers of states. As
the memory space required to store an FSA with n states is approximately proportional
to n2, it is thus important to construct an FSA with the fewest possible states among all
finite-state automata equivalent to a given FSA. In addition, simplifying an FSA to have
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fewer states make it easier to write a computer algorithm based on it. In general, simpli-
fication of an FSA involves identifying equivalent states that can be combined while not
affecting the action of the FSA on input strings. In summary, an equivalence relation on
the set of states of the automaton is defined, and a new automaton whose states are the
equivalence classes of the relation is formed.

Example 20.1
Design a deterministic FSA that accepts strings of 0s and 1s as input for which the
number of 1s is divisible by 3.

Solution
This is a deterministic FSA with three states. The state s0 is the initial state reflect-
ing the number of 1s is zero (as 0 is a multiple of 3), and it is also the accepting
state when the number of 1s is a multiple of 3, that is when it is equal to 3k, where
k � 0 is an integer. The state s1 is the state that the number of 1s is 3kþ 1, and the
state s2 is the state that the number of 1s is 3kþ 2. As shown in Fig. 20.3, if the
input is a 1, then the state changes (i.e., from s0 to s1 or from s1 to s2 or from s2 to
s0), but if the input is a 0, then the state remains unchanged (i.e., there is a loop at
each state).

1 

0 

  

 

0 

0 

1 

1 

Figure 20.3 State diagram for Example 20.1.
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Example 20.2
Consider the deterministic FSA defined by the state diagram shown in Fig. 20.4.
(a) Construct the corresponding state table.
(b) Determine the path that this automaton goes through if the input string is

0101100.
(c) Provide five input strings whose lengths are 2 bits, 3 bits, 4 bits, 5 bits, and 6

bits, such that from the initial state they all go to the accepting state.

Solution
(a) Table 20.1 presents the state table.
(b) The input string 0101100 takes the FSA to the following states:

s0/s1/s2/s1/s2/s0/s1/s1.
(c) The candidate strings of various lengths are as follows: 01, 001, 1001, 01101,

and 101101.

1 

  

 

0 

1 

0 

0 

1 

Figure 20.4 State diagram for Example 20.2.

Table 20.1 State table for Example 20.2.

S f : Input 0 f : Input 1

s0 s1 s0
s1 s1 s2
s2 s1 s0
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Example 20.3
A deterministic FSA is modeled by the state diagram shown in Fig. 20.5. Identify
the pattern that this automaton can recognize.

Solution
The initial state is s0, and the state does not change as long as the input is 1. The
final state is s3, to get to s3 there is only one way, and that is from s2 when the
input is 1. There is also one way to get to s2, and that is from s1 when the input
is 1. There are four ways to get to s1, which can be from s0, s1, s2, or s3 only when
the input is 0. The only way state s3 is reached when the input sequence is 011
while noting the other input sequences are ignored.

Example 20.4
Design a deterministic FSA that models a system, such as an ATM or a cell phone,
requiring the 4-digit password d1d2d3d4.

Solution
The state diagram for such an automaton is shown in Fig. 20.6, where d represents
a digit. The states are as follows:

s0: It is the initial state waiting for the first digit.
s1: It is when the first digit is correct (i.e., d1 has been pressed) and waiting for
the second digit.
s2: It is when the second digit is correct (i.e., d2 has been pressed) and waiting
for the third digit.
s3: It is when the third digit is correct (i.e., d3 has been pressed) and waiting for
the fourth digit.

1 0 
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1 

0 

 

  

 

0 0 

Figure 20.5 State diagram for Example 20.3.
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s4: It is when the fourth digit is correct (i.e., d4 has been pressed) and represents
the accepting state; a screen is thus displayed reflecting that the correct pass-
word was entered.
s5: It is when the first digit is incorrect (i.e., d1) was not pressed.
s6: It is when at least one of the first two digits was incorrect.
s7: It is when at least one of the first three digits was incorrect.
s8: It is when at least one of the four digits was incorrect and represented the
trap state; a screen is thus displayed reflecting an incorrect password was
entered.

In a nondeterministic FSA, there is at least one state where there are multiple outgoing
edges all having the same input x. A nondeterministic FSA M ¼ ðS; I ; f ; s0; FÞ is a
model that consists of the following five characterizing parts:
• A finite set S of states.
• A finite set I of input alphabet.
• A transition function f : S � I / P Sð Þ that maps state-input pairs to states, where

PðSÞ denotes the power set of S (the set of all subsets of S).
• An initial state (or start state) s0:
• A subset F of S consisting of final states (or accepting states).

In a nondeterministic FSA, each state-input pair is linked with a set of states, where a
set of states can be the null set. A nondeterministic FSA can be represented by a state di-
agram, where an edge from each state to all possible next states are included, and a state
table, where each pair of state and input values for a list of possible next states are
included.

The language recognized by an automaton is the set of input strings that take the
initial state to a final state of the automaton. In view of this, if a language is recognized
by a nondeterministic FSA, then that language is also recognized by a deterministic

d ≠  

     

    

d 

d =  =  d =  d =  

d d 

d ≠  d ≠  d ≠  

Figure 20.6 State diagram for Example 20.4.
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FSA; thus a deterministic FSA can be equivalent to a nondeterministic FSA in recog-
nition of a language.

Example 20.5
(a) Determine the state diagram for the nondeterministic FSA, where Table 20.2

presents its state table, the initial state is s0, and the final states are s1 and s2.
(b) Show that the input sequence 00100111 is accepted by this automaton

through locating the path that ends at the final state s1.
(c) Show that the input sequence 0110 is not accepted by the automaton.

Solution
(a) The state diagram for the nondeterministic FSA is shown in Fig. 20.7.
(b) The path is as follows: s0/s0/s0/s2/s2/s1/s1/s1/s1.

Table 20.2 State table for Example 20.5.

S f : Input 0 f : Input 1

s0 s0; s1 s2
s1 B s1
s2 s1; s2 B

0 

1 

 

 

0 

0 1 

 
0 

Figure 20.7 State diagram for Example 20.5.
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(c) Starting at the initial state s0, with input 0, there are two alternative paths,
namely, either go to s1 or remain at s0. By going to s1 and having two inputs
1 and 1, we remain at s1. With the final 0, there is no edge along which to
move. By remaining at s0 and having input 1, we go to s2. With the next
1, there is no edge along which to move. The input string 0110 is thus not
accepted.

Example 20.6
The state diagram for a nondeterministic FSA is shown in Fig. 20.8. Show the path
through which the input sequence 11011 is accepted by this automaton.

Solution
The path s0/s0/s0/s1/s1/s2, which ends at an accepting state, represents
11011. Note that the path s0/s0/s0/s1/s1/s1 also represents 11011 but
does not end at an accepting state. An input string fails to be accepted if no
path represents the string or a path representing the string ends at a nonaccepting
state.

 

 

1 
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1 

1 

 

Figure 20.8 State diagram for Example 20.6.
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Example 20.7
Show that the finite-state automata shown in Fig. 20.9 are equivalent, as they
recognize the same language.

Solution
An ad hoc approach is usually a good way to determine the language recognized
by a machine. For the nondeterministic FSA shown in Fig. 20.9a, there is only one
accepting state s2, and there are three possible ways to get there. For the determin-
istic FSA shown in Fig. 20.9b, there are three accepting states (s1, s2, and s4), while
noting that the state s5 is a graveyard (i.e., there is no way out of it). In either of
these two automata, the patterns 0, 01, and 11 are recognizable.

20.3 Finite-State Machines with Output

There are fundamentally two types of finite-state machines with output:
i) Moore machines, where the output is determined only by the state before transition.
ii) Mealy machines, where outputs correspond to transitions between states.

A Moore machine M ¼ ðS; I ; O; f ; g; s0Þ is a model that consists of the following
six characterizing parts:
• A finite set S of states.
• A finite set I of input alphabet.
• A finite set O of output alphabet.
• A transition function f : S � I / S that maps state-input pairs to states.
• An output function g : S � I / O that maps an output to a state.
• An initial state (or start state) s0:
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Figure 20.9 State diagrams for Example 20.7.
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Example 20.8
Show the state diagram for the Moore machine where Table 20.3 presents its state
table, and then determine the output string if the input string is 0111.

Solution
As shown in Fig. 20.10, the transitions are labeled with input values and states are
labeled with the output values. Note that the output for a Moore machine is one
bit longer than the input, as it always starts with the output for the state s0, which is
0 for this machine. Therefore the states that are visited after s0 are s0, s2, s1, and s0,
the output string is thus 00110.

Table 20.3 State table for Example 20.8.

S f : Input 0 f : Input 1 g

s0 s0 s2 0
s1 s3 s0 1
s2 s2 s1 1
s3 s2 s0 1

0

0

1

1

0

1

0

1

0

1

1

1

Figure 20.10 State diagram for Example 20.8.
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A Mealy machine M ¼ ðS; I ; O; f ; g; s0Þ is a model that consists of the following six
characterizing parts:
• A finite set S of states.
• A finite set I of input alphabet.
• A finite set O of output alphabet.
• A transition function f : S � I / S that maps state-input pairs to states.
• An output function g : S � I / O that maps state-input pairs to outputs.
• An initial state (or start state) s0:

The input sequence takes the starting state through a sequence of states, as specified by
the transition function. As each transition produces an output, an input sequence pro-
duces an output sequence. More specifically, the machine takes the input sequence
a1a2:::an one by one and simultaneously changes through a sequence of states
s0s1s2:::sn, starting with the initial state s0, to produce the output sequence o1o2:::on
one by one, while noting that si ¼ f ðsi�1; aiÞ, oi ¼ gðsi�1; aiÞ, and i ¼ 1; 2; .; n:

Example 20.9
Show the state diagram for the Mealy machine where Table 20.4 presents its state
table, and then determine the output string if the input string is 11111.

Solution
As shown in Fig. 20.11, the transitions are labeled with input and output values.
Therefore the states that are visited after s0 are s2, s3, s4, s1, and s2, and the output
string is thus 10011.

Example 20.10
Construct a Mealy machine that delays an input string by one bit, assuming 0 as
the first bit of output.

Solution
The state diagram shown in Fig. 20.12 reflects that we need three states: the initial
state s0 to get started so as to account for the delay, and the states s1 and s2

Table 20.4 State table for Example 20.9.

S f : Input 0 f : Input 1 g : Input 0 g : Input 1

s0 s1 s2 1 1
s1 s3 s2 0 1
s2 s4 s3 1 0
s3 s0 s4 0 0
s4 s0 s1 1 1
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Figure 20.12 State diagram for Example 20.10.
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Figure 20.11 State diagram for Example 20.9.
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correspond to the last bit having been 0 and 1, respectively. With the first output
always 0, both edges leaving s0 must yield 0. If the previous input was 0, the ma-
chine moves to state s1 and outputs 0; if it was 1, it moves to state s2 and outputs 1.
For instance, the input 11011 gives rise to 01101, as it goes to states
s0; s2; s2; s1; s2, and s2:

Exercises
(20.1)
Design a deterministic FSA that accepts a random bit sequence of 0s and 1s as
input and recognizes any bit sequence containing at least two 1s in a row (i.e.,
two adjacent 1s).

(20.2)
Show the state diagram of a finite-state machine with accepting states when it rec-
ognizes a pattern of 101 in its input alphabet.

(20.3)
Determine the state diagram for the nondeterministic FSA, where Table 20.5 pre-
sents its state table, the initial state is s0, and the final state is s3. Provide four
different input strings with lengths of 3 bits, 4 bits, 5 bits, and 6 bits such that
from the initial state s0, they all go to the accepting state s3 after also visiting
s1 and s2.

(20.4)
Design a deterministic FSA containing an even number of 0s when its input is a
string of 1s and 0s.

(20.5)
Show that the finite-state automata shown in Fig. 20.13 are equivalent.

(20.6)
Analyze the operation of a token-operated turnstile in the context of deterministic
finite-state automata.

Table 20.5 State table for Exercise 20.3.

S f : Input 0 f : Input 1

s0 s0; s1 B
s1 s1 s2; s3
s2 s3 s2
s3 B B
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(20.7)
Identify the bit patterns recognized by the deterministic FSA whose state diagram
is shown in Fig. 20.14.

(20.8)
Show the state diagram of a finite-state machine whose output is a 1 when it rec-
ognizes a pattern of 101 in its input, and state how the machine works. Determine
the output sequence when the input sequence is as follows: 00111010111101000.
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Figure 20.13 State diagrams for Exercise 20.5.
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Figure 20.14 State diagram for Exercise 20.7.
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(20.9)
Construct a Moore machine that gives an output of 1 whenever the number of
bits in the input string read is divisible by 5 and an output of 0 otherwise.

(20.10)
Show the state diagram for the Mealy machine where Table 20.6 presents its state
table, and then determine the output sequence if the input sequence is 0000.

Table 20.6 State table for Exercise 20.10.

S f : Input 0 f : Input 1 g : Input 0 g : Input 1

s0 s1 s0 1 0
s1 s3 s0 1 1
s2 s1 s2 0 1
s3 s2 s1 0 0
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Glossary of Terms

Chapter 1dPropositional Logic
Biconditional statement p4q: It is true when p and q have the same truth values and is false otherwise.
Compound proposition: A proposition that is composed of more than one simple proposition.
Conditional statement p/q: It is false when the premise p is true but the conclusion q is false and is true

otherwise.
Conjunction of two propositions: It is true when both propositions are true and is false otherwise.
Contingency: A compound proposition that is neither a tautology nor a contradiction.
Contradiction: A compound proposition that is always false.
Contrapositive statement of p/q: It is the conditional statement q/p.
Converse statement of p/q: It is the conditional statement q/p.
Disjunction of two propositions: It is false when both propositions are false and is true otherwise.
Dual of a compound proposition: It is obtained by replacing each n by ^, each ^ by n, each T by F,

and each F by T.
Exclusive or of two propositions: It is true when exactly one of them is true.
Inverse statement of p/q: It is the conditional statement p/q.
Logic: Formal principles of reasoning, strict criteria of validity, and necessary rules of thought.
Logic puzzle: A problem that can be solved through deductive reasoning.
Logical operators: Connectives used to combine simple propositions.
Logically equivalent: When two compound propositions have identical truth tables.
Negation of proposition: It is not the truth value of the proposition.
Proposition: A declarative statement, which is either true or false, but not both.
Propositional form: An expression consisting of propositional variables and logical operators.
Propositional logic: Logic that deals with propositions.
Propositional variable: A variable that represents a proposition.
Satisfiable compound proposition: When there is at least one assignment of truth values to its variables

for which the compound proposition is then true.
Simple proposition: A proposition that cannot be broken down into simpler propositions.
Tautology: A compound proposition that is always true.
Truth table: A table presenting all possible truth values of propositions.

Chapter 2dPredicate Logic
Binary predicate: It is a predicate with two variables.
Bound variable: A variable that is quantified.
Domain (or universe) of discourse: It is the set of all values of a variable in a propositional function that

can replace it.
Existential quantification: It indicates a predicate is true for at least one value of a variable in a given

domain.
Free variable: A variable that is not bound by a quantifier, nor is it equal to a particular value.
Nested quantifier: When a quantifier is within the scope of another.
Predicate: A property that the subject of the statement can have or gives information about the subject.
Predicate logic: When logic uses predicates and quantified variables.
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Propositional function: A statement with one or more variables that becomes a proposition when each
variable is assigned a value.

Quantifier: A word that reveals for how many elements a given predicate is true.
Scope of a quantifier: A portion of a statement where the quantifier binds its variable.
Universal quantification: It indicates that a predicate is true for all values of a variable in a given domain.

Chapter 3dRules of Inference
Abduction: A reasoning in which the major premise is certain, but the minor premise and therefore the

conclusion is only probable.
Argument: It is a sequence of propositional statements.
Argument form: It is a sequence of compound propositions involving propositional variables
Converse error: An argument that when an implication and its conclusion are both true, then its hypothesis

is true.
Fallacy: An invalid argument where it resembles a rule of inference, but it is based on a contingency rather

than a tautology.
Inverse error: An argument that when an implication and the negation of its hypothesis are both true, then

the negation of its conclusion is true.
Rule of inference: A valid argument form that can be used in the demonstration that arguments are valid.
Sound argument: When an argument is valid and all of its premises are true.
Valid argument: It is a sequence of propositions where the truth of all the premises implies the truth of the

conclusion.
Valid argument form: The conclusion is true if all the premises are true.

Chapter 4dProof Methods
Axiom: A self-evident true statement that is accepted on its intrinsic merit without proof.
Conjecture: A statement that is being proposed to be a true statement but not proven yet.
Constructive existence proof: A proof that an element with a specified property exists that explicitly finds

such an element.
Corollary: A proposition that can be proven as an immediate consequence of some other theorems.
Definition: A statement expressing the essential nature of a concept.
Direct proof: An implication is constructed with the assumption that the premise is true and a series of

intermediate implications leads to the conclusion be true.
Lemma: A less important theorem that can help prove a more important theorem.
Mathematical proof: An inferential argument for a mathematical statement showing that the stated as-

sumptions methodically and logically lead to guarantee the conclusion.
Nonconstructive existence proof: A proof that an element with a specified property exists that does not

explicitly find such an element.
Proof: A sequence of logically valid statements to demonstrate the validity of some precise statement.
Proof by cases: ðp/qÞ4ððp1n.npnÞ/qÞ4ððp1 /qÞ^.^ðpn /qÞÞ
Proof by contradiction: A conditional statement is true by showing if the premise is false, then it leads to a

contradiction.
Proof by contraposition: A conditional statement is true by showing the premise must be false when the

conclusion is false.
Proof by counterexample: An example in the domain of discourse for which the hypothesis is true and

the conclusion is false.
Proof by exhaustion: A proof that establishes a result by checking a list of all possible cases.
Proof of a disjunction: Proving p/ðqnrÞ by proving either ðp^ qÞ/r or ðp^ rÞ/q is true.
Proofs of equivalence: ðp1 4p2 4/4pnÞ4ððp1 /p2Þ^.^ðpn /pnÞÞ
Theorem: A mathematical statement that can be shown (proven) to be true.
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Trivial proof: If the conclusion can be shown to be true, the implication is true by default.
Uniqueness proof: A proof that there is exactly one element satisfying a specified property.
Vacuous proof: If the hypothesis can be shown to be false, the implication is true by default.

Chapter 5dSets
Axiomatic set theory: A theory based on the rules of inference provided by formal logic.
Cardinality of a set: The number of elements in the set.
Cartesian product of A and B: The set of all ordered pairs ða; bÞ, where a˛A and b˛B.
Complement of A: The set of elements in the universal set that are not in A.
Difference of A and B: The set containing those elements that are in A but not in B.
Difference of two multisets: A multiset in which the multiplicity of an element is the difference between

the multiplicities of the element in the two multisets unless the difference is negative in which case the
multiplicity is 0.

Disjoint sets: The sets that have no common elements.
Empty (null) set: The set with no elements.
Finite set: A set whose number of elements is a nonnegative integer.
Fundamental product of X1; X2;.; Xn: A set defined as Y1X Y2X.X Xn, where Yi is either the set

Xi or its complement, for i ¼ 1; 2;.; n.
Fuzzy set: A set where each member of the set is defined by the degree of fuzziness (membership).
Infinite set: A set that is not finite.
Intersection of two multisets: A multiset in which the multiplicity of an element is the minimum of its

multiplicities in those two multisets.
Intersection of two sets: The set containing those elements that are in both sets.
Membership function in a fuzzy set: A mapping from the universal set U to the unit interval ½0; 1� to

show the degree of membership for each member.
Membership table: A table displaying the membership of elements in sets.
Multiplicity: The number of occurrences for each element in a multiset.
Multiset (bag): An unordered collection of objects where an object can occur as a member of a set more

than once.
Naïve set theory: A theory based on intuitive notion of an object and a set as defined informally in natural

language.
Paradox: A logical inconsistency.
Power set of a set: The set of all subsets of the set.
Set: An unordered collection of distinct objects that are called elements or members of the set.
Set B is a proper subset of set A: Every member of B is also a member of A, but there is at least one

element of A that is not an element of B.
Set B is a subset of set A: Every member of B is also a member of A.
Set builder notation: A method through which some property held only by all members of the set is

clearly and completely described.
Set identity: An equality between two set expressions that is true for all elements of the sets involved in the

identity.
Set roster method: A method by which all the elements of the set are listed.
Singleton (unit) set: A set with one element.
Sum of two multisets: A multiset in which the multiplicity of an element is the sum of multiplicities in

those two multisets.
Symmetric difference of A and B: The set of elements that belong to A or B, but not to both.
Union of two multisets: A multiset in which the multiplicity of an element is the maximum of its

multiplicities in those two multisets.
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Union of two sets: The set containing those elements that are in at least one of the two sets.
Universal set: A set that includes all elements in a given setting as well as every set under consideration.
Venn diagram: A group of simple closed curves arranged in the plane to visually illustrate collections of sets

and their logical relationships.

Chapter 6dMatrices
Boolean product of A and B: It is denoted by A1B, where we have A1B ¼ C/ðcikÞ ¼

ððai1^b1kÞn.nðain^bnkÞÞ i ¼ 1;.m & k ¼ 1;.; r:
Column vector: A matrix with only one column.
Columns of a matrix: Vertical sets of numbers in a matrix.
Diagonal matrix: A matrix whose all entries off its main diagonal are zero.
Equal matrices: Two matrices of the same size and the corresponding entries in every position in the two

matrices are equal.
Identity matrix: A square matrix with 1s on the main diagonal and 0s off the main diagonal.
Inverse of a matrix A: It is a matrix A�1, where the product of A and A�1is the identity matrix.
Join of A and B: It is denoted by AnB ¼ ðaijnbij

�
.

Matrix: A rectangular array of numbers.
Matrix addition: The sum of any two matrices of the same size is obtained by adding entries in the

corresponding positions.
Matrix multiplication: If the matrix A is an m� n matrix and the matrix B is an n� r matrix, then the

product of A and B is the m� r matrix whose entry in the ith row and the kth column is the sum of the
product of the corresponding entries from the ith row of A and the kth column of B.

Matrix subtraction: The difference between any two matrices of the same size is obtained by subtracting
entries in the corresponding positions.

Meet of A and B: It is denoted by A ^ B ¼ �
aij^bij

�
.

Null (or zero) matrix: A matrix whose entries are all 0s.
Row vector: A matrix with only one row.
Rows of matrix: Horizontal sets of numbers in a matrix.
Scalar: A quantity described by a real number.
Size of a matrix: It is represented by its number of rows and number of columns.
Square matrix: A matrix with the same number of rows as columns.
Trace: The sum of entries on the main diagonal of a square matrix.
Transpose of a matrix: When the rows and columns of the matrix are interchanged.
Zero-one (Boolean or logical) matrix: A matrix whose entries are either 0 or 1 and subject to the

Boolean operations.
m3 n matrix: A matrix with m rows and n columns, which has a total of m� n entries.

Chapter 7dFunctions
Absolute-value function: f ðxÞ ¼ x, if x � 0, and f ðxÞ ¼ �x, if x < 0:
Ceiling (the least integer) function: It assigns to the real number x the smallest integer that is greater than

or equal to x.
Codomain of the function from X to Y: It is the set Y.
Composition of the functions f and g: A function that assigns gðf ðxÞÞ to x.
Decreasing function f ðxÞ: If f ðx1 Þ > f ðx2 Þ, whenever x1 < x2.
Domain of the function from X to Y: It is the set X.

Euler’s number (Napier’s constant): e ¼ lim
n/N

�
1þ 1

n

�n

z2:718281828459.

Exponential function f : R/RD: It is defined by f ðxÞ ¼ ax, where a˛Rþ and as1.
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Floor (the greatest integer) function: It assigns to the real number x the largest integer that is less than or
equal to x.

Function fromX to Y: A relation fromX to Y, where every element inX is related to some element in Y,
and no element in X is related to more than one element in Y.

Increasing function f ðxÞ: If f ðx1Þ < f ðx2Þ, whenever x1 < x2.
Integer-valued function: A function whose codomain is the set of integers.
Inverse function: A function that assigns to an element belonging to Y the unique element in X.
Logarithmic function f : RD/R: It is defined by f ðxÞ ¼ logax, where a˛Rþ and as1.
Nondecreasing function f ðxÞ: If f ðx1Þ � f ðx2Þ whenever x1 < x2.
Nonincreasing function f ðxÞ: If f ðx1Þ � f ðx2Þ, whenever x1 < x2.
One-to-one correspondence, bijection: A function that is both one-to-one and onto.
One-to-one function, injection: f ðx1Þ ¼ f ðx2Þ implies that x1 ¼ x2 for all elements in X.
Onto function, surjection: The range and codomain of the function are the same.
Piecewise-defined function: A function defined by more than one formula.
Range of the function from X to Y: It is the set of all possible values of the function.
Real-valued function: A function whose codomain is the set of real numbers.
Unit step function: f ðxÞ ¼ 0, if x < 0, and f ðxÞ ¼ 1, if x � 0.

Chapter 8dBoolean Algebra
AND gate: A device that accepts the values of two or more Boolean variables as input and produces their

Boolean product as output.
Binary expression simplification rule: Using ef þ ef ¼ f, where e and f are binary expressions, iter-

atively to reduce an expression into a simpler, but equivalent, expression.
Bits: The set of binary digits f0; 1g.
Boolean algebra: A set B with two binary operationsn and ^, elements 0 and 1, and a complementation

operator that satisfies the identity, complement, commutative, and distributive laws.
Boolean expression: It consists of Boolean variables and Boolean operators.
Boolean function of degree n: A function from Bn to B where B ¼ f0; 1g.
Boolean product of x and y: It has the value 1 when both x and y have the value 1 and the value

0 otherwise.
Boolean sum x and y: It has the value 1 when either x or y has, or both have, the value 1, and 0 otherwise.
Boolean variable: A variable that assumes only the values 0 and 1.
Combinational circuit: It is made up of different types of logic gates, where its present output is a function

of only the present input; thus it has no memory capabilities.
Complement of x: It is 1 when x is 0, and 0 when x is 1.
Don’t care condition: A combination of input values for a circuit that is not possible or never occurs.
Dual of a Boolean expression: The expression obtained by interchanging sums and products and

interchanging 0s and 1s.
Functionally complete: A set of Boolean operators if every Boolean function can be represented using

these operators.
Gates: Basic elements of logic circuits.
Inverter: A device that accepts the value of a Boolean variable as input and produces the complement of the

input.
K-map for n variables: A rectangle divided into 2n cells where each cell represents a minterm of the

variables.
Literal of the Boolean variable x: It is either x or x.
Minimization of a Boolean function: Representing a Boolean function with the fewest products of

literals such that these products contain the fewest literals possible among all sums of products.
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Minterm of the Boolean variables x1; x2;.; xn: It is the Boolean product y1; y2;.; yn, where yi ¼ xi
or yi ¼ xi, and i ¼ 1; 2;.; n.

OR gate: A device that accepts the values of two or more Boolean variables as input and produces their
Boolean sum as output.

Principle of duality: The duals of both sides of an identity are another identity.
Sum-of-products expansion (disjunctive normal form): The representation of a Boolean function as a

disjunction of minterms.
Unit element: The symbol 1.
Zero element: The symbol 0.
x NAND y: The expression that has the value 0 when both x and y have the value 1 and the value 1

otherwise.
xNOR y: The expression that has the value 0 when either x or y has or both have the value 1 and the value 0

otherwise.

Chapter 9dRelations
Antisymmetric: A relation R on A if a ¼ b whenever ða; bÞ˛R and ðb; aÞ˛R.
Binary relation from A to B: The relation R is a subset of A � B, where the set A is called the domain of

the relation and the set B is called the range of the relation.
Comparable: Elements a and b in the poset ðA;RÞ and if either a7b or b7a.
Complementary relation: R ¼ fða; bÞjða; bÞ;Rg.
Composite key: The Cartesian product of domains of an n-ary relation such that an n-tuple is uniquely

determined by its values in these domains.
Difference of two relations R and S: R � S ¼ fða; bÞjða; bÞ˛R and ða; bÞ;Sg.
Equivalence relation: A reflexive, symmetric, and transitive relation.
Hasse diagram: A graphical representation of a poset where loops and all edges resulting from the transitive

property are not shown, and the direction of the edges is indicated by the position of the vertices.
Incomparable: Elements in a poset that are not comparable.
Intersection of two relations R and S: RXS ¼ fða; bÞjða; bÞ˛R and ða; bÞ˛Sg.
Inverse relation: R�1 ¼ fðb; aÞjða; bÞ˛Rg.
One-to-one binary relation from A and B: If no element of B appears as a second coordinate in more

than one ordered pair in R.
Onto relation binary relation from A and B: If every element of B appears as a second coordinate in at

least one ordered pair in R.
Ordered pair of elements a and b: ða; bÞ.
Partial ordering: A relation that is reflexive, antisymmetric, and transitive.
Poset (S, R): A set S and a partial ordering R on this set.
Primary key: A domain of an n-ary relation such that an n-tuple is uniquely determined by its value for this

domain.
Reflexive: A relation R on A if ða; aÞ˛R for all a˛A.
Reflexive closure of relation R: The smallest relation Rr , such that R3Rr and Rr is reflexive on the set A.
Relation on A: A binary relation from A to itself, that is a subset of A � A.
Relational data model: A model for representing databases using n-ary relations.
Symmetric: A relation R on A if ðb; aÞ˛R whenever ða; bÞ˛R.
Symmetric closure of relation R: The smallest relation Rs, such that R3Rs and Rs is symmetric on the

set A.
Total (linear) order relation: If R is a partial order relation on a set A, and every pair of elements in A is

comparable.
Transitive: A relation R on A is transitive if (a, b) ˛ R and (b, c) ˛ R implies that (a, c) ˛ R.
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Transitive closure of relation R: The smallest relation Rt , such that R3Rt and Rt is transitive on the set
A with n elements.

Union of two relations R and S: RWS ¼ fða; bÞjða; bÞ˛R and=or ða; bÞ˛Sg.
Zero-one matrix of relation R: Each entry that belongs to the set of the ordered pairs in the relation is set

to 1; otherwise it is set to 0.
n-ary relation on A1;A2; :::;An: A subset of A1 � A2 � ::: � An.

Chapter 10dNumber Theory
Bezout coefficients of integers a and b: Integers s and t such that the Bezout’s identity gcdða; bÞ ¼

saþ tb holds.
Binary representation: The base 2 representation of an integer.
Composite: An integer that is not prime.
Decimal representation: The base 10 representation of an integer.
Divisibility test: A quick way to determine whether an integer is divisible by a smaller integer without

performing the division.
Division (quotienteremainder) theorem: a ¼ dq þ r, where a (dividend), d (divisor), q (quotient),

and r (remainder) are integers with 0 � r < d.
Euclid’s theorem: There are infinitely many primes.
Euclidean algorithm: An algorithm determining the great common divisor of two integers through

successive application of the division algorithm.
Euler’s theorem: For every a and n that are relatively prime, we have a4ðnÞh1 ðmod nÞ, where 4ðnÞ is the

Euler’s totient function.
Euler’s totient function: The number of positive integers less than a number and relatively prime to that

number.
Fermat’s last theorem: The equation xn þ yn ¼ zn, where x, y, and z are integers and xyzs0, has no

solutions for an integer n > 2.
Fermat’s little theorem: If p is prime and a is an integer not divisible by p, then a p�1h1 ðmod pÞ.
Fundamental theorem of arithmetic: Every integer greater than 1 is either prime or the product of two

or more primes.
Goldbach’s conjecture: Every even integer greater than two is the sum of two primes.
Greatest common divisor of two integers: The largest integer that divides both of them.
Hashing function: It assigns memory location hðkÞ to the record that has k as its key.
Hexadecimal representation: The base 16 representation of an integer.
Hindu-Arabic numeral system: Numerals are represented by ten distinct symbols.
Inverse of amodulo m: A unique integer a, such that aah1 ðmod mÞ.
Least common multiple of two integers: The smallest positive integer that is divisible by both integers.
Numeral: Any symbol used to represent a number.
Octal representation: The base 8 representation of an integer.
One’s complement of a binary number: Invert each bit from 1 to 0 and from 0 to 1.
Prime: An integer greater than 1 which is divisible only by 1 and itself.
Relatively prime integers: Integers whose greatest common divisor is 1.
Roman numeral system: Numerals are represented by the seven distinct letters I ¼ 1;V ¼ 5;X ¼ 10;

L ¼ 50;C ¼ 100;D ¼ 500; and M ¼ 1000.
Twin prime conjecture: There are infinitely many twin primes (pairs of primes that differ by 2).
Two’s complement of a binary number: Obtain the one’s complement of the binary number and then

add 1 to the least significant bit.
a divides b: a is a factor of b, a is a divisor of b, b is divisible by a, or b is a multiple of a.
a is congruent to b modulo m: a� b is divisible by m.
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Chapter 11dCryptography
Affine cipher: The numerical equivalent of each letter is shifted by the integer b to encrypt the plaintext

letter p using f ðpÞ ¼ ðmp þbÞ mod n, where 1 � p � n, b, m, and n are all integers, and gcdðm; nÞ ¼ 1.
Block cipher: A cipher that encrypts blocks of characters of a fixed size.
Cipher: The algorithm used for encryption and decryption.
Classical cryptography: Symbols, characters, letters, and digits are directly manipulated with the sole goal

to provide secrecy through obscurity.
Decryption: The process of returning a secret message to its original form.
Encryption: The process of making a message secret.
Encryption key: A secret key (a number) that the cipher operates on.
Modern cryptography: It operates on binary bit sequences and relies on publicly known algorithms for

encoding the message, and secrecy is obtained through a secrete key which is used as the seed for the
algorithms.

Private key cryptography: Encryption where both encryption keys and decryption keys must be kept
secret.

Public key cryptography: Encryption where encryption keys are public knowledge, but decryption keys
are kept secret.

RSA: The public key fn; eg is used to encrypt the plaintext m by using c ¼ me mod n, and the private key
fn; dg is used to decrypt the cyphertext c by using m ¼ cd mod n.

Shift cipher: The numerical equivalent of each letter is shifted by the integer b to encrypt the plaintext letter
p using f ðpÞ ¼ ðp þbÞ mod n, where 1 � p � n, b, and n are all integers.

Transposition cipher: A cipher in which the order of letters in a block of letters is rearranged (reordered)
according to a fixed permutation.

Chapter 12dAlgorithms
Algorithm: A finite unambiguous sequence of steps that involves the repetition of an operation for per-

forming a task in a finite amount of time.
Algorithmic efficiency: A property of an algorithm that relates to the amount of computational resources

used by the algorithm.
Average-case time complexity: The average amount of time required for an algorithm to solve a

problem of a given size.
Backtracking algorithm: An algorithm that incrementally builds candidates to the solutions and abandons

a candidate as soon as it determines that the candidate cannot possibly be a part of a valid solution.
Brute-force algorithm: An algorithm that iterates all possible solutions to search for one or more than one

solution that may solve a problem without any regard to the heavy computational requirements.
Divide-and-conquer algorithm: An algorithm that works by recursively breaking down a problem into

subproblems of the same or related type, until these become simple enough to be solved easily.
Dynamic programming: An algorithm that can be effectively used for solving a complex problem by

recursively breaking down the problem.
Greedy algorithm: An algorithm that makes the optimal choice at each step as it attempts to find the

minimum or maximum value of some parameter.
Halting problem: A procedure that takes as input a computer program and the input to the program and

determines whether the program will ultimately stop or continue to run forever.
Probabilistic algorithm: An algorithm that makes some random choices at some steps, which may lead to

different output in much fewer steps, but with a tiny probability that the final answer may not be correct.
Search algorithm: An algorithm that locates an element in a list.
Sorting algorithm: An algorithm that puts elements of a list in a certain order.
Space complexity: The maximum amount of computer memory needed in the execution of an algorithm.
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Time complexity: The number of key operations using the size of the input as its argument.
Worst-case time complexity: The greatest amount of time required for an algorithm to solve a problem

of a given size.
f ðxÞ is OðgðxÞÞ: There are real constants C and k such that jf ðxÞj � CjgðxÞj whenever x > k.
f ðxÞ is QðgðxÞÞ: There are real constants C1, C2, and k such that C1jgðxÞj � jf ðxÞj � C2jgðxÞj whenever

x > k.
f ðxÞ is UðgðxÞÞ: There are real constants C and k such that jf ðxÞj � CjgðxÞj whenever x > k.

Chapter 13dInduction
Deductive reasoning: The process of concluding that something must be true because it is a specific case of

a general principle that is already known to be true.
Inductive reasoning: The process of reasoning that a general principle is true because the special cases are

true.
Principle of mathematical induction: The statement cnPðnÞ is true if Pð1Þ is true and ckðPðkÞ/

Pðkþ1ÞÞ is true.
Strong induction: The statement cnPðnÞ is true if Pð1Þ is true and ckððPð1Þ^Pð2Þ^ ::: ^Pðk� 1Þ^

PðkÞÞ/Pðkþ1ÞÞ is true.
Well-ordering principle: Every nonempty set of positive integers has a least element.

Chapter 14dRecursion
Arithmetic progression: A sequence with the general term an ¼ a þ nd, where the initial term a and the

common difference d are real numbers, and n > 0 is an integer.
Characteristic roots of a linear homogeneous recurrence relation with constant coefficients: The

roots of the polynomial associated with a linear homogeneous recurrence relation with constant
coefficients.

Generating function: It is the infinite series GðzÞba0 þ a1z þ a2z2 þ ::: ¼ PN
n¼0anz

n, where the
sequence a0; a1; a2::: are real numbers.

Geometric progression: A sequence with the general term an ¼ arn, where the initial term a and the
common ratio r are real numbers, and n > 0 is an integer.

Initial conditions for a recurrence relation: The values of the terms of a sequence satisfying the
recurrence relation before the relation takes effect.

Iteration: A procedure based on the repeated use of operation in a loop.
Iterative algorithm: It evaluates the value of a function at the base cases and successively applies the

recursive definition to find values of the function at larger integers.
Linear homogeneous recurrence relation with constant coefficients: A recurrence relation that

expresses the terms of a sequence, except for initial terms, as a linear combination of previous terms.
Linear nonhomogeneous recurrence relation with constant coefficients: A recurrence relation that

expresses the terms of a sequence, except for initial terms, as a linear combination of previous terms plus a
function.

Recurrence relation: A formula expressing a term of a sequence as a function of prior terms in the sequence.
Recursion: The process of defining a problem or the solution to a problem in terms of a simpler version of

itself.
Recursive algorithm: It evaluates the value of a function at a positive integer in terms of the values of the

function at smaller integers.
Recursively defined function: It refers to itself and its domain is a subset of the set of positive or

nonnegative integers.
Sequence: A function whose domain is either all the integers between two given integers or all the integers

greater than or equal to a given integer.
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Chapter 15dCounting Methods

Binomial coefficient ðm choose rÞ:
�
m

r

�
b m!

r!ðm�rÞ!.

Combination: An unordered selection of distinguishable objects to make a group.
Counting method: A way to determine the total number of equally likely outcomes in a random

experiment, without actually listing the outcomes.
Fundamental principle of counting (product rule for counting): When a task can be divided into a

sequence of k independent subtasks, there is a total of n1 � n2 �.� nk distinct ways to carry out the
task.

Generalized pigeonhole principle: If k and n are positive integers and k pigeonholes are occupied by
m ¼ knþ 1 or more pigeons, then at least one pigeonhole is occupied by nþ 1 or more pigeons.

Permutation: An ordered arrangement of distinguishable objects to make a list.
Pigeonhole principle: If k > 1 is an integer and k pigeonholes are occupied by m ¼ kþ 1 or more

pigeons, then at least one pigeonhole is occupied by more than one pigeon.
Selection with replacement (repetition, substitution): An object, once selected, is returned and thus

available for future selections.
Selection without replacement (repetition, substitution): An object, once selected, is not available for

future selections.
Subtraction rule for counting (principle of inclusion-exclusion): When a task can be accomplished in

k sets of ways, the number of distinct ways to accomplish the task is n1 þ n2 þ.þ nk minus the number
of common ways that have been overcounted.

Sum (or addition) rule for counting: When a task can be done in kmutually exclusive sets of ways, there
is a total of n1 þ n2 þ.þ nk distinct ways to carry out the task.

Tree diagram: A tree structure to keep systematic track of all possibilities in cases in which events occur in
sequence but in a finite number of ways.

Chapter 16dDiscrete Probability
A posteriori probability: The probability of an event after the experiment has been performed.
A priori probability: The probability of an event before the experiment is performed.
Axiom I of probability: The probability of an event is nonnegative.
Axiom II of probability: The probability of all possible outcomes is one.
Axiom III of probability: The total probability of a number of nonoverlapping events is the sum of the

individual probabilities.
Bayes’ rule: When one conditional probability is given, but the reversed conditional probability is required�

P
�
B1

��A� ¼ PðA;B1Þ
PðAÞ ¼ PðAjB1Þ PðB1Þ

PðAjB1Þ PðB1Þ þ PðAjB2Þ PðB2Þ þ/þ PðAjBnÞ PðBnÞ
�
.

Complement of an event: All outcomes that are not included in the event.
Conditional probability: The probability of an event when it is known that another event has occurred.
Discrete sample space: A sample space that is countable.
Disjoint (mutually exclusive) events: If the occurrence of one event excludes the occurrence of the

other.
Event: A collection of one or more than one outcome.
Independent trial: The outcome of a trial is independent of the outcomes of the past and future trials.
Intersection of two events (joint events): The set of all outcomes that are in both events.
Joint probability of events: The probability that the events simultaneously occur.
Law of total probability: The probability of an event expressed as a combination of the probabilities of the

mutually exclusive events that form the partition of the sample space ðPðAÞ ¼ PðAXB1Þ þ/ þ
PðAXBn Þ ¼ PðAjB1Þ PðB1Þ þ/ þPðAjBnÞ PðBn ÞÞ.
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Marginal probability: The probability of the occurrence of a single event, irrespective of the probabilities
of other events.

Mutually exclusive events: When the joint probability of events is zero.
Null event: An event that never occurs.
Outcome: The end result of an experiment.
Partitioning a sample space: Dividing the sample space into mutually exclusive events.
Probability: A numerical measure of how likely an event is to occur or be the case.
Random experiment: The outcome is always unpredictable and the conditions under which it is per-

formed cannot be known in advance.
Sample points: The outcomes of a random experiment that cannot occur simultaneously.
Sample space: The set of all possible outcomes of an experiment.
Statistically independent events: When the joint probability of two events is equal to the product of

individual probabilities.
Sure event: An event that always occurs.
Trial: A repetition of an experiment.
Union of two events: The set of all outcomes that are in either one of them or in both of them.

Chapter 17dDiscrete Random Variables
Bernoulli distribution: It takes the value of 1 with probability p and the value of 0 with probability 1� p.
Binomial distribution: The number of times 1 occurs in n independent Bernoulli trials, where each

occurrence of 1 is assumed to have probability p.
Chebyshev’s inequality: The probability of a large deviation from the expected value is inversely pro-

portional to the square of the deviation.
Cumulative distribution function of a random variable: The probability that the random variable is no

larger than x.
Discrete uniform distribution: It occurs when outcomes are equally likely.
Domain of a random variable: The sample space of the random variable.
Expected value of a discrete random variable: It is obtained by multiplying each possible value by its

respective probability and then summing these products over all the values that have nonzero probabilities.
Geometric distribution: In a sequence of independent Bernoulli trials with a success probability p, the

random variable that denotes the number of trials performed until the first success occurs.
Hypergeometric distribution: With a finite population ofN items of which K possess a certain attribute,

it describes the probability that a sample of n items, without replacement, is selected of which x possess the
attribute.

Markov’s inequality: An upper bound on the probability that a value of a nonnegative random variable is
greater than or equal to some positive constant.

Median of a random variable: The particular value for which the sum of the probabilities of all values
greater than the median and the sum of the probabilities of all values less than the median are equal.

Mode of a random variable: The value of the random variable that occurs most often.
Pascal distribution: It represents the number of Bernoulli trials that take place until one of the two

outcomes is observed a certain number of times.
Poisson distribution: It represents the number of occurrences of events independently occurring within

certain specified boundaries.
Probability mass function of a discrete random variable: The set of the probabilities only at the values

belonging to the range of the random variable.
Random variable: A deterministic function that assigns a real number to each outcome in the sample space.
Range of a random variable: The set of all values taken on by the random variable.
Standard deviation of a random variable: The square root of its variance.
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Variance of a random variable: The mean square of the difference between a random variable and its
mean (expected value).

Chapter 18dGraphs
Adjacency matrix: A matrix representing a graph using the adjacency of vertices.
Adjacent: Two vertices are adjacent if there is an edge between them.
Bipartite graph: A graph with a vertex set that can be partitioned into two subsets so that each edge

connects a vertex in one subset and a vertex in the other subset.
Circuit: A closed trail that begins and ends on the same vertex, does not contain a repeated edge, but may

have repeated vertices.
Closed walk: A walk when the starting vertex is the same as the ending vertex.
Complement (inverse) of a simple graph: A graph that has the same vertices as the simple graph and has

edges joining every pair of vertices that are not joined in the simple graph.
Complete bipartite graph: The graph with vertex set partitioned into two subsets with two vertices

connected by an edge if and only if one vertex is in one subset and the other vertex is in the second subset.
Complete graph: An undirected graph where each pair of vertices is connected by an edge.
Connected graph: An undirected graph with the property that there is a path between every pair of

vertices.
Cycle: A path that begins and ends on the same vertex and no other vertices are repeated.
Degree of the vertex v in an undirected graph: The number of edges incident with v with loops counted

twice.
Dijkstra’s algorithm: A procedure for finding the shortest path between two vertices in a weighted graph.
Directed edge: An edge associated to an ordered pair ðu; vÞ, where u and v are vertices.
Directed graph: A set of vertices together with a set of directed edges, each of which is associated with an

ordered pair of vertices.
Directed multigraph: A graph with directed edges that may contain multiple directed edges.
Euler circuit: A circuit that contains every edge of a graph exactly once.
Graph intersection of two simple graphs: A graph whose vertices are in both graphs and edges are in

both graphs.
Graph union of two simple graphs: A graph whose vertices are in either or both graphs and edges are in

either or both graphs.
Hamilton circuit: A circuit in a graph that passes through each vertex exactly once.
Handshaking theorem: The sum of the degrees of the vertices is twice the number of edges.
Incidence matrix: A matrix representing a graph using the incidence of edges and vertices.
Incident: An edge is incident with a vertex if the vertex is an endpoint of that edge.
In-degree of the vertex v in a graph with directed edges: The number of edges with v as their terminal

vertex.
Invariant for graph isomorphism: A property that isomorphic graphs either both have or both do not

have.
Isolated vertex: A vertex of degree zero.
Isomorphic graphs: Two simple graphs with the same structure and hence the same properties, where

there is a one-to-one correspondence between vertices of two isomorphic graphs preserving the adja-
cency relationship.

Loop: An edge connecting a vertex with itself.
Multigraph: An undirected graph that may contain multiple edges but no loops.
Multiple directed edges: Distinct directed edges associated with the same ordered pair ðu; vÞ, where u and

v are vertices.
Multiple edges: Distinct edges connecting the same vertices.
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Open walk: A walk when the starting vertex is not the same as the ending vertex.
Order: The number of vertices of a graph.
Out-degree of the vertex v in a graph with directed edges: The number of edges with v as their initial

vertex.
Path: A trail that does not include any vertex twice.
Pendant vertex: A vertex of degree one.
Pseudograph: An undirected graph that may contain multiple edges and loops.
Regular graph: A graph where all vertices have the same degree.
Shortest-path problem: The problem of determining the path in a weighted graph such that the sum of

the weights of the edges in the path is a minimum over all paths between specified vertices.
Simple directed graph: A directed graph without loops or multiple directed edges.
Simple graph: An undirected graph with no multiple edges or loops.
Size: The number of edges of a graph.
Subgraph: All vertices and edges in a subgraph are in the graph, and every edge in the subgraph has the same

endpoints as it has in the graph.
Trail: A walk that does not pass over the same edge twice.
Undirected edge: An edge associated to a set fu; vg, where u and v are vertices.
Undirected graph: A set of vertices and a set of undirected edges, each of which is associated with a set of

one or two of these vertices.
Walk: Any route through a graph from vertex to vertex along edges.
Weighted graph: A graph with numbers assigned to its edges.

Chapter 19dTrees
Ancestor of a vertex v in a rooted tree: Any vertex on the path from the root to v.
Balanced tree: A tree in which every leaf is at level h or h� 1, where h is the height of the tree.
Binary tree: An m-ary tree with m ¼ 2.
Child of a vertex v in a rooted tree: Any vertex with the vertex v as its parent.
Descendant of a vertex v in a rooted tree: Any vertex that has v as an ancestor.
Forest: An unconnected graph with no simple circuits.
Full m-ary tree: A tree with the property that every internal vertex has exactly m children.
Height of a tree: The largest level of the vertices of a tree.
Huffman code: A prefix-free (instantaneous) code, where no codeword is a prefix of another codeword

and it can be represented using a rooted binary tree.
Infix notation: The form of an expression obtained from an inorder traversal of the binary tree representing

this expression.
Inorder traversal: A listing of the vertices of an ordered rooted tree defined recursivelydthe first subtree is

listed, followed by the root, followed by the other subtrees in the order they occur from left to right.
Internal vertex: A vertex that has children.
Leaf: A vertex with no children.
Level of a vertex: The length of the path from the root to the vertex.
Magic square: An n� n array of distinct positive integers so that the sum of the numbers is the same in each

row, column, and main diagonal.
Minimum spanning tree: A spanning tree with the smallest possible sum of weights of its edges.
Parent of a vertex v in a rooted tree: Any vertex that is the immediate predecessor of v on the path to v

away from the root.
Parent of v in a rooted tree: The vertex u such that ðu; vÞ is an edge of the rooted tree.
Postfix notation: The form of an expression obtained from a postorder traversal of the tree representing the

expression.
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Postorder traversal: A listing of the vertices of an ordered rooted tree defined recursivelydthe subtrees are
listed in the order they occur from left to right, followed by the root.

Prefix notation: The form of an expression obtained from a preorder traversal of the tree representing this
expression.

Preorder traversal: A listing of the vertices of an ordered rooted tree defined recursivelydthe root is listed,
followed by the first subtree, followed by the other subtrees in the order they occur from left to right.

Rooted tree: A directed graph with a specified vertex, called the root, such that there is a unique path to
every other vertex from the root.

Sibling of a vertex v in a rooted tree: A vertex with the same parent as v.
Spanning tree: A tree containing all vertices of a graph.
Subtree: A subgraph of a tree that is also a tree.
Tree: A connected undirected graph with no simple circuits.
Tree traversal: A listing of the vertices of a tree.
Trivial tree: A graph consisting of a single vertex.
m-ary tree: A tree with the property that every internal vertex has no more than m children.

Chapter 20dFinite-State Machines
Deterministic finite-state automaton M[ðS; I; f ; s0;FÞ: A model that consists of a finite set S of states,

a finite set I of input alphabet, a transition function f : S � I/S that maps state-input pairs to states, an
initial state (or start state) s0, and a subset F of S consisting of final states (or accepting states).

Finite-state machine: A mathematical model of computation based on a hypothetical machine made of
different states that can be used to simulate sequential logic in order to represent and control execution
flow.

Finite-state machine with no output (finite-state automaton): It models the changes of states within a
system until it achieves one of a collection of desired states. The finite-state automata (the plural of
automaton) do not produce output, but they have a set of final states.

Finite-state machine with output (finite-state transducer): Each transition has an associated output
that either provides some information about the state of the machine or outputs a stream of information as
the machine is intended to produce.

Mealy machineM [ ðS; I;O; f ; g; s0Þ: A model that consists of a finite set S of states, a finite set I of input
alphabet, a finite setO of output alphabet, a transition function f : S � I/S that maps state-input pairs to
states, an output function g: S � I/O that maps state-input pairs to outputs, and an initial state (or start
state) s0:

MooremachineM [ ðS; I;O; f ; g; s0Þ: A model that consists of a finite set S of states, a finite set I of input
alphabet, a finite setO of output alphabet, a transition function f : S � I/S that maps state-input pairs to
states, an output function g: S � I/O that maps an output to a state, and an initial state (or start state) s0:

Nondeterministic finite-state automaton M [ðS; I; f ; s0;FÞ: A model that consists of a finite set S of
states a finite set I of input alphabet, a transition function f : S � I/PðSÞ that maps state-input pairs to
states, where PðSÞ denotes the power set of S (the set of all subsets of S), an initial state (or start state) s0,
and a subset F of S consisting of final states (or accepting states).

State diagram: A directed graph with labeled edges that contains transitions for all possible inputs at each
state.
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Answers/Hints to Exercises

(1.1)

(a) It is a true proposition.
(b) It is not a proposition.
(c) It is not a proposition.
(d) It is a false proposition.

(1.2)

(a) p^q.
(b) p^q.
(c) p^q.
(d) pnq.
(e) p/q.
(f) ðpnqÞ^ðp/qÞ.
(g) p4q.

(1.3)

(a) He studied hard for the final exam and he got an Aþ in the course.
(b) He did not study hard for the final exam or he got an Aþ in the course.
(c) If he studied hard for the final exam, then he did not get an Aþ in the course.
(d) If he did not get an Aþ in the course, then he studied hard for the final exam.
(e) He did not study hard for the final exam, then he did not get an Aþ in the course.
(f) He studied hard for the final exam if and only if he did not get an Aþ in the course.
(g) He did not study hard for the final exam and either he studied hard for the final exam

or he did not get an Aþ in the course. Note that the parentheses were incorporated
by using the word either.

(1.4)

(a) p^q.
(b) r^s.
(c) t^ðunwÞ.
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(1.5)

(a)

ðp^qÞ pnq

F
T
T
T

F
T
T
T

Equivalent 

(b)

ðpnqÞ p^q
F
F
F
T

F
F
F
T

Equivalent 

(1.6)

(a)

ðpnqÞ/ðp4qÞ
F
T
T
T

(b)

ðp4qÞ4ðp4qÞ
T
T
T
T

(1.7)

Converse: If you fail in life, then you do not work hard in life.
Inverse: If you work hard in life, then you do not fail in life.
Contrapositive: If you do not fail in life, then you work hard in life.
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(1.8)

ðp^q^rÞnðp^q^rÞnðp^q^rÞ.

(1.9)

(a) It is a contingency.
(b) It is a tautology.

(1.10)

(a) ðpnqÞ^r.
(b) p4ðq/rÞ.
(c) ðpnqÞ/ðr^sÞ.

(2.1)

(a) It is false.
(b) It is false.

(2.2)

(a) This is true.
(b) This is false.

(2.3)

(a) It is true.
(b) It is false.
(c) It is true.
(d) It is false.
(e) It is true.

(2.4)

(a) cxdyðx þ y ¼ 100Þ.
(b) dxcyðx þ y ¼ yÞ.
(c) cxcyðx þ y ¼ y þ xÞ.
(d) dxdyðx þ y ¼ 100Þ.
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(2.5)

(a) cycxdzPðx; y; zÞ.
(b) No one is 90 years old or older or equivalently, all people are under 90.
(c) dy

��
dxdzTðx; y; zÞ�nðcxczUðx; y; zÞÞ�.

(2.6)

(a) cxdyPðx; yÞ.
(b) dycxPðx; yÞ.
(c) dxcyPðx; yÞhcxdyPðx; yÞ.
(d) cxdyPðx; yÞhdxcy Pðx; yÞ.
(e) cxPðx; xÞ.
(f) dxcyðPðx; yÞ4x ¼ yÞ.

(2.7)

(a) There exists a real number x such that for every real number y, xy ¼ y. This is true.
(b) The product of two negative real numbers is always a positive real number. This is

true.
(c) There exist real numbers x and y such that x2 exceeds y but x is less than y. This is

true.
(d) For every pair of real numbers x and y, there exists a real number z that is their sum.

This is true.

(2.8)

Let Pðp; mÞ be “p has eaten m” and Qðm; rÞ be “m is a meal in r.”
(a) dpcrdmðPðp;mÞ^Qðm; rÞÞ.
(b) cpdrcm

�
Pðp;mÞnQðm; rÞ�.

(2.9)

(a) cxdydzdwdu
�ðx> 0Þ/x ¼ y2 þ z2 þ w2 þ u2

�
, where the domain consists

of all integers.
(b) cx

�
ðx< 0Þ/dyðx ¼ y2Þ

�
, where the domain consists of all real numbers.

(2.10)

(a) There is a pair of real numbers whose sum is zero. It is true.
(b) Every real number has an additive inverse. It is true.
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(c) There is a universal additive inverse; that is, there is a real number that is an additive
inverse for every real number. It is false.

(d) The sum of every pair of real numbers is zero. It is false.

(3.1)

To show expressions are rules of inference, show that they are tautologies using truth
tables.

(3.2)

(a) “I did not drink and I did not have pain.”
(b) “I am working out” and “I feel good about myself.”

(3.3)

(a) Consider the two false premises: “If Cyrus is a good person, then Cyrus lives to be
1000 years old,” and “Cyrus is a good person.” We can thus conclude that “Cyrus
lives to be 1000 years old,” which is a false conclusion. However, the argument is
valid by modus ponens.

(b) Consider the two true premises: “If it is sunny, then it is a hot day” and “It is a hot
day.”We can thus conclude that “It is sunny,”which is a true conclusion. However,
the argument is invalid by the converse error.

(3.4)

(a) There exists some x that makes PðxÞ true, but it is not correct to conclude Neda is
one such x. Then PðNedaÞ is false.

(b) There exists some w that makes Qðw;MinaÞ true, but it is not correct to conclude
Mina is one such w. Therefore the argument is invalid.

(3.5)

(a) Employ universal generalization and then universal modus ponens.
(b) Use universal modus tollens.

(3.6)

(a) It is the fallacy of red herring.
(b) It is the fallacy of slippery slope.
(c) It is the fallacy of appeal to the person.
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(3.7)

Use universal modus ponens.

(3.8)

Use universal modus ponens.

(3.9)

The conclusion is invalid as it shows the converse error.

(3.10)

The conclusion is invalid as it shows the inverse error.

(4.1)

(a) Using a trivial proof, the statement is true, as the conclusion is true.
(b) Using a vacuous proof, the statement is true, as the hypothesis is false.

(4.2)

(a) Square both sides of
xþ y
2

>
ffiffiffiffiffi
xy

p
.

(b) Square both sides of
�
x1 �x�1

�
.

(4.3)

(a) Suppose
ffiffiffi
3

p ¼ a
b
for some integers a and bs0 and square it.

(b) Suppose
ffiffiffi
5

p ¼ a
b
for some integers a and bs0 and square it.

(4.4)

(a) x ¼ aþ b
2

.

(b) p ¼ 11.

(4.5)

(a) Suppose the conclusion is false and we have
�
x � m

2

�
n
�
y � m

2

�
.

(b) Suppose the conclusion of the conditional statement is false and assume n is even.
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(4.6)

(a) As this theorem has the form “p if and only if q,”where p is “n is even,” and “q is “n2

is even,” show p/q and q/p are both true.
(b) Employ proof by contraposition and assume one of the integers is even.

(4.7)

(a) Having ja� cj ¼ jb� cj implies we have either a� c ¼ b� c/a ¼ b or

a � c ¼ �b þ c/c ¼ aþ b
2

.

(b) Because 43 ¼ 64, for there to be positive solutions to this equation both x and y
must be less than 4.

(4.8)

(a) Using a proof by exhaustion, start with small one-digit numbers.
(b) Using a proof by contraposition, assume it is not the case that a <

ffiffiffi
n3

p
or b <

ffiffiffi
n3

p
or

c <
ffiffiffi
n3

p
.

(4.9)

(a) Verify the inequality for only n ¼ 1; 2; 3; and 4.
(b) Suppose this were not the case; that is, suppose there are only finitely many primes,

then there must be a last largest prime.

(4.10)

(a) There are two ways to measure out 4 liters:
(i) ð8; 0; 0Þ/ð3; 5; 0Þ/ð3; 2; 3Þ/ð6; 2; 0Þ/ð6; 0; 2Þ/ð1; 5; 2Þ/

ð1; 4; 3Þ.
(ii) ð8; 0 ; 0Þ/ð5; 0; 3Þ/ð5; 3; 0Þ/ð2; 3; 3Þ/ð2; 5; 1Þ/ð7; 0; 1Þ/

ð7; 1; 0Þ/ ð4; 1; 3Þ.
(b) Use a proof by contradiction.

(5.1)

(a) Form the truth tables for ðAWBÞ; ðAXBÞ, and A4B first to prove the set identity.
(b) Form the truth tables for ðA �BÞ; ðB �AÞ, and A4B first to prove the set identity.
(c) Form the truth tables for ðBcÞ; ðAXBcÞ; and ðA�BÞ first to prove the set identity.
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(5.2)

(a) Form the truth tables for ðAWBÞ; ðC �AÞ, and ðB�CÞ first to prove the set
identity.

(b) Use the duality rules; that is, replace U by B, X by W, and vice versa.

(5.3)

(a) Replace the difference operation by its equivalent intersection operation.
(b) AcWBc .

(5.4)

(a) A � B � C ¼ fðx; y; 1Þ; ðx; y; 2Þ; ðx; y; 3Þ; ðx; z; 1Þ; ðx; z; 2Þ; ðx; z; 3Þg.
(b) Z0 ¼ f0; 4; 8; .g, Z1 ¼ f1; 5; 9; .g, Z2 ¼ f2; 6; 10: .g,

Z3 ¼ f3; 7; 11; .g.

(5.5)

(a) An ¼ f.; �4; �3; �2; �1; 0; 1; 2; 3; 4; .; ng.
(b) A1 ¼ f.; �4; �3; �2; �1; 0; 1g.

(5.6)

(a) 1000.
(b) 560.

(5.7)

(a) PðAÞ ¼ ffa; b; c; dg; fa; b; cg; fa; b; dg; fa; c; dg; fb; c; dg; fa; bg; fa; cg;
fa; dg; fb; cg; fb; dg; fc; dg; fag; fbg; fcg; fdg; fBgg.

(b) ffa; b; c; dgg.
fffag; fb; c; dgg; ffbg; fa; c; dgg; ffcg; fa; b; dgg; ffdg; fa; b; cgg; ffa; bg;
fc; dgg; ffa; cg; fb; dgg; ffa; dg; fb; cggg.
fffag; fbg; fc; dgg; ffag; fcg; fb; dgg; ffag; fdg; fb; cgg; ffbg; fcg; fa; dgg;
ffbg; fdg; fa; cgg; ffcg; fdg; fa; bggg.
ffag; fbg; fcg; fdgg.
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(5.8)

(a) Build a truth table, and its sixth column and eleventh column are identical.
(b) Use the first De Morgan law, the second De Morgan law, the commutative law for

intersections, and the commutative law for unions.

(5.9)

(a) AXB ¼ fb; e; gg.
(b) AWB ¼ fa; b; c; e; g; hg.
(c) A4B ¼ fa; c; hg.
(d) Ac ¼ fa; c; d; f g.
(e) B � A ¼ fa; cg.

(5.10)

RXC ¼ fajmðRXCÞ ðaÞ ¼ 0:9; bjmðRXCÞ ðbÞ ¼ 0:7; c j mðRXCÞ ðcÞ ¼ 0:5; djmðRXCÞ
ðdÞ ¼ 0:1; ejmðRXCÞ ðeÞ ¼ 0:01g.

(6.1)

There are no values of x and y satisfying all equations. Therefore the matrices A and B
cannot be equal.

(6.2)

C ¼
"

1 1 15

�22 �2 24

#
.

(6.3)(
x ¼ �2

y ¼ 3

(6.4)

A�1 ¼
"
�0:5 1

1:5 �2

#
.

(6.5)

B ¼
"
0 0

0 0

#
.
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(6.6)

A�1 ¼

2
664
�11 2 2

�4 0 1

6 �1 �1

3
775.

(6.7)

u ¼
"
3a

2a

#
; where a can be any number.

(6.8)

AB ¼

2
66664

1 0 0 1

0 1 0 1

1 1 1 1

3
77775

2
666664

1 0

0

1

1

1

1

0

3
777775

¼
2
4 1 0
1 1
1 1

3
5.

(6.9)

AnB ¼
"
1 1

1 1

#
; A^B ¼

"
0 1

0 0

#
; & A1B ¼

"
1 1

1 0

#
.

(6.10)

x ¼

2
664

1

�1

�2

3
775

(7.1)

(a) Domain of f ¼ fa; b; cg. Codomain of f ¼ f1; 2; 3; 4g. Range of f ¼ f2; 4g.
(b) f ðaÞ ¼ 2. Inverse image of 1 ¼ B. Inverse image of 2 ¼ fa; cg. Inverse image of

3 ¼ B. Inverse image of 4 ¼ fbg.

(7.2)

(a) The set of odd integers.
(b) The set of positive odd integers.
(c) The set of real numbers.

(7.3)

Prove or give a counterexample for each of the following statements:
(a) As a hint, use the contrapositive proof.
(b) A counterexample can be f ðxÞ ¼ c, where c is a real number.
(c) As a hint, use the contrapositive proof.
(d) A counterexample can be f ðxÞ ¼ c, where c is a real number.
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(7.4)

(a) 2:71:
(b) 3:142.

(7.5)

(a) n ¼ PbR � dae þ 1.
(b) n ¼ dbe � PaR � 1.
(c) n ¼ PbR� dae þ 1 ¼ 9� 5þ 1 ¼ 5 (they are 5, 6, 7, 8, 9) &

n ¼ dbe � PaR� 1 ¼ 9� 4� 1 ¼ 4 (they are 5, 6, 7, 8).

(7.6)

(a) It is one to one.
(b) It is not onto.
(c) It is not one-to-one correspondence.

(7.7)

(a) It is one to one.
(b) It is onto.
(c) It is one-to-one correspondence.

(7.8)

(a) g+f ¼ fða; tÞ; ðb; sÞ; ðc; tÞg.
(b) Imðf Þ ¼ fx; yg. ImðgÞ ¼ fr; s; tg. Imððg+f ÞÞ ¼ fs; tg.

(7.9)

bc þ d ¼ ad þ b.

(7.10)

This function is not one-to-one correspondence, because its range is the set of positive
real numbers rather than the set of all real numbers, which is its codomain. By restricting
the codomain to be the set of positive real numbers, the function is then an invertible
function.
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(8.1)

(a) 1:0 þ ð0 þ 1Þ:1 ¼ 0 þ ð1Þ:1 ¼ 0 þ 1 ¼ 1.
(b) ð0þ 1Þ þ 0:1 ¼ 1 þ 0 ¼ 0 þ 0 ¼ 0.

(8.2)

(a) Build a Boolean table with 14 columns step by step to prove the functions are
equivalent.

(b) Build a Boolean table with eight columns step by step to prove the functions are
equivalent.

(8.3)

(a) E ¼ xyz þ xyz þ xy z þ xyz þ x yz þ x y z.
(b) E ¼ yx y þ xyz.
(c) E ¼ xyz þ xy z þ xyz þ xyz.

(8.4)

(a) All terms in xz are already part of E. Therefore we have xz þ E ¼ E.
(b) There are terms in x that are not part of E. Therefore we have x þ EsE.

(8.5)

xyz þ xyw þ xyt þ xzw þ xzt þ xwt þ yzw þ yzt þ ywt þ zwt.

(8.6)

(a) f ðx; y; zÞ ¼ xzy þ xz y þ xyz þ xyz þ x yz þ xyz þ x y z.
(b) f ðx; yÞ ¼ ðx þ yÞðx þ yÞ.

(8.7)

(a) ci ¼ xy and si ¼ ðx þ yÞci
(b) ciþ1 ¼ xy þ cisi and siþ1 ¼ cisi þ cisi
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(8.8)

(8.9)

(a) F ¼ xy þ yw þ xy w þ x z w.
(b) G ¼ yz þ xyz þ yw z.

(8.10)

Fðx; y; z;wÞ ¼ w þ xy þ x z þ xz.

(9.1)

It is reflexive, symmetric, and transitive. Therefore it is an equivalence relation.

(9.2)

(a) The domain of the relation R is the set f1; 3; 4g, and the range of R is the set
fx; y; zg.

(b) R�1 ¼ fðy; 1Þ; ðz; 1Þ; ðy; 3Þ; ðx; 4Þ; ðz; 4Þg.

(9.3)

(a) fð2; 2Þ; ð2; 4Þ; ð2; 6Þ; ð2; 12Þ; ð3; 3Þ; ð3; 6Þ; ð3; 12Þ; ð4; 4Þ; ð4; 12Þ;
ð6; 6Þ; ð6; 12Þ; ð12; 12Þg.

(b)

0
BBBBBBBBBB@

1 0 1 1 1

0 1

0 0

0 1

1 0

1

1

0 0

0 0

0 1

0 0

1

1

1
CCCCCCCCCCA

.

(c) The relation R is reflexive. The relation R is not symmetric. The relation R is
transitive.
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(9.4)

The relation R ¼ fð2; 2Þ; ð2; 4Þ; ð2; 6Þ; ð2; 8Þ; ð2; 12Þ; ð3; 3Þ; ð3; 6Þ; ð3; 12Þ;
ð4; 4Þ; ð4; 8Þ; ð4; 12Þ; ð6; 6Þ; ð6; 12Þ; ð8; 8Þ; ð12; 12Þg is reflexive, is not symmet-
ric, and is transitive.

(9.5)

(a) It is reflexive. It is symmetric. It is not transitive.
(b) It is not reflexive. It is not symmetric. It is transitive.

(9.6)

(a) The relations R, T , and U are transitive, but S is not transitive.
(b) R1 is not an equivalence relation. R2 is an equivalence relation. R3 is an equivalence

relation.

(9.7)

(a) Rt ¼ fða; bÞ; ðb; aÞ; ða; aÞ; ðb; cÞ; ða; cÞ; ðb; bÞg.
(b) St ¼ R, by default.
(c) Tt ¼ B.

(9.8)
Rt ¼ fða; aÞ; ða; bÞ; ða; cÞ; ða; dÞ; ðb; aÞ; ðb; bÞ; ðb; cÞ; ðb; dÞ;
ðc; aÞ; ðc; bÞ; ðc; cÞ; ðc; dÞ; ðd; aÞ; ðd; bÞ; ðd; cÞ; ðd; dÞg.

(9.9)

(a) R is an equivalence relation, by showing it is reflexive, symmetric, and transitive.
(b) R is an equivalence relation, by showing it is reflexive, symmetric, and transitive.

(9.10)

(a) This relation is not symmetric. Therefore R is not an equivalence relation.
(b) This relation is not transitive. Therefore R is not an equivalence relation.
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(10.1)

(a) a ¼ 30

(b)

8>><
>>:

m ¼ 1 / n ¼ 12 / a ¼ 6 and b ¼ 72

m ¼ 3 / n ¼ 4 / a ¼ 18 and b ¼ 24

(10.2)8>><
>>:

gcd ð82320; 950796Þ ¼ 4116

lcm ð82320; 950796Þ ¼ 19015920

(10.3)

(a) ð10000010Þ2.
(b) ð4FA1Þ16.
(c) 181:

(10.4)

(a) q ¼ 278 & r ¼ 13.
(b) q ¼ �88 & r ¼ 2:

(10.5)

(a) gcdð2310; 2431Þ ¼ 11:
(b) gcdð221; 209Þ ¼ 1 / They are relatively prime.

(10.6)

Addition: m þ n ¼ ð10110Þ2 þ ð1011Þ2 ¼ ð100001Þ2.
Multiplication: m � n ¼ ð10110Þ2 � ð1011Þ2 ¼ ð11110010Þ2.
Subtraction: m � n ¼ ð10110Þ2 � ð1011Þ2 ¼ ð1011Þ2.
Division: mOn ¼ ð10110Þ2Oð1011Þ2 ¼ ð10Þ2.

(10.7)

(a) 3:
(b) 9:
(c) 1:
(d) �2.
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(10.8)

(a) 3302h9 ðmod 11Þ.
(b) 52003h8 ðmod 13Þ.

(10.9)

x1 ¼ 8; x2 ¼ 7; x3 ¼ 0; x4 ¼ 5; x5 ¼ 4; x6 ¼ 6; x7 ¼ 2; x8 ¼ 1; x9 ¼ 3;
x10 ¼ 8:

(10.10)

27,720.

(11.1)

WTAAD.

(11.2)

BEWARE OF MARTIANS / BEWA REOF MART IANS /
EABW EFRO ATMR ASIN

(11.3)

As a hint, a brute-force approach using a computer can be the method of choice. For each
permutation, the resulting plaintext is examined.

(11.4)
8<
:

b ¼ n
2
; if n is even

There is no key b; if n is odd

(11.5)

307 is an inverse of 43 modulo 660.

(11.6)

As a hint, use Cd mod n ¼ ðMe mod nÞd mod n ¼ Medðmod nÞ ¼ Medðmod pqÞ,
where gcdðe; ðp�1Þðq�1ÞÞ ¼ 1 / edh1ðmodðp�1Þðq�1ÞÞ/ ed ¼ 1þ kðp�1Þ
ðq�1Þ to show the results of interest.
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(11.7)

C ¼ 11:

(11.8)

C ¼ 887 mod 187 ¼ 11 / M ¼ 1123 mod 187 ¼ 88:

(11.9)

M ¼

8>><
>>:

0667937 mod 2537 ¼ 1808

1947937 mod 2537 ¼ 1121

0671937 mod 2537 ¼ 0417

(11.10)

Solve x2 þ ð4ðnÞ�n�1Þxþ n ¼ 0 to obtain p and q.

(12.1)

The form of the comparison is subtraction or division, depending on the function:
(a) The increase is approximately equal to zero.
(b) The increase is the constant 1.
(c) The increase is a logarithmic function of n.
(d) The increase is an exponential function of n.
(e) The increase is twice as much.
(f) The increase is ðnþ 1Þ times as much.

(12.2)

Split the list into two 8-element sublists. Compare 72 to the largest item in the first list.
Because 72 > 36, split the second 8-element sublist into two 4-element sublists, and
continue the process.

(12.3)

x7 þ x4 þ x3 þ x2 þ xþ 1
x3 þ 1

is Q
�
x4
�
, where C1 ¼ 3 and C2 ¼ 1; for k ¼ 1:

(12.4)

x> 1 / 8x5 > 8x4 / k ¼ 1 & C ¼ 8:
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(12.5)

We have O(n2m
�
, with witnesses C ¼ 2m and k ¼ 0.

(12.6)

(a) The number of comparisons increases from n to mn.
(b) The number of comparisons increases from log n to log2mn, that is by log2m.

(12.7)

f ðx; yÞ is less than �4x2y2�4 ¼ 256x8y8, where the witnesses are C ¼ 256 and k1 ¼
k2 ¼ 1.

(12.8)

(a) The number of comparisons increases by m2.
(b) The same as part (a).

(12.9)

ðlog nÞ4; ffiffiffi
n3

p
log n; n100; 2n; 10n; ðn!Þ2.

(12.10)

gðnÞ ¼ nkþ1.

(13.1)

(a) As a hint, add ðaþ kdÞ ¼ ðkþ 1Þð2aþ kdÞ
2

to both sides of PðkÞ.
(b) As a hint, add ark to both sides of PðkÞ.

(13.2)

(a) As a hint, add ðkþ 1Þ2 to both sides of PðkÞ.
(b) As a hint, add ðkþ 1Þ3 to both sides of PðkÞ.

(13.3)

As a hint, factor out Pðkþ 1Þ to obtain a multiple of PðkÞ.
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(13.4)

As a hint, break Pðkþ 1Þ into PðkÞ and 5ðk � 2Þðk � 1Þkðk þ 1Þ, then show each is a
multiple of 120.

(13.5)

As a hint, break Pðkþ 1Þ into PðkÞ and another term, and show each is a multiple of 6.

(13.6)

As a hint, an integer greater than 8 is the sum of at least three 3s, the sum of two 5s, or the
sum of a combination of 3s and 5s.

(13.7)

As a hint, factor out Pðkþ 1Þ to obtain a multiple of PðkÞ.

(13.8)

As a hint, factor out Pðkþ 1Þ to obtain a multiple of PðkÞ.

(13.9)

As a hint, break Pðkþ 1Þ into PðkÞ and another term, and show each is a multiple of 10.

(13.10)

(a) As a hint, assume the first player involves removing j matches from one pile, where
0 � j � k þ 1.

(b) As a hint, use the proof by contradiction.

(14.1)

(a) S ¼ aðrm�1Þ
ðr�1Þ .

(b) S ¼ 0:5mð2a þ ðm �1ÞdÞ.

(14.2)

Suppose an is the amount of money in the account at the end of the nth period, where a
period is 1

m years and the interest during a period is thus i
m.
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(a) amk ¼ p
�
1þ i

m

�mk.
(b) amk ¼ peik.

(14.3)

(a) an ¼ 2n � 1; n � 1.
(b) an ¼ 4

3 ð4n �1Þ; n � 1:

(14.4)

(a) an ¼ an�1 þ an�2 þ an�3 þ 2n�3; n � 3, a0 ¼ a1 ¼ an2 ¼ 0.
(b) an ¼ an�1 þ an�2 þ an�3; n � 3, a0 ¼ 1; a1 ¼ 2; a2 ¼ 4:

(14.5)

(a) an ¼ 5 � 2n þ 2 � 3n.
(b) an ¼ 2n � n2n�1.

(14.6)

an ¼ 1ffiffi
5

p
�
1þ ffiffi

5
p
2

�n

� 1ffiffi
5

p
�
1� ffiffi

5
p
2

�n

.

(14.7)

an ¼ k mn þ Pn
i¼ 1

mn�igðiÞ.

(14.8)

an ¼ �
b1;0 þ b1;1n þ b1;2n2 þ b1;3n3

� ð1Þn þ �b2;0 þ b2;1n þ b2;2n2
� ð�2Þnþ�

b3;0 þ b3;1n
� ð3Þn þ �b4;0

� ð4Þn.

(14.9)

an ¼ ð2 �nÞ3n; n � 0:

(14.10)

an ¼ nðnþ 1Þð2nþ 1Þ
6

.
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(15.1)

The number of words is 210 � 10 � 24 ¼ 50;400.

(15.2)

To choose two balls of different colors, three mutually exclusive sets are considered. By
the sum rule, there are therefore 12þ 15þ 20 ¼ 47 ways.

(15.3)

The total number of even four-digit numbers is 156 ð¼ 96 þ 60Þ.

(15.4)

Number of passwords ¼ 363 ¼ 46;656:

(15.5)
26!

ð26� 4Þ! ¼ 26!
22!

.

(15.6)
52!

5!ð52� 5Þ! ¼ 52!
5!47!

.

(15.7)

3 �4 þ 3 � 5 þ 5 � 4 ¼ 47 ways.

(15.8)

k ¼ 3 & n ¼ 7:

(15.9)

(a)

 
12

2

!
¼ 66 ways.

(b) 15þ 6þ 1 ¼ 22 ways.
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(15.10)

There are 10 possible ways to win the tournament.

(16.1)

0:2:

(16.2)
29
45

.

(16.3)

The unfair coin is more likely to have been picked.

(16.4)

91%.

(16.5)

x � 27:

(16.6)

0.86.

(16.7)

(a) 0:56:
(b) 0:94:

(16.8)

21%.

(16.9)

k � 138;148:
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(16.10)

py0:0001.

(17.1)
1
5
.

(17.2)
9
25

¼ 0:36:

(17.3)
P1000

x¼ 998

 
1000

x

!
ð0:001Þxð1� 0:001Þ1000�x.

(17.4)

0:20324:

(17.5)

j þ 4, where j is an integer.

(17.6)

PðX ¼ 4Þy0:075:

PðX ¼ 0jX � 2Þy0:028:

(17.7)

E½X � ¼ 3:7.

E
	
X2

 ¼ 15:5.

s2 ¼ 1:81.
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(17.8)

70%.

(17.9)

k p

0 43.5965%
1 41.3019%
2 13.2378%
3 1.7650%
4 0.0969%
5 0.0018%
6 0.000007%

(17.10)

SY ¼
�

� 1; �1
2
;
1
2
; 1

�
.

pY ð�1Þ ¼ 1
6
; pY ð1Þ ¼ 1

6
; pY

�
�1
2

�
¼ pY

�
1
2

�
¼ 1

3
.

E½Y � ¼ 0:

(18.1)

(a) The total degree of the graph G is thus 6.
(b) There are 11 subgraphs of G. Three of them each has a total degree of 0, four of

them each has a total degree of 2, three of them each has a total degree of 4, and
one has a total degree of 6.

(18.2)

(a) It is a walk with repeated vertex but does not have a repeated edge, so it is a trail from
v1 to v4 but not a path.

(b) It is a walk from v1 to v5, but it is not a trail, as it has a repeated edge.
(c) It is a walk starting and ending at v2, has at least one edge, and does not have a

repeated edge, so it is a circuit.
(d) It is a closed walk from v1 to v1.
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(18.3)

(a)
Aa ¼

0
BBBBBBBBBBBBBBB@

0 1

1 0

1 0

1 0

0 0

0 0

1 1

0 0

0 1

1 0

0 0

1 1

0 0

0 0

0 1

0 1

0 1

1 0

1
CCCCCCCCCCCCCCCA

(b)
Ab ¼

0
BBBBBBB@

0 1

1 1

1 0

0 2

0 0

1 1

1 1

0 0

1
CCCCCCCA

(18.4)

(a) Graph ðaÞ has a vertex of degree 4, whereas the graph ðbÞ does not.
(b) There is a function g, which is one to one and onto, which takes a to c0, b to a0, c to b0,

and d to d0.

(18.5)

It is not bipartite.

(18.6)

The graph is connected.

(18.7)

(a) Because the matrix is symmetric, it is square and thus represents a graph.With a zero-
one matrix, it is a simple graph with no parallel edges and no loops.

(b) Noting each column represents an edge, the sum of the entries in the column is
either 2, if the edge has two incident vertices (i.e., there is no loop), or 1 if it has
1 incident vertex (i.e., there is a loop).
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(18.8)

(a) A complete graph has a Hamilton circuit for all n � 3.
(b) A cycle graph has a Hamilton circuit for all n � 3.
(c) A wheel graph has a Hamilton circuit for all n � 3.

(18.9)

(a) A complete graph has an Euler circuit if the number of vertices is odd, and it does not
have an Euler circuit if the number of vertices is even.

(b) A cycle graph, regardless of the number of its vertices, has an Euler circuit (namely,
itself) for n � 3.

(c) A wheel graph, regardless of the number of its vertices, does not have an Euler
circuit.

(18.10)

28.

(19.1)

(a) It is a tree, as it is connected with no simple circuit.
(b) It is not a tree, as it is not connected.
(c) It is a tree, as it is connected with no simple circuit.
(d) It is not a tree, as it has a simple circuit.
(e) It is not a tree, as it has a simple circuit.
(f) It is a tree, as it is connected with no simple circuit.
(g) It is not a tree, as it is not connected.
(h) It is not a tree, as it has simple circuits.

(19.2)

(a) The vertex a, as it is at the top with no parent.
(b) The vertices with children, namely, a; b; d; e; g; i, j; m.
(c) The vertices without children, namely, c; f; h; k; l; n; o; p; q; r; s; t.
(d) The children of g are k; l; m.
(e) The parent of g is b.
(f) The siblings of g are e; f.
(g) The ancestors of g are b; a.
(h) The descendants of g are k; l; m; t.
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(19.3)

(a) There are 30 edges.
(b) There are 31 vertices.
(c) There are 16 leaves.

(19.4)

(a) 2205:
(b) 32:

(19.5)

(a) A preorder traversal thus visits the nodes in the following order: a b d e c f g.
(b) An inorder traversal thus visits the nodes in the following order: d b e a c g f.
(c) A postorder traversal thus visits the nodes in the following order: d e b g f c a.

(19.6)

(a) The steps are as follows:
L Begin at the vertex a.
L Choose b (of the vertices adjacent to a).
L Select c (of the vertices adjacent to b not yet visited).
L Choose d, and then e, and then f.
L Backtrack to e, and then to d, and then to c.
L Visit g.

(b) As reflected in Figure 19.14(c), the steps are as follows:
L Begin at the vertex a.
L Visit both b and g.
L Visit c, the only unvisited vertex adjacent to b.
L Visit the unvisited vertices adjacent to c, namely, d, e, and f.

(19.7)

(a) Starting at vertex a, edges are added in the following order: fa; bg; fa; dg; fb; eg;
fc; eg.

(b) Edges are added in the following order: fa; bg; fb; dg; fb; eg; fc; eg.
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(19.8)

(a) Edges are added in the following order, where the total weight of the minimum
spanning tree is 110: fe; f g; fc; f g; fe; hg; fh; ig; fb; cg; fb; dg; fa; dg; fg; hg.

(b) Edges are added in the following order, where the total weight of theminimum span-
ning tree is 110: fe; f g; fa; dg; fh; ig; fb; dg; fc; f g; fe; hg; fb; c�; fg; hg.

(19.9)

A : 1;B : 00; C : 011;D : 0101; E : 0100. The average number of bits per symbol is
as follows:
1 �0:7 þ 2 � 0:1 þ 3 � 0:1 þ 4 � 0:05 þ 4 � 0:05 ¼ 1:6 bits.

(19.10)

There are 10 ways for the championship to occur.

(20.1)

As shown in the figure, the state zero is the start state, and the state two is the final state.

Zero One

0

1

Two

1

1, 00
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(20.2)

The figure shows the state diagram, which consists of four states: s0, s1, s2, and s3.

0 1

1

1

0

0

3

1

10

2

0

(20.3)

The state diagram for the nondeterministic FSA is shown in the figure. The strings
are as follows: 010, 0110, 00010, and 001110.

1 

0 0 

0 

0 

1 

1 

0

 

3

 
2

 

1
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(20.4)

This automaton, also called a parity-check machine, contains either an even number of 0s
or an odd number of 0s; it thus has only two states, E and O, as shown in the figure.

(20.5)

In either of the state diagrams, for a string of 1s and 0s, the accepting state is reached if at
least two 0s occur in a row.

(20.6)

The figure presents the corresponding state diagram.

(20.7)

The deterministic FSA recognizes the set of bit strings containing an even number of 1s
and odd number of 0s.

11

0

0

Locked Unlocked

Push

Push

Token

Token
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(20.8)

The figure shows the state diagram, which consists of three states (s0, s1, and s2Þ, where a
transition from one state to another is accompanied by the input/output label. The
output sequence is thus as follows: 00000010100001000.

0
1

1/0

0/0

0/0 1/0

2

0/0 1/1

(20.9)

As shown in the figure, the Moore machine has five states.

0

1

0

1

1

4 3

20

1

1

1

1

0

0 0

0

0

0

0
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(20.10)

As shown in the figure, the transitions are labeled with input and output values. There-
fore the output sequence is 1100.

0 1

1/0

2 3

1/1

0/1

1/1

0/11/00/0

0/0
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Counterexample, proof by, 57
Counting methods, 271
Critical row, 38
Cryptography, 197
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D
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203, 205
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382e388
Finite-state transducer (FST), 374
Floor function, 118
Flowchart, 212e213
Forest, 351
Free variable, 25
Full m-ary trees, 353
Functional completeness, 138e140
Functionally complete, 138
Functions, 113
Fundamental principle of counting,

271e272
Fundamental product, 76e77
Fundamental theorem of arithmetic,

180
Fuzzy set theory, 87
Fuzzy sets, 87e88

G
Game trees, 351
Gaslighting fallacy, 45te48t

Gates, 140e141
General case, recursive algorithm,

252e253
General formula, 250
General solution of linear

nonhomogeneous
recurrence relation, 262

General term of a sequence, 249
Generalization, 39, 40be41b
Generalized pigeonhole principle,

276
Generating functions, recurrence

relations using, 265e269,
266t

Genetic fallacy, 45te48t
Geometric progressions, 250
Geometric random variable,

320e321
Goldbach’s conjecture, 177
Graph, 327, 351
Graph intersection, 330e331
Graph models, 329, 330t
Graph of a function, 116
Graph representation, 334e337,

338t
Graph theory, 327
Graph union, 330e331
Greatest common divisor (GCD),

181e184
Greatest integer function, 118
Greedy algorithms, 214
Grid graph, 333

H
Halting problem, 213
Hamilton circuits, 341e343
Handshaking theorem, 328
Hashing function, 192
Hasse diagram, 172
Hasty generalization fallacy,

45te48t
Height of a rooted tree, 352
Hexadecimal expansions, 193
Hilbert’s paradox, 89e91
Hindu-Arabic numeral system, 178,

211
Homogeneous system, 106
Horner’s method, 216b
Huffman coding algorithm,

365e367
Hybrid topology, 333
Hypercube, 333
Hypergeometric distribution,

321e323

Hypergeometric random variable,
321e323

Hypothesis of an implication, 7,
37e38

Hypothetical syllogism, 39,
40be41b

I
Idempotent laws in Boolean

algebra, 135t
Idempotent laws in propositional

logic, 13t
Idempotent laws in set theory, 78t
Identities of Boolean algebra,

135e136
Identity function, 118
Identity laws in Boolean algebra,

132t, 135t
Identity laws in propositional logic,

13t
Identity laws in set theory, 78t
Identity matrix, 94
Image, 114
Implication, 7
In-degree of a vertex, 328e329
Incidence matrix, 334e335
Incident edge, 334
Inclusion-exclusion principle in set

theory, 78t
Inclusive, 4e5
Inclusive or of two propositions,

4e5
Incomparable elements, 171
Incomplete induction, 233
Inconsistent system of linear

equations, 106
Increasing function, 117
Independent trials, 285
Independent variable, 114
Index of a sequence, 249
Induction, 231
Inductive hypothesis

mathematical induction, 233
strong induction, 242

Inductive reasoning process,
231e232

Inductive step
mathematical induction, 233
strong induction, 242

Infinite sequence, 250
Infinite set, 80e82
Infix notation, 355e356
Information theory, 131
Initial state, 375, 379
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Initial term of a sequence, 249
Initial vertex, 163, 328
Injection function, 121
Inorder traversal, 354
Input alphabet, 375, 379
Input string, 374e375, 379e382
Insertion sort, 224
Integer-valued function, 114e116
Integers representations, 192e194
Integrity, 202
Internal vertices, 352, 353be354b
Intersection of fuzzy sets, 88
Intersection of two events,

291e292
Intersection of two multisets, 86
Intersection of two relations, 165
Intersection of two sets, 73
Intervals of real numbers, 70
Intransitive relation, 158
Inverse error, 49e50
Inverse function, 126
Inverse image, 114
Inverse of a function, 126e127
Inverse of a graph, 330
Inverse of a matrix, 100
Inverse of a proposition, 7
Inverse of a modulo m, 188e189
Inverse relation, 156
Inversion of a matrix, 100e103
Inverter, 140e141
Invertible function, 126e127
Invertible matrix, 100
Involution law in Boolean algebra,

135t
Irreflexive relation, 157
Isolated vertex, 327
Isomorphic, 336
Isomorphic graphs, 336
Isomorphism, 334e337
Isomorphism invariant, 336
Iteration, 255e257
Iterative algorithm, 253e254
Iterative method, 255e256

J
Join of matrix, 104
Joint event, 291e292
Joint probability, 289e290

K
k-combination, 277
k-permutation, 276
Karnaugh map, 145e146

Key in cryptography, 198e200, 223
Key distribution center (KDC), 203
Knights and Knaves, 17be18b
Kruskal’s algorithm, 361

L
Language, 373

recognizers, 374
Law of attachment, 39
Law of contrapositive, 39
Law of total probability, 293e297
Leaf of a rooted tree, 352
Leaf vertex, 328
Least common multiple (LCM),

181e184
Least integer function, 118
Left child, 353e354
Left subtree, 353e354
Length of a string, 373
Level of a vertex, 352
Liar’s paradox, 89
Line graphs, 327
Linear, recurrence relation,

257e258
Linear congruence in one variable,

188
Linear function, 119
Linear graph, 333
Linear homogeneous recurrence

relations with constant
coefficients, 257e261

Linear maps, 109e112
Linear nonhomogeneous

recurrence relations with
constant coefficients,
261e265

Linear order relation, 171e172
Linear probing, 192
Linear regression, 108
Linear search, 228
Linear transformations, 109e112
Linearly ordered set, 171e172
Lines of a graph, 163
Links of a graph, 327
Lists, 334
Literal variable, 136
Literals, 136
Logarithmic function, 120
Logic, 1
Logic gates, 140e144
Logic puzzles, 17e20
Logical connectives, 3
Logical equivalence, 3, 11

Logical equivalence for quantified
statements, 25e26

Logical matrix, 104
Logical operators, 3e7
Logically equivalent, 3, 25e26
Loop in a graph, 163, 328
Lower limit of an index, 250
Lower triangular matrix, 94

M
m-ary trees, 353
Magic square, 362
Main diagonal of square matrix, 94
Mappings function, 113
Maps function, 113
Marginal probability, 289
Markov inequality, 316e317
Mathematical induction, 232e235
Mathematical proof, 56
Matrix, 93
Matrix addition, 96e97
Matrix elements, 93
Matrix entries, 93
Matrix inversion, 100e103
Matrix multiplication, 97e100
Matrix of coefficients in a system of

linear equations, 106
Matrix subtraction, 96
Mealy machine, 384
Mean of a random variable,

310e311
Median of a random variable,

314e315
Medical diagnosis testing, 298, 299t
Meet of matrix, 104
Members of set, 67
Membership function, 87
Membership table, 77
Merge sort, 213, 224e225
Mesh topology, 331
Minimization of a Boolean

function, 144e145
Minimization of combinational

circuits, 144e153
Minimum spanning trees, 360e362
Minterm of Boolean variables, 136
Mixed graph, 328
Mode of a random variable,

314e315
Modern cryptography, 201e202
Modular exponentiation,

191be192b, 207be208b
Modulus, 186
Modus ponens, 39, 40be41b
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Modus tollens, 39, 40be41b
Molecular graphs, 336
Monoalphabetic ciphers, 200e201
Monte Carlo algorithm, 300e301
Moore machine, 382e383
Most significant digit, 274b
Multi-modal random variables,

314e315
Multigraphs, 328
Multiple directed edges, 328
Multiple edges, 328
Multiplication, 215
Multiplicities of elements, 86
Multiplicity, 85
Multisets, 85e86
Mutually exclusive events, 286,

290e293
Mutually exclusive sets, 70

N
n-ary predicate, 22
n-ary relation, 155, 173
n choose r, 120
n-tuples, 250
n-dimensional hypercube, 333
Naïve set theory, 67
NAND operator, 138
Napier’s constant, 120
Natural logarithm, 120
Negation laws in propositional

logic, 13t
Negation of a proposition, 3
Negation of a quantified statement,

27e29
Neighbors in graphs, 327
Nested quantifiers, 29e35
Nodes of a graph, 163
Noncomparable, 171
Noncomplete graph, 331
Nonconstructive existence proof,

62e63
Nonconstructive proofs, 62e63
Nondecreasing function, 117
Nondeterministic finite-state

automaton, 375, 379
Nonhomogeneous system of linear

equations, 106
Nonincreasing function, 117
Nonrepudiation, 202
NOR operator, 138
NOT gate, 141
Null event, 286
Null matrix, 95
Null set, 70

Number theory, 177, 201
Numeral systems, 177e178

O
Octal expansions, 193
One-to-one correspondence

function, 121
One-to-one functions, 121e123
One-to-one relations, 156
One’s complement of binary

number, 194
Onto functions, 121e123
Onto relations, 156
Open walk, 338
Operations on relations, 165e167
OR gate, 141
Order of a graph, 327
Ordered pairs, 82, 155
Ordered rooted tree, 352, 354
Ordered n-tuples, 82, 155, 173
Ore’s theorem, 342e343
Orthogonal matrix, 103
Othering fallacy, 45te48t
Out-degree of a vertex, 328e329
Outcome of a random experiment,

285
Outliers, 314e315
Output alphabet, 382, 384
Output string, 383be384b

P
Pairwise disjoint, 70
Pairwise relatively prime, 181
Paradoxes in set theory, 88e91
Parallel edges, 328
Parent of a vertex, 352
Partial order relation, 171
Partial ordering relation, 171
Partial orderings, 171e172
Partially ordered set, 171
Particular solution, 262
Partition, 293
Partition block, 70
Partition cell, 70
Partition of a nonempty set, 70
Pascal distribution, 321
Pascal random variable, 321
Passive adversaries, 202
Path, 338e339
Pendant vertex, 328
Permutation with replacement, 278
Permutation without replacement,

277e278

Permutations, 277e280
Piece-wise defined function, 117
Pigeonhole principle, 274e276
Plaintext, 197
Points of a graph, 163
Poisson distribution, 323
Poisson random variable, 323
Polyalphabetic cipher, 200e201
Polynomial function of degree n,

119
Poset, 171
Postfix notation, 356
Postorder traversal, 354
Postulate, 55
Power of a relation, 166
Power set, 82
Powers of square matrices, 100
Precedence rules, 9e10, 26, 73e75,

132
Predicate, 21e22
Predicate calculus, 21
Predicate logic, 21
Prefix notation, 355
Preimage, 114
Premise of an implication, 7, 37e38,

231e232
Preorder traversal, 354
Prim’s algorithm, 361
Primary key, 174e176
Prime factorization, 182
Prime numbers, 179e181
Primitive proposition, 3
Principle of duality, 77, 135e136
Principle of inclusion-exclusion, 83,

273
Principle of mathematical

induction, 233
Private key, 206
Private-key cryptography,

202e203
Probabilistic algorithms, 214
Probability, 285, 287t
Probability distribution function,

318
Probability mass function, 308e310
Product, 131
Product index, 250
Product notation, 250
Product of functions, 116
Product of two integers in modular

arithmetic, 190
Product rule for counting, 271e272
Proof by cases, 61e62
Proof by counterexample, 57
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Proof by exhaustion, 61e62
Proof by membership table, 79
Proof methods, 55
Proof of disjunction, 63
Proof of equivalence, 56e57
Proof of principle of mathematical

induction, 233
Proofs, 55e56, 77e80
Proofs by contradiction method,

59e61
Proofs by contraposition method,

59e61
Proofs by exhaustion, 61e62
Proper subset, 70
Propositional equivalences, 11e17
Propositional form, 3
Propositional function, 21e22
Propositional logic, 1e2, 39e42
Propositional variables, 3
Propositions, 1e3
Pseudocode, 212e213
Pseudographs, 328
Public key, 206
Public-key cryptography, 202,

204e205

Q
Quadratic function, 119
Quality control, 282
Quantification, 22, 32e33
Quantified statements, negations of,

27e29
Quantifiers, 22e27
Quaternary, 173
Query, 172
Quicksort, 213, 225
QuineeMcCluskey method,

152e153
Quotient, 178
Quotient-remainder theorem, 178

R
Random experiment, 285, 307
Random variable, 307
Range of a function, 114
Range of a random variable, 307
Range of a relation, 155
Real valued function, 114e116
Recognized string, 375
Records in relational databases, 174
Recurrence relations, 251
Recursion, 249
Recursive algorithms, 252e254

Recursive clause in a Boolean
expression, 133e134, 251

Recursively defined functions,
251e252

Red herring fallacy, 45te48t
Reflection, 109
Reflexive closure, 168
Reflexive relation, 156e157
Regular graph, 333
Rejected string, 375
Relation on a set, 82e83
Relational databases, 172e176
Relations, 155
Relations on sets, 155e156
Relative complement, 73
Relative complement law in set

theory, 78t
Relatively prime, 181
Reliability, 297, 297t
Remainder, 178
Representations of relations,

160e165
Representative of a class, 170
Representing Boolean functions,

136e138
Resolution rule, 40, 40be41b
Reverse process, 197
Right child, 353e354
Right subtree, 353e354
Ring topology, 332
Roman numeral system, 177e178
Root, 352
Rooted tree, 352
Rotation, 109
Row vector, 94
Rows in relational databases, 174
Rows of a matrix, 95
RSA, 205
RSA cryptosystem, 205e210
Rule of addition, 39
Rule of elimination, 39
Rule of transitivity, 39
Rules of inference, 37, 39
Rules of inference for predicate

logic, 42e44
Rules of inference for propositional

logic, 39e42
Russel’s paradox, 89

S
Sample points, 285
Sample space, 285
Satisfiability, applications of, 16e17
Satisfiable, 16e17

Scalar, 93
Scalar multiplication, 96e97
Scaling, 109
Scope of a quantifier, 25
Scytale, 197
Search algorithm, 227e230, 227t
Searching process, 227
Second principle of mathematical

induction, 242e244
Secrecy, 201
Secret key, 197
Secret-key cryptography, 202
Selection sort, 225e227
Selection with replacement, 277
Selection without replacement, 277
Sequences, 249e252, 255
Sequential search, 228
Series, 250
Set builder notation, 68
Set element, 67
Set identities methods, 77e80, 78t
Set member, 67
Set operations, 73e77
Set roster method, 67e68
Set theory, paradoxes in, 88e91
Sets, 67
Shearing, 109
Shift cipher, 198e200, 199t
Shortest-path problem, 343e350
Siblings, 352
Simple directed graph, 328
Simple graph, 328
Simple proposition, 3
Simplification rule, 40, 40be41b
Singleton set, 70
Singular matrix, 100
Size of a graph, 217e218
Size of a matrix, 93e94
Skew-symmetric matrix, 96
Solution of a recurrence relation,

251e252
Solution of a satisfiability problem,

16e17
Sorting algorithms, 223e227, 224t
Sound argument, 39
Space complexity, 215
Spanning subgraph, 330
Spanning trees, 356e360
Sparse matrix, 95
Special functions, 117e121
Special sets of numbers, 70
Square matrix, 94
Squeezing, 109
Stacking the deck fallacy, 45te48t
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Standard deviation of a random
variable, 313e314

Star graph, 332e333
Start state, 375, 379, 382, 384
State diagrams, 375
State tables, 375
Statement form, 3
Statement variables, 3
States, finite set of, 375, 379
Statistical expectation, 312
Statistically independent events,

290e293
Stenography, 197
Stirling’s formula, 119
Straw man fallacy, 45te48t
String, 250, 373
Strong induction, 242e244
Structured query language (SQL),

172
Subbag of a multiset, 86
Subgraph, 330
Subset, 68e70
Subtraction, 215
Subtraction rule for counting, 273
Subtree, 352
Sum, 131
Sum of functions, 312
Sum of two integers in modular

arithmetic, 190
Sum of two multisets, 86
Sum rule for counting, 272e273
Sum-of-products expansion of

Boolean function, 137
Summation index, 250
Summation notation, 250
Superset of a set, 68e70
Sure event, 286
Surjection function, 121
Symmetric closure, 168
Symmetric difference of two sets, 73
Symmetric matrix, 95e96
Symmetric relation, 157
Symmetric-key cryptography, 202
System input, 114
System of linear equations, 106
System output, 114
System reliability, 297

T
Table in relational databases, 174
Tautological statement, 15
Tautology, 15, 37

Term of a sequence, 249
Terminal vertex, 163, 328
Terminology of proof, 55e56
Ternary, 173
Theorem on total probability,

293e297
Time complexity, 215
Tiny percentage fallacy, 45te48t
Top-down logic, 231
Total degree, 328
Total order relation, 171e172
Totally ordered set, 171e172
Trace, 94
Trail, 338e339
Transformations function, 113
Transition function, 375, 379
Transitive closure, 168e169
Transitive relation, 158
Transpose of a matrix, 95
Transposition cipher, 200e201
Tree diagram, 273e274
Tree structure, 273e274
Tree traversal, 354e356
Trees, 351
Trial, 285
Trivial divisors, 178
Trivial graph, 327
Trivial proofs, 58
Trivial solution, 257e258
Trivial tree, 351
Truth set, 72
Truth table, 3, 3t, 77
Truth value of proposition, 3
Twin prime conjecture, 177
Two-dimensional mathematical

induction principle,
234e235

Two’s complement of a binary
number, 194

2-tuple, 223

U
Uncountably infinite set, 80e82
Undirected edge, 327
Undirected graph, 327
Union of multisets, 86
Union of two events, 286
Union of two fuzzy sets, 88
Union of two relations, 165
Union of two sets, 73
Unique prime-power factorization,

180

Uniqueness proofs, 63e65
Uniqueness quantifier, 24
Unit element, 131
Unit property in Boolean algebra,

135t
Unit set, 70
Unit step function, 118
Universal generalization, 42
Universal instantiation, 42
Universal modus ponens, 44
Universal modus tollens, 44
Universal quantification, 23
Universal quantifier, 23
Universal set, 68
Universe of discourse in predicate

logic, 21, 68
Unsatisfiable, 16e17
Upper bounds on probability,

316e318
Upper limit of an index, 250
Upper triangular matrix, 94

V
Vacuous proofs, 58
Valid argument form, 38
Valid arguments, 37e39
Variance of a random variable, 312b
Vector, 106
Vector of constants, 106
Vector of unknowns, 106
Venn diagrams, 68, 78e80
Vertices, 327
Vertices of a graph, 163

W
Walk, 338
Weak induction, 233
Weighted graph, 328
Well-ordering principle, 244e247
Wheel graph, 333
Witnesses, 217e218
Worst-case time complexity, 217

Z
Zero element, 131
Zero matrix, 95
Zero property in Boolean algebra,

135t
Zero-one Matrix, 104e105, 163,

167
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