
Undergraduate Topics in Computer Science

Discrete
Mathematics
and Graph Theory

K. Erciyes

A Concise Study Companion
and Guide

Undergraduate Topics in Computer
Science

Series Editor

Ian Mackie, University of Sussex, Brighton, UK

Advisory Editors

Samson Abramsky , Department of Computer Science, University of Oxford,
Oxford, UK

Chris Hankin , Department of Computing, Imperial College London, London, UK

Mike Hinchey , Lero – The Irish Software Research Centre, University of
Limerick, Limerick, Ireland

Dexter C. Kozen, Department of Computer Science, Cornell University, Ithaca,
NY, USA

Andrew Pitts , Department of Computer Science and Technology, University of
Cambridge, Cambridge, UK

Hanne Riis Nielson , Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

Steven S. Skiena, Department of Computer Science, Stony Brook University, Stony
Brook, NY, USA

Iain Stewart , Department of Computer Science, Durham University, Durham,
UK

https://orcid.org/0000-0003-3921-6637
https://orcid.org/0000-0001-9149-8577
https://orcid.org/0000-0001-5110-561X
https://orcid.org/0000-0001-7775-3471
https://orcid.org/0000-0002-2484-5580
https://orcid.org/0000-0002-0752-1971

‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems, many of which include fully
worked solutions.

The UTiCS concept relies on high-quality, concise books in softback format, and
generally a maximum of 275–300 pages. For undergraduate textbooks that are likely
to be longer, more expository, Springer continues to offer the highly regarded Texts
in Computer Science series, to which we refer potential authors.

More information about this series at http://www.springer.com/series/7592

http://www.springer.com/series/7592

K. Erciyes

Discrete Mathematics
and Graph Theory
A Concise Study Companion and Guide

123

K. Erciyes
Department of Computer Engineering
Üsküdar University
Üsküdar, Istanbul, Turkey

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-030-61114-9 ISBN 978-3-030-61115-6 (eBook)
https://doi.org/10.1007/978-3-030-61115-6

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-61115-6

To all Math lovers

Preface

Discrete Mathematics is a branch of mathematics that studies structures which take
distinct values as opposed to continuous mathematics branches such as calculus and
analysis. Study of discrete mathematics is one of the first courses of curriculums in
various disciplines such as Computer Science, Mathematics and various engi-
neering branches. There are many books on discrete mathematics and it will be
worthwhile to justify the need for another book on discrete mathematics.

Graphs are key data structures used to represent various networks, chemical
structures, games, etc. Graph theory has gone through an unprecedented growth in
the last few decades both in terms of theory and implementations, hence we believe
it deserves a thorough treatment in any discrete mathematics book which probably
is not found adequately in any of contemporary book of discrete mathematics. This
is one of the main reasons of writing this book.

Secondly, many contemporary books on the topic elaborate on basic concepts
vigorously with numerous examples and exercises which are appropriate for an
undergraduate course. However, we think there is a need for a dense and thorough
treatment of discrete mathematics and graph theory possibly for the non-Computer
Science majors of various other disciplines. Also, this book can also be used as a
reference/second textbook in a Computer Science curriculum for quick reference.

Lastly, we will be using an algorithmic approach for some discrete mathematics
and graph problems to reinforce learning the topics and show how to implement
these concepts in real applications.

With this in mind, this book is intended as a reference book for a one-semester
course in the junior level of Computer Science, Mathematics and senior/graduate
levels of various engineering disciplines. We have a web page to provide any
supporting material and possible errata at:

http://akademik.ube.ege.edu.tr/erciyes/DMGT.
Part of the material in the book was used for the first year Discrete Mathematics

course at Üsküdar University Computer Engineering Department. I would like to
thank students of this course for their valuable feedback, especially for some

vii

http://akademik.ube.ege.edu.tr/erciyes/DMGT

concepts that did not seem so obvious which resulted in further elaboration of these
topics in the book. As usual, my thanks go to Springer senior editor Wayne Wheeler
and associate editor Simon Rees for their support during the writing of the book.

Üsküdar, Turkey K. Erciyes

viii Preface

Contents

Part I Fundamentals of Discrete Mathematics

1 Logic . 3
1.1 Propositional Logic . 3

1.1.1 Compound Propositions . 4
1.1.2 Conditional Statements . 5
1.1.3 Biconditional Statements . 7
1.1.4 Tautologies and Contradictions 8
1.1.5 Equivalences . 10
1.1.6 Laws of Logic . 12

1.2 Predicate Logic . 14
1.2.1 Quantifiers . 15
1.2.2 Propositional Functions with Two Variables 16
1.2.3 Negation . 17
1.2.4 The Universal Conditional Statement 18
1.2.5 The Existential Conditional Statements 19

1.3 Review Questions . 20
1.4 Chapter Notes . 20

2 Proofs . 23
2.1 Arguments . 23

2.1.1 Rules of Inference . 23
2.1.2 Definitions . 27

2.2 Direct Proof . 28
2.3 Contrapositive . 30
2.4 Proof by Contradiction . 31
2.5 Proving Biconditional Propositions . 32
2.6 Proofs Using Quantifiers . 33

2.6.1 Proving Universal Statements 34
2.6.2 Proving Existential Statements 35

2.7 Proof by Cases . 36
2.8 Review Questions . 37
2.9 Chapter Notes . 38

ix

3 Algorithms . 41
3.1 Basics . 41

3.1.1 Pseudocode Convention . 43
3.1.2 Assignment and Types of Variables 43
3.1.3 Decision . 44
3.1.4 Loops . 44
3.1.5 Functions and Parameter Passing 46

3.2 Basic Data Structures . 46
3.3 Sorting . 49

3.3.1 Bubble Sort . 50
3.3.2 Exchange Sort . 51

3.4 Analysis . 52
3.5 Design Methods . 55

3.5.1 Divide and Conquer . 55
3.5.2 Greedy Method . 55
3.5.3 Dynamic Programming . 57

3.6 Difficult Problems . 58
3.7 Review Questions . 59
3.8 Chapter Notes . 59
References . 61

4 Set Theory . 63
4.1 Definitions . 63

4.1.1 Equality of Sets . 64
4.1.2 Cardinality of a Set . 65

4.2 Subsets . 65
4.3 Venn Diagrams . 67
4.4 Set Operations . 68

4.4.1 Cartesian Product . 71
4.4.2 Set Partition . 72
4.4.3 Operation Precedence . 73

4.5 Laws of Set Theory . 73
4.6 Proving Set Equations . 75

4.6.1 The Element Method . 75
4.6.2 The Tabular Method . 78
4.6.3 The Algebraic Method . 79

4.7 Review Questions . 80
4.8 Chapter Notes . 80
References . 81

5 Relations and Functions . 83
5.1 Relations . 83

5.1.1 Representations . 84
5.1.2 Inverse of a Relation . 85

x Contents

5.1.3 Union and Intersection of Relations 86
5.1.4 Properties of Relations . 87
5.1.5 Equivalence Relations and Partitions 91
5.1.6 Order . 92
5.1.7 Composite Relation . 93
5.1.8 n-Ary Relations . 94
5.1.9 Transitive Closure . 94
5.1.10 Database Applications . 95

5.2 Functions . 96
5.2.1 Composite Functions . 97
5.2.2 Injection, Surjection and Bijection 98
5.2.3 Inverse of a Function . 101
5.2.4 Some Special Functions . 101

5.3 Review Questions . 103
5.4 Chapter Notes . 104

6 Sequences, Induction and Recursion . 105
6.1 Sequences . 105

6.1.1 Summation . 106
6.1.2 Arithmetic Sequence and Series 107
6.1.3 Geometric Sequence . 109
6.1.4 Product Notation . 110
6.1.5 Big Operators . 111

6.2 Induction . 111
6.2.1 Proving Inequalities . 114

6.3 Strong Induction . 115
6.4 Recursion . 116

6.4.1 Recurrence Relations . 117
6.4.2 Recursively Defined Functions 118
6.4.3 Recursive Algorithms . 119
6.4.4 Recursively Defined Sets . 123

6.5 Structural Induction . 124
6.6 Review Questions . 126
6.7 Chapter Notes . 127

7 Introduction to Number Theory . 129
7.1 Basics . 129
7.2 Division . 130
7.3 Greatest Common Divisor . 131

7.3.1 Euclid’s Algorithm . 132
7.3.2 Least Common Multiple . 133

7.4 Prime Numbers . 135
7.4.1 Primality Test . 136
7.4.2 The Sieve of Eratosthenes . 138

Contents xi

7.5 Congruence . 139
7.6 Representation of Integers . 143

7.6.1 Binary System . 143
7.6.2 Hexadecimal System . 144

7.7 Introduction to Cryptography . 144
7.7.1 Diffie-Hellman Protocol . 146
7.7.2 RSA Protocol . 147

7.8 Review Questions . 148
7.9 Chapter Notes . 149
References . 150

8 Counting and Probability . 151
8.1 Basic Counting Methods . 151

8.1.1 Principle of Inclusion-Exclusion 151
8.1.2 Additive Counting Principle 153
8.1.3 Multiplicative Counting Principle 153
8.1.4 The Pigeonhole Principle . 155
8.1.5 Permutations . 156
8.1.6 Combinations . 158

8.2 Discrete Probability . 163
8.2.1 Probability Measures . 163
8.2.2 Independent Events . 165
8.2.3 Conditional Probability . 166
8.2.4 Tree Diagrams . 167
8.2.5 Random Variables . 168
8.2.6 Stochastic Processes . 170

8.3 Review Questions . 171
8.4 Chapter Notes . 171

9 Boolean Algebras and Combinational Circuits 173
9.1 Boolean Algebras . 173

9.1.1 Principle of Duality . 175
9.1.2 Boolean Functions . 176
9.1.3 Sum-of-Products Form . 176
9.1.4 Product-of-Sums Form . 178
9.1.5 Conversions . 179
9.1.6 Minimization . 180

9.2 Combinational Circuits . 183
9.2.1 Gates . 184
9.2.2 Designing Combinational Circuits 186
9.2.3 Arithmetic Circuits . 190

9.3 Review Questions . 193
9.4 Chapter Notes . 193
Reference . 195

xii Contents

10 Introduction to the Theory of Computation 197
10.1 Languages . 197
10.2 Finite State Machines . 198
10.3 Finite State Automata . 201

10.3.1 Analysis . 201
10.3.2 Designing Finite State Automata 203

10.4 The Relationship Between Languages and Automata 204
10.5 Nondeterministic Finite State Automata 206
10.6 Regular Expressions . 208
10.7 Turing Machines . 209
10.8 Complexity Theory . 212

10.8.1 Reductions . 214
10.8.2 NP-Completeness . 215
10.8.3 Coping with NP-Completeness 216

10.9 Review Questions . 217
10.10 Chapter Notes . 217
References . 218

Part II Graph Theory

11 Introduction to Graphs . 221
11.1 Terminology . 221
11.2 Vertex Degree . 222

11.2.1 Degree Sequence . 224
11.3 Directed Graph . 224
11.4 Representation of a Graph . 225

11.4.1 Adjacency List . 225
11.4.2 Adjacency Matrix . 226
11.4.3 Incidence Matrix . 227

11.5 Subgraphs . 227
11.6 Types of Graphs . 228

11.6.1 Complete Graph . 228
11.6.2 Weighted Graphs . 229
11.6.3 Bipartite Graphs . 229
11.6.4 Regular Graphs . 230
11.6.5 Line Graphs . 230

11.7 Graph Operations . 231
11.7.1 Graph Union . 231
11.7.2 Graph Intersection . 232
11.7.3 Graph Join . 232
11.7.4 Cartesian Product . 233

Contents xiii

11.8 Connectivity . 234
11.8.1 Definitions . 234
11.8.2 Connectedness . 235

11.9 Graph Isomorphism . 237
11.10 Review Questions . 238
11.11 Chapter Notes . 239
References . 241

12 Trees and Traversals . 243
12.1 Definitions and Properties . 243
12.2 Traversal Algorithms . 244

12.2.1 Preorder Traversal . 245
12.2.2 Postorder Traversal . 245

12.3 Binary Trees . 245
12.4 Binary Search Trees . 247
12.5 Depth-First-Search . 249
12.6 Breadth-First Search . 251
12.7 Spanning Trees . 253

12.7.1 Unweighted Spanning Trees 253
12.7.2 Minimum Spanning Trees . 254

12.8 Review Questions . 259
12.9 Chapter Notes . 259
References . 262

13 Subgraphs . 263
13.1 Cliques . 263
13.2 Matching . 264

13.2.1 Unweighted Matching . 264
13.2.2 Weighted Matching . 267
13.2.3 Bipartite Graph Matching . 269

13.3 Independent Sets . 269
13.3.1 Algorithm . 269

13.4 Dominating Sets . 271
13.4.1 Algorithm . 273

13.5 Coloring . 274
13.5.1 Vertex Coloring . 274
13.5.2 Edge Coloring . 275

13.6 Vertex Cover . 278
13.6.1 Unweighted Vertex Cover . 278
13.6.2 Weighted Vertex Cover . 280

13.7 Review Questions . 281
13.8 Chapter Notes . 282
References . 285

xiv Contents

14 Connectivity, Network Flows and Shortest Paths 287
14.1 Basics . 287

14.1.1 Menger’s Theorems . 290
14.2 Connectivity Test . 290
14.3 Digraph Connectivity . 291

14.3.1 Strong Connectivity Check . 291
14.3.2 Finding Strongly Connected Components 292

14.4 Network Flows . 295
14.4.1 A Greedy Algorithm . 296
14.4.2 Residual Graphs . 296
14.4.3 Ford–Fulkerson Algorithm . 297
14.4.4 Bipartite Graph Matching . 298

14.5 Algebraic Connectivity . 300
14.5.1 The Laplacian Matrix . 300
14.5.2 Normalized Laplacian . 301
14.5.3 Eigenvalues . 301

14.6 Shortest Paths . 302
14.7 Chapter Notes . 304
References . 306

15 Graph Applications . 307
15.1 Analysis of Large Graphs . 307

15.1.1 Degree Distribution . 307
15.1.2 Clustering . 308
15.1.3 Matching Index . 310
15.1.4 Centrality . 311
15.1.5 Network Models . 312

15.2 The Web . 313
15.2.1 The Web Graph . 314
15.2.2 Page Rank Algorithm . 314

15.3 Ad hoc Wireless Networks . 316
15.3.1 Routing in ad hoc Networks 317
15.3.2 Clustering and Spanning Tree Construction

in a WSN. 319
15.4 Biological Networks . 321

15.4.1 Network Motifs . 321
15.4.2 Network Alignment . 322

15.5 Social Networks . 323
15.5.1 Relationships . 324
15.5.2 Structural Balance . 324

15.6 Review Questions . 325
15.7 Chapter Notes . 326
References . 328

Contents xv

Pseudocode Conventions . 329

Index . 333

xvi Contents

Part IFundamentals of Discrete
Mathematics

1Logic

Logic deals with laws of thought, and mathematical logic and proofs are the basic
methods of reasoning mathematics. The laws of logic help us to understand the
meaning of statements. Statements come in various forms, for example “7 is a prime
number” is a statement which we can deduce to be true. Sometimes a statement can
be of the form “if n is an even integer, we can write n = 2m for some integer m”
which is a true compound statement consisting of two simple statements. The first
simple statement is “n is an even integer” and the second one is “n = 2m”. We claim
the second statement is true when the first one is true. Statements in the form “if
...then...” form the basis of reasoning about proofs. Yet, determining the truth value
of a statement such as “My name is Melisa” depends on the person who says it. We
will investigate statements, how to determine their truth values, and the laws that aid
to reason about complex statements in this chapter.

1.1 Propositional Logic

A proposition or a statement is a declaration that is either correct or incorrect. Some
examples of propositions are:

1. A prime number cannot be factorized.
2. 12 is an odd integer.
3. It is sunny today.
4. 3 + 4 = 7.
5. For any integer n, n2 is a positive integer.

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_1

4 1 Logic

Table 1.1 Truth table for negation

p ¬p

T F

F T

However, a statement such as “How old are you?” is not a proposition as we
cannot assign a truth value to it. A proposition may be true or false at all times, and
sometimes its truth value depends on when or by whom it is stated. For example,
although propositions 1, 4 and 5 are true, and 2 is false; the value of proposition 3
depends on the day it is stated. We will use a lowercase letter to represent a statement
and “T” for the true value and “F” for the false value of a proposition.

Negation
The negation of a proposition is a proposition with the inverse value of the statement.
This is accomplished by inserting a “not” or “it is not the case” in a proposition. The
negation of a proposition p is shown by¬p or�p or p; wewill adopt¬p throughout
the book. For example, if p = “It is rainy today”, then ¬p = “It is not rainy today”.
We could also state¬p = “It is not the case it is rainy today”. A truth table lists all of
the possible truth values of a proposition. The truth table for the negation is shown
in Table 1.1.

1.1.1 Compound Propositions

A proposition may consist of more than one statement joined by logical connectives.
For example, p =“16 is an even number” and “16 > 4”. Here, p contains two
component propositions joined by the word and, and its truth value depends on the
truth values of these simple component propositions. In this example, p is true since
both of its components are true. Two commonly used connectives in a compound
proposition are and and or.

Conjunction
The conjunction of two simple propositions is the proposition obtained by inserting
and which is commonly shown by the logical symbol ∧ between them. Thus, the
conjunction of two propositions p and q is denoted by p ∧ q . The conjunction is
true when both p and q are true and false otherwise. Truth table for conjunction is
shown in Table 1.2.

Disjunction
The disjunction of two simple propositions is the proposition obtained by inserting
“or” or the logical symbol∨ between them. Hence, disjunction of two propositions p
and q is denoted by p ∨ q . It is false when both p and q are false and true otherwise.
For example, “6 is a prime number or 4 > 9” is a compound proposition consisting
of two simple statements that are both false and hence the compound proposition is

1.1 Propositional Logic 5

Table 1.2 Truth table for conjunction

p q p ∧ q

F F F

F T F

T F F

T T T

Table 1.3 Truth table for disjunction

p q p ∨ q

F F F

F T T

T F T

T T T

Table 1.4 Truth table for exclusive or

p q p ⊕ q

F F F

F T T

T F T

T T F

false. Truth table for disjunction is shown in Table 1.3 where we can see the truth
value of such a proposition is true when at least one of its components yields a true
value. A variation of disjunction is the exclusive-or of two propositions. This is true
when only one of the propositions p and q is true and is false otherwise as shown
in Table 1.4. Basically, exclusive-or is used for cases when it is required that only
one of the statements that make up the compound statement needs to be true. For
example, a student may take one of two similar courses but not both.

1.1.2 Conditional Statements

The conditional statement or an implication, p → q , is read as “if p then q” and is
falsewhen p is true and q is false, and true otherwise. The proposition p is commonly
called the hypothesis or premise, and q is called the conclusion or the consequence.
The conditional statement can also be stated as follows.

• “p implies q”
• “p only if q”

6 1 Logic

Table 1.5 Truth table for p → q

p q p → q

F F T

F T T

T F F

T T T

• “p is (a) sufficient (condition) for q”
• “q is (a) necessary (condition) for p”

Example 1.1.1 Let the proposition p be “I study hard” and q be “I pass the exam”.
The conditional statement would then be “if I study hard, I pass the exam”. Note
that not studying hard does not imply failing the exam, we are only saying studying
hard implies passing the exam. Studying hard and failing the exam as a consequence
will not happen and therefore is a false condition. Also, if I do not study hard, I may
and probably will not pass the exam which is again a legitimate and therefore a true
status. �

The truth table for the implication is shown in Table 1.5 which summarizes the
consequences of the possible input statement combinations. It can be seen that the
proposition “if p then q” is false only when p is true and q is false since this can not
happen based on our assumption that if premise is true, the consequence should also
be true. Note that a false proposition implying a true proposition yields an overall
true value for the conditional statement. This is logical as the consequence is true as
in the conditional “If snow is green then sun is yellow”. In other words, we do not
care what the truth value of the premise is as long as the conclusion is true. A false
premise implying a false conclusion also results in a true value for the conditional as
shown in Table 1.5 as in the example “If earth is flat then it can not rotate”. We know
earth is not flat and also it does rotate. A false premise implying a false conclusion
may seemmore illogical than this example, “If iron is soft then water is hard” is such
a conditional proposition which results in a total true statement. We know iron is not
soft, thus, it is not the case that water is hard. Hence, a false premise may imply any
conclusion that is false to result in a true conditional value.

Definition 1.1 Given a conditional statement r of the form p → q ,

• The converse of r is q → p
• Its inverse is ¬p → ¬q
• Its contrapositive is ¬q → ¬p

The truth table for the converse, inverse and the contrapositive of a conditional
proposition are depicted in Table 1.6.We can see from this truth table that the contra-

1.1 Propositional Logic 7

Table 1.6 Truth table for converse, inverse and contrapositive of a conditional proposition

p q ¬p ¬q p → q q → p ¬p → ¬q ¬q → ¬p

F F T 1 T T T T

F T T F T F F T

T F F T F T T F

T T F F T T T T

positive of a conditional statement is equivalent to itself and this fact is very useful
when proving theorems as we shall see. Furthermore, the converse of a conditional
proposition is always equivalent to its inverse as shown.

Let us illustrate these concepts by the previous example; let proposition p be “I
work hard” and q be “I pass my Math exam” as before. The conditional statement
r formed using p and q would then be “If I work hard, I pass my Math exam”. The
contrapositive of r is “If I do (did) not pass my Math exam, I do (did) not work
hard”. More informally, this means if I have not passed my Math exam, then I have
not worked hard. This is true because if I had worked hard, I would have passed the
exam based on the conditional proposition r which shows r and its contrapositive
are equivalent. The converse of r then would be “If I pass my Math exam, I (have)
work(ed) hard”. This is not true since I could have passed my exam even if I had
not worked hard for it. Essentially, the conditional r does not specify this case. Its
inverse is “If I do not work hard, I will not pass my Math exam” which provides
basically the same reasoning as the converse of r since I could have passed the exam
without working hard as in the converse.

1.1.3 Biconditional Statements

In some cases, we require the premise p to be both a necessary and a sufficient
condition for the conclusion q . Note that this is different than the conditional since
we need the premise p to be a necessary condition this time. We use the phrase if
and only if to connect the two component propositions this time saying “p if and
only if q”. Returning to our previous example which had p =“I work hard” and q
=“I pass the exam” now becomes “I study hard if and only if I pass the exam” in
biconditional form. What we are saying this time is that there is no way to pass the
exam without working hard. Note that passing the exam without working hard was
a possibility in the conditional.

The truth table for the biconditional p ↔ q is shown in Table 1.7 and based on
our above discussion, it has true values when both component propositions have the
same value whether true or false. Here, we can see that a false statement implying
a false statement yields a true value of the biconditional. Later, we will see that a
biconditional statement is equivalent to conjunction of two conditionals, one from
each direction.

8 1 Logic

Table 1.7 Truth table for p ↔ q

p q p ↔ q

F F T

F T F

T F F

T T T

Example 1.1.2 Let the proposition p be “it is sunny” and q be “I go to park”. Write
the following propositions using p and q:

1. If it is sunny, I go to park.
2. If I do not go to park, it is not sunny.
3. I go to park if and only if it is sunny.

Solution:

1. p → q
2. ¬q → ¬p
3. q ↔ q

�

1.1.4 Tautologies and Contradictions

Some compound propositions are always true or false irrelevant of the truth values
of the simple statements that make them. A tautology is a compound statement that
is always true independent of the truth values of is component statements. Similarly,
a contradiction is always false immaterial of the truth value of its components. The
truth table for an example tautology and an example contradiction are shown in
Tables 1.8 and 1.9. We have the truth value of a proposition or its negation which
is always true, and the truth value of a proposition and its negation which is always
false.

Table 1.8 Truth table for a tautology

p ¬p p ∨ ¬p

F T T

T F T

1.1 Propositional Logic 9

Table 1.9 Truth table for a contradiction

p ¬p p ∧ ¬p

F T F

T F F

Table 1.10 Truth table for (p → ¬q) ∨ (¬r → p)

p q r ¬q ¬r p → ¬q ¬r → q (p →
¬q) ∨
(¬r → q)

F F F T T T F T

F F T T F T T T

F T F F T T T T

F T T F F T T T

T F F T T T F T

T F T 1 F T T T

T T F F T F T T

T T T F F F T T

Table 1.11 Truth table for (¬p ∧ q) ∧ (p ∨ ¬q)

p q ¬p ¬q ¬p ∧ q p ∨ ¬q (¬p ∧ q) ∧
(p ∨ ¬q)

F F T T F T F

F T T F T F F

T F F T F T F

T T F F F T F

Example 1.1.3 Show that (p → ¬q) ∨ (¬r → p) is a tautology.
Solution: We form the truth table for the propositions p, q and r , this time with 8
rows to include all of the possible 23 input values for 3 variables as in Table 1.10.
The required compound proposition is in the last column of this table and we find it
has all true values and therefore this compound statement is a tautology. �

Example 1.1.4 Find whether (¬p ∧ q) ∧ (p ∨ ¬q) is a contradiction.
Solution: We form the truth table for the propositions p, q , their negations and the
component propositions as shown in Table 1.11. We form the required compound
proposition in the last column of this table and find it has all false values and therefore
this compound statement is a contradiction. �

10 1 Logic

1.1.5 Equivalences

Two propositions are considered equivalent if they have the same truth table values
for all their simple component proposition truth value combinations. We show the
equivalence by “≡” sign, that is, p ≡ q if p and q are equivalent to each other.
Table 1.12 shows that the biconditional p ↔ q is equivalent to (p → q)∧ (q → p)
as shown in the last two columns. This means the assessment of the truth value of a
biconditional statement needs to be done by assessing the truth value of both of the
two conditional statements (p → q) and (q → p).

Example 1.1.5 Show that p → q ≡ ¬p ∨ q and ¬(p → q) ≡ p ∧ ¬q
Solution: Let us form the truth table for both propositions against all possible values
of the simple statements as shown in Table 1.13. The corresponding columns (4
and 5) for the two compound propositions are equal as can be seen. For the second
equivalence, columns 7 and 8 are equal. �

These two equivalences play an important role in proving the conditional state-
ments. For the first equivalence p → q ≡ ¬p ∨ q , let p be “You do not need me
now” and q be “I will go out”. The implication is “If you do not need me now, I will
go out”. The equivalent statement based on the above example is “Either you need
me now or I will go out”. For the second one ¬(p → q) ≡ p ∧ ¬q , we can state
“If it is not the case that you do not need me now then I will go out” is equivalent to
“You do not need me now and I will not go out”.

We now have the following observation. When two propositions p and q are
equivalent, they have the same truth table values as stated. On the other hand, the

Table 1.12 Truth table of the equivalence of a biconditional

p q p → q q → p (p →
q) ∧ (q → p)

p ↔ q

F F T T T T

F T T F F F

T F F T F F

T T T T T T

Table 1.13 Truth table for Example 1.1.5

p q ¬p p → q ¬p ∨ q ¬q p ∧ ¬q ¬(p → q)

F F T T T T F F

F T T T T F F 0

T F F F F T T T

T T F T T F F 0

1.1 Propositional Logic 11

Table 1.14 Truth table for Example 1.1.6

p q ¬p ¬q p ∧ q a: ¬(p ∧ q) b :¬p ∨ ¬q a ↔ b

F F T T F T T T

F T T F F T T T

T F F T F T T T

T T F F T F F T

Table 1.15 Truth table for Example 1.1.7

p q ¬p ¬q p ∨ q a : ¬(p ∨ q) b : ¬p ∧ ¬q a ↔ b

F F T T F T T T

F T T F T F F T

T F F T T F F T

T T F F T F F T

biconditional statement is true whenever its components have the same value. We
can therefore conclude p ≡ q if and only if p ↔ q is a tautology.

Example 1.1.6 Let us check whether¬(p ∧q) ↔ ¬p ∨¬q is a tautology. We form
the truth table shown in Table 1.14 and the last column in this table corresponding
to the required statement has all true values resulting in a a tautology. �

Example 1.1.7 Let us show that ¬(p ∨ q) ↔ ¬p ∧ ¬q is a tautology. The truth
table shown in Table 1.15 has all true values in the last column for the compound
proposition meaning this statement is a tautology. �

We have in fact proven two important laws in logic called De Morgan’s Laws in
the last two examples.

Example 1.1.8 Show that p ⊕ q ≡ (p ∨ q) ∧ ¬(p ∧ q).

Solution: The truth table shown in Table 1.16 has all equal values for rows in the
last two columns for the left and right sides of the equivalence meaning they are
equal. �

12 1 Logic

Table 1.16 Truth table for Example 1.1.8

p q ¬p p ∨ q p ∧ q ¬(p ∧ q) (p ∨ q) ∧
¬(p ∧ q)

p ⊕ q

F F T F F T F F

F T T T F T T T

T F F T F T T T

T T F T T F F F

1.1.6 Laws of Logic

We are now ready to state the laws of logic shown in Table 1.16 many of which are
basically common sense. For example, the idempotent law says p ∨ p is p which
states that disjunction of a proposition by itself is the proposition. However, some of
these laws such as De Morgan’s Laws may not be easy to see at once.

Logical Equivalence Laws
Identity Laws: p∨ F ≡ p

p∨ T ≡ T
p∧ F ≡ F
p∧ T ≡ p

Negation Laws: p ∨ ¬p ≡ T
p ∧ ¬p ≡ F
¬¬p ≡ p

Idempotent Laws: p ∨ p ≡ p
p ∧ p ≡ p

Commutative Laws: p ∨ q ≡ q ∨ p
p ∧ q ≡ q ∧ p

Associative Laws: (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

Distributive Laws: p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

Absorption Laws: p ∨ (p ∧ q) ≡ p
p ∧ (p ∨ q) ≡ p

De Morgan”s Laws: ¬(p ∨ q) ≡ ¬p ∧ ¬q
¬(p ∧ q) ≡ ¬p ∨ ¬q

We now have a second method to show the equivalence of two propositions. We
can use these laws of equivalences rather than constructing a truth table and checking
each row of the logical statements to be the same for all input combinations. This
newmethod is convenient since for n simple input propositions, the truth table would
contain 2n rows which may be difficult to realize when n > 3.

1.1 Propositional Logic 13

Example 1.1.9 We want to show that ¬(p ∨ q) ∨ (¬p ∧ q) ≡ ¬p. Let us use the
logic laws for the left side of this equivalence:

¬(p ∨ q) ∨ (¬p ∧ q) ≡ (¬p ∧ ¬q) ∨ (¬p ∧ q) De Morgan

≡ ¬p ∧ (¬q ∨ q) Distributive Law

≡ ¬p ∧ T Negation Law

≡ ¬p Identity Law

�

Example 1.1.10 We want to show that p ∧ (¬p ∨ q) ≡ p ∧ q . Using the laws for
the left side of this equivalence yields,

p ∧ (¬p ∨ q) ≡ (p ∧ ¬p) ∨ (p ∧ q) Distributive Law

≡ F ∨ (p ∧ q) Negation Law

≡ p ∧ q Identity Law

�

Example 1.1.11 Let us prove the equivalence:

(p ∧ q) → r ≡ (¬p ∨ ¬q) ∨ r

We can start by what we know from Example 1.1.5:

a → b ≡ ¬a ∨ b

and implementing this property in the above example yields:

(p ∧ q) → r ≡ ¬(p ∧ q) ∨ r

≡ (¬p ∨ ¬q) ∨ r De Morgan

�

Example 1.1.12 Prove that (p ∧ q) → p is a tautology.
Solution: Let us use laws of logic to prove this statement:

(p ∧ q) → p ↔ ¬(p ∧ q) ∨ p

≡ (¬p ∨ ¬q) ∨ p De Morgan

≡ (¬q ∨ ¬p) ∨ p Commutative Law

≡ ¬q ∨ (¬p ∨ p) Associative Law

≡ ¬q ∨ T Negation Law

≡ T Identity Law

�

14 1 Logic

Table 1.17 Logical Operator Precedence

Operator

¬
∧
∨
→
↔

Reaching a value of T on the right side means the statement is a tautology as in
this case.

Precedence of Logical Operators
Logical operators have priority as shown below in Table1.17 with the higher priority
operator closer to the top.

For example,

¬p ∧ q ∨ r → ¬r ≡ (((¬p) ∧ q) ∨ r) → (¬r)

1.2 Predicate Logic

We have investigated simple and compound statements that are logically true or false
up to this point. However, inmany cases, the truth value of a statement depends on the
subject. For example, in the sentence “He lives in London”, we can not evaluate the
correctness of this statement as it truth value depends on who “He” is. Substituting
“Kevin” for “He” in this sentence (and assuming we know who Kevin is), we can
assert the correctness of this statement. The predicate in this statement is “lives in
London”.

A predicate in a statement describes the subject or other objects and its truth value
can be obtained by replacing the subject with a variable. More formally, a predicate
is a statement involving variables over a specified set called its domain. That is, the
domain of a predicate variable is the set of all values that may be substituted for that
variable. Thus, substituting a value of a predicate variable from its domain provides
us the truth value of a predicate. We are commonly provided with the domain and
asked to find the truth value of the predicate. The truth set of a predicate is the set
of all members of the domain that result in a truth value of the predicate. We show
a predicate with capital letters as P(x), meaning P is a predicate with the predicate
variable x which is also called the propositional function P of x . Truth value of a
propositional function depends the value of the variable it refers. For example, if
P(x) is “x > 8”, then substituting 7 for x yields a false value whereas x = 12
results in a true value of the function. A propositional function may have more than
one variable as in the example below.

1.2 Predicate Logic 15

Example 1.2.1 Let the propositional function P(x, y, z) to be defined as z2 = x+y.
Then, P(2, 7, 3) and P(5, 11, 4) both yield true values whereas P(3, 2, 4) yields a
false value.

1.2.1 Quantifiers

Substituting a value for a variable in a propositional function is not the only way
to obtain a proposition from such a function. Quantifiers can also be used for the
same purpose and this process is called quantification. In other words, quantifiers
specify what part of the domain is to be used when evaluating the correctness of
a propositional function. Two main quantifiers are the universal and the existential
quantifiers.

The Universal Quantifier
In various propositional functions, we may need to assert that the value of the propo-
sition is true for all values of the variable in the given domain. For example, “For
every integer x , the square of x is a positive integer” is one such function. The univer-
sal quantification provides a shorthand representation of this condition and is shown
by ∀x P(x). This statement is read as “for all x , P(x)” or “for every x , P(x)” and
the symbol ∀ is called the universal quantifier.

The Existential Quantifier
The existential quantifier provides another way of quantifying a propositional func-
tion. It means “there exists”, which in fact means there is at least one variable that
provides a true value for the propositional function. This quantifier is shown by the
∃ symbol, for example, if P(x) : x2 = 1, ∃x P(x) means there exists at least one
variable x that satisfies P(x). In fact, we can see P(−1) and P(1) both provide true
values. Other words used for the existential quantifier are “for some x” and “for at
least one x”.

Example 1.2.2 Let P(x): “x is a student of Computer Science” and Q(x): “x takes
Discrete Math course”. Let the domain be some university, then,

∃(P(x) ∧ Q(x))

means there exists one (there is at least one) Computer Science student who takes
a Discrete Math course in that university. Note that we have used the and operator
between two statements and the existential operator refers to the conjunction of the
two statements.

The precedence of quantifiers are higher than all of the logical operators. For
example,

∃x P(x) ∧ Q(x) ≡ (∃x P(x)) ∧ Q(x)
= ∃x(P(x) ∧ Q(x))

16 1 Logic

1.2.2 Propositional Functions with TwoVariables

We can have predicates with more than one variable such as x and y as noted. For
example, the predicate “x studies at y University” is such a function which can be
specified as P(x, y) where x denotes the person and y is the name of the university.
The values of these variables are needed to convert the propositional function to a
proposition. However, wemay use quantifiers for the same purpose as we have noted.
For example, let

P(x, y) : y = x + 1

be a propositional function with the real numbers as the domain. Without specifying
the values of x and y, we can convert this function to a proposition using universal
and existential quantifiers. We would normally have four of such combinations since
there are two variables but the actual number of combinations is eight as the order
of the quantifiers is significant and provides a different meaning when the order is
changed. All of the possible eight combinations for the propositional function using
quantifiers are listed below.

• ∀x∀y P(x, y)
• ∀y∀x P(x, y)
• ∀x∃y P(x, y)
• ∀y∃x P(x, y)

• ∃x∃y P(x, y)
• ∃y∃x P(x, y)
• ∃x∀y P(x, y)
• ∃y∀x P(x, y)

For example, ∀x∃y P(x, y) means “for every x there exists a y”. For the above
proposition, thismeans for any real number x ∈ R, we can find at least one y ∈ R that
is one greater than x which is a proposition with a true value in this case. However,
when the order of the quantifiers are reversed, we have ∃y∀x P(x, y) which means
there exists a real number y ∈ R, for all x ∈ R that is one less than x which clearly
is false.

Example 1.2.3 Let L(x, y) be “x loves y”. Then, ∀x∃y means “everyone loves
at least someone” and ∃x∀y means “there exists at least one person who loves
everyone”.

Example 1.2.4 Let domains S be a number of students and P be a number of pizzas.
Predicate E(s, p)means student s is eating pizza p. We can then have the following
possibilities:

• ∃s∃pE(s, p): There is (exists) a student s eating a pizza p.
• ∃p∃s E(s, p): There is a pizza p that student s is eating.
• ∀s∀pE(s, p): All students are eating pizzas.
• ∀p∀s E(s, p): All pizzas are are being eaten by all students.
• ∀s∃pE(s, p): For all students, there exists pizzas That is, they are all eating but
there may be some extra pizzas.

1.2 Predicate Logic 17

• ∃p∀s E(s, p): There exists a pizza (a single one) that all students are eating.
• ∀p∃s E(s, p): Every pizza is being eaten by some student. Note that if the number
of students is larger than the number of pizzas, this means some students are left
without pizza.

• ∃s∀pE(s, p): There exists a student who is eating all pizzas.

1.2.3 Negation

Negation of universal statements and existential statements need to be considered
separately as below.

1.2.3.1 Negation of a Universal Statement
The negation of a universal statement of the form

∀x ∈ D, P(x)

which means there exists x in the domain D, P(x) is true, negation of which is
logically equivalent to the statement:

∃x ∈ D,¬P(x)

which can be translated as “there exists at least one x in domain D such that negation
of P(x) is true”. Let us illustrate this concept by an example. Let the universal
statement be “All students in Discrete Math class received grade B or higher”. Here,
the domain is the students enrolled in this class and the proposition is that each
student in this class received a grade B or higher. The negation of this universal
statement would then be “There exists at least one student in Discrete Mathematics
class who received a grade less than B”. Let P(x) be “receiving a grade less than
B”, we can state the following for this above example omitting the domain and the
negation is as stated.

¬(∀x,¬P(x)) ≡ ∃x,¬¬P(x)

≡ ∃x, P(x)

1.2.3.2 Negation of an Existential Statement
The negation of a universal statement of the form

∃x ∈ D, P(x)

which means there exists x in the domain D, P(x) is true, negation of which is
logically equivalent to the statement:

∀x ∈ D,¬P(x)

18 1 Logic

which can be translated as “for all x in domain D, negation of P(x) is true”. For
example, let us assume that the existential statement to be “There exists one student
in Chemistry class who wears glasses”. Here, the domain is the students enrolled in
Chemistry class and the proposition is that there is at least one student who wears
glasses. The negation of this existential statement would then be “All of the students
in Chemistry class do not war glasses” or more commonly “There is not a student
in Chemistry class who wears glasses”. Using the above result, we can form the
following.

¬(∃x, P(x)) ≡ ∀x,¬P(x)

1.2.3.3 Negation of Propositional Functions with TwoVariables
The negation of propositional functions with two variables can be done by succes-
sively implementing the rules of negation in these functions. For example,

¬(∀x∃y P(x, y)) ≡ ∃x¬(∃y P(x, y))

≡ ∃x∀y¬P(x, y)

and,

¬(∃x∀y P(x, y)) ≡ ∀x¬(∀y P(x, y))

≡ ∀x∃y¬P(x, y)

As can be seen, the negation of a propositional function with two variables and
two quantifiers results in a propositional function in which the existential quantifier
is changed to the universal quantifier and the universal quantifier is changed to the
existential one and the propositional function is negated.

1.2.4 The Universal Conditional Statement

A universal conditional statement is a universal statement with a condition and is of
the form,

∀x, if P(x) then Q(x)

For example, let P(x): “x is an integer” and Q(x): “square of x is a positive
integer”, then this proposition can be written as below,

∀x ∈ Z, (P(x) → Q(x))

Let us consider the statement “Every integer greater than 1 has a square greater
than 3”. Forming the propositional functions;

∀x, (x is an integer > 1) → (x2 > 3)

1.2 Predicate Logic 19

with P(x): “x is greater than 1”, and Q(x): “square of x is greater than 3”. The
negation of a condition is ¬(p → q) ≡ p ∧ ¬q as was shown in Table 1.15. Thus,
the negation of a universal conditional statement can be obtained using this property
as follows:

¬(∀x, P(x) → Q(x)) ≡ ∃x¬(P(x) → Q(x))

≡ ∃x(P(x) ∧ ¬Q(x))

Considering the above example, the negation of the universal conditional state-
ment would be “there exists an integer greater than 1 and its square is less than
3”.

Example 1.2.5 Let the domain be all humans. Write the proposition “All humans
are mortal” as a conditional by specifying the statements.

Solution: Let P(x) be “x is human” and Q(x) be “x is mortal”. Then,

∀x(P(x) → Q(x))

means for all x variables, if x is a human, then x is mortal.

1.2.5 The Existential Conditional Statements

Similarly, an existential conditional statement is a statement that is both existential
and conditional as follows,

∃x, if P(x) then Q(x)

Let us consider P(x) to be “x is an even number greater than 2” and Q(x) as “x
is the sum of two prime numbers”. Then, the existential conditional statement can
be stated as “there exists an even number that is greater than 2 which is the sum of
two primes”. The negation of an existential conditional statement can be obtained
by substitution of the conditional statement as above,

¬(∃x, P(x) → Q(x)) ≡ ∀x¬(P(x) → Q(x))

≡ ∀x(P(x) ∧ ¬Q(x))

For the above example, the negated statement would be “for all numbers x , x is
an even number greater than 2, and x is not the sum of two primes”. In other words,
no such number x can be found.

20 1 Logic

1.3 Review Questions

1. What is the main difference between the propositional logic and predicate logic?
2. What are the main connectives to form compound statements?
3. Give an example of exclusive-or statement.
4. When does a conditional statement yield a false value? Give an example.
5. How can a biconditional statement be verified?
6. Give an example of a biconditional statement yielding a false value.
7. What is the relation between a biconditional statement and a tautology?
8. Give an example of a contradiction.
9. What are the twomainmethods of proving equivalence of two logical statements?

10. What are De Morgan’s laws as applied to logic?
11. What are quantifiers and why are they used?
12. What is the inverse of the statement ∃x P(x) and the inverse of the statement

∀x P(x).

1.4 Chapter Notes

We have reviewed the main principles of logic in this chapter. A proposition or a
statement has either a true or a false value. Propositions can be combined using con-
nectives such as and and or to form compound propositions. A conditional statement
is denoted by p → q and yields a false value only when p is true and q is false. A
biconditional statement is shown as p ↔ q and has a true value only when p and q
have equal truth values. The first method we have reviewed to prove the equivalence
of two statements is listing all possible values of the statements in a truth table and
checking each row of the value of the statements to be equal. For n statements, the
truth table will have 2n rows making this method difficult to use this when n > 3.

Laws of logic provide simplifications and result in an alternative and efficient
way of proving that two statements are equivalent. Given two statements, we provide
iteratively simpler statements until a known result such as p ∨T = 1 is encountered.
A predicate provides a description of some entity and its value can be determined
with the current entity or object under consideration. A quantifier is used to determine
the truth value of a predicate; the universal quantifier declares all instances of the
object to be specified and an existential quantifier specifies at least one instance of the
object under consideration. We have seen how to negate statements with quantifiers
and evaluate conditional statements involving quantifiers.

Exercises 21

Exercises

Assume p, q , r are propositions.

1. Let the statement p be “3 is a positive integer” and q be “6 is an odd integer”.

a. Form the conditional p → q in words.
b. Form the conditional q → p in words.
c. Write the biconditional p ↔ q .
d. Determine the truth value of the statements in (a), (b) and (c).

2. Form the converse, inverse and and contrapositive of each of the following im-
plications.

a. If it is sunny, I will go out for a walk.
b. If a is an odd integer, then a + 1 is an even integer.
c. If i is an integer, then i2 is greater than or equal to 0.

3. Determine whether the following compound propositions are equal using truth
tables.

a. (p ∧ ¬q) ∨ (p ∧ q) = p.
b. p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r).
c. p ⊕ q = ¬p ⊕ ¬q .

d. (p → q) = ¬p ∨ q .
e. p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r).
f. ¬(p ⊕ q) = ¬p ⊕ q .

4. Use truth tables to verify the following.

a. (p → q)∨(p → r) ≡ p → (q∨r).
b. (p → r)∨(q → r) ≡ (p∧q) → r .

c. (p → r)∧(q → r) ≡ (p∨q) → r .
d. (p ∨ q) ≡ ¬p → q .

5. Use truth tables to verify the following.

a. (p ↔ q) ≡ ¬p ↔ q .
b. ¬(p ↔ q) ≡ p ↔ ¬q .

c. (p → r)∧(q → r) ≡ (p∨q) → r .
d. (p ∨ q) ≡ ¬p → q .

6. Determine which of the following statements are tautologies, contradictions or
neither of them.

a. p → (p ∨ q).
b. (p → q) → (p ∧ q).
c. (p ∧ q) → p.
d. ¬q ∨ (p → q).

e. (p ∧ q) ∧ ¬(p ∨ q).
f. (p ∧ ¬q) ∧ (¬p ∨ q).
g. ((p ↔ q) ∧ q) → p.
h. (p ∧ q) ∧ (q → ¬p).

22 1 Logic

7. Prove the following using laws of logic.

a. p ∧ (p ∨ q) ≡ p.
b. (p ∧ q) ∨ p ≡ p.

c. ¬(¬p ∧ q) ∧ (p ∨ q) ≡ p.
d. (p ∧ q) ≡ ¬(p → ¬q).

8. Let A = {2, 3, 4, 5, 6}. Assess the truth values of the following statements.

a. ∃x ∈ A, x2 = 25.
b. ∀x ∈ A, x + 5 > 6.

c. ∀x ∈ A, x + 4 < 10.
d. ∃x ∈ A, x + 2 ≥ 8.

9. Find the negation of the following statements with the domain of N, determine
the truth value of the negation and state the negation in words.

a. ∃x∀y, x = y2.
b. ∀x∀y, x + 4 < 10.

c. ∃x∃y∀z, z2 = x2 + y2.
d. ∀x∃y, x = −y.

2Proofs

A mathematical system consists of axioms, definitions, theorems and various other
structures. A theorem is a proposition that can be proved to be true and an argument
that establishes the truth of a statement is called a proof. Proving a theorem can
be accomplished by a direct method or indirectly. Proving propositions that involve
quantifiers requires careful reasoning. In this chapter, we review main methods of
proof which include direct and indirect methods, proving propositions with quanti-
fiers, proof by cases and review general principles of proofs.

2.1 Arguments

An argument consists of a set of propositions p1, p2, ..., pn called premises or hy-
potheses followed by a statement q called the conclusion. An argument is valid if
whenever p1, p2, ..., pn are all true, then q is also true. Inference rules are simple
argument forms that are used to construct more complex arguments.

2.1.1 Rules of Inference

The first rule of inference calledModus Ponens is depicted below. It basically means
that if p → q is valid and if p is true, then we can deduce q is also true. For example,
let p be “I study hard” and q be “I will get an A in math”. The argument is “if I
study hard, I will get an A in Math”. “I studied hard” (p is true) implies the second
line of this rule which means I will get an A in Math. The main point here is a
true statement implying a false statement will yield a false value for the conditional
statement, thus, p → q having a true value and p having a true value leaves us with
the only possibility of q being true.

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_2

24 2 Proofs

Modus Ponens: p
(mode that affirms) p → q

∴ q

Modus Tollens states that the inverse of the conclusion implies the inverse of the
premise as shown below. We know this rule since p → q ≡ ¬q → ¬p. This rule
is the basis of a main proof method called contrapositive as we will see. Let p be
“It rains” and q be “I get wet”. The first statement then is “If it rains, I get wet”. If
the conditional is true, the Modus Tollens rule states that the fact that I am not wet
implies it does not rain.

Modus Tollens: p → q
(mode that denies) ¬q

∴ ¬p

Disjunctive Syllogism states that if at least one of the premises is true and we
know one is false, the other one must be true. Let p be “I will study math” and q be
“I will go to the movies”. The first statement is “I will study math or I will go to the
movies”. If this statement is true, and the second one is “I will not study math” is
valid, then it must be true that I will go to the movies.

Disjunctive Syllogism: p ∨ q
¬q
∴ p

The transition rule (or hypothetical syllogism) may seem more obvious then the
above rules. Let p be “It rains” and q be “I stay at home” and r be “I study math”.
This rule states that “if it rains, I stay at home” (p → q), and “if I stay at home, I
study math” (q → r) statements are both true, then “if it rains, then I study math”
(p → r) statement is also true.

Transition: p → q
q → r
∴ p → r

The resolution rule may best be stated by an example. Let p be “I study math”
and q be “I go to the movies” and r be “I meet a friend”. The first statement is “I
study math or I meet a friend”. The second statement is “I go to the movies or I do

2.1 Arguments 25

not meet a friend”. Since r cannot be true and false at the same time, it must be the
case that either p or q is true. In this case “I study math or I go to the movies” is true.

The addition rule says if one of two statements is true, then their conjugate is also
true as shown below.

Addition: p
∴ p ∨ q

The simplification rulemeans if both of two statements are true, then any of them
must be true as shown below.

Simplification: p ∧ q
∴ p and q

Finally, conjunction rule states that if either of two statements is true, then their
conjunction must be true as shown below.

Conjunction: p
q
∴ p ∧ q

We can build a valid argument by forming a list of statements. Each statement
can be a premise or deduced from the preceding statements using rules of inference
and the last statement is the conclusion we want to reach. Let us see how we can
make use of these rules in a daily example. Let the statements be “I take the train or
the bus”, and “If I take the train I walk and get tired” and “I am not tired, therefore I
took the bus”. We need to check whether the last statement is true. Let the statements
p be “I take the train”, q be “I take the bus”, r be “I am tired” The proposition is “I
am not tired therefore I took the bus”. The premises are p ∨ q , q → r and ¬r . The
following can be established,

�

26 2 Proofs

Step Reason
1. p ∨ q premise
2. ¬r premise
3. p → r premise
4. ¬p 2, 3 and modus tollens
5. q 1, 4 and disjunctive syllogism

Example 2.1.1 Given p ∧ (p → q), deduce q .
Solution:

Step Reason
1. p ∧ (p → q) premise
2. p 1 and conjunction
3. p → q 1 and conjunction
4. q 2, 3 and modus ponens

�

Example 2.1.2 Given (p ∨ q), (¬p ∨ r) and (¬r ∨ s) deduce (q ∨ s).
Solution:

Step Reason
1. p ∨ q premise
2. ¬p ∨ r premise
3. ¬r ∨ s premise
4. q ∨ r 1, 2 and resolution
5. q ∨ s 3, 4 and resolution

�

Example 2.1.3 Given ¬p ∧ q , r → p, ¬r → t and t → u, deduce u.
Solution: We start by writing the propositions with their translations.

Step Reason
1. ¬p ∨ q (¬p, q) premise
2. r → p (¬r ∨ p) premise
3. r → t (r ∨ t) premise
4. t → u (¬t ∨ u) premise
5. ¬r resolution of 1 and 2
6. t resolution of 3 and 5
7. u resolution of 4 and 6

Applying the resolution law for lines 1 and 2, q ∨ r is true. Then, using resolution
again for this result with line 3, we have q ∨ s, the required result. �

2.1 Arguments 27

Step Reason
1. p → q premise
2. r → s premise
3. ¬q premise
4. r Premise
5. ¬p ∨ q 1 translated
6. ¬r ∨ s 2 translated
7. ¬p 3, 5 and resolution
8. s 2 and 4 and modus ponens
9. ¬p ∧ s 5, 6 and conjunction

Example 2.1.4 Given (p → q), (r → s), ¬q and r , deduce (¬p ∧ s).
Solution: The following steps result in the required proposition.

Step Reason
1. p → q premise
2. r → s premise
3. ¬q premise
4. r premise
5. ¬p 1, 3 and modus tollens
6. s 2 and 4 and modus ponens
7. ¬p ∧ s 5, 6 and conjunction

�
Example 2.1.5 We could have arrived at the same conclusion using conditional
equivalence and resolution principle as shown in above table with more steps to
state. �

2.1.2 Definitions

We need to define some terms related to proofs as below.

• Axiom: It is a proposition that is assumed to be true.
• Theorem: A statement that can be shown to be true using axioms, definitions, other
theorems and rules of inference.

• Lemma: An intermediate theorem, sometimes called a helping theorem, that helps
to prove a theorem.

• Corollary: A statement that follows an already proved theorem.
• Conjecture: A proposition based on incomplete information. A proved conjecture
becomes a theorem and a conjecture may be disproved, meaning it may be proved
to be false. A disproved conjecture is of not much interest to researchers in general.

We are mostly interested in proving theorems which have the form of a universal
statement,

∀x ∈ D, P(x) → Q(x)

where D is the domain of the variable x . In general, D is the set of natural numbers,
integers, rational numbers or irrational numbers. A starting point to prove a theorem

28 2 Proofs

is commonly done by selecting an arbitrary element u ∈ D and show that P(u) →
Q(u). This is a sufficient to show P(x) → Q(x) for all x as long as u is selected
arbitrarily.

A trivial proof is the one in which we know q is true regardless of the value of p.
A vacuous proof is with the statement p being false, p → q is true. For example,
let p be “It is raining and sunny” and q be “1 + 1 = 3”, then p → q is true.

Example 2.1.6 Let us prove the statement ∀x ∈ R, if x > −2 then x2 + 1 > 0.
Since ∀x ∈ R, x2 ≥ 0; then ∀x ∈ R, x2 +1 ≥ 0+1 > 0. Thus Q(x) is true ∀x ∈ R,
that is, x2 + 1 > 0 is true for every x value in R, regardless of whether x > −2 or
not. �

2.2 Direct Proof

Direct proof method is a straightforward approach where the argument is formed
using a series of simple statements. Each such statement follows directly from the
previous ones, finally resulting in the proof of the argument. Given the conditional
statement of the form “if p then q”, direct proof of this statement involves arriving at
the conclusion directly from the premises using definitions, axioms, rules of inference
and other proven theorems. A general approach for direct proof for a proposition in
the form of ∀x ∈ D, if P(x) then Q(x) can be stated as noted.

1. Consider an arbitrary element u ∈ D that satisfies the premises P(u).
2. Show that the conclusion Q(u) is true using definitions, axioms and the rules of

logical inference.

Example 2.2.1 Prove that the sum of two odd integers is even.

Proof We will apply the above steps to prove this proposition. Let us take arbitrary
elements x , y ∈ D which is the set of all odd integers. Since both x and y are odd,
we can write x = 2k + 1 and y = 2m + 1 for some integers k and m. Their sum is
s = 2k + 1+ 2m + 1 = 2(k +m + 1) which is an even number since it is divisible
by 2. �

Example 2.2.2 Provide a direct proof of the theorem “If n is an even integer, then
n2 is even”.

Proof We need to show ∀n: n is even → n2 is even. By the definition of an even
integer, n = 2k where k is some integer. Taking square of both sides of this equation
yields n2 = 4k2 = 2(2k2) which shows n2 is twice of some other integer 2k2 since
2k2 is integer and hence we can conclude n2 is an even integer. �

2.2 Direct Proof 29

Example 2.2.3 Prove that every odd integer is equal to the difference between the
squares of two integers.

Proof An odd integer x can be written as 2k + 1 for some integer k. Let us check
whether this proposition holds for small odd integers.

1 = 1 − 0 = 12 − 02

3 = 4 − 1 = 22 − 12

5 = 9 − 4 = 32 − 22

We observe two things in this sequence; an odd integer is equal to difference
between the squares of two consecutive integers, and the sum of these consecutive
integers is equal to the odd integer. Now, re-writing x with this guess, let us try to
see what happens.

x = (k + 1)2 − k2

= (k2 + 2k + 1) − k2

= 2k + 1

let m = (k + 1)2 and n = k2, then x = m2 − n2. �

Note that we can find the values of the two consecutive integers m and n once
we write x as 2k + 1 since m = k + 1 and n = k. For example, let x = 41 which
is 2 × 20 + 1, thus m = 21 and n = 20. Checking proves this property since
41 = 212 −202 = 441−400. In the other direction, let the two consecutive integers
bem = 53 and n = 52. Since k = 52, we canwrite, 2×52+1 = 105 = 532−522 =
2809−2704 which is valid. This example illustrated that sometimes we evaluate the
proposition for few input values and try to guess a solution.

Example 2.2.4 Given two integers a and b, if a + b is even then a − b is even.

Proof Since a + b is even, we can write a + b = 2m for some integer m. Then,
substitution for b yields:

a + b = 2m

b = 2m − a

a − b = a − 2m + a

= 2a − 2m

= 2(a − m)

which shows that the difference is an even number and completes the proof. �

30 2 Proofs

We can have a false proof attempt as in the example below.

− 2 = −2

→ 4 − 6 = 1 − 3

→ 4 − 6 + 9

4
= 1 − 3 + 9

4

→
(
2 − 3

2

)2

=
(
1 − 3

2

)2

→ 2 − 3

2
= 1 − 3

2
→ 2 = 1

The problem with this false proof is that the square of −x and x are both x2,
thus, the equation in line 4 is correct but taking the square roots to yield the next
equation is wrong as the left side is a positive number but the right side is negative.
Although direct proof method can be applied with ease in proving various theorems,
it is difficult to use this method in many other problems.

2.3 Contrapositive

Proof by contraposition is based on the fact that a conditional statement p → q is
equal to its contrapositive ¬q → ¬p which is basically modus tollens. In this case,
¬q is the premise and we attempt to prove ¬p as the conclusion using definitions,
axioms, rules of inference and other proven theorems. This method can be applied
to a wide range of problems.

Example 2.3.1 Let n be a positive integer and let m divide n. Prove that if n is odd
then m is odd.

Proof Proving this theorem directly involves showing m is odd when n is odd and
this does not seem obvious. We will try proof by contraposition in which case we
need to show that if m is not odd then n is not odd. Our initial condition that m
divides n is still valid. If m is not odd, then it is even and hence m = 2k for some
integer k. Since m divides n, n = mr for some integer r and substitution for m in
this equation yields n = (2k)r = 2(kr) which shows n is even as it is twice of some
integer kr . We assumed multiplication of two integers yields another integer. Thus,
we proved the contrapositive of the theorem which concludes the proof. �

Example 2.3.2 Prove that for any integer a > 2, if a is a prime number, then a is
an odd number.

2.3 Contrapositive 31

Proof Let us assume the opposite of the conclusion that a is even. We can then write
a = 2n for some integer n. However, this implies a is divisible by 2 and hence it
cannot be a prime number which contradicts the premise. We have arrived at the
inverse of the premise by assuming the inverse of the conclusion. �

Example 2.3.3 Prove that if the average of three different integers is 8, then at least
one of the integers is greater than 9.

Proof Let us form the component propositions p and q . p: “The average of three
different integers is 8”, q: “One of these integers is greater than 8”. Instead of proving
p → q , we will attempt to prove the contrapositive ¬q → ¬p. Let us denote the
integers by a, b, and c. The inverse of q can be stated as “all of these integers are less
than or equal to 8”. Let us assume the worst case with the least possible sum where
a + b + c = 6 + 7 + 8 = 21 in which case their average is 7 which contradicts the
premise which states the average is 8 and this completes the proof. �

Example 2.3.4 Prove that if n is an integer and 5n + 4 is odd, then n is odd.

Proof Let p be “5n + 4 is odd” and q be “n is odd”. Then ¬q is “n is even” which
means n = 2k for some integer k. Substituting in p for n yields, 5n+4 = 5(2k)+4 =
10k + 4 = 2(5k + 2). Therefore, 5n + 4 is even as it can be divided by 2 and hence
we have proven ¬p is true. �

2.4 Proof by Contradiction

In this proof method, we assume the premise p is true and the conclusion q is not
true (p ∧ ¬q) and try to find a contradiction. This contradiction can be against what
we assume as hypothesis or simply be something against what we know to be true
such as 1=0. In this case, if we find (p ∧ ¬q) is false, it means ¬(p ∧ ¬q) is true.
This means either ¬p is true or q is true by De Morgan. We assumed p is true,
thus,¬p is false which ensures q is true. Thus, encountering a contradiction through
this process is sufficient to show that q is true and that completes the proof. This
method was often practiced by ancient Greek philosophers to solve many interesting
problems.

Example 2.4.1 Prove that the sum of two even numbers is even.

Proof Let the numbers be a and b, their sum be c, and the propositions p be “a and
b are even” and q be “the sum of a and b, c is even”. The inverse of q means c is
odd which can then be written as 2k + 1 for an integer k. Since a is even it can be
written as 2n for some integer n and similarly b = 2m for some integer m. Then,

32 2 Proofs

c = 2k + 1 = a + b = 2(n + m) which shows that an even number equals an odd
number, therefore a contradiction. �

A rational number is a number r that can be expressed as r = p
q where p and q

are integers, q 	= 0, and p and q have no common divisors other than ±1. A number
that is not rational is called an irrational number.

Example 2.4.2 Prove that
√
2 is an irrational number.

Proof This is a classic contradiction proof example. We will assume this statement
is false and try to arrive at a contradiction. Let us assume

√
2 is a rational number

and hence can be written as
√
2 = a/b in simplest form for some integers a and b.

These integers can not both be even, otherwise we could have divided them by 2 and
arrived at a simpler fraction. Squaring both sides yields a2 = 2b2, therefore a2 is
even which means a must be even as the square of an odd integer is odd. This means
b is odd since a and b can not both be even integers. We can therefore write a = 2k
and b = 2m + 1 for some integers k and m. Substitution of these values in a2 = 2b2

yields:

4k2 = 2(2m + 1)2 = 2(4m2 + 4m + 1) = 8m2 + 8m + 2

2k2 = 4m2 + 4m + 1 = 2(m2 + 2m) + 1

which equates an even number on the left to an odd number on the right resulting in
a contradiction. �

2.5 Proving Biconditional Propositions

In order to prove a biconditional statement p ↔ q , we need to show p → q
and q → p since p ↔ q = (p → q) ∧ (q → p) and thus validity in both
directions is needed. Therefore, proof of a biconditional statement involves solving
these two distinct steps. Commonly, the phrase “if and only if” is used between
the two statements that make up the biconditional to indicate that the compound
statement is a biconditional.

Example 2.5.1 Prove that for any integer n, n2 is odd if and only if n is odd.

Proof We need to prove in fact two statements:

1. If n is odd, then n2 is odd
2. If n2 is odd, then n is odd

Letting p: “n is odd”, and q: “n2 is odd”, we will attempt to prove, p → q and
q → p. If n is odd, it can be written as 2k + 1 for some integer k. Then,

2.5 Proving Biconditional Propositions 33

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(k2 + 2k) + 1

Let m = k2 + 2k, then

n2 = 2m + 1

and by the definition of an odd number, n2 is and odd number. In order to prove
q → p, we will use the method of contrapositive proof. Let n be even; then, n = 2k
for some integer k.

n2 = 4k2 = 2(2k2)

which means n2 is even, thus a contradiction with the premise. We have proven the
biconditional statement by separately proving p → q and q → p, using direct proof
method for the first, and the contrapositive method for the second. �

Example 2.5.2 Prove that given two integers a and b, their product ab is even if and
only if a is even or b is even.

Proof Let p: “a is even or b is even” and q: “product of a and b is even”. Hence, we
need to prove p ↔ q in the usual sense. Note that the statement of the problem is of
the form q ↔ p for easiness in understanding. Nevertheless, we need to prove the
conditional statements in both directions. Let us first prove p → q which states that
when a is even or b is even, then ab is even. If a is even a = 2m for some integer m,
thus, ab = 2mb and is even. Using similar logic for b being even, ab is again even.
In the other direction, we need to prove that if ab is even, then a or b is even. Let
us use the contrapositive method and assume “a is odd and b is odd”. Note that this
statement is the negation of the statement “a is even or b is even”. Then, a = 2k + 1
and b = 2m + 1 for some integers k and m. Then,

ab = (2k + 1)(2m + 1)

= 4km + 2k + 2m + 1

= 2(2km + k + m) + 1

which shows that the product ab is an odd number. We have shown that q → p ≡
¬p → ¬q is true which completes the proof. �

2.6 Proofs Using Quantifiers

A statement using one quantifier type may be expressed in terms of the other one,
that is,

¬(∀x ∈ D, P(x)) ≡ ∃x ∈ D,¬P(x) (2.1)

34 2 Proofs

which is where the counter example proof method comes from and,

¬(∃x ∈ D, P(x)) ≡ ∀x ∈ D,¬P(x) (2.2)

2.6.1 Proving Universal Statements

A universal statement was stated as ∀x ∈ D, Q(x) is true. Vast majority of mathe-
matical statements are universal statements. Proving such a statement can be done
by using the direct proof or other methods described. Alternatively, negation of a
universal statement yields an existential statement and disproving the negation of
this statement is equivalent to proving it. Essentially, we have three main approaches
to prove universal statements:

• Exhaustion Method: When D is finite and small, we can check whether Q(x) is
true for all P(x). This method clearly is not suitable when size of D is large.

Example 2.6.1 Prove that if n is even and 8 ≤ n ≤ 16, then n can be written as the
sum of two prime numbers.

Proof We check every even integer in the range, 8 = 3 + 5; 10 = 3 + 7; 12 =
5+ 7; 14 = 7+ 7; and 16 = 5+ 11 and hence conclude that the statement is true. �

• Direct Proof : This method involves showing ∀x ∈ D, if P(x) then Q(x) as stated.
• Negation Method: In this case, we make use of Eq. 2.1 and attempt to find a
contradiction. We select a likely u that proves u ∈ D, prove ¬P(u) which means
∀x ∈ D, P(x) is true. This method is also called proof by counter examples.

Example 2.6.2 Prove that ∀x ∈ R, x2 + 1 > 0.

Proof Negation of this statement yields: ∃x ∈ R, x2 + 1 ≤ 0. But we know by
the definition that the square of any number is positive hence it is not the case that
x2 ≤ −1 meaning a contradiction. �

Example 2.6.3 For all positive prime numbers, if p is prime then 2p + 1 is also
prime.

Proof Let p = 7 which is a prime number. But, 2p + 1 = 15 is not prime. �

Example 2.6.4 All numbers between 4 and 12 are prime.

Proof Let x = 9, it is between 4 and 12 but not prime. �

Two rules may be stated for universal statements as in existential statements:

2.6 Proofs Using Quantifiers 35

• Universal Instantiation: If ∀x ∈ D, P(x) is stated, then P(u) is true when u ∈ D.
Let the statement be “All countries have capitals”, and since Portugal is an instance
of the domain countries, it must have a capital.

• Universal Generalization : If P(u) is true for an arbitrarily chosen u ∈ D then we
can generalize that ∀x ∈ D, P(x). The element u must not be specific to arrive
at the universal generalization. For example, we select an arbitrary monkey and
observe it has two legs. We can then generalize and say “all monkeys have two
legs”.

2.6.2 Proving Existential Statements

Astatement of the form ∃x ∈ D, P(x)was named an existential statement in Chap.1.
This statement is true if and only if P(x) is true for at least one explicit x ∈ D. A
simple way to prove such a statement is to find at least one x that makes P(x)
true. Alternatively, a set of directions that yield such x values can be stated. Both
approaches are called constructive proofs of existence.We can have direct or negation
method to prove existential statements.

2.6.2.1 Direct Method
We attempt to deduce Q(x) from P(x) by finding an element that satisfies P as
shown in the examples below.

Example 2.6.5 Prove that there exists an even integer n that can be written as the
sum of two prime numbers.

Proof The universal form of this statement is theGoldbach Conjecturewhich is not
proven to date. Let n = 18, which is the sum of 5 and 13 which are both prime
numbers. �

Example 2.6.6 Prove that ∃x ∈ R, x2 < x .

Proof If we take x = 1
2 then x2 = 1

4 < 1
2 = x . �

Example 2.6.7 Prove that ∀x∃y ∈ N, y = x2.

Proof For any x ∈ N, its square is also in N. �

2.6.2.2 NegationMethod
The negation method to prove an existential statement can be performed by negating
the statement and then searching for a contradiction as in the example below. We
start with ∀x ∈ D,¬P(x) and proceed to derive a contradiction.

36 2 Proofs

Example 2.6.8 Prove ∃x ∈ R : 0 ≤ x < 1.

Proof Negation of this statement is ∀x ∈ R : (x < 0) ∨ (x ≥ 1). This statement is
clearly false, take x = 0.4 for example. �

Two rules may be stated for existential statements:

• Existential Instantiation: If ∃x ∈ D, P(x) is stated, then P(u) is true for some
u ∈ D. Let the statement be “There exists carnivore plants”, therefore there is a
plant x that is carnivore.

• Existential Generalization : If P(u) ∈ D is true for some element u, then ∃x ∈ D
P(x). Let the first statement be “Miguel in our class can speak Spanish”, then we
can say “There exists someone in our class who can speak Spanish”.

We can generalize the rules of inference for quantified statement as shown below.

2.7 Proof by Cases

Proof by cases is typically implemented when the premise can be specified as a
number of cases. The premise can then be written as a conditional statement of the
form,

((p1 ∨ p2 ∨ ... ∨ pn) → q) (2.3)

which is equivalent to

((p1 → q) ∧ (p2 → q)... ∧ (pn → q)) (2.4)

with each implication being a case. Let us assume q is false and let all pi be false.
The statements in Eqs. 2.3 and 2.4 are both true and thus are equal. If there exists
some pi that is true, then (p1 ∨ p2 ∨ ... ∨ pn) and thus Eq. 2.3 has a false value as

2.7 Proof by Cases 37

Eq. 2.4. When q is true, then both of these equations give true values and are equal.
Therefore, proving each case is equivalent to solving the first statement.

Example 2.7.1 Prove that ∀n ∈ Z, n2 ≥ n.

Proof We have three cases, n < 0, n = 0 and n > 0.

• Let n = 0, then 0 ≥ 0 is true.
• Let n < 0, in this case, n2 is a positive number, thus, n2 ≥ n.
• The case n > 0 means n ≥ 1 and multiplying each side by n yields n2 ≥ n; since
n is positive, the direction of the inequality does not change.

�

Example 2.7.2 Let n ∈ Z, then n2 + n is even.

Proof We have two cases, n is even or odd.

• Let n be even. In this case, n = 2k for some integer k. It follows,

n2 + n = (2k)2 + 2k = 4k2 + 2k

= 2(2k2 + k)

• Let n be odd. In this case, n = 2k + 1 for some integer k. It follows,

n2 + n = (2k + 1)2 + 2k + 1 = 4k2 + 4k + 1 + 2k + 1

= 4k2 + 6k + 2 = 2(2k2 + 3k + 1)

since n can be expressed as 2m for some integer m in both cases, n2 + n is
even. �

2.8 Review Questions

1. What is an axiom?
2. What is the difference between a theorem, a lemma and a corollary?
3. Give an example of modus ponens from everyday life.
4. Give an example of modus tollens from everyday life.
5. Give an example of disjunctive syllogism from everyday life.
6. What is a trivial proof? Give an example.
7. What is a vacuous proof? Give an example.
8. Compare the contrapositive and contradiction methods of proof. How do they

differ?

38 2 Proofs

9. What is the difference between proving a conditional statement and proving a
biconditional statement?

10. Describe negationmethod of proof as applied to proving universal and existential
statements.

11. When is proof by cases method is used?

2.9 Chapter Notes

Having reviewed the main methods of proof which are direct, contrapositive and
contradiction, we may need to know what to do when confronted with proving a
statement. A general rule of thumb is to check whether a direct proof is possible. If
this is not possible, contrapositive and contradiction methods may be sought.

Proving biconditional statements such as p ↔ q requires proving both p → q
and q → p as two distinct steps. The basic direct, contrapositive and contradiction
methods may be used in these steps as noted. Proofs using quantifiers require careful
consideration. We can make use of negation rules of quantifiers; from universal
quantifier to existential quantifier and vice versa. In Chap. 6 we will see a powerful
method of proof called induction which is frequently used to prove correctness of
algorithms.

Exercises

1. Let the statements p be “all of the family is going to the movies”, and q be
“Jasmine is a member of the family”. Show that Jasmine is going to the movies
using validity argument method and rules of inference.

2. Prove the following using the rules of inference.

a. p → q , p ∧ r ; then q .
b. p → ¬q , q ∨ r ; then p → r .

c. p → q , r → s,¬q , r ; then¬p∧s.
d. p ∧ (q ∨ r), ¬p ∨ ¬q; then r ∨ q .

3. Prove that if n is an integer, n3 is even if and only if n is even.
4. Show that the product of an even integer with any integer is even.
5. Prove that for any two integers a and b, min(a, b) + max(a, b) = a + b.
6. Show that when one of the two integers is an even and the other is an odd number,

their sum is and odd number.
7. Prove that the sum of two consecutive integers is an odd integer.
8. Prove that for all integers a and b, if a2 + b2 is odd, then a or b is odd.
9. Prove that if n is odd, 2n + 3 is also odd using the direct proof method.

10. Prove that if n is even, 7n + 4 is also even using the contrapositive method.
11. Prove that if n is odd, 3n + 5 is even using the contrapositive method.
12. Use contradiction method to prove that for any positive integer n, if an is even,

then a is even.
13. Given two integers a and b, prove that ab is odd if and only if a and b are both

odd.

2.9 Chapter Notes 39

14. Use contrapositive method to prove the following: Given to positive integers, if
their product is greater than 100, then at least one of the numbers is greater than
10.

15. Prove that if n is an odd integer, 2n + 4 is an odd integer. Test whether this
statement can be modified to be a biconditional statement.

16. Prove that given an integer n, n is even if and only if n − 1 is odd.
17. Prove that if n is an even integer, then 5n3 is an even integer.
18. Let n be an integer. Then 3n + 8 is odd if and only if n is odd.
19. Disprove that if n is an even integer then 3n + 6 is odd.
20. Disprove the statement ∀x, y ∈ R, if a2 < b2, then a < b.
21. Prove by cases that |a + b| ≤ |a| + |b|.
22. Prove that every prime number greater than 3 is either one more or one less than

a multiple of 6.

3Algorithms

Algorithms have been used for a long time, long before the invent of computers,
to solve problems in a structured way. An algorithm is a finite set of instructions
or logic, written in order, to accomplish a certain predefined task. There are certain
requirements from any algorithm; it may or may not receive inputs but some form of
output, which is the solution to the problem at hand, is expected. For example, if we
want to find the sum of first n positive integers, n is the input to the algorithm, and
the sum is the output. Clearly, the steps of the algorithm should be precise without
any ambiguities. An algorithm should terminate after a number of steps and above
all, it should provide the correct result. However, finding the correct answer only is
not adequate; the output should be provided with minimum number of steps. This
would mean an algorithm that works in a shorter time is preferred to another one that
gives the same result but works longer.

We start this chapter with basics of algorithms including fundamental algorithm
structures and then continuing with basic data structures used in algorithms. The last
part of the chapter reviews to main methods of algorithm design.

3.1 Basics

Every Algorithm must satisfy the following properties:

• Input: There should be 0 or more inputs supplied externally to the algorithm.
• Output: There should be at least 1 output obtained. This output will be the solution
to the problem that is investigated.

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_3

42 3 Algorithms

Fig. 3.1 Block diagram of a
computer

PROCESSOR MEMORY

INPUT/OUTPUT

• Definiteness- Every step of the algorithm should be clear and well defined. Am-
biguios statements may be interpreted differently which may result in different
outputs from the same algorithm for the same inputs. This situation is not desir-
able except with some special type of algorithms called randomized algorithms
which may produce different results at each run.

• Finiteness: The algorithm should have finite number of steps that is, we are inter-
ested in algorithms that find the results in a finite interval of time. There are cases
however, that the algorithm ends in a finite time but this time interval is so large
that it can be considered as infinite for all practical purposes.

• Correctness: Every step of the algorithm must generate a correct output. After all,
a wrong output is of no use.

An algorithm is said to be efficient and fast, if it takes less time to execute and
consumes less memory space than any other algorithm that solves the same problem.
A program has a different meaning than an algorithm, it has the format that can
be easily understood and executed by a computer. Moreover, a program may not
terminate such as a network program that always waits for input from the network.
A computer programming language is used to transfer an algorithm to a format that
will be understood by the computer.

The block diagram of a computer is depicted in Fig. 3.1 with three essential
components: the processor, the memory and the input/output unit. The processor is
the brain of the computer where each instruction is executed possibly on some data.
Instructions and data reside in memory and the main task of the processor is to fetch
instruction and data, execute the instruction and produce some output to be delivered
to the output unit. The input unit provides interface between the external world and
the processor to transfer input data. A computer may be envisioned as a system that
transfers raw data into refined, processed data.

The processor is where the algorithm is executed, the code and data reside in
memory in the so-calledVonNeumannModel of computation. The input/output units

3.1 Basics 43

are used to communicate with the external world. A computer algorithm commonly
works on variables that are stored in memory to provide the desired output.

3.1.1 Pseudocode Convention

An algorithmmay be described using variousmethods. A common and a popularway
to specify an algorithm is using pseudocode which is a type of structured language.
The pseudocode shown in Algorithm 3.1 consists of lines of instructions which are
written in plain English and we can see that each step is precisely described. Two
integers a and b are input to the algorithm in line 1, their sum is calculated and stored
in another integer c in line 2 and finally, the value of c, which is the result of the
algorithm, is output. We have 3 precisely defined instructions in this algorithm with
the first line as the input, second one as the processing and the last line as the output.
This flow is typical in an algorithm as stated. Commonly, we would specify the input
parameters to an algorithm and the outputs from it in separate lines at the beginning
of the algorithm. Lastly, there is no doubt this algorithm is efficient since we cannot
have another shorter algorithm such as 1 or 2 steps to do the same calculation.

Algorithm 3.1 Sum of integers
1: input two integers a and b
2: let integer c = a + b
3: output c

3.1.2 Assignment andTypes of Variables

Aparameter in an algorithm is in the form of a variable that can have a value assigned
to it as in algebra.Variables have names and a value can be assigned to a variable using
“=”, “:=” or ← operators. In many computer programming languages, the standard
variable types are the integer, real, booelan and character as the names suggest.
Many programming languages require explicitly stating of the type of a variable
before its use such as “a: integer”, or “int a”. The following are valid assignments
resulting in the storage of value 6 in b when executed consecutively.

a ← 3

b ← (a + 9)/2

44 3 Algorithms

3.1.3 Decision

Analgorithmmayneed to performa specific action depending onwhether a condition
is true or even branch to a different address than the usual sequence depending on
a condition. The if statement is used for this purpose and if the statement after if
yields a true value, the next statement is executed. Otherwise, the next statement is
not executed and the program follows the instruction after the if instruction. The else
control when used causes the statement after else to be executed when if condition
results in a false value. Algorithm 3.2 inputs two integers and finds the greater of
them and the print command is used to provide output. Note that we do not need to
test the equal condition since the flow of execution arriving at line 7 of the algorithm
means that this is the only possibility.

Algorithm 3.2 If statement
1: Input: a, b: integer
2: Output: the greater of two inputs
3: if a > b then
4: print a
5: else if b > a then
6: print b
7: else
8: print “equal”
9: end if

3.1.4 Loops

A loop in an algorithm is used to perform the same operation many times possibly
on different data. A loop typically has a control statement and the body of the loop.
The control statement is tested to enter the body of the loop or not. Three main types
of loops in a computer algorithm are the while, for and the repeat ... until loops
described below.

• while loop: A while loop tests a condition and executes the loop (next statement
to the while statement) when this condition yields a true value. Otherwise, loop is
exited. After execution of thewhile loop, the condition is tested again. An example
to add the input numbers until a 0 is entered is shown in Algorithm 3.3. Note that
we need two input statements, the first one to have the loop working for the first
time with a valid input and the second one to test the condition with the next input.

• for loop: A for loop is used to iterate the body of a loop. The control statement at
the header has a loop variable which is initialized as the first part of the statement
followed by the test condition. The final part of the control statement specifies the
operation on the loop variable at the end of the loop body. The loop inAlgorithm3.4

3.1 Basics 45

Algorithm 3.3 while loop
1: Input: num: integer
2: Output: sum
3: sum ← 0
4: input num
5: while num �= 0 do
6: sum ← sum + num
7: input num
8: end while

has i as the loop variable which is tested at the beginning of each iteration. An
example algorithm to calculate the nth power of an integer a is shown in Algo-
rithm 3.4. We observe that this algorithm has inputs a and n, and it multiplies a,
n times by itself to find an using a for loop. We do not specify how the output is
presented; it may be returned to a program or may be simply output to the screen.

Algorithm 3.4 Power of an integer
1: Input: a: integer, n: integer
2: Output: pow = an

3: pow ← 1
4: for i = 1 to n do
5: pow ← pow · a
6: end for

A slightly different form of for loop is the for all structure in which we do not
specify a control statement with an index and a test condition but state that the
loop continues until all elements of a set are processed. The code segment below
reads each element a of a group of variables in a set A and outputs them.

f orall a ∈ A do

output a

• repeat .. until loop: Different than the for and while loops which may not enter the
loop based on the test condition, the repeat .. until loop is executed at least once.
The logical statement after until is tested at the end of the loop and a return to repeat
line is made if this statement yields a true value. Let us rewrite Algorithm 3.3 using
the repeat ... until loop structure this time as in Algorithm 3.5. Note that we only
need to have one input statement this time. Also, test condition is reversed, that is,
we repeat the loop until num equals 0 and 0 is added to the sum.

46 3 Algorithms

Algorithm 3.5 repeat until loop
1: Input: num: integer
2: Output: sum
3: sum ← 0
4: repeat
5: sum ← sum + num
6: input num
7: until num = 0

3.1.5 Functions and Parameter Passing

Some section of an algorithmmay be used frequently and writing this part repeatedly
results in an algorithm that is long and difficult to analyze. A procedure or a function
is a subprogram that may be invoked many times possibly with different inputs. A
procedure is more general and a function is perceived as a procedure that returns
a value. A procedure or a function has a list of input parameters and the type of
variable returned. Sending its input parameters to a procedure can be performed by
the following methods.

• Call by value: This is a commonly used method in which the sent values from the
main program are copied to the local variables of the procedure.

• Call by reference: There are cases when we want the procedure/function to change
the value of a parameter passed to it. In such cases, the address of the parameter
is passed to the procedure to enable it to modify the value.

Algorithm 3.6 depicts call-by-value invoking of function Add which copies the
two integers a and b to its local variables x and y and returns their sum to the main
program. The Swap function receives the addresses of integers a and b, and uses a
temporary variable temp to swap their contents. The contents of addresses are shown
by asterisks and the main program uses the ampersand sign to send the addresses of
the variables. The output of this program would be 8, and 5 and 3.

3.2 Basic Data Structures

The standard data types such as integer, real and character may be used to build
more complicated data structures. One such structure is an array that consists of
homogenous data elements. An array has a name, a dimension and its type stated
when declared. For example,

A[10] : integer

3.2 Basic Data Structures 47

Algorithm 3.6 Sum of integers
1: procedure Add(x :integer, y:integer)
2: return(x + y)
3: end procedure
4:
5: procedure Swap(ap:integer address, bp: integer address)
6: temp: integer
7: temp = ∗ap
8: ∗ap = ∗bp
9: ∗bp = temp
10: end procedure
11:
12: main program
13: a ← 3
14: b ← 5
15: print Add(a,b)
16: Swap(&a,&b)
17: print a, b

is the declaration of array A with 10 integer elements. Accessing an element of an
array is done by specifying an index. For example,

A[2] ← 3

Algorithm 3.7 places the square of each index in the corresponding array entry.
For example, A[2] = 4 and A[9] = 81 after executing the algorithm.

Algorithm 3.7 Array example
1: A[10]:integer
2: for i = 1 to n do
3: A[i] ← i · i
4: end for

A two or more dimensional arrays are used to store data in a more structured
way. A two dimensional array, commonly called a matrix, has elements in its rows
and columns. A matrix M with 4 rows and 5 columns of integers may be defines as
follows:

M[4, 5] : integer
Accessing an element of such amatrix requires the row and column of the element

to be specified. Algorithm 3.8 shows how the elements of a matrix M are computed
by adding the row index i to the column index j to form the contents of the location
(i, j) of M . Note that we used two nested for loops, when i = 1, j changes from 1

48 3 Algorithms

to 5 in the inner loop to store data matrix locations M[1, 1] to M[1, 5]. In the next
outer loop iteration when i = 2, matrix locations M[2, 1] to M[2, 5] are selected.
Total number number of execution of line 4 of this algorithm is 4 × 5 = 20.

Algorithm 3.8 Two dimensional array
1: M[4, 5]:integer
2: for i = 1 to 4 do
3: for j = 1 to 5 do
4: M[i, j] ← i + j
5: end for
6: end for

The formed matrix after the running of this algorithm will have the following
elements as below,

1 2 3 4 5
1
2
3
4

⎛
⎜⎜⎝
1 3 4 5 6
2 4 5 6 7
3 5 6 7 8
4 6 7 8 9

⎞
⎟⎟⎠

A heterogeneous data structure which consists of different type of data elements
may be formed by the structure declaration as below,

structure student {
age: integer
gender: character
GPA: real } Gabriel;

The structure student has integer, character and real fields and declares variable
Gabriel of the type of this structure. Accessing a member of such a structure can be
performed as below,

Gabriel.age = 19

is a valid statement that places 19 in the age field of Gabriel variable. We can have
an array of structures as below,

class[20] : structure student
which declares a class of 20 students each with fields of the student structure. Ac-
cessing a field of an element can be done by,

class[2].GPA = 3.82

which places 3.82 as the GPA of the second student of the class.

3.2 Basic Data Structures 49

Example 3.2.1 Write an algorithm in pseudocode that lists the numbers and names
of students who have a GPA of 3.0 or higher, using the array class in the above
example. Also, provide the average of the students who have GPAs of 3.0 or higher.
Solution: We need to check each entry of the array class using some loop structure.
The for loop is appropriate as we know how many elements of the array to be
searched. The pseudocode of the final algorithm shown in Algorithm 3.9 prints the
number and name of students of the required criteria.

Algorithm 3.9 Structure example
1: class[n]:structure student, i :integer, count : integer, sum:real
2: sum ← 0.0
3: count ← 0
4: for i = 1 to n do
5: if class[i].GPA < 3.0 then
6: count ← count + 1
7: sum ← sum + class[i].GPA
8: print class[i].num, class[i].name, class[i].GPA
9: end if
10: end for
11: ave ← sum/count
12: print ave

A structure may have an array embedded in it as,

structure book {
ISBN: integer
pages: integer
prices[5]: real } Kafka;

which denotes 5 prices in 5 countries for the book structure. Assigning a price for
the second country can be done as below,

Ka f ka.prices[2] = 32.95

3.3 Sorting

Sorting is the process of sequencing a list of elements from higher to lower or vice
versa and it is one of the most frequently used algorithms performed by computers.
Let us consider an array A = [3, 2, 0, 8, 4, 1] with the aim of sorting elements of
this structure from larger to smaller so that A = [8, 4, 3, 2, 1, 0] is obtained at the
end of the algorithm. We will look at two basic algorithms for this purpose.

50 3 Algorithms

3.3.1 Bubble Sort

The idea of the bubble sort algorithm is to move the largest element to the top of
the list at each iteration as the bubbles of boiling water. The first iteration finds the
largest element of the array and places it in the nth place, the second iteration finds
the second largest and stores it in (n − 1)th location and so on. Starting from the
first location, each element is compared with its neighbor and if the neighbor has
a smaller value, the values are exchanged. The running of the first iteration of this
algorithm in a sample sequence is shown below. At the end of the first pass, the
largest value 8 is placed at the highest array entry.

3 2 0 8 4 1

�

2 3 0 8 4 1

�

2 0 3 8 4 1

�

2 0 3 8 4 1

�

2 0 3 4 8 1

�

2 0 3 4 1 8

The second pass starts from the first element but goes up to (n − 1)th element of
the array this time since the nth element is determined.

2 0 3 4 1 8

�

0 2 3 4 1 8

�

0 2 3 4 1 8

�

0 2 3 4 1 8

�

0 2 3 1 4 8

From this example we can see that we need two nested for loops with the outer
loop running n times and the inner loop running n, (n − 1), (n − 2),...,1 times. A
simple way to realize this structure is to have the outer loop with index starting from
n and decrementing at each step and the inner loop having the upper limit of the loop

3.3 Sorting 51

as the current value of the outer loop as shown in Algorithm 3.10. The running of
the outer loop requires n steps and the inner loop runs at most n steps, thus, the time
needed for this algorithms is n2.

Algorithm 3.10 Bubble Sort
1: Input: A[10]:integer
2: Output: sorted A
3: for i = n down to 1 do
4: for j = 1 to (i) do
5: if A[j] < A[j + 1] then
6: swap A[j] and A[j + 1]
7: end if
8: end for
9: end for

3.3.2 Exchange Sort

Exchange sort takes a different approach by comparing the first element of the array
with all others and swapping the values if the compared value is larger. This way,
the first element of the array contains the largest element after first pass. The first
iteration of this algorithm in the same sequence is shown below where the largest
element 8 is placed in the first location of the array at the end.

3 2 0 8 4 1

|−−|
3 2 0 8 4 1

|− − − |
3 2 0 8 4 1

|− − − − − |
8 2 0 3 4 1

|− − − − − − − |
8 2 0 3 4 1

|− − − − − − − − −|
8 2 0 3 4 1

The second pass starts from the second location of the array and compares the
value in the second location with all higher index elements by swapping the values
if the compared value is larger as shown below.

52 3 Algorithms

8 2 0 3 4 1

|− −|
8 2 0 3 4 1

|− − −|
8 3 0 2 4 1

|− − − − −|
8 4 0 2 3 1

|− − − − − − −|
8 4 0 3 2 1

We compare element 1 with 2,...,6; then element 2 with 3,...,6; and then element 3
with 4, 5, 6 and so on. The upper limit is always n but the starting index is incremented
at each iteration. This algorithm requires two nested for loops, this time, the inner
loop starting index is the current outer loop index and both loops have n as upper
index limit as shown in Algorithm 3.11. It requires n2 steps at most as the bubble
sort algorithm.

Algorithm 3.11 Exchange Sort
1: Input: A[10]:integer
2: Output: sorted A
3: for i = 1 to n do
4: for j = i to n do
5: if A[i] < A[j] then
6: swap A[j] and A[j + 1]
7: end if
8: end for
9: end for

3.4 Analysis

A fundamental question commonly asked when designing an algorithm is whether
a better algorithm than the one designed exists. A better algorithm means it works
faster, that is, it requires less number of steps. Counting the number of steps that an
algorithm requires careful consideration. Let us analyze an algorithm that finds the
maximum element of an integer array A of size n depicted in Algorithm 3.12.

This algorithm starts by copying the first element of the array to the variablemax
which will contain the largest element in the end. Then, each element of the array is
compared with the value of max and any larger value is copied to max . Assignment
step at line 2 is performed once and can be ignored for any large n value. The for

3.4 Analysis 53

Algorithm 3.12 Finding max value
1: Input: A[10]:integer
2: Output: max: maximum value of A
3: max ← A[1]
4: for i = 2 to n do
5: if max < A[i] then
6: max ← A[i]
7: end if
8: end for

loop is executed n−1 times, therefore, we can say this algorithm takes exactly n−1
steps, or n steps when the initial assignment is considered.

Now, let us look at a procedure that searches for a given value a in an array A
and returns the index of the element if found as shown in Algorithm 3.13. Array A
is searched by comparing each of its element with a until a is found. This time, we
do not know how many times for loop will be executed. The value we search may
be the first element of the array, or somewhere before the end of the array, or it may
not exist in the array at all. In the first case, there will be only one step running of
the loop and we need n executions in the last case. Any running time between 1 and
n inclusive is possible. However, we do know that this algorithm requires at least
one step which is its best execution time and at most n step called its worst execution
time.

Algorithm 3.13 Searching an array
1: procedure Search(A[n]:integer, a:integer)
2: for i = 1 to n do
3: if a = A[i] then
4: return i
5: end if
6: end for
7: return not_found
8: end procedure

We are mostly concerned with the worst time complexity of an algorithm as it
shows us what to expect in the worst case. Also, we will assume n is large while
assessing the number of steps required for the algorithm to finish. For example, let
the worst time complexity of an algorithm is computed as 3n2 + 2n + 5 steps. First
thing to note is that we can discard any constant terms because they have very little
effect on running timewhen n is large.Moreover, the term 2n will have a diminishing
effect as n increases resulting in a worst time complexity of 3n2 or simply n2, using
the same reasoning.

54 3 Algorithms

We are now ready to have some formalism to be able to deduce time complexity
of an algorithm. Let f and g be two functions fromN toR. Theworst, best and exact
time complexity of an algorithm may be defined as follows.

• Worst time complexity (Big-ONotation): f (n) = O(g(n)), if there exists a constant
c > 0 such that f (n) ≤ c.g(n), ∀n ≥ n0 for some n0. In other words, if we can
find a function g(n) that is an upper boundwhich is always greater than the running
time of the algorithm after some threshold value n0, we can say g(n) is the worst
time complexity of the algorithm shown by O(g(n)). In our array search example,
the worst time complexity is O(n).

Example 3.4.1 Let f (n) = 4n+ 3. We can then guess g(n) = n since this function
approaches n for very large n. Thus,

4n + 3 ≤ cn

(c − 4)n ≥ 3

n ≥ 3

c − 4
Selecting c = 5 and n0 = 3 satisfies this inequality and we can say that O(n) is the
worst time complexity of this function.

• Best time complexity (Big-Omega Notation): f (n) = �(g(n)), if there exists a
constant c > 0 such that f (n) ≥ cg(n), ∀n ≥ n0 for some n0. This means if
we can find a function g(n) that is always less or equal to the execution time of
our algorithm after some threshold value n0, we can say g(n) is the best time
complexity of the algorithm shown by O(g(n)). In our array search example, the
best time complexity is O(1) since we could find the searched entry in 1 step at
best.

Example 3.4.2 Let us consider the algorithm with the running time f (n) = 4n + 3
again for best time complexity. If we select c = 1 and n0 = 1, then for any n ≥ 1,
4n + 3 > n, which means �(n).

• Big-Theta Notation: f (n) = �(g(n)), if f (n) = O(g(n)) and f (n) = �(g(n)).
That is, if there are two constants c1 > 0, c2 > 0 with a threshold n0 and a function
g(n) such that execution time of an algorithm is ≥ c1g(n) and ≤ c2g(n) when
n ≥ n0, then running time of the algorithm is stated as �(g(n)). Note that �(n) is
the time complexity for the above example since O(n) = �(n) for f (n) = 4n+3.

Example 3.4.3 Let the running time of an algorithm be 3n2+5n. Then, 3n2+5n ≥
n2, ∀n0 ≥ 1, thus �(n2). Let 3n2 + 5n ≤ c · n2; this statement is true when c = 8
and ∀n0 ≥ 1, hence O(n2). Therefore, the running time of this algorithm is �(n2)
with g(n) = n2, c1 = 1, c2 = 8 and n0 = 1. The growth rate of these functions
against the input size are depicted in Fig. 3.2.

3.5 Design Methods 55

3.5 DesignMethods

Designing an algorithm to solve a particular problem clearly requires understanding
the problem first. We can then apply one of the well-known design strategies that
helps to find the solution effectively. The main methods of algorithm design are the
divide-and-conquer method, the greedy method and dynamic programming.

3.5.1 Divide and Conquer

The divide-and-conquer method first breaks the problem into a number of subprob-
lems which are smaller instances of the same problem. This method then recursively
solves these subproblems and combines the results obtained to form the final output.
This method commonly requires recursion which we will review in Chap. 6.

A simple example to illustrate this method is the summation of the elements of an
array. We start by dividing the elements into small parts until each part has only two
elements. We then start he addition with two elements and merge the results until
the final sum is obtained as depicted in Fig. 3.3.

For this simple example, we did not need to apply divide-and-conquer strategy.
However, we can apply the same procedure to sort the elements of an array which
results in an efficient sorting algorithm called mergesort. The array is divided recur-
sively into smaller segments until there are two elements remain and then sorting is
carried from bottom to top in this algorithm.

3.5.2 GreedyMethod

Greedy-algorithms aim to solve what is best with what is known at that point in
time. These algorithms may find optimal solutions to some problems but may turn

(a) (b) (c)

n0 n0

c1 g(n)

c2 g(n)

f(n)

f(n)

c g(n)

c g(n)

f(n)

n0

Fig. 3.2 Algorithm complexity classes, a worst case function g(x), b best case function g(x), c
exact case function g(x)

56 3 Algorithms

27 5 1 6904

027 4 5 1 69

7 2 4 0 5 9 1 6

9 14 74

13 21

35

Fig. 3.3 Summation using divide and conquer

out to be far from optimal in various other problems. A greedy algorithm guesses
the solution based on current local knowledge and iteratively repeats this procedure
until a solution is reached.

Example 3.5.1 Cashier’s algorithm: A cashier in a supermarket is frequently con-
fronted with the task of paying a customer with the fewest number of coins. A greedy
algorithm to accomplish this task is as follows. At each iteration, add the largest coin
that does not pass the amount to be paid. For example, using the US coin system
which has 1, 5, 10, 25, 100 cent coins; let the cashier pay $2.78 cents in coins.
The selection sequence with this algorithm will be 100, 100, 25, 25, 25, 1, 1, 1.
Algorithm 3.14 shows the pseudocode of this algorithm.

Few things are to be noted in this procedure; it can return from two places, from
line 8 when there is no solution and the last line when the correct sequence is found.
It is possible to have no solutions when for example there existed 2 cents and not
1 cents and the change was required for 38 cents. We need to subtract the currently
selected coin largest from the current amount not processed and the union symbol
(∪) simply adds largest to the selected coin list.

The Cashier’s Algorithm is optimal for the US coin system but it can be shown
that it is sub-optimal, that is, may not find the result in shortest time for other systems.
For example, US postal system has stamps 1, 10, 21, 34, 70, 100 cents etc. If we

3.5 Design Methods 57

Algorithm 3.14 Cashier’s Algorithm
1: procedure Cashier(change: integer)
2: coins = {c1, c2, ..., cn}
3: seq ← 0
4: while change �= 0 do
5: let largest be the largest coin such that largest ≤ change
6: if largest = 0 then
7: return “no solution”
8: end if
9: change ← change − largest
10: seq ← seq ∪ largest
11: end while
12: return seq
13: end procedure

applied Cashier’s Algorithm to buy stamps for 125 cents, the sequence will be 100,
21, 1, 1, 1, 1 with 6 steps. However, 70, 34, 21 cent sequence is shorter with 3 steps.

3.5.3 Dynamic Programming

This method is a powerful paradigm for algorithm design which dates back to 1950s.
The problem is divided into subproblems first and assuming the optimal solution
to a problem consists of optimal subproblems, the final optimal solution is formed.
Different than the divided-and-conquer paradigm, the intermediate solutions are used
to form improved solutions. Commonly, a table that consists of optimal solutions to
subproblems is constructed. Then, these solutions are combined using procedures
dependent on the problem that is under consideration. Using such a table avoids
re-computation of intermediate results.

Example 3.5.2 Fibonacci sequence invented by the mathematician Fibonacci is
given by F = {0, 1, 1, 2, 3, 5, 8, ...} where each element of the sequence is the
sum of its two preceding elements. We will write a procedure using a for loop that
inputs n and outputs the nthe element of this sequence. We can start by initializing
the first two elements of the array to 0 and 1, and then gradually calculate the next el-
ement in this sequence. This algorithm is an example of dynamic programming since
finding the nth element of this sequence is divided into subproblems that calculate
all the preceding elements.

58 3 Algorithms

Algorithm 3.15 Fibonacci Sequence
1: procedure Fib(n: integer)
2: F[n]: integer
3: F[1] ← 0
4: F[2] ← 1
5: for i = 3 to n do
6: F[i] ← F[i − 1] + F[i − 2]
7: end for
8: return F[n]
9: end procedure

3.6 Difficult Problems

We have stated that an algorithm should terminate after a certain number of steps.
Moreover, the general requirement is that an algorithm should finish in some fore-
seeable time with large input sizes. If we need to run an algorithm frequently, say
few times a day with different input values and each output affecting the input of the
next algorithm activation; then having this algorithm find the results in a few days
will not be sensible. Some functions such as exponentials and factorial grow very
fast with increased input size; for example, factorial of 6 is 720 and factorial of 10 is
3628800. Factorial of 100 is a huge number yet 100 is a modest input size for many
problems. Having a running time of n! for an algorithm with input size n means that
the algorithm will not terminate in any foreseeable time for any significantly large n
value.

These problems are very difficult to solve in general, and one way to tackle
these problems is to concede to suboptimal solutions which work in reasonable time
rather than optimal solutions that work in almost infinite time. These new class of
algorithms are called approximation algorithms and they are used by many practical
applications. An important merit of these algorithms is to determine how affinity of
the result produced to the result obtained by the optimal algorithm. This closeness is
termed approximation ratiowhich shows how effective the approximation algorithm
is. In a large number of cases, approximation algorithms are not known to date and
the general approach is to apply heuristicswhich are common sense rules. Heuristics
cannot be proven to be correct and rigorous tests with different input patterns are
needed to show they work fine for the problem at hand. Lastly, there exists problems
that are known to be unsolvable. One such problem is the halting problem which is,
given an arbitrary computer program, to determine whether the program will finish
running or continue to run forever. It was proven byAlanTuring in 1936 that there can
be no general algorithm to solve this problem, that is, to decide if a self-contained
computer program will eventually halt [4]. Turing showed that an algorithm that

3.6 Difficult Problems 59

correctly decides whether a program will halt or not can be made to contradict itself,
thus it cannot be correct.

3.7 Review Questions

1. What are the main requirements from an algorithm?
2. What is the difference between an algorithm and a program?
3. Can a pseudocode of an algorithm work on a computer?
4. Write a three nested if structures with else statements identing each else with

the if statement it belongs.
5. What is the main difference between a for loop and a while loop?
6. What is a procedure?
7. What is the difference between a procedure and a function?
8. What is the difference between call-by-value and call-by-reference?
9. What are the main methods of algorithm design?

10. What is the main difference between divide-and-conquer method and dynamic
programming?

11. Give examples of a problems solved in polynomial time and exponential time.
12. What are the main approaches in search of a solution when confronted with a

difficult problem that does not have a solution in polynomial time?

3.8 Chapter Notes

An algorithm is a finite sequence of instructions to solve a particular problem. It has 0
or more inputs, and produces outputs possibly working on the input. A program is the
implementation of an algorithm in away that can be easily understood by a computer.
Unlike an algorithm, a program may not terminate, for example an operating system
of a computer which waits in a loop is a program. A pseudocode is a representation
of an algorithm using daily language and algorithm structures.

An algorithm uses assignment, decision and loop structures to solve a problem.
Assignment is the process of assigning values to variables, decisions are taken to
divert the flow of control during execution of the algorithm. Loops are mainly used
to perform repeated running of a part of algorithm, possibly on different data. A
procedure or a function of an algorithm is a sub-algorithm that may be used many
times by calls.

The time and space complexities of an algorithm are the two basic merits dis-
playing its effectiveness. The time complexity is the number of steps required by
the algorithm in terms of the input size whereas the space complexity is the memory
space needed by the algorithm during its running. The worst, best and average time
complexity of an algorithm are commonly used to specify its performance.

60 3 Algorithms

Major algorithm design methods are the greedy, divide and conquer and dynamic
programming approaches. The greedy method selects the best choice based on the
current knowledge and works for only a small set of known problems. Divide and
conquer method divides the problem into smaller parts, finds the solutions in smaller
parts and then merges them. Dynamic programming also works on smaller instances
of a problem but uses the intermediate outputs to construct larger outputs and it is
one of the most powerful algorithm design methods.

Algorithms may be parallel in which case a number of parts of an algorithm work
on different closely coupled computing hardware and cooperate to achieve a com-
mon goal. A distributed algorithm on the other hand refers to algorithms running on
different computational nodes distributed over a network. A distributed algorithm
communicates and synchronizes with algorithms on other nodes and solves a com-
mon problem over the network. A thorough description of the topics we summarized
in this chapter can be found in [1–3].

Exercises

1. Write the pseudocode of simple algorithm that inputs an integer n and outputs
n2.

2. Write the pseudocode of an algorithm that inputs a positive integer n and outputs
all odd integers from 1 up to and including n. For example, if 10 is input, the
output is 1 3 5 7 9.

3. Write the pseudocode of a procedure that inputs a positive integer n and calcu-
lates the sum of integers from 1 to n and outputs the sum.

4. Write the pseudocode of an algorithm that inputs integers until a 0 is entered
and calculates the sum of all even integers entered and displays it. For example,
if 9 6 -2 3 4 8 0 is entered, the output is 16.

5. Write the pseudocode of an algorithm that inputs three integers a, b and c and
outputs them in the order of magnitude from larger to smaller. For example, if
-2 5 1 is entered, the output is 5 1 -2.

6. Write the pseudocode of an algorithm that inputs two integer arrays A and B,
compares their corresponding element values and outputs a 1 if they are equal
and a 0 if they are not.

7. Form a structure employeewith a social security number (integer), age (integer)
and wage (real number) and an array of employees named factory. Write the
pseudocodeof an algorithm that inputs the factory array andoutputs all employee
social security numbers whose age is greater than 30. The algorithm should also
calculate the average age and extract wage of employees and output these values.

8. Work out the time complexity of an algorithm for n → ∞ that runs in exactly
5n2 + 6n + 7 steps for an input size n.

9. Discuss the reasons of greedy algorithms failing to find the optimal solutions
for most problems.

10. Describe the steps of the mergesort algorithms which sorts the elements of
an integer array using divide-and-conquer method. Show the working of this
algorithm in an array A={6,1,4,0,7,9,5,2}

References 61

References

1. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. MIT
Press, Cambridge

2. Dasgupta S, Papadimitriou, Vazirani U (2011) Algorithms. Sci Eng Math
3. Kleinberg J, Tardos E (2012) Algorithm design. Pearson, London
4. Turing, A (1937) On computable numbers, with an application to the Entscheidungsproblem, In:

Proceedings of the London mathematical society, Series 2, vol 42, pp 230–265 (1937). https://
doi.org/10.1112/plms/s2-42.1.230

https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230

4SetTheory

Sets are fundamental structures in discrete mathematics. A set consists of elements
that may or may not be related. One basic requirement when defining a set is that we
should be able to decide whether a given object is an element of a set. For example,
if set A consists of odd integers between 0 and 6, we can say 3 is an element and 4 is
not an element of this set. A set can have a finite number of elements in which case
it is denoted a finite set or it may consist of infinite number of elements in an infinite
set. The finite set A of the example above has 3 elements as 1, 3 and 5. On the other
hand, a set that contains all positive even numbers is infinite.

We describe fundamental concepts in set theory in this chapter starting with the
definitions. We then continue with basic set operations and then with laws of set
theory. We also show few simple algorithms to perform set operations.

4.1 Definitions

A set is an unordered collection of objects. The objects are called the elements or
the members of the set. Uppercase letters are commonly used to represent the sets
and lowercase letters denote the members. The elements of a set are shown within
set braces (curly brackets). For example,

S = {a, b, c, d}
shows a set S consisting of four elements a, b, c and d. Elements of a set may be
in any order; for example, the sets {a, c, b, d} and {b, a, d, c} are the same. Also,
repetition of an element results in the same set, for example, S = {a, c, b, d} =
{a, c, b, c, a, d}. In order to show that an element is a member of a set, we use a ∈ S
as in this example, and e /∈ S means e is not a member of the set S. A set can have
related elements or it can consist of totally unrelated elements. As an example of the
former, a set S that contains all positive integers less than 10 that are divided by 3

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_4

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_4

64 4 Set Theory

has 3, 6 and 9 as its elements. Note that we have defined a property of the members
of the set S rather than explicitly specifying its elements. Using such a set builder
notation, we can specify this set S as follows.

S = {x |x is a positive integer less than 10 and x (mod 3) = 0}
which is an implicit description of a set whereas stating all members of a set is explicit
description of the set. Implicit description is particularly useful when a set has many
elements. Some specific sets of numbers that are worth noting are as follows.
R, the set of real numbers
R

+, the set of positive real numbers
C, the set of complex numbers
Q, the set of rational numbers
Z = {...,−1, 0, 1, ...}, the set of integers
Z

+ = {1, 2, 3, ...}, the set of positive integers
N = {0, 1, 2, 3...}, the set of natural numbers

We can then use these sets to define a specific set as follows.

A = {x ∈ Z
+|x is even and x ≤ 8}

which means A = {2, 4, 6, 8}. The set with no elements is called the empty set and
is shown by ∅. Note that {∅} is a set that is not empty and contains the empty set as
its only element. An infinite set is shown to continue with ‘...’ to show it progresses
indefinitely, for example, S = {1, 3, 5, ...} shows a set that has all positive odd
numbers as its members. In some cases, we use ‘...’ between the elements of a set
with many elements and sometimes a set with unknown number of elements to avoid
listing all members of the set. For example, S = {2, 4, 6, ..., 40} is a set that has all
positive even integers between and including 2 and 40 and S = {1, 3, 5, ..., n} is the
set of all positive odd integers up to n.

4.1.1 Equality of Sets

One of the first operations we may want to perform on two sets is two check whether
they are equal or not.

Definition 4.1 (Equality) Two sets are equal if they have the same elements as their
members. Formally, given two sets A and B, their equality means ∀x , x ∈ A if and
only if ∀x ∈ B, that is; x ∈ A ↔ x ∈ B.

The elements of two equal sets can be listed in any order as noted. For example,
the sets A = {1, a, 8, x} and B = {8, 1, x, a} are equal. The inequality of two sets
A and B is written as A �= B and can be assessed by taking the complement of the
equality equation as follows,

¬(∀x : (x ∈ A ↔ x ∈ B)) ≡ ∃((x ∈ A ∧ x /∈ B) ∨ (x /∈ A ∧ x ∈ B)

4.1 Definitions 65

which is to say that there exists at least one element x that belongs to either set A or
set B but not both.

4.1.2 Cardinality of a Set

We are often interested in the number of elements in a finite set. The size of a set is
called its cardinality.

Definition 4.2 (Cardinality of a set) The cardinality of a finite set is the number of
elements contained in it. The cardinality or the size of a set S is denoted by |S|which
can also be shown as n(A) or #A.

For example, given the following set,

A = {x | x is a positive integer between and including 2 and 12 and x (mod 4) = 0}

We can see the set A has a size of three consisting of elements {4, 8, 12}. Clearly,
we can define cardinality of only a finite set.

4.2 Subsets

Another point of interest is to check whether a set is contained in another set or not.

Definition 4.3 (Subset) If every element of a set A is also an element of another set
B, we say A is a subset of B and show this relation as A ⊆ B. Note that this property
includes equality of the two sets. If set B contains one or more elements that are not
members of the set A, then A is a proper subset of B and this is shown as A ⊂ B.

An element x of a set A is shown as x ∈ A as noted before. Note that {x} ⊆ A is
different as it means the set {x} is a subset of the set A. Using set builder notation,
the subset relationship between two sets A ⊆ B can be expressed as,

A ⊆ B = {x ∈ U |x ∈ A → x ∈ B}
where U is the universal set. In other words, if an element x belongs to a set A, it
must also belong to the set B for A to be a subset of B which means to prove A ⊆ B,
we need to show that every element of set A is also an element of B. In order to
prove that A is not a subset of B, we need to find at least one element of A that is
not a member in set B. A set A that is not a subset of a set B is shown as A � B.
We can then write the following using the rules of inversion of quantifiers.

66 4 Set Theory

A � B = ¬(A ⊆ B)

= ¬(∀x : x ∈ A → x ∈ B)

= ∃x : x ∈ A ∧ x /∈ B

which means there exists at least one element that belongs to set A but not to B.
We will now show an algorithm that tests whether a given set A of cardinality n
is a proper subset, a subset or not of another set B of cardinality m as shown in
Algorithm 4.1. We check whether each element of A is also an element of B and
when this fails, the algorithm stops and not_subset output is returned. Otherwise
elements of A are contained in B, but B should have extra elements for A to be
denoted as a proper subset of B and this can be tested between lines 13 and 15. The
best (minimum) execution time of this algorithm is when the first element of A is
not found in B and this can be accomplished in unity time, and hence Ω(1). We are
usually interested in the worst running time which occurs when we have checked
each element of A with each element of B in nm time and therefore this is O(nm)

for this algorithm.

Algorithm 4.1 Subset test
1: Input: A, B � input sets
2: Output: not_subset,proper_subset or subset
3: int count ← 0
4: for all x ∈ A do
5: for all y ∈ B do
6: if x �= y then
7: return not_subset
8: else
9: count ← count + 1
10: end if
11: end for
12: end for
13: if count < m then
14: return proper_subset
15: end if
16: return subset

Subset relationship between two sets provide us with a method to prove that two
sets are equal shown by the following theorem.

Theorem 1 Given two sets A and B, if A ⊆ B and B ⊆ A, then A = B.

Proof If A ⊆ B, then ∀x ∈ A, x ∈ B by the subset definition. Subsequently, If
B ⊆ A, then ∀x ∈ B, x ∈ A which shows equality. �

4.2 Subsets 67

Fig. 4.1 Subset relationship
between sets Z, Q and R

Z Q R

Definition 4.4 (Power set) The power set of a set A, denoted by P(A) is the set of
all subsets of A including the empty set. The size of the power set of a set A is 2n

where n is the number of elements of A. Formally,

P(A) = {B|B ⊆ A}

Example 4.2.1 Let us work out the power set of the set A = {a, b, c}. We can see
the power set consists of the following sets, considering all combinations:

P(A) = {{ ∅}, { a}, { b}, { c}, { a, b}, { a, c}, { b, c}, { a, b, c}}
and it has 23 = 8 elements since the set contains three elements. Note that the set
containing the empty element is considered to exist as a subset of any set, that is,
{∅} ⊂ A for any set A, and P(∅) = {∅} and P({∅}) = {∅, {∅}} �

The set Z is a proper subset of the set Q since we can write any integer n as n/1
but p/q ∈ Q may not be an element in Z, and Q is a proper subset of R but

√
2 for

example is not a member of the set Q but a member of the set R. This relationship
is depicted in Fig. 4.1.

4.3 Venn Diagrams

Venn diagrams, invented by the mathematician John Venn, provide a graphical and
hence a visual display of sets. The universal setU includes all of the objects that are
considered and is shown by a rectangle. Circles or other shapes inside U represent
the sets that are considered. Inside the circles and U , points are commonly used to
denote the elements. Venn diagrams are useful in visualizing set relationships but
they cannot be used to prove set equations.

Figure 4.2 displays the Venn diagram of three sets A, B and C enclosed in the
universal set U ; A = {x, y}, B = {z}, C = {u,w, z} and B ⊂ C as all elements of
B (only z in this case) are also elements of C . The set A does not have any common
elements with either of sets B and C .

68 4 Set Theory

Fig. 4.2 A Venn Diagram of
three sets inside the universal
set

A

B
x y z

wu
C

U

Fig. 4.3 The Venn Diagram
of the complement Ac of the
set A is shown in grey

A
_

U

AA

4.4 Set Operations

Operations on sets commonly involve generating new sets from the input sets. Basic
set operations are the complement, set union, intersection, difference and product
operations described below.

Definition 4.5 (Complement) Given the universal set U , the complement Ac, com-
monly shown as A, of a set in U is the set consisting of all of the elements in U that
are not elements of A. Formally,

A = {x ∈ U |x ∈ A ←→ x /∈ A}

Given U as N, let set A consist of all even integers in U . The complement of A,
A is then all odd positive integers. The Venn diagram of the complement of a set is
illustrated in Fig. 4.3.

Definition 4.6 (Union) The union C of two sets A and B, shown as A∪ B is the set
consisting of all of the elements in A and B. Formally,

A ∪ B = {x ∈ U |(x ∈ A ∪ B) ←→ (x ∈ A) ∨ (x ∈ B)}

Given two sets A = {a, b, c, d, e} and B = {b, c, d, e, f, g}, their union A ∪ B
is {a, b, c, d, e, f, g} as shown in Fig. 4.4.

The union of more than two sets is a set consisting of all elements in these sets.
Given sets A1, ..., An , their union set A can be stated formally as follows.

4.4 Set Operations 69

Fig. 4.4 The Venn Diagram
of the union of two sets A
and B shown in grey

A U B

U

A B

A =
n⋃

i=1

Ai = A1 ∪ A2 ∪ ... ∪ An

An algorithm to find the union of two sets is shown in Algorithm 4.2. The output
setC is initialized to have no elements first. All of the elements of the set A is included
in the union setC then and any member of set B that is not already contained in setC
is then made member ofC to prevent inserting the set element that are in intersection
of A and B twice. The time complexity of this algorithm for |A| = n and |B| = m
is �(nm), considering the first loop runs n times and the second loop runs nm times
since testing x ∈ C has to be done with every element of the set C for a total of m
times.

Algorithm 4.2 Set union
1: Input: A, B � input sets
2: Output: C � union of A and B
3: int i , j , count
4: C ← ∅

5: for all x ∈ A do
6: C ← C ∪ {x}
7: end for
8: for all x ∈ B do
9: if x /∈ C then
10: C ← C ∪ {x}
11: end if
12: end for

Definition 4.7 (Intersection) The intersection C of two sets A and B is the set
consisting of all of the elements in both A and B. Formally,

A ∩ B = {x ∈ U |x ∈ (A ∩ B) ←→ (x ∈ A) ∧ (x ∈ B)}

70 4 Set Theory

Fig. 4.5 Intersection of two
sets A and B. The elements
u and t belong to A ∩ B

A B

x

y z

w

u

t

U

Given two sets A = {a, b, c, d, e} and B = {b, c, d, e, f, g}, their intersection
A ∩ B is {b, c, d, e}. The Venn diagrams for the intersection of two sets A and B is
shown in Fig. 4.5.

The algorithm shown in Algorithm 4.3 displays how the intersection of two sets
can be formed. Each element of one set is searched in the other. Two nested for loops
are executed nm times giving �(nm) time complexity for this algorithm.

Algorithm 4.3 Set intersection
1: Input: A, B � input sets
2: Output: C � intersection set
3: C ← ∅

4: for all x ∈ A do
5: for all y ∈ B do
6: if x = y then
7: C ← C ∪ {x}
8: end if
9: end for
10: end for

The cardinality of a unions of sets A and is,

n(A ∪ B) = n(A) + n(B) − n(A ∩ B)

because when counting the members of the union of sets A and B, we count the
members in A and members in B and add them, and since we add the elements
that belong to two sets twice, we need to subtract the number of elements in the
intersection of two sets.

Definition 4.8 (Disjoint sets) Two sets are said to be disjoint if their intersection
is the empty set, that is, A ∩ B = ∅. The intersection of two disjoint sets has no
elements; formally, |A ∩ B| = 0.

For example, given two sets A = {a, b, c} and B = {1, 3, 8}, we can conclude
they are disjoint as they have no common elements.

4.4 Set Operations 71

Fig. 4.6 Symmetric
difference of two sets A and
B shown in grey

BA

A - B

U

Definition 4.9 (Difference) The difference set C of two sets A and B denoted by
A− B or A \ B is the set consisting of all of the elements in A that are not elements
of B. Formally,

A − B = {x ∈ U |x ∈ A − B ←→ (x ∈ A) ∧ (x /∈ B)}

Given two sets A = {a, b, c, d, e} and B = {b, d, e}, their difference A − B is
{a, c}. Note that the complement of a set A can be written as A = U \ A where U
is some universal set in which A is defined.

Definition 4.10 (Symmetric difference) The symmetric difference of two sets A and
B, denoted by AΔB is the set consisting of all of the elements that are either in A
or B but not in both. Formally,

AΔB = {x ∈ U | x ∈ AΔB ←→ x ∈ A ⊕ x ∈ B}

The symmetric difference can also be expressed as,

AΔB = (A − B) ∪ (B − A)

which is to say that this is the union of the elements of A that are not in B, and the
elements of B that are not in A. For example, given two sets A = {a, b, c, d, e} and
B = {b, c, d, e, f, g}, their symmetric difference AΔB is {a, f, g}. The symmetric
difference of two sets A and B is shown in the Venn diagram of Fig. 4.6.

4.4.1 Cartesian Product

Definition 4.11 (Cartesian product) The cartesian product C of two sets A and B
is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B. This product is denoted
by C = A × B.

Example 4.4.1 Let A = {1, 2, 3} and B = {a, b}. Then,
A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

�

72 4 Set Theory

Note that if sets A and B have n and m elements, the cartesian product set C has
nm elements. Also, this operation is not symmetric, that is, A × B �= B × A. For
the above example,

B × A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}
but the resulting set still has the same number of elements. This notion can be
extended to a number of sets as follows.

Example 4.4.2 Let A = {1, 2} and B = {a, b, c} and C = {x, y}. Then,
A × B × C = {(1, a, x), (1, a, y), (1, b, x), (1, b, y), (1, c, x), (1, c, y), (2, a, x),

(2, a, y), (2, b, x), (2, b, y), (2, c, x), (2, c, y)}
This time, the product has k elements where k is the product of the cardinalities

of the sets.

We can have an algorithm to find the cartesian product of two sets as shown in
Algorithm 4.4. We simply enlarge the cartesian product C of the sets A and B by
combining an element from each set in each iteration. Time complexity is O(nm)

for |A| = n and |B| = m due to nested for loops.

Algorithm 4.4 Cartesian product
1: Input: A, B � input sets
2: Output: C � Cartesian product of A and B
3: C ← ∅

4: for all x ∈ A do
5: for all y ∈ B do
6: C ← C ∪ {x, y}
7: end for
8: end for

4.4.2 Set Partition

A set may be divided into a number of partitions defined below.

Definition 4.12 (Set partition) Consider a set A which consist of a number of
nonempty subsets such that A = A1 ∪ A2 ∪ ... ∪ An , and A1, A2, ..., An are mutu-
ally disjoint with no common elements between any two pairs of these subsets, the
collection of these subsets is called a partition of the set A.

4.4 Set Operations 73

Fig. 4.7 A partition of a set
S

A

B

C

D
E

S

U

A partition of a set S that consists of disjoint subsets A, B,C , D and E is depicted
in the Venn diagram of Fig. 4.7. For example, {{a}, {b, c}, {d, e, f }} is a partition of
the set {a, b, c, d, e, f }. Note that given A = N, the sets {0} and Z

+ form a partition
of A.

Example 4.4.3 Given S1 = {a ∈ Z|a = 3k}, for some integer k, S2 = {a ∈ Z|a =
3k + 1}, for some integer k and S3 = {a ∈ Z|a = 3k + 2}, for some integer k is
a partition of Z since Z = S1 ∪ S2 ∪ S3. For k = 0, 1, ..., S1 = {0, 3, 6, ...}, S2 =
{1, 4, 7, ...}, S3 = {2, 5, 8, ...} �

4.4.3 Operation Precedence

The precedence between the general set operations is the complement followed by
set intersection and then set union. Given,

A ∪ B ∩ C

is equal to

A ∪ (B ∩ (C))

4.5 Laws of Set Theory

The laws of set theory follow a similar pattern to the laws of logic as listed below.
Most of these laws are common sense as were the logic laws. Note that De Morgan’s
laws have a similar structure but are defined for sets this time.

1. Identity Laws:
A ∪ ∅ = A

74 4 Set Theory

Union of a set A with the empty set is itself.

A ∩U = A

Intersection of a set A with the universal set is itself.
2. Idempotent Laws:

A ∪ A = A

A ∩ A = A

3. Inverse laws:
A ∪ A = U

A ∩ A = ∅

4. Domination laws:
A ∩ ∅ = ∅

A set A has no common elements with the empty set.

A ∪U = U

Union of a set A with the universal set is the universal set.
5. Commutative laws:

A ∪ B = B ∪ A

A ∩ B = B ∩ A

6. Absorption laws:
A ∪ (A ∩ B) = A

Any element in the intersection of the sets A and B is a member of the set A and
hence union of such elements with A will be A.

A ∩ (A ∪ B) = A

Intersection of set A with its union with another set is the set A.
7. Associative laws:

A ∪ (B ∪ C) = (A ∪ B) ∪ C

A ∩ (B ∩ C) = (A ∩ B) ∩ C

8. Distributive laws:
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

9. De Morgan’s laws:
A ∪ B = A ∩ B

A ∩ B = A ∪ B

4.6 Proving Set Equations 75

4.6 Proving Set Equations

We can have various methods to prove equations involving sets. We will elaborate
on three such ways which are the element method, the tabular method and proofs
with quantifiers. A Venn diagram is illustrative in showing the results of a proof but
is not considered as a formal proof method as noted.

4.6.1 The Element Method

In this method, we commonly start with an element x belonging to the left side of
the equation and using the set properties, we attempt to arrive at a known rule at the
right side of the equation. Two proof cases to apply this method are as follows.

• Proving subset inequalities: An arbitrary but a distinct element in the left side is
considered and we try to show that (x ∈ L) → (x ∈ R) where L and R are the
left and right sides of the equation. Note that proving this ensures L ⊆ R since
subset relationship is defined this way.

Theorem 2 A ⊆ B and A ∩ B = ∅ are equivalent.

Proof We will prove first part of this theorem using the contrapositive argument,
that is, if (A ∩ B �= ∅) then (A � B). Since (A ∩ B �= ∅), ∃x such that x ∈ A and
x ∈ B which means x /∈ B. That is,

x ∈ A ∧ x /∈ B

which means (A � B) by the definition of a subset.
�

• Proving equations: This time, we need to show (x ∈ L) → (x ∈ R) and (x ∈
R) → (x ∈ L) for the equality to hold (L ↔ R).

Example 4.6.1 Wewill proveDeMorgan’s second lawwhich states A ∩ B = A∪B.
What we should prove here is that if x is an element of the inverse of the intersection
of two sets A and B, it should not be contained in the intersection of these two sets,
therefore it is a member of the union of these sets.

Proof

x ∈ A ∩ B → x /∈ (A ∩ B)

→ (x ∈ A) ∨ (x ∈ B)

→ x ∈ (A ∪ B)

76 4 Set Theory

In the other direction,

x ∈ (A ∪ B) = B → x /∈ (A ∪ B)

= B → x /∈ (A ∩ B)

= B → x ∈ A ∩ B

�

Example 4.6.2 Prove A ∩ B = A − B.

Proof We start by assuming a general member x in the left side of the equation as
follows.

x ∈ A ∩ B → x ∈ A ∧ x ∈ B

→ x ∈ A ∧ x /∈ B

and this is the exact definition of A − B in Definition 4.9 and hence any x ∈ L is
also a member of the right side (x ∈ R). Next, we consider x ∈ A − B.

(x ∈ A − B) → (x ∈ A) ∧ (x /∈ B)

which means x is a member in B,

→ (x ∈ A) ∧ (x ∈ B)

By the definition of intersection, we can write,

→ (x ∈ A ∩ B)

We have shown (x ∈ R → x ∈ L) which completes the proof. �

This equality is depicted in Fig. 4.8 with the aid of a Venn diagram where (a) shows
two sets A and B with their intersection, (b) displays set B and B only, discarding
set A, and difference A − B is shown in (c).

Example 4.6.3 Prove A − (A − B) = A ∩ B.

Proof Consider x ∈ L ,

(x ∈ (A − (A − B))) → (x ∈ A) ∧ (x /∈ (A − B)

→ (x /∈ A) ∨ (x ∈ B) since x ∈ A , specialization yields,

→ (x ∈ B)

→ (x ∈ A) ∧ (x ∈ B)

→ (x ∈ A ∩ B)

4.6 Proving Set Equations 77

A B

(c)

A B

U

(a)

B
_

(b)

B

Fig. 4.8 The Venn Diagram of A − B shown in grey

Now, we need to prove the other direction,

(x ∈ (A ∩ B)) → (x ∈ A) ∧ (x ∈ B)

→ x /∈ (A − B) since x ∈ A and by definition of set difference,

→ x ∈ A − (A − B)

�

Example 4.6.4 Prove that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∩ C).

Proof We will prove first prove that when left side of the equation holds, the right
side also holds. We have two cases for the left side of the equation, either x ∈ A or
x ∈ B ∩ C .

• Case 1: x ∈ A, then,

x ∈ A ∪ B by the definition of union

x ∈ A ∪ C by the definition of union

∴ x ∈ (A ∪ B) ∩ (A ∪ C) by the definition of intersection

• Case 2: x ∈ (B ∩ C), then,

(x ∈ B) ∧ (x ∈ C) by the definition of intersection

(x ∈ A ∪ B) ∧ (x ∈ A ∪ C) by the definition of union

∴ x ∈ (A ∪ B) ∩ (A ∪ C) by the definition of intersection

78 4 Set Theory

Now let us consider proving the equation from right to left for two cases when
x ∈ A and x /∈ A.

• Case 1: x ∈ A, then

x ∈ A ∪ (B ∩ C) by the definition of union

• Case 2: x /∈ A, then

(x /∈ A) ∧ (x ∈ (A ∪ B)) ∴ x ∈ B

(x /∈ A) ∧ (x ∈ (A ∪ C)) ∴ x ∈ C

∴ x ∈ A ∪ (B ∩ C) by the definition of intersection

�
which proves the reverse direction.

Example 4.6.5 Prove for all sets A, B andC , if A ⊆ B and B ⊆ C , then A∩C = ∅.

Proof Wewill prove this proposition using the contradiction method combined with
the element method. Assume,

∃x ∈ (A ∩ C)

by definition of intersection,

(x ∈ A) ∧ (x ∈ C)

(x ∈ A) and (A ⊆ B), then
x ∈ B

(x ∈ B) ∧ (B ⊆ C) → x ∈ C

therefore x /∈ C which contradicts the second statement. �

4.6.2 TheTabular Method

In this case, we build themembership table for each side of the equation, taking each
set as input variables and listing all of their possible values, similar to what we have
done for compound propositions. A true value (1) in a row is interpreted as x is a
member; for example, a 1 under the set A means x ∈ A. When x ∈ A∧ x ∈ B, then
we place a 1 under A ∩ B.

Example 4.6.6 ProveDeMorgan’sfirst lawassociatedwith sets,which is A ∪ B ∪ C
= A ∩ B ∩ C using the tabular method.

Proof We form the truth table for the both sides of the equation as shown inTable 4.1.
The last two columns of the table are respectively the left side and the right side of
the equation and they are equal. �

4.6 Proving Set Equations 79

Table 4.1 Truth table for De Morgan’s first set law

A B C A B C A ∪ B ∪ C A ∪ B ∪ C A ∩ B ∩ C

0 0 0 1 1 1 0 1 1

0 0 1 1 1 0 1 0 0

0 1 0 1 0 1 1 0 0

0 1 1 1 0 0 1 0 0

1 0 0 0 1 1 1 0 0

1 0 1 0 1 0 1 0 0

1 1 0 0 0 1 1 0 0

1 1 1 0 0 0 1 0 0

4.6.3 The Algebraic Method

The algebraic method employs laws of set theory to prove set equations and inequal-
ities.

Example 4.6.7 Prove (A ∪ B) − C = (A − C) ∪ (B − C)

Proof
(A ∪ B) − C = (A ∪ B) ∩ C set identity law

= C ∩ (A ∪ B)

De Morgan’s law
= (C ∩ A) ∪ (C ∩ B)

= (A ∩ C) ∪ (B ∩ C)

= (A − C) ∪ (B − C)

�

Theorem 3 Prove that A ∩ B = ∅ and A ∪ B = U are equivalent.

Proof Assume A ∩ B = ∅, then,

A ∩ B = ∅

Using De Morgan’s laws,

A ∪ B = U

A ∪ B = U

�

Therefore, A ⊆ B, A ∩ B = ∅ and A ∪ B = U are equivalent. The equivalence
of the first two statements was proved in Theorem 2.

80 4 Set Theory

4.7 Review Questions

1. Compare a subset and a proper subset of a set.
2. How can two sets be proven to be equal using the subset concept?
3. What is meant by the power set of a set?
4. What is the magnitude of the power set of a set with k elements?
5. Can a Venn diagram be used to prove a set equation?
6. Describe the union, intersection and cartesian product of two sets.
7. What is the symmetric difference of two sets A and B?
8. How is the partition of a set defined?
9. What are the main methods of proving set equations?

4.8 Chapter Notes

Sets are one of the main topics of study in discrete mathematics. We have reviewed
definitions and the main properties, basic concepts related to sets. One such property
between two sets is whether they are equal or one is contained in the other. The
subset relation ⊆ between two sets A and B means all members of A are contained
in B. Moreover this relation can be used to prove two sets are equal, that is, if A ⊆ B
and B ⊆ A, then A = B. We can use this property to prove various set equations.
Venn diagrams are used to visualize set relations. Various operations on sets such as
union, intersection, cartesian product can be defined. We provided algorithms that
input two sets and perform these operations.

Laws of set theory provide a solid basis to prove set equations.Wehave the element
method, tabular method and the algebraic method to prove to prove set equations.
The element method selects an arbitrary element x from the left side of the equation
and we need to show (x ∈ L) → (x ∈ R) and (x ∈ R) → (x ∈ L) where L is
the left side and R is the right side of the equation, for the equality to hold. The
tabular method is used to prove set equations by listing all the possibilities of the left
hand side and the right hand side of the equation and then checking whether all rows
are equal. The algebraic method uses laws of set theory to prove the equalities. Set
theory is reviewed in [1, 2] in detail.

Exercises

1. Given A = {3, 9, f, T } and B = {9, 3, T, f }, is A = B?
2. Sets A = {2, 0, 1, 12} and B = {1, 12, 0, 5, 7} are given. Is A ⊂ B?
3. What set is the union of sets A = {5, 10, 3, 7} and B = {7, 3, 8, 9, 5}
4. What is the intersection of sets A = {2, 0, 1, 12} and B = {1, 12, 0, 5, 7}
5. Given A = {12, a, 3, 5, 7, 11} and B = {3, 6, b, 9, 11, 8}, what is A − B?
6. Let U = {x : 1 ≤ x < 30} as the universal set, O be the odd numbers in U , P

be the prime numbers in U and A = {1, 2, 6, 7, 9, 13, 17}, find the following.

4.8 Chapter Notes 81

a. O
b. O ∩ A

c. P ∩ O
d. O ∪ A ∩ P

7. Sets A = {3, 1, 7, 9, 8, 5} and B = {2, 9, 1, 5, 6} are given. Determine P(A),
P(B), P(A ∪ B), P(A ∩ B) and P(A × B).

8. Given two sets A and B with A ∩ B �= ∅, draw the Venn diagrams for the
following sets.

a. B − A
b. AΔB

c. (A ∪ B)

d. A ∩ B

9. Let sets A = {a, b, c}, B = {3, 4} and C = {x, y, x}. Find A × B × C .
10. Given sets A, B and C , prove that if A � B and B � C , then A � C .
11. Prove De Morgan’s first law A ∪ B = A ∩ B using membership method.
12. Prove that (A ∩ B) ∩ C = A ∩ (B ∩ C) using tabular method.
13. Prove the following equalities.

a. A ∪ (A ∩ B) = A
b. A ∩ (A ∪ B) = A

c. (A ∩ B) ∪ (A ∩ B) = A
d. B \ A = B ∩ A

14. Write the pseudocode of an algorithm that inputs two sets A and B and tests
whether they are disjoint.

References

1. Eppstein SS (2010) Discrete mathematics with applications. Cengage learning, 4th edn
2. Rosen KH (2011) Discrete mathematics and its applications, 7th edn. McGraw-Hill Education,

New York

5Relations andFunctions

A set of objects may be related to another set of objects with some similarity. A
relation associates an element of a set with an element of another set. Let the set A
be consisting of names of persons as David, Jose, Kemal and the set B be the some
cities as Istanbul, London andMadrid. A relation R can then be defined as the city in
set B where a person in set A lives. For example, (David, London), (Kemal, Istanbul)
and (Jose, Madrid) can all be the elements of the relation.

In the first part of this chapter, we review basic definitions related to relations,
representation of operations on relations and types of relations. A function is a special
relation that relates one or more elements of a set to exactly one element of another
set. In the second part, we describe functions and their properties.

5.1 Relations

Given two non-empty, finite sets A and B, a (binary) relation R is a set of ordered
elements (a, b) with a ∈ A and b ∈ B. The element a is said to be related to b
through R, or (a, b) ∈ R, or aRb to mean the same thing. A binary relation R from
a set A to a set B can be viewed as a mapping from the cartesian product A × B
to the set {0, 1} where the 1 value in {0, 1} for a pair (a, b) with a ∈ A and b ∈ B
means aRb.

Definition 5.1 (binary relation) Let A and B be two sets. A binary relation or simply
a relation R from A to B (or between A and B) is a subset of the Cartesian product
A × B.

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_5

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_5

84 5 Relations and Functions

Fig. 5.1 Set diagram
representation of a relation

2

3

4

5

6 9

3

6

..

...

.

.

.

Example 5.1.1 Let A = {2, 3, 4, 5, 6} and B = {3, 6, 9} and relation R = {(a, b) :
a divides b}. Thus, (2,6), (3,3), (3,6), (3,9), (6,6) are the elements of R.

A relation may be defined between the elements of a single set as in the example
below. In this case, we consider each element of set A as B = A. This means a
relation on a set A is a subset of A× A, and such a relation is called a unary relation.
Commonly, a general set such as N or Z is given and a relation is defined between
the elements of this given set.

Example 5.1.2 Let A = {1, 2, 3, 4, 5, 6} and and relation R = {(a, b) : b = 2a} is
given on set A. We can see (1,2), (2,4) and (3,6) are the elements of R.

5.1.1 Representations

We can have graphical or binary matrix representation of a relation.

5.1.1.1 Graphical Representation
The relation of Example 5.1.1 can be represented as in Fig. 5.1 in which sets A and
B are represented by a diagram and a directed line is drawn between a and b if
(a, b) ∈ R for the relation stated in this example.

When B = A for the same problem, we can draw the graph shown in Fig. 5.2
where each member of the set is shown by a circle and a directed line is drawn
between the elements a and b if (a, b) ∈ R. This representation is called directed
graph (digraph) representation of a relation.

5.1.1.2 Binary Matrix Representation
Amatrix is a collection of numbers arranged in a fixed number of rows and columns.
Each row and column of a matrix is numbered in increasing integers as 1, ..., n.
An element of a matrix is specified using its row and column. For example, given
a matrix M , M[2, 3] is the element at 2nd row and 3rd column. A binary matrix,
which consists of elements with values 0 or 1 only, can be used to represent a relation

5.1 Relations 85

Fig. 5.2 Digraph
representation of the relation
of Example 5.1.1. When
B = A 2

43

5 6

R from a set A to set B. In this case, the rows of the matrix are labeled with the
elements of set A and the columns show the elements of set B. There is a 1 in the
corresponding (a, b) pair with a ∈ A and b ∈ B if and only if (a, b) ∈ R. The
binary matrix representation of the relation of Example 5.1.1 is shown below. Using
a binary matrix to depict a relation is convenient when operations between two or
more relations are performed as we will see.

3 6 9
2
3
4
5
6

⎛
⎜⎜⎜⎜⎝

0 1 0
1 1 1
0 0 0
0 0 0
0 1 0

⎞
⎟⎟⎟⎟⎠

5.1.2 Inverse of a Relation

The inverse of a relation R, denoted by R−1 relates an element b to a for all elements
(a, b) of R.

Definition 5.2 (inverse) Let R be a relation from a set A to a set B. The inverse
relation R−1 is defined as follows:

R−1 = {(b, a) ∈ (B × A)|(a, b) ∈ R

Example 5.1.3 Let A = {2, 3, 5}, B = {1, 3, 8} and R be a ≤ b with a ∈ A and
b ∈ B. Find the elements of R and R−1 and draw the graphical representation of R
and R−1.
Solution: R = {(2, 3), (2, 8), (3, 3), (3, 8), (5, 8)} and R−1 = {(3, 2), (3, 3), (8, 2),
(8, 3), (8, 5)}. The graphs of R and R−1 are shown in Fig. 5.3 respectively. Note that
R−1 can be obtained simply by reversing the direction of arrows in R.

86 5 Relations and Functions

2

3

5

3

.

.

.

.

.

.

1

8

2

3

5

3

.

.

.

.

.

.

1

8

(a) (b)R R -1

Fig. 5.3 Relation R and its inverse R−1

Let us sketch a procedure to form the inverse R−1 of a relation R which consists
of pairs (ai , bi) for i = 1 to n, input to the algorithm as shown in Algorithm 5.1.
Any element (a, b) ∈ R is copied as (bi , ai) to R−1.

Algorithm 5.1 Inverse of a Relation
1: procedure Inverse(R: Relation)
2: R−1 ← Ø
3: for all (a, b) ∈ R do
4: R−1 ← R−1 ∪ (b, a)

5: end for
6: return R−1

7: end procedure

5.1.3 Union and Intersection of Relations

Relations can be united or intersected as in the union and intersection of sets. The
union of two relations R1 and R2 consists of all pairs of elements that are either in
R1, R2 or both. The intersection of two relations R1 and R2 has elements that appear
both in R1 and R2 only.

Example 5.1.4 Assume the following relations on the set A = {1, 2, 3, 4, 5}.
R1 = {(1, 2), (1, 5), (2, 4), (3, 5), (4, 4), (5, 1)}
R2 = {(1, 2), (2, 4), (3, 3), (4, 4), (4, 2), (5, 1)

Then the union and intersection of these sets are as follows.

R1 ∪ R2 = {(1, 2), (1, 5), (2, 4), (3, 3), (3, 5), (4, 4), (4, 2), (5, 1)}
R1 ∩ R2 = {(1, 2), (2, 4), (4, 4), (5, 1)}

5.1 Relations 87

Algorithm 5.2 shows how to form the union of two sets R1 and R2 which consist
of pairs (ai , bi) for i = 1 to n, and (ci , di) for i = 1 to m respectively. Initially, the
union RT of R1 and R2 contains all elements of R1 and any different element of R2
than R1 is copied to RT . This way, duplicate copying is prevented.

Algorithm 5.2 Union of Two Relations
1: procedure Union(R1, R2: Relation)
2: RT ← R1

3: for i = 1 to n do
4: for j = 1 to m do
5: if (ai , bi) ∈ R1 �= (c j , d j) ∈ R2 then
6: RT ← RT ∪ (c j , d j)

7: end if
8: end for
9: end for
10: return RT

11: end procedure

Finding the intersection of two relations R1 and R2 is depicted in Algorithm 5.3
where any common element is copied to the intersection set RI .

Algorithm 5.3 Intersection of Two Relations
1: procedure Intersection(R1, R2: Relation)
2: RI ← Ø
3: for i = 1 to n do
4: for j = 1 to m do
5: if (ai , bi) ∈ R1 = (c j , d j) ∈ R2 then
6: RI ← RI ∪ (ai , bi)
7: end if
8: end for
9: end for
10: return RI

11: end procedure

5.1.4 Properties of Relations

A relation on a set may be reflexive, symmetric, antisymmetric and transitive.

5.1.4.1 Reflexive Relation
A reflexive relation on a set relates each element to itself.

88 5 Relations and Functions

Definition 5.3 (reflexive) A relation R is reflexive if and only if ∀a ∈ R, (a, a) ∈ R
(or aRa). A relation R is not reflexive if ∃a ∈ R such that (a, a) /∈ R

Example 5.1.5 A relation R is defined in a set A of integers as (a, b) ∈ R if and
only if a ≤ b. R is reflexive because for each element a ∈ A, (a, a) ∈ R because of
equality.

Example 5.1.6 A relation R is defined in the set Z as (a, b) ∈ R if and only if
(a + 4b) is divisible by 5. Find if R is reflexive or not.
Solution: Let a ∈ Z. Then, a+4a = 5awhich is divisible by 5. Therefore, aRa,∀a ∈
Z and thus, R is reflexive.

Let us sketch a procedure to test whether a relation R is reflexive or not. We have
R which consists of pairs (ai , bi) for i = 1 to n, input to the algorithm and we test
whether for any (ai , bi) ∈ R, whether (ai , ai) ∈ R exists as shown in Algorithm 5.5
which runs in ω(n) time.

Algorithm 5.4 Reflexivity Test1
1: procedure Reflex_Test1(R: Relation)
2: for i = 1 to n do
3: for j = 1 to n do
4: if ai = b j then continue
5: return(not_reflex)
6: end if
7: end for
8: end for
9: return(reflex)
10: end procedure

This algorithm runs inO(n2) time.Wehave not stated how to represent the relation
R in a structure to be accepted by a computer in this pseudocode. Let us attempt to
write the code in a closer structure to a computer language using the binary matrix
representation of a relation. In this case, all we need to do is to check for all 1s in
the diagonal of the matrix as shown in Algorithm 5.5 which runs in O(n) time.

5.1.4.2 Symmetric and Antisymmetric Relations
A symmetric relation R is the one in which for any pair (a, b) that is contained in
R, (b, a) is also a member of R.

Definition 5.4 (symmetric, antisymmetric) A relation R on a set A is symmetric if
and only if ∀a, b ∈ A, (b, a) ∈ R when (a, b) ∈ R. In a symmetric relation, aRb is
commonly written as a ∼ b, a ≈ b, or a ≡ b.

5.1 Relations 89

Algorithm 5.5 Reflexivity Test2
1: procedure Reflex_Test2(M : Relation matrix)
2: for i = 1 to n do
3: if M[i, i] �= 1 then
4: return (not_reflex)
5: end if
6: end for
7: return (reflex)
8: end procedure

∀a∀b : (a, b) ∈ R → (b, a) ∈ R

A relation R is antisymmetric if and only if there is not a single pair (a, b) such
that (a, b) ∈ R and (b, a) ∈ R.

∀a∀b : ((a, b) ∈ R ∧ (a �= b)) → (b, a) /∈ R

Remark 5.1 A relation R may be both symmetric and antisymmetric, or may not
be symmetric and not antisymmetric at the same time.

Example 5.1.7 Let a relation on set A= {a, b, c, d} be R= {(a, b), (b, c), (b, a),

(b, d), (d, b), (c, d),(d, c)}. R is not symmetric because (b, c) ∈ R and (c, b) /∈ R.
Finding at least one such pair ((b, c) in this example) is enough to deduce R is
not symmetric, however, R is not antisymmetric either because of the existence of
symmetric pairs.

An algorithm to test symmetric property of a relation is depicted in Algorithm 5.6.

Algorithm 5.6 Symmetry Test1
1: procedure Symmetry_Test1(R: Relation)
2: for i = 1 to n do
3: for j = 1 to n do
4: if (ai , bi) ∈ R and (bi , ai) ∈ R then continue
5: return not_symmetric
6: end if
7: end for
8: end for
9: return symmetric
10: end procedure

We can have the matrix version of this algorithm as depicted in Algorithm 5.7
where we check whether (b, a) ∈ R whenever (a, b) ∈ R. A 1 in matrix entry for

90 5 Relations and Functions

(a, b) means we need to check whether (b, a) entry in the matrix is also 1. This
algorithm requires O(n2) operations using two nested for loops.

Algorithm 5.7 Symmetry Test2
1: procedure Symmetry_Test2(M : Relation matrix)
2: for i = 1 to n do
3: for j = 1 to n do
4: if M[i, j] = 1 then
5: if M[j, i] �= 1 then
6: return not_symmetric
7: end if
8: end if
9: end for
10: end for
11: return symmetric
12: end procedure

5.1.4.3 Transitive Relation
A transitive relation relates three elements of a relation as follows.

Definition 5.5 (transitive)A relation R on a set A is transitive if andonly if∀a, b, c ∈
A: if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.

∀a∀b∀c : ((a, b) ∈ R ∧ (b, c) ∈ R) → (a, c) ∈ R

Example 5.1.8 Let a relation on set A= {a, b, c, d} be R = {(a, b), (b, c),(a, d),

(b, d),(d, b), (c, d),(d, c)}. R is not transitive since (a, b) ∈ R and (b, c) ∈ R but
(a, c) /∈ R. Finding at least one such triplet (a, b, c) is enough to deduce R is not
transitive. A closer look at R shows (a, c) /∈ R although (a, d), (d, c) ∈ R, thus
(a, c, d) is another triplet that disproves transitivity.

5.1.4.4 Determining Relation Property from the Digraph andMatrix
It is possible to detect a property of a relation by looking at its graph or its binary
matrix representation as follows.

• Reflexive: If each node of the graph contains a self loop, then R is reflexive since
∀a ∈ A, (a, a) ∈ R. Thus, the graph of relation R in Fig. 5.2 is reflexive. In the
binary matrix (M) representation, we would have all 1’s in the main (principal or
leading) diagonal of the matrix M .

• Symmetric: In order to have a symmetric relation R, there should be a directed edge
in both directions (from a to b and b to a) for each vertex pair (a, b) in the graph.

5.1 Relations 91

The binary matrix M should be symmetric with respect to its leading diagonal to
have R symmetric. In other words, M[i, j] = M[j, i] for each row i and column
j of M .

• Antisymmetric: An antisymmetric relation manifests itself by the lack of any bidi-
rectional edges in the relation graph. Having such an edge implies the existence
of (b, a) ∈ R when (a, b) ∈ R for at least one such pair which means R is
not antisymmetric. In matrix notation, if there exists one entry in M such that
M[i, j] = M[j, i], then R is not antisymmetric.

• Transitive: A transitive relation in the digraph of a relation has edges such that
whenever there is a directed edge from any node a to a node b, and b to another
node c in the graph, there is also an edge from a to c.

5.1.5 Equivalence Relations and Partitions

Equivalence relations provide grouping of similar elements of a set. These elements
behave similarly and form partitions of the set.

Definition 5.6 (equivalence) A relation R on a set A is an equivalence relation if R
is reflexive, symmetric and transitive.

Definition 5.7 (equivalence class) Let R be a relation on a set A and let a ∈ A. The
equivalence class shown by [a] is the set of all elements of A that satisfy relation R.
In other words, any b ∈ A that is related to a by R is in the same equivalence class
as a. This relation can be stated as follows:

[a] = {b ∈ A|bRa}

Example 5.1.9 Let relation R be defined on people as aRb if and only if a person
a lives in the same city as a person b. We will assume a person lives only in one city
and check whether this is an equivalence relation.

• A person a lives in the same city as a, hence R is reflexive.
• If a person a lives in the same city as a person b, then b lives in the same city as
a, meaning R is symmetric.

• If a person a lives in the same city as a person b and b lives in the same city as a
person c, then a lives in the same city as c, thus R is transitive.

We can therefore state that R is an equivalence relation that divides the people to
equivalence classes, each class being the people living in the same city.

Example 5.1.10 Let relation R be defined on set A = {1, 2, 3, 4} as follows:

R = {(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3), (4, 2), (4, 4)}

92 5 Relations and Functions

Find whether R is an equivalence relation.

Solution: Let us check all properties of an equivalence relation on R.

• ∀a ∈ A, (a, a) ∈ R; therefore, R is reflexive. Note that we needed (1, 1), (2, 2),
(3, 3) and (4, 4) to be contained in R for R to be reflexive.

• Checking manually shows that ∀a, b ∈ A; if (a, b) ∈ R then (b, a) ∈ R, thus R
is symmetric.

• Again, checking shows ∀a, b ∈ A; if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R,
thus R is transitive.

Since R satisfies all of the equivalenceproperties,we can state that R is an equivalence
relation.

Definition 5.8 (partition) Let R be an equivalence relation on A and a, b ∈ A. Then
[x] = [y] if and only if x Ry.

Example 5.1.11 A relation R is defined on Z by aRb if a + b is even. Show that R
is an equivalence relation.

Solution: We need to check reflexive, symmetric and transitive properties for R
to be an equivalence relation.

• Reflexivity: Let a ∈ Z, then a + a = 2a is an even integer. Therefore aRa and R
is reflexive.

• Symmetry:When aRb, we need to show bRa holds. If a+b = 2k, then b+a = 2k.
Transitivity: Assume aRb and bRc, then aRc should be valid.

Let a + b = 2k, b + c = 2m for integers k and m. Then a + c = 2(k + m − 1) is
even.

5.1.6 Order

A tuple is a set of objects. When the length of a tuple is 1, it is called a singleton,
length 2 is a pair, 3 is a triple and a tuple with length n is called an n-tuple. Different
than sets, tuples can contain an object more than once and the objects in a tuple have
a certain order. Commonly, a tuple is specified as (a, b, c) or < a, b, c >. We can
specify partial order or total order relation. A partial order is a type of relation that
orders the elements of a set.

Definition 5.9 (partial order) A relation R that is reflexive, antisymmetric and tran-
sitive is called a partial order. A set having a partial is called a partially ordered set
or a poset.

5.1 Relations 93

Fig. 5.4 Composite relation

.

.
.
.

.

.

.
.

a

b
c

x

y

z

1

2

A B C

R S

Example 5.1.12 ∀a, b ∈ N , let relation R be defined as (a, b) ∈ R such that a
divides b. Show that R is partial order.

Solution: Let us check all properties of an equivalence relation on R.

• ∀a ∈ N , (a, a) ∈ R a divides a; therefore, R is reflexive.
• ∀a, b ∈ N , if (a, b) ∈ R, (b, a) /∈ R since if a divides b, then b does not divide a.
Hence, R is antisymmetric.

• ∀a, b ∈ N , if a divides b and b divides c, then a divides c. Thus, R is transitive.

We can therefore conclude that R is a partial order. ��

Definition 5.10 (total order) A total order on a set A is a partial order relation R on
A in which for every pair (a, b) ∈ A, either a ≤ b or b ≤ a. For example, the set of
real numbers ordered by ≤ is totally ordered.

5.1.7 Composite Relation

Definition 5.11 (composite relation) Let R be a relation from a set A to set B, and
S be a relation from set B to a set C . The composition of R and S, shown by S ◦ R
is the relation from the set A to set C as follows:

S ◦ R = {(a, c)|(a, b) ∈ R and (b, c) ∈ S for some b ∈ B}

In other words, a(S ◦ R)b if and only if there exists some element b ∈ B such that
aRb and bSc. Graphically, a composite relation R ◦ S can be drawn as in Fig. 5.4
where a(S ◦ R)1, b(S ◦ R)2, and c(S ◦ R)1.

Example 5.1.13 Let relations R and S be defined as below. Find S ◦ R.

R = {(1, 1), (1, 3), (2, 2), (2, 4), (3, 1)}
S = {(1, 1), (3, 2), (2, 1), (4, 3)}

Solution: Applying the composition relation property, the following can be stated.

94 5 Relations and Functions

• (1, 1) ∈ R and (1, 1) ∈ S → (1, 1) ∈ S ◦ R.
• (1, 3) ∈ R and (3, 2) ∈ S → (1, 2) ∈ S ◦ R.
• (2, 2) ∈ R and (2, 1) ∈ S → (2, 1) ∈ S ◦ R.
• (2, 4) ∈ R and (4, 3) ∈ S → (2, 3) ∈ S ◦ R.
• (3, 1) ∈ R and (1, 1) ∈ S → (3, 1) ∈ S ◦ R.

5.1.8 n-Ary Relations

An n-ary relation is a subset of a Cartesian product of n sets.

Definition 5.12 (n-ary relation) Given sets A1, A2, ..., An , an n-ary relation R on
A1 × A2 × ... × An is a subset of A1 × A2 × ... × An . If A1 = A2 = ... = An ,
the n-ary relation is defined on A, that is on subsets of A × A × ...A which is A
multiplied n times by itself. The sets Ai are called the domains of R and the degree
of R is n.

Example 5.1.14 Let R be a 3-ary relation onZ×Z×Z consisting of triplets (a, b, c)
such that a < b < c. For example, (1, 2, 6) ∈ R, (2, 8, 12) ∈ R but (5, 3, 9) /∈ R

The n-ary relations are the basis of relational database management systems as
we will see.

5.1.9 Transitive Closure

A relation R may not be transitive due to the lack of some ordered pairs. Adding the
least number of ordered pairs to the relation R results in a relation Rt which is called
the transitive closure of R.

Definition 5.13 (transitive closure) Let R be a relation on set A. The set Rt is called
the transitive closure of R if the following is valid:

• Rt is transitive
• R ⊆ Rt

• If S is another transitive relation of R, then Rt ⊆ S.

Example 5.1.15 Let A = {1, 2, 3, 4} and the relation R on A to be as below:

R = {(1, 2), (2, 3), (2, 4), (4, 1)}
Find the transitive closure of Rt of R.
Solution: We find (1, 2) and (2, 3) ∈ R but (1, 3) /∈ R. Similarly (2, 1) /∈ R and
(4, 2) /∈ R. Therefore, Rt can be formed to consist at least of the following elements:

R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (4, 1), (4, 3), (4, 4)}

5.1 Relations 95

Fig. 5.5 Transitive closure
of a relation with added pairs
shown by dashed lines

2

3

1

4

Table 5.1 A database table

Number Name Dept. GPA

1234 John EE 3.12

5678 Sean CS 2.81

9123 Nuri Math 3.45

4567 Bob CS 3.20

Alternatively, we can form the directed graph of Fig. 5.5 of relation R and check
whether there is an arc from a node a to c when there is an arc from a to b, and b to
c. The dotted lines are the added pairs to relation R to form the transitive closure Rt

of R.

5.1.10 Database Applications

A database of a computer system consists of organized information stored in a com-
puter. For example, a student database at a university typically will have numbers,
age, name, courses she has taken and grades of a student. A database management
system (DBMS) contains software modules to search, modify and interpret infor-
mation in a database. A DBMS is basically a collection of tables each of which is
organized by columns or fields. The rows in a DBMS are commonly called attributes
of records, with each record consisting of a row in the table. A record is basically an
n-tuple in a table with n columns. Table5.1 depicts a simplified database of students
in a university.

A database based on n-ary relation is called a relational database management
system (RDBMS). Informally, data in tables can be accessed and reorganizedwithout
changing the structure of the original table in such a database. Each field in a RDBMS
is a domain of the n-ary relation and a domain that uniquely identifies a record is

96 5 Relations and Functions

Table 5.2 Table5.1 after projection

Name GPA

John 3.12

Sean 2.81

Nuri 3.45

Bob 3.20

called a primary key. For example, the Number field in Table5.1 is the primary key
for this database. The following operations are common in a RDBMS.

• Unary Operations: These take one table as input and produce another one

– Selection: The selection operator is used to filter rows based on some condi-
tions. For example, let condition C1 be “Dept=Math” and C2 be “GPA>3.0”.
Then, sC1∧C2 will result in (9123, Nuri, Math, 3.45) for the example database
in Table5.1 filtering all other rows.

– Projection: The projection operator Pi1,...,im defined on n-ary relation R as
Pi1,...,im = {(a1, .., an) : ∃(b1, .., bk) ∈ R} such that a1 = bi1 , ..., am = bim)}.
For example, P2,4 applied to Table5.1 will result in Table5.2.

• Binary Operations: We have two input tables this time and a resulting table is
produced at the end of the operation.

– Join Operation: Two n-ary relations R and S are input and an n-ary relation
R ∪ S = {(a1, .., an) : (a1, .., an) ∈ R ∨ (a1, .., an) ∈ S} is produced.

– DifferenceOperation: Twon-ary relations R and S are input and ann-ary relation
R − S = {(a1, .., an) : (a1, .., an) ∈ R ∧ (a1, .., an) /∈ S} is produced.

– Cartesian Product: An n-ary relation R and an m-ary relation S are input and a
relation R × S = {(a1, .., an, b1, ..., bm) : (a1, .., an) ∈ R ∧ (b1, .., am) ∈ S} is
produced.

5.2 Functions

A function is a special type of relation which basically maps one or more elements
of a set to an element of another set. Commonly, a function f (x) is an expression of
a variable labeled x such as,

x2 + 3x + 5, log x, 2x

5.2 Functions 97

Fig. 5.6 An example
function ..

...

.

.

.

a

b

c

d

e

u

v

w

A B

Definition 5.14 (function)Given two sets A and B, a function f from A to B denoted
by f : A → B, is a relation over A × B such that for any (a, b) ∈ f , there exists
one and only one element b ∈ B.

The set A is called the domain and the set B is called the codomain of function f .
A function is commonly defined in terms of its domain and its codomain as below.

f = {(x, y) ∈ Z × Z : y = x2 − 3x + 5}
The function f (x) is commonly called “ f of x”; “the value of f at x”, “the output

of f for the input x”, or “the image of x under f ”. A function is sometimes called a
mapping (from its domain to its codomain).

Example 5.2.1 Let A = {a, b, c, d, e} and B = {u, v,w} two sets which are related
by the function f (a) = f (c) = u, f (b) = w and f (d) = f (e) = v. the graphical
representation of this function is depicted in Fig. 5.6. It can be seen that there are
directed edges from every element of A to some element of B; an element of A has
only one directed edge connected to it in line with the definition of a function.

A function can be partial or total. A partial function is defined for a subset of
the domain and a total function is defined for all values of the domain. For example
f (x) = 1/x , x �= 0 defined on R is a partial function defined for all values on R

except the 0 value. The function f (x) = x3 however is a total function on R defined
for all values in this set.

5.2.1 Composite Functions

Definition 5.15 (composite function) Let f : A → B and g : B → C be two
functions. The composite function g ◦ f : A → C is defined as follows:

g ◦ f = {(a, c) ∈ A × C : (a, b) ∈ f and (b, c) ∈ g for some b ∈ B}

98 5 Relations and Functions

2

.

.
.
.
.

1 a

b

c

BA

3

.

.

C

u

v

w.

Fig. 5.7 Graph of g ◦ f

Example 5.2.2 Let f (x) = 2x + 3 and g(x) = x2 + 1 be defined on R. Then,

g ◦ f = g(f (x))

g(2x + 3) = (2x + 3)2 + 1

= 4x2 + 12x + 10

The composite function is not commutative, that is, g ◦ f �= f ◦ g in general. For
the above example,

f ◦ g = f (g(x))

g(2x + 3) = 2(x2 + 1) + 3

= 2x2 + 5

However, the composite function is associative; h ◦ (g ◦ f) = (h ◦ g) ◦ f . A
composite function (g ◦ f) is depicted in Fig. 5.7.

5.2.2 Injection, Surjection and Bijection

Definition 5.16 (injection, one-to-one) A function f : A → B is called injective or
one-to-one if for all a, b ∈ A, if a �= b, then f (a) �= f (b).

In other words, if f (a) = f (b), then a = b. This means there is exactly one
directed edge between a pair of elements of the digraph representing the function.
The sample function graph of Fig. 5.6 displays a non one-to-one function as there
are two edges from set A to nodes u and v of set B. Note that some elements of the
codomain may not be covered by a one-to-one function but any covered element of
codomain should be the output of exactly one element of the domain. An injective
function is depicted in Fig. 5.8a.

An algorithm to test whether a function is injective or not can be formed with the
following logic. The binary matrix M of a function f should not have more than one
1 in any of its columns to be injective since otherwise two elements of the domain is
mapped to the same element of the codomain of the function. The following matrix

5.2 Functions 99

2

.

.
.
.
.

1

(a) (b)

a

b

c
3

.

.

.

.

.
1

2

a

b

3

.

.

.

.

.
1

2

a

b

c.

(c)

A B A

A

B

B

Fig. 5.8 a An injective function, b a surjective function, c a bijection

denotes an injective function f = {((1, b), (2, a), (3, c)} from the set A = {1, 2, 3}
to set B = {a, b, c} since each column has at most one 1.

a b c
1
2
3

⎛
⎝
0 1 0
1 0 0
0 0 1

⎞
⎠

The algorithm to test injection shown in Algorithm 5.8 checks each row and
whenever it encounters a 1 in column j , it checks to see whether there is another 1
in the same column. This algorithm requires O(n3) operations due to 3 nested for
loops.

Example 5.2.3 Let f (x) = 3x + 4 be defined on R. Find whether f is one-to-one.
Solution: Let us select a, b ∈ R and test whether f (a) = f (b) if and only if
when a = b (definition of one-to-one). Substitution yields 3a + 4 = 3b + 4 and
simplification gives a = b, thus f is one-to-one. ��

Definition 5.17 (surjection, onto) A function f : A → B is called surjective or
onto if for all b ∈ B there is t least one a ∈ A with f (a) = b.

Example 5.2.4 Let A = {a, b, c, d, e} and B = {u, v,w} two sets which are related
by the function f (a) = f (c) = u, f (b) = w and f (d) = f (e) = v. Since all
elements of B are covered, f is an onto function.

100 5 Relations and Functions

Algorithm 5.8 Injection Test
1: procedure Injection_Test(M : function matrix)
2: for i = 1 to n do
3: for j = 1 to m do
4: if M[i, j] = 1 then
5: for k = j + 1 to n do
6: if M[j, k] = 1 then
7: return(not_injective)
8: end if
9: end for
10: end if
11: end for
12: end for
13: return(injective)
14: end procedure

The matrix M representing a function f should have exactly one 1 in each of its
row by the definition of function and the function being onto means all elements of
the domain should be mapped. We can form an algorithm to test whether a function
represented by M is onto or not by considering that each row should have one 1, as
shown in Algorithm 5.9. We will assume there will not be more than one 1 in each
row as the input is a legal function.

Algorithm 5.9 Surjection Test
1: procedure Surjection_Test(M : function matrix)
2: for i = 1 to n do
3: for j = 1 to m do
4: if M[i, j] = 1 then continue
5: return(not_onto)
6: end if
7: end for
8: end for
9: return(onto)
10: end procedure

Definition 5.18 (bijection) A function f : A → B is called bijective if it is both
injective (one-to-one) and surjective (onto).

Examples of these functions are depicted in Fig. 5.8 where the function in (a) is
one-to-one as there is a mapping of each element of A in B; (b) is an onto function
since every element of B is covered by the function and (c) is both one-to-one and
onto.

5.2 Functions 101

5.2.3 Inverse of a Function

The inverse of a function can be defined similarly to the inverse of a relation.

Definition 5.19 (function inverse) The inverse of a function f : A → B is denoted
by f −1 = B → A such that if f (a) = b, then (b, a) ∈ f −1.

Based on the definition of a function, a total function has an inverse if and only if
it is bijective. Let the identity function on a set A be IA(a) = a, for all a ∈ A. Then,
f −1 ◦ f = IA, and f ◦ f −1 = IB .

Example 5.2.5 Let A = {1, 2, 3} and B = {a, b, c} be two sets which are related
by the function f (1) = b, f (2) = a and f (3) = c as in Fig. 5.8c. This function is
bijective and let us check whether the above equalities hold. Visually, f −1(b) = 1,
hence f −1 ◦ f (1) = 1 and this is valid for the other two members of set A. On the
other hand, f −1(a) = 2 and f (2) = a and checking for b and c in B, we can deduce
f ◦ f −1 = IB .

Example 5.2.6 Let f : N → N be defined as f (x) = 2x + 1. Let f −1(y) = x , a
practical way to find f −1 is to substitute y for x , and x for y in f and solve for y as
below.

x = 2y + 1

y = x − 1

2

Let us check for an arbitrary number, say 2, f (2) = 5 and f −1(5) = (5− 1)/2 = 2.

5.2.4 Some Special Functions

Some functions are very common as they have a wide spectrum of applications. A
sample of thesewell-known functions are the floor and ceiling functions, the factorial
function reviewed previously, the exponential function and the logarithmic function.

Floor and Ceiling Functions
The floor and ceiling functions of a real variable are used to generate integer values
from those variables.

Definition 5.20 (floor function, ceiling function) The floor function of a real number
is the largest integer that is less thanor equal to that number. This function of a variable
x is shown as �x�. The ceiling function of a real number is the smallest integer that
is greater than or equal to that number which is represented by �x�.

102 5 Relations and Functions

For example, �3.12� = 3, �3.12� = 4, �3� = �3� = 3, �−0.25� = −1,
�−0.25� = 0.
Factorial Function
Factorial of a positive integer n is defined as the product of all integers from 1 to n.

Definition 5.21 (factorial function) The factorial of n ∈ Z is denoted by n! and,
n! = 1 · 2 · 3 · · · n

For example, the factorial of 5 = 1 · 2 · 3 · 4 · 5 = 120. We can form a procedure
that input the value of n and returns its factorial as in Algorithm 5.10.

Algorithm 5.10 Factorial Function
1: procedure Factorial(n: integer)
2: f act ← 1
3: for i = 1 to n do
4: f act ← f act · i
5: end for
6: return fact
7: end procedure

Exponential Function

Definition 5.22 (exponential function) The function f (a, x) = ax is defined as

am = a · a · · · a for m times

where m ∈ Z .

For example, 23 = 2.2.2 = 8, 4−2 = 1/(42) = 1/16. An exponent can be a
rational number such as m/n. Then, am/n = n

√
am . A simple procedure that inputs

the value of base a and the exponentialm and returns am is shown in Algorithm 5.11.

Algorithm 5.11 Exponential Function
1: procedure Exponential(a: base, m: exponential)
2: exp ← 1
3: for i = 1 to m do
4: exp ← exp · a
5: end for
6: return exp
7: end procedure

5.2 Functions 103

Logarithm

Definition 5.23 (logarithm function) Given x > 0 and a > 0 and a �= 1, the
logarithmic function f (x) is defined as,

f (x) = y = loga x if and only if x = ay

where a is the base of the logarithm.

For example, log10 100 = 2 since 102 = 100. Common logarithm bases are 100
and 2. Some important properties of a logarithmic function are as follows.

loga xy = loga x + loga y for a, b ∈ R, x > 0 and y > 0 (5.1)

loga x
y = y loga x for a, b ∈ R, x > 0 and y > 0. (5.2)

For example, log10 10 · 100 = log10 1000 = 3 by the definition of the logarithmic
function since 103 = 1000.Based onEq. 5.1,we canwrite log10 10+log10 100 = 1+
2 = 3 to give the same result. Consider another example, log10 10

2 = log10 100 = 2
and using Eq. 5.2, log10 10

2 = 2 log10 10 = 2 yields the same result.

5.3 Review Questions

1. What is meant by the union of two relations R1 and R2?
2. What is the difference between a unary relation and a binary relation?
3. What is meant by the inverse of a relation?
4. Compare symmetric and antisymmetric properties of a relation.
5. How can the reflexive property of a relation be determined from its graph repre-

sentation?
6. How can the symmetric property of a relation be determined from its matrix

representation?
7. What is an equivalence relation? Give an example of such a relation.
8. What is a partition?
9. What is an n-ary relation and how is this type of relation used in a relational

database?
10. What is the main difference between a relation and a function?
11. What is a composite function?
12. Describe injection, surjection and bijection as referred to functions.

104 5 Relations and Functions

5.4 Chapter Notes

A binary relation from a set A to a set B associates elements of A to the elements
of B. We initially reviewed basic relation types and properties in this chapter. A
unary relation defined on a single set A consists of a subset of the cartesian product
A × A whereas a binary relation is a subset of the cartesian product of two sets.
Similarly, n-ary relation may be defined to be a subset of the cartesian product of n
sets. A relation may be represented by a graph or a matrix. Union and intersection
of two relations are defined similar to set structures. A relation may have reflexive,
symmetric, antisymmetric and transitive properties. A relation that is reflexive, sym-
metric and transitive is called an equivalence class and a relation that is reflexive,
antisymmetric and transitive is called a partial order. An n-ary relation forms the
basis of a relational database management system.

A function f is basically a relation from a set A to another set B with the property
that for any (a, b) ∈ f , there exists one and only one element b ∈ B. A function can
be composite, consisting of two or more functions. A function may have injection,
surjection and bijection properties. Some special functions include floor function,
ceiling function, factorial function, exponential function and logarithm.

Exercises

1. Let A = {1, 3, 6, 10}, B = {2, 3, 5, 6} and R be a ≡ b (mod m)with a ∈ A and
b ∈ B. Find the elements of R and R−1 and draw the graphical representations
of R and R−1.

2. Let A = {1, 2, 3, ..., 5} and 3-ary relation R by (a, b, c) if and only if a < b and
b < c. List all of the elements of R.

3. Let A = {1, 3, 5, 7, 9, 10, 13, 17}, B = {2, 3, 5, 6} and R be defined as aRb if
a is prime and b = 2a. Express R as ordered pairs.

4. A relation R is defined on Z by aRb if a + 3b is even. Prove that R is an
equivalence relation and find the equivalence classes of R.

5. A relation R on a set A is given as follows. For any a, b ∈ A, aRb if f (a) = f (b)
for any function A → B. Prove that R is an equivalence relation.

6. Let A be the power set of a finite set A and R be a relation such that for S1, S2 ∈
P(A), S1RS2 if |S1| = |S2|. Show that R is an equivalence relation on P(A).

7. Write the pseudocode of an algorithm procedure to test transitivity of a relation
and show its running on relation R = {(1, 2), (2, 3), (1, 3), (2, 2), (3, 4), (1, 4)}.

8. Write the pseudocode of an algorithm to form the transitive closure of a rela-
tion. Show the working of this algorithm for the relation R = {(1, 2), (2, 3),
(2, 4), (4, 1), (2, 1)}.

9. Write the pseudocode of an algorithm procedure to test whether a given relation
R with its binary matrix is a legal function or not.

10. Write the pseudocode of an algorithm to test whether a given function f is
bijective or not.

11. Prove Eqs. 5.1 and 5.2.

6Sequences, Induction andRecursion

We review three related topics in this chapter: sequences, induction and recursion.
A sequence is an ordered list of elements and is a function from natural number set
to a set of real numbers. Summation of sequences may be defined in various ways.
Arithmetic sequences have terms with a common difference from the preceding one
and geometric series have terms with a common ratio. Induction is a powerful proof
method which has a wide range of applications. Recursion is the process of defining
an object in terms of itself. We can have recursive relations, recursive sets, recursive
functions and recursive algorithms.We review sequences, the basic inductionmethod
and recursion with a brief introduction to recursive algorithms in this chapter.

6.1 Sequences

A sequence is basically an ordered list of real numbers with an initial term. A finite
sequence has a limited number of termswith a final termwhereas an infinite sequence
has infinite number of elements and does not have a final element. We are mostly
interested in finite sequences and their properties. A formal definition of a sequence
is as follows.

Definition 6.1 (sequence) A sequence is a function from N into a set A of real
numbers. A sequence is commonly shown as a1, a2, .., an and we say that such a
sequence is indexed by integers.

In other words, the domain of a sequence is the set of natural numbers and the
output is a subset of the real numbers. A sequence may contain the same term more
than once and unlike a set, a sequence is ordered.

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_6

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_6

106 6 Sequences, Induction and Recursion

Example 6.1.1 Find the first 5 elements of the sequence an = (−1)n where n =
0, 1, 2, 3, ...

Solution: 1, −1, 1, −1, 1. This sequence is an example of an alternating sequence.
A closed form representation of a sequence is stated as an = f (n), ∀n ≥ 1 where

f (n) is some function of n such that f : N → R.

Example 6.1.2 Find the closed form for the sequence 1, 2, 4, 8,... .

Solution: We can see that the terms of the sequence are the powers of 2 as 20, 21, 22,
... which can be written as 2n . Note that n starts from 0 in this sequence.

Example 6.1.3 Find the closed form for the sequence 2, 5, 8, 11, 14, 17...
Solution: This sequence can be specified in closed form as an = 3n−1. For example,
a4 = 3 · 4 − 1 = 11 and a6 = 3 · 6 − 1 = 17.

6.1.1 Summation

The Greek symbol sigma (
∑

) is used to define the sum of a sequence: For example,

n∑

i=m

ai

is the sum of a sequence with elements am + am+1 + ... + an . The variable i in the
above equation is called the index of the summation, m is the lower limit and n is
the upper limit of the index.

Example 6.1.4 Find the sum of the first 5 terms of the sequence an = n2 where
n = 1, 2, 3... . Solution: The formula for the sequence is,

5∑

i=1

ai =
5∑

i=1

i2 = 1 + 4 + 9 + 16 + 25 = 55

��

Example 6.1.5 Express the sum of the first 10 terms of the sequence an = 2n − 1
for n = 1, 2, 3,..., 10 and find the value of the summation for these terms.

Solution: This sequence is the list of positive odd numbers and can be written as,

10∑

i=1

2i − 1 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = 100

��

6.1 Sequences 107

Shifting an indexmay provide amore readable andworkable summation as shown
below when j is substituted for i − 1.

n∑

i=1

(i − 1) =
n−1∑

j=0

j

There are cases when the summation is defined over a particular set as in the
example below. Let S be {1, 2, 3}, then the following summation finds the sum of
elements of this set. Note that we could have written i ∈ {1, 2, 3} without explicitly
specifying the set S.

∑

i∈S
i = 1 + 2 + 3 = 6

Properties of Summation
Summations can be merged and split as follows.

• Two summations can bemerged into one when the index variables and their ranges
are the same, as follows.

n∑

i=m

ai +
n∑

i=m

bi =
n∑

i=m

(ai + bi)

• A summation can be split into two summations by dividing the original range into
two subranges as below. Note that the sum of the two ranges equals the original
range.

n∑

i=m

ai =
k∑

i=m

ai +
n∑

i=k+1

ai

• A double summation is denoted by a double
∑

sign and interchange of sum
symbols is possible when indices of sums are independent as shown below.

n∑

i=1

m∑

j=1

i j =
m∑

j=1

n∑

i=1

i j

6.1.2 Arithmetic Sequence and Series

Definition 6.2 (arithmetic sequence) An arithmetic sequence is a list where each
term an of this sequence has a common difference value d from the previous one
such that an = an−1 + d. An arithmetic sequence with n elements has the form,

a, a + d, a + 2d, ..., (a + (n − 1)d)

where a is the first term and d is the common difference of the sequence.

108 6 Sequences, Induction and Recursion

For example; −2, 1, 4, 7, 10 .. is an arithmetic sequence with a = −2 and d = 3.
We can see that the nth element of an arithmetic series with first element a1 is,

∀n ≥ 0, an = a1 + (n − 1)d

For the above example, a5 = −2 + (5 − 1)3 = 10.

Definition 6.3 (arithmetic series) An arithmetic series is obtained by summing the
elements of an arithmetic sequence.

Theorem 4 The sum of the first n terms of an arithmetic series with the first term a1
and the common difference d is,

Sn = n(a1 + an)

2

Proof Let us write the sum Sn of the first n terms of this series from left to right and
right to left and add both sides as below.

Sn = a + (a + d) + (a + 2d) + ... + (a + (n − 1)d)

Sn = (a + (n − 1)d) + (a + (n − 2)d) + ... + a

2Sn = n(2a + (n − 1)d)

Thus,

Sn = n(2a + (n − 1)d)

2
(6.1)

substituting an for a + (n − 1)d in this formula yields,

Sn = n(a + an)

2
(6.2)

Example 6.1.6 Find the sum of the first 5 terms of the arithmetic sequence −2, 3,
8, 13, 18... .
Solution: The common difference d is 5 and the first term a is −2 in this sequence.
Applying the sum formula of Eq. 6.1 yields,

S5 = 5((2 · −2) + (4 · 5))
2

= 40

��

Example 6.1.7 Find the number of terms of the following series to yield the stated
sum.

3 + 9 + 15 + ... = 75

6.1 Sequences 109

Solution: The common difference d is 6 and the first term a is 3 in this sequence.
Applying the sum formula of Eq. 6.1 and solving for n yields,

75 = n(2 · 3 + 6(n − 1))

2
150 = n(6 + 6n − 6)

= 6n2

n2 = 25

Since n can not be negative, n = 5. Note that closed form for this sequence is
6n − 3 for n = 1, 2, We could have used Eq. 6.2 to yield the same result in a
simpler way as below. However, we need to work out the closed form in this case.

75 = n
3 + (6n − 3)

2
150 = 6n2

n2 = 25

n = 5

6.1.3 Geometric Sequence

Definition 6.4 (geometric sequence) Each successive term in a geometric sequence
is obtained by multiplying the previous term with a constant r called the common
ratio. This sequence can be written as,

a, ar, ar2, ..., arn

For example; 1, 3, 9, 27... is a geometric sequence with r = 3. The nth element
of a geometric sequence is,

∀n ≥ 0, an = arn−1

For this example, a4 = 1(34−1) = 27.

Definition 6.5 (geometric series) A geometric series is obtained by summing the
elements of a geometric sequence.

Theorem 5 The sum Sn of the first n terms of an arithmetic series with the first term
a and common factor r is,

Sn = a
(1 − rn)

1 − r
with r �= 1 (6.3)

110 6 Sequences, Induction and Recursion

Proof Writing the sum Sn of the first n terms of this series and multiplying the sum
with the common factor r provides the following,

Sn =a + (ar) + (ar2) + ... + (arn−1)

r Sn =(ar) + (ar2) + ... + (arn)

Subtracting the first equation from the second one yields,

r Sn − Sn = arn − a = a(rn − 1)

(r − 1)Sn = a(rn − 1)

Thus,

Sn = a
(rn − 1)

r − 1
= a

(1 − rn)

1 − r
with r �= 1 (6.4)

��

Example 6.1.8 Find the sum of the first 4 terms of the geometric sequence 2, 6, 18,
54,
Solution: The common ratio r is 3 and the first term a is 2 in this sequence. Applying
the sum formula of Eq. 6.4 yields,

S4 = 2
(1 − 34)

1 − 3
= 80

��

6.1.4 Product Notation

A series of values may be multiplied using a similar notation to sum, this time with
the Π symbol as in the example below,

n∏

1

i = 1 · 2 · 3 · · · n

which specifies the product of integers from 1 to n. This expression is called the
factorial of n and denoted as n! as noted previously. Two products can be combined
into one as follows.

(
m∏

i=n

ai

) (
m∏

i=n

bi

)

=
m∏

i=n

(ai · bi)

6.1 Sequences 111

6.1.5 Big Operators

Similar to summation, various other operators may be defined over a sequence of
statements as shown below. The big AND and big OR operators are commonly
defined over propositions and the big union and the big intersection operators are
defined over sets.

• Big And:
∧

x∈S
P(x) ≡ P(x1) ∧ P(x2) ∧ P(x3) ∧ ... ≡ ∀x ∈ S : P(x)

• Big Or:
∨

x∈S
P(x) ≡ P(x1) ∨ P(x2) ∨ P(x3) ∨ ... ≡ ∃x ∈ S : P(x)

• Big Union:

n⋃

i=1

Ai = A1 ∪ A2 ∪ A3 ∪ ... ∪ An

• Big Intersection:

n⋂

i=1

Ai = A1 ∩ A2 ∩ A3 ∩ ... ∩ An

6.2 Induction

Mathematical induction is a powerful proof method that can be used for very diverse
applications, including proving the correctness of algorithms. Let us consider falling
dominoes as an example to illustrate how induction works. We would consider the
following when planning a domino experiment to have all dominoes in a chain fall.

1. The first domino will fall when we push it.
2. If a domino falls, then the next one in the chain will fall because it is placed close

to its previous neighbor in chain.

We can now conclude that every domino in the chain of dominos will fall based
on these two conditions. In order to formally state, Let P(n) be a function defined
over the set of natural numbers. The axiom of induction states that if P(1) is true,
and P(n)..., formally,

P(1) ∧ (∀k ∈ N , (P(k) → P(k + 1)) → ∀nP(n),

Based on the foregoing, induction consists of two steps.

112 6 Sequences, Induction and Recursion

• Basis Step: P(1) is proven.
• Inductive Step: The conditional statement P(k) → P(k + 1) is proven for all
positive integers k.

Example 6.2.1 Prove that the sum of the first n positive integers is n(n + 1)/2, that
is,

∑n
i=1 = n(n + 1)/2

Solution: The basis step is
∑1

i=1 = 1(1+ 1)/2 = 1 is true. Assume P(k) is true for
some integer k.

P(k + 1) = P(k) + (k + 1)

= k(k + 1)

2
+ (k + 1)

= k(k + 1) + 2k + 2

2

= k2 + 3k + 2

2

= (k + 1)(k + 2)

2
The final statement is exactly what we would get when k + 1 is substituted in the
general summation formula. ��

Example 6.2.2 Prove that sum of the first n odd positive integers,
∑2n−1

i=1 , is n2 by
induction.

Solution: The basis step is
∑1

i=1 = 12 = 1 is true. Let us write P(k + 1) as follows
where kth odd integer is 2k−1. Assume P(k) is true for some integer k, then P(k+1)
is as follows.

P(k + 1) = P(k) + 2(k + 1) − 1

= k2 + 2(k + 1) − 1

= k2 + 2k + 1

= (k + 1)2

Again, the final statement is exactly what we would get when k + 1 is substituted in
the formula

∑2n−1
i=1 = n2. ��

Example 6.2.3 Prove that for every integer n, the sum of the squares of all integers
from 1 to n is,

n(n + 1)(2n + 1)

6

6.2 Induction 113

Solution: The basis steps, 12 = (1 · 2 · 3)/6 is true. We then assume,

12 + 22 + ... + k2 = k(k + 1)(2k + 1)

6
and need to show,

12 + 22 + ... + (k + 1)2 = (k + 1)(k + 2)(2k + 3)

6
where k is replaced by (k + 1).

12 + 22 + ... + (k + 1)2 = (12 + 22 + ... + k2) + (k + 1)2

= k(k + 1)(2k + 1)

6
+ (k + 1)2

= k(k + 1)(2k + 1)

6
+ 6(k + 1)2

6

= (k + 1)(k(2k + 1) + 6(k + 1))

6

= (k + 1)(2k2 + 7k + 6)

6

= (k + 1)(k + 2)(2k + 3)

6

��

Example 6.2.4 Prove that for every integer n,

1 + 2 + 22 + 23 + ... + 2n = 2n+1 − 1

Solution: The basis step is, 20 = 1 = 21 − 1 is true. We assume the following

1 + 2 + 22 + 23 + ... + 2k =
k∑

i=0

2i = 2k+1 − 1

need to show,

k+1∑

i=0

2i = 2k+2 − 1

114 6 Sequences, Induction and Recursion

where k is replaced by (k + 1).

k∑

i=0

2i = 2k+1 − 1

k∑

i=0

2i + 2k+1 = (2k+1 − 1) + 2k+1

k+1∑

i=0

2i = 2 · 2k+1 − 1

= 2k+2 − 1

��

Example 6.2.5 Prove that for every positive integer n, 5n2 − n + 4 is even.
Solution:

• Basis Step: For k = 1, 5k2 − k + 4 = 8 is even.
• Inductive Step: Assuming 5k2−k+4 is even,we need to show5(k+1)2−(k+1)+4
is even. By the induction hypothesis, let 5k2 − k + 4 = 2m for some integer m.

5(k + 1)2 − (k + 1) + 4 = 5(k2 + 2k + 1) − (k + 1) + 4

= 5k2 + 9k + 8

= (5k2 − k + 4) + 10k + 4

by induction hypothesis

= 2m + 2(5k + 2)

let 5k + 2 = l

= 2m + 2l = 2(m + l)

��

Remark 6.1 We could have used a similar calculation for the inductive case for
5n2 − n + 7 to deduce the result is even, however, 5n2 − n + 7 is always odd. The
fallacy in this case is that we have not specified a basis step, in fact, we can not find
a base case for this expression to be even.

6.2.1 Proving Inequalities

Induction may be used conveniently to prove inequalities. For example, to prove
∀n ∈ N, 2n > n; we apply induction method as follows.

• Basis Step: Let k = 1, then 21 > 1 is true.

6.2 Induction 115

• Inductive Step: Assume P(k) : 2k > k is true, we need to show 2k+1 > k + 1 is
true for k ≥ 1.

2k+1 = 2 · 2k > 2k by the induction hypothesis

> k + k ≥ k + 1 since k ≥ 1

> k + 1

��

Example 6.2.6 Prove that for every integer n ≥ 5, 2n > n2.
Solution:

• Basis Step: Let k = 5, then 25 = 32 > 52 = 25 is true.
• Inductive Step: Assume P(k) : 2k > k2 is true when k ≥ 5, we need to show
2k+1 > (k + 1)2 is true for k ≥ 5

2k+1 = 2 · 2k > 2k2 by the induction hypothesis

> k2 + k2 ≥ k2 + 5k sincek ≥ 5

> k2 + 2k + 3k ≥ k2 + 2k + 1

> k2 + 2k + 1 = (k + 1)2

��

6.3 Strong Induction

Strong induction is similar to simple (weak) induction with one major difference;
in order to prove P(k + 1), we will assume P(1), P(2), ... , P(k) are all true. This
method is also called the strong principle of mathematical induction. Formally, this
method consists of two steps.

• Basis Step: P(1) is proven.
• Inductive Step: ∀k ∈ N, (P(1) ∧ P(2) ∧ ... ∧ P(k)) → P(k + 1) is true.

Strong induction, sometimes also called the second principle of induction, is
basically equivalent to weak (first principle of) induction but it may be simpler to
use than the first one to prove certain propositions.

Theorem 6 (fundamental theorem of arithmetics) Show that any integer n ≥ 1 is
either a prime number or can be written as the product of primes.

For example, 18 = 2 · 3 · 3; 24 = 2 · 2 · 2 · 3.

Proof We have the following:

116 6 Sequences, Induction and Recursion

• Basis Step: P(2) can be written as the product of itself.
• Inductive Step: We have two cases as follows.

– k + 1 is prime, then it is the product of itself.
– k + 1 is a composite number and there exists two positive integers a and b,
2 ≤ a ≤ b ≤ k such that,

k + 1 = a · b
These two integers can be written as the product of primes by the induction
hypothesis, therefore, k+1 is the product of primes.Note thatwehave considered
both P(a) and P(b) to be true to prove P(k + 1) as in the definition of strong
induction.

��

Fibonacci Numbers
Fibonacci numbers named after the Italian mathematician Fibonacci is the sequence;

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,

as noted. If each number is represented by fn , with f0 = 0 and f1 = 1,

fn = fn−1 + fn−2

Example 6.3.1 Let the nth Fibonacci number be fn , prove that fn < 2n .

Solution: We can see that f1 = 1 < 2 and f2 = 1 < 22 = 4. Thus, the statement
holds for n = 1 and n = 2. Now, using strong induction, assume fm < 2m , ∀m ∈ N

+
when m ≤ k. We can then state the following for k ≥ 2,

fk+1 = fk + fk−1 definition of Fibonacci numbers

< 2k + 2k−1 by the inductive hypothesis

< 2k + 2k since 2k−1 < 2k for k ≥ 1

< 2k+1

Therefore, fn < 2n for al positive integers n. Note that we assumed both fk < 2k

and fk−1 < 2k−1 to prove f k+1 < 2k+1. ��

6.4 Recursion

Defining an object in terms of itself may provide a convenient and a simple way to
define some functions on the object. This process called recursion can be used to
define sequences, functions, sets and algorithms.

6.4 Recursion 117

6.4.1 Recurrence Relations

A recurrence relation defines a sequence based on a rule that provides the next term
of the sequence as a function of the previous terms. For example,

an = an−1 + 2

is a recurrence relation and has the sequence 1, 3, 5, 7,... for n = 1,..., which is the
set of positive odd integers. Given a recurrence relation, we will attempt to find a
closed formula for it. The basic method to apply is to guess the solution and prove
it by induction. Consider the following recurrence relation,

Pn = 2 · Pn−1 + 1 with P0 = 0

We guess the solution as 2n − 1 and prove it by induction.

• Basis step: P0 = 20 − 1 = 0 is valid.
• Inductive step: Assume Pn−1 is valid, then,

Pn = 2 · Pn−1 + 1 = 2(2n−1 − 1) + 1 = 2n − 1

��

Example 6.4.1 Let the recurrence relation be defined as below.

P(n) =
{
0 i f n = 0
5 · P(n − 1) + 1 i f n > 0

Prove that P(n) = 5n−1
4 for all n ≥ 0.

Solution: We will use induction for proof. Let us check the base case; P(0) =
(50 − 1)/4 = 0 which shows that the base case holds. Assuming the recurrence
relation is true for (k − 1) yields,

P(k − 1) = (5k−1 − 1)/4

Substitution for P(k) is as follows.

P(k) = 5 · P(k − 1) + 1 by the definition of the function

= 5 · 5
k−1 − 1

4
+ 1 by the induction hypothesis

= 5k − 5

4
+ 1

= 5k − 5 + 4

4

= 5k − 1

4
which is P(k) in the recurrence formula. Note that instead of P(k) → P(k + 1), we
used the equivalent conditional statement P(k − 1) → P(k). ��

118 6 Sequences, Induction and Recursion

6.4.2 Recursively Defined Functions

A recursive function is defined in terms of itself. In order to specify a recursive
function on the set of nonnegative integers, we need to specify the value of the
function f (0) for n = 0, and provide a rule that states the value of the function
f (n + 1) in terms of the value of the function for i ≤ n. For example f (n) = an

can be defined recursively as an = a · an−1.
An arithmetic sequence can be recursively defined as an = an−1 + d with the

formula an = a + (n − 1)d as noted before. A geometric sequence is defined as
an = ran−1 with the formula an = arn .

Consider finding the sum of the first n numbers as a function P : N → Z

which inputs a natural number and returns an integer. This function can be defined
recursively as follows:

P(n) =
{
1 if n = 1
n + P(n − 1) if n > 1

Let us find P(4) using this formula by replacing P(n) with P(n − 1) + n at each
step starting from the top yielding the following:

P(4) = 4 + P(3)

= 4 + 3 + P(2)

= 4 + 3 + 2 + P(1)

= 4 + 3 + 2 + 1

= 10

Note that we need a base case (n = 1) to stop replacing the recursive function
with a lower value of n for this top-down approach in solving the recursive function.

Example 6.4.2 Define P(n) = 2n recursively and work out P(5) using top-down
approach with this definition.
Solution: P(n) can be defined recursively as follows with the base case 21 = 2

P(n) =
{
2 if n = 1
2 · P(n − 1) if n > 1

P(5) can now be calculated as follows.

P(5) = 2 · P(4)

= 2 · 2 · +P(3)

= 2 · 2 · 2 · P(2)

= 2 · 2 · 2 · 2 · P(1)

= 2 · 2 · 2 · 2 · 2
= 32

6.4 Recursion 119

We may be given a recursive function and aim at finding the closed form of this
function. In this case, we can list the first values of the function and guess a solution
by looking at the values. We can then apply the principle of mathematical induction
to prove that the guessed function is correct. For example, let the recursive function
P(n) be as follows:

P(n) =
{
0 if n = 1
P(n − 1) + 2n − 1 if n > 1

Listing of the values of P(n) for n = 1, 2, 3 and 4 yields the following:

P(1) = 0

P(2) = 3

P(3) = 8

P(4) = 15

P(5) = 24

Based on these values, f (n) = n2 − 1 is our guess. Let us implement induction
on f (n); as the basis step, f (1) = 0 and recursion gives,

P(k) = P(k − 1) + 2k − 1 by the definition of the function

= (k − 1)2 − 1 + 2k − 1 by the inductive hypothesis

= k2 − 2k + 1 − 1 + 2k − 1

= k2 − 1

which is the expression for P(k) in the recursive definition of the function. ��

6.4.3 Recursive Algorithms

A recursive algorithm is a procedure that calls itself with different parameters at
each run. It has a base case where returning from the called procedures begin. Let us
consider finding the factorial of a positive integer using a recursive procedure. The
product of positive integers from 1 to n is called n factorial denoted by n! as noted.
This function may be expressed as,

n! = n(n − 1)(n − 2) · · · 1
Factorial of 1 is defined as 1 and hence, this function is defined for the nonnegative

integers, also providing a base case. We can write this recursive function as follows,

P(n) =
{
1 if n = 1
n · (n − 1)! if n > 1

120 6 Sequences, Induction and Recursion

Fig. 6.1 Execution steps of
the recursive Factorial
procedure

5 X FACT (4)

4 X FACT(3)

3 X FACT(2)

2 X FACT(1)

2

6

24

120=

We can form a recursive procedure as shown in Algorithm 6.1 which inputs an
integer n and calls itself by decreasing the value of n at each call. The returning point
from the nested calls to procedures is when n = 1 and then the returned value are
multiplied to provide n! in the end when the procedure is completed.

Algorithm 6.1 Recursive Factorial
1: procedure Fact(n:integer)
2: if n == 1 then
3: return(1)
4: else
5: return(n· FACT(n − 1))
6: end if
7: end procedure

The calling sequence of the FACT procedure for n = 5 is depicted in Fig. 6.1. The
arrows display the returned values from the procedure and the final return provides
the caller of this procedure with the value of 120.

Analysis of Recurrence Algorithms
Analysis of a recursive algorithm is needed to determine its time complexity. Our
main concern is the number of recursive calls made in the analysis of the algorithm.
Let us consider the recursive factorial algorithm with the following number of calls
in relation to the input number n.

f (1) = 1

f (2) = 1 + f (1)

f (3) = 1 + f (2)

· · ·
f (n − 1) = 1 + f (n − 2)

f (n) = 1 + f (n − 1)

6.4 Recursion 121

We can see that f (n) = 1 + f (n − 1) for all n > 1. By substitution, f (n) =
1 + f (n − 1) = 1 + 1 + f (n − 2), thus, we can observe the pattern as,

f (n) = k + f (n − k)

The recursion stops when n = 1, thus we can set n − k = 1 to get k = n − 1.
Substituting in the above equation for f (n) yields,

f (n) = n − 1 + f (1) = n − 1 + 1 = n

Therefore, there is a total of n recursive calls made and the running time of the
recursive factorial algorithm is O(n).

Example 6.4.3 Provide a recursive procedure that finds the sum of two integers a
and b.
Solution: Instead of simply adding these two numbers, we will define the Sum pro-
cedure recursively as below. Here, we assume that the return from the base case is
when the second number equals 0 and the returned value is the first number. Then
we add 1 to each returned value as many times as the second number to find the sum.

sum(a, b) =
{
a if b = 0
1 + Sum(a, b − 1) if b > 0

We can now form the recursive procedure sum based on the above definition as
shown in Algorithm 6.2.

Algorithm 6.2 Recursive Addition
1: procedure Sum(n:integer)
2: if b == 0 then
3: return(a)
4: else
5: return(1 + SUM(a, b − 1))
6: end if
7: end procedure

The working of this algorithm is displayed in Fig. 6.2 for input values a = 3 and
b = 5 with returned values from the recursive calls shown next to arrows.

Example 6.4.4 Provide a recursive procedure that finds the bth power of a positive
integer a.
Solution: We will define the recursion with the procedure Power as below. This
procedure will call itself each time with a decreasing exponent until the exponent
reaches 0 and returnings start from that point to the callers.

Power(a, b) =
{
1 if b = 0
a · Power(a, b − 1) if b > 0

122 6 Sequences, Induction and Recursion

=1 + SUM(3,4)

1 + SUM(3,3)

1 + SUM(3,2)

1 + SUM(3,1)

1 + SUM(3,0)

4

5

6

7

8

Fig. 6.2 Execution steps of the recursive Sum procedure

Fig. 6.3 Execution steps of
the recursive Power
procedure

4

2 X POWER(2,3)

2 X POWER(2,2)

2 X POWER(2,1)

2 X POWER(2,0)

=

2

8

16

We can now form the recursive procedure Power based on the above definition as
shown in Algorithm 6.3.

Algorithm 6.3 Recursive Power
1: procedure Power(n:integer)
2: if b == 0 then
3: return(1)
4: else
5: return(a· POWER(a, b − 1))
6: end if
7: end procedure

The working of this algorithm is displayed in Fig. 6.3 for input values a = 2 and
b = 4 to yield 24 = 16.

6.4 Recursion 123

(a)

a b

c

de

f

a

b c

d e f g

(b)

Fig. 6.4 a A graph. b A binary tree

6.4.4 Recursively Defined Sets

Sets can be defined recursively, similar to the definition of recursive functions. Thus,
a recursively defined set similarly has a basis step and a recursive step.

Example 6.4.5 Let the set Σ = {a, b, c, d} and Σ∗ set of all strings containing
symbols in Σ . The recursive definition of Σ∗ can be made as below.

Σ∗ =
{
empty string λ ∈ Σ∗ if Σ∗ has no elements
wx ∈ Σ∗ if w ∈ Σ∗ and x ∈ Σ

The basis step states that the empty string is an element of Σ∗ and the recursive
step states that new strings can produced by adding a symbol from Σ to the end
of strings in Σ∗. For example, let the set Σ be {p, q, r} and ppqqr ∈ Σ∗. Then,
ppqqrp ∈ Σ∗ with p added.

A graph consists of vertices and edges between its vertices. A graph with vertices
a, b, c, d, e, f is shown in Fig. 6.4a. A tree is a graph with no cycles, in other
words, starting from a vertex and traversing through the edges we can not arrive at
the starting vertex. A rooted tree is an acyclic graph with a distinct vertex called the
root. Any vertex in a binary tree has at most 2 children. A binary tree with a root
vertex a is depicted in Fig. 6.4b. We will have a more detailed analysis of graphs in
Part II.

Example 6.4.6 A rooted tree can be defined recursively as follows.

• Basis Step: A single vertex r is a rooted tree.
• Recursive Step: Let T1, T2, ..., Tn be disjoint rooted trees with roots r1, r2, ..., rn .
Then, the rooted tree T with root r can be formed by adding an edge from r to
each of the vertices r1, r2, ..., rn as shown in Fig. 6.5.

124 6 Sequences, Induction and Recursion

(b)

. . .

r1 r2 rn

. . .

r1 r2 rn

r

. . .

(c)

(a)

r

Fig. 6.5 A recursively defined tree, a basis step, b disjoint trees, c is the recursively defined tree

6.5 Structural Induction

Structural induction is a variation of induction over recursively defined sets. This
form of induction is commonly used for non-numerical objects where an object can
be expressed recursively in terms of smaller objects. It involves two basic steps of
induction modified for sets as follows.

• Basis step: We need to show that the result holds for all elements stated in the basis
step of the recursive definition of the set.

• Inductive step: New elements of the set under consideration are formed using the
recursive step of the definition and we need to show that if the elements used to
construct new elements obeys the proposition, then the new elements also obey
the stated recursive step of the definition.

Example 6.5.1 A set S is defined as follows.

• Base elements: 6, 15 ∈ S
• Recursively formed elements: if a, b ∈ S, then a + b ∈ S

Prove that every n ∈ S generated using the recursive rule is divisible by 3.

6.5 Structural Induction 125

Proof We do a simple check, 6 and 15 are both divisible by 3 meaning 3 divides
both without a remainder. Numbers 21, 27, 42 etc. can be generated from the base
elements and 3 divides all. The structural induction proof follows.

• Basis step: 3 divides 6 and 3 divides 15.
• Inductive step: Assume P(a) and P(b) are true for some integers a and b in S, we
need to show P(a+b) is true. Based on inductive hypothesis, a = 3x and b = 3y
for some integers x and y. Thus, a + b = 3x + 3y = 3(x + y) and therefore 3
divides (a + b). ��

Example 6.5.2 Any rooted tree with n nodes has n − 1 edges.

Proof We need to apply the basis and inductive steps as follows.

• Basis step: Let n = 1 when the tree has one node. In this case, the tree has no
edges.

• Inductive step: Let T be a tree with a root r that has k children c1, ..., ck each being
the root of subtrees T1, ..., Tk as shown in Fig. 6.6.
Let the number of vertices in Ti be ni and edges in Ti be mi . We can now assume
mi = ni − 1 by the induction hypothesis. There exists k edges from the root r to
all of its children and the following can be stated,

m = k +
k∑

i=1

mi

=
k∑

i=1

(1 + mi)

=
k∑

i=1

(1 + (ni − 1)) by the inductive hypothesis

=
k∑

i=1

ni

= n − 1 number of nodes except the root

��

Example 6.5.3 Prove that every complete binary tree with n leaves has n−1 internal
nodes.

Proof We need to apply the basis and inductive steps as follows.

126 6 Sequences, Induction and Recursion

r

. . .
c1

c2
ck

T1

T2 Tk
1 2 k. . .

n1

n2

nk

Fig. 6.6 A tree structure

• Basis step: Consider the case when n = 1 where the tree consists of one node. The
tree has one leaf node and n − 1 = 0 internal nodes.

• Inductive step: Assume a tree that has a root and two subtrees. Let k and m be the
number of leaves in the two subtrees, then k + m = n. The number of internal
nodes using the inductive hypothesis is (k − 1) + (m − 1) = k + m − 2. Adding
one to this result to count the root, we have k + m − 1 = n − 1 as the total. ��

6.6 Review Questions

1. Define an arithmetic sequence.
2. What is the difference between an arithmetic sequence and an arithmetic series?
3. Define a geometric sequence.
4. What is the summation formula for an arithmetic sequence with the first term a1

and the last term an?
5. What is the summation formula for a geometric sequence with a common ratio

r?
6. What are the main steps of weak induction?
7. What is the difference between the weak induction and strong induction?
8. What is a recurrence relation?
9. What is a recursively defined function?

10. What are the properties of a recursively defined set?
11. Give an example of a recursive function.
12. What is the base case of a recursive function and how is it defined?
13. What is structural induction and how does it differ from the first and second

principles of induction?

6.7 Chapter Notes 127

6.7 Chapter Notes

We reviewed sequences and summation in the first part of this chapter. A sequence
is an ordered list of real numbers and summation is the process of summing the first
specified number of elements of a sequence. A term of an arithmetic sequence is
formed by adding a constant difference value to its preceding term and a term of
a geometric sequence is formed by multiplying its preceding term with a common
ratio.

In the second part, we described a powerful method called induction. This method
consists of the basis step and the inductive step. Three forms of induction are the
weak induction (First Principle of Induction), strong induction (Second Principle of
Induction) and the structural induction. The basis step is proven for the base case and
the inductive step is to show that P(k+1) holds when P(k) is true in the first method.
Strong induction based proofs assume all of the statements (P(1) ∧ P(2)...P(k))
are true to show P(k + 1) is true. Structural induction is mainly used for proofs
involving recursively defined sets.

Lastly we reviewed recursion which is the process of defining an object in terms
of itself. We can have recurrence relations, recursively defined functions, recursively
defined sets and recursive algorithms. Recursive algorithms provide powerful and
simple ways of performing some difficult computational tasks.

Exercises

1. Find a recurrence relation for the sum S(n) = 12 + 22 + 32 + ... + n2.
2. Give a recursive definition of the following:

a. The set of positive integers divisible by 7.
b. The set of positive integers that are multiples of 3.
c. The set of positive integers congruent to 5 mod 2
d. The set of integers that are powers of 5.

3. Given the following recurrence relation, compute P(1), P(2), P(3) and P(4).

P(n) =
{
0 if n = 0
(P(n − 1))2 + n if n > 0

4. Let A be a finite set with n elements. Find a recurrence relation for the number
of elements in the power set (A).

5. Show that the sumof first n even numbers starting from2 is n(n+1) by induction.
6. Show by induction that 2n + 8 is even for n ∈ Z.

7. Show that
n∑

i=1

4i − 2 = 2n2 using induction.

8. Show by induction that n3 + 2n is divisible by 3.
9. Show that n3 ≡ n (mod 3) by induction.

128 6 Sequences, Induction and Recursion

10. Prove by induction that

13 + 23 + ... + n3 = n2(n + 1)2

4

11. Compute
n−1∑

i=0

4 · 2i

12. Show that the following equation showing the geometric series holds by induc-
tion,
n−1∑

k=0

rk = rn − 1

r − 1

13. Show that for all integers n ≥ 3, 2n + 1 < 2n by induction.
14. Write a recursive procedure that finds the product of two positive integers a and

b. Use the fact that a · b is a added b times to itself.
15. Show that the cardinality of a set A is 2n using the induction method.
16. Use strong induction principle to show that the nth Fibonacci number is,

F(n) = αn − βn

α − β

where

α = 1 + √
5

2
and β = 1 − √

5

2
.

7Introduction toNumberTheory

Number theory is the study of mostly integers and their relations. This branch of
mathematics is old and was often thought to have trivial application areas. However,
recent research in cryptography started a renewed interest in number theory which
resulted in the design of encryption algorithms that form the basis of secure transac-
tions over the Internet. In this chapter, we will first review basics of number theory,
namely; divisibility, modularity, prime numbers and conclude with introduction to
cryptography.

7.1 Basics

The set of numbers were classified as follows.

• R: Real numbers.
• Z: Integers.
• Q: Rational numbers.
• N: Positive integers (natural numbers)

N
+ denotes positive integers excluding 0 andR-Q is the set of irrational numbers.

An integer n ∈ Z that can be written as n = 2m + 1 for some integer m is called
an odd integer. Similarly, n ∈ Z that can be specified as n = 2m for some integer
m is an even integer. We have used properties of odd and even numbers for proof
examples in Chap. 2. For example, we can state that if both of the integers a and
b are odd, their product ab is also odd. In order to prove such propositions, we
can substitute a = 2n + 1 and b = 2m + 1 for some integers m and n. Then
ab = (2n +1)(2m +1) = 2nm +2n +2m +1 which is 2(2m +n)+1. Substituting
k = 2m + 1, we have ab = 2k + 1 which is an odd integer.

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_7

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_7

130 7 Introduction to Number Theory

7.2 Division

The integers form the set Z = {. . . , −2,−1, 0, 1, 2, 3, . . .} and the natural number
set N = {0, 1, 2, 3, . . .} as noted. One of the main operations done with integers is
division defined below.

Definition 7.1 (division) Let a and b be two integers in Z. The integer b divides a
if there exists an integer c such that c = a

b . The integers c is called the quotient, b
the divisor or factor of a and a the dividend. The division is denoted by b | c if b
divides a, otherwise b � c, meaning b does not divide a.

The following properties of division are observed for integers a, b, c ∈ Z.

1. If a �= 0, then a | 0.
2. 1 | a.
3. If a | b and b | c, then a | c. For example, 2 | 8 and 8 | 64, then 2 | 64.
4. If a | b and a | c, then a | (b + c). For example, 3 | 9 and 3 | 12, then 3 | 21.
5. If a | b, then a | (bc). For example, 5 | 15, then 5 | 45 for c = 3.
6. If ab | b, then a | c and b | c. For example, 6 | 42, then 2 | 42 and 3 | 42.
7. If a | b and b | a, then a = b.
8. If c | a and c | b, then c | (ma +nb) ∀m, n ∈ Z

+. For example, 3 | 12 and 3 | 18,
then, 3 | ((4 · 12) + (5 · 18))=3 | (48 + 90) = 3 | 138.

These properties may be proven simply by using the definition of divisibility. For
example, let us prove the fourth property. If a | b then b = ak for some integer k
and similarly a | c means c = am for some integer m. Then, adding both sides of
these two equations yields b + c = a(k + m), thus, a | (b + c). �

Proving the last property can be done as follows. If c | a, then a = kc for some
integer k and similarly, b = pc for some integer p since c | a. Then, substitution
yields ma + nb = mkc + npc = (mk + np)c, thus, c | (ma + nb). �

Example 7.2.1 Show that for all n ≥ 0, 4 | (5n − 1).
Solution: We use induction, 4 | (50 − 1) is true in the basis step. The inductive step
is as follows.

5k − 1 = 4m for some integer m since 4 | (5n − 1)

5(5k − 1) = 5 · 4m

5k+1 − 5 = 20m

5k+1 − 1 = 20m + 4

= 4(5m + 1) = 4q where q = 5m + 1

Therefore, 4 | 5k+1 − 1. �

7.2 Division 131

Theorem 7 (division algorithm) For every two integers a and b, there exists unique
integers q and r such that,

a = bq + r, 0 ≤ r < b

Integer q is the quotient as noted and the integer r is called the remainder of a
divided by b. For example, dividing 23 by 5 results in quotient q = 4 and remainder
r = 3. We can then write 23 = 4 · 5 + 3.

Using the properties of division, we can have a procedure that finds the quotient
and remainder when integer a is divided by integer b as shown in Algorithm7.1. We
need to subtract b from as many times as q until r < b. For example, to find 17
divided by 3, 3 is subtracted 5 times which is q and we stop when the remainder 2
is less than 3. The iterated values of a will be 17, 14, 11, 8, 5 and 2 and r will be
similar. The q values will be 1, . . . , 5. The running time of this algorithm is simply
O(q) and it finishes when r < b.

Algorithm 7.1 Division Algorithm
1: procedure Division(a, b: integers)
2: r ← b
3: q ← 0
4: while r ≥ b do
5: q ← q + 1
6: r ← a − b
7: a ← r
8: end while
9: return q, r
10: end procedure

7.3 Greatest Common Divisor

Given two integers a and b, an integer d is a common divisor of a and b if d | a and
d | b. We can now define the greatest common divisor of two integers as follows.

Definition 7.2 (greatest common divisor) Let a and b be two integers where a and
b are not both 0. The greatest common divisor of a and b, denoted by gcd(a, b), is
the greatest integer d such that d | a and d | b.

The gcd c of two integers a and b is always positive. By definition, c is a common
divisor of a and b. Consider the case c < 0, then −c is also a divisor of a and b and
−c is positive, thus, −c > c. The gcd(12,36) is 12 because 12 is the largest integer

132 7 Introduction to Number Theory

that divides both. Similarly, gcd(18,27) is 9. Some important properties of greatest
common divisor of two numbers a, b ∈ Z may be stated as follows.

1. gcd(a, b) = gcd(b, a).
2. gcd(a, b) = gcd(a, −b) = gcd(−a, b) = gcd(−a, −b).
3. If a | b then gcd(a, b) = |a|. For example, gcd(12, 48) = 12.
4. If a and b are not both 0, then every common divisor of a and b divides gcd(a, b).
5. gcd(a, b) = gcd(b, a − mb) for all m ∈ Z. For example, gcd(42, 12) =

gcd(12, (42 − 3 · 12)) = gcd(12, 6) = 6.

7.3.1 Euclid’s Algorithm

Euclid provided a simple algorithm to find gcd of two integers. It is based on the
following theorem.

Theorem 8 Let a and b be two integers such that a > b > 0 and r be the remainder
of the division of a by b. Then gcd(a, b) = gcd(b, r).

Proof Let a = bq + r , thus r = a − bq . Using the 5th property above,

gcd(a, b) = gcd(b, a − bq) = gcd(b, r)

�

Based on Theorem8, Euclid provided a method to find the gcd of two integers
consisting of the following steps. When the remainder is equal to 0, the parameter a
is the gcd of the two input numbers a and b.

1. Let x ←max(a, b), y ←min(a, b)

2. Repeat
3. x = qy + r (find largest q that satisfies this equation)
4. x ← y
5. y ← r
6. Until r = 0

Example 7.3.1 Use Euclid’s algorithm to find gcd of 91 and 26.
Solution: The iterations of the algorithm yields the following:

91 = 3 × 26 + 13

26 = 2 × 13 + 0

Thus, the returned gcd value is 13. �

7.3 Greatest Common Divisor 133

Example 7.3.2 Use Euclidean algorithm to find gcd(336, 140).
Solution: The iterations of the algorithm yields the following.

336 = 2 × 140 + 56

140 = 2 × 56 + 28

56 = 2 × 28 + 0

The returned gcd value is 28. �

Recursive Formulation
Let us attempt to have a recursive version of Euler’s algorithm. The recursion based
on Theorem8 can be written as below by letting r to be the remainder of the division
of a by b all being integers.

gcd(a,b) =
{

a if b = 0

gcd(b, a mod b) if (b > 0)

The recursive algorithm is depicted in Algorithm7.2.

Algorithm 7.2 Euclid’s Recursive Algorithm
1: procedure Euclid_Rec(a, b: positive integers)
2: (r ← a mod b)

3: if r = 0 then
4: return (b)

5: end if
6: return EUCLID_REC(b, r)
7: end procedure

7.3.2 Least CommonMultiple

Definition 7.3 (least common multiple) Let a and b be two integers inN
+. The least

common multiple (LCM) of a and b, denoted by lcm(a, b), is the smallest integer
d ∈ N

+ such that a | d and b | d.

Example 7.3.3 The LCM of 27 and 18 is 54 since is the smallest integer that both
divides. Similarly, lcm(12, 15) is 60.

Some important properties of LCMmay be stated for integers a, b ∈ Z as follows.

• lcm(a, b) = lcm(b, a)
• lcm(a, b) = lcm(a,−b) = lcm(−a, b) = lcm(−a, −b)
• lcm(ka, kb)=|k| lcm(a, b). For example, lcm(24,36)=4 · lcm(6,9)= 4 · 3 = 12

134 7 Introduction to Number Theory

• If a | b then lcm(a, b) = |b|. For example; 2 | 8, then lcm(2, 8) = 2.

Given two integers a and b, we can set the greater of a and b to a variable g and
increment g until it can be divided by both. For example, let a = 9, b = 12, thus,
g = 12. It can not be divided by both, therefore we continue increasing g up to 36
when it can be divided by both. Thus lcm(9, 12) = 36. An algorithm formed based
on this procedure is depicted in Algorithm.7.3.

Algorithm 7.3 LCM
1: procedure LCM(a, b: positive integers)
2: if g ≥ a then
3: g ← a
4: else
5: g ← b
6: end if
7: while true do
8: if g mod a = 0 and g mod a = 0 then
9: return g
10: end if
11: g ← g + 1
12: end while
13: end procedure

Instead of incrementing the larger of the two integers, we can multiply the greater
one (g) iteratively with 1, 2, . . . up to smaller one (s) until it can be divided by both as
shown in Algorithm7.4. The upper limit of incrementing the index of the for loop is
the smaller integer since we will have found a multiple of both integers when greater
is equal to greater times the smaller.

Algorithm 7.4 LCM2
1: procedure LCM(a, b: positive integers)
2: if g ≥ a then
3: g ← a, s ← b
4: else
5: g ← b, s ← a
6: end if
7: for i = 1 to s do
8: lcm ← g · i
9: if lcm mod s = 0 then
10: return lcm
11: end if
12: end for
13: end procedure

7.3 Greatest Common Divisor 135

Another method to find the LCM of two integers is to find their gcd and divide
the product of two numbers by their gcd since,

lcm(a, b) · gcd(a, b) = a · b

For example, gcd(18, 24) = 6 and lcm(18, 24) = (18 ·24)/6 = 72. Thus, finding
gcd of two integers using Euclid’s algorithm also provides LCM of them.

7.4 Prime Numbers

Primenumbers are an important class of integers and theyhave important applications
in cryptography as we will see.

Definition 7.4 (prime) A prime number, or simply a prime, is a positive integer
p ≥ 2 divisible by only 1 and itself. A positive integer p ≥ 2 that is not prime is
called a composite.

Definition 7.5 (coprime) Two integers with a gcd of 1 are called relatively prime
numbers or coprimes.

Example 7.4.1 Let us consider 26 and 33. Factors of 26 are 1, 2, 13 and 33 has
1, 3 and 11 as factors. Their only common factor is 1, therefore these numbers are
coprimes. Note that two relatively prime numbers need not be primes as in this
example.

Example 7.4.2 Show that any two consecutive integers n and n + 1 are coprimes.
Solution: Let d = gcd(n, n + 1), that is, there exists and integer d �= 1 that divides
both of thes two consecutive numbers. Then d | n and d | (n + 1) and we can state
the following.

n = dk for some integer k

n + 1 = dm for some integer m

1 = d(m − k)

which means d | 1, thus, d ≤ 1. Since d must be greater than or equal to 1, we
conclude d = 1. �

Some properties of coprimes for integers a, b ∈ Z can be listed as follows [1].

• If c | a and a and b are coprimes, then c and b are coprimes.
• If c | ab and a and c are coprimes, then c | b.
• If a and b are coprimes, then gcd(a, bc) = gcd(a, c).

136 7 Introduction to Number Theory

We proved the following theorem in Sect. 6.3, called the fundamental theorem of
arithmetic which shows a factorization of an integer using primes, we will just state
it here.

Theorem 9 (prime factor decomposition) Every positive integer can be expressed
as a product of prime numbers.

Example 7.4.3 Let us consider 38, 56, 77 and 102. These numbers can be factorized
into primes as follows: 38 = 2 · 19; 56 = 23 · 7, 77 = 7 · 11 and 102 = 2 · 3 · 17.
Note that a prime number cannot be further factorized by the definition of a prime
number.

A simple way to find prime factors of a number is to first factorize it to any of
its factors and then finding prime factors of these factors. For example, consider 72
which is 8 · 9, and 8 = 23, 9 = 32. Thus, 72 = 23 · 32. Moreover, finding the gcd
of two integers can be done by finding prime factorizations of these integers and
then finding the product of common prime factors with the least power, since these
factors should be common to both.

Example 7.4.4 Find gcd(112, 70) using prime factorization.
Solution: Prime factorization of these two numbers are as follows.

112 = 2 × 2 × 2 × 2 × 7 = 24 × 7

70 = 2 × 5 × 7

Common prime factors are 2 and 7 and taking the smallest common powers of
these factors yield 2 × 7 = 14 as the gcd. If we had applied Euclid’s algorithm to
these integers, we would find,

112 = 1 × 70 + 42

70 = 1 × 42 + 28

42 = 1 × 28 + 14

28 = 2 × 14 + 0

to yield 14 as the same result. �

7.4.1 Primality Test

The prime numbers between 1 and 100 are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97. As the numbers get bigger,
it is more difficult to check whether a given number is prime or not. Finding very
large prime numbers is a challenge and there are frequent reports of newly found
very large prime numbers [2]. We can have three basic approaches to test whether a
given integer n is prime or not.

7.4 Prime Numbers 137

1. Brute Force Method: Test whether any number 2 ≤ a < n divides n. If no such
number is found, n is prime.

Example 7.4.5 Wewant to test whether 19 is prime. For all numbers 2, . . . , 18 none
divides 19. Therefore 19 is prime. �

2. Use of Prime Factors: We know by Theorem9 that every composite number can
be written as a product of primes. We can use this fact to establish whether a
given number n is prime or not. This way, we need to test only primes less than
n.

Example 7.4.6 Let us check whether 23 is prime. For all primes less than 23 which
are 2, 3, 5, 7, 11, 13, 17, 19; none divides 23. Therefore 23 is prime. We now have a
shorter list to check. �

3. Our last method is based on the following theorem.

Theorem 10 Any composite number n ≥ 2 is divisible by some factor p ≥ √
n

where p is a prime.

Proof Since n is not a prime, it can be factored as n = ab with 1 < a ≤ b < n.
Consider the case where a >

√
n and b >

√
n. Then, ab >

√
n
√

n which is a
contradiction. Therefore, n has a divisor d less than

√
n. By Theorem9, d is either

prime or a product of primes. In either case, n has a prime divisor less than
√

n. �

This means primality test of an integer n involves testing whether any prime number
less than

√
n divides it.

Example 7.4.7 Let us consider the primality of 213. We need to test all primes
less than

√
213 which is a real number between 14 and 15. Primes less than 14 are

2, 3, 5, 7, 11, 13 and none divides 213. Therefore 213 is prime. �

As a result, primality test of a natural number n involves testing whether a prime
divisor less than or equal to

√
n exists. We can have simple algorithm to test whether

a given integer n is prime or not as shown in Algorithm7.6.

Theorem 11 There are infinitely many primes.

Proof The proof is by contradiction. Assume there are a finite number of primes
P = {p1, p2, . . . , pk} which are less than or equal to a prime number pm in this
set. Let n = p1.p2....pk+1. Hence, n is larger than each pi and since P covers all
primes, n must be composite which means it has a prime divisor. Note that when n
is divided by pi in this set, the remainder is 1, thus, pi � n. Thus, letting q be a prime

138 7 Introduction to Number Theory

Algorithm 7.5 Primality Test
1: procedure Primality(n: integer)
2: for all primes p up to 	√n
 do � test all primes up to

√
n

3: if p | n then
4: return Composite
5: end if
6: end for
7: return Prime
8: end procedure

factor of n, q /∈ P . Then, it must be the case that q > pm which means we have a
prime greater than pm . Therefore, the number of primes is infinite. �

Example 7.4.8 Show that there is a prime larger than 7 using Theorem11.
Solution: The primes less than or equal to 7 are 2, 3, 5 and 7. Let n = 2 ·3 ·5 ·7+1 =
211. Let us check whether 211 is prime or composite; 14 <

√
211 < 15 and none

of the prime numbers less than 14 which are 2, 3, 5, 7, 11, 13 divide 211, thus 211
is prime. If we had found 211 as not prime, we would search a prime factor of 211
that is greater than any of 2, 3, 5 and 7.

Definition 7.6 (twin primes) Two primes a, b ∈ Z
+ with b = a + 2 are denoted

twin primes.

For example, (3, 5), (5, 7), (11, 13), (17, 19) are twin primes. The following
conjectures about prime numbers are well-known but are not proven to date.

• Goldbach’s conjecture states that every even integer greater than 4 can be written
as the sum of two primes, these to primes can be the same number. For example,
8 = 3 + 5, 10 = 3 + 7 or 10 = 5 + 5.

• There are infinite twin primes.

7.4.2 The Sieve of Eratosthenes

Eratosthenes of ancient Greece provided a simple method to find all primes up to a
given integer n. This method consisted of the following steps.

1. List the integers from 2 to n.
2. Circle the first integer in the list that is not crossed or circled and cross all of its

multiples.
3. Repeat until all integers in the list are either circled or crossed.

7.4 Prime Numbers 139

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23

31

41

24 25 26

42 43 44 45 46 47 48 49 50

32 33 34 35 36 37 38 39 40

27 28 29 30

2

3

5

7

multiples

Fig. 7.1 Secure message transfer

Thus, the first integer circled is 2 and all its multiples are crossed. The second
integer circled is 3 and all its multiples are also crossed and this process continues
when all integers in the range are circles or crossed out. The circled integers are the
primes. Operation of this method is depicted in Fig. 7.1 with multiples of 2, 3, 5 and 7
crossed out shown by –, /, and | symbols respectively. The main idea of this method
is that if a number is a multiple of some base number, then it is not a prime and can
be discarded.

7.5 Congruence

Two integers are congruent modulo n if they have the same remainder when divided
by n. An even integer has a remainder of 0 when divided by 2 and an odd integer has
1. The formal definition of congruence is as follows.

Definition 7.7 (congruence) Given integers a, b, and k > 1, a is said to be congruent
to b modulo k if k | (a −b). This relationship is stated as a ≡k b, or more commonly,
a ≡ b (mod k), we will use both notations interchangeably. If these integers are not
congruent, this is stated as a �≡ b (mod k).

Example 7.5.1 5 ≡ 27 (mod 2) since 5 − 27 = −22 is divisible by 2. −7 ≡ −32
(mod 5) since −7 − (−32) = 25 is divisible by 5.

Some important arithmetic properties of the congruence relation can be stated for
integers as follows.

1. If a ≡ b (mod m), then b ≡ a (mod m).
2. If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m)

3. If a ≡ b (mod m), then a + c ≡ b + c (mod m) and ac ≡ bc (mod m).
4. If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ b + d (mod m).

140 7 Introduction to Number Theory

5. If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod m).
6. If a ≡ b (mod m) and m ≥ 0 then ak ≡ bk (mod m).

Let us prove the fourth property; m | (a − b) and m | (c − d) by definition. Then,

m | ((a − b) + (c − d)) = m | (a + c) − (b + d))

which means a + c ≡ b + d (mod m) by the definition of congruence. �

Example 7.5.2 Let us use the 5th property to calculate 351 (mod 6). Since 351 =
13 · 27,

13 ≡ 1 (mod 6)

27 ≡ 3 (mod 6)

351 ≡ 3 (mod 6)

The set-related properties of the congruencewhichmake it an equivalence relation
can be listed as below. An equivalence relation partitions the set under consideration
into equivalent classes.

• Reflexive: a ≡ a (mod x) for any integer a since a − a = 0 is divisible by x .
• Symmetric: If a ≡ b (mod x), then b ≡ a (mod x) because the former means

x � (a − b). Then, we can say x � (b − a) since b − a = −(a − b).
• Transitive: If a ≡ b (mod x) and b ≡ c (mod x), then a ≡ c (mod x). If (a − b)

and (b − c) are both divisible by x , then their sum is also divisible by x .

Theorem 12 a ≡ b (mod m) if and only if b = a + mq for some integer q.

Proof We need to prove both directions of the statement. If a ≡ b (mod m), then
m|(b−a) by the definition. Thus, b−a = mq for some integer q . Hence, b = a+mq .
In the other direction, if b = a + mq , then b − a = mq which means m|(b − a) and
thus a ≡ b (mod m). �

We can use Theorem12 for calculations of congruence values, for example, given
64 ≡ b (mod 18), b can be found by subtracting 3 × 18 from 64 to result in 10.
Thus, 64 ≡ 10 (mod 18). The 6th property stated above provides congruence values
for large numbers. For example, 14 ≡ 9 (mod 5) means we can state 142 ≡ 92

(mod 5), that is, 196 ≡ 81 (mod 5).

7.5 Congruence 141

Example 7.5.3 Find 517 (mod 7).
Solution:

52 ≡7 4

(52)2 ≡7 16 ≡7= 2

(54)2 = 58 ≡7= 4

(58)2 = 516 ≡7 16 ≡7= 2 now use 4th property,

(517) = 516+1 = 516 · 5 ≡7 2 · 5 = 10 ≡7= 3

Example 7.5.4 Find 13381 (mod 5).
Solution:

13 ≡5 3

132 ≡5 9 ≡5= 4

134 ≡5 16 ≡5= 1

(134)95 = 195 ≡5 1

(13381) = 13380+1 ≡5 1 · 13 ≡5 3

Definition 7.8 (residue class) The set a = {x ∈ Z | x ≡ a (mod m)} of all integers
that are congruent modulo m to a is called a residue class, or a congruence class,
modulo m.

For example, 2 ≡ 7 ≡ 12 ≡ · · · (mod 5) is the congruence class 2 (mod 5). For
any integer m, the number of residue classes is m. These classes are represented by
0, 1, . . . , m − 1.

Definition 7.9 (linear congruence equation) Let us consider the following equation,

ax ≡ b (mod m)

with m ∈ Z and 0 ≤ b < m. This equation is called the linear congruence equation
and our aim is to determine the set of values for the parameter x .

Let ax ≡ b (mod m) be a linear congruence equation and let d = gcd(a, m). If
d = 1 meaning a and m are coprimes, and d | b, there is exactly one solution to the
equation. If d � b, there is no solution to the equation and if d > 1 and d | b, there
are exactly d solutions; we mean a residue class by a single solution. By definition,
ax ≡ b (mod m) means m | (ax − b), thus, ax − b = my for some integer y.
Therefore,

ax − my = b

142 7 Introduction to Number Theory

which is a diophantine equation meaning an equation we search integer solutions for
x and y. Since d divides both a and m, there is no solution of this equation if d � b,
therefore linear congruence has no solutions. If d | b,

x = x0 +
(m

d

)
t, y = y0 +

(a

d

)
t t = 0, 1, .., d − 1 (7.1)

Thus, if we find x0, we can find the rest of the solutions.

Example 7.5.5 Let 2x ≡ 5 (mod 6). Then, d = gcd(2, 6) = 2 which does not
divide 5, thus, there is no solution to x . It can be observed that 2x is always an even
number and an even number divided by an even number will always give an even
remainder so 5 as a remainder will not be possible.

Example 7.5.6 Let 4x ≡ 3 (mod 7). Then, d = gcd(4, 7) = 1 which divides 3,
thus, there is only one solution to x . Trial shows x = 6, in fact the residue class 6
(mod 7). For example, x = 13, 20, 27, . . . are all solutions. Testing shows 4 · 13
(mod 7), 4 · 20 (mod 7), 4 · 27 (mod 7) are all congruent to 3 (mod 7).

Example 7.5.7 Let 4x ≡ 2 (mod 6). Then, d = gcd(4, 6) = 2 which divides 2,
thus, there are two solutions to x . The first one, x0, by trial is 2 and the second one x1
by Eq. ?? is 2+ (6/2) ·1 = 5. The residue classes are 2 (mod 6) and 5 (mod 6). For
example, x = 2, 8, 14, . . . and x = 5, 11, 16, . . . are all solutions. Thus, 4 · 2 ≡ 2
(mod 6), 4 · 8 ≡ 2 (mod 6), and 4 · 5 ≡ 2 (mod 6), 4 · 11 ≡ 2 (mod 6).

Definition 7.10 (multiplicative inverse) A multiplicative inverse of an integer a
(mod m) exists if and only if gcd(a, m) = 1. This parameter is denoted by a−1

where

a · a−1 = 1 (mod m)

A simple method to work out the solutions once gcd(a, m) = 1 is determined is
to multiply each side of the linear congruence by the multiplicative inverse of a. For
example, let the linear congruence be,

3x ≡ 5 (mod 7)

The multiplicative index of 3 (mod 7) is 5 since 3 · 5 ≡ 1 (mod 7). Multiplying
each side of the above equation by 5 yields,

3x ≡ 5 (mod 7)

(3 · 5)x ≡ 5 · 5 (mod 7)

x ≡ 4 (mod 7)

Thus x = 4, 11, 18, . . . are all solutions to the given linear congruence.

7.5 Congruence 143

7.6 Representation of Integers

Decimal system uses integers 0, . . . , 9 to represent digits and 10 as the base. Each
digit is multiplied by the increasing powers of 10 as we move from right to left to
show the expanded representation of a decimal number as shown in below example.

5236 = 5 · 103 + 2 · 102 + 3 · 101 + 6 · 100

Definition 7.11 (base b representation) The base b representation of an integer a ∈
N is (an−1an−2...a0)b with integers 0 ≤ ai < b satisfies the following equation.

(an−1an−2...a0) = an−1bn−1 + an−2bn−2 + · · · + a1b + a0 (7.2)

Binary and hexadecimal representation of integers are commonly used in com-
puter systems as described next.

7.6.1 Binary System

The binary system uses 2 as the base and a binary digit d ∈ {0, 1} is called a bit.
Data and instructions in a computer are stored as bits in memory. A binary number
and its decimal equivalent using Eq.7.2 is shown below.

1101 0101 = 1 · 27 + 1 · 26 + 0 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 213.

Algorithm 7.6 show, how to convert a binary number to decimal where each digit is
multiplied by powers of base.

Algorithm 7.6 Decimal Conversion
1: procedure Dec_Convert(n: number of digits, b: base, a: number to convert)
2: d_val ← 0
3: b_ind ← 1
4: for i = 0 to n − 1 do
5: d_val ← d_val + b_ind · a(i)
6: b_ind ← b_ind · b
7: end for
8: return d_val
9: end procedure

We can also convert a decimal d number to a given base b by successively di-
viding d by b and recording the remainders. For example, conversion of 2310 to
the binary number 10111 is shown in Fig. 7.2. The remainders are shown in circles.
The remainder of the first division provides the least significant bit of the binary
number and the remainders of the divisions at each iteration thereafter provide the
digit values for 21, 22, We stop when the quotient is 0.

144 7 Introduction to Number Theory

Fig. 7.2 Decimal to binary
conversion

)

)

)

232

112

)

)
52

22

2 1

1

1

1

0

1
1 0 1 1 1

7.6.2 Hexadecimal System

The hexadecimal system uses 1,..,9, A, B, C,D, E, Fwith symbolsA to F representing
integers 10–15 with the idea of representing all integers in the range 0, . . . , 15 with a
single symbol, thus, the base of this system is 16. An example hexadecimal number
with its decimal equivalent is shown below.

A2D = 10 · 162 + 2 · 161 + 13 · 160 = 30510

Hexadecimal system is commonly used to show the contents of memory locations
in a computer. Addition of two hexadecimal numbers can be done in the usual way
as with decimal numbers by considering the base as 16 as shown in below example,

5 A B = 5 · 162 + 10 · 161 + 11 · 160 = 1, 451

C F 4 = 12 · 162 + 15 · 161 + 4 · 160 = 3, 316

+——–

1 2 9 F = 3 · 163 + 14 · 162 + 10 · 161 + 15 · 160 = 4, 767

7.7 Introduction to Cryptography

Cryptography is the study of sending and receiving messages in a secure way and
cryptology is the process of analyzing cryptosystems which aim to provide secure
communications. Cryptography involves two distinct processes for a message trans-
fer between an entity A and entity B. These entities can be persons, computers but
more commonly, a person and a server computer.

• Encryption: A message called plaintext in original format is converted to a format
called ciphertext using a key by A which is assumed to be not understood by a
third party. A key is used to transfer the message to a special format.

• Decryption: The encrypted message received by B is decrypted using the key to
recover the original message.

7.7 Introduction to Cryptography 145

MM’M M’

A B Decryption

key key

Encryption

Communication

medium

Fig. 7.3 Secure message transfer

Table 7.1 One-time pad method

m k m ⊕ k k ⊕ (m ⊕ k)

0 0 0 0

0 1 1 0

1 0 1 1

1 1 0 1

This method is depicted in Fig. 7.3. Note that the key function must be decided
between A and B prior to message transmission.

JuliusCeasar used a key that consisted of shifting each letter of alphabet 3 positions
to the right to communicate with his commanders using the Roman alphabet of
22 letters. The receiving commander would then need to shift each letter received
3 positions back. For example, ATTACK would be transferred DWWDFN using
English alphabet. Clearly, the key must be kept secret between the exchangers of
messages. Knowing the encryption key provides calculation of the decryption key
as in this example, the receiver would need to shift each letter 3 positions back in
the alphabetic sequence.

A more reliable private key protocol called one-time pad works by the sender
of the message xoring each bit of the message with a key known en priori by the
sender and the receiver. The received message is decrypted by xoring each bit of
the message to recover the original message. This method is based on the fact that
k ⊕ (m ⊕ k) = m where k is the key and m is the message, as shown in Table7.7.

Example 7.7.1 A message and its encrypted version is as follows.

message :1011 0011 1101

key :1010 0110 0111

encrypted message :0001 0101 1010

146 7 Introduction to Number Theory

The receiver performs the following to retrieve the message.

encrypted message :0001 0101 1010

key :1010 0110 0111

decrypted message :1011 0011 1101

The key in this method, however being more difficult to discover than a simple
shifting method, can be broken by simply analyzing the frequencies of the codes
transmitted by the frequency of letters in the alphabet in use, for example, E is the
most common letter in English alphabet followed by A, O and I.

What we have described up to this point is private key cryptography characterized
by a private secret key known by the sender and receiver of the message. In a rather
different approach known as public key cryptography, the key of the sender is made
public so that it is known by any third party. However, the decryption key is known
only by the receiver of themessage. Two important public key cryptography protocols
in use are described briefly in the next sections.

7.7.1 Diffie-Hellman Protocol

An obvious problem with private key cryptography is keeping the key secret. A
and B need to share the secret key prior to communication and if they can do this
reliably over the network beforehand, then there is hardly any need for encryption
and decryption since they can use whatever was used as protocol for key transfer.
Diffie-Hellman (DH) protocol provided calculation of the same key by both parties
prior to message transmission without the transfer of the actual key. It consists of the
following steps between two entities A and B [3].

1. A selects a secret number a and B selects a secret number b known only to
themselves.

2. A performs some computation on her secret number and produces a′, B also does
some computation on his number b and produces b′.

3. A and B exchange the produced numbers a′ and b′ which become public.
4. A now performs some computation on a and b′ to produce a key K .
5. B performs some computation on b and a′ to produce the same key K . The DH

algorithm ensures that both parties calculate the same key K .

After this initial process, A and B can use a conventional encryption/decryption
protocol. Note that this protocol ensures that any third party observing the message
transfers can not produce the key without knowing the value of a or b.

7.7 Introduction to Cryptography 147

7.7.2 RSA Protocol

This system was proposed by three researches, R. L. Rivest, A. Shamir and L. M.
Adleman and hence the name. It is widely used for secure Internet message transfers
including secure financial transactions. The RSA cryptology algorithm is basically a
public key cryptographymethodwith a public encryption key and a secret decryption
key. It consists of three steps:

• Preparation: The receiver B prepares public key to be used by all senders to
encrypt a message to send to B and it broadcasts this information which can be
observed by third parties. This step is performed only once by B.

• Encryption: Sender A encrypts her message M using the public key and sends it
as ciphertext C .

• Decryption: Receiver B converts C back to M using her private key.

Let us review some theory before looking at this protocol in detail.

Definition 7.12 (Totient number) The totient number of an integer n denoted by
φ(n) is defined as the number of integers less than or equal to n which are coprimes
of n. Formally,

φ(n) = |{a ∈ Z : 1 ≤ a ≤ n and gcd(a, n) = 1}|

Example 7.7.2 Applying this function to integers 9, 12 and 15we find,φ(9)=7 since
1, 2, 4, 5, 7, and 8 are coprimes of 9 in this range. Similarly, φ(12) = 4 as 1, 5, 7
and 11 are coprimes of 12 and φ(15) = 9 since 1, 2, 4, 6, 7, 8, 11, 13 and 14 are
coprimes of 15 between 1 and 15.

We will now state few results without proving them using this definition.

• If p is prime, then φ(p) = p − 1. This result is simply by considering that all
integers up to p are coprimes of p, otherwise p would not be a prime.

• φ(p × q) = φ(p) × φ(q) = (p − 1)(q − 1)
• Euler’s Theorem: If a and n are coprimes, then aφ(n) ≡ 1 mod n.
• If p is prime, then a p−1 ≡ 1 mod p, ∀a, 1 ≤ a ≤ p − 1.

Let us first look the steps of the algorithm from the receiver side. Let A be the
sender and B the receiver as before.

1. B selects two large primes p and q and computes n = pq . Although n will be
made public, it is very difficult to factorize p and q from n.

2. She then computes φ(n) = (p − 1)(q − 1) and chooses an integer e to satisfy
gcd(e, φ(n)) = 1. In other words, she selects e to be a coprime of the tuple (e, d)

which is made public.

148 7 Introduction to Number Theory

3. She computes a unique number e, 0 < e < φ(n) such that e · d = 1 (mod φ(n))

which is the key to be used for decryption.

The sender A whenever she wants to send a message M , 0 ≤ M ≤ n − 1 ,
she computes C = Mn mod n and transfers C to B. The receiver B then computes
Cd mod n which is equal to M .

Example 7.7.3 We have the following steps to implement an example scenario:

1. Let us select = 3 and q = 5. Then n = 15 and φ(n) = 2 · 4 = 8.
2. We need to compute e such that gcd(e, 8) = 1, select 11.
3. Now, 11d = 1 mod 8; considering 11d = 8k + 1, one possible value for d is 3

for k = 4.

To sendmessage M = 7 for example, sender A encrypts themessage using the public
key (11,15). The ciphertext C = 711 mod 15 = 13. The receiver B decrypts the
message using the private key (3,15) to recover M = 133 mod 15 = 2197 mod 15 =
7.

7.8 Review Questions

1. Define the division of two integers and give an example.
2. What is meant by “a divides b” for two integers a and b.
3. What is the greatest common divisor of two integers a and b?
4. List the main properties of the greatest common divisor of two integers a and b.
5. Describe the steps of Euclid’s algorithm to find the greatest common divisor of

two integers.
6. What is the least common multiple of two integers a and b?
7. List the main properties of the least common multiple of two integers a and b
8. Define a prime number and give an example.
9. What is the fundamental theorem of arithmetic?

10. Describe the method of Erosthesis to find the primes up to a given number n.
11. Describe the steps of an algorithm to find the primes up to a given number n4.
12. Define congruence of two integers and give an example.
13. Describe briefly the Diffie-Hellman protocol of public key cryptography.
14. Describe briefly the RSA protocol of public key cryptography.

7.9 Chapter Notes 149

7.9 Chapter Notes

We started this chapter by the definition of division of two integers. Greatest common
divisor of two integers is the largest integer that divides both of them. The least
common multiple of two integers is the smallest integer that is a multiple of both of
them. We listed properties of these two functions.

Prime numbers are an important class of integers and they have many applications
including cryptography. A prime number can be divided by 1 and itself only with the
exception of 1. The fundamental theorem of arithmetic states that any integer can
be written as the product of primes and this process is called prime factorization of
the integer under consideration. We then described the Sieve of Eratosthenes to list
primes up to a given integer and showed an algorithm for the same purpose.

Given two integers a and b, a is said to be congruent to b modulo k if k | (a − b)

and this relation is shown as a ≡ b mod k. The congruence is an equivalence
relation and we reviewed methods to solve linear congruence equations. Lastly, we
introduced cryptography which is the science of exchanging messages secretly over
a communication media. Two widely used protocols, Diffie-Hellman and RSA are
described briefly.

Exercises

Assume a, b, c are integers for all questions.

1. Prove that if a | b and b | c then a | c.
2. Prove that if a | b and c | d then ac | bd.
3. Prove that if n is odd, 8 | n2 − 1.
4. Prove that for a positive integer n; if n2 is a multiple of 3, then n is a multiple of

3.
5. Show that If a | b then gcd(a, b) = |a|
6. Prove that If a and b are not both 0, then every common divisor of a and b divides

gcd(a, b).
7. Show the iterations of Euclid’s algorithm to find gcd(1140, 750).
8. Show that lcm(na, nb)=|n| lcm(a, b).
9. Show that 25 and 33 are coprimes.

10. Find prime factor decompositions of 92, 105 and 213.
11. Find gcd(210, 125) using prime factorization.
12. Show that Goldbach’s conjecture holds for 24, 46 and 78.
13. Write the pseudocode of an algorithm that will perform Eratosthenes method to

find primes.
14. Show that for integers a, b, c and d; if a ≡ b (mod m) and c ≡ d (mod m),

then ac ≡ bd (mod m).
15. Prove that if a ≡ b (mod m), then a + c ≡ b + c (mod m) and ac ≡ bc

(mod m).
16. Find all solutions or conclude no solutions to the linear congruences below:

a. 5x ≡ 2 (mod 7) b. 22x ≡ 3 (mod 44)
c. 3x ≡ 2 (mod 5) d. 10x ≡ 6 (mod 14)

150 7 Introduction to Number Theory

17. Convert the hexadecimal numbers 2AD, A4C5 and 3A2F to decimal numbers.
18. Convert 123, 618 and 205 to hexadecimal and binary numbers.

References

1. Conradie W, Goranko V (2015) Logic and discrete mathematics. Wiley
2. Goodaire EG, ParmenterMM (2002) DiscreteMatheatics with Graph Theory, 2nd Ed., Prentice-

Hall
3. Lewis H, Zax R (2019) Essentials discrete mathematics for computer science. Princeton Uni-

versity Press

8Counting andProbability

Combinatorics is a branch ofmathematics that studies the configurations and arrange-
ments of objects. Enumeration is one important task dealt in combinatorics to find
the number of configurations of objects under consideration and counting is the basic
process to perform this task. We need counting when we analyze the complexity of
algorithms.We start this chapter by reviewing basic countingmethods and then study
the basic principles of permutations and combinations which are methods to count
the number of ways that a set of objects can be organized. Probabilities of events can
be computed using counting principles as we investigate in the second part of this
chapter.

8.1 Basic CountingMethods

We need to review the principle of inclusion and exclusion before stating two basic
counting principles.

8.1.1 Principle of Inclusion-Exclusion

We have seen the number of elements of a union of sets and intersection of sets in
Chap.4. The number of elements of A is denoted by |A| and given two sets A and
B, if C = A ∪ B and A ∩ B = ∅ then clearly |C | = |A| + |B|. However, if the
intersection of the sets A and B is not the empty set, we have the following formula
for the number of elements of the union of these sets,

|C | = |A| + |B| − |A ∩ B|

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_8

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_8

152 8 Counting and Probability

simply because the common elements of the sets are counted twice. This equation
is the simplest form of inclusion-exclusion principle which is the determination of
the number of elements of the union of two or more finite sets. We will extend these
concepts to more than two sets. The number of elements of three sets can be stated
as below.

|A ∪ B ∪ C | = |A| + |B| + |C | − |A ∩ B| − |A ∩ C | − |B ∩ C | + |A ∩ B ∩ C |
We add the elements of each set once and need to subtract the number of each

pairwise intersections as in three sets. However, elements that are in the intersection
of at least three sets are subtracted more than once. In order to correct this situation,
we add the number of elements of all possible three set combinations. In both cases,
we keep the indices in order such that i < j for two set combinations and i < j < k
for three set combinations. We need a more general formula for n sets which can be
specified as below.

∣
∣
∣

⋃

Ai

∣
∣
∣ =

n
∑

i=1

|Ai | −
n

∑

i, j :1≤i≤ j≤n

|Ai ∩ A j |

+
n

∑

i, j,k:1≤i≤ j≤k≤n

|Ai ∩ A j ∩ Ak | + · · · + (−1)n+1|A1 ∩ ... ∩ An |

(8.1)

Example 8.1.1 Given sets A = {1, 2, 3, 4}, B = {1, 5, 6, 7}, C = {1, 3, 5, 6} and
D = {1, 3, 8, 9}, work out the number of elements of the union of these four sets.
Solution: We use Eq.8.1 for four sets as below,

|A ∪ B ∪ C ∪ D| = |A| + |B| + |C | + |D| − |A ∩ B| − |A ∩ C | − |A ∩ D| − |B ∩ C |
−|B ∩ D| − |C ∩ D| + |A ∩ B ∩ C | + |A ∩ B ∩ D| + |A ∩ C ∩ D| + |B ∩ C ∩ D| − |A ∩ B ∩ C ∩ D|

(8.2)

The number of elements in each set is 4, number of pairwise intersections are 1,
2, 2, 3, 1, 2 in the order presented in Eq.8.2. The three set intersections are 1, 1,
2, 1 and the four set intersection has 1 element. Note that −1 power is positive for
3-set terms and negative for 2-set and 4-set terms. Substituting these values in Eq.8.2
yields 4 + 4 + 4 + 4 − 1 − 2 − 2 − 3 − 1 − 2 + 1 + 1 + 2 + 1 − 1 = 9 which is
|A ∪ B ∪ C ∪ D = {1, 2, 3, 4, 5, 6, 7, 8, 9}|. �

Example 8.1.2 A binary number has 0 or 1 as it digits. Find the count of 6-bit binary
numbers that start with ‘11’ or end with a ‘1’.
Solution: Let the set A be the set of 6-bit binary numbers that start with ‘11’ and set B
be the 6-bit binary numbers that end with ‘1’. There are only 24 = 16 6-bit numbers
that start with a ‘11’ (|A|). There are only 25 = 32 6-bit numbers that end with a ‘1’
(|B|). Numbers with 6 digits that start with a ‘11’ and end with a ‘1’ have the form
‘11___1’ and there can only be 23 = 8 of such numbers ((|A ∩ B|). Note the use

8.1 Basic Counting Methods 153

of word or in the question which means we are searching any one of the required
conditions to hold meaning union is needed. The required count of such numbers is,

|A ∪ B| = |A| + |B| + |A ∩ B| = 16 + 32 − 8 = 44

�

8.1.2 Additive Counting Principle

Wewill denote the term event to mean the outcome of an experiment. An experiment
can be tossing a coin, drawing a card etc. Let A be an event corresponding to an
experiment. Then |A| is the number of possible outputs of A, for example, if A is
flipping a coin, then |A| is 2 since we can only have heads or tails. Two events A and
B are mutually exclusive if they cannot occur together. We are now ready to define
the additive principle as below.

Definition 8.1 (additive counting principle) Assume some event E can occur in n
possible ways and a second mutually exclusive event F can occur in m possible
ways, and assume both events cannot occur simultaneously. Then E or F can occur
in n + m different ways.

Example 8.1.3 Consider three cities A, B and C . One can take ferry, bus, train or
drive by car from city A to city B. It is possible to travel from A to C by car, train
or bus. In how many ways one can travel from city A to city B or city C?
Solution: Let event E1 be traveling from A to C and E2 be traveling from B to C .
Possible ways to perform E1 is 4 and E2 is 3. Thus, total number of ways of traveling
from A to B, or from A to C is 4 + 3 = 7. �

Example 8.1.4 How many two-letter words start with letter A or B in English?
Solution: Let event E1 be two-letter words starting with A and E2 be two-letter
words starting with B. There are 26 letters in the English alphabet, so we can have
26 words starting with A and 26 words starting with letter B. Therefore |E1| = 26
and |E2| = 26. Thus, total number of words that start with either A or B is 26+26 =
52. �

8.1.3 Multiplicative Counting Principle

The multiplicative counting principle (MCP) can be stated as follows.

Definition 8.2 Assume some event E can occur in n possible ways and a second
event F can occur in m possible ways, and assume both events cannot occur simul-
taneously. Then E and F can occur in sequence in n × m different ways.

154 8 Counting and Probability

In general, there may be m events E1, E2, . . . , Em with E1 occurring in n1 dif-
ferent ways, E2 in n2 different ways and so on with Em having nm different ways of
executions. We could then have n1 × n2 × · · ·× nm different executions of events in
total. Note that occurring of event Ek is based on assuming all events E1, .., Ek−1
have already occurred. For example, assume a student wants to take a math course
out of 3 possible coursesM1,M2 andM3 and a programming course out of 4 courses,
P1, P2, P3 and P4. Assuming she has taken M1 (event E1 has occurred), she can
take one of four programming courses afterwards. For each math course, there are
4 possible proceeding programming courses. Thus, the number of possible course
allocation events is 3 × 4 = 12 for this student.

Example 8.1.5 How many positive integers of 4 digits can be generated which do
not contain the same digit twice? How many 4-digit numbers can be generated that
end with an even digit allowing repeated digit values?
Solution: For the first part of the question; the first digit may contain 9 numbers
(1–9), the second digit may again contain 9 numbers, this time including zero but
excluding the first digit which is now fixed. The third digit may contain 8 and the
last digit may have any of the remaining 7 numbers. Total count of integers is,

9 × 9 × 8 × 7 = 4536.

For the second part; the first digit may have 9 numbers, the second and third digits
may have 10 possibilities and the last digit may only be 0, 2, 4, 6 and 8 for a total of
5 possibilities. Thus, total count of such numbers is,

9 × 10 × 10 × 5 = 4500.

�

Example 8.1.6 Let us work out the possible numbers that contain odd digits that
can be output by a 3-digit display. Note that we do not just require an odd number
but an integer that contains all odd digits. Each digit may have 1, 3, 5, 7 or 9 for a
total of 5 odd digits. Let displays of hundreds digit be E1, tens digit be E2 and unit
digit be E3 events. Total number of possible events is 5× 5× 5 = 125. If repetition
of digit values were not allowed, we would have 5× 4× 3 = 60 possible events. �

Example 8.1.7 How many numbers in the range 100–999 do not have repeated
digits?
Solution: We can have 9 digits between and including 1 and 9 for the first digit
excluding zero. The second digit may contain a zero and we have now 9 digits for
the second digit excluding the first assigned digit. The third digit will have 8 digits
out of 10 excluding the two digits already assigned. The count of numbers is then
9 × 9 × 8 = 648. Note that we assume the first event (assignment of the fist digit)
has occurred when searching the possibilities of the second digit assignment. �

A computer program may have nested loops as shown in Alg. 8.1. The most inner
loop with index k will run to completion executing p times for each value of the

8.1 Basic Counting Methods 155

middle loop with index j . Similarly, the middle loop will run for m times for each
value of the outermost loop. Thus, total number of executions of such a program is
the product of the number of times each loop executes which is nmp for this example.

Algorithm 8.1 Nested Loops
1: for i = 1 to n do
2: for j = 1 to m do
3: for k = 1 to p do
4: print i, j, k
5: end for
6: end for
7: end for

8.1.4 The Pigeonhole Principle

Let us assume there are m pigeons to be placed in n pigeonholes with m > n. When
the pigeons are placed in the pigeonholes, some pigeonholes will have more than
one pigeon in it.

Example 8.1.8 Prove the pigeonhole principle using the contrapositive method.
The contrapositive of this principle is that if every pigeonhole contains at most

one pigeon, then m ≤ n. Let ai be the number of pigeons in pigeonhole i , we have;

m =
n

∑

i=1

ai

as m is the number of total pigeons.

m =
n

∑

i=1

ai ≤
n

∑

i=1

1 = n

Thus, m ≥ n. �

Example 8.1.9 There are 13 workers in an office. Then, at least two of the workers
were born in the same month. �

Remark 8.1 (general pigeonhole principle) Assume there are kn + 1 pigeons to be
assigned to n pigeonholes with k ∈ N. Then, there is at least one pigeonhole assigned
to k + 1 or more pigeons.

Example 8.1.10 Find the minimum number of a group of friends such that four are
born in the same day of the week.

156 8 Counting and Probability

Solution: There are 7 days of the week, hence n = 7. Also, k + 1 = 4, therefore
k = 3. We can conclude that kn + 1 = 22 which means there should be at least 22
friends in the group to ensure at least four are born in the same day of the week. �

8.1.5 Permutations

Let us assume we have n objects to be arranged. Our aim is to find the number of all
possible ordered arrangements of these objects, for example, let S = {a, b, c}. The
possible ordered arrangements of these objects are abc, acb, bac, bca, cab and cba
for a total of 6 ways. For a set containing n objects, here are n objects to be placed in
the first position, so there are n ways, the second position may hold n−1 objects and
so on, and by the multiplicative principle, we can have n × (n − 1) × · · · × 1 = n!
(n factorial) ordered arrangements in total.

Definition 8.3 (permutation) A permutation of n distinct objects is an ordered
arrangement of these objects and is equal to n!.

Example 8.1.11 Find the number of ways that the letters in the word ALGORITHM
be arranged. If the three lettersALGshould be next to each other,work out the number
of ways any word with this property can be written using these letters.
Solution: All the letters in this word are distinct. Let the first letter to be placed be A,
it can be placed in one of the 9 positions. Once it has been placed, the next letter can
be in one of the remaining 8 places. Thus, following in this manner, the number of
possible different writings of any word using these letters is 9! = 362,880. For the
second part of the question, the word ALG is treated as one unit and we then have
7 places instead of 9. Therefore, we will have 7! = 5,040 different words with this
property. For example, RMALGIOHT is one such word. �

In the more general case, we may have a certain number of objects to be selected
from a set of n objects. For example, let us find the possible ordered arrangements
of size 3 from the elements of the set {a, b, c, d}. These arrangements are,

abc, abd, acb, acd, adc, adb, bac, bad, bca, bcd, bda, bdc

cab, cad, cba, cbd, cda, cdb, dab, dac, dba, dbc, dca, dcb

for a total of 24 items. Displaying all possible orderings and counting them will be
difficult when the size of the objects is large, thus, we need to formalize the number
of this arrangements.

Definition 8.4 (r-permutation) An r -permutation of a set of n objects is an ordered
subset of r elements selected from n objects.

8.1 Basic Counting Methods 157

Theorem 13 The number of r-permutations of a set of n objects where n ∈ Z
+ and

0 ≤ r ≤ n is,

P(n, r) = n!
(n − r)! (8.3)

Proof There are n ways to select the first element and once it is selected, there are
n − 1 was to select the second one until there are n − r + 1 ways to select the r th
element. This is the product n × (n − 1) × · · · × (n − r + 1) which can be stated as,

P(n, r) = n!
(n − r)!

�

Example 8.1.12 Find the number of ways that the letters ABCDE can be arranged
as two letters.
Solution: We apply Eq.8.3 to yield the following,

P(5, 2) = 5!
(5 − 2)! = 60

�

Example 8.1.13 Consider the following:

1. How many ways 4 different colors (blue (B), green (G), white (W), yellow (Y))
of marbles be ordered in groups of 3?

2. If the first marble is green, what is the number of possible arrangements and what
are they?

Solution: The number of colors is 4 which is n, and we need subsets of r which is 3.
Thus,

P(4, 3) = 4!
(4 − 3)! = 4

For the second part, when the first marble is fixed as yellow, we have only two
places left for the remaining 3 colors. The (3, 2) permutations is then 3!/(3−2)! = 6.
These are YBG, YBW, YGB, YGW, YWG and YWB. �

Theorem 14 (permutations with repetitions) Consider a set with n elements such
that n1 elements are alike, n2 elements are alike, …, nr elements are alike. Then n
permutations of this set is,

P(n; n1, n2, . . . , nr) = n!
n1! · n2! · · · nr !

158 8 Counting and Probability

Proof We will illustrate the proof by an example. Let us apply subscripts to objects
of the same type. For example, the word AMANDA becomes A1MA2NDA3.
The number of possible objects are reduced from 6 to 4 (A, M, N , D). The order
of A’s is not important when the order of subscripted objects is changed. For
example, A1A2A3MND or A3A1A2MND are the same and A2NDA1MA3 =
A1NDA3MA2. Therefore, we need to divide the possible number of permuta-
tions with the permutations of the repeated objects. In this example, we can have
6!/3! = 120 different words. When there are other repeated objects, the result can
be generalized. �

Example 8.1.14 Let us find the number of ways to write different words from the
word AL I BABA. Closer look reveals A is repeated three times and B is repeated
twice. Therefore,

P(7; 2!, 3!) = 7!
2!3! = 420

�

Remark 8.2 (circular permutation) Assume there are n objects to be arranged in a
circle. Then, these objects can be arranged in (n − 1)! ways.

Example 8.1.15 The number of ways 8 people can sit around a table is (8 − 1)! =
7! = 5040. �

8.1.6 Combinations

Let us consider the set A = {a, b, c, d} again and we want to list all possible subsets
of A that have 3 elements with the property that no subset should be equal to another
one. The order of the elements in selections from the set A is not important, for
example, we can take only {a, b, c} or {b, a, c} but not both. The possible 3 element
selections are,

abc, abd, bcd, dac

Such selections from a set are called combinations.

Definition 8.5 (combination) An r-combination (C(n, r)) or
(C
r

)

) of n distinct
objects of a set where n ∈ Z

+ and 0 ≤ r ≤ n is the subsets of the set without
regarding the order of elements in the subset.

Theorem 15 The number of r-permutations of a set of n objects is,
(
n

r

)

= C(n, r) = n!
r !(n − r)! (8.4)

8.1 Basic Counting Methods 159

Proof Given n objects, the number of r -permutations is P(n, r). Each of these
permutations can be ordered in P(r, r) ways which is r !. The total number of r -
combinations is therefore the ratio of total number of permutations to the number of
ways each permutation can be ordered as follows,

C(n, r) = P(n, r)

P(r, r)! = n!/(n − r)!
r !/(r − r)! = n!

r !(n − r)!
�

In our first example with A = {a, b, c, d}, n = 4 and r = 3 yields,

C(4, 2) = 4!
3!(4 − 3)! = 4

as we have found.

Example 8.1.16 The number of 3-combinations of digits 0, 1, . . . , 6 is;

7!
3!4! = 7 · 6 · 5 · 4 · 3 · 2 · 1

3 · 2 · 1 · 4 · 3 · 2 · 1 = 35

with 521 being such one combination. �

Example 8.1.17 A group of three men and four women are to be chosen from a
group of five men and six women. How many possibilities are there?
Solution: Three men can be chosen in C(5, 3), and four women can be selected in
C(6, 4) ways. Using multiplicative counting principle, total number of selections is,

C(5, 3) × C(6, 4) = 5!
3!2! × 6!

4!2! = 10 × 15 = 150

�

Theorem 16 For all integers n ≥ 1 and all integers r , 1 ≤ r ≤ n,
(
n

r

)

=
(

n

n − r

)

Proof
(
n

r

)

= n!
r !(n − r)! = n!

(n − r)!(n − (n − r)!) =
(

n

n − r

)

�

160 8 Counting and Probability

Fig. 8.1 All possible
combinations of drawing
three marbles

Blue Green Yellow

BBB

GGG

YYY

BGY

BBG

BBY

BGG

GGY

GYY

BYY

S S

1

2

3

4

5

6

7

8

9

10

8.1.6.1 Combinations with Repetitions
Consider an experiment in which we have a box containing blue (B), green (G)
and yellow (Y) marbles and we select 3 marbles at random. How many different
combinations are possible? The possible combinations may be listed as follows.

BBB, GGG, YYY, BGY, BBG, BBY, BGG, GGY, GYY, BYY,

for a total of 10 combinations. We can not use the usual combination formula this
time. Let us consider each marble color as a distinct class separated by a division as
shown in Fig. 8.1.

We now have either a class of marbles or two separators to choose from, for a total
of 5 positions; 3 for the marble colors and 2 for the separators. Our each selection
may be a combination of colors and separators (S), for example BBSGS is BBG
(line 5 in figure) or BSSYY is BYY (last line in figure) discarding the separators.
As a result, we select 3 positions out of 5, thus, C(5, 3) = 10 as found before. A
generalization of this result follows. Consider a set A that contains k different kinds
of elements with at least m elements of each kind. Then, the number of possible
combinations when m items are selected is,

(

m + k − 1
m

)

(8.5)

We need to selectm elements and k−1 is the number of separators between them,
thus, the total number of selections we can make is m + k − 1 and we need to have
m selections. When we apply this formula to the above example, we have 3 (k = 3)
types of objects (B,G,Y) and we should have at least 3 (m = 3) of each to be able to
select BBB for example,

8.1 Basic Counting Methods 161

(

3 + 3 − 1
3

)

= C(5, 3) = 10

Example 8.1.18 Consider a jar containing sufficient amount of marbles of four col-
ors; blue (B), green (G), yellow (Y) and white. Howmany combinations are possible
if three marbles are drawn from the jar?
Solution: We have 4 colors (B, G, Y, W) and make 3 selections. Thus, k = 4 and
m = 3, substitution in Eq.8.5 yields,

(

4 + 3 − 1
3

)

= C(6, 3) = 20

These possibilities are as follows,

BBB, GGG, YYY, WWW, BGG, BYY, BWW, GBB, GYY, GWW
YBB, YGG, YWW, WBB, WGG, WYY, BGY, BGW, BYW, GYW

8.1.6.2 The Binomial Theorem
The following equations can be proven without difficulty.

(x + y)0 = 1

(x + y)1 = x + y

(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3

The Binomial Theorem provides a generalization for the expansion of (x + y)n

as follows.

(x + y)n =
n

∑

k=0

(
n

k

)

xn−k yk

=
(
n

0

)

xn +
(
n

1

)

xn−1y +
(
n

2

)

xn−2y2 + · · · +
(

n

n − 1

)

xyn−1 +
(
n

1

)

xn−1y +
(
n

n

)

yn

Example 8.1.19 Find expansion of (x + y)5 using Binomial theorem.
Solution:

(x + y)5 =
5

∑

k=0

(
5

k

)

x5−k yk

=
(
5

0

)

x5 +
(
5

1

)

x4y +
(
5

2

)

x3y2 +
(
5

3

)

x2y3 +
(
5

4

)

xy4 +
(
5

5

)

y5

= x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

�

162 8 Counting and Probability

It can be shown that, (
n

k

)

=
(

n

n − k

)

(8.6)

and (
n + 1

k + 1

)

=
(
n

k

)

=
(

n

k + 1

)

(8.7)

using the definition of permutation (See Example10).

Pascal’s Triangle

The binomial coefficients can be computed simply and efficiently using the following
arrangement.

(0
0

)

(1
0

) (1
1

)

(2
0

) (2
1

) (2
2

)

(3
0

) (3
1

) (3
2

) (3
3

)

(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)

(5
0

) (5
1

) (5
2

) (5
3

) (5
4

) (5
5

)

.................................

This triangle has the property that each row starts with a 1 and ends with a 1. More-
over, any number other than the 1s in the triangle is the sum of the two numbers that
appear at its upper left and upper right corners by Eq.8.7. The following arrangement
called Pascal’s Triangle implements these observations and provides a fast way to
compute binomial coefficients.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5

1 6 15 20 15 6 1

.................................

8.2 Discrete Probability 163

8.2 Discrete Probability

Definition 8.6 (sample space, event) The set S of all possible occurrences of an
experiment is called the sample space of the experiment. An event is a subset of the
sample space S.

For example, when tossing of a coin is the experiment, the sample space S is
{heads, tails}. An event of this experiment is either heads (H) or tails (T) but not
both. It is of practical use to think an event as a subset of the sample space to be
able to implement set properties on the event. The following properties of events are
immediately available when two events A and B are considered.

• C = A ∪ B is the event that occurs when A or B or both occur.
• C = A ∩ B is the event that occurs when A and B or both occur.
• Ac (or A) is the event that occurs when A does not occur.

Example 8.2.1 What is the number of possibilities when a pair of dice of different
colors is thrown?
Solution: Each dice can have one of {1, 2, 3, 4, 5, 6}. The sample space therefore
consists of {(1, 1), (1, 2), …, (1, 6), (2, 1), …, (2, 6),.....(6, 6)} 36 pairs using the
multiplicative counting principle. �

Example 8.2.2 What is the number of possibilities when a coin is tossed and a dice
is thrown? What is the number of possible events to have H and an odd number
outcome? �
Solution: The sample space of this experiment is {(H ,1), (H ,2), (H ,3), (H ,4), (H ,5),
(H ,6), (T ,1), (T ,2), (T ,3), (T ,4), (T ,5), (T ,6)} for a total of 12 possible outcomes.
For the second part of the question, we have {(H ,1), (H ,3), (H ,5)} as the three
possible outcomes.

8.2.1 Probability Measures

Definition 8.7 (probability, probability distribution) The numerical measure of the
likelihood of an event is called the probability (P(E)) of an event E . A set of the
probabilities of all outcomes of an experiment is called the probability distribution
of the experiment.

Let us consider the experiment of flipping a coin. The following probabilities of
heads (H) and tails (T) can be stated.

P(H) = P(T) = 1

2
.

When each possible event of an experiment has equal chance, the probabilities of
these events are equal as in the case of tossing a coin. The probability distribution

164 8 Counting and Probability

of the experiment is then termed uniform and the occurrence of each event has a
probability of 1/n when n such events are considered.

Definition 8.8 (classical probability) Consider an experiment with a finite number
of uniform events. Then the classical probability of an event is defined to be the
ratio of the number of possible expected (favorable) outcomes to the total number
of possible outcomes of the experiment.

Example 8.2.3 What is the probability to have an odd number outcome when a dice
is thrown?
Solution: The sample space of this experiment is {1, 2, 3, 4, 5, 6} with the size 6. The
favorable outcomes are 1, 3 and 5 for a total of three numbers. Thus, the probability
of receiving an odd number is 3/6 = 0.5. �

Example 8.2.4 A deck of cards is shuffled and a card is drawn. What is the proba-
bility of drawing this card as hearts?
Solution: There are 13 hearts in a deck of cards with 52 cards. The probability of
drawing a hearts from the deck of cards is then,

P(E) = |E |
|S| = 13

52
= 0.25

�

Example 8.2.5 A pair of dice with distinct colors is thrown. What is the probability
of having a throw such that the sum of the numbers on the top of die is 5?
Solution: There are 6 numbers, 1,…,6, on the faces of a dice. When two die are
thrown, there are 36 possible pairs of numbers on top by the multiplicative counting
principle. Out of these, (1, 4), (2, 3), (3, 2), (4, 1) provide the required result. The
probability of the favorable events is then,

P(E) = |E |
|S| = 4

36
= 0.11

�

Theorem 17 Let S be a sample space and E, E1 and E2 be any event of this sample
space. Then, the following can be stated:

• 0 ≤ P(E) ≤ 1
• P(S) = 1.
• If two events E1 and E2 of S are mutually exclusive; that is, they cannot both
happen, P(E1 ∪ E2) = P(E1) + P(E2)

• Let Ec be the event that event E does not occur. Then P(Ec) = 1 − P(E).
• In the more general case, P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2)

• P(E1 \ E2) = P(E1) − P(E1 ∩ E2)

8.2 Discrete Probability 165

Example 8.2.6 A deck of cards is shuffled and a card is drawn. What is the proba-
bility of drawing this card as spades or an odd number?
Solution: There are 52 cards in a deck 13 out of which is spades. The odd numbered
cards have 3, 5, 7 and 9 on them for a total of 16 for four different symbols. Let A
be the event that the drawn card is spades and B the event that it has an odd number.
The number of spade cards that have odd numbers are 4. Then,

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 13

52
+ 16

52
− 4

52
= 33

52
= 0.65

�

Example 8.2.7 What is the probability of getting a double or a sum of odd number
when throwing two die?
Solution: Let event A be “getting a double” and B be “sum is an odd number”. These
two events are mutually exclusive as all of the sums of doubles are even numbers.
Note that the sum of an odd number by itself and the sum of an even number by itself
both yield even numbers. The event A happens in 6 throws out of 36, and B happens
in 12 events out of 36. Then,

P(A ∪ B) = P(A) + P(B) = 1

6
+ 2

6
= 0.5

�

8.2.2 Independent Events

Definition 8.9 (independent events) Two events A and B are independent if P(A ∩
B) = P(A) · P(B), otherwise they are dependent.

Example 8.2.8 Let us find the probability of having two heads on independent coin
rolls. Let event A be having a head in the first roll and B be having a head in the
second roll, and since P(A) = P(B) = 1/2, P(A ∩ B) = 1/2 · 1/2 = 1/4. �

Example 8.2.9 A coin is rolled twice. What is the probability of having a Heads
(H) and Tails (T) consecutively?
Solution: Let HT denote the required sequence of events. Since each coin roll is
independent of the other and we have P(H) = P(T) = 1/2,

P(A ∩ B) = P(A) · P(B) = 1

2
· 1
2

= 1

4
Note that any coin rolling combination in two rolls will have the same probability.
We can check whether events A and B are independent by testing P(A ∩ B) =
P(A) · P(B). Indeed, HT roll has the probability of 1/4 out of 4 possible two rolls
of HH , HT , T H and T T . �

166 8 Counting and Probability

Example 8.2.10 A pair of distinct dice is rolled. Let event A be “the sum of the
faces is 8” and event B be “the first die is 2”. Test whether A and B are independent.
Solution: Let us check using the definition of independent events. The event P(A ∩
B) = 1/36 (throw (2,6)) as this event is a single outcome out of 36 events. P(A) =
P(B) = 1/6 and thus,

P(A ∩ B) = 1

36
= 1

6
· 1
6

= P(A) · P(B)

Therefore, these events are independent.

8.2.3 Conditional Probability

Let two events B and A be the output of two consecutive experiments on a sample
space S. It is possible that the probability of event A is influenced by the output of
event B. In this case, conditional probability of event A given event B is defined as
follows.

Definition 8.10 (conditional probability) The probability of an event A once an
event B has occurred is called the conditional probability of A given B, provided
P(B) > 0, is defined as follows.

P(A | B) = P(A ∩ B)

P(B)
(8.8)

Example 8.2.11 A group of 40 students need to elect courses. Math is elected by
20, Physics is elected by 10 and 5 of the students elect both Math and Physics. If
a student has elected Math at random, what is the probability that this student also
elected Physics?
Solution: Let event A be selection of Physics, and B be selection of Math. Then,

P(A | B) = P(A ∩ B)

P(B)
= 5/40

20/40
= 0.25

�

Example 8.2.12 A 3-bit binary number is generated at random. What is the proba-
bility that the generated number has two consecutive 1s given the last digit is a 1?
Solution: Let event B be the generation of a binary number with a 1 in the last digit
and A be he event that a generated number has two consecutive 1s. There are eight
possible 3-bit numbers; 000, 001, 010, 011, 100, 101, 110, 111. Only 4 of the gener-
ated numbers end with a 1 (001, 011, 101, 111) and three of the generated numbers
(011, 110, 111) have two consecutive 1s. The intersection of these two sets is (011,
111). Thus,

P(A | B) = P(A ∩ B)

P(B)
= 2

4
= 0.5

It can be seen that 011 and 111 provide the required condition once the last digit is
a 1. Since there are 4 numbers with last digit 1, the conditional probability is 0.5. �

8.2 Discrete Probability 167

Head

Head

Head

Tail

Tail

Tail

Start

1/2

1/2

1/2

1/2

1/2

1/2

1/4

1/4

1/4

1/4

(Head, Head)

(Head, Tail)

(Tail, Head)

(Tail, Tail)

Fig. 8.2 Tree diagram for rolling a coin twice

Corollary 18 Let A and B two events with P(B) > 0. Then,

P(A ∩ B) = P(A | B) · P(B)

Example 8.2.13 Let event B be “getting flu” and event A be “having a high fever”
with P(B) = 0.2, P(A | B) = 0.8 (having high fever when flu is present). What is
the probability of getting flu and fever?
Solution: We can use Corollary18 as follows.

P(A ∩ B) = P(A | B) · P(B) = 0.8 · 0.2 = 0.16

�

8.2.4 Tree Diagrams

A tree diagram is a visual method of showing the resulting choices and probabilities
of two or more events. A rooted tree basically consists of a starting node called
the root, nodes and branches which are edges connecting nodes. The end of each
branch of a tree is labeled by the outcome of the events starting from the root of
tree and ending at the end of the branch. Each branch is labeled with the probability
of the event that starts from one end of the branch to its other end. Let us consider
an experiment of rolling a coin two times. The tree diagram for this experiment
is depicted in Fig. 8.2. We start from an initial state and the chances of rolling a
Head or Tail is 1/2 each as shown by the labels of branches. The probability of the
final leaves of the tree are calculated by multiplying the probabilities of each branch
leading to the leaf. For example, the bottom leaf is rolling Tail and Tail resulting in
(1/2) · (1/2) = 1/4.

Example 8.2.14 A jar contains 5 blue (B) and 3 green (G) marbles. Work out the
probabilities of picking a marble three times consecutively from this jar without
putting them back by using a tree diagram.
Solution: Note this time we have dependent events as picking a certain color affects

168 8 Counting and Probability

B

B

G

Start

G

B

G

B

G

G

G

G

B

B

B

BBB

BBG

BGB

BGG

GBB

GBG

GGB

GGG

5/8=0.62

3/8=0.38

4/7=0.57

3/6=0.5

3/7=0.43

5/7=0.71

2/7=0.29

3/6=0.5

2/6=0.33

4/6=0.67

4/6=0.67

2/6=0.33

1/6=0.17

5/6=0.83

0.18

0.18

0.09

0.18

0.09

0.019

0.09

0.18

Fig. 8.3 Tree diagram for Example8.2.14

the consequent probabilities and we need to calculate conditional probabilities. The
tree diagram has a level of three, starting from the root as shown in Fig. 8.3. The sum
of the probabilities of branches coming out of a node must equal 1 since this sum is
the probabilities of all events.

�

8.2.5 RandomVariables

Definition 8.11 (random variable) Let S be the sample space of an experiment. A
random variable X is defined as a function from S to the real numbers: X : S → R.

In other words, a random variable assigns a real number to every possible outcome
of a random experiment. The set of values that a random variable X can take is called
the range of X .

Example 8.2.15 Let the random experiment be rolling a coin twice. The sample
space S is {H, T }, and let a random variable X defined as the number of heads.
Then, X (HH) = 2, X (HT) = 1, X (T H) = 1, X (T T) = 0.

8.2 Discrete Probability 169

X : S → R

�

A random variable X is is a discrete random variable if there is a finite number
of possible outcomes of X , in other words, its range consists of finite or countable
values or there is a countably infinite number of possible outcomes of X .

Example 8.2.16 Let us consider the experiment of rolling a a pair of distinct dice,
one blue and one green and let the random variable X denote the sum of the faces of
each die. Then, X has a range 1,…,12. �

Definition 8.12 (independent random variable) Two random variables X and Y
defined over a sample space S are independent if,

P(X = x ∩ Y = y) = P(X = x) · P(Y = y)

Note that this definition is similar to what we have for two independent events.
For example, let random variable X be the number on the face of the first die and
random variable Y be the number on the face of the second die when rolled. Then X
and Y are independent.

8.2.5.1 Expectation of a RandomVariable
The mean, expected value or expectation of a random variable X , (E(X)), is the long
term average of the random variable.

Definition 8.13 (expectation) Expectation E(X) of a real-valued random variable
X is the average value of X weighted by probability. For discrete random variables,
this parameter is defined by the following where the probability that X maps into x
is denoted by P(X = x).

E(X) =
∑

x∈S
x · P(X = x)

Example 8.2.17 Consider the experiment of rolling a dice. The sample space is
1, 2, 3, 4, 5, 6. Let the random variable X be the number on the face of the dice when
rolled and find the expectation of X .

Solution: X can have values in the range 1,…,6. The expectation E(X) is then,

1 · (1/6) + 2 · (1/6) + 3 · (1/6) + 4 · (1/6) + 5 · (1/6) + 6 · (1/6) = 7/2

�

170 8 Counting and Probability

Example 8.2.18 Let us consider the experiment of rolling a coin twice again and
work out E(X) with X being the number of heads.
Solution: P(X) for any x ∈ S is 1/4 since we have 4 possible outcomes. Then,

E(X) =
∑

x∈S
x · P(X = x)

= 1

4
(HH) + 1

4
(HT) + 1

4
(T H) + 1

4
(T T)

= 1

4
(2 + 1 + 1 + 0)

= 1.

�

We may need to asses the distance of a random variable from its expectation.

Definition 8.14 (variance) Let X be a random variable defined on a sample space
S. The variance of X denoted by V (X) is defined by,

V (X) = E((X − E(X))2)

The standard deviation σ of X is defined by,

σ(X) = √

V (X)

These two parameters of a random variable help to assess the divergence of its
value from its expectation.

8.2.6 Stochastic Processes

In some cases, an experiment can be divided into a number of sequential processes.
Each such process may be a random variable and a stochastic process which is
a collection of these random processes may represent a system, typically randomly
changing with time. For example, the movement of a gas molecule, photon emission,
occurrences of earthquakes and the growth of bacteria population may be modeled
as stochastic processes. Informally, a stochastic process is a process that develops in
time according to probabilistic rules.

Definition 8.15 (stochastic process) A stochastic process is a family of random
variables {X (t), t ∈ T }, where t usually denotes time. In other words, a random
variable is assigned to every t value in the set T .

{X (t), t ∈ T } is discrete-time process if T is finite or countable, otherwise it
is defined as a continuous-time process. Stochastic processes may be used in the
areas of economics for stock exchange; in epidemiology to monitor the number of
influenza cases for example and in medicine to test the effects of a drug.

8.3 Review Questions 171

8.3 Review Questions

1. State the principle of inclusion and exclusion.
2. What is additive counting principle? Give an example.
3. What is multiplicative counting principle? Give an example.
4. Give an example of pigeonhole principle.
5. Define the permutation of n distinct objects.
6. How does repeated permutation differ from permutation of distinct objects?
7. Describe the combination of r objects from n distinct objects.
8. Compare repeated combination with repeated permutation.
9. State Binomial theorem.

10. What is an event and sample space of an experiment?
11. Define the probability of an event.
12. Give an example of two independent events. What is the probability of two

independent events occurring?
13. Define conditional probability and state the formula for the conditional proba-

bility of event A given that event B has occurred.
14. What does a tree diagram provide?
15. What is a random variable and what is the expectation of a random variable?
16. Describe a stochastic process and give an example.

8.4 Chapter Notes

We reviewed basic counting methods and probability in this chapter. Two main
methods of counting are the additive and the multiplicative counting principles.
The additive counting principle states that the number of possible ways that two
independent events can happen is the sum of the number of ways each can happen,
and the multiplicative counting principle means that the number of possible ways
that two events that do not occur at the same time is the product of the number of
ways each can happen. The pigeonhole principle asserts if there are m objects to be
placed in n places with m > n, then some places will have more than one object.

A permutation of n distinct objects is an ordering of these objects; some of the
objects may be equal to each other in which case we need to consider permutations
with repetitions. A combination of a set of n distinct objects is a selection of a subset
of these objects. Unlike permutation, we can have only one selection with n elements
as the combination of n distinct objects. When some elements of the set of objects
are the same, we have combinations with repetitions. The binomial theorem specifies
the expansion of the algebraic expression of the form (a + b)n .

In the second part of this chapter, we reviewed basic principles of discrete proba-
bility which is the likelihood of the occurrence of an event. The events under consid-
eration may be independent or may depend on each other and conditional probability
is used to find probabilities of dependent events. A random variable is a real number
assigned to the outcome of an experiment. Expectation of a random variable is the

172 8 Counting and Probability

average value of a random variable weighted by its probability. A stochastic process
is a sequence of processes output of each depends on the preceding process. The
brief review of probability presented here may serve as a starting point for further
study of this fundamental mathematics topic.

Exercises

1. In a standard deck of 52 playing cards, in how many different ways can four-of-
a-kind (same symbol with hearts, diamonds, spades or clubs) be formed?

2. Consider selecting 2 bananas, 3 apples and 2 kiwis from a box of 6 bananas, 5
apples and 4 kiwis. How many choices can be made?

3. Work out the minimum number of students in a meeting to be sure that three of
them are born in the same month.

4. Find the number of ways that 8 people can sit in a row of chairs and around a
circular table.

5. Determine the number of 5-element subsets of the set A = {1, 2, . . . , 8}.
6. Find the number of n distinct words that can be formed from the word MIS-

SISIPPI.
7. How many subsets of set A = {1, 2, . . . , 9} has three or more elements?
8. A company has 12 workers with 8 men and 4 women. Find the number of ways

to select a 5-member committee from these workers. Also, work out the number
of ways to select a 5-member committee with 3 men and 2 women.

9. If
(n
3

) = 20, then what is
(n
5

)

?
10. Prove the following equivalences.

a. (
n

r

)

=
(

n

n − r

) b.
(
n + 1

r + 1

)

=
(
n

r

)

=
(

n

r + 1

)

11. Two fair dice are rolled. What is the probability of getting 7 as the sum of two
face values?

12. Consider the experiment of rolling a coin three times and work out E(X) with
X being the number of heads.

9BooleanAlgebras andCombinational
Circuits

Boolean algebra operating on the binary numbers 0 and 1 was first developed by
GeorgeBoolean in 19th century [1]. ABoolean function is an expression using binary
variables. We review basic Boolean algebra laws, duals of these laws, functions and
a visual method called Karnaugh-maps to simplify a Boolean expression in the first
part of this chapter. We then review combinational circuits in the second part and
describe simple structures called logic gates to build a logic circuit to represent a
Booelan function. We conclude this chapter by arithmetic circuits to add binary
numbers.

9.1 Boolean Algebras

Definition 9.1 (boolean algebra) A boolean algebra B consists of a set S with ele-
ments 0 and 1 and binary operations + and · on S and a unary operator ′ on S obeying
the following laws for binary variables a, b and c. A Boolean algebra B is denoted
by B = (S, +, ·,′ , 0, 1).

• Identity Laws:
a + 0 = a, a · 1 = a

• Idempotent Laws:
a + a = a, a · a = a

• Complement Laws:
a + a′ = 1, a · a′ = 0

• Commutative Laws:

a + b = b + a, a · b = b · a

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_9

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_9

174 9 Proofs

Table 9.1 Representations of logical variables

Description Operator Example Alternatives

Addition OR a + b a ∨ b

Multiplication AND ab a · b, a ∧ b

Complement NOT a’ a, ¬a

Table 9.2 + operation

a b a + b

0 0 0

0 1 1

1 0 1

1 1 1

Table 9.3 · operation
a b a · b
0 0 0

0 1 0

1 0 0

1 1 1

• Associative Laws:

a + (b + c) = (a + b) + c

a · (b · c) = (a + ·b) · c
• Distributive Laws:

a + (b · c) = (a + b) · (a + c)

a · (b + c) = (a · b) + (a · c)

We can replace the boolean operations +, · and ′ by ∨, ∧ and ¬. The ∧ operation
will be evaluated before the ∨ operation as in compound logical statements. The
notations commonly used are summarized in Table9.1. Truth tables for +, · and ′
operations are listed in Tables9.2, 9.3 and 9.4 respectively. We will write ab in short
for a · b. The following can be derived from the basic laws.

• Absorbtion:
a + ab = a, a(a + b) = a

since a + ab = a(1 + b) = a and for the dual expression,

9.1 Boolean Algebras 175

Table 9.4 Negation

a a′

0 1

1 0

a(a + b) = aa + ab

= a + ab = a(1 + b) Idempotent Law

= a

• Degenerate Effect

a + a′b = a + b a(a′ + b) = ab

The first statement can be shown to be valid as follows,

a + b = a + b(a + a′)
= a + ab + a′b
= a(b + 1) + a′b
= a + a′b

and for the dual expression,

a(a′ + b) = aa′ + ab

= ab Complement Law

• De Morgan’s Laws:

(a + b)′ = a′b′, (ab)′ = a′ + b′.

9.1.1 Principle of Duality

The laws and theorems of Boolean algebra can be divided into two part as can be
observed. Principle of duality states that a theorem proved can be proven for one part
and the dual of the theorem follows naturally. Dual of such a Boolean expression
may be obtained by replacing a “+” operator with “·” operator and vice versa; and
replacing 1’s with 0’s and 0’s with 1’s. For example, the distributive law states the
following,

a(b + c) = ab + ac

dual of which is a + bc = (a + b)(a + c). Let us prove that this dual expression is
valid as below.

176 9 Proofs

Table 9.5 Truth table for Boolean function a′b + b′c
a b c a′ b′ a′b b′c a′b + b′c
0 0 0 1 1 0 0 0

0 0 1 1 1 0 1 1

0 1 0 1 0 1 0 1

0 1 1 1 0 1 0 1

1 0 0 0 1 0 0 0

1 0 1 0 1 0 1 1

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

(a + b)(a + c) = aa + ac + ab + bc

= a + ac + ab + bc Identity Law

= a(1 + c + b) + bc

= a + bc Idempotent Law.

9.1.2 Boolean Functions

Definition 9.2 A Boolean expression of the form

f (x1, . . . , xn)

is called a Boolean function of Boolean variables x1, . . . , xn .

Example 9.1 Let the Boolean function f (a, b, c) = a′b+ b′c. The value this func-
tion can take for different variable combinations is depicted in Table9.5.

9.1.3 Sum-of-Products Form

We need standardization of Boolean expressions to evaluate and simplify and pos-
sibly implement these expressions. All Boolean expressions can be converted into
two forms: sum of products (SOP) or product-of-sums (POS) representations. The
SOP representation is simply the sum of terms each of which is a product of logical
variables as shown below.

f (a, b, c, d) = ab′c + bcd ′

We have four logical variables a, b, c and d and the SOP form is the sum of two
products of these variables. In the standard SOP form, each variable should appear

9.1 Boolean Algebras 177

Table 9.6 Truth table of a logical function

a b f (a, b) Product terms

0 0 0 a′b’
0 1 1 a′b
1 0 0 ab′

1 1 1 ab

in each product term. A nonstandard form can be converted to a standard SOP form
as shown in the example below for a logical expression with three logical variables
a, b and c.

f = ab′ + ab′c′ + ac′

= ab′(c + c′) + ab′c′ + a′c(b + b′)
= ab′c + ab′c′ + ab′c′ + a′bc + a′b′c
= ab′c + ab′c′ + a′bc + a′bc + a′b′c

We expand a product term of a missing variable by multiplying it by the sum of
the normal and inverted missing variable. For example, the first product does not
contain c, we then multiply it with (c+ c′) and since this sum is 1, it will not change
the value of the function f .

We have seen how to generate a truth table from a given Boolean expression, we
will now consider deriving a logical function from a given truth table. Let us consider
the example in Table9.6 where we have the Boolean function f of two variables a
and b.

The last column in this table represents the product terms of a and b where the
input literal in this column is negated when the corresponding input value is 0 and
not complemented when the input value is 1. The product terms in the last column
of this table are named minterms where mi is the minterm for row i . The SOP form
of function f is then the sum of minterms where f = 1 in this table. Essentially,
we are trying to associate input variable values of the function that result in a logical
1 as the function value. For example, when row 1 which is 01 in binary results in
f = 1, the input combination that can provide this output is a′b. We need to sum
these minterms because any of these input variable combinations results in a logical
value of 1 of the output function. In this particular example,

f (a, b) = a′b + ab

This expression can be written is summation notation as,

f (a, b) =
∑

(1, 3)

which states that rows 1 and 3 of the function yield a logical 1 value.

Example 9.2 Find the expression for the logical function f = ∑
(2, 3, 5) of three

variables a, b and c.

178 9 Proofs

Solution: We need to identify the minterms for the corresponding truth table rows
first and then work out the minterms as below.

2 = 010 = a′bc′

3 = 011 = a′bc
5 = 101 = ab′c

Thus f = a′bc′+a′bc+ab′c. We can see that this expression is not in its simplest
form.

f = a′bc′ + a′bc + ab′c
= a′b(c′ + c) + ab′c
= a′b + ab′c.

�

9.1.4 Product-of-Sums Form

In this form of representation, a boolean function is represented as a product of terms
each of which is a sum of the logical variables of the function as in the example blow.

f (a, b, c) = (a + b)(a′ + b + c′)

As in SOP form, a standard POS should contain each variable in its terms. In this
case, we add the product of the missing variable with itself to the term as shown
below. Note that xx ′ is 0 for a Boolean variable x , thus, the value of the function f
is not changed.

f (a, b, c) = (a + b′)(a′ + c′)
= (a + b′ + cc′)(a′ + bb′ + c′)
= (a + b′ + c)(a + b′ + c′)(a′ + b + c′)(a′ + b′ + c′)

We will now consider deriving POS form from a truth table. Let us consider the
truth table for two variables a and b and an output function f as show in Table9.7.
A row in the last column in this table displays the sum of input literals. A term in
a row is obtained by complementing the input value when this value is 0 and not
complementing it when its value is 0. This column represents all input combinations.
and the terms obtained using this method are called maxterms. A maxterm Mi is
basically the complement of the minterm mi for the same input combination, for
example, m2 = ab′ and M2 = (ab′)′ = a′ + b. Based on this observation, if we find
the product of all maxterms that make the output function f = 0, we find the POS
representation of the function since f = 1 and f ′ = 0 are equivalent based on De
Morgan’s law.

This time we need the product of maxterms since any maxterm that results in 0
will make the function 0 since we will include it in the product. Note that minterms
results in a 1 and maxterms result in a 0 as the output. Thus, representing a function
of three variables as f = ∑

(2, 3, 6) or f = Π(0, 1, 4, 5, 7) are equivalent.

9.1 Boolean Algebras 179

Table 9.7 Truth table of a logical function

a b f Summation terms

0 0 0 a + b

0 1 1 a + b′

1 0 0 a′ + b

1 1 1 a′ + b′

9.1.5 Conversions

A Boolean function in POS form can be converted to a SOP form simply by multi-
plication to result in the sum of products of the terms. For example,

f (a, b, c) = (a + b + c′)(a′ + c)(b + c)

= (aa′ + ac + a′b + bc + a′c′ + cc′)(b + c)

= (ac + a′b + bc + a′c′)(b + c)

= abc + a′bb + bbc + a′bc + acc + a′bc + bcc + a′c′c
= abc + a′b + bc + a′bc + ac + bc

= bc(a + 1 + a′ + 1) + a′b + ac

= bc + a′b + ac

Conversion from SOP to POS form can be done by applying De Morgan’s law
twice. For example,

f (a, b, c) = a′b + abc′ + ac

f ′(a, b, c) = (a′b + abc′ + ac)′

= (a′b)′(abc′)′(ac)′

= (a + b′)(a′ + b′ + c)(a′ + c′)
= (aa′ + ab′ + ac + a′b′ + b′b′ + b′c)(a′ + c′)
= (ab′ + ac + a′b′ + b′ + b′c)(a′ + c′)
= (ab′ + ac + a′b′ + b′)(a′ + c′)
= aa′b′ + aa′c + a′a′b′ + a′b′ + ab′c′ + acc′ + a′b′c′ + b′c′

= a′b′ + ab′c′ + a′b′c′ + b′c′ (using x(1 + y) = x)

= a′b′ + b′c′

f (a, b, c) = (a′b′ + b′c′)′

= (a′b′)′(b′c′)′

= (a + b)(b + c).

180 9 Proofs

9.1.6 Minimization

Let f1 and f2 be two functions in SOP forms. We can state that f1 is simpler than
f2 when f1 has less terms than f2 and it has no more literals than f2; or f1 has less
literals than f2 and it has no more terms than f2. Whenever there is no function that
simpler than a Boolean function f , we say that f is inminimal form or justminimal.

Definition 9.3 (prime implicant) An implicant is a minterm/product in SOP form or
a maxterm/sum in POS form. A fundamental product E is called a prime implicant
of a Boolean function f if E does not contain any fundamental product with this
property.

For example given a function f = ab + bc, abc is not a prime implicant of this
function as shown below, however, ab and bc are prime implicants.

f (a, b, c) = ab + bc

f (a, b, c) + abc = ab + bc + abc

= ab(1 + c) + bc

= ab + bc

Karnaugh Maps
Karnaugh maps (K-maps) method is used to find commonly a minimal disjunctive
form for a Boolean expression. This technique aims to find all prime implicants of
a disjunctive form and the minimal expression is then made equal to the sum of all
these prime implicants. A K-map is shown as a matrix with adjacent entries differing
by one bit position only. This way, any adjacent entries with a 1 can be reduced
to a simpler entry, resulting in a simpler expression. For example, if abc and abc′
are both represented in the map, these two entries can be reduced to ab only since
abc + abc′ = ab(c + c′) = ab. Prime implicants in a K-map are the largest groups
of 1’s and any function that is represented as the sum of its prime implicants is in its
simplest form.

Two Variable K-maps
A two-variable K-map may be formed as in Fig. 9.1. We need to make sure that each
cell in the table differs by one-bit only, thus, minterms are placed accordingly.

A different way of expressing a K-map of two variables a and b is shown in
Fig. 9.2a with the boxes filled directly with minterm literals of the function. The
general idea of simplification using a K-map is to group as many adjacent 1’s as
possible in powers of 2. For any such group, any difference bits corresponding to the
variable can then be omitted.

Each group in a K-map corresponds to a product term. A Boolean function
f (a, b) = a′b′ + ab′ + ab can be represented in such a K-map by writing minterms
that have a value of 1 in the corresponding cells. Note that 0s are not written for
simplicity since we will not use them for simplification in this case. The minterms

9.1 Boolean Algebras 181

Fig. 9.1 2-variable K-map

a’b’ a’b

ab’ ab

0

a

b

0

1

1

{

{

Fig. 9.2 a A two-variable
K-map with minterms b a
function

a

b

a’

b’

a

b

a’

b’

m0 m1

m2 m3

(a) (b)

1

1

1

that have a value of 1 for this function are m0, m2 and m3 which are inserted as 1s
in the K-map of Fig. 9.2b. We then attempt to cover these ones in groups of sizes of
powers of 2 and try to have these groups as large as possible. Overlapping of groups
are possible when they result in more 1s covered. We have two such groups and any
literal that exists in normal and converted form in a group can be discarded when
forming the product term for the group. For the vertical group, variable a can be dis-
carded as it appears in normal and negated forms in this group resulting in term b′,
and the horizontal group has the variable b in both forms resulting in representation
of this group by variable a. The function f is then a + b′ as the sum of these two
groups. Had we written this function without using a K-map,

f (a, b) =
∑

(0, 2, 3)

f (a, b) = a′b′ + ab′ + ab conversion to minterms

= b′(a + a′) + ab reverse distribution

= b′ + ab idempotent law

= a + b′ degenerative effect

we would arrive at the same simplified function but with some Booelan algebra cal-
culations. In general, the following steps should be considered during simplification
of Boolean functions using K-maps.

• We need to generate as few groups as possible to minimize the number of products
in the SOP form.

• Each group should be as large as possible to minimize the number of variables in
its corresponding product term.

• All minterms should be covered.
• Groups may overlap as long as overlapping increases their sizes.
• Minterms may be covered in different ways resulting in different SOP forms.

182 9 Proofs

b

a

c

1

1

1

11

(a) (b)

b

m0 m1 m2m3

m4 m5 m6m7a

c

b

a

c

1

1

1

11

(c)

Fig. 9.3 a A three-variable K-map with minterms b An example function and its simplification c
Another simplification of the same function

Three Variable K-maps
A three-variable K-map is displayed in Fig. 9.3a for three Boolean variables a, b and
c with its minterms. Let us consider simplifying a function f = ∑

(1, 3, 4, 5, 6)
using a three-variable K-map. We first fill all minterms in the table as shown in
Fig. 9.3b and then group 1’s in as large as possible groups of sizes of power of 2
which is displayed.

Note that wrapping around the corners of the table is possible since theseminterms
differ in one bit position only. The upper horizontal group is a′c since these two
variables do not change in this group, the lower horizontal group is ab′ and the
wrapped corner group is ac′ using similar reasoning. The function f is the sum of
these groups as below,

f = a′c + ab′ + ac′

Let us check using laws of Boolean algebra as follows,

f =
∑

(1, 3, 4, 5, 6)

f = a′b′c + a′bc + ab′c′ + ab′c + abc′

f = a′c(b + b′) + ab′(c + c′) + abc′ reverse distribution

f = a′c + ab′ + abc′ idempotent law

f = a′c + a(b′ + bc′) reverse distribution

f = a′c + a(b′ + c′) degenerative effect

f = a′c + ab′ + ac′

9.1 Boolean Algebras 183

(b)

b

a

c

d

1

1

1

1

1

1

1

1

(a)

b

m0 m1 m2m3

m4 m5 m6m7

a

c

m8 m9 m10m11

m12 m13 m14m15

d

Fig. 9.4 a A four-variable K-map, c Representation of a function

to result in the same simplified function. If we cover the groups as in Fig. 9.3c, we
have the following expression,

f = a′c + b′c + ac′

which shows us different coverings may result in different but equivalent simplified
forms of a function. The equivalence of two expressions may be checked by a truth
table.

Four Variable K-Maps
A four variable K-map with minterms is displayed in Fig. 9.4a. As with 2 and 3
variable K-maps, we need to ensure any minterm placed differs by 1 bit with any
adjacent minterm. Let us consider implementing f = ∑

(0, 2, 7, 15, 8, 10, 12, 14)
using a four-variable K-map. Grouping of 1’s is shown in Fig. 9.4b and we can
generate function f in its simplest form based on these groups as follows. Note
that a group with 4 minterms eliminates two variables and a group with 2 minterms
eliminates one variable.

f = ad ′ (wrapped side) + bcd vertical + b′d ′ (wrapped corners) .

9.2 Combinational Circuits

A combinational circuit has a number of inputs and its output is uniquely defined for
each input combination. Such a circuit has no memory; in other words, its output is
dependent only on its current input values but not on any previous input or output
values. A combination circuit is constructed using basic building blocks called gates.

184 9 Proofs

Fig.9.5 a 2-input AND gate,
b 2-input OR gate, c NOT
gate

(b)(a) (c)
Table 9.8 Truth table for OR and AND gates

a b a + b a · b
0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

Table 9.9 Truth table for NOT gate

a a′

0 1

0 0

Table 9.10 NAND-OR equivalence

a b a′ b′ (ab)′ a′ + b′

0 0 1 1 1 1

0 1 1 0 1 1

1 0 0 1 1 1

1 1 0 0 0 0

9.2.1 Gates

The first gate we will consider is the AND gate. It has two or more bit inputs and
its output is formed by logically anding of these inputs as depicted in Fig. 9.5a.
The second basic gate that can be used as the building block of more complicated
combinational circuits is the OR gate shown in Fig. 9.5b. The output of an OR gate
is logical 1 whenever one or both of the input bits is a 1. The NOT gate has one input
bit and simply negates its input as shown in Fig. 9.5c. The truth tables for these basic
gates against possible input bit combinations are depicted in Tables9.8 and 9.9.

Variations of these basic gates are the NAND gate, inverted input AND gate and
inverted input OR gate. The NAND gate is basically an AND gate with an inverted
output as shown in Fig. 9.6a. Applying De Morgan’s law for this gate with binary
inputs a and b yields the following,

(ab)′ = a′ + b′

which means this gate is basically equivalent to an inverted input OR gate. This fact
is depicted in Table9.10 by the equality of the last columns.

9.2 Combinational Circuits 185

Fig. 9.6 a 2-input NAND
gate, b 2-input NOR gate, c
2-input XOR gate

(a) (b) (c)
Table 9.11 NOR-AND equivalence

a b a′ b′ (a + b)′ a′b′

0 0 1 1 1 1

0 1 1 0 0 0

1 0 0 1 0 0

1 1 0 0 0 0

Table 9.12 Truth table for XOR and XNOR

a b a ⊕ b (a ⊕ b)′

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

Fig. 9.7 a 2-input XNOR
gate gate b 2-input inverted
input AND gate, c 2-input
inverted input OR gate

(a) (b) (c)

ANOR gate is basically an inverted outputOR gate as shown in Fig. 9.6b.Applying
De Morgan’s law for this gate results in the following,

(a + b)′ = a′ · b′

which shows that a NOR gate is equivalent to an inverted input AND gate as verified
by the truth table of Table9.11.

The XOR (exclusive-OR) gate has a similar functionality to what we saw for the
compound propositions in Chap.1, its output is 1 only when the inputs are not the
same. The symbol for this gate is shown in Fig. 9.6c, we will show the output of a
2-input XOR gate with inputs a and b as a ⊕ b. The XNOR gate is basically an XOR
gate with an inverted output as shown in Fig. 9.7a where an inverted input AND and
inverted input OR gates are shown in (b) and (c) of the same figure. The truth tables
for XOR and XNOR gates with two inputs are shown in Table9.12.

186 9 Proofs

Fig. 9.8 a ab + bc,
b ab(c + d)

o
o

bc

ab

o

a

b

c

ab+bc

. o

Table 9.13 Truth table for ab + bc

a b c ab bc ab + bc

0 0 0 0 1 1

0 0 1 1 0 1

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 1 1

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 1 1 1

9.2.2 Designing Combinational Circuits

Using these basic gates, we can build more complicated circuitry. We will first con-
sider two-stage circuits in which the output from the first stage is formed in parallel
and fed to the second stage which then produces the output. The output is stabilized
only after the output from the first stage is stabilized. We have two basic forms of
two stage circuits; AND-OR circuits and OR-AND circuits.

9.2.2.1 AND-OR Circuits
Consider the circuit of Fig. 9.8 where 3 inputs a, b and c are fed to this circuit. The
first stage of the circuit has two AND gates which work in parallel to form the outputs
ab and bc. The second stage of this circuit has an OR gate which adds these two
inputs to get ab + bc. Note the use of a dot to indicate that there is a connection
when two wires cross, otherwise, dots are omitted. The truth table for this may be
formed as in Table9.13. This type of arrangement is denoted by AND-OR circuitry
and represents SOP form of a boolean expression conveniently.

Clearly, when constructing such a circuit, we need to have the SOP form in its
simplest form. We can have an algorithm to build a logic circuit for a given boolean
function consisting of the following steps.

9.2 Combinational Circuits 187

Table 9.14 Truth table for f1 and f2

a b c f1 f2

0 0 0 0 1

0 0 1 0 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 1

1 0 1 0 1

1 1 0 1 0

1 1 1 1 1

1. Express the boolean function in SOP form which can be achieved by forming the
truth table of the expression and finding the sum of minterms where the output is
a logical 1.

2. Simplify the expression using K-maps or any other method such as using laws of
and theorems of Boolean algebra.

3. Construct the logic circuit in AND-OR stages.

Example 9.3 Consider the truth table of two Booelan functions f1 and f2 of three
variables a, b and c shown in Table9.14. Construct the logical circuit to implement
functions f1 and f2.
Solution: Note that we have two output functions to consider. Let us first form the
SOP expressions for f1 and f2 using the minterms.

f1 =
∑

(3, 6, 7) = a′bc′ + ab′c′ + ab′c + abc

Simplification using laws of Boolean algebra yields,

f1 = a′bc + ab(c + c′)
= a′bc + ab

= b(a + a′c′)
= b(a + c′)
= ab + bc′

Similarly,

f2 =
∑

(0, 4, 5, 7) = a′b′c′ + ab′c′ + ab′c + abc

= b′c′(a + a′) + ac(b + b′)
= b′c′ + ac

The AND-OR circuit to realize functions f1 and f2 is depicted in Fig. 9.9.

188 9 Proofs

ac+b’c’

ab+bc’

.

.

f2

f1

bc’

ac

.
.

.

o

oo
o

c

b
ab

o

a

b’c’

Fig. 9.9 Realization of f1 and f2 of Example 9.3

a+c’

b’+c
o

a+b

.

.o

o

o

.

.

c

b

a

(a+b)(b’+c)(a+c’)

Fig. 9.10 OR-AND circuit example

9.2.2.2 OR-AND Circuits
This type of circuitry is characterized by a number of OR gates in the first stage
and the outputs of these gates are fed to a multiple input AND gate as depicted
in Fig. 9.10. There are 3 logical inputs a, b and c and the output is the product of
the combinations of these sums. The truth table of the function represented by this
combinational circuit is shown in Table9.15.

Example 9.4 Find the expression for the logical function f = (a+b+c′)(a′+b+c).
Solution: We can implement this function directly from this expression and the
resulting circuit in POS form is depicted in Fig. 9.11.

9.2 Combinational Circuits 189

Table 9.15 Truth table for ab + bc

a b c a + b b′ + c a + c′ f

0 0 0 0 1 1 0

0 0 1 1 1 0 0

0 1 0 1 0 1 0

0 1 1 1 1 0 0

1 0 0 1 1 1 1

1 0 1 1 1 1 1

1 1 0 1 0 1 0

1 1 1 1 1 1 1

.
f

.
.o

(a+b+c’)
o
o

c
b

(a’+b+c)

o
a

Fig. 9.11 Realization of f of Example 9.4

However, simplifying the expression results in a simpler circuit in general. Thus,

f = (a + b + c′)(a′ + b′ + c)

= aa′ + ab + ac + a′b + bb + bc + a′c′ + bc′ + cc′

= b(a + a′) + b(c + c′) + b + ac + a′c′

= b + ac + a′c′

This simplification provided SOP form. Double negation provides POS form in
the form of a complemented output as below.

f = b + ac + a′c′

f ′ = (b + ac + a′c′)′

= b′ · (ac)′ · (a′c′)′

= b′ · (a′ + c′) · (a + c)

f = (b′ · (a′ + c′) · (a + c))′

The circuit to implement this simplified POS form of the expression as OR-AND
gate configuration is depicted inFig. 9.12.Wehave2-inputORgates in this realization

190 9 Proofs

f’

(a’+c’)

(a+c).

.o

oo
o

c

b
a

f

Fig. 9.12 Realization of f of Example 9.4
abc

bd’

o
o .

b’+c’

o

abcd’

o
o

d

c
b

a

Fig. 9.13 A multistage combinational circuit

of the circuit which are simpler to construct than 3-input ones, however, we have a
3-input AND gate in the second stage now.

9.2.2.3 General Circuit Layout
We can have a logic circuit consisting of several stages with a combination of gates
in general. Figure9.13 displays such a circuit with four inputs a, b, c and d. The
final output is the product of the four inputs which means a four-input AND gate
will realize the same function. A four-input gate is more difficult to construct than a
two or three input one, however, this circuit has three stages excluding the inverters,
with each stage contributing to the delay in obtaining a stabilized output.

9.2.3 Arithmetic Circuits

Circuits to perform arithmetic operations on binary data can be formed using simple
logic gates. Let us consider adding two n-bit binary numbers by first examining
addition of two bits. The truth table for this operation is shown in Table9.16 where
S is the sum and C is the carry from the addition.

A close look at this table reveals that S can be realized by an XOR gate and C
by an AND gate as depicted in Fig. 9.14. This circuit is called a half-adder since it
performs addition of two least significant bits of two n-bit binary numbers. For any

9.2 Combinational Circuits 191

Table 9.16 Half-adder truth table

a b S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

o o

o C

S
.

.b
a

o

Fig. 9.14 Half-adder circuit

Table 9.17 Truth table for full-adder

a b Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

other bit addition of two binary numbers, we need to input carry bits from lower bit
positions. Thus, the full-adder performs addition of two bits by taking an input carry
bit. The truth table for this operation is depicted in Table9.17 with Cin as input carry
bit and Cout as the output carry bit.

A full-adder circuit can be realized by cascading two half-adders as shown in
Fig. 9.15.

192 9 Proofs

o

o

o
o

HA

C

C HA

out

in

S
.

.

.

.b
a

o

Fig. 9.15 Full-adder circuit

o

o
FA

o
o

.

..
.
..

HA

FA

x0

y0

x1
y1

o
o

o
o

o
S

C

ni_C ni_C

C_in

C_out
o

z0

z1

z2o
o
o

FAx2
y2

x_(n-1)

y_(n-1)

z_(n-1)

C_out
. . .

Fig. 9.16 Addition of two n-bit numbers

A logic circuit to add to n-bit numbers x and y is shown in Fig. 9.16. The carry-out
bit from each full-adder (FA) stage is fed to the carry-in bit of the next full-adder
stage. Note that a half-adder (HA) is used for the least significant bit addition of
two numbers since we do not have any preceding stage, thus, there is no carry-in bit
input.

9.3 Review Questions 193

9.3 Review Questions

1. What is meat by Boolean algebra?
2. State the idempotent and identity laws of Boolean variables.
3. How is the dual of a Boolean law obtained?
4. Describe the SOP and POS representations of a Boolean function.
5. What is the basic principle of K-maps?
6. What are the basic logic gates?
7. What are the steps of realizing a Boolean function represented in SOP form using

logic circuitry?
8. What are the steps of realizing a Boolean function represented in POS form using

logic circuitry?
9. What is a half-adder and a full-adder? Where can we use these circuits?

9.4 Chapter Notes

This chapter comprised two related sections: Boolean algebra and combinational
circuits. Boolean algebra is defined on a set of binary variables with operations +,
· and inversion. We reviewed basic laws of Boolean algebra and Boolean functions
which may be represented as sum-of-products (SOP) and product-of-sums (POS)
forms. K-maps can be used effectively to simplify a Boolean function of 2, 3 and 4
variables.

In the second part of the chapter, we reviewed combinational circuits which pro-
vide an output dependent only on the current values of their inputs. We described
basic building block of combinational circuits which are OR, AND and NOT gates.
Various other gates can be formed using these gates and logic circuits are structured
using the basic gates. Logic circuits may be built using AND-OR circuits which are
formed by AND gates in the first stage and an OR gate possibly with a number of
inputs greater than 2 in the second stage. An AND-OR gate circuitry conveniently
represents SOP description of a logical function. A simple procedure to build a logic
circuit to represent a Boolean function is to form the SOP expression of the function,
to simplify this expression and use AND-OR circuitry that provides the function at
its output. A Boolean function may be represented in simplified POS form, and an
OR-AND circuitry may be used to implement this function in POS form. Lastly,
we reviewed the half-adder circuit which inputs two binary bits and produces their
sum and a carry bit output. The full-adder circuit has three bit inputs; two bits are
the binary digit values of the number to be added and the third bit is the carry-in

194 9 Proofs

bit from a preceding digit of the binary number to be added. Cascaded full adders
may be used to add two n-bit binary numbers. In practice, more complicated logic
circuits are used to add binary numbers since an n-stage full adder circuit built from
half-adders needs delays dependent on n to have the output stabilized. The output
of a sequential circuit depends on the current value of its inputs and its current state
which are the basic building blocks of storage elements in a computer.

Exercises

1. Simplify the following Boolean functions using laws of Boolean algebra.

a. A = abc + abc′ + a′bc′ + a′b′c′.
b. B = ab + ab′ + a′bc′ + a′b′c′.

c. C = (a + b′)(bc′) + (ab + c)ac′.
d. D = ab + (ab′c)b + ab′.

2. Convert the following Boolean function to standard SOP form.

f (a, b, c) = a′bc + ac + bc + c′

3. Convert the following Boolean function to standard POS form.

f (a, b, c) = (a′ + b + c)(a + b′)(a + b + c′)(b + c′)

4. Convert the following SOP representation of a Boolean function to POS repre-
sentation.

f (a, b, c) = abc′ + ab′c + abc + b′c

5. Convert the following POS representation of a Boolean function to SOP repre-
sentation.

f (a, b, c) = (a′ + b + c)(a + b′ + c)(a + b′ + c′)(a + b + c′)

6. Work out the SOP form of the function f (a, b, c) = ∑
(1, 3, 5, 6) using its

minterms and simplify using K-maps.
7. Work out the POS form of the function f (a, b, c) = Π(0, 2, 5, 7) using its

maxterms and simplify using K-maps.
8. Provide the AND-OR circuit for a function f (a, b, c) = ∑

(1, 2, 5) by writing
its SOP form first and then simplifying.

9. Provide theOR-AND circuit for a function f (a, b, c) = Π(0, 2, 3, 5) bywriting
its POS form first and then simplifying.

10. Find the sum of two 8-bit binary numbers 1101 1001 and 0101 1110.

9.4 Chapter Notes 195

11. Design a full adder circuit by forming the truth table for the sum and carry-
out bits, drawing the K-maps for these outputs, minimization and drawing the
equivalent combinational circuit.

Reference

1. Biography in Encyclopaedia Britannica. http://www.britannica.com/biography/George-Boole

http://www.britannica.com/biography/George-Boole

10Introduction to theTheory of
Computation

Theory of computation deals with developing mathematical models of computation.
This area of research is divided into three subareas: complexity theory, computability
theory and automata theory. We mostly review basic structures of automata theory
which are languages and finite state automata in this chapter. A language is defined
over a set of symbols called an alphabet. A finite state machine is a mathematical
tool to model a computing system. Unlike a combinational circuit, a finite state
machine has a memory and its behavior and output depends on its current input and
its current state. A finite state automata is a finite state machine with no outputs;
instead, it has final states called accepting states. A finite state automata can be used
to recognize a language conveniently. We review languages, finite state machines,
finite state automata, language recognition in this chapter and conclude the first part
with the Turing machine named after Alan Turing, which is a more general type of
a finite state machine. We then have a short review of complexity theory with the
basic complexity classes.

10.1 Languages

An alphabet Σ is a finite set of symbols such as {a, b, . . . , z} or {0, 1}. A string over
an alphabetΣ is a finite sequence of symbols ofΣ . For example, 1101001 is a string
over the alphabet Σ = {0, 1} and accbba and babaaac are strings over the alphabet
Σ = {a, b, c}. The set of all strings over an alphabet Σ is denoted by Σ∗ and the
empty string is denoted by ε.

A string w over an alphabet Σ is shown by w ∈ Σ∗ since w is generated from the
symbols of Σ and thus should be a subset of the set Σ∗; the length of w is shown by
|w|. The set of all strings with length n over an alphabet Σ is denoted by Σn . For
example, let Σ = {a, b}, then Σ2 = {aa, ab, bb, ba}.

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_10

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_10

198 10 Proofs

Formally, a language L is a subset of the strings in Σ∗ shown by L ∈ Σ∗. A
language can be specified using the set builder notation; for example, if Σ = {0, 1},
then the following define various languages.

• L1 = {w||w| = 2}. Based on this definition, L1 = {00, 01, 10, 11}
• L2 = {w||w| = 3 and w ends with “11” }. Thus, L2 = {011, 111}
• L3 = {w||w| = 4 and w contains “10” as a substring}. Therefore, L3 = {0010,
0100, 0101, 0110, 1010, 1100, 1101, 1110}

Let us define the following operations on two languages L1, L2 ∈ Σ∗ by letting
L1 = {a, bc, c} and L2 = {a, b, cc} for all examples.

• Union: The union of languages L1 and L2 is the set union operation. For example,
L1 ∪ L2 = {a, b, c, bc, cc}.

• Concatenation: This operation is like the cartesian product of two sets without the
commas in elements. Formally,

L1 ◦ L2 = {xy ∈ Σ∗|x ∈ L1, y ∈ L2}
For example, L1L2 = {aa, ab, acc, bca, bcb, bcc, ca, cb, ccc}. The concatena-
tion symbol ◦ is frequently omitted so that L1 ◦ L2 is written as L1L2.

• Star: The star of a language L is denoted by L∗ which contains all
words that can be broken down into words that are included in L . For example,
L∗
1 = {a, aa, a . . . a, abc, aabcc, . . .}

We are now ready to define a regular language

Definition 10.1 (regular language) The set of regular languages over an alphabet
let Σ is defined as follows.

• The empty set Ø is a regular language.
• The language consisting of the empty string ε is a regular language.
• Any symbol a ∈ Σ is a regular language.
• If L1 and L2 are regular languages, L1∪L2, L1L2, L∗ and L∗

2 are regular languages.

Based on this recursive definition of a regular language, we can generate a regular
language starting from the alphabet and using the operations described.

10.2 Finite State Machines

A combinational circuit we have reviewed in Chap.9 has no memory, the output of
such a circuit depends on its current inputs only. A finite state machine (FSM) is
a mathematical model for representing a computing system with little memory. Its
behavior depends on its current inputs and its current state. For example, ringing of a

10.2 Finite State Machines 199

Fig. 10.1 FSM diagram of
an odd parity checker

s0 s1

0/0
1/1

1/0

0/1

bell at the end of a class in a school means taking a break but the same ringing at the
end of the break means going in the classroom. Thus, the same input may produce
a different output depending on the current state of the system in a FSM.

Definition 10.2 (finite state machine) An FSM M is a 5-tuple:

• I : A finite set of inputs (input alphabet)
• S: A finite set of states
• O ⊂ S: A finite set of outputs (output alphabet)
• s0 ∈ S: An initial state in S
• F : S × I → S: A transition function that maps the cartesian product of S and I
to S.

An FSM is commonly represented by a diagramwith circles representing the pos-
sible states and arcs showing the transitions between the states. This representation
is a directed graph as we will review in Part II. Each arc is labeled with possible
inputs and the produced outputs separated by “/”. Let us consider an FSM that inputs
binary strings and counts the numbers of 1’s in an input string. If the current count is
an odd number, the FSM outputs 1 otherwise its output is 0. This machine is called
an odd parity checker and may be used for error detection in digital transmissions.
The state diagram of this FSM is depicted in Fig. 10.1.

The definition parameters for this FSM are as follows: I = {0, 1}, S = {s0, s1},
O = {0, 1}, the initial state is s0 and the transition function F is (s0, 0) → s0,
(s0, 1) → s1, (s1, 0) → s1, (s1, 1) → s0. Let us consider an input sequence of
0110110 from left to right to this FSM. The state changes will be s0, s1, s0, s0, s1,
s0, s0 respectively.

Example 10.1 Let us consider a vending machine that provides chocolates worth
20 cents. For simplicity, we will assume it accepts 5 or 10 cent coins only. It has two
outputs: Release (R) to release chocolate and Change (C) to give back change. The
FSM diagram of this machine with four states is depicted in Fig. 10.2. States A, B,C
and D correspond to 0, 5, 10, and 15 cent states and the output in negated form such
as R′ or C ′ means that output is not activated. Note that we do not need a 20 cent
state as depositing such amount means we need to get back to state A after releasing
the chocolate.

200 10 Proofs

A B

D

5/R’C’

5/R’C’

5/R’C’

5/RC’ 10/R’C’

10/RC’

10/RC

10/R’C’E

Fig. 10.2 FSM diagram for vending machine

Table 10.1 FSM table for the vending machine

5 10

A B, R′C ′ D, R′C ′

B D, R′C ′ E , R′C ′

D E , R′C ′ A, RC ′

E A, RC ′ A, RC

Let us now form the FSM table with 4 states and 3 inputs based on this diagram.
The entries in the table show the next state and the output. The table representation
of an FSM is convenient for coding the FSM. Let us denote the states of the vending
machine by 1, 2, 3 and 4 and the 5 and 10 cent inputs by 1 and 2. The FSM table may
be represented by an array and each array entry of Table10.1 can be assigned to the
address of a procedure that will perform the required action. For example, procedure
p[1, 1] needs to assign current state to B (2) and set outputs R = 0, C = 0. The
algorithm for the FSM then consists of few lines of code as shown in Algorithm10.1.
The FSM array (FSM_tab) has n_states rows which is the number of states, and
n_inputs which is the number of inputs. In the vending machine example, these
parameters are 4 and 2 respectively.

10.2 Finite State Machines 201

Algorithm 10.1 FSM algorithm
1: FSM_tab[n_states, n_inputs] ← addresses of procedures
2: current_state ← 0
3: sum ← 0
4: input num
5: while true do
6: input in
7: call the procedure in FSM[current_state, in]
8: end while

10.3 Finite State Automata

A finite state automaton (FSA) is an FSM without any output but with a set of
terminating states called the accepting states.

Definition 10.3 (finite state automaton) A finite state automaton (FSA) F is a 5-
tuple:

• Σ : A finite alphabet,
• S: A finite set of states,
• s0 ∈ S: An initial state in S
• δ : S × Σ → S: A transition function,
• F ⊂ S: A finite set of accepting states

The automaton M is expressed as M(I, S, Y, s0, F). Accepting states which are
denoted by double circles are the places that FSM stops running.

10.3.1 Analysis

Let us consider the FSA M of Fig. 10.3. The parameters for M are as follows:
Σ = {0, 1}, S = {s0, s1, s2}, A = {s2}, the initial state is s0 and the transition
function δ is (s0, 0) → s0, (s0, 1) → s1, (s1, 0) → s2, (s1, 1) → s1, (s2, 0) → s1,
(s2, 1) → s2. Note that we do not have any outputs. When we trace possible inputs,
it can be seen that M reaches the accepting state for inputs 010, 10, 110, 11110 or
any input that contains 10 consecutively. Thus, it detects 10 sequence by reaching
its accepting state. When the sequence 01111 is input to this FSA, its final state is s1
which is not its accepting state. When this happens, we say M rejects 01111.

The FSA table for this automaton is displayed in Table10.2 with each entry show-
ing the next state of the FSA when the input shown in the columns is received.

202 10 Proofs

s0 s1 s2
1

0 1 1
0

0

Fig. 10.3 A finite state automata

Table 10.2 State table for FSA of Fig. 10.3

0 1

s0 s1 s1

s1 s1 s1

s2 s1 s1

s0

s1

s2

1

0

1
1

0

0

s3 0

1

Fig. 10.4 A finite state automaton

Example 10.2 Consider the state diagramof the FSAM of Fig. 10.4. The parameters
are Σ = {0, 1}, S = {s0, s1, s2, s3}, F = {s1, s3} and the initial state is s0. It has two
accepting states as s1 and s3 shown by double circles.

The state table for M is depicted in Table10.3. A close look at how M behaves
reveals that inputs 0, 00, 010, …which start with a 0 and end with a 0 cause it to
reach the accepting state s3. Similarly, input strings 1, 11, 101, …that start with a 1
and end with a 1 are accepted at state s1. Note that this FSA will not accept input
strings 1000, 0101 which begin and end with different symbols.

10.3 Finite State Automata 203

Table 10.3 State table for FSA of Fig. 10.4

0 1

s0 s3 s1

s1 s2 s1

s2 s3 s1

s3 s3 s2

s0 s1 s2
1

0 1
1

0
s3

0

0

1

Fig. 10.5 A finite state automaton

Table 10.4 State table for FSA of Fig. 10.5

0 1

s0 s0 s1

s1 s2 s1

s2 s2 s3

s3 s2 s3

10.3.2 Designing Finite State Automata

Let us now consider working the other way around, given a pattern that an FSA M
accepts, how can we design M? Designing M means forming the state diagram and
possibly the state table in this sense. Consider an FSA M that should accept a binary
string which starts with a binary 1 and ends with a binary 1 and has at least one
0 in between the first and last symbols. We can draw the state diagram of M as in
Fig. 10.5.

Tracing through the states of M , we can see that it waits for at least one 1 to move
to state s1, and it gets locked at that state until a 0 symbol is received in which case
it moves to state s2. This time it waits for a 1 to reach the accepting state of s3. Some
example input strings accepted by M are 101, 1101, 11000111, …. The state table
for M is depicted in Table10.4.

204 10 Proofs

Fig. 10.6 An example FSA

s0 s1

a
b a

b

10.4 The Relationship Between Languages and Automata

An FSA accepts an input string if the input string tracing through the FSA leaves
the FSA in an accepting state. The set of strings accepted by an FSA M is denoted
by the language L(M) accepted by that FSA or the language of the FSA. Note that
L(M) ⊆ Σ∗. A formal definition of the language of a FSA is as follows.

Definition 10.4 (language) Let M = (Σ, S, s0, δ, F) be a FSA and let w =
w1w2 . . .wn be a string over I . A sequence of states q0, q1, . . . , qn are defined as
follows.

• q0 = s0,
• qi+1 = F(qi ,wi+1), for i = 0, 1, . . . , n − 1.

If qn ∈ A, then M accepts w, if qn /∈ A, then M rejects w.

Informally, if M arrives at any of the accepting states at the end of the input string,
M accepts w. If none of the states are reached at the end of the input w, M rejects
w. Now, we have an alternative definition of a regular language.

Definition 10.5 (regular language) A language is called a regular language if there
exists a finite automaton that recognizes it.

Let us consider the simple FSA M of Fig. 10.6 with Σ = {a, b}, S = {s0, s1},
F = {s1} and s0 as the initial state.

The state table for this FSA is shown in Table10.5. Some of the possible inputs
to reach the accepting state s1 are ba, bba, bbba; in fact any input string that ends
with a a. Thus, we can specify the language for M as follows,

L(M) = {w|w ends with a}

By the definition of a regular language, in order to prove that a language is regular,
we need to find an FSA M that accepts it. Let us attempt to design a FSA M that
accepts a binary string that contains 010 as a substring. We note the following while
considering the design:

• M should stay in the initial state until the first 0 is encountered.

10.4 The Relationship Between Languages and Automata 205

Table 10.5 State table for FSA of Fig. 10.3

a b

s0 s1 s0

s1 s1 s0

Table 10.6 State table for FSA of Fig. 10.3

a b

s0 s1 s0

s0∗ s1 s01

s01 s010 s0

s010 s0∗ s0

Fig. 10.7 The FSA that
accepts 010 as a substring

s0 s0*

s01s010

0

1 1

0

0

0

1

• When the first 0 is detected, it should go to state s0∗ meaning a 0 is detected.
• When a 1 is detected in state s0∗, it should go to state s01 to mean a 01 in sequence
is detected.

• When a 0 is detected in state s01, it should arrive at the receiving state s010 to mean
a 01 in sequence is detected.

Note that we walked through the legitimate states to reach the accepting state.
The state table based on the foregoing logic is depicted in Table10.6. We can now
form the state diagram of M as shown in Fig. 10.7.

206 10 Proofs

s0 s1 s2

0,1 1
0

0,1
e,1

Fig. 10.8 Nondeterministic finite state automata example

Table 10.7 State table for FSA of Fig. 10.8

0 1 ε

s0 s0 {s0, s1} s1

s1 s2 s1 –

s2 s2 s2 –

10.5 Nondeterministic Finite State Automata

The finite state automata we have reviewed until now works by receiving an input
andmoving to the next state based on the value of the input. The next state accessed is
distinct and thus, this type of automata is termed deterministic finite state automata
(DFSA). Nondeterministic finite state automata (NFSA) is basically a finite state
automata with one important difference; the next state when an input is received
may be more than one state. Consider the NFSA of Fig. 10.8, notable differences
from a DFSA are as follows: transition from state s0 when a 1 is received is either
to state s1 or to s0; the existence of an input ε label of transaction from set s0 to
s1 means this transition may take without any input and the accepting state has no
outward transitions meaning once NFSA reaches that state, it stays there. Let us
form the state table for this NFSA as in Table10.7. Note the use of ε as an input and
next states consisting of more than one state also, when an input is not allowed at a
state, we have “–” symbol or not applicable (NA) entry in a state table. An important
question to be answered in such an automaton is how it will proceed, for example,
when it receives a 1 at state s0. The basic operation of a NFSA M is performed by
the following steps [1].

• When there are more than one choice, M copies itself into multiple copies and
executes all of these copies in parallel.

• Each copyofM when confrontedwithmultiple choices, performs as in the previous
step.

• When the next input at a state s in a parallel running copy of M is not contained in
any of the transactions from s, that copy is terminated along with the branch that
contains it.

• If any of the running copies of M reaches an accepting state at the end of the input
string, NFSA accepts the string. Notethat there should be at least one such branch
to have M accept the input string.

10.5 Nondeterministic Finite State Automata 207

Fig. 10.9 Tree diagram for
the NFSA of Fig. 10.8

1

0

1

s0

s1s0

s1s0

s0

s1

s0

1 1 1

s2s2

0 0 0

0

1

1

0

T1 T2T3

Let us implement this procedure to the NFSA M of Fig. 10.9 using a tree showing
all branches of possible parallel executions starting from the initial state when a
binary string 0110 is received.

The automaton M starts running as the main thread T1 from the initial s0 state
and when the first symbol 0 is received, it stays at this state. The second symbol is a
1 which causes M to replicate itself and start another thread T2. Receiving another
1 for T1 causes it to replicate itself to thread T3 and T2 stays in state s1 with this
input. When the final symbol 0 is received, T1 stays at state s0, T2 and T3 both arrive
at the accepting state s2 and M terminates. Thus, the input 0110 is accepted by M ,
however, it can be seen that input string 0111 will not be accepted by M as we need a
final 0 to reach state s2. A closer inspection reveals that M accepts any binary string
that starts and ends with a 0 and has at least one 1 in between the 0s. We can now
define a nondeterministic finite state automaton formally as follows.

Definition 10.6 (nondeterministic finite state automaton) A nondeterministic finite
state automaton (FSA) F is a 5-tuple:

• Σ : A finite alphabet,
• S: A finite set of states,
• s0 ∈ S: An initial state in S
• δ : S × Σε → P: A transition function,
• F ⊂ S: A finite set of accepting states

208 10 Proofs

where Σε = Σ ∪ {ε}. Note that the differences from a DFSA are the transition
function may take the empty string ε as the input and it may transfer the state of the
machine to a number of states, not only to one distinct state as in DFSA. DFSAs
and NFSAs are equivalent as they both support the same class of languages [1]. The
class of regular languages is closed under the union and star operations.

10.6 Regular Expressions

A regular expression is a statement constructed from regular operations. Consider
the regular expression,

(0 ∪ 1) ◦ 1∗

The value of this expression is a language that contains all strings that start with 0 or
1 followed by any number of 1s, for example 01111 or 1111111. We have the basic
concatenation (◦) which is commonly omitted and star (*) regular operations used
in this expression. A formal definition of a regular expression is as follows.

Definition 10.7 (regular expression) A regular expression R can be any of the fol-
lowing,

• a ∈ ∑

• ε,
• Ø
• The union of two regular expressions,
• The concatenation of two regular expressions,
• The concatenation of a regular expression.

Some examples of regular expressions over the alphabet
∑ = {0, 1} and the

language L they describe are as follows.

• 0∗: L does not contain any 1s.
• (0 ∪ 1)(0 ∪ 1): L contains all strings of length 2. L = {00, 01, 10, 11}. Note that
L is finite in this case.

• 0∗10∗: L contains a single 1, that is, L = {010, 0010, 01000, . . .}.
• (0 ∪ 1)∗1(0 ∪ 1)∗: L contains at least one 1, L = {010, 1110, . . .}.
• (0 ∪ 1)∗111: L ends with three consecutive 1s. For example L = {0111,
0110111, . . .}.

• (00)∗: L contains even number of 0s. For example, L = {00, 0000, 000000, . . .}.
• (0∪1)∗1(0∪1)(0∪1): L contains a 1 as the third symbol from end. For example,
L = {0111, 01000100, 0101100, . . .}.

Regular expressions and finite state automata are equivalent, in other words, a
NFSA describes a regular language. A regular expression is converted to a NFSA

10.6 Regular Expressions 209

e0 1

0

1

0

01

1

e0 1

e

e

e

1

Fig. 10.10 Tree diagram for the NFSA of Fig. 10.8

simply by providing parallel paths for the union operation and cascading the operands
for the concatenation operation. The star operation is represented by feedback loops
from the accepting states to the beginning states.

Example 10.3 Find the NFSA representation of the regular expression 01∪1∗ with
the alphabet

∑ = {0, 1}.
Solution: We will start from the basic operands of this expression to form the NFSA
as shown in Fig. 10.10. First, 0 and 1 transitions are formed and then these are
concatenated. The union operation requires forking and the star operation means we
need to get back to initial state. Note that transitions labeled by ε are automatically
performed.

10.7 TuringMachines

The Turing machine (TM) introduced by Alan Turing is a simplified model of a real
computer [3]. It is basically a DFSA with an infinite memory called tape. The inputs
to TM are the cells on the tape and the tape head can read and write a single cell at
a time. Each cell contains a symbol from an alphabet and a cell that has not been
written before is assumed to contain the blank symbol �.

210 10 Proofs

s3

1 10 0 0

Fig. 10.11 A Turing machine

A TM can both write to and read from the tape and the read-write head can move
both to left and right. A TM has accept and reject states and unlike a FSA, it does
not wait until the end of string, a TM simply halts when it enters one of these states.
It may never enter one of these states and may run forever in an infinite loop. At each
step, a TM,

• Reads the symbol from the cell under the read head,
• Writes a symbol to the tape cell as specified by the transition function δ,
• Moves the read head one cell to the left or to the right, as specified by δ function,
• Changes state as specified by the transition function δ.

A TM initially contains the input string and the empty symbols in any other cell
of the tape. A TM at state s3 with a control unit is depicted in Fig. 10.11. Depending
on the current read symbol from the tape, the TM may change its state, move the
head left or right and may write to the cell. If the head is in the initial position and
needs to move left, it stays in the initial position.

A TM has two alphabets, Σ where all input strings are written in and a tape
alphabet � where Σ ⊆ �. The formal definition of a TM is as follows.

Definition 10.8 (Turing machine) A TM is a 7-tuple:

• S: A finite set of states,
• Σ : A finite input alphabet,
• �: A finite tape alphabet where � ∈ � and Σ ⊆ �,
• δ : S × � → S × � × {L , R}: A transition function,
• s0 ∈ S: The initial state in S
• sacc ∈ S: The accept state in S
• srej ∈ S: The reject state in S

A configuration of a TM is the union of the input string and the current state. For
example,

1001s30110

represents the configuration C in which tape is 10010110, the current state is s3 and
the head is currently on the symbol 0 shown in bold. Moving from configuration Cx

10.7 Turing Machines 211

Fig. 10.12 A Turing
machine basic state
transition

s1 s2

X --> Y,R

Fig. 10.13 A TM that adds
a bit to a string to have odd
parity

E O

0 / 0,R 0 / 0,R

1 / 1,R

1 / 1,R

/ 1,R

/ 0,R

P

U

U

toCy is achieved by the transition function. A basic state transition of a TM is shown
in Fig. 10.12 where TM reads symbol X under the tape head, replaces it with symbol
Y , changes its state from s1 to s2 and moves the head to the right. Changing state is
shown in equation form by δ(s1, X) = (s2, Y, R).

An accepting configuration of a TM is a configuration in which the state of this
configuration is the accept state and the state of a rejecting configuration is a reject
state. The initial condition of a TM is that the whole string is present in the TM
preceded and followed by infinite blank symbols. A TM accepts an input string if
it enters an accept state, halts if it reaches halt before the end of the string and runs
forever if these two conditions are not encountered.

Example 10.4 Construct a TM that adds a bit to an input string to have odd parity
Solution: The alphabets are

∑ = {0, 1}, � = {0, 1, �}, states are E (even), O (odd)
and P (parity added accepting state) and the initial state is E . The state diagram of
this TM is similar to that of Fig. 10.1 but we need to add a 0 or a 1 to the end of the
string when a � is encountered as shown in Fig. 10.13. The tape head always moves
to the right and alternates between states E and O when a 1 is read until the blank
symbol is detected. Note that there is no reject state of this TM.

Example 10.5 Design a TM M that accepts the language L = {0n1n|n ≥ 1}.
Solution: We first define the high level description M . It should mark 0s and 1s after
0s but it has to ensure that for every 0 power, there should be a power of 1. The
alphabets are Σ = {0, 1} and � = {0, 1, X, Y, �}. The algorithm for M consists of
the following steps:

212 10 Proofs

0 / X,R
0 / 0,R

Y / Y,R

Y / Y,R

1 / Y,L

0 / 0,L

Y / Y,L

Y / Y,R

X / X,R

s0 s1

s2

s3 s4

B / B,R

Fig. 10.14 A TM that accepts the language 0n1n

1. Mark the first unread 0 with X , move right.
2. Move right until the first unread 1 and mark it with Y .
3. Move left until the last marked Y and then move one symbol to the right.
4. If the next position is a 0 then goto 1. Otherwise, move right all along the input

string check if if there are unmarked 1s. If not, goto the next blank symbol and
accept.

The state diagramofM is depicted inFig. 10.14withfive states {s0, s1, s2, s3, sacc}.
State s3 is a stable state that in which 0n1n pairs are detected and when a � symbol
is read at this state, the accept state sacc is entered. Let us check the configuration
sequence of M for the input string 0011. The tape contains 0011� initially and M
and he tape head is at the leftmost position under the first 0. The following is the list
of configuration transitions of M for this input:

s0011; Xs1011; X0s111; Xs20B1; s2X0Y1; Xs00Y1; XXs1Y1; XXYs11;
XXs2YY ; Xs2XYY ; XXs0YY ; XXYs3Y ; XXYYs3�; XXYY � sacc�

The state table for M is depicted in Table10.8.

10.8 Complexity Theory

An optimization problem is a problem that we want to obtain the best solution, on
the other hand, we provide an instance of a problem and expect an answer as yes or
no in decision problems. Many algorithms we have seen so far have an execution

10.8 Complexity Theory 213

Table 10.8 State table for M

0 1 X Y �
s0 (s1, X, R) – – (s3, Y, R) –

s1 (s1, 0, R) (s2, Y, L) – (s1, Y, R) –

s2 (s2, 0, L) – (s0, X, R) (s2, Y, L) –

s3 – – – (s3, Y, R) (s4,�, R)

s4 – – – – –

time expressed by O(nk) where n is the input size and k is an integer greater than
or equal to 0, for example, finding the maximum value of an array is performed in
O(n) time. Such algorithms are said to be in the class P.

Definition 10.9 P is the set of all decision problems for which there is a polynomial-
time algorithm.

A certificate of an algorithm is one instance of all possible inputs to a problem.
For example, when we want to find the maximum value stored in an integer array,
a sample value presented to the algorithm is a certificate. A certifier or a verifier is
an algorithm that tests whether a given certificate provides a yes or no answer to a
given problem. For example, let us assume we need to test whether a given integer
m is greater than or equal to all integer values stored in an array. The integer m is
the certificate and a simple procedure that runs a for loop comparing each value of
the array with m is the certifier as shown in Algorithm10.2. This algorithm runs in
O(n) time, thus, it is in P.

Algorithm 10.2 A Certifier
1: procedure Certifier_Max(m: integer, A[n]:integer)
2: for i = 1 to n do
3: if m < A[i] then
4: return no
5: end if
6: end for
7: return yes
8: end procedure

Definition 10.10 (NP) Nondeterministic Polynomial-time (NP) is the set of all de-
cision problems that have a polynomial-time certifier.

The problem we have described has a certifier in P, thus it is in NP. Essentially,
all of the problems in P have certifiers running in polynomial time and hence we

214 10 Proofs

(a) (b)

Fig. 10.15 a A maximal independents set of a graph G, b The vertex cover of the same graph

can deduce P ⊆ NP. It is not proven until now whether P = NP but the basic
understanding is that this equality does not hold.

10.8.1 Reductions

A computational problem B can be reduced to a problem A in polynomial time in
various cases meaning solving problem B is at the same level of difficulty as solving
problem A. This relation is shown as B ≤p A and means if problem A can be solved
in polynomial time, problem B can be solved in polynomial time. It also means if A
can not be solved in polynomial time, B can not be solved in polynomial time either.

An independent set of a graphG = (V, E) is a set I ∈ V such that no two vertices
in I are adjacent. Let us consider the independent set problem IND which is to find
whether a graph G contains an independent set of size greater than or equal to k for
k > 0. Another question, the vertex cover problem VCOV for a graph G = (V, E)

is stated as forming V ′ ∈ V with order less than or equal to k for k > 0 such that
any edge (u, v) ∈ E has at least one endpoint in V ′. We claim these two problems
are equivalent and thus need to show I N D ≤p VCOV . Let I be an independent
with order k of a graph G = (V, E) and V ′ = V − I . There is no edge (u, v) ∈ E
such that u ∈ I and v ∈ I . Thus, any edge (u, v) ∈ E must have at least one of its
endpoints in V ′ which means V ′ is a vertex cover of G.

In the other direction of proof, let V ′ = V − I be a vertex cover of a graph G.
Then any u, v ∈ I does not have an edge (u, v) ∈ E between them as otherwise this
edge will not be covered by V ′. Thus, I is an independent set of G and whenever we
say G contains an independent set of size k, this statement is equivalent to saying G
contains a vertex cover of order |V | − k as shown in the graph of Fig. 10.15.

Definition 10.11 (class NP-Hard) A decision problem A is NP-Hard if every prob-
lem in NP can be reduced to it in polynomial time. That is, B ≤p A, ∀B ∈ NP.

10.8 Complexity Theory 215

Fig. 10.16 Complexity
classes

NP

NP-Hard

NP-Complete

P

Polynomial time reduction of only one problem inNP to a problem A is adequate
to show that all problems inNP can be reduced to A since polynomial time reduction
is transitive.

10.8.2 NP-Completeness

Definition 10.12 A decision problem A is NP-Complete if A ∈ NP and every
problem in NP can be reduced to A in polynomial time.

The relationship between these complexity classes is depicted in Fig. 10.16 where
class P is a subset of class NP. An NP-Hard problem A may not be in NP, A is
as hard as any problem in NP and an NP-Complete problem is in NP and also a
member of NP-hard problems, thus, it is at the intersection of these two classes.

Basically, we need to perform the following steps to show that a problem A is
NP-Complete.

• Prove that A is a decision problem,
• Find a certifier that solves an instance of the problem A in polynomial time, hence
prove that A ∈ NP,

• Test whether A can be reduced to a problem that is NP-Complete.

Let us form a certifier for the IND problem: given a graph G = (V, E) and an
integer k > 0, doesG contain an independent set of at least k vertices? The following
algorithm inputs a graphG = (V, E) and a vertex set I ∈ V of size k > 0 and checks
whether each edge of the graph has at most one endpoint in I . If both endpoints are
contained in I , then it returns no as the answer, otherwise a yes is returned.

1. Input: G = (V, E) and I ∈ V with |I | = k, k > 0
2. Output: yes or no
3. for all u ∈ I

216 10 Proofs

4. if (u, v) ∈ E then
5. return no
6. end if
7. end for all
8. return yes

The for loop is executed O(n) times and checking whether edge (u, v) exists in
the graph is done in O(n) times using the adjacency matrix representation resulting
in O(n2) time complexity. Since the algorithm provides a yes or no answer in poly-
nomial time, it is a certifier. The IND problem can be reduced to VCOV problem as
stated and hence we can say IND problem is NP-Complete with the assumption that
VCOV problem is NP-Complete.

10.8.3 Coping withNP-Completeness

When confronted with an NP-Complete problem, we can implement one of the
following options.

• Heuristics: These are common sense rules which do not have proofs. We need to
show that a heuristic H works with favorable performance across a wide range of
inputs to consider it as a good heuristic. For example, the vertex coloring problem
was selecting minimal number of colors to assign to the vertices of a graph such
that no two adjacent vertices receive the same color as reviewed in Chap.13. A
seemingly reasonable heuristic to color a graph could be starting coloring from
the highest degree vertex and always selecting the next highest degree vertex to
color at each step. However, this heuristic does not always give even suboptimal
results.

• Approximation Algorithms: An approximation algorithm finds a suboptimal solu-
tion to a given problem in polynomial time. We will review such an algorithm in
Chap.13 that finds the vertex cover of a graph by finding a maximal matching and
including endpoints of matched edges in vertex cover with an approximation ratio
of 2, that is, it finds a vertex cover of order which is twice the order of the mini-
mum vertex cover. Unlike using heuristics, an approximation algorithm is proven
to always work with the approximation ratio.

• Algorithmic Approaches: Backtracking through the search space of an algorithm
eliminates some of the possibilities and thus may be used for some difficult prob-
lems. In this method, all possible states of an algorithm is formed as a state-space
tree. Branches of the tree are traversed and whenever a requirement is violated,
return to a previous state is provided. Thus, extensive search of all possibilities
is prevented. Another approach is to use a randomized algorithm in which the
execution pattern of the algorithm depends on some randomly generated numbers
or random choices. A Las Vegas algorithm always returns correct answer with
random time and aMonte Carlo algorithm runs in constant time but may return a
wrong answer.

10.9 Review Questions 217

10.9 Review Questions

1. What is an alphabet and a language defined on an alphabet?
2. Compare state diagram and state table representation of a finite state machine.

Which model is better suited for programming?
3. What are the main differences between the finite state machine and the finite

state automata models?
4. Describe how a finite state automata recognizes a language.
5. Compare deterministic finite state automata with nondeterministic finite state

automata.
6. What is a regular expression and how is it related to a language?
7. What is the relationship between a regular language and a finite state automata?
8. What makes a Turing Machine different than a finite state automata?
9. What type of application can a Turing machine be used?

10. What is the complexity class P?
11. How can we determine whether a problem is in NP?
12. What is meant by reducing a problem to another problem?
13. What are the main test steps to determine whether a problem is NP-Complete?

10.10 Chapter Notes

Theory of computation has complexity theory, computability theory, and automata
theory as the main components. We reviewed mainly automata theory in this chapter
with emphasis on languages and finite state automata. A language is basically a string
of symbols over some alphabet. A finite state machine is used to model a system
where the output of the machine depends on the current input and the current sate.
A finite state automaton is a state machine with no outputs but with accepting states.
An automaton is used to recognize a language, if it reaches an accepting state at the
end of input, then the input language is recognized. A nondeterministic finite state
automaton may take empty string as an input and it may divert to more than one state
with the same input. Whenever such diversion occurs, a copy of the automaton is run
in parallel and if one of the running branches of the automaton reaches an accepting
state, the input is accepted and computation stops. A regular expression describes
a language in short form. A Turing machine is more general than an automaton as
it may accept input strings that may not be accepted by the automaton. It consists
of a control unit, an infinite tape with symbols and read/write tape head. The head
may move left or right and each move may result in a state transition of the machine.
Turing machines represent a computer closely and may be used for a wide range of
applications.

In the last part of the chapter, we reviewed the basic complexity classes P , NP,
NP-Hard and NP-Complete. Any problem that can be solved by a polynomial time
algorithm is in classP and a problem that has a certifierwhich runs in polynomial time
is in NP. The class NP-Hard denotes problems that can be reduced to problems in

218 10 Proofs

NP in polynomial time and a problem that is inNP and isNP-Hard isNP-Complete.
In order to show whether a problem A is as hard as another problem B, reduction of
A to B is commonly performed. We have barely touched the surface of the theory of
computation in this chapter. A fine and detailed study of the theory of computation
is given in [1] and a practical textbook is provided in [2].

Exercises

1. Convert the FSM of a odd parity checker to a FSA and show the transitions for
the binary input string 100101101.

2. Design a DFSA M which detects 101 as a substring in any given binary input
string with the alphabet

∑ = {0, 1}.
3. Design aNFSAM which accepts the stringaabbabwith the alphabet

∑ = {a, b}.
4. State the languages described by the following regular expressions by giving

examples.

a. 0 ∪ 1)10(0 ∪ 1)
b. 10∗

c. (111)∗
d. (0 ∪ 1)∗11(0 ∪ 1)∗

5. Design a NFSA M which represents the regular expression (0 ∪ 1)∗10 with the
alphabet

∑ = {0, 1}.
6. Provide the pseudocode of a certifier for the dominating set problem DOM: Is

there a dominating set with order less than or equal to k in a graph G?

References

1. Sipser M (2013) Introduction to the theory of computation, 3rd edn. CENGAGE Learning.
ISBN-10: 1-133-18781-1

2. Maheshwari A, Smid M (2019) Introduction to theory of computation. Free textbook. Carleton
University, Ottawa

3. Turing A (1937) On computable numbers, with an application to the Entscheidungs problem.
In: Proceedings of the London mathematical society, Series 2, vol 42, pp 230–265. https://doi.
org/10.1112/plms/s2-42.1.230

https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230

Part IIGraphTheory

11Introduction toGraphs

Graphs are key data structures that find numerous applications. A graph has a number
of nodes some of which are connected. This simple structure can be used to represent
many real-life applications such as a road network, communication network and
a biological network. In fact, any network may be modeled by a graph and the
methods of graph theory can be implemented conveniently to solve various problems
in these networks. We define graphs, review types, operations on graphs and graph
representations in this chapter to form the basic background for further chapters in
this part.

11.1 Terminology

A graph consists of a set of points and a set of lines joining some of these points.
The points are the vertices, or nodes as commonly called, of the graph and the lines
are the edges between the vertices.

Definition 11.1 (Graph) A graph G = (V, E) is a discrete structure consisting of a
vertex set V and an edge set E .

The vertex set of a graph G is denoted by V (G), and its edge set by E(G). When
the graph under consideration is clear, we omit G and use V and E for vertex and
edge sets of graph G. The order of a graph G is the number of its vertices and its
size is the number of its edges. We will use literal n to denote the order and m to
denote the size of a graph. Commonly, vertices of a graph have labels as literals
such as a, b, c etc. or integers such as 1, 2, 3. An edge is shown as (a, b) or ab or
{a, b} where a and b are the vertices the edge is connected. The vertices a and b are
called the endpoints of edge (a, b). An example graph is depicted in Fig. 11.1 with

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_11

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_11

222 11 Introduction to Graphs

a

b c

d

ef
g

Fig. 11.1 A sample graph

a

b c

def

a

b c

def

(a) (b)

Fig. 11.2 a A sample graph b Its complement

V = {a, b, c, d, e, f, g} and E = {(a, b), (b, c), (c, d), (c, f)(b, f), (f, g), (b, g)}
and the values of n and m are 7 and 8 respectively.

A graph may contain multiple edges which are edges with the same endpoints.
A self-loop starts and end at the same vertex. An edge that is not a self-loop is
called a proper edge. A simple graph does not contain any self-loops or multiple
edges. A graph with multiple edges is called a multigraph and a finite graph has a
finite number of vertices and finite number of edges. We will consider mainly simple
and finite graphs in this text due to their numerous implementations in practice. A
multigraph may be converted to its underlying graph by substituting a single edge
for each multiedge. An undirected graph has no orientation of its edges.

Definition 11.2 (Complement of a graph) The complement of a graph G = (V, E)

is the graph G ′ = (V, E ′) such that an edge (u, v) ∈ E ′ if and only if (u, v) /∈ E .

Basically, G ′ contains the same vertex set as G but an edge contained in G is not
included in G ′. Complement of a sample graph is shown in Fig. 11.2.

11.2 Vertex Degree

Definition 11.3 (Degree of a vertex) The number of of edges incident to a vertex v
in an undirected graph G is called the degree of v and is denoted by deg(v).

11.2 Vertex Degree 223

Self-loops of a vertex are counted two to find the degree of the vertex. The degrees
of vertices in the graph of Fig. 11.1 for vertices a, b, ..., g are 1, 4, 3, 1, 1, 4, 2
respectively. The maximum degree in a graph G is denoted by �(G) or simply by
� when the graph under consideration is clear. The minimum degree in a graph G
is denoted by δ(G) or simply by δ. The degree of a vertex v in a graph G, deg(v), is
between the maximum and minimum degree of G as shown below.

0 ≤ δ(G) ≤ deg(v) ≤ �(G) ≤ n − 1 (11.1)

A vertex with an odd degree is called an odd vertex and a vertex with an even
degree is called an even vertex. A vertex that has a degree of 0 is called An isolated
vertex and a pendant vertex has a degree of 1. The vertices a, d and e are pendant
vertices in the graph of Fig. 11.1.

Remark 11.1 The sum of the degrees of vertices in a graph is an even number.
Let us start with a graph consisting of a single vertex which has a total 0 degree.
Every time an edge is added to this graph, the sum of degrees increases by 2.

Theorem 11.1 (Euler) The sum of the degrees of a simple undirected graph G =
(V, E) is twice the number of its edges. Formally,

∑

v∈V
deg(v) = 2m (11.2)

An edge (u, v) is counted twice, once for being incident to vertex a and once
for vertex b, hence total degree of the graph is twice the number of edges. Number
of edges, m, of the graph in Fig. 11.1 is 8 and the sum of the degrees is 16. The
average degree of an undirected graph is the arithmetic average of all of the degrees
of vertices as below, ∑

v∈V deg(v)

n
= 2m/n (11.3)

The average degree of the graph of Fig. 11.1 is 16/7 ≈ 2.3.

Corollary 11.1 There is an even number of odd vertices in an undirected graph.

Proof Let the set of even vertices of a graph G be VE and the set of odd vertices be
VO . Then, the following equation may be stated,

∑

v∈V
deg(v) =

∑

v∈VO

deg(v) +
∑

v∈VE

deg(v)

Since the sum of the degrees of G is 2m by Theorem 11.1, the left side of this
equation is an even number. Let the sum of degrees of odd vertices be SO and the
sum of degrees of even vertices be SE which means 2m = SO + SE by the above
equation. The sum SE is even as it consists of the sum of all even numbers, thus, SO
must also be even to result in the even total sum of 2m. Since SO is even, it must be

224 11 Introduction to Graphs

the sum of even number of odd terms as the sum of odd number of odd numbers is
odd. ��

Theorem 11.2 Given an undirected graph G = (V, E) with n ≥ 2, there exists
u, v ∈ V such that deg(u) = deg(v).

Proof We will use contradiction to prove this theorem. Let us assume the opposite
that a graph with n vertices does not have a single vertex pair u and v such that
deg(u) = deg(v). All vertices have distinct degrees in this case and the only possible
degree values are 0, ..., (n − 1). A vertex u with a degree of 0 means u is an isolated
vertex and a vertex v with a degree of n−1 means v is connected to all other vertices
of the graph which means u can not be an isolated vertex, thus a contradiction. ��

As an implementation of this result, consider a computer network consisting of
routers connected to other routers. Based on Theorem 11.2, there are at least two
routers in any such computer network that are connected to the same number of
routers.

11.2.1 Degree Sequence

The degree sequence of a graphG = (V, E) is a monotonic non-increasing sequence
of the degrees of its vertices. The degree sequence of the graph in Fig. 11.1 is
{1, 1, 1, 2, 3, 4, 4}. If a degree sequence D = (d1, d2, ..., dn) represents a degree
sequence of some graph G, D is called graphical. Note that some degree sequences
may not represent a realizable graph. For example, the sequence {1, 2, 4, 5, 5} can
not represent a real graph as the sum is an odd number andwe know by Theorem 11.1
the sum of degrees of a graph is always an even number.We can have different graphs
with the same degree sequence.

11.3 Directed Graph

In an undirected graph with no direction of edges, and edge between the vertices
a and b is denoted by (a, b) or (b, a) as noted. The edges of a graph may be ori-
ented in which case an arrow indicates the direction. Such graphs are called directed
graphs or digraphs and an edge (a, b) in such a graph indicates this edge is di-
rected from vertex a to b which is shown by (a, b) ∈ E but it does not mean means
(b, a) ∈ E . A partially directed graph has has both directed and undirected edges.
A complete simple digraph has a pair of edges, one in each direction, between any
two vertices it has. A digraph is depicted in Fig. 11.3 with V = {a, b, c, d, e} and
E = {(a, b), (a, f), (b, c), (b, f), (d, c), (e, c), (e, d), (f, e), }.

11.3 Directed Graph 225

Fig. 11.3 A sample digraph

a

b c

def

Definition 11.4 (Indegree) The indegreedin(v)of a vertex v in a digraphG = (V, E)

is the number of edges oriented towards v Formally,

din(v) = |{(u, v) ∈ E}|

Definition 11.5 (Outdegree) The outdegree dout (v) of v is the number of edges
coming out from this vertex. Formally,

dout (v) = |{(v, u) ∈ E}|

The degree of a vertex in a digraph is the sum of its indegree and its outdegree. The
sum of the indegrees of the vertices in a graph is equal to the sum of the outdegrees
which are both equal to the sum of the number of edges as shown below.

∑

v∈V
din(v) =

∑

v∈V
dout (v) = m

Informally, this result is due to each directed edge increasing total indegree value
by 1 and total outdegree by 1.

11.4 Representation of a Graph

We have three basic representations of a graph as the adjacency list, adjacencymatrix
and incidence matrix representations.

11.4.1 Adjacency List

In adjacency list representation of a simple graph or a digraph, a vertex v of the
graph is represented as a linked list with the head of the list being vertex v as shown
in Fig. 11.4. The end of the list is signified by the last node having a null pointer
which means a pointer with an empty value showing nothing. All of the neighbors
of a vertex v are linked in the linked list of vertex v. This way of representation is
commonly used for sparse graphs wherem << n. A graph can be stored in O(n+m)

space, n for list heads and 2m for edges, and searching an edge can be performed in
O(n) time since the maximum length of the linked list for a node can have n − 1
elements.

226 11 Introduction to Graphs

(a) (b)

a b

b

0

a

c d 0

d b c e 0

e

b

b d 0

c d e 0a b
c

de

Fig. 11.4 a A sample graph, b Its adjacency list

Fig. 11.5 A digraph

a

b c

def

Fig. 11.6 Its adjacency
matrix ⎛

⎜⎜⎜⎜⎜⎝

a b c d e f
a 0 1 0 0 0 1
b 0 0 1 0 0 1
c 0 0 0 0 0 0
d 0 0 1 0 0 0
e 0 0 1 1 0 0
f 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

11.4.2 AdjacencyMatrix

An adjacency matrix A[n, n] of a graph G = (V, E) has A[i, j] = 1 if there is
an edge between the vertices i and j in the graph and A[i, j] = 0 if no such edge
exists. Clearly, matrix A is symmetric, that is, A[i, j] = A[j, i] for all i, j ∈ E if G
is undirected. The adjacency matrix A will not be symmetric for digraph in general
since an edge (a, b) ∈ E does not imply (b, a) ∈ E . The entry A[i, j]may be greater
than 1 showing the number of edges between vertices i and j in a multigraph. The
matrix A for the graph of Fig. 11.5 is shown in Fig. 11.6.

Determining whether and edge (a, b) exists in a graph G can be done in one step
by checking matrix entry A[a, b]. Labeling vertices with positive integer sequence is
reasonable to be able to perform this matrix search quickly. However, space required
for the adjacency matrix is O(n2) which may be significant for a large graph.

11.4 Representation of a Graph 227

Fig. 11.7 A digraph
v1 v2 v3

v4v5
v6

e1 e2

e3
e4e5

e6e7

e8

Fig. 11.8 Its incidence
matrix

0 1 0 −1

⎛
⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 e7 e8
v1 1

1

0 1 0 0 0 0 0

v2 1 1 0 1 0 0 0−
−

−
1

v3 1 0 0 0

v4 0 0 0 1 0 −1

−1

1

0 0

v5 0 0 0 0 −1 1 0

v6 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

11.4.3 IncidenceMatrix

An incidence matrix B of an undirected graph G = (V, E) has n ×m elements and
B[i, j] = 1 if edge e j is incident to vertex vi in G and B[i, j] = 0 if edge j is not
incident to that vertex. Note that this is a relation between the vertices and edges of a
graph and we need to label edges now to be able to form the matrix B. The incidence
matrix of a directed graph is again an n×m matrix B such that B[i, j] = 1 if the edge
e j originates from vertex vi , –1 if it ends in vertex vi and 0 otherwise. An example
graph and its incidence matrix is depicted in Figs. 11.7 and 11.8.

11.5 Subgraphs

In many cases, the focus of analysis may be confined to a certain part of a graph
rather than the whole graph. This is indeed the case when graph under consideration
is very large, consisting of thousands of vertices and tens of thousands of edges.
A subgraph of a graph G consists of some vertices and/or some edges of G. Some
graph applications require searching a subgraph with a specific property.

Definition 11.6 (Subgraph) A graph G ′ = (V ′, E ′) is called a subgraph of graph
G = (V, E) if V ′ ⊆ V and E ′ ⊆ E and G is called a supergraph of G ′. If the
subgraph G ′ of G is not equal to G, then G ′ is called a proper subgraph of G.

A subgraph G ′ = (V ′, E ′) of a graph G = (V, E) is called an induced subgraph
of G if ∀u, v ∈ V ′, (u, v) ∈ E ′ if and only if (u, v) ∈ E . In other words, if two
vertices contained in the induced subgraph G ′ are connected in G, then they are also
connected in G ′. A spanning subgraph G ′ of a graph G contains all vertices of G.
A graph, its proper subgraph and induced subgraph are depicted in Fig. 11.9.

Deleting a vertex v from a graph G is done by deleting v and all of its incident
edges from G. The obtained subgraph as the result of this operation is denoted by
G − v. Subgraph obtained after deletion of a set V ′ of vertices from G is shown by

228 11 Introduction to Graphs

a b

e

f

c

d

gh

b

e

f

c

gh

(a)

(c)

(b)

a b

e

f

c

d

gh

a b

e

f

c

d

gh

(d)

Fig.11.9 aA sample graphG, b a proper subgraph ofG, c an induced subgraph ofG, d a spanning
subgraph of G

G \ V ′ or G − V ′ and the induced subgraph of G when V ′ is deleted is denoted
by G[V ′]. Similarly, an edge e may be deleted from a graph G, and the resulting
subgraph is shown byG−e. Note that deleting an edge does not remove any vertices
from the graph.

11.6 Types of Graphs

Certain graph types are interesting to analyze as they commonly represent real-life
situations. The main graph types are complete graphs, weighted graphs and bipartite
graphs as described next.

11.6.1 Complete Graph

Every vertex is connected to all other vertices in a complete graph. Such graphs are
shown by Kn where n is the number of vertices. Complete graphs K1, .., K6 are
depicted in Fig. 11.10. A complete digraph has directed edges in both directions for
each vertex pair it has.

11.6 Types of Graphs 229

K3 K4 K5 K6K2

K1

Fig. 11.10 Complete graphs of orders 1 to 6

The number of edges of a simple undirected complete graph Kn can ce calculated
as follows. The degree of each vertex in Kn is n−1 and there are n vertices meaning
the sum of degrees is n(n − 1). Since two endpoints of an edge are counted to find
the sum of degrees, we need to divide the sum by 2 to get the number of edges as
n(n − 1)/2.

11.6.2 Weighted Graphs

An edge-weighted graph has real numbers associated with its edges. These numbers
may represent cost of going from one node to another as in the case of a road network
represented by a graph, or the cost of sending a packet from one computer network
node to another when a graph represents such a network.

Definition 11.7 (Edge-weighted graphs) The edges of an edge-weighted graph
G(V, E,w), w : E → R are labeled with real numbers.

The vertices of a graph may have weights representing a function on that node,
for example memory capacity of a node in a computer network.

Definition 11.8 (Vertex-weighted graphs) A vertex-weighted graphG(V, E,w),w :
V → R has vertices labeled with real numbers.

11.6.3 Bipartite Graphs

The vertex set of a graph may be divided into two distinct sets such that there are no
edges between any vertices in each set. Such graphs are called bipartite graphs.

Definition 11.9 (Bipartite graph) A bipartite graph G = (V, E) or G = (V1 ∪
V2, E) has two distinct vertex sets V1 and V2 such that ∀(u, v) ∈ E , either u ∈ V1
and v ∈ V2, or u ∈ V1 and v ∈ V2.

230 11 Introduction to Graphs

Fig. 11.11 A sample
bipartite graph with
V1 = {a, b, c} and
V2 = {d, e, f, g, h}

b c

d

a

e f g h

In other words, any edge of a bipartite graph joins a vertex from one vertex set to
the other. A bipartite graph is depicted in Fig. 11.11. A directed bipartite graph has
edges with orientation and a weighted bipartite graph has weights associated with its
edges. A complete bipartite has edges between each vertex of the first set of vertices
to all other vertices of the second vertex set. Such a graph is denoted by Km,n where
m and n are the number of vertices in the disjoint vertex sets. A complete bipartite
graph Km,n contains mn edges and m + n vertices.

11.6.4 Regular Graphs

A regular graph has vertices with the same degree. When the common degree is k,
the graph is called a k-regular graph. Figure 11.12 shows 0 to 4-regular graphs. Note
that the 3-regular graph is K4 and 4-regular graph is K5. In general, every Kn graph
is a (n − 1)-regular graph but not every (n − 1)-regular graph is a Kn graph. For
example, 2-regular graph shown in Fig. 11.12b is not a complete graph.

11.6.5 Line Graphs

A line graph L of a graph G is obtained by representing each edge of G as a vertex
in L and connecting two vertices in L only if they have common endpoints in G.
Many properties of a graph are translated to its line graph. A graph and its line graph
are shown in Fig. 11.13.

(a) (b) (c) (d)

Fig. 11.12 a 0-regular, 1-regular and 2-regular graphs b a 3-regular graph c a 4-regular graph

11.6 Types of Graphs 231

a b

c

de

ab bc

cd

de

be

ae

(a) (b)

Fig. 11.13 a A sample graph G, b Its line graph

The line graph L of a graph G = (V, E) has n′ = m nodes and m′ edges as
follows [7],

m′ = 1

2

∑

v∈V
deg(v)2 − m

For the example in Fig. 11.13,

m′ = deg(a)2 + deg(b)2 + deg(c)2 + deg(d)2 + deg(e)2

= (4 + 9 + 4 + 9 + 4)/2 − 6 = 9

The incidence matrix B of a graph G and the adjacency matrix A(L) of its line
graph L are related as follows [7],

A(L) = BT B − 2I

11.7 Graph Operations

A graph operation takes at least two graphs as arguments and forms a new graph
as result of the operation. Common graph operations are union, intersection and
cartesian product.

11.7.1 Graph Union

The union of two graphs has all vertices and all edges of the two graphs after this
operation. A formal definition is as follows.

Definition 11.10 (Union of two graphs) The union of two graphs G = (VG, EG)

and H = (VH , EH) is a graph F = (VF , EF) in which VF = VG ∪ VH and
EF = EG ∪ EH .

232 11 Introduction to Graphs

(a)

e

c

a b

d

(b)

c

a b

d

(c)

c

a b

d

e

c

a b

d

Fig. 11.14 a Two input graphs, b their union c their intersection

When two graphs G and H are distinct, then their union F is a graph with F and
G as disjoint subgraphs. The union of two graphs with common vertices and edges
is depicted in Fig. 11.14b.

11.7.2 Graph Intersection

The intersection of two graphs has only common vertices and common edges of the
two graphs after this operation. A formal definition is given below.

Definition 11.11 (Intersection of two graphs) The intersection of two graphs G =
(VG, EG) and H = (VH , EH) is a graph F = (VF , EF) in which VF = VG ∩ VH

and EF = EG ∩ EH .

The intersection of two graphs with common vertices and edges is depicted in
Fig. 11.14c.

11.7.3 Graph Join

Graph join is different than the union as this operation creates new edges between
each vertex pairs of the two input graphs. A formal definition is given below.

Definition 11.12 (Join of two graphs) The join of two graphs G = (VG, EG) and
H = (VH , EH) is a graph F = (VF , EF) in which VF = VG ∪ VH and EF =
EG ∪ EH ∪ {(u, v) : u ∈ VG and v ∈ VH }. This operation is shown as F = G ∨ H .

That is, every vertex of G is connected with every vertex of H when F is formed
by also keeping the existing edges in both input graphs. When graphs G and H have
common vertices, self-loops and multiple edges are formed and these are discarded
in the resulting graph. Two input graphs with common vertices a and b are displayed
in Fig. 11.15a, their first join formed and simplified join are shown in (b) and (c). The

11.7 Graph Operations 233

c

a

b

d

a

b
c

a b

d
c

a b

d

(a) (b) (c)

Fig. 11.15 Graph join operation

union, intersection and join operations are commutative, such that G ∪ H = H ∪G,
G ∩ H = H ∩ G and G ∨ H = H ∨ G.

11.7.4 Cartesian Product

As we formed cartesian product of two sets, we can form the cartesian product of
two graphs, this time, forming product of vertices and edges.

Definition 11.13 (Cartesian product) The cartesian product of two graphs G =
(VG, EG) and H = (VH , EH) shown by G�H or G × H is a graph F = (VF , EF)

in which VF = VG × VH and two vertices (u, u′) and (v, v′) are adjacent in F if and
only if one of the following conditions holds:

1. u = v and (u′, v′) ∈ EH .
2. u′ = v′ and (u, v) ∈ EG .

Thus, each vertex in the product graph F represents two vertices u and v, with
u ∈ VG and v ∈ VH . The edges in F are formed using the above rules. The cartesian

(a)

c

a

b

d ad ae af

bd be bf

cd ce cf

e f

(b)

Fig. 11.16 Cartesian product of two graphs

234 11 Introduction to Graphs

product of two graphs is displayed in Fig. 11.16. For example, edge (ad, a f) is
included in the product using the first rule and edge (bd, cd) is included using the
second rule.

11.8 Connectivity

We are often interested whether we can follow a path from a given vertex to another
exists in a given graph. This property needs to be maintained in various type of
networks. First, let us review some basic definitions.

11.8.1 Definitions

Definition 11.14 (Walk) Awalk between two vertices vx and vy of a graphG is an al-
ternating sequence of n+1 vertices and n edges asW = (vx , e1, vp, e2, ..., vq , en, vy)
where ei is incident to vertices vi−1 and vi . The vertex vx is called the initial vertex
and vy is called the terminating vertex of the walk W .

A walk in the graph of Fig. 11.17 shown by bold edges is W = {v11, e13, v10,
e12, v9, e6, v2, e4, v4, e5, v9, e11, v8} with v11 as the initial vertex and v8 as the ter-
minating vertex. The length of a walk is the number of edges contained in it, the
length of W in the above example is 6. A walk may go through the same vertex and
edge more than once as in the example walk W where v9 is visited twice. Lastly, a
closed walk starts and ends at the same vertex and an open walk has different initial
end terminating vertices. What we have said up to this point is valid for digraphs.

We need few more definitions before we can review the connectivity concept
in graphs. A trail is a walk with no repeated edges and a path shown by vertices
only is a trail with no repeated vertices. The walk W in our example is a trail but
is not a path since vertex v9 is visited twice. The dashed edges represent a path
P = {v1, v2, v3, v4, v8, v7} in Fig. 11.17. A pathwith the same initial and terminating
vertex is called a cycle. The path P = {v2, v4, v8, v9, v2} is a cycle in this figure. A
trail that starts and ends at the same vertex is called a circuit. Note that a trail allows

e1

e2 e3

e4

e5
e6 e7

e8

e9

e10
e11e12

e13

e14

v1 v2

v3

v4
v5

v6

v7
v8v9v10

v11

P

W

Fig. 11.17 A walk and a path in a sample graph

11.8 Connectivity 235

e1

e2 e3

e4

e5
e6

e7

e8e9

e10

e11

e12

v1 v2

v3

v4

v5

v6

v7v8v9

e13

Fig. 11.18 A Eularian graph

repetition of vertices, thus, a circuit may have repeated vertices but not repeated
edges. The girth of a graph G is the length of the shortest cycle contained in G.

Definition 11.15 (Eularian tour, Eularian cycle) An Eularian tour of a graph G is
a closed trail that visits each edge exactly once and an Eularian graph is a graph that
has an Eularian tour. An Eulerian cycle is an Eularian tour that starts and ends at the
same vertex.

In other words, edges in an Eularian tour can not be repeated but a vertex may
be visited more than once. Figure 11.18 displays an Eularian graph with an Eularian
cycle that visits edges {e1, e2, e3, e5, e6, e7, e9, e11, e4, e8, e10, e12, e13} as shown by
the dashed curve.

Definition 11.16 (Hamiltonian Cycle) A cycle that visits each vertex of a graph
exactly once is called a Hamiltonian cycle and such a graph is called Hamiltonian.

A Hamiltonian graph with a Hamiltonian cycle shown using a dashed curve that
visits vertices v1, v3, v4, v5, v6, v2, v7, v8, v1 in sequence is depicted in Fig. 11.19.
The number of edges contained in a cycle is denoted as its length l and shown as Cl .
For example, C3 is a triangle.

11.8.2 Connectedness

There is a path between every pair of vertices in a connected graph. A disconnected
graph has subgraphs called components that are not connected to each other. A con-
nected graph has one component. Connectivity for a digraph needs to be considered

236 11 Introduction to Graphs

e1 e2

e3
e4

e5

7e 6e

e8

e9

e10

e11
e12

v1 v2 v3

v4

v5

v6v7v8

Fig. 11.19 A Hamiltonian graph

carefully. A digraph G is connected if the underlying graph of G is connected. A
strongly connected digraph has paths between each pair of vertices in both directions.

Definition 11.17 (Distance) Let u and v be any two vertices of an unweighted undi-
rected graph or a digraph G. The distance d(u, v) between u and v is the length of
the shortest path between them which is equal to the number of edges in this path.

In a weighted graph, distance between vertices u and v, d(u, v), is the sum of the
weights of the edges of the path that joins these vertices. The shortest path between
vertices v4 and v5 is shown in dashed line in Fig. 11.20 where d(v4, v5) = 11.

Definition 11.18 (Eccentricity) The eccentricity of a vertex u in a connected graph
G = (V, E) is defined below,

max(d(u, v)), ∀v ∈ V

Thus, eccentricity of a vertex u is its maximum distance to any other vertex in the
graph. The maximum value of eccentricity in a graph G is called the diameter of
G and the minimum eccentricity value out of all vertex eccentricities is the radius
of G. The diameter of the graph in Fig. 11.20 is 4 and its radius is 2 since vertices
v2 and v7 have both eccentricities of 2 and this value is the minimum value out
of all eccentricities in G. Vertex or vertices of a graph G that have the minimum

v1 v2 v3

v4 v5

v6v7v8

3

2

1

4

5

6
1 2

5

9

8

12

15

Fig. 11.20 Shortest path between two vertices in a weighted graph

11.8 Connectivity 237

eccentricity value are called the center(s) of G. In the example graph, vertices v2
and v7 are the centers of the graph. Note that such vertices should be within the
central area of a graph to have low eccentricity values. The diameter of a graph
is an important parameter in any network that shows the time it takes to transfer
information between two farthest points in such a network. The length of a cycle in a
graph can be an odd integer in which case the cycle is called an odd cycle, otherwise,
it is called an even-cycle.

11.9 Graph Isomorphism

Two graphs may be the same except the naming of their vertices. Informally, two
graphs G and H are isomorphic to each other if their vertices are labeled different.

Definition 11.19 (Graph isomorphism) LetG and H be two simple graphs. A graph
isomorphism from G = (VG , EG) to H = (VH , EH) is a bijection φ : V1 → V2
with the following condition:

(u, v) ∈ EG ↔ (φ(u), φ(v) ∈ EH

When this condition holds, G and H are said to be isomorphic denoted by G ≈ H .
An isomorphism of a graph to itself is called an automorphism.

Two isomorphic graphs may not look similar as shown in Fig. 11.21a and b where
a lowercase letter vertex is mapped to an uppercase letter in both examples.

Graph isomorphism problem is to determine whether two given graphs are iso-
morphic to each other. There is no known polynomial time algorithm to solve this
problem. Let us consider two graphs G and H each with n vertices and m edges.
Using a naive approach, we can check each one-to-one correspondences between
vertices in n! time and edge correspondences in m! time for a total of n! · m! time
which grows very fast. We can however check whether two graphs are not isomor-
phic in simpler ways. For example, if two graphs have different number of vertices,
we can conclude they are not isomorphic due to the required one-to-one relation
between the vertices.

A property that is preserved when two graphs G and H are isomorphic is called
an isomorphic invariant. In other words, when graph G has this property, then H has
the same property. The list of main isomorphic invariants are listed in the following.

• Having n vertices.
• Having m edges.
• Having the same number of vertices of degree k.
• Being connected.
• Having an Euler circuit.
• Having an Hamiltonian circuit.

238 11 Introduction to Graphs

a

b

cd

e

a b

cd

e f

gh

(a)

(b)

A

B

C D

E

A B

D

E

C

F

GH

Fig. 11.21 Isomorphic graph examples

11.10 Review Questions

1. What is meant by the degree of a vertex in an undirected graph and a digraph?
2. How is the complement of a graph obtained?
3. What is a graphical degree sequence?
4. What are the main methods of representing graphs?
5. What is a subgraph and a proper subgraph of a graph?
6. What is a weighted graph?
7. How is a bipartite graph defined?
8. What is a regular graph?
9. How is a line graph of a graph obtained?

10. What is the resulting graph after the union operation of a graph and its comple-
ment?

11. Compare graph union and graph join operations.
12. What is the difference between a trail and a path in a graph?
13. What is an Eularian tour and an Eularian cycle?
14. Does every graph have an Eulerian tour?
15. What is an Hamiltonian tour and an Hamiltonian cycle?
16. What is the distance between two vertices in an unweighted andweighted graph?
17. What is the eccentricity and the radius of a graph?
18. What is meant by two graphs G and H being isomorphic to each other?

11.11 Chapter Notes 239

11.11 Chapter Notes

This chapter serves as an introduction to themain concepts in graph theory.We started
with basic definitions of a graph, degree of a vertex and then described digraphs
which have orientation in their edges. Graphs may be represented by adjacency lists,
adjacency matrices and incidence matrices. A proper subgraph of a graph contains
some of its vertices and/or some of its edges. Weighted, bipartite and line graphs are
commonly encountered in practice when a graph is used in a real application.

Basic graph operations are union, intersection, join and cartesian product of two or
more graphs.We are often interested in finding whether it is possible to follow a path
which is a sequence of vertices between any vertex pairs in a graph. Walks, trails,
paths, cycles comprise the terminology to analyze how to reach from one vertex to
another in a graph. An Eulerian tour of a graph visits each edge exactly once and a
Hamiltonian path of a graph visits each vertex of the graph exactly once. Two graphs
are isomorphic to each other if their vertices have different labels. A graph is called
a tree if it is connected and does not contain any cycles. We will review trees and
tree algorithms in the next chapter. Various books provide a much more thorough
presentation and analysis of concepts reviewed in this chapter including Harary [4],
Bondy and Murty [1, 2] and West [5].

Exercises

1. For the graph of Fig. 11.22,

a. What is the degree of each vertex?
b. What is the degree sequence of this graph?
c. Find a spanning subgraph of this graph.
d. Find the complement of this graph.

2. Given a graph G with a degree sequence D = (d1, d2, ..., dn), work out the
degree sequence of the complement G of this graph.

3. Work out the adjacency list, adjacency matrix and the incidence matrix of the
graph of Fig. 11.23.

4. Find the diameter, radius and the girth of the graph of Fig. 11.23.

a b

c

d e

fghi

Fig. 11.22 Sample graph for Exercise 1

240 11 Introduction to Graphs

a b c

hi

d

e

fg

Fig. 11.23 Sample graph for Exercises 3 and 4

a

b c

hi

d e

f

gj

Fig. 11.24 Sample graph for Exercise 8

5. Find the diameter and radius of a complete bipartite graph Km,n in terms of m
and n.

6. Show that for a graph with n vertices and m edges, m ≥ n.
7. Show that the union of a simple undirected graph with n vertices and its com-

plement is Kn .
8. Find anEularian cycle if it exists in the graph of Fig. 11.24. Is there aHamiltonian

cycle in this graph? If not, add new edges to this graph to have such a cycle.
9. Draw the simple undirected unweighted graph represented by the following

adjacency matrix.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b c d e f g h i j

a 0 1 0 0 0 0 0 0 0 0

b 1 0 1 0 0 0 0 0 0 0

c 0 1 0 0 0 0 0 0 0 0

d 0 1 0 0 1 1 0 0 0 0

e 0 0 0 1 0 1 0 0 0 0

f 0 0 0 1 1 0 1 0 1 0

g 0 0 0 0 0 1 0 1 1 0

h 0 0 0 0 0 0 1 0 1 0

i 0 1 0 0 1 0 1 1 0 1

j 0 1 0 0 0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

11.11 Chapter Notes 241

00 01

1110

0000
0001

0011

01110110

0100

0010

0101

1001

1011

1111
1110

1100

1000

1010

000 001

011

111110

100

010

101

(a) (b)

(c)

Fig. 11.25 Sample graph for Exercise 10

10. A hypercube Hn is a graph with n vertices such that each vertex is labeled with
a binary numbers of length n for a total of 2n vertices and the labels of adjacent
vertices differ by 1 bit. Hypercubes of 2, 3 and 4 dimensions are depicted in
Fig. 11.25a, b and c respectivelywith labels of vertices shown as binary numbers.
Find the degree of each vertex, the number of edges and the diameter of a
hypercube Hn in terms of the number of vertices n it contains.

References

1. BollobasB (2002)Modern graph theory (Graduate texts inmathematics), Corrected ed. Springer,
Berlin (2002). ISBN-10: 0387984887 ISBN-13: 978-0387984889

2. Bondy AB, Murty USR (2008) Graph theory (Graduate texts in mathematics), 1st Corrected
ed. Springer, Berlin. Corr. 3rd printing 2008 edition (August 28, 2008), ISBN-10: 1846289696
ISBN-13: 978-1846289699

3. Diestel R (2010) Graph theory (Graduate texts in mathematics), 4th ed. Springer, Berlin. Corr.
3rd printing 2012 edition (October 31, 2010)

242 11 Introduction to Graphs

4. Harary F (1969) Addison Wesley
5. West D (2000) Introduction to graph theory. PHI learning, 2nd edn. Prentice Hall, Upper Saddle

River
6. Gibbons A (1985) Algorithmic graph theory, 1st edn. Cambridge University Press, Cambridge.

ISBN-10: 0521288819 ISBN-13: 978-0521288811
7. Skiena S (1990) Line graph. In: 4.1.5 in implementing discrete mathematics: combinatorics and

graph theory with mathematica. Addison-Wesley, Reading, 128 and 135–139

12Trees andTraversals

A tree is a graph with no cycles. Applications of trees are various; organization of an
establishment, a family genealogical relationships can all be represented by a tree.
Trees also find a number of applications in computer science, a fundamental usage is
the representation of data. We start this chapter with the terminology and properties
of trees. We then look at ways of traversing trees and describe specific tree types. In
the second part of the chapter, our focus is on methods of tree construction from a
general graph. Two basic methods for unweighted graphs are the breadth-first-search
and the depth-first-search as we review. For weighted graphs, building an MST tree
has many real-life applications as we will see.

12.1 Definitions and Properties

A tree is a connected graph without any cycles as noted and a forest is a graph with
no cycles. A rooted tree has a designated vertex called the root and an unrooted tree
has no root vertex. Each one of the following statements is adequate to define a tree.

• A tree is connected and has n − 1 vertices.
• Any two vertices of a tree are connected by a unique path.
• Each edge of a tree is a bridge, thus, removal of any edge of a tree disconnects the
tree.

We have few definitions to be able to analyze the tree structure. A general rooted
tree structure is depicted in Fig. 12.1. Let the root of such a tree be r and v be a
vertex in somewhere in the middle of this tree. The first vertex u that is on the path
to the root is named as the parent of vertex v. Note that there is only one such vertex

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_12

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_12

244 12 Trees and Traversals

leaf

internal
root

a
c

d

e

f

i

j k

l

m

r

b

g
h

Fig. 12.1 A general tree structure

as otherwise we would have a cycle distorting tree property and v is called the child
of vertex u. A vertex in a tree may have more than one child but can only have one
parent as noted. A vertex without any children is called a leaf as shown by empty
circles in the figure. Vertices with the same parent are called siblings. A vertex that
is not a leaf and not a root is an internal vertex shown in gray in the figure. Such a
vertex has one or more children and a parent as vertex g in the figure. The distance
of a vertex to the root in a rooted tree is called its level. The level of the vertex g in
the figure is 2 since it has a path of two edges to reach the root. The depth or the
height of a tree is the largest of all levels in the tree which is 3 for this example.

We can have a simple recursive procedure that returns the level of a vertex in
a tree as shown in Algorithm 12.1. The path to the root from vertex v is traversed
recursively until root is encountered and each recursive call increments the value of
the level.

Algorithm 12.1 Finding depth of a vertex
1: procedure Find_Depth(v)
2: if v = root then
3: return 0
4: end if
5: return 1 + FIND_DEPTH(parent(v))
6: end procedure

12.2 Traversal Algorithms

Visiting vertices of a given tree in some order is called tree traversal. Such a process
has the property that each vertex should be visited exactly once. We have two basic
algorithms for general trees as preorder and postorder traversals.

12.2 Traversal Algorithms 245

12.2.1 Preorder Traversal

In this traversal method, a vertex is first visited and then all of its children are visited.
The general steps of the preorder traversal of a tree is shown in Algorithm 12.2. We
start this procedure from the root typically and output each vertex label when visited.
Visiting the vertices of the tree of Fig. 12.1 with this method starting from the root
r results in r, a, c, g, i, j, k, d, b, h, l,m, f, e as the output. This algorithm requires
O(n) steps as each vertex is visited exactly once.

Algorithm 12.2 Preorder_Traversal
1: procedure Preorder(v)
2: visit v
3: for all child u of v do
4: Preorder(u)
5: end for
6: end procedure

12.2.2 Postorder Traversal

In this traversal method, the children of a vertex are visited first and the vertex is
visited last as in Algorithm 12.3. Visiting the vertices of the tree of Fig. 12.1 results
in c, i, j, k, g, d, l,m, h, f, e, b, r as the output. Time complexity of this algorithm
is also O(n) as each vertex is visited exactly once.

Algorithm 12.3 Preorder_Traversal
1: procedure Preorder(v)
2: for all child u of v do
3: Preorder(u)
4: end for
5: visit u
6: end procedure

12.3 Binary Trees

A binary tree is a tree where every vertex has at most two children. The child of a
vertex on the left of a parent is termed left child and the one on the right is termed
the right child. Every node of a complete binary tree has 0 or two children and each

246 12 Trees and Traversals

Fig. 12.2 A binary tree root

a

c d e f

i
j

k l

r

b

g
h

internal vertex and the root has exactly two children in such a tree. A complete binary
tree is shown in Fig. 12.2.

We need to modify the preorder traversal for a binary tree taking left and right
children into account as shown in Algorithm 12.4 The vertex is visited first, then
its left subtree and then its right subtree in this method. Running of this algorithm
in the binary tree of Fig. 12.2 starting from the root results visiting the vertices
r, a, c, g, h, d, b, e, f, i, k.l consecutively.

Algorithm 12.4 Preorder binary tree traversal
1: procedure Preorder(v)
2: visit(v)
3: Preorder(v.le f t_subtree)
4: Preorder(v.right_subtree)
5: end procedure

The postorder algorithm for a binary tree is modified similarly as in
Algorithm 12.5 by fist visiting the left subtree of a vertex, then its right subtree
and then the vertex. The vertices visited using this algorithm starting from the root
in Fig. 12.2 are g, h, c, d, a, e, k, l, i, f, b, r .

Algorithm 12.5 Postorder binary tree traversal
1: procedure Postorder(v)
2: Postorder(v.le f t_subtree)
3: Postorder(v.right_subtree)
4: visit(v)
5: end procedure

12.3 Binary Trees 247

Inorder Traversal
Inorder traversal of a binary tree involves visiting the left subtree of a node first, then
the node and then the right subtree of the node. Note that left and right notions are
meaningful only in a binary tree, thus, inorder tree traversal is associated with binary
trees. The recursive algorithm for inorder traversal is shown in Algorithm 12.6. The
visited vertices of the tree in Fig. 12.2 in sequence are g, c, h, d, a, r, e, b, k, i, l, f .
Time complexity of this algorithm is O(n) using the same reasoning for other tree
traversals.

Algorithm 12.6 Inorder traversal
1: procedure Inorder(v)
2: Inorder(v.le f t_subtree)
3: visit v
4: Inorder(v.right_subtree)
5: end procedure

12.4 Binary Search Trees

A binary search tree (BST) is basically a binary tree where each node of this tree
stores a key and the key value of a node is more than or equal to all of the key values
in its left subtree and less than or equal to all key values of nodes in its right subtree.
This type of binary tree is used for efficient data storage in computers. A BST is
shown in Fig. 12.3.

ABSTmaybe used to store data in non-contiguous locations in computermemory.
Each node of the BST then has two pointers to the left node and to the right node
where a pointer is basically a memory address. Each node of the BST typically will
have a key, a value and two pointers for the left and right nodes as shown in Fig. 12.4.
The leaves of the BST have null left and right pointers as they do not show any other
node.

There are various operation that can be performed on a BST; we will review
three such operations, searching a key value in a BST, finding the maximum value
and the minimum key value stored in a BST. Searching a key value is shown as a
recursive procedure in Algorithm 12.7. We assume each node of the BST is a tuple
a(le f t, value, right) where a is the label of the node, le f t is the left pointer, value
is the value stored at a node and right is the right pointer. This procedure inputs the
root node and a key value val and searches the tree until that value or a leaf node is
encountered, thus, returning null pointer means the value is not found in the BST.
We make use of the BST property such that if the value is less than the current node
value, we go left; otherwise we go right in the subtrees.

248 12 Trees and Traversals

12

9

23

19

17

28

32

43

39

25

27

14

18

15
10

Fig. 12.3 A binary search tree

0 0 0 0 0 0 0 0

200

200

400300 500100

100
300 500 400

600

600

a

b c

d e f g

8

12

17

28

43
15 21

Fig. 12.4 A binary search tree in memory

Algorithm 12.7 BST search
1: procedure BST_Search(node, value)
2: if node = null or kvalue = node.val then
3: return node
4: end if
5: if value < node.val then
6: return BST_Search(node.le f t, value)
7: else
8: return BST_Search(node.right, value)
9: end if
10: end procedure

12.4 Binary Search Trees 249

It may also be of interest to find the minimum value and the maximum value
stored in a BST. The BST property means the minimum value stored in the tree is
at farthest and lowest left node which can be accessed recursively by continuously
going left in the tree until a null pointer is encountered as shown in Algorithm 12.8
and this is the node with the minimum value.

Algorithm 12.8 BST minimum value
1: procedure BST_Min(node)
2: while node.le f t �= null do
3: node ← node.le f t
4: end while
5: return node.value
6: end procedure

The maximum value of a BST can be attained similarly to that of finding the
minimum value but this time we go as right as possible until the node at the farthest
right is reached as depicted in Algorithm 12.9.

Algorithm 12.9 BST maximum value
1: procedure BST_Max(node)
2: while node.right �= null do
3: node ← node.right
4: end while
5: return node.value
6: end procedure

12.5 Depth-First-Search

A depth-first-search tree of a graph is a spanning tree of a graph discovered by staring
from a vertex and going as deep as possible by traversing the edges in no specific
order. Consider a floor of a building consisting of rooms with doors opening to other
rooms. We are asked to visit every room in this floor starting from an arbitrary room
and are given a ball of string and a piece of chalk. The floor is a graph, each room is
a vertex and each door is an edge opening to another vertex (room) of the graph in
our analogy. The algorithm to visit all of the rooms is to pull the string along as we
move, whenever we enter a room through a door, mark the door with the chalk and
whenever we come to a room with no doors or having all doors marked, we return
to the room where we come from by rolling up the string.

250 12 Trees and Traversals

A recursive algorithm to discover a DFS tree of a graph may be designed with
the following principle. We start from a vertex u, mark it as visited and select one of
the unmarked neighbors say v of u, set u as the parent of u and implement the same
procedure, that is, mark v as visited, and select an unmarked neighbor of v say w and
repeat. When there are no unvisited neighbors of a vertex, we return to the parent
of the vertex. We also record the first time of visiting a vertex u and the last time
when we need to return to the parent of u since it has no more unvisited neighbors.
All vertices of a connected graph will be visited with this procedure, however, for a
disconnected graph, we need to invoke the recursive procedure for each component.

The data structures to implement this algorithm are the boolean array V isi ted[n]
showing whether a vertex is visited or not, Pred[n] showing the predecessor of a
vertex in the BFS tree, an array d[n] showing the first visit times of vertices and an
array f [n] showing the last visit times of vertices. The recursive DFS algorithm is
shown in Algorithm 12.10. Note that call to this procedure at line 10 is invoked for
each component of the graph as a single call which will result visiting all vertices of
a component.

Algorithm 12.10 DFS_Recursive_Forest
1: Input : G(V, E), directed or undirected graph
2: Output : Pred[n]; d[n], f [n] � place of a vertex in DFS tree and its visit times
3: int time ← 0; boolean V isi ted[1..n]
4: for all u ∈ V do � initialize
5: V isi ted[u] ← f alse
6: Pred[u] ←⊥
7: end for
8: for all u ∈ V do
9: if V isi ted[u] = f alse then
10: DFS(u) � call for each connected component
11: end if
12: end for
13:
14: procedure DFS(u)
15: Marked[u] ← true
16: time ← time + 1; d[u] ← time � first visit
17: for all (u, v) ∈ E do � visit neighbors
18: if V isi ted[v] = f alse then
19: Pred[v] ← u
20: DFS(v)
21: end if
22: end for
23: time ← time + 1
24: f [u] ← time � return visit
25: end procedure

A DFS traversal of a sample forest is shown in Fig. 12.5 with tree edges shown
in bold lines pointing to predecessors and the first and last visit times of a vertex

12.5 Depth-First-Search 251

1

2

3

4

5

6
7

8 9

10
11

12

13 14
15

16

17

18

19 20

21 22

2324

v1 v2 v3

v4

v5v6v7

v8
v9

v10

v11

v12

Fig. 12.5 DFS traversal of a sample graph with two components

is shown next to it with smaller number and larger number denoting the start and
finish times respectively. We never traverse an edge between two marked edges,
thus, the traversed edges form a tree. Since all vertices are visited, the tree formed
is a spanning tree of the graph. The termination condition for the DFS procedure
is returning to the first vertex it is called from and the algorithm finishes when all
components are traversed, each with a single call to the DFS procedure which calls
itself until all vertices in a component are visited. Note that selection of an unvisited
vertex when done arbitrarily may result in different DFS tree structures. The time
taken for this algorithm is �(n +m) in total; �(n) time for initialization and �(m)

time for inspecting each edge twice from its endpoints. DFS algorithm is one of the
building blocks of graph algorithms and is used extensively for more complex graph
problems.

12.6 Breadth-First Search

The breadth-first search (BFS) algorithm is commonly used as the DFS algorithm to
traverse the vertices of a graph. This time, all of the neighbors of an initial vertex u
are visited, then all of the neighbors of these neighbors are visited and so on until all
vertices of the graph are visited. The traversed edges at the end of the BFS algorithm
is a spanning tree of the graph as in the DFS. This algorithm in an unweighted graph
provides the distance of a vertex v in tree to the starting vertex u as the number of
hops between u and v in the BFS tree. Whenever a vertex v is visited, it is assigned
a value denoted by level(v) which is its distance to the starting vertex.

Considering the design of a BFS algorithm for a graph, we will input the graph
and a starting vertex s to the procedure and we need the predecessor relationship in
the array Pred[n] and the level of a vertex in the BFS tree in the array Levels[n]
as the output as shown in Algorithm 12.11. We keep the neighbors of the current
vertex under consideration in the queue Q and whenever a vertex from the queue
is removed, its level is assigned only if this value is not assigned before, thereby
preventing visiting the same vertex more than once.

252 12 Trees and Traversals

1

2

4
v1 v2 v3

v4

v5

v6v7v8

v10

v11

v9

1
2

2

2

3

3

3

0

Fig. 12.6 BFS traversal of a sample connected graph

Algorithm 12.11 BFS
1: Input : G(V, E), s � undirected, connected graph G and a source vertex s
2: Output : Level[n] and Pred[n] � levels and predecessors of vertices in BFS tree
3: for all v ∈ V \ {s} do � initialize all vertices except source s
4: Level[v] ← ∞
5: Pred[v] ←⊥
6: end for
7: Level[s] ← 0 � initialize source s
8: Pred[s] ← s
9: Q ← s
10: while Q �= Ø do � do until Q is empty
11: v ← deque(Q) � deque the first element u
12: for all (u, v) ∈ E do � process all neighbors of u
13: if Level[u] = ∞ then
14: Level[u] ← Level[v] + 1
15: Pred[u] ← v
16: enque(Q, u)

17: end if
18: end for
19: end while

Running of this algorithm is displayed in Fig. 12.6 starting from vertex v11 with
BFS tree edges shown in bold pointing to predecessors of a vertex and the level of a
vertex is shown next to it. The order of enqueueing the neighbors of a vertex v in the
queue may be done arbitrarily or based on some criteria as the node identifiers. The
structure of the BFS depends on this order and we may obtain different BFS trees
based on this selection. The initialization of the BFS algorithm takes O(n) time and
each edge is explored twice resulting in a total time of O(n + m).

12.7 Spanning Trees 253

12.7 SpanningTrees

A spanning tree of a graph G = (V, E) is a subgraph T = (V, E ′) of G such that
T is a tree and contains all vertices of G. We will review spanning tree construction
of a graph as unweighted and weighted cases.

12.7.1 Unweighted SpanningTrees

Every connected graph has at least one spanning tree. The number of spanning trees
of a graph G is denoted by τ(G). The number of spanning trees of the complete
graph Kn which has distinct vertices is given by [2],

τ(Kn) = nn−2 (12.1)

For example, K3 has 3 and K4 has 16 such spanning trees when each vertex has a
distinct label. A simple algorithm to construct a spanning tree of a graph is designed
by initializing the spanning tree T to be formed by selecting an arbitrary edge (u, v)
and including it in T and then always selecting edges with one endpoint in T and
the other endpoint outside T , thereby preventing any cycle between selected edges.
We maintain the acyclic property of a tree this way. This algorithm is depicted in
Algorithm 12.12. Termination of the algorithm is when all vertices are included in
T to obey spanning tree property.

Algorithm 12.12 ST_Contsruct
1: Input : G = (V, E)

2: Output : A spanning Tree T of G
3: T ← an arbitrary edge (u, v)
4: V ′ ← {u, v}
5: while V ′ �= V do
6: select any outgoing edge (u, v) from T with u ∈ T ∧ v /∈ T
7: T ← T ∪ {(u, v)}
8: V ′ ← V ′ ∪ {v}
9: end while

The working of this algorithm is depicted in Fig. 12.7 where spanning tree edges
are shown by bold lines and the order of inclusion of each edge included in spanning
tree T is shown by a number. Thus, edges (b, g), (b, c), (h, g), (c, d), (h, a), (c, e)
and (f, g) are included in sequence in T . This algorithm is correct since the structure
we obtain in the end is acyclic, therefore a tree, and we ensure that all vertices are
contained in the edges of the tree in line 5 of the algorithm which means the tree
obtained is a spanning tree. Time complexity is simply O(m) which is the number
of edges of the graph.

254 12 Trees and Traversals

Fig. 12.7 Construction of a
spanning tree of a small
sample graph using
Algorithm 12.12

a
b c

d

e

fg
h

(1)

(2)

(3)

(4)

(5) (6)

(7)

12.7.2 Minimum SpanningTrees

We can search a spanning tree in a weighted graph which may represent a commu-
nication network. In this case, our aim commonly is to build a spanning tree of the
graph which has a minimum total weight.

Definition 12.1 (Minimum spanning tree) A minimum spanning tree (MST) T of a
weighted graph G = (V, E,w) with w : E → R is the minimum weight spanning
tree of G among all spanning trees of G. Formally,

w(T) =
∑

(u,v)∈T
w(u, v) (12.2)

Let G = (V, E,w) be a connected, weighted, undirected graph. The following
properties of G proofs of which can be found in [1] form the basis of some MST
algorithms.

• Uniqueness: G has a unique MST if the edge weights of G are distinct.
• Cut Property: Let H ∈ E be a subset of some MST of G and let (S, V \ S) be any
cut in G that does not contain any edge in H . Then, the least weight edge (u, v)
that crosses this cut is contained in some MST of G.

• Cycle Property: Let C be any cycle in G and (u, v) be the maximum weight edge
in C . Then, (u, v) is not contained in any MST of G.

12.7.2.1 Prim’s Algorithm
Prim’s algorithm to find the MST of a weighted graph G = (V, E,w) is based on
the cut property as follows. Let T ′ be a subset of an MST of G; then, a minimum
weight outgoing edge (MWOE) from any vertex of T ′ is contained in the final MST
of G. The MWOE has the least weight edge among all edges that have one endpoint
in T ′ and the other endpoint outside T ′. A partial MST T ′ is shown in bold lines in
Fig. 12.8 and the MWOE is in dashed line. Note that edge (v8, v9) is not an MWOE
of T ′ since both of its endpoints are contained in T ′.

12.7 Spanning Trees 255

v1

v2 v3 v4 v5

v6v7v8v9

1

3

6

5

9

4

2 12

10

7

8

1113

Fig. 12.8 A partial MST and MWOE

Prim’s algorithm selects and arbitrary vertex r as the root of theMST to be formed,
includes this vertex in MST T and thereafter, repeatedly selects the MWOE from
the current MST fragment, includes MWOE in the fragment and continues until all
vertices of G are included in the MST as shown in Algorithm 12.13.

Algorithm 12.13 Prim’s MST algorithm
1: Input : G = (V, E,w) � a weighted graph
2: Output : T = (V, ET) � MST of G
3: V ′ ← {r}
4: T ← Ø
5: while V ′ �= V do � continue until all vertices are visited
6: select MWOE (u, v) of T with u ∈ T and v ∈ G \ T
7: V ′ ← V ′ ∪ {v}
8: ET ← ET ∪ {(u, v)}
9: end while

The working of Prim’s algorithm in an example graph is shown in Fig. 12.9. The
main operation in this algorithm is the selection of MWOE. Time complexity of
Prim’s algorithm is O(m log n) using suitable data structures [1].

12.7.2.2 Kruskal’s Algorithm
Kruskal’s algorithm works differently by first sorting the edges of a graph G =
(V, E,w) with respect to their weights in non-decreasing order and the MST T
contains no edges initially. Then, starting from the lightest edge, an edge in the list is
included in T as long as this edge does not make a cycle with edges already contained
in T . The algorithm to perform this procedure is shown in Algorithm 12.14.

The running of this algorithm for the same graph of Fig. 12.9 is shown in Fig. 12.10
The sorting process takes O(m logm). Note that the edge (a, f) is not included in T
as it would form a cycle with the existing T edges if included which is the dominant
time for this algorithm.

256 12 Trees and Traversals

(a) (b)

(c) (d)

(e) (f)

a b

c

d

e

f

g

12

3

4
5

6
7

9

8

10

a b

c

d

e

f

g

12

3

4

5
6

7

9

8

10

a b

c

d

e

f

g

12

3

4

5
6

7

9

8

10

a b

c

d

e

f

g

12

3

4

5
6

7

9

8

10

a b

c

d

e

f

g

12

3

4
5

6
7

9

8

10

a b

c

d

e

f

g

12

3

4 5

6
7

9

8

10

Fig. 12.9 Construction of a spanning tree of a small sample graph using Algorithm 12.13

Algorithm 12.14 Kruskal_MST
1: Input : G = (V, E,w) � a weighted graph
2: Output : T = (V, ET) � MST of G
3: T ← Ø
4: Q ← sorted edges in nondecreasing weights of E
5: while Q �= Ø do � check all edges
6: remove the first edge (u, v) from Q
7: if (u, v) does not make a cycle with current edges in T then
8: T ← T ∪ (u, v)
9: end if
10: end while

12.7 Spanning Trees 257

(a) (b)

(c) (d)

(e) (f)

a b

c

d

e

f

g

12

3

4
5

6 7

9

8

10

a b

c

d

e

f

g

12

3

4
5

6
7

9

8

10

a b

c

d

e

f

g

12

3

4

5
6 7

9

8

10

a b

c

d

e

f

g

12

3

4
5

6 7

9

8

10

a b

c

d

e

f

g

12

3

4

5
6

7

9

8

10

a b

c

d

e

f

g

12

3

4

5
6

7

9

8

10

Fig. 12.10 Construction of a spanning tree of a small sample graph using Algorithm 12.14

12.7.2.3 Reverse Deletion Algorithm
This algorithm works by first sorting the edges of a graph G = (V, E,w) with
respect to their weights in non-increasing order and the MST T contains all edges of
G initially. Then, starting from the heaviest edge, an edge in the T is deleted from
T as long as this edge does not disconnect the current T since T must be connected.
The main idea of this algorithm is the fact that a heaviest weight edge in a cycle can
not be part of any MST of a weighted graph as defined by the cycle property. The
algorithm to perform this procedure is shown in Algorithm 12.15.

We apply this algorithm in the graph aswe did for Prim’s andKruskal’s algorithms
and the final MST obtained is the same as shown in Fig. 12.11. Note that we do not
delete edge (c, d) since doing so leaves the current T unconnected. Also, deletion
of any edge with weight less than 6 leaves G disconnected and thus, these edges are
not removed. The running time is dominated by the sorting procedure which takes
O(mlogm) steps.

258 12 Trees and Traversals

(a) (b)

(c) (d)

(e) (f)

a b

c

d

e

f

g

12

3

4
5

6
7

9

8

10

a b

c

d

e

f

g

12

3

4

5
6

7

9

8

a b

c

d

e

f

g

12

3

4

5
6

7

8
a b

c

d

e

f

g

12

3

4

5
6

7

a b

c

d

e

f

g

12

3

4
5

6
7

a b

c

d

e

f

g

12

3

4 5

7

Fig. 12.11 Construction of a spanning tree of a small sample graph using Algorithm 12.15

Algorithm 12.15 Reverse_Delete_MST
1: Input : G = (V, E,w)

2: Output : MST T of G
3: T ← e
4: Q ← sorted edges in noninreasing weights of E
5: while Q �= Ø do � check all edges
6: remove the first edge (u, v) from Q
7: if deleting (u, v) from T does not leave T disconnected then
8: T ← T − (u, v)
9: end if
10: end while

12.9 Chapter Notes 259

12.8 Review Questions

1. Compare briefly a preorder and postorder traversal of a general tree.
2. What is a binary tree?
3. What is the difference between preorder and postorder traversals of a general

tree and a binary tree?
4. Why inorder traversal is meaningful only in a binary tree?
5. What is a binary search tree and where can it be used?
6. Describe a method to build a spanning tree of an unweighted graph.
7. Define a minimum spanning tree of a weighted graph.
8. What makes Prim’s MST algorithm correct?
9. Compare Kruskal’s MST algorithm with the Reverse Delete MST algorithm.

10. Why is Kruskal’s algorithm correct?
11. What makes Reverse Delete MST algorithm work correctly?

12.9 Chapter Notes

Wefirst reviewed basic tree properties and traversals of a tree in this chapter. Preorder
and postorder traversals are applicable to all trees. A binary tree has nodes having
at most two children. The inorder traversal procedure may be defined for a binary
tree since a binary tree has the notion of left and subtrees. A binary search tree has
elements ordered such that any element in a subtree of a node v in such a tree has a
value less than or equal to all values in v and the right subtree of v.

We then reviewed two basic graph traversal algorithms; DFS and BFS. Vertices
in a DFS algorithm are visited by going as deep as possible and the BFS algorithm
visits vertices in layers thereby finding shortest distances to the starting vertex in an
unweighted graph. Both of these algorithms produce spanning trees and may be used
as building blocks of more complex graph problems such as finding connectivity and
clustering which is a method of grouping closely related vertices of graph.

Lastly, we looked at constructing a general spanning tree of an unweighted undi-
rected graph and minimum spanning tree (MST) algorithms. We analyzed Prim’s,
Kruskal’s andReverseDeleteMST algorithmswhich have similar time complexities.
The MST problem is one of the most investigated problems in Computer Science as
it has numerous applications in various disciplines.

260 12 Trees and Traversals

a

cd

e

f

i

j

k

l

r

b

g h

m

n

o

p

Fig. 12.12 Sample tree for Exercise 2

a
d

e
f

j

k

l

r

b

g

m

n
p

c

i

h

Fig. 12.13 Sample tree for Exercise 4

Exercises

1. Prove that every graph G with n vertices and n − 1 edges is a tree using the
contradiction method.

2. Work out the order of the visited vertices using preorder and postorder traversals
of the general tree in Fig. 12.12.

3. Prove that every tree is a bipartite graph.
4. Find the list of visited vertices of the binary tree in Fig. 12.13 using inorder

traversal.
5. Propose an algorithm to insert a value x in a binary search tree
6. Find the MST of the weighted graph of Fig. 12.14 by Prim’s algorithm.
7. Work out a possible DFS tree in the graph of Fig. 12.15 starting from vertex

v1. Show the start and finish times for each vertex and the predecessor of each
vertex in the tree formed.

12.9 Chapter Notes 261

a b c

de
f

g
12

3

4

5

67

9

8

10

11

12

Fig. 12.14 Sample graph for Exercises 6, 9 and 10

v1

v2 v3 v4 v5

v6

v7v8

v10

v11 v9

Fig. 12.15 Sample graph for Exercises 7 and 8

8. Find a BFS of the graph in Fig. 12.15 starting from vertex v9 and show the level
and predecessor of each vertex in the tree formed.

9. Find the MST of the weighted graph of Fig. 12.14 by Kruskal’s algorithm.
10. Find the MST of the weighted graph of Fig. 12.14 by the Reverse-Delete algo-

rithm.

262 12 Trees and Traversals

References

1. Erciyes K (2018) Guide to graph algorithms: sequential, parallel and distributed. Springer texts
in computer science series

2. Cayley A (1857) On the theory of analytical forms called trees. Philos Mag 4(13):172–176

13Subgraphs

In this chapter, we will review few special subgraphs that find numerous real-life
applications. We start with the clique which is a fully connected graph. Finding
cliques in a graph is needed to discover closely related nodes of the graph which
may be proteins, network nodes or even persons. We then look at a fundamental
problem called matching in a graph which is a set of disjoint edges. Independent
sets, dominating sets and vertex cover each provide a subset of vertices of a graph
with a specific property. We conclude this chapter with another well-known graph
problem: vertex coloring. where each vertex should be colored with a different color
than its neighbors. All of these problems except matching are NP-hard problems
defying solutions in polynomial time.

13.1 Cliques

A clique is a fully connected graph, that is, there is an edge between any pair of
vertices in a clique. Finding cliques in graphs have various implications, for exam-
ple, finding closely related friends in a social network when the social network is
represented by a graph. Cliques of size 2, 3 and 4 are depicted in Fig. 13.1.

A graph itself may not be a clique but may have a subgraph that is a clique. A
clique of a graph is defined as follows.

Definition 13.1 (Clique) A clique of a graph G = (V, E) is a subset V ′ of its
vertices with an edge between any pair of vertices in V ′. In other words, a clique
is an induced complete subgraph of G. Formally, given G = (V, E) and V ′ ⊆ V ;
(u, v) ∈ E ∀u, v ∈ V ′.

A maximal clique C of a graph G has the highest order among all cliques of G.
The order of a maximum clique of G is denoted by ω(G) and finding this parameter

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_13

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_13

264 13 Subgraphs

(a) (b) (c)

Fig. 13.1 Cliques of order a 3, b 4 and c 5

Fig. 13.2 Cliques of a
sample graph

a

b

c

d

e

f

g

h

i

j

is an NP-hard problem. The sample graph of Fig. 13.2 has 5 cliques of order 3 and
a maximum clique of order 4 with vertices (b, e, f, g) in the middle as subgraphs.

13.2 Matching

A matching of a graph G is a subset of edges of G that do not have any common
endpoints. Matching finds various applications such as in bioinformatics to find
similarities between biological structures and in telecommunicationswhen allocating
channel frequencies.

13.2.1 UnweightedMatching

Definition 13.2 (Unweighted matching) A matching of an unweighted graph G =
(V, E) consists of a set of edges E ′ ⊆ E such that any edge in E ′ does not share
endpoints with any other edge in E ′. A maximal matching (MM) of a graph G is a
matching ofG which can not be enlarged any further. Amaximummatching (MaxM)
of G has the largest size among all matchings of G.

13.2 Matching 265

(a)

augmenting path

(b)

alternating path

u

v

u

vw

alternating path

Fig. 13.3 a A MM of a graph, b a MaxM of the same graph shown by bold edges

An MM and MaxM of a sample graph of sizes 2 and 3 respectively are depicted
in Fig. 13.3. Finding MaxM of a graph is one of the rare graph problems that has
solutions in polynomial time. We can have a simple algorithm to find maximal
matching in a graph G = (V, E), consisting of the following steps.

1. Maximal matching M ← Ø
2. while E �= Ø
3. Select an edge e ∈ E at random.
4. M ← M ∪ e.
5. Remove e and all its adjacent edges from E .

Correctness of the algorithm is evident since we obey matching property by re-
moving all adjacent edges of the selected edge and the time complexity of this
algorithm is O(m) since we iteratively remove all unmatched edges. Running of this
algorithm is depicted in Fig. 13.4 using the same graph of Fig. 13.3. Selected edges
at each iteration are shown in bold and removed edges are shown by dashed lines,
and the final graph with all matching edges is shown in (d). The matching obtained
is maximum with a size of 4.

13.2.1.1 Augmenting Path
We need to define some concepts before forming a more efficient algorithm to find
matching in an unweighted graph than the greedy method described. Our aim is
to find a maximum matching of a graph in polynomial time. A matched edge of a
matching M in a graph G is an edge contained in M and an unmatched edge of G
is called an unmatched edge. An M-alternating path of M is a path that alternates
between matched edges in M and unmatched edges. Such two M-alternating paths
of the maximum matching in Fig. 13.3b is shown in dashed lines between vertices u
and v, and vertices w and v.

266 13 Subgraphs

(a) (b)

(c) (d)

Fig. 13.4 Iterations of the greedy matching algorithm

Definition 13.3 (Augmenting path) An M-augmenting path of a matching M in a
graph G is an alternating path that starts and ends in an unmatched edge in G.

An augmenting path is depicted Fig. 13.3a in dashed lines between vertices u and
v. An M-augmenting path in a graph G that has k edges has k + 1 unmatched edges
and thus has 2k + 1 edges in total. In the example augmenting path, k = 2 and there
are 5 edges in this augmenting path.

Remark 22 Let M be a matching of a graph G and P an M-augmenting path in G.
Then M ⊕ P is again a matching in G with a cardinality one more than that of M .

Note that M ⊕ P is the symmetric difference of sets M and P which contains
elements that belong to only one of these sets. In practice, this operation means
switching the matched edges to unmatched and unmatched edges to matched in P
as shown in the path in Fig. 13.3b. The following theorem due to Berge forms the
basis of various matching algorithms [1].

Theorem 23 Given a graph with matching M, M is maximum if M does not contain
any augmenting paths.

13.2 Matching 267

If there was an augmenting path P , we would increase the size of the matching
by taking the symmetric difference of M and P . Based on this theorem, we can find
a maximum matching in a graph as shown by the simple algorithm below, however,
finding augmenting paths of a matching is not trivial as we will see.

1. Let M be some initial matching in G obtained by the greedy or another method.
2. while ∃ an augmenting path P in M
3. M ← M ⊕ P .

13.2.2 WeightedMatching

Maximum weighted matching (MaxWM) for a weighted graph G = (V, E,w) is
defined as the matching with the total weight of matched edges among all matchings
ofG. Note that the size of a MaxWMofG may be smaller than some other matching
that have less total weight. A greedy approach to find maximal weighted matching
(MWM) may be formed as in the unweighted case, this time selecting always the
largest weight edge as shown below. Sorting edges requires O(m logm) time and
checking for edges to be removed from the queue takes O(m2) time as we have to
do this for every edge selected. Thus, this algorithm has O(m2) time complexity in
its naive form.

1. Maximal weighted matching M ← Ø
2. Sort the edges of G in descending order and store them in Q.
3. while Q �= Ø
4. Remove the first element e from the queue.
5. M ← M ∪ e.
6. Remove all adjacent edges of e from Q.

Running of this algorithm in a sample graph is shown in Fig. 13.5with the selected
edges shown in bold lines and removed edges shown by dashes lines. The final
weighted matching is shown in (d) with a total weight of 30 which in fact is the
maximum weighted matching of this graph.

Preis’ Algorithm

The algorithm due to Preis is a greedy algorithm for weighted matching in weighted
graphs [6]. A locally heaviest edge in this algorithm is defined as the edge with the
largest weight among all of its adjacent edges. These edges are selected randomly
at each iteration of this procedure, included in the matching and all of the adjacent
edges are removed from the graph. A running of this algorithm is shown in Fig. 13.6
for the same graph of Fig. 13.5 with the final matching shown in (d) having a total
weight of 28. Time complexity of this algorithm is given as O(m log n) with an
approximation ratio of 2 [6].

268 13 Subgraphs

(a) (b)

(c) (d)

1

25

8

9

12
7

6 43

11
10

a

b c

d

e

f

g
h

i

1

25

8

9

12
7

6 43

11
10

a

b c

d

e

f

g
h

i

1

25

8

9

12
7

6 43

11
10

a

b c

d

e

f

g
h

i

1

25

8

9

12
7

6 43

11
10

a

b c

d

e

f

g
h

i

Fig. 13.5 Iterations of the greedy matching algorithm

(a) (b)

(c) (d)

1

25

8

9

12
7

6 43

11
10

a

b c

d

e

f

g
h

i

1

25

8

9

12
7

6 43

11
10

a

b c

d

e

f

g
h

i

1

25

8

9

12
7

6 43

11
10

a

b c

d

e

f

g
h

i

1

25

8

9

12
7

6 43

11
10

a

b c

d

e

f

g
h

i

Fig. 13.6 Iterations of Preis’ algorithm

13.2 Matching 269

13.2.3 Bipartite GraphMatching

A simple greedy algorithm to find a maximal weighted matching in a bipartite
weighted graph can be designed to consist of the following steps.

1. Input: G = (A ∪ B, E)

2. Output: Maximal weighted matching M of G
3. sort the edges of G in non-increasing order and store in a queue Q.
4. while Q �= Ø
5. dequeue edge (u, v) from Q.
6. add (u, v) to M .
7. remove all edges incident to u or v from Q
8. end while

This algorithm works correctly since we obey matching property by removing all
adjacent edges to the matched edges from consideration. This algorithm first sorts
the edges in non-decreasing weights and then selects a legal edge from the list in
sequence. This algorithm has O(m2) time complexity in its naive form as the general
weighted graph algorithm.

13.3 Independent Sets

Informally, an independent set (IS) of a graph is a subset of its vertices such that there
are no edges between any pair of vertices in this set; a formal definition follows.

Definition 13.4 (Independent set) An independent set of a graph G = (V, E) is the
vertex set V ′ ⊆ V such that for any u, v ∈ V ′, (u, v) /∈ E . A maximal independent
set (MIS) of a graph G is an independent set of G which can not be enlarged any
further. In other words, we can not add another vertex to MIS of a graph because this
new vertex will be a neighbor vertex to one of the vertices in the MIS. The maximum
independent set (MaxIS) of G is the independent set of maximum order among all
independent sets of G.

The example graph in Fig. 13.7a shows an MIS of this graph in bold nodes. The
graph in Fig. 13.7b however is an MaxIS of the same graph shown with bold nodes.
Note that we can have a number of MISs or MaxISs of the same graph.

13.3.1 Algorithm

We can form a simple greedy algorithm to find the MIS of a graph G by iteratively
selecting a vertex v to be included in the MIS and then removing v and all of its

270 13 Subgraphs

(a) (b)

Fig. 13.7 a An MIS of a graph, b the MaxIS of the same graph

neighbors from this set to be searched in the next iteration as shown inAlgorithm13.1.
Removing the neighbors of vertex v along with all incident edges on these neighbors
ensures the IS property is maintained. The algorithm terminates when there are no
more vertices left to be included in the IS, thus, this algorithmworks correctly to find
the MIS of a graph. The total time taken is O(n) as the number of possible iterations
of the while loop. Finding a MaxIS of a graph however is an NP-hard problem and
there are no known algorithms to find this set in polynomial time.

Algorithm 13.1 Find_MIS
1: Input: G = (V, E): � undirected graph
2: Output: MIS V ′ of G
3: S ← V
4: V ′ ← Ø
5: while S �= Ø do
6: select an arbitrary vertex v ∈ S
7: V ′ ← V ′ ∪ {v}
8: S ← {S − N (v) ∪ {v}}
9: end while

The execution steps of this algorithm on the sample graph of Fig. 13.7 is depicted
in Fig. 13.8 where nodes selected for MIS in sequence are shown in bold and the
deleted vertices along with their incident edges are shown by dashed lines. The
obtained MIS is in fact another MaxMIS for this graph.

Let I be any IS of a graph G = (V, E), thus, there is not an edge between any
pair of vertices in I . Then, the complement of G, G, will have all possible edges
between the vertices of I , therefore forming a clique in G. This relation is depicted
in Fig. 13.9.

13.4 Dominating Sets 271

(a) (b)

(c)

Fig. 13.8 Execution steps of Algorithm 13.1

(a) (b)

Fig. 13.9 a A sample graph with an independent set I shown in bold, b I is a clique in G same
graph

13.4 Dominating Sets

A dominating set of a graph G is a subset of its vertices with the condition that every
vertex in G is either in this set or a neighbor of a vertex in this set.

Definition 13.5 (Dominating set) A dominating set (DS) of a graph G = (V, E) is
the vertex set V ′ ⊆ V such that for any v ∈ V , either v ∈ V ′ or v ∈ N (u) where
u ∈ V ′. A minimal dominating set (MDS) can not be reduced any further and a
minimum dominating set (MinDS) of a graph G is a dominating set of G that has
the least number of vertices among all dominating sets of G. In other words, a MDS
of a graph G does not contain any dominating set as a proper subset.

272 13 Subgraphs

(a) (b)

uv

(c)

Fig.13.10 a AMDS of a graph, bAMinDS of the same graph, c A connected MinDS of the same
graph

An alternative definition of a dominating set can be stated as follows. Let V ′ ⊆ V
and ∀v ∈ V − V ′, d(u, v) ≤ 1 for any vertex u ∈ V ′. Then V ′ is a dominating set
ofG.

Definition 13.6 (Domination number) The domination number γ (G) of a graph G
is the minimum cardinality of any dominating set of G.

There are two important concepts to be noted about dominating sets. The first one
is we search for a minimal dominating set of a graph since our aim is to use aminimal
number of nodes to be able to dominate every node of the graph. Many applications
require this facility, for example, wemay use a dominating set to form a backbone in a
communication network such as a wireless sensor network. Secondly, unlike an inde-
pendent set, the nodes of a dominating setmaybe adjacent. Such adominating setwith
apathbetweenanypairofnodesof thedominatingset iscalledaconnecteddominating
set (CDS). This is indeed the case when we need to find the dominating set in a com-
munication network. A minimal dominating set in which taking out a node from this
set results in disturbance of the dominating set property is depicted in Fig. 13.10a. A
MinDSof the same graph is shown in (b) and lastly, a CDSof the same graph is shown
in (c) which can be used as a backbone for communication. Edges shown between the
nodes represent communication links and the node u sends a message to node v over
the backbone formed by the CDS nodes. The algorithm performed by each CDS node
is then check the destination node identifier v in the message, if node v is one of its
dominated nodes, send the message to v and stop transmission. Otherwise, it simply
broadcasts the message to all of its CDS neighbors. This method is effective since we
do not need to broadcast the message to all nodes of the network.

13.4 Dominating Sets 273

13.4.1 Algorithm

FindingMinDS is an NP-hard problemwith no known polynomial algorithms. How-
ever, we can have an algorithm to find MDS with the following considerations. Our
coloring scheme denotes nodes in DS by black, nodes that are dominated by grey
and any node that is not in DS or not dominated is white. Clearly, the algorithm
designed should continue until no more white nodes left. Let the span of a node v
to be the number of white neighbors v has including itself. Our basic heuristic is to
always select the node with the highest number of span in the graph. This heuristic
is sensible since our aim is to have a MDS, thus, we attempt to cover as many white
nodes as possible at each step. Whenever a white node is selected to be in the MDS,
the span values of its neighbors should be decremented. Algorithm 13.2 shows the
operation of this algorithm with the described heuristic.

Algorithm 13.2 Find_MDS
1: Input : G = (V, E) � connected, unweighted graph
2: Output : MDS V ′ of G
3: Color [n] ← white
4: V ′ ← Ø
5: for all u ∈ V do
6: Spans[u] ← |N (u)| + 1
7: end for
8: while there is a node u with Color [u] = white do do
9: v ← max(Spans)
10: prev ← Color [v]
11: Color [v] ← black
12: V ′ ← V ′ ∪ {v}
13: for all w ∈ N (v) do
14: if prev = white and Color [w] �= black then
15: Spans[w] ← Spans[w] − 1
16: end if
17: if Color [w] = white then
18: Spans[w] ← Spans[w] − 1
19: Color [w] ← grey
20: for all k ∈ N (w) do
21: if Color [k] �= black then
22: Spans[k] ← Spans[k] − 1
23: end if
24: end for
25: end if
26: end for
27: Spans[v] ← 0
28: end while

Another important point about this algorithm isworthmentioning.Wemay color a
grey node black if it has the highest span among allwhite or grey nodes. However, we
do not consider black nodes as they are already in the MDS, thus span of a selected
node is made zero in line 19 of the algorithm. Implementation of this algorithm in

274 13 Subgraphs

(a) (b)

(c)

1

5

4 2

4

3

4

3

3

4

2

1

1

2

11

(d)

Fig. 13.11 Iterations of Algorithm 13.2 in a sample graph

a sample graph is depicted in Fig.13.11 with the initial span values at each iteration
shown next to nodes and node identifiers may be used to break symmetries when
there is a tie. The time complexity of this algorithm is O(n) as in the case of a linear
network and its approximation ratio is lnΔwhereΔ is the highest node degree of the
graph under consideration [7]. A CDS may be obtained from a MDS by connecting
the intermediate nodes between the nodes of the MDS using a suitable algorithm.

13.5 Coloring

Coloring refers to nodes or edges of a graph where colors are commonly represented
by positive integers. Vertex coloring of a graph results in a color of a node that is
different than the colors of its neighbors. Similarly, edge coloring is the coloring of
edges such that no adjacent edges receive the same color.

13.5.1 Vertex Coloring

Definition 13.7 (Vertex coloring) Let C be the set of integers 1, ..., k. A vertex
coloring of a graph G = (V, E) is a function φ : V → C such that φ(u) �= φ(v) if
(u, v) ∈ E .

13.5 Coloring 275

Clearly we can color a graph G with n colors where n is the number of vertices
of G. However, the aim of any coloring algorithm is to use as less colors as possible.

Definition 13.8 (Chromatic number) The chromatic number of a graph G denoted
by χ(G) is the minimum number of colors to color graph G. A graph that has a
chromatic number k is called a k-chromatic graph and a graph that has χ(G) ≤ k is
said to be k-colorable.

Finding chromatic number of a graph is NP-hard with no known polynomial
algorithms [5] and the value of this parameter is O(Δ) by Brooke’s theorem [2],
if graph is not complete or an odd cycle. A bipartite graph is 2-colorable since
all vertices in each vertex set can have the same color. We can have various greedy
algorithms using someheuristic to color the vertices of a graph. Let us forma template
of an algorithm that can be used for various heuristics as shown in Algorithm 13.3
[3]. This algorithm selects a vertex v based on some property and colors it with the
minimum legal color that does not conflict with the already assigned colors of the
neighbors of v. Since we obey the vertex coloring property at each iteration, the
algorithm works correctly.

Algorithm 13.3 Coloring_Template
1: Input : G = (V, E)

2: Output : φ : V → C where C = {1, 2, ..., n}
3: while V �= Ø do
4: select a vertex v ∈ V according to some heuristic
5: φ(v) ← the smallest legal color from C
6: V ← V \ {v}
7: end while

We will describe two heuristics that can be used by this template; a label-based
and a degree based heuristic. In the first case, each vertex is labeled with integers
and the highest numbered vertex is selected at each iteration and colored with the
minimum legal color. Implementation of this heuristic is depicted in Fig. 13.12which
shows the coloring of a sample graph with 4 colors.

The degree-based heuristic always selects the highest-degree vertex that is not
assigned any color and colors it with the minimum legal color. The running of this
algorithm in the same graph of Fig. 13.12 is shown in Fig. 13.13. The larger identifier
is selected when uncolored vertices have the same degree. In this implementation,
we can see that coloring of the same graph is achieved using 3 colors only.

13.5.2 Edge Coloring

The edge coloring of a graph G is the process of assigning different colors to the
edges of G such that no two adjacent edge receives the same color. The colors are
selected from integers 1, ..., k as in the vertex coloring problem.

276 13 Subgraphs

v1 v2 v3

v4

v5v6v7

v8

1

2

3

4

Fig. 13.12 Vertex coloring using vertex identifiers in a sample graph

v1 v2 v3

v4

v5v6v7

v8

1

2

3

Fig. 13.13 Vertex coloring using vertex degrees of the sample graph of Fig. 13.13

Definition 13.9 (Edge coloring) Let C be the set of integers 1, ..., k. An edge color-
ing of a graph G = (V, E) is a function φ : E → C such that for any two adjacent
edges ei and e j , φ(ei) �= φ(e j).

A graphG is called k-edge colorable if there exists an edge coloring φ(G) : E →
C such that |C | = k. The edge chromatic numberχ ′(G) of a graphG is theminimum
k value such that G is k-edge colorable. The edge coloring problem is defined as
finding the minimum number of colors to edge-color a graph and this problem is
also NP-hard as the vertex coloring problem.

Remark 13.1 The edge chromatic number of a graph G, χ ′(G), is greater than or
equal to the maximum degree Δ(G) of G. This observation follows from the fact
that the edges incident to the maximum degree vertex of G need to be colored at
least by Δ colors.

Remark 13.2 The chromatic number of a bipartite graph G, χ ′(G) equals the max-
imum degree Δ(G) of G.

13.5 Coloring 277

1

2

3

4

5

~

||

~~

||e1

e2

e3

e4
e5

e6

e7

e8

e9

e10

e11

e12

e13

||

Fig. 13.14 Edge coloring of a sample graph using Algorithm 13.4

13.5.2.1 A Greedy Algorithm
A simple greedy algorithm which selects an uncolored edge at random and colors it
with the minimum legal color that does not conflict with the already assigned colors
of adjacent edges can be formed as shown in Algorithm 13.4

Algorithm 13.4 Greedy_Ecolor
1: Input : G = (V, E)

2: Output : φ′ : E → C where C = {1, 2, ..., 2Δ − 1}
3: E ′ ← E
4: while E ′ �= Ø do
5: select an edge e ∈ E ′
6: φ′(e) ← the smallest legal color from C
7: E ′ ← E ′ \ {e}
8: end while

Running of this algorithm is depicted in Fig. 13.14. The edges are selected in
order e10, e2, e6, e8, e4, e13, e3, e7, e1, e5, e12, e7, e14 to result in 5-edge-coloring of
this example graph. Time complexity of this algorithm is �(m) since we need to
color an edge at each step.

13.5.2.2 Edge-Coloring fromMatching
A matching of a graph G consists of nonadjacent edges, thus, edges of a distinct
matching of G can be colored with the same color. The edge coloring of G is then
a union of disjoint matchings. We can therefore iteratively select disjoint matchings
and color edges in each matching with the same color as shown in Algorithm 13.5.

The working of this algorithm is depicted in Fig. 13.15. The matchings shown
by different edge patterns denoting edge colors are M1 = {e1, e9, e4, e6}, M2 =
{e2, e5, e8, e13}, M3 = {e3, e10}, M4 = {e7, e14} resulting in one less color than the
random example above. Time complexity of this method depends on the matching
algorithm used.

278 13 Subgraphs

~~~

e1

e2

e3

e4
e5

e6

e7

e8

e9

e10

e11

e12

e13

~
~

e14

M1

M2

M3

M4

Fig. 13.15 Edge coloring using matching

Algorithm 13.5 Ecolor_Match
1: Input : G = (V, E)

2: Output : φ′ : E → C where C = {1, 2, ..., k}
3: i ← 1
4: while E �= Ø do
5: find a maximal matching Mi of G
6: color the edges of Mi with i
7: E ← E \ Mi

8: i ← i + 1
9: end while

13.6 Vertex Cover

A vertex cover of a graph G is a subset of its vertices such that any edge of G has at
least one endpoint in the vertex cover set. We can have unweighted vertex cover of
a graph with no weights associated with its vertices or weighted vertex cover when
the vertices have weights.

13.6.1 UnweightedVertex Cover

Definition 13.10 (Unweighted vertex cover) A vertex cover of an unweighted graph
G = (V, E) is a set V ′ ⊆ V such that for any (u, v) ∈ E , either u ∈ V ′, or v ∈ V ′
or both are in V ′. A minimal vertex cover (MVC) of a graph G is a vertex cover of
G that does not contain any other vertex cover of G as a proper subset. A minimum
vertex cover (MinVC) of G has the minimum cardinality among all vertex covers
of G.

As in the case of a dominating set, we search a vertex cover that is minimal. A
vertex cover that is not minimal is shown in Fig. 13.16a as bold vertices in which
removal of the middle vertex from the cover still leaves the remaining vertices as the



13.6 Vertex Cover 279

(a) (b)

(c)

Fig.13.16 a AMVC of a sample graph shown in bold b AMinVC of the same graph c A CVC of
the same graph

vertex cover of the graph. The cover in (b) is minimal and also a minimum vertex
cover of this graph. We can have a connected vertex cover (CVC) when there is a
path between every pair of vertices in CVC that pass through only vertices in the
vertex cover as shown in (c) with the path between cover vertices shown in bold.

An Approximation Algorithm

Finding a MVC V ′ of an unweighted graph G = (V, E) can be done by finding
edges of a matching M of G and including endpoints of all matched edges in the
MVC as shown by the following algorithm steps.

1. while E �= Ø
2. Select an edge (u, v) ∈ E at random.
3. V ′ ← V ′ ∪ {u, v}.
4. Remove (u, v) and all its adjacent edges from E .

The correctness of this algorithm is evident since we continue until no more edges
left meaning every edge is covered by some vertex. Time complexity is O(m) as in
the greedy unweighted matching algorithm. Since two vertices are covered at each
iteration, the approximation ratio of this algorithm is 2, that is, it finds a vertex cover
that is at most twice the order of the MinVC. A vertex cover of a graph G is related
to the independent set of G such that given an independent set I of G, V − I is a
vertex cover of G.



280 13 Subgraphs

13.6.2 WeightedVertex Cover

A weighted vertex cover (WVC) of a graph that has weights associated with its
vertices still contains endpoints of every edge in the set, however, we aim to have a
total minimum weight of vertices included in the cover as the main goal.

Pricing Algorithm

The pricing algorithm is designed to find the minimal weighted vertex cover
(MWVC) of a vertex-weighted graph based on the following rules: an edge e when
covered by a vertex pays a price pe and the sum of the prices assigned to incident
edges to a vertex v should not exceed the weight of v. The pricing algorithm first ini-
tializes the capacity of each vertex to its weight. An arbitrary unmarked edge (u, v)
is selected at each step of the algorithm and if u or v has some capacity, edge (u, v)
is charged with the lower of these capacities and whenever the capacity of a vertex
is reduced to 0, it becomes tight, is included in the MWVC and all edges incident
to that vertex are marked as covered. The procedure described favors vertices with
lower weights by always selecting lower capacity endpoints of an edge to be tight
and included in MWVC. Algorithm 13.6 displays the pseudocode of this algorithm.
Note that any incident edge on a tight vertex is marked and excluded from further
selections since a tight vertex is in MWVC.

Algorithm 13.6 Pricing_MWVC
1: Input G(V, E,w) � vertex weighted graph
2: E ′ ← E , V ′ ← Ø
3: while E ′ �= Ø do
4: select any (u, v) ∈ E ′
5: if cu �= 0 ∨ cv �= 0 then
6: w ← node with min(cu, cv)
7: p(u, v) ← cw , w ← tight
8: V ′ ← V ′ ∪ {w}
9: E ′ ← E ′ \ {(u, v)}∪ any other edge incident at q
10: end if
11: end while

Running of this algorithm in a sample graph with weighted vertices is shown
in Fig. 13.17. The first selected edge is (a, f ) and vertex f has the lower weight
of 4 resulting in charging this edge with 4, reducing the capacity of vertex f to 0,
including f in the vertex cover, and marking all edges incident to f as covered.
Proceeding in this manner by arbitrarily selecting an uncovered edge results in the
MWVC consisting of vertices {b, d, e, f } with a total weight of 10.

Theorem 13.1 Pricing Algorithm constructs a MWVC of a vertex-weighted graph
with a time complexity O(n) and an approximation ratio of 2.



13.6 Vertex Cover 281

a b

c

de

f

8

2

3

1

4
0

2

/

6

4/

/

/

a b

c

de

f

8

2

3

1

4
0

2
/

/

/

/

0

5
3

_

/

/

a b

c

de

f

2 1

4
0

2
/

/

0

5
3

/

_
/

/ 0

/ 4

/

/

a b

c

de

f

2

4
0

2
/

/

0

3

/

_
/

0

4

/

/

2

0/

(a) (b)

(c) (d)

Fig. 13.17 Execution of Algorithm 13.6 in a sample graph

Proof Whenever a vertex is made tight, all edges incident to it are marked to be
covered and the algorithm finishes when there are no more marked edges left. Thus,
all edges are covered by tight vertices and the resulting tight vertex set is a vertex
cover. Each step of the algorithm makes one vertex tight and there may be O(n)

steps in total to make at most n vertices tight.
Let V ′ be the set of all tight vertices produced by the algorithm and VM the

minimum vertex cover set that we are searching.We need to showw(V ′) ≤ 2w(VM ).
The following can be stated when the total weights of vertices in V ′ and

w(V ′) =
∑

v∈V ′
wv =

∑

v∈V ′

∑

e

pe ≤
∑

v∈V

∑

e

pe (13.1)

Each edge is counted twice, therefore, Eq. 13.1 can be restated as follows.

w(V ′) = 2
∑

e∈E
≤ 2w(VM ) (13.2)

��

13.7 Review Questions

1. What is a maximum clique of a graph? Give an example.
2. What is the relationship between a clique and an independent set of a graph?
3. What is a matching of a graph?
4. Compare an independent set and a dominating set of a graph.



282 13 Subgraphs

5. How is coloring performed on the vertices of a graph?
6. Compare vertex coloring and edge coloring of a graph.
7. What is the relationship between edge coloring and a matching of a graph?
8. What is a vertex cover of a graph and why do we search for a minimal vertex

cover?

13.8 Chapter Notes

Some special subgraphs of a graph with a certain property have various applications.
In this chapter, we reviewed few such subgraphs; cliques, edges of a matching,
independent sets, dominating sets, vertex cover and also assigning colors to the
vertices and edges of a graph. Some example applications of these subgraphs are as
follows. Cliques may be used to find closely interacting nodes such as in a social
network or a biological network, dominating sets may be used as a communication
backbone and vertex cover may be used for facility placement as we will see in
Chap. 15.

All of these problems except the matching problem are NP-hard which means no
polynomial algorithm has been found to solve any of them. In such cases, we search
for algorithms that use heuristics of some kind. The goodness of a used heuristic is
commonly shown by extensive experiments on a wide range of data. Theoretically,
approximation algorithms that find proven suboptimal solutions can be designed.

Exercises

1. State the vertex sets of the cliques in the graph of Fig. 13.18.
2. Find an MIS of the graph of Fig. 13.19 and check whether this is maximum.
3. Work out a MM in the graph of Fig. 13.20 and check whether an augmenting

path in this matching exists.

a

b

c

d

e

f
g

h

ij

k

l

Fig. 13.18 Sample graph for Exercise 1



13.8 Chapter Notes 283

a b

c

d

e

f

g

h

i
j

k

l

Fig. 13.19 Sample graph for Exercises 2 and 10

a b

c

d

e

f

g

h

i

j

k

lm

Fig. 13.20 Sample graph for Exercise 3

4. Show the steps of execution of Preis’ algorithm to find MaxWM in the sample
graph of Fig. 13.21.

5. The MaxIS of a tree T can be found by first including all leaves of T in the
independent set and then not including the nodes in one level up and including
all nodes in the next level up so on.Write this algorithm in pseudocode and work
out its time complexity.

6. Show the running steps of Algorithm 13.2 (span-based algorithm) in the graph
of Fig. 13.22.

7. Show that chromatic number of Kn is n.
8. Apply first the basic greedy and then the highest-degree-first vertex coloring to

the graph of Fig. 13.23.



284 13 Subgraphs

a b c

d e

f

g

hij

3

5

8 124

1
6

7

9 2

9

15

5

3 21

Fig. 13.21 Sample graph for Exercise 4

a b

c

d

e

f

g
h

i

Fig. 13.22 Sample graph for Exercise 6

9. Prove that a tree can be colored using two colors only. Write the pseudocode of
an algorithm to color the nodes of a tree and work out its time complexity.

10. Find disjoint matchings in the graph of Fig. 13.19 and provide an edge coloring
of this graph based on these matchings.



References 285

a b c

d

e

f

gh

i

j

Fig. 13.23 Sample graph for Exercise 8

References

1. Berge C (1957) Two theorems in graph theory. Proc Natl Acad Sci USA 43:842–844
2. Bollobas B (1979) Graph theory. Springer, New York
3. Erciyes K (2018) Guide to graph algorithms: sequential, parallel and distributed. Springer texts

in computer science series
4. Garey MR, Johnson DS (1978) Computers and intractability: a guide to the theory of NPcom-

pleteness. Freeman, New York
5. Karp RM (1991) Probabilistic recurrence relations. In: Proceedings of the 23rd annual ACM

symposium on theory of computing (STOC 91), pp 190–197
6. Preis R, (1999) Linear time 1, 2-approximation algorithm for maximum weighted matching

in general graphs. In: Meinel C, Tison S (eds) Symposium on theoretical aspects of computer
science (STACS), (1999) LNCS, vol 1563. Springer, Berlin, pp 259–269

7. Wattenhofer R (2016) Principles of distributed computing (Chapter 7). Class notes, ETH Zurich



14Connectivity,Network Flows and
Shortest Paths

Connectivity is a fundamental concept in graph theory as it has both theoretical and
practical implications. A graph is called connected if it is possible to reach all vertices
from any vertex. Connectivity is related to network flows and matching as we will
see. In practice, connectivity is important in reliable communication networks as it
has to be provided in loss of edges (links) or vertices (routers) in these networks.

We start this chapter by first reviewing the basic concepts related to connectivity
and then describe algorithms to test connectivity of undirected and directed graphs.
We provide a short review of network flows in the second part of the chapter and
then conclude with matrix analysis of graphs related to connectivity.

14.1 Basics

AgraphG is called connected if there is a path between every pair of its vertices; ifG
is not connected, it is called a disconnected graph. A graph may have subgraphs that
are not connected to each other; these subgraphs are called components. Figure 14.1
displays a graph with 4 components; C1 = {a, b, c, d, e}, C2 = { f, g}, C3 = {h}
and C4 = {i, j, k}.

Definition 14.1 (Vertex cut) A vertex-cut of a connected graph G = (V, E) is the
set V ′ ∈ V such that G − V ′ has more components than G.

Note that G − V ′ is the graph obtained when all vertices in V ′ with their incident
edges are deleted from G. After this operation, the component number of G should
increase. If V ′ has one vertex v only, v is called the cut-vertex of G. A graph with
no cut-vertices is called a bi-connected graph. The largest component of the sample
graph in Fig. 14.1 is bi-connected. The vertices {b, i}, {c, h}, {e, g} are all different
vertex cuts of the sample graph in Fig. 14.2 but vertex d is the only cut-vertex. Note

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_14

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_14


288 14 Connectivity,Network Flows and Shortest Paths

a

b c

de

f g

h

i

j

k

C1
C2

C3

C4

Fig. 14.1 Four components of a simple graph

a b c

d

e

f

ghij

Fig. 14.2 Vertex cuts of a simple graph

that deletion of V ′ = {b, i} results in three components of the graph whereas all
other above stated removals result in two components.

Definition 14.2 (Edge cut) An edge-cut of a connected graph G = (V, E) is the set
E ′ ∈ E such that G − E ′ has at least two different components.

This time, we remove a set of edges from the graphG and test whether the number
of components of G increases. When E ′ consists of a single edge, this edge is called
a bridge of G. There are a number of edge cuts in the graph of Fig. 14.2 one example
being {(c, d), (h, d)} but (a, b) is the only bridge.

Definition 14.3 (Vertex connectivity) The vertex-connectivity denoted by κ(G) of a
connected graph G is the minimum number of vertices removal of which results in
a disconnected or trivial graph.

When a graph G has a cut-vertex, this parameter is equal to 1 by definition. In
general, it is desirable to have κ(G) of a graph G that represents a network as large
as possible since the network is vulnerable to failure of nodes. The range of values
of vertex connectivity for any graph can be specified as below.

0 ≤ κ(G) ≤ n − 1 (14.1)

The maximum value is n − 1 since even if every vertex of a graph is connected
to every other vertex of the graph as in a complete graph Kn , we can remove n − 1
edges from any vertex to leave it isolated. A k-connected graph G has κ(G) ≥ 1.



14.1 Basics 289

a b

h g
j

ef

b c

(a)

(b)

c d

i

a

h g

d

j

ef

f

b c

Fig. 14.3 a A sample graph b Some of its blocks

Definition 14.4 (Edge connectivity) The edge-connectivity λ(G) of a connected
graph G is the minimum number of edges removal of which results in a discon-
nected graph.

Using similar reasoning as in vertex connectivity, range of values of λ for a graph
G can be defined as follows.

0 ≤ λ(G) ≤ n − 1 (14.2)

Let δ(G) be the minimum degree present in a graph G. Then, tighter bounds on
vertex and edge connectivity parameters can be imposed as below [3].

0 ≤ κ(G) ≤ λ(G) ≤ n − 1 (14.3)

Definition 14.5 (Block) A block of a graph G is a maximal connected subgraph of
G that does not contain a cut-vertex.

The blocks of a graph contains all bi-connected components, all bridges and all
isolated vertices of the graph. Finding blocks of a graph shows us the parts of the
graph that do not have cut-vertices. Some blocks of a sample graph are shown in
Fig. 14.3.



290 14 Connectivity,Network Flows and Shortest Paths

14.1.1 Menger’s Theorems

Given a graph G = (V, E), let vertices u, v ∈ V . The vertex connectivity κ(u, v) of
these vertices is defined as the least number of vertices that are to be removed from
the set V to leave u and v disconnected. Similarly, edge connectivity of two vertices
u, v ∈ V , λ(u, v), is the least number of vertices to be deleted from V to have u and
v disconnected.

The vertex disjoint paths of two vertices u and v of a graph G are the paths that
do not have any common vertices other than u and v. The edge disjoint paths of two
vertices u and v of a graphG are the paths that do not have any common edges. It can
be seen that the maximum number of vertex disjoint paths between u and v is κ(u, v)
and the maximum number of edge disjoint paths between u and v is λ(u, v) since we
need to remove as many vertices or edges to have these vertices disconnected. We
can now state Menger’s theorems which provide insight to the connectivity problem
in graphs.

Theorem 14.1 (Menger’s theorems) Let κ(u, v) be the maximum number of vertex
disjoint paths between the vertices u and v of a graph G = (V, E). A graph is k-
connected if and only if each vertex pair in the graph is connected by at least k vertex
disjoint paths. Let λ(u, v) be the maximum number of edge disjoint paths between
the vertices u and v of a graph G = (V, E). Then G is k-edge-connected if and only
if each vertex pair in the graph is connected by at least k edge-disjoint paths.

14.2 Connectivity Test

A simple way to test whether an undirected simple graph G is connected or not is
to run DFS or BFS algorithm in G starting from any vertex and record the visited
vertices during the run in a list. If the list contains all of the vertices of G, then G is
connected. This method works since each of these algorithms visits every connected
vertices of G and the running time is the same for the DFS or BFS algorithm as
O(n + m).

A graph may not be connected consisting of a number of components. We may
need to find the number of components and the vertices contained in each component
of a graphG in this case. A simple modification to the basic recursive DFS algorithm
provides the needed output as shown in Algorithm 14.1 [1]. Each call to the recursive
procedure at line 11 signifies a new component and if all vertices of a graph are visited
in a single call, then G is connected. The component identifier as a positive integer is
stored in the array Comp, when all vertices have identifiers associated with integers
1, ..., n, at the end of the algorithm. The time taken for this algorithm is O(n + m)

as the original DFS algorithm.



14.3 Digraph Connectivity 291

Algorithm 14.1 DFS_Component
1: Input : G = (V, E)

2: Output : C = {C1,C2, ...,Ck}, Comp[n]: integer � components of G and component numbers
of each vertex

3: boolean visi ted[1..n]
4: n_comp ← 0
5: for all u ∈ V do � initialize
6: visi ted[u] ← f alse
7: end for
8: for all u ∈ V do
9: if visi ted[u] = f alse then
10: n_comp ← n_comp + 1
11: DFS(u) � call for each connected component
12: end if
13: end for
14:
15: procedure DFS(u)
16: visi ted[u] ← true
17: Comp[n_comp] ← u
18: Cn_comp ← Cn_comp ∪ {u}
19: for all (u, v) ∈ E do � recursively call neighbors
20: if visi ted[v] = f alse then
21: DFS(v)
22: end if
23: end for
24: end procedure

14.3 Digraph Connectivity

The edges of a digraph have orientation and thus the connectivity of a digraph is
defined differently than that of an undirected graph. A digraph G = (V, E) is
strongly connected if for each vertex pair u, v ∈ V , there exists a path from u to
v and there exists path from v to u. In other words, we need connectivity in both
directions since connectivity in one direction does not imply the other one.

14.3.1 Strong Connectivity Check

A procedure to test whether a digraph is strongly connected or not can be designed
with the following idea. Starting from an arbitrary vertex v of the graphG = (V, E),
BFS or DFS algorithm is run and the visited vertices are noted. Then the transpose
of G, GT , is obtained by reversing the direction of the edges of G and the BFS or
DFS algorithm is executed again from vertex v. If the visited vertices in both cases
is equal to V , then the digraph is strongly connected. This method is illustrated as a
procedure in Algorithm 14.2.



292 14 Connectivity,Network Flows and Shortest Paths

Algorithm 14.2 Strong_Conn
1: procedure Test_SCC(G = (V, E)) � return true if G is strongly connected else return false
2: X ← Ø, Y ← Ø,
3: choose an arbitrary vertex v ∈ V
4: DFS(G, v)
5: save the visited vertices in X
6: GT ← G with edges reversed
7: DFS(GT , v)
8: save the visited vertices in Y
9: if X = Y = V then
10: return true
11: else
12: return false
13: end if
14: end procedure

An example digraph is depicted in Fig. 14.4a andDFS algorithm is run fromvertex
v8 with the formed tree lines shown in bold and first visit times of vertices are shown
next to them. All of the vertices are reached with this running and then GT in (b) is
obtained by reversing the directions of edges of the digraph in (a). DFS algorithm is
now executed from vertex v8 in GT and all vertices are again accessed which means
G is strongly connected. A change of edge directions may result in a not strongly
connected digraph, for example, if (v3, v4) ∈ E in (a) instead of (v4, v3) ∈ E,G
would not be strongly connected.

A digraph may not be strongly connected but may have strongly connected sub-
graphs. Such a component has paths between each pair of vertices it contains. A
digraph with 3 strongly connected components C1, C2 and C3 is shown in Fig. 14.5.

14.3.2 Finding Strongly Connected Components

Finding strongly connected components (SCCs) of a digraphG which are subgraphs
of G that are strongly connected has various applications such as detecting closely
interacting communities in a social network. The SCCs of a digraph G are the same
in the transpose of G which is obtained by reversing the edge directions in G. Also,
the contraction of a digraphG intoGSCC shrinks the vertices ofG into supervertices
of GSCC each of which is a SCC of G. The contraction is performed such that for
any supervertex pair U and V , if there is an edge between u ∈ U and v ∈ V in G,
then there exists an edge between U and V in GSCC . An algorithm based on the
following observations which we will state without proof may be formed.

• In any DFS, all vertices of the same SCC are in the same DFS tree.
• For any two vertices u and v that are in the same SCC, no path between them
leaves the SCC.

• For any directed graph, GSCC is an acyclic digraph.



14.3 Digraph Connectivity 293

(b)

v1

v2 v3 v4

v5

v6v7v8
1 2

3 4

5

6

7

8

(a)

v1

v2 v3 v4

v5

v6v7v8
1

2

3 4

5

67

8

Fig. 14.4 Testing connectivity of a digraph

The algorithm due to Kosaraju is based on the above observations and works with
the following steps.

1. Input: A digraph G = (V, E)

2. Output: SCCs of G
3. Perform DFS on G and make a list L of vertices in the non-increasing order of

their finishing times.
4. Construct GT by reversing the direction of each edge of G.
5. Perform DFS on GT starting from the front of L .
6. Return DFS trees obtained this way.

An example digraph with SCCs is depicted in Fig. 14.6. Running DFS in this
graph from vertex d results in the first and last visit times of the vertices shown next
to them. The list L shown is then formed by sorting the last visit times of vertices.



294 14 Connectivity,Network Flows and Shortest Paths

v1

v2 v3 v4

v5 v6

v7

v8

v10v11

v9v12

C1 C2

C3

Fig. 14.5 Strongly connected components of a digraph

a

b c

d

e

f g

hi

1,20

2,193,104,9

5,8

11,18

12,17 13,16

14,15

L=(d,e,i,f,g,h,c,b,a)

Fig. 14.6 Strongly connected components of a digraph

We formGT by reversing edge directions to obtain the graph of Fig. 14.7. Running
DFS starting by the first vertex d from the list L on GT results in the DFS trees T1,
T2 and T3 each of which is a SCC of G as depicted in this figure. The running time
of this algorithm is running DFS twice which is O(n + m).



14.4 Network Flows 295

a

b c

d

e

f g

hi

L=(d,e,i,f,g,h,c,b,a)

T1=(d->e) T2=(i->h->g->f)T3=(c->a->b)

Fig. 14.7 Strongly connected components of a digraph

14.4 Network Flows

Let G = (V, E) be a digraph with two special nodes, a start node s that has only
outgoing edges and a sink node t having only ingoing edges. Each edge e of the
digraph G is labeled with a non-negative capacity c(e) defined by c : E → R

+.
The network flow problem is to provide as much flow as possible from s to t without
exceeding the capacity of edges and the total flow into a node should equal to the
total flow out from the node. Formally, the following rules are applied with f (e)
denoting the flow through an edge e,

• Capacity limit: ∀e ∈ E , f (e) ≤ c(e)
• Conservation of flow: ∀v ∈ V {s, t}, ∑v f (u, v) = ∑

v f (v, u)

A flow f on a network is the function f : E → R
+. A flow network is shown in

Fig. 14.8 with the node s having only flow out and the node t having only flow in.
Three different flows from s to t are shown in dashed lines and the total flow value
is the sum of these flows which is 8. Note that this is the maximum flow through this
network as the node s can not put more flow to the network due to the saturation of
the capacities in its outgoing edges.

Definition 14.6 (s-t cut, cut value) An s-t cut (A, B) in a digraph G = (V, E)

partitions the vertices of G into subsets A and B such that s ∈ A and t ∈ B. The
cut-value of a cut (A, B) is the sum of the capacities of all edges with direction from
A to B.



296 14 Connectivity,Network Flows and Shortest Paths

Fig. 14.8 Flows through a
network a b

cd

s t

5
3

3

4
5

3

2

14.4.1 A Greedy Algorithm

Based on what we saw so far, we can have a greedy algorithm with the following
idea. Starting with a zero flow, we gradually increase flow value at each iteration by
selecting an s − t path, finding the minimum possible improvement edge along this
path and increase the flow value by increasing all edge flows by this amount.

1. Input: G = (V, E)

2. Output: Maximum flow f from s to t in G
3. while there is such a path do
4. find an s − t path P such that ∀e ∈ P , f (e) < c(e)
5. d ← mine∈P (c(e) − f (e))
6. for all e ∈ P do
7. f (e) ← f (e) + d
8. end for
9. end while

Let us implement this algorithm in the graph of Fig. 14.8 and we can see it will
stop when there is not an s-t path with an edge that has flow less than its capacity.
This greedy algorithm will not provide the optimal solution in general and further
optimizations are needed.

14.4.2 Residual Graphs

The residual graph G f of a digraph G = (V, E) representing a network is defined
by two rules:

• ∀(u, v) ∈ E , c f (u, v) = c(u, v) − f (u, v)
• if f (u, v) > 0 then c f (v, u) = f (u, v)

Essentially, G f shows us where to increase or decrease flows.

Definition 14.7 (Augmenting path) An augmenting path is a directed path from the
node s to the node t in the residual graph G f .



14.4 Network Flows 297

Existence of an augmenting path in a residual network means we can push more
flow through this path in the original network. Let (s, v1, v2, ..., vk, t) be an aug-
menting path in the graph G f . The maximum flow that can be pushed through this
path is min(c(s, v1), c(v1, v2), ..., c(vk, t)). Thus, given a graph G of a network, if
there exists an augmenting path in G f , then the flow f is not maximum.

14.4.3 Ford–Fulkerson Algorithm

Ford-Fulkerson algorithmmakes use of the fact that whenever there is an augmenting
path in a residual graph of a network, the total flow f can be increased by the
minimum currently available capacity along the augmenting path. The augmenting
paths are searched iteratively and the total flow f is increased using this principle as
shown below by first initializing the residual graphG f with the original graphG. The
reverse flows between nodes of the graph are also modified such that a flow in reverse
direction is decreased by the minimum capacity c found along the augmenting path.
If there is no such reverse edge, a new edge is created with the flow c. This operation
is needed since we may need to send flow through these edges to push more flow
from s to t in the next iterations.

1. Input: G = (V, E)

2. Output: Maximum flow f from s to t in G
3. G f ← G
4. while there is such a path do
5. find an augmenting path P in G f

6. d ← mine∈P (c(e) − f (e))
7. for all e ∈ P from s to t do
8. f (e) ← f (e) + d
9. end for
10. for all e ∈ P that has a corresponding reverse edge in P do
11. f (e) ← f (e) − d
12. end for
13. end while

Key to the operation of this algorithm is searching for augmenting paths in the
residual graph G f and also, the capacities of the edges of G f need to be modified
at each step. The iterations of Ford–Fulkerson algorithm in a small flow network
is shown in Fig. 14.9. Each newly found augmenting path shown by bold edges
increases the flow by the minimum current capacity edge through the path and the
maximum flow found this way is 6 and the final flow network is shown in (e). When
the flow values are integers, we can increase the flow value by | f ∗| times where f ∗
is the maximum flow that can be attained in the network, assuming flow is increased
at least once in each step. The search for an augmenting path can be performed
in O(n + m) time by a modified DFS algorithm, thus, the total time taken by this
algorithm is O(| f ∗|(n + m)).



298 14 Connectivity,Network Flows and Shortest Paths

a b

c

s

t

5

3

3

4

3

6

de
6

7

(a) (b)f=2 f=4

a b

c

s

t

5

3

3

6

de
6

7

1

2

2
2 2

2

(d) f=6(c) f=5

a b

c

s

t
3

6

de

7

1

2

2
2 2

3
2

1

2

4

2

a b

c

s

t

6

de

7

3

2

3

1

3

a b

c

s

t

6

de

7

2

3
2 1

2

4

2

3

1

3 1

2

3

3

(e)

2

4

4

4

4

2

3

1
1

1

2

Fig. 14.9 Running of Ford–Fulkerson algorithm in a small flow network

14.4.4 Bipartite GraphMatching

Wereviewedbipartite graphs and thematchingproblem in these graphs inSect. 13.2.3
while searching for a maximal number of edges that are not adjacent to each other.
Let G = (A ∪ B, E) be an unweighted bipartite graph with A the set of vertices on
the left and B the set of vertices on the right of the graph. A matching M ⊆ E is
a maximum matching if it has the largest size among all matchings of G. Matching
problem in a bipartite graph can be formulated as a network flowproblemby applying
the following steps.



14.4 Network Flows 299

a

b

c

d

e

x

y

z

w

q

s t

a

b

c

d

e

x

y

z

w

q

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

(a) (b)

Fig. 14.10 Transforming a bipartite graph to a flow network

1. Obtain the graph G ′ = (V ′, E ′) from G.
2. Find the maximum flow f in G ′ using an algorithm like Ford–Fulkerson.
3. Use f to construct a maximum matching M in G.

These stepswill be clearer asweproceed.Thefirst step is achievedby the following
sub-steps.

1. Add a source node s and a sink node t to G.
2. For each edge (u, v) from s to t , add direction from u to v and label each edge

with capacity 1.
3. Add an edge with capacity 1 to each node of A from node s.
4. Add an edge with capacity 1 to node t from each node of B.

This transformation of a bipartite graph to a flow network is depicted in Fig. 14.10.
The next step is to find the maximum flow in this flow network, say using Ford–
Fulkerson algorithm. The flow is incremented at each iteration and there are 4 aug-
menting paths in Fig. 14.10b shown in bold resulting in a total flow of 4. Therefore
the size of maximum matching is 4 and the matched edges are shown in bold ex-
cluding the edges between the node s and nodes in set A, and the edges between the
nodes in set B and the node t .



300 14 Connectivity,Network Flows and Shortest Paths

14.5 Algebraic Connectivity

We have already reviewed adjacency matrix and incidence matrix of a graph which
show the structure of a graph. We now need to define new metrics for graph connec-
tivity.

14.5.1 The LaplacianMatrix

The degree matrix of a graph G = (V, E) is a diagonal matrix D(G) of G which
has D[i, i] element as the degree of vertex i , and all other elements of D are 0s.

TheLaplacianmatrix L(G)of a graphG is defined as the difference of the diagonal
matrix and its adjacency matrix as follows.

L(G) = D(G) − A(G) (14.4)

Thus, L(G) has the degree values of vertices at its diagonal and L[i, j] = −1 if
edge (i, j) ∈ E and 0 otherwise as shown below.

li j =
⎧
⎨

⎩

di if i = j
−1 if i and j are neighbors
0 otherwise

Laplacian matrix of the graph in Fig. 14.11 is as follows.

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1 v2 v3 v4 v5 v6
v1 2 −1 0 0 0 −1
v2 0 4 −1 0 −1 −1
v3 0 −1 3 −1 −1 0
v4 0 0 −1 2 −1 0
v5 0 −1 −1 −1 4 −1
v6 −1 −1 0 0 −1 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

v1

v2 v3

v4

v5
v6

⎛
⎜⎜⎜⎜⎜⎝

v1 v2 v3 v4 v5 v6
v1 2 0 0 0 0 0

v2 0 4 0 0 0 0

v3 0 0 3 0 0 0

v4 0 0 0 2 0 0

v5 0 0 0 0 4 0

v6 0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎠

Fig. 14.11 A sample graph and its degree matrix



14.5 Algebraic Connectivity 301

14.5.2 Normalized Laplacian

The normalized Laplacian matrix is defined as follows.

L = D−1/2LD−1/2 = D−1/2(D − A)D−1/2 = I − D−1/2AD−1/2 (14.5)

The entries of the normalized Laplacian matrix L can then be specified as below.

Li j =

⎧
⎪⎨

⎪⎩

1 if i = j
−1√
di d j

if i and j are neighbors

0 otherwise

14.5.3 Eigenvalues

Let A be an n×nmatrix and x a vector of size n. The product A×x results in a vector
y and this operation can be written as, Ax = y. If we can have y = λx for some
constant λ, this constant is called an eigenvalue of A and the vector x is called an
eigenvector of A. There will be more than one eigenvalue and a set of eigenvectors of
matrix A in general. The following can be derived from the definition of eigenvalue
and eigenvector with I as the identity matrix having all 1s in its diagonal and 0 for
all other elements.

Ax − λx = 0

(A − λI )x = 0

det (A − λI )x = 0

The determinant of the last statement is called the characteristic polynomial of
matrix A. It has n roots which are the eigenvalues of matrix A when the size of A is
n × n. Finding eigenvalues provides us with the eigenvectors by way of substitution
in the equation Ax = λx .

We are now ready to state the relationship between graph connectivity, Laplacian
matrix and eigenvalues. We can evaluate the eigenvalues of the Laplacian matrix L
and the following results become available [2]:

• All eigenvalues of L are positive except the smallest one which is 0.
• The number of eigenvalues of L with the value 0 is equal to the number of com-
ponents of the graph that L represents.

• ThegraphG shownby L is connected if second smallest eigenvalue of L is positive.
The larger this value, the more connected G is.

The second eigenvalue of the Laplacian matrix shown by σ(G) is denoted by the
Fiedler value of the graph G. The set of all eigenvalues of the Laplacian matrix of a
graph G is called the Laplacian spectrum of G.



302 14 Connectivity,Network Flows and Shortest Paths

14.6 Shortest Paths

We saw how BFS can be used to find shortest paths from a given node in an un-
weighted graph. The minimum number of hops to the source vertex was considered
as the distance to it. This in fact is equivalent to the case of a weighted graph with
each edge having unity weight. In the more general case when edges of a graph may
have arbitrary weights, different procedures are needed.

The length of a path p =< v0, v1, ..., vk > in a weighted graph G = (V, E,w)

is the sum of the weights of edges included in the path as shown below.

length(p) =
k∑

i=1

w(vi−1, vi )

Distance from a vertex u to a vertex v in a weighted graph is the length of the
minimum length path if such a path exists and is ∞ otherwise. The single source
shortest path (SSSP) problem is finding distances from a source vertex to all other
vertices in a weighted directed or undirected graph.

Dijkstra’s SSSP algorithm aims to find the shortest paths from a source vertex
to all other vertices in a weighted directed or undirected graph with positive edge
weights. It is an iterative algorithm that processes a vertex in each step. The idea is
similar to Prim’s MST algorithm that selects the minimum weight outgoing edge at
each iteration, this time however, the vertex that has the shortest path to the source
vertex is selected at each iteration. Key to the operation of this algorithm is the
updating of neighbor vertex distances when a vertex is processed. The pseudocode
of this algorithm is shown as a procedure in Algorithm 14.3 which inputs a weighted
undirected or directed graph, first initializes distances of neighbors of source vertex s.
It then findsminimum distance vertex v, includes in the shortest path tree and updates
distances of u at each iteration.

Running of this algorithm in a digraph with 7 nodes is depicted in Fig. 14.12
with current distance values of vertices shown in italic next to them and the distance
selected vertex is shown in bold. Starting by the first iteration in (a), v7 has the
minimum label and is included in the tree T to be formed. Theweights of its neighbor
v2 is changed to 4 from the initial 8 value, v3 from ∞ to 3, and v6 from ∞ to 13. The
minimum label vertex in (a) is v3 and is selected to be in T and its neighbor distances
are updated in (b). This procedure continues until all vertices are processed and the
spanning tree shown by bold lines is formed in (e) with each vertex except the root
pointing to its parent in this tree by bold arrows.

The straight forward running time of this algorithm is O(nm) since the outer loop
of the algorithm runs at most n − 1 times considering each vertex and the inner loop
examines each edge in at most m time. Almost linear-time implementations may be
achieved using data structures such as heaps and priority queues [1].



14.6 Shortest Paths 303

Fig. 14.12 Execution of Dijkstra’s SSSP algorithm in a sample digraph from vertex v1



304 14 Connectivity,Network Flows and Shortest Paths

Algorithm 14.3 Dijkstra_SSSP
1: procedure Dijkstra(G,s)
2: Input : G(V, E,w) � connected, weighted graph G and a source vertex s
3: Output : D[n] and P[n] � distances and predecessors of vertices in the tree
4: tree vertices T
5: for all u ∈ V \ {s} do � initialize all vertices except source s
6: d(u) ← ∞
7: end for
8: d[s] ← 0; pred(s) ← s
9: V ′ ← Ø; T ← Ø
10: while V ′ �= V do
11: select u /∈ V ′ with minimum d(u)

12: V ′ ← V ′ ∪ {u}
13: for all (u, v) ∈ E do � update neighbor distances to u
14: if d(v) > d(u) + w(u, v) then
15: d(v) ← d(u) + w(u, v)
16: pred(v) ← u � update tree structure
17: end if
18: end for
19: T ← T ∪ {u, v} � add it to tree vertices
20: end while
21: end procedure

14.7 Chapter Notes

We reviewed graph connectivity and related concepts in this chapter. Investigation
of the connectivity of a graph provides vital information about the structure of the
graph which can be used for many applications. A computer network should be
connected at all times and finding vulnerable regions of a network may provide
where to strengthen the network.

We started with basic definitions and descriptions of concepts such as vertex and
edge connectivity of a graph and moved on to algorithms to test whether a graph is
connected or not. We saw simple modifications of BFS or DFS algorithms provide
this information.Weneed to check orientation of edgeswhen connectivity in digraphs
is considered since paths between vertex pairs are bidirectional. If A is the adjacency
matrix of an undirected or a directed graph, the nth power of A, An , has an entry
(i, j) which is equal to number of walks between the vertices i and j .

Connectivity is closely related to network flow concept and we reviewed the
relationship between these two seemingly diverse areas of study. Network flow may
be used in transportation systems for the transportation of goods, manufacturing
systems for the flow of items, and in communication systems for flow of data across
the networks. The algebraic properties of a graph can be used to find how connected
it is by analyzing the eigenvalues of the Laplacian matrix. Lastly, we investigated
finding shortest paths between vertices in weighted graphs and reviewed a well-



14.7 Chapter Notes 305

v1

v2 v3

v4

v5v6

Fig. 14.13 Example graph for Exercise 4

v1

v2 v3 v4

v5

v6

v7

v8

v10

v11 v9

Fig. 14.14 Example graph for Exercise 5

Fig. 14.15 Example graph
for Exercise 6

v1

v2 v3

v4

v5v6

known algorithm due to Dijkstra for this purpose. The area of connectivity is vast
and a comprehensive survey of the topic can be found in [1].



306 14 Connectivity,Network Flows and Shortest Paths

v1

v2 v3 v4

v5

v6v7

1

2

3

5

6

8

9

3

1

12

6 5

v7

5

Fig. 14.16 Example graph for Exercise 7

Exercises

1. Show that for every graph,

κ(G) ≤ λ(G) ≤ �(G)

2. A simple way to find the cut-vertex of a graph G is to remove vertices one by one
and check whether the remaining graph is connected or not by the DFS or the BFS
algorithm. Note that we need to place a removed vertex back to the graph if it is
not a cut-vertex before the next iteration. Write the pseudocode of this algorithm
and work out its time complexity.

3. Write the pseudocode of an algorithm that finds whether an edge of a graph G is
a bridge or not by removing that edge and checking for connectedness of G and
find the time complexity of this algorithm.

4. Test whether the digraph of Fig. 14.13 is strongly connected or not.
5. Use Kosaraju’s algorithm to find the strongly connected components of the di-

graph shown in Fig. 14.14.
6. Find the Laplacian matrix of the graph shown in Fig. 14.15.
7. Work out the distances to vertex v1 of the weighted digraph of Fig. 14.16.

References

1. Erciyes K (2018) Guide to graph algorithms: sequential, parallel and distributed. Springer texts
in computer science series

2. FiedlerM (1989) Laplacian of graphs and algebraic connectivity. CombGraph Theory 25:57–70
3. Whitney H (1932) Congruent graphs and the connectivity of graphs. Am J Math 54:150–168



15GraphApplications

Graphs whether undirected or directed, weighted or unweighted have numerous
applications. A graph can be used to represent a network of any kind as we have seen
which means any network application can make use of graph theory. We will review
such graph application areas centered around networks in this chapter, starting with
the analysis of large graphs. These networks are computer networks, ad hoc wireless
networks, biological networks and social networks.

15.1 Analysis of Large Graphs

Many real-life networks are large consisting of thousands of nodes and tens of thou-
sands of edges. For example, Internet is one such network with billions of nodes and
various social networks have billions of users. Analyzing such large networks is a
challenge, we can not visualize them in complete but we need to investigate them to
understand their structure and functioning. We first need o define some parameters
to analyze large networks.

15.1.1 Degree Distribution

The degree distribution P(k) in an undirected graph is the fraction of vertices in the
graph with degree k defined as follows.

P(k) = nk
n

,

where nk is the number of vertices with degree k and n is the number of vertices.
We can plot P(k) against the degrees of a graph to inspect the degree distribution
of a graph visually. The degree distribution of a random network is binomial in the
shape of a bell called bell curve or normal distribution. Degree distribution of a

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_15

307

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61115-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-61115-6_15


308 15 Graph Applications

v2

v3

v4

v1

v5

v6

Degrees

P(k)

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.17

0.5

0.33

0.17

Fig. 15.1 Degree distribution of a sample graph

sample graph is shown in Fig. 15.1 with P(2) = 1/6 = 0.17, P(3) = 3/6 = 0.5,
P(4) = 1/3 = 0.33, P(5) = 1/6 = 0.17 values.

15.1.2 Clustering

Finding a subgraph consisting of closely related elements in a graph has numerous
applications such as detecting a group of friends in a social network. Clustering is
the process of grouping similar nodes of a graph or any other structure. Clustering
is widely studied in various disciplines including Computer Science, Statistics and
Bioinformatics with numerous algorithms proposed for this purpose. Clustering pro-
teins inside the cell in a biological network may provide insight to health and disease
conditions.

We will review a simple and effective clustering algorithm based on the minimum
spanning tree (MST) discussed in Chap.12. An MST of a weighted graph G =
(V, E,w) is a spanning tree of G that has a total minimum total edge weights among
all spanning trees of G as noted. Let us assume that we have a weighted graph G
that represents a network with weights inversely proportional to some relationship
among nodes of the network, thus, our aim is to group nodes that have as much light
edges as possible among them. Constructing an MST in such a graph performs the
first elimination by discarding the heavy edges initially. The MST based clustering
method works as follows.

1. Input: G = (V, E,w) � a weighted graph
2. Output: C = {C1,C2, ..,Ck} � a set of clusters of G
3. construct an MST T of G using Prim’s, Kruskal’s or other algorithm
4. while the number of required clusters not reached
5. remove the heaviest edge (u, v) from T
6. form the new clusters by performing BFS from u and from v

7. endwhile



15.1 Analysis of Large Graphs 309

a b c

d

e

f

g

h

hi

j

k

a b c

d

e

f

g

h

18
1

2

3

4

5

6

7

8

11

13
15 1612

14

9

10

19

20

21

22

hi

j

k

C1
C2

(a)

(b) (c)

a b c

d

e

f

g

h

hi

j

k

C2C1

C3

24

Fig. 15.2 MST-based clustering

Removing the heaviest edge at each iteration requires sorting the edges of T which
is O(m logm) time. Forming clusters means we need to include node labels in the
clusters formed. A simple way to insert nodes into new clusters is to run BFS from
each endpoint of the removed edge (u, v). Total time taken is O(m logm + n + m)

in this case. Running of this algorithm is depicted in Fig. 15.2 where an MST of
the graph is shown in bold edges in (a). We remove the heaviest edge (c, g) from T
first to result in two clusters C1 and C2 a shown in (b). The second iteration of the
algorithm breaks clusterC1 into clustersC1 andC3 by removing the current heaviest
edge (i, h) from the MST T as in (c). Thus, we need to run the while loop k − 1
times to have k clusters. More generally, we may not know the number of clusters
to find initially. In such a case, we need to stop on a condition such as the weight of
the next edge to be removed is lower than some pre-determined threshold.

We need to define some parameters to be able to asses the clustering structures of
large graphs.



310 15 Graph Applications

v1 v2 v3

v4

v5v6v7

0.330.66

1

0.4

0.5

0.661

Fig. 15.3 Clustering coefficients of vertices of a graph

Definition 15.1 (Clustering coefficient) The clustering coefficient of a vertex v in a
graph G = (V, E) is the ratio of the existing edges between the neighbors of vertex
v to all possible number of edges between these neighbors. Formally,

cc(v) = 2mv

nv(nv − 1)

where nv is the number of neighbors of vertex v, and mv is the existing number of
edges between these neighbors.

Note that nv(nv − 1)/2 is the maximum possible connections between these
neighbors. This parameter shows howclosely the neighbors of a vertex are connected.
The average clustering coefficient CC(G) of a graph G is the arithmetic average of
all the clustering coefficients of vertices in G. Formally,

CC(G) = 1

n

∑

v∈V
cc(v)

The average clustering coefficient gives us some idea on how dense the graph is
connected. Figure 15.3 displays clustering coefficients of vertices in a sample graph.
The average clustering coefficient of this graph is 0.65.

15.1.3 Matching Index

Matching index is a parameter used to asses the similarity between two vertices in
a graph. Matching index of two vertices u and v in a graph G is defined as the ratio
of the number of common neighbors of u and v to the sum of their neighbors. In
formula, matching index MI of u and v is as follows,

MI (u, v) = nuv

nu + nv

where nuv is the number of common neighbors and nu and nv are the number of
neighbors of u and v respectively. Matching indices of vertex pairs of a sample graph
is shown in Fig. 15.4. Dashed lines are used to display matching index between two



15.1 Analysis of Large Graphs 311

v4

0.16

0.28

0.20

v1

v7

v2 v3

v5v6

0.14

0.25

0

0

0.14

0.14

0.20

0.33 0.25

0.20

Fig. 15.4 Matching indices in a sample graph

vertices and a matching index of two vertices with no common neighbors is omitted.
We can see MI (v4, v6) has the largest value, thus, these two vertices match best in
this graph.

15.1.4 Centrality

The importance of a vertex or an edge in a large graph can be assessed by evaluating
the centrality parameter. The basic centrality of a vertex is simply its degree and
using this parameter, we can state that a higher degree vertex is more important than
a lower degree vertex, for example, a person in a social network with many friends
may be considered important in terms of her connections. The average degree of a
network gives us some idea about the structure of the graph representing a network
but it is difficult to have an overall estimate of the graph structure based on this
parameter only.

15.1.4.1 Closeness Centrality
The closeness centrality of a vertex is another centrality parameter to asses the
easiness of reaching all other vertices from that vertex.

Definition 15.2 The closeness centrality CC (v) of a vertex v is the reciprocal of the
sum of its distances to all other vertices in the graph given as below,

CC (v) = 1∑
u∈V d(u, v)

(15.1)

Finding distances from a vertex to all other vertices in an unweighted graph can
be performed by using the BFS algorithm. In a weighted graph, Dijkstra’s single
source shortest path algorithm may be used. Closeness centralities of the vertices of
a simple graph is calculated as shown next to the vertices in Fig. 15.5. We can see
that vertex v1 has the highest centrality as it can reach all other vertices more easily
than others.



312 15 Graph Applications

v2

v3

v4
4

2

8v1

v5

v6 3

2

1

6

1
51/27

1/15 1/19

1/37

1/211/19

Fig. 15.5 Closeness centralities in a sample graph

15.1.4.2 Betweenness Centrality
In yet another approach to asses the significance of a vertex or an edge in a graph is
to evaluate the percentage of shortest paths that run through a vertex or an edge in
a graph. Vertex betweenness is used to evaluate the former and edge betweeness is
the assessment of the latter.

Definition 15.3 (Vertex betweenness) Vertex betweenness of a vertex v in a graph is
the sum of the ratios of the number of shortest paths between every vertex pair (s, t)
that run through vertex v to the sum of any shortest path between vertex pair (s, t)
as follows.

VC (v) =
∑

s �=t �=v

σst (v)

σst
(15.2)

where σst (v) is the total number of shortest paths that pass through vertex v and σst
is the number of any shortest paths that go through s and t . Informally, this parameter
provides an importance of a vertex in a graph, the more shortest paths run through
it, the more important it is.

Edge betweenness is defined similarly to vertex betweenness, this time we search
shortest paths that run through a specific edge e instead of a vertex as shown by the
equation below.

B(e) =
∑

s �=t �=v

σst (e)

σst
(15.3)

15.1.5 NetworkModels

Large networks are mainly classified as random networks, small world networks and
scale-free networks.



15.1 Analysis of Large Graphs 313

Random Networks

The random network model (ER-Model) proposed by Erdos and Renyi [6] assumes
that the probability to have an edge between any pair of nodes is distributed uniformly
at random. In any graph G = (V, E), the maximum number of possible edges is
n(n−1)/2. Each edge is added to the network with the probability p = 2m/n(n−1)
in this model. However, ER-Model does not reflect most real networks and new
models are developed.

Small-World Networks

In many real networks such as the Internet and biological networks, it is often the
case that distances between the nodes of such networks are small. These networks
are called small-world networks. A social experiment performed by the sociologist
Milgram aimed at determining the probability that two randomly selected people
would know each other [11]. Individuals of certain U.S. cities were selected as the
starting points and some other cities as the target cities. Letters were sent to the
individuals with some names included in them and they were asked to send the
letters directly to the person in the letter if they knew the person or to a person who
would likely know the target person. The average number of intermediate people for
most of the letters to reach the destinations was six and hence these experiments were
associated with the six degrees of separation phrase. The diameter of a small-world
network increases with the logarithm of the network size, formally, d ≈ log n as
n → ∞ in these networks.

Scale-Free Networks

Many real networks exhibit few very high-degree vertices and many low-degree
vertices. A social network such as a class of students may have few very popular
students who are friends with many other students in class but most of the students
will have only few friends in general. These networks are characterized by the power
law degree distribution,

p(k) ∼ k−γ with γ > 1

which basically means that the probability of the existence of a node gets smaller
when the node degree k increases. These networks are termed scale-free networks
based on the work of Barabasi and Albert [1].

15.2 TheWeb

Acomputer network consists of a collectionof computational nodes commonly called
hosts connected by various communicationmedia such as copperwire, fiber, wireless
medium and various communication components. A main component in a computer
network is the router which is used to switch any incoming message to one of its
output channels. Modern communication networks provide communication in both



314 15 Graph Applications

directions, thus, an undirected graph is commonly used to represent such networks.
The cost of sending a message from one node of the network to another depends on
factors such as the structure of the physical medium, speed of nodes etc. and thus
can not be assumed same for all connections. Therefore, we need to use a weighted
graph to represent a computer network with weights over the edges of the graph
displaying the cost of sending a message between the two endpoints of the edge.

Routing performed by a router is the process of switching an incomingmessage to
one of the output channels this component has. Let us assume that each router is aware
of the network topology, in other words, the structure of the graph representing the
computer network. Single-source Shortest-path (SSSP) algorithms find all possible
routes to transfer a message from a source node to all other nodes in the network.
We have two classical algorithms for this purpose; Dijkstra’s SSSP algorithm and
Bellman-Ford SSSP algorithm and contemporary computer networks use variations
of these algorithms.

15.2.1 TheWeb Graph

Data over the Internet is shared using theWebwhich is basically a distributed logical
network ofWeb pages. A node (page) in theWeb has a domain namewhich is a string
of literals separated by periods. The main protocol for data transfer over the Web is
theHyper Text Transfer Protocol (HTTP) which has various commands, for example
CONNECT to connect to the Web page and GET which requests a representation
of the required resource. A typical Web page has a name ending with “html” which
means the page is written using the Hyper Text Markup Language.

In the common usage, a Web page points to another Web page. Thus, the Web
may be conveniently represented by a digraph as shown in Fig. 15.6 where Üsküdar
University is pointed by universities Web page. The university page has a link to the
Faculty of Engineering andNatural Sciences which is also pointed by the “Faculties”

15.2.2 Page Rank Algorithm

The importance or the rank of a Web page may be associated with the number of
pages that reference it. This score for a Web page may be used to display the more
important pages on top when a search is made. Page rank is like a fluid that runs
through the nodes of the network accumulating at important nodes.

The page rank algorithm (PRA) allow calculation of page rank values based on
the pages that reference it. Each page is assigned a rank value of 1/n in the Web
graph initially where n is the number ofWeb pages. Thereafter, a rank value of a page
is distributed to its outgoing edges evenly and the rank value of a page is calculated
as the sum of the weights of its ingoing edges. The general idea is that the rank of a
page increases with the number and weights of edges that point to it. The pseudocode
of this algorithm is displayed in Algorithm 15.1 and it can be shown the page rank
values converge as k → ∞



15.2 TheWeb 315

Üsküdar
University

Faculty of
Eng. & NS

Eng. Faculties

Natural Sci.
Faculties

Universities

Fig. 15.6 A part of Web Graph

Algorithm 15.1 Page rank algorithm
1: Input: P = {p1, ..., pn} � Web pages
2: Output: R = {rank1, ..., rankn} � Page rank values
3: Ep(in) ← ingoing edges to page p
4: Ep(out) ← outgoing edges from page p
5: for all p ∈ P do
6: rankp ← 1/n
7: end for
8: for x = 1 to k do
9: for all p ∈ P do
10: for all e ∈ Ep(out) do
11: we ← rankp/|Ep(out)|
12: end for
13: rankp ← ∑

e∈Ep(in) we

14: end for
15: end for



316 15 Graph Applications

Fig. 15.7 A sample Web
subgraph

v2 v3

v4

v1

v5

0.1

0.1

0.05

0.05

0.05

0.05

0.2
0.2

0.1
0.1

Fig. 15.8 Calculation of
rank values for the sample
Web subgraph

v
1

v
2

v
3

v
4

v
5

n out 2 3 1 1 2

k = 1 out vals 0.1 0.05 0.2 0.2 0.1

rank(vi) 0.1 0.1 0.2 0.5 0.25

k = 2 out vals 0.05 0.03 0.2 0.5 0.13

rank(vi) 0.25 0.05 0.03 1 0.3

Figure 15.7 displays a small Web subgraph with initial edge weights, and the
calculation of rank values for Web pages using the Page Rank algorithm is shown
in Fig. 15.8. Initially, each page starts with 1/n = 1/5 = 0.2 value and this value
is distributed evenly to all outgoing edges of each page. For example, page v5 has
two outgoing edges, thus, the weights for these pages are 0.2/2 = 0.1 as shown in
the first line of the table for the fist iteration when k = 1. The second line shows the
page rank values obtained by summing the weights of input edge weights to a page
and the same process is repeated for k = 2. We can see page v4 has the highest rank
as can be seen by 4 pages referencing it. A page that does not point to any page may
have a high rank value and this can be corrected by implementing damping factor d
that reduces page rank values by (1 − d)/n [10].

15.3 Ad hocWireless Networks

A wireless network comprises computational nodes that communicate using wire-
less communication channels. An ad hoc wireless network does not have a fixed
communication structure in contrast to an infrastructured network which typically
provides a wired basic communication backbone to wireless hosts. Ad hoc wireless
networks do not have a static communication structure and for this reason, they use
multi-hop communication to transfer messages in which a message goes through a
number of nodes each broadcasting it until the message reaches the destination.



15.3 Ad hocWireless Networks 317

a

b

c

d

e

f

g

h
i

j

Fig. 15.9 An ad hoc wireless network

Two types of ad hoc networks have found common usage; mobile ad hoc net-
works (MANETs) and wireless sensor networks (WSNs). Computation structure
used in a rescue operation or military operation is a typical MANET application.
A wireless sensor network (WSN) consists of small computational nodes equipped
with antennas and batteries, and communicate using radio waves. These networks
find numerous applications ranging from intelligent farming to e-health to intelligent
buildings to border surveillance systems.

Whether a MANET or a WSN, an ad hoc network may be represented as a graph
and various graph properties, concepts and proven results of graph theory become
readily available to be implemented in these networks. An ad hoc wireless network is
depicted in Fig. 15.9 with the transmission range of a node shown in dashed circles. If
two nodes are within transmission ranges of each other, we can connect themwith an
edge assuming communication is bidirectional. For example, a message from node
a to f can be sent through the path a, b, e, f or path a, b, c, d, f using multi-hop
communication.

15.3.1 Routing in ad hoc Networks

We do not have a central control in various computer networks, instead, each node of
the network acts independently. The nodes cooperate to finish an overall task in such
a distributed system and algorithms performed in such systems are called distributed
algorithms.



318 15 Graph Applications

a

b
c d

e

f

g
h

i

j

m

m

m

m

m

Fig. 15.10 Routing using MCDS in an ad hoc network

A dominating set (DS) of a graph G = (V, E) was defined in Sect. 13.4 as a
subset V ′ of V such that any vertex v in V is either a member of V ′ or adjacent
to a vertex in V ′. A connected DS (CDS) has a path between each member vertex
pairs that go through CDS vertices only. A minimal CDS (MCDS) may be used to
form a communication backbone in a wireless ad hoc network as noted as we will
briefly re-review the needed procedure. Let us consider the ad hoc wireless network
in Fig. 15.10 where MCDS nodes are shown in grey. A node a that wants to send
a message m simply relays the message to its dominating node b for example. The
node b broadcastsm over the backbone and any node that receivesm checks whether
destination is one of the nodes it dominates in which case it simply delivers the
message to its destination node g only as in this example. Otherwise m is broadcast
over the backbone by the MCDS nodes until it reaches its destination. This way,
message is transmitted mainly over the backbone thereby reducing the traffic.

We will describe a distributed algorithm, which is executed by all nodes in the
network, due to Wu and Lin to form a MCDS in a wireless ad hoc network. A node
assigned to MCDS is assigned the black color and dominated nodes are white at the
end of the algorithm. This algorithm performs the following steps in the first phase.

1. Each node exchanges the identifiers of its neighbors with all of its neighbors.
2. Any node that finds it has two unconnected neighbors marks itself to be inMCDS

by changing its color to black.
3. Each node sends its color to its neighbors.

The second phase called pruning is needed to remove redundant nodes from the
MCDS with the following rules.

1. if a node u finds all of its neighbors are covered with a neighbor v that has a
higher identifier than u, u removes itself by changing its color back to white.



15.3 Ad hocWireless Networks 319

v3

v6v7

v1 v2

v4

v5

v8

v3

v6v7

v1 v2

v4v8

(a) (b)

v5

Fig. 15.11 Running of Wu’s algorithm in a sample graph

2. If a node u finds that the union of the neighbors of its two MCDS neighbors v

and w cover all of its neighbors and the identifiers of v and w are both greater
than that of u, u removes itself from the MCDS by changing its color to white.

Running of this algorithm in a small network is depicted in Fig. 15.11. In the first
phase, nodes v1, v2, v4, v5 and v8 assign black color to themselves as they have at
least two unconnected neighbors shown in (a). Then in the second phase, Node v5
changes its color back to white by the first rule as a higher identifier v8 covers both
of its neighbors. Node v2 also changes its color to white by the second rule as the
union of its higher identifier neighbors v4 and v8 cover all of its neighbors which
result in the MCDS in (b).

15.3.2 Clustering and SpanningTree Construction in aWSN

AWSN commonly employs a spanning tree structure to communicate with the sink
node. Sensors collect data and each node sends its data and data received from
its children to its parent in a convergecast operation. The sink node sends a data
typically in command form to all nodes using broadcast operation where each node
sends received message to its children. A simple command would initiate taking
sensor measurements. These operations are depicted in Fig. 15.12with d(a) showing
the data sensor a obtains for example. The data collected from children may the
temperature sensed in the sensor environment and a node may send the average
value of the data received from its children and data itself measured to its parent.
This process is called data aggregation where data is sent upwards in a compressed
form to the sink.

On the other hand, clustering in a WSN is practical as there is a large number
of nodes commonly exceeding hundreds, and communication using clusterheads
is preferred rather than sending messages among many nodes. An algorithm due
to Erciyes et al. performs these two tasks; namely, spanning tree construction and



320 15 Graph Applications

(a) (b)

v

d e

w

a b c

u

m

m

m
m m m

m

m

v

d e

w

a b c

u

d(a)

d(b)

d(c)

d(a,b,c,u)

d(e)d(d)

d(d,e,v)

d(a,b,c,d,e,u,v,w)

Fig. 15.12 a Convergecast b Broadcast operation in a WSN

clustering in aWSN simultaneously where each node has a unique identifier [5]. The
steps of this algorithm is as follows.

1. The sink node initiates the algorithm by broadcasting a probe message which
contains its identifier and a field called hop_count with 0 value to all its neighbors.

2. Any node v that receives probe message does the following.

a. If probe is received for the first time, it marks the sender u as its parent,
increments the hop_count value, inserts its identifier in the message and
broadcasts the message. It also sends ack message to its parent u with its
identifier.

b. When the probe is received for the first time, if the hop_count in message is
less than or equal the cluster hop_limit value, it includes itself in the cluster
by assigning the initiator u as its clusterhead.

c. If probe was received before, it sends negative acknowledgement message
nack to the sender.

d. A timeout after a node u sends a probemessage means u has its parent as the
only neighbor, that is, u is a leaf node.

3. A node u that receives an ack message from node v stores v as its child.

The working of this algorithm is depicted in Fig. 15.13 with clusterheads shown
in black and hop_limit = 2. The time complexity of this algorithm is O(d) where
d is the diameter of the network and it requires O(n) messages [5].



15.4 Biological Networks 321

Sink

C1
C2

C3

C4C5

C6

Fig. 15.13 Spanning tree formation and clustering in a WSN

15.4 Biological Networks

Biological networks are large and complex, for example, protein-protein interaction
(PPI) networks have proteins as nodes and signalling among proteins are the edges.
A protein is the basic component of a cell and carries various tasks within the cell.
Understanding the structure of a PPI network may provide insight to understanding
health and disease states of an organism [3]. A phylogenetic tree displays hereditary
relationships among individuals. We will look at two distinct problems in biological
networks; network motif finding and network alignment.

15.4.1 NetworkMotifs

Anetworkmotif is a recurring subgraph structure in a network. Finding the statistical
significance of a network motif may show the structure and building blocks of an
organism since a frequently occurring motif is assumed not to occur by chance and
should have some significance. Whenever such a network motif is detected, our next
step would be investigating the functionality of such a motif. Various commonly
found motifs in biological networks are depicted in Fig. 15.14.

Feed-forward loop is commonly found in many gene systems. Detecting of this
motif in an example graph is shown in Fig. 15.15 where subgraphs M1, M2, M3 and



322 15 Graph Applications

(a) (b) (c)

Fig. 15.14 Motifs in biological networks, a Feedback loop b Feed-forward loop c Bi-fan

a b

f

a b

c

de

f

de

f

b

c

d

(a)

(b)

a

e

f

M1

M2

M4

M3

Fig. 15.15 a A sample graph b Feed-forward loops this graph

M4 with this motif are detected. Finding motifs is a difficult problem and heuristics
are commonly used.

15.4.2 Network Alignment

When a number of graphs are used to represent certain biological networks, it is
of interest to find the similarity of these networks. The graph alignment or more
commonly, the network alignment problem is to discover the similarities between
networks and thus, to deduce genetic relations between them. Let G = (V1, E1)

and H = (V2, E2) be two graphs we need to investigate, and we have a function
f : V1 → V2 that maps vertices of G to the vertices of H . The quality of alignment
is given by the function Q(G, H, f ) and the main target of any alignment method
is to maximize Q. Network alignment can be performed as follows [3]



15.4 Biological Networks 323

Fig. 15.16 Weighted
bipartite graph matching for
network alignment example

a

b

c

d

x

y

z

w

4
8

5

6

7

1

3

14

21

12

2

9

• Local or Global alignment: Local alignment is the process of finding similarities
between small subgraphs of two or more networks. Global alignment aims to find
similarities over the whole graphs representing the biological networks.

• Pairwise orMultiple alignment: The pairwise alignmentmethods input two graphs
and the latter inputs more than two graphs.

• Node or topological similarity based alignment: Certain attributers of verticesmay
be considered in node similarity-based alignment methods and the latter refers to
topological similarity. A combination of both methods may be used by giving
different weights to each method [3].

Network alignment problem may be formed as a weighted bipartite graph match-
ing problemwhere the edges between the twovertex partitions haveweight dependent
on the similarity of vertices. Our aim is then to form the maximal weighted matching
and thus, the simple greedy algorithm described in Sect. 13.2.3 with O(m2) time
complexity may be used. Two simple networks aligned using this method is shown
in Fig. 15.16 where node b is aligned to node y, node c is aligned to node w and
node d is aligned to node z and only nodes a and x are not aligned due to their low
resemblances to other nodes.

15.5 Social Networks

A social network has a number of persons who have some kind of relationship such
as the students of a class. A social network may be represented by a graph with nodes
showing the persons or groups and edges their interaction. A simple social network



324 15 Graph Applications

A

B C

+ +

+

(a) (b) (c) (d)

A

B C

+

A

B C

+

+

A

B C

_

_

_ _

_

_

Fig. 15.17 Relationships among three persons

is the friendship network with edges displaying acquaintances between persons for
example. We will define some concepts that will be helpful in the analysis of social
networks in the following.

15.5.1 Relationships

We can label a relationship between two persons as positive to mean they are friends
or negative to mean they dislike each other. Considering three persons A, B and C ;
four possible relationships between them is depicted in Fig. 15.17 [4]. A balanced
relationship is defined as a stable relationship and we have two balanced states in
these four states. For example, the relationship is stable when three are all friends as
in (a). When two persons A and B are friends but both dislike person C , we again
have a stable state. The other two states are not balanced; for example, a person A
likes B and C but B and C dislike each other. Lastly, when all persons dislike each
other, this is again stable since they will be reluctant to form a relationship anyway.
We assumed like/dislike property is bidirectional, however, a person A may like
another person B but B may dislike A in reality. A digraph may represent a social
network more conveniently in such a case.

15.5.2 Structural Balance

Let a graph G = (V, E) represent a social network. Then there are two cases for
the social network represented by G to be balanced; either all nodes like each other
or vertices of G can be divided into two distinct groups A and B with the following
properties.

• All nodes in A like each other.
• All nodes in B like each other.
• Each node in A dislikes every node in B.
• Each node in B dislikes every node in A.

This property is proposed in thebalance theorem byHarary [9].Consider the graph
of Fig. 15.18 which represents a social network, we have group A = {b, c, f, g} and
group B = {a, d, h} obeying the balance theorem, therefore this social network is



15.5 Social Networks 325

a b c

d

efg

h

+

+
+

+

+

+

+

+
+

+
+

+_

_

_
_

___

_ _

_

_

_

Fig. 15.18 A balanced social network

balanced. This situation was considered as one of the reasons why the world wars
lasted long, every nation in one group was enemy with every nation in the other
group, and every nation in one group was friends with all other nations in its group;
thus, the war network was stable.

It is of interest to detect closely interacting persons/groups in a social network for
a number of reasons. This process of finding densely communicating subnetworks in
a social network is termed community detectionwhich is basically clustering method
reviewed in Sect. 15.1.2.

15.6 Review Questions

1. What is clustering coefficient of a vertex in a graph and why is it important?
2. What is matching index and what does it provide?
3. State the types of centralities in a large graph.
4. What are the main types of large networks?
5. What is a complex network andwhat are the twomain characteristics of complex

networks?
6. What is the main idea of the Page Rank algorithm?
7. How may routing be performed in an ad hoc network?
8. Why building a spanning tree is needed in a WSN?
9. What is network motif search in a biological network and why is it important?

10. What is network alignment problem in a biological network and what is its
significance?

11. What are the balanced configurations of a three people friendship network?
12. What is structural balance in a social network?
13. State the steps of the MST-based clustering algorithm in a social network.



326 15 Graph Applications

15.7 Chapter Notes

Graphs are used to represent various networks including the Internet, the Web, ad
hoc wireless networks, biological networks and social networks. We reviewed basic
principles of employing graphs for these networks. Having a graph model provides
various algorithms such as minimum spanning tree formation, breadth-first-search,
depth-first-search to our use and many problems in these networks may have optimal
or suboptimal solutions using basic graph algorithms.

All of these networks are large and they have properties such as small-world and
scale-free which are not found in a random network. We started this chapter by the
analysis of large networks and showed how various problems in these networks may
have a suboptimal solution using graph properties. For example, building a minimal
connected dominating set of an ad hoc network provides a backbone for efficient
message transfer. In another example, we saw how network alignment problem in
biological networks can be solved to some extent by a graph theoretic bipartite
matching algorithm.Clustering is awell-studied topic in various disciplines including
Computer Science, Statistics and Bioinformatics andwe canmake use of some graph
theoretical property while clustering. Graph applications are numerous and have a
much wider spectrum than discussed in this chapter, ranging from machine theory
to bioinformatics and to stock exchange. It is widely believed that graphs will have
increasingly many more applications in very diverse fields of science.

Exercises

1. Plot the degree distribution of the graph of Fig. 15.19.
2. Calculate clustering coefficients of the vertices in Fig. 15.20.
3. Calculate matching indices for the vertex pairs in Fig. 15.20.
4. Work out all page rank values for three iterations of the Web graph shown in

Fig. 15.21.
5. Find all feedback loop motifs in the digraph of Fig. 15.22.
6. Two biological networks N1 = {a, b, c, d, e} and N2 = {x, y, z,w, t} with 5

elements each are are to be aligned. Their affinity matrix A with each element
A[i, j] showing the closeness score of element i of N1 to element j of N2 has
the following contents with ∞ meaning no connection.

A =

⎛

⎜⎜⎜⎜⎝

x y z w t

a 6 ∞ 22 ∞ 17
b 7 3 ∞ ∞ 24
c 5 ∞ ∞ ∞ 2
d 20 ∞ ∞ 11 4
e ∞ ∞ 1 16 5

⎞

⎟⎟⎟⎟⎠

Work out the alignment using the simple greedy algorithm.



15.7 Chapter Notes 327

Fig. 15.19 Example graph
for Exercise 1

v2

v3

v4

v1

v5

v6

Fig.15.20 Sample graph for
Exercises 2 and 3 v2 v3

v4

v1

v5v6v7

Fig. 15.21 Web graph for
Exercise 4

v2 v3

v4v1

v5v6

Fig.15.22 Sample graph for
Exercise 5

v2 v3

v4

v1
v5

v6

v7

v8



328 15 Graph Applications

References

1. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512
2. Brelaz D (1979) New methods to color the vertices of a graph. Commun ACM 22(4):
3. Erciyes K (2015) Distributed and sequential algorithms for bioinformatics. Springer, Berlin
4. Erciyes K (2014) Complex networks, an algorithmic perspective. CRC Press, Boca Raton
5. Erciyes K, Ozsoyeller D, Dagdeviren O, (2008) Distributed algorithms to form cluster based

spanning trees in wireless sensor networks. ICCS, (2008) LNCS. Springer, Berlin, pp 519–528
6. Erdos P, Renyi A (1959) On random graphs, i. Publicationes Mathematicae (Debrecen) 6:290–

297
7. Garey MR, Johnson DS (1979) Computers and intractability. Freeman, New York, W.H
8. Grimmet GR, McDiarmid CJH (1975) On coloring random graphs. Mathematical proceedings

of the Cambridge philosophical society 77:313–324
9. Harary F (1953) On the notion of balance of a signed graph. Michigan Math J 2(2):143–146
10. Kleinberg J (1999) Authoritative sources in hyperlinked environment. J ACM 46(5):604–632
11. Milgram S (1967) The small world problem. Psychol Today 2:60–67



APseudocodeConventions

A.1 Introduction

In this part, the pseudocode conventions for writing an algorithm is presented. The
conventions we use follow themodern programming guidelines and are similar to the
ones used in [1,2]. Every algorithmhas a name specified in its heading and each line of
an algorithm is numbered to provide citation. The first part of an algorithm usually
starts by its inputs. Blocks within the algorithm are shown by indentations. The
pseudocode conventions adopted are described as data structures, control structures
and distributed algorithm structure as follows.

A.2 Data Structures

Expressions are built using constants, variables and operators as in any functional
programming language and yield a definite value. Statements are composed of ex-
pressions and are the main unit of executions. All statements are in the form of
numbered lines. Declaring a variable is done as in languages like Pascal and C where
its type precedes its label with possible initialization as follows:

set of int neighbors ← {∅}
Here we declare a set called neighbors of a vertex in a graph each element of

which is an integer. This set is initialized to {∅} (empty) value. The other commonly
used variable types in the algorithms are boolean for boolean variables andmessage
types for the possible types of messages. For assignment, we use ← operator which
shows that the value on the right is assigned to the variable in the left. For example,
the statement:

a ← a + 1

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6_A

329

https://doi.org/10.1007/978-3-030-61115-6_A


330 Appendix: Pseudocode Conventions

Table A.1 General algorithm conventions

Notation Meaning

x ← y Assignment

= Comparison of equality

�= Comparison of inequality

true, f alse Logical true and false

null Non-existence

� Comment

Table A.2 Arithmetic and logical operators

Notation Meaning

¬ Logical negation

∧ Logical and

∨ Logical or

⊕ Logical exclusive-or

x/y x Divided by y

x .y or xy Multiplication

increments the value of the integer variable a. Two or more statements in a line are
separated by semicolons and comments are shown by � symbol at the end of the
line as follows:

1 : a ← 1; c ← a + 2; � c is now 3

General algorithmic conventions are outlined in Table A.1, and Table A.2 sum-
marizes the arithmetic and logical operators used in the text with their meanings.

Sets instead of arrays are frequently used to represent a collection of similar
variables. Inclusion of an element u to a set S can be done as follows:

S ← S ∪ {u}
and deletion of an element v from S is performed as follows:

S ← S \ {v}
Table A.3 shows the set operations used in the text with their meanings.

A.3 Control Structures

In the sequential operation, statements are executed consecutively. Branching to
another statement can be done by selection described below.



Appendix: Pseudocode Conventions 331

Table A.3 Set operations

Notation Meaning

|S| Cardinality of S

∅ Empty set

u ∈ S u is a member of S

S
⋃

R Union of S and R

S
⋂

R Intersection of S and R

S \ R Set subtraction

S ⊂ R S is a proper subset of R

max/min S Maximum/minimum value of the elements of S

max/min{....} S Maximum/minimum value of a collection of
values

Selection

Selection is performed using conditional statements which are implemented using
if-then-else in the usual fashion and indentation is used to specify the blocks as shown
in the example code segment below:

Algorithm A.1 if-then-else structure
1: if condition then � first check
2: statement1
3: if condition2 then � second (nested) i f
4: statement2
5: end if � end of second i f
6: else if condition3 then � else if of first i f
7: statement3
8: else
9: statement4
10: end if � end of first i f

In order to select from a number of branches, case-of construct is used.The expres-
sion within this construct should return a value which is checked against a number
of constant values and the matching branch is taken as follows:

1. case expression of
2. constant1: statement1

3.
...

4. constantn : statementn
5. end case



332 Appendix: Pseudocode Conventions

Repetition

The main loops in accordance with the usual high level language syntax are the f or ,
while and loop constructs. The for-do loop is used when the count of iterations can
be evaluated before entering the loop as follows:

1. for i ← 1 to n do

2.
...

3. end for

The second form of this construct is the for all loop which arbitrarily selects an
element from the set specified and iterates until all members of the set are processed
as shown below where a set S with three elements and an empty set R are given and
each element of S is copied to R iteratively.

1. S ← {3, 1, 5}; R ← ∅
2. for all u ∈ S do
3. R ← R

⋃{u}
4. end for

For the indefinite cases where the loop may not be entered at all, the while-do
construct may be used where the boolean expression is evaluated and the loop is
entered if this value is true as follows:

1. while boolean expression do
2. statement
3. end for

References

1. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT Press,
Cambridge

2. Smed J, Hakonen H (2006) Algorithms and networking for computer games. Wiley Ltd, New
Jersey. ISBN 0-470-01812-7



Index

A
Algebraic connectivity, 300
Algorithm, 41
assignment, 43
data structure, 46
decision, 44
divide and conquer, 55
dynamic, 57
function, 46
greedy, 56
loop, 44
recursive, 119
sorting, 49

bubble sort, 50
exchange sort, 51

Arithmetic sequence, 107

B
Biconditional statements, 7
Binary, 143
Binomial theorem, 161
Bipartite graph matching, 298
Boolean algebra, 173
boolean function, 176

Boolean function, 176
minimization, 180
product-of-sums, 178
sum-of-products, 176

Breadth-first search, 251

C
Cartesian product, 71
Centrality, 311
betweenness, 312

closeness, 311
Clique, 263
Clustering, 308
Coloring, 274
Combination, 158
Combinational circuit, 173, 183
AND-OR, 186
arithmetic, 190
design, 186
gates, 184
OR-AND, 188

Complex network, 307
ad hoc wireless, 316

wireless sensor network, 319
biological, 321

network alignment, 322
network motif, 321

centrality, 311
clustering, 308
matching index, 310
scale-free, 313
small-world, 313
social, 323

Compound propositions, 4
conjunction, 4
disjunction, 4

Conditional
existential, 19
universal, 18

Conditional statements, 5
Congruence, 139
Connectivity, 233, 287
algebraic, 300
digraph, 291

© Springer Nature Switzerland AG 2021
K. Erciyes, Discrete Mathematics and Graph Theory, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-61115-6

333

https://doi.org/10.1007/978-3-030-61115-6


334 Index

Contradiction, 8
Counting, 151
additive, 153
inclusion-exclusion, 151
multiplicative, 153
pigeonhole principle, 155

Cryptography, 144
Diffie-Hellman, 146
RSA, 147

D
Depth-first-search, 249
Diffie-Hellman protocol, 146
Digraph connectivity, 291
Directed graph, 224
Divide and conquer algorithm, 55
Divison, 130
Dynamic programming, 57

E
Equivalence, 10
Expectation, 169

F
Function, 46, 83, 96
boolean, 176
ceiling, 101
composite, 97
exponential, 102
factorial, 102
floor, 101
inverse, 100
logarithm, 103
recursive, 118

G
Geometric sequence, 109
Graph, 221
adjacency list, 225
adjacency matrix, 226
bipartite, 229
clique, 263
coloring, 274
complete, 228
connectivity, 233
directed, 224
incidence matrix, 227
independent set, 269
isomorphism, 237
line, 230
matching, 264

operation, 231
cartesian product, 232
intersection, 231
join, 232
union, 231

regular, 230
subgraph, 227, 263
vertex cover, 271, 278
vertex degree, 222
weighted, 228

Graph isomorphism, 237
Graph traversal
breadth-first search, 251
depth-first-search, 249

Greatest Common Divisor (GCD), 131
Euclid’s algorithm, 132

Greedy algorithm, 56

H
Hexadecimal, 144

I
Independent set, 269
Induction, 105, 111
strong, 115
structural, 124

Integer, 143
representation, 143

K
Karnaugh-map, 180

L
Large graph, 307
degree distribution, 307

Least Common Multiple (LCM), 133
Logic, 3
laws, 12
predicate, 14

quantifier, 15
propositional, 3

Loop, 44

M
Matching, 264
bipartite, 269

N
Network alignment, 322
Network flow, 295
bipartite graph matching, 298



Index 335

Ford–Fulkerson algorithm, 297
residual graph, 296

Network model, 312
random network, 313

Network motif, 321
Number theory, 129
congruence, 139
division, 130
greatest common divisor (GCD), 131
least common multiple (LCM), 133
prime, 135

P
Permutation, 156
Pigeonhole principle, 155
Predicate
quantifier

existential, 15
universal, 15

Prime numbers, 135
Probability, 151, 163
conditional, 166
independent event, 165
random variable, 168
tree diagram, 167

Proof, 23
argument, 23
biconditional, 32
by cases, 36
contradiction, 31
contrapositive, 30
direct, 28
quantifier, 34

Propositional function, 16

R
Random network, 313
Random variable, 168
expectation, 169

Recurrence, 117
Recursion, 105, 116
algorithm, 119
set, 123

Recursive function, 118
Relation, 83
composite, 93
database, 95
equivalence, 91
intersection, 86
inverse, 85
n-ary, 94

partititon, 91
properties, 87
representation, 84
transitive closure, 94
union, 86

Relational database, 95
Residual graph, 296
RSA protocol, 147

S
Scale-free network, 313
Sequence, 105
Set, 63
cartesian product, 71
laws, 73
operation, 68
partition, 72
recursive, 123
subset, 65
venn diagram, 67

Shortest path, 302
Small-world network, 313
Social network, 323
Sorting, 49
bubble sort, 50
exchange sort, 51

Stochastic process, 170
Subgraph, 227, 263
clique, 263
dominating set set, 271
independent set, 269
matching, 264

bipartite, 269
vertex cover, 278

Subset, 65
Summation, 106

T
Tautology, 8
Transitive closure, 94
Tree, 243
binary, 245

inorder traversal, 247
binary search tree, 247
traversal, 244

postorder, 245
preorder, 245



336 Index

V
Venn diagram, 67
Vertex cover, 278

W
Web, The, 313
page rank algorithm, 314


	Preface
	Contents
	Part I Fundamentals of Discrete  Mathematics
	1 Logic
	1.1 Propositional Logic
	1.1.1 Compound Propositions
	1.1.2 Conditional Statements
	1.1.3 Biconditional Statements
	1.1.4 Tautologies and Contradictions
	1.1.5 Equivalences
	1.1.6 Laws of Logic

	1.2 Predicate Logic
	1.2.1 Quantifiers
	1.2.2 Propositional Functions with Two Variables
	1.2.3 Negation
	1.2.4 The Universal Conditional Statement
	1.2.5 The Existential Conditional Statements

	1.3 Review Questions
	1.4 Chapter Notes

	2 Proofs
	2.1 Arguments
	2.1.1 Rules of Inference
	2.1.2 Definitions

	2.2 Direct Proof
	2.3 Contrapositive
	2.4 Proof by Contradiction
	2.5 Proving Biconditional Propositions
	2.6 Proofs Using Quantifiers
	2.6.1 Proving Universal Statements
	2.6.2 Proving Existential Statements

	2.7 Proof by Cases
	2.8 Review Questions
	2.9 Chapter Notes

	3 Algorithms
	3.1 Basics
	3.1.1 Pseudocode Convention
	3.1.2 Assignment and Types of Variables
	3.1.3 Decision
	3.1.4 Loops
	3.1.5 Functions and Parameter Passing

	3.2 Basic Data Structures
	3.3 Sorting
	3.3.1 Bubble Sort
	3.3.2 Exchange Sort

	3.4 Analysis
	3.5 Design Methods
	3.5.1 Divide and Conquer
	3.5.2 Greedy Method
	3.5.3 Dynamic Programming

	3.6 Difficult Problems
	3.7 Review Questions
	3.8 Chapter Notes

	4 Set Theory
	4.1 Definitions
	4.1.1 Equality of Sets
	4.1.2 Cardinality of a Set

	4.2 Subsets
	4.3 Venn Diagrams
	4.4 Set Operations
	4.4.1 Cartesian Product
	4.4.2 Set Partition
	4.4.3 Operation Precedence

	4.5 Laws of Set Theory
	4.6 Proving Set Equations
	4.6.1 The Element Method
	4.6.2 The Tabular Method
	4.6.3 The Algebraic Method

	4.7 Review Questions
	4.8 Chapter Notes

	5 Relations and Functions
	5.1 Relations
	5.1.1 Representations
	5.1.2 Inverse of a Relation
	5.1.3 Union and Intersection of Relations
	5.1.4 Properties of Relations
	5.1.5 Equivalence Relations and Partitions
	5.1.6 Order
	5.1.7 Composite Relation
	5.1.8 n-Ary Relations
	5.1.9 Transitive Closure
	5.1.10 Database Applications

	5.2 Functions
	5.2.1 Composite Functions
	5.2.2 Injection, Surjection and Bijection
	5.2.3 Inverse of a Function
	5.2.4 Some Special Functions

	5.3 Review Questions
	5.4 Chapter Notes

	6 Sequences, Induction and Recursion 
	6.1 Sequences
	6.1.1 Summation
	6.1.2 Arithmetic Sequence and Series
	6.1.3 Geometric Sequence
	6.1.4 Product Notation
	6.1.5 Big Operators

	6.2 Induction
	6.2.1 Proving Inequalities

	6.3 Strong Induction
	6.4 Recursion
	6.4.1 Recurrence Relations
	6.4.2 Recursively Defined Functions
	6.4.3 Recursive Algorithms
	6.4.4 Recursively Defined Sets

	6.5 Structural Induction
	6.6 Review Questions
	6.7 Chapter Notes

	7 Introduction to Number Theory 
	7.1 Basics
	7.2 Division
	7.3 Greatest Common Divisor
	7.3.1 Euclid's Algorithm
	7.3.2 Least Common Multiple

	7.4 Prime Numbers
	7.4.1 Primality Test
	7.4.2 The Sieve of Eratosthenes

	7.5 Congruence
	7.6 Representation of Integers
	7.6.1 Binary System
	7.6.2 Hexadecimal System

	7.7 Introduction to Cryptography
	7.7.1 Diffie-Hellman Protocol
	7.7.2 RSA Protocol

	7.8 Review Questions
	7.9 Chapter Notes

	8 Counting and Probability
	8.1 Basic Counting Methods
	8.1.1 Principle of Inclusion-Exclusion
	8.1.2 Additive Counting Principle
	8.1.3 Multiplicative Counting Principle
	8.1.4 The Pigeonhole Principle
	8.1.5 Permutations
	8.1.6 Combinations

	8.2 Discrete Probability
	8.2.1 Probability Measures
	8.2.2 Independent Events
	8.2.3 Conditional Probability
	8.2.4 Tree Diagrams
	8.2.5 Random Variables
	8.2.6 Stochastic Processes

	8.3 Review Questions
	8.4 Chapter Notes

	9 Boolean Algebras and Combinational Circuits
	9.1 Boolean Algebras
	9.1.1 Principle of Duality
	9.1.2 Boolean Functions
	9.1.3 Sum-of-Products Form
	9.1.4 Product-of-Sums Form
	9.1.5 Conversions
	9.1.6 Minimization

	9.2 Combinational Circuits
	9.2.1 Gates
	9.2.2 Designing Combinational Circuits
	9.2.3 Arithmetic Circuits

	9.3 Review Questions
	9.4 Chapter Notes

	10 Introduction to the Theory of Computation
	10.1 Languages
	10.2 Finite State Machines
	10.3 Finite State Automata
	10.3.1 Analysis
	10.3.2 Designing Finite State Automata

	10.4 The Relationship Between Languages and Automata
	10.5 Nondeterministic Finite State Automata
	10.6 Regular Expressions
	10.7 Turing Machines
	10.8 Complexity Theory
	10.8.1 Reductions
	10.8.2 NP-Completeness
	10.8.3 Coping with NP-Completeness

	10.9 Review Questions
	10.10 Chapter Notes

	Part II Graph Theory
	11 Introduction to Graphs
	11.1 Terminology
	11.2 Vertex Degree
	11.2.1 Degree Sequence

	11.3 Directed Graph
	11.4 Representation of a Graph
	11.4.1 Adjacency List
	11.4.2 Adjacency Matrix
	11.4.3 Incidence Matrix

	11.5 Subgraphs
	11.6 Types of Graphs
	11.6.1 Complete Graph
	11.6.2 Weighted Graphs
	11.6.3 Bipartite Graphs
	11.6.4 Regular Graphs
	11.6.5 Line Graphs

	11.7 Graph Operations
	11.7.1 Graph Union
	11.7.2 Graph Intersection
	11.7.3 Graph Join
	11.7.4 Cartesian Product

	11.8 Connectivity
	11.8.1 Definitions
	11.8.2 Connectedness

	11.9 Graph Isomorphism
	11.10 Review Questions
	11.11 Chapter Notes

	12 Trees and Traversals
	12.1 Definitions and Properties
	12.2 Traversal Algorithms
	12.2.1 Preorder Traversal
	12.2.2 Postorder Traversal

	12.3 Binary Trees
	12.4 Binary Search Trees
	12.5 Depth-First-Search
	12.6 Breadth-First Search
	12.7 Spanning Trees
	12.7.1 Unweighted Spanning Trees
	12.7.2 Minimum Spanning Trees

	12.8 Review Questions
	12.9 Chapter Notes

	13 Subgraphs
	13.1 Cliques
	13.2 Matching
	13.2.1 Unweighted Matching
	13.2.2 Weighted Matching
	13.2.3 Bipartite Graph Matching

	13.3 Independent Sets
	13.3.1 Algorithm

	13.4 Dominating Sets
	13.4.1 Algorithm

	13.5 Coloring
	13.5.1 Vertex Coloring
	13.5.2 Edge Coloring

	13.6 Vertex Cover
	13.6.1 Unweighted Vertex Cover
	13.6.2 Weighted Vertex Cover

	13.7 Review Questions
	13.8 Chapter Notes

	14 Connectivity, Network Flows and Shortest Paths
	14.1 Basics
	14.1.1 Menger's Theorems

	14.2 Connectivity Test
	14.3 Digraph Connectivity
	14.3.1 Strong Connectivity Check
	14.3.2 Finding Strongly Connected Components

	14.4 Network Flows
	14.4.1 A Greedy Algorithm
	14.4.2 Residual Graphs
	14.4.3 Ford–Fulkerson Algorithm
	14.4.4 Bipartite Graph Matching

	14.5 Algebraic Connectivity
	14.5.1 The Laplacian Matrix
	14.5.2 Normalized Laplacian
	14.5.3 Eigenvalues

	14.6 Shortest Paths
	14.7 Chapter Notes

	15 Graph Applications
	15.1 Analysis of Large Graphs
	15.1.1 Degree Distribution
	15.1.2 Clustering
	15.1.3 Matching Index
	15.1.4 Centrality
	15.1.5 Network Models

	15.2 The Web
	15.2.1 The Web Graph
	15.2.2 Page Rank Algorithm

	15.3 Ad hoc Wireless Networks
	15.3.1 Routing in ad hoc Networks
	15.3.2 Clustering and Spanning Tree Construction in a WSN

	15.4 Biological Networks
	15.4.1 Network Motifs
	15.4.2 Network Alignment

	15.5 Social Networks
	15.5.1 Relationships
	15.5.2 Structural Balance

	15.6 Review Questions
	15.7 Chapter Notes

	A Pseudocode Conventions
	A.1 Introduction
	A.2 Data Structures
	A.3 Control Structures

	 Index



