WITH ALGORITHMS

Michael O. Albertson
Joan P. Hutchinson

Smith College

WILEY

JOHN WILEY & SONS
New York Chichester Brisbane

Toronto

Singapore

Copyright © 1988, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Section

107 or 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner is unlawful. Requests for permission

or further information should be addressed to
the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data:
Albertson. Michael O.
Discrete mathematics with algorithms.

Includes indexes.

1. Mathematics-— 1961~ . 2. Electronic data
processing— Mathematics. 1. Hutchinson, Joan P.
[1. Title.

QA39.2.A43 1988 510 88-235
ISBN 0-471-84902-2

Printed in the United States of America

987635432

CONTENTS

Chapter 1

Chapter 2

SETS AND ALGORITHMS: AN INTRODUCTION

I:1 Introduction

1:2 Binary Arithmetic and the Magic Trick Revisited
1:3 Algorithms

1:4 Between Decimal and Binary

1:5 Set Theory and the Magic Trick

1:6 Pictures of Sets

1:7 Subsets

[:8 Set Cardinality and Counting

1:9 Functions

1:10 Boolean Functions and Booiean Algebra
1:11 A Look Back

ARITHMETIC

2:1 Introduction

2:2 Exponentiation, A First Look

2:3 Induction

2:4 Three Inductive Proofs

:5 Exponentiation Revisited

6 How Good Is Fust Exponentiation?

65

63
68
71
80

g1

Xi

CONTENTS

Chapter 3

Chapter 4

Chapter 5

i

2:7 How Logarithms Grow

2:8 The "Big Oh” Notation

2:9 2" # O(p(n)): Proof by Contradiction
2:10 Good and Bad Algorithms

2:11 Another Look Back

ARITHMETIC OF SETS

3:1 Introduction

3:2 Binomial Coefficients
3:3 Subsets of Sets

3:4 Permutations

3:5 An Application of Permutations: The Game of
Mastermind

3:6 The Binomial Theorem
3:7 Important Subsets

NUMBER THEORY

4:1 Greatest Common Divisors

4:2 Another Look at Complexities

4:3 The Euclidean Algorithm

4:4 Fibonacci Numbers

4:5 The Complexity of the Euclidean Algorithm

4:6 Congruences and Equivalence Relations

4:7 An Application: Public Key Encryption Schemes
4:8 The Dividends

GRAPH THEORY

5:1 Building the LAN
5:2 Graphs

Trees and the LAN

A Good Minimum-Weight Spanning Tree Algorithm
An Ode to Greed

Graphical Highlights

wm W U
5 W N

un
S W

97
102
HO
118

122

127
131
141
153

161
168
176

181

181
186
199
197
206
211
222

234

CONTENTS

Chapter 6

Chapter 7

Chapter 8

SEARCHING AND SORTING

6:1 Introduction: Record Keeping
6:2 Searching a Sorted File

6:3 Sorting a File

6:4 Search Trees

6:5 Lower Bounds on Sorting
6:6 Recursion

6:7 MERGESORT

6:8 Sorting It All Out

RECURRENCE RELATIONS

7:1 Beginnings of Sequences
7:2 Iteration and Induction

7:3 Linear Homogeneous Recurrence Relations with
Constant Coefficients

7:4 LHRRWCCs with Multiple Roots: More About Rabbits
7:5 Divide-and-Conquer Recurrence Relations
7:6 Recurring Thoughts

MORE GRAPH THEORY

8:1 Minimum-Distance Trees

8:2 Eulerian Cycles

8:3 Hamiltonian Cycles

8:4 Minimum-Weight Hamiltonian Cycles

8:5 Graph Coloring and an Application to
Storage Allocation

SOLUTIONS TO QUESTIONS

INDEX

ALGORITHMS AND PROCEDURES

NOTATIONS

283

283
290
295
302
310
317
325
331

339

339
346

353
364

372
381

389

389
399
410
425

431

451

538

343

345

xiii

SETS AND ALGORITHMS:

AN INTRODUCTION

1:1 INTRODUCTION

The four cards labeled A, B, C, and D in Figure 1.1 are part of a magic trick
played by Player 1 upon Player 2. The trick is played as follows:

A
8 9
10) 11
12 13
14 15
Figure 1.1

B C D

4 5 2 3 1 3
6 7 6 7 5 7
12 13 10 11 9 11
14 15 14 15 13 15

Player | Player 2

Pick a whole number

between O and 15.

Got it? Yes.

Is it on card A4? Yes.

Is it on card B? No.

Is it on card 7 No.

Is it on card D? Yes.

The number you picked is 9.

That’s amazing!
How did you do that?
And so fast!

I SETS AND ALGORITHMS: AN INTRODUCTION

Now let’s play again only this time you’ll be player 1. 1 have a whole number
between 0 and 15. Tt appears on cards A, C, and D and does not appear on card
B. What number am [thinking of?

Question 1.1. (Figure it out before you read any further.) If you are at a loss for
what to do, ask yourself the following questions. Can it be 0? Canit be 7. .. Can
it be 15?

Now it can’t be 0 because 0 doesn’t appear on any of the cards and the number
Pm thinking of appears on three cards. It can’t be 1 because even though 1 does
appear on card D, it does not appear on cards A or C, and the number I'm thinking
of appears on both cards 4 and C. If this magic trick s well designed, meaning
that it is always possible for player 1 to guess player 2’s number correctly, then
there must be a unique number that corresponds with any possible sequence of
answers provided by player 2. In this case the number I am thinking of is 11. It
is easy to check that 11 appears on the cards A, C, and D but does not appear
on the card B. It seems less obvious that 11 is the only such number.

Question 1.2. What would you need to do to check that this trick will always
work?

Question 1.3. Design a pair of cards that will serve to distinguish the numbers
0, 1, 2, and 3. Is there more than one way to do this? Why can’t two cards dis-
tinguish the numbers 0, 1, 2, 3, and 4?

Understanding why two cards can distinguish four numbers and why four
cards can distinguish 16 numbers is fundamental to seeing how to design this
game as well as how to play it well. Each card that player 1 shows to player 2
elicits one of two responses, either a “yes” or a “no.” A game with two cards has
four possible responses from player 2. These are “no, no,” “no, yes,” “yes, no,”
and “yes, yes.” How many responses has a game with four cards? Justice seems to
suggest that you respond 16. That is correct. Now let’s see why.

Multiplication Principle. Suppose that a counting procedure can be divided into
two successive stages. If there are r outcomes for the first stage, and if for each
of these outcomes for the first stage, there are s outcomes for the second stage
(where r and s are positive integers), then the total number of possible outcomes
equals the product of r and s, rs.

Example 1.1. At tea one afternoon you are offered your choice of a bagel, a corn
muffin, or a croissant with either cream cheese or lightly salted butter. How many
different choices do you have? (Reread the multiplication principle.) At the first
stage you can choose whether to have a bagel, muffin, or croissant. There are three

1:1 INTRODUCTION

different outcomes (r = 3). At the second stage you can choose cheese or butter.
There are two different outcomes (s = 2). By the multiplication principle as well
as by a direct count you have 6 (=rs) choices.

Example 1.2. In the magic trick, how many different responses are there to the
four cards? (Reread the muitiplication principle.) First consider cards A and B. As
we've already seen, there are four distinct responses to these two cards (r = 4).
Next look at cards C and D. It doesn’t matter what the responses to the A and
B cards were. There are four distinct responses to these two cards (s = 4). Thus
there are 16 (=rs) distinct responses in all to the four cards. Note that these 16
responses could have been counted in four stages with two responses at each of
these stages. The multiplication principle works analogously for any number of
stages. (See Exercises 7 and 8.)

Question 1.4. How many different seven-digit telephone numbers are there begin-
ning with the digits 584?

Now returning to the magic trick, you see that player | could perform the
trick by memorizing the 16 different responses that player 2 might give in order

to successfully “guess” player 2’s number. The possible responses are listed in
Table 1.1.

Table 1.1
Responses
Plaver 2’s
Number Curd A Curd B Card C Card D
0 no no no no
1 no no no yes
2 no no yes no
3 no no yes yes
4 no . ves no no
5
6
7
8
9
10
11
12
13
14
15

Question 1.5. Complete Table 1.1.

1 SETS AND ALGORITHMS: AN INTRODUCTION

EXERCISES FOR SECTION 1

1. Design a set of three cards that will distinguish the numbers 0.1,2,....7.
Suppose that we only wished to distinguish the numbers 0, 1,2,....3. Could
your three cards be modified to play this game? Could your three cards be
modified to play the game with the numbers 0,1,2,...,8?

2. Suppose that the local ice cream store offers 12 different flavors of ice cream
and 5 different types of topping (chocolate, butterscotch, strawberry, blueberry.
and raspberry). How many different dishes of ice cream plus topping are
possible? Suppose that you can turn these dishes of ice cream plus topping
into special sundaes by adding one kind of nuts (walnuts, almonds, or hazel-
nuts) and whipped cream if you like. How many different types of special
sundaes can you order at this ice cream store?

3. A certain fast food chain offers a one-price meal consisting of a burger, an
order of potatoes, a salad, a dessert, and a beverage. There are seven different
kinds of burgers, three different kinds of potatoes, five different kinds of salads,
and four different kinds of desserts. The restaurant advertises that you can
eat one meal here every day for four years without ever having the same

meal twice. What can you say about the number of beverage choices that
the restaurant offers?

4. Often, when vou sign onto a time-sharing computer, you are asked to specify
the room you are in and the kind of terminal that you are using. Suppose
that there are 13 different room categories and 16 different kinds of terminals.
How many different pairs of answers is it possible to give as you sign on?

5. In the context of the preceding problem it is typically the case that not all
answers are possible. since there are not 16 different kinds of terminals in every
room, If every room contains four different kinds of terminals, how many
different answers are possible?

6. Even the idea in the last problem might not be correct. since the kind and
number of terminal types may vary {rom place to place. Suppose that we
consider only five rooms and that they contain the following kinds of ter-
minals: Every room contains a Digital VT terminal; Tektronix machines are
located in the Social Science Room and in the Science Lab; IBM PCs are
found in the Graphics Lab and in the Library Terminal Room; and Apple
Macintoshes are available in the Library Terminal room and in the Hu-
manities Computer Room. How many pairs of responses are now possible
to send to the computer when you sign on?

7. Here is an extension of the multiplication principle: Suppose that a counting
procedure can be divided into four successive stages. If there are p outcomes
for the first stage. if for each of these outcomes for the first stage, there are
r outcomes for the second stage, if for each pair of these first two outcomes.

1:2 BINARY ARITHMETIC AND THE MAGIC TRICK REVISITED

there are s outcomes for the third stage, and finally if for each of these first
three outcomes, there are f outcomes for the fourth stage (where p. r, 5, and
¢ are positive integers), then the total number of possible outcomes cquals
the product prst. Explain why this is valid, using the original form (two-stage)
of the multiplication principle.

8. State and explain a multiplication principle that is valid for three stages, and
then do the same for five stages.

9. Suppose that we have a rather primitive computer that can recetve only
strings of zeros and ones as input. Furthermore. these strings must contain
exactly eight digits. How many different input strings are there?

10. Suppose that the machine in the preceding problem can receive strings with
one to eight digits. and suppose that the machine disregards initial zeros. Thus,
for instance, 1001 is the same input as the string of eight digits, 00001001.
Now how many different input strings are possible?

11. How many different seven-digit phone numbers are there that begin 584 and
contain no zero? How many phone numbers are there that begin 584 and
contain at least one zero?

12. How many different seven-digit phone numbers are there that begin 58_-
_and contain seven different digits? How many of these contain no zero?
How many do contain a zero? How many different phone numbers are there
that begin with 58_, but contain no two identical consecutive digits?

13. Recently, a new telephone area code was introduced for the area of New
York that contains Brookiyn and Queens because all seven-digit phone num-
bers had been used up. Assuming that none of the first three digits in a
phone number can be either a 0 or a 1. what can you say about the number
of phone lines in this area?

14. In the lottery game called Megabucks a player selects six ditferent numbers
between 0 and 35. How many different such selections are there? Before an-
swering, specify when two selections are the same and when they are different.

1:2 BINARY ARITHMETIC AND
THE MAGIC TRICK REVISITED

The magic trick of Section | was based on each of four questions receiving either
a “yes” or a “no” answer. Thus a seemingly complex task. in this case deciding
which number player 2 had chosen, could be broken down into u sequence of
smaller tasks associated with each of the cards. This fundamental ves-no, true-ialse,
or on-off dichotomy pervades most of the mathematics associated with computers.
It even is fundamental to how computers “think™ about numbers. We now model
how a computer stores an integer using binary numbers.

e

1 SETS AND ALGORITHMS: AN INTRODUCTION

A number in binary notation is just a finite list (sequence or string) of zeros
and ones. For example, 1, 101, 111001, and 1011 are all binary numbers. For the
moment don’t be concerned about which numbers these sequences are. We'll get
to that shortly. Rather. think in the familiar decimal system. The number 37, for
instance, can be thought of as 3 tens together with 7 ones,

37=3-10+7.
The number 234 is 2 hundreds plus 3 tens plus 4 ones,
234=2-100+3-10+ 4

The decimal number system is so named because successive columns when reading
from the right represent consecutive powers of ten. We'll use the same device for
the binary system. Specifically, let the rightmost column of a number written in
binary represent the ones. We call this the Oth column or the one’s column. The
next column to the left represents the twos. This is called the tst column or the
two’s column. The third column from the right represents the fours, the fourth
column from the right represents the eights, and so on. So the pth column from
the right (starting with p = 0) in the binary representation of a number represents
the pth power of 2.

Example 2.1. The binary number 1 is the same number as the decimal number
1. The binary number {01 consists of 1 one, no twos, and 1 four. It is equivalent
to the (decimal) number 3. Similarly, the binary number 111001 is equivalent to
the decimal number 57, since 57 =1 one + 0 twos + 0 fours + 1 eight + 1
sixteen + 1 thirty-two (see Figure 1.2).

{ BINARY NUMBER — DEC!MAL NUMBER ‘
{ 101 = 1-4+0-2+1 = 5 “
i

{ 111001 =1-324+1-16+1-8+1-1= 57 \
Figure 1.2

Question 2.1. Find the decimal equivalents of the following binary numbers:
{a) 10101, (b) 100101, and (c) 11010. Given a binary number, how would you
decide whether it is an even number or an odd number?

Question 2.2. Construct a table with all the numbers from 0 to 15 written in
binary. Compare your results with the table that you completed for Question 1.3,

1:2 BINARY ARITHMETIC AND THE MAGIC TRICK REVISITED

Question 2.3. List all the numbers from 0 to 15 that have a | in the four’s column
of their binary representation.

After doing the previous question, you should note that the numbers you
obtain appear familiar. [n fact they are just the numbers that appear on card B
in the magic trick. You should check that the numbers that appear on card 4 are
just those numbers between 0 and 15 whose binary representation has a 1 10 the
eight’s column, those on card C are just those with a | in the two’s column, and
those on card D are just those with a 1 in the one’s column. This suggests a quick
way for player 1 to perform the magic trick. Player 1 should remember the nunber
in the upper left-hand corner of every card to which player 2 says “ves” and add
these numbers up. Thus in our original play the yes to card 4 produces an 8, and
the yes to card D produces a | for a total of 9.

At the moment we have used binary representations of numbers to produce
a simple procedure for player ! to perform the magic trick. It is easy to proceed
from the binary representation of a number to its decimal equivalent. What about
the other direction, that is, given a number in decimal form how should we arrive
at its binary equivalent?

Question 2.4. Write the following (decimal) numbers in binary: (a) 6, (b) 19,
(c) 52, (d) 84, and (e) 232.

You have already done part (a) in previous questions. Part (b) you probabiyv see.
To write 52 and 84 in binary, you might require pencil and paper. By the time
you get to 232, you will be glad the question stops. Surely you realize that given
any positive integer of moderate size, vou could find its binary representation with
enough time, motivation, and paper. Still if the method that you have used is,
basically trial and error, you might wish for an alternative. What you need in the
jargon of discrete mathematics is a “good algorithm.” We shall introduce you to
this language in the next section.

EXERCISES FOR SECTION 2

1. List all numbers {rom 0 to 15 that have a | in the ¢ight’s column. Then list
all of these numbers that have a | in the two’s column. Why is it precisely
the odd numbers that have a | in the zero’s column?

2. Without listing all the numbers, give a characterization of the numbers [rom
0 to 31 that have a 1 in the sixteen’s column. Then characterize those num-
bers from O to 31 that have a | in the eight’s column. Finally, describe all
numbers from 0 to 31 whose binary expansion ends with the digits 01,

3. What decimal numbers do the foillowing binary numbers represent? (a) 11011,
(b) 101011, (¢) 10001, and (d) 11000.

1 SETS AND ALGORITHMS: AN INTRODUCTION

4. Find the binarv representation of the following decimal numbers: (a) 28,
(b) 43, (¢) 100, and (d) 31.

5. Suppose that you are given a decimal number m that has the property that
when m is divided by § there is 4 remainder of 2. What can you say about
the binary representation of m?

6. Suppose that you are given a decimal number m that has the property that
when m is divided by 4 there is a remainder of 3. What can you say about
the binary representation of m?

7. Suppose that you are given a decimal number m that has the property that when
m is divided by 16 there is a remainder of 6. What can you say about
the binary representation of m?

8. What is the maximum number of integers that a six-card magic trick could
distinguish? If the six cards were designed as in the original trick from Section
| and the responses were yes, no. yes, yes, no, no; what number was selected?

9. Given two binary numbers, how could you tell (without converting them into
decimal) which is bigger?

10. A binary fraction is a finite sequence of zeros and ones that follows what is
called the binary point. For example 0.101 is a binary fraction. The column
immediately to the right of the binary point represents the halves, the next
column the quarters, the third column the eighths, and so on. Thus 0.101 =
1+ 4 = 3. Make a table of all four-bit binary fractions.

27

1. Express cach of the following in binary: (a) 33, (b) 2 3wy L
and (e) leb'.

1:3 ALGORITHMS

Definition. An algorithm is a finite sequence of well-described instructions with
the following properties.
1. There is no ambiguity in any instruction.

2. After performing a particular instruction, there is no ambiguity about which
instruction is to be performed next.

3. The instruction to stop is always reached after the execution of a finite
number of instructions.

Example 3.1. Here are the instructions inscribed on a metal plate attached to
the {ront of a video game:

Step |. Insert quarter into slot on side of machine.

STEP 2. Press green button on top of machine when ready to begin.

1:3 ALGORITHMS

This is a finite sequence of well-described instructions. There s no ambiguity in
any instruction. It is always clear what to do next. There is no explicit instruction
to stop, but we overlook this, since it is clear that each instruction is executed
just once for each play. Thus we may call this an algorithm: [t is an algorithm to
begin playing a video game.

Example 3.2. Suppose that we add an instruction to the previous example.

Step 3. When each game is over, type your initials and press red button on
top of machine to record score for posterity.

Step 3 fulfills the roie of a stop instruction provided games don’t go on for-
ever and provided you cannot play an additional game on your initial quarzer.

Example 3.3. Suppose we insert the following instruction.

Step 4. For each 10,000 points you accumulate you will win a free game.
When current game is over, if vou have won a free game, go 1o
step 2.

This has changed the nature of the instructions. The first two examples are known
as sequential algorithms. By that we mean that cach step (or instruction) is exe-
cuted exactly once and that the next step on the list is the next instruction Lo be
executed. Step 4 adds the possibility of executing an instruction many times. Indeed
since there is no reason to suppose that the winning of free games couldn’t go on
forever the list of instructions in Example 3.3 is not an algorithm. You might think
of this by reinterpreting instruction 4 as saying,

“If score > 10,000, then ge to instruction 2.7
This logical structure is known as a loop. Although this particular loop has made

the sequence of instructions fail to be an algorithm, a loop need not forc: the
execution of an infinite number of steps.

Example 3.4. Suppose that we modify instruction 4 so that our instructions now
say:

STEP |. Insert quarter into slot on side of machine.

t2

StEP Press green button on top of machine when ready to begin.

STEP 3. When each game is over, type your initials and press red button on
top of machine to record score for posterity.

SteP 4. For each 10,000 points vou accumulate, vou will win a {ree game up
to a maximum of 10 free games for each paid game. When current
play is over, if vou have won a [ree game, go to step 2.

1 SETS AND ALGORITHMS: AN INTRODUCTION

The modification in step 4 can be described as adding a counter to the loop in
order to insure that the loop is executed a finite number of times.

The logical structure of Example 3.3 illustrates one of the most common mis-
takes made by beginning programmers, that of an infinite loop. Example 3.4 shows
a typical quick fix.

Reread the definition of algorithm! Given a sequence of instructions, how could
it fail to be an algorithm? First. it might be the case that at least one of the
instructions is ambiguous. In other words, some instruction might be poorly
specified so that you. the reader, do not know how to carry out the instruction
or so that a computer programmer does not know how to translate the instruction
into a suitable computer language. An instruction that is clear to one person may
be full of ambiguities for another. For example, an instruction like, “Start the
airplane engine and take off on runway 4,” might be unambiguous to trained
pilots.

A sequence of instructions might fail to be an algorithm because after executing
a particular instruction, it might not be clear which instruction 1s to be executed
next. Some instructions will clearly indicate the next instruction, such as *. .. and
then go to step—." If no such direction is given, we always move to the next step
as given in the sequence of instructions. Finally, we would not have an algorithm
if the execution of the sequence of instructions did not terminate in all instances.

If a sequence of instructions does satisfy the definition of an algorithm, it still
might not be a correct algorithm to perform the desired task. To illustrate this
possibility, we introduce an example from the kitchen. (It seems that most ¢xpo-
sitions about algorithms revert to cooking recipes at some time.)

Example 3.5. Consider the foilowing sequence of instructions.

Step . Place one cup of water in the top of a double boiler. A
Step 2. Place one cup of quick oatmeal in the bottom of a double boiler.
Step 3. Turn on a stove burner to medium.

Step 4. Place double boiler on burner and heat for 10 minutes.

Step 5. Remove pot.

Step 6. Turn off burner.

You may verify that the instructions satisty the definition of algorithm. How-
ever, you would be unlikely to enjoy cating the results of this recipe. This example
illustrates that a particular algorithm is designed in response to a particular prob-
lem. In this case the problem (which while not expilicitly stated) can reasonably
be inferred to be to make oatmeal. This sequence of instructions is not a correct
algorithm for making oatmeal.

[:3 ALGORITHMS

Question 3.1. Rewrite the steps in Example 3.5 so that the resulting algorithm
correctly instructs us to make oatmeal.

Notice that writing a correct algorithm may be significantly more difficult
than checking whether a given sequence of instructions is a valid algorithm. Cre-
ating an algorithm requires expertise with the subject matter. To give a correct
algorithm for making quick oatmeal. you need to know (or read on the box) the
proper proportions of water and oatmeal. the cooking time, and so on. To play
a video game requires knowledge of the rules and object of the game. For the
more mathematical algorithms of this book we need to develop the language and
techniques of the subject before we can use, let alone create, new algorithms.

Sometimes it may be difficult to decide if a given sequence of instructions will
necessarily terminate in a finite number of steps. The obvious cases might always
stop, but how can we know if we have tested all possibilities?

Example 3.6. Consider the f{ollowing algorithm.
Algorithm(?) COLLATZ

Step 1. Input z a positive integer

Step 2. If - is even, replace = by z/2

i

Step 3. If z = [, then output - and stop.
Step 4. If - 1s odd, replace = by 3z + 1
Step 5. Go to step 2

This will be an algorithm if it stops. This will happen if = eventually equals
|. Whether or not this will happen for every positive integer = is a famous unsoived
problem known as the Collatz Problem.

Question 3.2. Run COLLATZ for the following initial values of -: (a) - = 1,
(byz=120,and (c) - = 7.

An algorithm will typically need input to begin and will produce output at
the end. Input is the data or material needed to start the algorithm, like a quarter,
water and oatmeal, or a positive integer =. The output is the result of the algorithm,
derived {rom the particular input, like a score stored on a video game, burned
oatmeal, or the number - = I. General-purpose algorithms, which are the most
useful, will draw input values from a set of possibilities, like all positive integers
or all quick-cooking hot cereais. For cach input there will be exactly one set of
output. (The word set will be ¢xplained more fully in Section 5.)

Given a finite sequence of instructions that is in fact an algorithm. we now
address the question of what qualities make this algorithm “good.” Algorithms

I SETS AND ALGORITHMS: AN INTRODUCTION

are created to solve problems. The term correct 1s used to label algorithms that
produce correct solutions to a particular problem. Thus the sine qua non of a
good algorithm is that the output must be correct for all possible input data. A
great deal of effort within computer science is expended proving that programs
(implementations of algorithms) are correct.

What properties might distinguish two correct algorithmic solutions to a par-
ticular problem? One might be casier to understand. One might provide internal
consistency checks to assure that the algorithm was being carried out correctly.
One might be casier to implement in your favorite programming language. Most
commonly, one algorithm is said to be better than another if it requires fewer
resources to implement. These resources may consist cither of time (the number
of steps required until the algorithm terminates) or space (the amount of memory
required to implement the algorithm). In the next section we illustrate these notions
with several different responses to the problem of taking a number written in
decimal and translating it into binary.

EXERCISES FOR SECTION 3

1. Here are two approaches to making whipped cream. Discuss whether these are
or are not algorithms.

Approach |

Step 1. Buy a pint of whipping cream.

[

Step 2. Chill cream and beaters until cold.
SteEP 3. Add a small amount of sugar and vanilla extract to cream.
Step 4. Whip cream until stiff but not dry.

Step 5. Wash dishes and stop.
Approuch 2

Step 1. Buy a can of Readi-Whip.
Step 2. Shake 30 times.

SteEp 3. [nvert can.

Step 4. Press nozzle.

STEP 3. Stop.

S
.

Here are two aigorithms that calculate the sum of the integers from 1 to 100.
Comment on the relative efficiency of the two responses.

1:3 ALGORITHMS

Response [

STEP |.

STEP 2.

STEP 3.

Sum the integers from | to 100 and store the result in the variaole
Answer.

Print out the value of Answer.

Stop.

Response 2

Step 1.

SteP 2.

StEP 3.

STEP 4.

STEP S.

Store each of the integers from | to 200 in different memory locations.

Sum the integers from 1 to 200 and store the resuit in the variable
Answer.

Sum the integers from 101 to 200, subtract the sum from the number
in Answer, and retain the difference in Answer.

Print out the values of all 200 integers and also the value of Answer.

Stop.

Each of the following fails to be an algorithm: what rule or rules do they violate?

Attempt |

Step 1.
SteP 2.
STEP 3.
STEP 4.

Set Sum equal to 1
Set X equal to 2
Give Sum the value Sum + X

If Sum is even, then go to Step 3:
if Sum is odd, go to Step 3

StEP 5. Print out the value of Sum and stop.
Attempt 2

Step 1. Set Sum cqual to |

Step 2. Set X equal to 2

Step 3. Give Sum the value Sum + X

Step 4. If Sum 1s even, then stop.

. Give a hnite sequence of well-described instructions that never stops: that is.
give an example of a pseudo-algorithm that fails to meet the third property
needed to be an algorithm.

1

5.

14

SETS AND ALGORITHMS: AN INTRODUCTION

In each of the following decide whether or not the sequence of instructions is
an algorithm. If not, explain why not. If yes, figure out what the algorithm pro-
duces as an answer.

Algorithm A

StEP I
Step 2.
STEP 3.
STEP 4.
STEP 5.
StEP 6.
StEP 7.

Setj=0

Set Answer = 0

Give Answer the value Answer + 2/
Add 1 to

If j is less than 35, go to step 3
Output Answer

Stop.

Algorithm B

STEP 1.
StEP 2.
SteP 3.
StEP 4.
STEP 3.
StEP 6.

SteP 7.

Setj=10

Set Answer =0

Give Answer the value Answer + 2/
Add 1 toj

If j is not zero, go to step 3

Output Answer

Stop.

Algorithm C

STEP 1.
STEP 2.
STEP 3.
STEP 4.
STEP 5.
Step 6.
STEP 7.

Set j=0

Set Answer = 0

Give Answer the value {Answer) (29
Add 1 toj

If j is less than S, go to step 3
Output Answer

Stop.

Find a more etficient algorithm that produces the same output as the one given

here.

1:4 BETWEEN DECIMAL AND BINARY
Algorithm FUN

Step {. Input -, an integer between 100 and 300
Step 2. Letu=3z

STEP 3. Let w be u written twice {so 345 becomes 345,345}
Step 4. Let y be w with an extra zero on the end
Step 5. Let a be y divided by 2

Step 6. Let b be a divided by 3

Step 7. Let ¢ be b divided by 5

Step 8. Let d be ¢ divided by 7

STEP 9. Let e be d divided by 11

Step 10. Let f be e divided by 13

Step [1. Let g be f plus 1

Step 12. Output g and stop.

1:4 BETWEEN DECIMAL AND BINARY

In Section 2 we discussed the problem of changing numbers from decimal to binary,
and vice versa. Example 2.1 outlines a procedure for changing a binary number
into its decimal equivalent. We shall soon make this procedure precise. First we
digress to introduce some convenient notation that we shall use to present various
algorithms.

The symbol “:=""is used for assignment. Specifically, the statement a =b
means that the current value of the variabie b is assigned to the variable a. We can
use this to form instructions that do not represent equalities in the normal arith-
metic sense. For instance, the statement

a:=a+1

does not mean that a = ¢ + 1, an assertion that is never true. Rather it means that
the value assigned to the variable a should have 1| added to it, and the resulting sum
should be reassigned to the variable a.

The symbol “+” is used for multiplication. Specificaily, the expression u * b
means the product of the numbers ¢ and b. The symbol */” is used for division.
Specifically, a/b means that u is divided by b. Thus the statement

ai=afb + 23

15

1 SETS AND ALGORITHMS: AN INTRODUCTION

will divide the value of a by the value of h. add 8 to this quotient, and store the
result in the variable a. For this instruction to make sense, the variables « and b
must have been previously assigned values.

Problem. Given a binary number s as a string of zeros and ones, convert this
into its dectmal equivalent.

{To add clarity to our algorithmic instructions, we shall often insert comments
inside braces as in {COMMENT: ...}

)

Algorithm BtoD

Step 1. Setj:=0
1 j will stand for the binary column with which we are currently work-
ing. We label the columns from right to left beginning with 0.

Step 2. Setm:=0
tm will contain the final decimal number.!

Step 3. If there is no jth entry of s, then stop.

Step 4. If the jth entry of sis a 1. add 2/ to m
{We write this as m:=m + 2.}

Step 5. Increase the value of j by 1. that is, set j =, + |
Step 6. Go to step 3

Table 1.2
Value Assigned to the Given Variable

Step s i m
! 1011 0
2 1011 0 0
3 1011 0 0
4 1011 0 1
3 1011 1 1
6 1011 ! 1
4 1011 l 3
3 1011 2 3
+ 1011 2 3
3 1011 3 3
4 1011 3 11
3 1011 4 Inl
3 STOP

16

I:4 BETWEEN DECIMAL AND BINARY

Example 4.1. Table 1.2 is a detailed look at what happens when this algorithm
is applied to the binary number 1011. Such a tabulation is called a trace of the
algorithm. We record the values of the variables at the end of each step.

Question 4.1. Apply BtoD to the binary numbers 10101, 11010, and l()()l()Al.
Do you get the same answers and are you carrying out the same procedure as n
Question 2.17

Next we return to the harder Question 2.4: Given a number written in decimal,
how should we find its binary equivalent? Several sequences of instructions bsted
in order of increasing quality follow. First the problem is formalized.

Problem. Find the binary representation of a positive integer m.
Response |

STep 1. Write down a finite sequence of zeros and ones.

1o

STEP Tuake the binary number you wrote down in step | and translate
it into decimal using Algorithm BtoD, given above.

Step 3. If the number you obtain in step 2 equals m, then stop. Otherwite go
to step 1.

Question 4.2, Why is Response | not an algorithm?
Response 2
Step 1. Set k:=1

'k will denote the number of binary digits in the number under
consideration.;

12

SteEP List all possible sequences of zeros and ones with & digits in increas-

ing order
‘Forexample. if k =1, 0< LLand if k =2, 00 <01 < 10 < |1

Step 3. For cach sequence from step 2, find its decimal equivalent using
Algorithm BtoD

Step 4. If one of the numbers that you obtain in step 3 cquals m, then stop.
Step 5. ki=k + 1

StEP 6. Go (o step 2

The binary digits, zeros and ones, in a binary number ure called bits.

I SETS AND ALGORITHMS: AN INTRODUCTION

Question 4.3. Why is the sequence of steps listed in Response 2 a correct algorithm
for solving the problem? Use this algorithm to find the binary representation of 19.
What makes this algorithm low quality?

Response 3

Step . Find the largest power of 2 that is less than or equal to m. If this is
the rth power of 2, place a { in the rth column (reading from the right
and beginning with 0)

StEP 2. Subtract the power of 2 obtained in step | from m and set the result
equal to m, or in symbols, set m:=m — 2". If m equals zero, fill in
the remaining columns with zeros and stop.

Step 3. Go to step |

Question 4.4. Why does the sequence of steps listed in Response 3 necessarily
stop? Use this algorithm to find the binary representation of 182.

Response 4 (ALGORITHM DtoB)

Step . Setj:=0
'j will indicate the column in the binary representation of m on
which we are working.}

Step 2. Divide m by 2 to obtain the quotient 4 and the remainder r {neces-
sarily either 0 or 1}; place r in the jth column of the answer {reading
from the right]

Step 3. If g = 0, then stop.

Step 4. Setm:=yg

Step 5. Setj:=j+ 1

Step 6. Go to step 2

Example 4.2. Table 1.3 is a trace of the algorithm DtoB, run on the decimal
number 21.

Question 4.5. Why does the sequence of steps listed in Response 4 necessarily
stop? Use this algorithm to find the binary representation of 395. Compare the
algorithms in Responses 3 and 4.

The algorithm given in Response 4 is one that we shall use again and so we
have named it Algorithm DtoB. [n the exercises you are asked to work with the
algorithms and ideas of this section. Here and throughout the book vou will be
asked to write algorithms. How should vou create an algorithm {rom scratch? Here
are some ideas, but there is no all-purpose algorithm to create an aigorithm! First

18

1:4 BETWEEN DECIMAL AND BINARY

Table 1.3 Values Assigned to the Variable After the
Execution of the Given Step.

Step j m g r Answer
1 0 21
2 0 21 10 1 1
4 0 10 10 I
5 1 10 10 1
2 1 10 s 0 01
4 { N S 0
5 2 5 s 0
2 2 5 2 1 161
4 2 2 2 1
5 3 2 2 t
2 3 2 1 0 0101
4 3 1 1 0
5 4 1 ! 0
2 4 1 0 1 10101
3 STOP

figure out how to solve the problem at hand. Then ask yourself what your steps
were and try to write them down so that another person or a computer could
understand and follow them. Then analyze these steps, as we have in this section.
to see whether your steps are a correct algorithm. This task is always challenging.
Sometimes you will have seen algorithms in the text and exercises that you can
modify and build upon; other times you need to jump in and follow your own
logical path to a solution.

EXERCISES FOR SECTION 4

1. Apply BtoD to the following binary numbers: (a) 1 1, (b) 101, (¢) 1101.(d) tOL L,
(e) 1111, and (f) 10101010.

2. Suppose that the decimal number D is expressed in binary as a sequence .3 of
zeros and ones. If a zero is placed at the right end of S, how does the decimal
value of the resuiting number compare with D? If a one were placed at the
right end of S, how would the decimal value change?

3. Suppose that S is a string of zeros and ones that corresponds with the even
decimal number D. If the last entry of S on the right is erased, express the
value of the new decimal number in terms of D. Repeat if D is odd.

4. Apply DtoB to the decimal numbers 17 and 59. Then apply BtoD to the re-
sulting binary numbers. Next apply BtoD to the binary numbers 10001 and
110110. Then apply DtoB to the resulting decimal numbers.

19

SII

10.

1.
12.

13.

14.

15.

16.

SETS AND ALGORITHMS: AN INTRODUCTION

A 16-bit computer allocates 16 spaces or bits to store an integer. The first bt
designates whether the number is positive or negative and the remaining bits
contain either a zero or a one, expressing the integer in binary. How many
different integers can you store in 16 bits? What is the decimal value of the
largest and of the smallest integer that can be stored using 16 bits?

Numbers written in base 3 can use only the digits 0, 1, and 2. Thus the decimal
numbers 0, 1, and 2 are expressed in base 3 in the same way, but to write 3 in
base 3 we must write 10 = 13! + 0- 3% Write the (decimal) numbers from

4 to 12 in base 3. The base 3 representation of a number is also called its
ternary representation.

For each of the following numbers written in base 3, determine its decimal
equivalent: (a) 22, (b) 20102, (¢) (2121, (d) 20010, and (e) 1121

Translate each of the following decimal numbers into a base 3 representation:
(a) 13, (b) 15, (¢) 21, (d) 27, () 30, and () 80.

Find the base 3 representation of the number 20 and then translate that base
3 number back into decimal notation. Similarly, begin with the base 3 number
111, find the decimal number that it represents, and change that decimal num-
ber back into base 3.

Given a number s expressed in base 3 as a string of 0s, 1s and 2s, write down
an algorithm that will convert s into its decimal equivalent. (Hint: Look at
Algorithm BtoD.)

How can you tell if a given number written in base 3 is even?

Given a decimal number n, write down an algorithm that will express n in
base 3 as a string of Os, [s. and 2s.

What can you say about the base 3 representation of a decimal number that
when divided by 9 leaves a remainder of 77

Create an algorithm that will input a binary fraction (see Exercise 2.10} and
output the fraction in standard {form. Run your algorithm with input (a) 0.1101,
(h) 0.00101, and (¢) 0.101010.

Create an algorithm that will input a positive integer n and a rational number
z with 0 <z < 1 and output n bits of ='s binary representation. Run your
algorithm for n = 6 and (@) = = %, (b) - = 312 (¢) - = % and (d) - = 1'(—)

Why can’t there be an algorithm to input a fraction - with 0 < - <2 | and
output ='s binary representation?

1:5 SET THEORY AND THE MAGIC TRICK

When we think about the magic trick presented in Section 1. the numbers
0,1, 2., .., 15 are all of the objects with which we are concerned. The totality of
these objects we call our universe or underlying set. The eight numbers that appear

20

1:5 SET THEORY AND THE MAGIC TRICK

on card A are called a set of objects. More generally, given any universe of objects
we use the word set to denote any well-specified collection of objects from the
universe. We have included the descriptive “well-specitied” in order to make it
clear that there can be no ambiguity as to what is in and what is not in the set.

Given two sets, say 4 and B. of objects from the same universe, A is said to
be a subset of B, denoted by A < B, provided every object that is contained m A
is also contained in B. Every set is necessarily a subset of the universal set, and
the empty set or null set, the set with no objects, is a subset of every set. The
empty set is often denoted by . The objects in a set are also called elements of
the set. Two sets 4 and B are said to be equal, written 4 = B, if they contain
precisely the same objects (or elements). Note that A = B if and only if 4 < B and
B<= A

Example 5.1. Let Z denote the integers. We can list the objects in Z by writing
0,1.—1.2.-2..... For this example Z will be the underlying set or universe.

Let N denote the natural numbers, that 1s, N can be listed as 0,1.2.3,....
The natural numbers are objects in Z and there is no ambiguity about which ob-
jects are in N, so the natural numbers are a set in the universe of the integers.

Let P denote the set of prime numbers. An integer greater than one is called
prime if it cannot be factored into the product of two smaller positive integers.
Thus 5 is prime while 6 = 2 3 is not prime. P can be listed as 2,3.5,7.11.....
P is a subset of N. Note that for a large integer it might be computationally dif-
ficult to decide whether the integer is prime or not. Nevertheless, the elemen:s in
P are well specified.

Example 5.2. Let the universe consist of the students enroiled in mathematics
courses this semester. If § denotes the set of students who are enrolled in Dis-
crete Mathematics and A denotes the set of students who will earn As in Discrete
Mathematics, then 4 is (we hope) a nonempty subset of S.

Typically, we shall use capital letters to denote sets and small letters to
denote the objects, when this is possible. If 4 is a set and s an elemen: of
A, we write s e A; read s is an element of 4.7 If 5 is not an element of 4. we
write s ¢ 4. When specifying a set, we shall occasionally list all objects within a
pair of curly braces; however, the order in which the objects are so listed is im-
material. The set [1,2.3} is the same set as {3, 1.2} and {1.3.2}, since each con-
tains precisely the same objects. More frequently, we shall place within the curly
braces the property or properties that specify the set.

Example 5.3. The numbers that appear on card 4 in the magic trick form u set
that we could denote by 4 = |8.9,10, 11,12, 13. 14,15} or by

A =1x10 < x <15 and the binary form of x
contains 4 | in the third column, reading from
the right and beginning with 0}.

1 SETS AND ALGORITHMS: AN INTRODUCTION

Read the above line as "4 equals the set of x such that zero is less than or equal
to x, which is less than or equal to 15, and the binary form of x contains a 1 in
the third column” It is often the case that some contextual information is left
out of the specification of the set. Here, we did not note that the objects in the
universe are all integers. Such information may be omitted provided that it does
not lead to any confusion on your part.

Question 5.1. Let the universe consist of the positive integers less than 30. Below
we list several sets that are well specified by the properties that their elements
must satisfy. For each such set list the elements in the set.

{a) 4 = {x: x is not prime}.

{b) B = {x: x is a square, that is, for some integer y, x = yl

(¢) C = {x: xis divisible by a square greater than one}.

Given a set A consisting of some objects from the universe U, the complement
of A4, denoted by A°, is the set of objects from the universe that are not elements
of A. In the curly brace notation

A= {xisin U:xis notin 4}
— ! . 1
= xelU:x¢A4d}.

Question 5.2. Find the complements of each of the sets from the preceding
question.

Question 5.3. For the six sets you found in the preceding two questions determine
which are subsets of each other.

From two sets of elements in the same universe, say A and B, we can derive
two new sets, the union of 4 and B and the intersection of 4 and B. The union
of 4 and B, denoted by A4 u B, consists of all the elements of U that are either in
A or in B (or in both). Note that in English “or” often means exclusive or: For
lunch 1 shall eat a pizza or a grinder (but not both). Here we use “or” in the
inclusive sense: mathematics majors usually study statistics or computer science
(or both). The intersection of 4 and B, denoted by A4 ~n B, consists of all the
elements of U that are in both A and B. In curly brace notation

4w B= xxisin 4 orxisin Bor xisin both 4 and B!}
and

AnB=I{xxisin 4 and x is in B}
t §

=ixxe dand xe B

1:5 SET THEORY AND THE MAGIC TRICK

Question 5.4. Find the pairwise unions and intersections of the sets you found
in Question 3.1.

Example 5.4. Let 4, B, C. and D denote the sets of numbers on the cards of the
magic trick. For instance. suppose that player 2 is thinking of the number 6. This
number appears on cards B and C and does not appear on cards 4 and D. When
player 2 says yes to card B and yes to card C, player | knows that player 2's
number is in the set labeled B and in the set labeled C. In the language just in-
troduced player 2’s number is in B n C. Now

B C=1{475671213.14,15) n {2.3,6,7,10, 11,14, 15} = [6,7, 14, 15}

Let us do the analogous set theory for the no responses. When player 2 says
no to card A, player 1 knows that the number is not on card 4. If a number
isnotin A but is in the universe, then it must be in the complement of A. Similarly,
player 2’s number must be in the complement of D. In the language of set theory,
A°=1{0,1,2,3,4,5,6,7}, D° = {0.2,4,6.8,10,12, 14}, so

A A DS = {0,2,4,6).

Player 2’s responses mean that the number chosen must be in A, B, C, and D°.
What number is it?

ANBnCnD =B O nidA N DY =167,14.13} 1 [0,2,4.6) = {6].
In general, one way to explain why the magic trick always works is to notice :hat
if the set S is either 4 or A% the set T cither B or B¢, V either C or C¢, and W
either D or D*, then S n T n ¥V ~ W contains exactly one number.

EXERCISES FOR SECTION 5

I. Let the universe consist of all two-letter “words,” that is. all sequences of 1wo
alphabetic characters (which don't have to form a real English word). Let 4
consist of all of these words that begin with an “a,” and B those that end with
a “b.” Let C be those that contain no “c,” D those that contain no vowel, and
E those that contain only vowels.

(a) Describe the complementary set in each case.
(b) List or describe 1 "B, 4 UB AnC. 4 UC. A4~ D, A~ E Br D.
BuD CnAD CwE and D U E.

2. Let the universe consist of all two-digit numbers:

s 10 < x < 99,

1

SETS AND ALGORITHMS: AN INTRODUCTION

Let 4 be the set of two-digit numbers that begin with a 1, B those that end

with a 9. C those that are multiples of 3, D those in which both digits are even.

and E those that are even.

(a) Among these sets, find two such that one is contained in the other.

(b) Are there three sets whose intersection is empty. but such that the inter-
section of any two is not empty?

(¢) Construct a set with half as many elements as 4 using A... .. E, their
complements, unions, intersections, and so on.

(d) List the followingsets: 4 " (BU O), AU (DN ENANBUDNE,Cr
DnE, AuvCuD AnNBNCADANE AnChE and C (DU E)

Using the universe and sets A, B.. .., E of the previous problem. identify the
following sets and then show that the indicated identity is valid:

(@) DUELICADLICANEE Cn(DuUEY=(CD)yul(Cn E)L

D) (AUCLANELICAE): (AuOnE=(ANnEYu(CnE).

(¢) (BuD), B D" (BuD)=58nD"

(d) (AN E), A ES (AN EY= 4C w E°

(¢) (BN E),(4Avw B),(4dvE): UBNnE)=(Au B n(duE).

Suppose that vou are designing a version of the magic trick with the numbers
0.1,....7. Furthermore, you have already constructed two cards labeled E and
F where in the notation of set theory

E = {1234 and F=13.4506}
Construct a single card G that will enable you to successfully perform the trick.
[s G uniquely determined. that is. is there choice about what numbers can be
put on G?

Suppose that you are again designing a version of the magic trick with the
numbers 0. 1,....7. What set theoretic properties must two cards E and £

satisfy so that it is possible to construct a third card G with which the magic
trick can be played?

From a universe of seven objects, find seven sets cach containing three objects
such that each object is contained in three sets and the intersection of any paic
of sets consists of one object.

Let the universe consist of all five-bit binary [ractions. Suppose that A =:

fxix >4 B={xxhasa linits }column}, C = 'x: x has an odd number

of is in’ l[S representation D = |x: the last two bits of x are 0!, and E ==

i <x <yl

(a) Describe the complementary set in cach case.

(b) List or describe 4 "B, 4w B. AnC, 40C, 4D, A~E, BnD.
BuD CnD CuUE and D w E.

Using the universe and sets 4. B.. . .. E of the previous problem, identify the
following sets and then show that the indicated identity is valid.

1:6 PICTURES OF SETS

(@) (DUELICADLCAEE Cn{DuEY=(CnDyu(CnE.
b)) (AUO)N(ANELICA E) duYnE=AdnE)yu(CnE).
(¢) (Bu D), B D (BuD)=BnD"
(d) (A " E), AS ES (AN E)Y =40 ES
(¢) BNEL(AUEL(AUE)Y AuBnE =(duBniduE.

1:6 PICTURES OF SETS

Given two sets, A and B, in the same universe we can form their union and
intersection as indicated in Section 5. We can also form their difference, which is
defined as follows:

A—-B={xxeAand x¢ B}

Thus A — B is a subset of 4 and is sometimes called the relative complement of
B with respect to 4. This is because if you narrow your viewpoint to think of A
as the whole universe, then it is natural to restrict B to A » B. Now, in the 4-
universe, B* = 4 — B. Notice also that this provides us with an alternative way
to represent A° as U — 4, where U is the universe under consideration.

Example 6.1. Let 4 and B be defined as in the original card trick.

A—B=ixxedand x¢ B} = {8.9,10,11}.

Note that
B—d={xxeBand x¢ 4] = {4.5,6,7}.

We shall study relations between sets and shall want (o establish the validity
of certain assertions. For example, we claim that it 1s always true that 4 — B ond
B — 4 are disjoint, that is. they have no element in common; in symbols

(A—B (B —4d)= .

How can we be sure that this statement 1s always true? [t was true in the casc of
Example 6.1, but we need a general proof like the following. Suppose that x is an
element of (4 — B). Then x is in A, but not in B. Consequently, x is not in B und
cannot be an element of (B — A4), which is a subset of B. Thus the set (.4 — B) aas
no element in common with the set (B — 4), and so the intersection is empty.

Writing a correct proof is more compiicated than working out a specific cx-
ample. The reason for this complexity is that it is necessary to chase down all the
definitions and all possible cases. English is a somewhat clumsy vehicle with which
to do this. These sorts of logical arguments are made easier both to construct and
to read when accompanied by a picture.

1 SETS AND ALGORITHMS: AN INTRODUCTION

fa) 1f A and B have common elements. (b) If A and B are disjoint.

fc) 1f Bis a subset of A. (d) If Aisasubset of B.
Figure 1.3

To obtain a picture of a particular statement concerning sets, we represent
the sets in question as regions of the plane. For example, the set A can be con-
veniently thought of as all points that are inside of or on the boundary of a circular
region. Thinking of B in the same way, we can picture these two sets at the same
time with one of the diagrams in Figure [.3.

We concentrate on the first picture, since in some sense it represents the most
general situation for two sets. We label the various regions of the plane with the
sets they represent (Figure 1.4). These pictures are called Yenn diagrams. Fre-
quently, they are made more useful by appropriate shading of the basic regions.

(AU B)¥

Figure 1.4

1:6 PICTURES OF SETS

Figure 1.5

Example 6.2. Given sets 4, B, and C. Figure 1.5 shows a shaded Venn diagram
that highlights the set 4 n (B v C).

Question 6.1. Draw shaded Venn diagrams for the following: (a) (4 u BY,
(b) A° U B (©) (A~ BY, (d AN B (e) Au((BnCY), and (f) (4w B n
(4 U CY.

Again we choose to draw the circles as mutually and partially overlapping.
If we knew more about specific properties of the sets, for example, that 4 = B
or that B »n C is empty, then we could incorporate these properties in the picture,
but when the sets are unspecified the drawing in Figure 1.5 is most useful.

From the Venn diagram in Figure 1.5 you might notice, for example, that

An(BuCy={AnBuidnC)

The Venn diagram convinces us of this equality but does not prove the result.
For example, does the equality still hold when 4 ~ B is empty or B <= C? To be
certain of this statement, we construct an abstract and fully general proof.

There is a straightforward strategy to prove that two apparently different sets
are equal. If the two sets are called V' and W, first take an element in V' and
show that it must be in W: thus V¥ < W. Then take an clement in W and show
that it must be in V. Then W < V, and we conclude that V' = W.

We follow this strategy here. Let x be in 4 ~n(Bw C). Then x 1s in 4 and
in addition x is in either B or C (or both). Thus either x is in 4 and B or x
isin 4 and C; thatis, x is in (4 n B) U {4 n C). Conversely, if xis in (4 N B) u
(AN C)then xisin A n Bor xisin A~ C. Since both B and C are subsets of
BuC, wehave xisin AnBcdnBulQorxisindAnCzAn(BUC)
as desired. S

i

1 SETS AND ALGORITHMS: AN INTRODUCTION

We have completed a proof of the following theorem. We mark the end of
a proof with a square box. It often helps to announce that what was supposed
to be proved has been proved.

Theorem 6.1. If 4, B, and C are sets in a universe U, then

An(BuC)y=(AnByudnC)

Question 6.2. From vour Venn diagrams of Question 6.1 what other pairs of
seemingly different sets are in fact the same? Prove that these sets are equal.

EXERCISES FOR SECTION 6

1. Draw a Venn diagram of your three-card magic trick from Exercise 5.4. Label
points with the integers 0,1,....7 and show in which region each of these
points lies.

2. Copy the Venn diagram in Figure 1.4 and explain why
(AuB=(4—-Bu(B—-A)u(dn B).

Explain why each pair of the sets (4 — B), (B — A), and (4 » B) is disjoint. We
say that 4 U B is the disjoint union of (4 — B), (B — 4). and (4 n B), and that
these three sets partition 4 U B.

3. Draw a Venn diagram that portrays arbitrary sets 4. B, and C, and shade
the region that represents the set A w (B »n C). Then on a separate Venn dia-
gram shade in the sets 4 U B and 4 U C, and show that

AUBNCy={AuB n(4duC).

Finally, give a proof that the last equality holds for all sets 4, B, and C.

4. Draw shaded Venn diagrams for cach of the following:
(a) (A~ B~ CY. (h) (4 U BwCY
{¢) 4°vu B°w C- (d) AU (B~ (Y.
(e) A~ (B C). (f) A B
From these diagrams find pairs of sets that are equal.
5. Draw shaded Venn diagrams for cach of the following:
(a) (A —- By~ C. (h)y 4 u(B—).
(¢) A n(B—-C). (dy (A -BuC.
() (A~ CO)Yy—=(Bn) (4w Cy—(BuC)L
(g) (Ao B) (A C) (h) (A B —(4nCy

1:7 SUBSETS

6. Suppose that A, B. and C are three sets such that 4 & B and B n C is the
empty set. Draw a Venn diagram that illustrates this situation. Next draw a
Venn diagram that illustrates the case when 4 < B and 4 n Cis the empty set.

7. Suppose that 4, B, C, and D are four sets in the same universe with the
property that 4 and D do not intersect while both B and C intersect both
A and D as well as each other. Draw a Venn diagram that pictorially repre-
sents this situation; label it and shade in the region (4 v D) n (B n ().

8. Given sets A. B. and C in the same universe, draw a Venn diagram to indi-
cate the set D, where

D=Bn(4AuC)ul(Cn A

Give a proof that 4 " Bn C < D.

1:7 SUBSETS

In the previous section we saw how two or three sets, say 4., B. and C. could be
combined to form new sets like 4 — B, 4 n (B v C), and (4 ~ B). Beginning with
only one set 4, we can also derive a variety of different sets, for example, 4° and
the subsets of .

If 4 = Z, the integers, there are infinitely many subsets of Z. For instance, con-
sider all sets of the form |i,i + t} for i in Z. But if the set A contains a finite
number of objects, then there can only be a finite number of different subsets of
4. If A contains n objects, A is called an n-set. We investigate now how muny
subsets an n-set has and how we can go about finding ali of them.

Example 7.1. Suppose that F is the set of [ruit in my refrigerator at this moment;
F consists of one apple, one banana. and one cantaloupe. Expressed more brietly,

Then the subsets of F consist of the choices [have in selecting {ruit for dessart.
and these choices vary from the extremes of the empty set (L.e.. no fruit {or dessert)
to the whole set F (i.e., eating all three pieces of [ruit.)

Question 7.1. Show that there are eight possible {ruit desserts in Example 7.1 by
listing all subsets of F.

A set 4 with onlv one clement has exactly two subsets: itself and the empty
set. But if A = {a. b}, then we find {our subsets: 4. {aj, (b!, and the empty set 7.

1 SETS AND ALGORITHMS: AN INTRODUCTION

From your work in Question 7.1 it should seem plausible that if 4 is any set con-
taining three objects, then there are eight subsets of A. In general if 4 is an a-set,
then A has 2" subsets, a result we shall demonstrate later in this section and prove
rigorously in Chapter 2. We want to study such a general n-set A. where n is a
positive integer. Typically, we describe the set by

o)
A= uagdy,. . dy,

where d,,d,,...,q, stand for the n elements in A. These may be the num-
bers {1,2,...,n}, or they may stand for a different set of numbers like
11,5,17,25,...,94}, or they may stand for names of pieces of fruit as in
fapple.banana,. . ., quince}. Here are two methods to list all subsets of a general
set like A.

Problem. Given an n-set 4 = ld,.d4,.. ., d,,, list all 2" subsets of A.

Response |

Step 1. List the empty set

STEP 2. Setj:=1

Step 3. List all subsets of A that contain j elements

Step 4. Ifj < n,setj:=j+ | and go to step 3; otherwise, go to step 3
STeP 5. Stop.

Is it clear how to carry out step 3? For example, if A contains 17 elements
and j =9 we must list all subsets that contain e¢xactly 9 elements. But how? (A
subset containing j elements is known as a j-subset. In Chapter 3 we'll study the
problem of counting and constructing j-subsets of an n-set, for j an arbitrary inte-
ger between 0 and n.) For now Response | is too imprecise for us to call it an
algorithm or to use it effectively.

The idea of the next response is to begin by listing all subsets of [u,!: we've
seen above how to do this. Then we add to the list those subsets of [¢y.u,, that
have not been listed so far, namely those subsets that contain a,. Then we list
additional subsets of {a,,d~, a5} that contain d; and therefore have not been listed
50 far. More generally, once we've listed all subsets of [ay,u,,. .. .a;f, then we just
need to add in the subsets of |ay,.. . a;,a;. | that contain the last clement «; . .

Response 2 (Algorithm SUBSET |

Step [. List the empty set
SteP 2. Set j:i=1

1:7 SUBSETS

STEP 3. For each subset B listed so far, create and list the subsct B u [a;)

(At this point we've listed all subsets of {ay,....q;j.|
STEP 4. Ifj < n, setj:=j+ | and go o step 3; otherwise go to step 5
Step 5. Stop.
Example 7.2. We apply the algorithm SUBSET to theset A = {a),d,; withn = 2.

In Table 1.4 we trace for each step the value of the variable j and show the subsets
as they are produced.

Table 1.4
Step Value Assigned to j List of Subsets
L 16
2 1
3 &0 uyy = ay
4 2
3 I w tag) = {a,]
Wy Uy = \dy.aa)
4 2
5 STOP

Question 7.2. With 4 = [a,,a,.a5} use SUBSET to list ail of A's subsets.

How do we know SUBSET is a correct solution? We don’t. We only have
evidence from the examples we've done, n = 2 and 3. Perhaps we have confidence
that this approach will continue to work for larger n. To be certain of the validity
of SUBSET, we need a proof of its correctness: however, we must defer the proof
until Chapter 2 where we’ll develop more proof techniques.

One additional important set that is constructed from a single set is known
as the Cartesian product. We have been stressing that order in sets and subsets
does not matter, but there are many instances when order does matter. For ex-
ampie, in the magic trick an answer “ves, yes, no, yes” gives us information about
a number on cards A, B, C, and D (in that order), and it is important to the game
that the responses are given in the correct order. Similarly, in the binary number
1101 and the decimal number 29 the order in which the digits are presented 1s
crucial to our representation of the numbers. The Cartesian product is exactly the
idea that we need.

If 4 is any set, we define the Cartesian product 4 x 4 (o be the set of ail
ordered pairs (s.t) such that s and ¢ are elements of A. Symbolically,

Ax A= (s,isandt e 4}

31

1 SETS AND ALGORITHMS: AN INTRODUCTION

Notice that we have called these ordered pairs; that is, we consider (s, 1) to be dil-

ferent from the pair (f, s) because the order of the clements matters in this setting.

Also notice that we may have a pair of the form (s,s) as well as (s.1) with s # ¢.
Similarly, we define

Ax Ax A= {(s.r,u)rs,r,andue A},
and. in general, for any positive integer n we define the n-fold Cartesian product

Ax A< xA4A=4"

= {{ay.das. ... a)u;eAdfori= 1. nj.

An element of A x A x A is often called an ordered triple and an element of A"
is known as an (ordered) n-tuple.

Example 7.3. Let 4 = {0, 11. Then 4 x A consists of the four ordered pairs (0, 0),
(0, 1), (1,0), and (L,). We may associate with each of these a binary number with
exactly two digits. A" consists of all n-tuples of zeros and ones and thus corre-
sponds with all binary numbers of length n.

Without listing elements, we could have seen that A x A contains four pairs
by the multiplication principle: In each pair (s.1) there are two choices for s and,
independent of these choices, there are two choices for t. The multiplication principle
also tells us 4 % 4 x 4 contains 2-2-2 =8 triples and that 4 x A x 4 x 4
contains 16 4-tuples. Generalizing this process to A", A" contains 2" n-tuples. From
this we conclude also that there are 2" binary numbers of length n.

Question 7.3. If 4 =70,1,2.3,4.5.6,7.8,9}, describe 4 x 4, 4 x A x A, and A"
for n an arbitrary positive integer.

Question 7.4. If 4 = {a,b,c}, list all elements of A4 x A. If A contains r objects,
how many objects does 4 x A4 contain? How many does 4 x 4 x 4 contain? 4™

Example 74. Let 4 = Z. Then Z x Z is the set of ordered pairs (i, j), where i and
J are integers. We often think of these as points in the coordinate plane with both
coordinates being integers. [f 4 = R. the real numbers, then R x R gives us the
real, 2-dimensional coordinate plane and R x R x R or R¥ is (real) 3-dimensional
coordinate space.

When 4 = 0. 1], the Cartesian products 4 x A, A x 4 x 4,..., and 4" are,
perhaps surprisingly, related to subsets of a 2-set. subsets of a 3-set... .. and
subsets of an n-set. Suppose that § is an n-set, and that its elements are listed in

1:7 SUBSETS

a fixed order, say x,v.z, For each subset T of § we may construct an n-tuple
of 0s and 1s (an element of 4") whose first entry is a t if and only if x. the first
element of S, is contained in T. Next, the second entry in the n-tuple is a 1 if and
only if v, the second element of S, is in the subset T, and so on. Thus each subset
is described by the n-tuple or the string of binary digits as derived above. (The
n-tuple is also called the bit vector or the characteristic function of the subset.) A
subset containing exactly / elements corresponds to an n-tuple containing i ones
and (n — i) zeros. Conversely. every n-tuple of A" corresponds to a unique subset
of §: Forj = 1,2,.. ., n the subset contains the jth ¢lement of S if and only if the
Jth entry of the n-tuple equals 1.

Question 7.5. Given the universal set S = {u,v,w.x. vz}, explain why the bit
vector of T = {u. 0.y} is 110010. Then find the bit vectors of the subsets {u, w. -}
and {x,v,z}. Explain why the subset corresponding to the string 000001 is !zl
Then find the subsets corresponding to the strings 000010 and 111100,

Now we see why there are 2" subsets of an n-set. We know from Example 7.3
that there are 2" clements in A" Each n-tuple of 4" corresponds to one subset of
an n-set, and every subset of an n-set corresponds to exactly one n-tuple. Thus
there are as many subsets of an n-set as there are n-tuples in A" = 10, 1",

Cartesian products also generalize to different sets. Specifically, we define

AxB={s1):s5¢Aand t e B)

and
Ax BxC={stu:sed teB and ueCl

An ordered list of elements taken {rom one or several sets is called by a variety
of names. We have previously called a binary number a string and a sequence of
zeros and ones. We shall also call an n-tuple a vector and an array, depending
upon the convention in the particular example.

The Cartesian product is familiar from coordinate geometry of real 2- and
3-dimensional space. This product is important in computer science and arises.
for example, in presentations of abstract conceptions of computers, called Turing
machines.

EXERCISES FOR SECTION 7

L. Let 4 = {u,b.e.d.e}. List all subsets that contain one element. then all subsets
with two clements. next all subsets containing three clements, and tinally ail
subsets that contain four elements. How many subsets have vou listed?

33

1

10.

11.

12.

13.

34

SETS AND ALGORITHMS: AN INTRODUCTION

Given a set with n elements. A = {a.a,,...,a,}, explain why 4 has exactly
n subsets that contain one element. Then write an algorithm that will list ail
subsets of A containing just one element.

A subset of an n-set 4 that contains n — 1 elements can be formed by omitting
just one element of 4. Explain why 4 contains n subsets with n — 1 elements
and then explain how to list them.

List and count all subsets of A that contain two elements when 4 = [a,d,, d3].
when A = {a,,a;,45,a,}, and when A = {ay,4,, a3, a4, 4a5).

Explain why, for a positive integer n, the set 4 = {a,d,,...,a,] contains
nln — 1}/2 subsets with two elements.

Given the set A4 as in Exercise 5, design an algorithm that will list all subsets
of A that contain exactly two elements.

If A=/ay,a,.....a,. determine a formula for the number of subsets of A
that contain n — 2 elements.

If A is an n-set, determine a formula for the number of subsets of 4 that
contain exactly three elements.

In Exercise S.1 we considered the universe of all two-letter “words.” Find a
set § such that this universe can be described also as S x S. Then find a set
T such that the subset D of that problem can be described as T x T. Is there
a set Vsuch that the subset 4 can be described as ¥V x V7

List all four-digit binary numbers. Then associate cach with a subset of

A = {a,b,c,d} and check that all subsets of 4 have been listed once and only
once.

Suppose that 4 = {d.e,f} and B = {g,h}. List all elements of 4 x B. If 4
contains r elements and B contains s elements, how many clements are con-
tained in 4 x B? Justify your answer. If, in addition. C contains ¢ elements,
determine the number of elements in 4 x B x C.

Canadian zip codes are always six symbolis ong, alternating between letters
and digits, beginning with a letter; for example, H4V-2M9 is a valid zip code.
Find sets 4 and B and express the universe of all possible Canadian zip codes
as the Cartesian product of 4s and Bs. How many zip codes are possibie?

Massachusetts license plates are six symbols long und each symbol may be
either a letter or a digit. Express the universe of all possibie license plates as
a Cartesian product of an appropriate set or sets. How big is this universe?

Suppose that my refrigerator contains four pieces of fruit: two apples, one
banana, and one cantaloupe. List all possible fruit desserts. By a fruit dessert
[mean a collection of [ruit (possibly empty). Next suppose that [have five
pieces of fruit: two apples, one banana, one cantaloupe, and one damson plum.

1:8 SET CARDINALITY AND COUNTING
List and count all possible fruit desserts. In general. given the so-called muitiset

A=1a,d,dady, ... dy)
with the first element repeated, find a formuia for the number of different
subsets of 4. The two copies of a, are considered to be indistinguishable.

1:8 SET CARDINALITY AND COUNTING

A set A is said to be finite if it consists of a finite number of objects. An m-set A
is a finite set containing m objects for m, a positive integer. We also say that A4 has
cardinality m and write |A| = m. In our original magic trick the universe has car-
dinality 16 while each of the sets 4, B, C, and D has cardinality 8.

Example 8.1. Let the universe consist of the positive integers less than 30. If 4 =
{x:x1s even}, B = {x: x is divisible by 3}, and C = {x: x is divisible by 5}, then
|A| = 14, |B| =9, and |C| = 5.

Example 8.2. Suppose that we wanted to know the cardinality of 4 « B from the

previous example. A U B = {x: x is divisible by 2 or 3}. We list the clements of
Avu B

AuB=1{2.3,46,8910,12,14,15,16,18,20,21,22,24,26,27,28!.

Note that the cardinality of 4 « B equals 19. This, at first. may seem somewhat
strange. We took the union of a 14-¢lement set and a 9-element set and came up
with a 19-element set.

Question 8.1. In the context of Example 8.1, find |4 u C| and |B U C|.

Question 8.2. In the original magic trick what is the cardinality of each union of
two cards?

We shall frequently have occasion to count the number of elements in particular
sets, and often these sets can be written as the union (or intersection) of sirapler
sets. The counting question becomes: Given the cardinalities of two sets 4 and B.
what is the cardinality of their union (or intersection)?

Question 8.3. If possible, find a S-set 4 and a 3-set B whose union is a set of
cardinality (a) 4. (b) 5, (¢) 6, (d) 7. (e) 8, and {f) 9.

35

1 SETS AND ALGORITHMS: AN INTRODUCTION

In trving to answer the above question, you probably came up with some
conclusions about the possible cardinalities of the union of two sets. If you look
back at Example 8.2 and Questions 8.1 and 8.2. the lollowing result seems plausible.

Theorem 8.1. Given sets 4 and B in the same universe,

|4 U B| = 4]+ |B| - |4 ~ Bl

Example 8.2 (continued). We know that [4

=14 and |B| = 9.

4 n B = {x x is divisible by both 2 and 3}

{x: x is divisible by 6} = {6,12,18,24}.

Thus |4 » B| = 4. In this particular instance we verify Theorem 8.1 by noting that
1449 —4=19

Proof of Theorem 8.1. We must show that each clement of A4 U B contributes
exactly one to |4| + |B| — |4 n BJ (see Figure 1.6).

Figure 1.6

Case 1. Suppose that x is a member of only one set, say 4. Then x is counted ir
4], but not in |B| nor in |4 ~ B, since A n B < B. Thus x contributes a count of
one to jA| + [B| — |4 ~ B|. If x is in B, but not in 4, a similar argument suffices.

Case 1. Suppose that x is an eiement of both 4 and B. Then x is counted once
in |Al, once in |B|, and once in |4 ~ B|. Thus it contributes | + 1 — 1 =1 to
1| + Bl =14 ~ B, just as we wanted. -

Example 8.3. How many seven-digit telephone numbers are there that begin
384- and contain at least one 0 and at least one 1? Suppose that we let 4 be the

36

1:8 SET CARDINALITY AND COUNTING

set of all such numbers that contain a 0 and B be the set of all numbers that
contain a 1. The telephone numbers we're looking for are in both A4 and B. Thus
we want |4 n B|. By Theorem 8.1, {4 n B| = |4| + [B| — |4 w B|. First let’s find
|4]. (See Exercise 1.11.) There are 10* possible telephone numbers, since there are
10 choices for each of 4 numbers. If we exclude 0, then there are 9 choices for
each of 4 numbers. Thus there are 9* numbers that contain no 0. Thus [4] =
10* — 9% Similarly. [B] = 10* — 9*. What about |4 U B|? There are 8* numbers
that contain neither a 0 nor a | and so |4 U Bl = 10* — 8*. Thus

LA A Bl =(10% — 9% + (10 — 9%) — (10 — 8*) = 974.

Question 8.4. A joint meeting of Discrete Mathematics and Introductorv Com-
puter Science had 232 students. If 146 students are enrolled in the mathematics
course and 205 students are enrolled in the computer science course, how many
students are enrolled in both courses at once?

We present a formula that generalizes the pattern of Theorem 8.1 from two
sets to three sets; the proof is similar. See Exercise 12.

Theorem 8.2. Given sets 4. B, and C in the same universe, then

[AUBUC =4l + B+ [Cl—(An B[+|4dnCl+|[BAnC+|An B~ CL

{See Figure 1.7.)

Figure 1.7

37

I SETS AND ALGORITHMS: AN INTRODUCTION

Example 8.4. Let A, B. and C be the sets from the original magic trick. Then
AuBuUC=1234.756,7238910,11,12,13, 14,135} contains 14 eclements. As we
have seen |4] = |B| = |C| = 8. We have also noted that the intersection of any two
of these sets has cardinality equal to 4. You can check that 4 n B~ C = {14, 15}
Then

AUBUC|=8+8+8—(4+4+4)+2=14

The Principle of Inclusion and Exclusion. Theorems 8.1 and 8.2 are both instances
of a general counting result known as the Principle of Inclusion and Exclusion
or P.LLE. for short. The same type of counting formula applies for 4 or 5 or k, an
arbitrary number, sets. See Exercise 13.

EXERCISES FOR SECTION 8

1. Refer to the sets in Exercise 5.1. Determine the indicated set cardinalities and

then check the validity of Theorem 8.1:

(a) |[A U Bl =|A| + |B] - |4 B|.

(b) [AuCl=]Al+|C|—jAnC|.

(¢) |Bu D| =Bl +|D|—|Bn~ Dl

(d) DU E|=|D| + |E| - |D ~ E|.

Refer to the sets in Exercise 5.2. Determine the indicated set cardinalities and

then check the validity of Theorem 8.2:

(@) |4 U CuD|={4|+|C|+|D|~|A " C|—|4 " D|—|C " D|+|4 ~ C ~ DI

(b) |C U D U E|={C|+|D|+|E|-|C n D|—|C n E|~ID " E|+|C ~n D n E|.

3. Ofthe 876 students living in the Quadrangle, 530 have completed Introductory
Computer Science, 364 have completed Calculus I1, and 287 have completed
Chemistry 1. Of course, lots of students take more than one of these courses.
In fact. 213 have completed both mathematics and computer science, 164 have
completed both mathematics and chemistry, 116 have completed chemistry
and computer science, and 103 have completed all three courses. How many
students living in the Quad have completed none of these three courses?

19

4. There were 184 students enrolled in Introductory Computer Science last fall.
Of these 112 will take Data Structures, 84 will take Foundations of Computer
Science, and 46 will take Assembly Language. Of the total, 66 will take both
Foundations and Data Structures, 37 will take Assembly Language and Data
Structures, and 30 will take Assembly Language and Foundations. If 45 of
the original students take no additional computer science, how many students
take alil three of the intermediate courses?

SJI

The registrar informs us that three vears ago 119 students enrolled in Intro-
ductory Computer Science. In the following semester, of these | 19 students, 96

38

10.

1.

{:8 SET CARDINALITY AND COUNTING

took Data Structures. 33 took Foundations, and 39 took Assembly Language.
Also 38 took both Data Structures and Foundations, 31 took both Founda-
tions and Assembly Language, 32 took both Data Structures and Assembly
Language, and 22 brave souls took all three courses. We claim that the registrar
must have made an error. Why?

How many seven-digit telephone numbers are there that begin with 584- and
that contain 1 0, a I, and a 2?
Suppose that 4 and B are sets in the universe U. Find a way to express the

cardinality of the set A° U B in terms of the cardinality of U, A, B, and com-
binations of these sets.

Consider the universe of all possible strings of six letters made from the letters
a.b,c,d, e, f with no repetitions of letters. How many such strings are there in
total? How many of these are such that the first letter is neither “a” nor *“p”
and the last letter is neither “¢” nor “f™? (Hint: Let A be the set of all these
words that do begin with an a or b and B the set of those that end with an
¢ or f. Then we are looking for the cardinality of A° ~ B°)

A group of 100 students was surveyed to determine the students’ interest in
winter sports. It was found that 69 liked downhill skiing, 38 liked cross-country
skiing, 75 liked skating, and 15 liked none of these sports. On further ques-
tioning it was determined that 35 liked both kinds of skiing, 30 liked cross-
country skiing and skating, and 42 liked downhiil skiing and skating. How
many like to ski, either downhill or cross-country? How many like all three
sports?

In a sample of 100 students, 43 like avocados, 71 like radishes, and 36 like
olives in thetr salad. Each student liked at least one vegetable. If 26 students
like both avocados and radishes, 16 students like avocados and olives while
22 like radishes and olives, how many students like all the ingredients in an
avocado, radish, and olive salad?

Here is an alternative proof of Theorem 3.1. Give reasons for each of the fol-
lowing steps:
Step I If A n B = (. then {4 U B| = |4| + |B|
=4} + Bl — {4~ B|.
StTep 2. B={4 n B)u(B— A
STEP 3. |B| =|A n B| + B — A|.
Step 4. B — 4| =Bl — |4 n B
STEP 5. AuB=4u (B - 4).
STEP 6. |4 U B| = 4| + |B — 4|.
STEP 7. ‘A w Bl = |A| + Bl -4 ~ Bl

I SETS AND ALGORITHMS: AN INTRODUCTION

12. Prove Theorem 8.2. (Hint: Let x be an element of 4 w B w C. Show that x7s
contribution is exactly one. Divide the proof into three cases depending on
how many of 4. B, and C contain x.}

13. Find an expression for the cardinality of the union of four sets in terms of
the cardinalities of the sets and various intersections.

1:9 FUNCTIONS

The concept of a function is fundamental to both mathematics and computer
science and will be used throughout this book.

Definition. A function / is a4 mapping from a set D to a set T with the property
that for every element d in D. / maps d to a unique clement, denoted f(d), of T.
Here D is called the domain of f, and T is called the target of /. We write
/D — T. We also say that f(d) is the image of d under f, and we call the set
of all images the range R of /. In set notation

R=!fld:deD!

Note that R< T.

A mapping might fail to be a function if it 1s not defined at every element
of the domain or if it maps an element of the domain to two or more elements
in the range. Figure 1.8 illustrates these ideas.

To detine a function f, we must specify its domain D and a rule for how it
operates. If the domain is changed. we consider that a new function 1s formed.

ca) A function. b} A function.

rer Not a function, /d) Not a function.

Figure 1.8

40

1:9 FUNCTIONS

For example, f(x) = x* with D equal all real numbers and g(x) = x* with D equal
all reals greater than one are different functions. They have different graphs, for
instance. Given a function f with domain D, the range R is determined. How-
ever, in a specific instance, it might take some effort to decide what the range is.
In the preceding example the range of f is all nonnegative real numbers and the
range of g is all reals greater than one. In contrast the target of a function is not
uniquely determined. It is often useful to designate a target T that is a large and
familiar set containing the range. Thus we stated that the functions f and g above
have the real numbers as target. We could also have picked the nonnegative
reals as the target.

In this section we shall consider repeatedly the functions that map a binary
number to its decimal equivalent and a natural number to its binary equivalent.
We don’t have formulas for these functions, like f{x} = x2, but we can think about

these mappings, and we have algorithms to compute these functions whenever
necessary.

Example 9.1. Let B be the set of all binary numbers, or equivalently all finite
strings of zeros and ones, and let N be the set of all natural numbers expressed

in decimal notation. Then f, g, h, and j given below are functions from B to N.
For s in B,

f(s) equals the decimal equivalent of s,
g(s) equals the number of bits in s,

h(s) equals the number of ones in s,

and
J(s) equals the ones bit of s.

For instance, if s = 110010, then f(s) = 50, g(s) = 6, h(s) = 3, and j(s) = 0. The range
of f, g, and h is in each case all of N. To see this, let m be any decimal number
in N. If s is m’s binary equivalent, then f(s) = m. If r is the binary number con-
sisting of m ones, then g(r) = h(r) = m. However, the range of j is [0, 1].

Here are two mappings from B to N that are not functions. For s in B,

k(s) equals the fifth bit in s, counting from the left,
and

1 if s ends with 1
Il(s) =<2 if 5 ends with 0
4 if s ends with 00.

41

NOTWCE: THER b TP

BN PNENTIN ey
B‘I (.'{..13'5 AT ey

1 SETS AND ALGORITHMS: AN INTRODUCTION

The mapping k is not defined on all of B, only on those with five or more digits,
and [specifies two different images for strings ending with two zeros.

Question 9.1. Suppose that B and N are as in the preceding exampie. Define
b:N — B by b(r) = s if 5 is the binary equivalent of the decimal number r. Ex-
plain why the range of b is all of B.

Question 9.2. Which of the following is a function from N to B, where N and B
are as defined in Example 9.1?7 For » in N,

f1(r) equals the number of digits of r,

. 0 if r is even
falr) = {1 if r is odd,

S3(r) equals the string of r ones,
and
0 if 2 divides r
falry = {1 if 3 divides r
1 if neither 2 nor 3 divides r.

For each that is a function, specify its range.

A function is said to be onto or an onto function if its range equals its target,
R = T. Thus functions f, g, and h of Example 9.1 are onto, but j is not. In Fig-
ure 1.8 the first function shown is onto whereas the second is not onto. We also
say that two functions f and g are equal if they have the same domain D and
f(d) = g(d) for every d in D.

Sometimes the domain of a function is a set of sets.

Example 9.2. If U = {a,d,,....a,}, let P(U) be the set of all subsets of U. We
know that P(U) contains 2" subsets. We define the complementation function
¢:P(UY = P(U) by ¢(A) = A for every 4 in P(U). Then ¢ is an onto function,
because for every set B in P(U) we have

¢(B°) = (B = B.

If we define n: P(U)} — P(U) by n(A) = & for every A in P(U), then n is not onto. It
is evident that the functions ¢ and n have the same domain, but they are not equal.

Question 9.3. Which of the functions in Questions 9.1 and 9.2 are onto?

42

1:9 FUNCTIONS

A function is said to be one-to-one (or 1-1) if it maps distinct elements of the
domain to distinct elements of the range. In other words, if d # d’, then f{d) #
f(d"). A diagram of different function properties is shown in Figure 1.9.

(a) One-to-one and onto function. (b) One-to-one but not onto function.
{c) Notone-to-one function. (d) Not a function.
Figure 1.9

Example 9.1 (continued). Here again are the functions defined in Example 9.1.
For s in B,

f(s) equals the decimal equivalent of s,
¢(s) equals the number of bits in s,

h(s) equals the number of ones in s,
and

J(s) equals the ones bit of s.
The function [is one-to-one because if s s ', then their decimal equivalents
will be different. However, g4 is not one-to-one because, for example, g(101) = 3 =
g(111). Neither h nor j is one-to-one, since A(101) = A(110) = 2, and j101) =
jan =1L

Question 9.4. Let the functions b, /5, and f5 be as defined in Questions 9.1 and 9.2.
Which of these functions is one-to-one and why?

43

I SETS AND ALGORITHMS: AN INTRODUCTION

Question 9.5, Let U = {a,d,,....d,). Is ¢:P(U) - P(U) defined by ¢(4) = {“a
one-to-one function?

Suppose that a function f:D — T is not one-to-one. Then we know that there
is an element ¢ and two elements d # d' in D such that f(d) = f(d') = t. The next
result gives a condition under which a function is surely not one-to-one.

The Pigeonhole Principle. If f is a function with finite domain D and target T,
where |Dl > |T|, then f is not one-to-one. In particular, there is some element ¢
in T that is the image of at least two different elements of D.

Why is this so? The function f is either one-to-one or it isn’t. Since R < T for
any function f, it follows that |R| < |T|. If |D| > |T} and f were one-to-one, then
|R| = |D] and so |R| > |T|, a contradiction. Thus f cannot be one-to-one.

This principle has far-reaching applications in combinatorics. Its name derives
from the following flightful application: If more than n pigeons fly into n pigeon-
holes, then some pigeonhole must contain at least two pigeons.

Example 9.3. Let S be a set of 11 or more binary numbers. Then at least 2 ele-
ments of S must have the same last digit when expressed in decimal notation. The
pigeonhole principle shows why: Define f* to be the function with domain S and
target T = {0,1,...,9}, where for s in S, f*(s) equals the last digit of s when s is
expressed in decimal notation. Since |S| > 10 = |T|, there must be two numbers
in S that map to the same element of T.

For further examples see Exercises 20-23 and Supplementary Exercises 11
and 12.

Often a function maps one set into the same set, that is, T = D. This was the
case in Example 9.2 and Question 9.5. When T = D and the function is one-to-one
and onto, it is called a permutation. The examples in Figure 1.10 illustrate per-

OO
>< O Ie————
|dentity
Figure 1.10 Permutations

44

1:9 FUNCTIONS

mutations. One important, but easy, permutation is called the identity map or
identity permutation. We define it by i:D — D, where i(d) = d for every d in D. This
map doesn’t do much, but it is one-to-one and onto; soon we'll see that it plays
an important role.

When T = D, the properties of being one-to-one and onto are closely related.

Theorem 9.1. Let D be a finite set and let f:D — D be a function. Then [is
one-to-one if and only if f is onto.

Proof. I D has n elements and f is one-to-one, then R, the range of /. has » ele-
ments also. Since R < D and they have the same (fimte) cardinalities, R = D and
so f is onto. On the other hand, if f is onto but not one-to-one, then some pair
of elements in D gets mapped by f to the same element. Consequently, the remain-
ing n — 2 ¢lements of the domain must be mapped to n — [elements of the range.
Then some element must have two images, contradicting the definition of a func-
tion. Thus f must be one-to-one. (See Exercise 24 for another look at this idea.)

|

Just as we can combine sets to form new sets, so can we combine functions to
form new functions. Suppose that f:D — T and g: T — W are such that the range
of / is contained in the domain of y. Then we define the composite of g with f.
denoted g » f, to be the function

g f:D—>W. wherey - f{d) = g{f(d))

for all d in D. In words this means that for d in D, we first map d to T using f, and
then we map the resuit, f(d), to W using ¢. This process of combining two func-
tions is known as composition. Notice that in the composition ¢ » f, it is f that
gets performed first even though it is ¢ that is on the left and thus read first. This
idea is ilustrated in Figure 1.11.

Figure 1.11 ¢ - / is shown in dashed lines.

45

1 SETS AND ALGORITHMS: AN INTRODUCTION

Example 9.4. If /B — N is defined as before with f(s) = m, where m is the deci-
mal equivalent of s, and if y: N — N is defined by

(o) = 0 if t is even
PI=0 0 ifris odd,

then we can define gy~ f:B — N by

g fls)

Il

if f(s) is even
if f(s) is odd.

I

g(f(5))
0
t

Thus g - f = j, where j is defined in Example 9.1.

Now suppose that f:D — T and g: T — D; thatis, the domain of g is the target
of f, and vice versa. Then

gof:D - D,

and the composite function takes us back where we started from.
Sometimes ¢ - f does even more than that. If g - f = i, the identity map i(d) = d,
then ¢ is called the inverse of f. Specifically, if

go fld)=g(f(d)) =d

for every d in D, then g undoes the work of f, and ¢ is the inverse of f. Similarly,
if we compose the other way around, f »¢: T — T and get

Soglty = flg(t)) =1t

for all £ in T, then f is called the inverse of ¢. (See Figure 1.12, where / is shown
with a solid line, its inverse by a dashed line.)

Figure 1.12

46

1:9 FUNCTIONS

Example 9.1 (continued again). Let f(s) = m and b(m) = s be defined as in Exam-
ple 9.1 and Question 9.1. Then b < f:B — B maps a binary number to its decimal
equivalent and back to its binary equivalent. Thus b« f = i, and b is the inverse
of /. Also f » b = i, since translating decimals to binary and then back to decimals
returns the original decimal number. Thus f is also the inverse of b. Note that

the two identity functions of this example are different, since they have different
domains.

Example 9.4 (continued). Let f be as already given, and g: N — B be defined by
g(t) =0 or 1 according as ¢ is even or odd. Then g+ /:B — Band f o g:N — N,
but neither composite mapping is the identity. For instance, g o f(101) = g(5) = 1,
and f » g(2) = f(0) = 0.

It is not by chance that in the latest continuation of Example 9.1 f and ¢
were inverses of each other.

Theorem 9.2. Suppose that both /:D — T and g: T — D are onto functions. Then
f is the inverse of ¢ if and only if ¢ is the inverse of f.

Proof. Suppose that f is the inverse of g, that is, f - g = i. We must show that
g is the inverse of f, that is, we must show that g o f(d) = d for all d in D. For

any element d in D, since g: T — D is onto, there is an element r in T such that
g(t) = d. Then

g o fld) =g flg) = g(f(gr))) by definition of g » f
=y(f > g(t)) by definition of f = ¢
= g(i(t)) since f o g =i
= g(t) = d.

The remaining proof, that if g is the inverse of f, then f is the inverse of ¢, goes
the same way. [

Question 9.6. Let U be a finite set, P(U) the set of all subsets of U, and ¢: P(U) —
P(U) be defined by ¢(A4) = A°. Then explain why c¢ is its own inverse, that is, why

co¢ =1L

In summary, a function, like an algorithm, has input and output, elements of
the domain and range, respectively. So what is the difference between a function
and an algorithm? An algorithm may have as input values for several variables.
say X, ¢, and #. If x can be from the set A, ¢ from B, and n from C, then the input
to the algorithm can be thought of as one element in the Cartesian product

47

1 SETS AND ALGORITHMS: AN INTRODUCTION

4 x B x C. Similarly, the output of the algorithm can be thought of as an element
from a Cartesian product. In short, every algorithm is a function. Conversely, the
functions in this book {though not all functions) are mappings that can be com-
puted by algorithms, sometimes by several different algorithms.

There is, however, a striking difference in the contexts in which these concepts
get used. When we think of an aigorithm, we are vitally concerned with the
mechanism by which a domain element d gets mapped to its corresponding range
element f(d). In contrast, when we think of a function it is the correspondence
itself that matters, not how f(d) is computed. One of the main goals of discrete

mathematics is to supply the tools which enable a rational choice among various
algorithms that evaluate a function.

EXERCISES FOR SECTION 9

1. Let N be the set of all nonnegative integers. Which of the following are func-
tions with domain and target N?

(a) finy=n+1. (B) f(m) =2n+ 1.

© fy=3+1 @) fm=n—1

(&) f)=n*+1 (f) fln)=yn+ 1.

(9) fn) = % + 1. (h) f(n)=n>.

(i fin)=2" (j) f(n) equals the remainder when n is divided by 3.

Of those that are functions with domain and target N, find their range and
determine whether or not they are onto.

2. Let R be the set of all real numbers. Which of the following are functions
with domain and target R?

(@) f(x) =2x + 1. (B) flo=3+ 1.

(@ fix)=x-1. () f(x)=x+ L

(e) f(x)= i‘ + L (f) fl)=x*—3x+2.
(9) /(x) = |x|, where |x] stands for

the absolute value of x.
Of those that are functions, find those that are one-to-one.

3. Give an example of a function, with domain and target the positive integers.
that is onto and is not the identity map.

48

10.

11.

1:9 FUNCTIONS

If two functions are not equal, they are called different. Suppose that 4 =
la,,ay,...,a,). How many different functions are there with domain 4 and
target {0,1}? How many of these are onto and how many of these are
one-to-one?

For each of the following conditions give an example of a function f:Z — Z,
where Z is the set of all integers, that satisfies the condition:

(i) f i1s onto and one-to-one.

(ii) f is onto but not one-to-one.
(ili) f is one-to-one but not onto.

(iv) [is neither one-to-one nor onto.

(v) Every integer is the image of exactly two integers.

(vi) f has an inverse g.
(vii) / does not have an inverse g.

Let U = {a,a,,a5} and let § = {a,}. For every set A in U we define the map
[P(U) - P(U) by f{d)=A ~n S and the map ¢:P(U) - P(U) by g(4) =
4 v S. Write down the image f(A4) and g(A) for every subset A. Is either f
or ¢ onto?

Let U = {ay,....a,}, and for § a fixed subset of U define f{4) = A n § and
g(d) = A4 v § for every subset 4 of U. For what sets S is f an onto function
and for what sets S i1s ¢ onto? [s ¢ither [or g one-to-one?

Fix a finite universal set U. The size function s: P(U) — N, where N is the set
of all nonnegative integers, is given by s(A) = |4 for all subsets 4 of U. What
is the range of s? Is it one-to-one?
The characteristic function of a set S, a fixed subset of the universe U, is given
by ys(x):U — N, where
) 0 if xisnotin S

YA X) =

£ I ifxisinS.
For a fixed subset S of U, let h:U — N be given by h(x) = |{x} N S|. Ex-
plain why y¢ and h are equal functions.
Suppose that A and B are finite sets and 4 = B. Explain why A = B if and
only if |4 = |B|.
Suppose that f:D — D is a function with the same domain and target. Then
we can define f2 = f . f as the composition of f with itself. For each of the
following, write down a simple expression for f*:

(i) f:R > R, f(x) = N

(i) f:R — R, f(x}= x".
(iii) /*N > N fih=i+ 1
(iv) TN > N f()=2+ 1L

49

1 SETS AND ALGORITHMS AN INTRODUCTION

12.

13

14.

15.

16.

17.

18.

19.

20.

21.

22

50

) f:P(U)— PU), f(4) = A"
(vi) f:P(Uy— P), f(A)= &.
If f:D— D, then we can also define (2= f(f?)=fo(f-f) and f* =
fotf=f-[f>(f> /)] Determine f*and f* for each of the functions
in Exercise 11.
If /:D— D, we define /", where n is apositive integer, by f'=f, = f-f,
and, in general, f"=f-(f"-*). For each of the functions in Exercise 11 find
an expression for f" in terms of n.

Let A={ay,a,,....a,; and form the Cartesian product 4 x A.Define two
projection functions, P, and P,;: Ax A—A by P{dia) =4 and P2lasa)) =
a;. Is either of these functions one-to-one or onto’?

Suppose that we define a function b:.4 — Ax Aby bla;) = (a,a). Then is
b the inverse of either of the projection functions P, or P,? 1s either P or
P,the inverse of b?

Show by example that Theorem 9.1 is false if D is not finite.

Suppose that f and g are functions such that f: D + 77, g0 T — D, and
f>g=i Prove that f is onto.

Suppose that f:D — T is aoneto-one function and its domain D is finite.
Then prove that there is a function g that is f’s inverse.
For each of the following, find the inverse off. Let Z stand for the integers,

N the nonnegative integers, R the real numbers, and U = {4d, a, an}.
(i) f:1Z-Z,f(x)=x + 1.

(i) /R ~ {0} = R j(0 =

(i) /N > R fx= Vx.

(iv) f:U+N, fla) = i

wfU - U, fla) ay;

Suppose that f:D— T, where |D|>|T}. Can you conclude any of the follow-

ing? Explain.

(a) There are at least two elements ¢ ; and t, of T that are each the image of
two or more domain elements.

(b) Every tin T is the image of at least two domain elements.

(¢) There is an element tin T and three distinct elements d,,d,, and d,in D
such that f(d,) = flds) = f(d3) =t

Explain why a set of 16 numbers selected from {2,. . . . 50} must contain two
with a common divisor greater than one.

Explain why a subset of 51 numbers taken from { 1,2,. ... 100} must contain
two numbers. where one is a divisor of the other.

1:10 BOOLEAN FUNCTIONS AND BOOLEAN ALGEBRA

23. Let f be a function with domain D and target T. If |D| = d and |T| = n, then

explain why there is an element t of T that is the image of at least d/n clements
of D.

24. Here is a stronger version of Theorem 9.1. If f:D — T is a function, where
|D| = [T|, then f is one-to-one if and only if f is onto. Prove that this is so
and explain why this is more general than Theorem 9.1.

25. Suppose that f and g are functions such that f:D — T and ¢:T — D, but
one of them is not onto. Then is the conciusion of Theorem 9.2 still true; that
is, s 1t still the case that f is the inverse of ¢ if and only if ¢ is the inverse of

1

1:10 BOOLEAN FUNCTIONS AND
BOOLEAN ALGEBRA

We return to the dichotomies mentioned in Section 2 and concentrate on functions
with two-clement targets: T = {0, 1} or {True, False} or {yes,no}, and so on; with-
out loss of generality we assume that T = {0,1}. Such functions are central to
computer science and related mathematics. In this section we develop algebraic
properties of these functions, characterize their fundamental forms, and consider
an easily stated, but unresolved, research problem, known as the Satisfiability
Problem.

Definition. Let Z, = {0,1}. A function f:(Z,)" — Z,, with domain a Cartesian
product of Z, and target Z,, is called a Boolean function.

Example 10.1. Here are three fundamental Boolean functions.

1. NOT:Z, — Z, defined b NOT(x) =0 ifx=1l
' P2 Lo CEMEA DY DU =0,

This is usually written NOT (x) = ~x.

1 fx=y=1
2. AND:(Z,)* — Z, defined by AND (x, y) = hx=J
0 otherwise.
This is usually written AND (x,y) = x A y.

0 fx=v=0
3. OR:(Z,)* — Z, defined by OR(x,y) = hr=y
- 1 otherwise.
This is usually written OR (x, y) = x v y.

These three functions represent so-called “logical operations.” If we associate
“False” with 0 and “True” with [, then NOT (x) is “True” (or 1) if and only if x
is “False” (or 0). Furthermore, AND (x, y) is “True” precisely when both x and y

are “True,” and OR(x, y) is “True” precisely when either x or vy is “True” or both
are “True.”

1 SETS AND ALGORITHMS: AN INTRODUCTION

Example 10.2. The functions of Example 10.! can be combined to make more
complex functions. For example,

flay) = ~xay =1 Hr=r=
X.V) = ~(XAY) = .
AR ¥ | otherwise,
and
(\ 1 fx=y=:=1
X,)’ = (XAV Jag-— .
glx, y,z) = (XA y) A 0 otherwise.

How can we check that functions like those of Example 10.2 take on the values
claimed? Or how can we determine the values of a new function? One foolproof
method is to construct a table of all domain values and the resuiting function
values.

Example 10.3. The values of f*(x, y) = (~x) Vv {~y) are listed in Table L.5.

Table 1.5

X v ~X ~y SHxyy=(~x)vi~y)
0 0 1 1 1

0 l 1 0 1

1 0 0 1 1

1 1 0 0 0

Notice that the function f* agrees with the function [of Example 10.2 and so the
two functions are equal. In other words, we have shown that

~(XAY) =~ x) v~y

Question 10.1. Show that (a) ~(xvy)=(~x)a(~y) and (b) (xAy)Az=
XAy Az

The equalities of Example [0.3 and Question 10.1(a) are known as de Morgan’s
laws.

Example 10.4. Another useful function is known as “exclusive or.” abbreviated
XOR. It is a function that is *“True” if x or yis “True”, but not both. In Boolean

1:10 BOOLEAN FUNCTIONS AND BOOLEAN ALGEBRA

notation

0 fx=y

XOR:(Z,)* - Z, is defined by ~ XOR(x.y) = { .
- 1 otherwise.

The function XOR is also written as XOR (x,¥) = x @).

Question 10.2. By checking all domain elements, verify that XOR can also be
expressed by

XOR(x,¥) = (x v y) A ~(x Ay}, or equivalently
=[xA(~n]v~x)Ay]

Boolean functions model digital networks and electronic circuits well. In these
models, the voltage is either high (1) or low (0), and switches are either ON(1} or
OFF (0). For example, consider the problem of adding two binary numbers, say
0 + 1. In a computer this is carried out by a circuit in which high voltage (1)
together with low voltage (0) is combined to produce high voltage (1). Such circuit
combinations can be imitated by Boolean functions as follows. Define

0 fx=y=00rx=y=1
ADD(x.y) ={ | = F=ROrE=
1 otherwise,

and

| fx=yp=1
MULT (x,v) = j -
(e 3) |0 otherwise.

Notice that MULT is simply the AND function, x Ay, and ADD is the XOR
function, x @ y. Then for one-digit binary numbers x and y, MULT{x,y) = x -y
and ADD (x, y) = x + y except that | + 1 = 10 in binary. A “carry” bit is needed
to complete the latter addition.

Example 10.5. Here are Boolean functions that produce the sum of 2 two-digit
binary numbers. Let x, x4, vq and vq be in Z, so that x,x, and y, y, both represent
two-digit binary numbers. Then their sum is =,z 24, where

2o = ADD(xy, yo) = X ® ¥o-
ﬂ-’ﬁ Dyt ifxy=yy=1

= <

o [(x; @) DO otherwise.

53

1 SETS AND ALGORITHMS: AN INTRODUCTION

(In other words, the two's digit in 2,2z, is the sum of x; and y, plus | if the |
is “carried over” from the addition of x, and y,.) There is a carry if and only if
Xg = yg =1, and so

o =[x @) @ (x9 A vo))

Finally, z,, the four’s digit of the sum, is O unless there is a carry from the second
addition. There will be a carry from the second addition if either x; = y; =1 or
if there is a carry from the first addition and either x, or y, is 1. [n symbols

2 =[x Ay vlixegaye) alxg vyl
There are a few more rules of arithmetic concerning Boolean functions that
are summarized in the next result. Two other useful rules of arithmetic are de

Morgan’s laws (see after Question 10.1).

Theorem 10.1. The functions AND and OR satisty the following properties:

L xAy=yAx Commutative law
2. XVy=yvx Commutative law
. (xAYAz=xA{yAz) Associative law

4 (xvy)vz=xv(yvz) Associative law

5, xa(yva)=(xAy)vixaz) Distributive law
6. xv(yaz)=(xvyla(xvz) Distributive law

Notice that part 3 has been verified in Question 10.1. A consequence of parts 3

and 4 is that we may write x A v Az and x v y v z (i.e., without parentheses) without
ambiguity.

Question 10.3. Verify parts | and 4.

Proof of part 5. The straightforward way to check this is to substitute all eight
possible choices of 0s and 1s for x, y, and z. For example, 0A(0v) =0n1l =
0=0v0=(0A0)v(Oal.

Here is another type of proof. Think of the {True, False} < {1,0} correspon-
dence. Then the statement x A (yv z) is true if and only if x is true and either y
or z is true, that is, if and only if either x and y are true or x and z are true, that
is, if and only if (x A y) v(x A Z) IS true.]

Optional Material

You might notice that every Boolean function considered in this section has been
expressed in terms of NOT, AND, OR, and/or XOR (and XOR can be expressed

54

1:10 BOOLEAN FUNCTIONS AND BOOLEAN ALGEBRA

in terms of the first three by Question 10.2). This is the case for ail Boolean func-
tions; in addition, the form of the expressions can be specified.

Definition. If x,x,....,x, are variables, then for i = 1,2,...,n both x; and ~ x;
are called literals. An expression of the form L, v L,v---v L; where each L; is
a literal for i = 1,2,...,jis called a clause. A function f: (Z,)" — Z, is said to be
in conjunctive normal form (or CNF) if it is of the form

Sx,x0,. .. X)) =CyAC, A AC,

where C; is a clause for i = 1,2,... k.

Example 10.2 (reexamined.) f(x,y) = ~(xAy) is not in CNF, but we know
that f(x,y) = f*(x,y) = (~x)v(~y) by Question 10.1, which is in CNF with
S*¥x,yy=C,, where C;, =L, vL,, Ly =~x and L, = ~y. Then ¢g(x,y) =
{(xAyazisin CNF with C;, =x,C, =y, and C; =z

Question 10.4. Which of the functions that determine z,, zy, and z,, in Example
10.5 are in CNF?

Although the function f* of Example 10.2 was not in CNF, we found that it
was equal to a function, f*, that was in CNF.

Theorem 10.2. Every Boolean function is equal to a function in CNF.

Proof. Let f:(Z,)" - Z,. Imagine writing out the table of all 2" elements of (Z,)"
and the corresponding values of /. Suppose that b = (by,b,,...,b,) in(Z,)" is such
that f(b) = 0. Create a clause C of the form C=L,v L, v ---v L,, where

,\’i 1fhl=0
Li—{~xi ifh, = 1.

Notice that when, for i = 1,2,...,n, b; is substituted for x; in the clause C, the
value is 0. Furthermore, b is the only element of {(Z,)" which when substituted
yields 0; since C = Ly v L,v---v L,, C assumes the value of one when some L;
is one and some L; is one unless all are zero, precisely the value at b.

Next we form clauses C,, C,,. . ., Cy, one for each b in (Z,)" for which f(b) = 0.
Then we let g be defined by

X1, X5, X)) = CAC, A AC,

We claim that /' = ¢. Suppose that b in (Z,)" is such that f(b) = 0. Then there is
a clause C; in ¢ corresponding to h; when b is substituted in C;, a value of 0 results.

55

I SETS AND ALGORITHMS: AN INTRODUCTION

From the formula for y we see that g(b) = 0. Suppose that b = (b, b,,....b,) 1s
such that f(b) = 1. Consider what happens when, fori = 1,2,.. . n; b; s substituted
for x; in any clause C. As we have already seen, a | results, since C corresponds
to an element d # b for which f(d) = 0. Since every clause in ¢ equals | upon
input of b, by definition of g, g(b) = 1. |

Example 10.6. We use the technique of the proof of Theorem 10.2 to find a func-
tion equal to f, but in CNF, where

flxyo)= ~[(xay)vixaz)]

The elements of (Z,)* on which f is 0 are precisely (1,1,0), (1,0,1) and (1,1, 1).
We form the clauses C, = (~x)v(~y)vz, C,=(~x)vyv(~z), and C3=
(~x)v(~y)vi~z)and let g = C, AC, ACH.

Two types of Boolean functions merit special names. A Boolean function is
called a tautology if its range is {1}; in other words, the function assumes the value
“True” upon all input. A Boolean function is called a contradiction if its range is
{0}; that is, it is always “False.” For example, the function

£13) = xv(~x)
15 a tautology whereas
g{x) = X A (~X)

is a contradiction.

Question 10.5. Decide if the following are tautologies, contradictions, or neither.

@) (xvyAll~x)ay]a[xal~p]al(~x)vi~y]
) (x A VvU~x)Ay]vixal~p]v[(~)Aa(~y)]
(€) (xvyvI)vi~y).

A Boolean function is not a contradiction if upon some input b the value of
the function is {. Then we say that f is satisfied by b and [is satisfiable. Suppose

that we are given a function, expressed as a huge combination of ANDs. ORs,
and NOTs, like

floow, x,y,2) = ((({~) APV DA~) AD)A((~) v 0y A W)

It certainly could be a lot of work to check whether this is a tautology or a con-
tradiction, but suppose that all we want to know is whether there is some value
b for which f(b) = 1. This is an instance of the following important problem.

1:10. BOOLEAN FUNCTIONS AND BOOLEAN ALGEBRA

The Satisfiability Problem. Given a Boolean function f| is there a b in the domain
for which f(b) = 17

How might we proceed to solve the Satisfiability Problem? For a specific
function f we could check all domain elements in f. If the domain of f is (Z,)",
this checking might require all 2" binary strings before we find, say, that the last
string satisfies f or that no string satisfies f. Using the ideas of Chapter 2, we
shall make this process precise, as an algorithm, and we shall see that this parti-
cular process is a very slow and time-consuming one. But surely there must be
some “tricks of the trade,” some techniques with which to attack this problem
without trying all possibilities. In fact, it is an open research problem whether
there is a “fast” and “efficient” process by which to determine whether an arbitrary
Boolean function is satisfiable; these terms will be defined precisely in Chapter 2.
For the time being we repeat that this simply stated problem is at the heart of
some very hard, unresoived research questions that are actively being studied by
the research community.

EXERCISES FOR SECTION 10

1. Which of the following tables represent a Boolean function?

Function Function Function
Domain Value Domain Value Domain Value
0,0) 1 10, 1) 0 0,0 0
0,1 1 0,2) 1 0.1 0
(1.0 1 i1,0) 0 (1,0) 0

12,0) 1 (1, 1) 0

2. Giveanexample of a Boolean function from(Z,)> onto Z,. How many Boolean
functions {rom (Z,)" to Z, are onto? How many are one-to-one?

3. Write out a table of values for the following functions. Then identify all pairs
of functions that are equal.
(@) filx,y)=(~x)vy.

(&) f3lx,y)=yAxAa(~y).

() f3lxy)=({~x)vyIAx

(d) falx,y) = ~(xV(~X))
(&) fslx.y)=xnA(~p) (f) felx.)= ~(xAl(~p))
(9) Sy =yvx (1) falx,) =x Ay

4. Show that the function AND(x, y) = x A yisequal to a function using only ORs
and NOTs. Show that the function OR(x,y) = xv y is equal to a function
using only ANDs and NOTSs. Is the function f(x.y) = ~{x A v) equal to a
function that uses only ANDs and ORs, but no NOTs?

37

I SETS AND ALGORITHMS: AN INTRODUCTION

5.

ff x,xo and y,y, are two-digit binary numbers, find the functions that give
their product in binary.

6. Verify parts 2 and 6 of Theorem 10.1.

10.

11.

12.
13.

14,

For each of the following, find an equal function expressed in CNF.

(@) filx,y,2) = (~x)v(y Az) folx.v.z)=xv((~y)Az)

(©) f3lx,p,2)= ~(xvyvaz) (d) falx,y.2) = ~(xAYA2)

© fsxp2)=(eanvixash (f) felarzmw = (xanvizam.

A function is said to be in disjunctive normal form (or DNF) if it is in the form

Sx, X, 00 X,) =D, vD,yv- - vD

where, for i = 1,2,.. ..k, D; is of the form Ly AL, A -+ AL; with each L; a
hiteralfori = 1,2, ..., j. Find all functions in Exercises 3 and 7 that are in DNF.

Find an example of a function that is in neither CNF nor DNF.

For each of the following, find an equal function expressed in DNF.
(@) fi(x.3,2) = (~x)A(yvi) (b) falx,y,2)=xA[(~y)vz]
(©) filx.p,z) = ~(xAyn2). d) falx,v,2)= ~(xvyvz)

(¢) f5(x,y,z2) =(xvy)a{xvz). (f) folx.vzow) =(xvy)alzvw).
Is each of the following satistiable?

(@) flx,p,2)=yv ~[zvi~x)]

(b) fx.y,z,wy = [xv ~(yv ~2)]v ~{xv ~[yv ~zAw].

(©) fx.y)=(xApv(~x)Ay)

d) flx,yy=xv ~ixv ~[yvi~y]}

(e) f(x,y)=(xAY)A(xA(~p)

For n =2, 3, and 4 find Boolean functions f:(Z,)" — Z, that are tautologies.

For n=2,3, and 4 find Boolean functions f:(Z,)" » Z, that are contra-
dictions.

Identify which of the following are tautologies.
@ gx,y)=yv ~{{yv(i~x)]a(yvx)}

(b) g(x,y) = [(~x)vy]viyvx.

(© glx.y)=xv ~{yvi(~x)ay]}.

(d) gtx,») =xv[~(xvy)]

(€) glx,y) = (~x)viyAr[(~yvi~x)]}

(/) dxn) =[x at~] v [y v (~xi]

(g) g(x,y,2)=[zvi~y]v ~[zv ~(xap]
(h) g(x,y,2)=zv(~x}v[(~2)Aa(xAp]

1:11 A LOOK BACK

15. A mathematical statement of the form “If 4, then B” is said to be true if when-
ever A is true, then so is B. When A is false, then it doesn’t matter whether B
is true or false. Thus “If A, then B” is logically equivalent to the statement that
either 4 is false or B is true. We define a new function

IMPLIES (x, y):(Z,)* — Z, defined by IMPLIES (x, y) = (~x) v J.

Determine the value of (Z,)? on which IMPLIES is 1. Interpreting 1 as “True,”
explain why this is analogous to “If A, then B.”

16. A mathematical statement of the form “A4 if and only if B” is true if whenever
A is true then so is B and whenever 4 is false then so is B. Find a Boolean func-

tion EQUIVALENT (x, y) that is the appropriate analogue of “A4 if and only
if B.”

1:11 A LOOK BACK

We began this chapter with a particular problem (admittedly one of only small
import) and introduced some substantial mathematics in order to understand the
problem and its solutions. There are a number of ideas that you should be com-
fortable with before you proceed to the next chapter. Foremost among the impor-
tant concepts discussed is the notion of algorithm. This course will be oriented
toward the solution of problems. Typically, a problem will be to find a mathe-
matical object with a particular property. Often the problem is fairly easy in small
instances. However, larger cases may be quite difficult. Such problems frequently
have algorithmic solutions and it will be on these that we concentrate. The algo-
rithmic solutions provide us with systematic ways to solve problems, so systematic
that we could easily turn the algorithm over to a computer, or more realistically
to a computer programmer. Although computers can handle many large numbers
quickly, there are limits to computer size and speed. One of the principal themes
of the rest of this course will be the analysis of the correctness and efficiency of
algorithms and the search for such effective algorithms.

This chapter also contains an introduction to set theory, an important tool
because our mathematical objects will usually be described in the language of sets.
We need to distinguish between contexts where the order of objects is not im-
portant, as with subsets, versus those where order is important, as in Cartesian
products. We have also begun to develop counting techniques, the multiplication
principie and P.LE. This material is significant because of its applications to the
analysis of algorithms. In particular, these mathematical techniques will be neces-
sary tools in the evaluation of the quality of particular algorithms.

Functions are also important mathematical tools because they describe trans-
formations and relations between sets. Often it will be important to know whether

1 SETS AND ALGORITHMS: AN INTRODUCTION

a particular function is one-to-one or onto or whether it has an inverse. For exam-
ple, in Chapter 3 we shall study the one-to-one functions called permutations in
depth. We have noted that algorithms and functions are similar. They take input
and domain elements, respectively, and transform these in a well-detined and
unigue manner into output and range elements. We shall use algorithms to study
functions, and vice versa. In the next chapters two central problems will be to find
algorithms that compute functions efficiently and to find and study functions that
measure the efficiency of algorithms. The special case of Boolean functions is suffi-
ciently important and applicable to warrant extra study. These functions model
well how computers work. They may be thought of as mapping from complicated
sets to the values of “True™ and “False.” and so they also model how logical think-
ing and proofs work. The Satisfiability Problem is introduced not only because it
1s an unsolved research problem, but also because it 1s computationally equivalent
to other famous problems. some of which will arise in Chapters 5 and 8.

We have begun to see proofs. Understanding these proofs is crucial to the
development of this course. We have left some important facts unproved in this
chapter, for example, that the algorithms BtoD, DtoB, and SUBSET work cor-
rectly in all cases. One of the main goals of this book is to develop proof techniques
and skill in their application to mathematical and algorithmic problems.

The concept of algorithm is pervasive throughout computer science and is
increasingly important in abstract mathematics. A beginning computer science
student is tempted to attack problems by writing computer code directly, trying
out the resulting program on reasonable examples of data and correcting obvious
problems as they arise. Instead, especially with complicated problems and pro-
grams, it will become essential to plan ahead carefully, to outline the entire attack
on the problem. An aigorithm is just such a precise outline of the approach to be
made on the problem. In mathematical work students are always searching (or
concrete guidelines for ways to solve specified problems. In the past mathemat:-
cians would often prove that a problem could be solved, but then fail to address
explicitly how to solve the problem. Now many mathematicians are revising the:r
philosophical ideas about mathematics and are turning to algorithmic approaches
to problems. Indeed, some would say that a problem hasn’t been solved even in
theory unless an algorithmic solution has been found. Thus although the problems
that we consider in this book are beginning ones in the study of discrete mathe-

matics and algorithms, the philosophy is central to current approaches and research
in these areas.

SUPPLEMENTARY EXERCISES FOR CHAPTER 1

1. Suppose that a computer program contains two Boolean variables, Done and
Correct. That is, each of these variables can assume the value either True or
False. How many different pairs of values can the two variables (Done, Correct)

60

10.

11.

12.

SUPPLEMENTARY EXERCISES FOR CHAPTER 1

assume? Suppose that JEQUALSONE is another Boolean variable. How
many different values can the triple (Done, Correct, JEQUALSONE) assume?
Suppose that we had n Boolean variabies called X |, X,, X;,....X,. Deter-
mine a formula for the number of different values the n-tuple (X |, X,...., X,)
can assume.

Problem. Given a positive integer n, calculate and print the sum of the
integers from 1 to n. Is the following an algorithm that correctly solves this
problem?

Response

Step 1. Read in n, a positive integer
Step 2. Calculate n(n + 1)/2 and print this out
Step 3. Stop.

Describe an algorithm to change a number written in base four to an equiva-
lent number expressed in decimal.

Describe an algorithm to change a number from decimal to base four.

Describe an algorithm to convert between binary and base four that does not
use decimal representations.

A numerical representation system often used in calculators is known as BCD
or binary coded decimal. In this system each digit in a decimal number is
converted to binary and stored in four consecutive bits, lined up in the same
order as the original decimal digits. Thus the number 139 is stored as
000100111001. Convert the following numbers into BCD: (a) 12, (b) 19, (¢) 25,
(d) 28. and (e) 77.

How many bits does an r-digit decimal number require to be stored in BCD?
Given 16 bits with the first bit reserved for sign designation, what is the largest
decimal number that can be stored in BCD in the remaining 15 bits?

Write an algorithm to convert a decimal integer into BCD, and vice versa.

Write an algorithm that inputs 4 = {a,,d,,...,d,, and outputs all elements
of the Cartesian product 4 x 4.

Suppose that 4 = l{ay,....,a,, and T = {t{,1,,....t,}. How many functions
are there with domain A and target 77 How many of these functions are cne-
to-one? (Hint: Consider separately the cases when n < m, n = m, und n > m.}

How many numbers must you pick from the set f1,2,.. .. n! so that there
must be two with 2 common divisor greater than one?

Explain why a subset of (n + 1) numbers taken from |1,2,.. ., 2n} must con-

tain two numbers where one divides the other. Is the same true if the subset
contains only 7 numbers?

6l

13.

14.

15.

16.

17.

62

SUPPLEMENTARY EXERCISES FOR CHAPTER 1

A hiker is lost in the mountains but stumbles into an area where it is known
that all inhabitants are either True-tellers or Liars, meaning that an individual
either always tells the truth or always lies. She meets a man at a fork in the
road and wants to learn the way to the nearest village by asking only one
question. Explain why she will not learn the way to the village by asking any
of the following questions:

(a) Are you a truth-teller?

(b) Are you a truth-teller and does the left fork lead to the village?

(¢) Are you a truth-teller or does the left fork lead to the village?

(d) If you are a truth-teller, does the left fork lead to the village?

{¢) Are you a truth-teller if and only if you are a liar?

(f) If the left fork leads to the village, are you a liar?

Devise one question with which the hiker, in the predicament of the pre-
ceding exercise, can determine the way to the village.

Deborah receives $1 million from an anonymous friend. She suspects that

either Alice, Bob, or Catherine gave it to her. When she asks each of them,

they respond as follows:

(a) Alice says, “I didn’t do it. Bob is an acquaintance of yours, and Catherine
is an especially good friend of yours.”

(b) Bob says, “T didn’t do it. I've never met you before, and I've been out of
town for the past month.”

(¢) Catherine says, 1 didn’t do it. I saw Alice and Bob in the bank on the
day you received the check so it must be one of them.”

Assuming that the two who didn’t give Deborah the money are telling the

truth and that the donor is lying, who gave Deborah the money?

There is a very simple programming language known as TRIVIAL. In this
language only the following six types of instructions are allowed:

(a) Input X, a natural number

(b) Go to step # —

(¢) Set X:=X +1

(d) If X =0, then go to step # —

() IfX >0 thenset X:=X -1

(f) Stop.

Suppose that a program must begin with the instruction Input X and end
with the instruction Stop. How many different programs are there, written
in the language TRIVIAL if the program is two steps long? Three steps long?
12 steps long? n steps long?

Suppose that a TRIVIAL program can begin with one or more statements
[nput X, where X may be any letter of the alphabet; for example, we may
begin with Input A and then follow with Input B. Then we allow state-
ments of the form 4:= 4 + 1. and if B > 0, then set B:= B — 1, and so0 on.

18.

19.

20.

SUPPLEMENTARY EXERCISES FOR CHAPTER 1

provided that 4 and B are input variables. If a TRIVIAL program begins
by reading in two variables 4 and B, then how many different TRIVIAL pro-
grams are there using three steps? Four steps? n steps?

Write a program in the language TRIVIAL that upon input of X and Y, posi-
tive integers, calculates the sum X + Y and leaves the result stored in X.
Note that X := X + Y is not a valid statement in TRIVIAL.

Suppose that we allow two output statements: “X is even” and “X is odd.”
Write a program in TRIVIAL that upon the input of X, a positive integer,
determines whether X is even or odd, outputs the correct message, and stops.

Open Mathematical Probiem: The Busy Beaver N-game. In this version we
eliminate the Input X statement and assume instead that every variable begins
with the value 0. Then we can do the equivalent of reading in a positive
integer i for X by writing i consecutive “X := X + |” statements. The score
of a TRIVIAL program is defined to be the sum of the values of all vari-
ables when the program stops or 0 if the program never stops. Then the Busy
Beaver n-game is the problem of determining a TRIVIAL program with n
instructions with the highest possible score among all TRIVIAL programs
with »n instructions. We call that maximum score BB(n). Thus BB(1) = 0,
since the only TRIVIAL program with one line is

Step 1. Stop.
A two-step program could be

Step 1. Set X := X + 1
Step 2. Stop.

Thus BB(2) = 1, since X begins at 0 and is increased only to 1. Explain
why BB(n) > (n — 1). Then show that BB(3) = 2 and BB(4) = 3. Find a value
of n such that BB(n) > (n — 1); you will need to use at least two variables.
Very little is known about the Busy Beaver n-game {or even small values of
n. It is known that there is no simple function that expresses BB(n) as a func-
tion of n. It has been shown that BB(20) > 4‘4(44)), but the actual value of
BB(20) is unknown.

63

ARITHMETIC

2:1 INTRODUCTION

In Chapters 2 and 4 we take a new look at arithmetic. Some of the probiems
we shall consider will be more advanced than that which the word arithmetic
usually conjures up. However, our principal goal will be algorithmic thinking. We
shall be especially concerned with the quality of the methods discussed and the
mathematics that is necessary to understand what makes one method better than
another. We concentrate on the question of exponentiation, that is, of calculating
x". Although this problem is more important than the magic trick that formed
the theme of the previous chapter, it is the methods rather than the solutions to
any particular problem that are worth learning. We introduce the important proof
techniques of induction and contradiction to analyze the correctness and efficiency
of algorithms,

Here is an appetizer. Suppose that we have two variables, say x and y, that
have been assigned the values 5 and 2, respectively. It is a common task to switch
the values of the variables, that is, to arrange it so that x =2 and y = 5. We

want a procedure that will work no matter what the values assigned to x and vy
are.

Example 1.1. Using the “:=" notation, we can suggest a way to trade the vaiues
of the variables assigned to x and y.

STEP 1. x:=y
STEP 2. y:=x

Step 3. Stop.

05

2 ARITHMETIC

At first glance this seems reasonable. since step | assigns to x whatever is as-
signed to y and step 2 assigns to y whatever is assigned to x. If we trace what
happens to the values assigned to the variables x and y, we get Table 2.1.

Table 2.1
Value Assigned to x Value Assigned to y
Before step 1 5 2
After step 1 2 2
After step 2 2 2

What happened to the 5? After step 1 it has been forgotten. We wanted to assign

the old value of x to the variable y; however, the old value of x has been written
over.

Question 1.1. Here is a sequence of instructions that will perform the desired
switch of values.

STEP 1. xold:= x
STEP 2. yold:=y
STEP 3. y:= xold
STEP 4. X := yold
Step 5. Stop.

As in the preceding example trace what happens when x is initially assigned the
value 5 and vy is initially assigned the value 2.

It turns out that only four of the five steps just listed are necessary. Exercise
1 asks you to figure out which step can be safely omitted. Thus there is a four-
step algorithm that will switch values between two variables; this algorithm re-
quires the use of a supplementary storage location.

Example 1.2. Here is an algorithm that will switch the values of x and y without
the use of an extra storage location. Note that there are more steps and that we
are required to do some arithmetic.

Step [, x:=x+vy

STEP 2. yv:i=y —X

STEP 3. x:=x+y

Step 4. v:i= —y

S1ep 5. Stop.

66

2:1 INTRODUCTION

As in our previous example we trace what is assigned to each of the variables
(Table 2.2).

Table 2.2

Value of x - Value of y
Before step 1. 5 2
After step 1. 7 2
Alfter step 2. 7 -5
After step 3. 2 -5
After step 4. 2 5

We have just seen two algorithmic solutions to the problem of switching the
values assigned to two variables. The first requires four steps and a supplementary
memory location. The second requires five steps and no extra storage. Further-
more, the steps are arithmetic operations rather than just assignment statements.
This is typical. Frequently, a problem will have various algorithmic solutions,
and one will be faster while a second might require less space. In general, we shall
favor algorithms that have fewer steps over those that require less storage. In

Sections 2 and 5 we shall consider exponentiation algorithms that are similarly
related.

EXERCISES FOR SECTION 1

1. Which of the following four-step algorithms succeed in trading the values of
x and y? For each, trace what happens.

(a) STEP 1. yold .=y (b) StEP 1. Xx0ld:=x (¢) STEP |. xo0ld:=x

STEP 2. y:=x STEP 2. y:= xold STEP 2. yold:=y
STEP 3. x:= yold Step 3. x:=y STEP 3. y:= xold
Step 4. Stop. Step 4. Stop. STeP 4. Stop.

2. Suppose that x > v > 0. Find an algorithm that interchanges the values of x
and y and has the properties that no supplementary storage is required and
at no stage is a negative number stored in either location.

3. Find a four-step algorithm that interchanges the values of x and y and does
not require a supplementary storage location.

4. Suppose that the three variables x, y, and = are each assigned values. Find an
algorithm that will cyclically switch the assigned values so that the old value
of x will be assigned to y, the old value of y will be assigned to -, und the old

67

2 ARITHMETIC

value of = will be assigned to x. Can this be accomplished with no arithmetic
and just one extra storage location?

5. Suppose that you are given n variables labeled x,,x,,...,x, each of which
has been assigned a value. Construct an algorithm that will take the value as-
signed to x, and store it in x, take the old value of x, and store it in x,, take
the old value of x, and store it in xa,. .., and take the old value of x, | and
store it in x,,.

6. Here is an algorithm whose goal is, upon input of numbers x and y, to calculate

their sum and store it in x, and calculate their difference and store it in y. [s
this algorithm correct?

Step [. Input x and y
STEP 2. X:=x+y
StEP 3. yi=x—y
Ster 4. Stop.

If it is incorrect, rewrite the algorithm correctly.

7. Design a four-step algorithm that upon input of numbers x and y calculates
xy and x/y and stores these in the variables x and y, respectively. If possible,
use no supplementary storage location.

2:2 EXPONENTIATION, A FIRST LOOK

We begin with the problem of computing the nth power of x, given a real number
x and a natural number n. How do computers calculate powers of numbers? The
basic arithmetic operations of computers are addition, subtraction, multiplication,
and division. Using these operations, we want to develop correct and efficient
ways to calculate x". There is a straightforward solution to this problem, namely,
multiply x by itself (n — 1) times. If n were fixed, then there would be no difficulty
in writing down a correct algorithm to solve this problem. For example, if n were
always 5 we could calculate

ANSWET 1= X" X" X" X" X.

The situation when n is allowed to vary is slightly more complicated. Now we list
an algorithm that finds x".

Algorithm EXPONENT

Step . Input x, n {n a natural number)
STEp 2. i:=0, ans:= 1

68

2:2 EXPONENTIATION, A FIRST LOOK

Step 3. While i < n do

Begin

STEP 4. ans:= ans * x
STEP 5. i:=i+1

End {step 3}

STep 6. Output ans and stop.

cOMMENTS. In Section 1.4 we used “Go to” statements to create loops within
algorithms. Here we use the more modern “While... do” construction, wherein
the steps within the loop are executed in order as long as the while condition
is satisfied. Note that the loop is indented for ease of reading. When a loop has
more than one step, we will signal the beginning of the loop by “Begin” and the
end of the loop by “End.” The statements within the loop will not be executed if
n = 0. However, the output of the algorithm will still be correct since x” = 1 for
all x.

This algorithm is sufficiently complicated that you might wonder whether it
does what it claims (in all cases).

A Fundamental Problem. How can you be sure that the algorithm listed above
(or, more generally, any algorithmic solution to a problem) is correct?

A first response to this problem is to implement the algorithm. If the algorithm
is written in a programming language, then the algorithm could be tested by run-
ning the program. If, as above, the algorithm is written in a pseudo-code {i.e.. in
English with a structure similar to a programming language), then the algorithm
can be tested by a person tracing the algorithm’s commands. In this setting the
person acts as a computer. We shall do this for the algorithm listed above, but
before we do, it is appropriate to consider what will be learned from such a test.

Presumably, we shall run the algorithm on input for which we already know
the answer. If the algorithm’s answer is wrong, then we can discard the algorithm.
In one sense this is satisfactory, since we know without a doubt that the algorithm
is incorrect. If the algorithm’s answer agrees with the already known answer, what
does that prove? It does show that the algorithm performs correctly on at least
one set of input data. If we run the algorithm for a variety of inputs and each run
gives a correct answer, then we can increase our confidence in the algorithm. Uniess
the algorithm only runs on a finite set of inputs, such a strategy cannot demon-
strate that the algorithm will always work.

Example 2.1. If x =35 and n = 3, then x" =5 = 125. [n Table 2.3 we trace
EXPONENT with this input.

69

2 ARITHMETIC

Table 2.3

Current Step Completed i Answer
t ? ?
2 0 1
3 0 1
4 0 5
5 1 5
4 1 25
5 2 25
4 2 125
5 3 125
6 STOP 3 125

Question 2.1. Trace the executive of EXPONENT for x =3 and n = 4.

After completing the above question, you probably believe that EXPONENT
correctly produces the value of x" when n is a positive integer. Your belief is based
upon the fact that you have witnessed one experiment and performed one ad-
ditional experiment. This is similar to what you might do in a chemistry class. In
the next section we discuss the principle of mathematical induction that will en-
able us to prove that the algorithm EXPONENT works for all input.

EXERCISES FOR SECTION 2

1.

70

Trace Algorithm EXPONENT for
(a) x=17and n= 1. (b) x=2and n=>5.
(¢) x=-—-2and n=3. (d) x=5and n=0.

Construct an algorithm that will input a real number x and an integer n, which
may be positive, negative, or zero, and output x". Trace your algorithm for
(a) x=3and n=3. () x=3and n= —-3.

(¢) x=0and n= —5. (d) x= —land n=0.

If Algorithm EXPONENT is run with x = 5 and n = 7, how many multipli-
cations are performed? If n = 132, how many muitiplications are done?

Suppose that we have a computer that can perform addition but not multi-
plication. Devise an algorithm that, upon input of a real number x and an inte-

ger n > 0, calculates and outputs the product nx. How many additions does
your algorithm use?

Construct an algorithm NEWEXP to compute x" for n, a positive integer. The
first step, after x and n are input, should be to compute and store = = x?. At

subsequent steps the variable ans (which will contain the answer) is multiplied
by = unless that would make ans too large. in which case ans is multiplied by ~.

2:3 INDUCTION

Trace NEWEXP for
(@) x=3andn=17. (b) x=3and n = 16.
(¢) x=23and n=10.

6. Determine how many multiplications NEWEXP requires to find (a) x°, (b) x'?,
(¢) x'3, and finally (d) x", where n = 2t for ¢, any positive integer.

7. Construct an algorithm NEWEREXP whose first two steps, after x and n are
input, is to compute and store = = x? and w = =2, At subsequent steps the vari-
able ans (which will contain the answer) is multiplied by w unless that would
make ans too large, in which case ans is multiplied by x until ans is x". Trace
NEWEREXP for
(a) x=3and n=12. (b) x =3 and n = 16.

(¢) x=3and n=19.

8. Determine how many multiplications NEWEREXP requires to find (a) x*0,
(b) x'°, (¢) x*°, and finally (d) X", where n = 4t for ¢, any positive integer.

9. Write an algorithm that calculates nx (as requested in Exercise 4) using fewer
than n — | additions.

2:3 INDUCTION

Mathematics has distinguished itself from other human endeavors because the
truths of mathematics are known with greater certainty than the truths of other
subjects. This is because assertions in mathematics must be proved before they
are regarded as valid. Although this does not eliminate the possibility of error
(mathematicians are, after all, human beings who can and do make mistakes), the
necessity of providing proofs greatly diminishes the potential for error.

Example 3.1. The most famous open problem in all of mathematics concerns the
positive integers and is very simply stated. It goes as follows: Do there exist posi-
tive integers x, y, z, and n with n > 2 such that

Yyt ="

The restriction that n > 2 is there because, for instance,

if n =1, then 2! + 3! = 5!
and
if n =2, then 3% + 4% = 52

provide easy affirmative answers to the question. The ussertion that for n bigger
than 2, there do not exist integers with the required relationship is known as

2 ARITHMETIC

“Fermat’s Last Theorem.” The name is misleading, since the assertion is still un-
proved; however, Fermat scribbled in the margin of a book that he had found a
proof but had no room to write it down. This note was found after his death! It
has been proved that no such integers exist if n = 3, that is, there do not exist
integers x, y, and z with x* + y® = 3. Indeed, Fermat’s Last Theorem has been
proved to be true for all exponents of reasonable size, in fact for n < 125,080. The
philosophical question

“Is Fermat’s Last Theorem true?”

suggests itself. Certainly, mathematicians would be surprised if it turned out to be
false. However, no mathematician would consider the assertion of Fermat’s Last
Theorem to be a mathematical truth until a valid proof is found, no matter how
much numerical evidence is marshaled in support of it.

The complex programs and structures of computer science have certain fea-
tures analogous to the state of our knowledge concerning Fermat’s Last Theorem.
It is a common occurrence for programs (or algorithms) to work correctly on
some inputs without working correctly on all inputs. Even if a program always
has worked correctly, that is no guarantee that it always will work correctly. Be-
cause of this, computer scientists frequently require proofs that their assertions
and programs are correct. How does one construct a proof that an algorithm (or
a program) is correct? The most common technique is mathematical induction.

Principle of Mathematical Induction. Suppose that we wish to prove that a cer-
tain assertion or proposition is true. Further suppose that the statement of the
proposition explicitly depends on a positive integer, say n. We denote the proposi-
tion emphasizing the dependence on the integer n by P,. Our goal will be 10 prove
that P, is true for all values of n.

Frequently, it will be easy to prove that the proposition P, is true for certain
(usually small) values of n. The first step in applying an induction proof is to verify
the proposition directly for one value of n. This is called checking the base case.
This one value will usually be n = 1 or n = 0. The next step in applying an induc-
tion proof is analogous to climbing a ladder. We must demonstrate that whenever
the proposition P, is true, then so is the proposition P, ,.

Here is a formal statement of the Principle of Mathematical Induction:

Let P, be a proposition that depends upon the integer n. Then P, is true for
all positive n provided that

(i} P, is true,
and
(i) 1f P is true. then so s Py |.

72

2:3 INDUCTION

Soon you will see examples of proofs using induction. Before looking at these.
let’s see why the principle is valid. Note that when we say the principle is valid,
we mean that if assertions (i) and (ii} are both verified, then the proposition P, is
proved true for all n.

To begin with, P, is true by (i). Since P is true, setting k = | in (i) shows
that P, is true. Then we can repeat (ii) with k = 2. Since we've just demonstrated
that P, is true, we get the result that P is true, and so on. Is P, true? We won'’t
do all the details, but we could work our way up to 17 using (ii) repeatadly,
building upon the known results P; for smaller values of j. In general, we can work
our way up to the truth of P, for any integer n.

The way that we go about establishing an assertion by induction is quite
algorithmic. In fact, here are the key steps.

Algorithm INDUCTION

Step 1. (The base case). Verify that P, is true.

Step 2. (The inductive hypothesis). Assume that P, is true for an arbitrary
value of k.

Step 3. (The inductive step). Verify that P, is true, using the assumption
that P, is true.

We illustrate proofs by induction with three typical examples.

Example 3.2. The following is an important identity that will reappear several
times in this book.

nn + 1)

2

1+2+3+-+n= (A)

Suppose that we wish to prove this using induction. The statement alreadv has
an explicit dependence on the positive integer n: P, is the statement that equation
(A} 1s true.

First we check the base case when n = 1. For n = | the left-hand side of equa-
tion (A} is 1, while the right-hand side equals {(1 + 1)/2 = . (Although we've done
the base case, we'll get a better feel for the problem if we check at least one more
case. If the equation were not true, it could be a real time-sink to try to prove it!)
For n =2 the left-hand side of (A) equais | + 2 = 3, while the right-hand side
equals 2(2 + 1)/2 = 3. For n = 3 we check that the two sides of (A) both equal 6.

Now we come to the inductive hypothesis (step 2). We assume that

k(k + 1
l+2+--~+k:—(—;~)_ (B)

73

2 ARITHMETIC

We want to prove that

tk + Dk +2)
—

L4244+ hk+k+)= (B)

Note that equation (B’) agrees with {A) after substituting k + 1 for n. How can
we proceed? We want the sum of kK + 1 integers and what we have to build upon
is the sum of k integers. So we use associativity to obtain

(L+2++k)+k+1)

k ‘ . . .
= (kj_ D +k+D by inductive hypothesis
k .
=k+1l5+1 by factoring

k+ Dk +2

5

Question 3.1. Prove by induction that 2 + 4 + -+ - + 2n = n(n + 1). (Hint: Mimic
the preceding example.)

Example 3.3. The following formula gives the sum of a (finite) geometric series:

1—‘Cn+1
2 — if x #1
L+x+x 4+ +x"=¢ 1 —x he?
n+1 iftx=1

[t is a polynomial identity that holds true for every real number x and for every
integer n > 0. This can be proved by induction on n. Instead we prove the slightly
more complex formula for the sum of an alternating geometric series in the next
example. You will be asked to imitate the latter proof in Question 3.3 to verify
Example 3.3.

Example 3.4. Here we use induction to verify that for every integer n > 0 the
following polynomial identity is valid.

l—x+x*—=x3 4 4+ (=x)
’l __(__\:)n+1

={ l+x
n+t ifx=—~1 (C)

if x# —1

By a polynomial identity we mean an equation that is valid for every substitution
of a real number for the variable x.

74

2:3 INDUCTION

If x = —1, the left-hand side of (C) consists of n + | terms, each of which is
1. Thus the sum is n 4+ 1. If x # — 1, then the identity has an explicit dependence
on the positive integer n: P, is the statement that equation (C) is true for all posi-
tive integers n when x is any real number other than — 1. First we check the base
case when n = 1. For n = 1, the left-hand side of (C) equals 1 — x. With n =
the right-hand side of (C) is

l—(=x® 1-x*

l+x 1+x

=1-x

Question 3.2. Check that (C) holds for both n =2 and n = 3.

Now we come to the inductive hypothesis (step 2). We assume that

1"“Xk+1
1—x+~--+(—x)":--m*HV : (D)
We want to prove that
1 — (=2 k+2
L oxg g (gt 22T (D)

I+ x

Note that equation (D’) agrees with (C) by substituting k + 1 for n. We use
associativity to obtain

l—x+ +(—=x)fF+(—x)*!

| — (_.\:)k+l

=T (—x)tt by inductive hypothesis
b= (=X (=) (=)t by making common
= 1+ x denominators
[4 x(—x)ett
o F(+ i_~ by algebra
| () — et 1
= (l:)»(. Al by algebra
| = (— k™2
= m-l(—jL—V\:* by algebra. =

Question 3.3. Prove by induction on n that the sum of a geometric series is as
given in Example 3.3.

75

2 ARITHMETIC

Example 3.3 (another look). Here is another way to verify this identity. We have
established that the identity of line (C) is valid for all x. Thus we may substitute
the expression —x in every instance of the variable x and the identity remains
valid. Upon substitution we get

L= (=) + (=) = (=xP + -+ [~ (—x)]"

_ n+1
_ :%:\%%k if —x# —1
n+1 if ~x= —1

This simplifies to

l+x+xX2+x3+ X"
1—‘C"+1

= 1 —-x

n+ | if x=1.]

if x # 1

Example 3.5. Choose n + 2 distinct points from the circumference of a circle. If
consecutive points along the circle are joined by line segments creating a polygon
with n + 2 sides, then the sum of the interior angles of the resulting polygon equals
180n degrees (see Figure 2.1). Even though the assertion to be proved depends on
nin an obvious way, we still need to be careful with the statement P,. Specifically,
we insist that the assertion holds no matter which n + 2 points are selected.

X

=

n+2=8son=6,

Figure 2.1 The sum of angles A + B +
o+ =180 67 = 080",

2:3 INDUCTION

The base case, when n = 1, asserts that no matter how three points are selected
from the circumference of a circle, then the resulting triangle contains three inte-
rior angles that total 180°, a result known from plane geometry.

The inductive hypothesis asserts that no matter how k + 2 points are selected
from the circumference of a circle, then the resuiting polygon contains k + 2 inte-
rior angles that total 180k degrees. Suppose that we are given k + 3 [note that
k+3=(k+ 1)+ 2] points chosen from the circumference of a circle. The in-
scribed k + 3 sided polygon P is shown in Figure 2.2(a). To use the inductive
hypothesis, we need to ignore one of the selected points and consider the resuiting
k + 2 sided polygon P’ shown in Figure 2.2(h).

fal (b)
Figure 2.2

P can be obtained from P’ by attaching the triangle T as shown. The sum of
the interior angles of P equals the sum of the interior angles of P’ together with
the interior angies of T. Thus

angles of P = angles of P’ + angles of T
180k + 180
180(k + 1). a

It

Example 3.2 (revisited). There are numerous proofs of equation (A) that do not
require the technique of mathematical induction. We present here two especially
beautiful ones for your pleasure.

77

2 ARITHMETIC

First a geometric proof: We shall represent the left-hand side of (A) as the
area of a plane figure. For example, if n = 2 we think of the sum [+ 2 as the
area of two rows of unit squares one with one square and one with two squares
as shown in Figure 2.3.

1+2= .
|

Figure 2.3

—
2(1+2)= J+‘ L =

Figure 2.4

If we double the area under consideration, we get the following figure (Figure
24). The figure on the right 1s a 2 x 3 rectangle whose area is 6. In general, | +
2+ -+ nis represented by n rows of unit squares. If we double this value and
piece the two areas together as shown in Figure 2.5, we get an n x (n + 1) rectangle
whose area 1s n{n + 1). O

2(l+"'+ll):3:]
+

= =n(n+ 1)

Figure 2.5

The third proof is even simpler although it is divided into two cases. The first
case is when # is even, that is, n = 2r for some integer r. We begin with the left-
hand side of equation {A), where 2r has been substituted for n. Next we add the

78

2:3 INDUCTION

largest and smallest terms, then the second largest and second smallest, and so on.
as shown in the following equation.

L4243+ +Qr =2 +Q2r—1)+2r

=(14+2N+QR+2r—N+@3+2r—2)+--- by regrouping
=2r+ D+ Cr+ D)+ 2r+ D+ by arithmetic
2r)(2r + 1
=r2r+1)= (r)(___;iﬂ_) by algebra
= in 2+ D by substitution.

Exercise 4 asks vou to compiete this proof for the case when n is odd.

EXERCISES FOR SECTION 3

1.
2.

Give a noninductive proof that 2 + 4 + - + 2r =r(r + 1).

Show that I + 3 + 5+ -+ + (2r — 1) = r? in two different ways, one of which
must be induction.

Prove that 1 +4 + 7+ - + (3n —2) = (3n? — n)/2.

. Complete the third proof of equation (A) for the case n = 2r + 1. You can do

this by temporarily ignoring either the last term or the middle term.
Use induction to show that

I+549++@n+1)=(n+D2n+ 0.

Here i1s another argument that proves the result in Exercise 5.

1+5494+ 4@+ 1N)=4-0+D)+@- 1+ D)+E4- 2+ D+ -
+@4-n+1)
=4-04+4-14+4-2+--+4-n)
+(1+14++1
=4-0+L+24+F+n+m+hH-L
Use known resuits to simplify the right-hand side and to deduce that the sum
is the same as is given in Exercise 5.

Prove, by any method vou like, that
(@ 2+ 6+ 10+ +@dn+2)=2n" +4dn +2.
(B 2+5+8 - +3r—1)=03r"+1)2.

79

2 ARITHMETIC

8. Express the following sums as simply as possible:
(@) 1 +3+9+ - +3"

1

By s+5+5+ + o5

(¢) 1 -4+ 16 —64 + - +(—=1Y"-4"
9. Find a formula for the following sums:
(@ 1+ 2 +x+

1o [
(B) 1+ =+—5+ "+
X X X

10. Use induction to show that n? — n is always even.
11. Use induction to show that n* + n® — 2n? is always even.
12. Use induction to show that n* + n® — 2n? is always divisible by 4.

13. Find aformula for the sum m + (m + 1) + (m + 2) + - - - + n; your answer will
be in terms of the variables m and n. Use induction to show that your formula
1s correct.

14. Suppose that n distinct points are selected from the circumference of a circle.
Let C, denote the maximum number of line segments joining two distinct
points that can be drawn so that no two segments intersect. Find a formula
for C, and verify your guess by induction.

2:4 THREE INDUCTIVE PROOFS

It would be difficult to overemphasize the importance of mathematical induction
to the mathematician and computer scientist. Believing that the best way to learn
is by studying and doing, we offer some more examples and problems.

Example 4.1. Look back at the assertions and algorithms about the number of
subsets of a set given in Chapter |. We claimed that if A is a set with »n elements,
then there exist 2" distinct subsets of the set A. We can prove this assertion now
by induction.

Precisely, we formulate P, to be the statement that a set with n elements has
exactly 2" subsets. First we check the base case with n = 1, P,. But we have already
checked that P, P, and P; are true in Chapter 1. We saw there that a I-set has
two subsets, a 2-set has four subsets, and a 3-set has eight subsets. Thus we have
accomplished step 1.

Now we get to steps 2 and 3. which are, of course, the heart of the matter.
We assume the truth of the statement P,: specifically that any set with k elements
has 2% subsets. Then we move to step 2 and examine P, , ,.

80

2:4 THREE INDUCTIVE PROOFS

Suppose that 4 is a set with k + | elements. We want to show that there exist
exactly 27! subsets of 4. What we are allowed to use is the assumption that -2,
is true. The trick here is to overlook one of the elements of the set A in order to
obtain a set with k elements. Let x be an element of 4 and define B to be 4 — {x}.
We illustrate in Table 2.4 where, with A4 = {x.y, 2. w!, we list the subsets of B and
the subsets of A that contain x.

Table 2.4

A= X0y, 5w
Subsets of 4 That Contain x

B=4—ix}={yzw
Subsets of B

) &
X g
c) B

Lx, w! fw}
) sl
by 1w
X, 2w o, w)
X,y Iowh Y,z W)

In the specific example above k = 3. B has 23 subsets, each of which is a subset
of 4. A has 2? subsets containing the specific element x. Each of these subsets
could be obtained from a subset of B by adding the clement x. Each of the 24
subsets of 4 can be constructed in this manner.

The general argument is the same. If .4 has k + 1 elements, B has k clements.
Thus we know by step 2. the inductive hypothesis, that there exist 2* subsets of
B. Each of these subsets of B is also a subset of A. Thus we know that there exist
2% subsets of 4, none of which contains the element x. From each of these subsets
that don’t contain x we can create a new subset of A that does contain x. Specifically,
if $ < B, define S’ to be $u {x]. Now § is a subset of 4. Furthermore, since S’
contains X, it is not a subset of B.

Finally, every subset of A either contains x or it doesn’t. If a subset. say T,
of 4 does not contain x, then T is a subset of B. If, on the other hand. T does
contain x, then T — |x} is a subset of B. Either way T has been accounted for.
Then we see that

f

#(subsets of 4) = #(subsets containing x) + #(subsets not containing x)

=2k 4 2k by inductive hypothesis
=(14+1)-2* by factoring
=22k by algebra

Akt

by laws of exponents.

31

2 ARITHMETIC

We have proved the following theorem using the Principle of Induction.
Theorem 4.1. If Aisa set containing n objects, then 4 has 2" subsets.

The proof of Theorem 4.1 suggests an agorithm for listing all subsets of a
given set. Suppose that we want to list all subsets of the set .4 = {ay,d,... .. a0}
Then the idea is, picking X = 410» to list all subsets of B={a,,42,--.d9}and then
to repeat each subset with element a, jadded in. How do we get all subsets of B?
We could list al of the subsets of [a,,.. .. dgjand Wait a minute. Let's go
forward rather than backward. We know that the set {a1} has two subsets, the
empty subset and {a,;. From these subsets we can get all subsets of {a,a,} by
repeating those just listed and adding - to get the additional sets {¢>jand (a1, a, ;-
This procedure should sound familiar. Reread algorithm SUBSET in Chapter 1
and see that the algorithm uses exactly this idea of adding in elements a; to
previously formed subsets.

QUESTION 4.1. A setis said to be even if it has an even number of elements.
Note that the empty set has zero elements and is thus an even set. If A is a set
with n elements, guess a formula for the number of even subsets of A. Prove your
formula by induction. (Hint: How many odd subsets does 4 have'?)

Example 4.2. We now return to the algorithm presented at the beginning of
Section 2 and use induction to prove that the algorithm does compute x“. Here
is the algorithm listed again with a comment between step 5 and step 6. (To avoid
two different uses of the integer n the algorithm now calculates x’.)

Algorithm EXPONENT

ster 1. Input X, r{r a natural number]

Step 2. i:=0,ans:=1
ster 3. While i<r do
Begin
STEP 4. @NS . = ansS * X
STEP 3. =i+ |
{Comment: Right now ans has the value x’.]
End ! step 3}

Ster 6. Output ansand stop.

This example is more complicated than previous ones because the proposition
we need to verify, the P,, is not explicitly presented. What we will dois use
induction to show that the comment inserted between step 5 and step 6 is true.

Before we do this, note that if the comment is always true, then it will be true
the last time it is encountered. The variable i is assigned the value O at step 2. and

82

2:4 THREE INDUCTIVE PROOFS

this value is incremented by 1 each time through the loop. This continues until
i = r, when the algorithm, upon returning to step 3, discovers that the condition
“While i < " is no longer true. Hence the algorithm proceeds to step 6 in which
it outputs the value of ans. If the comment is true at i = r, the value of ans equals
x", which is what the algorithm was supposed to produce.

The P, then is the statement that the nth time the comment is encountered
it 1s true. First we verify the base case. If n = 1, then we have just finished step 5
for the first time. At step 2 the value of O was assigned to the variable i. This
remains unchanged until step 5 when the value assigned to i was increased by L.
Thus the first time the comment is encountered the value of 1 is assigned to the
variable i. Similarly, at step 2 the value of 1 was assigned to the variable ans. This
remains unchanged until step 4 when the value of ans is multiplied by x. Thus the
first time the comment is encountered the value of x = x! is assigned to the variable
ans and thus P is true.

Now for the inductive hypothesis. We assume that the comment is true the
kth time it is encountered. To accomplish the inductive step, we must use this
assumption and show that the (k + 1)st time the comment is encountered it is still
true. The value assigned to i at the (k + 1)st encounter with the comment is the
value assigned at the kth encounter plus one. This value is k + 1. The value as-
signed to ans at the (k + 1)st encounter equals the value assigned at the kth en-
counter times x. The value assigned to ans at the kth encounter equals x* by the
inductive hypothesis. Thus

ans {after k + 1 encounters} = x - ans {after k encounters}

k+ l. 1
Question 4.2. Consider the following algorithm:

Algorithm SUM

Step |. Input r, set ans:= 0

Step 2. Forj=1tordo

STEP 3. Set ans := ans + j {Comment: Right now ans has the value

JU + 1/2

Step 4. Output ans and stop.
COMMENT. Step 2 “For j = ! to r do Step 3” is similar to the “While - - - do” loop
of Example 4.2, only more compactly written. It means that first we set j = | and
execute step 3; then we set j = 2 and carry out step 3, . .. ; until finally we set j = r
and execute step 3.

Use induction to show that this algorithm outputs r(r + 1)/2.

33

2 ARITHMETIC

Example 4.3. We now verify that the aigorithm DtoB, which finds the binary
representation of a number, is correct. For convenience we list the algorithm once
again.

Algorithm DroB

Step L. Setj:=0

Step 2. Divide m by 2 to obtain the quotient ¢ and the remainder r; place r into
the jth column of the answer (reading from the right and starting at
Zero)

Step 3. If g = 0, then stop.

STEP 4. Set m:=y¢

STEP 5. Setj:=j+1

SteP 6. Go to step 2

The proof will be by induction. Thus we need a statement P, with which to work.
Let n denote the number of bits in the binary representation of the integer m. The
statement P, will be that the algorithm correctly finds the binary representation
of all integers whose representation has exactly a bits.

First we check the base case P,. There is just one positive integer whose binary
representation has exactly one bit, namely m = 1. In this case at step 2, g will
equal 0, » will equal 1, and the base case holds. Back in Chapter | you undoubtedly
checked many other cases, so the result seems reasonable.

Now for the inductive hypothesis. We assume that whenever m is an integer
whose binary representation has k bits, then DtoB correctly finds these k bits. The
inductive step says that we must prove the same for an integer with (k + 1) bits:
Suppose that m is such an integer. Take m and step through the algorithm until
we get to step 6 for the first time. If m 1s even, r will be 0 and ¢ will be m/2. If m
is odd, r will be 1 and g will be (m — 1)/2. Consider the number g. We assert that
it has one fewer binary digits than m.

Question 4.3, How many bits are there in the binary representation of {(a) t4,
{b) 7, (¢) 13, and (d) 6? How can you get the binary representation of 14 from that
of 7?7 How can you get the binary representation of 13 from that of 6?

We may assume {by the inductive hypothesis) that the algorithm will correctly
produce the binary representation for ¢, since it has k bits. If we begin working
the algorithm on ¢, we shall get exactly the same sequence of remainders beginning
with j equal to 0 that we would have obtained from m beginning at the second
encounter of step 2 with j = 1.

If mis even, m = 2q. When a number in binary is multiplied by 2, its digits
are just shifted one space to the left und a zero, the first remainder, is attached at
the end. Consequently, the algorithm will produce the correct binary representation
for m. If m is odd, then m = 2¢ + 1. Here the binary representation for m can be

84

2:4 THREE INDUCTIVE PROOFS

obtained from the binary representation for ¢4 by shifting each digit one space to
the left and atttaching a 1 as the last digit. If m is odd, the first remainder is one,
so the algorithm will once again produce the correct binary representation. [J

EXERCISES FOR SECTION 4

1. Compare the idea for an algorithm contained in Example 4.1 with that of
Algorithm SUBSET in Section 1.7. In what ways do they agree and in what
ways do they differ?

2. Prove by induction that the anumber of 2-subsets of an n-set A equals
n(n — 1)/2. [Hint: Let x be any object of 4 and B = 4 — {x!. Then a 2-subset
of A is either a 2-subset of B or a l-subset of B. Count the number of subsets
in each case.]

3. Prove by induction that the number of 3-subsets of an n-set equals
nn — D(n — 2)/6. (Hint: Do Exercise 2 first.)

4. Consider the following algorithm:
Algorithm ODDSUM

SteP 1. Input n, set ans:=0
Step 2. Forj=1tondo
Begin
STEP 3. Sett:=2x%j~ |
STep 4. Set ans:=ans + ¢
{Comment: Right now ans has the value j*.)
End
STEP 5. Output ans and stop.

Use induction to show that this algorithm outputs n”.

5. Consider the following algorithm:
Algorithm FOURSUM

Step I. Input n, set ans:= 0

Step 2. Forj=11tondo
Begin
Step 3. Sett:=4%j -3
STEP 4. Set ans:= ans + ¢
End

Step 5. Output ans and stop.

Use induction to show that this algorithm outputs n(2n — 1.

85

2 ARITHMETIC

6.

10.

11.

12.

86

How many binary digits do each of the following pairs of numbers have?
(i) 6 and 3. (ii) 10 and 5.
(ili) 12 and 6. (iv) 5and 2.

(v) 7 and 3. (vi) 11 and 5.

What is the relationship between the pairs of decimal numbers whose binary
representations follow?

(i) 10 and 100. (i) 11 and 110.
(iii) 101 and 1010. (iv) 10 and 101.
(v) 1t and 11, (vi) 101 and 1011.

Suppose that m is a decimal number with binary representation s. Describe
the binary representation of the numbers n=4m, p=4m + 1, q = 4m + 2,
and r = 4m + 3 in terms of s.

Reread Algorithm SUBSET in Section 1.7. Let P, be the statement that the
kth time the comment after step 3 is encountered, it is correct. Prove that P,
is true for all positive integers k.

Design an algorithm to list all even subsets of an n-set and prove by induction
that the algorithm is correct.

Consider the following algorithm.

Algorithm SQUARESUM

Step 1. Input n, set ans:= 0
Step 2. Forj=1tondo
Begin
Step 3. Set k=]
STEP 4. Set ans:= ans + k
{Comment: Right now ans has the value j(j + 1)(2j + 1)/6.)
End {step 2}
Step 5. Output ans and stop.

Use induction to show that this algorithm outputs n(n + 1)(2n + 1)/6.
Consider the following algorithm.

Algorithm MAX

STep |. Input n, a positive integer, and x,,...,X;,...,X,, real numbers.
Step 2. Set max := x,
Step 3. Forj = 2to ndo
Step 4. If x; > max, then max := x;
STeEP 5. Output max and stop.

Use induction to show that this algorithm outputs the maximum of the

NUMDErS X, Xo,. .. .X,.

13.

14.

15.

16.

17.

2:4 THREE INDUCTIVE PROOFS
Consider the following algorithm.

Algorithm BUBBLES

Step 1. Input n, a positive integer, and x,,...,X;,...,X,, real numbers
Step 2. Forj=1ton—1do
Step 3. If x; > x;,,, then do
Begin {Trade the values of x; and x;. .}
STEP 4. Set temp .= X;
Step 5. Set x;i=x;1
STEP 6. Set X, :=temp
End {step 3}
Step 7. Output x, and stop.

Figure out what this algorithm does. Prove your guess by induction.

Find a formula for the sum | —~2 + 3 —4 + -+ + (—1)"n. Then prove that
your formula 1s correct.

Here is a general statement of the Multiplication Principle: Suppose a counting
procedure can be divided into n independent and successive stages. If there
are ¢, outcomes for the first stage, and for each of these there are ¢, outcomes
for the second stage, and for each of these initial outcomes there are ¢; out-
comes for the third stage, and ..., and finally for each of these there are ¢,
outcomes for the final stage, then the total number of possible outcomes equals
¢y ¢y - ¢, Prove this principle by induction on n.

Here is a short algorithm.

Step 1. Input n (n a positive mteger)
Step 2. Seti:=n,set ans:=0
Step 3. While i > 0 do

Begin

STEP 4. ans:=ans + i
STeEP 5. i:=i-1
End

STeEP 6. Output ans and stop.

{a) If the input is 4, what answer does this algorithm produce?

(b) Explain why this algorithm will always stop regardless of what positive
integer n is used as the input.

(¢) In general, what is the answer (in terms of n) produced by this algorithm?
Express this answer as simply as possible.

Use induction to prove that 3 divides n® + 3n> + 2n for every nonnegative

integer 1.

87

2 ARITHMETIC

2:5 EXPONENTIATION REVISITED

The algorithm EXPONENT, verified by induction in the preceding section, cor-
rectly computes x". We discuss briefly the resources needed for implementation.
There are four memory locations required, for x, i, ans, and n. It is possible to
construct an exponentiation algorithm similar to EXPONENT that does not re-
quire separate memory locations for both n and i; however, the resulting procedure
is not as clear as the one we have presented.

Time is the other resource to assess, but what does that mean? If we run an
algorithm on a big, fast computer, then we require less time than on a small, slow
machine. If we run an algorithm on a time-sharing minicomputer, the time re-
quired depends upon the number of users and what they are computing. Maybe
if we program the algorithm in FORTRAN, it will run faster than in Pascal.
In this course we do not want to be concerned with specific machines (hardware)
or specific languages (software). Instead we concentrate on a theoretical (but useful)
measure of time.

The fundamental operations that occur in our algorithms are assignment
statements (:=), comparisons (If j < n, then ---), additions and subtractions
{+ and —), and multiplications and divisions (* and /). In a more advanced course
you may study the time required for each of these operations. We’ll assume that
assignments happen instantaneously, that comparisons, additions, and subtrac-
tions each require a modest amount of time, and that multiplications and divi-
sions are the most time-consuming operations. These assumptions certainiy hold
true when human beings make these calculations! We also assume that one mul-
tiplication and one division require the same amount of time. In fact, that is
essentially the case for computations on computers.

Now look at Algorithm EXPONENT. We focus on step 4, since it is the only
step that involves (time-consuming) multiplications. That is, we estimate the time
needed to run this algorithm by counting the number of muitiplications. Step 4
is executed once for each integer between 0 and (n — 1) inclusive. Thus exactly n
multiplications are executed. At first blush you might think that any algorithm
that computes x" must require this many multiplications, but that is not the case.

Example 5.1. To form x* using EXPONENT requires four multiplications. Al-
ternatively, we could form x? with one multiplication and then multiply x? by
itself to obtain x* with just two multiplications. We can denote this by
x*=1'xx'x'x=(x"x){xx)=x*x%

There are four multiplications in the original algorithm. If you look at the second
expression, you see three multiplications; however, the quantities within the two
pairs of parentheses are identical. Consequently, we can compute x* with two
multiplications. Similarly, we can find x> with just three multiplications as indi-

88

2:5 EXPONENTIATION REVISITED
cated by
X3 =[x x)(x-x] x=x* x

For x® we require only three multiplications as follows.

X8 =[x x) (x-%)] (- x)=x* x>

In English, it takes one multiplication to form x2, one additional multiplication
to form x*, and one final multiplication to combine these two products.

Question 5.1. Using the ideas suggested by the preceding example, how many
multiplications do you need to form x" for n =7, 11, 12, and 16?

Answering the previous question suggests that efficient evaluation of x" is
related to the binary expansion of the integer n. Thus, for example, since n = 25 =
16 + 8 + 1 we could write

Xx25 = x16. x8.
use three multiplications to obtain x2, one additional multiplication to obtain x'°
and two more multiplications to combine the three factors. Thus it seems natural
to suspect that there is an efficient algorithm to produce x" that contains an
algorithm to find the binary representation of the integer n. We use the Algorithm
DtoB whose validity we have verified at the end of the previous section. For
convenience we repeat the algorithm here and trace another instance.

Algorithm DtoB

Step 1. Setj:=0

Step 2. Divide m by 2 to obtain the quotient ¢ and the remainder r; place
r in the jth column of the answer (reading from the right)

SteP 3. If ¢ = 0, then stop.

STEP 4. Setm:=gq

STEP 5. Setj:=j+ 1

Step 6. Go to step 2

Example 5.2. If we use the algorithm DtoB to compute the binary representation
of m = 25, we get the following table of the values (Table 2.5).

To jazz this algorithm up so it will produce the value of x™, we need to add
three additional steps. First we need

Step 0. Input x, m, set ans :=1

89

2 ARITHMETIC

Table 2.5

Variables J m q r

Values after step 2 0 25 12 1
1 12 6 0
2 6 3 0
3 3 1 1
4 1 0 1

to initialize the algorithm. Next, where necessary, we need to multiply the inter-
mediate result into the answer. We insert

Step 2.5. If r =1, set ans := ans * x

Finally, we need to insert a step that doubles the exponent on x.

Step 5.5. Setx:=x*Xx

To see how this works, we trace the new algorithm leaving x unspecified.

Example 5.3. The trace of the algorithm to find x> is shown in Table 2.6.

Table 2.6
Variables J m q r x ans
Values after 2.5 0 25 12 1 x x
1 12 5 0 x? x
2 6 3 0 x* x
3 3 1 1 x8 x°
4 1 0 1 x1® x2%

Notice that four multiplications are required to compute the powers of x cor-
responding with each power of 2. Three multiplications are required to multiply
the various factors together, and there is an additional cost of five divisions to
form the binary representation.

Question 5.2. Trace the result of applying the above algorithm to find x*”. How

many multiplications and divisions does the algorithm make? Do the same for
52
x4

The straightforward algorithm to produce x™ required m multiplications. This
new algorithm based on binary representation seems to do much better. In the next
section we shall study just how good this algorithm is and introduce the mathe-
matics and jargon needed to discuss this question.

2:6 HOW GOOD IS FAST EXPONENTIATION?

EXERCISES FOR SECTION 5

1.

Modify the algorithm EXPONENT so that upon input x and an integer n > 0,
x" is computed using only n — 1 multiplications. (Be sure to cover the case
when n = 0.)

Modify the algorithm EXPONENT so that it uses only three memory locations
for x, n, and ans.

Among the integers n with 16 < n < 33, which integer requires the most mul-
tiplications to form x" using the new algorithm from this section?

For each of the following integers n, find a factorization of x" that will allow
its computation by few multiplications (a) n = 28, (b) n = 48, (¢) n = 53, and
(d) n=56. '

Trace the result of applying the algorithm presented in this section to the prob-
lem of finding 2'°.

Notice that x!® = x5 - x? = (x%)3. Which factorization provides the more
efficient evaluation of x'8?

Notice that x® = (x - x - x)? and that x* = (x - x - x)>. Do these factorizations
lead to more efficient computations than using the methods of this section?

Look back at your algorithm in Exercise 2.4 designed to evaluate nx using
only addition. Find a way, using the binary expansion of n, to calculate nx
using fewer additions.

2:6 HOW GOOD IS FAST EXPONENTIATION?

In Example 5.3 we saw that computing x23 based on binary representation re-
quired 12 multiplications and divisions while the traditional method would require
25 multiplications. In this section we investigate just how fast this binary exponen-
tiation method is. We list the algorithm once again, named in anticipation of the
analysis of its running time:

Algorithm FASTEXP

Step 0. Input x, m, set ans := 1

Step 2. Divide m by 2 to obtain quotient g and remainder r
Step 2.5. If r =1, set ans := ans * x

Step 3. If g =0, then stop.

STEP 4. Setm:=gq

STEP 5.5. Set x:=x*x

STEP 6. Go to step 2

Question 6.1. Why have we omitted steps 1 and 5?

971

2 ARITHMETIC

To compare the time of FASTEXP with that of EXPONENT, we count the
number of multiplications and divisions. Thus given an integer m, how many mul-
tiplications and divisions will FASTEXP require to form x™? Notice that every
time step 2 is executed, there will be exactly one division. Similarly, every time
step 5.5 is executed, there will be exactly one multiplication. Now look at step 2.5.
Sometimes this step results in a mulitiplication and sometimes it doesn’t. We have
two options. We can either think hard and try to figure out exactly how many
times step 2.5 requires a multiplication. Or we can be blasé and say that in the most
time-consuming case step 2.5 will require a multiplication every time it is executed.
The most time-consuming case is also called the worst case. Thus for the worst-case
analysis we count one multiplication every time that step 2.5 is encountered.

For this particular algorithm we can carry out both the precise and the blasé
or worst-case analyses. For more complex procedures the worst-case analysis
is commonly used and gives an upper bound on the time of the exact counting
analysis. -

The Worst-Case Analysis. The number of multiplications and divisions required
to implement FASTEXP is no more than the number of times steps 2, 2.5, and
5.5 are encountered. Since we never execute steps 2.5 and 5.5 without having first
executed step 2, we know that the number of multiplications and divisions is no
more than three times the number of times step 2 is encountered. So the analysis
depends on the number of times 2 can be divided into m. This is essentially the
logarithm of m.

Logarithms. Given integers p and g with 27 = ¢, then p is said to be the logarithm
to the base 2 of the number gq. We shorten this to p = log(g). Here is the defining
relationship in symbols:

p'=log(q) if and only if 2° = g.

Note that while base 10 is common in high school algebra and base e is typically
used in calculus, in discrete mathematics and computer science logs are always
assumed to be base 2 unless otherwise specified.

Example 6.1. If p =3, then 2°=8. Consequently, log(8) =3. Similarly,
log(32) = 5 and log(1) = 0.

Question 6.2. Calculate the following:

log(23) log(2®) log(2% log(2!9
2log(2) 2log(4) 2log(6) 2log(8)

Question 6.3. Explain why log(2P) = p and 2!°¢@ = ¢4,

92

2:6 HOW GOOD IS FAST EXPONENTIATION?

Remember that if n is a positive integer, then 27" = 1/(2"). Thus if g = 1/(2"),
then log(g) = —n.

We can mimic the definition of logarithm given above for some numbers that
are not integers. Suppose that y is a rational number; that is, y = a/b, where a
and b are integers. Then

log(x) =y,
where
x =2 =2 = (291P,

In English, 2 to the y is the bth root of 2 to the a. For example, 2%/3 is the cube root
of 4 while 23/2 is the square root of 8. Notice that x = 2” is always a positive num-
ber for all rational numbers y. Thus the domain of the function f(x) = log(x) con-
tains only positive numbers.

Here are two rules that help us work with exponents:

Sn_sm=Sn+m’ (A)
and
(7)1 = 572 ®)

What do these rules tell us about logarithms? They are equivalent to the fol-
lowing properties, which are convenient for manipulating logarithms.

log (ab) = log(a) + log(b), (A)
and
log (a®) = blog(a). (B)

Here’s why (A’) is true in general. Suppose that n = log(a) and m = log(b). Then
a=2"and b =2" Thus

ab =2"-2"
= Qntm by (A).
This means that

log(ab) =n+m
= log(a) + log (b). |

Property (B’) follows similarly from (B). (See Exercise 2.)

93

2 ARITHMETIC

It would take us too far afield to attempt to define 2* rigorously for arbitrary
real numbers y or log(x) for arbitrary positive real numbers x. Luckily, it is not
necessary. What we are really interested in is the integers that are near to log(x).

Floor Function. Given a real number x, the floor function of x, denoted by | x|, is
defined to be the largest integer that is less than or equal to x. For example, |3]| = 3,
[3.11) =3, [15.773] = 15, and | —4.15] = 5.

Ceiling Function. Given a real number x, the ceiling function of x, denoted by
fx], is defined to be the smallest integer that is greater than or equal to x. For
example, [3] =3, [3.11] =4, [15.773] = 16, and [—-4.15] = —4.

Note that for any number x, {x] < x < [x].

Question 6.4. Find |%|, [3*], |log®)], [log(13)], |—%), [log(25)], and
{log(13.73)].

We now have the vocabulary to answer the question of how many times we
encounter step 2 in the execution of FASTEXP. Essentially, we want to know how
many binary digits there are in the representation of the number m. For example,
the two binary numbers with exactly two digits are 10 and 11; these represent the
decimal numbers 2 and 3, respectively. Similarly, the decimal numbers 4, 5, 6, and
7 are all represented by three-digit binary numbers. In general, the decimal number
m will be represented by a binary number with exactly r digits if and only if

27" laem< 2,

Since 0 < ¢ < d if and only if log(c) < log(d), we can take logs of the previous
inequality to get

log(2" 1) < log(m) < log(2"
which simplifies to
r—1< log(m) <r.
The floor function allows the convenient representation
r—1=/log(m)] or r=1+|log(m)|.
What we have learned is summarized in Figure 2.6.
Thus in using FASTEXP to find x™, step 2 will be executed exactly 1 + |log(m)|

times. So in the worst case the algorithm will require 3(1 + |log(m)|) < 3 + 3log(m)
multiplications and divisions.

94

2:6 HOW GOOD IS FAST EXPONENTIATION?

Decimal number «——— Number of binary digits
m 1+ llog (m)]

P lem<cor r.

Figure 2.6

There are two differences between the worst-case analysis and the exact count.
First FASTEXP terminates at step 3 when g = 0. Thus step 5.5 is executed once
less than step 2. The second difference occurs because the multiplication in step 2.5
is not executed as often as step 2 is encountered. A little thought will convince
you that the number of times this multiplication is made equals the number of 1s
in the binary representation of the number m. Thus the exact number of multi-
plications and divisions required by FASTEXP equals

2(1 + [log(m)]) — 1 + #(1 bits in m). (€)

At times this exact count may be useful, but on the whole the upper bound given
by the worst-case analysis is easier to work with.

Now let us contrast these two algorithms. EXPONENT requires n multiplica-
tions to compute x". Such an algorithm is called linear. The name is appropriate
because if one plots the number of multiplications as a function of the exponent,
the result is a straight line. Any such linear algorithm has the property that if one
doubles the problem size, then the number of steps required (and thus the amount
of time required) approximately doubles.

Example 6.2. Suppose that a particular algorithm reads in an integer n and
requires 3n + 7 steps. If n = 100, the number of steps is 307. If n is doubled to
200, then the number of steps equals 607. Notice that this is almost double the
original 307 steps.

That doubling the input size to a linear algorithm does not exactly double the
number of steps is a consequence of the fact that not all straight lines go through
the origin. Thus how much the doubling rule is off depends on the y-intercept. In
general, if the size of n is large compared to the y-intercept, then the doubling
rule will be fairly accurate.

FASTEXP requires no more than 3 log(n) + 3 multiplications and divisions to
compute x". [Notice that 3log(n) + 3 is more convenient to work with than the
more precise result in (C).] Such an algorithm:is called logarithmic. If we plot the
number of steps as a function of the input size, we get a logarithmic curve. A log-
arithmic algorithm has the significant property that one must square the size of the
input before the number of steps (and thus the time) approximately doubles.

95

2 ARITHMETIC

Example 6.3. Suppose that a particular algorithm has an integer n as input and
requires no more than 9{log(n)| steps. As in the preceding example if we input
n = 100, the number of steps is no more than 9|log(100)]. Since 26 = 64 and
27 = 128, | log(100)] = 6. Thus the number of steps is no more than 9 - 6 = 54. If
we double the input size to n = 200, the number of steps is no more than 9 - 7, since
|1log(200)| = 7. If we square the input size to n = 10,000, the number of steps is
now no more than 9}1og(10,000)] =9 - 13 = 117.

The contrast of the two preceding examples illustrates why logarithmic al-
gorithms are much preferred to linear algorithms. In the next section we shall
examine the logarithm function and others in more detail.

EXERCISES FOR SECTION 6

1. Calculate the following. Then match up the answers from the left-hand column
that agree with one from the right-hand column.

log(2 - 2) log(2) + log(4)
log(2-4) log(4) + log(8)
log(2 - 8) 41log(16)

log(4 - 8) 2log(2)

log(2?) 2log(8)
log(8?) log(2) + log(8)
log(16%)

2. Explain why log(a®) = blog(a).
3. Find |log(n)] if n = (a) 10, (b) 100, (c) 1000, and (d) 10,000.
4. Decide whether each of the following is true or false.

(a) log(2°®) = 56. (b) 2183 = 1og(3).
(c) log(2-3) = log(3). d) log3) = —1.

(e) |log(17)] = 4. (f) log(2®) =4.

(9) log(=2)= —1L. (B log(3) = log(3)/3.

(i) log(3) = —2log(3).
Correct those that are false.

5. Show that log(10") < 4t for all positive integers .

6. Find the smallest integer k such that log(100t) < kz for all positive integers .

7. Find (@) [13], (B) [13] () 53], (@) [log(73)], (e) [log(73)], (f) [*4),
(9) [log(4°)], and (k) [log((2°)*)].

8. Suppose that f(n) = 7n + 11. Find the quotient f(2n)/f(n) if (a) n = 100,
(b) n = 200, and (c) n = 1000.

10.

11.

12.

13.

14.

15.

16.
17.
18.

19.

2:7 HOW LOGARITHMS GROW

Suppose that f(n) = 3n> + 4n + 5. Find the quotient f(2n)/f(n) if (a) n = 100,
(b) n = 200, and (¢) n = 1000.

Suppose that f(n) = 4{log(n)| + 13. Find the quotient f(n?)/f(n) if (&) n = 100,
(b) n =200, (¢) n = 10,000, and (d) = 20,000.

(a) Show that if f(n) is a linear function of the form f(n) = a-n, where ais a
constant, then f(2n) = 2f(n). Find an equation expressing f(n?) in terms of
f(n).

(b) Suppose that g(n) is a logarithmic function of the form g(n) = blog(n).
Then express both g(2n) and g(n?) in terms of g(n).

Use induction to show that FASTEXP is correct. (Hint: Reread the proof that
DtoB is correct.)

How many multiplications and divisions are performed if FASTEXP is used
to compute x®%?

For each of the following values of m and r, verify that m has r binary digits,
where r = 1 + |log(m)]:

(@ m=2,r=2 (b)y m=3,r=2. (c) m=4r=3.
dm=7r=3. (e m=8,r=4. (fym=15r=4.

(g m=37,r=6. (h) m=100,r=".

Is the following true or false? The number of binary digits in the number m
is r = [log (m)]. Explain.

Calculate 2% and (2%). Explain, in general, why a®" does not equal (a?).
Does log (a®) equal (log(a))*? Explain.

The Post Office now charges 25 cents for a letter weighing up to | ounce and
then 20 cents for each additional partial or whole ounce. If x is the weight
of a letter in ounces and x > 1, then find a formula for the cost of mailing
that letter.

Suppose that R(x) is the function that takes a real number x and rounds it
to the nearest integer. If x =j + .5, where j is an integer, then R(x) =j + ;
that is, R rounds up. Find a formula for R(x) using the floor and/or ceiling
functions.

2:7 HOW LOGARITHMS GROW

In the previous section we distinguished between EXPONENT and FASTEXP
by looking at the functions that count the maximum number of divisions and
multiplications that each would perform for a given input. This kind of analysis
is crucial to any comparison of algorithms.

97

2 ARITHMETIC

To appreciate fully the advantages of a logarithmic algorithm over a linear
algorithm, we must have a thorough understanding of the logarithm function. Our
first observation about the logarithm function is that it gets arbitrarily large. By
that we mean that given any positive integer M, no matter how large, once n is
sufficiently large f(n) = log(n) will be larger than M. To see this, note that
log (2M) = M by definition. Thus

if n > 2M, then log(n) > M.

Many functions get arbitrarily large, for example, f(n) = n, g(n) = n* and the
square root function h(n) = \/; Note that g(n) = n* grows more rapidly than f(n) =

n, which grows more rapidly than h(n) = \/ﬁ How fast does the logarithm function
grow in comparison with these functions? Our principal result about the logarithm
function is that its growth is very slow, in fact, even slower than the square root
function. The remainder of this section is devoted to this property. We begin with
the following fact about exponents.

Lemma 7.1. If r is an integer greater than 5, then 2" > (r + 1)2.

Mathematicians call a particular mathematical statement a lemma if it doesn’t
appear very interesting but is useful in proving something else. Notice that the
conclusion of the above lemma is false for r = 1, 2, 3, 4, and 5 as shown in Table
27.

Table 2.7

r P r+1)?
1 2 4

2 4 9

3 8 16

4 16 25

5 32 36

6 64 49

7 128 64

8 256 81

Lemma 7.1 will be proved by induction. The proposition P, will be that 2" >
(r + 1)>. The base case will be r = 6, and we shall show that the truth of P,
implies the truth of P, ;.

Proof. We have the base case from Table 2.7. Next we assume that 2 > (k + 1)?
and use this to show that 2**! > [(k + 1) + 1]* Now

98

2:7 HOW LOGARITHMS GROW

b+l — .0k by algebra
> 2k + 1)? by inductive hypothesis
=2k* + 4k + 2 by algebra
=k*+4k+4+(k*—2) byalgebra
=(k+2?+ (k> -2 by algebra
> (k + 2)° by ignoring (k? — 2), which
is positive for k > 1. O

We use Lemma 7.1 to show that the logarithm function is eventually smaller
than the square root function.

Theorem 7.2. If n > 64, then +/n > log(n).

Proof. Suppose that k is the largest integer with 2* < n, that is, k = |log(n)].
Then by definition

PAMES) il
These two inequalities will produce the proof. First, if

gk+1 o n,
then, by taking logs of both sides, we get

k+1>log(n). (A)
Second, if n > 64, then k > 6 and Lemma 7.1 applies. Thus
n>2%> (k + 1%

Taking square roots of the two ends, we get

Jn>k+ 1. (B)
Combining inequalities (A) and (B) gives \/r—z > log(n). |
Question 7.1. Using a calculator, find the smallest integer N such that JN >

log (N). Does this contradict Theorem 7.2? (Comment: if your calculator does not
work in base 2, see Supplementary Exercises 9 and 10.)

Corollary 7.3. If n > 64, then n/log(n) > \/n.

2 ARITHMETIC

G9

LT 2m31g
0

(%)30] ==

ot

100

2:7 HOW LOGARITHMS GROW

Proof. ‘Since n > 64 implies \/ﬁ > log(n), then if n > 64,

n n
ogt) ~ U5 V™ .

Corollary 7.4. The function h(n) = n/log(n) gets arbitrarily large.

Proof. As above we mean that given any (large) integer M, if n is big enough,
then h(n) is bigger than M. Suppose that M > 8. Then if n > M?, by the previous
corollary,

h(n) > /n > JM? = M. O

Mathematicians use the word corollary for a statement whose proof almost
immediately follows from a previous result. Corollary 7.4 looks inconsequential,
but we shall have an important need for it later in this chapter.

We illustrate the growth of these functions in Figure 2.7, however, we shift
our point of view on the domain of these functions. Until now we have been in-
terested in counting problems, involving integers and functions evaluated at inte-
gers. Thus we write functions like f(n) = log(n), g(m) = \/r;, and h(r) = r?, where
n, m, and r represent integers. Furthermore, we think of our functions as having
integer domains, usually the nonnegative or positive integers. On the other hand,
most of the functions we are using can be defined for domains of real numbers.
For example, f(x) = log(x) has domain all positive reals, g(x) = \/; has domain
all nonnegative reals, and h(x) = x? has domain all real numbers. When we specify
a function in terms of the variable x, we mean that x may take on any real value
in its domain; in general, the context will make the appropriate domain evident.
For graphical illustration we choose to consider the functions x/log(x), \/; and
log(x) as functions of real variables and to graph them as continuous curves as
in Figure 2.7, rather than just plot the functions at integer values.

In the next section we develop the standard notation for comparing functions
and their growth rates.

EXERCISES FOR SECTION 7

1. Find an integer N such that if n > N, then n/log(n) > 100.

2. Find the smallest integer m such 2™ > m?. Then show that if r is any integer
at least as large as m, then 2" > r2.

3. Find the smallest integer g such that 2¢ > (g + 1)*. Use induction to show
that if 7 is any integer with r > g, then 2" > (r + 1)°.

101

2 ARITHMETIC

4, Use the preceding exercise to show that the cube root function is eventually
larger than the log function.

5. In Question 7.1 you found the least integer N such that \/]V > log(N). Prove
that if n > N, then \/ﬁ > log(n).

6. Show that \/ﬁ/log (n) gets arbitrarily large.
7. What is the largest value that 2'°8™/¥* can achieve for any positive integer n?

8. Suppose that f(n) = log(n) and g(n) = log(f(n)). The following table lists some
values for n, f(n), and g(n). Determine the values that correctly replace the
question marks.

n f(n) 9(n)

ICRNCENCN S R
O RN = O
oo-!s-:»—-o|

9. With g(n) defined as in Exercise 8 comment on the remark, “For practical
purposes, log(g(n)) < 8.”

10. The function g(n) of Exercise 8 is sometimes written as g(n) = loglog (n). Find
a simple expression for loglog(22"). Explain why loglog(n) is defined only
for n > 1. Then explain why loglog(n) gets arbitrarily large for large values
of n.

11. Which function is larger: log(n) or loglog(n)? Explain.
12. For what function m(n) is it true that loglog(m(n)) = 2loglog(n)?

2:8 THE “BIG OH” NOTATION

In Section 2.7 we began, to explore a hierarchy of functions that might appear in
the analysis of algorithms. We saw that log(n) < \/ﬁ < n/log(n) < n, provided that
n is large enough. Consequently, we would prefer an algorithm that used J/n steps
to one that used n/log(n) steps on a problem with input size »n. Since most algo-
rithms are analyzed on a worst-case basis, we don’t want our distinctions to be too
" finely drawn. Computer scientists and mathematicians have come to use what is
called the “big oh” notation when discussing the efficiency of algorithms.

102

2:8 THE “BIG OH” NOTATION

Definition 1. Let f(n) and g(n) be functions whose domains are the positive inte-
gers and whose ranges are the positive reals. Then we write

fm)=0@m) or f=0()

(read “f of n is big oh of g of n”” or “f is big oh of g”) if there is a positive constant
C such that

fn) < C-gn
for all positive integers n.

Example 8.1. Suppose that f(n) = 5n and g(n) = n. To show that f = O(g), we
have to show the existence of the constant C in Definition 1. The best way to
show the existence of such a C is to actually produce it. Here the example has
been cooked up so that the constant C is staring us in the face. For if we choose
C = 5, then f(n) actually equals C - g(n). Notice that we could have selected a larger
number for C. For instance, if we choose C = 6, then f(n) = 5n < 6n = C - g(n). So
we write f(n) = O(n).

Example 8.2. Suppose that f(n) = 5n + 8. To show that f(n) = O(n), we must
produce a constant C such that f(n) < C - n for all n. If we try C = 5, this doesn’t
work, since f(n) = 5n + 8 is not less than 5n [e.g.,, f(1)=13>5=5"1]. We need
C to be at least 13. To see that C = 13 will work, note that 8 < 8xn. Thus

Sn+8<5n+ 8n=13n.
Let’s look at a function that is not linear.

Example 8.3. Suppose that f(n) = n>. We show that f(n)is not big oh of n, denoted
f(n) # O(n). To accomplish this, we must show that there cannot exist a constant
C that satisfies the big oh definition. Suppose that there were such a constant C.
We would need

n?<C-n

for all n. However, if n > C,
n*>C-n
Combining these two inequalities shows that for n > C,
n?>C-n>n?

Thus no C can work.

103

2 ARITHMETIC

Example 8.4. Suppose that f(n) = n® + 3n — 1. Then
fn)=n*+3n—1

< n? 4+ 3n, since subtraction makes things smaller
< n? + 3n?, since n < n? for integer n
= 4n?,

Thus, letting C = 4, we have f(n) = O(n?).

Question 8.1. Show that f(n) = 12n*> — 11 and h(n) = 3n* + 4n + 11 are both
O(n?).

These examples illustrate the big oh notation for linear and quadratic functions.
Each time we find a simple function that is an upper bound on the original func-
tion. We emphasize that it is the growth of the functions that is of interest to us.
Any linear function f has the property that f(2n) is almost double f(n). Furthermore,
the larger n is, the more exact this rule. In contrast a quadratic function 4 has the
property that h(2n) is almost quadruple h(n). Similarly, the larger n is, the more
exact this rule.

We call an algorithm linear (or quadratic) if there is a function f{(n) that counts
the number of the most time-consuming steps the algorithm performs, given a
problem of size n, and f(n) = O(n) (or O(n?)). Let us see how this idea might help
us decide which algorithm to select in a given situation.

Example 8.5. Suppose that we have two algorithms, say L and Q that each
correctly solves a particular problem. L is linear and takes 20 minutes on a problem
of size 10; Q is quadratic and takes 5 minutes on the same problem of size 10.
Suppose that we have a problem of size 100. Which should we use? L ought to
take about 200 minutes to solve the problem, and Q ought to take about 500
minutes to solve the problem. Why the difference? Because a tenfold increase in
problem size ought to produce a hundredfold increase in running time for a
quadratic algorithm while only a tenfold increase in running time for a linear
algorithm.

Question 8.2, Suppose that L is a linear algorithm that solves a problem of size
100 in 8 minutes while C is a cubic algorithm that solves a problem of size 100
in 2 minutes. For a problem of size 200 which algorithm would you use? How
about a problem of size 1000? {First you will have to decide what we mean by a
cubic algorithm.}

It might be that, say, an algorithm we have called linear is faster than linear,
that is, f(n) = O(n) and f(n) = O(g(n)) for some function g(n) smaller than n. It
might be that it is our analysis that is weak and only demonstrates f(n) = O(n).
We shall discuss this in more detail in the next section.

104

2:8 THE “BIG OH” NOTATION

Since there are linear, quadratic, and cubic algorithms, you should not be
surprised to learn that this hierarchy generalizes to arbitrary exponents.

Example 8.6. If f(n) =n'" + 3nt5 — 7n'® + 20n% — 10n, then we show that
fln) = 0@'?).

fn) < n” + 30135 + 7010 4 20n° + 10n,
since for n > 0, changing negative coeflicients to positive makes the function larger;
<n'” +3n'7 + 7n'7 + 2007 + 10n*7,
since making exponents larger makes the function larger;

=(143+47+20+10n'7
= 41n*7,

Question 8.3. Show that f(n) = 2n" — 6n° + 10n? — 5 = O(n").

The first theorem of this section says that any polynomial is big oh of its term
of highest degree. The proof mimics the previous example. We let a; denote the
coeflicient of the term of degree j in the following theorem.

Theorem 8.1. Let f(n)=a, n*+a;_; - n* '+ - +a,-n+a, where d is a
positive integer and ag4, a;_4,. . . ,a; and a, are constants. Then f(n) = O(n%).

Proof. First we change all the coefficients of f to positive numbers. This can only
increase the value of f(n) for positive integers n. Next we note that n/ < n?ifj < d.
Thus

It

f(n) ad'”d+ad—1'nd—1+"'+aj-nj+--~+a0
‘ad['nd+"'+|ajl'nj+"'+‘aoi
S‘adl""d'*'"'+Iaj|‘"d+"‘+\aol'nd
=(iad|+"‘+'ajl+"‘+lao|)'nd

=C-n?

A

provided that C is equal to the sum of the absolute values of the coefficients in
the original polynomtal. (i

The big oh notation has certain peculiar features. For example, when we write
f = O(g) we are not writing down an equation of the usual sort. It does not express
a symmetric relation; that is, we do not write O(g) = f nor does it follow that
g = O(f), although it might in some instances. Here are some basic properties
about big oh that are heipful in manipulations.

105

2 ARITHMETIC

Theorem 8.2. If f = O(g), then for any constant a,
(i) a- f=0(g)
If, in addition, h = O(k), then
@) f +h=0(g + k),
and
(ii}) f-h=0(g- k).
Finally, if f = O(g) and g = O(h), then

iv) f = O(h).

Example 8.7. Suppose that f(n) = 5n> + 2n. Then f(n) = O(n*) by Theorem 8.1.
Next consider w(n) = 157> + 6n = 3f(n). By (i) of Theorem 8.2 (as well as by
Theorem 8.1.), w(n) = O(n°).

Example 8.8. Suppose that f(n) = 3n + 7 and h(n) = 2n* — n + 8. We know that
f = O(n) and that h = O(n?) by Theorem 8.1. By (ii) of Theorem 8.2 f + h =
O(n + n?). Since n + n% = O(n?), we can use part (iv) of the Theorem 8.2 to obtain
f + h = O(n?). This result also follows from Theorem 8.1, since f(n) + h(n) =
2n* + 2n + 15.

Example 8.9. Suppose that f(n) = n* + 3n + 7 and h(n) = n® + 17. Since f =
0(n?) and h = O(n®), by part (iii) f - h = O(n>). Notice that we didn’t multiply out
f - h, but if we had, the result would be a polynomial of degree 5.

Question 8.4. If f(n) = 3n° + 13n> — 10 and g(n) = 2n* + 3n2, find h(n) and k(n)
such that /' + g = O(h) and f - g = O(k). Justify.

Proof of Theorem8.2. We prove the second assertion leaving the remaining three
proofs for Exercise 6. Suppose that C and C’ are constants such that f(n) < C - g(n)
and h(n) < C’ - k(n). Let D equal the larger of C and C’. Then

Sy + h(in) < C-g(n) + C - k(n)
<D-gn)+ D - kn)
=D (g(n) + k(n))
= 0(g(n) + k(n)). O

106

2:8 THE “BIG OH” NOTATION

Here is a summary of what we know about comparisons between functions.

First, for all positive n

l<Vn<n<ni<ndi< -

Thus we also have these big oh results:

and in general,

ni<

< <
1= 0(/n),
Jn = o),
n = 0(n3),
n? = 0(n3),
n=0w) ifi<].

You may have noticed that we have been avoiding the log function. Partly,
this is because log(1l) = 0 and so the log function doesn’t have range the positive
reals and thus does not fit into the big oh definition. However, we know that if n
is large enough (n = 16), then log(n) < \/; Furthermore, as shown in Table 2.8
and Exercise 8, log(n) is always less than twice \/Z Thus we want to say that

log (n) = O(+/n).

Table 2.8
n log(n) \n log (n)/+/n
1 0 1 0
2 1 14--- 07---
4 2 2 1
5 232--- 223--- 1.03---
6 258 244 --- 1.05---
7 280 -- 26 1.06- -
8 3 28--- 1.06---
9 316 - 3 1.05---
10 332--- 316 - 1.05---
16 4 4 1
32 5 56--- 08---
64 6 8 0.75

We would also like to say that

1 = O(log(n));

107

2 ARITHMETIC

however, this also doesn’t satisfy our present definition of big oh. Since log(1) = 0,
there is no constant C such that 1 < Clog{n) for all n. For n > 2, it is the case
that 1 < log(n), and so the constant C = 1 will work for n sufficiently large (larger
than 1). What this suggests is that we need a stronger definition of big oh.

Definition 2. Let f(n) and g(n) be functions with domain the positive integers.
Then we say

f(m)=0(@gm) or f=0()
if there are positive constants C and N such that

fi) < C-g()

for all integers n > N.

With this more general definition we can say that 1 = O(log(n)), since C = 1
and N = 2 work. Also log(n) = O(y/n) using C = 2. We shall need this stronger de-
finition only when we want to show that an algorithm performs f(n) = O(log(n))
steps on a problem of size n. Such an algorithm is called logarithmic.

Definition 2 is the standard definition of the big oh machine. We have em-
phasized the simpler form because it is almost as widely applicable and it is easier
to use. Furthermore, any pair of functions f and g with f = O(g) in the first defi-
nition also has f = O(g) in the second definition.

Our hierarchy of functions now looks like

l<logm)<Vn<n<n?<n®<---<ni<---

This hierarchy of functions is worth remembering. In a typical analysis you
will have a (complicated) function f(n) and will need to find g(n), as small and simple
as possible, so that f = O(g). The best candidates for g are the functions listed above.

Example 8.10. Suppose that f(n) = log(n) - \/n—§ - sin{n). We want to find g from
the list of basic functions above so that /' = O(g). First, recall that the value of the
sine function never exceeds 1. Next we note that \/n° = n- J/n. Thus

f(n) < log(n) - J/n®
=log(n)-n- \/;
= O(log (n) - \/n - n)
= 0(J/n-/n-n) = 0m?.

108

2:8 THE “BIG OH” NOTATION

In many of the examples of this section when f = O(g), it has also been the case

that g = O(f). This is a common occurrence in problems about polynomials but
will not generally be true. We know from Example 8.3 that n = O(n?), but n? # O(n).
Also, in the preceding example, although f(n) = O(n?), it is not true that n? =
O(f(m)), although we shall not go into the tricky details.

EXERCISES FOR SECTION 8

1.

Find a constant C that demonstrates that f(n) = O(g(n)) for each of the
following.

(a) f(n)=17n+ 31, g(n) = n.

(b) f(n)=21n— 13, g(n) = n.

(© f(n)=12n% + 3n + 15, g(n) = n>.

d) f(n)=3n%—4n+ 5, g(n) = n’.

(e) f(in)=2n*>—n—1,g(n =n

(f) f(n) =0.2n + 100,000, g(n) = n.

(9) fin)=n3+3n% +5n+ 11, g(n) = n>.

() f(n) =n3+ 3n% + 51+ 11, g(n) = n*.

Which of the following is True and which False?

(@) n = O(n), (b) n = O(n?), (¢) n = O(rn>), (d) n* = O(n), (e) log(n) = O(n),
(f) n = O(log(n)), (9) n = O(n - log(n)), (k) n - log(n) = O(n’), and

@) 1/(n* + 1) = 0(1/n?).

- For each true statement, find a C that demonstrates the big oh definition.

Here is the functional hierarchy: for n sufficiently large.
l<log)<Jn<n<ni<--<n<--

Add all the following to this hierarchy. (a) 1/n, (b) 1/(n?), (c) n*'?,
(d) n/log(n), () n*/log(n), (f) n/(log(n))?, and (g) the cube root of n, n'/3.

Answer the following with explanations for your answers:
(@) Is f(n) = 0.5n - log(n) + 3n + 15 = 0(n?)? O(n)?

(b) Is f(n) = (3n% + 5n — 13)* = O(n°)?

(¢) Is f(n) = (3 log(n) + n)* = O(n?)?

d) Is f(n) = 1/n* + 1) = O(1)?

(e) Is 4™ = O(log(n) + 1)?

(f) TIs (452 = o)

Some functions f(n) are listed in column A of the following table. Some func-
tions g(n) are listed in column B. For each f in column A find the smallest
g in column B with the property that f = O(g).

109

2 ARITHMETIC

6. Prove parts (i), (iii), and (iv) of Theorem 8.2.

7. Suppose that g is a function such that g(n) > 0 for all n. Express f(n) — g(n)
as big oh of some combination of f(n) and/or g(n). Then prove your answer.
Can you deduce a similar result for f(n)/g(n)?

8. Fill in the values of Table 2.8 for n = 11,12,...,15. See Supplementary Exer-
cises 9 and 10 about computing log(x).

A

7+ 32n + 14n*

17 + log(n*)

log (n")

(log (n"))?

sin (n?)

2%(n + 1)

(n? + n-log(n)

2n/nn

(log(n)

vn - log(n)
3

JVnd + 3n?

4103 (n)

log(3™)

nlos (n)

(n + Vn)?

(n+)n® +1)
(log(n))*/n

2

)0.5

5 + (log(n)* — n/2" + 0.01 + n®
1+449+-+n?

11
L4 +o+ 0+

274
(log (m)/n)"

—_

(m

....
Q
o

MMN§I

£

=3=N=:33

“(log (m))
n

—
=

9. Show that »n* is not O(n?).
10. Show that 2n? + 5n is not O(n).

11. Is it true that for every pair of functions f and g either f = O(g) or g = O(f)?

2:9 2" # O(p(n)):

PROOF BY CONTRADICTION

We have seen that the polynomials form a natural hierarchy of functions against
which we can compare the counting functions that really interest us. Is it the case
that.all our counting functions are O(p(n)) for some polynomial p(n)? No! The first
natural example is the function 2" that counts the number of subsets of a set with

n elements. Here we have a negative (and significant) result.

110

2:9 2" # O(p(n)): PROOF BY CONTRADICTION

Theorem 9.1. If r is a constant bigger than 1, then the function r" is not O(p(n))
for any polynomial p(n).

What does it mean to say that a function f(n) is not big oh of the polynomial
p(n)? Well, if f were O(p), then there would exist constants C and N such that
f(n) < C- p(n) for all n = N. If f is not O(p), then there are no such constants.
Specifically, there is no constant C such that f(n) < C - p(n) for all sufficiently large
n. Such a fact can be harder to demonstrate than the fact that one function is big
oh of another.

The proof of Theorem 9.1. will employ the technique of proof by contradiction.
This technique is frequently used without notice if the statement to be proved is
simple enough. We did it, for instance, in Chapter 1 in Theorem 9.1 and in (this
chapter’s) Example 8.3. The technique is almost as important as Mathematical
Induction, but isn’t as completely specified. We digress to explain.

Proof by Contradiction. We pause first to think a bit about what a mathematical
proof is. Although a proof can be described precisely in logical terms with axioms,
truth tables, and rules of inference, we choose to be more informal. The aim of a
proof is to establish the validity of some assertion 4. It may be a simple statement
like “14 is an even integer,” or it may be in the form of an implication, like “If
n > 2, then log(n) > 1,” or it may be in another form, like “There is an integer
that is divisible by both 3 and 7.” In a (usual) direct proof, we begin working with
known mathematical truths and proceed logically until we deduce the truth of
assertion 4. For example, look back at the proof that log(a - b) = log(a) + log(b)
in Section 6. This was a straightforward, direct proof.

A proof by contradiction follows a different pattern. Suppose that we want
to prove an assertion A. In a proof by contradiction we begin by assuming that
assertion A is faise. Then we argue using that assumption until we come to a
contradiction. The contradiction will be the denial of some mathematical fact. For
example, we might deduce that 0 = 1 or that 5 is an even number. But now what?
The absolute world of mathematics assumes that every statement is either true or
false. Thus our original assertion A is either true or false. We assumed that it was
false and deduced a contradiction. Thus it must be that assertion A is true.

To begin a proof of assertion 4 by contradiction, we must formulate the
negation of A, that is, we must know what it means for A to be false. If assertion
A is simple enough, its negation is easily formed. We emphasize that exactly one
of assertion A and its negation is true, but for the moment we don’t care which.
Instead we concentrate on formulating the negation of a given statement A.

Example 9.1. Recall that an integer greater than 1 is called a prime if it cannot be
written as the product of two smaller positive integers. The assertion that 7,891,011
is a prime number” is negated by the assertion that “7,891,011 is not a prime
number” or “There are integers ¢ and d with | <¢ <d and ¢-d = 7,891,011.”

111

2 ARITHMETIC

Question 9.1. Write down the negation of each of the following assertions.
(a) 353 is not a prime number.
{b) 238 is an even integer.

In contrast, if assertion A4 is complicated, care might be required to correctly
obtain the negation of 4. We illustrate with several examples.

Example 9.2. Consider the assertion that “n® + 3n? + 2n is always divisible by
3.” (This can be proved by induction on n: see Exercise 4.17.) What this statement
says precisely is that for every integer n, the quantity n> + 3n% + 2n is a multiple
of 3. The negation of this assertion is that there is at least one integer, say m, with
the property that m*® + 3m? + 2m is not a multiple of 3.

In general, an assertion of the form “For every instance, something happens”
is negated by “There is at least one instance where that something doesn’t happen.”

Question 9.2. Negate each of the following assertions.
(a) Every integer greater than one has a prime divisor.
(b) Every integer of the form 4n + 1 is a prime.

(c) Every prime greater than 2 is odd.

Example 9.3. The assertion that “For some integer n, n®> + n + 1 is divisible by
3” can be negated by the assertion that “For every integer n, n> + n + 1 is not a
multiple of 3.”

In general, an assertion of the form “There exists at least one instance when
something happens” is negated by an assertion of the form “for every instance,
that something doesn’t happen.”

Question 9.3. Negate each of the following assertions.
(a) For some integer n, 3n + 1 is a prime number.

(b) For some integer n, log(n) > n.

(c) For some integer n, n> > 2"

Many mathematical assertions are of the form “If statement H is true, then
statement C is true.” We frequently use the shorter form IF H, THEN C. Statement
H is called the hypothesis and statement C is called the conclusion. Some assertions
that do not appear to be in this form of hypothesis and conclusion can be rephrased
as such. For example, the assertion “For every integer n, n(n + 1)/2 is an integer”
can be rephrased, “If nis an integer, then n(n + 1)/2is an integer.” Here H represents
the assertion that » is an integer while C represents the assertion that n(n + 1)/2
is an integer.

112

2:9 2" # O(p(n)): PROOF BY CONTRADICTION

Example 9.4. The assertion “If nis prime, then n* + 1 is even” has as its hypothesis
that n is prime and as its conclusion that n*> + 1 is even. The negation of this
assertion is that there exists a prime n with the property that n + 1 is not even.

What is the negation of the assertion
“IF H, THEN C™?

The negation of this is the assertion that statement H is true and statement C is
false. We shorten this to

“H AND (NOT C).”

Question 9.4. Identify the hypothesis and conclusion of each of the following
assertions. Then negate each.

(a) If nis even, then n® + n + 1 is prime.

(b) If n? + n + 1 is prime, then n is even.

(c) The integer n® is divisible by 4 whenever n is divisible by 6.

If we want to construct a proof by contradiction for the assertion “IF H,
THEN C,” we begin by assuming its negation, namely that both statement H is
true and statement C is false, “H AND (NOT C).” We then work logically until
we reach the sought-after contradiction.

To illustrate the technique of proof by contradiction, we present an easy
version of Theorem 9.1: If r > 2, then r” # O(1).

Proof. We begin by assuming that “H AND (NOT C),” specifically that r > 2
and r" = O(1). From the (first) definition of big oh there is a constant C such
that for all n

< C L
Since r > 2,

2" <",
Now we combine these two inequalities and choose n to be an integer greater than
C. This yields

<< C<n
This provides a contradiction, since 2" > n for every integer n. O

We now construct a proof by contradiction for Theorem 9.1. To make the
arithmetic go a little easier, we shall prove the statement “2" is not O(p(n)) for

113

2 ARITHMETIC

any polynomial p(n).” This is the same statement as in Theorem 9.1, except that
r = 2 has been substituted. A similar proof would work for any constant r > 1.

Proof of Theorem 9.1. The negation of the assertion to be proved is “There exists
a polynomial p with 2" = O(p).” Thus we begin by assuming this fact. By Theorem
8.1 there is an integer a such that p = O(n®), and so by part (iv) of Theorem 8.2 we
have that 2" = O(n®). By definition, there is a constant C with
< C-n®
for all positive integers n. Taking logarithms of both sides of this inequality, we get
log(2") < log(C - n%)
or
n < log(C) + log(n®) by properties of log,
or

n <log(C)+ a-log(n) by properties of log.

We divide by log(n) to get

IN

log(n) ~ log(n)

Since for n > 2, log(n) > 1,

n
m < log(C) + a.

The right-hand side of this last inequality is a constant number, and by
Corollary 7.4 the left-hand side is a function that grows arbitrarily large. These
two statements form a contradiction, as we had hoped. We conclude that 2" is.
not O(p) for any polynomial p. O

In practice, a proof of an “IF H, THEN C” assertion often begins with the

logicaily equivalent “IF (NOT C), THEN (NOT H).” We digress briefly to explain
and begin with an analogy.

Example 9.5. Imagine that you are sitting in an ice cream pariour. There is a
sign in front of you that says, “Try our scrumptious butterscotch raspberry syrup.

114

2:9 2" # O(p(n)): PROOF BY CONTRADICTION

Only on top of creamy French vanilla ice cream.” Before you lose too much
concentration, let’s rephrase this sign in a more mathematically structured way.
If you want b.r. syrup, then you have to have F.v.ice cream. More simply, IF
B R SYRUP, THEN F V ICE CREAM. Here the syrup is analogous to the
mathematical statement H and the truth of H corresponds to your having the
special syrup. The ice cream is analogous to the mathematical statement C and
the truth of C corresponds to your having the vanilla. What about the statement
H AND (NOT C)? This translates into b.r. syrup without F.v. ice cream and
negates the original sign.

Example 9.5 (continued). Suppose that as you get up to leave the ice cream
parlour you notice a sign on the back wall that says. “If you don’t have our
French vanilla ice cream, then you can’t have our butterscotch raspberry syrup.”
Recall that the sign in the front says [F B R SYRUP, THEN F V ICE CREAM,
while this one say IF NO F V ICE CREAM, THEN NO B R SYRUP. A little
reflection will convince you that these signs mean the same thing.

As suggested by the previous example, given the assertion [F H, THEN C
we can form what is called its contrapesitive by negating both statements and
reversing their order. Thus the contrapositive of the original

IF H, THEN C 1))
is the assertion

IF NOT C, THEN NOT H.)

As in the ice cream example a statement and its contrapositive are logically
equivalent, that is, either both are true or both are false.

What other possibilities could there be? Well, it might be that the statement
in (1) is true and the statement in (2) is false, or vice versa. Let’s see why neither
of these cases can happen. First suppose that the statement of line (2) is true and
the statement of line (1) is false, that is, '

H AND (NOT C) 3)
is a true statement. Combining (3) and (2), we get
H AND (NOT H),

which is a contradiction. Next suppose that statement (1) is true and statement (2)
is false, that is,

(NOT C) AND NOT(NOT H)

115

2 ARITHMETIC
or

(NOT Cy AND H 4)
is a true statement. Combining statements (1) and (4) yields

(NOT C) AND C,

another contradiction. We conclude that statements (1) and (2) are either both
true or both false. In other words, they are logically equivalent.

Example 9.6. Recall that a function is one-to-one if whenever d s d’, then f(d) #
f(d’). The condition that specifies this one-to-one property is of the form IF H,
THEN C, where H is the statement “d # d”” and C is the statement “f(d) # f(d').”
Thus this property is the same as the property [F NOT C, THEN NOT H. In
other words, a function is one-to-one if whenever f(d) = f(d’), then d = d’. This
second, but equivalent, definition is often easier to check, since working with
equalities can be easier than with inequalities.

Given an assertion IF A, THEN B, we can also form its converse, namely
the assertion IF B, THEN A. In the following example we illustrate that the truth
of a particular assertion does not determine the truth of the converse.

Example 9.7. The ice cream parlour does allow a customer to have plain French
vanilla ice cream, that is, B is true but A4 is false.

Question 9.5. Form the converse and the contrapositive of each of the assertions
from the preceding question as well as Lemma 7.1 and Theorem 7.2.

Sometimes it is the case that both an assertion and its converse are true, that
is, both “IF A, THEN B” and “IF B, THEN A” are true. In that event we say
that A is true if and only if B is true, which is abbreviated A IFF B. We shall
see examples of this sort of assertion in Chapter 4.

EXERCISES FOR SECTION 9

1. Write out a detailed proof that 4” is not O(p) for any polynomial p.

2. Regardless of the truth or falsehood of the following, write the negation of
the following assertions.
(a) 14 is even.
(b) 6 is prime.
(€ 14+24+-+n=nn+1)/2

116

2:9 2" # O(p(n)): PROOF BY CONTRADICTION

(d) There is an integer divisible by 3 and by 7.

(e) For every integer n, n(n + 1)/2 is also an integer.

(f) Every set has more 2-subsets than 1-subsets.

(9) Every even number has an even number of 1s in its binary representation.
(k) If f(n) = O(g(n)), then f(n) < g(n).

(i) There is a set that is larger than its complement.

() If x?is odd, then x® is odd.

(k) If x® is divisible by 8, then x is divisible by 2.

(1) 1728 is a sum of four cubes.

(m) Every even composite number is the sum of two primes.

. Determine for which of the following functions g(n) it is true that 2" = O(g(n)).

(@) g(n)=n?, (b) g(n) =2", (¢) g(n) =n'°, (d) g(m)=10", (e) g(n)="2",

(f) gln) = 216, and (g) gln) = 2.

. For each of the following statements identify the hypothesis H and the con-

clusion C, rewriting the statements if necessary:

(@) Ifn>2 thenn<n®—2.

(b) A set with n elements has 2"~ ! even subsets.

(¢) x" can be calculated with exactly log(n) + 1 multiplications when n is a
power of 2.

@ 1+3+ - +Q2r=1)=r%

(e) All quadratic polynomials are O(n?).

(f) Every even composite number is the sum of two primes.

(g9) Every even number has an even number of 1s in its binary representation.

. Write the negation, the converse, and the contrapositive of each statement in
the preceding problem.

. (Another Analogy) Many serious hikers have a cardinal principle that they
won’t hike if they aren’t wearing two pairs of socks. Break this principle up
into statements H and C and rephrase it in the IF H, THEN C paradigm.
Form the negation.

. Form the contrapositive and the converse of the hikers and socks assertion
that you created in the preceding exercise.

. Each of the following allegations can be put into the form IF H, THEN C.
After identifying the statements that are H and C, form the converse and the
contrapositive of each.

(a) If n is even, then n/2 is an integer.

(b) If n=p-q(where 1 < p, g < n), then n is not a prime.

(¢) Ifr is odd and s is odd, then r + s is odd.

(d) x? is divisible by 2 provided that x is divisible by 2.

(e) x an odd integer implies (x + 1)/2 an odd integer.

For each statement above, decide whether it is true or false. Do the same with
the converses and the contrapositives.

117

2 ARITHMETIC

9. Identify the IFF statements in the preceding problem, that is, those allegations
for which both the statement and the converse are true.

10. Beginning with the assertion, “If r > 2, then " = 0(1),” use definition 2 of big
oh to reach a contradiction.

11. Prove Theorem 9.1 using definition 2 of big oh.

2:10 GOOD AND BAD ALGORITHMS

We have introduced a variety of algorithms, some correct, some incorrect, some
efficient, some inefficient, some transparent, some quite complex. We have also
begun to talk about what is known as the space and time complexity of an
algorithm, that is, the number of variable memories needed and the time needed
to run the algorithm (or at least an upper bound on the number of key operations
like multiplication). In this section we shall formulate what is meant by a good
algorithm.

Our description of “good” will depend upon the efficiency of the algorithm,
but we must always remember that an algorithm must be correct to be “good” in -
any sense of the word. We can easily write efficient algorithms, like the following.

Algorithm SPEEDY

Step 1. Stop.

This is the world’s shortest algorithm and in that sense the most efficient; however,
this algorithm has no relevance to any problem in the real world!

Space resources are important. We need enough space to read in the problem
addressed by the algorithm, and we shall try to be conservative with additional
memory needed for new variables. For example, in Section 2.1 we saw how we
could interchange the values of two variables without using an additional memory
location. However, our first priority will be to minimize running time and then
secondly to minimize storage. The time requirement is a parameter commonly
studied and one that leads to a rich and important theory in computer science.

We have already stated that we do not want to analyze time in terms of specific
computers or programming languages. We want a procedure for comparing two
algorithms that (correctly) solve the same problem. But we want a fair com-
parison. For example, if we run algorithm EXPONENT with x =2 and n =3, it
certainly would be quicker than algorithm FASTEXP with x = 10,000,000 and
- n= 123,456,789, and yet we have claimed that the latter algorithm is faster or
more efficient. Or think of just one algorithm. Of course, it runs faster when we
enter few and small pieces of data rather than larger ones. For example, we can
much more quickly list all subsets of a 2-set than of a 20-set.

Thus we must compare execution times on the same data set or at least on
data sets of the same cardinality. We do this by introducing a parameter that

118

2:10 GOOD AND BAD ALGORITHMS

measures the size of the data set. How we measure this size depends upon the
problem at hand. For instance, we could describe the size of the data for the
algorithms DtoB and BtoD by stating the number of digits in the given decimal
or binary number. In SUBSET we could describe the size of the problem by giving
the size of the set all of whose subsets we want to list. [n EXPONENT and
FASTEXP we could specify n, the power to which we are raising x, or the number
of bits needed to store n.

Typically, we shall begin by supposing that the data or the input to the algo-
rithm is of size n. This may mean that we have n bits of information or that the
integer n is the crucial variable. Then we shall estimate the time of running the
algorithm in terms of the variable n. Often we shall denote the time as some func-
tion f(n) that counts the number of multiplications or the number of comparisons
or the number of some time-consuming operation. This function will be known
as the (time) complexity of the algorithm. Sometimes we shall be abie to determine
f(n) explicitly; other times we shall make a worst-case analysis and get an upper
bound on f(n). Most frequently, we shail be happy to determine that f = O(g) for
some hice function g.

Our goal is simplistic: We want to divide correct algorithms into one pile
cailed “good” and another pile called “bad.” Just as philosophers who study lan-
guage arrive at the meaning of the word good through comparisons, so shall we.
Suppose that we have two correct algorithms to solve a particular problem, say
A and B. Let a(n) denote the complexity of 4 and b(n) denote the complexity of
B. Assume that we know a = O(f) and b = O(g). [Of course, if we know a(n) and
b(n) explicitly we can compare them directly.]

Definition. If an algorithm A has complexity a(n) = O(f(n)) and an algorithm B
has complexity b(n) = O(g(n)), we say that A “appears to be” as efficient as B if
f = 0(g). If, in addition, g = O(f) we say that A ‘““appears to be” equivalent to B.
Otherwise, if f = O(g) and g is not O(f) we say that 4 “appears to be”” more efficient
than B.

In practice, we shall replace “appears to be” with “is” in the above definitions.
You might think that our definition is overly wishy-washy; however, restraint is
forced on us by the big oh comparisons. The problem is that it might be difficult
to bound the complexity of one or both of the algorithms in question. For example,
we might be able to prove that a(n) = O(n>) and that b(n) = O(n*). In that instance
we would say that 4 appears to be more efficient than B, since n® = O(n*) and
n* is not O(n). In reality, it might be the case that a(n) = n'1/* while b(n) = n*/?
in which case B is actually more efficient than A. Thus the quality of our com-
parison depends on how good a big oh estimate we have.

Example 10.1. Suppose that the time complexity function of algorithm A is given
by a(n) = n? — 3n + 6 and that of algorithm B by b(n) = n + 2. Then 4 is a O(n?)
algorithm while B is a O(n) algorithm. In this case we would naturally say that B
is more efficient than A.

119

2 ARITHMETIC

Thus we measure the efficiency of algorithms using the hierarchy of functions
developed in the preceding sections. An algorithm with complexity n’ will be more
efficient than an algorithm with complexity #/ if and only if i < j. An nlog(n) algo-
rithm is more efficient than a quadratic algorithm but less efficient than a linear
algorithm, since for n large enough,

n < nlog(n) < nn < n?

Let’s go back to our original question of what constitutes a good algorithm.
Of course, if we have two different algorithms to solve the same problem, then we
shall consider one better if it is more efficient in the sense described above. But
we make a global judgment now about what is known in computer science circles
as a “good” algorithm.

Definition. Suppose that A4 is a correct algorithm with complexity function a(n).
Then A is called good (or polynomial) if there exists a polynomial p(n) with a = O(p).
A is called bad if a is not O(p) for any polynomial p. If a(n) > r* for some constant
r (with r > 1), then A is called exponential. A problem that does not have a good
algorithmic solution is called intractable.

There are some important ideas here. An algorithm will be called good regard-
less of what polynomial gives the bound on a(n). It might be that the polynomial
is huge, and so the algorithm takes a long time to run. That would not be a very
“good” situation from the point of view of efficiency, but in theory at least the
situation is not as bad as having a(n) = 2", an exponential function.

Now we see the relevance of Theorem 9.1. It states that " s O(p(n)) for any
polynomial p(n). Thus if we find an algorithm with complexity 2" or 3" or even
1.000005", this is an exponential algorithm, not a polynomial one.

For example, look at the algorithm SUBSET. Our input to the algorithm is
a set of n elements, and we want as output all 2" subsets. The size of the input
data is n. We systematically create and list all subsets of the n-set. Since there are
2" subsets, our list making will need 2" steps and the complexity will be at least
2", an exponential function. Thus SUBSET is an exponential algorithm, and the
problem of listing all subsets of an n-set is intractable.

But why do we make such a harsh judgment about an exponential algorithm?
As we all know from the news media, exponential growth is considered to be very
fast growth into large numbers, perhaps dangerously out of control when related
to, for example, population. Is this also the case for algorithms? Does this mean
that exponential algorithms are too large or take too long? Surely, modern com-
puters can handle large amounts of calculation extraordinarily quickly.

Let’s do some arithmetic that is specific to an IBM PC but that would be
approximately the same for any microcomputer. The PC can perform about 17,800
single-digit multiplications in a minute. Suppose that we compare seven algorithms
that do multiplications and whose complexities are given by the functions log(n),

120

2:10 GOOD AND BAD ALGORITHMS

\/r_z, n, n%, n3, 2" and 10". What size problems could we reasonably solve on the
PC? Table 2.9 shows various values of n, the seven complexity functions, and
roughly the amount of time needed to run the algorithms. (We stop filling in the
table once the numbers become inhumanly large!)

Table 2.9

n log(n) Jn n n? n 2" 10"

8 001 sec 0.01 sec 0.027 sec 0.216 sec 1.73 sec 0.863 sec 3.9 days
16 0013sec 0.013sec 0.054sec 0.863 sec 13.8 sec 3.7 min 10,689 cent.
24 0015sec 0.017sec 0081 sec 1.94sec 46.6 sec 15.7 hr s
32 0017sec 0019sec 0.108 sec 3.45sec 1.84 min 168 days
64 0.02 sec 0.027sec 0.216sec 13.8 sec 14.7 min 19,717,160
cent.
128 0.024 sec 0.038sec 0.43 sec 55 sec 2 hr
256 0.027sec 0.054sec 0.86 sec 3.7 min 16 hr

Thus we see that we will be in trouble as soon as we have at least 24 pieces
of data on which we must run an exponential algorithm. Of course, we could
switch over to minicomputers, which typically run about 100 times as fast, but
our problem size still demands too much computing with data of size 32 or larger.
Thus there really is a problem when we must do an exponential amount of com-
puting on even a moderate amount of material.

EXERCISES FOR SECTION 10

1. Suppose that algorithm A has compléxity function a(n) and algorithm B has
complexity function b(n). In each of the following cases decide whether the
algorithms are equivalent or if not, which is more efficient.

(i) a(n) = 36. b(n) = 2n — 10.
(i) a(n) = n>. b(n) = n.
(i) a(n) = n*. b(n)=n— 6.
(iv) a(n) = 2n>. b(n) = 3n>.

(¥) a(n) = n* + 2n. b(n) = n® + n.

2. Explain why n" # O(r") for any constant r.
3. Find a function that is not O(n").

4. In Exercise 1.7.6 you designed an algorithm that lists all n(n — 1)/2 subsets of
size 2 of a set A containing » elements. Suppose that you count as one step
the formation and output of a single subset. [s your algorithm good or bad?

121

2 ARITHMETIC

5. Suppose that A contains n objects and we have an algorithm that outputs all
elements of the Cartesian product A". Counting one step as the formation and
output of one element of the Cartesian product, is this algorithm good or
exponential?

6. Show that the algorithm to settle the Satisfiability Problem for a Boolean
function (see Section 1.10), which consists of trying all possibilities, is bad.

2:11 ANOTHER LOOK BACK

By far the most important ideas in this chapter have been the proof techniques of
induction and contradiction. Their use permeates all of mathematics and computer
science. Indeed the practitioners of these disciplines regularly apply these methods
without acknowledgment. We have met typical instances of proofs using these
techniques.

Induction proofs work well on set theory problems, on summation formulas,
and on algorithmic problems, that is, in proving that an algorithm does what it is
supposed to do in all cases. The Principle of Induction gives us a three-step format
that allows us to set up and attack problems in a straightforward way. This doesn’t
mean that proof by induction will always be easy and automatic. We shall still
need to think carefully and creatively about each instance.

Proofs by contradiction arise naturally for statements of the form, “Object 4
does not have property P.” Often we can begin with the assumption that 4 has
property P, do some algebra or a logical argument, and arrive at a contradiction.
Often some experimentation is needed to find a reasonable argument, leading to,
say, 0 = 1. Probably, the best advice for both kinds of proofs is to study the ex-
amples and ‘theorems in the text and to try to imitate these in the exercises.

This chapter also presents the central computer science and mathematical
ideas about the analysis of algorithms. We now have a sequence of tasks to per-
form when we look for an algorithmic solution to a problem. Not only must we
come up with the algorithm, but we must also prove that it is correct in all cases
and we must analyze its time and space requirements. The worst-case analysis is
commonly used, since we can often estimate an upper bound on the maximum
number of the most time-consuming steps. Notice that these upper bounds may
be crude, too large, and it may be that our algorithm works more efficiently.

Of course, even if we know an exact analysis of the number of steps performed,
we have no guarantee that there isn’t a faster algorithm. For example, how do
we know that computing x" can’t be done by an algorithm faster than FASTEXP,

- that is, by an algorithm that is faster than logarithmic? We haven’t discussed this
issue at all. There are other ways to analyze algorithms. For example, we might
ask for typical or average-case behavior. Or we might be more demanding and
count all kinds of steps: multiplication, division, addition, subtraction, compari-

122

SUPPLEMENTARY EXERCISES FOR CHAPTER 2

sons, assignment statements, and so on. Such details are suitable for more advanced
courses in theoretical computer science.

Most algorithms presented in the computer science literature include a dis-
cussion of worst-case behavior, and this discussion inevitably entails use of the
big oh jargon. The big oh definitions are subtle yet important; it is well worth doing
lots of exercises on this concept. It is the primary way that computer scientists and
mathematicians distinguish between the quality of algorithms. There are a number
of important problems (including searching and sorting, which we will consider in
Chapter 6, and the fast Fourier transform, which we will not consider) that have
naive algorithms that are O(n?) and better algorithms that are O(nlog(n)). The
existence of the better algorithms greatly expands the size of the problems that
are feasible to solve. One further satisfactory point about the O(nlog(n)) sorting
algorithms is that we can also prove that every algorithm (of a certain type) that
solves a sorting problem must use at least cnlog(n) steps for some constant c. That
tells us that we’ve found essentially the very best algorithm.

In the SUBSET problem and algorithm we realized that every algorithm must
form and list all 2" subsets, and so is necessarily exponential. We have a lower
bound on the number of steps needed; often it is difficult to obtain such lower
bounds. The distinction between polynomial and exponential algorithms is the
most actively researched area within computer science. We shail soon see many
problems for which every known algorithm is exponential, but no one has proved
that there is no polynomial algorithm. (The Satisfiability Problem of Section 1.10
is one such example.) Thus upper bounds, but not lower bounds, are known, and
it is not yet known whether the problems are inherently intractable. This leads
to the heart of some fascinating, unsolved problems in computer science.

SUPPLEMENTARY EXERCISES FOR CHAPTER 2

1. Show that if there is a counterexample to Fermat’s Last Theorem, then there
exists a counterexample in which no pair of the integers x, y, and z has a
common factor. Use this fact to show how large z must be in any counter-
example.

2. It wasclaimed that Fermat’s Last Theorem is known to be true for n < 125,080.
From the previous problem you know that z can’t be ! (for instance). Suppose
that you wanted to write down the digits in this hypothesized counterexample.
If you could write 100 digits a minute for the rest of your life (with no resting
time), would you be able to transcribe this example?

3. (a) The distinguished mathematician Gauss was a child prodigy. Legend
has it that at the age of 10 he was asked to add the integers 81,297 +
81,495 + 81,693 + - - - + 100,899. Almost immediately he wrote one num-
ber, 9,109,800, on his slate. Was he correct?

123

2 ARITHMETIC

10.

124

(b) Let a and b be constants. Show that the sum of the arithmetic progression
a+(a+b)+(a+2b)+ -+ (a+ nb)is given by (n + 1)(a + nb/2).

Prove by induction that if b is a number such that 1 < b < n(n + 1)/2, then
there is a subset of {1,2,...,n} whose sum equals b.

Prove by induction that if a # b, then

an+an_1.b+...+aj.b"‘j+...+b"
n+1_bn+1

a—b>b

a

Consider the following algorithm:

STep 1. Input r,s {r and s positive integers}
Step 2. While s > 0 do

Begin

STEP 3. ri=r—s

Step 4. s:=s5-—1

End {step 2}
STep 5. Output r, then stop.

(a) Trace through this algorithm when 12 and 3 are input for r and s,
respectively.

(b) Show that this algorithm must terminate no matter what positive integer
values of r and s are input.

(¢) What is the output in terms of r and s?

Giventhesumt + 2(t — 1) + - - + j(t — j) + - - - + ¢, guess a formula in terms
of ¢t for this sum. Use induction to prove that your guess is correct.

Determine the sums: 12, 2% — 12,32 — 22 + 1%, and 4% — 32 + 27 — 1% Then
deduce and prove a general formula for the sum

nZ_(n_1)2+(n_2)2_,,,+(_1)n+1.12‘

Your calculator probably has logarithms to the base 10 or to the base e.
Here’s how to change from base 10, written log, , (x), to base 2, log(x):

log () = 2810 _ 33515108 - (x).

log,4(2)

Prove the above identity. [Hint: Begin with x = 2'°8(]

Find a formula for changing natural logarithms, logs to the base e, to base
2 logarithms. Justify your formula.

11.

12.

13.

14.

15.

16.

17.

SUPPLEMENTARY EXERCISES FOR CHAPTER 2

Count the number of comparisons made in the algorithm MAX of Exercise
4.12 and in BUBBLES in 4.13. Which is more efficient? Count the number
of assignment statements in the two algorithms. Which is more efficient from
the assignment point of view? Suppose that an assignment can be done in 1
second and a comparison in 2 seconds, then which algorithm is more efficient?

Suppose that you have a computer that can only perform addition, subtrac-
tion, and multiplication. Write an algorithm that upon input x, a positive real
number, calculates and outputs |/ |.

Suppose that you have a computer that can perform addition, subtraction,
and multiplication, but not division. Design an algorithm that upon input of
real numbers x and y (with x # 0) calculates and outputs | y/x].

Show that if f = O(g), then 2/ = 0(29). Is the converse true? Give a proof or
counterexample.

Here is one of the oldest and most famous results in all of mathematics.
Theorem. There are infinitely many primes.

(a) What is the negation of this theorem?

(b) If the theorem is false, suppose that ¢ equals one plus the product of all
the primes. Is ¢ prime?

(¢) Is the ¢ you formed in part (b) divisible by 2? 3? 57 Any prime?

(d) Prove the Theorem by contradiction.

Every positive integer can be expressed in the form 3n, 3n + 1, or 3n + 2 for

some integer n.

(a) Explain why every prime number greater than 3 is of the form 3n + 1 or
3n + 2.

(b) Explain why a number of the form 3n + 2 must have a prime divisor of
the form 3n + 2.

(c) Prove that there are infinitely many primes of the form 3n + 2. [Hint:
Suppose that py,p,,...,p; are all the primes of the form 3n + 2. Then
consider 3(p; " p, - - p) + 2] :

Here we prove that (x + 1)* does not equal x? + 2x + 1. The proof is by
contradiction, so we begin by assuming the negation:

(x+1D)P=x>+2x+ 1L
We subtract 2x + 1 from both sides to obtain

(x+ D2 =(2x+ 1) = x>
Next we subtract x(2x + 1) to get

(x+ 1) —(2x + 1) — x(2x + 1) = x* — x(2x + 1),

125

2 ARITHMETIC

18.
19.

20.

126

which by factoring becomes
(x+ 1)? —(x+ D2x 4+ 1) = x*> — x(2x + 1).
Next we add (2x + 1)?/4 to both sides:

(x+ 1)? — (x + D2x + 1) + 2x + 1)%/4
=x? — x(2x + 1) + 2x + 1)*/4.

Since both sides are perfect squares, we can factor them into

x+ 1) 2x + D)
[(x+1>———2 :I——[x— .]

Taking square roots of both sides, we obtain

(x+1)_(2x2+1)=x_(2x2+ 1)
x+1)=x
1=0.

This contradiction forces us to conclude that (x + 1)> does not equal
x? + 2x + 1. What is wrong with this proof ?

Prove Theorem 9.1 for arbitrary r > 1.

There are functions f(n) such that f(n) # O(p(n)) for any polynomial p(n) and
f(n) < r" for every positive r and sufficiently large n. Find such a function.

Here is another exponentiation algorithm.

StEP 0. Input x and m {m a positive integer}
SteP 1-6. Algorithm DtoB {assume that the output is in string s, a (j + 1)-
bit binary number}
STEP 7. ans := x
STEP 8. Fori:=(j— 1) down to 0 do
STep 9. If the ith entry of s is 1,
then set ans := x * ans * ans
Otherwise, set ans := ans * ans
Step 10. Qutput ans and stop.

[comMENT: “For i := (j — 1) down to 0 do” means that i successively takes on
the values (j — 1),(j — 2),...,0 and for each value performs step 9.] Run this
algorithm on some data to check that it correctly calculates x™ for m, a positive
integer. Then compare the efficiency of this algorithm with that of FASTEXP.

ARITHMETIC OF SETS

3:1 INTRODUCTION

College Hall has decided to automate the internal mail system. Although the
administrators communicate easily by electronic mail, they also need to circulate
documents, such as memos, reports, and minutes of meetings, among their offices.
They have hired an outside consultant who suggests that the flow of paper will
be improved by the use of robotlike mail carts, called Mailmobiles. These carts
can be programmed to travel through office corridors, to pause at designated
points (or if the bumper hits anything!), and to stop at a location where they
can be reprogrammed for another journey. Although most college administration
buildings are irregularly shaped, let’s think about a simple floor plan, the rec-
tangular grid shown in Figure 3.1. We have marked the Mail Room with M and
the President’s Office with P. Each line segment indicates a corridor, and the
corridor intersections are possible stopping points for the mailmobile.

Here are some questions that occur to the consultant while planning for the
mailmobile.

1. A shortest trip from M to P requires the traversal of 11 corridors. In how many
different ways can the mailmobile make a trip of shortest length from M to P?

2. Is it possible to visit every stopping point exactly once on a trip (necessarily
of longer length) from M to P? If so, in how many different ways can such a
trip be planned?

3. Is it possible to travel along every corridor exactly once on a trip from M to
P? If so, in how many different ways can such a trip be planned?

127

3 ARITHMETIC OF SETS

M
Figure 3.1 A 6 x 5 rectangular grid.

Question 1.1. Answer the preceding three questions on the 3 x 2 rectangular grid
in Figure 3.2.

M
Figure 3.2 A 3 x 2 rectangular grid.

In this chapter we focus on the first of the three questions posed above. The
second and third questions wiil be studied in depth in Chapter 8.

Let’s consider some of the shortest trips between M and P in Figure 3.1. Such
a trip is shortest if and only if it covers exactly 11 corridors. Think of Figure 3.1
as being a map, oriented with north at the top of the figure. Then we could describe
a shortest trip from M to P, for example, by

E,E E EEENN,N,N,N,

where N stands for moving north along a corridor and E for moving east. Two
other shortest trips are

EEEEENENNNN, and NNNNEEEEEEN.
In fact, to move from M to P in a shortest path we must travel six units east and

five units north. Furthermore if we write down any sequence of five Ns and six Es,
then these give instructions for a shortest path from M to P.

128

3:1 INTRODUCTION

Question 1.2. Why does a sequence of five Ns and six Es always stay inside the
rectangle of Figure 3.17 Why does such a sequence describe a path that always
reaches P, starting at M? Describe all sequences of Ns and Es that correspond
with a trip from M to P in Figure 3.2.

One way to describe these shortest paths from M to P in Figure 3.1 is as a
subset of {N,E}'! (recall the Cartesian product from Chapter 1). Specifically, the
set of all shortest paths corresponds with the subset consisting of all of the 11-tuples
that contain exactly five Ns.

Has the introduction of the Ns and Es helped us count the number of shortest
paths from M to P or to find these paths? So far, not at all! We have only found
another way to look at the problem. We shall construct an algorithm to list all
suitable N and E sequences; however, there is a simple formula for the number
of shortest paths, to which the work in this chapter will lead.

The diagrams in Figures 3.1 and 3.2, although they may not be representative
of building or office floor plans, are ones that arise repeatedly in mathematics and
computer science. A grid that has (m + 1) vertical lines and (n + 1) horizontal lines
is known as an m x n rectangular grid; a picture of the m x n grid is given in
Figure 3.3. This grid might represent streets in a city (like New York); it might
represent the intricate connections on layers of silicon on a computer chip; or it
might represent the pixels on a computer monitor. Thus this configuration is
studied for a variety of reasons.

n P
n—1 .os
2 cee
1
M
1 2 m—1 m
Figure 3.3

Question 1.3. Estimate the number of shortest paths from M to P in Figure 3.1:
Choose the interval from the following list that most likely contains the correct
number.

(a) Less than 25.

(b) Between 25 and 50.

129

3 ARITHMETIC OF SETS

{c) Between 50 and 100.
(d) Between 100 and 250.
(e¢) Between 250 and 500.
(f) Between 500 and 1000.
(g) Between 1000 and 1500.
(h) More than 1500.

EXERCISES FOR SECTION 1

1. Here are four rectangular grids. For each draw all possibie shortest paths
from M to P.

(a) 2 x 2grid.

(b) 2x 3grid.

M M
(c) 3 x 3grid. (d) 4 x 3grid.

2. For each of the four grids in Exercise 1, describe a shortest path from M to
P in terms of Es and Ns.

3. Among the following grids, which has the largest number of shortest paths
frothoP?l><5,2><4,3><3_,4x2,and5>< 1.

4. Explain why the number of shortest paths from M to P in an m x n grid is
the same as the number of shortest paths from M to P in an n x m grid.

5. What are the dimensions of the rectangular grid on which the sequence
N,N,E,E,N,E,E,N,N,E,N, N, E gives a path from M to P?

6. Check that the number of sequences of Ns and Es of length six containing
exactly two Ns equals the number of six-digit binary numbers with exactly

130

3:2 BINOMIAL COEFFICIENTS

two ones. Is the same result true if there are three Ns and if the binary
numbers have three ones? Is the same true if the sixes in these statements are
all changed to sevens? Explain why.

7. In the four grids of Exercise 1, find a path from M to P that passes through
every intersection point exactly once, or else deduce that there is no such path.
In which grids is there more than one such path?

8. Make a conjecture about what values of m and »n are such that an m x n grid
contains a path from M to P that passes through every intersection point
exactly once.

9. Explain why in the grids of Exercise 1 it is impossible to travel from M to P
traveling along every corridor (or line segment) exactly once. Are there values
of m and n for which such a path exists?

10. Show that an m x n rectangular grid with M at the lower left corner and P
at the upper right corner contains no more than 2™ " shortest paths from
M to P. When n = 1, determine exactly how many shortest paths there are
from M to P.

3:2 BINOMIAL COEFFICIENTS

This section introduces the important factorial function and a counting device from
the seventeenth century known as Pascal’s triangle. With these we can readily cal-
culate the number of shortest paths from the lower left-hand corner to the upper
right-hand corner of any m x n grid. In addition, the factorial function and Pascal’s
triangle lead to the study of subsets of sets and related algorithms.

We return to rectangular grids. Figure 3.4 presents the m x n grid with each
point in the grid labeled with its Cartesian coordinates. The point M is placed at
the origin (0,0) and P lies at the point (m, n).

Next we define a function f whose domain is the set of points of the grid;
let f(i,j) equal the number of shortest paths from M = (0,0) to (i,j). Although we
were originally looking only for the value f(P), we’ll find this number using the
other function values.

Let’s figure out some values of /. We say that f(0,0) = 1 because there is only
one shortest way to travel from M to M, that is, by doing nothing! Now f(1,0) =
f(0,1) =1, and f(1, 1) = 2, since we can reach (1,1) via (0,1) or (1, 0).

Question 2.1. (a)Show that f(0,2)= f(2,0)= 1, f(1,2) = f(2,1) = 3,and f(2,2) = 6.
(b) Determine the values of f(0,3), f(1,3), f(2,3), f(3,2), f(3,1), and f(3,0).

Question 2.2. Explain why in the m x n rectangular grid f(i,0)=1 for i =
0,1,...,mand f(0,j)=1forj=0,1,...,n

131

3 ARITHMETIC OF SETS

©,n) (1, n) @, n)

O n-H-1n-1)—

©,3) a,3 @3
|

(0,2 1,2 2,2

(0,l 1 (L1 2,0

((_),l 0) 1,0 2,0

Figure 3.4 An m x n grid.

(m—1,n) (m,n)=P

m-1L,n-1)—@mn-1

—(m,3)

—(m, 2)

—(m, 1)

—(m, 0)

Consider a point (i,j) some place out in the middle of the grid shown in
Figure 3.5. There are exactly two ways to arrive at (i,j) along a shortest path.
Either we approach it from the point to the left (i — 1,j) or from the point below
(i,j — 1). Thus the number of shortest paths from (0,0) to (i,j) is the number of
shortest paths to (i — 1,j) plus the number of shortest paths to (i,j — 1), that is,

f) == 1))+ fG,j— 1)

@-1,7)

G-1j-1
Figure 3.5

GJj-

This relationship provides a method for calculating all the f values in a given
grid. We know from Question 2.2 that f(i,0) = f(0,j) = 1 for alli and j. From these
initial values we can fill in the remaining values, moving from the lower left up to

132

3:2 BINOMIAL COEFFICIENTS

the upper right:

SLD=f0,D)+f(L,L0)=1+1=2
f,2)=f0,2)+ f(,1)=14+2=3
SR =L+ f20=2+1=3
SL3)=f03)+ f(1L2)=1+3=4
f2,2)=f(1,2)+ f(2,1) =34+ 3 =6,

and so on. Eventually, f(m,n) can be computed as the sum of f(m — 1,n) and

flm,n —1).
Question 2.3. Show that f(3, 3) = 20 and that f(4, 2) = 15.

This process would be tedious on the 6 x 5 grid and hopeless for much larger
grids. We haven’t yet found the promised simple formula for the number of shortest
paths.

We now uncover Pascal’s famous triangle. Suppose that we redraw Figure 3.4,
omitting the coordinate labels and the line segments and writing instead the values
of f at each point [see Figure 3.6(a)]. Next we rotate the figure 135° (= 3n/4 radians)
clockwise so that M is at the top and P at the bottom. Then Pascal’s triangle
emerges as shown in Figure 3.6(b). A larger version appears in Figure 3.7.

| 1 x
| 14 10 20 R !
! 13 6 10 12 1 |
: 12 3 4 13 3 1 !
‘\ 11 1 11 14 6 4 1 ‘,
| (@)) |

Figure 3.6 Pascal’s triangle

The numbers in Pascal’s triangle are organized by rows; numbers on the kth
horizontal row (starting with k = 0) are said to form the kth row of Pascal’s tri-
angle. For example, here are the first rows:

the Oth row:

-

the 1st row:
the 2nd row:
the 3rd row:

M

F— b e =
(SN S
L) =

—

133

3 ARITHMETIC OF SETS

and

the 4throw: 1 4 6 4 1.

Exactly as in the shortest path problem (once we account for the rotation), each
row of Pascal’s triangle begins and ends with a 1, and in the middle the entries
are the sum of the two numbers immediately above.

Question 2.4. Calculate the 5th row of Pascal’s triangle. Then determine the co-
ordinates of all points in the m x n grid that end up, after the 135° rotation, on the
5th row of Pascal’s triangle. Compare their f values with the entries of the 5th row.

We want to determine explicitly the numbers that lie on the kth row of Pascal’s
triangle for an arbitrary positive integer k. These in turn will give us the f values
needed in the shortest path problem. To do this, we introduce the factorial function:
For each natural number n, we define n!, read “n factorial,” by

m=nn—1)n—-2)---3-2-1 if n is positive,
and

or=1.

The definition of 0! may be surprising, but as you’ll see, it’s useful to have 0! de-
fined in this way. From the definition we see that

=1 2!1=2-1=2, and3!=3-2-1=6.

Question 2.5. Calculate n! for n = 4,5,6,7, and 8. Then find a value of n such
that n! is greater than 1,000,000.

Notice that the values of n! grow rapidly as n increases.
Here’s a useful property of n factorial that follows immediately from the
definition:

nl = nf(n — 1]

Now we can solve many mysteries of Pascal’s triangle and of shortest paths
within a grid. We define the binomial coefficients) , read “k choose i” or “k above
i

i7 or “k pick i” for all natural numbers k and i with 0 < i < k by

OV
(z’ itk — i

134

3:2 BINOMIAL COEFFICIENTS

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 H 1

Figure 3.7 Pascal’s Triangle, Rows 0-11.

Example 2.1. Here are a few binomial coefficient values:

N_ 2 2 2 2
0/ o021 1-2 T 2-00 \2
2 2!
<1> U

Question 2.6. Determine the following binomial coefficients

(o) () G)-G)

Then determine all binomial coefficients of the form
4
G =
l J

Question 2.7. Explain why the following facts are true for all positive k.

O = (E)=()-

k k
Notice that the assignment of the value | to 0! allows < 0) and (k) to be defined.

and

for0<i<4and 0<j<5s.

135

3 ARITHMETIC OF SETS

Theorem 2.1. The nth row of Pascal’s triangle consists of the binomial coefficients

OG-0 L) 6)

Proof. The proof is by induction on n. Some of the rows of the Pascal triangle

are listed in Figure 3.7 and for n < 6 agree with the results of Example 2.1 and

Question 2.6. Thus we assume that the kth row of Pascal’s triangle consists of the
k . .

binomial coefficients (1) fori=0,1,...,k In Figure 3.8 we display this row and

label the unknown values in the (k + 1)st row with variables x,, x5,. .., X;, whose

values we must now determine.

) 6

1 X X3 X3 e X; X—1 X, 1

Figure 3.8

We know that the zeroth and (k + 1)st entries of the (k + 1)st row equal 1.
We also know that each entry equals the sum of the two numbers above. Thus

x, must equal the sum
k k k+1
(0)+(0)=re4-(7)

k
Question 2.8. Show that x, = < ; 1>.

In general, we see that

[k Ky K K
=Gy TG T e oy Tk =gy

k! . 1 1 k! it k=it 1)
GDk—i k=it l Ti| G=Dk=i k=is D

k) (k41
i!(k—i+1)!<i :

Thus the ith element in the nth row of Pascal’s triangle is (?)

]

136

3:2 BINOMIAL COEFFICIENTS

k+1 k
Corollary 2.2. < T > = (i -~ 1) + C) forall 1 <i<k.

Proof. This was exactly the central calculation in the induction proof of Theo-
rem 2.1. 0

Why do we want to know all these facts about rows of the Pascal triangle? First
of all, they provide the solution to the shortest path problem. We began this section
with an effort to calculate f(P), the number of shortest paths from M to P in the
6 x S rectangular grid. The point P lies on the 11th row of Pascal’s triangle and is
the 6th entry, counting beginning with 0. Thus by Theorem 2.1,

11 1 11-10-9-8-7
f(P)”<6> 6-5 5-4-3-2-1 = 462.

In the case of the general m x n rectangular grid, the point P = (m, n) lies on the
(m + n)th row of the Pascal triangle and is the mth entry. Thus in this case

(P) = (m + n> (m + n)!

m T Tminl
an explicit formula for the number of shortest paths.

Question 2.9. How many shortest paths are there from (0,0) to (4,3) in a rec-
tangular grid?

Look back at Pascal’s triangle in Figure 3.7 and notice that there is a great
deal of symmetry in the binomial coefficients. For a fixed value of k the numbers

k k
<I(;),<llc>, .. ’(i)" .. <k> begin with 1, first increase as i increases, and then

decrease through the same values back to 1. In other words, the second half of
this sequence is a mirror image of the first half. The largest value occurs in the
middle.

Theorem 2.3. <k> = <k {C_ i> foralli=0,1,...,k

1
A .
i) ik =i (k— iy

~ k! [k -
Thk—iMk— (k=) \k—i) -

Proof.

137

3 ARITHMETIC OF SETS

k oq
The largest value of (1) for fixed k occurs when i = k/2 if k is even and when

i=(k—1)/2 and (k + D)/2'if k is odd.

Theorem 2.4. Given natural numbers k and i with i < (k — 1)/2,

()=(5)

Proof. Given i < (k — 1)/2, we muitiply both sides by 2 to get 2i < k — 1. Next
we add 1 and subtract i to get i + 1 < k — i. Taking reciprocals, we get

1 1
k—i~7i+ 1

™)

Now

kY K1 k!
i) k-t (k—i) ilk—i— 1)
which after substituting (*) yields

k 1 k! k
(i)s(iﬂ)'iz(k—i—nz=<i+1>' O

Corollary 2.5. For natural numbers k and j with j > (k — 1)/2

SR R

Proof. Sincej=(k - 1)/2,(k—j— 1) <k—(k—1)2—1=(k— 1)/2. Applying
Theorem 2.4 with i = k — j — 1, we have

k k
< .
k—j—1 k—j
Applying Theorem 2.3, we get
j+1 J

Theorem 2.4 and Corollary 2.5 combine to tell us that the largest value among

(M (i)0)~ ()

138

3:2 BINOMIAL COEFFICIENTS

occurs at

)

Theorems 2.3, 2.4, and Corollary 2.5 are attractive and interesting, and they are
also useful. We need these results for the analysis of the complexity of the next
major algorithm, which generates all k-subsets of an n-set.

EXERCISES FOR SECTION 2

1. Fill in the f value for every point on the 4 x 4 rectangular grid.

2. In rotating the rectangular grid into Pascal’s triangle, the vertical and hori-
zontal rows of the grid become diagonals in the triangle. Even more important,
it is the diagonals from the point (0,i) to the point (i,0) that become the
rows of Pascal’s triangle. Determine the coordinates of all the points in the
grid that end up on the 3rd row of Pascal’s triangle. Then do the same for
the 4th row.

3. Find the integer coordinates of all the points in the rectangular grid that end
up on the kth row of Pascal’s triangle. On what row of Pascal’s triangle
does the point (i,j) end up?

4, Ts the following statement true or false: Every number on the kth row of
Pascal’s triangle, except for the first and last, is divisible by k. If true, explain
why. If false, characterize the rows for which it is a true statement.

5. Calculate the sum of the kth row of the Pascal triangie for k = 3, 4, 5, and 6.
Formulate a conjecture about the sum of the kth row of the triangle.

6. Calculate the following binomial coefficients:

6 7 18 18 13 97 100
37 3 2) 15) 3) 1) 2)
7. Verify Corollary 2.2 by calculating the following sums and checking that the
corollary is correct in these cases:

B0 Q-G OO

14 1
8. Find the largest binomial coefficient of the form < ;) and < 5>.

9. The number 10 equals at least four different binomial coefficients:
10 10 5 d S
1) 9) 2) an 3)

139

3 ARITHMETIC OF SETS

10.

11.

12.

13.

14.

15.
16.

17.

140

k .
Are there any other values of k and j such that 10 = <j>? Find a number
n > 1 that equals at least five different binomial coefficients, and then find a

. k k
number k that equals only the two binomial coefficients < 1) and <k B 1).
Construct an algorithm FACTORIAL that upon input of a positive integer j,
calculates and outputs j!.

How many zeros does 15! end in? Find the smallest value of n! that is divisible
by 1,000,000.

Notice that 2=2!,3 =2+ 11, 4=2-2!, and 5=2-2! + 1!. Express 6, 7, §,
9, and 10 as sums of multiples of factorials in the following form:

n=a1]!+a]_1(]—1)'++a11'

where a;,a;_,,. .. ,a, are integers satisfying a; < ifori=1,2,...,j. This form
is called the factorial representation of the integer n. (See Supplementary
Exercises 8 and 9.)

Determine whether the following are true or false. Give reasons for your
answers.

(a) nl=0((n+ 1)) (b) nl+5=0(n)

(¢) nl=0(n—- 1) (d) nl+(n— 1) =0(n)

() 14+ 21+314+--- 4 nl=0(n!.

If p is a prime, show that each of the following numbers is a composite
number. (A number that is not prime is called composite.)

pr+2,pl+3,...,pl +p.

Describe how to obtain 1000 consecutive composite numbers. If p is not a
prime, can you use the same construction to obtain m consecutive composites
for any integers p and m?

Prove Theorem 2.3 using the grid path formulation of binomial coefficients.

Each row of Pascal’s triangle is called symmetric because the ith entry equals
the (k — i)th. Each row is called unimedal, since the numbers increase to a
maximum and then decrease. Find an example of a sequence of 10 numbers
that is symmetric but not unimodal. Then find an example of a sequence of
10 numbers that is unimodal but not symmetric.

(O-(73)

Explain why

3:3 SUBSETS OF SETS

k
Then express (1) in terms of binomials coefficients of the form “k — 3 choose

something.” Interpret these identities in the grid.

18. How many shortest paths proceed from (0,0) to (6,9} in the rectangular grid?
How many of these go through the point (4, 5)?

19. How many shortest paths proceed from (0, 0} to (m,n) through the point (r,s)
fO<r<mand 0 <s<n?

20. Suppose that k is odd. Explain why Theorem 2.3 and Corollary 2.4 imply

that
k k .
k=1D)=k+1 2<> foralO<i<k
i
2 2

Then when k is even, explain why forall 0 <i <k

(k];2> . (k>

3:3 SUBSETS OF SETS

This section considers the problems of counting and generating all the j-subsets
of an n-set.

Example 3.1. Suppose that we want to know how many 3-subsets there are in a
6-set. One method would be to list them all. We now do this for the 6-set
A ={ay,a,,as,04,0s,a6}:

{ay,ay, a3}, 1a4,a2,a4}, {ay,a;5,as}
{ay,az,a6}, {a1,a3,a4}, {ay,a3, a5}
{ay, a3, a6}, {ay,a4,0as}, {ay,a4, a6}
{ay,as, ag}, {ay,a3,a4}, {a3,a3,as}
{as, a3, a6}, {ay, a4, a5}, {az,a4,a6)
{ay,as, a¢}, {as,a4,as}, {as, a4, a6}
{as,as,a6}, {a,,as,06}.

Thus there are 20 3-subsets of a 6-set. Notice that 20 = <§>

141

3 ARITHMETIC OF SETS

In this problem we asked for the number of 3-subsets. We would have been
content to have the number 20 without the list of subsets.

Exercises 1.7.2 and 1.7.3 asserted that n equals both the number of 1-subsets
of an n-set and the number of (n — 1)-subsets of an n-set. Notice that

(1))

Similarly, the number of 2-subsets and the number of (n — 2)-subsets of an n-set
equals ; as seen in Exercises 1.7.5 and 1.7.7. Thus in these cases the exact subset
count is given by a binomial coefficient.

Question 3.1. If A = {a;,a,,a3,a4,as,a4}, check that the number of 4-subsets of

Ais <§> and the number of 5-subsets is <2>

Specific examples all point toward the truth of the following theorem. The
idea of the proof is similar to the proof by induction that an n-set has 2" subsets,
given in Section 2.4.

Theorem 3.1. Forj=0,1,...,n, the number of j-subsets of an n-set equals the

. . . n
binomial coefficient {).
J

Proof. The proof of this theorem is by induction on n. For n = (and j = 0, there

0
is only one subset of the empty set (itself) and 1 = <0>..When n = 1, there is

1 1 .
< 0> O-subset, the empty set, and (1> 1-subset, the entire set.

We assume that the theorem is valid for n = k and try to proveitforn =k + 1.
Suppose that A = {ay,a,,...,a;,}, and consider all j-subsets of 4. We divide
these into two piles, those that contain the last element a, , , and those that don't.

Question 3.2. Divide the 3-subsets of the 6-set given in Example 3.1 into two piles
depending on whether a4 is contained in the 3-subset or not.

Let A'= A— {ay,}. See Figure 3.9. If S is a j-subset of A that contains
11, then § — {ay 4, }isa(j — 1)-subset of the k-set A’. By the inductive hypothesis

k
we know that there are | | 1) of these (j — 1)-subsets of A’. Thus there are

142

3:3 SUBSETS OF SETS

Ak + 1

Figure 3.9

k . .
(j 1) j-subsets of A that contain a,, (. If S is a j-subset of 4 that does not
contain a,, ,, then § is a j-subset of A'. By the inductive hypothesis there are

of these subsets. Thus the total number of j-subsets of 4 is given by

k k
<j 1> + (]) By Corollary 2.2 this sum equals (k 1; l>. [

Question 3.3. Use Theorem 3.1 to determine the number of k-subsets of an n-set,
where (a) k=3, n=6;b)k=5n=11;and k =9,n =17

Theorem 3.1 will enable us to prove a variety of results. For example, look
back at Figure 3.7 and Exercise 2.5 and notice that the sum of the numbers in
one row of Pascal’s triangle seems to be a power of 2. It appears that for tixed »,

. . , n . . .
the binomial coefficients of the form { |} sum to 2". This result is an easy corollary

1
of Theorem 3.1 once we look at the problem in the right way.

Corollary 3.2. For every natural number n

o)+ s+ 0)=

Proof. As we've seen, the number of subsets of an n-set is 2". This number of
subsets also equals the number of 0-subsets plus the number of 1-subsets plus - - -
plus the number of i-subsets pius - - - plus the number of n-subsets. By Theorem 3.1

this sum is exactly the left-hand side of the equation and so the two expressions
are equal. 1

Example 3.2. Consider an n-digit number in binary. We can also think of this as
an n-bit sequence of zeros and ones. How many n-bit sequences are there that
contain exactly i ones, for i an integer between 0 and n? To answer this question,
we need to recall a discussion about subsets and “bit vectors” of zeros and ones

143

3 ARITHMETIC OF SETS

presented in Chapter 1, Section 7 (see Question 7.5.) There it was shown that every
n-bit sequence with i ones corresponds to a unique i-subset of an n-set, and con-
versely. Thus the number of n-bit sequences with i ones equals the number of i-

n
subsets of an n-set, <> for0<i<n
!

Example 3.3. From Section 3.1 the number of shortest paths from M to P in
the 6 x 5 grid equals the number of sequences of 11 Es and Ns with exactly 6 Es,

. 11
and we know that this number equals < p) Now we can see directly why there

It
are (6) sequences of 6 Es and 5 Ns. Suppose that we take any sequence of Es
and Ns and replace every E by a one and every N by a zero. Then we have an
. . 11
11-bit sequence with 6 ones; from Example 3.2 we know that there are (6 > of these.

Furthermore, every 11-bit sequence with 6 ones can be transformed back into
a sequence of 6 Es and 5 Ns. In fact, Es and Ns or ones and zeros are two ways
to represent exactly the same idea. Thus there are the same number of these two
types of sequences.

Question 3.4. How many ! 1-letter sequences of Ns and Es are there that contain
3 Es?, 4 Es?, 7 Es? What is the total number of all possible 11-letter sequences
of Es and Ns?

Problem. Given positive integers j and n with j<n, list all j-subsets of
1,2,3,.. . 0}
[kt I] H

We know the number of j-subsets of an n-set without listing them all. However,
we may wish to list all subsets of a certain size. We turn to the construction of an
algorithm that upon input of natural numbers »n and j with j < n will list all j-
subsets of an n-set. Up until now we've used the generic n-set 4 = (a,,d,,. ... d,).
We simplify the notation and consider the n-set I, = {1,2.....#n} and its j-subsets.
This change merely saves on writing: the j-subsets of A and I, correspond exactly.
We agree to always write the j-subset with its entries in increasing order.

Question 3.5, Describe how to transform a j-subset of A into a j-subset of /,,
and conversely. In particular, find the 4-subset of [, that corresponds with
lay,dy,a4,a,_ ;) and the 5-subset of 4 that corresponds with {1,2,3.5,8}.

For small, fixed values of j, the problem of creating an algorithm to list all
Jj-subsets is not hard, and we begin with some specific cases. Exercise 14 asks you
to design the straightforward algorithms to list all O-subsets and all 1-subsets of

[,=102.....nh

3:3 SUBSETS OF SETS

Example 3.4. Here is an algorithm that lists all 2-subsets of I, = {1.2,. .. n}.
(This also was Exercise 1.7.6.)

Algorithm PAIR

Step 1. Input n, a positive integer
Step 2. Fori= lto(n— 1)do
Begin
Step 3. Forj=(i+ l)tondo
Step 4. List {i,j}
End
SteP 5. Stop.

COMMENTS. Section 2.4 contained examples of this form of a loop, often called
a “do loop.” Recall that the instructions, “For i =1 to (n — 1) do, Begin, ...,
End,” mean that first i should be set equal to 1 and the instructions between
the Begin and End statements should be executed. Next, i is set equal to 2 and
the Begin... End statements are executed. We repeat these steps, increasing
i by one each time until i is set equal to {n — 1), the Begin ... End statements
are executed for the last time, and then we move on to the next statement, here
step 5. This is also our first example of a loop within a loop; such pairs of loops
are called nested. For each assignment of a value to i, step 3 is repeated several
times, once for each of the values j = (i + 1),(i -+ 2),.. ., and n. Then i is assigned
its next value and j runs through its sequence of values.

The output of PAIR has the following properties. The subset [i,j} is always
listed with its smaller element first. The first subsets listed are those that contain
{; next the subsets that contain 2 {(but not 1) are listed; then those with 3: and so
on. Here is how the output looks:

f N f { { 1
1,21, 1L3% L4l oo, dhnl,
{ 1 e} 1 {

2.3}, 12,4}, . 12.n),

/ A1 f

1344, SEREN 8

(Vo)
m—=2,n— 1}, {n—2n}

P |

= 1,n}

This ordering is known as lexicographic or dictionary order.

The idea behind PAIR could be generalized to generate all 3-subsets of an
n-set by having 3 nested loops. However, if we want to list all j-subsets, where j
is part of the input to the algorithm, then this idea won’t work, since we can’t
have the correct number of loops programmed in advance. Instead we generalize
the idea of lexicographic order for arbitrary j > 2 and use this order to list all
j-subsets.

145

3 ARITHMETIC OF SETS

We approach lexicographic ordering in two ways. First we describe to you,
a human, which of any two j-subsets of an n-set should be listed before the other.
Next we need to explain this order to a computer, that is, in language sufficiently
precise so that it can be implemented as an algorithm. We need to know exactly
how, once the algorithm has created and listed a j-subset S, to move on and pro-
duce the next j-subset T. At the same time we must explain why lexicographic
order as described for humans is the same as the order described for computers.

We begin our description for humans with an example.

Example 3.5. Here are the 3-subsets of [5 = {1,2,3,4,5} listed in lexicographic
order: {1,2,3},11,2,4},1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2.3,4}, {2,3.5}, {2.4.5),
(3,4,5).

19

One way to think about lexicographic order is to disregard all the set notation
that accompanies each subset and just list the integers in the order in which they
appear. Then we see

123 < 124 < 125 < 134 < 135 < 145 < 234 < 235 < 245 < 345,
and the ordering is the same as the “less than” order on the natural numbers.

Question 3.6. Place the following sets of Ig in lexicographic order. {1,3,4,7},
{3,6,7,8},12,3,4,7}, 14,6,7,8}, {2,3,5,6}, and {1,3,5,6}.

This description would suffice for humans and computers except for the fact
that if n > 9, we might see sets like {2,3,45,678} and {2, 34,56, 78}. This could be
salvaged if we were willing to do arithmetic in base n, but since n is part of the
input, there are still problems with this approach.

Here is a way for humans and computers to decide which of two j-subsets, §
and T, to list first. Suppose that S = {sy,....s;; and T = {t,....t;5. [5, <ty
then S is listed before T. If s; > t,, then T is listed before S. The only other
alternative is that s, = r| in which case we compare the second element of each
set. In general, if s, = £,,8, =t,,...,5_, = t;,and s; < t;, then we list S before
T, and if s; > t; we list T before S. In English, S appears before T if in the first
place the two sets differ, the element of S is smaller than the element of T.

Example 3.6. {2.3,4,7,8,9} is listed after {2, 3,4,6, 8,9}, since the sets agree until
the fourth entry at which point 7 > 6.

When listing all subsets of a set, if S is listed immediately before T, we should
expect that S and T agree as much as possible. Furthermore, we should expect
that at the location where S and T first disagree, the entry in T is just one larger
than the corresponding entry in S.

146

3:3 SUBSETS OF SETS

Example 3.5 (revisited). A second way to view lexicographic ordering of the 3-
subsets of {1,2,3,4,5} is to start with the “first” set {1,2,3}. Then we let the last
entry increase by 1 and we get {1,2.4}. Repeating this, we get {1,2,5}. So our
listing begins

(1,2,3), (1,2,4), {1,2,5.

Now the last entry is as big as it can be. So we agree to increase the second to
last entry by 1 and make every other entry as small as it can be. Thus after {1,2,5}
we get {1,3,4}. Now we return our attention to the last entry, which can once
again be incremented. Thus the list continues

(1,3,4), {1,3,5), {145}

Now our second to last entry is as big as it can be, so we have to increment our
third to last (here the same as the first) entry. We finish with

{2, 3, 4}, {2, 3,5}, 12,4, 5}, 3,4, 5}.
Question 3.7. List all 3-subsets of I = {1,2,3,4,5,6} in lexicographic order.

Thus, in general, the idea of lexicographic order is to begin with the j-subset
{1,2,...,j — 1,j} and then to let the last entry increase through all possible values
until we reach the subset {1,2,...,j — [, n}. Next we move back to the second 1o
last entry, increase it by one, and let the last entry take on all larger values. In
general, after a subset S = {sy,...,s,,...,s;} is listed, we search from right to left
in S looking for the first entry that can be increased by one. Suppose that s, can

be increased to s, + L, but no s, with k > h can be increased. Then we produce
the new subset T = {s{,...,8- -5, + Lsy, + 2,8, +3,...}.

Example 3.7. Here is how these ideas apply when listing all 4-subsets of
{1,2,...,8} in lexicographic order.

11,2,3,4), {1,2.3,5), ..., (1,2,3,8),
(1,2,4,5), {1,2,4,6), {12,438},
1,2,5,6}, {1,257}, {1,2,5.8},
1,2,6,7), {1.2,6,8}, {1,2,7.8},
11.3.4,5), (1346}, ... (1.3.438)
11,3,5.6%, ..., 116, 7.8},

(2,3,4,5}, 123,46}, {5678}

We know that we are finished, since no entry can be increased.

147

3 ARITHMETIC OF SETS

Question 3.8. List all 3-subsets of /5 = {1,2,...,7} in lexicographic order.

Notice that in Example 3.1 if the set I = {1,2,3,4,5,6] is substituted for 4
and the corresponding 3-subsets of A are replaced by those of I, then the subsets
are listed 1n lexicographic order.

This work gives us the ideas for an algorithm to list all j-subsets of an n-set
for a general value of j and n. The only imprecision left is how, after a j-subset S
is listed, to find the entry s, that can be increased to s, + [. Note that the jth
entry in a j-subset can be no larger than n, the (j — I)st entry can be no larger
than n — 1, and in general the ith entry can be no larger than n + i — j. Thus we
read from right to left until we find s, such that s, < n + h — j. We replace s, by
sy + L and fill in the remaining subset entries with s, + 2, s, + 3,.... The algo-
rithm stores each subset in an array {b, b,,..., b}

Algorithm JSET

STep I. Inputjand nwith 1 <j<n
STEP 2. Set {by,by,....b;; :={1,2,...,j} and list this set
STEP 3. Set h:=/j+ | and FOUND := FALSE
{Next we determine which entry to increase by 1. When we find the
entry, we set FOUND to be TRUE.}
Ster 4. While h > | and FOUND = FALSE do
Begin
STEP S. h:i=h-—1
Ster 6. If b, <n+ h —j, set FOUND := TRUE
End
fRight now the value assigned to h is the rightmost entry that can
be increased. If FOUND = FALSE, then we are finished listing all
subsets. }
Step 7. If FOUND = FALSE, then stop.
Else
Begin
STEP 8. Set b,:=h, + |
Ster 9. Fork:=h+ 1tojdo
Step 10. Set by:=bh, ., + |

Step 11, List {by,b,y,.... by}
Step 12. Go to step 3
End

cOMMENTS, We introduce the so-called Boolean variable FOUND. (See also Sec-
tion 10 of Chapter 1.} A Boolean variable can be assigned only two values, cither
TRUE or FALSE. We initalize FOUND to be FALSE and change its value if
the correct entry to increment has been located. Before repeating the steps inside

3:3 SUBSETS OF SETS

the While do loop at step 4, two conditions must be satisfied. It must be the case
that both & > | and FOUND = FALSE. If either condition is contradicated, then
we proceed to step 7. In general, Boolean variables are useful in the design of
loops when the number of iterations through the loop is not known in advance.

With j =3 and n =35, JSET lists the subsets as shown in Example 3.5 and
with j = 4 and n = § as in Example 3.7.

Question 3.9. Run JSET with j =4 and n = 6.

We conclude with an informal analysis of the complexity of JSET. The input
is j and n with j < n; so we use n as a measure of the input size. We let f(n) equal
the maximum number of time-consuming operations performed in JSET and carry
out a worst-case analysis. We hope to find a simple function g(n) [like log(n), n~,
or 2"] such that f(n) = O(g(n)). Instead of counting all the additions, assignments,
and comparisons in JSET, we choose to define a basic, time-consuming operation
to be the creation and listing of a j-subset. (For a more precise analysis see Exercise

23.) Since <n> Jj-subsets are produced, f(n) = <n> Is JSET good? That depends
J J

on the value of j. For example, when j = 2, the complexity of JSET is

fin = (Z) = 0(n?)

and in this case JSET is a good algorithm.

Question 3.10. Show that JSET is a good algorithm when j = 3.

Question 3.11. Show that if j is a fixed constant less than n/2, then

<',1> = 0.
j

However, there are cases in which JSET is an exponential algorithm. We have

ny . , .
seen in Section 3.2 that <) is largest when j = | n/2|. We shall show in the next
g,

theorem that (l_n’/l"J) is exponential in n [thus not O(p(n)) for any polynomial p].

Does that mean that we have failed to be sufficiently clever in our algorithm
design? No, because when j = | n/2|, there is an exponential number of j-subsets,
and any j-subset algorithm will be exponential. since each of these must be listed.
Thus although this algorithm is exponential and not good. it is nonetheless more
or less as efficient as possible and so we’ll use it when needed.

149

3 ARITHMETIC OF SETS

Theorem 3.3 For n even < n) > (V2"

n/2

Proof

oy n! _ n!
”/3> T W) = a2 () (ng2)!
_ an=Dn=2)- 2+ 1)
T (22 = Dnf2=2) 2 1

n n—1 n—j n2+1

:n/_2.n/2—1 nj2 —j 1

Next we consider an arbitrary factor in the above expression.

n—j n-—j n--j
n2—j (n—2j) n—2j

2

Thus each of these factors is at least 2. Since there are n/2 factors, the product is
at least 2V? = (2)". i

EXERCISES FOR SECTION 3

1.

150

For i =0,1,...,6 calculate the number of i-subsets of a 6-set. Check that
these numbers sum to 2°.

For i =0,2,4,6,8 calculate the number of i-subsets of an 8-set. Check that
these numbers sum to 2.

The number of j-subsets of an n-set equals <’.1>, and the number of (n — j)-

n .
subsets equals () Give a set theory argument to show that these two
n—j
numbers are equal.

From a class of 14 students, a committee of 5 students is formed. In how many
different ways can this committee be chosen? How many of these committees

contain one particular student, Sue, and how many committees do not contain
her?

Suppose that a class i3 composed of eight freshmen and six sophomores.
How many committees are there that consist of three freshmen and two
sophomores?

10.

11.

12,

13.
14.

15.

3:3 SUBSETS OF SETS

Suppose that two committees with no members in common are to be selected
from a class of 14 students. First a committee of 5 students is selected and
then a committee of 3 students. In how many ways can these two committees
be formed? Is the answer to the last question the same as the number of ways
to form first a committee of 3 students and then second a committee of 5
students?

The local Pizza Factory produces pizzas topped with tomato sauce and cheese.
Optional items are mushrooms, green peppers, olives, onions, anchovies,
pepperoni, and hamburger. The prices are $3.00 for plain pizza, $3.50 for one
extra item, $4.00 for two items, and $4.50 for three. How many different kinds
of pizza cost $3.507 $4.007 $4.507

The ice cream parlor in town offers 10 different kinds of ice cream daily plus
toppings of fudge sauce, butterscotch sauce, raspberry sauce, walnuts, M&Ms,
Heath Bar Crunch, and whipped cream. How many different ways are there
to make a sundae if (by definition) a sundae consists of one kind of ice cream
plus at least one topping? How many kinds of sundae are there that have
exactly 3 toppings? That have no more than 3 toppings?

Prove by induction on s that

If n is even, show that

o)) ())e

Then find and justify a similar formula when » is odd.

List all seven-bit vectors with exactly two ones. Then list all sequences of Es
and Ns that contain exactly five Ns and two Es,

2

Forj=2,3,...,7 calculate the binomial coefficients J) and find their sum.

Then find a formula in terms of n that compactly expresses the sum

(§)+©+...+(g).

Design an algorithm to create and list all bit vectors of length .

Describe an algorithm that will list all 0-subsets of I, = {1,2,....n}. Then
describe an algorithm that will list all [-subsets of I,

(a) Modify the algorithm PAIR to list all bit vectors of length n that contain
exactly 2 ones.

151

3

16.

17.

18.

19.

20.
21.

22

23.

152

ARITHMETIC OF SETS

(b) Modify PAIR to list all sequences of Es and Ns that contain exactly 2 Es
and n — 2 Ns.

How many 2-subsets of an n-set contain the element 1?7 How many 2-subsets
contain the element 2 but not 1? How many contain 3 but neither 1 nor 2?7
In general, how many 2-subsets contain the element i but no smaller number?
Then add up all these answers for i = 1,2,...,(n — 1) and explain why that

bl

\
n
sum adds up to (), the total number of 2-subsets of an n-set.
List all 2-subsets of {1,2,...,6} in lexicographic order. Then list all 5-subsets
of the set {1,2,3,4,5,6,7! in lexicographic order.

We defined lexicographic order of subsets of numbers by saying that we list a
subset S before a subset T “if in the first place the two sets differ, the element
of § is smaller than the element of T.” If we consider now subsets of a set 4 =
{a,b,c,d,e, f} and use alphabetical ordering of letters, how should we define
lexicographic order of subsets of A? List all 2-subsets of A in lexicographic
order. Then check that in your list, when a is replaced by 1, b by 2,.. ., and
f by 6, that the 2-subsets are still listed in lexicographic order (for numbers).

Run the algorithm JSET with
(@) j=1and n =6
() j=3and n = 6.
(c) j=3andn=7.

Is JSET a good algorithm when j =n — 2? When j=n — 1?
If n is odd, show that

>r" for some r > 1.

Show that

<'.’> ~ 002" forallj
J

Give a more detailed, worst-case complexity analysis of JSET by counting
the number of additions, subtractions, comparisons, and assignments. Note
that the While do loop of step 4 is executed at most j times and the For do
loop of step 9 at most (j — 1) times. Show that the total number of these

. . (n . , .

operations is O <j(>j Then explain why this analysis shows JSET to be a
N 7

polynomial algorithm for j a constant number, but for j arbitrary JSET is

exponential.

3:4 PERMUTATIONS

3:4 PERMUTATIONS

When we were generating all the j-subsets of the n-set I, in Section 3, it was crucial
to be able to arrange the elements within each subset in increasing order. The
reason we could do this is that in sets, the order of presentation of the elements
does not matter and so we could choose an algorithmically useful presentation.
In contrast we have seen some cases carlier where the given order is important
and we cannot rearrange elements. Examples include applications of the Multi-
plication Principle and Cartesian products. We turn now to another area where
order is crucial.

Given a set A = {d,,d,,...,a,; containing n distinct elements, an ordered
list of these n elements is called a permutation of A. Often, but not always, we shall
use the set [, = {1,2,...,n} as the generic set with n elements. We distinguish sets,
which will continue to be denoted by {- - -}, from permutations, which will be sur-
rounded by { -).

Example 4.1. If I = {1,2,3,4,5,6}, then <1 234 56), (214365, and
{13524 6) are three permutations of I4; however, {1 2 4 5) is not a
permutation of I, neitheris {1 2 3 4 5 5> nor (1 23 4 5 7).

Within the permutation (2 1 3 5 4 6> we say that 2 is in the first position,
1 in the second position, 3 in the third position, and so on.

Example 4.2. Here are all permutations on {1,2,3}:

1235 132 312 213, 231, (321,
Notice there are 6 = 3! such permutations.

Question 4.1. List all 4! permutations on the four numbers !1,2,3,4].

The Multiplication Principle shows us why the factorial function counts per-
mutations of an n-set. Since a permutation is an ordered list, we may count the
ways to fill in the n blanks:

s
(e D
.

First we see that we have n choices for the element to place in the first position of
the permutation. After that we have only (n — 1) choices for the entry in the second
position, then (n — 2) for the third position, and so on. At the next to last position
we have two choices remaining and then one choice for the last position. Thus the
number of permutations on n ¢lements is

amn— Nn—2)--- 21 =nl

153

3 ARITHMETIC OF SETS

This argument proves the next theorem. One proof is sufficient for any theorem,
but we choose to present a second proof using induction because it will cause us
to think about generating permutations algorithmicaily.

Theorem 4.1. There are n! permutations of a set containing n distinct elements.

Proof. First we check the base cases for n = 1 and 2: (1) is the only permutation
on one number and {1 2> and {2 1) are the two permutations on two numbers.
In Example 4.2 and Question 4.1 we checked the cases for n =3 and n = 4.

Our inductive hypothesis is that there are k! permutations of any set with k
elements. Using this hypothesis, we need to show that any set with k¥ + 1 elements
has (k + U)! permutations. Let [, ., = {1,2,...,kk + 1}. As usual we remove an
element, setting I, = I, ., — {k+ 1} = {1,2,...,k}. Pick any permutation of I,:
for instance,

2134 k.
Each such permutation of [, generates k + | different permutations of I, ., be-

cause the element (k + 1) can be inserted in k + 1 different positions. From the
permutation above we create

2 1 3 kK k+ 1>,
2 | 3 k+1 k >,
2 1 3 k+1 k>,
2 1 k+1 3 k >,
2 k+1 1 3 k >,
and
k+1 2 1 3 k .

Thus the number of permutations of [, ., equals k + 1 times the number of per-
mutations of [, or (k + 1)(k!) = (k + 1)L 0

Remember this proof because it suggests how to write an algorithm to generate
all permutations.

Example 4.3. Suppose that we start with the permutation <2 1 3 4>. We can
insert the element S in any one of five different positions to obtain <2 1 3 4 5),
Q2135452153452 51345andd5213 4.

154

3:4 PERMUTATIONS

Permutations give us another way to see that an n-set has <n> j-subsets for
0 <j < n A 2-subset of the set [, = {1,2,...,n} can be formed by filling in two
blanks: { . __}. By the Multiplication Principle there are n choices for the first
blank and (n — 1) choices for the second; however, once the set is filled in, every
permutation of the elements in the set will give the same set. On two elements there
are 2! = 2 permutations and so in the n(n — 1) choices, each set is listed twice. Thus

there are n(n — 1)/2 = (:) 2-subsets.

Question 4.2. Use the Multiplication Principle and permutations to show that
there are n(n — 1)(n — 2)/3! different 3-subsets of an n-set.

Next consider the case of counting the number of j-subsets of an n-set for an
arbitrary value of j between 0 and n. To create a j-subset, begin by filling in j empty
blanks: | }. There are n choices for the first blank, then (n — 1) choices
for the second blank, and eventually for the jth blank, therearen — (j —) = n —
j + 1 choices remaining. Thus there are

3 PR

nn—1-m—j+1)= .
(n—))
choices for filling in j empty blanks. But each subset with j elements can arise in !

different orders, one for each of the permutations on j elements. Thus the total
number of subsets of size j is given by

nl _<n>
=y \j)

Now we turn to the algorithmic question of generating all permutations. We
displayed all permutations on three elements in Example 4.2, and you were asked
to do the same for four elements in Question 4.1. For n > 4, n! is larger than 100,

and listing all permutations is clearly a task suitable for computers rather than
humans.

Problem. Given an integer n > 0, list all permutations of {1, ..., n}.

Look back at the proof of Theorem 4.1. It tells us that from each permutation
on (n — 1) elements, we get n permutations on n elements by moving the element
n through all possible positions in the (n — 1) permutation. To use this idea, we need
to begin at the base case of our inductive proof. We first write down all permuta-
tions on one element: (1>. Then we use the idea of the inductive step to generate
all permutations on two elements: {1 2% and <2 1). How about three ciements?
First we expand <1 2 into the three permutations (1 2 33,<1 3 2>and (3 | 2}.

155

3 ARITHMETIC OF SETS

Then we expand the permutation <2 1> into (2 1 3>, <2 3 1), and {3 2 I).
Here is an algorithm that works exactly in this way.

Algorithm PERM

Step 1. Setj:= 1 and write down the permutation {1
STEP 2. Setj:=j+ 1
STeP 3. For each permutation {(a;a,...a;_) onj— 1 elements do
Begin
Step 4. Create and list P:= (aja,y ... a;_1j)
Ster 5. Fori=j— 1 down to | do
STEP 6. Set P:= P with the values assigned to positions i
and (i + 1) switched, and list P
End {step 3}
Step 7. If j < n, then go to step 2; otherwise, stop.

coMMENTS. There are some new features in this algorithm and some old. The
first new feature is the form of step 5, “For i = j — | down to | do.” This indicates
a do-loop; here the variable i will decrease from j — 1. Thus initially i equals j — 1
and step 6 is executed; then i equals j — 2 for step 6, . . ., until finally i equals 1 for
the last execution of step 6, at least for this round.

We have previously seen an example (in PAIR) of a “nested loop,” a loop
within a loop. Step 3 is an instruction that causes steps 4 and 5 to be executed
for each permutation on j — | elements. Also, step 5 instructs us to carry out
step 6 j — 1 times for cach time step 5 is encountered. Actually, the algorithm also
has a third loop that sends us back to step 2 repeatedly. We do not specify step
6 precisely, but notice that it requires the switching of the values of two variables.
exactly the task that we learned to do in Section 2.1.

Example 4.4. [n Tuble 3.1 we trace through algorithm PERM in the case of n = 3

Table 3.1
Values of | Permutations
1 a1
2 L2
21
3 23
132
312D
Q210
23D
321

156

3:4 PERMUTATIONS

Question 4.3. Use Algorithm PERM to generate all permutations on [, =
11,2,3.4]
Lls s ey

Our next task is to analyze the complexity of PERM. We do even fewer kinds
of time-consuming operations than in JSET. The algorithm mainly assigns.
reassigns, and lists permutations, #! of these, in fact.

To analyze PERM, we need to study the factorial function and relate it to
our hierarchy of functions: we know that for sufficiently large n,

P<logim<yn<n<ni<nd< <2< - <10M
g v

We shall find that not only is n! # O(p(n)) for any polynomial n, but even more,
in Theorem 4.2 we prove that for any positive integer r > 0 and any constant C,
n! > C - " for n sufficiently large. Thus the correct position for n! in the hierarchy
is at the end (so far):

g 10t < gl

We count the formation and listing of each permutation as the fundamental
time-consuming operation. PERM performs »! of these steps and is thus not a
polynomial algorithm. However, PERM accomplishes even more than it was asked
to do. Besides generating all permutations on {1,2,...,n}, it also generates all
permutations on the smaller sets {1,2,...,i} for each i=1,2,...,n — 1. Thus
PERM really performs ! + 2! + - - + n! steps and its complexity is consequently
even larger than nl.

Also notice that in PERM we must store all (i — 1)! permutations on i — 1
numbers before creating the permutations on i numbers. Hence this algorithm
requires more than an exponential amount of storage as well as more than an
exponential amount of time, and so it is bad with respect to both time and space.
the worst of both worlds.

Generating permutations is always time-consuming; however, there are ways
to generate permutations on n elements without first generating all permutations
on smaller sets. Also there are ways to create 4 “next” permutation from a given
permutation (as in the algorithm JSET) so that in an application the permutations
can be produced one after the other without storing previous permutations. Some
of the ideas behind these algorithms are presented in the cxercises.

But why is n! such a fast growing function? Why does it belong at the end of
the function hierarchy? Suppose that we add the function n! to Table 2.9 in Chapter
2. That is, suppose that we perform n! single digit multiplications on an IBM PC.
The time invoived for differing values of # is listed in Table 3.2.

The numerical evidence is clear that the function n! grows even faster than
10". Suppose as with multiplication on the PC, we could tigure out and write

157

3 ARITHMETIC OF SETS

Table 3.2

n=_ n=11 n=16 n=24 n=32

n! 227 min 374 hr 2236 yr 663,178,306,400
cent

down 17,800 permutations per minute (and this would be working pretty fast!)
Then Table 3.2 tells us that using PERM in, say, a 24-hour run we could only
hope to list all permutations for n < 10.

Here is theoretical evidence that also points to the rapid growth of n!.

Theorem 4.2. n! # O(r") for any positive integer r.

Proof. The theorem states that it is not the case that given a positive integer r,
there is a constant C such that n! < C - r" for all sufficiently large integers n. Thus
given an integer » we must show that for every constant C, n! > C-r" for n
sufficiently large. So pick a constant C and suppose that n > C - r". (This number
is cooked up because we found that it made the proof work easily!) We know that

r=randr+1>randr+2>r,and...,n — 1 >r. Thus we have
Wl=nn—1 @+ Dr 21 by definition
>nn— 1) (r+ r by ignoring the last factors
S>RHrc bR (a product of (n — r) r's)
> C-"re - rer by choice of n
=C- " I~

L

Question 4.4. Theorem 4.2 says that n! # O(2"). Find an integer N so that for
n>N,n > 102"

We state without proof a result that gives some feeling for the size of nl.

Stirling’s Formula. ! is approximately equal to the function

()
¢

where e = 271828 .. is the base of the natural logarithm.

158

3:4 PERMUTATIONS

We do not define what “approximately equal” means, but a consequence of
Stirling’s formula is that both

nl = 0<<H> ﬁ) and (g) Jn = o).
e

By all accounts, n! quickly becomes humongous.

We have used the word permutation previously in Chapter 1 in the study of
functions. We said that a one-to-one and onto function f, f:D — D, is called a
permutation. When D is a finite set, such as I, = {1,2,...,n}, then the two defini-
tions are really the same. If f:I, — I, is a one-to-one function (which is necessarily
onto by Theorem 9.1 from Chapter 1), then we get a permutation, in the sense
of this section, from the listing (f(1) f(2) ... f(n)>. Conversely, given a permuta-
tion of I, {a, a, ..., a,), this defines a one-to-one function f:I, — I, by setting
fy=ga;fori=1,...,n

Example 4.5. Corresponding to the permutation {1 3 2 5 4 6> is the one-to-
one function f defined by f(1)=1, f(2)=3, f(3) =2, f4 =35, f(5)=4, and
f(6) = 6. Corresponding to the one-to-one function f defined by f(iy=7 — i for
i=1,2....,6,1s the permutation (6 5 4 3 2 [).

Permutations occur in many mathematical and computer science contexts. In
this course we shall meet them again in a game in the next section as well as in
later chapters. In other courses they occur in diverse settings such as linear algebra,
sorting and searching problems, in a variety of games and path traversing questions,
and even in English bell ringing. The goal in English bell ringing, called change
ringing, is to ring all permutations on however many bells are in the tower. For-
tunately, most towers have at most 8 or 10 bells.

EXERCISES FOR SECTION 4

1. List all permutations of {x, y,z} and of |a,b,¢,d}.

2. Find the least integer n such that n! > 3". Then find any integer n such that
n > 4"

3. English bell ringers, called change ringers, ring tower and hand bells following
sequences of permutations; however, one of the requirements of change ringing
is that a permutation p may be followed by a permutation p’ only if for i =
2,3,..., n — 1, the number in position i of p is in position i — 1, i or i + 1
of p’. The number in position 1 of p may stay in position | or move to position
2, and the number in position » may stay in position n or move to position
n— 1 of p’. Thus the following sequence of three permutations is legal from

159

3 ARITHMETIC OF SETS

e A A

10.

11.

12.

13.

14.

15,

160

the perspective of bell ringing: <1 2 3>, <1 3 23, (3 1 2}, but the next
permutation (as produced by PERM) (2 1 3) is not a legal follow-up to
{3 1 2, since number 3 jumped from the front to the back. Find a sequence
of all 3! permutation on {1,2,3} that is suitable for bell ringing. Do the same
for the 4! permutations on {1,2,3,4}.

Which is larger n*" or (V‘%)"?

Prove that n¥" = 0(2"). Either prove or disprove the statement (y/n)" = O(2").
Prove that n*" # O(p(n)) for any polynomial p(n).
Prove that r* = O(n!).

Prove the following corollary of Theorem 4.2: For every real number r,
nl s O(r".

Check the accuracy of Stirling’s formula: For n = 5,6,. .., 10 use a calculator

to evaluate «/2rnn(n/e)” using e = 2.71828 and compare these values with n!.

Let f be the one-to-one function defined on {1,2,...,6} by f(1) =2, f(2) = 1,
f(3Y =4, f(4) =3, f(5) = 6, and f(6) = 5. Show that f? = f - f is the identity
mapping. Find a one-to-one function g on the same domain for which ¢~ is
not the identity. For this g find the least integer i such that y' (g composed
with itself i times) is the identity. Then write down the i permutations:
gy .. g6, LglD)? ... (g(6))*)..... and (g(1)) ... (g(6))">. Are these all

of the possible permutations on six numbers’

Given a permutation p = {a, d, ... 4,», an adjacent transposition is the
switching of two items in positions [and (i + 1) for some value of i =
I, 2,...,n— 1. For example, {a, a; ... a,> is the result of applying an
adjacent transposition to p as is {da; dy ... d, d,. ». Gilven permutations
p and p’ we define the distance between them to be the minimum number of
adjacent transpositions needed to transform one into the other; we denote this
by d(p, p). Determine the following values of d(p, p):

(@) p=<1 234 pP=<{4321
by p= 234 p=<{3142
(€ p=33214 p=<1324,

We define a permutation p to be cither even or odd according as d(p.p*) is
an even or an odd number when p* is the identity permutation (1 2 3 ... n).

Determine which of the four nonidentity permutations of the previous problem
are even and which are odd.

For which permutation p on {1,2....,n} is d(p, p*) the largest when p* is the
identity permutation? Also, what is the value of d(p, p*) for this permutation?

How many cven and how many odd permutations are there on (1.2,. .., n{?
Prove your answer.

Modify the algorithm PERM so that it outputs only even permutations.

3:5 AN APPLICATION OF PERMUTATIONS: THE GAME OF MASTERMIND

16. Design an algorithm that upon input 1, a positive integer, lists all permutations
of {1,2....,n} without first listing all permutations on {1,2,...,n — 1{. (Hint:
Look at the order of the output of PERM and see if there is a way to move
directly from one permutation to the next.)

17. Prove that n! < #" and thus show that n" is a new candidate for the biggest
function in the hierarchy.

18. Find a function f(n) such that f(n) # O(n").

19. Let P be the positive integers and suppose that we define a permutation of
P to be a reordering of P. If f is a function with domain and target P, what
properties must f have so that a listing of its range {f(I) f(2) ... > s a
permutation (or reordering) of P?

20. There are n! different ways to make a straight line of n people. Suppose in-
stead that n people are seated at a circular table and two seating arrangements
are considered the same if everyone has the same person on their left side and
the same person on their right side. How many different seating arrangements
are there? Suppose that two arrangements are considered the same if everyone
has the same set of two people on their left and right, but which side doesn’t
matter. Then how many different seating arrangements are there?

3:5 AN APPLICATION OF PERMUTATIONS:
THE GAME OF MASTERMIND

We turn to some colorful “near” permutations that arise in the game of Master-
mind. Mastermind is a two-person guessing game that is usuaily played without
special knowledge of permutations and set theory. As you read this section, you
might consider whether mathematical training helps in playing this game.

Mastermind is played as follows. The first player secretly writes down a list
or code of four colors, chosen from red, yellow, green, blue, purple, and white. We
denote the set of colors by

C=1{rv.gb,pw
where each initial stands for the color beginning with the same letter. Repetitions
of colors in the secret list are allowed. Then the second player tries to guess the
colors and thetr order in the secret list.
For example, suppose that I choose

phbpy

as my secret list. Then when you guess a list of four colors, | must tell you two
pieces of information. First [must tell you how many of your colors are correct
and in the right position. Next [compare the remaining colors in my secret code

161

3 ARITHMETIC OF SETS

Table 3.3
Position and Color Color Correct:
Guess Correct Position Incorrect
rbrb 1 0
bybyg 1 l

and in your guess and tell you how many of these colors match correctly but are
in the wrong position. Two guesses and responses are listed in Table 3.3.

To use the language of set theory, both the secret code and all guesses come
from the Mastermind universe, which is the Cartesian product C*. When player
2 makes a guess, that is, selects an element from C*, player | produces f(guess),
where f is a function whose domain is C* and whose target is {0, 1,2, 3,4}2. Thus
the image of any particular guess is an ordered pair of integers as described above.

Example 5.1. The answers to some possible guesses of a secret code are listed in
Table 3.4.

Table 3.4
Position and Color Color Correct;
Guess Correct Position Incorrect
rroror 1 0
yyuyy 0
99449 0 0
bbbb | 0
ppp 0 0
wWwww l 0

Question 5.1. Figure out the four colors involved in the secret code of Example
5.1. Can you tell what their order is?

Example 5.1 {continued). Some more guesses and answers about the secret code
in Example 5.1 are shown in Table 3.5.

Table 3.5

rvbw 1 3
rywh 0 4
rwybhb 1 3
wr ybh 0 4

162

3:5 AN APPLICATION OF PERMUTATIONS: THE GAME OF MASTERMIND

Question 5.2. Can you determine from the information in Example 5.1 what the
secret code is? If not, try to figure out as many of the correct color positions as
possible from these answers.

Question 5.3. Find a classmate, roommate, or any willing soul, and play six games
of Mastermind in three of which you pick the secret code and in three of which
you try to guess the secret code. How many guesses were needed in each game?

Experienced Mastermind players can figure out the secret code in four or
five guesses. Their strategy combines a knowledge of good initial guesses pius close
logical analysis of the responses to these. We develop some strategies of our own
now. One strategy would be to repeatedly pick elements of C* at random until
an answer of (4,0) results. Since there are six colors and four positions to fill with
repetitions possible, there are 6* = 1296 different possible Mastermind codes. Thus
random guessing will not be an effective playing strategy! We shall describe a
method that can determine the list of colors with only six guesses.

An effective playing strategy for this game (and any game) is just an algorithm
that tells us what to do in any possible situation. We shall develop three different
strategies for Mastermind. We begin with one that comes from the idea behind
the guesses used in Example 5.1.

Problem. To determine the secret list of colors in a Mastermined game.

Algorithm 1

SteP |. For each color x in {r,y,g,b,p,w} guess x x x x.

Step 2. (Now that you know the colors in the list) guess all possible lists
using the four (or fewer) colors involved.

Notice that both steps | and 2 really involve several steps. Step 1 is shorthand
for six steps or six guesses.

Question 5.4. Suppose that you learn in step 1 that the colors involved are green,
blue, purple, and white. How many different secret codes are there involving these
colors? How could you go about writing down all of these possible lists?

In fact, when we discover that the code invoives four different colors, then the

code is one of the permutations of these colors. But what happens when there are
repeated colors?

Example 5.2. Suppose that the colors involved in the secret code are green, plue,
and purple and that green occurs twice. Then the code will be a “near” permutation
of ly, y, b, p}, that is, an ordered list of these letters including two ¢’s. (A “real”

163

3 ARITHMETIC OF SETS

permutation s an ordered list of distinct elements.) A set with repeated clements
is known as a multiset. However, our counting and algorithmic techniques will
solve this case too. In each code word the g's will occupy two positions, for ex-
ample, the first and the third position. We associate their positions with the 2-subset
(in this instance {1,3}) of the four possible positions P = {1,2,3,4}. Conversely,
every 2-subset of P gives us a prescription for where to place the ¢g’s. Thus there

4 .
are ,,> ways to fill in the ¢'s into a color code. The remaining two places can be
filled with first b and then p or with first p, then 6. Thus the total number of codes
. . (4
using {g, g, b, p} is <q> 2 =12

Furthermore, PAIR and JSET, with n =4 and j = 2, provide a hst of all
2-subsets of the 4-set P, and from these we position the g’s. Then each of these
leads to two code words by filling in b and ¢ in the two possible orders. For ex-
ample {1,2} leadstog g b pandg ¢ p b.

Question 5.5. List all possible codes formed from {g, g, b, p}.

Question 5.6, Look back at Algorithm 1. What is the maximum number of steps
or guesses that you will need in step 27

The total number of guesses needed in Algorithm 1 is rather large, and you
probably can think of better ways to play. Here is another approach that may
more closely resemble how you and most people play Mastermind. The idea is to
focus on the set of all possibie codes, then on a subset of this set, and on a subset
of the subset until the subset is pared down to one code.

Algorithm 2

Step I. Let L = [all possible Mastermind codes}
Step 2. Repeat

Begin
Step 3. Pick an element from L to be your guess
Step 4. Update L {remove from L all those codes that are incon-
sistent with the response to your guess)
End
Until your guess is correct
STEP 5. Stop.

coMMENT. The form of step 2, “Repeat . .. Until . . .” is like the While . . . do loop,

only the condition for ending the loop is checked at the end of the execution of the
loop.

3:5 AN APPLICATION OF PERMUTATIONS: THE GAME OF MASTERMIND

Algorithm 2 requires a lot of work. Initially, the list L in step | has 1296 codes
in it, and the checking and updating will be time-consuming. Neither this approach
nor that of Algorithm 1 would be so bad for a computer to implement, since we
can use the computer’s large memory and quick access to it to play the game
effectively.

Here is a third approach, possibly effective for use by both humans and
computers.

Algorithm 3

Step 1. Make the following four guesses:

Froyy
rgry
bbpp
bwhbw

Step 2. Create L, a list of all possible Mastermind codes that are consistent
with the answers you receive from the first four guesses
STeEP 3. Repeat
Begin
SteEP 4. Pick an element from L to be your guess
Step 5. Update L {remove from L all those codes that are inconsis-
tent with the response to your guess}
End
Until your guess is correct
STeP 6. Stop.

Try playing a few games using this algorithm. You will be surprised at how
small the list L is that vou create in step 2. In fact, we claim that after at most
one more guess you can always figure out the secret list; so, in a total of six
guesses you will have the answer nailed down. {See Supplementary Exercise 15.)

There are a few ideas that can be derived from thinking about and playing
Mastermind. At first you might wonder why we bother to create a formal algorithm
to play the game. We all can quickly learn effective guesses to make, and so why
not play just using these hunches and logical deductions? In fact. that’s how most
of us do play this und many other games. But us soon as we turn the process
around so that the computer is making the guesses, then it becomes essential to
have an algorithm so that the computer has a way to proceed. If we start to
analyze how we play the game, we soon see that we have lots of different strategies
that we adapt according to the responses. It would be quite a feat to design an
algorithm that would accommodate all the different possibilities that the mind
thinks up. In fact, it is quite impressive how clever and logical the human mind is.

165

3 ARITHMETIC OF SETS

Instead of trying to simulate the logical working of a human brain, we have
chosen very straightforward algorithms that could be programmed easily and that
will lead to success with a relatively small number of guesses. We have also
exploited the fact that the computer can do lots of checking rather quickly. You
are invited to write (or find a friendly computer programmer to write) a program
using Algorithms 2 or 3, and then to race the computer to see who is faster!

EXERCISES FOR SECTION 5

1. Find a solution to each of the following Mastermind games given the indicated
guesses and answers:

Position and Color Color Correct:
Guess Correct Position Incorrect
(@ r br b 0 0
wywy 0 0
gypygprp 3 0
g49pr4 0 2
() r brb 2 0
wwyy 0 2
rbyw 1 3
vbrw 0 4
(¢) r ywhbd 1 1
g bpw 1 0
rypw 2 0
vgbop 0 0
wr wer 1 2
@y rryy 0 0
rygroyg 0 0
bbopop 2 0
bwbw 1 {
wp wp 2 2
e bypr 0 4
rpygb 2 2
rygph 1 3
rpby | 3
rbhyp 0 4

2. Explain why there are no solutions to the following guesses and answers:

(@) rbhrb 0 1
vy vy 1 0
pwpw 0]
Py opw | 3

166

10.

11.

3:5 AN APPLICATION OF PERMUTATIONS: THE GAME OF MASTERMIND

(b)) rgbb 2 2
bgrb 1 3
grbb 0 4

© brghb 0 3
yyvpw 1 0
yrghb 1 2
rbyb 2 1

Suppose you learn that there are two colors, green and blue, in the code word.
How many code words are possible? List them all.

Write a list of four Mastermind guesses and responses for which there are (a)
no solutions, (b) one solution, and (¢) two or more solutions.

How many Mastermind codes begin with 7 How many Mastermind codes
begin with r and contain no other *? How many Mastermind codes begin with
r and contain another r?

How many possible codes are there for which the response to the guess
r b b bis0(color and position correct) and 1 (color but not position correct)?

List all Mastermind codes formed from {p,p,y,b}. Then do the same for
{0y,

Associated with the game of Mastermind is a function f:C4 — 10,1,2,3,4}7
as described in this section. What is the range of [?

Answer the following questions (without listing all possibilities.) Suppose that

we play a version of Mastermind in which we pick a code of length 5 from

the same set of six colors. Otherwise, all the rules are the same.

(@) How many possible code words are there?

(b) How many code words are there in which the five colors {r. b, g, v, p} each
appear once?

(¢) How many code words are there if the colors {r, b, g} each appear once and
w appears twice?

(d) How many code words are there if the colors {r, b} cach appear once and
p appears three times?

How many code words are consistent with the following set of guesses and
responses?

rroyy | 0
rgrg 0 0
bbpp 1 0
hwbw 2 l

Define a new game called Trivialmind in which only three colors are used
(red, blue, and white) and the secret code consists of a list of only two colors.
How many different secret color codes are there in Trivialmind?

167

3 ARITHMETIC OF SETS

12. Describe a variation on Algorithm 1 that will work for Trivialmind. What is
the maximum number of guesses that will be made using this algorithm?

13. Describe a variation on Algorithm 3 that will work for Trivialmind. Using this
new version of Algorithm 3, how many guesses will player 2 need to guarantee
a correct guess?

14. Show that no algorithm will in all cases correctly solve Trivialmind with three
or fewer guesses.

15. The point of this exercise is to improve Algorithm 1. In step 1 we guessed
x x x x for each x in {r.y,g,b,p,w}. Figure out a way to reduce these six
questions to five. Now suppose that we know the colors present in the secret
code and their frequency. Suppose that the color x is present (at least once)
and that the color z is missing. Notice that at least two colors must be missing.
What can you learn from the following four questions:

Can you learn this same information with only three guesses? Using these
ideas, try to devise an algorithm along these lines with as few guesses as pos-
sible. How many guesses do you make in general?

16. Pick a mastermind code and apply Algorithm 3. How large is your initial
list L?

17. Suppose that you guess r b r b. How many different responses are possible?
If you guess r » » w, how many different responses are there? What is the
minimum number of different responses to any Mastermind guess? What are
the guesses that produce this minimum? What is the maximum number of dif-

ferent responses to any Mastermind guess? What are the guesses that produce
this maximum?

3:6 THE BINOMIAL THEOREM

This chapter concludes with a result that unifies a variety of facts about binomial

s
. i
coefficients. We know, for example, that the sum of the binomial coetlicients (>

fori=0.1,...,nequals 2", and from Exercise 3.10 we know that the sum of the
. . . n . — ;
“even” binomial coetlicients (7> for j=0.1,...,|n/2] equals 2" ! There are
=]

many other similar identities lurking around, waiting to be discovered.

168

3:6 THE BINOMIAL THEOREM

Question 6.1. For n = 3,4, and 5 verify that

‘n n) n n\ il e
(o ())G e () e e <n):0.
Question 6.2. Verify that
2 3 4 5
2T\) TG)

In general, the sum of the binomial coefficients

o))

. . . k
can be expressed as a single binomial coefficient <> For n =5 and 6 find such

. . . k)
a binomial coefficient < > Then for arbitrary n find k and j so that
J

DG =0)-0)

{Here j will be a constant and & will depend upon #.)
Example 6.1. We review some polynomial arithmetic:

(1+x)P?=1+2x+x°
(L4 xP =14 3x4+3x>+x3
(1+)% =1+ 4x + 6x7 + 4x7 + x*.

Notice that the coefficients in the expansion above of (1 + x) are exactly the
numbers in the kth row of Pascal’s triangle. Thus the coefficient of x' in (1 + x)"

. . . n
appears to be the binomial coefficient () for0 <i<n.
14

Example 6.1 sets us on the right track. We prove the suggested result and
find that the answers to Questions 6.1 and 6.2 and much more follow {rom the
so-called Binomial Theorem.

Theorem 6.1. The Binomial Theorem. For n. a natural number.

W (mYy AN AN ny
(1 +)= + >x+ P R S B D S X"
0 . 2 .3 n

169

3 ARITHMETIC OF SETS

Proof. We prove this theorem by induction on n. When n = 0,

(1+x°=1= (8)
| L=q1 ~(! ap
(l+x) =(1+x= 0 +) X.

(You might check the cases of n = 2 and 3 to make sure that the statement of the
theorem is clear.)
The inductive hypothesis is that

(1+x)"=<gj+(T)x+-~+<lg>x"+~-+<i>x".

From this we must determine (1 + x)* 71, By factoring,

When n = 1,

T+ xf" P =(1 4+ 041 + x)

=[<’(§>+<’I>x++<’f>x +-..+<I;>xk:|(1 + 9

by the inductive hypothesis,

S(GRGRSSO Y
+[<’5>x+~-~+<if 1>xf+.--+<kf 1>+(i>}

by multiplying first by | and then by x.
Now we must collect like terms together. That s, first we find the constant

k k+1
term, the coefficient of x°. It is just <0> =1 =< *

N > since all terms in the

'k
second bracket involve x. What are the terms involving x! = x? We have ()X
k .
and < 0> x. from the first and second bracket, respectively, or

"k k Tk + 1
(\Jx%—(())x:(kﬁ—l)x:(\ |)x.

/ N

170

3:6 THE BINOMIAL THEOREM

, k .
In general, what are the coefficients of x*? In the first bracket we have (,)x‘ and

DI NE)"

= (k + >xi by Corollary 2.2.

in the second bracket we have < k l>xi. Thus in the sum we have

i

k+1

Finally, the term x appears only in the second bracket and we have

k+1
<£>Xk+1:xk+l:<kil>xk+l' .

For comparison we offer the following.

Second proof of Theorem 6.1. We want to determine the expansion of (1 + x)"
as a polynomial:

(L+x)'=ag+a;x+ - +ax 4+ +ax"

That is, we want to determine the coefficients agy,a,,...,a, Now
T+x)"=00+x01+x(1+x),

a product of n identical factors. A term in the product results from every way of
selecting one element (either | or x) from each pair of parentheses and muitiplying
them together. For exampie, if we select | from the first parenthesis, x {rom the
second and third, and 1 from all the rest, we multiply these to get the product x2.
Thus this selection contributes 1 to a,, the coefficient of x?. Suppose that we
designate this choice by an n-vector with a zero in the entries where we select a
I (= x°, and a one in the entries where we select an x (= x'). Thus in our example
we designate our selection by the vector (0,1,1,0,0,....0). Then the number of
ways to choose elements one from each parenthesis, to multiply together and get
x? is the same as the number of bit vectors with two ones and (n — 2) zeros. From

Example 3.2 we know that the number of such vectors equals <’1>, andsoa, = <:>

“

In general, a;, the coetficient of x'in the expansion of (I + k)" equals the num-
ber of ways to select i xs and (n — i) Is, one from cach of the n sets of parentheses.

. . . . n
This number equals the number of bit vectors with i ones and (n — i) zeros or ()
!

as we saw in Example 3.2. (]

171

3 ARITHMETIC OF SETS

Notice that Theorem 6.1 gives us a polynomial identity, that is, an equation
that is true upon substitution of any real value of x. We now substitute different
values for x and see what happens.

Example 6.2. Substituting x = | in the Binomial Theorem shows that

RGN
G A

the same result as in Corollary 3.2.

+
+.

Example 6.3. Substituting x = — 1 in the Binomial Theorem leads to

0

(1—-1" iftn>0

()=
-0+

a phenomenon we observed in Question 6.1. Notice that we may rearrange the
last equation to read

n> n' n ' n’ n ‘n
o)+ (3)+ (5 =)L) +(5)-
Since the sum of the left-hand side plus the right-hand side equals 2", we see that
each side separately equals ($)(2™ = 2" "', a resuit that we noted in the first para-
graph of this section.

How does Question 6.2 relate to the Binomial Theorem? We can’t obtain the
result suggested there by merely substituting in a number for x. but we can use the

Binomial Theorem to derive it. We have previously seen in Chapter 2, Exampie 3.3,
another polynomial identity that gives the sum of a (finite) geometric series:

3 . l_le—l
[+ x+x7 4+t = —

[—x

Since this is an identity that holds true for ull x, except for x = [, we can substitute
both values and expressions for x, and the equation still holds true. For example.

172

3:6 THE BINOMIAL THEOREM

if we substitute (1 + x) for x everywhere in the geometric series we get the result
that

F+(l+0+0+0%+ -+ 0+ + -+ (1 + 0"

1 —(1 E n+ 1
= T(—(T—:)—)— provided x # 0
—(1+x
L=+t
B —Xx
1 ; ntl 1
=(* \C);—” for x # 0. *)

This result tells us that if we multiply out both the right-hand side and the left-
hand side of equation (*), then the resulting polynomials are the same.

In particular, let’s look at the x* term on both sides of equation (*). On the
left-hand side at first there are no x? terms, but then x? appears in the expansion
of all the terms from (1 + x)* on up to (1 + x)". By the Binomial Theorem, here

are the x? terms:
\,z 3 2 A LA
).\ +<2 b e)
2 /3 i n 5
=15 +(2 + +~--+<2 X2

The x* term on the right-hand side of (*) will result from dividing the x° term of
the numerator by the x in the denominator. By the Binomial Theorem the x* term

!
of [(1+ X"t —1]is (”J; >x3. Thus
N

‘n+ 1\ x? (n + l> 5
Y= X7
(‘ 3 X 3

Since (*) gives two expressions for the same underlying polynomial, the co-
efficient of x* on the left and on the right must be the same, that is.

[HRHEE AR R
B Q05

[SS 2 RO

or

173

3 ARITHMETIC OF SETS

There is another more general form of the Binomial Theorem that gives the
expansion of a polynomial with two variables:

N 7N
n n - n —i n .
(y_+_x)n:<0>ynx0+<l)yn lxl +...+(i)yn lxl+"'+<n>}’0,‘(',

This result can be proved in essentially the same way as Theorem 6.1.

A common problem in combinatorial mathematics is to count objects with
specified properties, for exampie, to count the number of j-subsets of an n-set.
Sometimes a neat formula can be obtained; other times the answer can be derived
from a polynomial identity. One often can deduce that the answer to the problem
is, say, the coefficient of X’ in a certain polynomial. We have seen that the number
of j-subsets of an n-set is the coetficient of x in the polynomial (1 + x)". Such poly-
nomial solutions are known as generating functions. The use of generating func-
tions is a powerful technique with wide application. In this section we have seen
an introduction to the methods and use of generating functions.

EXERCISES FOR SECTION 6

1. Expand (1 + x)° and (1 + x)° and check that the coefficients are the binomial
coefficients promised by Theorem 6.1. [Reminder: Do you really have to mul-
tiply (1 + x) by itself four and five times, respectively?]

2. (a) Find a simple formula for

n ‘n n n\ n
b 21 2n
(6= Qe G)eroe (e ()2
and for
n n n PRV NEAUE
<0>—<1>2+(2>4—-~~+(—1)<1>2+ +(—1)(\n)2.

(b) Prove that if n is even, then

, , o)
n n n n . y !
(e (NVios o (N2 2P T !

3. Use the Binomial Theorem to derive the expansion of (1 + {/x)".

4. In each of the following, first verify the equation-by selecting a value for r, n,
and m and checking the equation for these vaiues. Then prove the general
result about sums of binomial coetficients.

174

3:6 THE BINOMIAL THEOREM

r r4+1 P /r+)‘l ~ Fan
@ <0> - ! * * i * * I\\ n B n ’

F " m+ 1 i R L n+1
() Form=n <m m)T m,)+ m) \m+1)
(¢) Forn<r, (6)_<)1.>+”’+(_1)i<:>+"’+(“1)”<;>=t~—1)"<r;1>-

8. (a) For r <5, verify that

GGG G0
(7))

(b) Now we want to show, in general, that for r less than or equal to both
m and n,

G2+)06 -C77)

It is clear that (I + x)™(1 + x)" = (1 + x)™"". Use the Binomial Theorem
to find the coefficient of x" in (1 + x)™*". Then use the Binomial Theorem

to expand (1 + x)™ and (1 + x)" and determine the coefficient of x" in the
product

(14)™ + x)".

From these results, conclude that the previous equation holds.
6. Explain why

<" o

1'1 1 ',?.n
(1+x)"(1+;> _{I+x

\

n

. . . 1
Then find the constant term (the coefficient of x°) in (I + x)"<1 +) and
X
)Zn

. . ‘ AT+
find the constant term in the expansion of (—n. See Supplementary
X

Exercise 17 for an application.

7. Prove the general form of the Binomial Theorem that gives the ¢xpansion of
(y+ x)"

175

3 ARITHMETIC OF SETS

8. Find a simple formuia for the sum of the binomial coetlicients

B =)

Next prove the formula using the ideas of the solution to Question 6.2. Then
find and prove a formula for the sum

k k+1 4 ")+...+ i fork<n
iy + K + k k T

3:7 IMPORTANT SUBSETS

The most important ideas in this chapter are those about sets: j-subsets, permuta-
tions, and the counting of these sets. [t is worth repeating that this set theory
along with that in Chapter 1 is a crucial element in all further study of mathematics,
computer science, and algorithms. The new counting functions, the factorial and
the binomial coeflicients, will appear frequently. Already the latter have given us
the number of j-subsets of an n-set, the number of shortest paths in a rectangular
grid, the number of n-bit sequences with a specified number of ones, and the
coefficients in the expansion of (1 + x)". We shall meet these functions in every
future chapter; we shall use the subset and permutation ideas repeatedly and with-
out further ado. To be honest, Mailmobiles haven’'t caught on with quite the
popularity initially expected. but the path counting problem is a classic.

The algorithms of this chapter, JSET and PERM, are of more than illustrative
value. They are used repeatedly, for example, in Mastermind and in more serious
applications in Chapter 3. In these algorithms we introduced nested loops and
Boolean variables. Although these algorithms and algorithmic techniques are more
complex than those of the previous chapter, they were selected for their relative
simplicity. The “state of the art” algorithms for generating subsets and permuta-
tions are more sophisticated and a little more efficient. However, no amount of
trickery can get around the fact that generating all permutations of an n-set and
all subsets of size | n/2 | requires an exponential amount of work.

This study of counting, generating, and listing objects of a certain size provides
an introduction to the areas of combinatorial analysis and combinatorial uigor-
ithms. In these modern and fast-growing fields, a typical problem involves counting
all objects with a particular structure and listing them in a certain order. The
counting task is often solved using functions like the binomial coetficients and
techniques like generating functions. The listing is {requently done by imposing
an order on the structure such as lexicographic order.

176

SUPPLEMENTARY EXERCISES FOR CHAPTER 3

In Chapter 5 we shall focus on finite sets and their 2-subsets, an area known
as graph theory. The study of orderings. both constructing them and searching
them, is the subject of Chapter 6.

SUPPLEMENTARY EXERCISES FOR CHAPTER 3

1. Given the rectangular grid shown here how many different shortest paths
join the vertices labeled R and S? How many different shortest paths are there
from R to § that do not go through the vertex labeled P? How many shortest
paths are there from R to S that do not go through either the vertex labeled
P or the vertex labeled Q?

R

2. How many 4-subsets of {1,....8} contain the number 3? How many contain
5?7 How many 4-subsets contain either 3 or 57

3. Count the number of 10-digit ternary numbers (i.e.. numbers that use only
the digits 0, 1. and 2). How many of these contain exactly four zeros? How
many contain exactly four ones? How many contain three zeros and three
ones”?

4. Find a formula for the number of n-digit ternary numbers that contain i zeros
and (n — i} ones and twos (combined). How many contain exactly i zeros and
J ones when i and j are positive integers with i + j < n?

5. The number of n-letter "words™ made up from the letters a.b, and ¢ is the
same as the number of n-digit ternary numbers—why? How many n-letter
words are there with i a's, j P’s and (n — i — j) ¢'s?

6. (a) Is the following true or false? (2n)! = 2" - n! Explain.
(b) For an odd number (2n — 1) we detine the odd factorial

2n—-10'=2n - D2 —-3)--- -3 1.

Thus(3)0! =3 - | =3.and (50! =5-3 - 1 = 15. Calculate (7)0! and (9)0'.

177

3 ARITHMETIC OF SETS

(¢) Expiain why the following new formula is correct:

2n\ 2" (2n — HO!
nj) n! ’
o]

(d) Show that (2n — 1)0'/n! < 2n and then deduce that <_nn> = 0(4".

7. Define the even factorial (2n)E! in a way analogous to the odd factorial
(2n — 1O Then find a formula that relates (2n)E! and nl.

8. Reread Exercise 2.12 where the factorial representation of a number is defined.
Then prove that every positive integer has a unique factorial representation.

9. Find an algorithm that with input n, a positive integer, outputs the factorial
representation of n (see Exercise 2.12 and the previous exercise).

10. In checkers, how many different paths (of legal moves) are there from the
rightmost square in your back row, to your opponent’s back row? Recall that
checkers is played on an 8 x 8 board; your pieces begin only on the biack
squares and your pieces can only move forward on a diagonal.

11. (a) Recall that each j-subset of {1,2,....n} corresponds with a binary se-
quence with n bits, exactly j of which are 1s. Given two subsets, say S and
T, with § listed before T in lexicographic order, which of the binary se-
quences is larger (when considered as numbers)?
(b) Design an algorithm that will produce all the j-subsets of an rn-set in lexico-
graphic order by manipulating the bit vectors.

12. Let [, ={1,....n} and j be fixed. Define

U = {B: B is a j-subset of [, that contains 1}
and
V = {B: B s a j-subset of I, that does not contain 1!.

Which of U and V is the larger set?

13. Letlg =1{1,2,3,4,5 6}. How many permutations of I ; have the even numbers
in their correct positions (i.e., 2 is in the second position, etc.)? How many
permutations of [have the even numbers in even-numbered positions?

14. How many numbers from 1000 to 3000 have their digits all in the set
11,2.3,4,5}? How many such numbers have no repetitions in their digits?

15. Show that Algorithm 3 from Section 5 will always work in at most six guesses.
(Hint: One way to verify this is using a computer search.)

16. Find an algorithm for Mastermind that uses at most five questions in ail cases.

178

17.

18.

19.

20.

21.

SUPPLEMENTARY EXERCISES FOR CHAPTER 3

(Warning: The solution to this problem is hard enough so that it has been
written up in a journal.)*

n* n\?

) + o+ (. Prove your guess.

Guess a formula for <n> + <
0 NG
How many multiplications are needed to calculate n!? How many multiplica-

.y n
tions and divisions are needed to calculate <>"
J

AN L
Forj <|n/2], find a way to calculate < > using at most 2j — 2 multiplications
J
and divisions.

n—1

Prove the following identity: <r:> = (n/i)<i_ :

calculate <’;>

<n —i+ 1>
—i+2 —i+2/n—i+1
<n i+) = L;_t_ (n L > by the identity above

1
<n—z+3

_n—i+3<n—i+2
<n —i+ i> B <n> — /i) <n - 1> by repeated application of the

>. Here is another way to

using no multiplications or
divisions

i

n—i+1,

2

) by the same identity

3
i i identity

Using this approach, determine the number of multiplications and divisions
n

used to calculate |). Compare this result with your answers in the previcus
i

tWO exercises.

Use the results of Exercise 4 to find the expansion of (1 + x + y)". That is,
write this as a polynomial of two variables:

do,o T dy,0X + dg (y + dy Xy
2 2 A Jy,k A
+ dz.ox -+ (loyzy + + aj,kx v +

and find a formula for each coefficient dj ks where j + k < n.

* Donald Knuth, “The Computer as Master Mind”, Journal of Recreational Mathematics,
Vol. 9(1), 1976-77. pp. 1-6.

179

3 ARITHMETIC OF SETS

22.

23.

24,

25.

180

If (1 + x + x?)" is expanded as
bo + bl,\' 4+ -4+ bl.xi 4o 4 b2"-\:2nq

then find an expression for each coetficient b;.

Reread the definition of even and odd permutations in Exercises 4.11 and
4.12. Prove that for a permutation p, d(p, p*), where p* is the identity permuta-
tion, is even if and only if every number of transpositions that transform p
into p* is even.

If p=<{sy 55 -+ 3,0 is a permutation, we define Inv(p), called the number
of inversions of p, to be the number of pairs (s;,s;) such that i <j and s; > 5,
for 1 <i < j < n. Determine /nv(p) for each of the following:

(@) <1 23456

) <213456)

() 214365

d) 654321

Prove that Inv(p) is an even number if and only if p i1s an even permutation.

NUMBER THEORY

4:1 GREATEST COMMON DIVISORS

In this chapter seemingly elementary questions from integer arithmetic lead to
surprising and elegant ‘ mathematics. We shall look at divisibility properties of
integers, the greatest common divisor of two integers, and the Fibonacci humbers.
These topics have aesthetic appeal and are applicable, as ‘we shall see, in crypto-
graphy.

Here are two problems on which we spent many (dull?) hoursin elementary
school. Recall that a fraction a/b is simplified (or reduced) if @ and b have no
common factor greater than 1.

Problem1. Isthefraction a/b simplified? If not, simplify it.

Problem 2. Compute a/b + ¢/d and leave the answer simplified.

Question 1.1. Simplify, if possible, the following: 5, 151 - 130> 8370+ Add and
simplify the following 3 + 3,4 + %, r3*+ 6'5.

Y ou might wonder why we did these exercises in elementary school as well
as how we did them. Probably being dutiful and bright students, we just did them.
But why bother? Certainly, calculators remove the need to simplify fractions.

Try an experiment. Add § to itself three times on a calculator. You might get
1 or you might get ,99999999 (depending on your calculator). In either case sub-
tract 1 from your total. Surprisingly enough you won't get zero (unless your cal-
culator is fancy or broken). There are instances (you will see one in Section 7)

181

4 NUMBER THEORY

when we know quantities to be integers and want to retain the accuracy and
precision of integer arithmetic. Most computer languages give us the option of
exact arithmetic with integers, provided that the integers are not too large.

How did we do Problems 1 and 2? To find the sum of two fractions, most of
uswould compute

a c_ad+bc

b d bd

and then simplify this fraction. Both problems require the ability to simplify frac-
tions. As a practical technique, most people would simplify the fraction a/b by
searching for integers that are divisors of both a and b. When such an integer, say
c, is found, they cancel ¢ from both the numerator and the denominator to obtain
the smaller problem of reducing (a/c) /(b/c). Thisisfineif the numbers aand b
aresmall or have common divisors that are easy to find, for instance, if both a
and b are even or both end in O or 5.

A dightly more sophisticated approach is to look for common divisors among
the primes, for if two numbers have a common divisor, then they have a common
prime divisor. An even better description of how to proceed is to find the greatest
common divisor of a and b and then cancel that number. Although thisis better
as adescription, if the numbers a and b are at ail large, we might be at alossin
finding the greatest common divisor or, for that matter, any common divisor.

Question 1.2. Find the greatest common divisor of the pairs (a) (65, 130),
(b) (48, 88), and (c) (34567, 89101 1).

In this section we work out a straightforward, although slow, procedure for
finding the greatest common divisor of two integers. A more efficient algorithm
will be presented in a later section.

We begin with some precise definitions pertaining to integer arithmetic. If b
and c are integers, we say that b divides ¢ (b isadivisor of ¢, and c isa multiple
of b) if c/bisaninteger. Then as the name implies, the greatest common divisor
of two positive integers b and c is the largest integer that is a divisor of both b
and c. We denote the greatest common divisor of b and ¢ by ged (b, c).

Does every pair have a greatest common divisor? Any pair of positive integers
has 1 as a common divisor, and the largest number that could possibly be a
common divisor of b and ¢ is the minimum of b and c. Thus the greatest common
divisor always exists and lies somewhere between 1 and the minimum of b and c.

Question 1.3. Find b and ¢ (with b < c) such that (i) ged (b,c) = 1, @) 1 <

ged (b,) < b, and (iii) ged (b, ¢) =b. Why isit impossible for ged (b, c) to be larger
than the minimum of b and c?

182

4:1 GREATEST COMMON DIVISORS

Our first ged algorithm, a brute force search, looks for ged (b, c) starting with
the largest possibility, the minimum of b and c, and then checks each smaller
integer in turn until a common divisor is found. The first common divisor found
will be the greatest. The algorithm must stop, since 1 is a common divisor.

Algorithm GCD1

Step 1. Input b, ¢; set g := minimum of b and c
Step 2. Whileg > 1 do
Begin
Srep 3. If b/g and c/g are both integers, then output g and stop.
Step 4. Setg:=g—1
End
Step 5. Output ged = 1 and stop.

Question 1.4. Carry out GCD1 on the pairs (3,4), (3, 12), and (6, 20).

We judge the efficiency of this algorithm by the number of divisions (which
occur only in step 3). The exact number will depend upon b and ¢, and so we
carry out a worst-case analysis to obtain an upper bound. Our input to GCD 1 is
two integers b and c; suppose that b < c. We measure the size of the input by ¢
and let the complexity function f(c) count the maximum number of divisions car-
ried out for any pair of numbers b < c. Two divisions are performed every time
step 3 is encountered. Step 3 will be executed with g = b, then g = (b — 1), then
g=(b—2), and so on, until g has decreased down to the real gtd. Thus step 3
will happen most often when the ged is 1. In this event we would encounter step
3 atotal of b —1times, performing 2(b — 1) divisions. Then

f(C) <2(b— 1)< 2(c - 1)< 2c so f(c) = o(c).

We see that the number of divisionsin GCD1 is linear in the size of the input,
and thus it seems to be an efficient algorithm.

Question 1.5. Find two positive integers b and ¢ such that when GCD1 is applied
to them we find the following.

(8) The number of divisionsisexactly 2(b —1).

(b) The number of divisions is less than 2(b - 1).

(c) The number of divisionsis as small as possible.

With GCD1 we can respond precisely to Problems 1 and 2. With a more

efficient ged algorithm, we could upgrade our responses by replacing GCD 1. Here
is a solution to Problem 1.

183

4 NUMBER THEORY

Algorithm SMPLIFY

Srep 1. Input a and b { The fraction a/b is to be simplified.}
Step 2. Use GCD1 and set g:= ged (g, b)

Ster3. Seta' :=algand b’ :=b/g

Step 4. Output the fraction o'/b" and stop.

Question 1.6. Write an algorithm ADDFRACT! that solves Problem 2. Upon
the input of fractions a/b and c/d, it should calculate their sum and output that
sum as a simplified fraction. You may use the algorithm SIMPLIFY within
ADDFRACTL.

Question 1.7. Count the number of multiplications and divisions performed by
SIMPLIFY and by ADDFRACT1, including thosein GCD1.

Previously, we have called linear algorithms fast and claimed that they were
more efficient than, say, quadratic algorithms. Although GCD 1 performs at most
O(c) divisions, it seems slow and inefficient on hand calculations. In fact, it is not
the approach that many humans would take to find the ged of two integers, and
it doesn’'t use any properties of integers that might speed up the process. In the next
sections we shall reexamine the complexit y of GCD 1 and the way we perform com-
plexity analyses. We shall find that GCD 1 is not an efficient algorithm, but we shall
develop a good ged agorithm, one that performs O(log (¢)) divisions in the worst
case upon input of integers b and c withb < c.

EXERCISES FOR SECTION 1

L Simplify the following fractions: (a) 332, (b) &5, (c) 223, and (d) £5%.

2. Combine the following into one simplified fraction: (8) 432 — 438 and
(b) & +&

3. If both a/b and ¢/d are simplified, is (ad + bc)/(bd) simplified?

4. 1f alb is simplified, is a?/b* simplified?

5. If a?/b* is simplified, is a/b simplified?

6. Suppose that we find the lowest common denominator of a/b + ¢/d to be g,

and with this denominator we get a/b + ¢/d = f/e for some integer f. Isf/e
aways a simplified fraction?

7. Trace GCD! on the following pairs: (a) (4,7), (b) (4, 6), (c) (8, 10), (d) (8, 12),
(€) (15,35), and (f) (18,42).

184

4:1 GREATEST COMMON DIVISORS

8. Algorithm GCD 1 begins with g equal to the minimum of b and c and then
decreases g, searching for a common divisor of b and c. Design an algorithm
that instead begins with g = 1 and then increases g until the ged is found. How
does the efficiency of this algorithm compare with that of GCD1?

9. Suppose that a, b, and c are three positive integers with a< b < c. We de-
fineged (a, b, c) to be the largest integer that divides all three numbers, a, b,
and c. Explain why ged (a, b, €) < a. Design an agorithm that upon the input
of a, b, and c finds ged (a, b, €). Find ged (24, 68, 128), ged (28,70, 98), and
ged (112,148, 192).

10. Find pairs (b, c) such that when GCD1 is applied, the number of divisions is
exactly (a) 12, (b) 16, and (c) b/2.

11. Given two integers b and c, the least common multiple of b and ¢, denoted by
lem (b, c), isthe smallest integer that is a multiple of both b and c. Find a pair
of integers b and ¢ with b < ¢ such that (i) lem (b, ¢) = bc and (ii) Iem (b, ¢) = c.
Then explain why in all cases ¢ < lcm (b, ¢) < bc.

12. Find thefollowmg lcm (2 3) Icm (3, 4) and Icm (6, 8). Then add and simplify
the fractions: 4 +4,4+4, and & + 3.

13. Calculate the following
(u) ged (5, 7) and lem (5, 7).
(b) ged (4,9) and lem (4, 9).
(€) ged (6, 10) and Iem (6, 10).
(d) ged (6,9) and Icm (6, 9).
(€) gcd (8, 12) and lem (8, 12).
(f) ged (5,10) and lem (5, 10).
14. Here is a proof that lcm (b, €). ged (b, €) = bc. Give reasons for each step. {Let
g=gcd (b, c), b =b/g, ¢ = clg,and m=Icm (b, ¢).}
1. be/gisamultiple of b and amultiple of ¢
2.lcm (b, ¢) < belg
3.ged (b, ¢)-lem (b, ¢) < bc
4. be/mdivides both b and ¢
5. ged (b,) > be/m
6. ged (b, €)” lem (b, €) = be
7. ged (b, ¢) -1em (b,) = be.
15. Given the following pairs of integers b and ¢, find g = ged (b, ¢), b’ = big, ¢’ =
c/g, and Icm (b, ¢). Then check that Iem (b, ¢) = #'¢’g. (a) 3and 4, (b) 6 and 8,
(c)4and 6, (d) 3and 9, and (e) 8 and 20.

16. Prove that Icm (b, €) = b'c’g, where b, ', and g are as defined in Exercise 15.

17. Find pairs (b, c) such that ged (b, <) equals (a) 3, (b) 8, (c) b/2, (d) b/3, and
€) +/b. Find pairs (b,) such that lcm (b,) equals (a) 14, (b) 29, (c) 2b, (d) 3b,
and (e) b2

185

4 NUMBER THEORY

18. What can be said about the relation between ged (a, b) and ged (at, bt) wheret
is any positive integer?

19. Prove that if a and b are positive integers and x and y are nonzero integers
such that ax + by = 1, then

ged (@ b) = ged (a,y) = ged (%, &) =ged (X, y) = 1.

Show that exactly one of the numbers x and y must be negative. [We can
define ged (c, d), where one or both of ¢ and d are negative with exactly the
same definition as for positive integers.]

20.If a, b, x, and y are nonzero integers such that ax + by = 2, is it true that
ged (g, b) = 27

21. Prove that if ged (a, b) = 1 and if c divides b, then ged (a, c) = 1.

22. Suppose that a = gb + r, where a, b, g, and r are integers. Is it true that
ged (8, b) = ged (a, r)? Isged (a,) = ged (b, r)? Explain your answers.

23. Here is the idea for another algorithm to add the fractions a/b and c/d. Set
g:=ged (b, d), b’:= b/g, d := d/g, and m:= Icm (b, d). First calculate m by
m = bd/g. Then a/b = ad’/m and c/d = cb'/m (Why?) and a/b + c/d =
(ad’ + cb’)/m. Finally, simplify this last fraction. Implement these ideas as an
algorithm ADDFRACT2. How many variables does ADDFRACT?2 use?
Count the number of multiplications and divisions performed, including those
of GCD 1.

24. Compare the algorithms ADDFRACT1 and ADDFRACT?2 with respect to
number of variables used and number of multiplications and divisions per-
formed. Which uses less space and which is quicker?

4:2 ANOTHER LOOK AT COMPLEXITIES

We want to reexamine the complexity of algorithms, especially those from number
theory. In aformal analysis of an algorithm the size of the input should be mea-
sured by the number of bits (zeros and ones) needed to represent the input. For
number theory algorithms whose input is typically one or more positive integers,
the size of the input should be the total number of zeros and ones needed to
represent the input integers in binary notation. As before, we count the number
of time-consuming operations performed in the worst case of the algorithm (usually
multiplications and divisions for number theory algorithms) and express the result-
ing upper bound as a function of the number of input bits. In this section we
discuss the effects of this change of perspective on complexity analysis.

186

4:2 ANOTHER LOOK AT COMPLEXITIES

Why the change? There is a certain (bureaucratic-style) inefficiency built into
our previous approach to the analysis of algorithms. We measured how efficient
an algorithm was by estimating the number of steps it required as a function of
the input size. The problem with thisis that if we are careless about measuring
the size of the input, that is, if we let it be artificially large, then the algorithm
might appear to take a correspondingly small number of steps. Thisis just what
happened in our study of GCD1 and the exponentiation algorithms of Chapter 2.
Measuring input size in terms of bits leads to complexities that reflect actual
running times.

Changing the input measure, to bit size, is not hard. Suppose that an integer
nisthe input to an algorithm. As we saw in Section 2.6 the number of bits needed
to represent n is precisely

B=llogm]|+ 1.

This formula gives the trandation from nto B, and it implies the following useful
relationships.
log (n) < B<log(n)+ 1
< 2 log(n) forn> 2. (N

Example 2.1. Suppose that algorithm A performs at most Clog(n) time-consum-
ing operations upon input of an integer n for some constant C. Then what can
be said about the complexity function as a function of B, the number of bits needed
to represent n? By (1)

Clog (n) <CB = O(B).

Thus in terms of the variable B, the number of time-consuming operations is a
linear function.

Look back in Section 2.6 at the complexity analysis of FASTEXP. There we
found that no more than 3 log(n) + 3 multiplications and divisions are needed to
compute x“. Using (1), we see that

3log(n) + 3< 3B + 3=0(B).
In terms of input bits FASTEXP is alinear algorithm and so deserving of its name.
Question 2.1. Suppose that algorithms R, S, and T each have an integer n as
input, and their complexity functions are, respectively, (log (n))’, log (n?), and

log (log (n)). Find an upper bound on their complexity functions in terms of B, the
number of bits needed to represent n.

187

4 NUMBER THEORY

Example 2.2. Suppose that algorithm A performs at most C n time-consuming
operations upon input of an integer n for some constant C. Then what can be said
about the complexity function as a function of B, the number of bits needed to
represent n?
Cn=C2"%"” by properties of log
<C28 using (1)
= 0(2%).

Thus in terms of the variable B, the number of time-consuming operations is big
oh of an exponential function. Furthermore, if there are instances when .4’ uses
al C n operations, then

Cn=C2"¢*" py properties of log
> c 262 using (1)

=C(V2’
> C(1.414)8,

Thus A’ is an exponential algorithm.

The analysis in Example 2.2 shows why both the algorithms GCD 1 and
EXPONENT of Chapter 2 are bad algorithms. Since GCD1 hasintegersb and ¢
input, the number of bits needed to express b and ¢ in binary is given by

log (c) < B=|log (b)] + 1+]log(c)]+1

< 2log (b) + 21og (C) forb>2

<4log (c). (2)
We know that GCD1 performs at most 2c divisions. From Example 2.2 we know
that 2c < 2(25), giving an exponential upper bound. In addition, when b= ¢ -1,
ged (b, ¢) = 1 (see Exercise 2). In that case GCD1 performs exactly 2(b — 1)= 2c—4
divisions.

2C—4=202" -4 py properties of log
>22®% —-2) from (2)

> (284 =1 when B> 8

= (2(1/4))3
> (1.189)8.

188

4:2 ANOTHER LOOK AT COMPLEXITIES

Thus in the worst case GCD1 performs an exponential number of divisions in
terms of the input bit size.

Question 2.2. In Section 2.5 it was observed that EXPONENT aways performs
n multiplications. If B isthe number of bits needed to represent nin binary, explain
why EXPONENT is an exponential algorithm.

Since GCD 1 is now recognized to be bad, it is clear why we continue to
search for a faster algorithm. From now on we shall measure the input size by
the number of bits needed. This approach is standard in the study of algorithms
using Turing Machines.

EXERCISES FOR SECTION 2

1. Comment on the following statement: “Most of the time [log(n)| =
[log(n)] -1.”
2. Explainwhy ged (c—1, c) = 1 for al integersc > 1.

3. Let B =|log(n)]|+ 1. For each function f listed in the table find the smallest
function g such that f(n) < g(n).

T(n) 9(B)

2log(n) — n VB
Jlog(n) B
(tog(n))®> + 2 log(n)+ 1 2B
zlog(n) BZ
3log (m) 10B?
Jn 28
3n+3 2°
n log(n) 2B+3)
n’ B2
n"—n 2%8
> 68
g2
2(B%)
223

4. Lettheinput to algorithm A be an integer n. Thus the number of bits needed
isB = |log(n)| + 1. Suppose that the complexity function for algorithm Ais

a(n) = g(B).

189

4 NUMBER THEORY

(a) Show that if g(B)= O(p(B)), then a(n)= O(p(n)).

(b) Show that if a(n) # O(p(n)) for any polynomial p, then g(B) # O(4(B)) for any
polynomia gq.

(¢) If a(n)= O(p(n)) for some polynomial p, isit true that g(n) = O(g(B)) for some
polynomial ¢?

5. In the algorithms SUBSET, JSET, and PERM we measured the input by the
integer variable n. If we translate now to the number of bits input, B =
[log(m) [+ 1, do these algorithms remain exponential in the variable B using
the worst-case analysis? (See Exercise 4.)

6. Suppose that the input to an algorithm A is an integer n and suppose the size
of the input is measured by the number of decimal digits needed to express n.
Would this change of measure of input size change whether or not A is a good
algorithm?

4:3 THE EUCLIDEAN ALGORITHM

We have developed the simplistic (but bad) algorithm GCD1 to determine ged (b, c).
Fortunately, there is a much more efficient algorithm that appeared in 300 B.C. in
Euclid's Elements. This Euclidean algorithm is probably the oldest algorithm still
in use today. The Babylonians wrote down some precise arithmetic procedures
about 1500 years before Euclid, but these have all been replaced by more efficient
methods. The amazing fact about the Euclidean agorithm is that, except for
minor variations, it is the best (most efficient) aigorithm for calculating the greatest
common divisor of two integers. In this section we'll learn the algorithm and in
subsequent sections the mathematics needed to determine its complexity.

Here is the idea behind the algorithm. Suppose that we are given positive
integers b < ¢ and want to calculate ged (b, €). If d dividesbothband c[i.e, dis
a candidate for ged (b,)], then d divides ¢ — b. Indeed if d dividesc— b and b,
then it divides ¢ also. What is the advantage of working with b and ¢ — b instead
of band c? Very smply, ¢ — bissmaller than c.

Question 3.1. Find ged (18, 30), ged (18, 48), and ged (18, 66).
If c— Db isbetter than ¢, then ¢c — 2b should be better still. While we're at it, there

isc—3b, ¢ —4b, and so on, to consider. Indeed why not subtract off as many bs
as possible subject to the condition that the remaining value is not negative?

Question 3.2. For each pair (b, c), find the maximum integer ¢ such that c—gb= 0.
(a) (24, 36), (b) (36, 120), and (c) (34, 170).

This question illustrates the general rule that the right number of bs to sub-
tract from c is the floor function of the quotient c/b. Thus we divide c by b to

190

4:3 THE EUCLIDEAN ALGORITHM

obtain an integer quotient ¢, and a remainder r,, where

¢ c_ Y
ql—LbJ and b_q1+b'

We rewrite the previous equation in the form
c=qb+r, (A)

and note that the remainder r , must satisfy O <r, < 5. We call g, the quotient
and r , the remainder of the division c/b.
Hereis an important fact about the numbersin (A).

Lemma 3.1. If b, ¢, g, and r are integers such that ¢ = gb + r, then ged (b, ¢) =
ged (b, n).

Proof. Since an integer that divides b and ¢ also divides b and r, ged (b, €) divides
both b and r and so is at most ged (b, r). Thus

ged (b, €) < ged (b,).
An integer that divides b and r aso divides c. Thus
ged (b, 1) < ged (b, ©),

and the lemma follows. cl
Applying the lemmarto line (A) gives ged (b, €) = ged (1, b).

Question 3.3. For each of the following pairs of numbers, determine q, and r,.
Check that (A) holds and that O <r;< b. Finally, compute gcd (b, €) and ged (r, b).
(@) (3, 12), (b) (13, 121), (c) (233, 377), and (d) (34567, 891011).

Noticethat if in (A) r;= 0, thenc=g,b and ged (b, ¢) = b. But if r;> 0, then
we don't have the ged at our fingertips and consequently must do more work.
The problem is simpler now because we have smaller numbers. This technique of
replacing ¢ by a smaller number, the remainder, worked once. Let’s do it again.
Thus we divide b by »,, a number smaller than b, to obtain a new integer quotient

42 and a new remainder r5:

b= qyri+r, with O <r,<r,.

191

4 NUMBER THEORY

If r,= O, then r, divides b and so ry = ged (r,, b) = ged (b, c) by Lemma 3.1. More
generally (even when r,# O), we have by Lemma 3-1 that

ged (b, ©) = ged (ry,b) = ged (r, ry).
Next we divide r, by r,, then r, by », and keep dividing each remainder by the
next until we reach a remainder of zero. Here is the sequence of divisions spelled

out precisely; for future reference we call these the Euclidean equations. Note that
every variable assumes only integer values.

The Euclidean Equations

c=gqb+ry withO <r, <b

b= gry+r, with O <r,<r,

ry=4dsf + I, with O <r,<r,
Fimg =4ifi-1 17 with0 <r,<ry
Tems = Gk-1Tk-2 iy WIthO <r_;<rp—»
Te—2 = qiti—1+0 withr = O.

The claim made by Euclid is that r, —,, the last nonzero remainder, equals
ged (b,). Before we verify this, how do we know that this algorithm stops? That is,
how do we know that eventually we shall find a remainder of zero? Notice that
the remainders satisfy

b>ri>ry>ry> >r_ >r> >y,

and all the remainders are nonnegative integers. Eventually, a remainder must
equal zero, certainly after no more than b remainders.

Example 3.1. Let's carry out the Euclidean algorithm on the numbers 26 and 32:

32=1-26+6
260=4-6+2
6=3-2+0.

We know that ged (26, 32)= 2, the last nonzero remainder.

192

4:3 THE EUCLIDEAN ALGORITHM
Next we try 233 and 377:

377=1-233+ 144
233=1-144 + 89
144 =1-89+ 55

89 =1-55+34
55=1-34+21
34=1-21+13
21=1-13+8
13=1-8+5
8=1-5+3
5=1-3+2
3=1-2+1
2=2" 140

(That took a while!) This calculation implies that ged (233, 377)= 1. To check this,
note that 233 is a prime while 377 = 13.29.

Question 3.4. Use the Euclidean algorithm to calculate the following (a)
ged (12, 20), (b) ged (5, 15), (€) ged (377,610), and (d) ged (34567,89101 1). Check
that the ged divides each remainder in the Euclidean equations. In each instance
count the number of divisions needed to find the gtd.

In our development of the Euclidean algorithm the concurrent explanation

can readily be turned into a proof that the algorithm is correct. We now give such
a proof.

Theorem 3.2. Given positive integers b and c, the last nonzero remainder pro-
duced by the Euclidean agorithm equals ged (b, c).

Proof. Suppose that b and ¢ produce the Euclidean equations as listed above.
We must prove that r, - ; = ged (b, €). The last equation tells us that r, -, isa
divisor of r, _,,sincer, _ ,/r, -, istheinteger ;. Thus

M- = 864257 1) (B)
Applying Lemma 3.1 to the next to last equation, we get

ged(r—3,7—2) = 86d (P —2:7%-1) " Tk-1 by (B).

193

4 NUMBER THEORY

Continuing and repeatedly applying Lemma 3.1, we get

ged (b, o=ged (b, ry)
=ged(ry,73)
=ged(ry,r3)

=ged(re—2, T~ 1)
=re_q by (B). 0

Corollary 3.3. If g = ged (b, ©), then there are integers x and y such that g =
xb + ye.

Proof. Look at the Euclidean eguations. Notice that r, can be expressed as
r,= c—gq,b. If g =r,, then we have demonstrated this result. If not, we can use
the second Euclidean equation to express

r;=b—qyr;
= b —qy(c—q;b) by substitution
(1 + 9192)b — 42¢ simplifying and factoring.

We continue this process until we reach
g=Tg-1 = -3 = Qk—17k-2

and can substitute in expressions for r, _yand r, _ , found earlier, to express
g=ri-intheform xb + ye. U

We say that the resulting equation expresses the ged as a linear combination

of band c. This result will be useful in Section 7; other applications are explored
in the exercises.

Example 3.1 (continued). We found that gcd (26, 32) = 2. Now we use the
Euclidean equations to express 2 as a linear combination of 26 and 32. From
the first Euclidean equation we have

6=1-32—-1"26.
From the second equation

2=1-26—4-6.

194

4:3 THE EUCLIDEAN ALGORITHM

We substitute the first equation into the second to get
2=1-26—4(1-32-1-26)=5-26 -4 32
The same procedure applied to 233 and 377 yields
1=(—144)- 233 + 89.377,

but we spare you the 11 equations needed to derive this. Notice that once derived,
it is easy to check that the values of x and y work.

Now we write the Euclidean algorithm in pseudocode. Note that the Euclidean
equations al are in the same form.

Algorithm EUCLID

Step 1. Input band ¢ {0 <b<c} setr:=b
Step 2. While r > 0 do

Begin

Ster3. Set q: = |¢/b]

STEP 4. Setr:=c—q=*b

SteP 5. If r = O, then output gcd =b

ese
setc:=band b:=r

End {step 2}

SteEP 6. Stop.

Question 3.5. Run EUCLID on the following pairs of integers and express the
ged as a linear combination of the pair of numbers. (a) (6,20), (b) (3, 4), and
© (55, 89).

What can we say about the complexity of EUCLID? We begin as we did
with GCD1. Let g(c) count the maximum number of divisions and multiplica-
tions performed in the algorithm upon input of numbers b < c. Not surprisingly,
there are lots of these operations. One division occurs in step 3 and one multiplica
tion in step 4. Every time we execute step 3 we immediately execute step 4. Thus
e(c) = 2m, where mis the number of times that step 3 is executed. Another way
to count this is to notice that e(c) equals twice the number of Euclidean equations
needed to calculate ged (b,). Thisis so, since we do one division to get the quotient
and one multiplication to get the remainder in each new equation.

Thus e(c) = 2k, where k is the number of Euclidean equations used upon the
pair b and ¢. We search for an upper bound on k that will give us an upper bound
on g(c). Since the remainders in the equations decrease, we know that in the
worst case we can have no more than b equations. For this to occur, the remainders

195

4 NUMBER THEORY

must be precisely (b—1), @—2),....1,and O. Then
e(c) <2b <2c=0O(c),

a complexity result no better than that of GCD 1.

We shall seein the next sections that the remainders cannot behave in such
a perverse manner and that EUCLID is considerably more efficient than GCD 1.
In fact, we shall see that as a function of the size of the bit input, EUCLID isa
linear algorithm.

EXERCISES FOR SECTION 3

1. Use EUCLID to find the ged of the following pairs: (a) (10, 14), (b) (14, 35),
(c) (24, 42), (d) (128, 232), (e) (98, 210).

2. For each of the pairs in Exercise 1, express the greatest common divisor as a
linear combination of the given numbers.

3. Suppose that you EUCLID the pair (b, ¢) and then the pair (tb, tc) for some
integer constant ¢. What is the relationship between the two sets of Euclidean
equations? What is the relationship between the pairs of integers x and y that
express b and ¢ and th and tc as linear combinations of their ged’s?

4. Suppose that a = bc + d. Which of the following are true and which false?
Explain.

(i) If edividesa and b, then e divides d.
(i) If edivides a and c, then e divides d.
(iii) If e divides a and d, then e divides b.
(iv) If edivides c and d, then e divides a.
(v) If edivides b and d, then e divides a.
(vi) If edivides b and c, then e divides a.
(vii) ged (a, ¢) = ged (c, d).

(viii) ged (a, c) = ged (b, d).
(ix) ged (a, b) = ged (b, d).
(x) ged(a, c) = ged (b, o).

5. Find a number ¢ such that with b = 3< c, the remainders in the Euclidean
equations are precisely the numbers 2, 1, and O. Is there a number ¢ such that
with b = 4< ¢ the remainders are (all) the numbers 3, 2, 1, and O? Can you
find apair of numbers b and c with 4< b < ¢ such that the remaindersin the
Euclidean algorithm are al the numbers (b—1), (b-2),...,1, and O?

6. Suppose that d divides b and ¢ — sb, wheres is an integer such that ¢ — sh < 0.
Isit still true that d divides c?

7. What is the maximum number of Euclidean equations you can have if (a) b =
4, (b)yb=5,and (c) b= 67

196

10.

11.

12.
13.

14.

15.

16.

17.

18.

4:4 FIBONACCI NUMBERS

What is the maximum number of Euclidean equations you can have if (a)c=7,
(b)c =9, and (c)c= 10?
Rewrite the Euclidean algorithm so that all gs and rs are stored in arrays

as they are calculated. Then extend this algorithm so that it also calculates x
and y such that g = xb + ye.

Construct a modified Euclidean algorithm incorporating the following idea.
Given the Euclidean equationc =gb + r,if r<b/2,setc:=b-rand b:=r.
Otherwise, set c:=r and b: = b—r. Show that the gcd of thenew band cis
equal to the ged of the old b and c. Call the resulting algorithm MODEUCLID.

Use MODEUCLID to find the ged of the following pairs. (a) (42, 136),
(b) (18, 324), (c) (148,268), (d) (233, 377), and (e) (324,432).
Discuss the efficiency of MODEUCLID.

For each pair (b, c) below characterize IC(b, c), the set of integer combinations
of b and c, defined by

IC(b,) = {mb + nc: m, n are integers}.

In each case determine the smallest positive integer in IC(b, c). [Note that in
the definition of I1C(b,) mand n do not have to be positive integers.]

@ (2 4) (b) (6, 8) © (6, 9) (d) (12, 15)

(e) (9, 14) () 6.7 () (13,18) (h) (21, 54).

What is the relationship between the Euclidean equations with input (b, ¢) and
those with input (c - b, €)?

Prove that given integers b and c, there are integers x and y such that 1 =
xb + ycif and only if ged (b, ¢) = 1.

Find integers a and b such that gcd (a, b) = 3. Then explain why for these
values of a and b there are no integers x and y such that 2 = ax + by. Com-
ment on the following statement: “If & # ged (a, b), then there are no integers x
andy such that h= ax + by.”

Is the following true or false? Given integers b and c, there are integers x and
y such that d = xb + yc if and only if ged (b, c) = d. Explain your answer.

Write a formal induction proof of Corollary 3.3.

4:4 FIBONACCI NUMBERS

We digress to a seemingly unrelated topic, the Fibonacci numbers, because the
mathematics associated with them is interesting and because (surprisingly) they
are intimately related with the complexity analysis of the Euclidean algorithm.

197

4 NUMBER THEORY

Here are the first 16 Fibonacci numbers:
011235813213455 89144233377610.

The convention is to start numbering at zero, so that we have listed the Oth, the
Ist, ..., and the 15th Fibonacci number. We denote the nth Fibonacci number by
F for each nonnegative integer n.

Question 4.1. Compute F, _;+ F,_,forn=2,34,5, 6, 11, and 13.

Your answer to the previous question should suggest that there is an easy method
for obtaining the Fibonacci numbers. First, F,= O, F, = 1, and then for all n> 2,

Fnan—1+Fn—2'

In fact, thisis an inductive sort of a definition. Once you know the two base cases,
Fyand F, then you can find all the others, one at atime, by adding successive
values.

Question 4.2. Calculate F~,FI~F18, F,4,and F,,. Then compare F, with 2*.
Which seems to be (or is) larger?:

Since the nth Fibonacci number is defined in terms of smaller Fibonacci num-
bers, it is natural to try to build proofs about these numbers using induction.
However, the nth Fibonacci number is not defined solely in terms of its immediate
predecessor, but rather in terms of two predecessors. Consequently, we need a
strengthening of our induction machine.

Mathematical Induction Revisited. First we repeat the form of induction that we
have used so far.

Algorithm INDUCTION

Srtep 1. Verify the base case.
Step 2. Assume that P, istrue for an arbitrary value of k.
Step 3. Verify that P, ., istrue, using the assumption that P, istrue.

Sometimes the truth of P, , , depends on the truth of more than one of the pre-
ceding P, s or depends on the truth of P, where j <k. Thereis still hope for the
method of induction if we use the following principle, which is known as Complete
Induction.

198

4:4 FIBONACCI NUMBERS

The Principle of Complete Induction. Suppose that P,is a proposition that de-
pends upon the positive integer n. Then Pis true for al n> N, (where N is some
fixed integer) provided that

(i) Py istrue,
and
(i) if Py, Py, 4,...,and P, aredl true, thensois P, ;.

There are two changes here. First we've introduced an unspecified constant
N. In the original version of induction we always mentioned the base case P,
although we admitted that the base case might start off at P,. Lemma7.1 from
Chapter 2 was only true for n> 5; we used this to show that +/» is bigger than
log (n) if nis bigger than 64. For situations like this we would like to have the
flexibility to begin proofs by induction at different starting points. The variable
N alows us this flexibility and tells us what the starting point for the proposition
P, should be. It aso tells us the first value of nfor which we should check the
base case, namely n= N,

The second difference between induction and complete induction is in the
inductive hypothesis. In this second version we assume that P, Py . ¢,-. ., and P,
are al true. Since we assume more, it should be easier to use this form.

Question 4.3. Look back at the informal explanation of the Principle of Induc-
tionin Section 2.3. Write out asimilar argument to explain why the Principle of
Complete Induction is valid.

Here is the agorithmic version of complete induction.

Algorithm INDUCTION

Step 1. (The base cases). Verify that Py, Py . 4,.... Py + jarevdid for some
constants N and j (depending upon the problem).

SteP 2. (The inductive hypothesis). Assume that P,, Py +4,....and P, are
all truefor an arbitrary value of k.

Step 3. (The inductive step). Verify that P, ., iSstrue, using the inductive
hypothesis.

There is one more change, introduced in this algorithm, namely the constant
jin Step 1. At times we shall need to check more than one base case, depending
on the proof we construct, to show that P« , istrue. The value of j depends upon
the number of Py, Py +1,.. . . P, that we refer back to in our verification of Px ;.

199

4 NUMBER THEORY

We shall point out explicitly the values of j in each case, but as a rule of thumb
you should get in the habit of checking at least two base cases.
Here is an initial example of the use of complete induction.

Example 4.1. Theorem. Every integer n>1 has aprime divisor.

Proof. The statement gives the starting point of the proposition N = 2. This
statement is true for » = 2, since 2 is a prime number and divides itself. Similarly,
the statement is valid for n= 3, since 3 is aprime. We check that it is also true
fern =4=2-2.

The inductive hypothesis tells us to assume the truth of the statement for
n=23, ..., k, for some arbitrary value of k. To accomplish the inductive step, we
must prove the result that the integer (k + 1) has a prime divisor. Now either
(k+ 1) isaprimeoritisn’t. If (k+ 1) isaprime, then it hasitself as a prime divi-
sor. If (k+ 1) isnot aprime, then k+ 1=bc, where b and ¢ satisfy 1< b< (k+ 1)
and 1 <c< (k+ 1). Consider b. By the inductive hypothesis, since 1< b < (k + 1),
we may assume that b has a prime divisor, say p. Then

We see that (k + 1)/p is an integer, since it is expressed as the product of two
integers. This meansthat pisadivisor of (k+ 1) and so (k + 1) has a prime divisor,
namely p. 0

Note that we could not have used the standard form of induction in this
problem because the truth of the assertion P, . ; depends not on the truth of P,
but on the truth of P,, where b isless than k. Since our proof depends upon only
one earlier case, P, with1<b < (k+ 1), our base case needed only one value,
namely N = 2 and j = O, athough to get a feel for the problem we checked three
base cases.

We now use complete induction to establish some facts about the Fibonacci
numbers.

Example 4.2. From the examples calculated in Question 4.2, the following was
observed. Theorem. F,<2".

We prove this for al nonnegative integers n using complete induction. For the
base cases we notice that F,= O < 1=2° andthat F,; = 1<2 = 2!. We require
base cases with two consecutive integers because in our proof we use the fact that
F . can be written in terms of its two immediate predecessors. (Thusj = 1in
this example). We shall use complete induction and sq(amlmeth F. 2‘f@r 2|
0<i <k Then we must prove that F,, , < 2*Butweknow exactly what “i+1

200

4:4 FIBONACCI NUMBERS

equals:

Foiy=F + F 4 by definition
<2k 4 2k by the inductive hypothesis
L 2kmlg g okt by algebra
=272+ by factoring
<2k"t.4 since (2+ 1) <4
= 2k—1 . 22
=2k*1 by laws of exponents. O

Example 4.2 might cause us to ask whether F, = O(p) for some polynomial p;
however, this is not the case. The result of the next question shows that the Fibonacci
numbers grow exponentially.

Question 4.4. Find an integer N such that Fy > 3)V. Prove by induction that
F,> @)y foralnx>N.

Before we do more magic, rabbit-out-of-the-hat tricks with the Fibonacci
numbers, let’s learn where they come from and why. The Fibonacci numbers first
appeared in the book Liber Abaci published in 1202 by Leonardo of Piss (also
known as Leonardo Fibonacci, since he was the son of Bonacci). Although Leo-
nardo was mainly interested in their mathematical properties, he also noted the
following application.

Example 4.3. A pair of rabbits requires one month to mature to the age when
it can reproduce. Suppose that the rabbits then mate and produce another pair
in every subsequent month, and that the pair of offspring is always conveniently
one male and one female, who then form a new breeding pair. If in the first month
we have one pair of rabbits, how many pairs do we have at the beginning of the
nth month? For simplicity, we assume no death or loss of fertility. We call the
resulting number R,

At the beginning of the first month we have one pair, so R; = 1. At the
beginning of the second month we still have one pair, but during the second month
they produce a pair of bunnies. Thus R, = 1 and R3 = 2. During the third month
the original pair produces another pair of bunnies, but the new pair of bunnies
doesn’t reproduce yet. So R, = 3. Then R5= 5.

We might as well argue the general case That is, let's determine R, in terms
of previous values of R. At the beginning of the nth month we have all the rabbit
pairs that we had at the beginning of the (n —1)st month, R.-~, plus some new
bunny pairs. The number of new bunny pairs is the number of rabbit pairs that
are at least one month old. The rabbit pairs that are this old are precisely those

201

4 NUMBER THEORY

that were around in the (n — 2)nd month, R, _,. In symbols then
R,=R,_, +R,_,.

Now we see that the R, are exactly the same as the Fibonacci numbers and that
R, = F,for dl positive n.

Fibonacci numbers arise in other natural settings. For example, the spacing
of leaves on some plants and some arrangements of flower petals and seeds are
closely related to the Fibonacci numbers. Mollusk shells spiral in curves derived
from Fibonacci numbers. Ratios of successive Fibonacci numbers, like 3, £, and
13 are considered aesthetically pleasing. The squares in Figure 4.1 each have sides
equal to a Fibonacci number. They combine to make rectangles with sides in
ratiosof 34to 21, 21t013,13t08,8t05,5t03,3t02, and 2to 1.

In fact, for large values of n, F,/F, _; gets arbitrarily close to a constant

1+4/5

2 [}

¢ =

known as the golden ratio; ¢ is approximately equal to 1.618. The Fibonacci
numbers are even thought to be useful in predicting highs and lows on the stock
market. These numbers have so many interesting and varied properties that there
is a mathematics research journal, the Fibonacci Quarterly, dedicated to results
about Fibonaceci numbers.

Fibonacci Squares

21

13

34
Figure 4.1.

202

4:4 FIBONACCI NUMBERS

The defining property is useful for proving results about Fibonacci numbers
by induction. But one thing seems missing from our knowledge. Is there a formula
for F,? Or to calculate, say, F;, must we determine all the smaller Fibonacci num-
bers? Y es and maybe no, respectively. We shall write down a formula for F,, but
we stress that in most situations the inductive definition that F,= F,_,+ F,_,
is the most helpful fact to know. In Chapter 7 we shall do a more systematic study
of sequences of numbers and their formulas.

Question 45. Show that ¢ = (1 ++/5)/2 has the property that its reciprocal is itself
minus one. Find all solutions to the equation x —1 = 1/x.

The two solutions to the equation in Question 4.5 are ¢ = (1 ++/5)/2 and the

closely related ¢’ = (1—\5)/2. These can be found by rewriting x — 1=1/x as
X’ - x— 1=0 and then solving using the quadratic formula. The relationship
between ¢ and ¢’ and the Fibonacci numbers is given in our next result.

Theorem 4.1. For nonnegative integers n, F, = (¢" — ¢'")/v/5.

Proof. The proof will be by complete induction. First we check the base cases.
As above we need to verify the truth of the theorem for two consecutive integers,
since we shall use the crucial fact that F, , = Fr + F,_,. First we substitute
n =0, to obtain

Next, for n = 1 we get

¢! — ¢t _(L+VIR2-(1-)2
NE V5

Using complete induction, we assume that the given formula is correct for Fy, F,
....F, _,and Fx- Wemust prove that the formulais correct for F, ,,. We write

«+1using smaller values:

T =T o e
¢ *P¢ +¢> ~,¢/k—1
N NG
_$TNe 1) ¢* e+ 1)
NG N

203

4NUMBER THEORY

Since ¢ is aroot of the equation X* — x — 1 = 0, we get ¢2 = ¢ + |. Simi-
larly, ¢ = ¢’ + 1. We substitute these into the equation above to get
¢k—1¢2 ¢/k—1¢/2
V5 V5
¢k+1 . ¢rk+ 1
= T

and that’s exactly what we wanted to show. O

Fk+1=

Question 4.6. Check the formula for F,given in Theorem 4.1.
Corollary 4.2. F,, is approximately equal to ¢"//5. Specifically,

n n
¢——1< F,,<i+1

NG NE

Proof We begin by noting that ¢’ is approximately equal to — 0.618. What we
need is not its exact value but the fact that its absolute value is less than 1. Con-
sequently, ¢™™ will be lessthan 1 in absolute value for all positive integers n and

¢"/x/5 will be less than 1 in absolute value for all nonnegative integers n. Thus

=£—¢m<¢—n+1. |

BN

The other inequality is proved similarly; see Exercise 17.
We now have two ways to calculate F, for any fixed n. One involves many
additions:

Fy=F,+F =1+1=2

Fn=Fn—-1+Fn—2'
Thus F,, could be calculated with (n — 1) additions.
Question 4.7. To calculate F, by adding as shown above appears to require that
we store al of Fy,F,,....F,_,.Isit possible to caculate F, by addition without

storing al the previous values in n different memory locations? What is the mini-
mum number of memory locations that you need to calculate F,, in this way?

204

4:4 FIBONACCI NUMBERS

The second way we now haveto calculate F, is using the formula proved in
Theorem 4.1. This requires two exponentiations, one division and one subtraction
as well as an approximation of the square root of 5. There are a variety of addi-
tional methods known for calculating F,, including an addition method that is
analogous to the FASTEXP agorithm developed in Chapter 2, that is, one that
does not require the determination of all intermediate Fibonacci numbers. (See
Exercises 13 and 14.)

For years applications of Fibonacci humbers have been found throughout
mathematics. For example, a very famous open problem posed by David Hilbert
in 1900, known as Hilbert’s tenth problem, was finally solved in 1970 when the
mathematicians Martin Davis, Y uri Matiasevic, Hilary Putnam, and Julia Robin-
son thought to examine the Fibonacci numbers carefully. Applications of Fibonacei
numbers are also pervasive in computer science. Efficient ways to approximate the
local maximum and the local minimum of a function or to merge files can use
Fibonacci numbers. In Chapter 8 we shall study problems concerning shortest
paths. Recent results have shown “Fibonacci heaps’ and “Fibonacci trees’ (what-
ever they are!) to be crucial in developing fast algorithms to solve these problems.

Our interest is to turn now to the complexity analysis of the Euclidean algo-
rithm, where we shall encounter Fibonacci numbers.

EXERCISES FOR SECTION 4

1. Find a sequence of numbers G, that satisfies the equation G, =G, -, + G, ;
for al nbut differs from the sequence of Fibonacci humbers.
2. let Hy=0and H, = |.Fern > 1define H,byH, = H,_, + 2H,_,. List the
first 11 terms of the H sequence. What happens to the quotient H,/H, - ; as
n gets big? Prove that H,= [2" + (- 1"~ 1]/3.
. Showthat Fy + F, +---+F,=F, ., -1
. ShOW that F1+ F3+ "'+F2n_1=F2n.
. ShthhatF0+F2+"'+F2n=F2n+1—l.
. Show that every positive integer can be written as the sum of distinct, positive
Fibonacci numbers. Is the choice of numbers for a given sum unique?
7. Suppose that GO = O, G, =1, and for dl n=2,G,=2G,_,;+G,_,. Find
G,,G3,....Gg. Determine which of the following assertions are true.
(@) G, =0(n>).
() G* > 2“tif nis large enough.
(c) G, < 3" if nislarge enough.
(d) G isevenif and only if nis even.
8. Knowing F, and F, one might believe for consistency’s sake that F-; should
be that number with the property that F_, + Fy= F,. Since F,= O and

o o~ W

205

4NUMBER THEORY

Fy=1F_,ought to equal 1. Determine F _,,F_5,...,F_,. Whatis F_,
intermsof F,?
9. Show that F, . F,_—F}= (-1

10. Show that F,F,+ F,F3+ --.+ F,,_,F,,= F3,.

11. Show that F,F,+ F,Fy+ -+ Fy,F, 1= F3,, —1

12. Find al natural numbers » such that F, = n. Prove that you have found all
such numbers.

13. (a) Show that F,, = F(F,+ 2F,_,).

(b) Find asimilar formulafor F,, ., intermsof F, ., , and smaller Fibonacci
numbers.

14. Using the results of Exercise 13, design an algorithm to determine F,. Then
count the number of multiplications and additions needed in this approach
and compare with those discussed at the end of this section.

15. In Example 4.2 and Question 4.4, induction was used to show that (3)" <
F,< 2" provided that » is large enough.

(a) Find anumber b <2 so that a similar argument will show that F, < b"
provided that » is large enough. What is the smallest b your argument
will support?

(b) Find a number ¢ >3 so that ¢* <F. provided that » is large enough.
What is the largest ¢ your argument will support?

16. Are the following equations true or false?

F* = [¢"/3/51.
F,= [¢"3/5])

17. Finish the proof of Corollary 4.2 by showing that F, > ¢/y/5 — 1.
18. Find al pairs of numbers (x, y) suchthat x + y=1and xy = —1.

4:5 THE COMPLEXITY OF THE
EUCLIDEAN ALGORITHM

The question before us is to determine the complexity of the Euclidean agorithm
when, given b < ¢, it computes ged (b, €). To begin with, we let g(c) denote the max-
imum number of multiplications and divisions performed in EUCLID when c is
the larger of the two input integers. Later we shall convert e(c) to a function of
the number of bits needed to represent b and c in binary. We shall show that
e(C) = O(log (c)); that is, for all pairs of integers b < c, the Euclidean algorithm
requires at most O(log (c)) divisions and multiplications. Consequently, if B denotes

206

4:5 THE COMPLEXITY OF THE EUCLIDEAN ALGORITHM

the number of bits of input needed to encode the integers b and ¢, then EUCLID
will be linear in B.

Look back in Section 3 and notice that we determined that e(c) = 2k, where
k is the number of Euclidean equations produced by b and c. Thus we shall search
for an upper bound fork in terms of b and c. Before we find such an upper bound,
we investigate some pairs for which EUCLID seems to take a long time. Example
3.1, Question 3.4, and some of the exercises point toward the Fibonacci numbers.
So let’s see what happens if we let b and ¢ be consecutive Fibonacci humbers.

Lemma5.1. In the Euclidean equations if ¢=F,and b= F,_; with n> 4, then
7'1 =F"_2.

Proof. The defining relation for the nth Fibonacci number is
FnZFn—l +Fn—2'

SinceO <F,_,< F,_,for n> 4, this gives the first Euclidean equation with
g1=1.Thusr;= F,_,. O

Theorem 5.2. If EUCLID isrun withc=F,,,and b= F,,, with k> 1, then
there are exactly k Euclidean equations.

Proof. The proof isby (ordinary) inductiononk. If k= 1,thenc=F,,,=F,=2
andb=F,.,=F,=1Givenc=2and b= 1, EUCLID produces just one
equation, specificaly,

2=2-1+0.

Now we assumethat if c= F, ., and b= F,, ; with k> 1, then there are exactly
k equations, and try to show that if ¢ = Fy + 3 and b = F + 2, then there are exactly
(k+ 1) equations. Now, if c = F,,;and b= Fy.,,k+ 3>4 and by Lemma 5.1
our first Euclidean equation is

Fros=Frio+ Fiyy (A)
Next wedivide F, , 2 by F,. , {, but thisisthe same asif we began the Euclidean
algorithm with ¢ = F, , , and b= Fy . ;. By the inductive hypothesis we get k
Euclidean equations from this starting point. Hence, in total, (A) is the first of
(k+ 1) Euclidean equations. 0

Question 5.1. Construct the Euclidean equations for (i) ¢ = Fgand b= F, and
(i) c=F,pand b= F,.

207

4NUMBER THEORY

Question 5.2. For O < b < c <5, what is the maximum number of equations and
for what integers does that maximum occur?

What we have done is analyze the complexity of EUCLID for a restricted
set of inputs. Specificaly, if b= F,,,andc=F, . ,.then e(c) = 2k. Indeed a much
stronger statement is true. The smallest integer c that produces as many as k
Euclidean equations is ¢ = F, , , and given this c, the only integer b that will
(together with c) produce as many as k Euclidean equationsis b= F, , ;. So the
Fibonacci numbers provide the worst possible input to EUCLID. We shall not
prove this theorem, due to Lame in about 1845 (but you may prove it in Supple-
mentary Exercise 14). However, we shall show that the worst-case behavior is of
the same order of magnitude as that on the Fibonacci numbers.

We begin by investigating the relationship between ¢ = F, ; , and k, where
k> 1. Thusc = 2. Corollary 4.2 and some algebra imply that

TP < (c+ DVS.
Taking logs (and noting that +/5 < 4), we see that
(k+ 2)log(¢) < log(c + 1)+ log($)< log(c + 1)+2.
Next we solve for k by dividing by log(¢) and subtracting 2 to get

log(c+ 1)+ 2
10og (¢

If we estimate log (¢) by log (1.618) >4 we get

k< -2+

k< —242oglc+ 1)+ 2)=2log(c+1)+2
<2log2c)+2 sincec> 2
= 2log(c) + 4 < 6log(c) sincec > 2.

In short, we have that when ¢ = F, ,2and b= F, ., the number of Euclidean
equations that occur, k, isO(log (c)). In Exercise 11 we ask you to use Corollary
4.2 to bound k from below.

We shall now show that for any inputs b and ¢, the number of Euclidean
equations is no larger than logarithmic in c. To accomplish this, we need a closer
look at the Euclidean equations.

Theorem 5.3. If g(c) counts the maximum number of multiplications and divisions
in the Euclidean algorithm with input b < ¢, then

&(c) = O(log (C)).

4:5 THE COMPLEXITY OF THE EUCLIDEAN ALGORITHM
Proof. Suppose that we consider the first two Euclidean equations

c=qib+ry
and

b=q,r,+r,.
We know that b > r > r,. From these inequalities r,might be as large as b — 2.
In fact, we shall obtain the much better estimate that r,< b/2. This estimate is

better in the sense that it allows us to conclude that r,is smaller than we otherwise
knew. If r,is smaller, then we expect to use fewer Euclidean equations.

Example 5.1. In the Euclidean equations of Example 3.1,

b= 233 and r,= 89< b/2,

re = 34< r,/2,
re = 13 <r,/2,
rg = 5 <re/2,
rio = 2 <rg/2,
and rip = 0<ro/2

Question 5.3. Show that the Euclidean equations with b = 77 and ¢ = 185 have
17
ra < 3.

To show that r,is less than b/2 in general, we look first at r,. If r; < b/2,
then r,< r, implies that r,< b/2. If, on the other hand, r, > b/2, then 2r, > b.
Thus in the second Euclidean equation g,= 1 and we have that

b=r; +r,.
By solving for r,, we get
7'2 = b ——7‘1
<b—2—é sincer >E
2 2 vl

So in either case we have r,less than b/2. By doing the same thing to the next
two Euclidean equations, we can show that

r <r2<b
tT Ty

209

4 NUMBER THEORY

Let's be careful at this next step sthat the pattern becomes clear. As above we
argue that

Thus, in general, we have

b
Ty < 7 (B)

How long can this go on? If b/(2) < 1, then by the preceding equation the remain-
der r,, equals zero. But b/(2°) < 1impliesthat log(b) <t. Thus oncet > log(b) or
equivalently once t = [log ()], then

b b b
5= zlog(B) = —b‘ =1,

[\

and from (B) we get 2, = O. Thus k, the number of Euclidean equations, is at
most 2t, wheret =[log (b)]. Thus

e(C) = 2k <2(2t) = 2(2[log (b)]) < 4[log (c)] = O(log (C)).

Question 5.4. Look at the Euclidean equations from Example 3.1. For each integer
t compute 72; 4 2/72¢

In conclusion we have that the Euclidean algorithm is a good agorithm. Look
back in Section 2 at the inequalities of line (2):

log (c) < B=llog(b)|+ 1+ [log(c)] + 1.

Since it requires B bitsto input b and ¢ in binary, the number of multiplications
and divisions is bounded by

&(c) = 0log (c)) = O(B).

Thus EUCLID isalinear algorithm.
EXERCISES FOR SECTION 5

1. Show that if c = F, ., and b> F, ., in the Euclidean equations, then
ry < F,.

210

4:6 CONGRUENCES AND EQUIVALENCE RELATIONS

2. In the Euclidean equations, if c= F,,,and b< F , ;,isr{<F;?

3. Construct the Euclidean equations if c = Foand b = F,.

4.1f c=F,,3and b= F, ., what can you say about the number of Euclidean
equations?

5. Suppose that GO = 4, G, =7,and for n>1, G,=G, -, +G,_,. Exhibit G,
fern= 2,3,...,8.

6. Exhibit the Euclidean equations with ¢ = Ggand b = G+.(G, isdefined in
Exercise 5.

7. How many Euclidean equations are there if c = G, , ,and b= G, . ,? (G,is
defined as above.)

8. In the Euclidean equations we know that r, < b/4. Isr; < b/4?

9. Choose a value oft so that in the Euclidean equations r < r,/t.

10. Suppose that C,, is a sequence of nonnegative integers with the property that
C,<C,_,/4.1f C; =M, for what value z can you guarantee that C, = O?

11. Use Corollary 4.2 to find a constant D such that if ¢ = F, , ,, then k> D log(c).

12. The complexity of EUCLID was shown to be O(B), where B equals the number
of bits needed to represent the integers b and c¢. Thus the number of multi-
plications and divisions performed is at most sB + ¢ for some integers s and
t. Find integers s and ¢ that give an upper bound on the number of these
arithmetic operations that is as small as possible based on the analysis in this
section.

4:6 CONGRUENCES AND
EQUIVALENCE RELATIONS

Integer arithmetic is fundamental to the mathematical field of number theory and
to the computer science field of cryptography. The particular kind of arithmetic
used in these fields is known as modular or congruence arithmetic. In this section
we introduce the basics of arithmetic module n and develop simultaneously the
concept of an equivalence relation. In the next section we apply this work to en-
cryption schemes.

Definition. If nisa positive integer and a and b any two integers, we define
a=b (mod n)

(read “ais congruent to b medulo n”) if (a—b) isdivisible by n. We let [a] denote
the set of all integers congruent to amodulo n,

[a] = {x a=x (mod n)}.

211

4NUMBER THEORY

Thisis called the equivalence class containing a.

Example6.1. Let n = 12. Then 1-13 (mod 12), 1 = 25 (mod 12),13 = 25 (mod 12),
1- -11 (mod 12), and

11 ={...,-23, -11,1,13,25,. ..}
={1+12k:kan integer}.

If “#” means “not congruent to,” then 1 0(mod12),1=1 (mod 12), 1 #2
(mod 12), and 1 #i (mod 12) for i =3, 4,...,12.

We are used to working “modulo 12,” since that is how our clocks and some
of our measurements work, If itis11 am. and | have an appointment in 3 hours,
then since 11 + 3 = 14 = 2 (mod 12), the appointment isfor 2 .m.

Question 6.1, Determine which of the following are true and which false: (a) 2 =
3 (mod 12), (b) 2 =4 (mod 12), (c) 2-10 (mod 12), (d) 2 = 14 (mod 12), (e) 2 =
— 10 (mod 12), and (f) — 10- — 22 (mod 12). Describe all integers x that are con-
gruent modulo 2 to O. Working modulo 3, list six elements of [1] and then describe
the entire set precisely.

Question 6.2. Let n be a positive integer and i an integer such that O <i < n.
What is the least integer j >i such that i =] (mod n)? What is the largest negative
number m such that i = m(mod n)?
Congruences modulo n behave like equalities.
Lemma 6.1. Let nbe apositive integer and &, b, and ¢ arbitrary integers. Then
(i) a=a(mod n),
(i) If a= b (mod n), then b=a (mod n), and
(iii) If a=Db (mod n) and b =¢ (mod n), then a=c¢ (mod n).
Proof. We prove part (iii). If a=b (mod n), then n divides (a— b) and so there
isaninteger i such that a— b = in. If b=c (mod n), then there is an integer j such
that b—c = jn. Thus
a—c=(a-b+b—-cy=in+jn=>10+jn,
and (a —) isdivisible by n, that is, a= c (mod n). J
Question 6.3. Prove parts (i) and (ii) of Lemma 6.1.

Here's a vocabulary to highlight the similarities between relationships like
“="*=(mod n),” and others. We say that arelation «-" is defined on a set §

212

4:6 CONGRUENCES AND EQUIVALENCE RELATIONS

(finite or infinite) if for each pair of elements (a, b)in S, a~b is either true or
false. Colloquially, if a - b is true, then we say ais related to 5. A more formal
way to describe arelation on Sisto say that ~ corresponds to a function

T: SXx S— {True, False}

such that T(a, b) = True if and only if a - bistrue (or equivalently a is related
to b).

Example 6.2. Let S be the set Z of all integers. Then equality gives us a relation
on Z by defining i ~ j to be true for integersiand j if and only if i = j. Simi-
larly, for afixed positive integer n, congruence modulo nisarelationon Z if we
definei - j to mean that i =j (mod n).

Question 6.4. Which of the following defines a relation on the given set S?
(8 S=Zand ~ stands for <; (b) S = all subsets of Z and ~ stands for =; and
(c) S=adll rea numbersand r ~ smeansthat (r —s) is even.

Definition. A relation ~ defined on a set S is said to be an equivalence rela-
tion if it satisfies the following three properties. If a, b, and ¢ are arbitrary ele-
ments of S, then

(i)a~a (reflexive property)
(ii)Ifa~b,thenb~a (symmetric property)
(iiiyIfa~band b~c,thena~c¢ (transitive property).

Lemma 6.1. says that the relation “congruence modulo n* defined on Z is an
equivalence relation.

Example 6.3. Let U= {1, 2. .. n} and let P be the set of all subsets of U. If
A,B, C<c U, then (i) A< A istrue for every subset 4, and (iii) if A= Band B C,
then 4= C, but it is not true that (ii) if A< B, then B < 4. Thus the relation of
containment is not an equivalence relation on P.

Example 6.1 (continued). Working modulo 12, we saw that 1 is not congruent
modulo 12 to 0,2,3,. ... or 11. Let us look at the equivalence classes [0], [1],
[2],...[11].

[0]={ ... —24, 12,0, 12,24,36.. .}
[1]=1{... -23, -11,1,13,25,37.. .}
[2]= {.. —22, -10,2,14,26,38 ..}

[11] = {... —25,-13,-1,11,23,35...}.

213

4NUMBER THEORY

Notice that no two of these sets intersect and that every integer isin precisely one
of these sets.

Definition. If ~ isan equivalencerelation on the set S, then we definefor ain
S, the equivalence class containing a to be

[a] = {xin S:a~x}.

Then just as in the case of congruence of integers modulo n, the collection of all
distinct equivalence classes of S divides up Sinto disjoint subsets. Such a division
is caled a partition of S.

Lemma 6.2. If ~ is an equivalence relation on a set §, then
() aisin[q for dlain S,

(i) [a] = [b] if and only if a~ b, and

(iii) if [a] #[b], then [a] n[b]= &.

Proof. (i) aisin[d], since a~a by the reflexive property of equivalence
relations.

(i) If [a] = [b], thenain[a] impliesthat aisin[b]and so b ~ a by definition.
By the symmetric property, a ~ b. Conversely, suppose that a~ b and let x bein
[a]. Then a~x and X ~ a, and by the transitive property x ~ b and so b ~ x. Thus
xisin [b] and [u] =[b]. The proof that [b] =[a] is carried out in the same way.

(iii) Suppose that [a] n [b] # & so that there is an element x in [a] n [b].
Then a ~ x and b-x. By the symmetric property x ~ b and by the transitive
property a~ b. Using part (ii), we have that [a] = [b]. We have proved the con-
trapositive of (iii). |

Fix a positive integer n. When working with the integers modulo n, there are
many ways to express the same equivalence class. For example, [0] = [n] =
[—n] = [17n]. It is often convenient to represent an equivalence class [i] using
the least nonnegative integer to which i is congruent modulo n. We can find that
integer by dividing i by n:

i=qn+r with0<r<n

andso[i] = [r].

Definition. 1f i = gn+ rwith O <r < n,then r is caled the least nonnegative
residue of i modulo n.

This process also shows that every integer i isin one of the classes [Q], [1],. . . .
[n — 1] modulo n. Furthermore, no two of the equivalence classes [0], [1],...,

214

4:6 CONGRUENCES AND EQUIVALENCE RELATIONS

[n—uareequal, for if [i]= [j], theni=j (mod n) by Lemma 6.2 (part ii). But
since O <1, j < n, then n cannot divide (i —j) unless i = j. Thusit is not the case
that [i] = [j] when O <i <j < n. The equivalence classes [0], [1],. ... [n—1]
are a complete (and useful) set of equivalence classes of the integers modulo n.

Example 6.1 (continued). When working modulo 12, we use the equivalence
classes [O], [1],. - . . [11].

We can also do arithmetic with the equivalence classes modulo n: addition,
subtraction, multiplication, exponentiation, and sometimes division.

Definition. The equivalence classes{[0Q], [1],. ... [n—1]} are called the integers
meodulo n and are denoted by Z,.

Lemma6.3. If a=b (mod n) and c =d (mod n), then
(Ya+c=b+d(modn),

(ila—c=b-d (modn), and

(i) ac=bd (mod n).

Proof. We prove part (iii). Sincea = b (mod n), there is an integer i such that
a—b=inorequivaently a= b+ in. Since c=d (mod n), there is an integer |
such that c = d + jn. Thus
uc= (b + in)(d + jn)
=bd + bjn + din + ijn?
= bd + (bj + di + ijn)n.

Thus (ac — bd) is divisible by n, and ac = bd (mod n). O
Question 6.5. Verify the first two parts of Lemma 6.3.

Thus we can define arithmetic modulo n on equivalence classes as follows.

[a] + [b]= [a + b], [a] - [b]= [a - b],
[a] - [b] = [ah], and [a]“= [a] fork a positive integer.

These definitions look sensible, but there are some important points to be
checked. We must check that addition and multiplication are “well defined by
these equations. (Subtraction is just addition of negative numbers, and exponen-
tiation is just repeated multiplication, so we concentrate on the other two opera-
tions.) What thismeansisthat if x isany element of [a] and y isany element of

215

4 NUMBER THEORY
[b], then
[x +y]=[a+b] and [xy] = [ah].

We now show that addition of equivalence classes modulo nis well defined. If x
isin[a] andy isin[b], then

a=Xx(mod n) and b=y (mod n).
By Lemma 6.3
a+ b=x+y (modn) and [x+y]=[a+0]
Question 6.6. Show that multiplication of equivalence classes is well defined.

Example 6.1 (once more). Working with the integers modulo 12, we want to add
and multiply in the following way:

[1] + [1]= [2], [1]+ [2]= [3], [8]+ [9]= [17]= [3],
[-5] + [10]= [S], [3] - [O] = [0], and [5]. [6]= [30]= [6].

But is this consistent? We know that [1] = [25], since 1 = 25 (mod 12). Thus it
should be the case that

(1] + [25]= [1]+ [1]= [2],

Fortunately, [1] + [25] =[26] =[2], since 2 = 26 (mod 12). Similarly, [17] = [5]
and [— 6] = [6]. Thus

[17] . [-6]= [-102]= [6]= [5] - [6].
When can we do division or cancel modulo n?

Lemma6.4. If ab=cd (mod n) and a= ¢ (mod n), then b =d (mod n) provided
that ged (a, n) = 1.

Proof. By assumption there are integers i and j such that
ab —cd = in and a-—c=jn

Substituting c = a— jn in thefirst equation yields
ab—(a—jnd = in.

216

4:6 CONGRUENCES AND EQUIVALENCE RELATIONS

Thus

ab — ad =in — jdn
and

ab—d) = (i—jdn. (A)
Since n divides the right-hand side of (A), n also divides the left-hand side, a(b — d).
Since aand n have ged 1 and thus no factors in common, n must divide (b —d).
Thus b= d (mod n). 0
Question 6.7. Pick five distinct integers a, b, ¢, d, and n such that ged (a, n) = 1,
a=c(mod n), and ab= cd (mod n). Verify that b=d (mod n). Then find integers
a, b, ¢, d, and n such that ged (a, n) # 1, a=c (mod n), ab= cd (mod n), but
b# d (mod n).

Now what would it mean to say that we can do division with the integers

modulo n? Division by a number x is the same as multiplying by I/x, and I/x has
the property that x(1/x) = 1.

Definition. Given [d] in the integers modulo n, we say that [a] has a multiplica
tive inverse if there is another equivalence class [b] such that

[a] . [b]= [1].
Thus[b] is playing therole of” 1/{a]” and is called the multiplicative inverse of
[a]. If [a] - [b] = [1], then [b]-[a] = [1] and so [a] is also the multiplicative
inverse of [b].

Similarly, if aand b are two integers with O < a, b <n such that ab= 1 (mod n),
then we say that a and b are each other’s multiplicative inverses.

Corallary 6.5. Let n be a positive integer. Then the egquivalence class [a] has a
multiplicative inverse if and only if ged (a, n) = 1.

Proof. If 1 = ged (a, n), Corollary 3.3 says there are integers x and y such that
1 =xa+ yn
Thus

1= xa (mod n),

217

4 NUMBER THEORY

and so

[1] = [xa] = [x] - [a].

Thus [X] is the multiplicative inverse of [a].
Conversdly, if

[a] . [X]= 1,
then
ax=1+kn for some integer k.

Thus any common divisor of a and n must also divide 1, and so ged (a, n) = 1.
0

Two integers a and b are said to be relatively prime if ged (a, b) = 1. Thus an

integer a has a multiplicative inverse modulo nif and only if aand n are relatively
prime.

Example 6.1 (again). In Z,,,only 1, 5, 7, and 11 are relatively prime to 12. Here
are their multiplicative inverses:

(1] . [1]= (2], [3] - [8] = [25]= [1],
[7] . [71= [49]= [1], and [11]. [11]= [121]= [1].

In other words, each of 1, 5, 7, and 11 is its own multiplicative inverse. Here
is a brute force check that [2] does not have a multiplicative inverse:

[2.[0]= [0, [2-[1]=[2, [2] . [2]= [4],
[2] - [3]=[6], [2] .[4]=[8], [2] . [5]= [10],
(2] . [6]= [0, [2.[7=12, [2] - [8]= [4],
[2] - [91=[6]. [2].[101=[8], [2]-[11]= [10].

Question 6.8. Find multiplicative inverses for all elements of Zsand of Z,, that
have inverses. Which elements of Z; g have multiplicative inverses?

Finding inverses will be important in the application presented in Section 7,

as will avariation on the next theorem, known as Fermat’s little theorem. This
one he redly did prove.

218

4:6 CONGRUENCES AND EQUIVALENCE RELATIONS

Theorem 6.6. If p isaprime number and ged (a, p) = 1, then
a?"!= 1 (modp).

Proof. Notice that for any integer i, ged (i, p) is either 1 or p, the only divisors
of p. Thus ged (i, p) = 1if and only if p does not divide i, that is, if and only if
i # O (mod p). Thus by assumption a# O (mod p). Consider the equivalence classes

[a], [2a], [3a].....[(p- Da]. (B)

We claim that none of theseis[0] and that no two of them are equal.
First if it were the case that

[is] = [Q] wherel<i<np,

then

ia= O (mod p).

Thus p divides ia, and since ged (a, p) = 1, p divides i, a contradiction, since 1 <
i <(p—1). Thus none of the equivalence classes in (B) equals [0].
Next suppose that

[is] = [ja] wherei<i,j<p.

Then

ia = ja (mod p) by Lemma 6.2 (part ii), and
i=j (mod p) by Lemma 6.4,
a contradiction, since both i and j are positive integers less than p. Thusthe (p — 1)

equivalence classes listed in (B) are the same as the equivalence classes [1], [2],
[3],.... [p — 1], although probably listed in a different order. Then -

[a [2d] .- [(p—Dal=[11"[2] .- [p—1]

[a2a). . ((p-Da)] = [(p-] multiplying equivalence
classes

aa) - ((p—Da)y=(p — 1)! (mod p) by Lemma 6.2 (part ii)
a’" Yp—1t= (p - ! (modr) simplifying
a1 =1 (modp) by Lemma 6.4

sinceged (p, (p—-1)) =1. O

219

4 NUMBER THEORY

Question 6.9. Pick a prime p and an integer b such that ged (b, p) = 1, write down
the equivalence classes [b], [28],..., [(P - 1)b] modulo p, and verify that they are
the same as the classes [1], [2],. . . . [p — 1]. Check that ¥*1 = 1 (mod p). Find
¢, an integer with ged (c, p) # 1, and show that c? ! # 1 (mod p).

This has been a brief introduction to arithmetic modulo n and to the ideas
of equivalence relations. We shall use this in an application to cryptography (the
art of secret messages) in the next section.

EXERCISES FOR SECTION 6

1. In each of the following find the least nonnegative integer i such that
(@ 4*-i (mod 19).
() 2°- i (mod 377).
() 2 =1 (mod 17).
(d) 21313 =i (mod 7).
(Hint: After each multiplication replace the result by its least nonnegative
residue modulo n.)

2. Explain why it is always true that »°>=n (mod 10) or, in other words, why
n°> and n always have the same last digit.

3. Prove that for every integer n, either n>= O (mod 4) or n°= 1 (mod 4). Use
this to show that there are no integers x and y such that X*+ y*= 1987.

4. Theset {0, 1,... ,n—1} is called a complete residue system modulo n because
every integer is congruent modulo n to exactly one of these numbers.
(a) Find a complete residue system modulo nin which all numbers are
negative.
(b) Find a complete residue system modulo nin which all numbers have
absolute value at most n/2.

5. Is either the relation “<” or “S’ an equivalence relation on the integers?

6. Which of the following define an equivalence relation on the integers? Explain
your answer.
(@ a~bif adivides b.
() a~bifa<b.
(c) a~bif ja|<|b|.
(d) a~Dbif aand b begin with the same (decimal) digit.
(e) a~ b if when aand b are expressed as a= 2isand b = 2/t with i and j
nonnegative integers and s and ¢ odd integers, then s =¢.
(f) a ~bif whenaand b are expressed asin part (€), theni =j.

220

4:6 CONGRUENCES AND EQUIVALENCE RELATIONS

7. Prove that the following is an equivalence relation defined on the integers:
a~ b if aand b have the same number of prime divisors, counting multi-
plicity (e.g., 18 = 2 - 3*has three prime divisors). For this equivalence relation
are addition and multiplication of equivalence classes well defined by
[a] + [b] = [a+ b] and[a] - [b] = [ah]? Explain.

8. Give an example of arelation on a set that has the following properties.

(a) Reflexive and symmetric, but not transitive.
(b) Reflexive and transitive, but not symmetric.
(¢) Symmetric and transitive, but not reflexive.

9. (a) Write down the elements of Z,. Then write down an addition and multi-
plication table for 2,; that is, write down all possible sums [a] + [b] and all
possible products [u] - [b].

(b) Do the same for Z.
(c) Do the same for Z,.

10, Rewrite the Euclidean equations using congruences.

11. Proverthat if [i] and [j] are equivalence classes modulo » such that [i] = [j],
then ged (i, n) = ged (j, n).

12. A relation ~ on aset S iscalled atotal (or linear) ordering if
() foral aand bin S, exactly one of the following holds:

a~b,a=>b,or b-a, and
(ii) for elements a, b,andcin S, if a~b,and b~c, thena~c.
Do either < or < define a total ordering on the integers? Explain.

13. Give an example of an equivalence relation on the integers that is not a total
ordering. Explain which properties of a total order hold for your example
and which don’t.

14. Explain why, in general, if ~ isatotal ordering on a set S, then ~ isnot an
equivalence relation on S. Conversely, explain why if ~ is an equivalence re-
lation on S, then - isnot atotal ordering.

15. Prove that if p isaprime number, then for every integer n,
n’=n (mod p).
16. Investigate whether or not the following is true: If ged (u,) = 1, then
a"" ! =1 (modn).

17. Suppose that p is a prime number and ged (a, p) = 1. Then explain why [u”2,
is the multiplicative inverse of [a] modulop. Foreachi= 2,3, .., p—1,
find an expression for the multiplicative inverse of [a] modulo p.

18. We define an equivalence relation on ordered pairs of integers, Z x (Z —{O}),
(i.e., on all ordered pairs with the second entry nonzero) by (a, b) ~ (c, 4) if
ad = be.

221

4 NUMBER THEORY

(i) Prove that thisis an equivalence relation.
(ii) Describe the equivalence classes [(1, 2)], [(1, D], [(4, 2)], and [(2, 3)].
(iii) In general, describe [(r, s)] and compare this with the rational number r/s.
(iv) Which equivalence classes [(i-, s)] have multiplicative inverses? If [(r, S)]
has a multiplicative inverse, what is it?

4:7 AN APPLICATION PUBLIC KEY
ENCRYPTION SCHEMES

Although our discussion of the greatest common divisor problem has been couched
in modern terminology, most of what we have presented in this chapter is ancient.
It was developed without any thought of computing machines like those we now
possess and with no anticipation of future applications. It is atruism in mathe-
matics that the purest (i.e., most theoretical and seemingly least applicable) ideas
from one generation of mathematicians frequently become indispensable took of
the applied mathematicians of subsequent generations. The application of the
Euclidean agorithm and related number theory that we are about to present
exemplifies this phenomenon.

The problem that we confront is that Bob wants to send Alice a message, the
content of which is to remain a secret from Eve. The message will be a sequence
of integers, M,, M,,.... M, with O< M; < N for i=l,2,. ... k, where N is a
number chosen with which to work modulo N. We'll see how Alice chooses N
later. Such a representation of a message by numbersis no restriction. For example,
this book has been prepared electronically, and each character of the keyboard
of the computer terminal has associated with it a unique decimal number, in this
instance called its ASCII code. For use in this chapter we include the ASCII code
for capital lettersin Table 4.1.

Table 41
Lette: A, B, C, D, E, F, G, H, I, J K, L, M, N O, P,
Code: 65 66 67 68 69 7071 72 73 74 75 76 77 78 79 80
QR S T, U V, W X, VY, Z blank
81 82 83 84 85 86 87 88 89 90 32

Thus the assumption that Bob's message is a sequence of decimal numbers is
not restrictive. Sending a message might be by telephone or electronic mail or
almost anything else. Crucial to the model is that Eve has the technology to inter-
cept the message. This turns out to be surprisingly readlistic. Thus if Bob just sends
Alicethe ASCII code of the real message, we assume that Eve can intercept and
correctly interpret its content.

222

4:7 AN APPLICATION PUBLIC KEY ENCRYPTION SCHEMES

So what can Bob do? Very simply he must devise a way to disguise his message,
to encrypt it so that after Eve, or anyone el se, intercepts the disguised message,
she will not be able to figure it out. Of course, if Bob does too good a job en-
crypting the message, maybe Alice won't be able to figure it out either. So Bob
and Alice agree on an encryption scheme. When Bob has a message to send Alice,
he pulls out his encryption book (or maybe calls his encryption computer pro-
gram) and encrypts his message. Alice, having the appropriate decryption book
(or computer program), can unscramble or decrypt the message. Thisisfine unless
Eve obtains a copy of Bob's encryption procedure. Then it may be that the message
is no longer secure. (If Eve obtains Alice's decrypting procedure, presumably Eve
can decrypt any message that Alice can decrypt.) We shall describe here a method
that will tell Bob exactly how to encrypt his message. It will tell Alice exactly how
to decrypt the received message. Finaly, (and this is truly magical), even if Eve
knows Bob's method of encryption, Eve will not be able to decipher the message.

There is afamily of related methods that will accomplish the above goals.
These are known as public key encryption schemes, and they use so-called trapdoor
functions. (The analogy is that encrypting information like opening a trapdoor from
above is easy, but decrypting like opening a trapdoor from below when one is
stuck in the trap is hard.) The scheme we present uses the Euclidean algorithm
and modular arithmetic and is known as the RSA scheme for Rivest, Shamir, and
Adleman, the inventors of the scheme. There are other schemes based on a wide
variety of mathematical ideas, and there is a great deal of research being done
on the question of just how secure these trapdoor schemes are.

Suppose that Bob wants to send a message with j letters, including blanks
between words. Using Table 4.1, this becomes a decimal humber with 2j digits
when we replace each |etter by the corresponding two digits of the ASCII code.
If Bob simply transmits the ASCI| code equivalent, Eve will be able to look up
the ASCII code in a table and understand the message.

Example 7.1. The message “HELLO" becomes 7269767679.

Question 7.1. Trangate the message “HOWDY" into its ASCII code equivalent.
Decipher the message 83858270327383328580.

Actually, most messages, like those just mentioned, will turn into numbers that
are far too large to work with. Thus we agree in advance to break the 2j digits of
the message up into blocks of length B and then send k messages M , M2,-. . .M,
each of length at most B.

Example 7.1 (continued). Let B = 4. Then we send the encryption of HELLO as

three messages: 7269, 7676, and 7932, with a blank added at the end to fill out
the last block.

223

4 NUMBER THEORY

Question 7.2. With B = 4, the largest code that can be sent using capital letters
is 9090. What letters produce this code? What is the smallest possible decimal
number that we can transmit with B = 4?

Now it's time for Alice to get sneaky. She picks an integer N and announces
that all work will be done modulo N. In particular, the transmitted messages will
lie between O and N. (Then a convenient choice of block length B is one less than
the number of decimal digitsin N.) The sneaky part is that Alice picks N to be
the product of two nearby, large prime numbers pand q. So N = pg withe # q.
Now it is easy and quick to multiply two prime numbers or any two numbers,
even if they are very large. What is very difficult to do, given an integer N, isto
determine its prime factors.

(Note: All stepsin this process are summarized at the end of the section in the
algorithm RSA.)

Exercise 14 gives a simple algorithm DIVISORSEARCH that searches for the
divisors of an integer N. (A more sophisticated algorithm for finding prime divisors
is presented in Supplementary Exercise 4.) DIVISORSEARCH finds divisors by
checking whether the integers 2,3,. ... up to /N divide N. If N = pq, then either p

or g must be at most [/N |. If, say, p is discovered to be a divisor, then qis found
as N/p.

So why not use this algorithm? DIVISORSEARCH is slow. (In Exercise 15
you are asked to verify that DIVISORSEARCH is exponential.) Faster ones have
been derived, using very deep mathematics, but ali the known algorithms for fac-
toring a number have nonpolynomial running time. For example, whereas we can
easily multiply together two 30-digit numbers to get a 60-digit number, if we are
given N with 60 digits it takes much longer to unscramble it into its prime factors.
If N is either a prime or the product of two large primes that are near one another,
then an algorithm as in Supplementary Exercise 4 would have to run about a year
before this fact is discovered. That’'s no problem for this application Alice will
choose new values of p and g with N = pg every 6 months before Eve is able to
find (or to run a computer program to find) the factors of N.

Question 7.3. Each of the following are of the form pq for primes pand . Try to
factor each 323,4087, and 8633.

However, Alice has more tricks up her sleeve. After selecting N = pg,
she selects an integer e > 1, known as the exponent, with the property that
ged (e, (p—1)g — 1)) = 1. Remember that the ged of two numbers is easy and
quick to calculate. Alice can just try random numbers between O and N and run
the Euclidean algorithm on them to find an e relatively primeto (p —1)(g — 1).

Question 7.4. Let N = 7 11 = 77. Then search through 2,3,4,. . . to find four
numbers e that are relatively primeto 6 - 10 = 60.

224

4:7 AN APPLICATION: PUBLIC KEY ENCRYPTION SCHEMES

Example 7.2. Suppose that N = 9991 = 97 - 103, where 97 and 103 are both
prime. (These are not particularly large prime numbers but will keep us occupied
with calculations by hand.) Let us check that e = 11 meets the requirements for
an exponent by calculating ged (11, 96. 102) = gcd(11, 9792).

9792 = 890- 11 + 2
M=5-2+4+1
2=2-1+0.

Once Alice has determined e, she will perform one more calculation, described
later, but then she may destroy the factors of N or else she must guard them
closely as they are the key to the security of this system.

However, Alice can be quite open with the numbers e and N. In fact, she
sends them to Bob without any secrecy. Maybe she even lists them in a phone
book or publishes them in the newspaper. These numbers will tell Bob (and for
that matter anyone who cares to send a message to Alice) how to securely encrypt
their message. The procedure goes as follows.

Here's what Bob does to encrypt the message. First the original message is
turned into ASCII code using Table 4.1 and then the resulting huge number is
broken into blocks of length B. Each block is one of the messagesM 1, M,,. . . . M,
to be sent. Next Bob must check that each message M, for i =1,2,. ... k, is
relatively prime to N. If not, in the ged calculation he will discover that their
common divisor is either p or g. In that case he announces to Alice and to the
world that he has found a factor of N and it is time to change their protocoal (i.e.,
to change the values of e and N). However, most messages and numbers are
relatively prime to N as shown in Exercise 9.

Then for each message M,,i = 1,2,. ... k, Bob calculates R, where

R; = M¢{ (mod N) and O<R;<N.
Precisely, he can divide by N and find the remainder R
M{ =QN + R; withO < R<N.

Then he will transmit the encrypted message R;, R,.. . . . R..

Now M7 will often be alarge number, but one that can be determined quickly
using FASTEXP however, there are additional ways in modular arithmetic to
keep the numbers relatively small. Recall that by Lemma 6.3, if a=b (mod N),
then a® = b¢ (mod N). Thus when we need M,, M7, M}, and so on for FASTEXP,
we can repeatedly replace the numbers by their least nonnegative residues modulo
N, as shown in the next example. This replacing process is also known as reducing
modulo N.

225

4 NUMBER THEORY

Examples 7.1 and 7.2 (continued). With N = 9991 and e = 11, we begin the
encryption of the message “HELLO” from its ASCII code 726976767932:

M,=7269 M,=7676 My=7932.

First we check that ged (7269, 9991) = 1. Then since M {' = MiMi{M,,
we calculate

M7 -52838361-5953 (mod 9991)

Mt = (5953)'(mod 9991)
-35438209 (mod 9991)
= 132 (mod 9991)

M$= (132)*(mod 9991)
= 17424 (mod 9991)
= 7433 (mod 9991).

Thus the first message R, that we want to send is

M1l= 7433 5953 - 7269 (mod 9991)
= 44248649 - 7269 (mod 9991)
= 8501 7269 (mod 9991)
-61793769 (mod 9991)
= 9425 (mod 9991).

Question 7.5. Show that M,= 7676 and M; = 7932 are relatively prime to
9991 and then determine either R, or R, for these messages.

This procedure to encrypt a message could be implemented easily in a com-
puter program; see algorithm RSA.

There are two questions that require an answer. First, how is Alice to recover
the content of the original message? Second, assuming that Eve receives the
encrypted message and possesses the numbers e and N, why can't she discover
the hidden message?

We answer the second question first. We assume that Eve intercepts the
message R, R, R, WithO<R;<Nfori=12, ...,k. How might she find
M, M,,....,M? Why can't she just take the eth root of Rto get M,? Or why
not try all possible messages M, raise each to the eth power and reduce modulo N
until the correct messages are found?

Examples 7.1 and 7.2 (continued). The 1 Ith root of 9425 is 2.2977 ..., and soO

thisis not much help. The problem is that we took the 1 Ith power of 7269 modulo
9991 and now we would need the 1 Ith root modulo 9991, whatever that means.

226

4:7 AN APPLICATION: PUBLIC KEY ENCRYPTION SCHEMES

The straightforward approach of trying everything would tell us to calculate
I’(mod 9991), 2%(mod 9991), 34(mod 9991), and so on. But checking with the
ASCII code Table 4.1 we can be more clever. The encrypted word is a four-digit
number of the form:

3232, 32wz (65 <wz < 90), wz32 (65 <wz < 90),

or

uvwz (65 <uv,wz < 90),

atotal of 729 possible ASCII codes. Now for any integer i,i'! requires five multi-
plications: three to form i i*, and i°, and two more to combine these into i'*,
If at each stage one reduces modulo 9991, then five more divisions and five more
multiplications are needed. Thus in the worst case, after 10,935 multiplications
and divisions Eve can uncover which message M; produced the transmitted
message R. In Chapter 2, Table 2.9, we assumed that a personal computer can
perform 17,800 single-digit multiplications or divisions in a minute. Since multi-
plying two 4-digit numbers requires at most 16 single-digit multiplications (plus
some additions), it will take Eve 10,935” 16/17,800 or about 10 minutes to recover
the messages (once she's written the appropriate computer program on her PC).
That's not so bad, but as we mentioned earlier, in this example we are really
working with small numbers compared with those used in real life.

More generally, one block of a transmitted message may have B < N decimal
digits, not just 4. Let’sfigure out how long it will take Eve to decrypt a B-digit
number if she tries all possibilities. If we allow the ASCII code for all charac-
ters, not just for capital letters, then the B-digit number will lie between O and
1081 — 1. Suppose that the modulus N is roughly 102! and so exponentiation
by e, where 1< e < N, might use as many as O(log(N)) multiplications and divi-
sions. Thus a systematic search will involve

0(10g(103+ 1)1 OB+ 1) = O((B + l)loB+ 1)

operations, clearly an exponential amount of work for Eve.

Question 7.6. Suppose that the modulus is N = 10°** and the B-digit numbers
can be any number between O and N and also e = 11. Then using the figures
from Examples 7.1 and 7.2, find the minimum value of B such that Eve must cal-
culate for a month before she can figure out all possible messages.

There is an interesting sidelight to the above phenomenon. When we say that

Eve has an exponential amount of work to do, in general, we are stating an
empirical fact about the worst-case scenario. At present there is no theorem that

227

4 NUMBER THEORY

says that Eve will need to examine all or even a large fraction of all numbers.
Thusit is conceivable that a clever ideawould enable Eve to break this encryp-
tion scheme with an efficient decryption scheme. There are other variations on this
scheme with the same uncertainty, namely that there is no theorem that says de-
cryption must be exponential in the worst case, and yet no one has determined
how to “crack” these schemes with polynomial-time algorithms. This state of un-
certainty has prompted a great deal of research on the mathematics behind public
key encryption. The state of the art seems to be that encryptors have the upper
hand at the moment; however, the decrypters have made some progress that has
resulted in the encryptors having to work harder.

If Eve has such a difficult time decrypting the message, then how can Alice
successfully decrypt the message? Remember that Alice calculated one additional
piece of information about e and N = pg before she destroyed or hid the values
of pand ¢. Since e and (p — 1)(g — 1) have gcd one, she used Corollaries 6.5
and 3.3 and secretly found the multiplicative inverse d of e modulo (p—1)(g — 1),
that is,

ed = 1(mod(p —)(g — 1)) withO<d< (p-1)(g—1).
The pair (d, N)is called the decrypting key.
Example 7.1 and 7.2 (yet again). With e = 11 and N = 9991, we find the multi-
plicative inverse d using the Euclidean algorithm. In one part of Example 7.2 we

checked that ged (11, 9792) = 1 and we use these Euclidean equations as in Corol-
lary 3.3:

1=11-5-2
=11—5-(9792 — 890~ 11)
=4451- 11-59792.

Thus 4451 is the multiplicative inverse of 11 modulo 9991.

Decryption now is easy for Alice because she knows a theorem that implies
that

R!=M; (mod N)

for i = 1,2,. ... k. Thusall she hasto do isto calculate RY, replace it by the least
nonnegative residue modulo N and that’s the message M;. And again she pulls out
a computer program that can quickly perform this exponentiation.

Examples 7.1 and 7.2 (concluded). The message 7269 was encrypted as 9425. Here
isasummary of the calculation of (9425)*1:

9425"" = 9425"*9425"°9425%9425%9425°9425.

228

4:7 AN APPLICATION: PUBLIC KEY ENCRYPTION SCHEMES

With 12 multiplications we find

9425 =644 (mod 9991)
9425 = 1975 (mod 9991)
942554 = 4135 (mod9991)
9425 = 5202 (mod 9991)
9425"*-1225 (mod 9991).

Then with 5 more multiplications we find

9425“-1225 - 5202.4135 - 1975.644” 9425 (mod 9991)
= 7269 (mod 9991),

just as we claimed.

Question 7.7. Supposethat N =15=3-5and let e= 7. Find 4 such that ed =
1 (mod 2" 4). Then encrypt each of the messages 2 and 7 using the exponent e and
then decrypt them using d.

Why does Alice's decryption scheme work? The reason is the following theo-
rem, notice its similarity with Fermat’s little theorem, Theorem 6.6. They are both
cases of amore general result due to Euler; see Supplementary Exercises 23 and 24.

Theorem 7.1. If pand ¢ are distinct primes, n = pg, and ged (a, n) = 1, then
a?~Ve" b = { (modn).
Why does this explain Alice's decryption procedure? Alice knows that
R=M{ (mod N).
Thus

Ri= (M7 (mod N)
M (mod N)
= M}*r-be~D (mod N)

for some integer k, since ed=1(mod (p —1)(qg — 1))

= MM -Da= 9y (mod N)
= M;1* (mod N)

229

4 NUMBER THEORY
by Theorem 7.1, since ged (M,, N)=1

= M.,

Remember that Bob checked that ged (M, N) = 1fori=1,2,. ... k and if not,
announced the need for a change of modulus N and exponent e. Now we see
that it is vital that M,and N be relatively prime for the decryption scheme to work.

Proof of Theorem 7.1. (Notice the similarities between this proof and that of
Theorem 6.6.) Let Z, be the integers modulo n:

z,={[0. [1. [2].. . .. [n—- 1]}
and let A be the subset defined by
A={[X] inZ,: ged (x, n) = 1}.

First we count the number of elementsin A by specifying and counting the
elements in Z,, — A. Now for any [i] in Z,, ged (i, n)is 1, p, g, or pg. The only
element [x] for which ged (X, n) = pg is x = O. Which elements [x] have ged (X, n) =
p? Exactly x = p, 2p,. ... (9 —1p, and that’s al since n= pg. Which ones have
ged (X, n) = q? Exactly x = ¢,2¢,.. .. (p—1)g. Notice that no two of these numbers
X are equal. For example, if ip= jgwithl<i<(g-1), 1<j<(p-1), then
p divides jg. Since p and q are distinct primes, p divides j, a contradiction since
j<p—-1).

Thus the equivalence classes [p],. . . . [(Q — Dp], [d]..... [(p — Dg] are all
distinct, and so there are 1 + (g— 1) + (p — 1) elements in Z,— A. Then 4
contains

n—1-p-1)—-(g-)=pg—p—q+1=0p—-Dg-1
elements. We list the elements of Aas
4 ={[rl} [r2), ., [},
where 0 <r <ry<---<rg<ms=({p—)g—1).
Lemma 7.2. If ged (a, n) = ged (b, n) = 1, then ged (ah, n) = 1.
Proof (of lemma). We prove the contrapositive. Suppose that

ged(ab,n)=d> 1.

230

4:7 AN APPLICATION: PUBLIC KEY ENCRYPTION SCHEMES

By Example 4.1, 4 has a prime divisor, say p. Thus p divides both # and ab and
thus at least one of a and b. So either a or b share a common prime divisor with
n contradicting our hypothesis. n

We now use this lemma. Take any humber a such that ged (g, 7) = 1 and look
at the equivalence classes

S={lari].[ar;] [ar]}.
By Lemma7.2 ged (ar,n) = 1fori=1,2,. .. s. In addition,
ged(ryry. . .ren)= 1. *)

We claim that the equivalence classes of S are the same as those of A4, only
perhaps listed in a different order. Since ged (ar;, n) = 1, {ar;]iSin Aand so [ar;] =
[r] for some value of j. Furthermore, no two of the classesin S are equal if

[ari] = [ar,]
for some values of i and k with r #r,, then

ar=ar, (mod n)

r.=r, (modn) by Lemma 6.4

r=r sincer, r < n,
acontradiction. Thus S = 4, and
[ri]-[r2] - - [rd =lar] [ars] - - [arg]
since multiplication is well defined. Thus,

Fifytry=arar,--ar, (modn) by Lemma 6.2

=a’ryry-ccry (modn)
1=d’ (mod n) by Lemma 6.4 and (*)
=qP~ D@1 (mod n)_ O

Why can’t Eve find the decrypting pair (d, N)? Precisdly because disthe multi-
plicative inverse of e modulo (p—1)(g — 1), and she doesn’t know the values of
p and g. As we saw before, factoring N to obtain p and g would require an ex-
ponential amount of work for her, unless she can think of something new and
clever. Perhaps Eve's best bet is to study number theory and cryptography and
to search for an efficient decrypting algorithm. However, she should be aware that

231

4 NUMBER THEORY

Alice could do the same. Alice might even someday come up with a provably
secure system, that is, a system for which one can prove there is no polynomial-
time algorithm to decrypt messages.

Question 7.8. For either R, or R,, calculated in Question 7.5, check that
R = M.

We conclude with a summary of the steps needed in the RSA encryption and
decryption scheme.

Algorithm RSA

Ster 1. (Numerical calculations by receiver)
(a) Pick primes pand ¢, and let N = pq.
(b) Find e such that ged (e, (p—1)(g — 1)) = 1.
(c) Find d such that ed = 1 (mod (p —1)(g — 1)) with
O0<d<(@-11(g-2.
(d) Throw away p and q.
(e) Announce N and e to the world.

srer 2. (Encryption)

(a) Trandate the message into ASCII code using Table 4.1.

(b) Pick an integer B less than the number of digitsin N.

(c) Break the ASCII coded message into blocks of B digits each;
cal these M|, M,, ..., M,.

(d) For i = 1,2,. ... kmake sure that ged (M;, N) = 1; if not, announce
that the code is “broken” and return to step 1.

(e) Fori=l,2,...,klet R;=M; (mod N) withO< R< N.

(f) Transmit the encrypted messages Ry, R,,.. .. R;.

srer 3. (Decryption)
(@ For i = 1,2,..., kcalculate M.=R¢ (mod N) with 0< M, <N.
(b) Fori = 1,2,...,ktrandate M,from ASCII code using Table 4.1.

EXERCISES FOR SECTION 7

1. Using Table 4.1 give the ASCII code for the following: (a) RIGHT ON, (b)
THE TRUTH, (c) ENCRYPT ME, and (d) FOREVER.

2. What do the following ASCII codes stand for in English?
(a) 7279 3272 8577.
(b) 7079 8287 6582 6832.
© 7879 3287 6589.
(d) 8479 3266 6932 7982 3278 7984 3284 7932 6669,

232

4:7 AN APPLICATION: PUBLIC KEY ENCRYPTION SCHEMES

3. Determine which of the following are the product of two distinct primes:
(a) 801, (b) 803, (c) 807, (d) 809, (e) 161, (f) 1631, and (g) 17,947.

4. For each of the following values of N = pg (from Question 7.3), find an integer
e such that ged (e, (p — (g — 1)) = 1 and find the multiplicative inverse of e
(a) 323, () 4087, and (c) 8633.

5 If N=77,e=7,and B= 4, explain why Bob cannot send the message
PEACE to Alice.

6. Using blocks of four digits (B = 4), N = 8633 = 89.97, and e = 5 encrypt the
message CHEERS.

7. Using N = 95 and e = 29, decrypt the message (with B = 2)
53 29 02 51 29.

8. Let p be an odd prime and e an integer such that ged (e, p— 1) = 1. Suppose
that amessage M is encrypted as C, where

C =Me (mod p) whereO <C<p.

If disthe multiplicative inverse of e modulo p, then prove that

Cd =M (mod p).

9. Show that the number of numbersi suchthat O <i < n= pgand ged (i, n) #
lisqg+ p— 1. Then deduce that the probability of picking such aniis
r 1 1

P 4 pq

If p, ¢ > 103Q then show that the probability of choosing, at random, an
integer not relatively prime to nislessthan 10 ~*,

10. Write down in pseudocode an algorithm ENCRYPT that upon input of a
message M, M,,.... M, and N and e, encrypts the message using the RSA
scheme.

11. Write down in pseudocode an algorithm DECRY PT that upon input of a
received message Ry, R,. . .. Ry, two primes p and g (where N = pg) and the
exponent e, decrypts this message.

12. Determine the number of multiplications and divisions performed in the worst
case of ENCRYPT and DECRYPT. (You may count each multiplication and
division as one, regardless of the number of digits.)

13. Prove the converse of Lemma7.2.
14. Here is an algorithm to find divisors of an integer N.

233

4 NUMBER THEORY

Algorithm DIVISORSEARCH

Ster 1. Input N
Ster 2. For i:= 2 to L\/NJ do

Ster 3. If i divides N, then output “ i is adivisor of N*
Srep 4. If no divisors have been output, then output “N is a prime”
Step 5. Stop.

Explain why this algorithm correctly determines when N is a prime. Ex-
plain why, if N isnot a prime, this algorithm finds all, except possibly one,
prime divisors of N.

15. Explain why, in the worst case, there is a number » >1 such that the algorithm
DIVISORSEARCH performs at least r” divisions, where D equals the number
of bits needed to express N in binary. Find as large a value of r as is possible
with your argument.

16. Modify the algorithm DIVISORSEARCH so that its output includes all prime
divisors of N. How many divisions does this perform in the worst case?

4:8 THE DIVIDENDS

The overall aim of this chapter has been to introduce the counting and agorithmic
ideas of discrete mathematics within number theory. In addition, this chapter
introduced specific results from number theory with indications of their applica-
bility in mathematics and computer science.

The chapter has focused on agorithms to determine the greatest common
divisor of two integers. In the text and exercises we found straightforward algo-
rithms to solve the gcd problem and then developed the less obvious Euclidean
algorithm. From the point of view of bit input, the straightforward algorithms are
bad and exponential, but EUCLID is a good and linear algorithm. The worst-case
complexity analysis of the latter algorithm is different from that of previous ago-
rithmsin that it comesin two stages. First we show that if we use the Euclidean
algorithm on two successive Fibonacci numbers, then the number of multiplica-
tions and divisions is logarithmic in the input numbers. Next we show that in the
worst case of the Euclidean algorithm with arbitrary input b < c, O(log (c)) opera
tions are performed. Thus the Fibonacci numbers exhibit this worst-case behavior
and so the worst-case analysis really does reflect what may happen. What is aso
true, but we do not prove it, is that the Fibonacci numbers are actually the worst-
case input for the Euclidean algorithm. In conclusion, we observe that O(log (¢)) =
O(B), where B is the number of bits needed for the input.

Two important general ideas were introduced in this chapter. The first is
Complete Induction, which gives us more flexibility at the cost of more checking

234

4:8 THE DIVIDENDS

of base cases. Also we presented the idea that the size of the input to an agorithm
ought to be measured in terms of bits. Thus an integer » requires B [roughly
log (n)] bits, and it isin terms of this parameter B that we should be determining
and analyzing the complexity functions of agorithms. With this perspective we
look back to EXPONENT and FASTEXP of Chapter 2 and see that they are
exponential and linear algorithms, respectively.

A substantial amount of elementary number theory appears in Section 6.
Modular arithmetic and equivalence relations are central to much of mathematics
and computer science. For example, the theory of groups and rings involves
generalizations of Z,, the integers modulo n. Many computer languages come
with the ability to do arithmetic modulo #; this arithmetic is important in, for
instance, random number generation. Equivalence relations will be crucia in fur-
ther courses in theoretical computer science and mathematics. Thus the lemmas,
theorems, and corollaries of Section 6 are worth studying because they will come
up again both in applications and in other branches of mathematics and computer
science.

There is a variety of different encryption schemes in use today; each uses
different aspects of number theory. The approach we pursue relies on the Euclidean
algorithm and Fermat’s little theorem, but its effectiveness comes from the fact
that it is apparently difficult to factor a number into its prime factors. In fact, it
has recently been shown that the difficulty of “cracking” a variation of the RSA
scheme is computationally equivalent to factoring a number ninto two primes.
However, there is no known theorem that says it is hard to decrypt a message
sent using the RSA scheme or that it is hard to factor a number. A closely related
algorithmic problem is that of determining whether a given number is prime. Re-
cent fast, so-called random algorithms have been developed that can test whether
“most” numbers are prime, and there is a primality-testing algorithm that has been
shown to run in polynomial time on all integers, provided that a famous open
problem, the extended Riemann hypothesis, is true. No one has proved the latter
result, but most mathematicians believe it is true. Thus if you are tempted to set
up an encryption service along the lines of this chapter, take heed. It may be that
soon a mathematical or algorithmic breakthrough will occur and destroy the effec-
tiveness of the RSA encryption scheme.

Number theory is an excellent training ground for logical analysis and deduc-
tion. It is accessible: Small examples can be explored numerically, general patterns
deduced, and proofs constructed by induction and contradiction. The Fibonacci
numbers are a sample of the kinds of intriguing problems in the field. Others
include prime numbers, modular arithmetic, and solutions of equations. Number
theory also gives an introduction to the mathematical discipline of abstract algebra
and the computer science discipline of arithmetic and algebraic computations.
Especially if the ideas in this chapter interest you, these are fields worthy of
further study.

235

4 NUMBER THEORY

SUPPLEMENTARY EXERCISES FOR CHAPTER 4

1. Design a ged algorithm called GCD?2 that is based on the following idea. If
2 divides b and c, then 2 is afactor of ged (b, €). Furthermore, we may carry
out the division and consider the smaller problem of finding the ged (b/2, ¢/2).
If 2 does not divide bor ¢, try 3, try j. Note that the maximum value
of j that you need to check is no more than b or \/e. Why?

2. Use GCD2 to find the ged of the following pairs: (a) (8, 12), (b) (24, 32), and
© (72, 96).

3. Inthe worst case how many divisions will GCD2 need?

4, Design an algorithm that upon input m will find ali prime numbers between
1 and m. (Hint: Use the idea behind GCD2. This idea is attributed to the
Greek mathematician Eratosthenes of the third century B.c. The method is
known as the Sieve of Eratosthenes: First cross out all multiples of 2 except
for 2 itself. Next cross out all multiples of 3 except for 3itself,and so
on. How far do you have to keep going with this crossing out process?)

5. Use your Sieve of Eratosthenes algorithm to find al prime numbers between
1 and 200.

6. Let U be the set of positive integers less than 49. Set A= {xe U: xisdivisible
by 2}, B={x e U: xisdivisibleby 3}, and C = {x € U: x isdivisible by 5}.
Find |4],|B|, and |C|. Find |4 u Bu C|.(Hint: Look at PIE from Chapter 1.)
Use the results of this problem to calculate the number of primes less than 50.

7. Two couples are camping in Hawaii with a pet parrot. They collect a pile
of macadamia nuts, but during the night one woman gets up, divides the pile
of nutsinto four equal piles and finds one nut left over, which she givesto
the parrot to keep it quiet. She hides one pile, combines the other three piles
into one, and goes back to sleep. Then her husband wakes up, looks suspi-
cioudly at the pile, divides the (remaining) nuts equally into four with one extra
nut for the parrot, hides one pile, and goes back to sleep. The same thing
happens two more times; each time the remaining nuts divide evenly into four
equal piles with one nut left over, which is given to the parrot, and one pile
is hidden. In the morning the four graciously divide the remaining nuts into
four equal piles and find they have one macadamia nut left over for the parrot.
What is the minimum number of nuts that they could have had at the start
of the evening'?

8. Look back at the definition of 1C(b, c) in Exercise 3.13. Prove that gcd (b,) =
min {IC(b, C)}.

9. Design an algorithm EXTENDEDEUCLID that first finds the ged of b and
c asin the algorithm EUCLID and then expresses the ged as a linear combina-
tion of b and c. The algorithm should use only a constant number of variables,
say 10 at most.

236

SUPPLEMENTARY EXERCISES FOR CHAPTER 4

10. (a) Suppose that n is even. Then the following sum equals a Fibonacci num-
ber. Which one isit?

n n—1 n—2 + n—73 n/2
o)7L 1)7 2 3)T ap)
(b) Find a similar sum of binomial coefficients that equals a Fibonacci num-
ber when nis odd.

11. Prove the results you obtained in Exercise 10. Hint: Use induction and the

fact that
n—ky ((n-1)— k . m—2—(k—1)
k | k k—1 ‘
12. If the Euclidean algorithm is applied to c = F, . , and b= F, . ;, what can
you say about the number of Euclidean eguations?

13. Suppose that the algorithm EUCLID is modified so that in step 3 the vari-
able g is set equal to the nearest integer to c/b. Run some examples of this
agorithm, including some Fibonacci numbers. Then analyze the complexity
of the algorithm in terms of c. Isthis version more efficient than EUCLID?

14. Prove Lamé’s Theorem: In the Euclidean algorithm the smallest values of ¢
that produces k Euclidean equationsisc = F ,.

15. Prove that if as = 1 (mod n) and «' = 1 (mod n), then gs<4s¥ = 1 (mod n).

16. For ordinary integers, xy = O if and only if either x or y equals O. Give
examples to show that thisis false in Z,, that is, for equivaence classes modulo
n it is not true that

[x] [y]l= [0] if and only if [x] = [0] or [Y] “[0].

17. Prove the following about equivalence classes modulo n. Given [x] # [0],
thereisaly] #[0] such that [x] - [y] = [0] if and only if ged (x, n) # 1.

18. Consider Z,, the integers modulo n, where n = st with ged (s, t) = 1. Show

that there are at least four different equivalence classes [i] modulo # such
that [i]* = [i]. For example, [0]*= [07] = [OQ].

19. If n = pq, then explain why the following are true:

ptg=n—(p—-D@g—-1)+1
p—q=+p+q —4n.

Suppose that an algorithm were discovered that given an integer n=pq, a
product of two primes, could quickly calculate (p —1)(g — 1). Then use the

237

4 NUMBER THEORY

20.

21.

22.

facts that

=3(p+a+(p—q)
=3((p+9—(p—q)

and the results of the previous equations to argue that there would be afast
algorithm to factor ninto its two prime divisors.

We define ¢(m) to be the number of integersiin {1, 2,. ... m} such that
ged (i, m) = 1. Determine ¢(6), #(7), #(9), #(10), ¢(p), and ¢(p?), where p is a
prime, and ¢(pq), where p and ¢ are distinct primes.

Prove Wilson's theorem: If pisaprime, then p divides ((p—1)! + 1). [Hint:
Show that (p — 2)! = 1 (mod p) by pairing numbers with their multiplicative
inverses.]

Here are some ideas for an aternative proof of Fermat's little theorem, which
states that P *= 1 (mod p) if ged (b, p) = 1. First show that if strings of beads
of length p are formed using b different colors of beads, then the number of
such strings that are not al one color is b7 —b. (You should assume that
there is an unlimited supply of beads of each color.) If the ends of each string
are tied together to form a bracelet, explain why the number of different
colored bracelets is (b°—b)/p. (For example, the string of red, blue, and green
beads forms the same bracelet as the string of blue, green, and red beads.)

23. A theorem due to Euler states that if ged (u, m) = 1, then

24,

238

o(m)

s"” = 1 (mod m),

where the function ¢ is defined in Exercise 20. Verify that this theorem is true
for m a prime or a product of two primes.

Prove Euler’s theorem (of Exercise 23) using the following hints: Let 4 =

{[s:1.[52)- - - - [34m]}> where the s: are all the integers in {1,2,..., m} that
are relallvely primeto m. Let S ={[as],[as2],.. e?asd,(,,,)]} Then proceed
as in the proof of Theorem 7.1.

GRAPH THEORY

5:1 BUILDING THE LAN

A college’s minicomputers, terminals, and microcomputers are joined in a Local
Area Network (LAN for short). The advantages include the potential to connect
terminals and microcomputers with any minicomputer, the capacity to support
more terminals on campus, and rapid transmission of data between terminals
and minicomputers. The first step in the installation of the LAN was to link the
basement of every building on campus using coaxial cable. This does not mean
that each pair of buildings is joined by a cable. What it does mean is that it is
possible to send electrical signals via the cable from any building on camgpus
to any other building perhaps using one or more intermediate buildings. How
should we, or the LAN designers, decide which pairs of buildings to join directly
by coaxial cable?

Stoddard Hall

E} College iian_l:
i

McConnell Hall

Ainsworth Gym

Figure 5.1 Campus map.

Example 1.1. Suppose that we want to connect Coilege Hall (C), Ainsworth
Gymnasium (A4), and McConnell Hall (M) by coaxial cable. Which pairs of build-

239

5 GRAPH THEORY

ings should be directly connected? See Figure 5.1. If we connect C directly to M
and M directly to A. then there is no need to connect C directly to A4, since it is
already possible to send electronic signals from C to 4 through M. There are three
possible direct connections to make. Choosing any two makes the third unnec-
essary.

Question 1.1. Suppose that Ainsworth Gym (A4), College Hall (C), McConnell
Hall (M), and Stoddard Hall {S) are buildings on campus to be connected by the
LAN. See Figure 5.1. How many pairs of possible direct connections are there
among the four buildings? How many direct connections do you need to install
so that communication (though not necessarily direct) is possible between each
pair of buildings? Will any set of this many direct connections work? Answer the
same questions if five buildings are to be joined.

In Example 1.1 why should any particular pair of connections be selected
in preference to any other pair? In practice, such decisions are made to minimize
the total installation cost.

Example 1.2. Suppose that it costs $85,000 to install a cable between McConnell
Hall and College Hall, $78,000 to install a cable between Ainsworth and
McConnell, and $87.000 to install a cable between Ainsworth and College Hall.
Which two direct cabie links have minimum cost? The MC and AM links have a
total cost of $163,000; the MC and AC links have a total cost of $172,000; and
the AC and AM links have a total cost of $165,000.

Question 1.2. Suppose that the cost of joining § with C is $30,000, the cost of
joining § with M is $51.000, and the cost of joining S with 4 is $67.000. Using
the data from Example .2, determine which pairs of 4, C, M, and S should be
directly linked in order to minimize the total cost. Compare vour answer with
that of the preceding example.

What should be evident is that if there are only a few buildings, then these
calculations can be carried out by hand and the minimum cost plan can be found.
If the number of buildings to be linked is at all large, then we need a good algorithm
to figure out how to do it. In the next two sections we provide the mathematical
framework with which to consider this kind of problem. Then we contrast bad
and good algorithms to find these special pairs of buildings.

EXERCISES FOR SECTION 1

1. Neilson Library (N) is to be included on the LAN with McConnell. Ainsworth,
Stoddard. and College Hall. The cost to join Neilson with the other buildings
is given by $20.000 to join N with S, $27.000 to join N with C, $45,000 to join

240

5:2 GRAPHS

N with M, and $75.000 to join N with A. The other costs are the same as in
Example 1.2 and Question 1.2. Which pairs of these five academic buildings
should be directly linked in order to minimize the totat cost?

. Suppose that there are six buildings, say A, B, C. D, E. and F, that are to be
joined in a LAN system. How many pairs of buildings are there that might
be joined by cable? How many pairs will you need to join in order to establish
the LAN? The estimated costs (in tens of thousands of dollars) are given in
the following table. What should be the pairs of the LAN system?

4 B C D E F
4 0 2.7 38 29 7.8 9.3
B 2.7 0 43 5.2 8.4 6.9
C 38 4.8 0 3.5 4.6 5.7
D 29 5.2 35 0 6.4 7.1
E 7.8 3.4 4.6 6.4 0 39
F 9.3 6.9 5.7 7.1 39 0

. Suppose that you wanted to connect four buildings in a communications systzm
so that there are two different ways to send messages {from any building to any
other building. How many pairwise connections would you need? Answer the
same question for five buildings.

Suppose in Question 1.2 that we require a direct link between McConnell Hall
and College Hall. Otherwise, we still wish to find the least expensive LAN
connections. Which additional direct connections should we add?

Repeat Exercise | with the two constraints that McConnell Hall and College
Hall must be directly linked, as must Neilson Library and Stoddard Hall.

Draw the 3 x 2 and 6 x 5 rectanguiar grid (see Section 3.1). Suppose that cuch
line represents a street and at each sireet intersection there is a fire hydrant.
In each grid find a subset of the streets that connects up all fire hydrants to
the lower left-hand corner and whose total length is as short as possible.

5:2 GRAPHS

The LAN of the preceding section can be modeled using what mathematiciuns
and computer scientists call a graph (not to be confused with the graph of a func-
tion). For this problem the sets that we consider are the set of buildings and he

set of pairs of buildings.

Graph Theory Definitions. A graph consists of a finite set of vertices together

with a finite set of edges. Each edge consists of a distinct pair of distinct vertices.

If the edge ¢ consists of the vertices u. ¢}, we often write ¢ = (1, v) and say that u

241

5 GRAPH THEORY

is joined to v (also that v is joined to u) and that u and v are adjacent. We also say
that both u and v are incident with the edge e.

Although graphs are frequently stored in a computer as lists of vertices and
edges, humans have a more picturesque way to think about graphs. Typically, we
shall represent the vertex set of a graph as a set of points in the plane. An edge
will be represented by a line segment or an arc (not necessarily straight) joining
the two vertices incident with it.

Example 2.1. Figure 5.2 exhibits two typical graphs. The vertices and edges of
the graph in Figure 5.2(h) are labeled so that we can reinforce the above definitions.
In this graph x and z are adjacent as are y and r. and so on. The edge [= (z,)
1s incident with both z and v, and y and w are incident with the edge h. Note that
r is not adjacent to w. However, if the edges of this graph represent the direct
cable connections in a Local Area Network, then w and r are connected in the
sense that an electronic message could be sent from w to r going through y.

Look back at Chapter 3 and notice that we were really doing a graph theory
problem there, only we didn’t call it by that name. We now call the diagrams of that
chapter by their usual names: grid graphs. Figure 5.3 shows the 3 x 2 grid graph.

(a) bj
Figure 5.2

Figure 5.3

Some Notation. In a graph G the vertex set will be denoted by V(G) and the
number of vertices by |V(G)| = V (if there is no ambiguity as to which graph we
are talking about). Similarly, the edge set will be denoted by E(G) and the number

242

5:2 GRAPHS

of edges by |E(G)| = E. Often the vertices of a graph will be labeled so that they
can be distinguished or named according to the intended application.

Example 2.1 (again). In Figure 52(b), V(G) = {x,y.z,w.r} and V =35 Also,
E(G) = {e, f.g,hi} = {(x.2),(y, 2) (x,w), (y, W), (y, 1)} and E = 5.

Question 2.1, Draw a graph with V' = 4 and E = 3. Is there more than one such
graph?

Another Definition. The degree of a vertex x 1s the number of vertices adjacent
to x (or equivalently, the number of edges incident with x). Within a graph G we

denote the degree of x by deg (x, G) or deg(x) if there is no confusion as to which
graph G we refer to.

One way to think about a graph is as if it were constructed of buttons and
thread: The buttons represent the vertices and the thread represents the edges. In
this model the degree of a vertex is the number of strands of thread emanating
from the corresponding button.

Example 2.1 (once more). In Figure 5.2(b), deg(x) = 2 = deg(z) = deg(w), while
deg(y) = 3 and deg(r) = 1.

Question 2.2. For the graph shown in Figure 5.4 determine V, E, and the degree
of each vertex. Find the sum of the degrees of all the vertices.

o —_——

Figure 5.4

In the preceding question you might have noticed that the sum of the degrees
was exactly twice the number of edges. That this happens in general is our furst
result.

Theorem 2.1. If V(G) = {x,,....xy}, then

deg(x,) + - + deg(xy) = 2E.

Proof. Since the degree of a vertex is the number of edges incident with that
vertex, the sum of the degrees counts the total number of times an edge 1s incident
with a vertex. Since every edge is incident with exactly two vertices, cach edge
gets counted twice, once at each end. Thus the sum of the degrees equals twice
the number of edges. .

[

243

5 GRAPH THEORY

Question 2.3. A vertex whose degree is odd is called odd. Show that in any graph
there is an even number of odd vertices.

To answer the second part of Question 2.1 with assurance you need to know
how to decide if two graphs are the same or different.

Definition. Two graphs, say G and H, are said to be isomorphic - there exists a
function f:V(G) — V(H) such that
(1} f 1s both one-to-one and onto,
(i1} f preserves adjacencies, and
{i1) f preserves nonadjacencies.

[somorphic is a fancy mathematical word meaning fundamentally the same.
Two graphs that are not isomorphic are also called different. Properties (ii) and
(111) can be formalized as
(ii"y If (x, y) is in E(G), then (f(x), f(¥)} is in E(H) and
(1) If (x, y) is not in E(G), then {f(x), /() is not in E(H).

The function f that shows the correspondence between the vertices of G and
the vertices of H is called an isomorphism. [n practice, it is displayed by label-
ing the vertices of G and H with letters or numbers and then explicitly writing
out the function values f(x) for each x in V(G). Or the vertices of G and H can
be labeled so that if x 1s labeled 4 in G, then f(x) is labeled 4 in H.

Example 2.2. The graphs G and H in Figure 5.5 are isomorphic as are the graphs
K and M. Note that in the figure both G and H have four vertices and five edges
while K and M both have four vertices and four edges. [n general, if G and H are
isomorphic graphs. then by property (i), |V(G) = |V(H)| and by properties (ii) and

(i), E(G)! = E(H)]. Furthermore, deg(x, G) = deg(f(x), H) for every x in V(G).
1 2 a b f(y=b
f@=a
f(H=d
B =c
3 4 ¢ d
¢ H
a b a d
¢ o b ¢
K M
Figure 5.5

5:2 GRAPHS

Example 2.3. Figure 5.6 shows the six different graphs on two and three vertices.
{Note that a graph need not be connected in the sense of the LAN.)

o] 1 o
(e} o]

o o
‘a (b (c) (d) (el if)
Figure 5.6

Question 2.4. Find the 11 different graphs on 4 vertices.

Question 2.5, Note that the graphs G and H shown in Figure 5.7 have identical

degrees. Show that they are not isomorphic.
H

[t is an open question whether there exists a good algorithm to determine if
two graphs are isomorphic. This question is of considerabie interest to, for instance,
chemists. They model chemical molecules using graphs, where vertices represent
the individual atoms and edges represent the chemical bonds. [t is sometimes dif-
ficult given two molecules with identical atomic constituents to determine whether
they are the same. If chemists synthesize a particular moiecule in the laboratory
and want to find out what is known about it, they need some method of recognizing
when the chemical is discussed in the literature, that is. they want to be able to
test graph isomorphism. Supplementary Exercises 6 to 9 ask you to construct and
analyze straightforward graph isomorphism algorithms.

There is a notable connection between graphs and relations, as defined in Sec-
tion 4.6. Given a symmetric relation ~ on a finite set S, we may create a graph G
with V(G) = S and for «,h € S an edge (a,b) & E(G) if and only if u ~ b is true.
Conversely, a graph G and its edges define a relation on the elements of V(G). Sce
Exercises 24 to 27 and Supplementary Exercises 32 to 34.

We close this introductory section on graphs by defining and presenting some
special classes of graphs.

Figure 5.7

245

5 GRAPH THEORY

Definition. A graph in which every pair of distinct vertices is joined by an edge
is called complete. A complete graph with r vertices is also called an r-clique and
is denoted by K,..

Example 2.4. Figure 5.8 exhibits K, and K. Note that these graphs have 6 and
10 edges, respectively.

K, Ks
Figure 5.8

Theorem 2.2. An r-clique contains exactly r(r — 1)/2 edges.

We present four proofs. It is worthwhile to understand all four, since they
represent different ways of thinking about the problem.

Proof 1. We proceed by induction. A one-clique is a vertex without any edges.
which satisfies the formula. In Figures 5.6 and 5.8 we see that K,,..., K5 have
the correct number of edges. Thus the base case is safely accounted for. Suppose
that the theorem is true for r = k. We must show that it is then true for r = k + L.
Given a (k + 1)-clique, pick a vertex, say x. If we erase x and all edges incident
with x from our graph, we are left with a k-clique, which has k(k — 1)/2 edges by
the inductive hypothesis. In our original graph the vertex x was incident with &

edges, one to each of the other vertices. Thus the total number of edges in the
(k + 1)-clique equals

i 2 ’

. o - — 1
k(kﬁ ”+k=k<k 1+1>:k(k+1):(k+1){(k+1) 1

which is what we needed to prove. 7

Proof 2. Let's draw K,, adding one vertex at a time. When we draw the first
vertex, we need no edges. When we add the second vertex, we need to draw one
edge to connect the two vertices. When we add the third vertex, we must join it
to the two previously created vertices, so we need to draw two more edges. In
general, when we add the kth vertex, we need to draw k — 1 new edges. Thus the

5:2 GRAPHS
total number of edges we need to draw is
A2 +34--+(0 -1

We have seen that this sum equals (r — 1) {(# — 1) + 1}/2 in Section 2.3. 3
Proof 3. In K, each vertex has degree r — 1. Thus the sum of the degrees equals
r(r — 1). By Theorem 2.1, this sum also equals 2E. Thus 2E = r{r — 1) and E =
rir — 1)/2. -

L

Proof 4. The number of edges in K, equals the number of 2-subsets of an r-set,

which equals <) as we saw in Chapter 3. g

r
ol
P

Question 2.6. How many edges are there in K7

Corollary 2.3. For any graph, E < V(V — 1)/2.

A graph is said to be bipartite if its vertex set can be partitioned into two sets,
say R and B, with the property that every edge joins a vertex in R with a vertex
in B. Such graphs are also called 2-colorable, since you can think of the vertices
in R as being painted red while the vertices in B are painted blue. With this paint-
ing no vertex is joined by an edge to a vertex with the same color. A bipartite graph
is said to be a complete bipartite graph if every red vertex is joined by an edge
to every blue vertex. The complete bipartite graph with p red vertices and ¢ blue
vertices is often denoted by K|, ,. (Notice that this definition cries out for an
algorithm to decide if a graph is bipartite, and if it is, to construct the sets R and
B; see Supplementary Exercise 10.)

Example 2.5. Each of the graphs in Figure 5.9 is bipartite. The graph in Figure
5.9(c) is the complete bipartite graph K ;.

R B
B R
(a
(b)
Figure 5.9

247

5 GRAPH THEORY

Question 2.7. Which of the graphs in Figure 5.10 are bipartite? If a graph is
bipartite, color its vertices red and blue so that no edge joins two vertices of the
same color. If it is not bipartite, explain why its vertices cannot be so colored.

faj (b)
Figure 5.10

EXERCISES FOR SECTION 2

1. Draw a graph with five vertices that illustrates your LAN connections from
Exercise 1.1.

2. Draw a graph with 6 vertices and 10 edges.

3. For the following graphs find V. E, and the degree of cach vertex.

4. Find all the different graphs with five vertices and two edges. How ubout
three edges? What is the maximum number of edges a graph on five vertices
can have?

5. Suppose that G is a graph with V' vertices. What is the largest possible degree
of a vertex in G?

6. Suppose that G is 4 graph with V' vertices and £ = V — 1 edges. Prove that
G contains a vertex of degree 0 or 1.

248

5:2 GRAPHS

7. Prove Theorem 2.1. using induction on E.

8. At the beginning of a business meeting some of the participants are introduced

pd

10.

fa)
fc)

to each other. In an introduction A is introduced to B and B is introduced
to A for some pair 4 and B. Show that the number of individuals who have
been introduced to an odd number of other individuals is even.

A graph in which every vertex has degree r is called regular of degree . F:nd
examples of graphs that are not cliques but are regular of (a) degree 1, (b)
degree 2, and (c} degree 3.

For each of the following sequences either find a graph whose vertices have
exactly these degrees or show that such a graph cannot exist.

(a) 3,3.1, 1. (b) 3,2.2, 1. (¢) 5,4,4.2,22

(d) 3,3,2,2, 1. L. (e) 4.1.1, 1, 1. (f) 2,2,2,1, 1.

(9) 7.3,3.3,2,2 (h) 5,5,5,2,2,2,2, 1.

. (a) Find all different graphs with 6 vertices and 15 edges.

(b) Find all different graphs with 6 vertices and 14 edges.
(¢) Find all different graphs with 6 vertices and 13 edges.

Which of the following pairs of graphs are isomorphic? For each isomorphic

pair, exhibit the isomorphism.
(b

td)

249

5 GRAPH THEORY

13.

14.

15.

16.

17.

18.

19.

20.

21.

250

Find two nonisomorphic graphs with six vertices both of which are regular
of degree 3.

Explain why a regular graph with V vertices and E edges must have all vertices
of degree 2E/V. (See Exercise 9.)

Which of the following graphs are bipartite? Label the vertices of the bipartite
graphs with R and B so that no edge joins two vertices with the same label,
and explain why the others cannot be so labeled.

p

Draw K, and K-. What is the smallest value of n such that K, has at least
1000 edges?

[s there a bipartite graph with 10 vertices that is regular of degree 3? If so,
find one; if not, explain why not.

Exhibit all the different graphs with 6 vertices and 3 edges. and 6 vertices and
12 edges.

Find a formula for the number of edges in K, ,. Prove your formula in two
different ways, one of which must be by induction.

If G is a bipartite graph on 12 vertices, what is the largest number of edges
that G might have?

If G is a bipartite graph on V vertices, what is the largest number of cdges
that G might have?

22,

23.
24,

28.

26.
27.

5:3 TREES AND THE LAN

The generalized cubes Q, are graphs defined as follows: The vertices of Q,
consist of all binary sequences of length », that is, V(Q,) = {0, | }". Two vertices
in Q, are joined by an edge precisely if the corresponding binary sequences
differ in exactly one entry. Thus the vertices of Q; are 0 and | and there is

an edge joining them. The graph Q, follows. Draw Q3 and Q4. How many
vertices and how many edges does @, have?

0t 11

00 10

Show that for all n, Q, {defined in Exercise 22} is bipartite.

Let S = {0,1,2,...,9} and suppose that for x,y € §, x ~ y is true if and only
if x and y are both even or both odd. Draw the corresponding graph.

Let G = K3 3. Specify the corresponding relation on V(G) = {1.2,3.4,5.6}.
Do the same for G = K.

Are the relations in Exercise 25 reflexive or transitive?

If G is a graph, explain why the corresponding relation ~ is necessarily a
symmetric relation.

5:3 TREES AND THE LAN

In our model of cable connections for the LAN system we wanted to be able to
send an electrical signal from any building to any other building. This property
corresponds with the notion of connectivity. Here is an informal description. With
the button and thread image from the previous section, a graph is connected if
whenever you pick up a button and walk out of the room, the entire graph comes
with you. If only some of the graph comes with you, the part that comes with
you is called a (connected) component.

Example 3.1. [n Figure 5.11, G is connected while H has three components.

1

G H
Figure 5.11

251

5 GRAPH THEORY

Even though this informal definition of connectivity captures the spirit of the
concept correctly, we need a less “seamy” definition to enable us to prove theorems
about connected graphs.

Definition. Given a graph G with vertices x and y, a path from x to y of length
k is a sequence of k distinct edges, ¢,,¢,,. .. .¢,, such that

(-)1 = (x"xl)’

ey = (X, X,),
e; = (Xj- 1, X

and finally,

e = (-1, V).

Frequently, we just list the vertices that are incident with the edges of the path,
like x, xq, X5, .. 3 Xj— 15X - X~ 1,). We may say that there is a path of length
zero from a vertex x to itself. A path from x to itself of length k is called a k-cycle.

Example 3.2. In the graph of Figure 5.12 the vertices a.b, ¢, d, and e form a 5-
cycle. There 1s a path from « to z of length four using the vertices b, ¢, and r as
well as a path from « to = of length three using the vertices ¢ and d. In the latter

path ¢, = (a,¢), e5 = (¢,d), and e; = (d.2).

o
> &
N

O

a b ¢ r

Figure 5.12

Question 3.1. In the graph of Figure 5.13, find a path of length five {rom « to 5,
a path of length three from : to r, and u 4-cycle through b.

Recall that we used this terminology when discussing grids in Chapter 3. For
example, in the 6 x 5 grid graph we were searching for paths of length 1! {rom
(the vertex) M to (the vertex) P.

252

5:3 TREES AND THE LAN
a ¢ d b e
I 2 X r w
Figure 5.13
Definition. The graph that consists of a path of length k from one vertex to

another vertex with no repeated vertices is called P,. The graph that is a k-cycle
with no repeated vertices is called C,.

Example 3.3. The graphs P; and C5 are shown in Figure 5.14.

Figure 5.14
We use the concept of path to define connectivity precisely.

Definition. A graph G is said to be connected if for every pair of vertices x and
y, there exists a path from x to v. The distance between x and v, denoted d(x, y),
1s the smallest number of edges in a path from x to y. Given a vertex x within a
graph G. the component of G containing x consists of the set of vertices and the
set of edges in G that are a part of some path beginning at x.

We emphasize that this does not mean that in a connected graph every pair
of vertices is joined by an edge.

If we construct a graph to model the LAN, the vertices will represent the
buildings of the campus and the edges will represent the pairs of buildings that
are directly joined by a coaxial cable. We want this graph to be connected. On
the other hand, we don’t want to include unnecessary connections. These proper-
ties suggest the following definitions.

Definition. A forest is a graph with no cycles. (Such a graph is also called acyelic.)
A connected graph with no cycles is calied a tree.

Trees are the most widely applicable type of graph. We shall explore some of
their properties in the remainder of this section and use them to settle the LAN
question.

5 GRAPH THEORY

a o]
I—-@ E: »——l—_@
Figure 5.15

Example 3.4. Figure 5135 exhibits all the different trees on fewer than 5 vertices.
The union of these graphs forms a forest with 5 components and 14 vertices. Figure
5.16 shows a tree whose bark is worse than its bite.

YN

Figure 5.16

Question 3.2. Find the three different trees on five vertices.

Question 3.3. How many edges does a tree on six vertices contain? Does the
answer depend upon the tree or is the answer the same for all trees on six vertices?

Theorem 3.1. If T is a tree with V vertices and E edges, then
E=V -1

Proof. We proceed by induction on the number of vertices. You can consult
Figure 5.15 to see that the result is true for V' =1, 2, 3, and 4. We assume that
the result is true for all trees with fewer than V vertices. Consider an arbitrary
tree T with V vertices and an edge ¢ = {x, y). What happens if we remove the edge
e from T? We illustrate in Figure 5.17.

Figure 5.17

254

3:3 TREES AND THE LAN

The resulting graph is a forest made up of two trees, one containing the vertex
x and the other containing the vertex y. Let T" denote the tree containing x and T”
denote the tree containing v. Suppose that the number of vertices in T' is V'
and the number of edges in T" is E’. Similarly, the number of vertices in T" is V"
and the number of edges in T is E”. Since both T" and T are trees that have
fewer vertices than T, we can assume by the inductive hypothesis that

E=V-1 and Er=Vv"—1

The number of edges in T is one more than £ + E” (since ¢ is in T) while the
number of vertices in T equals V' + V. Thus

E=E+E +1

=V =D+ =D+1

=V +V -1

=V -1 O

Question 3.4. If you want to join every pair of buildings on a campus with 40
buildings, how many different coaxial cables do you need? What is the minimum
number of cables that must be installed to sustain a LAN system connecting these
40 buildings?

Question 3.5. (a) Let C denote the number of component trees in the forest shown
in Figure 5.15. Show that E =V — C. (b) More generally, show that if F is any
forest with V' vertices, E edges, and C component trees, then E = V — C. [Hint:
Suppose that for i = 1,....C, the ith component tree contains V; vertices and E;
edges.] (See also Exercises 24 and 25.)

That a tree on ¥ vertices has exactly V — 1 edges is fundamental. Indeed this
property can be exchanged with either of the two defining properties of a tree. This
is shown in the next theorem and the questions that follow it.

Theorem 3.2. If G is an acyclic graph with V vertices and V — 1 edges, then C is
a tree.

Proof. 1If G is acyclic, then G is by definition a forest. By the result in Question
3.5 a forest with V' vertices, E edges, and C component trees necessarily has

E=V-C.

255

5 GRAPH THEORY

Solving for C and substituting for E vields

C=V-—-E
=V—(V-1)=1

Thus C =1 and G is a tree. {7
Question 3.6. Show that if G is a connected graph containing a cycle and if ¢ is
any edge of the cycle, then G — ¢ is connected. (By G — ¢ we mean the graph ob-
tained from G by erasing e, that is, removing e from the edge set while leaving ¢'s
incident vertices in the vertex set.) (Hint: Pick a pair of vertices in G, say x and y,
and describe a path from x to yin G — ¢.)

Question 3.7. Show that a connected graph with V vertices and V' — { edges is a
tree. (Hint: Use the result of Question 3.6.)

We now have most of the mathematical machinery necessary to construct an
algorithm to pick the pairs of buildings that ought to be joined directly by coaxial
cables in the LAN system. In our model of the campus buildings we wanted enough
cables to be installed so that the graph that represents the cable connections is a
tree. Recall the two defining properties of trees: They are connected and acyclic.
We need the connectivity because that is just the property that mimics the “real
world requirement” that electrical signals can be sent between any pair of buildings.
If the cable graph had a cycle, then by Question 3.6, it would remain connected
if some cable in the cycle were removed. Consequently, in secking a minimum cost
connected graph we are inexorably led to a tree (provided that no edge has a
negative cost, i.e., no one is willing to pay us to install an extra cable connection).
We need just a few more detinitions to be able to finish the task.

Definitions. Suppose that V(G} and E(G) denote the vertex and edge sets of a
graph G. If H is a graph with the properties that

(h V(H) = V(G),

(2) E(H) € E(G), and

{3) every edge of E(H) has both its incident vertices in V(H),

then H is called a subgraph of G. If V(H) = V(G), then H is called a spanning sub-
graph of G. If in addition H is a tree, then H is called a spanning tree of G.

!
f
H is not a subgraph. If V(H)={1,2,3.4.3} and E(H) = {(1,2),(2,3).(3,4
(1,5)}, then H is a spanning subgraph. If V(H)= |1,2,3.4,5} and E(

~

{2,3),(3,4),(4,5)}, then H is a spanning tree.

256

5:3 TREES AND THE LAN

)

4 3
Figure 5.18

)

Question 3.8. Find a spanning tree of the graph in Figure 5.19.

LA

Figure 5.19

Does every graph have a spanning tree and how can we find a spanning tree
in a graph with one? In Exercise 13 you are asked to prove that a graph contains
a spanning tree if and only if it is connected. If a graph is disconnected, it con-
tains a spanning tree for each connected component; such a collection of trees is
called a spanning forest. In Exercise 19 we present an algorithm SPTREE that
produces a spanning tree of a connected graph. The algorithm SPTREE actually
does more than promised and produces a spanning forest of a disconnected graph.

We return to the LAN problem. We improve our graph theory model to
incorporate the costs of installing the cables. :

Weighty Definitions. Let R denote the set of positive real numbers. A graph G
together with a function w:E(G) — R™ is called a weighted (or an edge-weighted)
graph. If ¢ is in E(G), then w(e) will be the weight of e. If F = E(G), then w(F), the
weight of F, is defined to be the sum of the weights of the edges in F.

Typically, the numbers assigned to the edges will represent costs, capacities,
lengths, or some parameter of real-world interest.

Example 3.6. Given the weighted graph G shown in Figure 5.20, the graph H is
a (weighted) spanning tree of G whose total weight is 37.

o 0
5

Figure 5.20

257

5 GRAPH THEORY

Question 3.9. Given the weighted graph shown in Figure 5.21, find all the span-
ning trees of this graph and the weight of each.

3 L 4
| SL/
8

Figure 5.21

Our LAN problem can now be formalized as follows. Given the weighted
graph G with vertices representing the buildings, edges representing the possible
direct cable connections, and edge weights representing the installation costs of
the corresponding cables: find H, a minimum weight spanning tree of the graph
G. It is important to distinguish the edges of G that represent the possible direct-
cable connections from those of H that represent the actual direct-cable connec-
tions. We shall examine two different algorithmic solutions to this question. First
we state the problem succinctly.

Problem. Given a weighted graph G, find a spanning tree H with minimum total
weight.

The idea of our initial, naive algorithm is that every subset of V' — 1 edges

of a graph that forms a connected or an acyclic subgraph gives a spanning tree
by Theorem 3.2 and Question 3.6.

Algorithm BADMINTREE

Step 1. Input the weighted graph G

Step 2. Use algorithm JSET from Chapter 3 to find all subsets of the edges
of G that contain exactly V' — 1 edges

Step 3. If a (V — 1)-subset of E(G) forms a tree, compute its weight

Step 4. If there are no trees in step 3, output the fact that there is no spanning

tree; otherwise, select and output a spanning tree of minimum weight;
then stop.

Question 3.10. Run the algorithm BADMINTREE on the weighted graph in
Figure 5.22.

258

5:3 TREES AND THE LAN

3
Figure 5.22
The name of this algorithm gives away the quality of its performance. We

E
know that JSET performs at least < > steps to find all j-subsets of a set with E
J

elements; here it’s the set of E edges whose (V' — 1)-subsets we list. Each edge rep-
resents the potential installation of a cable. Since, in general, we cannot eliminate
any of these possibilities, by Theorem 2.3, E = V(V — 1)/2. Thus the number of

steps is at least
vy —1)/2 .
-1 /) *)

Question 3.11. Evaluate (*) for V = 3,4,5,6,7.

This binomial coefficient evidently grows rapidly. Exercise 23 asks you to find
lower bounds. In the next section we shall find a much more efficient way to solve
the LAN Problem.

EXERCISES FOR SECTION 3

1. Find all trees with six vertices. Find a graph with six vertices and five edges
that is not a tree. Can you find such a graph that is also acyclic?

2. For what values of n is C,, bipartite?

3. Show that trees are bipartite.

4. How many different 5-cycles are there in the following graph? Before answer-
ing, specify what it means for two 5-cycles to be different.

a b

h ¢

5 GRAPH THEORY

5.

260

Give an example of a graph G and a subgraph H of G that is not a spanning
subgraph. Give an example of a spanning subgraph of G that is not a spanning
tree.

The average degree of a graph is the sum of the degrees of all the vertices of
the graph divided by the number of vertices. Show that the average degree
of a forest is less than 2.

Which of the following pairs of trees are isomorphic?

N
30

(C) O~ % oW O

Find the longest path and the longest cycle that is a subgraph of the following
graphs and give their lengths. Then find the largest value of j and k such that
P; and C, are subgraphs of the given graph.

ALA AN

(a)

Let x and y be two vertices in the r-clique, K,. Explain why there are paths
oflength 1.2,. .., and (r — 1) joining x and y. For each r > 3, describe a graph
other than a clique that contains r vertices, some pair of which are joined by
paths of all possible lengths.

10.

11.

12.

13.

14.

5:3 TREES AND THE LAN

Identify the components in the following graphs.
(a) G

(b) H where V(H)={1,...,10} and E(H) = {(1.2), (3,4),(5.6), (7.8), (9,10},
(3,3), (5,8, (1,9), (4, 10), (6,9)}

If G is a connected graph and x, y, and = are vertices, is it always true that
d(x, y) + d(y.z) > d(x, z)? Give a proof or counterexample.

Given the weighted graph shown here, find all of the spanning trees of this
graph and the weight of each.

10 11

(a) Prove that a graph is connected if and only if it has a spanning tree.
(b) Prove that every graph contains a spanning forest that consists of a
spanning tree of each component.

Determine whether the following are true or false. Prove each true statement

and give a counterexample for each false statement.

(a) A graph with E > V is connected.

(b) A graph with E > V contains a cycle.

(¢) A graph with E < V — 2 is not connected.

(d) A graph with E <V — 2 is acyclic.

{¢) A graph with two components has at most V' — 2 edges.

(f) A graph with £ = V' — 2 has at least two components.

(g9) A graph with E =V — 2 has exactly two components.

(h) I G is a connected graph containing a cycle, then the removal of any
edge of the graph leaves the graph connected.

261

5 GRAPH THEORY

15.

16.

17.

18.

19.

262

(i) Every spanning subgraph H of a connected graph G has |E(H)| =
|V(H)| — L.

(j) A graph with E = IV + 1 contains at least two cycles.

(k) A graph with E = V + 1 contains exactly two cycles.

Are two -rees with the same sequence of degrees necessarily isomorphic?
Give a proof or a counterexampie.

Find a spanning forest of the following graph.

o

o

A subgraph H of a graph G is called an induced subgraph if whenever x and
y in V(H) are joined by an edge ¢ in G, then e is also in H. Determine which
of the following subgraphs of G are induced:

V(G) = {1,2,3,4,5,6} E(G) = {(1,2), (1,4),(1,5),(2,3),(2,5),(2,6),
(3,6), (4,5), (5.6}

(a) V(H)={1,2,3} E(H) = {(1,2),(2,3)}
(b) V(H)=1{1.2.4,5} E(H)=1{(12),(1,4),12,5), (4.5}
() VIH)={1,3,4,6} E(H)={(1,4),(3,6)}

Suppose that G is a connected graph and T is a spanning tree of G. When
is it the case that T is an induced subgraph of G?

Here is an algorithm that finds (if possible) a spanning tree of the input
graph.

Algorithm SPTREE

Step 1. Input the graph G with V vertices and edge list e, ¢,,..
SteEP 2. Forj=1to E do
STEP 3. Add edge ¢; to the spanning tree T if it creates no cycle
with the edges already in T

- .

5:4 A GOOD MINIMUM-WEIGHT SPANNING TREE ALGORITHM

Step 4. If T contains V — 1 edges, then output T as the desired spanning
tree and stop; otherwise, declare that G contains no spanning tree and
stop.

Run the algorithm SPTREE on the following graph.

€3
20. Prove that SPTREE stores a spanning tree in T if and only if G is connected.

21. Prove that SPTREE stores a spanning forest in T in all cases. Modify
SPTREE so that it always outputs T and determines the number of connected
components of G. (Hint: See Question 3.5.)

22. Show that in a tree, every pair of vertices is joined by a unique path. Is the
converse true, that is, if G is a graph in which every pair of vertices is joined
by a unique path, then is G a tree? Give a proof or a counterexample.

23. Find N such that if ¥ > N, then the binomial coefficient given in (*) is greater
than 2". Show that, in any case, the binomial coefficient is greater than
V- 1\V"!

24. (An alternate solution to Question 3.5). Using induction on the number of
components, show that if F is a forest with V vertices, E edges, and C com-
ponent trees, then E =V — C.

25. (Another alternate solution to Question 3.5). Given a forest F with V vertices,
E edges, and C component trees labeled Ty,..., T, for i=1,...,C — 1,
add an edge from some vertex of T, to some vertex of T, ;. Use the resuiting
graph to prove that E = V — C.

5:4 A GOOD MINIMUM-WEIGHT SPANNING
TREE ALGORITHM

We now present an algorithm that is dramatically better than BADMINTREE.
It is universally known as Kruskal’s algorithm. Kruskal did write the first paper
developing this particular algorithm in 1956. However, there are earlier algorithms

263

5 GRAPH THEORY

that correctly and efficiently find minimum-weight spanning trees. The earliest
known such algorithm is due to Otakar Boruvka, who as an electrical engineer,
was working on the problem of the electrification of Southern Moravia about 60
years ago.

We are seeking a spanning tree of small weight. A lightweight spanning tree
contains lightweight edges. Thus we build our tree using the lightest possible edge
at each stage. It is plausible that such a strategy might produce a reasonably light
tree. It is surprising (as we discuss in the next section) that this strategy is guaran-
teed to produce a minimum-weight spanning tree. The following algorithm works
on the graph G assuming that its edge list is arranged so that the weights are
increasing [ic. forall I <i<j<E, wle) < wle))].

Algorithm KRUSK AL

Step 1. Input the weighted graph G {Assume that G has V vertices and E
edges and that the edge list of G is in increasing order, by weight.}

STEP Set j:= 1 {j will index the edges of G.}

Step 3. Set T to be empty { T will contain the edges of the minimum-weight
spanning tree.)

STEP 4. Set k:=0 {k records |E(T)|.}

STEP 5. Repeat

1

Begin
STEP 6. If T + ¢; is acyclic, then do {add ¢; to tree]
Begin
Step 7. T:=T + ¢;
SteP8. k:i=k + |
End {step 6}
STEP Y. j:=j+ 1
End |step 5}

Until either k=V —torj > E

Step 10. If k =V — | report success, output T, and stop. Otherwise, report
failure and stop.

COMMENT. We use “+." as in T + ¢;, to denote set theoretic union.

Theorem 4.1. If G is weighted graph, then KRUSKAL outputs a minimum-weight
spanning tree if and only if G is connected.

Example 4.1. We run KRUSKAL on G shown in Figure 5.23 to obtain the
minimum-weight spanning tree T.

Question 4.1. Run KRUSKAL on the weighted graphs shown in Figure 5.24.

5:4 A GOOD MINIMUM-WEIGHT SPANNING TREE ALGORITHM

G T
Figure 5.23

(a) (b)
Figure 5.24

Proof of Theorem 4.1. First let’s see that if KRUSKAL reports success, then the
graph in T is a tree. In step 7 the edge e; is added to the set T precisely when
T + e;is acyclic. Thus the subgraph formed by T must always be acyclic. If KRUS-
KAL returns success, then T has V — | edges. By Theorem 3.2 we know that an
acyclic graph with V' — 1 edges is necessarily a tree. Consequently, if KRUSKAL
returns success, then the edges stored in T are the edges of a tree.

Next let’s see that if KRUSKAL returns failure, then G does not contain a
spanning tree. For KRUSKAL to return failure, after examining all the edges of
the graph, the set T does not contain ¥ — | edges but still forms an acyclic sub-
graph. Thus T is a forest. By Question 3.5 if the number of edges in T is V - C,
then C equals the number of components of T. Since T contains fewer than V — 1
edges, T contains more than one component. Suppose that Q is a component of
T. If the whole graph G were connected, then there would be an edge in G,
say e, that joins a vertex of Q with a vertex of another component of T. When
KRUSKAL examined the edge e. it would have found that T + ¢ was acyclic and
thus T would have contained e. Since e did not make it into T, G must not have
been connected. Thus KRUSKAL reports a failure when G is disconnected.

A more difficult thing to verify is that the tree returned by KRUSKAL is a
minimum-weight spanning tree. We begin with a lemma.

" Lemma 4.2, Suppose that T, and T, are two different spanning trees of a con-
nected graph G and that ¢ 1s an edge of T, but not of T,. Then there is an edge
d of T, but not of T'; such that T, + ¢ — d is a spanning tree of G.

5 GRAPH THEORY

Proof. Suppose that T, T,, and ¢ are as given in the lemma. Consider the sub-
graph whose edges are T, + ¢. Since T', is a spanning tree, T, + ¢ is a connected,
spanning subgraph of G with V edges. Thus T, + ¢ must contain a cycle C (using
the contrapositive of Theorem 3.1). C is not contained in Ty, since T, is acyclic.
Thus there is an edge d of C that is in T, but not in T,. Consider Ty + ¢ — d, a
subgraph with (V' — 1) edges. Since d is an edge in a cycle of T, + ¢, its removal
does not disconnect the subgraph by Question 3.6. Thus T, + ¢ —d is a con-
nected subgraph with (V' — 1) edges. By Question 3.7 it is a spanning tree of G.
0

Question 4.2. In the graph G with spanning trees T, and T, given in Figure
5.25, find an edge ¢ and the corresponding edge d whose existence is guaranteed
by Lemma 4.2.

Figure 5.25

To finish the proof that if KRUSKAL reports success, then the spanning tree
in T is of minimum weight, we assume that the edge weights of G are all distinct.
(You can complete the general proof in Supplementary Exercise 31.) The proof
will be by contradiction. We negate the conclusion we are seeking to prove and as-
sume that T is not a minimum-weight spanning tree. Thus there exists a minimum-
weight spanning tree, say F, with w(F) < w(T). Since T # F, there exists an edge
in T that is not in F. Let ¢ denote the lightest-weight such edge. We apply Lemma
42 with Ty =T, T, = F, and ¢ = e. Thus there exists an edge, say f, such that [
isin F but notin T. By the lemma F' = F + ¢ — f is a spanning tree. If w(e) < w(f),
then w(F") < w(F), contradicting the assumption that F is a minimum-weight span-
ning tree. On the other hand. suppose that w{ /) < wie). Since ¢ was the lightest-
weight edge in T, but not in F, all the edges selected by KRUSKAL before ¢ are
also in F. Thus f would have been added to T instead of e, another contradiction.
We conclude that T is 4 minimum-weight spanning tree. L

There are two steps within KRUSKAL that should provoke comment. The
first is the requirement that the edges of G be input in increasing order. There is
a straightforward way to do this. Specifically, we could examine the edge list of

5:4 A GOOD MINIMUM-WEIGHT SPANNING TREE ALGORITHM

G to find an edge with the smallest weight and list it first. We could then find a
second smallest edge and list it second, and so on. We shall see in the next chapter
that this procedure would perform O(E?) comparisons to list the E edges of G in
increasing order. This method is analogous to the algorithm MAX, presented in
Exercise 2.4.12. We shall aiso see that there are more efficient ways to do this
sorting.

The second difficulty with KRUSKAL as presented above occurs in step 6.
Specifically, how should we decide, given an acyclic set of edges T and an edge
e;, whether T + ¢; is acyclic? In small examples we can obviously “eyeball” the
set of edges for cycles. One way to check for cycles in larger and more general
examples is to keep track of the connected components of T at each stage of its
creation. If ¢; joins the two vertices x and y, then the addition of ¢; creates a cycle
if and only if x and y are in the same component of T.

Example 4.1 (continued). [Initially, T is empty, and we consider every vertex to
be a separate component of T. First we added the edges of weights 2 and 3 because
not only are they the lightest-weight edges, but also they join vertices in different
components of T. Now T has a component consisting of these two edges and
three vertices as well as three additional components, each consisting of an isolated
vertex. The next edge of weight 4 is rejected because it joins two vertices in a
component, whereas the edge of weight 5 joins two vertices in different components
and is accepted in T.

It is not hard to estimate the complexity of KRUSKAL. The principal opera-
tions 1n this and most graph theory algorithms are comparisons. In KRUSKAL
we first compare edge weights so that the edges are rearranged in increasing order.
As mentioned previously, ordering the edges might take O(E?) comparisons. The
loop at step 5 is repeated no more than E times. Testing T + ¢; for cycles requires
that we keep track of the components of T at each stage, so with one comparison
we can tell whether ¢; joins two vertices in the same component. However when
¢; does not form a cycle and is added to T, we need to update the components
of T because the addition of ¢; causes two components to be joined into one. This
updating can be done with at most ¥ comparisons. (For more details, see Exercises
11 to 13.) Thus there are O(V) comparisons done within the loop beginning at
step 5 and no more than O(E V) comparisons after the ordering of the edges. Thus
the total number of comparisons and assignments is O(E%) + O(E V).

A careful analysis of a more efficient implementation could achieve the result
that the algorithm including an efficient sorting routine in step 1 is O(Elog(E)).
Notice that this bound and the previous one can also be expressed in terms of
(only) V, since by Corollary 2.3, E < V(V — 1)/2 = O(V?).

Question 4.3. Express O(E?) + O(E V) and O(Elog(E)) as O(f(V)), where [is a
function of V but not of E.

5 GRAPH THEORY

A formal analysis of any graph algorithm must consider how to input the
graph G as a string of zeros and ones. One convenient method uses what is cailed
the adjacency matrix of a graph. A matrix is a rectangular array of entries, usually
numbers; an r x s matrix consists of r - s entries arranged in » rows and s columns.
There are exactly s entries in every row and exactly r entries in every column.

Example 4.2. Here is a 2 x 3 matrix:

1 2 3
4 5 6]
Suppose that G is a graph with V vertices that are labeled [,. .., V. We define
A(G), the adjacency matrix of G, to be the V' x V matrix that has a one in the ith

row and jth column if the vertex labeled i is adjacent to the vertex labeled j. All
other entries of A(G) equal zero.

Example 4.3. Here is a graph given first by its edge list and then by its adjacency
matrix:

Edge List Adjacency Matrix
L2} fo 11t 1 1]
i1, 3} t 01 0 0 0
11,44 1 1.0 0 0 0
11,5} 1 00 0 0 0
(1,6 L 00000
12,3} (1 00 0 0 0]

{al

Figure 5.26

Question 4.5. Draw the graphs whose adjacency matrices are as follows.

268

5:4 A GOOD MINIMUM-WEIGHT SPANNING TREE ALGORITHM

@0 | 0 1 0 1 00 0
1 01 0 1 01 00
01 0 1 01010
1 010 00 1 0 1

000 1 0

This form of representing a graph has advantages and disadvantages. Notice
that it gives us a way to input a graph into an algorithm as a string of V* zeros
and ones obtained by laying out the matrix, row by row, as one long string.

Example 44. Here is the string of ¥? = 36 zeros and ones that represents the
graph of Example 4.3.

0111111010001 10000100000100000100000

Thus the number of bits needed to input the adjacency matrix of a graph with V
vertices is given by B = V2,

Question 4.6. Suppose that f(n) counts the number of comparisons made in the
worst case of a graph algorithm and suppose that f(n) = 0(n*) for some positive
integer k. If B = n?, find a big oh bound on the number of comparisons made in
terms of B.

The result of Question 4.6 indicates that if we determine the compiexity of a
graph theory algorithm to be bounded by a polynomial in ¥, then it is also bounded
by a polynomial in B and hence is a good algorithm. The converse is also true,
that if an algorithm requires an exponential number of steps in terms of V, then
it also requires a nonpolynomial number in terms of B and is a bad algorithm.

(See Supplementary Exercise 30.) In particular, KRUSKAL is a good algorithm
and BADMINTREE is not.

EXERCISES FOR SECTION 4

1. Run KRUSKAL on the following weighted graphs.

[

{a (b) (c)

- 5 GRAPH THEORY

10.

270

Suppose that G is the weighted graph with ¥ = 7 and E = 10 whose edges
are (in lexicographic order) (1,2), (1,5), (1,6), (2,3), (2,6), (2,7), (3,4}, (4.5),
(5.6)and (6,7). The weights are given by {,1,2,2,1,2,3,2, 1, and 3, respectively.
Run KRUSKAL on this graph. Find all minimum-weight spanning trees of
this graph.

Is the following variation on Lemma 4.2 true or false? Suppose that H, and
H, are two different spanning subgraphs of G that are themselves connected
graphs. Suppose that ¢ is an edge of H, but not of H,. Then there exists an

edge [of H, but not H, such that H, + ¢ — f is a connected spanning sub-
graph of G. Explain.

Find adjacency matrices for the graphs in Exercises 1 and 2. You will have to
label the vertices of the graphs from [to V.

Suppose that a graph G has adjacency matrix

01 0 1 1
t 01 0!
01 010
1 01 01
1 1 010

Without drawing G determine the number of edges of G and the degree of
each vertex. Describe, in general, how to obtain the degrees of the vertices
from the adjacency matrix.

Suppose that G is a weighted graph with V' vertices. Find a way to describe
G including the weights as a V x V matrix.

Which of the following is the adjacency matrix of a graph? Explain.

(@0 1 0 0 1 B0 111 /0 L 010
101 0 0 1 o1 1 1 1 0ot 01
0 0 0 ! 0 L 0 1 1 0O 1L 0 1 0
0 0 1 0 1 | S G S V| 1 01 1 0
10 0 1 0 1 vt 1 1t 0 01 000

Find an example of a weighted graph G whose edge weights include negative

numbers and with the property that a minimum-weight connected spanning
subgraph is not a tree.

Suppose that in Exercise 2 we require that edges ¢ and e, be included in a
spanning tree. but otherwise the spanning tree should be as light-weight as

possible. Describe informaily how to select the other edges of the spanning
tree.

Describe an algorithm that, upon input of a weighted graph G and a dJesig-

nated subset S of E(G), finds a minimum-weight subgraph of G that is a con-
nected and spanning subgraph that contains all the edges of S.

5:4 A GOOD MINIMUM-WEIGHT SPANNING TREE ALGORITHM

11. Here are more details on how to test algorithmically for cycles in KRUSKAL.
[nitially, in step 4.5, we define the component number of vertex i, denoted

cn(i), to be equal to itself, i.

Step 4.5. Fori=1to Vdo
en(i) =i

Then in the new step 6, to test an edge ¢; = (x;, y;) we compare cn{x;) and
cn(y;). The edge e; forms a cycle if and only if these component numbers are
equal. If they are not equal, we add ¢; to T and reset the component numbers
of the new component. This is accomplished by the Procedure Renumber.

STEP 6. {Suppose ¢; = (x;,y)).}
If cn(x;) # cn(y)), then do
Begin
Step 7. T:=T + ¢
Step 8. k:i=k+ 1
Step 8.5. Call Procedure Renumber (x;, y;)
End {step 6}

Here 1s the procedure:
Procedure Renumber (a, b)

Step 1. Set bigcn 1= max({cn(a), cn(b)),
set smallen 1= min{cn(a), cn(b))
Step 2. Fori=1to Vdo
Step 3. If cn(i) = bigen, then
cnli) 1= smallcn
Step 4. Return

Run KRUSKAL with these additional steps and this procedure on the
example in Exercise 2. Keep track of the component numbers at each vertex.

Do you get the same spanning tree?

12. Run the extended version of KRUSKAL as given in Exercise 11 on the follow-

ing graph. Keep track of the component numbers at each vertex.

2 6 3
- o
5
7
-
3 ‘g

5 6

5

o

13. Explain why step 6 of the extended KRUSKAL now performs V + 3 = O(V)

comparisons and why step S performs O(E V) comparisons.

n

S

14.

GRAPH THEORY

Within a tree, the eccentricity of a vertex x is defined to be the number of
edges in a longest path that begins at x. (Or equivalently, it is the maximum
value of d(x,v) taken over all vertices v.) For each of the following trees find
the eccentricity of each vertex.

”’WLJTLTW

15.

16.

17.

18.

19.

21,

(a) b) (c)

The center of a tree is the set of vertices whose eccentricities are as smail as
possible. Find the center of each of the trees in Exercise 4.

Given a tree T with more than one edge, let p(T) denote the tree obtained
from T by erasing all of the leaves of T and their incident edges. For each
tree from Exercise 14 find p(T'). {Within a tree a vertex of degree one is called
a leaf. We could say that p(T) is obtained from T by pruning all of T’s
leaves.}

If you know the eccentricities of every vertex in a tree T, what can you say

(with proof) about the eccentricities of the vertices in p(T) [where p(T) is as
defined in Exercise 16]?

If T is a tree with more than one edge, show that the center of T equals the
center of p(T).

Prove that every tree has a center that consists of either one or two vertices.
Construct an algorithm that will, upon input of a tree T. find the center of T.

Let G be a weighted and connected graph. For x and y in V(G) we define the
distance from x to y, d(x,v), to be the length of the shortest path from x to
y, where by shortest path we mean that the sum of the edge weights along
that path is & minimum among all paths from x to y. Find d(x,y) for each
pair of distinct vertices in the graph in Exercise 2.

. Suppose that T is a minimum-weight spanning tree in G. a weighted and con-

nected graph. Then for x and y in V(G), there is a unique path in T from A
to y. We define the tree distance, dT(x, y), to be the sum of the edge weights
on that path. Find examples where d T(x, y) = d(x, y), where d(x, y) is as defined
in Exercise 21. Then find examples where dT{x, y) = d(x. y).

5:5 AN ODE TO GREED

The problem of finding o minimum-weight spanning tree of a graph is typical of
a large number of problems in discrete mathematics. In a more general context
there is a set of objects with positive numbers aussigned to them. The subsets of

272

5:5 AN ODE TO GREED

these objects are partitioned into desirable subsets and undesirable subsets. We
assume that if S is a desirable subset and T is a subset of S, then T is desirable.
This property is known as the hereditary property. In the particular tree problem
of this chapter the objects are the weighted edges. The desirable subsets are those
that when considered as subgraphs are acyclic. The undesirable subsets are those
that contain cycles. The property of being acyclic is hereditary.

The problem is to find a maximal desirable subset of the objects whose total
value is a minimum (or in some cases a maximum). The word maximal means
that the subset cannot be extended to a larger desirable subset. So a maximal
desirable subset of a given set S is first of all a subset of S, second of all it is
desirable, and finally it is not properly contained in any desirable subset of S. In
the context of the tree problem, a maximal desirable subset of the edges of a graph
G is a subset of the edges that is acyclic and not contained in any larger acyclic
subgraph. If G is connected, a maximal desirabie subset is just a spanning tree. If
G is not connected, a maximal desirable subset is a spanning forest, composed of
spanning trees of each connected component.

Problem. Given a set of weighted objects E and a partition of the subsets of E
into desirable subsets and undesirable subsets such that the property of being
desirable is hereditary, find a minimum-weight maximal desirable subset of E.

. Algorithm GREEDYMIN

Step . Order the objects of E in order of increasing weight; assume E con-
tains m objects ¢,,. . . e,
Step 2. Set j:=1 {;j will index the objects.!
Step 3. Set T to be empty { T will contain the desirable subset being created.!
Step 4. Repeat
Begin
STeEP 5. If T + ¢; is desirable. set T:= T + ¢;
STEP 6. ji=j+ |
End
Until j > m
Step 7. Output T and stop.

This algorithm is called greedy because at cach stage it tries to do as well as
it can without regard to what wiil happen at future steps. Notice that if E is the
set of weighted edges in a graph and if desirability is defined as being acyclic. then
GREEDYMIN is identical with KRUSKAL. {Actually, KRUSKAL contains an

additional stopping criterion that was possible because we knew exactly how many
edges a tree has.|

Question 5.1. Construct GREEDYMAX, a greedy algorithm to find a maximum-
weight, maximal desirable subset of E. If £ is the set of weighted edges in a graph

273

5 GRAPH THEORY

and if desirability is defined as being acyclic, does GREEDYMAX produce a
maximum-weight spanning tree?

Example 5.1. Suppose that we greedily attempt to find not a minimum-weight
spanning tree but a minimum-weight spanning path. Specifically, we implement
GREEDYMIN with desirability defined as follows. S is said to be desirable if S
is contained in some path P, _, within the graph G on V vertices. We show in
Figure 5.27 a weighted graph G whose greedily chosen path is heavier than the
minimum-weight spanning path.

M N M

G GREEDY path Minimum-weight path
Figure 5.27

This example illustrates the important fact that being greedy does not always
produce a best answer, that is, greed does not always pay. In fact, researchers in
the field of combinatorial optimization are actively seeking an understanding of
just how bad an answer GREEDY will produce for specific applications.

Question 5.2. Suppose that G is a complete weighted graph on V vertices. Further
suppose that you wanted to find a minimum-weight cycle C, as a subgraph of G.
Formulate a greedy algorithm to “solve” this problem. Find an exampie where
your algorithm fails to produce the minimum-weight cycle.

This last question is not just whimsy. A variation of this is known as the
Traveling Salesrepresentative Problem. Suppose that the vertices of G represent a
collection of cities and the weight on each edge represents the cost of flying between
the two cities. Then an economy-minded salesrepresentative might wish to visit all
the cities in a cyclic tour but wants a tour of minimum cost. In fact, no good
algorithm is known to solve this problem, or the graph theoretical version in
Question 5.2. [t is also not known that the problem requires an exponential algo-
rithm. In fact, the problem is computationally equivalent to the Satistiability
Problem introduced in Section 1.10. This area is an active and important one in
computer science, operations research, and combinatorics. In Chapter 8 we shall
use KRUSKAL to give an approximate solution to this problem.

274

5:5 AN ODE TO GREED

EXERCISES FOR SECTION 5

1. Here is a new algorithm:

Step 1. Input the weighted graph G with edges ey, e,,...,ep with wie,) >
wiey) = = wleg) >0

Step 2. Forj=1to Edo
STep 3. If G — ¢; is connected, set G:= G —¢;

Step 4. Output G and stop.

Run this algorithm on the graphs of Exercises 4.1 and 4.2.

2. Describe, in general, for any weighted graph G, the output of the algorithm in
Exercise 1. Is this a greedy algorithm?

3. A graph is said to be unicyclic if it contains exactly one cycle. Suppose that,
given a weighted graph G, we wanted to find a minimum-weight, connected,
unicyclic subgraph of G. Does greed pay?

4. Suppose you attempt to find a minimum-weight path using a greedy algorithm
with the following criterion of desirability: S is said to be desirable if its edges
form a path. Is this GREEDYMIN different from the GREEDYMIN in
Example 5.1? If not prove that the two are the same. If they are different, deter-
mine whether this GREEDYMIN produces a minimum-weight path.

5. Recall that a property P is called hereditary if whenever S has property P
and T is a subset of S, then T has property P. Decide which of the following
properties are hereditary:

(a) P is the property that the subset is nonempty.

(b) P is the property that the subset cortains an even number of elements.

(¢) Pis the property that the subset S satisfies |S| = | n/2|, where the universe
has n elements.

(d) P is the property that S is such that |S| < n/2, where the universe has n
elements. ‘

(¢) P is the property that S does not contain a fixed element x.

(f) P is the property that S contains a fixed element x.

{9) P is the property that S contains at most one of the two elements x
and y.

6. Call a subgraph of G desirable if by itself it is a connected graph. In this in-

stance is desirability hereditary? Describe the maximal desirable subgraphs
of G.

7. We list some properties that a graph G might have. In each instance if H is
a subgraph of G, does H necessarily have the specified property? (That is, is
the property hereditary?)

(a) The maximum degree of a vertex in (5 is less than 7.
(b) G is bipartite.

275

5 GRAPH THEORY

(¢) G is a forest.
{d) G contains a cycle.
(¢) G is a complete graph.

8. A graph G is said to be triangle-free if G does not contain a 3-clique as a
subgraph. Show that being triangle-free is hereditary.

9. Some subgraphs of a graph are induced subgraphs (see Exercise 3.17 for the
definition.) Is this a hereditary property?

10. Suppose that you wanted to find a maximum-weight, triangle-free subgraph.
Does greed pay?

11. Let G be a graph with V(G) = {4,B,C,D, E, F, H}. Suppose that G is complete
and its edges (in lexicographic order) have weights 1, 4, 14,4, 15,21,2,3,2, 3.3,
1,3.5,2,2,2,5,2, 17, 1. Find a minimum-weight spanning cycle C- that begins
and ends at A. What is the cycle that the greedy algorithm produces?

12. Call a subset of E(G) desirable if it is contained in a spanning cycle of G. Show
that with this definition of desirable GREEDY will not produce a minimum-
weight spanning cycle.

5:6 GRAPHICAL HIGHLIGHTS

Graph theory is a rapidly expanding mathematical discipline. [t is important in its
own right, as the mathematical basis of many applications, and as a fertile ground
for logical and,algorithmic thinking. Like the number theory of the previous chap-
ter, graph theory is accessible and concrete. Pictures of graphs make small exam-
ples workable; computer programs make large examples tractable. Examples lead
to conjectures and ideas forproofs and counterexamples. In fact, this is the effective
learning process for both students and research mathematicians.

It may seem as if this chapter contains an overwhelming number of dehmtlom
Each is there for a reason relevant to our work. Most definitions are needed im-
mediately to understand Kruskal’s algorithm. Others are needed for wide-ranging
applications that mathematics and computer science students will meet. A tree may
be thought of as the basic underlying structure on which the rest of a connected
graph hangs. Trees also arise as a structure used for information storage. These
so-called data structures, when formed as a tree, allow for quick retrieval of stored
information. For example, most computer operating systems allow for directories,
subdirectories, and so on, that are organized by the vertices of a tree.

Our modeling of the Local Area Network with graphs is a true-to-life depiction
of how the problems of linking computers and terminals are now being attacked.
In fact, computer scientists and clectrical engineers regularly look to graphs and
their properties to aid them in network design. Telephone companies use graphs,
for exampile. to design systems of switching stations. Their goals are to have short
distances between vertices while still having cach vertex of small degree. Kruskal's

276

SUPPLEMENTARY EXERCISES FOR CHAPTER 5

algorithm and other minimum-weight spanning tree algorithms are used in a whole
spectrum of applications dealing with transportation systems, commodity flows,
and efficient robot manufacturing, as well as the cable connection problem we've
seen here. The tree minimizing problem of this chapter provides an introduction
to the area of combinatorial optimization. In this field it is now well understood
when greedy algorithms work. On the other hand, the search for effective methods
to find a minimum-weight spanning cycle in a weighted graph is one of the central
problems of mathematics and computer science. Of seemingly intermediate dithi-
culty, the graph isomorphism problem has so far resisted satisfactory solution, vet
workers in the fieid expect this problem to be soived in the near future.

In Chapter 8 we consider more graph theory, both abstract and applied to
optimization problems. We also present some approximation algorithms, that is,
algorithms that work efficiently but only produce a near-optimal answer.

SUPPLEMENTARY EXERCISES FOR CHAPTER 5

1. Given a graph G, define G°, the complement of G, to be the graph that has

V(GY) = V(G) and E(G) = {(x.) (x,y) ¢ E(G)}. Find the complement of each
of the following graphs.

(a) (b) (c) (d) te)

2. IfGisisomorphic to H, is G isomorphic to H*? Give a proof or counterexample.

3. Ifdy,d,,....dy are the degrees of G, a graph on V vertices, what are the
degrees of G%?

4. What is the largest clique contained in the complement of Q3?7 Q47 (For a
definition of Q, see Exercise 2.19.)

5. We define the diameter of a graph to be the maximum value of d(x. y) among

all pairs of vertices x and y. Show that if G has diameter 4 or more, then G°
has diameter 2 or less.

6. Suppose that G is a graph with V vertices and E edges and with vertices labeled
1,2,...,V}. Then we can list the edges in lexicographic order, as defined in
Section 3.3: If each edge ¢; is given as a pair of vertices (x;, y;), then the cdges
are numbered and listed in the order ¢ ,¢,,. .., ¢ subject to the restrictions
that for all i and j with | < i, j < E,

(1) X; < Vi
(2) i <j implies that x; < x;; and
(3) i <jand x; = x; implies that y; < v;.

5 GRAPH THEORY

(a) Explain why the edge list ¢; =(1,2), e, =(1.3) and ¢y =(3,4) is in
lexicographic order, but the list f; = (1,2), f, = (2,4), and f; = (2,3) is not
in lexicographic order. \

(b) The following edge list is not in lexicographic order. Rearrange it so that
conditions (1), (2), and (3) are met:

7. Here is an algorithm to solve the so-called Labeled Graph Isomorphism
Problem.

Algorithm LABGPHISO

Step 1. Input G and H with edges in lexicographic order; let ¢; denote the
ith edge of G and f; the ith edge of H {Assume |V(G)| = |V(H)| = V:
the vertices are labeled with 1,2,...,V, and |E(G)| = |[E(H)| = E.}
Step 2. Forj=1to E do {j indexes the cdges}
STep 3. If ¢; # f; {as ordered pairs{, then output “no” and stop.
Step 4. Output “yes” and stop.

(@) Run LABGPHISO on the labeled graphs G and H in the following figure.
(Make sure your edge lists are in lexicographic order.)

. 1 2 1 2
3 4 4 3
G H
1 2 1 2
3 4 3 4
G H

(b) Explain why the number of comparisons made in LABGPHISO is at
most 2E = O(E).

278

10.

11.

12.

13.

14.

18.

16.
17.

SUPPLEMENTARY EXERCISES FOR CHAPTER 5

Here is an idea for solving the more difficult problem of determining graph
isomorphism for uniabeled graphs: Fix a labeling of the vertices of G with
1,2,...,V. Then run through all permutations of labeis of H, and for each
permutation run the algorithm LABGPHISO. Design an algorithm GPHISO
that uses these ideas. (You may use the algorithms PERM from Chapter 3
and LABGPHISO within your algorithm, without repeating it in its entirety.)
Is your algorithm good or bad?

Here is an idea to try to speed up the algorithm GPHISO. As seen in Example
2.2 vertices with the same labels must have the same degrees. Thus, for exam-
ple, if S is the set of all vertices of degree 3 of G and T all vertices of degree
3 of H, then we need to check only |T|! permutations of the labels of T. (The
same is true for each degree of vertices in G and H.) Use this idea to redesign
GPHISO and then analyze whether this speeds up the algorithm in some or
all cases.

Suppose that we are given a graph G with V(G) = {x,,...,x,} and edge list
E(G) = {(xy,X;),...}. Suppose that we want to decide if G is bipartite. Be-
gin by placing x, in R. Next place each of x’s neighbors in B, and so on.
Construct a precise algorithm BIPARTITE. How many comparisons does
BIPARTITE make?

What is the maximum number of edges a graph on ¥ vertices can have and
still not be connected?

For each of the following sequences, either draw a tree whose vertices have
these degrees or show that such a tree cannot exist.
(@) <4 LLL.

(b)y <6,22,1, 1,1, 1,1

(¢) ¢5.2,2,1,1,1,1 1>

(d) <4.3,2,L1, 111>,

(e) ¢3,2,2,2,2,2,2.2. 1>

(f) ¢3.3.3.LLLIL L.

Give an algorithm that will, given a sequence of positive integers d,,....dy

with dy + -+ dy = 2V — 2, construct a tree whose vertices have the given
sequence as its sequence of degrees.

Show that in any gathering of people, some pair of people have the same
number of acquaintances. (Hint: Assume that if 4 knows B, then B knows A.

Think of the graph that could represent acquaintances and try a proof by
contradiction.)

Prove that if d equals the maximum degree of a vertex in a tree T, then T
contains at least d vertices of degree 1.

Find all graphs G such that both G and G° are trees.

Let G be a connected graph with edge weights any real numbers. For vertices
u and v of G, prove that there is a shortest path between u and v if and only

279

5 GRAPH THEORY

18.

19.

20.

if no path from u to v contains a cycle, the sum of whose edge weights is
negative.

Here is the idea of Boriivka's original minimum-weight spanning tree
algorithm.

Step 1. Input G, a connected weighted graph with n vertices
Step 2. Set T equal to the n vertices of G
STEP 3. Repeat

SteEP 4. For each component C of T do

STEP 5. Select a minimum-weight edge joining a vertex of
C with a vertex of G — Cand add itto T

Until T is a spanning tree of G

SteP 6. Qutput T and stop.

Prove that this algorithm produces a minimum-weight spanning tree of
G. Compare this algorithm with KRUSKAL. Find examples where it pro-
duces the same and where it produces different minimum-weight spanning
trees. What is its complexity?

Here is another version of a minimum-weight spanning tree algorithm due
to Prim.

Step 1. Input G, a weighted connected graph with n vertices
Step 2. Set T = {v}, where v is a vertex of G
Step 3. Fori=lton—1do
STep 4. Select a minimum-weight edge ¢ joining a vertex x notin T'
withavertexin T;set T=T+ ¢ + x
Step 4. Output T and stop.

Prove that this algorithm produces a minimum-weight spanning tree of
G. Compare the algorithm with KRUSKAL und with Bortivka’s algorithm
of Exercise 18. What is the complexity of this algorithm?

A subset I of the vertex set of a graph G is said to be independent if no two
vertices in [are joined by an edge in G. The independence number of a graph
G, denoted by 2(G), is defined to be the maximum number of vertices in an
independent set in G. Find «(G) for each of the {ollowing graphs:

§ & I

280

21.

22

SUPPLEMENTARY EXERCISES FOR CHAPTER 5
(e)

Show that if F is a forest, then «(F) > V/2. Find an example of a forest with
V=10and z = 5.

Here is an algorithm to find an independent set.

(d)

Algorithm IND

Step 1. Input G; set I to be empty

Step 2. While G is nonempty do
Begin .
Step 3. Find a vertex x with deg(x, G) minimum
Step 4. Set[:=1+ {x}
STEP 5. Set G:= G — {x} — {y: (x, v} € E(G)}
End {step 2|

Step 6. Output [and stop.

Run IND on each of the following graphs.

vl 1T

23.

24,
25.

26.

27.

(al (b) (c)

Prove that Algorithm IND works, that is, it finds an independent set :n a
graph G.

Find an example where IND does not find 2 maximum independent set.

Show that if the input to Algorithm IND is a forest, then the output [will
be a maximum independent set.

Let A be the V' x V adjacency matrix of a graph. What information does the
matrix 4%, the product of A with itseif, contain about the graph?

Let A be the adjacency matrix of a graph G and let i and j be in V(G). Then
prove that the least integer k such that A* contains a positive entry in the
{i,))th position equals d(i,), the distance between i and j.

5 GRAPH THEORY

28.

29.

30.

31

32

33.

34,

282

Suppose that G is a regular graph (i.e., for some fixed constant r, every vertex
has degree r). Then the degree of each vertex is the average of the degrees of
all adjacent vertices. Prove the converse: Suppose that for every vertex v of
a connected graph G

deglx,) + - - + deg(x,)

deg(v) = des (o)

]

where the xy,...,x, are all of the vertices adjacent to v. Then prove that G
is regular.

Suppose that f is a function with domain V(G) and target the real numbers
for some connected graph G, and that f satisfies the following property: For
every vertex v of V(G)

flx) + 0+ £y

fw) = deg o) .

where the sum is taken over all vertices x adjacent to v. Then prove that f
is a constant function, that is, f(v) = ¢ for some constant ¢ for all v in V(G).
Is the result true if G is not connected?

Stippose that the number of comparisons made in a graph algorithm 4 is
given by g(V') and that y(V) > ¥ for some positive constant r. [f B = V2, then
show that ' is a lower bound on the number of comparisons made in the
algorithm A. Prove that the function h(B) = #8'"? is not O(p(B)) for any poly-
nomial p and that A(B) = O(s®)for s > 1. What can you conclude about whether
or not 4 is a good algorithm in terms of the input size B?

(a) Specify where the proof of Theorem 4.1 fails if the edge weights are not
all distinct.

(b) Prove Theorem 4.1 in the case that edge weights are not all distinct. (Hints:
Assume that the edges of any tree produced by KRUSKAL are numbered
in the order in which they were selected. Further suppose that F is a
minimum-weight spanning tree that has the greatest initial agreement

with T. Then complete the proof along the lines of the proof of Theo-
rem 4.1.)

Suppose that G is a graph and ~ the corresponding relation on V{(G) (as
defined in Section 2). For what graphs G is ~ symmetric? Transitive?

The transitive closure of a graph G is defined to be the graph G’ with V(G') =
V(G), E(G) = E(G"), and additional edges of E(G') given by: Whenever (a, h)
and (b, c) € E(G), then (a, ¢) € E(G"). Explain why the corresponding relation ~
defined on V(G) is a transitive relation.

Characterize all graphs G such that there is an equivalence relation ~ on a
set S whose corresponding graph is G.

SEARCHING AND SORTING

6:1 INTRODUCTION RECORD KEEPING

A college’s financia aid office has just created the job of Director of Student
Employment. The responsibilities of this position include the organization of stu-
dent employment information. Until now this information has been kept in the
following fashion. Each student employee has been assigned a record card on
which is written payroll information, including the student’s social security num-
ber. These record cards are organized in a file drawer arranged in alphabetical
order of the students' last names. Each time the treasurer’s office issues a payroll
check the director receives a memo containing the payee's social security number,
the total amount of the check, and the amount withheld for various taxes. Of
course, she wishes that these memos also contained the payee's name; however,
the particular computer program that the treasurer’s office uses to cut checks
doesn’'t have that capability. When a payroll memo arrives, the director examines
each record card in turn to determine if the social security number on the card is
identical to the number on the memo.

Question 1.1. Suppose that there were 20 cards in the director’s file drawer.
(a) When a payroll memo arrives, what is the minimum number of cards that the
director might have to check? (b) What is the maximum number of cards that the
director might have to check? (c) About how many cards (on average) would you
expect the director to have to check?

Question 1.2. Suppose that each of the 20 students whose cards are in the file

drawer receives exactly one payroll check each week. (a) What is the total number
of social security nhumber comparisons that the director will have to make to

283

6 SEARCHING AND SORTING

record all of the payroll transactions? (b) If it takes 2 seconds to make a com-
parison and Iminute torecord alltheinformation onafile card, will the director
spend more time making comparisons or recording information?

Now let’s answer the previous questions if there are n record cards in the
director’s drawer. The minimum possible number of comparisons occurs when the
payee happens to be the individual whose card isfirst in the file, the one whose
name is alphabetical] y first. In this instance there is just one comparison to make.
The largest number of comparisons occurs when the payee is the individual whose
card islast in the file. In this case there would be n comparisons to make. R is
plausible to think that the average number of comparisons should be the average
of the smallest number and the largest number. Here that number would be
(n + 1)/2. In fact, this is correct as we see by the following explicit computation.

If every individua in the fileis paid exactly once, we can count the total num-
ber of comparisons in the following manner. First, note that the payee who is
listed first alphabetically will require just one comparison to locate. We don’t
know which memo corresponds to this first payee, but whichever oneit is, it will
still take just one comparison. Similarly, the payee who is listed second al phabet-
ically will take exactly two comparisons to locate. In general, the payee who is
listed kth alphabetically will take exactly k comparisons to locate (regardless of
when this memo is processed). Thus the total number of comparisons will be

1+2+3+---+k+-~+n=n(r21;1).

Since the total number of comparisons needed is nin + 1)/2, the average number
of comparisons needed will be this total divided by the number of payees. This
yields (n + 1)/2 comparisons on average. The tota time needed for comparisons
will be n(n + 1) seconds while the time required to record the payroll information
will be 60n seconds. Thusif n= 60, more time will be spent finding the correct
file than writing information to it.

Let's formalize the director’ s task.

Problem. Given an array A= (al, a,,. . ..a,> and an object S, determine S's posi-
tionin A, that is, find an index i such that a = S (if such an i exists).

Algorithm SEQSEARCH

Step 1. Input Aand S.
Step2. For i = 1ton do

Step 3. If a; = S, then output i and stop.
Ster4. Output “Snot in A” and stop.

2%4

6:1 INTRODUCTION RECORD KEEPING

If we count the comparisons in step 3, then the worst case will occur either
if Sisnotin A orif S=a,. In thisinstance SEQSEARCH requires n comparisons.
Thus the complexity of this algorithm is O(n). Note that in our particular example
with social security numbers, S and the elements in the array 4 are numbers;
however, all that is required for this algorithm to work is that we can determine
whether a; = §. Thus SEQSEARCH would work equally well when the entries of
Aare words.

The director decides that record keeping would be more efficient if the record
cards were kept in order of their socia security numbers. The director begins the
sorting process by finding the card with the smallest socia security number. She
does this by comparing the number on the first card with the number on the
second. She keeps the smaller of the two and then compares it with the number
on the third card. She picks the smaller and now has the smallest number from
the first three cards.

Question 1.3. In a drawer of 20 record cards, how many comparisons would be
required to be certain of finding the card with the smallest social security number?

We formalize the problem and the response.

Problem. Given an array of numbers 4 = (al, a;,- . . . an), sort these numbers
into increasing order, that is, arrange the numbers within the array so that a1 <
a, £a3 <" -<a,

Algorithm SELECTSORT

Step 1. Input A, an array of n numbers

Ster 2. Fori=1ton—1 do {Find the correct ith number.]
Begin
Ster 3. Set TN:=g; { TN = temporary number}
STEP4. Forj=i+ ltondo

Step 5. If a;< TN, switch gand TN

STEP 6. Set a;:= TN
End { Step 2}

Step 7. Output 4 and stop.

Example 1.1. Table 6.1 gives atrace of SELECTSORT applied to the array 4 =
(4, 7,3). Notice that all the action occurs at step 5.

Since the smallest remaining element is repeatedly selected, this method is

called Selection sort. See Exercises 11 to 13 for a comparison with the sorting
algorithm known as Bubblesort.

285

6 SEARCHING AND SORTING

Table 6.1

Step No. i J a, a, as TN
3 ! ? 4 7 3 4
5 l 2 4 7 3 4
5 l 3 4 7 4 3
6 1 3 3 7 4 3
3 2 3 3 7 4 7
5 2 3 3 7 7 4
6 2 3 3 4 7 4

Question 1.4. Apply SELECTSORT to the array 4 = (6,4,2, 3). Exhibit the
values assigned to i, j, TN, and each location in 4 after every execution of step 5.

Theorem 1.1. SELECTSORT is a O(n%) algorithm.

Proof. We count the comparisons, which only occur in step 5. When i is assigned
thevalue 1, j variesfrom 2 to n. Thusthere aren — 1 different values assigned to
j and n—1 comparisons when i = 1. When i is assigned the value 2, j varies from
3to n. Thusthere are n —2 comparisons. For generd i, j variesfromi + 1ton.
In this case there are (n— (i + 1) + 1) = n—i comparisons. Hence the total number
of comparisons equals

(n—1)+(n—2)+---+(n—i)+~-~+1="(";1)=0(n2). 1

A bit analysis of SELECTSORT would begin by noting that each of the n
numbers in the input array could be represented by M bits. Thus the total input
size would be nM. Every comparison of two M bit numbers would require, in the
worst case, M bit comparisons. Thus the total number of bit comparisons would
be Mn(n — 1)/2. If M is constant, then SELECTSORT is quadratic in the bit
analysis also.

Notice that SELECTSORT could work equally well on arrays of words using
alphabetical ordering. In a subsequent section we shall see that SELECTSORT
can operate on sets with more general orderings. We'll also find that there are
more efficient algorithms to perform sorting as well as searching however, for
small arrays SEQSEARCH and SELECTSORT are worth using, in part because
they are so simple.

Here is the terminology we shall use throughout the rest of the chapter. Each
unit of information to be sorted is called a record. The set of recordsis called a
file. The element in the record with which the sorting is done is called the key.

286

6:1 INTRODUCTION RECORD KEEPING

Thus in the employment director’s office, her drawer contains the file. Each card
in the file is arecord and the key is the social security number on the card. To
keep numerical examples simple, we shall often consider a record that consists
only of the key, but in applications the record will contain more information.
Consequently, interchanging two records in a file will be a more time-consuming
process than that of switching two numbers. If the records are stored in computer
memory and accessed by a language that admits the use of pointers, then the
pointers will be changed rather than the records.

EXERCISES FOR SECTION 1

1. Apply SEQSEARCH to the following arrays and objects S; record the output
of the algorithm.
@ A4=<1,23,...,175, 5 =15
)4 =(1,23,.. ,17), S = 125
(c) A = <apple, banana, cantaloupe, kiwi, mango, papaya), S = strawberry.
d)A=<a b,c,...,z),S=h
(e) 4=<a,b,c,...,2>,8S= &.
(f)A =<1a293’ a’b’ C, #,$, 0/09 >aS = $

(Note: In Exercises 2 to 7 we assume that, asin Questions 1.1 to 1.3, the record
cards are listed aphabetically and the payroll memos come identified by social
security number.)

2. Suppose that there are 40 student employees who each receive 2 checks per
month. How many comparisons does the director make in a month using
SEQSEARCH? If it takes 2 seconds to make a comparison and 1 minute to
record the payroll information, which requires more time, comparing or re-
cording information?

3. Suppose that there are 20 student employees and exactly 10 receive a check
in any given week. What is the minimum and maximum number of compari-
sons that the director might make in aweek?

4. Suppose that there are n student employees who each receive k checks per
month. How many comparisons will the director make in one month?

5. Suppose that there are 2n student employees and that exactly n of these
students receive a check in a given week. What is the minimum and maximum
number of comparisons that might be performed? What can be said about
the average number of comparisons that will be made?

6. Suppose that there are n student employees who each receive one check per
week. If it takes 3 seconds to make a comparison and 30 seconds to record the

287

6 SEARCHING AND SORTING

salary information, for what values of n is more time spent on comparisons
than on recording?

7. Suppose that there are n student employees who each receive one check per
week. If it takes x seconds to make a comparison and y seconds to record
information, then for what values of x and y do comparing and recording
take the same amount of time? For what values of x and y does comparing
take more time than recording?

8. Apply SELECTSORT to the arrays (1,2, 3), <3,2,1), and (3, 1,2, 1). Trace
out the values assigned to i,j, TN, and every location in A after each execution
of step 5.

9. Write an algorithm that, given an array of numbers, (a) selects the largest
number and places it in the last position, (b) selects the next largest number
and places it in the next to last position, and (c), in general, finds the largest
remaining number and places it in the last unfilled position. Analyze the com-
plexity of your algorithm.

10. Write an algorithm that finds the largest and the smallest entry in A =

{ay,a,,...,an), an array of real numbers. Count the number of comparisons
made in the worst case.

11. Look back at the algorithm BUBBLES, Exercise 2.4.13. Recall that this algo-
rithm found the largest entry in an array of n elements and placed it in the
last location. BUBBLES can be readily transformed into a procedure that can
be repeatedly called to sort the entire array. Here is an algorithm that does
just this.

Algorithm BUBBLESORT

Step 1. Input m, a positive integer, and the array X = (Xl,. . ., x,,>
SteEP 2. For n = mdown to 2 do

Srep3. Call BUBBLES (n, xl,. ... X))
step 4. Output {x;, X,,. ... X, and stop.

Apply BUBBLESORT to the following arrays, exhibiting the values of
the array, n and j (the index in BUBBLES) throughout.
@ ‘4=(4,7,3).
() B= (2, 1,4,36, 5).
©C = (432 1.

12. Count the number of comparisons made by BUBBLESORT. Compare the
number of comparisons made in BUBBLESORT and SELECTSORT. Is one
algorithm more efficient than the other?

13. How might you modify BUBBLESORT to recognize when the array X was
aready in order?

288

6:1 INTRODUCTION: RECORD KEEPING

14. One way a record can contain more than the key, is using a 2-dimensional

array A = <a; ;i=1,...,m,j=1,.. . n). This can be pictured as a matrix
with mrows and n columns:

a1 @20 Mg ag,
A1 @y o v G250 Ggy
a; 1 a; a;,; Ain
Qm,1 am,2 amJ Am,n

Each row might represent the record of one student, and different columns
contain different types of information. Suppose that the key for each record
is stored in the first column so that the key for ith record is the entry a, , for
i=12,. ..m Usetheideaof SELECTSORT to design an algorithm to sort
the array A4 so that the rows of A are rearranged to have their first entries
(the keys) listed in increasing order a;,;<42,1<."'<a, ;. How many com-
parisons does the algorithm use? In the worst case how many assignment
statements are there? Y our answers will depend on » and m.

15. Write an algorithm that finds the second smallest entry in an array 4 =

16.

@@, a,,. .. .a,» of real numbers. Count the number of comparisons made.

Here is the idea for an algorithm to find the kth smallest entry in an array
A of n numbers: Find the smallest entry of 4, then find the second smallest
entry, and so on, until the kth smallest entry is found. Write an agorithm
that implements this idea and count the number of comparisons; your answer
will bein terms of » and k.

17. Here is another algorithmic solution to the problem of finding the kth smallest

18.

19.

entry in an array A4 (see Exercise 16) First order the array using SELECT-
SORT and then find the kth entry of the sorted array. Compare the number
of comparisons made by this algorithm with that of Exercise 16, which is
more efficient?

Suppose that you have a balance scale with which you can determine which
(if either) of apair of given coinsis lighter in weight. Given n supposedly
identical coins, but such that one weighs less than the others, give a technique
suggested by SELECTSORT to find the light coin. How many comparisons
will your technique require in the worst case?

Suppose that you have 16 supposedly identical coins, exactly one of which
weighs less. Using a balance scale, each pan of which can hold as many coins
as you like, how can you find the light coin with only 4 weighings?

289

6 SEARCHING AND SORTING

6:2 SEARCHING A SORTED FILE

We return to the employment director’s problem of transcribing payroll informa-
tion. We assume that there are n employees whose record cards are filed now in
the order of increasing social security number. When a memo arrives from the
payroll office, the director searches for the record whose social security number
is the same as the one on the memo. Suppose she selects the mth record from
the file, or drawer, and compares the two social security numbers. If the two
numbers are equal, then the director writes the information on the selected record.
If the number on the memo is less than the number on the mth record, then the
correct record must be located in the front portion of the file. Otherwise, the
correct record must be located behind the mth record.

Of course, the director hopes to pick the correct record on the first try. How-
ever, she does not believe in her own good luck. Furthermore (with a touch of
pessimism), the director believes that when she picks a record to compare with the
payroll memo, the record she really wants will be in the larger part of the re-
maining records. Thus the director wants to choose a record in the mth position
so that there are about as many records in front of the mth record as there are
behind the mth record. If the drawer has n records, the director picks the record
roughly in the middle, the record in the mth position, where m= [(n + 1)/2]. The
director has, of course, assumed a worst-case scenario.

Question 2.1. Find m=[(n + 1)/2] if n = 136, 68, 34, 17, 9, 5, and 3.

Question 2.2. If the drawer contains n records and the mth record is selected,
where m=|(n + 1)/2], when is it the case that there are exactly the same number
of records before and after the mth record? When these two numbers differ, by
how much do they differ? After examining this mth record, what is the largest
number of records that still must be searched?

Let's assume for the moment that the director has selected mand the number
on the memo is less than the number on the mth record. Then she begins the
search all over again, confining her attention to that portion of thefilethat isin
front of the mth record. In pseudocode she sets n: = m— 1 and then chooses m
to be (as before) |(n + 1)/2]. On the other hand, if the number on the memo is
greater than the number on the mth record, then the correct record must be in
position j, where (m+ 1) < j < n. As above she begins the search all over again,
concentrating on the records in positions m+ 1,. ... n. The next record to select
is the one that, as nearly as possible, divides the remaining records into equal
piles.

Question 2.3. For the following pairs (i,j) find the number that will be the index

of the entry that, as nearly as possible, divides <a;,.. . .a;> into two equal pieces:
(6, 8), (20, 17), (18, 33), (35,67), and (69, 136).

290

6:2 SEARCHING A SORTED FILE

In general, as the director progresses, she narrows down the possible records
that might correspond with the memo to a subarray (a, %+ 1,. ... a;> of the
original array A. She wants to select the “middle” record of this subarray. The
index of the “middle” record is essentially the average of the indices of the end
records. We say essentially because the average might not be an integer. How-
ever, a record that, as nearly as possible, divides the subarray into two equal
pieces has index m= [(i + j)/2}. With this insight we can now formulate the
director’s agorithm.

Problem. Given an array A= {ay, a,,. . . . a,» whose elements are numbers listed
in increasing order and a number S, determine S's position in A, that is, find an
index i (if it exists) such that a;,= S.

Algorithm BINAR YSEARCH

STEP 1. Input A, an array of n numbersin increasing order, and a number S
STEP2. Set first:= 1, last:= n
Step 3. Whilefirst < last do
Begin
Step 4. Set mid:= |[(first + last)/2]
STEP 5. If S = apie, then output “found S at location mid and
stop.
STEP 6. If S < dnmia> then set last : = mid — 1,
Else set first : = mid + 1
End { Step 3}
Step7. Output “Sisnotin A* and stop.

Note that in step 6 exactly one of two assignment statements is executed, de-
pending on the result of the comparison in that step.

Example 2.1. Table 6.2 is atrace of BINARY SEARCH, where A= (3,4,6,7,9,11)
and S = 9. We begin after the first encounter with step 4.

Table 6.2

Step No. Sfirst last mid Amia
4 l 6 3 6
5 l 6 3 6
6 4 6 3 6
4 4 6 5 9
5 4 6 5 9

Question 2.4. Trace BINARY SEARCH if A consists of the first eight primesin
increasing order and (&) S=5, (b) S= 10, and (c) S = 17. In each case how many
elements in the array do you examine?

291

6 SEARCHING AND SORTING

BINARY SEARCH can find S without examining all the entries in A4 because
the elements of 4 are numbers listed in increasing order. Actualy, this algorithm
will work on any set that is totally ordered. See Exercises 4.6.12 to 4.6.14. Since
A is totally ordered, either S < anq O a,;4 <S. Consequently, the value of
(last-first) decreases with each loop and so BINARY SEARCH must terminate.
Furthermore, the transitive property alows the algorithm to check S against a,,;4
and discard about half of the ordered list at each pass through the loop. Exer-
cise 6 asks you to modify BINARY SEARCH so that it works on the set of all
English words in alphabetical order.

Theorem 2.1. BINARY SEARCH requires at most 3 |log (n)] + 4 comparisons to
search an ordered array of n numbers.

Proof. First note that each of steps 3, 5, and 6 requires exactly one comparison.
Thus each time we execute the loop beginning at step 3, we use no more than
three comparisons. The proof will be by induction on the number of elementsin
the array. We begin with the base case n = 1. Given the array A = <a), the
algorithm uses two comparisons if S = al. If S # al, then the algorithm cycles
through the loop once and executes step 3 one additional time. Thus a total of
four comparisons is needed in this case.

The inductive hypothesis will be that BINARY SEARCH can search any
ordered array oft elements with at most 3|log ()| + 4 comparisons for any ¢ < n.
We suppose that Ais an ordered array with n elements. If we find equality the
first time at step 5, we are done, using 2 comparisons. Otherwise, we return to
step 3with asmaller array, having performed three comparisons. The new array
contains no more than half of the elements of the original array. (See Question 2.2.)
By the inductive hypothesis it takes at most 3[log (n/2)] + 4 comparisons to search
the new array. Thus the total number of comparisons needed to search the origina
array is at most

3 +(3 |log (n/2)| +4)= 7 + 3|log (n) — 1]
=4 -t 3llog (n)]. O
Question 2.5. For each of n = 2, 3, and 4 find two examples of arrays and a num-

ber S, one that requires a full 3{log(n)| + 4 comparisons and one that requires
fewer.

Question 2.6. Suppose that the director’ s file has 1000 recordsin it. In the worst
case, how many comparisons will it take to find a record with a particular social
security number on it if (a) SEQSEARCH is used and (b) BINARY SEARCH is
used?

How did we originally find the bound 3}log (n)] + 4 of Theorem 2.1? This ex-
pression works in the inductive proof, but why? Suppose that B(n) denotes the

292

6:2 SEARCHING A SORTED FILE

maximum number of comparisons made by BINARY SEARCH on an array of n
elements. Then in the worst case we perform three comparisons (in steps 3, 5, and
6) and then face a smaller array with |#/2] elements in which to search for S. B(|#/2])
denotes the maximum number of comparisons needed to search this smaller array
and so

B(n) = 3+ B(|n/2)) and B(l) = 4. *)

This fact doesn’t solve the problem immediately but can lead to a solution as out-
lined in Exercises 13 to 15. In Chapter 7 we pursue a systematic study of how,
given an equation like that of line (*), we can find an expression for the number
of comparisons (or other significant operations) performed in the worst case of an
algorithm.

From Theorem 2.1 we can get an estimate of the amount of work the director
must do each week. If each week one memo arrives for each of the » student em-
ployees, then the next result gives an upper bound on the number of comparisons
necessary.

Corollary 2.2. BINARY SEARCH requires at most
3njlog (n)] + 4n = O(n log(n))
comparisons to search an ordered array for each of the n fileslocated in it.

This result is an immediate consequence of Theorem 2.1; however,
3n[log (n)| + 4nisreally an overestimate. A tighter upper bound on the number
of comparisons, but one that is still O(n log(n)), is derived in Exercises 9 to 11. In
any case the worst-case behavior of BINARY SEARCH is significantly better than
that of SEQSEARCH. Indeed the worst-case performance of BINARY SEARCH
is better than the average-case performance of SEQSEARCH. The average-case
performance of BINARY SEARCH is analyzed in Exercise 12. In its defense it
should be emphasized that SEQSEARCH will work on any setinan array A re-
gardless of whether or not the elements of 4 form atotally ordered set.

In the next section we use the ideas of binary search to construct a more
efficient sorting algorithm.

EXERCISES FOR SECTION 2

1 Let4=<1,2...7), B = (246, ..16),and C=<1,3,7, 15,31,63). Trace
BINARYSEARCH to find (@) S=3inA4,(b)S=8in 4,(c) S=6in B,
(d)S=7inB,(e)S=31inC,and (f) S=14in C.

2. Suppose that the number on the director’'s memo is less than that on the
[(n+1)/2|nd record. What is the index of the next record she consults? Express

293

6 SEARCHING AND SORTING

this as afunction of ». If the number is greater than that on the{(n +1)/2|nd
record, what is the index of the next record she consults?

3. Find all values of n for which SEQSEARCH uses fewer comparisons in the
worst case than BINARYSEARCH.

4. Find avalue of N such that SEQSEARCH uses at |east twice as many com-
parisons in the worst case as BINARY SEARCH. Show that for every n > N
SEQSEARCH will always use at |east twice as many comparisons in the worst
case as BINARY SEARCH.

5. In the worst case, how many subintervals of the form Cfiests - . . . Apasey dOES
BINARY SEARCH examine in an array with n entries?

6. Supposethat 4 is an array containing n words, where each word is a (finite)
sequence of letters taken from the English alphabet. Suppose further that your
computer can answer the following questions:

given wordsw and w’, doesw =w’?
does w precede w' aphabetically?

Write a version of BINARY SEARCH that upon input of 4, an array of words
listed in aphabetical order, and a word w, searches for w in A.

7. Suppose that we are searching an ordered array of n elements for an element
that is in position k (but we don’t know that). For what values of k will
SEQSEARCH use fewer comparisons than BINARY SEARCH?

8. Modify BINARY SEARCH so that, given an array A4 with entries in increasing
order (a; <..-<an) and anumber S, it finds al indices i such that a; =S.

9. Let n=2— 1. Suppose that payroll memos for n students come into the
financial aid office in random order and that records for these n students
are arranged by increasing socia security number. For each memo BINARY -
SEARCH is used to locate the appropriate record. At some point, the memo
for the [(n +1)/2]nd student arrives and requires only two comparisons to
find the correct record. Memos for two other students will require exactly five
comparisons.

(a) Which numbered students are these?

(b) How many memos require exactly eight comparisons to locate their
records?

(c) What is the next smallest number of comparisons needed and how many
students need this many?

(d) For each possible value of i, determine the number of memos that re-
quire exactly i comparisons.

10. Prove that

12425448+ + 2710 1)+ + 2713k = 1) = Gk — 42" + 4.

294

6:3 SORTING A FILE

11. Suppose that n = 2~ 1. Then explain why using BINARY SEARCH to search
an ordered array for each of n records requires

(3k—4)2" + 4 = 3n|log(n)]—n + 3{log(n)|+3
=0O(n log(n))

comparisons. Is this bound on the number of comparisons better than that
given in Corollary 2.2?

12. Use the results of the preceding exercises to obtain the average number of
comparisons used per record in BINARY SEARCH in the case n = 2~ 1.
Compare this average with that of SEQSEARCH.

13. Suppose that

B(n) = B({n/2)) + 3 forn> 1, (*)
and
B(1) =4.

Determine the value of B(n) for n=2, 3,4, 5, 8, and 16.

14. Suppose that n = 2. Use (*) repeatedly to determine a formula for B(n). Prove
your formula correct by using induction and the equation in (*).

15. Verify that f(n) = 3[log (n)] + 4 gives the same values as those obtained for
B(n) in Exercise 14. Then prove by induction that B(n) = f(n) satisfies the
equation in (*).

6:3 SORTING A FILE

We have seen that searching for one record in an unsorted file with n recordsin
it requires O(n) comparisons in the worst case. This contrasts with a worst case of
O(log (n)) comparisons in searching a sorted file. A natural question to ask is
whether or not it's better to sort before searching or not. For the moment let's
return to the problem of searching the file for each of the n records during every
payroll period. If there are ¢t payroll periods and the file remains unsorted, the
total number of comparisons required will be O(tn?). On the other hand, if the
director uses SELECTSORT to place the file in order, then the total number of
comparisons will be

0(n? + O(tn log (n)). (A)
If, for example, there were n payroll periods (so ¢ = n), then the number of
comparisons would be O(n?) without sorting and O(n’log(n)) with sorting. Thus,

if the number of payroll periods is large, sorting before searching pays off. Sup-
pose, for contrast, that the number of payroll periods is a small constant. Is it

295

6 SEARCHING AND SORTI NG

better to sort before searching or not? If the only sorting algorithm available were
SELECTSORT, then both solutions be O(n?). However, if there were a better
sorting algorithm, then one could expect sorting before searching to be faster.

SEQSEARCH requires, on average (n + 1)/2 comparisons to position a record
correctly within afile containing »n records. To sort more economically, we need
away to position a record correctly using fewer comparisons. BINARY SEARCH
provides just such a mechanism.

Problem. Given an ordered array of numbers A = (al, a,....a,) with al <
a, <---<a,and anumber D, insert D in the ordered list.

We develop the procedure BININSERT that will insert a number D into its
correct position in an ordered array. The parameters of the procedure are
(r.ay...,a,a,,,) Weassume that upon calling the procedure the r numbers
al, ...,a, areinorder and that a, , , equals D. Upon return al, a, +, should
be in order. Within the procedure we repeatedly compare D with the midpoint of
a subarray in order to find its correct location. Once D’s correct location is deter-
mined, the elements that should follow it are shifted over one space in order to
make room for D. We make this algorithm a procedure, since we shall use it within
BINARY SORT, which will be our first efficient sorting routine.

Procedure BININSERT {r, d,....a,,a,)

{Theinitial segment of the procedure finds the correct location for a,,,.]

Stepl. Setfirst: =1, last:=r
Step 2. While first < last do
Begin
Step 3. Set mid:= |(first + last)/2 |
STEP 4. |f g, + 1 < ap;g> then set last:= mid — 1,
Else set first : = mid + 1
End { Step 2}

{ At this point first equals last +1, and first gives the correct position for a,. ;.
The next segment creates a space for and inserts a, . ;.}

STEP 5. If first=r + 1, then Return. {q, , ,’s placeis correct.}
Ster6. Settemp: =a,,;{savea,,}
STEP 7. Forj=r + 1downto (first + 1) do
STEP 8. a:=a;
STEP 9. Set Gfirst & = temp
Step 10. Return.

Example 3.1. Table 6.3 is a trace of the procedure BININSERT given the
array A=(3,5,8, 10, 14),r = 5,and D = 11.

296

6:3 SORTING A FILE

Table 6.3
Step No. Sirst last mid Amid j A
3 1 5 3 8 (358,10, 14, 11)
4 4 5 3 8
3 4 5 4 10
4 5 5 4 10
3 5 5 5 14
4 5 4
8 5 6 (3,5,8,10,14, 14)
9 5 6 (3,58,10,11, 14)

Question 3.1. Trace BININSERT if 4 = (2,5,7,9, 13,15, 19> and D = (a) 1, (b) 4,
(c) 14, and (d) 23.

Notice the similarity between BINARY SEARCH and BININSERT. The test
for equality has been eliminated because if a, + 1 = 9mid> this procedure correctly
inserts a,+ ; in position mid + 1 or higher. Exercise 12 outlines a proof that
BININSERT works correctly.

Question 3.2. If.4 = <2,5,7,9,13,15, 19), trace BINARY SEARCH and BININ-
SERT with S = D = 16. Compare the two algorithms.

Before discussing the complexity of BININSERT, we use this procedure to
develop an algorithm to totally order an array.

Problem. Given an array of n numbers (al, a,.. . . . a,,>, place them in increasing
order.

Algorithm BINARYSORT

Step 1. Input nand an array (d,. . . ,a,)
Step 2. For m= 2 to n do {insert mth item}

Step 3. Call BININSERT ((m-1), al,....am)
STEP 4. stop.

Question 3.3. Given the array (13, 23,17,19,18, 28) trace out the algorithm
BINARY SORT.

Once we determine the complexity of the procedure BININSERT, the com-
plexity of algorithm BINARY SORT will be easy to analyze, since BININSERT
isused n — 1 timesin BINARY SORT. The steps in BININSERT are either as-
signments or comparisons. We count the latter.

297

6 SEARCHI NG AND SORTI NG

Theorem 3.1. BININSERT requires at most 2| log (r) | + 4 comparisons to insert
the (r + 1)st term into an already sorted list of r items.

Proof. The only steps containing comparisons are steps 2, 4, and 5, and each of
these executes exactly one comparison. We proceed by induction. If r = 1, then
after the first execution of step 4, either first = 1 and last = O or first = 2 and
last = 1, depending on whether a, islessthan a4, or not. Step 2 is repeated to check
this. Step 5 is required to rearrange the array. Thus four comparisons are used
in total.

The induction hypothesis will be that for < r BININSERT requires at most
2|log (r)] + 4 comparisons to insert the (¢ + 1)st item into any already sorted list
with ¢ items.

We suppose that 4 isan ordered array withr elementsanda, . , = Disto be
inserted. It takes two comparisons to execute through step 4 the first time. After
the first execution of step 4, if a, ., < amiq then last is assigned the value mid — 1.
Thus we restrict our attention to (al,....amid_ ,,4,,,). There are mid — 1
ordered valuesin this array. Now

. 1 +r r—1 r
mld—l—L 7 J—l—[5 J<—2—

After the first execution of step 4 if a,, ; > amia> then first is assigned the value
mid + 1. Thus we restrict our attention to (amid+ ,, ..., a,, 8+ ;. The number
of elementsin this smaller ordered array is (r — (mid + 1) + 1) =r —mid. Now if

r=12,
1
r—mid=r—| ;rJ
. 142 ... T

On the other hand, if r = 2j + 1,

rﬁmid:2j+1_tl+_21_+_l_J
2

. . A
=y+1-(+D=j<s.

Thus in either case the smaller ordered array has no more than r/2 entries. By
the inductive hypothesis we can insert D into the new array using at most
2|log(r/2)| + 4 comparisons. Thus the total number of comparisons required will

298

6:3 SORTING A FILE
be at most

2 + (2|log (r/2)] +4) = 2llog (r) —1] + 6°
=2|log(r)] + 4. O

Question 3.4. For each of the examples in Question 3.1 count the number of
comparisons and verify that these are each no more than 2[log (7)| + 4.

The formula2]log (n) | + 4 in the preceding complexity analysis appears out
of the blue. That BININSERT and BINARY SEARCH have similar complexity
analyses is not surprising. To motivate the particular formula we obtain, we
examine the proof of Theorem 3.1. If C(n) denotes the maximum number of com-
parisons made when BININSERT inserts a number into a sorted array of length
n, then

o(n) = C(n/2)) + 2,

since two comparisons are performed, and then the algorithm proceeds to work
on an array containing at most | #/2] entries. This equation for C(n) is like that of
line (*) of Section 6.2 and can be used to derive the formula C(n) = 2[log (n)] + 4.
This derivation will be discussed in depth in Chapter 7.

Theorem 3.2. The number of comparisons required by BINARY SORT to order
an array of n numbersis O(n log(n)).

Proof. The only comparisons in BINARYSORT are performed within the
BININSERT procedure. BININSERT is called n—1 times. The number of com-
parisons in each call is at most 2|log (n—1)} + 4. Thus the total number of
comparisons will be no more than

(n- D2|log(n — 1)] +4) < n {2(log (n)) + 4}
< 6nlog(n). 0

BINARY SORT is thus considerably more efficient than SELECTSORT, a0(n?)
algorithm.

Question 3.5. Count the number of comparisons made in Question 3.3 and com-
pare this number with (n —1)(2|log (n — 1)] + 4) for n = 6.

It isinstructive to contrast the analyses presented in Theorems 3.1 and 3.2.

We showed that BININSERT required at most 2} log (n)] + 4 comparisons to
insert the (n + 1)st item into an already sorted array. In Exercises 9 and 10 you

299

6 SEARCHI NG AND SORTI NG

will see that this bound is sharp. We mean that there are problem instances where
2|log (n)] + 4 comparisons are, in fact, required. Thus there can be no upper
bound for the number of comparisons that is always better than the one given in
Theorem 3.1.

Notice that our analysis of BINARY SORT was not so sharp. In particular,
we assumed that each call to BININSERT needed the full 2[log (n —1)] + 4 com-
parisons whereas we really need only 2[log (1)] + 4 comparisons for the first in-
sertion, 2| log (2)| + 4 comparisons for the second, and, in genera, 2 [log (i)] +.4
comparisons for theith insertion. Thus the total number of comparisons we per-
form is at most

2Uog()}j+4) + ---+ (2llog(n—1)] + 4)
<(log(l)+4) + -+ (2log(n — 1) +4)
=4(n —1) + 2{log(1) +- - -+ log(n — 1)}
= 4(n—1) + 2log((n — 1)). (B)

Exercise 13 asks you to use equation (B) to provide a smaller upper bound
than the one obtained so far for BINARY SORT. However, no analysis of the com-
plexity of BINARY SORT can demonstrate that it is more efficient than O(n log (n)).
The goal of Section 5 is to show that SELECTSORT, BINARY SORT, and every
sorting method that uses comparisons must perform at least a constant times
n log(n) comparisons in the worst case. Before we get to that, we shall see in the
next section that trees provide an illustrative model of these searching and sorting
agorithms.

What effect does BINARY SORT have on the employment director’s work
load, as presented in the first paragraph of this section? If she first sorts the
employment file using BINARY SORT, using O(r log(n)) comparisons, and then
during ¢ time periods processes information using BINARY SEARCH with
O(tn log(n)) comparisons, then the total number of comparisons is

O(n log(n)) + O(n log(n)) = O(tn log(n)). (c)

Comparing the results of (C) with those of (A), we see that the latter process is at
least as efficient as the former and for some values of t is more efficient.

EXERCISES FOR SECTION 3

1. Trace BININSERT on the following data:
(@ 4=(1,23), D= 2.5.
A= (123), D=0.
© A=<1,2,4), D = 2.
(d)y 4=(2,35,7, 11,13,17, 19), D = 12.
(e) 4 =(24,6,8, 10), D = 5.

300

6:3 SORTING A FILE

2. Count the number of comparisons made in each part of Exercise 1. Compare
this number with 2| log (r)] + 4 for the appropriate values of r.

3. Here is another algorithm to search for D in an array A:

Ster O. Input A=<ay,a,,...,a,5,eta,,:=D
Step 1. Set first :=1, last ;= r
Ster 2. Whilefirst < last do
Begin
Step 3. Set mid:= [(first + last)/2|
Ster 4. If a, ., | < ayiq> then set last : = mid
Else set first: = mid + 1
End
SteP 5. If a4, = 4,4 1, then output “found D at location first” and stop.
Else output “ D isnot in A* and stop.

Run this algorithm and BINARYSEARCH on 4 = <1,2,3,4,5,6,7) with
D=15,2 and 25.

4. Compare the algorithm BINARY SEARCH and that given in the preceding
exercise. Determine which one performs fewer comparisons.

5. Suppose that the employment director uses SEQSEARCH on an unsorted
file of nrecords to register n students’ payroll data during ¢ time periods,
making f(n,t) comparisons as described in the first paragraph of this section.
Let g(n, t) denote the number of comparisons made if the file is first sorted
using SELECTSORT and then the same recordings are made using BINA-
RYSEARCH [see line (A) in text]. Find the smallest value of ¢ such that
g(n,)< f(n, 1).

6. Let g(n, t) be as defined in the preceding problem and let A(n,t) be the number
of comparisons made if the file is first sorted using BINARY SORT and then
the memos are recorded for n students on n recordsin ¢ time periods using
BINARY SEARCH. Compare g(n,) and k(n, t).

7. Run BINARYSORT on each of the following (a) A= (1,2, 3), (b) A=
(2,1,3), (c) A= (3, 1,2), and (d) A= <32, 1).

8. Count the number of comparisons made in the preceding exercise and com-
pare this number with (n—1)(2{1log (n—1)] + 4) for the appropriate value
of n.

9. For an n of your choice find an example of an array A of n numbers and
a number D on which BININSERT performs exactly 2|log(n)| + 4 com-
parisons.

10. Let n= 2‘with k an arbitrary positive number. Describe an array A of n
numbers and another number D on which BININSERT performs exactly
2|log (n)| + 4 = 2k + 4 comparisons.

301

6 SEARCH NG AND SORTI NG

11. Explain why BINARY SORT will aways perform fewer than 6n log(n) com-
parisons when sorting an array of length n. Will BINARY SORT perform
fewer than (n —1)(2|log (n—1)| +4) comparisons on any or al arrays of
length n?

12. Prove that BININSERT works correctly by proving each of the following
statements.

(a) While first < last, a,,, should be stored in one of the entries gy

Ggiest+ 10 . .., OF Apag + 1. IN particular, check that thisis so when a, ;4 =

Amid-

(b) Eventually either last equals first or first+ 1.

(c) If last equals first or first+ 1, then BININSERT places g, ; in the
correct position.

13. Stirling's formula, discussed in Chapter 3, implies that

/ / ﬁ n
nl = o(ﬁ(z))
Use this result together with equation (B) to derive an upper bound on the
number of comparisons made in BINARY SORT. How does this upper bound

compare with the upper bound derived in the text?

14. Supposethat 4 isan array of n elementsthat is already sorted (but we may
not ‘know that in advance). Which algorithm works faster on A, SELECT--
SORT or BINARY SORT? Explain.

6:4 SEARCH TREES

Suppose that we search an ordered array A =<a,a,,....a,) for a particular
object S. BINARY SEARCH would have us first compare S with a,. There are
three possible outcomes of such a comparison. If S = a,, we'redone. If S<a,
and Sisin A, then it must be one of a,,a,, or a;. Finally, if S>a, and Sisin
A, then it must be one of as, ag, Or a,. In this section we show how to use atree
structure to illuminate these logical alternatives.

Recall from Chapter 5 that we can think of a graph as a set of pointsin the
plane and a set of line segments or arcs joining pairs of these points. A graph that
is both connected and acyclic is caled a tree.

Hereis how BINARY SEARCH as applied to the seven-element set A =<a,,
a,,...,a,) can be modeled by a path within atree of seven vertices. Begin with
asingle vertex labeled a,. Think of two edges coming out of a4, one labeled by
“K” and the other labeled by “ > .* (See Figure 6.1.) The < edge joins a, with a,
and the > edge joins a, with ag. In terms of BINARY SEARCH if S equals a,,
we stay at the vertex labeled a, and we are done. If S < a, we proceed along the

302

6:4 SEARCH TREES

Figure6.1

edge labeled < to the vertex labeled a,. If S > a, we proceed along the edge
labeled > to the vertex labeled aq. The vertices a, and a¢ each have two additional
edges coming out of them labeled with < and >. The new edge from a, labeled
< terminates at a ; while the new edge from a, labeled > terminates at a5. Simi-
larly, the new edges from ag terminate at as and a,. For example, if S = as,
BINARY SEARCH would examine a4, followed by ag and then’ as. If S is not
present in A, we should also perform comparisons, for example, with a,, a¢, and
a 5 and then deduce that Swas not in A. In all cases these comparisons correspond
to a path within the so-called search tree shown in Figure 6.1.

Question 4.1. Draw a search tree to illustrate a binary search of an array of 15
elements.

Recall that within a graph the degree of a vertex is the number of edges
incident with that vertex. In atree or forest a vertex of degree 1 is caled a leaf.

Definition. A treeiscaled binary if

(1) it possesses a distinguished vertex called the root whose degree is either 2
or O, and

(2) every vertex of the tree other than the root has degree either 3 or 1.

Note that the tree in Figure 6.1 is binary. It is customary to draw a binary tree
“upside down” with the root at the top, as in Figure 6.1. From the root (if its
degreeis not O) there is a left edge down and a right edge down. Similarly, every
other vertex that is not a leaf has a left and a right edge down. One of the nice prop-
erties that binary trees with three or more vertices have is that if the root and
its incident edges of a binary tree are erased, then two smaller binary trees are
formed. These are called the left and right subtrees of the origina tree.

Example 4.1. Figure 6.2 exhibits a binary tree with five vertices.

303

6 SEARCH NG AND SORTI NG

root

Figure 6.2

Question 4.2. (a) Draw all binary trees with fewer than eight vertices; (b) draw all
binary trees with two, three or four leaves.

Question 4.3. Draw the left and right subtrees that are formed when the root and
its two incident edges are deleted from (a) the tree in Figure 6.1; (b) the treein
Figure 6.2; and (c) every tree with two or three leaves (see Question 4.2).

Definition. In any tree with a designated root the depth or level of avertex x is
the number of edges in the unique path from x to the root. The depth of the tree
is the maximum depth of any vertex in the tree. Alternatively, it is the length of
alongest path from the root.

In the tree shown in Figure 6.1, a,, the root, is at level 0;a, and a¢ are at
level 1; and a4, a3, a5, and a, are all at level 2. Thus the tree has depth 2.

Question 4.4. If T is a binary tree of depth d >0 and T’ is the left subtree of T,
what can you say about the depth of T"?

Theorem 4.1. A binary tree has at most 2°vertices at depth d.

Proof. The proof is by induction on d. Theroot is the only vertex at level O. By
definition there are either two or zero vertices adjacent to the root, and these
vertices are at level 1. We assume that there are no more than 2“vertices at level k
in a binary tree. Consider level k + 1. Every vertex at this level must be adjacent
to exactly one vertex at level k by the definition of tree (see Exercise 1). Since each
vertex at level k has degree 1 or 3, it is adjacent to either zero or two vertices at
level k+ 1. Thus the number of vertices at level k+ 1 can be no more than twice
the number of vertices at level k. If N, denotes the number of vertices at level k,
we have

Np+1<2N, <2(2%) = 2FF1 O

304

6:4 SEARCH TREES

d+{

Corallary 4.2. A binary tree of depth d contains at most 2°* — 1 vertices.
Proof. A binary tree of depth d has vertices at levels 0,1.. ... d. By the preceding
theorem there are at most 2“vertices at level k. Thus the total number of vertices
in the treeis at most

1_2d+1 .
1+2+4 +...+2k+...+2d=ﬁ by Question 2.3.3

— 2d+1 _ 1 0
A binary tree of depth d with2¢*! — 1 verticesis called a full binary tree.

Question 4.5. Determine the depth and the number of vertices in the smallest
full binary tree that has» or more |eaves.

Now we specify the connection between binary trees and our problem of
searching a sorted array. Suppose that the array 4 contains n = 2‘— 1 elements
in order. Then the corresponding binary tree will be a full binary tree of depth
k— 1 with n vertices. In BINARY SEARCH the first element of the array A with
which we compare S is the element @mia- Note that mid = 2°°1. The element a4
will label the root of the binary tree that we are about to search. If we find that
S=a,,, (in step 5), then the algorithm stops. We can similarly stop searching the
tree. If S<ay;y, We set

mid>
last: = mid — 1 =2F"1 — 1

and

mid = L(ﬁrst -2i— last)J k2

This corresponds with traversing the edge from the root of the binary tree
down to the root of the left subtree; this vertex is labeled with the new @mia =
azx-2. Similarly, if S > amid, we traverse an edge to the right subtree. If we have
not found S, we repeat this process. Each time we examine a new amid it will be
the root of a subtree of the original binary tree. Each such subtree will contain
2/ — 1 vertices for some j. In the end either we find S and terminate our path
down from the root of the tree or we reach a leaf without finding S and stop. The
number of comparisons made in BINARY SEARCH is the same as the number
of vertices visited on the corresponding path in the tree.

More generally, if 4 contains n elements where

k71 << 2k

305

6 SEARCHING AND SORTING

then

k— 1 <log(n) < k,
and

k—1=|log(n)].
Set

nW=2k_1.

We model the search of A by a search of the full binary tree of depth k—1
containing N’ vertices, labeled as before. If n° > n, some of the labels of vertices,
namely a, 4,. . ., a,,, d0 NOt correspond with array elements.

Question 4.6. Compute n’ if n= 15, 26, and 31. Show that, in general, n’ > n.

Question 4.7. Draw and label the tree that corresponds with a binary search of a
23-element ordered array.

One advantage of the binary tree model of BINARY SEARCH isthat it sup-
ports a simple complexity analysis. Suppose that we are searching an ordered
array of n elements. If %< < 2’, then the elements of the array correspond
with some of the vertices of afull binary tree of depth d — 1. Comparing S with
array elements corresponds with visiting vertices in the tree. Since each time we
traverse an edge to the root of a new subtree, the depth of the visited vertex in-
creases, we shall in the worst case visit verticesat depth O, 1, and (d — 1).
Correspondingly, we need to compare S with no more than d elements of the array.
Since a search tree with n vertices has depth |log (n)|, we can determine whether S
ispresent in an ordered array of n elements by examining no more than |log (n)|
elements of the array. If it takes just a constant number of steps for each such
examination, then it is immediate that BINARY SEARCH is O(log (n)). In contrast
in Exercise 15 we explore how SEQSEARCH can be modeled by searching a graph
that isjust a path.

It is possible to think of a binary tree model of the first four steps of
BININSERT in much the same way. Recall that these steps determine the location
of the next element to be inserted. Continuing the model is awkward because the
insertion of asingle element can cause aradical changein the binary tree. Exer-
cise 13 illustrates this.

Although it is difficult to use trees to model BINARY SORT, there is an ele-
gant sorting method called TREESORT that is based on binary trees. Suppose
that we want to sort A =<al.. . . , a,>, where the entries of 4 are distinct. (See
Exercise 20 for the case of repeated elements.)

306

6:4 SEARCH TREES

7 13 4 20 16 9 M M
Figure 6.3

Algorithm TREESOR T

Step 1. Set k = [log (r)] and construct the full binary tree of depth k. {As
you saw in Question 4.5, this tree has at least n leaves.} Assign each
element in the array to aleaf. Pick a number M that is greater than
any element in the array and assign M to every blank leaf.

Example 4.2. Given A = (7, 13,41,20, 16,9), k = [log(6)] = 3. Figure 6.3 exhihits
the full binary tree of depth 3 with its leaves labeled.

STEP2. For j = k — 1 down toO do
Assign to each vertex at level j the minimum of the two values as-
signed to its neighbors at level j + 1.

Example 4.2 (continued). We show in Figure 6.4 the full binary tree after step 2.
(At this stage the minimum value in the array is assigned to the root of the binary
tree)

Ster3. Set b, : = vaue assigned to the root
ster4. Fori= 2 tondo
Begin
STEP 5. Erase every occurrence of b,_, from nodes of the tree.
Step 6. Assign M to the leaf that originally was labeled with b,-
Srep7. Forj=k-ldown toO do
Assign to the vertex at level j that used to be labeled b: _,
the minimum of the two values assigned to its neighbors at

level j+1
Ster 8. Set b: = value assigned to the root
End
STEP 9. stop.

Example 4.2 (continued again). We exhibit in Figure 6.5 the labeled tree after the
first execution of step 7; b, =7.

307

6 SEARCHING AND SORTING

7 13 41 20 16 9 M M
Figure 6.4

M 13 41 20 16 9 M M
Figure 6.5

After the execution of step 7 the ith smallest value in the array is assigned to
the root and thus in step 8 isassigned to b,

Question 4.8. Complete this execution of TREESORT.

Exercises 17 to 19 ask you to show that TREESORT is a O(x log (n)) agorithm.

Binary trees are useful models for many topics in combinatorics and computer
science, for example, see Exercises 5 and 6. We shall use binary trees again in the
following sections and in Chapter 8.

EXERCISES FOR SECTION 4

1. Inthe proof of Theorem 4.1 we claimed that every vertex at level k+ 1is
adjacent to exactly one vertex at level k. Why is this so?

2. If xisavertex in arooted tree, let I{x) denote the level of x. Show that if vis
adjacent to U, then I(v) = [(v') + 1 or i(v) = (') — 1. Give a proof or a counter-
example to the converse of this statement.

308

6:4 SEARCH TREES

. If T isabinary tree of depth d, what is the smallest number of vertices that T

might have at level k (for k= 1,. ... d)?

4. What is the smallest number of vertices that a binary tree of depth d might

5.

11.

12.

13.

14.

have?

For what integers n is there no binary tree with exactly n vertices? For what
integers n isthere no binary tree with exactly n leaves? Prove your answers
by induction.

. We can also represent the subsets of aset (a, U,,. . .. u.) with a full binary

tree. Suppose that we label the root of the tree with ¢, the empty set. Then
the left subtree will correspond with subsets not containing a, and the right
subtree subsets containing al. Similarly, the left subtree within the |eft subtree
will correspond with subsets containing neither a, nor a,, whereas its right
subtree will correspond with subsets containing a, but not «,. Each node can
be labeled with a subset, representing the choices of elements made along the
path from the root to that node. Using this idea, construct the binary tree
associated with all subsets of a 3-set and of a 4-set.

. In afull binary tree there are 2“vertices at level k. Find a correspondence

between the subsets of a k-set and the vertices at the kth level of afull binary
tree.

. Prove Theorem 4.1 by “erasing the root.”
. Prove Corollary 4.2 by “erasing the root.”
10.

Suppose that n= 2‘—1 and consider a full binary tree with vertices labeled
with the elements of an array 4 =<al, . ., a,) corresponding with BINARY -
SEARCH. Which elements label vertices at depth 1? At depth 2? What are
the labels of the leaves?

Repeat Exercise 10 in the case of arbitrary n. How can you tell from i and |
if a; and g label vertices at the same level?

Trace out the path corresponding to BINARY SEARCH when this algorithm
is applied to the following arrays, modeled by binary trees, and elements S:
(@) 4 asin Figure 6.1, S = a;.

(b) A as in Figure 6.1, a;<S<a,.

(c) A asin Question 4.7, S =a, -

(d) A as in Question 4.7, S = ay3.

(e) A asin Question 4.7, a;¢ < S <ay.

Suppose that you want to insert D = 31 into the sorted array .4 =
(3, 6,9,12,15,18,21,24,27, 30,33, 36). Construct a binary tree to model the
sorted array A both before and after the insertion of D. In how many locations
do these two trees differ?

If Tisabinary tree with ¢ leaves, how many vertices of degree 3 does T have?

309

6 SEARCHING AND SORTING

15. Explain how the algorithm SEQSEARCH can be modeled by traversing a
graph that is a path.

16. Run TREESORT on the following arrays, showing the binary tree and its
node values at the end of each execution of steps 3 and 8: (a) 4 =<1,2, 3);
b4 = (2, 1,3); and (c)A= (1,5,2,6,3,4).

17. How many comparisons are performed in step 2 of TREESORT?

18. In TREESORT how may b: _,’s get erased the ith time through the loop?
How many comparisons will you need to relabel the tree?

19. Show that TREESORT is a O(n log(n)) algorithm.
20. Rewrite TREESORT so that it sorts arrays with repeated entries.

6:5 LOWER BOUNDS ON SORTING

A new employment director wants to improve the efficiency of the student employ-
ment office. After conversations with the previous director, the new director is
convinced that she should sort her payroll drawer at the beginning of the year.
She learns that the previous director originaly used the quadratic agorithm
SELECTSORT and then switched to the n log(n) algorithm BINARY SORT, but
the new director does not want to keep switching algorithms each year when the
local algorithm experts come up with new and faster (and possibly more complex)
sorting algorithms. She decides she would like once and for all to find a fastest
sorting algorithm and guesses that there must be a linear algorithm, one that runs
in O(n)-time on an array of n elements. So she calls her friends taking the computer
science course on algorithms and asks for such a linear-time sorting algorithm.

The algorithm students report that they haven't learned about such an ago-
rithm yet, but maybe they will later in the semester. In the meantime they suggest
that the director might like to try Treesort, Shakersort, or Mergesort. These are
al nlog(n) agorithms. The director rejects these offers. She is trying to run an
efficient office and is not interested in becoming an algorithmic specialist herself.
However, she decides that she will, on her own, search for alinear-time sorting
algorithm or else prove that there is no such algorithm.

The new director has studied some discrete mathematics and begins with small
examples of arrays. If she has an array like <al, a,, a)), then in how many different
orders might the array appear? For example, the array might be “in order” so that
a;<a,<az or “out of order” with a, <a;< a,0or a,<a;<a;, and so on.
How many comparisons must be made to sort these elements into increasing
order? The element a1 can be compared with 4, and with a,, and the elements
a, and a,can be compared with each other. Are all these comparisons necessary?

Question 5.1. For n= 3, 4, and 5, given an array of n distinct items A =
{ay,dz,-. . .a,y decide in how many different possible orderings these elements

310

6:5 LOWER BOUNDS ON SORTING

might appear. Then determine the total number of pairwise comparisons that can
be made among the members of the set.

Proposition 5.1. There are at most n! different possible orderings of an array of n
elements. In such an array there are n(n — 1)/2 distinct pairs of items that might
be compared.

Proof . If the array entries are distinct, there are the same number of orderings as
permutations of an n-set. If the entries are not distinct, the number of different
orderings is less than n!, since some permutations produce the same ordering. (See
also Exercises 2 and 3.) In either case the number of possible comparisons between
pairs is the same as the number of 2-subsets of an n-set or (equivalently) the number
of edgesin an n-clique. 0

Proposition 5.1 tells us (and the employment director) that if we make all possible
comparisons, we have a 0(n?) algorithm, an algorithm as slow as SELECTSORT.
We know we can use cr log(n) comparisons for some constant ¢, but can we use
even fewer than this?

Any sorting algorithm that uses comparisons contains a sequence of com-
parisons, say C4,C,,....C,. Regardless of the particular sorting agorithm used,
what can we say about the value of k, the number of comparisons, in the worst
case? We model the problem with a binary search tree.

Example 5.1. Given three distinct objects, say 44, a,, and a5, we make a binary
search tree labeled with possible comparisons and possible outcomes. Suppose that
we begin by comparing a, and a,. There are two possible outcomes, either a; <
a,0r a; >a,. We label the root of the binary tree with (a,:a,) for this comparison;

the edge from the root to the left subtree is labeled “<” to denote the first possible
outcome and the edge to the right subtree is labeled “>" for the second outcome.
See Figure 6.6. Suppose that we next compare a, with a5 and label the two nodes
on level 1 with (a1- a,) and their left edges with “ <™ and their right edges with”> .

Notice that in two of the four possibilities we know the correct ordering and have
written that in as a leaf of the tree, but in the remaining two cases we need to
make the additional comparison of a, with a,.

The results of Example 5.1 show that at least with this order of comparisons
three comparisons are needed in the worst case.

Question 5.2. Asin Example 5.1 construct and label a binary search tree when
comparisons are made in the following order:

(@ a, with a,, a,with a3, a, with a,.

(b) a, with a5, a, with a,, a, with a..

311

6 SEARCHING AND SORTING

a:<aysag ay<az<ay apy<azsa)

Figure 6.6

The results of Example 5.1 and Question 5.2 convince the employment director
that three comparisons are needed to sort a three-element array. This finding is
inconclusive from the complexity point of view, since all possible comparisons are
needed in the worst case. On the other hand, three comparisons for a three-element
array might indicate the possibility of a linear-time algorithm.

Example 5.2. Suppose that we sort 4 = <al, a,, a, a,,. Here is part of the search
tree (Figure 6.7). Notice that once it is known that a5 <a, < a,, then it isimpos-

01202

Figure 6.7

312

6:5 LOWER BOUNDS ON SORTING

sible to have a, < a,. The path corresponding to this impossibility terminates with
a leaf labeled with the empty set.

The director also realizes that she can analyze any sorting algorithm using the
binary tree structure. If any algorithm makes comparisons Cl, C,,. . .. C in that
order, then we represent this algorithm as a binary search tree of depth k. The
root is labeled C 4, the two nodes at depth 1 are labeled C,, and, in general, the
nonleaf nodes at depth i are labeled C.1fori=0,....k—1. The leaves are
each labeled with either the empty set or with one of the n! possible orderings of
the array. The label on a leaf at the end of a path from the root is the ordering
specified by the series of < and >s on that path; asin Example 5.2 there may be
no such ordering. If k comparisons are made in the worst case, then the binary
tree representing these comparisons has depth k. By Theorem 4.1 there are at most
2‘leavesin such atree. Thus we must have

2“=n!, or k > log(n!). 0
We have proved the following theorem.

Theorem 5.2. It requires at least log (n!) comparisons to sort an n-element set
in the worst case.

Another approach to the proof of this theorem, using a game and binary
numbers, is given in Exercises 16 and 17.

The director realizes now that an algorithm that performs sorting by com-
parisons must in the worst case do at least log (n!) comparisons. Her next goal is
to determine the size of log (n!) or at least a lower bound on log (n!). The next
arithmetic lemma will lead to a lower bound on log (n!).

Lemma 53. If n>i>1,theni(n+ 1—i) = n.
Proof. Since n=i and (i — 1) = 0, we have
(i —Dn> (i — 1)
Adding n to both sides and subtracting (i —1)i yields
in—ili—1)>n,
which simplifies to

in—i+1)=n 0

313

6 SEARCHING AND SORTING

We now use the lemma to estimate log (n!).

log(n!) = log(n(n — 1)--- .3 .2.1)
= log {[(m 1][(n —)2][(n — 23]~ [(N —i +)i]-. -}

by regrouping factors

=log[(m1] +log[(n — 1)2] + - +log[(n —i+ il + - (A)
by the additive property of logs

> log(n) + log(n) + - + log(n) + - - - (B)

by Lemma 5.3.
Note that if nis even, the sumin (A) ends with log [((n/2) + 1)(r/2)]. Hence
there are n/2 terms and so (B) equals (r/2) log(n). Thus

log (n) 2(%) og(n).

(For the case of n odd, see Exercise 9.)

Corallary 5.4. If §(n) is defined to be the number of comparisons needed in the
worst case to sort a file with nitems using comparisons, then

S(n) = log (n!) and nlog(n) = O(S(n)).

Corollary 5.4 is often referred to as the information theoretic lower bound on
sorting. What it means is that there cannot be a sorting method based on pairwise
comparisons whose complexity is of order lessthan nlog (n). In other words, every
such sorting algorithm will be big oh of some function in the functional hierarchy
(as developed in Chapter 2) that is at least as big as nlog (n). So far, we have seen
three sorting procedures, one that is O(n?) and two that are O(n log(n)).

Example 5.3. Suppose that we want to sort A= (al, a,,as,a,). As we have
already seen, three elements in an array can be sorted with three or fewer com-
parisons. Suppose that we find that 4, <a, <az and we want to find the position
of a,. We could compare a, with each of thefirst three to find its position or we
could use the idea of BINARY SORT. Then we would compare a, with a,. If
a,< a, we compare a,with al. If a, > a,, then we compare a,with a; and so
determine the final order. In total, five comparisons have been made in the worst
case. Since[log (4!)] = 5, Corollary 5.4 tells us that afile with four items cannot
be sorted using fewer than five comparisons.

314

6:5 LOWER BOUNDS ON SORTING

Question 5.3. Draw the binary search tree for a four-element array when the
comparisons are made as suggested in Example 5.3. Count the number of com-
parisons in the worst case. (Note that to parallel Example 5.3 we allow different
nodes on the same level of the binary tree to receive different comparison labels.)

Notice that we talk repeatedly about “sorting by comparisons.” How else
might a sorting algorithm proceed? In fact, in some special cases comparisons
are not necessary; these ideas are explored in Section 8 and in Supplementary
Exercises 29 to 32. For example, the algorithm BUCKETSORT is alinear-time
sorting algorithm but is of limited applicability because of its excessive storage
requirements.

The director is now convinced that there is no algorithm that uses com-
parisons and is essentially better than BINARY SORT, and so she decides to stick
with this n log(n) algorithm. However, due to increased tuition and decreased
financial aid the number of student employees doubles and then grows to triple
the original number of students.

Question 5.4. Suppose that the number of student employees increases from
600 to 1200. If the employment director first sorts her file with nlog(n) com-
parisons and then performs n log(n) more comparisons for each of the four payroll
periods in one semester, how many comparisons are performed for 600 and for
1200 students? And for 1800 students?

The employment director finds she can't keep up with the explosion of work
in her office as the number of employees doubles and then triples. She petitions
the president’s office for an assistant. The petition is granted, and the president
even offers, if need be, to provide a second assistant. The next sections will present
ways in which the director can use her assistants effectively.

EXERCISES FOR SECTION 5

1. Given an array of n distinct elements, we have said that there are n! possible
initial orderings of the n elements. For n= 3 and n = 4, give examples of n!
arrays, one corresponding to each of the possible orderings.

2. Suppose that in the array A = (al, a,, a5, a,) itisknown that a; = a,. Then
how many different possible (unsorted) orderings are there?

3. Suppose that it is known that in the array A= (al, a5, an) two elements
are the same but otherwise the elements are distinct. How many different
(unsorted) orderings are there?

4. Suppose that we have an array (al, a,,a5) and ask the questions

“Is az < ay? and Isa,< al?

315

6 SEARCHING AND SORTING

10.

11.

12.

13.

14.

316

Give an example of values for a;, a,, and a,for which the answers to these
two questions do determine the order correctly. Then give an example of
values for which the answers are not sufficient to determine the order
correctly.

Suppose that we have an array (al, a,,a5,a,). Find four questions that
sometimes do and sometimes do not determine the correct order.

If an algorithm makes k comparisons, explain why the corresponding binary
tree has depth k.

Given an array containing n elements, is it ever possible to ask n—2 or
fewer questions of the form “Is a<a;?” and from the answers to learn the
correct order? Explain.

Suppose you have an n-element array and ask the n—1 questions “Is
a;<a,27"1Sa,<ay?,” “Isa,_1<a,1” If itis possible to determine
the order of the array from the answers to these questions, what can you say
about the entriesin the array?

Find a lower bound for log (n!) in the case that nis odd, similar to the one
found in the text when nis even.

Stirling's formula from Chapter 3 tells us that
Jn (*Z*) — o).

Use this to obtain a lower bound on log (n!). Does this lead to a better (larger)
lower bound than that derived in the text?

Draw abinary tree for sorting 4 = (al, a,, a5, a,) that begins by comparing
a, With a,, then a, with a,, and a,with a,, and that has depth as small as
possible. (Asin Question 5.3 you may make different comparisons at different
nodes on the same level.)

Suppose that abinary search treefor A=(al,. . .. a5) begins with the com-
parisons a, with a,, then a; with a5, then a, with a, and a, with as. How
many leaves are there at depth 4? Give an example of a leaf at depth 5. Give
an example of aleaf at depth 6 or more.

Suppose that tn log(n) comparisons are made on records for n student em-
ployees during ¢ time periods. If » is doubled to 2n, does the number of
comparisons double? Does it triple? Suppose that the number of students
triples from n to 3n? How many times the original number of comparisons is
the new number of comparisons?

If 7(n)= nlog(n), find k such that for n sufficiently large

kn log(n) < 2nlog (2n) < (k + 1)n log(n).

6:6 RECURSION

15. Corallary 5.4 says that a file with five items in it cannot be sorted with fewer
than [log (511 = 7 comparisons. If one sorts a file with five records by first
sorting four records and then inserting the fifth record, it takes a total of eight
comparisons. First five comparisons are needed to correctly sort four records
and then three more to insert the fifth item into the ordered list of four items.
Decide whether the minimum number of comparisons that will necessarily
sort afile with five items is seven or eight.

16. Here is a sorting game, played by two playerson an array 4= (d,. . . . an).
Player 1 picks two elements 4; and aand asks player 2 to compare these
values and to say which is smaller. Player 2 then assigns values to g and g
in any way and answers, for example, that 3<a. Player 1 next picks another
pair to compare, and player 2 again assigns values and reports the answer.
(Once player 2 has picked and used a value for some a, the value cannot be
changed, but values do not need to be selected until player 1 brings them up.)
Player 1’s god is to determine the order as quickly as possible; player 2's goal
is to keep the order obscure as long as possible. Play the sorting game for
both n= 4 and n = 5. How many comparisons can player 2 force player 1 to
make?

17. In the sorting game if player 1 asks for the results of k comparisons, then
player 2 must give k different pieces of information, in this case either “<”
or “ > .“ There are 2“different patterns of answers that player 1 may receive
from player 2. Use thisto explain why to sort a set of n objects with k com-
parisons, it must be the case that 2> n!.

6:6 RECURSION

The director of the student employment office hopes that with an assistant she
can delegate more of the routine work. For example, at the beginning of the year
she might sort half of the student records, give the other half to an assistant and
then merge the two sorted files into one.

To train an assistant with an easy comparison task, the director begins with
the job of finding the minimum entry of A =(a,,4,,. .. .a,, an array of real num-
bers. She asks the assistant to find the minimum entry of 4'=(al, a,,....a,-1)
because she knows she can compare the assistant’s minimum with a, to find the
overal minimum of A. Now the assistant catches on quickly and redlizes that he
can use another assistant to find the minimum of A* = (al, a,. . ., a,—2) and
then compare that minimum with q,, _ , to find the minimum of A’. If each of the
assistants has an assistant (or afriend to help with the work), each assistant can
pawn off the work of finding the minimum of a smaller array. Eventually, the
array under consideration will have just one entry, which will be the minimum
value of that array. This minimum value will be passed up and probably changed
until the director receives the correct minimum of 4’ and then with one comparison
finds the minimum of A.

317

6 SEARCHING AND SORTING

This fanciful idea is an example of what is known as a recursive algorithm or
recursive procedure. The word recur means to show up again, and that’s exactly
what happens in a recursive procedure: The procedure shows up again, or is used,
within itself.

We now formalize a recursive procedure that carries out the idea described
above. The procedure MIN will find the minimum entry in an array A. The input
to MIN is A and », the length of A, and the output from 4 isk, the value of the
index of the minimum entry of A.

Procedure MIN(4, n, k)

Sterl. Ifn=1I,thensetk:=1
Else
Begin
STEP 2. n:i=n-—1
Step 3. Procedure MIN(4, n, k)
Step 4. ayy <@, then k:=n+ 1
End {step 1}
Step 5. Return.

In step 3 we call the procedure MIN, but on an array of smaller size. This
is the essence of a recursive procedure. We repeatedly call MIN until » = 1. When
n = 1, the array has one element and we actualy find the minimum, successfully
completing step 3. Every time step 3 is completed, we proceed to step 4 with the
value of kjust received and with the value of nequal to what it was when that
instance of the procedure MIN was called.

Example 6.1. Table 6.4 isatrace of MIN with 4 = (4.2, 2.1, 3.5,0.9),

When n =1, we set k= 1 and return to (C)to complete steps 4 and 5. Notice
that when we then return to (B), nis reset to 2, its value at the time of this
execution of step 3.

Question 6.1. Trace the procedure MIN on the array (4,3,2,1, 5).

There are two properties essential for a recursive procedure to be correct.
These are dictated by the requirement that an algorithm must terminate after a
finite number of steps. At each call of the procedure within the procedure, the value
assigned to some variable, say P (P = n = number of elements in the array in
Example 6.1) must decrease. When the value assigned to this variable is sufficiently
small, there must be a“termination condition” that instructs the procedure what
to do in thisfinal case. It is common to think of a recursive procedure as operating
on different levels. If the procedure begins with the parameter P initially assigned
the value ¢, one might think of beginning at the gth story of a building. With

318

6:6 RECURSION

Table 6.4
Sep No. n k a Ay
1. 4
2. 3
3. {Cal MIN(42,2.1,3.5), 3,k)} "
L 3
2. 2
3. {Call MIN(<4.2,2.1),2, k)} (B)
L 2
2. 1
3. {Cal MIN(¢4.2), 1, k)} (c)
1 1 1
5 {Return tO (C)}
1 1 4.2 21
4, 1 2
5. {Return to (B)}
2 21 35
4, 2 2
5. {Return tO (4)}
3 2 21 09
4, 3

5. {Return with k'= 4}.

each call the value assigned to P is decreased, and one descends to a lower story
until, say, P isassigned the value 1. On the first floor some real calculation or
comparison is performed and the message is sent back up through the floors to
the gth story, where the final answer is assembled.

A recursive program is also analogous to an induction proof. The “termination
condition” corresponds to checking the base case. The call of the procedure within
itself corresponds to using the inductive hypothesis.

Example 6.2. Hereis an example of arecursive procedure that cal culates the nth
Fibonacci number (see Section 4.4).

Procedure FIB(n, F) { This procedure has » as input and F as output.}

stepl. n<1,then F:=n
Else
Begin
Srtep 2. Procedure FIB(n—1, F')
Srep 3. Procedure FIB(n — 2, F*)
STeEP4. F:=F + F”
End {step 1}

STEP7. Return.

319

6 SEARCHING AND SORTING

In step 1 we use the fact that Fo = O and F{=1. Notice that we can call FIB
with input » — 1 or n —2; the parameter n does not have to be decreased before the
call, aswas done in MIN. And the answers will be stored in F' and F* as directed.

Another classic example of the use of recursive procedures is in calculating
the greatest common divisor of two integers (see Algorithm EUCLID from
Chapter 4). The next procedure is based on the fact that ged (b, ¢) = ged (r, b), where
I =C—|c¢/b]b. The procedure takes b and ¢ as input and produces g = ged (b, C)
as output.

Procedure GCD(b, ¢, g)

Step L. If b=0,theng:=c¢
Else
Begin
StEP 2. ri=c— |c/b]*b
Step 3. Procedure GCD{r, b, Q)
End {step 1}

Ster 4. Return.

comment. Thevalues of b and c used in computing r in step 2 come from the
input parameters of the procedure. They equal the original b and c only in the first
execution of step 2.

Question 6.2. Trace GCD with b= 13 and ¢ = 21. How many recursive calls does
it make?

In the exercises you will see examples and problems on recursive procedures
for the algorithms SUBSET, JSET, PERM, BtoD, among others. Some of these
will be more efficient than before, others no more so.

We conclude with arecursive version of SELECTSORT based on an exten-
sion of MIN. The plan is to use basically the same ideas as in SELECTSORT,
only to allow a director-sorter to delegate work to assistants. First we rewrite
MIN so that upon input of an array A and two integers start < finish, it
proceeds recursively to find the index k of the minimum entry in the subarray

<astan’astart+ lyeony afinish>-

Procedure MIN(4, start, finish, K)

ster 1. If start = finish, then k= start
Else
Begin
Step2. Procedure MIN(A, start, finish—1, k)
Ster 3. If agpi6n < a4, then k: = finish
End { step 1}
SteP 4. Return.

320

6:6 RECURSION

Question 6.3. Trace MIN on 4 = (—1,0.333,5.2, — 10,6.001, 17) for:
(a) start =2, finish = 3; (b) start = 3, finish = 6; and (c) start= 1, finish = 6.

Algorithm R-SELECTSORT

Step 1. Input an array A and itslength n
Srep2. For start:= 1 ton— ! do
Begin
Srep 3. Procedure MIN(A, start, n, k)
Step 4. If k# start, then switch the values of ag,,, and a;
End { step 2}
Step 5. stop.

We don’t claim that R-SELECTSORT is an improvement over SELECT-
SORT, but it is good training for the recursive sorting algorithm in the next
section. In fact, R-SELECTSORT performs about twice as many comparisons as
SELECTSORT as we shdl see in the following discussion.

First we count the number of comparisons performed by MIN on an array
of n elements, that is, when n = finish — start + 1; denote this number by M(n).
Then M(l) = 1. For n> 1, first one comparison is performed in step 1, then MIN
is applied to an array with one fewer entry, and finally one additional comparison
ismadein step 3. Thus

M(n) = M(n—1) +2. (D)
In other words, each additional array entry requires two more comparisons. Thus
M2 =M(l) +2=3, M(3) =M(2) +2=15,

and apparently M(n) = 2n— 1. To be sure, we prove that this formulais correct
by induction. Since M(l) = 1, the base case is cdrrect. Then

M(n) = M(n—1) +2 by (D)
=2n—-1D—-1+2 by the inductive hypothesis
=2n- 1.

Complexity results for recursive procedures are often similarly established using
induction.

Now in R-SELECTSORT we call the procedure MIN(A, start, n, k) for
start= 1,. ... n—21. Thus the total number of comparisons performed is

@n—D+2n =3+ +3=n>—1=0@#>,

(see Exercise 14), giving the same big oh complexity as for SELECTSORT. Com-
paring the more precise count of comparisons (see Theorem 1.1) shows the re-
cursive version to be less efficient.

321

6 SEARCHING AND SORTING

EXERCISES FOR SECTION 6

1. Trace (the second version) of MIN(4, 1, n, K) if
(@ 4=<(-3,-2,-1),n=3.
(b) A =<—10,10, =3,3), n = 4.
(c) 4 = (1,2357), n= 5.

2. Trace GCD if
(@ b=3,¢c=5.
(b) b=1,c = 10.
(c) b=0,¢c=75.
(d) b=3,c=14.

3. (a) Write arecursive procedure MINMAX(A, n, rein, max) to find the mini-
mum and maximum entry of an array of n numbers.
(b) Determine the number of comparisons made in the worst case.

4. Using the fact that n! = n(n — 1)! write a recursive procedure FACT(n, F) that
upon input of a nonnegative integer n, calculates F = n!. Trace the procedure
for n =4.

5. What do the following recursive procedures compute?

(@) Procedure NUM I(n, ans)

Step 1. If n= O, thenans = 0O
Else
Begin
STEP 2. Procedure NUM1(n + 1, ans)
Step 3. ans:=ans—(n+ 1)
End
Step 4. Return.

(b) Procedure NU M 2(n, ans)

Step 1. If n= O, then ans.= O
Else
Begin
SteP 2. Procedure NUM2(n — 1, ans)
SteEp 3. ans := ans + n
End
SteP 4. Return.

(c) Procedure NUM3(n, ans)

Ster 1. If n = O, thenans:= O
Else Procedure NUM3(n — 2, ans)

Step 2. Return.

322

10.

11.

12.

6:6 RECURSION

Find an equation relating the two binomial coefficients <Z> and (k i 1). Use

. . . R .)
this to write a recursive procedure that calculates k) What is the termina-

tion condition?
Here is the classic relation between binomial coefficients;

(-0)

. . . n
Use this to write a recursive procedure to calculat«€}k>; you may need to

use more than one termination condition.

Compare the algorithms in Exercises 6 and 7 by counting multiplications,
divisions, additions, and the number of calls to the procedure. Which is more
efficient?

Trace FIB with n = 5. Count the number of recursive calls. Comment on the
efficiency of this method of calculating Fibonacci numbers as compared with
methods learned in Chapter 4.

Suppose that A(n) equals the number of additions performed in FIB(n, F).

Then A(O)=A(l) =Oand A(2) = 1.

(@) Show that A(n) = A(n— 1)+ A(n—2) + 1.

(b) Compute A(n) for n =3,4,5,6,7,8.

(c) Compare these values with the nth Fibonacci numbers for n= 2,3,...,8.

(d) Determine a formula for A(n) and then prove that FIB(n, F) performs this
many additions.

(e) Is FIB a polynomial algorithm?

Suppose that we define F§ =0, F¥=1 and F§ =1, and for n > 2,F} =

F, ,+F,-,+F,_5. Write arecursive procedure FIB #(n, F*) that calcu-

lates F¥ and storesit in F *.

Hereis an attempt to improve the efficiency of the procedure FIB; to deter-
mine the nth Fibonacci number the numbers n, s= O, and ¢t =1 should be
input and F will be the output, containing the nth Fibonacci number.

Procedure FIB2(n, s, t, F)

Step 1.Ifn=20, then F:=s
Else Procedure FIB2(n —1,t,s+ ¢, F)
Step 2. Return.

Run this procedure with n = 1,2,3,4,5. Then explain why FIB2(n, 0,1, F)
correctly returns F as the nth Fibonacci number.

323

6 SEARCHING AND SORTING

13. Compare the number of recursive procedure calls made by FIB2 and by FIB.
14. Provethat 2n— 1)+ (2n —3) + -+ 3=n> — L.

15. Prove that the number of multiplications and divisions performed by the re-
cursive version of GCD on b and c is at most 4|log (b)]. (Hint: Reread the
complexity analysis of the algorithm EUCLID given in Chapter 4.)

16. Hereis arecursive procedure to form alist L of all subsets of an n-set 4.
Procedure R-SUBSET(A, n, L)

Ster 1. If n= O, then L := {J}
Else
Begin
Procedure R-SUBSET(A, n—1,L)
Step 2. For each set SinL,add Su {a(n)} toL
End
Step 3. Return.

(a) Trace this algorithm on 4 = (1, 2,..., np for n = 2,3, and 4.

(b) Explain why the algorithm works correctly.

(c) If astep is considered to be the formation of a set, prove by induction
that R-SUBSET(A, n, L) performs 2* steps.

17. Here is arecursive version of the algorithm JSET, presented in Chapter 3.
This procedure receives nand j and then stores all j-subsets of the n-set
{1,2,..., n}inthelist L.

Procedure R-JSET(n,j, L)

Step 1. If j = O, then L := {&}
Elseifj=n, then L:= {{1,2,...,n}}
Else
Begin
Step 2. Procedure R-JSET(n—1,j,L,)
Step 3. Procedure R-JSET(n—1,j —1, L))
Ster 4. For each set Sin L,
set §:=S U {n}
STEPS. L:=L; UL,
End
Step 6. Return.

Run R-JSET on the following datac (a) n=2,j=1; (b)n= 3,j=1;
(n=3,j=2,d)n=4,j=2;and (e) n=15,j = 3.

18. What is the mathematical idea behind R-JSET that makes it work correctly?
Count the number of assignment statements made in R-JSET. Isit a good
algorithm?

19. Write arecursive version of TREESORT.

324

6:7 MERGESORT

6:7 MERGESORT

In this section we present an efficient, recursive sorting algorithm, known as
MERGESORT. This algorithm is particularly well suited to the situation when
aset of records must be added to a large already sorted set of records. It has the
disadvantage that to sort an array of n elements an additional array of size nis
used to keep the programming simple and the element shuffling to a minimum.

Here is the idea of MERGESORT from the point of view of the employment
director. Suppose that there is now enough work to employ two assistants. At the
beginning of the semester the director receives a large file from the payroll office,
containing one card for each student employee, listed in alphabetical order. She
wants to sort these by social security number. To divide up the work, she splits
the file, giving half to each assistant to sort. The director will then merge the two
smaller sorted files into one large sorted file.

Algorithms that proceed by dividing the problem in half, working on one or
both halves, and then constructing the final solution from the solutions to the
smaller problems are known as divide-and-conquer algorithms. The algorithms
BINARY SEARCH and BININSERT also follow this approach.

Back in the employment office, the assistants remember the principle of re-
cursion. If they each have two assistants or friends, they will give haf of their file
to each for sorting and then merge the resulting sorted files. The halves or pieces
to be sorted will get smaller until an array of one element is reached, say <a),
and this array is sorted as it is. Notice that this process can be modeled by a
binary tree with the root labeled with the director, the roots of the left and right
subtrees labeled with the assistants, and so on.

Question 7.1. Let 4 be an array containing eight numbers. Using the ideas of
the preceding paragraphs, draw the corresponding binary tree for this case. What
is the depth of the tree? How many vertices does it contain? In total, how many
assistants are employed in the task?

This approach will be good, provided that we can efficiently merge two sorted
files into one sorted file. We shall see that such a merger can be performed in time
linear in the total number of elements to be merged.

Here specifically is how to merge two sorted files. Assume that we have an
array Csuchthat € q,. .. , cpg iSin sorted order asis tmia 4+ 1, ..., ¢, (If we had
two separate, sorted arrays 4 and B, we could place them in C with 4 listed before
B.) The goal is to rearrange C so that it becomes a sorted array. We use an auxil-
iary array D into which we sort the elements of C; in the end we transfer the sorted
D back into C.

First we compare the first entries in the sorted subarrays, ¢, and ¢mid .. ;, and
place the smaller in d,. Next, depending on the outcome of the first comparison,
we compare ¢, With Cmid . ; OF ¢; With ¢mig 4 25 placing the smaller in d,. We con-
tinue until either the first subarray or the second has been entirely placed in D.

325

6 SEARCHING AND SORTING

Then wefill up D with the remaining elements of the other subarray and finally
copy Dinto C.

Procedure MERGE (C, dtart, mid, finish) {C is an array with entries Csearw
Cuart + 10+ - -» Cmia IN iNCreasing order and entrieS Cmia +1,- . ., Crinisn ASO N increas-
ing order.}

Step1. Seti:=startand j: =mid+ 1{iand jindex the entries of C being
compared}
Set k= start {k indexes the entry of D being filled}
STEP2. While(i < mid) and (j < finish) do
Step 3. If ¢ <¢c;, then do
Begin
STEP 4. d,: = C
STEPS. i:=i+1
STEPG. k:=k+ 1
End
Else
Begin
STEP 7. d} = ¢
STEPB. ji=j+1
STEPY. k:=k+1
End
{Right now one of the subarraysisin D}
Srep 10. If i > mid, then do { Transfer remaining entries into D}
For index : =j to finish do
Begin
STEP 11. di : = Cindex
STEP12. k:=k + 1
End
Else
For index := i to mid do
Begin
STEP 13.d;, © = Cingex
STEP 14. k:=k + 1
End
Srep 15. For index := start to finish do {transfer D to C}
“index ~ifhdex
Step 16. Return.

Example 7.1. Table 6.5 is a trace of MERGE run on the array C = (1,2,3,4,

—2,0,2,4, 6) with start = 1, mid = 4, and finish = 9. We show the array D after
the completion of each execution of step 3.

326

6:7 MERGESORT

Table 6.5
Sep No. j k D
1 1 5 1
3 1 6 2 (-2,...
| 7 3 <-2,0,...
2 7 4 -2,0,1,...
3 7 5 (-2,0,1,2,...
3 8 6 (-2,0,1,2,2,...
4 8 7 (-2,0,1,2,2,3,...
5 8 8 -2,0,1,2,2,3,4,...
10 <-2,0,1,2,2,3,4,4>6)
15 C=1{(-2,0,1,2,2,3,446).

Notice that when equal entries occur, the entry of the first half isinserted in D first.

Question 7.2. Trace MERGE on C = (0.1, 0.2,0.3,0,0.09, 0.19,0.29,0.39,0.49).

How efficient is MERGE? Three comparisons occur at every execution of steps
2 and 3, except for the final time when only the two comparisons in step 2 occur.
These steps happen at most » times, where n is the length of the array. Then count-
ing the additional comparison of step 10, at most 3n = O(n) comparisons are
performed in total. MERGE is alinear algorithm.

With MERGE and the assurance of its efficiency, we plan MERGESORT.
We begin with an unsorted array C of length n. We divide C at roughly the
midpoint, setting mid equal to | n/2|. We sort the first half of C recursively and
the second half of C recursively and then use MERGE to combine them in sorted
order. Thiswill be accomplished by calling the recursive procedure below with
start = 1 and finish = n.

Procedure MERGESORT (C, start, finish)

Step 1. If start = finish, then Return.
Else
Begin
Step 2. Set mid:= [(start + finish)/2 |
Srep 3. Procedure MERGESORT (C, start, mid)
Srer 4. Procedure MERGESORT (C, mid + 1, finish)
Srep5. Procedure MERGE (C, start, mid, finish)
End {step 1}
Ster 6. Return.

The main trick in tracing a procedure like this is to remember where to return
upon the completion of a procedure and what the values assigned to the variables

327

6 SEARCHING AND SORTING

are at the return. For example, if we cal MERGESORT(C, i,j) in step 3, the
procedure receives as input whatever subarray is currently stored in entries i
through j of C, sorts it and returns it at the end of step 3 to the same subarray
of C. All this bookkeeping is done for us in a programming language like Pascal.

Example 7,2. Table 6.6 is a trace of MERGESORT on C = (0.3,0.1, 0.2). The
results of the procedure MERGE are just written under the call statement, since
we have seen how this works before.

Procedure MERGESORT{<0.3,0.1,0.2), 1, 3)

Table 6.6
Sep No. c start mid Jinish
1,2 (0.3,0.1,0.2) 1 2 3
3 { Call MERGESORT(C, 1, 2)} (A
1,2 (0.3,0.1) 1 1 2
3 {Call MERGESORT(C, 1, 1)} (B)
1 (0.3) 1 1
Return to (B) 1 1 2
{CalMERGESORT(C, 2, 2)} (c)
1 <0.1) 2 2
Returnto (C) 1 1 2
5 {Cal MERGE(C, 1,1, 2)}
(0.1,0.3)
Return to (A)
(01,03, 02) 1 2 3
4 {Cal MERGESORT(C, 3, 3)} (D)
1 <0.2) 3 3
Return to (D) 1 2 3
5 {Cal MERGE(C, 1,2, 3)}
(0.1, 0.2, 0.3)
6 Ret urn.

Question 7.3. Trace MERGESORT on

(@) C =<1, O) with start= 1 and finish= 2.

(b) C = (22,24, 23) with start = 1 and finish= 3.

(c) C=<11, 3.3,2.2,4.4) with start= 1 and finish= 4.

We now verify the efficiency of MERGESORT. The origins of this complexity
bound are explored in Exercise 7.

Theorem 7.1. MERGESORT is a0O(n log(n)) algorithm.

328

6:7 MERGESORT

Proof. We begin by proving that if n = 2, then the number of comparisons
executed by MERGESORT is 3nlog(n) + 2n — 1. The proof is by induction on k.
If k= 0O, then C contains one entry and with one comparison in step 1 the proce-
dureis finished. Since 1 =3 -11log(1) + 2- 1 — 1, the base case is established.

We assume that the result holds for all exponents less than k and consider
an array C with 2“entries. Then initially mid equals 2“1, and in steps 3 and
4 MERGESORT is called on arrays of n” = 21 entries each. By the inductive
hypothesis MERGESORT performs

3nlog(n) +2n —1=3-2"Yog(2* "1y 4 2. 2k" 1 g
C 32 k422 -
=213k — 1)- 1

comparisons on each smaller array. The total number of comparisonsis1 (from
step 1) plus the number performed on the first half of C plus the number per-
formed on the second half of C plus 3n, the number of comparisons used by
MERGE, or

2273k =)= D+ 3n+ 1 =Bk — 1) +3-25— 1
=23k +2-2~1°
=3n10g(n) + 2n-—1.

Now suppose that C is an array of n elements, where nis not necessarily
apower of 2. Set r =[log(n)]and m = 2'. We know

n<m= 2r <210g(n)+1 = 2n.

Create C, an array of melements by appending m—n new elements to the end
of C. Suppose that all these elements are assigned a very large value, a number
larger than all entriesin C. When MERGESORT is applied to C we know that the
number of comparisonsis at most

3mlog(m)+2m—1 <3-2mlog(Cm)+ 2-2n)— 1 =6n(log(n) + 1) +4n -1
= 6nlog(n)+10n - 1
<t6nlog(n) = O(n log (n)).

Now C' and C have been sorted with O(n log(n)) comparisons; had we applied
MERGESORT to C alone, perhaps fewer comparisons would have been per-
formed. 0

329

6 SEARCHING AND SORTING

An dternative, tighter upper bound on the number of comparisons in
MERGESORT is outlined in Supplementary Exercises 27 and 28.

Question 7.4. Look at Question 7.3(a) and (c) and verify that exactly 3n log(n) +
2n — 1 comparisons were performed.

Question 7.5. Verify that the number of comparisons MERGESORT performs
on an array of size 3 is 20. Is this number less than 3n log (n) + 2n — 1 with
n= 37 Show that this number is less than 6n log(n) + 10n — 1 when n= 3,

EXERCISES FOR SECTION 7

1. Trace MERGE on the following data. In each case count the number of com-
parisons made and compare with 3n, where n isthe length of the array.
(@ C= (1,13, 5), start= 1, mid= 1 and finish= 4.
(b) C = (0.1, 0.2,0.3,0,0.2, 0.4,0.6), start= 1, mid= 3 and finish= 7.
() C=(12, 34,12, 34), start= 1, mid= 4 and finish= 8.
(@) C = (5, 1,23,4), start= 1, mid= 1 and finish= 5.
(e) C = (1,234, 5), start= 1, mid= 4 and finish= 5.
(f)C¢1,2, 3,4,0), start = 1, mid = 4 and finish = 5.
2. What happens if you run MERGE with the subarray c,,. . . . ¢;;4 NOt SOrted?

3. Trace MERGESORT on each of the following arrays:
(@) A= (2/4, 6,8, 10).
() A = (10,8,6,4,2).
() A=(2,6,4, 10, 8).
@)A=<13, 1545).
(e 4 =(22, 222).
4. Draw a binary tree that corresponds to the divisions into subarrays in Ex-
ample 7.2 and Question 7.3. In general, for what arrays of length nis the cor-
responding tree a full binary tree?

5. Count the number of comparisons made in each case of Exercise 3. Com-
pare these numbers with 3nlog(n) + 2n — 1 and with 6nlog(n) + 10n — 1 for
appropriate values of n.

6. From the numerical evidence of Questions 7.4 and 7.5 and Exercise 3, con-
jecture whether the following is true or false: MERGESORT performs at most
3n[log (n)]+ 2n — 1 comparisons to sort an array of n elements. (See also
Supplementary Exercises 27 and 28.)

7. Let M(n) denote the maximum number of comparisons made in MER-
GESORT, applied to an array of n elements, and suppose that n= 2. Then
M(l) = 1and for n> 1 MERGESORT proceeds by calling itself on two arrays

330

6:8 SORTING IT ALL OUT

of size n/2= 2“1 and then MERGE-ing the two sorted arrays with 3n ad-
ditional comparisons. Thus

M(n) = 2M(n/2)+ 3n + 1.

Use thisrelation to determine M(n) for n= 2,4,8, and 16.
Then find an expression for ‘M(n) in terms of M(n/4) and in terms of
M(n/8). Explain why this leads to the formula

M(n) = 2*M(1)+k3n+ n-1
=3nlog(n) +2n—1 (still assuming that n=2").

8. Suppose that Ais an array containing 2" numbers. If the array is divided
in half for each of two assistants to sort and if they each divide their half
in half for two additional assistants to sort, and so on, until finally the assis-
tants receive arrays of length one, then how many assistants in al are used?
How many levels of assistants are used?

9. Answer the same question as in Exercise 8 when the array contains m numbers,
where 2'< m< 2* " for some integer n.

10. Write a procedure that inputs an array A = <al, 42,-...a,> (not necessarily
sorted) and rearranges 4 so that if mid = [(1 + n)/2]and S = a,,;4, then all
entries preceding S are less than or equal to S and all entries following S
are greater than or equal to it. (Note that S may need to be moved to a dif-
ferent position.)

11. Write a sorting algorithm that splits the input array 4 using the preceding
exercise and then recursively sorts the parts preceding and following S.

12. Write an algorithm 4-MERGE that takes four sorted arrays and merges them
into one sorted array. Compare the complexity of your algorithm with that of
using MERGE three times to combine these four arraysinto one.

6:8 SORTING IT ALL OUT

The art of searching and sorting is an extremely important and highly developed
one in computer science and applications. These are processes used in aimost all
record-keeping tasks. Not only do telephone companies, banks, the IRS, and so
forth, perform these tasks repeatedly, but now even writers find these tasks in-
dispensable in their word processing programs. For example, searching was done
repeatedly in the preparation of this text. Every time a theorem, a question, an
example, or an exercise was renumbered, a search was run to find all occurrences
of the changed number. A spelling checker program also searches for spelling

331

6 SEARCHING AND SORTING

errors and is equally useful because it picks up most typing mistakes. Sorting is
also important, for example, in alphabetizing the index of a book.

One important theme of this chapter is the difference between 0(r?) and
O(n log(n)) algorithms. Both kinds are good algorithms, but the latter are notice-
ably more efficient. Except for cases with small data sets (small like most that
we' ve considered in examples and exercises), the faster algorithms make a signifi-
cant difference in general real-life applications. Of course, there are exceptions to
every rule, and two such exceptions are BUBBLESORT (Exercises 1.11 to 1.13)
and INSERTIONSORT (Supplementary Exercise 7). In the worst case these are
0(n?) algorithms, but when given a nearly sorted array, they can run in linear
time. For example, when an array is nearly sorted except that some adjacent pairs
of elements are transposed, both BUBBLESORT and INSERTIONSORT are
able to benefit from the nearly sorted arrangement. In contrast an algorithm like
BINARY SORT will perform the same number of comparisons on a nearly sorted
array as on arandomly ordered array.

Another theme of this chapter is the difference between algorithms with the
same big oh complexity. When sorting files with large individual records, algo-
rithms should be used that minimize record transfers; for example, SELECTSORT
would be perferred to BUBBLESORT if a O(n?) algorithm were being used.
MERGESORT should be avoided if the file length is so long or the records so
large that there is not room for a duplicate array. However, MERGESORT is a
good choice when two smaller sorted files are to be sorted into one. No algorithm
using comparisons can be faster than O(n log(n)), and the number of different
n log(n) algorithms confirms that these must have been designed for varying needs.
TREESORT uses the most sophisticated data structure among the algorithms
we' ve seen. This algorithm and algorithms based on storing data in tree structures
have wide applicability in these and other combinatorial settings.

We have alluded to the existence of a linear-time sorting algorithm, known
as BUCKETSORT or “distribution counting.” If we want to sort an array of n
elements whose entries are integers from O to M for some small number M, like
M = O(n), then we can make one pass through the array and can store the record
with key ain the ath entry of a new array. (More picturesquely, we think of
tossing the record in the ath “bucket.”) Then in one additional sweep through
the new array, we can pick up the elementsin order. We have performed n + M
assignments and no comparisons. This algorithm has limited applicability; for ex-
ample, using this algorithm the employment director would store the record cards
of, say, 600 students in a new array of length 999,999,999, since there are this
many possible social security numbers. This approach would necessitate an inap-
propriately large array. More sophisticated versions of such an algorithm are
known as hashing.

Finally, the concept of recursive proceduresis an important one. Thisisthe
computer scientists analogue of induction. In Chapter 7 we shall study solutions
of recurrence relations and counting problems that arise from recursive procedures.

332

SUPPLEMENTARY EXERCISES FOR CHAPTER 6

This chapter has been only an introduction to a deep and well-understood theory,
which merits further study. *

SUPPLEMENTARY EXERCISES FOR CHAPTER 6

1. Devise an algorithm TRISECTSEARCH that upon input of an array A4 of n
numbers in increasing order and a number S, searches by thirds of 4 for S.
Specifically, first the algorithm should see whether S equals the |(» +1)/3 Jrd
entry in 4. If not and Sis smaller, then it begins again with the first third of A.
If Sislarger than thisentry, it compares Swith the|2(n + 1)/3]rd entry. If S
is smaller, it proceeds with the middle third of .4; if Sis larger, it proceeds with
the last third of 4. Determine the worst-case complexity of your algorithm.

2. Write an agorithm that upon input of an ordered array A of n numbers and
a number S, searches for S and if found, deletes it. Determine the worst-case
complexity of your algorithm.

3. Write an algorithm that upon input of an ordered array A of n numbers and
anumber S, searches for S and if it is not found, inserts it in the correct order.
Determine the worst-case complexity of your algorithm.

4. Rewrite a version of BININSERT, caled BININSERT2, that tests whether
a,, 1= ag;4 after step 3, and if so, immediately inserts a, , ; a the (mid)th
entry of the array. Are there arrays on which BININSERT?2 will run faster
than BININSERT? Are there arrays on which BININSERT2 will run slower
than on BININSERT? Determine the worst-case complexity of BININSERT2.

5. Use BININSERT2 to form a new version of BINARYSORT, called
BINARYSORT2. Run both BINARYSORT and BINARYSORT2 on
<1,5,1, 1,1) and compare the efficiency of these algorithms on this array.

6. In this exercise you are asked to compare the number of assignment statements
in SELECTSORT and in BINARY SORT. The significant assignment state-
ments are those involving array elements, not just index counters in loops.
(a) Rewrite SELECTSORT so that step 5 is expanded and actually carries
out the details of switching a and TN. Call this X-SELECTSORT.

(b) Count the number of assignments of elements a; and TN in the worst
case in X-SELECTSORT.

(c) In the procedure BININSERT with r = 1,2,3, and 4 find examples in
whichr + 2 assignments of elements a and temp are made.

(d) Explain why the maximum number of assignments of elements a and
temp in BININSERT isr + 2.

! A good next source is a large book on the subject: D, E. Knuth, Sorting and Searching, Volume 3
of The Art of Computer Programming, Addison-Wesley, Reading, Mass., 1973.

333

6 SEARCHING AND SORTING

(e) Use the result of part (d) to determine the maximum number of assign-
ment statements performed in BINARY SORT.

(f) Which of X-SELECTSORT and BINARY SORT performs more assign-
ments?

7. INSERTIONSORT is ancther sorting agorithm; it is based on the idea of how
one often sorts a hand of playing cards: with the left end of the hand sorted,
the remaining cards are inserted in order, one at atime.

(a) Write a procedure INSERT(r, al,. . . . a,,qa,, 1) that hasasorted array of
length r, {a;,a,,... ,a,y, and an element a, .1 as input and that outputs
thearray (al,. ... a,.,) in sorted order. The procedure should search
through the input array sequentially until the position for inserting a, , 1
isfound; then a, .., should be inserted there.

(b) Here is the agorithm INSERTIONSORT:

Algorithm INSERTIONSORT

Step 1. Input n and an array <a;,ds;,...,a,»
Step 2. For m= 2to ndo {insert mth entry}

Step 3. Procedure INSERT ((m—1).44,....a,,)
Step 4. Stop.

Trace this on (1,3,2,5,4, 6).

(c) Compare this sorting algorithm with SELECTSORT and BINARY -
SORT. Describe arrays on which INSERTIONSORT works more effi-
ciently than the others and arrays on which it is less efficient.

(d) Determine the complexity of INSERTIONSORT.

8. A sorting algorithm is said to be stable if whenever a = gfor some indices
i < j, then in the sorted array aprecedes g. Is either SELECTSORT or
BINARY SORT stable? Explain. If not, can they be rewritten (easily) so that
they are stable?

9. IsINSERTIONSORT a stable sorting algorithm?

10. Suppose that Ais a sorted array of n elements. How does the speed of
INSERTIONSORT on A compare with the speed of SELECTSORT and
BINARY SORT?

11. Suppose that you have an (unsorted) array with nitems and another item
D. What is the minimum number of comparisons necessary to determine
whether D is contained in the array or not?

12. Looking up a telephone number in a directory is an example of a typical
search through alarge ordered list. If the name you are looking for is, say,
Smith, you wouldn’t turn to the exact middle of the directory despite the high
quality of BINARY SEARCH. The reason is that you have some knowledge
concerning how the names in the directory are distributed. If you are looking

334

SUPPLEMENTARY EXERCISES FOR CHAPTER 6

for the name Smith, you will look more toward the back of the book because
you expect that more names come before Smith than after it. You might use
astrategy like the following: Since S is the 19th letter of the alphabet, you
might look at the page numbered m, where m= ~19n/26J and n is the total
number of pages in the directory. Develop an algorithm, called weighted binary
search, that exploits this idea. When should you use weighted binary search
and when should you definitely avoid it? (This kind of approach is also known
as interpolated search.)

13. Hereis arecursive version of the algorithm DtoB from Chapter 1 that upon

14.

input of a nonnegative integer m determines its binary expansion s.
Procedure R-DtoB(m,)

Sepl.If m< 1, thenset s:=m
Else
Begin
Step 2. Procedure R-DtoB(|m/2], s)
Srer3. If miseven, then sets equal to swith a O added at the end,
Else set sequal to s with a 1 added at the end
Step 4. Return.

(a) Trace this algorithm for m= 1,3,6,8.

(b) Show that this algorithm is correct.

(c) Prove by induction that the number of divisions in R-DtoB is at most
log (m).

Reread the algorithm EXPONENT in Chapter 2. Then use the fact that

X" = x-X" "1 to write a recursive version of EXPONENT. Compare the

number of multiplications in EXPONENT and the recursive version.

15. Write arecursive version of FASTEXP, called R-FASTEXP(X, n, ans) that

16.

upon input of x and nwill calculate X"and store it in ans. Is this version
faster or dower than FASTEXP?

Look back in Chapter 3 at the algorithm PERM. Write a recursive version
of this algorithm.

17. Does the following correctly compute the greatest common divisor of b and c?

Explain.
Procedure GCD3(b, c, Q)
Step 1. If b=c, then g:=b
Elseif b < c—b, then Procedure GCD3(b, c— b, Q)

Else Procedure GCD3(c—b, b,)
Step 2. Return.

335

6 SEARCHING AND SORTING

18. Here is an idea for a recursive version of BINARY SEARCH: Given an array
(a,....a) of numbers and a number S, determine whether S is less than
the middle entry of the array and, if so, search the first half. If not, search
the second half. Write a recursive version of BINARY SORT.

19. Suppose that we have a sorted array A of length nand an unsorted array
B of length m that we wish to merge into Atoform a final sorted array A
of length n + m. Here are some different approaches:

(a) Add B to the end of the array A and then use BINARY SORT on this
array.

(b) Add B to the end of the array A and then use MERGESORT on this
array.

(c) Add B tothe end of the array A and then use INSERTIONSORT (see
Exercise 7), replacing step 2 with“Form=n+ 1ton+ mdo.”

(d) Use MERGESORT on B and then use MERGE on A and B.

Comment on the pros and cons of these approaches. In particular, decide

which one you would pick for best efficiency.

20. Compare the efficiency (i.e., number of comparisons performed) of SELECT-
SORT, BINARY SORT, and MERGESORT on the following types of arrays:
(a) A sorted array.
(b) An array listed in reverse order.
(c) An array that is nearly sorted except for the interchange of some adjacent

pairs of numbers (like (1,3,2,5,4, 6)).

(d) An array with many repeated numbers.
(e) An array with itsfirst half sorted and its second half sorted.

21. IsMERGESORT a stable sorting algorithm? (See Exercise 8.)

22. Develop the following ideainto an algorithm to sort A= (al, a,.. ... a,).
(1) Find the least integer i such that <al,..., 4;) is sorted, but (al,..., 4; %i+1>

is not.
(2) Find the next least integer j such that (a+;,....a) is sorted, but
{@i415--.,a58j11) IS NOL.

(3) Merge (al,....a)and (&.5,---,a;.

(4) Seti:=jandif j<n,gotoline2.

Implement this as an algorithm and run it on the following data:
(@ A= (1, 3,254,6>.

(b) A= (1,23, 54,6).

(c) A= (246,35, 7).

d)A=(1,2,3,4,5,6).

(e) A= (6,54, 3,2, 1).

Determine the worst-case complexity of your algorithm.

23. Here is an aleged sorting algorithm that is supposed to take an array of
length n with start = 1 and finish = n and to rearrange A in increasing order:

336

24,

25.

26.

27,

SUPPLEMENTARY EXERCISES FOR CHAPTER 6

Procedure M YSTER Y (A, start, finish)

Step1l. If start < finish, then
Begin
STEP2. test: = ag,.
Step3. i:=start+1

Ster4. j: =finish
Ster5. Repeat
Begin

Ster6. While test <aj, setj:=j-I
Step 7. While test > a; and i < finish, set =i + 1
Step 8. Switch a,and &
Until j <i {end of step 5}

Srer9. Switch 4 and a{undoing the last switch}

Step 10. Switch ag,,, and &

Srep11. Procedure MY STERY (A, start,j — 1)

Step 12. Procedure MYSTERY(4,;j + 1, finish)

End { step 1}

Step13. Return.

Run this algorithm on a variety of arrays and then answer the following

equations:

(a) MYSTERY finds an index j, places some entry in it, and then recursively
goes to work on the array in front of j and behind j. What value of j does
it determine and what entry is placed in a?

(b) Describe in words how MY STERY works.

(c) Determine the worst-case complexity of MY STERY.

Why does BINARY SEARCH require more comparisons than BININSERT
in the worst case?

Rewrite BINARY SEARCH so that the maximum number of comparisonsiit
performs in searching an array of nitemsis 2 log(n) + ¢, where ¢ is a constant.

In the complexity analysis of BINARY SORT we proved that the maximum
number of comparisons performed on an array of n elementsis 4(n—1) +
2log((n—1)1). First prove that fori=1,...,n—1,

2
i(n+1—i)s(nzl) .

Then use this to derive an upper bound on log ((n —1)!) that is O(n log(n)).

Let T(n) denote the maximum number of comparisons performed by MERGE-
SORT on an array of n entries. Then explain why

T(n) = T(ln/2) + T((n/2)+3n+1 forn>1

337

6 SEARCHING AND SORTING

and
T =1

Calculate T(i) for i< 8 and compare these results with those of Questions 7.4
and 7.5 and Exercise 7.5.

28. Use the results of the previous exercise to prove that
T(n) < 3nllog (m)]+ 2n— 1.

29. Suppose that afile of nrecordsisto be sorted and the keys of these records
are known to be precisely the numbers 1,2,. ... n. Here is an agorithm to
accomplish a sort on the keys a;:

Algorithm BUCKETSORT

Srep 1. Input A = {ay, a,,....a,»y containing distinct entries from 1,2,. ... n
Step2. For i:= 1 to ndo
Ster 3. Blay) : = a
STEP4. Fori:=1 ton do
Ster 5. a: = B(i)
Step 6. Output (al, a,,. ... a,).

Run a trace on this algorithm with input A= (2,1,5,4,3,6, 7).

30. Count the number of assignment statements made in BUCKETSORT when
run on an array of size n; in this algorithm these are the most time-consuming
statements.

31. Write an algorithm BUCKETSORT?2 that has as input an array A of n distinct
numbers whose entries lie between O and some constant M. The algorithm
should first do a “bucketsort” of Ainto an array B of length M and then
transfer the sorted elements back into A. Count the number of assignment
statements made in BUCKETSORT2.

32. Suppose that a comparison takes twice as long as an assignment statement.
Compare the time needed to run BUCKETSORT2 when M = 2n, kn for some
constant k, n log(n), and n*with the time needed for BINARY SORT.

33. The Pancake Problem asks the following Given a stack of pancakes of varying
diameters, rearrange them into a stack with decreasing diameter (as you move
up the stack) using only “spatulaflips.” With a spatula flip you insert the
spatula and invert the (sub)stack of pancakes above the spatula. Design an
algorithm that correctly solves the pancake problem for a stack of n pan-
cakes with at most 2n flips. Count exactly how many flips your algorithm uses
in the worst case.

338

RECURRENCE RELATIONS

7:1 BEGINNINGS OF SEQUENCES

A few years ago an advertisement on the London subway (or tube) system read
as follows: ,

“If you can determine the next number in each of the following lists before
you arrive at your stop, come in and we’ll offer you a job!

4 8 16 32
3 6 10 15
23 5 8
28 65 126
S 7 11 13 ”

POt e O —
o O — — D

Question 1.1. Find a plausible next entry in as many of the above lists as you can.

This chapter explores intrinsic properties of lists or sequences of numbers.
Given a partial list, we would like to determine its next entry. More generally, we
would like to find a formula for the nth number on the list. From this we can
determine the growth rate of the sequence, that is, we can discover whether the
nth number in the sequence grows like 2 polynomial or an exponential function
of n. Many of the sequences we shall study have appeared before in the course:
others are important in combinatorics and algorithms.

Definition. A sequence is a function whose domain is the positive integers and
whose target is the real numbers. A sequence whose target is the integers is cailed
an integer sequence.

339

7 RECURRENCE RELATIONS

In the London subway puzzle we see initial segraents of five integer sequences.
We represent a sequence

Siaq,as,05,. .. Ay, ..

by listing the values of the sequence at the integers 1,2,3,.... Even though a
sequence is a function, it is common and convenient to use the subscript notation.
We call q, the first term of S, a, the second term, and in general g, the nth term
of the sequence. Occasionally, we shall extend the domain of a sequence to include
zero {e.g., Fibonacci numbers). In this case we talk about the Oth term of a sequence.

Example 1.1. Here are two common sequences:

S,:1,2,3,4,5,6,.. .,
S,:2,4,8,16,32,64,. ...
For these sequences a formula for the nth term is not hard to guess: for Sy, ¢, = n

and for S,, a, = 2" In many situations a formula for a sequence may not be
immediately apparent.

Example 1.2. In the London subway problem, you probably recognized the Fi-
bonacci numbers; let S, be this sequence:

S4:1.1,2,3,58.....

We know that each Fibonacci number (after the first two) is the sum of its two
immediate predecessors. Knowing this pattern, we can in principle calculate any
Fibonacci number. However, the formula for the nth term is not obvious. Recall
that, in Chapter 4, we verified this formula by induction but deferred until this
chapter how such a formula could be discovered.

Question 1.2. Here are the initial segments of some (possibly familiar) integer
sequences:

S4:1,2,6,24,120,. ..

S5:0,1,3,6,10,15,. ..

Se:1.3,7,15,31,. ..

S7: 23,5, 71,1317, ..

Sg1,4.9,16,25,36,. ..

Sg:1, —3,9.-27.81,. ..

For at least two of the sequences S, to So, find a formula that generates the initial
segment of the sequence as listed above.

340

7:1 BEGINNINGS OF SEQUENCES

Notice that there might be ambiguity when we see only the initial segment of
a sequence. We can’t be sure about the numbers that appear in the ... until we
have a precise description of the sequence.

Example 1.3. Here are three different functions that each generate the initial seg-
ment of S,:

Jo=mn!

g, = D[= Dn = 3 — 4(n —) = 8(n —)(n — 3)(n — 4)(n ~ 5)
+ 36(n — n— 2(n —dn — 3 —96(n — Dn — 2)(n — 3)n — 5)
+ 120(n — 1)(n — 2)(n — 3)}n — 4] {try it}

| (n! ifn<s
1., =
"T0 ifn> S

Question 1.3. Find two functions that each produce the first three values of the
sequence: 5,9,17,. ...

Formulas are not the only way to describe sequences. Look at S,: A moment’s
reflection leads one to conjecture that this i1s the sequence of all prime numbers.
Although this description is exact, we cannot write down a formula for a function
that generates the primes. On the other hand, we could write down an algorithm
using the Sieve of Eratosthenes (as described in Supplementary Exercise 4 of
Chapter 4) to determine the next prime.

Another way that words can describe a sequence is by identifying patterns

within the sequence. We know that each Fibonacct number is the sum of the two
preceding ones:

Fu = Fn*l + Fn—l’

and this pattern completely specifies the Fibonacci numbers once we know the
first two values. Such a pattern is known as a recurrence relation.-

Example 1.4. Notice that in §5:0,1,3,6,10,15,.. ., the difference of successive
terms is 1, 2, 3, and so on. In symbols,

Uy =dy_ | +(n—1) for n > 1. (A)

Thus, like the Fibonacci numbers, the sequence S is completely determined once
we specify this pattern and the fact that |, = 0.

Question 1.4. For the sequence S, find an cquation that relates a, and a, _,. Then
do the same for S,.

341

7 RECURRENCE RELATIONS

Example 1.5. Suppose that an algorithm SECRET performs M, steps upon input
of a positive integer n. Trial runs show that M, = 1, M5 = 3, and Mg = 4. Suppose
that by analyzing SECRET we find the following pattern or recurrence relation:

My =My +1t ifn>1 M, =1 (B)
[s SECRET good or exponential? The known values of M, together with others
we could calculate specify the start of a sequence; however, we don’t know a

formula for M,. In Section 5 we shall discover such a formula and deduce that
SECRET is a good algorithm.

Question 1.5. Starting with a, = 0, use equation (A) to calculate u,,. .., us. Then
use equation (B} to caiculate M ..., Myq.

Question 1.6. Here are two different recurrence relations for a sequence known
as the harmonic numbers.

1
let Hy =t andforn>1let H, =H,_ + o
Let H] = 1, and for n > 1 let

1
H',,’:E[H;’_1+H;,’_2+-~+H’1']+1.

Determine the first five values of H;, and Hj,.
Question 1.7. Let C, =1, and for n > 1 let
C,=CCp +CiC n 4+ +C,_Cy.
Determine the first five values of C,. These are known as the Catalan numbers.

This chapter will present techniques to discover and verify formulas for the
nth term of a sequence given an initial segment and a recurrence relation.

EXERCISES FOR SECTION 1

1. Give an example of a function that is not a sequence. Give an example of a
sequence that is not an integer sequence.

2. Which of the following prescribes a sequence’
(a) 2,4,6,8,....2n,....
(b) fo=3n—1L

342

7:1 BEGINNINGS OF SEQUENCES

{¢) g¢,=1/n -
) h,=+n
1
n3 — 14n” + 64n — 90
(f) G,=1.G,=2and G, =G, +2G,_, forn > 3.
(9) H,=H,_, +H,_,.
(k) A list of all positive integers that are perfect cubes.
(i) The set of all real numbers.

(& fu=

3. Which of the sequences in the preceding problem are integer sequences?

4. Match the following initiai segments of sequences and formulas:

(@ 1 3 12 60 360 - @) f,=n>—6n+38
b)) 3 3 6 9 15 24 - (i) f, =n* —6n+ 10
(¢©) 2 4 8 14 22 32 - (i) f,=n*+n-2
@ 4 1 01 4 - iv) f=n"—n+2
&) 1t 4 10 20 35 --- (v) f, = 2F,, where F is the nth
Fibonacci number

(fy 0 2 6 14 30 --- (vi) f, = 3F,
@ | 8 27 64 125 - (vii) _;;,:2('1)
S 21 25 - (viii) f, =2" —

. . n+2

(IX) jn"< 3 >

x) fy=n

(xi) fp={n+ 1)}/2
(xii) f, =2n!

5

(xiii) f, = n’

(xiv) f, = (n — 3)?

(xv) [, =3n"
(xvi) /, = nl
(xvii) f, = n’
(xviii) f, =2"""

(xix) f,=2"-2
(Xx) fn - (_ 1)"_1 . 3"“1

(xxi) f, = (n> —n)/2

S. For each of S,, Ss5. S4, Sg, and Sy in Question 1.2 find a formula among
those listed in Exercise 4 that generates the sequence.

343

7 RECURRENCE RELATIONS

10.

.

12.

13.

344

For how many of their first entries do f, = n® — 31~ + 2n and g, = n* —
13n® + 56n* — 92n + 48 agree?

The recurrence relation F, = F,_, + F,_, produces the Fibonacci numbers
with the initial values F, = F, = 1. Give an example of initial values that pro-
duce a different sequence. Then find initial values that produce some Fibonacci
numbers, but not all of them. Characterize the initial values that produce a
sequence whose entries are each a Fibonacci number.

Define the extended Fibonacci numbers by G, =1, G, = 1, G; = 2, and for
n>3

Gn = Gn—l + Gn—?, + Gn~3'

Are the following statements true or false about G,?

(i) Forn=2.G, = (f) + 1.

(ii) Forn>3,G, #F,.

(iii) G, 1s a Fibonacci number, but not necessarily F,.
(iv) G,=F,+G,_3forn>3.

{v) G, = 02",

Here is a famous sequence of letters; identify the pattern:
ot t f f s s e nt e

Find two functions f and g such that f, =g, =3 and fy =g, =73, but
f2# go-

For ecach of the following, find a formula that expresses the nth term f, as a
function of n:
WmfH=4L5=fi_i+2lra>1
() fi=2f,=fi-1+2n—1lforn> 1
(i) fy=1.f,=/fi—1 +2nforn> L

Verify that for n=1.2,...,5 H,=1+(1/2)+ -+ (I/n) satisfies both
recurrence relations in Question 1.6. Use induction to show that this formula
works in general.

If H, is the nth harmonic number, then show that

14.

15.

16.

17.

18.

19.
20.

. Although the Bernoulli numbers start out small, the even ones grow very

7:1 BEGINNINGS OF SEQUENCES

Explain why for every positive integer M there is an integer N such that
H, = M for all n > N. Show also that

H:m_\l < m.

Let H, be the nth harmonic number. Show that

H, <

n =

(n+1)

in two different ways: (i) by induction using the recurrence relation for A,

and (ii) using the formula for H, given in Exercise {2.

liog(n}|

Show that 1 + >

<H, <1+ {log(m] for n>0.

The Catalan numbers of Question 1.7 satisfy the formula

Verify this for n < 5.

n

1

n

2n—12
<n—1>'

1 /2n—2\ . .
Show that " (ne) is always an integer.

The Bernoulli numbers are defined by B, = | and for n > 0,

l + 1 [
an" " Bn—1+ n+' Bn—7+'“
n+1i\n—1 n—2 -

Determine the next five values of B,.

Check that B, = By =0.

Find the first Bernouili number that is greater than 1.

quickly. It can be shown that

and that

o((2n))

By = 2

(Zn)ln *

= O(lBZn“

345

7 RECURRENCE RELATIONS

Use the bounds on n! derived from Stirling’s formula (in Section 3.4) to obtain
bounds on the growth rate of [B,,|.

7:2 ITERATION AND INDUCTION

In this section we begin to explore ways to deduce a formula for a sequence given
a recurrence relation that the terms of the sequence satisfy.

When we look at the London subway puzzles or the sequences S, to S, listed
in the previous section, we can, without too much difficulty, find patterns in the se-
quence entries. We found that the sequence S5 satisfies the recurrence relation,

a, =da,_ +(n—1), n> 1l (A)
In Question 1.4 you determined that for S,

an - an—k + 1’
and for S,

a,=2a, .

Here is more precisely what we are looking for.

Definition. Suppose that § is the sequence

a

S:ay,a5,d3,. .. dyye ...

If the nth term of S can be expressed as a function of previous terms in the
sequence:

dnz.f(alﬂaZw ~~san—1); (B)

then equation (B) is called a recurrence relation, and we say that the sequence S
satisfies that recurrence relation.

The function in (B) may depend on only some of the previous entries or it may
depend upon ail of them. The former happens frequently, but Questions 1.6 and
1.7 illustrate the latter possibility.

In a sense, once we have found a recurrence relation underlying a sequence
we are done. We can use this relation to find the next {or any subsequent) term.
However, it might get tedious to calculate uyqyq. It is important to look for a
formuia that would give us u,, directly.

346

7:2 ITERATION AND INDUCTION

Example 2.1. Let S, be the sequence
Si0: L34 711,18, ..,

where, like the Fibonacci numbers, each term is the sum of the preceding two
terms. Thus a sequence is not completely specified by its recurrence relation.

Question 2.1. Find recurrence relations for the sequences S¢:1,3,7,15,31,...,
and So:1, —3,9, —27,81,.... In each case, find a different sequence satisfying the
same recurrence relation.

Once we have enough initial values of a sequence together with the recurrence
relation, the sequence is determined. For example, if a sequence begins with a; = |
and g, = | and then obeys

Ay = Ap_y + 0y, (C)

we get the Fibonacci numbers; however, if a; = | and a, = 3 then the sequence
Sy results.

Definition. Let k be the least integer such that once values are assigned to
dy,aq,. . . .0, then (B) prescribes a unique value for each «, with n > k. Then the
values of aq,a,,...,q, are called the initial conditions of the recurrence relation.
We say that the recurrence relation together with its initial conditions generates
the sequence

S:a,0q,....4,,. ...
Typically, a recurrence relation wiil be given in the form

a, = flay,.. . d,_) for n > k,

where k is some fixed integer. The bound “n > k” specifies the range over wnich
the recurrence relation holds, and the initial conditions that must be assigned are
the values of a,,a,,..., and q,.

Example 2.2. The recurrence relation (A) requires only one initial condition. the
value of ay. If ¢y =0, the sequence generated is that given in Ss. If ¢, = 2. the
sequence generated is

2,3,5,8,12.. ..

(which is not a subsequence of Fibonacci numbers!). The recurrence relation

Ay = Uy g + dy_ forn >4

7 RECURRENCE RELATIONS

expresses a, in terms of two previous values but requires four initial conditions
before all values of the sequence are uniquely defined.

Question 2.2. In the recurrence relation a, = a,_, + a,.-,, why are fewer than
four initial conditions not enough to define g, for all larger n? f ¢y = u, = a3 =
a, = 1, find the first 10 terms of the sequence determined by this recurrence rela-
tion. Describe the resulting sequence. Then determine an explicit formula for a,,.

Question 2.3. For each of the following, determine the number of initial condi-
tions that must be assigned so that a unique sequence is generated:
(i) a,=na,_,
(i) a, =a,_.; +a,_;
(i) a, = 2ap,2}.

Example 2.3. Consider the recurrence relation (A) with initial condition «; = 0.
Repeated application of (A) will lead to a formula. Since a,_ | =a,_, + (n — 2).
substitution in (A) yields

gy =dy—r +n—2)+(n— 1) (D
Since a,_, = a,_ 3 + (n — 3), substitution in (D) yields
dy =0y 3+ —3)+n~2)+(n—1)
Continuing until we reach a, = 0, we get

dp=dy+1+2+ - +n-2)+(@n-1
=0+14+2+- - +mn=-2+mn-1

_n(n— 1)

PR (see Example 2.3.2)

a formula for the nth term of the sequence Ss.

The process used in Example 2.3 is known as iteration and in straightforward
cases will lead to a formula for the sequence.

Question 2.4. Use iteration on each of the following recurrence relations and
initial conditions to obtain a formula for the sequence they generate:

(1) a, =na,_, forn>1,ua, =1

(i) by=>b,y +2forn>1bh =1

It seems clear that the formulas we come up with using iteration are correct,
but to be certain we need to use induction. In Example 2.3 we decided that
a, = n(n — 1)/2: now we prove that this formula is correct.

348

7:2 ITERATION AND INDUCTION
Example 2.3 (continued). Here is an inductive proof.
Theorem. a, = n{n — 1)/2 satisfies (A) with initial condition a, = 0.

First the base case: a; =1 -0/2 =0. We want to use the assumption that
a, = k(k — 1)/2 to prove that

k+Ok+1=1 (k+ Dk

Qe = 3 =

2
To accomplish this, we begin with the recurrence relation:

Ay =ap + K

k(k — 1
= ~(—~——) + k by the inductive hypothesis

k — 1
= kl:(3) + l} by arithmetic
_ Kk + 1)

B

just as we wanted. -

Question 2.5. Prove by induction that the formulas you obtained in Question 2.4
are correct.

Definition. A recurrence relation is called homogeneous if it is satisfied by the

sequence that is identically zero (i.e., 4, =0 for all n). Otherwise, it is called
inhomogeneous.

Example 2.4. To test whether a recurrence relation is homogeneous, replace every
a; with zero and see if, for all n, a valid identity remains. For example, a, =
4, + d,-— > becomes 0 = 0 + 0 and so is homogeneous, but a4, =a, | +(n -~ 1)
becomes 0 = 0 + n — | and is consequently inhomogeneous.

Question 2.6. Which of the recurrence relations of Questions 2.3 and 2.4 are
homogeneous and which inhomogeneous?

Our only suggestion for solving inhomogeneous recurrence relations is the
method of iteration and induction. If that fails, then it is time to consult a book
specializing in recurrence relations.

349

7 RECURRENCE RELATIONS

How well does iteration and induction work on homogeneous recurrence
relations? Let’s try to use it to obtain the formula for the Fibonacci numbers
knowing that they satisfy (C) with initial conditions ¢, = a, = L. Since a,_ | =
a,_,+a,. 5, and a,_, =a,_; + d,.,, we substitute these into (C) to obtain

Ay =ty_5 + 20,3 + 4. (E)

No formula is yet apparent, so let’s keep substituting in the right-hand side of (E)
using

n—2 = dy-3 T dy—g;

pe3 = dy_y T+ Ay,
and

Up—g = lp-5 T dy—sp

We get

n=Gp_3t dy_y+ Aay_g +dy_5) +dy5+ a4y

=d,_ 3+ 3a, 4+ 36,5 + ay -

Still no formula has emerged, although the coefficients seem familiar. In fact, con-
tinuing in this vein never leads to the correct formula.

In summary, we have learned one technique that sometimes obtains a formula
for a sequence. Given a sequence we first find a recurrence relation that it satisties.
Then we try iteration and induction to derive a formula for the sequence and to
prove it correct. This technique is most likely to work for inhomogeneous recur-
rence relations. In Section 5 we shall use this technique to solve recurrence relations
related to algorithms from Chapter 6. If iteration does not work (easily!) on a

homogeneous recurrence relation, then we can use the techniques of the next
sections.

EXERCISES FOR SECTION 2

1. Write down three new recurrence relations and specify the number of initial
conditions. Which are homogeneous?

2. Here are two recurrence relations and initial conditions:
) ¢, =2, forn>1c¢ =1
) d,=d, | —d,_,forn>2d, =1.dy=2.

350

7:2 ITERATION AND INDUCTION

For each. find different initial conditions that produce a sequence that i3 a
subset of the original sequence. Then find initial conditions that produce a
sequence that has no number in common with the original sequence.

For each of the following, determine the number of initial conditions:
() a, = 2a,- 14,

() a,=a,_>, —a,_3

(iii) a, = a, + 2"

3a,; if 3 divides n
(iv) a4y = {2a,_13 i 3 divides (n — 1)
-3 if 3 divides (n — 2).

. Use iteration on each of the following recurrence relations to obtain a formula
for the sequence they generate:

) b,=2b,_,forn>1b =1

(ii)c,=c,_,+C2n—2Jorn>1¢; =0

(iii) d, =2d,_, +2forn>1,d =1
(iv)e,=¢,_,+@n—1Nforn>1e =1

™ fu= o +3forn>1, f, =3

(vi) g, = gp- + k for n > 0 and k constant, gy = 1.
i) hy=h,_ + (=" taforn> 1, h =1
(viii) j,=(n —2)j,_, forj>2,j, =5 j, = 10.

(ix) k, = (4n* — 2n)k,_, for n > 0, kg = L.

x) =1, l,_sforn>21 =1,=2

xi) my=m,_ +(n—) forn>1,m; =0.

Prove by induction that your formuias in the preceding exercise are correct.

Notice that if the formula for the ath term of a sequence 1s known, then it is
easy to detect recurrence relations for the sequence. For example if a, = al,
then a, = na,_ . Explain why the following equations give a means of finding
recurrence relations from formulas:

An

dp = . An—1»
n— 1y

Uy = Ay + Ay — dy- 1)'

Each of the following formulas generates an integer sequence. For each ind
a recurrence relation that is satisfied by the sequence.
@) a, =nn —).
(i) a, =2n — L.
(iii) a, = 2" + 3"
(iv) a, = 2" — L.

351

7 RECURRENCE RELATIONS

8.

10.

11.

12.

13.

14.

15,

352

Find recurrence relations that are satisfied by the sequences formed from the
following functions:

(i) 4, = n* —6n + 8.

(ii) a, = nl/15!,

(iii) a, = n!/[151(n — 15)!] for n > 14.
(iv) a, = <H) where j is a fixed integer between 0 and n.
J

(v) a,= n® 437 +3n+ L

Which of the recurrence relations in Exercises 2, 3, and 4 are homogeneous
and which inhomogeneous?

Sometimes iteration works on homogeneous recurrence refations. Use this
technique to find formulas satisfying the following:

(i) a,=a,_;forn>14a; =1

(i) b,=2b,_forn> 1 b =2.

Then prove that your formulas are correct.

At the end of this section we saw that the Fibonacci numbers satisfy all the
following equations:

Fn:anl + Fyoas
Fn = Fn‘Z + 2Fn—3 + anéh

and
Fn = Fll“3 + 3Fn—4 + 3Fn—S + Fn—()'

Find a similar expression for F, in terms of F,_,, F,_s,...,F,_ 4. Then for
k, an arbitrary positive integer less than n, ind and prove a formula that
expresses F, in terms of I, _, and smaller Fibonacci numbers.

(i) Suppose that T, = Ty, +2forn> 1. T, = 1. lf nis a power of 2, use
iteration to deduce a formula for T,. Is this formula also valid for values
of n that are not powers of 2? If so. prove your result; if not, find and
prove a formula that is valid for these values of n.

(ii) Repeat for S, = 28,5, for n > 1,5, = L.

(iii) Repeat for U, = QU+ 2forn> LU, =2
Given n lines in the plane no two of which are parallel and no three of which
intersect in a point, how many regions do these lines create?

Let H,=H,_ +H,_,+1 for n>2 H,=H,=1. Find H,,.. . .Hg

Guess a relationship between H, and F, then prove it by induction.

LetQ,=0Q,-,+0Q,_>+2forn>20,=0Q,=1FndQ,,....04 Guess
a relationship between @, and [, then prove it by induction.

7:3 LINEAR HOMOGENEOUS RECURRENCE RELATIONS

7:3 LINEAR HOMOGENEOUS RECURRENCE
RELATIONS WITH CONSTANT COEFFICIENTS

The title of this section is 4 mouthful that describes the kind of recurrence relation
that the Fibonacci numbers satisfy.

Definition. A recurrence relation of the form
dy = kya, | ¥ kya, -+ +ka,_, forn > r, (tA)

where ky, k,,. ...k, are constants is called a linear homogeneous recurrence relation
with constant coefficients. We denote these by LHRRWCC. We assume that k, # 0
and call » the order of the recurrence relation.

Here’s what all these words mean. First linear relers to the fact that every
term containing an ¢; has exactly one such factor and it occurs to the first power.
We introduced homogeneous in the previous section. The words constant coeffi-
cients mean that each of the k; s is a constant. In contrast, the recurrence relation
a, = a_, is not linear aithough it is homogeneous, and the recurrence relation
b, = nb,_, does not have constant coefficients. but it is a first-order linear homo-
geneous recurrence relation.

The sequences S. and Sg satisfy first- and second-order LHRRWCCs, re-
spectively:

.:2,4.8,16,. .. dy, = 2, forn>1

Se:1,3,7,1531,. .. a, =3a,_.; —2a,_, forn > 2.

{By the way, can you now guess a formula for the nth term of S,? If not, try
comparing S with S,.)

Question 3.1. Which of the following are LHRRWCCs? For those that are not,
explain why they [ail to satisfy the definition.
) a,=d,_, + lforn>1
(i) a, = dy_ 44, for n > 4.
(i) a, =a,-, + n? for n > 1.

Given a sequence that satisfies a LHRRWCC, we can find an explicit formula
for the nth term of the sequence. The derivation seems magical, so we begin by
working out the details for the sequences S, and Sg.

Example 3.1. The sequence S,:2.4,8.16,. .. satisfies the recurrence relation

dy = 2d, forn=>1, (B)

353

7 RECURRENCE RELATIONS

a first-order LHRRWCC, and also satisfies the formula g, = 2". Note that 2 is
the root of the equation

x—2=0

It is also a root of the equation obtained from the previous one by multiplying

every term by x" 1

or

n

XM= 2"

Q)

Notice the similarities between (B) and (C). One involves subscripts and as
while the other involves superscripts and xs. Is this coincidence?

Example 3.2. The sequence S¢:1,3,7,15,31,... satisfies the second-order
LHRRWCC

32

a, = 34, — 2a,_,, n>2, (D)
and has nth term-formula

a,=2"=1=2"—1"

a difference of two exponentials. Now 2 and 1 are roots of the equation

x—2x—-1D=0
or

P =3x+2=0.
Multiplying by X"~ %, we get

X=X A "2 =0
or

n n— 1

x" = 3x

~2x" 2 (B)
Again, notice the similarities between equations (D) and (E). These are not by
chance. We turn now to the theory that connects LHRRWCCs, polynomial equa-
tions. and their roots.

354

7:3 LINEAR HOMOGENEOUS RECURRENCE RELATIONS
Given a LHRRWCC (A} we create the corresponding equation
X d X kX" T - X =0
Next we divide through by the common factor x" ™" to get
kT — e — ko x — k, =0 (F)

Why do we do this? Because (F) will be helpful in soiving (A).

Definition. Given a LHRRWCC (A), the equation (F) is called the characteristic
equation of the recurrence relation. The left-hand side of the characteristic equation
is a polynomial (often called the characteristic polynomial) whose degree equals
the order of the recurrence relation. This polynomial has r roots q,¢,,....4q,

(either real or complex numbers) called the characteristic roots of the recurrence
refation.

Notice that no characteristic root g¢; is zero. This is because we assume in (A)
that k, is not zero. Thus x = 0 is not a root of (F).

Example 3.2 (continued). Using the recurrence relation for Sg;
a, =3a,_; — 2a,_,,
we form the characteristic equation as follows:

—_ -2
X"——‘—‘}X” 1"‘2)(:" 2
— -2
xn 1+2xn 20

x“-3x+2=0,

<
|
L

ro

which is the desired equation. In this case we easily find the characteristic roots,
since {as we saw before)

x*=3x +2=(x— DHx — 2).
Thus the characteristics roots are g, = | and gy, = 2.

Question 3.2. For each of the following LHRRWCC:s find the characteristic equa-
tion and the characteristic root or roots:
(1) a, = 2a,_,
(i) a, =da,.. | + 6a,_,
(iil) a, = 2a,_ | — dy—».

li

358

7 RECURRENCE RELATIONS

The next theorem demonstrates that the results of Examples 3.1 and 3.2 were
not just coincidence.

Theorem 3.1. Let g be a nonzero real or complex number. Then
a, =4

is a solution (also called a basic solution) to the recurrence relation (A) if and only
if ¢ is a characteristic root of the recurrence relation (i.e., a root of the characteristic
polynomial).

Proof. The sequence a, = ¢" is a solution to (A)
ay, = kl“n*l + kran—r
if and only if

qn — qun“l

+_‘_+qun—r
if and only if
qn—r[qr _ qur‘1 . k,] =0

Since ¢ is not zero, the last equation holds if and only if

g —kg ==k, =0

r

This last equation is true if and only if ¢ is a characteristic root of the recurrence
relation. P

Example 3.1 (continued). S,:2,4,8,16.. .. satisfies the LHRRWCC
dy = 2,4

which has (from Question 3.2) the characteristic equation
x-2=0

and characteristic root ¢4, = 2. By Theorem 3.1, ¢, = 2" is a basic solution to this
recurrence relation, and that’s just what we've known all along!

Example 3.2 (continued). We can now find {ormulas that satisfy the recurrence
relation

a,=3a,_y — 2a

n-—2- (D)

356

7:3 LINEAR HOMOGENEOUS RECURRENCE RELATIONS

By the previous version of Example 3.2 we know that the characteristic roots of
this recurrence relation are ¢, = 1 and ¢, = 2. By Theorem 3.1 both a, = 1" =1
and a, = 2" are basic solutions to the recurrence relation. But neither of these
solutions gives a formula that generates the sequence given by S,. Notice, however,
that if we were to use (D) with initial condition u; = a, = 1, then we would get
the sequence 1, 1,1..... and the formula for this is clearly g, = 1". If we were to
use the initial conditions a, = 2 and u, = 4, then we would get 2,4.8,. .. and the
formula for this is a, = 2", the other formula uncovered by Theorem 3.1. The point
is that had the initial conditions been different than they are in S, we might have
found the generating formula. We have more work to do in this example.

Our goal is to find a formula for a sequence generated by a given recurrence
relation with any set of initial conditions. The technique will be to combine basic
solutions.

Theorem 3.2. If f, and g, both satisfy the recurrence relation (A), then for any
constants ¢ and d so does

dp = ’an + dyn'
Proof. Since f and g are each solutions to (A), we have that

In=Fkifo—r + + ke fyop and
In = klgn—l ++ krgn—r'

If we multiply the first equation by ¢ and the second by d and then add them, we
get

ot dgn=clkifyy + 0+ kefuoy]
+ d[:klgnfl +o k"gnAr]
= kl["_/;l—- { + ‘l¢/n~ I] +o S+ kr[c/;l—r + a']-qn~—r]a

and this shows that ¢, = ¢ f, + d g, is a solution to (A). i

More generally, it can be proved by induction that if f} (7, .. o are all
solutions of (A), then so is

1 2 .48
an:(’.lfn_?‘(?_/n_‘h”'*'('sj;

for any constants ¢,...,c,. (See Exercises 14 and t5) In this event «, is said to
be a linear combination of the fs. Usually, the fs will be basic solutions.

357

7 RECURRENCE RELATIONS

Example 3.2 (continued again). Theorem 3.2 says that the basic solutions a, = 1
and a, = 2" to the recurrence (D) can be combined so that a, = ¢l + d2" is also
a solution for any constants ¢ and d. To produce a formula that yields the specific
sequence

Se:1,3.7, 15,31, ..,
we need to find the correct values of ¢ and d. The sequence Sy comes with the

initial conditions a¢; = | and a, = 3. We use this information to find ¢ and 4. If
the correct formula for this sequence is given by a, = ¢l + 42", then we must have

l=a; =c+d2! =c+ 24,
and

3=a,=c+d2* =c+4d
If we subtract the first equation from the second, we get 2 = 2d. From this d = 1
and then ¢ = — 1. Thus a, = 2" — 1 1s a formula that meets the initial conditions

and gives a solution to the recurrence relation.

Question 3.3. Prove by induction that a, = 2" — 1 satisfies the recurrence relation
dy = 3a,_, — 2a,_, with initial conditions ¢, = 1 and a, = 3.

Here is a summary of when the procedure {ollowed in Example 3.2 works. It

does not succeed in all cases. Given a recurrence relation as in (A), we find the
characteristic equation

X' — kX" — k=0,

r

The general theory of equations tells us that this equation has r real or complex
roots, and so the equation can be factored into

X =q)x—qy) (x—¢,) =0,
where 44,¢,....q, are the roots. For example, we might get,
(x — D(x —2)=0, (x ~3)x—Mx —4) =0, or (x—Dx+1i)=0.
where i is the imaginary number, q:—l. [n the first and third examples the roots
are distinct, but in the second example the root 3 appears twice. It is then called

a multiple root and the root 3 is said to have multiplicity 2. It turns out that we
must treat the two cases differently.

358

7:3 LINEAR HOMOGENEOUS RECURRENCE RELATIONS

Theorem 3.3. Suppose that the LHRRWCC us shown in (A) has r distinct cbar-
acteristic roots ¢, qa,- - - »4,- Then every solution to (A) is a linear combination
of the basic solutions:

Ay =cy gy + oy + 0+ 04y (G)
where ¢, ¢4,. ... c, 4re constants.

The proof of this theorem essentially requires knowing that if all the roots of
(F) are distinct, then it is possible to solve r equations in r unknowns to find
the constants c¢,c,,...,c,. The equations are determined by substituting 1 =
1,2,....rinto (G). We see
ap=cqy + gy + 1+ 04,

2 2
ay =c¢1qt + €205+ + oy

a, = clq; + Cqu—’i +ooF CrQ:'

In these equations the unknowns are ¢y,...,c,. A complete proof of Theorem 3.3
requires knowledge of linear algebra and so is omitted.

Sometimes (like now) the arithmetic involved in solving for the constants ¢,
¢y, ..., wWill be simplified if we consider sequences that begin with a zeroth term,

J .
Stag,dq,. .., 0n,. ...

Any sequence can be transformed into this tvpe by working backward with the
recurrence relation to find a value for a, that is consistent. For example, look at
Example 3.2. Since
dy = 3an—1 - Zan—?.’
we want the value of a4 to be such that
a, = 3a,; — 2a, or J=3-1-2a,.
If we give a, the value of 0. then the sequence

$,:0,1,3,7.15,31.. ..

satisfies the same recurrence relation but with initial conditions ¢y = 0 and ¢, = 1.
It also has the same formula g, = 2" — 1. By beginning at 0, the arithmetic in
solving r equations in r unknowns might be easier. This can be especially con-
venient when doing smail examples by hand.

359

7 RECURRENCE RELATIONS

Question 3.4. Suppose the recurrence relations in Question 3.1 have the following
initial conditions:

(i) g;=2foralli<4
(iil) a; = L.

In each case determine a value for « that satisfies the same recurrence relation.

Example 3.3. The Fibonacci formula (at last!). Let’s use the machine we've just
built to discover the formula for the Fibonacci numbers that appeared out of the
blue in Section 4.4. These numbers satisfy the recurrence relation

Ay =y + Uy forn > |

with initial conditions ap =0 and a, = 1. The characteristic equation of the
LHRRWCC is

xT—x—1=0,

and this has distinct characteristic roots ¢, = (1 + /3)/2. which we called ¢, and
4, = (1 — y5)/2, called ¢'. Thus the general formula that solves this recurrence

refation is
I+ 5) 15\
U, = ¢ <-~-+7V > +d <*qﬁ\/->

N

cdp” + d(¢N"

|

for some constants ¢ and d. Notice that this looks like the Fibonacci formula
we had earlier, but we need to determine the constants ¢ and d from the initial
conditions. {Here's where beginning at 0 makes life easier.)

0=dag=cop? +dd)° =c+4d
l=a, =cd + d(H}!
T+JS 1=4s
= ¢ +,7\/ + d ,’\/ : .
From the first equation we get that ¢ = —d. Substituting into the second cqua-
tion, we get that
! —1
¢ = —= Jnd d = —=
v V3

360

7:3 LINEAR HOMOGENEOUS RECURRENCE RELATIONS

In conclusion we have the formula for the Fibonacci numbers as

i

a, = —

N

Question 3.5. For each of the following recurrence relations find the formula for
the sequence of numbers generated if the characteristic equation has distinct roots.
(These are recurrence relations from Question 3.2.)

(i) a,=a,_, +6a,_,forn>1ay=2a; =1
(i) a,=a,_ +6a,_,forn>14aq=1a; =3.
(i) g, =2a,_ —da, > forn> 1, ug=2,a; = —1.

In the next section we consider LHRRWCCs whose characteristic equations
have muitiple roots. The techniques will be simiiar.

EXERCISES FOR SECTION 3

1. (i) Give an example of a LHRRWCC.
(i) Give an example of a linear homogeneous recurrence relation with co-
ctficients that are not constant.
(ili) Give an example of a linear recurrence relation with constant coefficients
that is inhomogeneous.

(iv) Give an example of a homogeneous recurrence relation with constant
coefficients that is not linear.

2. Which of the following are LHRRWCCs? For those that are not, explain
why they fail to satisfy the definition.
(i) a,=2a,_(forn>1
(i) gy =2a, , + 1 forn> L
(i) u, =u,_, —ua,_,forn>4
(iv) a, =a}_, + 3a,_, for n > 2.
(V) 4y =a, , +uy for n>>1and a; a constant.
M) u,=d,_y—d, 3+a, 1—a, ¢ lorn>4
(vii) a, = 6a,_, — a,_, + 6a,_; for n > 3.
For each LHRRWCC determine its order and find its characteristic
equation.

3. Let f(x) be the fourth degree polynomial
S =ix — Dix + 2:x — 3H(x + 4).

What are the roots of f? Are they distinct?

361

7 RECURRENCE RELATIONS

4.

10.

362

Find LHRRWCCs with each of the following characteristic equations:
(i) f(x)=(x — D{x + 2)(x — 3).
(i) g(x) = (x + 3)(x —).
(i) h(x) = (x — Plx + 3.
Find a cubic polynomial whose roots are 5, —1, and 3. Then lind a
LHRRWCC with this characteristic polynomial.

(i) For the LHRRWCC of the preceding exercise find initial conditions such
that a, = 5" is the formula for the sequence produced by the recurrence
relation.

(ii) Repeat part (i) finding initial conditions for the formula g, = 5" + (—)",

(i) Repeat part (i) finding initial conditions for the formula a, = 5" +
21y = 3"

Prove that the quadratic equation
x* +bx+c¢=0

—b+ (b? —4c —bh— Jb* —4c
has roots S and R

2

Find a formula for the roots of the equation
x* 4+ bx* +c=0.

Suppose that the recurrence relations in Exercise 2 have the following initia

conditions. Find values of a, that satisfy the same recurrence relation.
(i) a, =0.

@) a; = L.

(iii) ady = dy = 1, Ay = dy = :

Giv) ay = —l.a, = =2

V) a4y =3.

(M) ay =3,dy= —la3= —F, 4y = 1
i) ¢, =1, a, =2, a3 =4

Find the characteristic equation and characteristic roots of the following
relations:

(i) u, =4a,_, —4a,_,.

(i) a, = —u,_ .
(iii) ¢, = Sa,_,.

(iv) u, = —8a,_;.

() a, =20, , — dy_4.
Which of the above relations have distinct roots and which have multiple
roots?

11.

12.

13.

14.

15.

16.

7:3 LINEAR HOMOGENEOUS RECURRENCE RELATIONS

Is the following statement true or false?

If both a, = f, and 4, = g, are formulas that satisfy a given linear inho-
mogeneous recurrence relation with constant coefficients, then so is a, =
cf, + dg, for every choice of constants ¢ and d.

Either explain why this is true or find a counterexample.

If possible, for each situation listed give an example of a fourth-degree poly-
nomial with
(i) Four distinct roots.

(ii) Two distinct roots, one of which has multiplicity one and the other
multiplicity three.

(iii) Exactly two distinct roots, one of multiplicity one and one of multiplicity
two.

(iv) Two distinct roots, each of multiplicity two.

(v) One root of multiplicity four.

(vi) One root of multiplicity two and one root of multiplicity three.

Find a recurrence relation that is satisfied by both
(i) a,=1and a, = 3",

(ii) a, = (~1)" and g, = 2",

(iii) g, =2"and g, =3-2"+2 3"

Prove that if f,, g, and h, are three functions that each satisfy

Ay =kily_y +koty_5 + -+ ko, .
then for any constants c. d, and e, the function

Sy=cf,+dg, + ehy

also satisfies this recurrence relation.
Prove by induction (on j) that if f}, 72, ., f7 are j functions that each satisfy

Uy = Kqdy | + koay_y + -+ ka,_,,
then for any constants ¢,c5,. . ..¢;, the function

gn=cCofn+ Cofp Cj./'{;

also satisfies this recurrence relation.

Find a formuia for a function a, that satisfies the following recurrence rela-
tion with given initial conditions:

(i) u, = —a,_forn>0,ay=1.
(i) ¢, =4a,_,forn>1,4y=0,u;, = L.
(iii) ¢, = —8a,_yforn>2 uy=dy =u; =1L

363

7 RECURRENCE RELATIONS

17. The recurrence relation u, = a, | + dy—, — dy—3 With gy =2, ¢; = 1. and
a, = 4 has characteristic roots 1 and — 1. Show that the generating formula
is not of the form

S =cl™ +d(—1)"
18. The Lucas numbers are defined by L, = 1, and
Ly=F, . +F,_, forn>1,

where F, is the nth Fibonacci number. Find the first eight Lucas numbers.
Find a recurrence relation for the Lucas numbers and then find a formula for
L

n

19. Is the following proof correct? Explain your answer.
Theorem. For all positive n, L, = F,.

Proof (by induction): L, =F, =1. Assuming that the result is true for
n <k, we examine L, , -

Lyoy=L,+ L, from the recurrence relation found in Exercise 18
=F, +F. by induction

=F . by definition.

20. Suppose that T, = 12T, , — 35T,_, for n > 1 while To =0 and T; = 2.
Find a formula for T,.

21. How many n-bit binary sequences have no two consecutive zeros?

22. Suppose that the second Hoor of the firehouse has two poles to the tirst floor.
Suppose that every higher floor of the firchouse has five poles. Two of these
poles go down one tloor while the remaining three poles go down two floors.
If you slide down a pole that goes down two floors, you cannot get off at the
intermediate floor. How many different ways are there to get from the nth
floor to the first floor?

7:4 LHRRWCCS WITH MULTIPLE ROOTS:
MORE ABOUT RABBITS

We reconsider the rabbit breeding model from Chapter 4 that led to the Fibonacci
numbers. Suppose that cach pair of newborn rabbits produces cxactly one pair
of bunnies after one month and this is all of their offspring. If rabbits are still
assumed to be immortal, how many pairs of rabbits ure there at the end of cach

364

7:4 LHRRWCCS WITH MULTIPLE ROOTS: MORE ABOUT RABBITS

month? Let the number of pairs of rabbits at the end of n months be denoted by
h,.Thus b, =1.hy=2,by=3 (since only the younger pair produces a new pair
of bunnies), and b, = 3 + (3 — 2) = 4. In general. the number of rabbit pairs at
time # equals the number of pairs at time (n — 1) plus the number of new bunny
pairs produced in the year (n — 1). Thus
bn = bn—l + (bn~1 - bmv?_)

=2b, 1 —b,_> forn > 2, (A)
a second-order LHRRWCC with initial conditions b, = 1 and b, = 2.
Question 4.1. Give an inductive proof that b, = n.

Although we have the solution to this rabbit problem, we continue the exam-
ple, since it illustrates the case of LHRRWCCs with multiple roots. The recurrence
relation (A) is a LHRRWCC whose characteristic equation is

X —2x+1=0 or (x — 1)* =0.

Thus 1 is a root of multiplicity 2, and from Theorem 3.1 we know that b, = 1" == {
is a basic solution to (A). This does not satisfy the initial conditions of the current
problem. Since there dare no other roots to the characteristic equation, it must be
the case that the solution to the recurrence takes a form different from that of :he

previous section. Here is the pertinent result for characteristic equations with
multiple roots.

Theorem 4.1. Suppose that the following LHRRWCC has a characteristic root
g of multiplicity m > 1:

ay = kjdy_ | +kaay 5+ K, {B)

for n > r. Then the following are (basic) solutions to (B):

Uy, = ¢

a, = ng"
,

d, =n~q"

Note that cach root of (B) supplies as many basic solutions as its multiplicity.
Thus there will be a total of r basic solutions to {B). Once again the number of
basic solutions equals the order of the recurrence relation.

7 RECURRENCE RELATIONS

Proof. We prove the result for m = 2. Theorem 3.1 gives that g, = ¢" is a solution
to (B). Thus we must show that

a, = ng"

is also a solution. If 1(x) denotes the characteristic polynomial of the recurrence
relation (B), set p(x) = t(x)x" " ". Thus

plx) = x" — [klxn—l + kzxnw.’_ o kX"

Since ¢ is a root of multiplicity 2 for t(x), the characteristic polynomial, g is also
a root of multiplicity 2 for p(x). Set

plx) — plg)
X) = ———",
X~

{For those of you with a calculus background, D(x) is the difference quotient that
leads to the derivative.) Since ¢ is a root of p(x), the quantity p(g) is just a fancy
way to write zero. Furthermore, since ¢ is a multiple root of p(x), when we divide
(x — ¢) into p(x) we are left with a polynomial that still has ¢ as a root. Thus
D(g) = 0. This is the heart of the proof. What is left is an algebraic rearrangement
of D(x) after which we substitute x = ¢ and find that a, = n - ¢" is a solution of (B).
First we collect the terms from D(x) that have the same exponent to get:

X"— n »,n—l“_ n—1
D(x) = 4 _kl‘ a ...
X —9q X—q
X"y
~ T (©)
X—yq

Question 4.2. Construct D(x) if p(x) = x> — 2x + L. Be sure to leave the charac-
teristic root as ¢ (rather than substitute its value). Simplify D(x) by dividing x — ¢
into each term. (Here n = r = 2))

We simplify (C) term by term. From Exercise 3 in the Supplementary Exer-
cises for Chapter 2 (or by multiplying out the right-hand side), we note that

n

R =)| A R AN R Ly |

Notice that there is a convenient factor of x — ¢ in the above expression and that
the exponents of each term sum to n — 1. Thus

n=1-=i i

. SR SR N ¢ g (E)

366

7:4 LHRRWCCS WITH MULTIPLE ROOTS: MORE ABOUT RABBITS

The right-hand side of (E) is just one term in the expansion of D(x). We eventuaily
want to compute D(q), so we substitute x = ¢ into the right-hand side of (E) just
to see what happens. Every term becomes ¢" ~'. Since the exponent on x decreases
from n — 1 to 0 in steps of 1. there are n terms and so the total contribution from
(E) will be ng" " *.

Next we simplify the general term in (C):

kAx",l—qn___]: “kj [xn—j_qrr-j]
J x—g .w‘c-q
—k; ; e
:‘(_Jq(x—q)[x"-rl+"'+x" i—1 lql+...]~ (F)

Notice that there is a convenient factor of x — g in this expression and that
the exponents of cach term sum to n — j — 1. As above we substitute x = g into
the right-hand side of (F). Every term becomes ¢" /~'. Since the exponent on x

decreases from n — j — 1 to O in steps of 1, there are n — j terms and so the total
contribution from (F) will be

—kjn = jyg" (G)
Thus Dig) contains a term (G) for each j with 0 <j < r. Since D{g) = 0, we get
0=ng""" —[kn—=Dg" >+ 4 kn—jg" " +--] (H)
We multiply both sides of (H) by g and rearrange the terms to obtain
ng" =kin—Dg" P+t kiin—j)g" T+ (I)
Finaily, (I) is the same as (B) after substituting
=0 ="

for j=0,.... r. Thus a, = ng" is a solution 1o the original recurrence relation.

We stop the proof of Theorem 4.1 with the completion of the case m = 2. For
m > 2 a proof using calculus is outlined in Supplementary Exercises 19 and 20.

Example 4.1. We analyze the rabbit recurrence (A). The characteristic equation is

(x — 1 =0,

367

7 RECURRENCE RELATIONS
so by Theorem 4.1 both b, = | and b, = n1" = n are basic solutions to this recur-
rence relation. The initial conditions b; = | and b, = 2 show that the second

solution, b, = n, is exactly the one we want.

Question 4.3. Find the characteristic equation and root or roots of the second-
order recurrence relation

b,=4b,_, —4b,_, forn > 2.
Check that both b, = 2" and b, = n2" are solutions to this.
Question 4.4. Show that the characteristic equation of
Cp= =3¢,y — 3,1 —Cy_3 forn=3

has — 1 as a characteristic root of multiplicity 3. Check thateachof ¢, = (= 1)",¢, =
n{—1)" and ¢, = n*(—1)" is a solution to this recurrence relation.

Example 4.1 (altered). Suppose that we want to solve the recurrence relation
given in (A) with initial conditions b, = 1 and b, = 3. As before, both b, = | and
b, = n are basic sclutions. Theorem 3.2 (which isn’t restricted to recurrence rela-
tions whose characteristic roots are distinct) tells us that

b, =cl +dn

is also a solution for all constants ¢ and d. Using the initial conditions, we find that

et +dl
¢l + d2.

hy
b

!
3

i

12

i

Subtracting the first equation from the second, we deduce that
¢c= —1, d =2, and by =2n-~1

Question 4.5. Find a solution to the recurrence relation of Question 4.4 with
initial conditions a4y =1, u; = —2 and u, = .

Finally, we reach the generalization of Theorem 3.3 (which we also do not
prove).

Theorem 4.2. Given a sequence S:dq,....d,... whose terms satisty a
LHRRWCC of order r, then u, is a lincar combination of the r basic solutions
given by Theorems 3.1 and 4.1.

368

7:4 LHRRWCCS WITH MULTIPLE ROOTS: MORE ABOUT RABBITS

Example 4.2. Suppose that we have a recurrence relation of order 6 (so r = 6
and the characteristic equation has degree 6) and suppose that we (luckily) find
that the characteristic equation factors as

flx) = (x — D3(x + D x — 7).

Then by Theorem 4.1 we have the following basic solutions to the recurrence
relation:

,
a, = 1" a, =nl" a, =n"1",
a, = (=1 a, =n(—1)",
and
a, = 17"

Using Theorem 4.2, we see that every solution is of the form
ap = 1l 4 can + e3n? 4 cal— D" + csnl— 1 + ¢l 7™

In a concrete situation we would use the six initial conditions and solve six equa-
tions to find ¢q,....cq.

Exercises 9 through 12 present other variations of the rabbit-breeding model.
However, the study of LHRRWCCs has not been developed for the interest of
rabbit breeders. There are important uses of recurrence relations in combinatorics
and in computer science. Often the complexity analyses of recursive algorithms
lead to recurrence relations that must be solved. In the next section we'll meet a

type of recurrence relation that occurs frequently in the “divide-and-conquer”
algorithms.

EXERCISES FOR SECTION 4

1. Write down equations of degree 2. 3, and 4, each with a multiple root.
Specify the root and its multiplicity. Then write down an equation that has
one root of multiplicity 1, one root of muitiplicity 2, one root of multiplicity
3. and no other roots.

2. Which of the following equations have multiple roots?
(i) fix)=x*—1.
(i) f(x)= x>+ 2x+ L.
(i) f(x) = x? + x — 12,
(iv) f(x)= X —6x + 9.
(V) f(x)=x*=2x" + 1.
(vi) f(x)=x*+2x" + L.
4

(vii) f(x)=x* +2x% — 3x7 —dx + 4

7 RECURRENCE RELATIONS

3. For each of the functions in Exercise 2 write down a recurrence relation with
characteristic equation f(x) = 0. Then find a formula that satisfies the recur-
rence relation.

4. Show that the recurrence relation

a,=10a,_, —40a,_, + 80a,_; — 80a,_, + 32a,_5

has the characteristic equation (x — 2)° = 0. Then check that a, = 2", a, = n2".

A : .
a, =n*2" a, = n*2" and a, = n*2" all satisfy the recurrence relation.

5. For each of the following, find a recurrence relation with initial conditions
that has this as a solution:
(i) a, = 3" + n3".
(ii) a, = 3"+ 2n3".
(iii) a, =2n — 1 + 2"
@iv)a,=1+(-1)+2"
(v) ay = 43)" + 8n(3)".
6. For each recurrence relation in list A find its characteristic equation in list B:
List A

(i) a, =5a,_, + 4a,_.,.

(i) a, =Ta,_ | — 17a,_> + 17a,_3 — 6a,_ 4.
(iii) a, = 8a,_, — 234, _, + 28a,. 3 — 12qa,_,.
(iv) a, =9a,_, —29a,_, + 39a,_5 — 18a,_,.
vy a,=6a,_, —13a,_,+ 12a,_; — 4a,_,.
(i) a,=5a,_, —9a,_,+Ta,.3—2a,_4.
(vii) a, = 7a,. | —18a,_, +20a,.3 —8a,_,.,

List B

(@ f)=x*—x+x?—x+1L

(B f(x)=(x — D(x = 2)(x = 3)(x — 4).
(¢) f(x)=x*+ 10x> + 25x% + 20x + 4.
(d) flx)=x*—8x> —23x? —28x — 12.
(€) f(x)=x* —8x> +23x? —28x + 12.
(f) f(x)=(x = D*(x = 2)*(x — 3).

() f(x)=(x+ D*x + 2%

(B) f(x)=(x+ D*x— 27

(i) fx)=(x — D*x— 2>~

() flx) = x* + Tx> + 18x? 4 20x + 8.
(k) f(x)=(x—)x — 2.

() flx)=(x - Dix — 3~

(m) flx)=(x— 1)*(x—2).

(M f(x)=x>+7x> —17x? + [7x — 6.

370

10.

11.

12.

7:4 LHRRWCCS WITH MULTIPLE ROOTS: MORE ABOUT RABBITS

(0) flx)=(x— D(x + D{x —2(x + 2.
(p) flx)=(x — 1)*x —2)x — 3).

() f(x)=(x— Dx —2x — 4>~

(1) flx) = (x — 2)(x — 3)x — 9~

(s) flx)=

(x — 2)(x — 3)*(x — 4).
1) f(x)=(x = 2x — 3)x — 4).

() flx) = (x — D(x — 2)(x — 3)%

Then for each recurrence relation in list A find the most general form of a so-
fution to it.

Use Theorems 4.1 and 4.2 to find solutions as general as possible to the
following recurrence relations:
() an =20, —a,_».
(i) ap = 3a,. ¢ —3a,->+a,_3.
(iil) ap = 4a,_| — S5a,_, + 2a, ;.

Find a formula for the solution of the following recurrence relations:
() awn=13a,_ —3a,_,+a,-yforn>4withayg=a; =a, = L.
(i) ap=4a, ., —5a, 5 +2a, .y forn>4 withap=3,a,=4and a» = 7.

Suppose that at the end of each month a rabbit pair produces a pair of
bunnies, but that after two sets of offspring they produce no more. Write
down the recurrence relation with initial conditions that describes this model,
beginning with one pair.

Suppose that at the end of one month a rabbit pair produces one pair of
bunnies, but that during the next month the (older) rabbit pair dies. Beginning
with one pair, write down the number of rabbit pairs at the end of each month
for the first five months. Then write down a recurrence relation for the num-
ber of rabbit pairs at the end of each month.

Suppose that at the end of each month a pair of rabbits produces one new
bunny pair, but that rabbits die during their third month after having pro-
duced bunnies twice. Write down the recurrence relation that decribes ‘his
model and the initial conditions assuming that we begin with one pair.

We return to the original Fibonacci model of rabbit breeding: A pair of raboits
requires a month to mature to the age of reproduction and then they mate
and produce two bunnies. We now do not assume that these are one male
and one female, and furthermore we assume that whatever sex they are, a
mate s found for each from another warren of rabbits. Thus at the beginning
of the first and second months we have one pair, but at the beginning of the
third month we have three pairs of rabbits, one old and two new young pairs.
How many pairs do we have at the beginning of the fourth and fifth months?

Write down a recurrence relation with initial conditions that describes this
model.

37

7 RECURRENCE RELATIONS

13. Foreach of the following determine whether a, = O(2") and whether 2" = O(a,,):
(i) an=12a, . —ay_3ay=LlLay= 2
(i) a, =2a,_,ay =1
(i) u, =4a,_, —4a,_5,a0 =0,a, = 2.
(iv) ap=a,_ | +a,_>.dy =dy = L
14. 1s the following true or false? Explain.
A formula a, that satisfies a LHRRWCC will always be exponential in
n: that is, there will always be constants | < r < s such that +* = O(q,) and
1, = O(s").

15. Find solutions to the following recurrence relations:

an=4a,_, —a,_ ,forn>1withagy=0and a, = |.

by=4b,_ | —b,_ ,forn>1withby=2and b, =4.
16. Prove by induction that the sequences a, and b, of Exercise 15 satisfy

bn Flyyy T Uy,
and

1
Apvn = Amiy+ 1 — Gy 1Un.

7:5 DIVIDE-AND- CONQUER RECURRENCE
RELATIONS

The goal of this section 1s to formulate and solve recurrence relations that generate

the complexity functions of divide-and-conquer aigorithms like the searching and
sorting procedures from Chapter 6.

Example 5.1. [n the algorithm BINARYSEARCH we are given an ordered array
of length n and an clement S to search for. We begin by comparing S with the
middle entry of the array. If these are not equal, we search half of the origipal
array. This leads to the recurrence relation

B, =3+ By, for n > 1, B, =4, (A)

where B, denotes the maximum number of comparisons needed in BINARY-
SEARCH with input an array of n elements. (Reread Section 6.2.)

! For an application of the resuits of Exercises 15 and 16 to the Lucas—Lchmer test for Mersenne

primes. see D. E. Knuth, Seminumerical Algorithms, Volume 2 of The Art of Computer Programming,
Addison-Wesley, Reading, Mass.. 1973, pp. 356-359.

372

7:5 DIVIDE-AND-CONQUER RECURRENCE RELATIONS

Question 5.1. Explain why (A} is a recurrence relation for B,. Use (A) to obtain
B, for n=2,3,4, and 5. Compare these numbers with the derived complexity
result, 3| log(n)| + 4.

Example 5.2. The idea behind BININSERT is similar to that of BINARY-
SEARCH. The input to the procedure is an array of n + 1 entries with the first
n in increasing order. The goal is to insert the (n + 1)st entry into the correct
position of the array. Again we compare with the middle entry and then search
half of the array. We repeat this process until we find the correct position. After
shifting elements, the (n + 1)st entry is inserted in the correct position.

This leads to the recurrence relation

Cp=Cpyz+2forn>1 C, =4, (B)

where C, is the number of comparisons performed by BININSERT on an array
of length n. [Reread Section 6.3 to remind yourself why (B) is the recurrence
relation for C,.]

Example 5.3. In the algorithm MERGESORT we begin with an unsorted list of
n elements, divide the list in half, sort each half, and then merge the two parts.

Thus if M, denotes the number of comparisons performed in the worst case of
MERGESORT, then in the case that n = 2¥

M, =2M,,+@3Bn+ l)forn>1, M, =1, <)
gives the recurrence relation for M,.

Question 5.2. Explain why (C) is a recurrence relation for M,. Use (C) to obtain
M, for n = 2, 4, and 8. Compare these numbers with the complexity bound derived
for the case n = 2¥, namely 3nlog(n) + 2n — 1.

Each of the above algorithmic problems is solved by dividing it into smaller
problems, solving the smaller problems and then combining these solutions; we
have called these divide-and-conquer algorithms. Suppose that a, is the number
of steps in the worst case of a divide-and-conquer algorithm. Then a5 O @y,
gives the maximum number of steps needed to solve a problem of half or one dth
the size. The number of steps needed to solve some or all of the smaller problems
plus the number needed to combine these solutions into a final one i1s given by a
so-called divide-and-conquer recurrence relation like

Uy = kdypg) +cn + e, (D)

where ¢, d, ¢. and k are constants. We shall not solve the most general version of
(D); however, the text and the exercises contain the most important cases.

373

7 RECURRENCE RELATIONS

Question 3.3. Find constants to show that (A), (B), and (C) are special cases of
(D).

Question 5.4. Suppose that we have the recurrence relation
a, = a‘."/:‘” + L.
How many initial conditions must be specified before this relation gives a vaiue

for all positive values of n? Then using the recurrence for a,, specify a set of initial
conditions and determine the resulting values of a, for all n < 7.

Notice that the presence of the floor function in these recurrence relations
could lead to some computational awkwardness. For instance, if we want to show
that B, = 3|log(n)] + 4, then working with B,,,, would require consideration of
two cases depending on the parity of n. One way to avoid this problem is to
consider the special case of n = 2° (or n = d) and then to try to generalize the
solution to the arbitrary case.

Example 54. Consider a recurrence relation of the form
Uy = dpu2 + ¢,

where ¢ is a constant. We'll try iteration and induction, since this is an inhomo-
geneous recurrence relation, and we’ll experiment with the special case when n = 2%,

Ay = Gz + ¢

=y + ¢ since #/2 1s an integer

= dyyazy + 2 SINCE Uiy = dypya2y) + €= dyyazy + C
=day +ic

= aq + log(nje.

Question 5.5. Prove by induction that a, = a, + log(n)c is a solution of the
recurrence relation a, = a5 + ¢ if n. = 2%

Example 5.4 worked out nicely using iteration because we assumed that n = 2’,

and it seems reasonable to conjecture that this bound is correct for all values of
n. Thus we attempt to prove the same result for arbitrary n by induction. To avoid

374

7:5 DIVIDE-AND-CONQUER RECURRENCE RELATIONS

problems with the floor function, we'll shift now to inequalities. That is, we use
the fact that | x] < x. This will lead to upper bounds on the solution function, like
B, < 3|log(n)] + 4; however, such an upper bound is often satisfactory. since it
leads to big oh results, like B, = O(log{n)).

Theorem 5.1. If u, is the nth term of an integer sequence that satisfies
an = aln/:” + C,
where ¢ is a constant, then

a, < cllog(m)| + a,.

Proof. (We do not assume that n is a power of 2.) The base case holds with n == 1:
ay <cllog()] + a; = ay.
The inductive hypothesis is that
a, < cllog(n)| + a,
for all n < k, and we try to obtain the same bound for a,. We know that

A = iy + ¢
<cllog([k2]) |+ ay +¢ by induction
<cllogth/2) | +ay +¢ since | k/2] < k/2
=c|log(k) — 1] +ay +¢
=cflog(k)| — ¢ +u; +¢
= c|log(k)| + u;. C

Notice that we obtain a slightly smaller bound by using |log (k)] in place of
log (k).

Example 5.1 (concluded). When the results of Theorem 5.1 are applied to the re-
currence relation for B, with ¢ = 3, and B, = 4. we have that B, < 3|log(n)j + 4 =
O(log(n)), just as in Theorem 2.1 of Chapter 6.

Question 5.6. Apply Theorem 5.1 to (B) and compare the result with that of
Theorem 3.1 in Chapter 6.

7 RECURRENCE RELATIONS

The exercises ask you to solve a number of special cases of the generic divide-
and-conquer recurrence relation (D). Here is one more case that will yield an alter-
native analysis of MERGESORT.

Example 5.3 (varied). Suppose that n = 2* for some integer k. Then the recur-
rence relation in (C) holds for MERGESORT:

M,=2M,, + (3n+ 1), with M, = L.
Instead of solving the above recurrence, we consider an inequality version:
M, <2M,, + dn, {C")
since (3n + 1) < 4nfor n > 1. This will be easier to solve and will iead to an upper

bound on M,. In the next theorem we solve a more general form of recurrence
relation of which this is a special case.

A

Question 5.7. Use iteration and induction to verify that for the case n = 2%, M,
dnlog(n) + M n satisfies (C").

More generally, if we use a divide-and-conquer algorithm that solves o smaller
probiems each of which is (1/dth) of the original, then the complexity analysis
might involve a recurrence relation of the form

d, = daln/dl + ¢n,
or

dy < dayy) + cn, (E)

where ¢ and d are constants, d > 1. Manipulation of (E) is simplified if we use the
logarithm to the base d, denoted by log,.

Theorem 5.2. If ¢ and d are constants with d > | and
Uy < dapq) + cn,
then
a, < cnlogg(n) + agn.

Proof. We prove this by induction on n. For the base case we have that «, <
) + a,1. We assume that the theorem is true for ail n < k and we examine «,.

376

7:5 DIVIDE-AND-CONQUER RECURRENCE RELATIONS

le < d (l[k/‘” e Ck

k k k . .
< d\:c LaJlogd (\jD +a, LJJ] + ck by induction
: 1 « £ "k since k <E
gdca ogy E(+a12 +c s 1=

= cklogy <§> + ak + ck by algebra
= ck[logy(k) — 1]+ ak + ck by properties of iog,
= cklogy(k) + a k. by algebra O

Example 5.3 (last thoughts). If d =2 and ¢ = 4, Theorem 5.2 gives the following
bound on the complexity of MiERGESORT.

M, < d4nlog(n) + n.

Note that the recurrence relations (C) and (C') and hence this bound hold only
when n = 2'. You should check that this is a larger upper bound than that of
Theorem 7.1 from Chapter 6.

In the most general divide-and-conquer recurrence relation
ay = ka4 +cn+e,

we have just seen that if kK = d and ¢ = 0, then ¢, = O{nlog(n}). Exercise 11 demon-
strates that if k < d, then a, = O(n). In contrast Exercise 12 shows that if k > d.
then a, = O(n%), where g = log, (k). Thus the complexity of a recursive procedure
is quite sensitive to small changes in the constants.

EXERCISES FOR SECTION 5

I. Suppose that g, = 1 1s the initial condition for each of the following recur-
rence relations. Then list the first five terms of the sequence generated.
(i) a, = dppjy + 1.
(i) u, = a3 — L.
(iii) u, = dyys)
(iv) a, = 2412
(V) dy = a3 + 1.
i) ap = dppiq) + 1.
(vii) a, = Say,5; — 1.
(vili) a, = a3 + 3n.

3

7 RECURRENCE RELATIONS

2.

How many initial conditions are needed for each of the following recurrence
relations?
(i) a, = dp2) + Qpjay-
(i) a, = apa + 1.
(iii) a, = dy_ 1 + a2
(iv) a, = dy—3 + dypyay-

(i) Suppose that h, = 2h,,5; + s, where s is a constant. Use iteration and in-
duction to solve this recurrence relation in the case that n = 2'.
(ii) For arbitrary » find an upper bound on #,,.

Consider the recurrence relation a, = a4 + ¢, where ¢ and d are constants,

d > 1. Show that if n = d', then a, = a, + clog,(n). What happens for arbi-
trary n?

Suppose that n = d, d > 1. Use iteration and induction to deduce that the
recurrence relation

(ln = dal”/dl + ¢
1s satisfied by
ap=d'ag +d' " e+ +de + e

Then explain why

nE\ T T TS

6. Given the recurrence z, = k2, with d > 1, solve for z,.

378

Explain why Theorem 5.2 and the preceding exercises contain the condition
that d > 1.

Why is the following not a valid proof?
Theorem. If q, is the nth term of a sequence that satisfies
dy=dapy+c
for some constants ¢ and d with d > 1, then
a, = 0(n).

Proof. We must show that q, < sn for some constant s. Let s = uy so that
the base case is met: a, < sl = a,. Then assume that for all n < 4, a, < sn.

7:5 DIVIDE-AND-CONQUER RECURRENCE RELATIONS
From the recurrence relation we have

a, = d aln/d] +C

<d (s BD +c by induction
a

<—+c¢
T d

sh+ ¢

O(n).

Il

9. Prove the Theorem of the preceding exercise (correctly). (Hint: Use the result
from Exercise 5.)

10. Use iteration and induction to find a function f, such that a, = O(},) for each
of the following:
(i) a, = kay,, + ¢, where ¢, d, and k are constants such that . #d and
1 <d
(ii) a, = a4 + log{n), where d is a constant greater than 1.
(iii) u, = d ay,,, + n*, where | <d.

11. Show that if ¢, d, and k are constants such that k # d, and
a, = kal,,/dJ + cn,

then

d—k

/

dc .
a, < snloea®) o <—~— n where s is a constant.

12. Show that if g, is as given in the previous problem and k < d, then
a, = O(n).

13. For each of the recurrence relations in Exercise 1 find a function f, such that
a, = O(f,).
14, For each of the following recurrence relations decide whether a, = O(1),
O(log™(n)), O(n). O(nlog(n)), O(n*) or O2™:
() a,.= a3y, dg = L.
(i) a4y = dppyg) + Loag = 1.
(iii) a, = @,y — 1 for some constant d > 1, ay = L.
(iv) a, = 3ay,3), dg = 3.
(¥) a4y = 33y + 3. 49 = 3.

379

7 RECURRENCE RELATIONS

15.
16.

17.

18.

380

(Vi) a,, = a["/3| + 3n, LIO =
(vil) a, = 3,3y, dp = 2.

(viii) a, = 3ap,3; + 1. ag = 0.
(ix) a, = 3a),3; + 1, ag = L.
(x) ap = 2dyy3)0 a9 = L.
(xi) a4, = 2ap,3, + 1. ag = L.

It

(xii) a, = 2a;,3)— 1, aq
(Xiii) a, = 4al"/3j’ g = 1.
(xiv) g, = day,3, + 1, a9 = L.

Reread Example 1.5 and explain why SECRET is a good algorithm.
Let the recurrence relation for P, be defined by

P,=P,_+P,,+ - +P

for n > 1 with P, = ¢, some constant. Is this a LHRRWCC? If so, write down
its characteristic equation. In any case, determine the first eight values of P,,

in terms of ¢. Then guess and prove a formula for P, as a function of n
and ¢

Here is the algorithm MAX from Exercise 4.12 of Chapter 2. Given an array

of n real numbers, it finds the maximum number and stores it in the variable
max.

Algorithm MAX

Step 1. Input n, a positive integer, and xy,...,X;,...,.x,, real numbers
STEP 2. Set max := x;
Step 3. Forj=2tondo
Step 4. If x; > max then max := x;
Step 5. Output max and stop.

Explain why MAX always make (n — 1) = O(n) comparisons.

In comparison with MAX, here is the idea for a recursive divide-and-conquer
algorithm to find the maximum entry in an array of n numbers. If the list
has one element, then max equals this entry. Otherwise, we divide the list in

half:
LL = X1,. .. ’xl'l/-z]
Ly = Xpai+15- - -+ Xne
Let my be the maximum entry in L, and m, the maximum in L,. Then we

compare m; and m,, and the larger is the overall maximum. If M, is the
number of comparisons performed using this idea on a list of length ». then

7:6 RECURRING THOUGHTS

find a divide-and-conquer recurrence relation that M, satisfies. What are the
values of My,....Mg?

19. Solve the recurrence relation of the preceding exercise. (Hint: first let n = 2k,
Otherwise, use the trick of MERGESORT to extend the array to one with
2k entries.) Is this algorithm more efficient than MAX?

7:6 RECURRING THOUGHTS

In this chapter recurrence relations have come up in the definitions of integer
sequences, in mathematical models. and in the complexity analysis of algorithms.
With naturally specified initial conditions, the goal is to find a formula (or at
least an upper bound) for the nth term of the sequence. Once we have found such
a formula, then it is not difficult to prove this result by induction. In fact. recurrence
relations are ideally suited to inductive proofs, using either ordinary or compiete
induction, because they give the nth term as a function of preceding terms. Thus
the hard question is generally to find the solution to the recurrence relation.

The first commonsense approach is to use iteration. This technique works
well on inhomogeneous recurrence relations, especially on the divide-and-conquer
recurrence relations. In general, it does not work so well on homogeneous recur-
rence relations.

For the special case of linear homogeneous recurrence relations with constant
coeflicients, we have presented a complete solution using characteristic equations
and their roots. In theory, we can find the solution of any LHRRWCC.

The general technique used to soive LHRRWCCs is an important one with
wider application in mathematics. We look for “basic” or “linearly independent”
solutions and combine them in “linear combinations™ to derive all possible soiu-
tions. This technique is used whenever the underlying mathematical structure is
a “linear space.” For example, the field of linear algebra deals with the solution
of homogeneous systems of linear equations, and the field of differential equations
studies the solution of linear homogeneous differential equations. It is not by
chance (or bad planning) that the same words appear repeatedly in different ficlds;
the underlying ideas and solution techniques are really the same.

Iteration and induction is the technique of choice for the divide-and-conquer
recurrence relations. Typically, we use iteration on a simplified case, as when n := 2
or n = d* and then find that the resulting formula gives a bound for a solution
of the general recurrence relation. We can solve or get tight upper bounds on
essentially all recurrence relations of the form

Uy = kdppg +cn + e,

where ¢, d, e, and k are constants. These techniques will also work on other, more
irregular recurrence refations.

381

7 RECURRENCE RELATIONS

SUPPLEMENTARY EXERCISES FOR CHAPTER 7

1.

382

Let L be the list of all positive integers that begin with a 7, listed in increasing
order. Write down the first 12 entries of L. Can you (within. say, 5 minutes)
find a formula L, that give the nth entry of L as a function of n?

Suppose that n points are placed around a circle and that every pair of points
is joined by a line, either straight or curved, but drawn so that at most two
lines cross each other at the same point. lnto how many regions is the interior
of the circle divided? Call this number R,. Does R, = 2"~ ! for all positive n?

Let S, be defined by S, = S,_, + l/n? for n > 1, with S; = 1. Use iteration
and induction to find a formula for S,.

Let SR, be defined by SR, = SR, | + l/"\/; for n > 1, with SRy = L. Find
and justify a formula for SR,,.

Refer to the definitions of S, and SR, in the preceding exercises. Which of
the following are true and which false? Justify.

() Sy =0

(ii) SR, = O(1)

(iii) 1 = O(S,)

(iv) 1 = O(SR,)

(v) Sp = O(log(n))

(vi) SR, = O(log{(n))

(vii) log{n) = O(S,)
(viii) log(n) = O(SR,)

(ix) S, = O(n)

(x) SR, = O(n)

(xi) n = O(S,)

(xii) n = O(SR,)

The Towers of Hanoi puzzle consists of a board with three pegs rising from
the base. On one peg there are six circular disks of differing size. The largest
disk 1s on the bottom and the others are stacked above it in order of decreasing
size. These disks are to be transferred, one at a time, onto another peg so
that at no time is a larger disk placed above a smaller one. What is the
minimum number of moves needed to move the six disks?

We consider the abstract n-fold Tower of Hanoi puzzle in which we suppose
that n disks are stacked on one peg and must be moved to another peg,
as described in Exercise 6. Let H, denote the minimum number of moves
required to transfer the n disks. Then H, = | and H, = 3. Find a recurrence
relation that expresses H, in terms of H,_,, the number of moves needed

to move the top (n — 1) disks. Then find a formula for H, and prove that it is
correct.

8.

10.

11.

SUPPLEMENTARY EXERCISES FOR CHAPTER 7

Suppose that we consider a variant on the Tower of Hanoi puzzle in which
there are four pegs with n disks stacked on one peg. Let M, denote the mini-
mum number of moves needed to move the stack of n disks to another peg.
Calculate M, for n =2, 3, 4, and 5. Do these values agree with those of H,?
Find a recurrence relation for M, and find as small a function f, as possible
such that M, = O(f).

Explain why the polynomial

1

plx)=x"+c, X'+ Fex + ¢

has a root s if and only if p(x) can be factored as
p(x) = (x — s)q(x),

where ¢g(x) is a polynomial of degree (r — 1). [Hint: Suppose that when p(x)
is divided by (x — s), g(x)} is the quotient and #x) the remainder. In other
words, p(x) = (x — s)g(x) + r(x).]

The complex (or imaginary) number i has the property that
i“=—1

Explain why (—i)> = —1 and (—i)i = + 1. What is the value of i. (—i), i*
and (—i)*? In general, what is the value of i*"~ !, (—=i)?* !, i*" and (—i)*"™

)

(i) The sequence 2,0, —2,0,2,0, —2,0, . . satisfies

a,= —a,_,forn=2, a9 =2,a, =0.

n— .

Use the methods of Section 3 to find a formula for the nth term of this

sequence. By inspection we can see that the following is also a formuia for
the nth term of the sequence:

{ 2 if 4 divides n
=] 0 if 4 divides (n — 1) or (n — 3)
-2 if 4 divides (n — 2).

Do these agree?
(ii) Repeat the problem in part (i) with the sequence

£, 30, -1, =30, 1,30, -~ 1, =3i,...

What formula can you derive for this by inspection? Does it agree with vour
formula obtained through a recurrence relation?

383

7 RECURRENCE RELATIONS

12,

13.

14.

15.

16.

17.

384

A generalized Fibonacci number is defined as follows: For k a fixed integer
greater than 2.

FA=Ff 4 F o+ +Fi_, fornzk

with initial conditions F§ = F¥ = - = Ff_, =0and Ff_ | = 1.

(i) For k = 3, 4, and 5 write out the first 10 generalized Fibonacci numbers.

(i) For k = 3, 4, and 5 find the characteristic equation of F¥,

(iii) For k = 3 find the approximate values of the characteristic roots.

(i) Let Y, denote the number of strings of length n, containing 0s, 1s and
(—1)s with no two consecutive ls and no two consecutive (— 1)s. Deter-
mine Y;, Y5, and Y; by listing all such strings.

(ii) Find a recurrence relation for Y,. Then, if possible, solve it using the initial
conditions found in part (i).

Let a, be the recurrence relation defined by
y =y +ay_>—n+3 forn>2

with initial conditions 4y, = 0 and ¢, = 2. Find a formula for a, expressed in
terms of F,, the nth Fibonacci number.

For m a fixed positive integer, consider

n

a,=d,_| +d,_> +
n n—1 n—2 (m

> forn>?2

with initial conditions a, =0 and a; = L.
(1) For m = 5, find the first 10 entries of the sequence a,. Express cach entry
. . . “n\ .
in terms of Fibonacci numbers. (Recall that () is equal to O whenm > n.)
m
(ii) For arbitrary m, find a formula for «,, expressed in terms of F,, the ath
Fibonacci number.

Suppose that ¢ = r/s is 2 rational number that is a root of

xP+hxT +ex +d =0,

where ged (r,s) = | and where b, ¢, and d are all integers. Explain why s = |
and r is a divisor of d. Then explain why when searching for a rational root

of a cubic equation. of the form above, one needs to check only the divisors
of d.

Find all rational roots of the following equations.
@) —2x" +x —2=0.
(i) x* +x* + x -3 =0

18.

SUPPLEMENTARY EXERCISES FOR CHAPTER 7

(iii) x> — 3x* +2x = 0.

V) x* +x +x+1=0
W) xP—4x* +x+6=0.
(vi) x? +2x% = 3x + 7=0.

Explain why every cubic polynomial has some real number as a root.

caveaT. The foilowing problems, 19 and 20, require some knowledge of calculus,
specifically knowing how to find the derivative of a polynomial and the product
rule.

19.

20.

By definition we know that if s is a root of a polynomial p(x) of multiplicity
m > 1, then p(x) can be factored as

plx) = (x — 5)"q(x),
where ¢(x) is a polynomial. Prove that if s is a root of p(x) of multiplicity

m > 1, then s is also a root of p'(x) of multiplicity (m — 1), where p'(x) is the
derivative of p(x).

This exercise 1s a general proof of Theorem 4.1. If the LHRRWCC

ay, =k dp- | +koay_,+ -+ ka,_, for n > r (A)

“has a characteristic root ¢ of multiplicity m > 1, then the following are all

solutions to the recurrence relation:

n

4
n

n

]

ay
dy
a, 2 n

n-g

i

ooam— 1l
a4, =n q.

From the text we know that «, = ¢" and a, = ng" are solutions.

cast 1. We repeat the case where m = 2, since the technique here generalizes
more readily than the one given in the text. Let p(x) be the characteristic poly-
nomial of (A). Calculate the function xp'(x), where p'(x) is the derivative of

p{x). Show that ¢ is a root of xp'(x) and determine its multiplicity. From this
deduce that u, = ng” is a solution to (A).

CASE 2 (m > 2). Calculate the function xtxp'(x)). Using the results of Case 1,

show that ¢ is a root of this function and find its multiplicity. Then deduce
that a, = n“¢" i1s a solution of (A).

385

7 RECURRENCE RELATIONS

21.

cAsE 3 (m > 3). Let Pyx) be the polynomial obtained from p(x) by i times
repeating the process of taking the derivative of p(x) and multiplying by x.
then taking the derivative of this new function and multiplying by x:

Pi(x) = xp'(x),
Pyx) = x(xp'(x)),

and so on. Calculate P3(x) and P4(x) starting with p(x) the characteristic equa-
tion of (A). Then write out the general form of P4{x). Prove by induction on
i that if ¢ is a root of the characteristic equation of (A) of multiplicity m > i > 1,
then ¢ is a root of multiplicity (m — i) of Py{x). From this deduce that for
i=1,...,m—1,a,=n'q"is a solution of (A).

Reread Exercises 6 to 8 about the Tower of Hanoi puzzle. Suppose as in

Exercise 8 that the puzzle has four pegs with the disks on the first peg, and

suppose that we move the disks as follows:

(a) Move the top | n/2] disks to the second peg, one by one following the
rules of the puzzle.

(b) Move ali but the last of the remaining disks to the third peg by a legal
series of moves.

(¢} Move the largest disk to the fourth peg.

(d) Move the bottom half from the third peg to the fourth peg.

(¢) Move the top half from the second peg to the fourth peg.

If H;, denotes the minimum number of moves needed to transfer n disks in

this version of the Tower of Hanoi puzzle, then find a recurrence relation for
H;, and solve for H,,.

NOoTE. From Section | it seems that the odd-indexed Bernoulli numbers are zero.

starting with B;. Here is a sequence of exercises that shows why B,, . =0 for
k=1

22

A function is called even if f(x)} = f(—x) for all values of x. Which of the
following functions are even?
(i) f(x) = ¢, ¢ a constant.

@) f(x) = x.

(i) f(x) = x*.

(iv) f(x) = x°.

(v) f(x) = x*
(vi) f{x) = x".
(vii) f(x) = x™".

(viii) f(x) = """ 1
(ix) f(x) = 2%

(x) f(x)=yx.

24.

25.

26.

SUPPLEMENTARY EXERCISES FOR CHAPTER 7

Prove that the function

1S even.

An infinite polynomial of the form
pl)=co+epx+ e+,

where cg,Cq,....Cp,. . . are constants, is said to be even if p(x) = p(—x). Ex-
plain why p(x) is even if and only if all the odd-indexed terms ¢, ¢3, .
are zero.

EELYI 2

Use the results of the preceding two exercises to explain why every other
Bernoulli number starting with Bj is zero.

One form of the so-called “Ballot problem” asks what the probability is that
in an election between candidates 4 and B the number of votes for A always
exceeds that for B until the last ballot is cast when the votes are tied. Suppose
that a vote for 4 is denoted by + 1 and a vote for B by — 1. Then there must
be an even number of voters, say 2m. We want to determine the number of
strings of m + 1s and m — 1s such that every partial sum, from | to i < Zm is
positive. Write down all such strings for m = 1, 2, and 3. Then check that the
number with a final tie is given by the mth Catalan number as defined in
Question 1.7.

NOoTE. The Catalan numbers arise in a number of fundamental problems of com-
puter science including the problem of having a computer evaluate an arithmetic
expression; Exercises 27-29 explore these connections. To a computer ¢ach of the
operations +, —, *./, and " is a “binary operation.” Each operation requires two
numbers upon which to act. Parentheses tell us exactly which two numbers are
to be combined into one by each operation.

27.

28.

29.

Explain why the addition of parentheses makes a difference in the following
expressions.

i) a—-b—c

(i) x/y/z.

(i) .

Calculate the number of ways to parenthesize expressions with three, four,
and five variables by listing all possibilities. Show that these numbers are
given by the corresponding Catalan numbers.

Suppose that we have an expression combining n variables, like

N ?7x,7x37 0 x,

387

7 RECURRENCE RELATIONS

30.

31.

32.

388

where ? stands for one of the usual arithmetic operations. Show that the
number of different parenthesizations of an expression with n variables satis-
fies the Catalan recurrence relation.

Use the fact that
1/2n—2
C"=<" j
n\ n—1t

to derive a recurrence relation for C, in terms of C, _ ,, using no other Catalan
number.

Show that

| —

An—1

Ch>-

=

for all positive n. Is there a positive integer k such that C, = O(n*)?

A tree is called a planted planar tree if one vertex of degree 1 is designated
as the root r and then the tree is drawn in the plane. For example, the
following diagram shows all different planted planar trees with 1, 2, and 3
edges. Let PT, denote the number of different planted planar trees with n
edges. Determine PT, and PTs, and for n = 1,2,...,5 show that PT, = C,.

o

MORE GRAPH THEORY

8:1 MINIMUM-DISTANCE TREES

This chapter discusses five real-world problems that can be solved using graphs.
Reflecting the current state of knowledge concerning graph algorithms, some of
our problems have good solutions, while others have no known good algorithmic
solution. In the latter case we present exponential algorithms. In Section 4 we
present an approximation algorithm, that is, an algorithm that runs in polynomial
time but doesn’t necessarily give a best possible answer.

Our first application is plowing snow off the streets of a city. We envision two
problems. The first consists of clearing roads connecting important city services
along shortest routes. The second consists of finding a route that traverses every
remaining street at least once but that is overall as short as possible. In a varia-
tion we seek a shortest route that visits a designated set of points in a city. As
a fourth problem we design a program to position a laser bit to drill thousands of
holes in a sheet of material. Finally, we consider storage allocation in computer
memory.

To begin the first snowplowing problem, imagine that we are in charge of
plowing the snow off the streets of a city all of whose essential services (c.g.,
police, fire protection, ambulance, and snowplow) are located in one building called
City Hall. Within the city there are special facilities (e.g., hospitals and schools)
that we would like to be able to reach with the essential services. How should we
plow the streets to enable our vehicles to reach the special facilities as quickly as
possible?

At first glance it seems reasonable to think of trees. In a tree every pair of
distinct vertices is joined by a unique path. Here too it seems that we don’t need
more than one clear route joining different locations; however, a minimum-weight
spanning tree (defined in Section 5.3) is not what we want. (See also Exercise 12.)

389

t

NOTICE: THIR MATTRIAL MAY BE PROTTICTED

‘‘‘‘‘‘ U N 3

[AEAFATRT
e N '\.V i)

. ey M . LI
AT p e e b Ty

8 MORE GRAPH THEORY

In particular, the snowplowing problem has a distinguished location, City
Hall. Hence our graph model neceds a distinguished vertex called the root. The
remaining vertices of the graph correspond with principal intersections within the
city. For simplicity assume that each of the special facilities is at one of these in-
tersections. Two vertices of the graph will be joined by an edge if there is a direct
road connection between the corresponding intersections. The weight attached to
an edge will represent the length of that connectiorn. Thus the resuiting weighted
graph models the streets of the city, and as a plan for emergency snowplowing we
want a spanning tree of this graph with the property that the distance from the
root to each of the special facility vertices along edges of the spanning tree is
minimized. In fact, we find a spanning tree that contains a minimum-distance path
from the root to every vertex. Such a subgraph is called a minimum-distance
spanning tree.

Here are precise formulations of ideas from the preceding paragraph. Recall
from Section 5.3 that the weight of a path P, denoted by w(P), is the sum of the
weights of all edges in P; we call this the length of P. Recall also that each edge
of a weighted graph has positive weight.

Definition. In a weighted connected graph G, the distance between two vertices
x and y, denoted by d(x, y), is the minimum value of w(P), taken over all paths
P from x to y. (Informally, the distance from x to y is the length of the shortest
path between them.) A minimum-distance spanning tree in a weighted connected
graph G with root r is a tree T such that for each vertex v of G, the length of the
unique path in T from r to v equals d(r, v).

Example 1.1. In Figure 8.1 we show weighted graphs G and H with root r, their
minimum-distance spanning tree, and their minimum-weight spanning tree. Note
that the two types of trees may differ.

Problem. Given a weighted connected graph G and a root vertex r, find a min-
imum-distance spanning tree of G.

Question 1.1. For each vertex v # r in the graph shown in Figure 8.2, find the
shortest path from v to r. Does the union of these paths form a minimum-distance
spanning tree? Pick a different vertex for the root and find all shortest paths to this
new vertex. Does the union of these paths form the same tree?

There is a good algorithm to solve the mimimum-distance problem, due to
E. W. Dijkstra. It is not obvious that every connected weighted graph contains a
minimum-distance spanning tree; it is conceivable that the union of shortest paths
from r to different vertices contains a cycle. However, one consequence of Dijkstra’s
algorithm and the proof that it works is that minimum-distance spanning trees
always exist. The fundamental idea is simple (and in a sense greedy). We shall

390

8:1 MINIMUM-DISTANCE TREES

r r
Zi i4 /\4 2
x 3 z x z
G

x 3 z
Minimum-distance Minimum-weight
spanning tree spanning tree
r 5 2 6 3 r 5 2 3 r 5 2 3
9 5 /
9 5 4 5 4 5
- o—
4 8 5 3 4 5 3 &6 4 8 5 3 ¢
H Minimum-distance Minimum-weight
spanning tree spanning tree

Figure 8.1

3 8 4 7 5
Figure 8.2

describe the algorithm informally and leave details of implementation to the
exercises.

Begin with the root r. If we examine the edges incident with r and select one
of smallest weight, say e = (r, x), then the shortest path from r to x is the edge
¢, since we assume that all edge weights are positive. So far the minimum-distance
tree consists of ¢ and the vertices r and x. Next we want to extend this tree so
that it remains a minimum-distance spanning tree for a subgraph of G. There are
two kinds of edges that we might pick to add to the tree. We might select an edge
of the form f = (r,y) or g = (x,z). Among the edges incident with r assume that
S has minimum weight (other than e). Among the edges incident with x assume
that g has minimum weight. A naive choice would be to select whichever of f and
g has minimum weight. Unfortunately, this will not work in all cases.

9

8 MORE GRAPH THEORY

Example 1.2. Supposc that G is as in Figure 8.1. The first edge we choose is
{r, x), since it has minimum weight. If we then select (x, z) because its weight is less
than the weight of (r, z), then the distance (within the tree) from r to z would be
5. In G the distance from r to z is 4. The minimum-distance spanning tree should
consist of the edges (r, x) and (r, 2).

What we should do, instead of adding an edge of smallest weight, is to pick
a new edge that creates a minimum-distance path to a new vertex. That is, we want
to find an edge e = (y,z) such that y is in the minimum-distance spanning tree
created so far, z 1s as close to the root as any vertex not in the tree, and a shortest
path from z to the root r uses e and edges already in the tree. This idea is in-
corporated into step 4 of the following algorithm.

Algorithm DIJKSTRA

Step 1. Input the weighted graph G and the root vertex r {Assume that G
is connected. !
SteEP 2. Set T:= {r!
Step 3. Forj=1toV —14do
Begin
SteEP 4. Find z, a vertex in G — T whose distance from r is minimum;
let ¢ be the edge from z to T in some minimum-distance
path from z to r
StepS. Set T:=T+z+e
End
SteP 6. Output T and stop.

Step 4 in DIJKSTRA might raise a question. Suppose that z is a closest vertex
of G — T to r. How do we know that there is an edge ¢ joining z to a vertex of
T? Maybe the shortest path from z to r uses different vertices than those (so far)
in T? That this problem will not arise is a consequence of the proof of Theorem 1.1.

Example 1.3. We trace Dijkstra on the graph shown in Figure 8.3. See Table 8.1.

Figure 8.3

392

8:1 MINIMUM-DISTANCE TREES

Table 8.1
Step No. j z V(T)} E(T)
2 ? ? ir} [
4 1 X
5 1 X {r.x} {(r,x)}
4 2 s
5 2 s {r,x,s} {(r, x), (r, s}
4 3 u
5 3 u Ir,x, 8, u) i(r,x), (r,s), (x.u)}
4 4 v
5 4 v xS u, 0} Hrox), {rys), (x,u), (x,0))
4 5 W
5 S W rox s u, 0w Hr, x), ros), (xow), (x.0), (o, w))

Note that when we have a choice, as between u and v in the third application of
step 4, we may choose either vertex.

Question 1.2. Given the weighted graph in Figure 8.4 with root r as shown, use
DIJKSTRA to find the minimum-distance tree.

a b 4 r 6 ¢
7 9 3 4

p 4 q t 3 s
Figure 8.4

Theorem 1.1. DIJKSTRA produces a minimum-distance spanning tree T 07 a
connected weighted graph G with root r.

Proof. We must prove that T is a spanning tree and that for each vertex v of G
the distance from v to the root r along the edges of T equals d(r,v), the length
of a shortest path in G joining r and ». We prove by induction on |V(T)| that at
each stage T is a tree containing a minimum-distance path from each vertex of
T to the root r. Thus when DIJKSTRA stops and |[V(T)| =V =|V(G)|, T is a

minimum-distance spanning tree.

Example 1.3 (reexamined). Look at T after the third completion of step 5. T con-
tains four vertices and three edges and is a minimum-distance spanning tree of the
subgraph of G that contains the vertices {r, x,s,u} and the edges (r, x), (r. s} and (x. u).

393

8 MORE GRAPH THEORY

Initially, [V(T)] = 1 since V(T) = {r}. In step 5 we add the edge ¢ = (r, x) of
least weight and the vertex x to T. Then T is a tree with two vertices and one
edge, and this edge provides the shortest path from x to r. Thus the base case 1s
safely accounted for.

Assume that T'is a tree containing minimum-distance paths whenever | V(T){ <
k, and suppose that |V(T)| = k. T received a kth vertex, say v, and a (k — 1)st edge,
say e, in step 5. Then T" = T — v — ¢ was stored as T in the previous execution
of step 5. Since T’ contains (k — 1) vertices, by the inductive hypothesis it is a tree
that contains minimum-distance paths from each of its vertices to r. At the next
occurrence of step 4, the vertex v in G — T was selected as a vertex of minimum
distance to r. Since v is not in T, the addition of v and e does not create a cycle
and T remains acyclic.

Suppose that P = {v,x,...,r) is a minimum-distance path from v to r in G
beginning with edge e. Since x is closer to r than v, x is in 7", Otherwise, DIJKSTRA
would have selected x before v. Thenwe add vand e = (v,x)to T, and T =T" +
v + ¢ is acyclic and connected, hence a tree. Furthermore, the shortest path from
x to rin T’ plus e will be a shortest path from v to r in T. (See also Exercise 11.)
This proves the inductive step. Thus the tree output by DIJKSTRA is a minimum-
distance spanning tree. O

Question 1.3. Where in DIJKSTRA is the connectivity of the graph G essential?
Find at least two places in the proof of Theorem 1.1 where we use the fact that

edge weights are positive. What are the problems with running DIJKSTRA on
the graph shown in Figure 8.5?

-1
Figure 8.5

We now show that the complexity of DIJKSTRA is O(V - E). We need to per-
form comparisons and additions to find the minimum-distance paths; however, as
in other graph complexity results we count only comparisons. The loop at step 3
occurs V — 1 times. In step 4 we need to check at most E edges that join a vertex
of T with one in G — T to find the next shortest path and the vertex =. Thus there
are no more than (V — 1)E comparisons needed in total. In Exercises 19 to 21 a
more detailed version of DIJKSTRA is presented, and in that version we can see
that only O(V) comparisons are needed within the equivalent of step 4 so that
DIJKSTRA has an overall complexity of O(V?). This was the original complexity

394

8:1 MINIMUM-DISTANCE TREES

bound obtained by Dijkstra. There has been considerable interest in this minimum-
distance spanning tree problem, and variations of this algorithm using more
sophisticated data structures have been developed, including one that has com-
plexity O(Elog(V)).

With a slight change DIJKSTRA can be applied to unweighted graphs. Recall
that distance in an unweighted graph has been defined to be the fewest number
of edges in a path joining two vertices. (See Section 5.3.) Thus if we assign a
weight of | to each edge of an unweighted connected graph and choose a root r,
DIJKSTRA will find a minimum-distance spanning tree. In this context the result-
ing tree is known as a breadth-first-search (or BF'S) spanning tree. Notice that when
DIJKSTRA is applied to an unweighted graph, first it “visits” and adds in to the
tree T all vertices adjacent to the root r. Next it “visits” and adds in all vertices
adjacent to vertices adjacent to r, that is, it “visits” all vertices at distance 2 frcm
r, and then successively “visits™ all vertices at distance j from r for j = 3,4,....
“Visiting” vertices in a graph in this order is known as breadth-first search.

Example 1.4. Figure 8.6 shows a graph G and two BFS spanning trees of G.
Working on the tree G with each edge weight 1, DIJKSTRA first adds edges (r,2)
and (r, 6) to the tree, since vertices 2 and 6 are at distance | from the root r. Next
the vertices 3 and 5 at distance 2 from r are added to the tree; there is a choice
of edges here. Finally, vertex 4 at distance 3 from r is added. Two possible breadth-
first-search spanning trees are shown in Figure 8.6.

r 2 3 r 2 3 r 2 3
6 5 4 6 5 4 6 5 4
G One BFS spanning tree Another BFS tree

Figure 8.6

Here is a breadth-first-search algorithm, modeled upon DIJKSTRA. The set
T contains the vertices and edges of the BFS tree.

Algorithm BREADTHFIRSTSEARCH (BFS)

Step 1. Input the unweighted graph G and root r
Step 2. T:={r}
Step 3. Forj=1toV —1do
SteP 4. For each vertex v in G — T adjacent to a vertex at distance
(j — 1) from r do
Step 5. Select w, one neighbor of v in T;
set T:=T + (v,w) + v
SteP 6. Output T and stop.

395

8 MORE GRAPH THEORY

Notice that when applied to a disconnected graph, BFS visits and constructs
a spanning tree on precisely the vertices in the same component as the root r. In
applications it is common for BFS to perform some calculation when it visits a
vertex and to output more than just the spanning tree. Breadth-first search is an
important algorithmic technique that will be used again in Section 5.

EXERCISES FOR SECTION 1
1. Find a minimum-distance tree for each of the following graphs.

root 3 7 root g 3 4 root 4

{a) (b) fc)

2. There do not exist direct flights from Bradley Field to all other airports in
the United States. If you wish to fly from Bradley to, for example, Eugene,
Oregon, you will have to change planes at least once. The graph indicates
some of the possible connecting flights that you might choose. The vertices
of the graph are labeled with the names of the corresponding cities. An edge
represents a direct flight between the two corresponding cities. The weight on
the edge indicates the cost of the flight. Assume that the cost to fly from 4

Portland
Q

320 Bradiey

Chicago 140 77

100 9]

Cleveland

Newark

San
Francisco &

140 Denver

Q
San Diego

396

10.

11.

8:1 MINIMUM-DISTANCE TREES

to C changing planes at B equals the cost to fly from A to B plus the cost to
fly from B to C. Find a minimum-cost trip from Bradley to Eugene.

Rewrite DIJKSTRA so that upon input of a weighted connected graph G and
two vertices x and y, it finds a shortest path from x to y. Is your algorithm
necessarily more efficient than (the original version of) DIJKSTRA?

Find an unweighted connected graph G so that every spanning tree of G is a
minimum-distance spanning tree for some choice of the root.

Find a weighted graph G so that no matter what vertex is chosen for the root
of G, the minimum-distance spanning tree is heavier than the minimum-weight
spanning tree (i.e., for every vertex v the sum of the edge weights of a minimum-
distance spanning tree with root v is larger than the weight of a minimum-
weight spanning tree).

Rewrite DIJKSTRA so that it finds a minimum-distance spanning tree if the
graph is connected, or else reports that the graph is not connected.

Here is a table of costs of some intercity flights; a zero indicates no direct
flight. Find the cost of a cheapest trip between every pair of cities.

Cy C, Cs Cy Cs
C, - 100 0 150 210
C, 100 - 0 90 0
C, 0 0 — 50 280
C, 150 90 50 — 0
Cs 210 0 280 0

Run the unweighted version of DIJKSTRA on each of the graphs in Exercise
1 with the edge weights discarded (i.e., run it on the underlying unweighted
graphs.)

A new commuter airline called Capital Cities offers flights between the capital
cities of every pair of states that share a border. So, for example, there is a
flight from Pierre, South Dakota, to Bismark, North Dakota, since these two
states share a common boundary. Each such flight costs $25. Using Capital

Cities, what is the cost of a cheapest trip from Boston to Sacramento? Bismark
to Trenton?

Suppose that G is a weighted connected graph and that one path P =
{X{,Xg,...,X;,r) to the root is designated as top priority. Rewrite DITKSTRA
so that it finds a spanning tree that includes P. For every vertex v not in P, the
algorithm should find as short a path from v to r as possible.

Suppose that P = {x,y,...,r) is a shortest path from the vertex x to the root
r. Explain why the same path, minus x and starting at y, {y,...,r>, is a

397

8 MORE GRAPH THEORY

12.

13.

14.

15.

16.

17.

18.

19.

398

shortest path from y to r. Suppose that P, is a shortest path from a vertex x
to a vertex z and P, is a shortest path from z to r. s P, followed by P, a
shortest path from x to r?

Suppose that a city wants a snowplowing plan to connect City Hall with each
of the designated special facilities; however, the plowing budget is greatly over-
spent. If the sole criterion for choosing plowing routes is that the total plowing
cost should be a minimum, then explain why a minimum-weight spanning tree
rather than a minimum-distance spanning tree provides the best plan.
Prove that at the end of the algorithm BFS precisely those vertices in the
same component as the root r are contained in T.

Rewrite BF'S so that the vertices are assigned a number giving the order in
which they become visited. (Note: This ordering is not unique but depends on
arbitrary choices made within the algorithm.)

Verify that BFS performs at most O(V'?) comparisons given a graph with V
vertices.

Rewrite BFS so that it performs a breadth-first search on each connected com-
ponent of G.

Construct a BFS algorithm that given a graph computes the eccentricity of
every vertex. The eccentricity is defined in Exercise 5.4.14.

The radius r(G) and diameter d(G) of a graph G are respectively the minimum
and maximum vailue of the eccentricity (see the preceding exercise). Construct
an algorithm that, given a graph G, outputs the radius and diameter of G.
Show that d(G)/2 < H{G) < d(G) for any graph G. Find graphs to show that
there are no better bounds than those given by the inequality above.

Here is a detailed version of DIJKSTRA that specifies the equivalent of
step 4.

Algorithm DIJKSTRAZ2

Step 1. Input the weighted graph G and the root vertex r {Assume that G
is connected.
STEP 2. Set d(r) =0 {d(x) denotes the distance of x from the root in the
partial tree.
Step 3. Set V(T):= {r}; E(T) = J {These will contain, respectively, the
vertices and edges of T
Step 4. Forj=1toV —1do
Begin
StEP 5. For each (r.x) in E(G) with t in V(T) and x in
V(G) — V(T) do
STEP 6. Set c(t. x) 1= d(r) + w(t. x)

20.

21.

22.

23,

24.

25.

8:2 EULERIAN CYCLES

{At this point ¢{t, x) indicates the length of the path from r to x using a path
in T together with the edge (¢, x).|
Step 7. Set ¢, - = minimum value of ¢{z, x)
Step 8. Set x,,, and t.;, equal to the vertices that achieve the
minimum of step 7
Step 9. Set V(T):= V(T) + Xpia
Step 10. Set E(T):= E(T) + (t;min> Xmin)
Step 11. Set d(xy;,) 1= ¢
End {step 4}
Step 12. Output E(T) and stop.

min

Run DIJKSTRA?2 on each of the graphs in Exercise 1.

Explain why in DIJKSTRA2 when a vertex x,;, and the edge (¢, Xpmi,) are
added to the tree T, T is a tree containing a minimum-distance path from
to r.

xmin
Count the maximum number of additions and comparisons performed in
DIJKSTRAZ and show that each is O(V'?).

In the remarks following DIJKSTRA’s algorithm we asserted that there is an
algorithm for the minimum-distance spanning tree problem that runs in time
O(Elog(V)). For what graphs is this a better bound than the O(V?) com-
plexity bound that is obtained in the preceding exercise?

Modify DIJKSTRAZ2 so that the shortest path from each vertex to r is main-
tained as well as the distance of that path.

Using BFS construct an algorithm to check whether a connected graph is
bipartite or not. (See Section 5.2 for the definition of bipartite. See also Supple-
mentary Exercise 10 of Chapter 5.)

Modify DIJKSTRA so that for every pair of distinct vertices v and w in a
weighted connected graph, the shortest path between v and w and its length
is found. This is known as the All Pairs Problem. Show that the complexity
of the All Pairs Problem is at most O(V'} times the complexity of the minimum-
distance spanning tree problem.

8:2 EULERIAN CYCLES

We continue with snowplowing. To repeat the setting, suppose that a weighted
graph is drawn to model city streets. Each vertex represents an intersection, and
two vertices are joined by an edge if the corresponding intersections are joined
by a direct road connection. The weight of an edge is the length of the road. The
problem is to plow the streets efficiently (or if, as in the preceding section, certain
streets are already clear, to plow the remaining streets efficiently). More precisely,

199

8 MORE GRAPH THEORY

the problem is to devise a plan to travel along each unplowed street at least once
in as short a trip as possible, beginning and ending at City Hall. Of course, it
would be most efficient to plow the streets with no repetitions. Is this possible. and
if so, how can such a plan be found?

Example 2.1. Consider Figure 8.7. The graph G contains a cycle (for example
{ryx,¢,y,x,b,a,r)) that traverses every edge exactly once. Although the graph H
contains no such cycle, it does contain the path {r,u,s, 0,7, 5> that traverses cvery
edge exactly once. The graph I'is a 3 x 2 grid graph. In Chapter 3 we saw that
it was impossible to traverse each edge of this graph exactly once.

a b c u s
r x y r v

G H 1
Figure 8.7

Definition. A path or cycle that includes every edge of a graph exactly once is
called Fulerian. A graph that contatns an Eulerian cycle is called an Eulerian graph.

Question 2.1. (a) Find an Eulerian graph with four vertices. (b) Find a graph with
eight vertices that is not Eulerian but contains an Eulerian path. (c) Find a con-
nected graph with six vertices that does not contain an Eulerian path.

The problem of characterizing the graphs that contain Eulerian paths led to
the first graph theory paper, written in 1736 by Leonhard Euler. Euler was visiting
Konigsberg, a town with seven bridges and demonstrated that it was impossible
to take a walk crossing every bridge exactly once.

Question 2.2. Which of the graphs in Figure 8.8 are Eulerian? Which contain
Eulerian paths but not Eulerian cycles?

EEDIIDBI@

Figure 8.8

400

8:2 EULERIAN CYCLES

Theorem 2.1 (Euler’s Theorem). A connected graph is Eulerian if and only if every
vertex has even degree.

Euler’s theorem tells the snowplow planners that they can plow cach street
exactly once if and only if an even number of streets comprise every intersection.
Note that one can think of an Eulerian cycle as starting and ending at any vertex,
in particular City Hall. Our proof of Euler’s theorem will lead to an efficient algo-
rithm for finding Eulerian paths and cycles. Then we shall consider ways to modify
this algorithm to be useful in diverse settings.

Proof of Euler’s theorem. First notice that an Eulerian graph must be connected.
Let C be an Eulerian cycle in a graph G. Pick an arbitrary vertex of G, say x. We
can assume that C begins at x, leaving on an edge, say ¢,, and at some point
returns to x on, say e,. If that is the end of C, then deg(x) = 2, an even number.
Otherwise, C leaves x again on, say e, and later returns on, say e4. Each time
that C leaves x on an edge ¢;, it returns on a different edge ¢;, ;. Since the edges
at x can be paired, ¢, with e,, ¢5 with ¢, and so on, there must be an even number
of them. Thus deg(x) is even. Since x was chosen arbitrarily, every vertex of G
must have even degree.

Next we prove the converse, that a connected graph with all vertices of even
degree contains an Eulerian cycle. We prove this by induction on V. If V = 1,
then the graph contains no edges and vacuously satisfies the conclusion. A con-
nected graph with V = 2 consists of one edge and so does not have vertices of
even degree. If V' =3, then the only connected graph with all vertices of even
degree is the 3-clique, K3, and this graph contains an Eulerian cycle.

Question 2.3. Find every connected graph with four or five vertices all of whose
degrees are even. Show that each such graph is Eulerian.

Assume that every connected graph with fewer than k vertices all of whose
degrees are even contains an Eulerian cycle. Let G be a connected graph with k
vertices all of even degree. Pick a vertex, say x. and create a path P beginning at
x. Extend P, appending incident unused edges at its end, until this is no longer
possible. We claim that P is a cycle, ending at x. Since every vertex of G has even
degree, when P arrives at a vertex v # x there is always an unused edge on which
to leave v. Thus P must end at x; hence we rename P as C, since it is a cycle If
C traverses every edge of G, then it is the sought-after Eulerian cycle.

Example 2.2. Consider the graph shown in Figure 8.9. The cycle ' = (r,2,5,6.r)
can be extended further at . The cycle C = (r,2,5,6,r,7,8,r> cannot be extended
further at r; however, C is not an Eulerian cycle.

401

8 MORE GRAPH THEORY

Figure 8.9

If C is not an Eulerian cycle, then we construct G’ from G by erasing all edges
of C. Since C is a cycle, we erase an even number of edges at each vertex. Since
all vertices had even degree originally, their degree remains even in G'. In G the
vertex x has degree 0. Thus each connected component of G’ contains fewer than
k vertices and is consequently an Eulerian graph.

Question 2.4. Let C be as in Example 2.2. ldentify the graph G’ obtained by
deleting the edges of C.

If H is a component of G', there is a vertex h of H that is also in C, since G
was connected. By the inductive hypothesis an Eulerian cycle D can be found on
H, beginning and ending at h. Then the original cycle C can be extended by
inserting D at the vertex h. This extension can be done for each component of G'.
The resulting cycle will traverse every edge of G and so is an Eulerian cycle. (0

Example 2.3. In the graph shown in Figure 8.10 let C = <{r,6,7,r> and let H be
the component consisting of the four vertices {3,4, 5,6} and their incident edges.
Then with A = 6 let D = (6,3,4,5,6), an Eulerian cycle on H. This can be merged
with C to form the larger cycle C' = <(r,6,3,4,5,6,7,r>.

8 7 6 5
Figure 8.10

Theorem 2.1 also leads to conditions under which a graph contains an
Eulerian path but not an Eulerian cycle. One such example was the graph H in
Figure 8.7.

Corollary 2.2. A connected graph contains an Eulerian path, but not an Eulerian
cycle, if and only if exactly two vertices have odd degree.

Proof. Suppose that x and y are the end vertices of the Eulerian path. Let ¢’
be the graph obtained from G by creating a vertex r adjacent to x and y but to

402

8:2 EULERIAN CYCLES

no other vertex. If G contains an Eulerian path, then this path together with the
two edges incident with r form an Eulerian cycle. Since by Theorem 2.1 G’ has
all vertices of even degree, G has exactly two vertices of odd degree. Conversely,
if G is a connected graph with exactly two vertices of odd degree, then G', formed
by adding a vertex r adjacent to the two vertices of odd degree, is connected and
has every vertex of even degree. By Theorem 2.1 G has an Eulerian cycle. We can
imagine that this cycle begins at x and proceeds to r and then y. In G this cycle
becomes an Eulerian path from y to x. 1l

Question 2.5. The graph in Figure 8.11 contains exactly two vertices of odd degree.
Create an Eulerian graph as in the proof of Corollary 2.2. Find an Eulerian cycle
on the larger graph and from that an Eulerian path on the original graph.

Figure 8.11

The proof of Theorem 2.1 is constructive. That is, it gives us the idea for an
efficient algorithm for finding an Eulerian cycle.

Algorithm EULER

Step 1. Input G, a connected graph with all vertices of even degree; set
C := {x) {x arbitrary in V(G)}
Step 2. While |E(G)| > 0 do
Begin
Step 3. Pick x in V(C) with degix,G) > 0
StEP 4. Create a maximal cycle D beginning at x {D cannot be
made longer by appending edges at its end.}
SteP 5. Set E(G):= E(G) — E(D)
STEP 6. Set C := cycle obtained from C by inserting D at x
End
Step 7. Output C and stop.

Example 2.3 (again). Here 1s a trace (Table 8.2) of EULER, run on the graph
shown in Figure 8.12.

403

8 MORE GRAPH THEORY

Table 8.2
Step No. X C D
1 r)
3 7
4 6,7,
6 < 6,7,r>
3 6
4 {6,3,4,5,6)
6 {r,6,3.4,5,6,7.r>
3 7
4 L2875
6 (r,6,3,4.5,6,7,2, 1,8, 7.r)

8 7 6 5
Figure 8.12

Notice that the cycles C and D can be created in any way consistent with the
algorithm. For example, the initial cycle C might be {r,7,8,1,2,7,6,r> and the
first cycle D might be {6,5,4,3,6). If this algorithm were implemented on a
computer, which particular cycles C and D are created depends on how the graph
G 1s stored. When tracing these cycles by hand, we can choose edges however we
wish as long as a cycle is formed.

Question 2.6. Trace the algorithm EULER on the graph in Figure 8.13.

Figure 8.13

404

8:2 EULERIAN CYCLES

We have already proved that EULER works correctly, since it follows the
proof of EULER’s theorem.

Of course, to use EULER on an arbitrary graph G we would need to verify
that G is connected. Since G is connected if and only if it contains a spanning tree
by Exercise 5.3.13, connectivity could be checked using the algorithm SPTREE
of Exercise 5.3.19 or KRUSKAL or BFS (of Section 8.1.) If G is connected, we
could then determine if its vertex degrees are all even. If so, we could run EULER.

Before returning to the snowplowing problem, we consider the complexity of
the algorithm EULER. We choose to count comparisons and note that step 4 is
the critical step to examine. Suppose that the graph is input as an adjacency ma-
trix. Creating cycle D in step 4 can be accomplished one edge at a time by finding
a | in the row of the matrix that corresponds with the current vertex. It will take
no more than V¥ such comparisons to find the next edge. Thus step 4 may require
O(V - E) comparisons. Actually, with appropriate data structures EULER can be
made linear in E. (Details appear in Exercise 12.)

The algorithm EULER is designed to run on unweighted graphs. In the orig-
inal snowplowing problem the related graph was a weighted one. The theory and
algorithm so far deal only with a special case, when all vertices of the graph
derived from the street system have even degree. In this case we can plow each
city street exactly once, and regardless of the street lengths (or edge weights) we
have found a minimum-weight cycle without any repetition.

Otherwise, what are the possibilities? Question 2.3 of Chapter 5 states that
every graph contains an even number of vertices of odd degree. Thus there cannot
be just one vertex of odd degree, but there might be exactly two vertices of odd
degree in the graph of the streets. Suppose that City Hall is located at one vertex
of odd degree. Then we could use an Eulerian path algorithm (see Exercise 13)
to plow each street exactly once, ending at the other vertex of odd degree: call
it z. To conclude, the plows would travel home from z to City Hall on a shortest
path. This shortest path from z to City Hall could be found using DIJKSTRA
with z as the root. In Exercises 8 to 10 you are asked to verify that this scheme
does produce the overall most-efficient plowing plan when there are only two
vertices of odd degree.

When there are four or more vertices of odd degree, the most-efficient snow-
plowing plan involves paths between pairs of these vertices of odd degree. (See
Exercises 5 to 7). In fact, there is an efficient algorithm to solve this problem in
full generality. It consists of pairing up the vertices of odd degree so that the sum
of the distances of the minimum-distance paths between pairs is minimized. This
is known as the Minimum Weight Matching Problem or the Chinese Postman
Problem (named after the Chinese mathematician, M-K. Kwan, who first con-
sidered this problem.} The solution is complex, beyond the scope of this chapter.

But wait—there’s something unsatisfactory about the snowplowing model.
Most snowplows don’t plow streets just once, but rather twice, once in each direc-
tion to clear both sides of the street. Can we devise an algorithm to traverse each

405

8 MORE GRAPH THEORY

edge of a graph in this more realistic way? The answer is yes, quite easily, given
our experience with Eulerian graphs.

We model this new situation with a directed graph, that is, a graph in which
each edge is given an orientation or direction from one incident vertex to the
other. In directed graphs paths and cycles must traverse each edge in its given
orientation.

Definition. A directed graph G consists of a finite set V(G) of vertices and a finite
set E(G) of edges (also called arcs) such that each edge consists of an ordered pair
of distinct vertices of V(G). We think of the edge e = (x, y) as being directed from
x to y.

Example 2.5. Figure 8.14 shows some directed graphs.

1 2 1 2 1 2
3 4 3 4 3 4
Figure 8.14

Definition. A path in a directed graph G from x to y is a sequence of distinct
edges, e, e,, ..., e, such thate, = (x,x,),e; =(xy,x,), ..., e, ={(x,_,y) for some
vertices Xy, X,,...,%;. 1. A cycle in a directed graph is a path from a vertex to

itself. An Eulerian path (respectively, Eulerian cycle) is a path (respectively, cycle)
that includes every edge exactly once.

Question 2.7. For each graph in Example 2.5 find an Eulerian path or cycle if
there is one.

Theorem 2.3. A directed graph whose underlying undirected graph is connected
contains an Eulerian cycle if and only if at every vertex v the number of edges
directed 1n to v equals the number of edges directed out of v.

Proof. Follow the same proof as given for Theorem 2.1. 3
Theorem 2.3 can be applied to solve the snowplow problem compietely. If
G is the (undirected) graph derived from the city street plan, let D be the directed

graph created by replacing every edge of G by two directed edges, one in each
direction. Then an efficient snowplowing plan would be an Eulerian cycle on D.

406

8:2 EULERIAN CYCLES

Since each edge in G is replaced by two directed edges in D, a vertex of degree
k in G becomes a vertex in D with k edges directed in to it and k edges directed
out of it. Hence the conditions of Theorem 2.3 are met and D contains an Eulerian
cycle. How do we find an Eulerian cycle? Exercise 18 asks you to modify EULER
so that it works on directed graphs.

EXERCISES FOR SECTION 2

. Which of the following graphs are Eulerian?

w WAVAVANI

LANRNNT AN AA

Can an Eulerian graph contain an odd number of edges? FEither find an
example or prove that there is none.

Suppose that C = {x{,x,,...,X;, X Is a cycle in an Eulerian graph G with
no repeated vertices (except for the start and finish at x;). Show that there
is an Eulerian cycle on G that visits the vertices xy, X3, ..., X, in the same
order as in C, that is, for each i = 1,2, ...,k — 1, vertex x; is reached before
vertex x; . 4.

An Eulerian graph is called arbitrarily traceable at a vertex x if every cvcle
beginning and ending at x can be extended to an Eulerian cycle by continuing
the cycle at x. Prove that G is arbitrarily traceable if and only if every cvcle
of G passes through x.

Show that the following graphs can have their edges divided into two paths,
each joining two vertices of odd degree.

{aj (b)

407

8 MORE GRAPH THEORY

6.

10.

11

12

408

Show that any graph with exactly four vertices of odd degree can have its
edges divided into two paths, one path joining a pair of the vertices ol odd
degree and the other path joining the other pair.

Show that a graph with exactly 2k vertices of odd degree can have its edges
divided into k paths, each path joining a different pair of vertices of odd
degree.

In the following graph, show that the shortest “snowplowing plan” that tra-
verses each edge at least once consists of an Eulerian path from r to = and
then a minimum-distance path from - to r.

Suppose that G is a connected (unweighted) graph that contains an Eulerian
path but not an Eulerian cycle. Let r and s be the vertices of odd degree. Show
that the “trail” that traverses every edge of G at least once, starting and ending
at r, and uses the fewest edges, consists of an Eulerian path from r to s plus
a shortest path back from sto r. (Hint: Let C be a minimum trail that traverses
every edge at least once, and let G* be the graph formed by adding an edge
for each repeated use of an edge by C. Thus C is an Eulerian cycle on the
graph G”. Study the graph formed from the new edges in G*. Actually, G*
will be a multigraph, i.e., some pairs of vertices can be joined by more than
one edge.)

Answer the same question as in Exercise 9, only assume that the graph G is

weighted and path length, as usual, is the sum of the edge weights of edges
in the path.

Suppose that G is a connected weighted graph with exactly two vertices of odd
degree and let v be an arbitrary vertex of G. Describe a shortest trail on G
that begins and ends at v and covers each edge at least once. Prove that your
trail is the shortest.

Here is a closer look at the complexity of EULER with an expanded version
of the algorithm. Suppose that for each vertex v, Nbor(v} initially contains a
list of all vertices adjacent to v.

Algorithm EULER

Step 1. Input G, a connected graph with all vertices of even degree and E
edges; set C = (x> {x arbitrary in V(G)}

13.

14,

15.

16.

17.
18.

8:2 EULERIAN CYCLES

Step 2. While |E(G)| > 0 do
Begin
STEP 3. Pick x in V(C) with deg(x.G) >0
STEP 4. Call Trace (D, x) { The procedure Trace finds a maximal cy-
cle D beginning at x}
STEP 5. Set € := cycle obtained from C by inserting D at x
End
Step 6. Output C and stop.

Procedure Trace (D, x)

Step 1. Setz:=x
Step 2. While Nbor(z) # & do
Begin
StEP 3. Pick w in Nbor(z)
StEp 4. Add wto D
STEP 5. Nbor(z) := Nbor(z) — {w}; Nbor{w) := Nbor(w) — {z)
STEP 6. E(G):= E(G) — (z,w)
Step 7. Setz:=w
End
STep 8. Return

In this version comparisons are made in steps 2 and 3 in the main program
and in step 2 of Trace. Suppose that the algorithm cycles through (the main)
step 2 s times, creating the cycles D, D,,...,D,, which together form the
Eulerian cycle. Find an upper bound on s in terms of E and then show that
the total number of comparisons is O(E).

Modify EULER so that upon input of a connected graph with exactly two
vertices of odd degree, x and y, it traces an Eulerian path, beginning at x and
ending at y.

Find conditions under which a directed graph contains an Eulerian path but
not an Eulerian cycle. Prove your result.

Prove that an undirected graph G is Eulerian if and only if there is a way
to direct its edges so that the resulting directed graph contains an Eulerian
cycle. .

Give an example of an undirected Eulerian graph G and then a direction on
each of its edges so that the resulting directed graph does not contain an
Eulerian cycle.

Explain how a directed graph can be stored in a ¥V x V adjacency matrix.

Rewrite the algorithm EULER so that upon input of a directed graph, whose

underlying undirected graph is connected, it finds an Eulerian cycle if there is
one.

409

8 MORE GRAPH THEORY

19. A spanning in-tree of a directed graph G with root r is defined to be a spanning
tree of the underlying undirected graph such that each path P from a vertex
y to r within the spanning tree is a directed path from y to r in G. Find
examples of directed graphs that do and do not contain a spanning in-tree.
Find an example of a graph G with root r that has a spanning in-tree but such
that with some other vertex s as root there is no spanning in-tree.

20. Explain why in a spanning in-tree with root r, each vertex, except for r, has
exactly one edge of the tree directed out of the vertex.

21. Let G be a directed graph that contains an Eulerian cycle and r an arbitrary
vertex. Prove that G has a spanning in-tree with root r.

22. Devise an algorithm that upon input of a directed graph that contains an
Eulerian cycle finds a spanning in-tree.

23. Suppose that G is a directed graph that contains an Eulerian cycle. Explain
why the following is a valid algorithm for finding an Eulerian cycle in such
a graph. First find a spanning in-tree with root r, as in the previous exercise.
Then construct a cycle by appending incident, unused edges in any way except
that at each vertex v # r the unique out-directed edge in the spanning in-tree
should be saved for the last exit from v.

24. A directed graph is called strongly connected if for every pair of vertices x
and y there is a path from x to y and a path from y to x. A directed graph
is called connected if for every pair of vertices x and y there is a path from
one to the other. A directed graph is called weakly connected if the underlying
undirected graph is connected. Find examples of the following types of directed
graphs.

(a) The graph is strongly connected.

(b) The graph is connected but not strongly connected.

(¢) The graph is weakly connected but not connected.

(d) The graph satisfies none of the connectivity definitions.

25. Explain why a graph that is strongly connected is also connected and why
a graph that is connected is also weakly connected.

26. Prove that a directed graph that contains an Eulerian cycle is strongly con-
nected. [s the same true for a directed graph that contains an Eulerian path?
If so, explain why; if not, find additional conditions which when met by the
graph ensure that it is strongly connected.

8:3 HAMILTONIAN CYCLES

Suppose that a mail carrier wants to pick up mail from every mailbox in town,
or an inspector wants to check the traffic signals at every intersection. Can these
jobs be accomplished efficiently by visiting each location exactly once? These

410

8:3 HAMILTONIAN CYCLES

problems are modeled by constructing an appropriate graph with a vertex for
each location and two vertices joined by an edge if there is a street connection
that passes through no intermediate location. The problem is to find a cycle that
passes through each vertex of the graph exactly once.

This graph theory problem is known as the Hamiltonian cycle problem, named
for Sir W. R. Hamilton, the inventor of a related game (see Exercise 3). It is one
of graph theory’s most demanding unsolved problems. In this section we search
for conditions that guarantee the existence of a Hamiltonian cycle and an efficient
algorithm to find such a cycle. We also learn the important algorithmic technique
of depth-first search. This can be used to solve the Hamiltonian cycle problem for
an arbitrary graph, although not efficiently. In the following section we turn to
the equally challenging problem of finding a minimum-weight Hamiltonian cvcle
in a weighted complete graph.

Question 3.1. Which of the graphs in Figure 8.15 contains a cycle that visits each
vertex exactly once?

1 2 1 2 1

5 2
4 3 4 3
Figure 8.15 4 3

Definitions. In a graph G with V vertices, a path (or cycle) that contains exactly
V — 1 (respectively, V') edges and spans G is called Hamiltonian. A graph is called
Hamiltonian if it contains a Hamiltonian cycle.

Problem. Given a graph G, is it Hamtltonian? If so, find a Hamiltonian cycle.

Notice how similar this problem seems to be to that of Eulerian cycles (of
Section 8.2.) In that case we found necessary and sufficient conditions for a con-
nected graph to be Eulerian. In the case of Hamiltonian graphs life is not so sim.ple
and no such nice characterization is known (or likely to be discovered).

First we remark that since a Hamiltonian graph must contain a spanning
cycle, every vertex must have degree at least 2. Exercises 4 and 5 develop more
involved conditions that a graph must satisfy in order to be Hamiltonian.

Question 3.2. Find an example of a connected graph that is not Hamiltonian but
does not contain any vertices of degree 1.

411

8 MORE GRAPH THEORY

The r-clique, with r > 3, contains a Hamiltonian cycle, namely {(1,2....,r,).
More generally, graphs with all vertices of relatively high degree contain Hamil-
tonian cycles as seen in the first theorem.

Theorem 3.1. If G has V > 3 vertices and every vertex has degree at least V/2,
then G i1s Hamiltonian.

Proof. The proof is constructive and will lead to an algorithm HAMCYCLE.
There are two principal steps. In the first we take a maximal path (i.e., a path that
cannot be extended at either end) and find a cycle on the same set of vertices. In
the second step we take any vertex not on the cycle and construct a maximal path
using it and all of the vertices of the cycle. This new path will be longer than
the original one. We continue alternating these two steps until all of the vertices
of the graph are in the maximal path whence the next cycle we create will be
Hamiltonian.

We first note that any maximal path must contain more than half the vertices
of the graph. Suppose that (x = x|, X,,...,x, =) forms a maximal path within
the graph G. Since the path is maximal, x cannot be adjacent to any vertex off
the path. Thus x has at most k — 1 neighbors. Since the degree of x is at least
V/2, we know that

k—1> or k>1+

IRN
o] =

Now we want to find a cycle whose vertex set is the same as that of the
maximal path. If x is adjacent to y, then the vertices of the path form a cycle in
their natural order. If there exist vertices x; and x; ., such that x is adjacent to
x;+1 and y is adjacent to x;, then {6, X, (WX 10, oo B X0 Xy gy -, X0, X0 I8
cycle containing all the vertices of the original path. See Figure 8.16. On the other
hand, if there were no such pair x; and x; . ;, then whenever x is adjacent to x,, |,
y 1s not adjacent to x;. Since the path is maximal. neither x nor y can be adja-
cent to any vertex off the path. Thus if deg(x) = s, then deg(y) < k — 1 — s. Since
deg(x) > V/2 and deg(y) > V/2,

V<deg(x)+deg(y)<s+tk—-1—-5=k—-1<V,

a contradiction.

sesr O) “es
X X9 X; X4 Xpt ¥

Figure 8.16

412

8:3 HAMILTONIAN CYCLES

Thus we can create a cycle on any vertex set from a maximal path; we relabel

vertices so that the resulting cycle 1s (xy,. .., X, X ().
To justify the second step, let z be any vertex not contained in the cycle
{Xy,. .. X Xy . Since, as we saw above,

V
k>1+ 5 and deg(z) >

YRS

= must be adjacent to at least one vertex on the cycle. If z is adjacent to x;, then
X X e X Xy Xy)

forms a path in G with k + 1 vertices. This can be extended to a maximal path.

1
Here is an algorithm suggested by the proof of Theorem 3.1.
Algorithm HAMCYCLE
Step 1. Input G, a graph with V vertices all of degree = V/2
STeP 2. Set P .= (J
SteP 3. Repeat
Begin
STep 4. Pick z in V(G) — V(P); set P := a maximal path containing
V(P) and =
Step 5. Find C a cycle on V(P)
End

until |V(C)| =V
SteP 6. Output C and stop.

Example 3.1. Table 8.3 is a trace of HAMCYCLE as applied to the graph in
Figure 8.17.

Table 8.3
Step No. z P C
2 0]
4 X dxut,w,)
5 X LW, Y, 0, X)
4 u Qi tow, y, x>
5 CUuw, y, Uy Xy L u)

413

8 MORE GRAPH THEORY

N

Figure 8.17

Question 3.3, Trace HAMCYCLE on the graph in Figure 8.18.

é; U ; t; w \
x y

Figure 8.18

How efficient is HAMCYCLE? It is a O(V?) algorithm; here’s why. Construct-
ing the first maximal path in step 4 will require fewer than V' comparisons to add
each vertex and thus fewer than V2 comparisons in total. The path has length at
least ¥/2 and so the Repeat ... Until loop repeats at most V/2 times. In sub-
sequent executions of step 4 the addition of the vertex z will require no more than
one comparison for each vertex in P and so fewer than V in total. Constructing
a maximal path in step 4 requires fewer than ¥V comparisons for each additional
vertex. Thus the total number of comparisons in step 4 is V2 + (V/2)(V + V) =
2V2. Finding C in step 5 can be accomplished with no more than two compari-
sons for each edge in P and thus fewer than 2V for the step. Thus the total number
of comparisons in step 5 is ¥? and HAMCYCLE is O(V?).

Suppose that we want to find a Hamiltonian cycle in an arbitrary graph, one
with all sorts of different degrees. We might try to list all cycles in the graph,
but that certainly sounds like the basis of an exponential algorithm. (Recall that
algorithms that list all possible subsets, like J-SET and BADMINTREE, are ex-
ponential.) Why don’t we just try to build as long a path as possible, and then
check that it can be completed to a cycle? (The phrase, “Why don’t we just ...,”
is a famous one in algorithms. Often there seems to be a simple way to proceed,
but the heart of the matter is then proving that the resulting algorithm always
works and is efficient.)

We pursue the idea of hunting for a longest path. This technique, known as
depth-first search (or DFS), is a method for systematically visiting all vertices of
a graph by traversing paths that are as long as possible.

414

8:3 HAMILTONIAN CYCLES

Example 3.2. Suppose that we want to visit all vertices in the graph shown in
Figure 8.19.

1 2 3 1 2 3 1 2 3
6 5 4 6 5 4 6 5 4
G One DFS Another DFS
spanning tree spanning tree
Figure 8.19

Beginning at vertex 1 we might create a path P = {1,2,3,4>. From vertex
4 we can visit no additional new vertices. We backup to vertex 3 from which we
also cannot visit new vertices. Then we backup to vertex 2 and visit vertices 5 and
then 6. If we keep track of the edges traversed in this process, we find a spanning
tree. This tree is known as a depth-first-search (or DFS) spanning tree. As with
breadth-first search, a DFS spanning tree is not uniquely determined.

First we present this technique as an algorithm, designed to visit vertices and
to construct a spanning tree if possible; in later applications we shall embellish
upon this fundamental depth-first-search procedure. As vertices are visited, they
and their adjoining edges are placed in T and E(T), the vertices and edges of a
DFS tree. We may use the edges in E(T) to backup if need be.

Algorithm DEPTHFIRSTSEARCH (DFS)

Step . Initialize
Input G, a graph with vertices 1,. .., V and edge set E(G)
Set J:=1 {J will index the vertex currently visited.)
Set T:= {1} {T will contain the visited vertices.}
Set E(T):= & {E(T) will contain the edges of the DFS tree.!
Step 2. While [T| < V do
Step 3. If thereis a K in G — T such that (J, K) is in E(G), then do
Begin
Step4. T:=T + K
Step 5. E(T):= E(T) + (J,K)
STep 6. J:=K
End

415

8 MORE GRAPH THEORY

Else {no such K|

Step 7. If J # 1, then do {backup)]

Find (I,J) in E(T) and set J :=1[
Else [J =]
Step 8. Output T, E(T) and stop.
STEP 9. Output E(T) and stop.

Example 3.3. Table 8.4 is a trace of DFS run on the graph in Figure 8.20.

1 2 4
8 7 5
Figure 8.20
Table 8.4
Step No. J K T E(T)
1 1 Y %
3 1 2
4-6 2 2 .2 iy
3 2 3
4-6 3 3 1 1,2.3) (1 2),(2,3)]
3 3 4
4-6 4 4 11,2,3,4) (1.2),(2.3), (3.4)!
3 4 5
4.6 5 5 (1,2,3,4,5) (1,2),(2,3),(3,4), (4.5
3 5 no K}
7 4
3 4 ‘no K}
7 3
3 3 6
4-6 6 6 (1,2.3.4,5.6! (1,2).42.3),(3.4), (4.5, 3.6)}
3 6 ino K;
7 3
3 3 tno K}
7 2
3 2 7
4-6 7 7 11,2,3.4.5,6,7! L2 (2,3),(3,4),(4,5), (3.6),(2, D)}
3 7 8
4-6 8 8 11,2.3,4,5.6.7.8} W22, 3), (304, 14.5), (3.6), (2. D). (7.8}
9 Stop.

416

8:3 HAMILTONIAN CYCLES

1 2 3 1 2 3 4
5 4 6 5
Figure 8.21

Question 3.4. Trace DFS on the graphs in Figure 8.21.

Theorem 3.2. DEPTHFIRSTSEARCH terminates with T containing precisely
those vertices that are in the same component as vertex 1. The algorithm performs
oV comparisons.

Proof. Note that if vertex v is not in the same component as vertex 1, then there
is no path connecting | and v and so ¢ cannot be added to the tree T